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Preface

This volume of Springer’s Lecture Notes in Computer Science presents the
scientific proceedings of the 11th International Workshop on Breast Imaging
(IWDM 2012), which was held July 8-11, 2012 in Philadelphia, Pennsylvania,
USA. Formerly called the International Workshop on Digital Mammography, the
new name recognizes the move in breast imaging towards more recent emerging
technologies and multimodality imaging solutions. The IWDM meetings bring
together a diverse group of researchers, clinicians and representatives of indus-
try, who are jointly committed to developing technology for early detection and
subsequent patient management of breast cancer. The conference series was ini-
tiated at a 1993 meeting of the SPIE in San Jose, with subsequent meetings
hosted every two years by researchers around the world. Previous meetings have
been held in York (1994), Chicago (1996), Nijmegen (1998), Toronto (2000),
Bremen (2002), Durham (2004), Manchester (2006), Tucson (2008) and Girona
(2010).

The IWDM 2012 was designed as a platform to present the latest technolog-
ical developments and clinical experiences of novel breast imaging technologies,
including digital mammography, tomosynthesis, CT, MR, ultrasound, optical
and molecular imaging. Additional topics include multimodality imaging, im-
age processing and visualization, and computer-aided imaging. A total of 120
papers were submitted to the conference from research groups in 24 countries.
Each four-page extended abstract was reviewed in a fully-blinded process by at
least two members of the Scientific Program Committee, which led to the final
selection of 42 oral presentations and 58 poster presentations. The final 8-page
papers were reviewed by the volume editors. Galley proofs were approved by the
corresponding author(s) of each paper.

The proffered presentations were organized into 10 sequential oral sessions
and 2 poster sessions during the two and a half day conference. The session titles
give insight into the changes that have occurred in breast imaging in the 19
years since the first Digital Mammography conference in San Jose. Today digital
mammography is the clinical standard of care. As a result, this year only one
session was devoted to the technology of digital mammography, with a primary
emphasis on image quality and radiation dose. Rather, one sees that digital
mammography is the enabling technology for a number of new applications,
including image-based breast cancer risk assessment. Thus, substantial work was
presented on image-based measures of breast cancer risk, and other quantitative
measures used in the detection, diagnosis, treatment and prevention of breast
cancer.

A number of new and adjunctive technologies were also discussed in the work-
shop. In particular, digital breast tomosynthesis was heavily represented, both
in papers covering system development and clinical application. Related topics
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in image processing, computer-aided diagnosis and quantitative imaging were
also presented. Other new technologies including breast computed tomography
and breast molecular imaging, and advances in adjunctive technologies including
magnetic resonance imaging and ultrasound were well represented.

The invited speakers were chosen to illuminate the trends in breast imaging
and stimulate future developments. In a trend spanning the last four IWDM
meetings, tomosynthesis was again discussed in an invited lecture. This year,
Emily F. Conant (University of Pennsylvania, USA) and Etta D. Pisano (Medical
University of South Carolina, USA) presented “Tomosynthesis: Clinical Trials
and Clinical Implementation”. Thus, in a 6 year period, we have gone from
papers covering the fundamentals of the technology and positing the role for
tomosynthesis to papers discussing the successes of the technology.

John M. Lewin (Rose Breast Center, USA) presented a talk entitled “Contrast-
enhanced Digital Mammography and Tomosynthesis — Review and Update”.
Contrast-enhanced breast radiography has the potential to combine the mor-
phologic and functional signs of breast cancer. David A. Mankoff (University of
Pennsylvania, USA) discussed “Molecular Imaging of the Breast: Clinical and
Biological Considerations” in a complementary paper outlining numerous other
applications of quantitative breast imaging. Katrina Armstrong (University of
Pennsylvania, USA) provided a thought-provoking talk entitled “Moving to an
Individualized Paradigm for Breast Cancer Screening and Prevention: Opportu-
nities and Challenges”. In this presentation, the role of imaging was reviewed in
light of the larger clinical context of breast cancer. Finally, Martin J. Yaffe and
Gina Clarke (University of Toronto, Canada) provided an overview of “Quan-
titative Imaging Techniques in Pathology for Management of Breast Cancer”.
In this presentation, they demonstrated how the role of imaging continues to
expand and challenge researchers.

Finally, a meeting as large and successful as the IWDM 2012 is only possible
through the tireless work of many people. The members of the Scientific Pro-
gram Committee did an outstanding job in reviewing the papers and providing
detailed critiques to the authors as part of the peer-review process. The local
arrangements for the conference were skillfully handled by Lori Ehrich and An-
gela Scott, who are normally responsible for the continuing education program
for the Department of Radiology at the University of Pennsylvania. Technical
support of the meeting was provided by Joseph Chui of the Physics Section. Joe
has worked hard to keep the various servers running and databases communicat-
ing together. Special thanks need to go to Roshan Karunamuni and Raymond
Acciavatti who expended huge effort to put the 100 individual submissions into
a single cohesive book. Finally, thanks go to Emily Conant and Mitch Schnall for
helping to prepare the proposal for this meeting two years ago, and to Predrag
Bakic and Sara Gavenonis for making this meeting a reality.

July 2012 Andrew D.A. Maidment
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Abstract. Contrast-enhanced digital breast tomosynthesis (CE DBT) has been
proposed to image the effects of tumour angiogenesis. In this work we evaluate
the relationship between CE DBT image signal and histopathology in an animal
tumour model to provide evidence for the underlying basis for signal enhance-
ment. A VX2 carcinoma was induced in the hind leg of 8 rabbits and grown for
up to 3 weeks. Projection images from a 60 s contrast-enhanced CT acquisition
were used to reconstruct CE DBT volumes. Fiducial markers implanted in the
tumour provided a means for registration between images and stained whole-
mount sections. The relationship between CE DBT image signal and angioge-
nesis marker expression was determined. A correlation was found between CE
DBT image signal and dextran extravasation, which strengthened during wa-
shout, while no relationship was observed with CD31 staining. These results
suggest that for clinical CE DBT, washout phase imaging will provide informa-
tion on vascular permeability.

Keywords: Tomosynthesis, contrast-enhanced, angiogenesis, VX2, CD31,
dextran.

1 Introduction

Formation of new blood vessels within tumours is essential for the growth and spread
of cancer [1]. The combination of mammography and clinical iodinated contrast
agents in contrast-enhanced digital mammography (CEDM) has been demonstrated to
reveal vascular information similar to that provided by breast MRI, and recent ap-
provals of a system for clinical use have been granted in the US, Canada and Europe.
Clinical pilot studies of these systems have identified that the 2D nature of mammo-
graphy may limit tumour detection sensitivity due to overlap of normal tissue signal
that may mask small and/or weakly enhancing lesions in CEDM [2]. Contrast-
enhanced digital breast tomosynthesis (CE DBT) offers the potential to overcome this
limitation via 3D imaging. To date, CE DBT development has focused on image qual-
ity optimization, which is affected by a large parameter space including the acquisi-
tion geometry, imaging technique factors, the choice of reconstruction algorithm, and
the subject breast characteristics [3—5]. As this modality moves toward the clinic it is
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important to understand its diagnostic potential for appropriate medical application.
As a first step towards an understanding of the pathology information potentially
available from CE DBT images we aim to demonstrate the relationship between CE
DBT image signal and histology markers for tumour angiogenesis. To our knowledge
this is the first study of its kind for CE DBT. Similar work done in a CEDM clinical
pilot study resulted in a poor correlation between imaging parameters and microvessel
density [6]. The authors hypothesized that this finding could be attributed to the
summation of tumour and normal tissue signals in CEDM, and that the signal is also
related to functional parameters such as vessel permeability which were not captured
in their study [6]. In this work we test both hypotheses with CE DBT in a rabbit tu-
mour model.

2 Methods

2.1  Experimental Protocol

Under a protocol approved by the University Health Network Animal Care Commit-
tee, eight New Zealand White rabbits were inoculated with cell suspensions of VX2
carcinoma in the left hind leg. Although VX2 carcinoma does not strictly model the
characteristics of breast cancers, this animal model allowed for tight control of expe-
rimental conditions and permitted registration between histopathology and in vivo
images. This animal model was chosen because a vascularized tumour will grow to
roughly the size of a small breast cancer (~1 cm) within 2 to 3 weeks and the leg can
be easily immobilized to prevent motion artifact. To provide a range of tumour sizes
and degrees of angiogenesis, four of the rabbits were imaged at 2 weeks and four at 3
weeks after inoculation. Immediately following imaging, the rabbits were sacrificed
and tumours were excised for histology. A cone-beam CT system (eXplore Locus
Ultra, GE Healthcare) with similar detector and geometry characteristics to DBT sys-
tems was used for imaging [7]. Full 3D datasets (416 projections) were acquired at 70
kVp, 50 mA with a W/Cu anode/filter combination at one second intervals for a one
minute period in a perfusion protocol. Anesthetized tumour-bearing rabbits were in-
jected intravenously with a single bolus of 1.5 ml/kg clinical iodinated contrast agent
(Visipaque 270) at the onset of x-ray exposure. Post-sacrifice, 26 gauge catheters
visible on both on x-ray and histology were implanted directly into the tumour as
fiducial markers. The rabbit carcass with the tumour intact, and then the excised tu-
mour embedded in agar were each imaged with CT to allow for registration between
imaging and histology. About 20 minutes prior to sacrifice, 25 mg of 70 kDa biotiny-
lated dextran (Invitrogen) was administered intravenously dissolved in 1 mL of saline
solution for validation of vascular permeability. Immediately before sacrifice a second
dose of contrast agent was administered for tumour visualization on post-sacrifice CT.
Whole-mount sections of the tumour tissue and a control sample of the normal muscle
from the contralateral leg were made for histopathological analysis. Serial sections
were stained with haematoxylin and eosin (H&E) to identify tumour morphology,
anti-CD31 (DAKO, clone JC70A) was used to detect vascular endothelium, and
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streptavidin-HRP (Vector Lab. Inc., Cat# SA-5004) was used to reveal biotinylated
dextran extravasation.

2.2  Tomosynthesis Reconstruction

Projection images for DBT reconstruction with a SART algorithm were sampled post-
acquisition as shown in Fig. 1. Fifteen projection images were sampled with regular
spacing over a 42° angular extent such that the 0° projection aligned with the fiducial
markers in the tumour, as determined using the post-sacrifice CT images (Fig. 1b).

Fig. 1. Schematic of tomosynthesis image sampling from CT data. a) A surface rendering of
post-sacrifice CT data illustrates the geometry of projection image sampling as determined
from the fiducial marker (arrow) position; b) post-sacrifice CT axial slice; and c) perfusion CT
axial slice. DBT reconstructions are generated from the perfusion scan data.

DBT volumes were reconstructed from the raw images acquired in the CT perfu-
sion scans (Fig. 1c) with 0.2x0.2x1 mm voxels. To simulate radiation exposure at
levels closer to a clinical DBT exam, for each projection angle, images acquired at the
given angle from 7 individual time points were averaged together. For each perfusion
scan, optically stimulated luminescent (OSL) chips (Landauer Inc.) were fixed to the
inner thigh of the rabbit hind leg to monitor the dose to the animal. The OSL exposure
readings were validated using measurements performed free in air and at the centre of
a 10 cm diameter PMMA cylindrical phantom with an NRC calibrated farmer type
ionization chamber (NE 2571) and electrometer (Fluke 35040). It was confirmed that
the equivalent dose to water at the rabbit inner thigh was 0.058 % 0.003 mGy/mAs, or
0.007 mGy per projection image. For one 15 projection image DBT dataset when
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averaging over 7 s is performed, the equivalent dose to water is about 0.73 mGy. In
this study we evaluate a 5 time-point temporal subtraction CE DBT exam. The first
post-contrast time point was chosen as 15 s, the time of peak arterial contrast-
enhancement as determined from the signal in the left femoral artery in the perfusion
CT dataset. Subsequent post-contrast volumes were reconstructed at 30, 45, and 55 s.

2.3 CE DBT Image Analysis

Analysis is performed on reconstructed DBT volumes subtracted between the first
time point (4 s), where no contrast agent is present, and subsequent time points. The
image signal in subtracted CE DBT volumes was measured as the mean voxel intensi-
ty within manually segmented regions of interest (ROI) in central slices through tu-
mour and normal tissue. One ROI was placed in the tumour and another was selected
within the corresponding muscle in the normal leg. A qualitative registration was
performed between an H&E stained tumour tissue section and the CE DBT volume to
determine the DBT slice number to use for tumour signal analysis. The DBT slice
number for normal tissue ROI placement was determined using a constant offset from
the right femur to approximate the location of excision of normal tissue. The mea-
surement uncertainty due to ROI location was not determined and will be evaluated in
future work.

2.4  Histological Analysis

Whole-mount specimen digitization was performed using a TISSUEscope™ (Huron
Technologies International), scanner operated in brightfield mode at 1 pm resolution.
In this work serial sections were immunostained for CD31 and dextran with DAB
(3,3"-diaminobenzidine) as the chromogen and counterstained with haemotoxylin.
Tumour and normal tissue were each manually segmented from the digitized sections
for quantification of DAB staining. To separate the stains, colour deconvolution [8]
was applied to each segmented portion of the digitized slides using ImageJ software.
The RGB values of haematoxylin and DAB for deconvolution were calibrated using
single-stained slides, with a third colour vector defined as orthogonal to the other two.
Each DAB-deconvolved section was transformed to grayscale and the staining was
scored with an averaged threshold measure (ATM), which is a validated metric that
quantifies the fractional area stained [9].

2.5  Statistical Analysis

To test for correlations between the CE DBT image signal and immunohistochemistry
(IHC) staining the Pearson’s correlation coefficient, r, was calculated. The relation-
ship between the signal difference (SD) of tumour and normal tissue in CE DBT and
the difference in ATM score in tumour and normal tissue was determined for each of
CD31 and dextran immunostained tissue sections. Correlation between CD31 and
dextran staining was also tested. Statistical significance was determined using the
Student’s t-test for a significance level of 0.05.
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3 Results

All eight VX2 inoculations successfully resulted in a primary tumour in the hind leg.
The average diameter as measured on H&E histology sections was 1.8 + 0.4 cm after
2 weeks of growth and 2.8 + 1.0 cm after 3 weeks growth. A representative VX2 tu-
mour image dataset is presented in Fig. 2 in the DBT orientation (i.e. Fig. 1). A 0.2
mm thick CT slice is shown in Fig. 2a at the time of peak arterial contrast-
enhancement. A 1 mm thick CE DBT slice from reconstructions subtracted between
15 s and 4 s time points is shown in Fig. 2b. The signal-vs-time curve in Fig. 2c plots
mean CE DBT intensities in an ROI placed in the tumour and in the normal muscle.
For comparison, the femoral artery CT signal is shown on the right y-axis to demon-
strate the time-course of the intravascular contrast agent. In Fig. 2d, blue (haematox-
ylin) stain identifies nuclei and pink (eosin) dyes the cytoplasm. In Fig. 2e and 2f
markers of angiogenesis, CD31 and 70 kDa dextran, are stained brown (DAB).

— x10 600 5
% 4 —=—tumour 500 I
= -+-normal +‘
2 5 300 g
'é 200 £
w 100 ﬁ
© 3

Fig. 2. Tumour at 3 weeks growth sliced perpendicular to the fiducials (Fig. 1), reconstructed in
a) CT; and b) CE DBT. ¢) The CE DBT signal as a function of time in the tumour as compared
to normal muscle and the CT signal in the femoral artery (right y-axis). Histology sections: d)
H&E, e) CD31; and f) dextran each stained with DAB (brown).

Fig. 3 presents an example of colour deconvolution applied to a VX2 tumour. No
pixels should be stained with the “third colour” because this indicates colour that is
not included in DAB or haematoxylin. However, due to tissue processing and digiti-
zation artifacts and the fact that DAB is a light scatterer and not an absorber, some
pixels are included in the third colour. In this example the fractional areas stained are
0.15, 0.15 and 0.03 for DAB, haematoxylin and the third colour respectively. This
amount of the third colour is representative of the deconvolution performance ob-
served for all sections evaluated in this study and is considered to be negligible.

The measurements of fractional area of DAB staining for CD31 and dextran in tu-
mour and normal tissue are summarized in Fig. 4. The results are grouped so that
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rabbits numbered 1 to 4 have 2 weeks of tumour growth and rabbits 5 through 8 have
3 weeks of VX2 growth. Note that rabbit 4 did not receive a dextran injection.

a. [ "o e b
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haematoxylin + DAB « tumour segmented
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Ty
DAB (CD31) haematoxylin ‘colour 3’

Fig. 3. Example of tissue segmentation and colour deconvolution for quantitative histological
analysis. a) A haematoxylin and DAB stained section; b) tumour tissue is manually segmented
for analysis, with an inset from the region indicated; and c) the result of colour deconvolution.
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Fig. 4. Fractional area of DAB stained for a) CD31 and b) dextran in tumour and normal tissue

In Table 1 the results of correlation studies between the CE DBT signal difference
at each reconstruction time point, and the fractional area (ATM score) stained with
DAB in CD31 and dextran IHC sections. For each of the CE DBT and histology pa-
rameters, the difference between the tumour and normal tissue quantities are found,
which largely eliminates the effect of any physiological differences between rabbits or
changes in tissue processing conditions. The Pearson’s correlation coefficient be-
tween CD31 and dextran area of staining was 0.39, with a p-value of 0.38.
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Table 1. Pearson’s Correlation coefficient, r, and corresponding p-value for the comparison of
CE DBT signal difference (SD) and the difference in average threshold measurement (ATM)
score in tumour and normal tissue for CD31 and dextran immunostained tissue sections

CE DBT SD CD31 ATM score difference Dextran ATM score difference
(Stumour  Snorm) (ATM o - ATM o) (ATM o - ATM o)
at given time [s] r p r p
15 -.14 74 .59 .16
30 .02 .96 .82 .02
45 .08 .85 .90 .006
55 .10 .81 93 .003

4 Discussion

In this work we take the first step towards a validation of the source of the image
signal in CE DBT. A VX2 tumour in rabbits provides a model for the study of the
relationship between tumour angiogenesis and CE DBT image signal in a dynamic
system. The use of a cone-beam CT permits rapid image acquisition to capture the
contrast agent, while maintaining a similar geometry to existing DBT systems.

Angiogenesis was induced in all rabbits by the VX2 inoculation. Analysis of his-
tology marker expression demonstrated reasonably consistent CD31 fractional area of
staining across all rabbits. Neither CD31 expression, nor dextran extravasation had a
clear association with the tumour size.

A statistically significant correlation between dextran staining area and the CE
DBT signal difference was found from 30 s onwards, and the strength of the correla-
tion increased with time. We know from the CT data, as shown in Fig 2c, that from 15
s onwards the arterial concentration of the contrast agent was decreasing, so the tu-
mour tissue was in a washout phase when the dextran-CE DBT signal relationship
became significant. Due to the size of dextran molecules chosen for use in this work,
they are unlikely to extravasate from healthy endothelium, so the observation of dex-
tran extravasation is a direct indication of increased vessel permeability. Thus, the
results of this work show that the magnitude of CE DBT image signal in the washout
phase is directly related to vascular permeability and interrogates the content of the
extravascular extracellular space.

No relationship was observed between CE DBT signal and the fraction of CD31-
stained area. Given that CE DBT has superior out-of-plane signal suppression com-
pared with CEDM, it is unlikely that signal superposition is responsible for the lack of
correlation in these parameters. Our finding that the CD31 and dextran fractional
areas stained are not correlated suggests that there may be variability in vascular per-
meability and that some of the angiogenic microvessels may not be functional. Future
work will include spatial correlation of dextran and CD31 staining to check for non-
functional endothelium and immunostaining for vascular endothelial growth factor
(VEGF), which is known to increase vascular permeability.

We believe this paper presents the first direct evidence of the relationship between
vascular permeability at the cellular level and image signal in contrast-enhanced
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breast imaging. These results suggest that for clinical implementation of CE DBT,
acquisition of one or more images during contrast agent washout could have diagnos-
tic value since the image signal contains vessel permeability information in this phase.

Although the results of this work are very encouraging, the dependence of the CE
DBT signal on blood flow and vascular volume is still not clear. Future work will
include the evaluation of additional CE DBT image parameters such as enhancement
and washout gradients and area under the curve, which may help tease out the rela-
tionship with other characteristics of angiogenesis. Furthermore, alternative IHC me-
trics should be evaluated, including microvessel density, especially for comparison
with the literature, and an assessment of marker spatial distribution to quantify THC-
CE DBT correspondence such as between the dextran staining seen in Fig. 2f and the
CE DBT rim enhancement in Fig. 2b. Finally, only a small tissue segment was eva-
luated in both histology and CE DBT. In future work, multiple sections of tissue will
be evaluated on both histology and CE DBT to investigate tumour heterogeneity.
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Abstract. Digital breast tomosynthesis (DBT) and contrast enhancement (CE)
for both DBT (CEDBT) and planar mammography (CEDM) are being
investigated to increase conspicuity of malignant lesions. To image above the k-
edge of iodine (33 keV), CEDBT requires x-ray energies higher than those of
typical mammograms (~28 kVp). Increasing the thickness of the detector's
amorphous selenium (a-Se) layer improves x-ray absorption and detective
quantum efficiency (DQE), particularly at higher energies. For DBT, where
systems are often designed with partially isocentric geometries, thicker a-Se
layers may result in degradation of the modulation transfer function (MTF) for
oblique views. We employed a cascaded linear system model to analyze the
effect of oblique entry on MTF. Also, the model was experimentally validated
using 200 and 300 pm a-Se flat panel imagers. Finally, we use an ideal-observer
SNR model for projection and DBT imaging to optimize a-Se layer thickness
for detectability of iodinated objects.

Keywords: digital breast tomosynthesis, contrast enhancement, amorphous
selenium, cascaded linear system model, MTF, ideal observer signal to noise ratio.

1 Introduction

Detection of lesions in screening mammography suffers from the obscuring effect of
projecting three-dimensional (3D) morphology onto a two-dimensional (2D) image.
Digital breast tomosynthesis (DBT) has been the subject of much recent work and has
been proposed as a method of removal of overlapping tissue through 3D tissue
discrimination. DBT consists of the acquisition of a limited number of projection
views over a limited angular range (<45°), from which a 3D image volume may be
reconstructed and viewed as thin image slices (1 mm) parallel to the detector plane.
Further, contrast enhancement (CE) for both planar mammography and 3D techniques
(i.e. DBT and breast CT) has also been proposed as a method to increase lesion
conspicuity by a) imaging the increased uptake of blood (through the use of contrast
agents such as iodine) resulting from angiogenesis of malignant lesions; and by b)
removal of background tissue through image subtraction using methods such as dual
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energy (DE) subtraction and temporal subtraction (TS).[1-4] Both DE and TS involve
imaging at tube energies well above the k-edge of iodine (33 keV) and above those of
standard screening mammography (28 kVp) to increase the conspicuity of contrast
uptake with respect to breast tissue. Increasing the thickness of the amorphous
selenium (a-Se) layer will result in an increase in x-ray absorption, measured by the
quantum detective efficiency (QDE), and detective quantum efficiency (DQE),
particularly at higher energies. However, increasing a-Se thickness (ds,) also leads to
degradation of the modulation transfer function (MTF) for oblique views.[5] Using
experimental methods, we determined the extent of the effect and use the results to
validate theoretical predictions from a cascaded linear system model. The model was
then used to determine the overall effects of a-Se layer thickness on object
detectability in contrast enhanced digital mammography (CEDM) and contrast
enhanced digital breast tomosynthesis (CEDBT).

2 Materials and Methods

Both CEDBT techniques (TS and DE subtraction) require the use of x-ray energies
above the k-edge of iodine (33 keV), which is best achieved at the highest kVp (49 kVp)
available in a mammography system.[6] Since this is much higher than those used in
standard DBT (e.g. <32 kVp), a thicker x-ray detection layer, i.e. a-Se in direct
conversion flat panel imagers (FPI), may be beneficial. Shown in Fig. 1(a) is a plot of
the QDE as a function of ds, for low energy (LE: 28 kVp W/Rh) and high energy (HE:
49 kVp W/Ti) views of a DE study. The benefit of increased a-Se layer thickness is
clearly seen for HE imaging. However, it needs to be considered against other factors in
DBT. Currently, most DBT systems employ a partially isocentric geometry, where the
tube travels in an arc above a stationary detector. This geometry exacerbates image blur
due to oblique entry of x-rays, particularly at higher angle projections. Fig. 1(b) is a
schematic illustration of the lateral spread of energy absorption in the detector, which
increases with angle of obliquity, x-ray energy, and ds,.[5]

(b) 4z
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Fig. 1. A theoretical calculation of the improvement in QDE by increasing ds, (a) as well as a
schematic of the blurring effect of x-rays entering the detector at oblique angles (b)
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2.1 Experimental Measurements of Detector Imaging Performance

A prototype Siemens Mammomat Inspiration unit', modified for CEDBT
applications, was used for all experimental measurements. The system acquires 25
views over a nominal angular range of 45° with continuous tube motion with the most
oblique view acquired at a tube angle of nominally 22°. The x-ray tube energy was
enabled up to 49 kVp and three x-ray filters were employed including 0.050 mm
rhodium (Rh) for LE acquisitions and 0.300 mm copper (Cu) or 1.000 mm titanium
(Ti) for use on HE acquisitions. Measurements were acquired using either of two a-Se
FPI, each with 85 pum pixel size. The FPI differed in dg,, one with the standard ds.=
200 um and the other with dj, increased to 300 pm.

LE and HE spectra were investigated employing gantry modes with stationary and
moving x-ray tube (DBT). The MTF and noise power spectrum (NPS) were measured
from the resulting projection images according to methods outlined previously.[7, 8]
To calculate MTF, a 200 um thick tungsten (W) edge was placed directly atop the
detector cover (1.7 cm above the a-Se surface).

2.2  Cascaded Linear System Model

A cascaded linear system model for DBT was developed, validated, and modified for
CE applications.[6, 9] Fig. 2 exhibits a simple flow chart for the model, which begins
with a model of the projection domain imaging performance for a-Se detectors, which
includes modulation transfer function (MTF) and noise power spectrum (NPS). The
signal and NPS can be further modified with factors unique to DBT image
acquisition, such as focal spot motion (FSM) and oblique entry of x-rays, which are
followed by the logarithmic transformation. If image subtraction is implemented
in the projection domain, then signal and NPS propagation for either DE subtraction
or TS may be modeled.[6, 9-12] Additionally, a number of reconstruction filters
may be applied including (1) ramp filter (Hgra); (2) spectral apodization filter (Hgya),
which is in the form of a Hanning window applied in the tube-travel (x-) direction;
and slice-thickness filter (Hgr), a Hanning window applied in the direction of
gravity (z-).[13-15]

Projection MTF, NPS:
detector, input spectra,
imaging geometry

Reconstruction filters:
ramp, spectral apodization,
slice-thickness

> >

—J» 3D MTF, NPS

Backprojection:
central-slice theorem

Fig. 2. Flow chart of the cascaded linear system model for CEDBT

! Caution: Investigations Device. Limited by US Federal law to investigational use.
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The effects of ds, on the MTF and NPS were incorporated into the projection
image characteristics, as shown in Fig. 2. The effect of beam obliquity (which varies
by projection angle) was determined, as outlined by Mainprize et al,[5], using:

M(E)dy,

1—exp(— —i2rfd, tan @
E xp( cosf fds. )d(P(E)dE

3 1+i27fsin@/ u(E) dE

1
Te(f): ( )

_[Euzu [1 - CXP(_M):‘MLI'E
E cos@ dE

>

where u, ¢, 0, and E,;, refer to the attenuation coefficient of a-Se, the x-ray spectrum,
the x-ray incidence angle, and the absorbed energy, respectively.

The 2D projection image characteristics may be extended into 3D DBT following
the central-slice theorem, as shown in Fig. 2. The projection MTF and NPS calculated
at a specific angle is mapped along that same angle in 3D frequency space. The
limited angular range of DBT results in incomplete coverage of the 3D frequency
space. The resulting 3D MTF, T(f,, f,, f.), and NPS, S(f,, f;, f.), may be used to
calculate the ideal observer signal-to-noise ratio (SNR), d’, for an in-plane object
according to:

d 2 _
in—plane ~—

where O(f,, f;, f.) and K, describe the object's frequency components and contrast,
respectively, for an ideal observer detection task.

[K2[|0>fos £ T £ £,
[[SCret,nf0]dr,

df df, )

s

1.0

' Meas'ured: Staltionary ga'ntry
% ® Measured: HE, 22°, d,_ =200 um |
08l O Modeled: HE, 22°, d,, = 200 ym |
L]
W & Measured: LE, 22°, d,, = 300 um
v% .'l_ v Measured: HE, 22°, d_ =300 um |
\
0.6 - By .'.— - —Modeled: HE, 22°, d,, =300 um
V% .. e
w "
= ? "
04} -
VA&
VVAK
5
02} N i
0.0 ) . ’ o X
0 5 10 15
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Fig. 3. Measured and MTF for an HE projection with stationary gantry (ds, = 200, squares),
and a 22° projection for HE (ds, = 200, circles; dg, = 300, downward triangles) and LE (dg, =
300, upward triangles) views. The modeled data are included for HE projections with dg, = 200
(solid line) and ds, = 300 (dashed line).
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3 Results and Discussion

3.1 Effect of Oblique X-ray Entry on Performance of Projection Views

The measured and modeled MTF from the two FPI are shown in Fig. 3. The results
with a stationary gantry reflect the inherent MTF of the a-Se FPI, which has been
investigated intensively.[16-19] The MTF is independent of the x-ray spectrum. Also
plotted in Fig. 3 are the MTF for the 22° view of an HE DBT scan with ds, = 200 and
dg, = 300, as well as the MTF for the 22° view of an LE DBT scan with dg, = 300.
Modeled data for both oblique HE views were included. In each of the DBT scans,
additional blur is incurred due to the effect of FSM and oblique entry of x-rays. At 0°
for the experimental DBT scan, the blur due to FSM was negligible. This is because
the edge was placed at the surface of the detector housing, which essentially has no
magnification. At the 22° view, the effect of oblique entry of x-rays is clearly visible.
For the HE view with d, = 200, the MTF drops by approximately 30% at the Nyquist
frequency (fyy). With an FPI where ds, = 300, the MTF drops by approximately 45%
at fyy. For the LE view, the effect of beam obliquity has a less pronounced effect on
the MTF than in the HE case, where a significant drop between 5 and 10 cycles/mm is
incurred at a 22° projection angle. In both oblique view HE cases, the modeled and
measured data exhibit good agreement.

Although FSM and oblique entry of x-rays both introduce image blur as seen in the
MTF measurements, they do not introduce noise correlation. As seen in Fig. 4, there
is no change in the NPS with respect to projection angle for a single HE DBT scan
using the 300 pm a-Se detector. As a result, the high frequency drop in DQE at
oblique angles will be proportional to the square of the MTF..

7.0x10° T T T T T T T T T T
6.0x10° |-
5.0x10° |-
—
£ ;
£ 40x10° e
7]
a 6
Z  30x10° | E
z
2.0x10° | 5
—22
. ---17°
1ox10°F 13T
—_ 0°
00 " 1 " 1 " 1 " 1 " 1 "
0 1 2 3 4 5 6

Frequency (cycles/mm)

Fig. 4. Comparison of the NPS of a number of projection images of a HE DBT scan.
Measurements were taken using an 300 pm a-Se FPI.
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Our measurements showed that the DQE at zero cycless/mm improves by
approximately 30% for the HE central view because of the thicker ds,. However, due
to oblique entry of x-rays, the DQE at fyy, decreases by a factor of 4 and 10 when
comparing the 0° and 22° projection views for LE and HE imaging, respectively.

3.2  Effect of a-Se Thickness on DBT Detectability

Fig. 5(a) plots the modeled effect of the largest oblique x-ray entry angle (34°)
associated with the most oblique projection view (22°) for the prototype CEDBT unit
with different x-ray spectra and ds.. Fig. 5(b) shows a comparison of the effects of
reconstruction filter, x-ray obliquity (22°), inherent detector MTF, and FSM . As seen
in Fig. 5(a), increasing the dg, has little effect on LE views. However, increasing the
energy of the x-rays decreases the projection MTF due to increased blurring from the
lateral spread of collection at oblique views. This effect is exacerbated when thicker
detector is implemented. However, in spite of this effect, as seen in Fig. 5(b), the
dominant blurring effect of oblique projection angles remains the effect of the
reconstruction filters, particularly the slice-thickness filter.

a) b)
1.0 T T T T T T T — T
T —— Filter response
09 Tel - - - Oblique entry
e Focal spot motion
08| ™,. — — Detector MTF 7
é 07| N \kb )
~ -
g oo . R
& os N LT
w
E o4r S ]
. ]
03 ~ 1
0a | —LE 200um T -]
- - - LE, 300 um
01| HE, 200 um
0.0 - HE\Y S00um L L L L L L L L L
0 1 2 3 4 5 6 1 2 3 4 5 6
Frequency (cycles/mm) Frequency (cycles/mm)

Fig. 5. Theoretical effect of the most oblique x-ray (34°) from the most oblique tube angle (22°)
on projection MTF as a function of x-ray spectra and ds, (a) and a comparison of filter
response, x-ray obliquity of 22°, FSM, and detector MTF (b)

The total impact of the MTF on object detectability may be seen in Fig. 6(a) and
(b) for projection and reconstructed in-plane images of DBT, respectively. They both
plots normalized d” as a function of dg, for a 300 pm Gaussian object in a DE DBT
study. When the 22° projection view is compared to the central view, as shown in Fig.
6(a), there is a clear drop in d 2 as ds, increases above 350 um. However, in Fig. 6(b),
which plots the in-plane normalized d” of the reconstructed DE DBT image of the
object, there is no decrease in d 2 as ds, increases from 200 to 600 um. This is because
the effect of obliquity on MTF is negligible compared to the reconstruction filter. As a
result, losses in d” due to beam obliquity were found to be less than 0.4% in all cases.
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Fig. 6. Calculation of normalized d” for a 300 pum object for projection views (a) and for
reconstructed in-plane images (b) of a DE DBT scan (b) as a function of dg, including the effect
of oblique entry of x-rays (squares, i.e. central view for projection images) and not including
oblique entry (circles)

4 Conclusion

Increasing the a-Se layer thickness may improve detector imaging performance for
both CEDM and CEDBT by improving QDE at high energies. Due to the increased
penetration and collection of HE photons, additional losses in MTF may be incurred
at oblique views of a DBT scan. Since the noise remains uncorrelated, this MTF
degradation directly translates to loss in DQE at high spatial frequencies. However,
the losses in MTF at oblique views remain dominated by the effect of reconstruction
filters and a net increase in detectability may be observed by increasing a-Se thickness
for both CEDM and CEDBT applications.
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Digital Mammography Images
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Abstract. CEDM is a radiological technique based on the use of digital mam-
mography equipment and the injection of an iodinated contrast medium to en-
hance the visualization of tissues of interest. In previous works, our group has
proposed a formalism for the use of dual-energy temporal CEDM, based on
weighted subtraction of images, that has been applied with success to phantom
data. This methodology requires the selection of ROIs by a radiologist, to de-
termine the weight factors. In this work, we propose an alternative that im-
proves the contrast in clinical images resulting from dual-energy temporal
CEDM subtraction, while freeing the method from ambiguities due to the ROI
selection by a radiologist. The new subtraction algorithm is based on the use of
weight factors calculated pixel-by-pixel. The main result after evaluation of the
methodology on images of 10 patients randomly chosen is a substantial im-
provement of the contrast (~5 times), reaching values that are similar to those
obtained with single energy subtraction.

Keywords: Breast imaging, CEDM, contrast-enhanced digital mammography,
contrast medium, angiogenesis, dual-energy, image subtraction.

1 Background

The increasingly common use of digital mammography worldwide, in addition to
other well-known advantages over alternative breast imaging modalities, has profited
from advanced applications that might improve early breast cancer detection [1]. One
of these techniques is image subtraction under the administration of a contrast me-
dium (CM) referred to as contrast-enhanced digital mammography (CEDM).

CEDM relies on the preferential CM uptake of aggressive cancers undergoing an-
giogenesis to enhance their visualization with respect to the structured breast back-
ground [2-3].

There are two modalities to perform CEDM, single energy temporal (SET) and
dual-energy (DE) [2]. SET is based on the temporal differences between images

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 17-23] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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acquired prior and after the CM administration. DE focuses on the changes in the
linear attenuation coefficient () due to acquisition with different X-ray spectra. In all
CEDM modalities the subtracted image is obtained as follows [4]

Isub:lnl(tl’Ql)_alnI(tz’Qz) ) (M

where I is a mammographic image acquired at time #; with an spectrum of quality Q;.
The weighting factor & compensates changes between the images due to acquisition
with different beam qualities, so that the pixel values of the non-iodinated tissue be-
comes zero after the subtraction. Evidently, a has a value of 1 for SET.

2 The Dual-Energy-Temporal Formalism

2.1  Previous Proposal

Our group has proposed a formalism that combines both temporal and dual energy
modalities (named dual-energy-temporal or DET subtraction) [5]. It is based on the
acquisition of two mask images prior to the CM administration: one with a low energy
X-ray spectrum (LE) and the other with a high energy one (HE). A series of CM im-
ages is acquired after the contrast medium administration, with the same radiological
parameters as the HE mask.

First, all images are normalized by the mean pixel value (MPV) in a region of in-
terest (ROI) identified by the radiologist as adipose tissue. Then, the LE mask is
weight-subtracted from the CM images as indicated in Eq. (1). In this case (Eq. (2)), a
is obtained as the ratio of MPVs in normal glandular tissue ROIs, also identified by
the radiologist in the LE and HE masks I, and Iy, respectively,

_ MPV (ROIglandular (ILE ))
MPV (ROIglandular ( IHE ))

2

This proposal was successfully validated with phantom data [6], and the radiological
parameters (detailed in section 3) were optimized [5] for SET and DET modalities in
terms of mean glandular dose and contrast to noise ratio. SET and DET results re-
ported here have followed this formalism.

A protocol for clinical application was approved by the ethics and research com-
mittees of the Mexico National Institute of Cancerology (INCan), and the preliminary
analysis of clinical images has revealed the following limitations for DET:

e The definition of the glandular tissue ROI depends on the expertise of the radiolo-
gist to identify glandular regions on the breast. Thus, it can be subjective.

e After subtraction, the remaining structured noise —due to the spatial variations of
breast glandularity— causes the contrast between lesion and normal glandular tissue
to be relatively modest.
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2.2 This Work Proposal

To compensate for spatial variations in glandular composition, and therefore increase
the visualization of iodine, we have proposed two modifications to the original pro-
posal that better fit it to the conditions in clinical images:

e To weight the images by a glandular density matrix G, obtained after Highnam [7],
in order to emphasize the presence of glandular tissue in the image.
e To construct the factor a as a matrix whose elements CAZU. (Eq. (3)) are equal to the

ratio between corresponding pixels in the LE and HE masks I; ¢ and I, respective-
ly,

&, = i 3)

The role of o as a matrix is the same as previously described for the weight factor.
Hence, in this proposed dual-energy-temporal formalism (referred to as DETm) the
subtracted image I, is obtained as

Isub(t)zln(GOILE)_doln(GOICM (t)) ) “4)

where G is the glandular density matrix, I;£ is the LE mask, and I, is a contrast me-
dium image acquired at time .

3 Materials and Methods

Image Acquisition. Patients with suspicious lesions detected in routine mammogra-
phy (BIRADS 4-5) were imaged with a Senographe DS system, following a CEDM
optimized protocol that allows to perform DET and SET subtractions [5]. Two images
were acquired prior to CM administration employing (anode/filter) Rh/Rh at 34 kV
(LE mask), and 48 kV plus external 0.5cm Al (HE mask); four CM images were taken
after CM administration, with same radiological parameters as HE mask. Iodine-
based CM (Optiray® 300, 300 iodine mg per ml) was injected using an injection sys-
tem, at a constant speed of 4 ml/s. The sequence of CM images allows the interpreta-
tion of iodine uptake in terms of dynamical absorption curves.

Imaging System Characterization. The implementation of DETm, particularly the
calculation of G, requires the relationship between detector output signal and pixel
value [7]. For this purpose, PMMA blocks of different thickness were imaged using
the same radiological parameters as LE clinical images. The detector output signal
was calculated following Lemacks formalism [8], and the MPVs in a 5x5 cm® ROI,
centered at 6 cm from the edge of the detector, were calibrated. Lemacks formalism
requires a knowledge of the X ray spectrum and the exposure during acquisition. In
this case, X ray spectra were simulated based on Boone polynomial interpolation [9]
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and the correlation between X-ray tube charge (mAs) and air kerma at the entrance of
the breast (mGy), was measured on the beam central axis, at 4.5 cm from the detector,
with a mammography ionization chamber for a range of mAs values. Kerma values
were then transformed to the appropriate distance according to the experimentally
verified 1/1” relation.

Image Processing. The raw (for processing) images of ten patients randomly chosen
(among those who were part of the protocol) have been analyzed. Of each series,
three images were considered for the evaluation of the subtraction formalisms: the
two masks and the image taken 3 minutes after CM administration. Firstly, the images
were aligned with respect to their LE mask with a moving least squares algorithm
[10] and a median filter of radius 10 pixels was applied. Secondly, three subtraction
formalisms were applied to the selected images: SET, DET and DETm, using a cus-
tom-made MATLAB® routine run in a personal computer with Windows® 7 and 1.80
GHz Intel® Core™ i7 processor.

Enhancement Evaluation. The resulting iodine enhancement in the subtracted image
for each subtraction modality was evaluated in terms of contrast between the lesion
and normal glandular tissue, according to Weber (Eq. (5)):

1,-1
C=——%, ®)
G

where I; is the MPV in the lesion and /; is the MPV in a normal glandular tissue ROI.
Lesion ROIs were selected by a radiologist in the LE mask, guided by subtracted
images, while glandular ROIs were selected previous to any subtraction on the LE
mask. To allow comparison, subtracted images were self-normalized and the resulting
pixel values were mapped to an 8-bit gray scale.

4 Results

Figure 1 illustrates the image processing for a typical patient. Figs. 1A-C are “for
presentation” LE and HE masks and CM image acquired at t=3 minutes, respectively.
Fig. 1D is the SET subtraction of Figs. 1C minus 1B. The application of DET is
shown in Fig. 1E. The background breast structure has been considerably reduced, the
lesion is clearly visualized and the resulting contrast value (~0.3) depends strongly on
the chosen ROIs for the adipose and normal glandular tissues. Fig. 1F is the processed
image obtained with DETm. The breast structure has almost disappeared and the con-
trast value (~0.7) is greater than in DET (Fig. 1E).

These general features of the subtracted images are common to all the analyzed
clinical cases (one of the patients did not show a significant iodine uptake and thus,
contrast was always close to zero). Individual contrast values obviously differ from
one patient to the other depending on the individual CM uptake, but values obtained
with the proposed DETm formalism are consistently higher than with DET.
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Fig. 1. Images for one patient. A and B are mask images acquired with LE and HE spectra,
respectively. C is HE image 3 minutes after CM injection. D is subtracted image following SET
formalism, E is DET result and F is DETm. Gray value bar represents pixel values after norma-
lization of D, E and F. ROlIs for adipose, glandular and lesion tissues are shown in A.
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Fig. 2. Contrast between lesion and normal glandular tissue for SET, DET, and DETm modali-
ties. Ten patients are reported
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Figure 2 summarizes contrast values for all patients. Contrast derived from DETm
is similar to that from SET, with differences (of about 10%) within the estimated un-
certainties.

5 Discussion and Conclusions

These preliminary results suggest that the subtraction based on pixel-by-pixel weight-
ing, compared with standard DET modality, improves the contrast in processed
CEDM images while freeing the method from possible inconsistencies in the ROI
determination (only the final evaluation of the contrast requires the definition of a
region of interest.) Also, the image sharpness is apparently better, possibly due to the
reduction of structural noise in DETm with respect to DET. Data from a sample of 10
patients leads to DETm contrast values similar to SET subtraction, suggesting that the
energy- change compensation by the weight factor is done correctly. This feature was
predicted by the DET formalism, as shown in Fig. 4(a) of Ref. 5. Computation time
was considerably greater for DETm (~1 min per image subtraction) than for the other
formalisms (~1 s) and this might be considered when evaluating the overall advantag-
es of DETm. The pathological diagnosis and neoangiogenesis quantification are in
process.
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Abstract. Digital breast tomosynthesis (DBT) requires precise knowledge of ac-
quisition geometry for accurate image reconstruction. Further, image subtraction
techniques employed in dual-energy contrast-enhanced tomosynthesis require that
scans be performed under nearly identical geometrical conditions. A geometrical
calibration algorithm is developed to investigate system geometry and geometrical
consistency of image acquisition between consecutive digital breast tomosynthe-
sis scans, according to requirements for dual-energy contrast-enhanced tomosyn-
thesis. Investigation of geometrical accuracy and consistency on a prototype DBT
unit reveals accurate angular measurement, but potentially clinically significant
differences in acquisition angles between scans. Further, a slight gantry wobble is
observed, suggesting the need for incorporation of gantry wobble into image re-
construction, or improvements to system hardware.

Keywords: geometric calibration, tomosynthesis, dual-energy, contrast-enhanced
tomosynthesis, flat-panel detector.

1 Introduction

Digital breast tomosynthesis (DBT) is a three-dimensional (3D) x-ray imaging modal-
ity that reduces the effect of anatomical clutter inherent to conventional screening
mammography. In DBT, a number of x-ray projections are acquired over a limited
angular range (e.g. +25°), and reconstructed using a modified filtered back-projection
algorithm into image slices parallel to the detector. In dual-energy contrast-enhanced
DBT (CEDBT) an iodinated contrast agent is administered to the patient and consecu-
tive tomosynthesis scans are acquired at energies above and below the K-edge of
iodine. Using image subtraction techniques, an iodine-only image, virtually free of
anatomical noise, can be obtained. [1] Previous studies in dual-energy computed to-
mography (CT) have shown that subtraction in the projection domain provides better
performance than in the reconstruction domain. [2] In tomosynthesis, subtraction in
the projection domain provides an additional advantage because it is not affected by
reconstruction artifacts. However, implementing image subtraction in the projection
domain requires that DBT datasets be acquired under nearly identical geometrical
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conditions, with consistent angles of acquisition. Further, precise knowledge of acqui-
sition geometry is critical for accurate image reconstruction. [3—5]

A number of calibration techniques have been developed for cone-beam CT and
recently adapted for tomosynthesis, which utilize calibration phantoms with specific
arrangements of embedded markers. Geometrical system parameters may be derived
either through accurately known three-dimensional (3D) marker locations and their
corresponding two-dimensional (2D) projections [6-9], or through specialized geome-
tric arrangements of markers in the calibration phantom [5, 10].

In this paper we describe the phantom and calibration procedure developed for a
prototype Siemens Inspiration DBT system to determine both its geometric parame-
ters and reproducibility of the x-ray source trajectory, and discuss the impact of our
findings in the implementation of CEDBT.

2 Materials and Methods

Our geometrical calibration procedure was developed for and tested on a Siemens
Inspiration DBT system equipped with an amorphous selenium (a-Se) flat-panel de-
tector with 85 x 85 pum pixel pitch. All image processing and calibration computations
were performed in MATLAB (TheMathWorks, Natick, MA). We used a cylindrical
acrylic phantom with 28 tungsten beads arranged in equi-angular separation of 24°
and spiral pitch of 90 mm (Fig. 1), which is similar in concept to those widely used in
geometric calibration of cone-beam CT. [8] The calibration procedure developed
relates the 3D location of a marker to its 2D projection through a projection matrix, a
description of the unique projective mapping of an object with respect to the x-ray
source (Fig. 2). The calibration procedure is summarized as follows.

Fig. 1. Photograph (left) of the calibration phantom used in this study, and resulting x-ray pro-
jection image (right) of the phantom, with beads visible. The large central bead is used to define
the origin of the phantom coordinate system, from which the nominal 3D coordinates of each
bead on the spiral pattern could be determined.
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Fig. 2. Diagram of 3D phantom coordinate mapping to 2D detector plane

. Acquire phantom images: The calibration phantom was compressed onto the detec-

tor cover to minimize relative phantom motion. Standard DBT scans were per-
formed, with each scan containing 25 projection images (Fig. 1) acquired over a
nominal angular range of +25°.

. Determine bead coordinates in each projection image: A bead detection algorithm

evaluated bead shadows for size and eccentricity to determine the center coordinate
of each projected bead.

. Make initial estimate of projection matrix: An initial relationship between the 3D

bead coordinates in the phantom and the 2D projected bead coordinates was deter-
mined algebraically. Briefly, a system of equations is constructed relating the 2D
and 3D bead coordinates by elements of the 3x4 projection matrix P, such that

X,
;W R, B, By B, ’
_ Yi

VW o= P21 22 Pz3 Pz4 (D
;i
w P31 32 Pss P34 1

where [u;,v;] represent the 2D bead coordinates in image space, and [x;y;,z:]
represent the 3D bead coordinates in phantom space. The weighting factor, w,
maintains the homogeneity of the coordinates systems. Matrix multiplication, and
elimination of the weighting factor, yields the following system of equations:

B, + By, + Byz + By — Byxu, — Py yu, — Pz, — Py _ 0

= 2
ByX + By, + Bz + By = Byxy, — Py yv, = Paz, — By 0
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These expressions are used to construct a matrix, which includes the 3D bead
coordinates and their corresponding 2D image coordinates. Singular value decom-
position is employed to find a solution to the system of equations, representing a
linear solution of the projection matrix.

4. Minimize re-projection error: The projection matrix is more accurately estimated
by iteratively minimizing the square distance between measured bead
coordinates and re-projected bead coordinates using the estimated P. We used the
Levenberg-Marquardt nonlinear least-squares fit algorithm to minimize the objec-
tive function

E=Yd(lu,v 1 Pl 5T ) @

Optimization is terminated when a minimum residual re-projection error is
achieved.

5. Decompose optimized projection matrix to derive source location: The projection
matrix may be factored into three component matrices, such that

P=K|[RI1] @

where the 3x3 rotation matrix R and the 3x1 translation vector ¢ describe the orien-
tation and location of the phantom with respect to the x-ray source, and the upper
triangular intrinsic matrix K may be decomposed as

o, s U,
K= a, v, (%)
1

where a, and a, represent pixel-scaling factors, s represents a skew-parameter for
non-square pixels, and u, and v, are coordinates of the piercing point where the
central x-ray enters the x-ray detector.

Thus, these three matrices reveal detector orientation, source to detector distance and
x-ray source location. For stationary detectors, the most important of these parameters
is the x-ray source location with respect to the stationary detector.

3 Results

Using the method described above, projection matrices, P, were computed for each
angle in a tomosynthesis scan, from which the x-ray source location (with respect to
the detector plane) was derived. A plane of motion fitted to the source trajectory of
each scan was found to be perpendicular to the detector, with a 0.85 degree rotation
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relative to the long axis of the detector plane (see Fig. 3). The deviation of the x-ray
source from the fitted plane (wobble) was determined for a number of consecutive
and non-consecutive scans to determine source orbit reproducibility between scans.
The source trajectory appears reproducible; results for five consecutive scans are
shown in Fig. 4.

A circular orbit was fit to the experimentally determined source locations; the ori-
gin of this circle represents the center of rotation. Gantry angles were computed for
each acquisition location with respect to the source location at the stationary zero-
angle position. These gantry angles were found to agree reasonably well with the
nominal values recorded by the on-board inclinometer, differing by an average of 0.2
degrees, shown in Fig. 5.

Differences in the angles of acquisition between scans at each projection were
registered both by the on-board inclinometer and the computed gantry angles. Sev-
eral beads were tracked across projections for consecutive scans to study the effect
of differences in acquisition angles between scans. The mean angular difference of
0.1 degrees resulted in a bead projection misalignment in the tube travel direction of
0.15 mm measured at the chest wall, and 0.22 mm measured 175 mm along the
perpendicular to the chest wall, shown in Fig. 6. The misalignment in the direction
perpendicular to tube travel was negligible, which suggests repeatable gantry trajec-
tories, albeit with slight variations in projection angles between tomosynthesis
scans.

source plane
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Fig. 3. Source trajectory was determined by
fitting a plane to the experimentally deter-
mined source locations for a complete tomo-
synthesis scan. A slight angle was observed
between the detector plane and the source
plane.

Acquisition Angle [degrees]

Fig. 4. Deviation of the x-ray source from
the fitted plane of motion (gantry wobble)
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Fig. 5. Inclinometer accuracy was evaluated by comparing inclinometer readings with calcu-
lated gantry angles using calibration algorithm, and found to agree within +0.7 degrees, with a
mean difference of 0.2 degrees
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Fig. 6. Beads were tracked across projections for consecutive scans. A mean angular difference
of 0.1 degrees between consecutives scans resulted in a mean bead projection misalignment of
0.15 mm at the chest wall, and 0.22 mm measured 175 mm from the chest wall.
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4 Discussion

Our analysis of the source locations for complete scans indicates a deviation from the
source plane due to gantry wobble, resulting in non-ideal acquisition geometry that
should be incorporated into image reconstruction.

We find close agreement between angles of acquisition registered by the on-board
inclinometer and those computed using the geometric calibration algorithm, assuring
the reliability of using the inclinometer readings for each reconstruction. However,
the exact acquisition angles at specific projections differ slightly between scans, sug-
gesting that image registration may be needed if dual-energy subtraction is to be per-
formed in projection space. It is important to note that the maximum misalignment
due to projection angle inconsistency is ~2.5 pixels; patient motion is expected to
further exacerbate this misalignment, necessitating image registration.

One strategy to facilitate image registration would be to place a small marker on
the periphery of the compression paddle, i.e., outside the region of the breast. The
projection of this bead could be tracked across consecutive scans, from which projec-
tion misalignments due to gantry angle inconsistency could be calculated, as de-
scribed above.

Projection angle variations may ultimately be minimized by improving the syn-
chronization between gantry motion and x-ray exposure.

It is important to note that the accuracy of source position determined during geome-
trical calibration is affected by the continuous gantry motion during image acquisition,
which results in additional focal spot blur (FSB). A gantry speed of 25.45 mm/sec and
an exposure time of 200 msec result in an effective focal spot travel length of 0.33 mm
for objects 4 cm above the detector. This blur introduces uncertainty in the projected
bead centroids, thus increasing uncertainty in the calculated x-ray source locations, and
its correspondence with the time instance of inclinometer reading.

Finally, it should be noted that the present algorithm determines the projection ma-
trix at each angle independently of all other angles. In reality, certain geometrical
parameters remain constant across acquisition angles. For example, pixel pitch re-
mains constant and equal in both horizontal and vertical directions; the orientation of
the detector also remains stationary with respect to the phantom coordinate system if
the phantom is held stationary on top of the detector. Future revisions to the algorithm
will constrain the optimization problem by holding constant these stationary geome-
trical parameters.
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Abstract. An assessment is ongoing of the ability of dual energy contrast-
enhanced digital breast tomosynthesis (CE-DBT) to depict the morphologic and
vascular characteristics of breast cancer in comparison with breast MRI and
digital mammography (DM). Eight patients with newly diagnosed breast cancer
were imaged with an automated dual-energy CE-DBT system. High energy/low
energy image pairs of the index breast were obtained at 1 pre- and 3 post-
contrast timepoints. Post-contrast images were obtained after intravenous ad-
ministration of Visipaque (1 mL/kg). Anatomic images were reconstructed us-
ing filtered backprojection, and contrast-enhanced images were generated using
simple backprojection followed by temporal or dual-energy subtraction. Dual-
energy CE-DBT was able to demonstrate the index malignant lesion in 7 of 8
patients (9 of 10 lesions). Morphologic characteristics including margin detail
and associated microcalcifications were qualitatively concordant with DM.
Vascular characteristics were identifiable qualitatively on post-processed im-
ages in some cases, and judged to be qualitative concordant with breast MRI.

1 Introduction

On imaging, malignant breast lesions are characterized by both structural and func-
tional features[1-4]. Currently, multimodality imaging provides complementary in-
formation that is useful in the assessment and staging of breast cancer. However,
while MRI can provide vascular information about breast lesions [5-6], it has lower
spatial resolution than digital mammography and microcalcifications are not directly
visible on MRI. Conversely, projection digital mammography can demonstrate mor-
phology with high spatial resolution, but is susceptible to artifacts from superimposed
tissues and does not provide functional information about breast lesions.

CE-DBT can potentially integrate into one breast imaging tool many of the strengths
of existing multimodality imaging while also avoiding some limitations of existing
modalities. The unique combination into a single imaging modality of the ability to
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acquire functional characteristics of breast lesions together with high spatial resolution
similar to digital mammography results in a potentially powerful breast imaging tool.
An additional strength of CE-DBT lies in the underlying technology of digital breast
tomosynthesis (DBT), which circumvents the limitations of two-dimensional projection
mammography. DBT is an emerging x-ray based breast imaging technique in which
high resolution tomographic images of the breast are obtained at a dose comparable to
projection mammography [11, 12]. In clinical trials, DBT provides improved sensitivity
and specificity relative to projection mammography[12].

Thus, the purpose of this study was to assess the ability of dual-energy CE-DBT to
demonstrate morphologic and vascular characteristics of breast cancer in comparison
with breast MRI and digital mammography. Our hypothesis is that these features of
breast cancers will be demonstrable on CE-DBT images.

2 Methods

2.1  Acquisition Protocol

This prospective research study received IRB approval and is HIPAA compliant.
After informed consent was obtained, 8 patients (age range 48 — 68 years) with newly
diagnosed breast cancer were imaged with an automated dual-energy CE-DBT system
(Hologic, Bedford MA). High energy/Low energy image pairs of the index breast
were obtained at 1 pre and 3 post-contrast timepoints. Dynamic post-contrast images
were obtained after intravenous administration of Visipaque (1 mL/kg) using a power
injector (2-3 ml/sec). Images were reconstructed using backprojection (Figure 1).
Subtraction images were generated and reviewed (dual energy and temporal). In this
preliminary study, no motion correction processing was applied. Qualitative compar-
ison with breast MRI and DM in each case was performed.

DM: DM was obtained as part of the standard clinical workup, prior to diagnosis.

MRI: The breast MRI was performed either before or after the CE-DBT exam (6 on
the same day, 1 the day after MRI, and one 12 days after MRI.) MRI was performed
with the patient prone in a 1.5-T scanner (Siemens) with a dedicated surface breast
coil array. For contrast imaging, a rapid bolus injection of 0.1 mmol/kg gadobenate
dimeglumine (MulitHance, Bracco Diagnostics Inc, Princeton, NJ) followed by a
saline flush was administered (via peripheral intravenous access). The clinical breast
MRI protocol includes the following series: pre-contrast T1-weighted, pre-contrast
T2-weighted fat suppressed, pre-contrast T1-weighted fat suppressed, dynamic post-
contrast T1-weighted fat suppressed (3 timepoints, 90 second intervals), delayed axial
T1-weighted fat suppressed. Sagittal subtraction images are generated.

CE-DBT: Each patient underwent unilateral CE-DBT using the Hologic Selenia Di-
mensions CE-DBT prototype system (Table 1). Patients were seated for the duration
of the exam. Initial pre-contrast DBT high and low energy pair in the MLO projection
(or optimal projection for visualization of the index lesion) was obtained
(7 MLO, 1 XCCL). The low energy series was used as an unenhanced anatomic
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baseline for tomographic assessment of microcalcifications and margin analysis. The
high energy series was used as the tomographic mask for temporal subtraction. The
breast remained in this compression for the remainder of the study. Then, a contrast
injection of 1ml/kg iodixanol (Visipaque-320,GE Healthcare Inc., Princeton, NJ) was
made(via peripheral intravenous access) using a power injector followed by a saline
flush. Three post-contrast high energy/low energy (HE/LE) image sets were obtained
(20 seconds, 1 minute 25 seconds, and 3 minutes 25 seconds after injection com-
mencement.) The timing of the post-injection CE-DBT images is based on prior work
for breast MRI with multiple post-contrast time points [10]. The breast with the index
lesion was then decompressed. Our current technique results in a mean glandular dose
of approximately 3.0 mGy per HE/LE image set for a 4.5 cm breast. Current total
procedure time is less than 8 minutes.

Table 1. Hologic Prototype CE-DBT system

Target w

kVp 49 (HE) / 32 (LE)

Filter Cu (HE) / Al (LE)

SID 70 cm

Detector 3 fps, 2x2 binning

Angular Range 15°

Scan Time 7.3 seconds

Projections 22, 11(HE), 11(LE) interleaved

DE tomo scan

11 LE, gain corr. 11 HE, gain corr.

BP recon

FBP Recon

Normal LE slices Filtering an_d e Normal HE slices
processing

DE sub slices

Fig. 1. Dual Energy Processing. FBP = Filtered Back Projection, BP = Back Projection. Source
DE tomosynthesis images were post processed per this schematic to create the images for clini-
cal interpretation.
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2.2  Image Interpretation

Images were reviewed by a fellowship-trained breast imager. The size of the in-
dex lesion (at least the greatest linear dimension) was measured. Findings regard-
ing the margins of the index lesion were recorded using descriptors in the ACR
BIRADS lexicon. Vascular enhancement kinetics were assessed and characterized
as Persistent, Plateau, or Washout for the index lesion (as per the BI-RADS lex-
icon[1]).

Ratings on a 10-point scale (10 = best, equivalent to DM) of the conspicuity of
margins on CE-DBT relative to DM and on MRI relative to DM were recorded. Simi-
larly, the visibility of any associated microcalcifications on CE-DBT and MRI were
separately evaluated relative to DM and recorded.

3 Results

Dual-energy CE-DBT was able to demonstrate the index malignant lesion in 7 of 8
patients (9 of 10 lesions). The one lesion in one patient that was not demonstrated was
secondary to a far posterior location of the tumor, which was not an area that could be
imaged mammographically (the finding had been detected on physical exam and eva-
luated with ultrasound).

Morphologic characteristics including margin detail were visualized on CE-DBT.
Presence of associated microcalcifications were visualized on CE-DBT processed
images in 4/4 lesions with associated microcalcifications. Benign microcalcifications
away from the index lesion were visualized and characterized as benign on tomosyn-
thesis images in 1 case. Qualitative concordance with digital mammography was
judged to be achieved. Vascular characteristics were identifiable qualitatively on post-
processed dual energy subtraction images in 4 cases. Qualitative concordance with
breast MRI was judged to be achieved in those cases. (Table 2) (Figures 2 and 3)

4 Discussion

CE-DBT can potentially integrate into one breast imaging tool many of the strengths
of existing multimodality imaging while also avoiding some limitations of existing
modalities. The unique combination into a single imaging modality of the ability to
acquire functional characteristics of breast lesions together with high spatial resolu-
tion similar to digital mammography results in a potentially powerful breast imaging
tool. An additional strength of CE-DBT lies in the underlying technology of digital
breast tomosynthesis (DBT), which circumvents the limitations of two-dimensional
projection mammography. DBT is an emerging x-ray based breast imaging technique
in which high resolution tomographic images of the breast are obtained at a dose
comparable to projection mammography [11, 12]. In clinical trials, DBT provides
improved sensitivity and specificity relative to projection mammography[12].
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Fig. 2. DCIS. Segmental clumped enhancement in the upper breast. From left to right: Pre-
contrast low energy DBT, Post-contrast DE subtraction at 20 s, Post-contrast DE subtraction at
3 m 25 s, and subtraction image from breast MRI at 3 min. Clip at site of prior biopsy.

Fig. 3. Invasive ductal carcinoma. Irregular enhancing mass in the upper breast, with washout
kinetics. From left to right: Pre-contrast low energy DBT, Post-contrast DE subtraction at 20 s,
Post-contrast DE subtraction at 3 m 25 s, and (bottom) subtraction MRI at 3 min.
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Early preliminary studies’ have demonstrated that CE-DBT using an iodinated vas-
cular contrast agent has the potential to demonstrate morphology and vascular en-
hancement information of malignant breast lesions concordant with that of MRI. A
temporal subtraction CE-DBT technique was performed in 13 patients, where one
pre- and one or more post-contrast tomosynthesis time-points are acquired using a
spectrum beyond the K-edge of iodine (32.3 keV). Logarithmic subtraction yields
iodine-enhanced images. In this early pilot group, 11 of 13 patients had malignancy [6
invasive ductal carcinoma; 4 DCIS; and 1 invasive lobular carcinoma]. Suspicious
enhancing lesions were demonstrated in 10 of 11 cases of pathology proven breast
cancer using this temporal subtraction CE-DBT technique. Also, when present, spicu-
lated margins were more conspicuous on CE-DBT than on breast MRI. Furthermore,
one case of breast cancer was initially detected by CE-DBT, and was only demon-
strated on MRI on repeat imaging.

Additional early investigations into a dual-energy technique for CE-DBT have
been performed[8]. At each time point, iodine-enhanced images are calculated by
weighted logarithmic subtraction of the low-energy and high-energy (LE and HE)
images[9, 10, 13, 14]. In a pilot study of one patient[8] with a known malignancy, a
combined temporal and dual-energy CEDBT technique was performed with a total
mean glandular radiation dose within prescribed limits for x-ray breast imaging
(6.48mSv for this patient with a breast thickness of 5 cm in compression). In addition
to providing morphologic and vascular information about the malignant lesion, dual
energy CE-DBT also appeared more resilient to motion artifacts when compared with
temporal subtraction CE-DBT in this one case.

Thus, the purpose of the current study was to assess more fully the ability of dual-
energy CE-DBT to demonstrate morphologic and vascular characteristics of breast
cancer in comparison with breast MRI and digital mammography. Our hypothesis
that these features of breast cancers will be demonstrable on CE-DBT images is sup-
ported by the qualitative results obtained to date.

One of the technical factors that may have led to nonvisualization of the index le-
sion is the location of the finding. In one case, the finding was far posterior and could
not be visualized on mammographic techniques, as the region could not be included
in the image. This is not a limitation that is unique to tomosynthesis or CE-DBT.

Another factor that may have influenced contrast agent uptake is that in this current
series, the breast remained in compression for the injection in order to allow for tem-
poral subtraction of the pre image from the post images. This compression force may
have impeded vascular flow through the breast and to the lesion. This factor is under
consideration as further studies are planned. Thus, future work would include opti-
mizing the compression force used (if any) during contrast injection.

In addition, visualization of uptake may be affected by the timing of image acquisi-
tion post-contrast. Either imaging too early or too late could affect this. Future work
also includes optimizing the image acquisition timing post contrast injection.

If there were associated microcalcifications, these findings were very well demon-
strated on the CE-DBT study. In future work, if vascular enhancement visualization
can be optimized, then this would facilitate correlation of any visualized enhancement
with the calcifications.
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Significance and Future Directions

The results from this pilot study support the hypothesis that CE-DBT can demonstrate
both high-resolution morphologic features of breast cancers (including microcalcifica-
tions) and vascular characteristics that are qualitatively concordant with DM and
breast MRI. Additional reader studies are planned. Furthermore, CE-DBT may also
theoretically offer quantitative evaluation of contrast uptake and perfusion given the
linear relationship between attenuation and contrast-agent concentration. Additional
work in this exciting direction is also planned.

This work is supported in part by Grant IRG-78-002-31 from the American Cancer

Society, and Grant UL1RR024134 from the National Center For Research Resources.
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Abstract. Clinical research has shown that the sensitivity of mammog-
raphy is significantly reduced by increased breast density, which can mask
some tumours due to dense fibroglandular tissue. In addition, there is a
clear correlation between the overall breast density and mammographic
risk. We present an automatic mammographic density segmentation
approach using a novel binary model based Bayes classifier. The Mammo-
graphic Image Analysis Society (MIAS) database was used in a quanti-
tative and qualitative evaluation. Visual assessment on the segmentation
results indicated a good and consistent extraction of mammographic den-
sity. With respect to mammographic risk classification, substantial agree-
ments were found between the classification results and ground truth
provided by expert screening radiologists. Classification accuracies were
85% and 78% in Tabar and Breast Imaging Reporting and Data Sys-
tem (Birads) categories, respectively; whilst in the corresponding low
and high categories, the classification accuracies were 93% and 88% for
Tabér and Birads, respectively.

1 Introduction

Breast cancer is the most common cancer in the UK and across Europe [1]]. It has
been considered a major health problem, and it is estimated that between one
in eight and one in twelve women will develop breast cancer during their lifetime
[2]. An evident rise in breast cancer and the lack of understanding of the disease
development makes early breast cancer detection crucial. Clinical evidence has
indicated a strong correlation between mammographic density and the likelihood
of a woman developing breast caner; and the sensitivity of mammography is
significantly reduced by increased breast density, which can mask some tumours
due to dense fibroglandular tissue. Due to radiologist subjective appraisal of
mammograms, automatic mammographic risk assessment is expected to play a
significant role in the development of breast screening programs and computer
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aided mammography, in order to reduce inter and intra observer variability in
risk classification.

Using mammographic parenchymal patterns, Tabar et al. have proposed a
mammographic modelling scheme based on mixtures of four building blocks
composing the normal breast anatomy (i.e. nodular, linear, homogeneous and
radiolucent). Nodular densities mainly corresponds to Terminal Ductal Lobular
Units (TDLU); linear densities correspond to either ducts, fibrous or blood ves-
sels; homogeneous densities correspond to fibrous tissue which appears as bright
areas in mammographic images, hides the underlying normal TDLU, ducts and
their alterations; radiolucent areas are related to adipose fatty tissue which ap-
pears as dark areas in mammographic images [3]. Wolfe [4] used different mam-
mographic parenchymal patterns to divide mammograms into four risk classes.
Strongly influenced by such a modelling approach, Boyd et al. [5] developed a
method to measure percentage mammographic densities using a computer-aided
technique, and divided mammograms into six categories.

In mammographic risk assessment, inter and intra observer variability are
introduced due to radiologist’s subjective appraisal of mammograms. To stan-
dardise mammography reporting, and to reduce confusion in breast imaging
interpretations, the American College of Radiology’s Breast Imaging Reporting
and Data System (Birads) [6] was developed as a quality assurance tool, covers
the significant relationship between increased breast density and decreased mam-
mographic sensitivity in detecting cancer [7]. Mammographic breast composition
is categorised into four patterns: 1) Birads I, the breast is almost entirely fat
(< 25% glandular); 2) Birads II, the breast has scattered fibroglandular densities
(25% — 50%); 3) Birads III, the breast consists of heterogeneously dense breast
tissue (51% — 75%); and 4) Birads IV, the breast is extremely dense (> 75%
glandular). Such a quantitative measure suggests the use of an accurate and re-
peatable mammographic density segmentation technique, to perform automatic
mammographic risk assessment, and allows quantification of change in the rela-
tive proportion of dense breast tissue [3]. Fig. [ll shows example mammographic
images.

Various methods have been investigated to perform mammographic density
segmentation. Early research [S[9/10] focused on estimating parameters for sta-
tistical models, which were subsequently used to segment the fibroglandular
tissue. Such approaches led to more sophisticated model parameter estimation,
based on detailed knowledge of the mammographic system and the imaging pa-
rameters, which is refereed to as the Standard Mammogram Form (SMF) [I1].
Grey-level histogram information [12J13], and texture features [I4/I5] are com-
monly used for mammographic segmentation and risk classification. A statistical
based texton technique [16] was employed to model the whole mammogram; and
the statistical distributions over a texton dictionary (histogram information) was
used as basis for mammographic risk classification. Texture features were directly
extracted from mammographic images in [17], and the ratio of segmented fatty
and dense breast tissue were used for automatic classification of breast density.
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Fig. 1. Mammographic images with respect to Birads risk classification. From left to
right showing Birads I-IV, corresponding from low to high mammographic risk.

This paper investigates mammographic density segmentation using texture
features derived from grey-level histograms, and a novel binary model matching
pattern based Bayes classifier. The extracted texture features contain not only
periodic aspect but also spatial and geometric information; which are expected to
be rich and discriminative for glandular tissue with distinct characteristics. The
developed method was quantitatively evaluated, and the Mammographic Image
Analysis Society (MIAS) database [I8] was used to facilitate the experiment.

2 Data and Method

The MIAS database contains 321 available images (file mdb2951l is excluded
for historical reasons). A total of 643 mammographic patches (199 nodular, 253
linear, 70 homogeneous and 121 radiolucent) were subsampled from randomly
selected mammograms by an expert mammographic screening radiologist. The
collection of the patches consists of representative Tabar’s mammographic build-
ing block samples, covering various sizes of anatomical structures, densities and
risk categories. In addition, for 136 mammographic patches, tissue specific re-
gions were annotated in detail.

The proposed method can be broken down into the following stages: 1) breast
tissue feature extraction, 2) mammographic building block model generation, 3)
building a binary model based Bayes classifier, 4) mammographic segmentation,
and 5) mammographic risk classification.

To extract texture features of various mammographic building blocks, four sets
(i.e. nodular, linear, homogeneous and radiolucent) of mammographic patches
containing tissue specific samples were used, regardless of the associated risk class
for the original mammograms. As a multi-resolution approach, a set of square
windows (i.e. 41, 31 and 21 pixels) were used to compute local texture features.
The window sizes were determined using local patches, based on a range of breast
anatomical structures (e.g. from large to small structures) and Fourier analysis.
For each pixel, three grey-level histograms are constructed; the number of bins
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were empirically defined as 250, 150 and 50, respectively. For each histogram,
11 histogram features are computed to encode various texture features: contrast
C, energy FE1, skewness S, kurtosis K, entropy FEs, homogeneity H, standard
deviation SD, and moments up to the fourth order M; 33 4. Therefore, with
respect to a histogram bin configuration, a feature vector of 33 dimensions (11
features x 3 resolutions) is generated. The feature extraction resulted in a total
of 12 sets of feature vectors (4 tissue types x 3 histogram bin configurations).
Note that for each type of tissues, about 5,000,000 pixels were randomly sampled.

The resultant feature vectors were fed into K-means clustering to group sim-
ilar texture features as a means of establishing mammographic building block
models. This clustering processing is performed over the feature vectors gen-
erated for one mammographic building block and one of the three histogram
bin configurations, at a time. Empirical testing on the detail annotated mam-
mographic patch segmentation and visual assessment on the correctness of the
segmentation, indicated that the optimal number of cluster centres for nodular,
linear, homogeneous and radiolucent tissue types were 3, 5, 2, and 7, respectively.
This resulted in a total of 9, 15, 6, and 21 models for the four mammographic
building blocks, respectively.

At the stage of building the binary model based Bayes classifier, the mammo-
graphic building blocks were separated into three groups based on the density
characteristics, where linear and radiolucent tissue are considered non-dense tis-
sue, and nodular and homogeneous tissue are considered semi-dense and dense tis-
sue, respectively. To build the classifier, four sets of mammographic patches with
detail annotations were used. The same feature extraction was applied to each
pixel of a specific mammographic building block; the resultant feature vector is
compared with the learnt tissue models, using the nearest neighbour methodol-
ogy. The similarity comparison was performed with the tissue models associated
with one histogram bin configuration at a time. The closest match mammographic
building block is labelled as a binary value 1, or otherwise 0. This process generates
a binary pattern (see Fig.[2lfor example). The three binary codes are converted
to the corresponding decimal numbers to facilitate building the classifier. In par-
ticular, the counts of these decimal values are allocated into three look up tables
(LUTSs) for dense, semi-dense and non-dense tissue, respectively. The size of such
a look up table is defined as 9 (possible decimal values for three digits binary

Feature extraction Compare the feature vector Model matching to
from histogram with the learned models form a binary pattern
Number of bins
‘ e Models (cluster centres) 250 150 50
k E1 N M1 M2 N 0 1 ]
& =
Y llull L] m (ms) t 1 0 0
D g K |—=H| M1 2 |—=H 0 0 0
H R M1 M7 R 0 0 il
2 1 8
e Decimal code

Fig. 2. Example binary model pattern. N, L, H and R denote nodular, linear, homo-
geneous and radiolucent, respectively.
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code) x 9 x 9 bins. The dense (i.e. homogeneous), semi-dense (i.e. nodular) and
non-dense (i.e. linear and radiolucent) tissue prior probabilities are calculated
as: nPizels = nPixels(tissue) + nPizels(—tissue), prior Probability(tissue) =
7"”2%:523:"6) , prior Probability(—tissue) = —"Pmsg;et;;we); where ‘nPizels’ in-
dicates number of total pixels of a specific (e.g. homogeneous) and other types
of tissue (e.g. nodular, linear and radiolucent). The probabilities for a particu-

lar tissue belonging to a specific tissue and non-tissue classes are calculated as:
nPizels(tissue)[D1 2 3]
nPizels(tissue)

probability(Dy o s|tissue) =

Pizels(—ti D L :
nPizels(“tissue)|[Di2s]. whore D1 5 3 indicate the converted decimal values. The
nPizels(—tissue) ’ 45

mammographic segmentation process is straightforward, where tissue class of
an unseen pixel is determined by calculating the probability of it being one
of the four mammographic building blocks; it is labelled to the observed tis-
sue class where the probability is the highest. The tissue probability is cal-
culated as: A = LUTs(tissue)[D1][D2][D3] x priorProbability(tissue), B =
LUT s(—tissue)[D1][D2][D3] x priorProbability(—tissue), tissueProbablity =
Aﬁ;B. The relative proportions of dense, semi-dense and non-dense tissue were
calculated from the resultant mammographic segmentation; and mammographic
risk classification was performed using the derived tissue proportions and leave-
one (woman)-out methodology.

, probability(D1 2 3| tissue) =

3 Results

All the available images in the MIAS database were used in the evaluation.
Example mammographic segmentation is shown in Fig. Bl Tab. [ (left) shows
classification accuracies for discriminating between Tabar’s categories. Total ac-
curacy was 85%, whilst the accuracy for the corresponding low (Tabdr I and
II/1IT) and high (Tabar IV and VI) category was 93%. To avoid bias and deter-
mine the robustness of the classifier, we also performed classification based on
Birads categories. Classification results as seen in Tab. [ (right), were in 78% and
88% accuracies for Birads four categories, and the corresponding low and high
category, respectively. Note that the ground truth used is based on the majority
risk classification rated by three expert radiologists; when using an alternative
ground truth based on an expert screen radiologist, the accuracies achieved in
74% and 87% for Birads four categories, and the corresponding low and high
category, respectively. It is encouraging to see small variances in classification
accuracies when using a different ground truth. However, the risk classification

Table 1. Classification confusion matrices

|Tabér Pattern| I II/11 1V V|Accuracy||Birads Pattern| I ITIII IV|Accuracy|

I 112 0 4 3| 94% I 84 0 1 2| 9%
I1/I11 14 7 5 0| 80% 1I 137317 0| 71%
I\Y 7 1 70 3| 80% III 01773 4| 78%
A% 1 0 9 18] 64% I\Y 0 2 12 23] 62%




Mammographic Segmentation and Risk Classification 45

Fig. 3. Example segmentation (mdb108rl); non-dense, semi-dense and dense tissue are
colour coded yellow, red and blue, respectively

performance seems to be better when using the ground truth based on Tabér’s
risk scheme. This may due to the training mammographic pathes containing
tissue specific structures (i.e. mammographic building blocks) were subsampled
based on Tabar’s scheme. Visual assessment indicated that radiolucent tissue
models may be over trained. The number of models for homogeneous type of tis-
sue is relatively less than other types of mammographic building blocks, which
may reflect that homogeneous tissue is less represented in the segmentation.
Note that the numbers of Tabar V and Birads IV are relatively low.

4 Discussion

The prior knowledge of probabilities to be a tissue and non-tissue pixel can be
constructed to serve as our best estimation, provided the number of sampling
pixels is large enough. In our case the number of pixel sampled for each type
of tissue was about 1,000,000, which seems to be sufficient to build a statisti-
cally meaningful classifier. At the same time, an unbalanced number of training
samples can lead to under or over training, which should be avoided.

All the patches were normalised to zero mean and unit variance during the
training stage to reduce intensity distribution variance (e.g. contrast and bright-
ness). This process can potentially alter inter and intra class variation, which
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makes it difficult to draw decision lines in the feature space; a poorly sepa-
rated decision space can lead to unsatisfactory segmentation results when using
a model driven segmentation. The use of binary model as basis of the classifier
is a probability based approach, which seems to be robust in dealing with inter
and intra class variation.

The number of annotated regions for nodular is relatively small, and may not
cover the full range of anatomical samples; therefore it may not be adequate to
be a strong training dataset. In addition, visual inspection indicated that some of
the annotated data is less precise which may be related to hand tremor and other
limitations during the manual process; as a consequence the annotation data
contains artifacts and noise which are not beneficial for the feature extraction
and the subsequent model generation, leading to incorrect segmentation.

Future work will focus on algorithm improvement (e.g. using balanced training
data across various densities and anatomical structures, experimenting other
feature extraction technique) and possible evaluation in a clinical environment.

5 Conclusions

The developed mammographic segmentation has shown anatomically consistent
results with expert radiologist’s annotations. All the available images in the
MIAS database were used in the evaluation based on both Tabar and Birads
risk categories. Strong correlations were found between the classification results.
The total classification accuracies were 93% and 85% in Tabdr’s categories and
the corresponding low and high category, respectively; 88% and 78% accuracies
in Birads categories and the corresponding low and high category, respectively.
The novelty aspect and primary finding of this study are: 1) using a novel binary
model matching pattern as basis to train a Bayes classifier and 2) the developed
probability based classifier is robust in dealing with inter and intra class varia-
tion. The initial segmentation results are promising; the developed method can
be found useful in quantification of change of relative proportion of dense tissue,
as means of aiding radiologists’ estimation in mammographic risk assessment.
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Abstract. Determining MRI to X-ray mammography correspondence
is a clinically useful task that is challenging for radiologists due to the
large deformation that the breast undergoes. In this work we propose an
intensity-based registration framework with a new integrated transfor-
mation module that uses a biomechanical model of the breast in order to
simulate the mammographic compression. The breast model is patient-
specific and is extracted from the MRI of the patient. The transforma-
tion model has seven degrees of freedom and uses a fast explicit Finite
Element (FE) solver that runs on the graphics card, enabling it to be
fully integrated into the optimisation scheme. The iteratively updated
parameters include both parameters of the biomechanical model simu-
lation, and also rigid transformation parameters of the breast geometry
model. The framework was tested on five clinical cases. The mean regis-
tration error was 7.6 £2.4mm for the CC and 10.24+2.3mm for the MLO
view registrations, indicating that this could be a useful clinical tool.

Keywords: multimodal registration, 2D/3D registration, FEM-based
transformation model.

1 Introduction

MRI is often used as a complementary modality to X-ray mammography to inves-
tigate symptomatic patients and women with dense breasts. However, identifying
corresponding regions can be problematic, due to the differences in image ap-
pearance and the large breast deformation between the two modalities. Women
are lying prone in the MR scanner with their breasts pendulous, while during X-
ray mammography acquisition women are standing with their breast compressed
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between two plates. There are typically two images acquired, one Cradio-Caudal
(CC) and one Medio-Lateral Oblique (MLO) view. An automated MRI to X-ray
registration algorithm would be a valuable tool that could help radiologists in
the diagnosis and management of breast cancer.

Previously, authors have used feature-based techniques for this task ([1], [2]).
However these cannot be easily integrated into clinical practice, as the robust
selection of corresponding, distinctive features from both breast MR and X-ray
images remains unresolved. In addition the possibility of mismatched features
can lead to the need for impractical, manual interaction.

A patient-specific FE modelling approach that simulates mammographic com-
pression was proposed by Ruiter et al. [3]. This implementation used the breast
outline for alignment and applied displacements on the breast surface in two
stages: once in the direction of the projection to match the chest wall to nipple
distance and once in the perpendicular direction to account for the anisotropic
behaviour of the breast and match the breast outline. More recently, a FEM-
based approach with a contact model was proposed [4]. This employed an iter-
ative intensity-based registration framework. However, the updated parameters
were limited to the degree of compression and the 2D rotation of the simulated
mammogram.

We have previously investigated the performance of an intensity-based frame-
work using simpler transformation models, such as an affine transformation [5]
and a statistical deformation model learnt from biomechanical simulations [6].
In this work, we are using the same iterative optimisation framework with a new
patient-specific FEM-based transformation model.

The original contribution of our technique, compared to other approaches that
used biomechanical modelling for the same application, is the use of an intensity-
based registration framework with an iterative update of both the model param-
eters and the rigid transformation parameters. This is enabled by the use of an
integrated transformation module that runs on the Graphics Processing Unit
(GPU) [7], providing shorter execution times than commercial packages.

2 Methodology

In our method, patient-specific biomechanical models are built from the pre-
contrast MRI of the subject. Initially, we segment the breast volume from the
background using a simple region-growing algorithm and then apply Gaussian
smoothing and downsample the extracted binary mask to an isotropic volume of
10mm resolution, to produce smooth meshes and reduce the computational cost
of the FE solver. The surface mesh is extracted using a VI'K implementation of
the marching cubes algorithm and the tetrahedral elements are extracted using
the opensource software package TetGerl]. A typical breast model of the five
used in this study consists of around 2,500 elements and 800 nodes.

We are using a nearly incompressible and hyperelastic neo-Hookean model for
modelling [§]. This is transversely isotropic, to account for the reinforcement of

!http://tetgen.berlios.de/
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biomechanical properties from fiber-like connective tissues in a preferred direc-
tion that was previously observed [9]. We simulate the plate compression using
a frictionless contact model and we approximate the position of the pectoral
muscle nodes to lie on a plane, constraining their movement to be planar.

The transformation model consists of seven parameters which are iteratively
updated during registration. Four of these account for the positioning of the
breast before compression. More specifically these are:

— Two translations within the plane perpendicular to the direction of the pro-
jection

— Two rotations, one for the rotation of the breast about the anterior-posterior
axis (rolling) and one about the superior-inferior axis (in-plane rotation).

The remaining three transformation parameters control the material properties
and the compression simulation of the FEM deformation. These are:

— Amount of compression - constrained between: no compression (0%) and
90% of the maximum distance between the nodes in the direction of the
projection

— Ratio of tissue enhancement coefficient - constrained between [0—512] (range
taken from the literature [9])

— Poisson’s ratio - constrained between 0.45 and 0.499

The compression is simulated using the same amount of displacement for both
compression plates. The optimised parameter is the distance between the two
plates. We assume that the breast tissue is homogeneous with Young’s modulus
4k Pa.

Before registration, the MRI intensities are transformed to X-ray attenuation
using the methodology described in [5]. This new volume and the real X-ray
mammogram are the inputs to the registration pipeline. The breast volume is
positioned above the detector and the distance between the X-ray source and
the detector is fixed and extracted from the DICOM file of the mammogram
(f = 660mm). The initial translation parameters are set such that the centre of
mass of the volume is projected onto the centre of mass of the real mammogram.
This provides a good initial position for registration, which is important for the
optimisation scheme in order to converge to a global minimum. The rotation
parameters are initialised to 0°for the CC view mammogram registrations, while
for the MLO view the roll is set to 45°, to account for the different direction of
the projection, and the in-plane rotation is set to 30°, as the breast in MLO view
mammograms appears to have an in-plane rotation.

To avoid resampling the 3D volume into the transformed position and then
ray-casting using this new volume grid, the transformation is performed as the
ray transverses the 3D grid of the undeformed, moving volume. More specif-
ically, during the registration process we use ray-casting from the 2D target
space through the 3D grid of the moving image and integrate the intensities of
each transformed intersection of the ray with the 3D grid. For a point z;, which
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is the intersection of the ray with the volume grid of the moving image, the
transformation is given by the equation:

T(xz) = T2rig7id(Tnonfrigid(Tlrigid(xi))) (1)

where Tlrigid(xi) = Ttranslation(Rinfplane(xi)) and TQTigid<xi) = Rrolling(xi)~
The non-rigid transformation 7},0p—rigiq is the interpolated displacement at the
current position x; and is computed by the FE solver at the current parameter
position.

The geometry of the model is stored in an zml file, which is used as an addi-
tional input into the registration pipeline. The optimised parameters are part of
a transformation module that is integrated in the Insight Toolkit [10], without
requiring the geometry model to be reloaded at each iteration of the algorithm.
This implementation also provides the flexibility to use different similarity mea-
sures and optimisation techniques.

At each iteration the model is transformed using a rigid transformation and an
FE compression simulation and it is projected into 2D using a perspective ray-
casting projection. The similarity measure used is normalised cross correlation
and the optimisation scheme is hill climbing. The value of each parameter p at
iteration ¢ is given by:

i -1, Step

p=pT E ) ()
where w(p) is a scalar weight factor that controls the relative magnitude of the
step size step for each parameter. At each iteration one parameter is updated,
that which results in the largest increase of the similarity measure, at the current
relative step size. The parameter p; is updated only if the similarity increases
and the step is decreased if the similarity does not improve using the current
parameters.

In our current implementation the algorithm requires approximately 2 hours
for each registration, on a single core, 64-bit machine, with a 2.8GHz processor.
A typical registration task converges usually within 30 iterations (approximately
450 simulations). The performance can be further optimised to include a GPU
implementation of the ray-casting algorithm.

3 Experiments

For validation, we used clinical data from five patients. The MR images of two
cases had a voxel size of [0.7 x 0.7 x 1.3]mm?, two had [0.7 x 0.7 x 2Jmm? and one
had [0.9 x 0.9 x 1]mm?. The X-ray mammograms of three patients had pixel size
[0.1 x 0.1]mm?, one had [0.07 x 0.07Jmm? and one [0.08 x 0.08]mm?2. All mam-
mograms were resampled by a factor of 10 for registration, to reduce the compu-
tational cost of the ray-casting and more closely match the MRI resolution.
Three of the above patients had lesions visible in both the MRIs and in the
CC and MLO view mammograms. The annotations of these lesions were used as
ground truth correspondences between the modalities. The other two patients
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had an MRI and X-ray compatible clip that was used as a known corresponding
point.

For each registration, the error was calculated as the 2D Euclidean distance
between the centre of mass of the annotation/clip position in the X-ray mammo-
gram and the centre of mass of the MRI annotation/clip position projected into
2D at the final registration position. We consider this metric more appropriate
than an overlap measure for our application, as the size of the annotations can
vary significantly both between different patient pathologies and between the
two modalities, since they measure different physical properties of the tissue.

The registration results for all cases are shown in Table[Il, where our approach
is compared against an affine transformation [5]. For the CC view the FEM
transformation performs better with a mean error of 7.6 & 2.4mm, compared to
13+ 7.1mm of the affine, while for the MLO view the mean error (10.2+2.3mm)
is comparable to the affine transformation (11 + 4.7mm). We can also see that
the variance of the registration error is smaller for our FEM-based transforma-
tion model than the affine, showing that the performance of this technique is
more consistent. Example registration results are shown for two patients with
annotations in Figure [Il and the two patients with clips in Figure 2

Table 1. Registration error (in mm) of our FEM transformation method and compar-
ison with an affine transformation [5]. The clip cases are patients p4 and p5.

pl p2 p3 p4 p5 mean  std
FEM CC 8.0 6.8 7.2 4.8 11.4 7.6 2.4
Affine CC 14.6 13.5 3.7 9.9 23.4 13.0 7.1

FEM MLO 12.2 11.5 10.3 11.1 6.2 10.2 2.3
Affine MLO 11.9 7.2 9.4 7.7 18.9 11.0 4.7

4 Discussion

In Figure[lit is clear that the two modalities can give different estimates of the
lesion size. In general, the projections of the MRI annotations appear larger than
the ones on the X-ray images. This difference can be partially explained by the
fact that the two modalities measure different physical properties of the tissue
and also by the effect of the manual annotations, which are generally harder to
perform accurately for 3D structures. Moreover, when the lesions are deformed
during registration, their radius can be reduced in the direction of the projection
and consequently increased in the perpendicular plane. This is expected since
we are using a homogeneous material for the FEM simulations and therefore the
lesions are not modelled as rigid structures.
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a) p3: CC 7.2mm ) MLO 10.3mm ¢) pl: CC 8mm ) MLO 12.2mm

Fig. 1. Registration results for two patients, pl and p3. The X-ray annotation is shown
in red and the projection of the MR annotation in green; their overlap is yellow. In-
evitably each modality can give different estimates of lesion size, but all cases show
overlap.

(a) pb: CC 11.4mm (b) MLO 6.2mm  (c) p4: CC 4.8mm (d) CC sim.mammo

Fig. 2. Registration results for the two patients with MR and X-ray compatible clips,
p4 and p5. The clip location on the X-ray mammogram is visible as the high intensity
region (and a red arrow for p4). The MR annotation is shown in green. For the patient
p4 we also show the simulated CC X-ray mammogram (d).
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Table [ shows that our proposed FEM-based transformation model is less
accurate for the MLO than the CC view registrations. One factor that might
have contributed to this difference is our modelling of the pectoral muscle that
is currently approximated with a plane. As the effect of the pectoral muscle
is larger for the MLO view, we expect our approximation to be less accurate
for these registrations than for the ones of the CC view mammograms. Also the
muscle is excluded from the simulation but is visible in the mammogram. Further
validation tests on a larger data set will show whether there is a significant
difference in the algorithm’s performance between the two views.

Compared to other patient-specific FEM-based methods used for this task,
quantitative results on clinical cases showed a mean error of 4.3mm on 6 cases
[3], and in a more recent semi-automated implementation of the same approach
11.8£6.5mm on CC view mammograms of 11 patients [I1]. However, meaningful
comparison is not possible unless an algorithm could be tested on the same data
sets. We would welcome the opportunity to do this on a common data set.

5 Conclusion

We have presented a framework for an intensity-based MRI to X-ray mammog-
raphy registration using a novel iteratively updated FEM breast compression
simulation. The results on five clinical data sets indicate that this could be a
useful tool and potential aid to breast cancer detection and diagnosis.

We believe that the proposed method, in which we simultaneously optimise
both the pose, via four degrees of freedom, and the biomechanical model pa-
rameters, via a further three degrees of freedom, provides the most physically
realistic transformation model to date, for this application. In addition, incorpo-
rating this transformation model into an intensity-based registration framework,
maximises the amount of information used by the optimisation, increasing the
likelihood of the correct transformation being obtained.

The only interactive step of the current implementation is the pectoral muscle
segmentation. However automated methods exist [12], which could be incorpo-
rated into our method, to create a fully-automated pipeline suitable for clinical
use.

Finally, future work includes further validation on a larger data set and in-
vestigation of the effect that a more accurate modelling of the breast has on the
registration accuracy. For example this could include assigning different mate-
rial properties to the fibro-glandular, the adipose tissue, the tumour and the skin
and also precise modelling of the boundary between the pectoral muscle and the
breast.
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Abstract. Simulations have become a very important tool in study-
ing the details of the physical processes underlying imaging systems.
With the current generation of many-core computer architectures, it has
become possible to have realistic simulations in reasonable computing
times. In this work, we briefly describe hybridMANTIS, a fast Monte Carlo
tool for simulating indirect x-ray detectors that uses a hybrid approach
to maximize the utilization of CPUs and GPUs in a workstation. hy-
bridMANTIS is based on the MANTIS code with an improved geometrical
model. Moreover, hybridMANTIS can run on GPUs for maximum compu-
tational efficiency. We compare hybridMANTIS results on point response
and modulation transfer function for a Csl scintillator screen against ex-
perimental and MANTIS results. For quantitative analysis, we calculate
the root mean square (RMS) difference and Swank factors for simulated
and experimental data. We find that hybridMANTIS matches the experi-
mental results as good as or better than MANTIS, especially in the high
spatial frequency range. The RMS values were lower (0.025, 0.028 for 40
and 70 kVp input spectra respectively) for hybridMANTIS than for MAN-
TIS (0.049, 0.075 respectively) when compared to experimental data. The
comparison of Swank factors suggests that hybridMANTIS and MANTIS are
both consistent with the experimental data. Our models of detector re-
sponse are useful tools for the design and optimization of breast imaging
systems and for improved description of the forward problem in recon-
struction algorithms.

Keywords: Monte Carlo, scintillator detector, MANTIS, Graphics Pro-
cessing Units (GPU).

1 Introduction

The detailed analysis of imaging systems requires thorough understanding of
the underlying physical processes through theory, experiments and simulations.
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With the advent of parallel computer architectures, it is now possible to per-
form realistic simulations, especially an advantage in medical imaging, where
large number of images are required to obtain low uncertainities in performance
estimates. Some examples of computationally intensive simulation tools include
PENELOPE [I] and MANTIS [2] for performing x-ray, electron and optical pho-
ton transport. Graphics Processing Units (GPU) are suitable for problems like
optical photon transport involving independent photon histories. To overcome
this problem, we describe and perform initial validation studies for a novel hy-
brid Monte Carlo approach using CPUs and GPUs in parallel. We refer to it
as hybridMANTIS. It is a fast Monte Carlo package for modeling indirect x-ray
imagers.

2 Methods

In this section we summarize the hybrid concept, present key features of hy-
bridMANTIS, and explain the methods used for validation of hybridMANTIS with
MANTIS and experimental data.

2.1 Hybrid Concept

The hybrid approach can be applied to any problem consisting of two processes.
The first process runs in a CPU and the other can be run independently in a
GPU. This approach can provide a balanced utilization of the CPUs and GPUs
in a single or multiple workstations. For this work, we consider the x-ray and
electron transport as process 1, which runs in a CPU and the optical transport
as process 2 (runs in a GPU). Process 1 outputs the energy and locations of
energy deposition events in the scintillator and buffers them. This buffer is sent
to process 2 which calculates the number of optical photons to be simulated and
transports them. By the time the GPU transports these optical photons, the
CPU simulates more x-ray transport and re-fills the buffer. Thus both process 1
and 2 are run in parallel [3].

2.2 hybridMANTIS

PENELOPE 2006 was used for the x-ray and electron transport. The modeled x-
ray source was a 30 um diameter circular parallel beam with two energy spectra
at 40 and 70 kVp. Cesium Todide (CsI) was used as detector material. The optical
photons were transported using fastDETECTZ2, a rewrite of the optical transport
code DETECT2 used in MANTIS. It offers improved features as compared to DE-
TECT2 in terms of columnar geometry description and computational efficiency.
PENELOPE generates the locations and deposited energy of the interaction events
which are used by fastDETECT2 to sample optical photons following a Poisson
distribution. An optical photon can either be absorbed (at the top surface or in
the bulk) or lost (exits the detector boundary) or detected (at non-ideal sensor
plane located at the bottom of the detector) during its transport. In addition,
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Table 1. Simulation parameters for hybridMANTIS

Detector lateral dimensions 50 x 50 mm?
Detector thickness 170 pm
Column radius 5.1 pm
Refractive index of columns 1.8 (Cesium Iodide)
Refractive index inter-col. space 1.0 (Air)
Top surface absorption fraction 0.1
Bulk absorption coefficient 0.0001 pm™ !
Surface roughness coefficient 0.2
Minimum dist. to next column 1 pm
Maximum dist. to next column 280 pm
Non-ideal sensor reflectivity 0.25
Input X-ray spectra 40 and 70 kVp
Light yield 55 optical photons per keV

to accurately model the roughness of surface walls we implemented the rough-
ness model used in MANTIS. The simulation parameters are given in Table[I] (see
Ref. [3] for details).

hybridMANTIS addresses some of the limitations of MANTIS. For instance MAN-
TIS stores all columnar array details in memory, making it difficult to model
large area detectors. In hybridMANTIS, we solve this issue by modeling columns
on the fly, which means that the columnar array details are computed dynam-
ically. Once a photon travels out of a column, we sample a distance uniformly
between a minimum and maximum value to locate the new column. The photon
is then transported to the surface of this new column. Another limitation of
MANTIS is that due to its regular columnar arrangement, it does not match the
randomness of real columnar structure. To compensate for this, a uniform CsI
layer is added at the bottom of the detector to allow photons to travel laterally
at different angles, thus matching the experimental response. In hybridMANTIS,
as the columns are modeled on the fly, they can be described with randomness
in terms of shape, size, tilt angle and material properties. We have implemented
an algorithm (referred to as columnar crosstalk) to allow photons to cross over
to the adjacent column without undergoing reflection or refraction. This sim-
ulates regions where columns are physically connected as seen in the scanning
electron microscope (SEM) image of the screen in Fig. 1 (left). For this work, we
implemented a linear model of crosstalk with depth (see right image of Fig. 1).

hybridMANTIS simulations were performed using one core of an Intel® Core
i7 920 CPU and an NVIDIA® GeForce GTX 580 GPUl. C language was used
for programming on the CPU and CUDA (version 4.0) for the GPU. MANTIS

! The mention of commercial products herein is not to be construed as either an actual
or implied endorsement of such products by the Department of Health and Human
Services. This is a contribution of the Food and Drug Administration and is not
subject to copyright.
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Depth (%)
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Columnar crosstalk (%)
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Fig.1. (Left) SEM image of the screen (courtesy Radiation Monitoring Devices Inc.,
Watertown MA) used for comparison of hybridMANTIS with the experimental results
in this work. (Right) Columnar crosstalk model as a function of depth. Here depth
is defined in the direction of x-rays entrance. In the first 20% of the detector, all the
photons can crossover to adjacent columns. This crossover decreases linearly to half at
50% depth, and then increases linearly back to 100% crossover at the sensor plane of
the detector.

simulations were performed using one core of Intel® Xeon® E5410 CPU. hy-
bridMANTIS source codes are available for free download at
http://code.google.com/p/hybridmantis.

2.3 Experimental and MANTIS Data

Freed et al. [4] validated MANTIS simulation results against four CsI scintillator
screens with different properties. For the experiments, they measured the point
response functions (PRF) for all the screens for 40 and 70 kVp spectra and
at four incidence angles (0°, 15°, 30° and 45°). A 30-um pinhole was used in
front of the x-ray beam. MANTIS simulations incorporated the details of the
geometrical structure for each specific screen and were produced with 500,000
x-ray histories. For comparison in this work, we have used their experimental
and MANTIS data for only one screen, shown in Fig. 1 (left) at 0° incidence angle.
Its manufacturer specifications can be found in Table 1, and MANTIS simulation
parameters in Table 2 of Reference [4].

2.4 Simulation Output and Data Analysis

All PRFs were obtained for an area of 909x909 ym? around the center of the
sensor plane using a 9 pum pixel pitch and have been normalized by their max-
imum value. Line spread functions (LSF) were calculated by integrating each
column or row of the PRF and the modulation transfer functions (MTF) were
calculated as the discrete Fourier transform of the LSF. Pulse-height spectra
(PHS) were generated for all hybridMANTIS simulations.

We compare the data quantitatively based on the root mean square difference
between the experimental and simulated MTF data averaged over the range
(0.1,10) mm~1.
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1 5
RMS = N;(ei —5) (1)

where N is the number of spatial frequency bins in the range (0.1,10) mm™!,
e; is the experimental and s; is the simulated MTF data. In addition, we also
calculate the Swank or information factor (As) for comparison with MANTIS. A
characterizes the noise associated with converting x-ray to optical (light) energy

and can be obtained from the PHS. A, can be calculated using the zerot" (my),
first (m1) and second moments (mg) of the PHS [f],
2
my
Ay = : (2)
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Fig. 2. PRF and PHS for 40 and 70 kVp spectra using hybridMANTIS

3 Results and Discussion

We compare our hybridMANTIS results against MANTIS and experimental data
for the two input spectra (40 kVp and 70 kVp). All the hybridMANTIS results
shown in this work are for simulating 1 million x-ray histories. Table [ lists the
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Fig.3. LSF and MTF comparison of experimental, MANTIS and hybridMANTIS data
for the two spectra. LSFs (a-d) are obtained by integrating each column of the PRF
(marked with C) while (e-h) are obtained by integrating the PRF row-wise (marked
with R). MTFs are the discrete fourier transform of the LSF.

simulation parameters used for hybridMANTIS. Fig. 2] shows the PRF and corre-
sponding PHS for hybridMANTIS simulations. We observe that the PHS changes
significantly between the two spectra due to the difference in the relative pho-
toelectric fraction. Fig. Bl provide the LSF and MTF comparisons between the
simulation and experimental results. Figs. Bl (a) to (d) show the LSF by inte-
grating each column of the PRF while plots (e) to (h) integrate each row. We do
not observe any significant difference between the two types of LSF calculations.
From Fig. Bl we observe that hybridMANTIS matches the experimental better
than MANTIS especially at higher spatial frequencies and for 70 kVp spectra.
We calculated the RMS values for comparing hybridMANTIS and MANTIS simu-
lations with the experimental data. RMS was calculated using MTF's from Fig. Bl
(b, d). When comparing hybridMANTIS with the experimental data, RMS values
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are 0.025 and 0.028 for the 40 and 70 kVp spectra respectively. For comparing
MANTIS with experimental results, we obtain RMS of 0.049 (40 kVp) and 0.075
(70 kVp). hybridMANTIS has lower RMS values and thus matches the experimen-
tal better than MANTIS. In addition, we used the A, as a metric for the validation
of hybridMANTIS. For this comparison we used the experimental A; obtained by
Zhao et al. in Ref. [0J5]. This data was collected for monoenergetic input from 2
to 140 keV, obtained in steps of 2 keV. Fig. @ depicts the A, for hybridMANTIS,
MANTIS and experimental data from Ref. [6/5] at these energies. We see that
both hybridMANTIS and MANTIS are consistent with the experimental results.

Our results suggest that hybridMANTIS matches the experimental data as good
as or better than MANTIS for this screen, especially in the high spatial frequency
range. We postulate that this is because hybridMANTIS more closely follows
the realism of the columnar array due to its on-the-fly geometry and columnar
crosstalk features as compared to MANTIS. A more comprehensive comparison
will be presented elsewhere.

hybridMANTIS is significantly more computationally efficient than MANTIS be-
cause of the hybrid CPU-GPU approach used in it. We obtained high speed-up
factors of 4967 (for 40 kVp) and 4209 (for 70 kVp) when using hybridMANTIS
as compared to MANTIS.

-
X
0.9l § ]
0.8/ ]
<U)
0.7} —hybridMANTIS
MANTIS
0.6/ x Zhao04 1
= Zhao06
0% 20 40 60 80 100 120 140
E (keV)

Fig. 4. Swank factor (As) comparison of hybridMANTIS with MANTIS and experimental
data (from Ref. [6/5])

4 Conclusion

We described hybridMANTIS and highlighted its key features in comparison with
MANTIS. The hybridMANTIS point response and modulation transfer function
results were compared against experimental and MANTIS results obtained from
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Reference [4]. We calculated root mean square and Swank factor and demon-
strated that hybridMANTIS matches the experimental results as good as or better
than MANTIS for the screen considered in this work, especially in the high spatial
frequency range. Our hybridMANTIS package is computationally more efficient
than MANTIS achieving speed-ups of up to 4967 over MANTIS. This package can
facilitate the design and optimization of breast imaging systems and modeling
for reconstruction algorithms.
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Abstract. Automatic classification of breast masses in mammograms
has been considered a major challenge. Mass shape, margin and density
define the malignancy level according to a standardized description, the
BI-RADS lexicon. Unlike other approaches, we do not segment masses
but instead, we attempt to describe entire regions. In this paper, contin-
uos (Zernike) and discrete (Krawtchouk) orthogonal moments were used
to characterize breast masses and their discriminant power to classify
benign and malign masses, was assessed. Firstly, Regions of Interest se-
lected by an expert are projected onto two sets of orthogonal polynomials
functions, continuous and discrete, thereby drawing shape global infor-
mation onto a feature space. Using a simple euclidean metric between
vectors, the projected images are automatically classified as benign or
malign by a k-nearest neighbor strategy. The parameter space is char-
acterized using a set of 150 benign and 150 malign images. The whole
method was assessed in a set of 100 masses with different shape and
margins and the classification results were compared against a ground
truth, already provided by the database. These results showed that dis-
crete Krawtchouk outperformed Zernike moments, reaching an accuracy
rate of 90,2% (compared to 81% for Zernike moments), while the area
under the curve in a ROC evaluation yielded Az = 0.93 and Az = 0.85
for the Krawtchouk and Zernike strategies, respectively.

Keywords: Breast mass, Zernike moments, krawtchouk moments, Or-
thogonal moments.

1 Introduction

Breast cancer is the most frequently diagnosed cancer in women and is considered
as the largest public health problem in women population worldwide [I]. This dis-
ease is fully curable when an early diagnosis is achieved and mammography is the
more efficient method for visualizing abnormalities in these stages [2]. However,
mammographic interpretation is a really difficult task, especially when a mass is
present, due to its high inter and intra observer variability. Previous studies have
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reported that between 10% and 25% of breast cancer are not detected in mam-
mography, a finding that has been associated to the variability introduced by
the observer. The American College of Radiology has therefore designed a pro-
tocol, currently known as the Breast and Imaging Report and Database System
(BI-RADS) that has permitted to standardize the radiological work flow and to
improve the radiological reading reproducibility [3]. This agreement established
that radiologic semiology signs are shape, margin and mass density. Ultimately,
development of Computer Assisted Diagnosis Systems (CAD) for mammography
has decreased this observer variability since the radiologists can support their
diagnosis using the evidence stored in a particular database, becoming a well
accepted clinical practice to assist radiologists [4]. However, for mass detection
and/or classification, these systems have reported poor accuracy. In breast mass
analysis, the feature extraction process plays the most important role because
its effectiveness directly determines the system performance. A main problem is
then that those extracted features have to be discriminative enough to represent
different kinds of pathological characteristics.

In the context of image analysis, shape analysis based on moments theory
have been used to distinguish between different objects, characters, aircrafts,
chromosomes, and industrial parts [5]. Since Hu [6] introduced moments in-
variants, moments and functions of moments have been widely used because of
their ability to represent global features of an image [7]. However, these mo-
ments are not orthogonal in general, whereby this representation is redundant
and can be hardly used for reconstruction. However, Teague [§] suggested the
use of Legendre and Zernike polynomials by an appropriate approximation of
the integrals [9], allowing minimal information redundancy, low noise and high
image reconstruction capability. Previous works have reported that Zernike mo-
ments perform better than others continuous orthogonal moments [10], but their
geometric and numerical error have limited their use. Orthogonal polynomials
were firstly introduced by Mukundan et al. [7], who proposed a set of discrete
orthogonal moment functions, based on the discrete Tchebichef polynomials.
Another new set of discrete orthogonal moment functions, based on the discrete
Krawtchouk polynomials, was presented by Yap et al. [T1]. It was shown therein
that discrete orthogonal moments perform better than conventional continuous
orthogonal moments in terms of image representation. These investigations sug-
gest the Krawtchouk moments are better suited for shape analysis. Furthermore
the Krawtchouk moments can be used to extract local features of an image,
unlike other orthogonal moments, which generally capture the global features.

In previous works, many approaches based on moments analysis have been
proposed for classification of masses in mammography [T2/T3JT4]. Most of them
are higher dependent of previous segmentation, in which morphology is described
using Zernike moments [14].

In this paper we proposed a breast mass characterization strategy based on a
set of discrete orthogonal functions, known as krawtchouk polynomials. This set
of bases has permitted to define a new type of discrete orthogonal moments, which
are herein formulated, implemented and evaluated on a breast mass classification
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problem. We evaluate the performance of both continuous (Zernike) and discrete
(Krawtchouk) orthogonal moments. Firstly, these regions are projected onto a set
of orthogonal polynomials functions, continuous and discrete, respectively. Once
these basic features are computed, a further dimensionality reduction is achieved
using a standard Principal Component Analysis (PCA), reducing the Krawtchouk
initial descriptor from 820 to 30 and the Zernike descriptors, from 961 to 40 di-
mensions. Finally, these features are classified using a K-nearest-neighbor strat-
egy under a Euclidean metric. The strategy was assessed by classifying a set of 100
masses with different shapes and margins, using as the ground truth the radiolo-
gist’s annotation, already provided by the data base. Results showed that discrete
Krawtchouk moments obtained an accuracy of 90, 2% for the classification task,
in contrast with 81% obtained with Zernike moments, while the area under the
curve in a ROC evaluation yielded Az = 0.93 and Az = 0.85 for the Krawtchouk
and Zernike strategies, respectively. The rest of this article is organized as follows:
next section presents the methodology, results are shown in section 3 and the last
section discusses future works and conclusions.

2 Methodology

After the radiologist selects a mass, the corresponding Region of Interest ROI
is pre-processed to enhance the mass shape. Unlike other approaches, we do not
segment masses but instead, we attempt to describe entire region. Afterward,
this ROI is transformed to any of the spaces defined by any of the selected
bases, either Zernike or Krawtchouk. The number of selected moments is set by
determining a polynomial order that achieves a good reconstruction error for
both types of representations, in this case, an order of 50 was found to produce
a low reconstruction error(0.23 and 0.196 Zernike or Krawtchouk moments re-
spectively). This polynomial order generates a number of basic features, 961 for
the Zernike moments and 820 for the Krawtchouk moments. Once these basic
features are computed, a further reduction of dimensionality is achieved using
a standard Principal Component Analysis (PCA), setting a Zernike descriptor
of 40 and Krawtchouk of 30 dimensions, which preserve a 85% of variability in
the data for both descriptor, respectively. Finally, regions are classified with a
K-nearest-neighbor strategy using Euclidean distance.

2.1 Rol Pre-processing

Breast mass analysis is very likely one of the most difficult radiological exam-
inations since these images capture a very complicated anatomical object with
a limited spatial resolution. Every image was herein size reduced using 16-8
bit conversion technique [I5] , stretched to the maximum and minimum gray
level values ([0, 255]) followed by a bin reduction from 256 to 12 bins, adap-
tively equalizing the histogram so that structural details were preserved. This
step aims to conserve exclusively what is relevant for the classification task. Re-
sultant images were smoothed out by a median filter to remove the remaining
noise. Figure [[l shows an example of the resultant preprocessed images (benign
and malign masses).
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Fig. 1. Rol pre-processing: Rols of columns (a) original images, (b) stretched images,
(c) images with bin reduction

2.2 Zernike Moments

According to BI-RADS, the two more important properties for diagnosis are
shape and texture [BII6UI7]. Teague [8] suggested that the use of orthogonal
bases in terms of the Legendre and Zernike polynomials are good shape descrip-
tor but also rotation-invariant, robust to noise and constitute multiresolution
shape representations [I8]. Zernike polynomials based representation turns out
to be more robust to noise [9], allowing reconstruction with minimal losses. The
Zernike polynomials are a set of complex polynomials which form an orthogonal
complete set Vq(x,y) within the unitary circle [§] and are defined as:

Vog(,y) = Ryg(r)e?®®, r € [=1,1] (1)

where r = y/z2 + y? is the vector magnitude and § = tan=" (£) its angle.
In general, the Zernike Moments are defined as:

p+1
T

™ 1
Zyy =" [ [ W0 5 s )
—m JO
where f(r,0) is the image in polar coordinates. With a numerical approximation,
the complex Zernike moments are derived from the real-valued radial polynomi-
als, given by:

(p—lal)/2 (p—s)!
Ryq(r) = Z (=1)° 114l -4 P2 (3)

—0 sl(B = s)I(F5E — s)!

where p and ¢ are subjected to p — |g| is even, 0 < |¢| < p, and p > 0. Then the
complex Zernike moments of order p, with ¢ repetitions for an image intensity
function f(z,y) are given by:

Zpo =TS S V) fa) (4)

where * stands for the conjugated complex of Vpq(z,y).
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Since that the domain of the Zernike basis functions is the unitary circle,
images are mapped to the unitary circle and their centers must coincide with
the unitary circle center [T9/9] .

2.3 Krawtchouk Moments

The basis functions of Krawtchouk moments are the discrete orthogonal
Krawtchouk polynomials satisfying

Za (x) = p(N,1,p)3pg, 0 <myn < N (5)

where p(N,n,p) = ]7\17> p"(1—p)™, and ¢ = (1—p). The explicit hypergeometric
(F) representation of the Krawtchouk polynomial is given by [I1] as

KA@—q”CQPW—mx—Nm—nf%) 6)

and the weight function j(z) = <N> pgN T,

Krawtchouk moments [11]], unlike Zernike and Legendre moments, belong to
the class of discrete orthogonal moments. Therefore, implementation of these
moments does not involve any numerical approximation. Moreover, Krawtchouk
polynomials do not require coordinate space transformations. Krawtchouk mo-
ments with order m + n are defined as

(@) (W) km () f(z,y)  (7)

||Pﬂ2

N—
Knm(@) = [p(N, 1, p)p(N, m, p)] Z

for m,n = 0,1,2,...N where k,(x) and k:m(y), given by (@) are used as the
basis set. The inverse moment transform is used to reconstruct the image and is

defined by
N N
= Z ZKnmkn(x)km(y) (8)

m=0n=0

2.4 Reconstruction Error

The normalized (RMS) root-mean-square error (¢) is used for measuring the
accuracy of the moments in reconstructing the image and is determined as

> 1f G, 5) = Fi, )
&= - 12 (9)
PP

i g

where f(i,j) and F(i, j) are the original and reconstructed images, respectively.
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A minimum image reconstruction error calculating the root-mean-square
(RMS), shown in Table [l for both Krawtchouk and Zernike moments, allowed
to choose the optimum order of moments to be used in the classification task.

Table 1. Minimum Reconstruction Error (RMS)

Max. Order|Krawtchouk|Zernike
10 0.796 1.032
20 0.624 0.742
30 0.323 0.532
40 0.281 0.319
50 0.196 0.230
60 0.179 0.779
70 0.176 1.299
80 0.172 1.298

An order of 50 was chosen since it generates a low reconstruction error for
both Zernike and Krawtchouk moments.

3 Experimental Results

The strategy was evaluated on a total of 100 Rols, including pathological masses
previously annotated as benign and malign by a group of radiologists, extracted
from the Digital Database for Screening Mammography (DDSM) [20]. This dataset
was split into training (300) and test (100), (50 benign-50 malign) subsets. Classifi-
cation performance was evaluated by K-NN strategy using the euclidean distance
as the space metrics since this classifier has been successfully used as a baseline in
image annotation tasks [21]. The optimal number of used Rols was estimated by a
10-fold cross validation assessment (k=7). The Zernike strategy, set to 40 dimen-
sions by the PCA method, reported an accuracy of 81%. The obtained confusion
matrix reads as: accuracy = %, where T'P is the number of True
Positives, TN true negatives, F' P false positives, F'IN false negatives, respectively.

The performance of classification was evaluated by the area under the ROC
curve, which reported a Az = 0.85 as illustrated in Figure 21 The ROC curve
was generated using a threshold value to make a classification decision, which
were proportional to each K-nearest distance [22].

On the other hand, Krawtchouk strategy with 50 order moments was eval-
uated. For this, a vector feature was reduced to a set of 30 features by PCA
analysis. Results reported an accuracy of 90.2%, while the area under the curve
in a ROC evaluation yielded Az = 0.93. Figure [2] present the classification per-
formance for Krawtchouk and Zernike moments, respectively.
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Fig. 2. Classification results : ROC curves for Zernike and Krawtchouk moments

4 Conclusions and Future Works

The use of Krawtchouk moments for describing shape of mammography masses
was evaluated in this paper. The performance by using this descriptor in a
bening-malign classification task was evaluated using images obtained from a
well known public database. Classification was performed using a single K-NN
classifier. Results were compared with description performed by the state of the
art shape descriptor, named Zernike moments, which have been used previously
for breast mass representation. Experimental results indicate that the shape de-
scriptor based on the Krawtchouk moments improve they obtained by the use
of the Zernike moments. Future works include the fusion of this descriptor with
other visual features such as texture that allows to improve the classification
performance in the most challenging tasks.
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Abstract. Digital breast tomosynthesis (DBT) is a young technology,
and the current imaging protocols are not yet fully optimized. Numerous
recent studies have focused on optimizing DBT scan geometries, but the
optimal DBT scan geometry is inextricably linked to the exposure de-
livery scheme. It is possible that alternative, variable-exposure delivery
schemes could change our understanding of the optimal DBT scan. There
is a need for strategies to evaluate and optimize DBT exposure delivery
on a task- and patient-specific basis. To this end, we developed a simu-
lation framework that uses fast, GPU-enabled Monte Carlo simulations
and linear observer models to evaluate variable-exposure DBT systems.
We tested three different exposure schemes: Equal, Central, and Oblique
exposure. Preliminary results indicate that for the specific task of detect-
ing a small signal in low density breast phantoms (15%), the alternative
Central and Oblique exposure schemes may increase detectability.

Keywords: tomosynthesis, breast, variable-exposure, task-specific, im-
age quality.

1 Introduction

Digital breast tomosynthesis (DBT) is a young technology, and researchers in the
field generally agree that the current imaging protocols are not fully optimized.
Numerous recent studies have focused on optimizing DBT scan geometries in a
task-specific manner. However, the optimal DBT scan geometry for a particular
task is inextricably linked to the exposure delivery scheme. Thus, it is important
to study how to optimize exposure delivery alongside optimizing the scan ge-
ometry. It is possible that alternative, variable-exposure delivery schemes could
change our understanding of the optimal DBT scan. There is a need for strategies
to evaluate and optimize DBT exposure delivery on a task- and patient-specific
basis. Due to the many variables in this optimization problem, there is an addi-
tional need for fast, accurate software tools for virtual DBT system evaluation.

* Corresponding author.
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2 Methods

We are developing a virtual trial engine for DBT system evaluation. The virtual
DBT trial engine involves six computational steps:

Generate an ensemble of breast phantoms.

Frame the image quality problem with a specific, clinically-relevant task.
Simulate DBT projection data with scatter.

Model detector noise.

Postprocess the data for analysis of raw or reconstructed images.
Perform model observer (linear discriminant) analysis.

*Adjust parameters of interest in steps #1-6 and repeat.*

S Gt o=

With this approach, it is possible to evaluate various DBT systems by appropri-
ately modifying interesting parameters at each step in the virtual trial. In the
following subsections, we provide more detail on each of the steps.

2.1 Generate an Ensemble of Breast Phantoms

We used the UPENN breast phantom model[I] to generate ensembles of 400
voxelized phantoms for each of three different percent density classes: 15%, 25%,
and 40% (Fig. [0l). Each phantom contained randomly-varying compartments of
adipose (gray) and fibroglandular (white) tissue.

40%

15%

Fig. 1. Example compressed breast phantoms (ML slices) from three different density
classes
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2.2 Frame the Image Quality Problem

We simulated a detection task by embedding identical spherical masses into half
of the breast phantoms at the center-of-rotation of the x-ray source arc (Fig.
[2). We repeated the task for two signal sizes — small (3 mm) and large (8 mm).
Each mass was inserted into a phantom by changing the density coefficients of
the voxels at the signal location from the existing background density to 1.044
g/cm®. The fibroglandular and adipose tissue densities were set to 1.035 and
0.928 g/cm3 based on previously published values[2]. The voxel size was 500
microns, so the small signal occupied a volume of 112 voxels and the large signal
occupied a volume of 2096 voxels.

Q

X-ray Source
Af R=59 cm g
< escan
y:y z=6 cm
Breast Phantom = z=4.1cm
Detector ROI = e - z=0
26 x 7 cm?2

Fig. 2. Schematic (not to scale) of the simulated partial-isocentric DBT geometry
(left). The detector ROI shifts with projection angle. The right image is a slice through
a 25% density breast phantom at z = 6 cm, showing a small signal (in yellow) as well
as random overlapping background structures.

2.3 Simulate DBT Projection Data

To generate projection images, we used the open source MC-GPU[3] Monte
Carlo code appropriately modified for partially-isocentric DBT geometries. MC-
GPU takes advantage of the highly-parallelized architecture of current GPUs.
To model a polyenergetic x-ray source, we used CDRH/FDA measured spectral
datafd] in conjunction with the parameters in Table[Il For a single phantom, MC-
GPU can easily handle 10'! or 10'? photon histories on recent GPU hardware.
For ensembles of hundreds of phantoms, however, we chose to evaluate two lower
exposure levels — 1.5 x 10? and 10'° photons per phantom — to reduce the time
required for the virtual trials.
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Table 1. X-ray source parameters for generating MC-GPU input spectrum

Target/Filter Tungsten/Al (0.9 mm)
kVp 28 kVp, 13° anode angle
HVL 0.537 mm Al

Mean x-ray energy 20.04 keV

We considered a simple 3-projection DBT acquistion (0°,£48°) with three
different exposure-delivery schemes. In the first scheme — Equal exposure — each
projection received 1/3 of the total photons. The next two schemes were chosen
based on the fact that the thickness of tissue increases roughly with the cosine of
the projection angle. In the “Central exposure” scheme, the oblique projections
received 1/3 of the total times the cosine of the projection angle. In other words,
the 48° projection consumed X2 cos48° photons. The 0° projection received the
remaining photons, or No(1 — £ cos48°). In the “Oblique exposure” scheme, the
0° projection consumed % cos 48° photons while the oblique projections each
received %(3 — c0s48°) photons. These three exposure-delivery methods are

summarized in Table

Table 2. Exposure fractions (fraction of the total photons) at each of the 3 projection
angles for three different exposure-delivery schemes:

—48° 0° 48°
Equal exposure 1/3 1/3 1/3
Central exposure 1 cos 48° 1 — 2 cos48° 1 cos 48°
Oblique exposure (3 —cos48°)/6 1 cos 48° (3 —cos48°)/6

2.4 Model Detector Noise

In MC-GPU, a 26 x 7 cm? perfectly-absorbing detector was used with 100 micron
pixels (2600 x 700 total pixels). Thus, the data in this study only suffered from
object/anatomical noise due to the randomly-varying phantom backgrounds and
quantum noise due to the finite sampling of x-ray photons. We neglected other
sources of detector noise (e.g. scatter in the scintillator, electronic noise) to study
the variable-exposure effects in relative isolation.

2.5 Postprocess for Analyzing Raw or Reconstructed Images

If we are interested in hardware evaluation only — i.e. finding the upper limits of
signal detectability before reconstruction — we can apply model observers directly
to the raw projection data. The dimensions of the projection data are large, how-
ever, which presents difficulties for model observers. Park et. al. have shown that
Laguerre-Gauss (LG) channels are fairly robust for capturing statistical infor-
mation from various signals in non-Gaussian randomly-varying backgrounds[6].
To reduce the dimensionality problem, we applied 5 LG channels to each of the
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projections (Fig. B and concatenated the resulting channel outputs. The chan-
nel width parameter o approximately matched the signal diameter in the central
projection (o = 25 for 3 mm signals, o = 75 for 8 mm signals).

Fig.3. The 5 Laguerre-Gauss channels used for dimensionality reduction

There is scant literature on how to design optimal data-reducing channels
for 3D breast imaging modalities like DBT. In model observer design, the goal
is typically to “tune” the channel parameters (i.e. LG width and number of
channels) to the task for maximum signal detectability with as few channels as
possible. This reduces the risk of unstable observer models due to finite sam-
ple size effects[5]. In previous studies using noisefree raytracing images with a
Poisson model for high-exposure noise and a 3 mm signal, we plotted AUC at
the 0° projection angle as a function of the number of channels for three rep-
resentative widths o = 10,25, and 50 called “Skinny”, “Medium”, and “Broad”
channels (Fig. ). In this study, the percent density was 25% and condition num-
ber regularization was used to stabilize the data covariance. Fig. @lindicates that
the Medium (o0 = 25) channel profile was best tuned to the task, reaching an
asymptotic AUC limit after approximately 5 channels.

2.6 Perform Model Observer/Linear Discriminant Analysis

To evaluate signal detectability, we used a linear discriminant classifier applied
to the concatenated channel outputs from three projection angles. We have used
this approach previously[8], and it has since been called a 3Dp channelized
Hotelling observer (CHO)[7]. We used functions provided in Matlab’s Statis-
tical Toolbox (v7.6) to estimate the linear classifiers and perform ROC analysis
on the channel outputs. For each set of 400 DBT scans, we divided the channel
outputs into 200 for training the discriminant and 200 for testing/computing
ROC curves and AUCs. In each subset of 200 phantoms, half contained signals.

3 Results

For a total exposure of 1.5 x 10° photons, we computed AUC values for each
exposure delivery scheme, and repeated the process for 3 different ensembles of
breast phantoms having percent densities 15%, 25%, and 40%. The results for
15% and 25% densities are shown in Figs. Bl and [6 At 40% density, the task was
too difficult and the mean AUCs were = 0.5 for all three exposure schemes.



A Task-Specific Argument for Variable-Exposure Breast Tomosynthesis 7

Skinny

Medium

0.9 \ o

AUC

05 1 5 10 15 20 25

Number of Channels

Fig. 4. AUC versus the number of channels at the 0° projection angle for three different
channel sizes: ¢ = 10 (Skinny), 25 (Medium), and 50 (Broad). The medium (o = 25)
channel width appears to be best suited for the 3 mm signal detection task and reaches
an asymptote after 5 channels
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Fig. 5. For 15% density phantoms and a 3 mm signal diameter, we found a significant
increase in AUC with alternative exposure schemes. Error bars are 95% confidence
intervals computed from 1000 bootstrap samples.

In the Equal exposure scheme, the 3 mm signal was undetectable in 15% den-
sity phantoms (AUC = 0.5). With Central and Oblique exposure schemes, how-
ever, we found a statistically significant increase in AUC (Fig. Bl). Similarly, for
the 25% density phantoms, Central and Oblique exposure schemes gave higher
mean AUCs, though the 95% bootstrap confidence intervals overlapped slightly
in this case (Fig. []).

For comparison with the challenging task of detecting a 3 mm signal, we
evaluated the same exposure schemes with a larger 8 mm signal embedded into
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Fig. 6. For 25% density phantoms and a 3 mm signal diameter, Central and Oblique
exposure schemes gave higher mean AUCs, though the error bars overlapped slightly.
Error bars are 95% confidence intervals computed from 1000 bootstrap samples.
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Fig.7. For 25% density phantoms and an 8 mm signal diameter (o = 75), there was
no statistically significant AUC difference between the three exposure methods. Error
bars are 95% confidence intervals computed from 1000 bootstrap samples.

the 25% density phantoms (Fig. [[]). We also increased the total exposure from
1.5 x 10° to 10'° photons. Fig. [l shows that there was no significant difference
between the AUCs in the large signal case.

4 Conclusions and Future Work

The preliminary results in this work suggest that for the specific task of detect-
ing a small (3 mm) signal at the center-of-rotation in an ultra-low-dose DBT
scan, alternative exposure schemes may improve detectability. Comparing Fig-
ures [6] and [ for the same density class, we expect that any AUC improvements
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will be task-depdendent. Central or Oblique exposure schemes may increase the
detectability of small spherical signals in low-exposure scans, but this does not
necessarily apply to other types of signals. At high total exposure levels, this
effect could disappear completely. The results of this preliminary study should
not be construed as a rule — rather, they provide evidence that variable-exposure
schemes may offer image quality advantages in some specific scenarios.

Future challenges are to increase the realism of the DBT simulations, im-
prove the observer model, and broaden the scope of the experiments to perform
optimization over a range of clinically-relevant tasks and exposure schemes. To
incorporate the correlation information between the angular projections, we ap-
plied 2D LG channels to each projection and concatenated the output vectors;
but there are other variants such as 3D LG channels that could offer theoretical
or practical advantages in detectability experiments[7]. In this study, we were
plagued by large error bars in all of the AUC calculations. This is likely caused
by using a small sample set of 400 phantoms for training and testing the model
observer. We should investigate the effects of sample size on our AUC results.
While MC-GPU has made it possible to simulate hundreds of low-dose DBT
scans in less than a day, we are still far from the thousands of scans needed
to reduce the statistical uncertainty in our AUC estimates. In future work, we
plan to investigate hybrid analytical/Monte Carlo approaches that allow us to
scale up to a larger optimization space while still taking advantage of MC-GPU’s
state-of-the-art scatter modeling capabilities.
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Abstract. The spatial frequency dependent detective quantum efficiency (DQE)
of a CsI-CMOS x-ray detector was measured in two operating modes: a high
dynamic range (HDR) mode and a high sensitivity (HS) mode. DQE calcula-
tions were performed using the IEC-62220-1-2 Standard. For detector entrance
air kerma values between ~7 uGy and 60 uGy the DQE is similar in either
HDR mode or HS mode, with a value of ~0.7 at low frequency and ~ 0.15 —
0.20 at the Nyquist frequency fy = 6.7 mm™. In HDR mode the DQE remains
virtually constant for operation with K, values between ~7 uGy and 119 pGy
but decreases for K, levels below ~ 7 uGy. In HS mode the DQE is approx-
imately constant over the full range of entrance air kerma tested between 1.7
uGy and 60 uGy but kerma values above ~75 uGy produce hard saturation.
Quantum limited operation in HS mode for entrance kerma as small as 1.7 uGy
makes it possible to use a large number of low dose views to improve angular
sampling and decrease acquisition time.

Keywords: detective quantum efficiency, breast tomosynthesis, CMOS, sensi-
tivity, hybrid imaging.

1 Introduction

X-ray tomosynthesis of the breast promises to improve upon planar mammography in
terms of visualization of small lesions, especially among women with radiodense
breast tissue. However, the requirements associated with the acquisition of a series of
rapid, low exposure projection images place greater demands on x-ray detectors used
in tomosynthesis compared to those in planar FFDM. In particular, high quality, low
dose tomosynthesis requires detectors with high x-ray absorption efficiency, high
frame rates with low read noise, and low dark noise.

We are developing a dual modality tomosynthesis (DMT) breast scanner that
merges x-ray tomosynthesis and molecular imaging tomosynthesis modalities within a
single system to provide co-registered three-dimensional (3D) anatomic images and
radiotracer maps [1]. When acquiring x-ray tomosynthesis images, the x-ray tube and
detector simultaneously rotate about the stationary, mildly compressed breast. Be-
cause of our use of the step-and-shoot method, tomosynthesis image acquisition time
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is longer than desirable (nearly 2 minutes), significantly increasing the possibility of
motion artifacts. With the goal of decreasing overall acquisition time, we would like
to replace the acquisition method with continuous gantry motion with the help of the
2923MAM CMOS detector from Dexela, a PerkinElmer company (London). The
2923MAM has 75 micron detector elements in a 3888x3072 matrix, for an overall
sensitive area of approximately 29 cm x 23 cm. With no pixel binning the maximum
frame rate is 17 fps, rising to up to 78 fps for 4x4 binning. The 2923MAM tested here
includes a columnar Csl converter. All measurements described here were performed
without pixel binning.

The spatial dependent detective quantum efficiency (DQE(u)) is the most generally
used indicator of how efficiently the detector can process the input x-ray signal. For
this reason, the widely accepted IEC-62220-1-2 Standard was followed to test the
Dexela 2923MAM CMOS x-ray detector [2]. There are two possible operating modes
for the Dexela detector: a high dynamic range (HDR) mode and a high-sensitivity
(HS) mode. A comparison was made between the DQE for HDR mode operation and
HS mode operation over a range of entrance exposures that were less than or compa-
rable to a single projection view in a typical tomosynthesis acquisition.

2 Methods and Materials

The IEC Protocol 62220-1-2 was followed in calculating the DQE for the Dexela
2923MAM CMOS detector, though minor modifications were made as described in
the following sections. As given in the IEC protocol, the equation for the frequency
dependent DQE is:

DQE(u) = T*(u)-(NPS;;(u)/ NPSy () ey

T(u) is the modulation transfer function (MTF), NPS;,(u) is the noise power spectrum
at the input of the detector, and NPS,(u) is the noise power spectrum of the output
images. The posterior-to-anterior direction (23cm dimension of the detector) is paral-
lel to the rows in the image and is designated as X in position space or u in frequency
space. The direction parallel to the image columns in the 29 cm dimension of the
detector will be denoted as y in position space or v in frequency space.

NPS;, is determined by Eq (2):

NPS;, = K,- SNR;,” 2

where K, is air kerma in units of 1/(mm2~uGy) and SNRin2 is the squared signal-to-
noise ratio of the input signal per unit air kerma, which is a constant provided in Table
2 of IEC-62210-1-2 for a given target/filter combination.

2.1  Geometry and Radiation Quality

The distance between the focal spot and the closest point on the detector surface is
81cm. The x-ray tube contains a tungsten target, exit window filtration of 0.76 mm of
beryllium, and an external filter of 0.050 mm of rhodium. Addition external filtration
of 1.4 mm of Al was added to match the half value layer (HVL) of 0.75mm of Al
specified in the IEC Protocol for W/Rh target/filter systems operated at 28 kVp. As
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per protocol requirements, all images and measurements were taken at a tube voltage
of 28 kVp. From this setup, we were able to use 5975 (mm2-uGy)'1 as the SNRm2
value for a tungsten target, SOum rhodium filter at 28 kVp.

2.2 Detector Response and Determination of Conversion Function

The conversion function is the relationship between the large area detector output (i.e.
average pixel value) in a corrected image and the input x-ray fluence. Prior to the
determination of the average pixel value in all of the images used, corrections were
made to the raw images (replacement of bad pixels, dark image subtraction, and flat-
fielding) as permitted by the standard. The conversion function was then used to
convert pixel values into units of fluence. For many digital x-ray detectors, this rela-
tionship is linear to a high degree in which case the conversion function reduces to a
proportionality constant and a pixel value offset.

The detector response was measured for each mode by recording the average pixel
value over a range of input kerma values in the uncorrected images. A Radcal Accu-
Pro ion chamber was used for determining the air kerma, and inverse square law cor-
rections were made to calculate the exposure at the detector surface

2.3  MTF and NPS,

The MTF was measured using a straight-edged piece of tungsten rather than the alu-
minum test device suggested by the IEC Standard. The presampling MTF was calcu-
lated using a program based upon the method described by Fujita et al [3]. It was
written by our lab in the Interactive Data Language programming environment (IDL;
Research Systems, Boulder, Colorado).

The protocol was followed in determining NPS,,, for each exposure. An ROI cho-
sen within the image for the NPS calculation had dimensions of 17.85cm x 27.48cm
corresponding to an area of 8720320 pixels®. The final 2D NPS,,, was found by aver-
aging over noise power spectra from 459 overlapping 256x256 pixel sub-regions
within the ROI. The 1-D NPS,,(u) was obtained by averaging over 7 rows above and
7 rows below the v = 0 mm’ frequency axis. The same was done for NPS,,(v) about
the u = 0 mm' frequency axis. Additionally, per the IEC standard an optional 2D
second-order polynomial fit was subtracted from each ROI to remove low frequency
noise prior to NPS estimation.

3 Results

3.1  Detector Response and Conversion Function

Figure 1 is a plot of the mean pixel value, within a region of interest (ROI) drawn at
the focal spot projection in uncorrected images, versus exposure. The portion of each
curve in Figure 1 that is linear has been fit with a linear equation and projected for-
ward to show the detector’s deviation from a linear response at higher input fluences.



Detective Quantum Efficiency of a CsI-CMOS X-ray Detector 83

The highest tested air kerma levels chosen for each mode are just below the point at
which the detector stops behaving linearly with increasing fluence. The air kerma
levels tested here are 1.69 nGy, 3.57 uGy, 7.34 uGy, 15.1 nGy, 30.0 pGy, and 60.1
nGy for HS mode. The same levels were tested in HDR mode with two additional
levels at 89.9 uGy and 119 nGy.

The conversion function for both modes is shown in Figure 4. In HDR mode, the
conversion function slope is 0.008388 ADU-mm2/photon and in HS mode it is
0.02750 ADU-mm?2/photon. The zero fluence values shown in Fig. 4 are due primari-
ly to DC offset values digitally added to each pixel value during the dark subtraction
and uniformity correction procedures.
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2E+4 R? = 1.0000
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Fig. 1. Mean pixel value versus air kerma. Fig. 2. Conversion function in both HDR
Pixel values come from uncorrected images mode and HS mode. A linear fit was applied
taken with nothing in the x-ray beam except to each curve and the fit equation and R-
for the internal and external filters. Least squared values are shown next to each curve.
squares fits are shown to the portion of each

curve exhibiting linear behavior.

3.2  NPS,u

As an additional quantification of image noise, a log-log plot of the standard deviation ¢
in the NPS,,; images versus K, is shown in Fig. 3 for both HS mode and HDR mode. In
all cases it was verified that the integral of the 2-D NPS between +Nyquist frequencies
was equal to 6”. As a measure of quantum limited behavior a power fit was applied to
both curves. The fit equation and the R” value are shown next to each curve.

33 DQE

Figs. 4 and 5 are plots of DQE(u) and DQE(v), respectively for HDR mode. Figs. 6
and 7 are plots of DQE(u) and DQE(v), respectively for HS mode. A subset of all
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exposures tested is shown in each figure. Data are plotted within a frequency range of
0 mm™ to the Nyquist frequency of 6.67 mm™. The 0 mm™ frequency points were
omitted since it does not correspond to an achievable physical quantity.

y = 758.04x0.453
R?=0.9909
5000 -
=@=HDR mode
o == HS mode
= 625.98x0-4989
R?=0.9978
500 T T ]
1.00 10.00 00.00 1000.00
K, [RGyT

Fig. 3. Log-log plot of standard deviation of the linearized NPS,,; images o versus air kerma for
both HS mode and HDR mode. A power fit was applied to both curves. The fit parameters and
the R? values are displayed next to each curve.
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Fig. 4. DQE along detector rows at the tested exposure levels of 1.69 uGy, 7.34 nGy, 30.0 uGy,
60.1 uGy, 89.9 uGy and 118.9 uGy in HDR mode
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Fig. 5. DQE along detector columns at the tested exposure levels of 1.69 puGy, 7.34 pGy, 30.0
uGy, 60.1 uGy, 89.9 uGy and 118.9 uGy in HDR mode
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Fig. 6. DQE along detector rows at the tested exposure levels of 1.69 uGy, 7.34 uGy, 30.0 uGy,
and 60.1 uGy in HS mode
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Fig. 7. DQE along detector columns at the tested exposure levels of 1.69 puGy, 7.34 pGy, 30.0
Gy, and 60.1 pGy in HS mode

4 Discussion and Conclusion

For K, values between ~7 pGy and 60 uGy the DQE is similar in either HDR mode or
HS mode, with a value of ~0.7 at low frequency and ~ 0.15 — 0.20 at the Nyquist fre-
quency fy = 6.7 mm™. As would be expected, the change in DQE at either very low or
very high input fluence differs between the two modes of operation. In HDR mode, the
DQE remains virtually constant for operation with K, values between ~7 uGy and 119
uGy but decreases for K, levels below ~ 7 pGy. In HS mode, the DQE is approximate-
ly constant over the full range of entrance air kerma tested between 1.7 uGy and 60
uGy but, as seen in Figure 1, kerma values above ~75 pGy produce hard saturation.

Comparison of DQE(u) and DQE(v) show that for either HDR mode or HS mode
operation, a slight difference exists between the shapes of the DQE in the x- and y-
directions, with DQE(v) having a more linear drop off with increasing spatial fre-
quency compared to DQE(u). The results show a slightly better detector performance
in the posterior-to-anterior direction than in the orthogonal dimension. Higher
efficiency in the x-direction will be necessary, especially when focal spot blur will
degrade the resolution further in this orthogonal dimension if the gantry is put into
continuous motion during acquisition.

The power law relationship between the image noise and the input kerma with ex-
ponent of ~0.5 (Figure 3) shows that the image variance increases approximately
linearly with increasing input fluence as would be expected for quantum limited
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operation. However, in addition to the deviation from quantum limited operation at
low exposure in HDR mode operation, there is a slight deviation at high exposure in
either mode most prominently in HDR mode.

The fact that quantum limited operation is available in HS mode for entrance ker-
ma as small as 1.7 uGy makes it possible to use a very large number of very low dose
views in order to improve angular sampling and decrease artifacts since there would
be minimal penalty in terms of the effects of system noise. However the choice of
number of views must also take into account the maximum acceptable tomosynthesis
scan time, maximum available detector frame rate, and the optimal x-ray tube settings
for a given subject. For example, a tomosynthesis scan of a 5 cm thick acrylic phan-
tom using a Hologic Dimensions scanner in Autofilter mode results in a full scan
detector entrance kerma of 340 uGy, corresponding to 200 1.7 uGy views. Operated
at its maximum full resolution frame rate of 17 fps, this would correspond to an 11.8
second scan time for the 2923MAM. A more practical choice might be 85 views in 5
seconds with a detector entrance kerma of 4 uGy per view. Of course, for a given
breast type the desirable full scan kerma is dependent on the detector, beam quality,
and reconstruction algorithm used. Using the maximum possible number of views
may not necessarily maximize image quality, so these are example possibilities only.
System-specific image optimization studies are required to determine the best acquisi-
tion parameters.

In summary, the two operating modes of the 2923MAM together provide high
DQE over a large exposure range. The combined abilities of very low dose operation
and rapid readout make dense angular sampling tomosynthesis feasible with accepta-
bly short overall scan time and without image degradation from system noise.
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Abstract. In this work, a classifier combination approach for computer
aided diagnosis (CADx) of breast mass lesions in mammography (MG)
and magnetic resonance imaging (MRI) is investigated, using a database
with 278 and 243 findings in MG resp. MRI including 98 multimodal
(MM) lesion annotations. For each modality, feature selection was per-
formed separately with linear Support Vector Machines (SVM). Using
nonlinear SVMs, calibrated unimodal malignancy estimates were ob-
tained and fused to a multimodal (MM) estimate by averaging. Eval-
uating the area under the receiver operating characteristic curve (AUC),
feature selection raised AUC from 0.68, 0.69 and 0.72 for MG, MRI
and MM to 0.76, 0.73 and 0.81 with a significant improvement for MM
(P=0.018). Multimodal classification offered increased performance com-
pared to MG and MRI (P=0.181 and P=0.087). In conclusion, unimodal
feature selection significantly increased multimodal classification perfor-
mance and can provide a useful tool for generating joint CADx scores in
the multimodal setting.

1 Introduction

Multimodal breast imaging is becoming of increasing clinical interest, enabling
the exploitation of complementary diagnostic characteristics of the individual
imaging modalities. One example is combined mammography (MG) and dy-
namic contrast enhanced-magnetic resonance imaging (DCE-MRI), which is be-
ing investigated e.g. for screening of high-risk patients [1]. In parallel, multimodal
decision support systems for computer aided diagnosis (CADx) are researched
with the focus of providing decision support based on a combination of modali-
ties [2] [3].

In multimodal CADx systems, different information fusion strategies can be
pursued, including pooling of image features or joining classifier decisions [4].
Pooling features from MG-MRI CADx allows to exploit complementary effects
of multimodality directly in feature space as one classifier is trained on the joint
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feature set [3]. Conversely, a decision fusion scheme joins the final output scores
of multiple classifiers, which may be particularly useful if classifiers were trained
on different feature sets [5].

Often multimodal breast imaging databases comprise more unimodal than
multimodal imaging data [6]. In this situation, a decision fusion approach allows
to exploit the entire breadth of unimodal imaging and generate multimodal
scores at the same time. Particularly if the multimodal subset is relatively small,
the approach of unimodal decision fusion may contribute to stability of feature
selection and classification, as a smaller feature space and more training data
can be considered.

In this work, the fusion of two independent CADx systems (MG and MRI) to
generate a multimodal malignancy estimate was investigated. In total, a database
of 278 findings in MG and 243 findings in MRI was available, whereas 98 of
these findings comprised joint MG-MRI multimodal imaging. 53 features were
extracted from each MG view and 46 from MRI. Unimodal CADx employed lin-
ear Support Vector Machines (SVM) for feature selection in a first stage to filter
less relevant features which may impair SVM classification performance [7] [8].
Finally, nonlinear SVMs were used for lesion classification [9]. Unimodal malig-
nancy estimates were fused by averaging, which has shown to be an effective and
robust classifier combination method [5]. The performance of the generated ma-
lignancy estimates was evaluated using receiver operating characteristic (ROC)
analysis.

2 Materials and Methods

2.1 Image Database

The database consisted of full field digital MG images from 179 patients includ-
ing craniocaudal (CC) and mediolateral oblique (MLO) views, comprising 243
findings (115 benign, 128 malignant) which manifested as masses, architectural
distortions or asymmetries. Analogously, MRI data from 209 patients were avail-
able with 278 annotated findings (122 benign, 156 malignant). Lesion outlines
were provided by radiologists including links of lesions across views or modal-
ities. A subset of 90 patients had joint MG-MRI image sessions with 98 (31
benign, 67 malignant) multimodal (MM) lesions visible in both modalities. The
ground truth for classification was obtained by biopsy for all malignant lesions.
Benign lesions were either proven by biopsy or their benign characteristics were
confirmed in follow-up imaging.

2.2 Features

For each annotated region in MG, 53 image features including neural network
based malignancy likelihoods, context, spiculation, gradient, linear texture, mor-
phology, location and density descriptors were extracted for each view [10]. The
features from CC and MLO were pooled so that each MG feature vector con-
sisted of 106 features. In case a finding was only visible in one view, the features
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vectors have been completed by duplication of features from the other view. In
DCE-MRI, 46 descriptors were available per annotated lesion including kinetic,
pharmacokinetic and morphological features. High spatial resolution images were
used to derive kinetic curve and morphology characteristics such as baseline,
initial enhancement and washout characteristics resp. lesion size, compactness,
elongation and others [11]. Based on a series of low resolution images at a higher
repetition frequency, voxel-based pharmacokinetic parameters such as extracel-
lular volume V¢, volume transfer coefficient Kr,qns and rate constant K, of the
kinetic model were obtained [I2].

2.3 SVM-Based Feature Selection and Classification

Support Vector Machines (SVM) were used for feature selection and classifi-
cation. For labeled training data of the form (x;,v;),7 € {1,...,l}, where z;
represents the feature vector and y; € {—1,1} the label of finding i, a decision
function

fa@) =w"é(z) +b (1)

is fitted with weight vector w and bias value b representing a separating hyper-
plane. Nonlinear decision boundaries in the input data space can be obtained by
projecting the data using a mapping ¢(x). SVMs find the separating hyperplane
by maximizing distances to its closest data points thus embedding it in a large
margin between the classes. This can be expressed via the optimization problem:

min p(w) + C 325y maz(l — yif (x:),0), (2)
where C serves as a user-defined regularization parameter for elements inside the
margin and p(w) acts as a penalty term on the coefficients of the weight vector
w. Choosing an L1 penalty term p(w) = |w|1 = Zizl |w;| leads to sparse
solutions. In linear classification with ¢(x) := x this approach can be used for
feature selection as “uninformative” features are assigned zero weight, with C
controlling the sparsity of the solution [13].

Lesion malignancy scores were computed based on an L2 penalty (p(w) :=
lw?||o = Zé:l w?) and nonlinear classification using a Gaussian kernel K (z,z') =
d(x)Tp(z') = exp(—~ || z — 2’ ||?), leaving the regularization weight C' and the
kernel width v as a free parameters. The decision scores of the nonlinear SVM
were translated into probability estimates in the interval [0, 1] using Platt’s prob-
abilities, i.e. by fitting a sigmoid curve to pooled decision scores from training data
which were generated by leave-one-out cross validation [I4]. For lesions visible in
MG and MRI the unimodal malignancy estimates were joined into a multimodal
(MM) score by averaging the calibrated SVM output scores [5].

2.4 Evaluation

The quality of the malignancy estimations was characterized using ROC analy-
sis and computing the area under the curve (AUC). Differences between AUC
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(including 95% confidence intervals (CI) and two-tailed p-values) were assessed
using the bootstrapping method with 5000 times resampling as described in [I5].
Differences in AUC were considered statistically significant at the o = 0.05 level.

3 Experiments and Results

3.1 Feature Selection

First the free parameter C, for feature selection using L1-penalized linear SVM
(L1P-SVM) was determined. For this purpose, two unimodal validation data sets
consisting of 108 findings in MG (63 benign, 45 malignant) resp. 157 findings
in MRI (59 benign, 75 malignant) were selected from patients in the database
with only unimodal data and therefore were not part of the multimodal data
set. Each data set was split using 10-fold cross validation (CV) and the optimal
penalty parameter Cy, was determined by grid search over Cy, € {10%i =
—3,—-2,—-1,0,1,2,3}. In each fold the data were standardized by subtracting the
mean and dividing by the standard deviation computed on training data. For
MG and MRI, C7%’ = 0.1 resp. C7%’ = 10 maximized AUC with AUCy = 0.73
and AUCyr = 0.77. Finally, the L1P-SVM was fit to the entire standardized
validation data set using C})p * yielding 15 features for MG and 18 features for
MRI.

For MG, the selected set comprised 5 CC and 10 MLO view features (4 like-
lihood, 5 (iso-)density, two spiculation and single features measuring gradient,
contrast, morphology and distance to the nipple). In MR, the selected feature
set comprised 3 baseline, 3 relative enhancement, two washout characteristic, 5
morphology features and 5 pharmacokinetic parameters (two for Kpyqns, one for
K., and two for V.).

s )

3.2 Lesion Classification

Nonlinear Gaussian SVM classification with Platt’s score calibration was used to
generate malignancy estimates. For each of the multimodal lesions two unimodal
classification scores - MG and MRI - and a multimodal score were generated as
follows.

The set of multimodal lesions was split according to a leave-one-patient-out
cross validation scheme (LOPO-CV), resulting in 90 folds (see Section 2X1J). For
each fold, the unimodal feature spaces were separately processed. For MG, the
multimodal training data were joined with the independent MG data which were
not part of the multimodal data set and a dedicated MG classifier was trained
using the MG features. For MRI, the procedure was carried out analogously. The
data were standardized using the mean and the standard deviation computed
on the training data. The parameters for the Gaussian SVM were found by grid
search over 10-fold CV inside the training data. The kernel width v was estimated
as the median of all pairwise distances in the training data and C°P! was selected
using grid search over C' € {10i = —3,-2,—1,0, 1,2, 3} maximizing AUC on
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the training set. For lesions which appeared in MG and MRI, a multimodal (MM)
malignancy estimate was computed by averaging the MG and MRI scores.

The procedure was carried out using the complete feature sets for MG resp.
MRI and the reduced feature sets obtained from feature selection.

Table 1. AUC comparison of the MG, MRI and MM scores obtained when using all
106 available features for MG resp. 46 for MRI in SVM classification and a reduced
number of features for MG and MRI with 15 and 18 features, respectively

All features Selected features
Score Type AUC 95% CI ~ AUC 95% CI P-Value
MG 0.68 [0.56,0.79] 0.76 [0.66,0.86] 0.056
MRI 0.69 [0.57,0.79] 0.73 [0.63,0.83] 0.071
MM 0.72 [0.59,0.83] 0.81 [0.71,0.89] 0.018
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Fig. 1. ROC curves for mammography (MG), MRI and multimodal (MM) CADx using
15 features for MG and 18 features for MRI lesion classification

Using all features, parameter estimation for MG chose an average C_’]O\fg =4.6
with standard deviation sd = 10.88 during LOPO-CV. Using the reduced feature
set C']OV’[)E = 1 with sd = 0 was found during CV. For MRI, using all features
resulted in 3P, = 2.6 with sd = 3.44 respectively C3r% = 1 with sd = 0 for
the reduced feature set, indicating less varying models learned for MG and MR
when less features were used. The corresponding AUC for MG, MRI and MM is
reported in Table[dl Using the complete feature sets available, the performance
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of MG and MR was approximately similar. Averaging their scores resulted in
a mild performance increase compared to sole unimodal scoring. By using the
reduced feature sets, AUC generally increased, whereas MG offered mildly better
classification than MRI. In addition, the joint MM score showed a significant
improvement in AUC (P = 0.018) and exhibited the best performance obtained
in this study. Comparison of the MG, MRI and MM score (see Figure[l]) showed
that no statistically significant performance difference was obtained between MM
and MG (P=0.181) as well as MM and MR (P=0.087). The difference between
MR and MM score was more pronounced than between MG and MM.

4 Discussion and Conclusion

In this work, a multimodal breast lesion classification system was proposed re-
lying on fusion of two independent, unimodal CADx systems. Each unimodal
CADx system employed L1-penalized SVM feature selection on independent uni-
modal data and a nonlinear SVM for classification, whereas the final multimodal
malignancy estimates were averaged in order to generate a single multimodal de-
cision score.

The dimensionality of the unimodal feature spaces was reduced by filtering
features prior to classification. Using L1-penalized SVM classification allowed for
a straightforward feature selection scheme which required little effort in terms
of parametrization. Relevant feature sets were successfully identified comprising
14 % (MG) and 39% (MRI) of the original feature sets. Particularly in the case
of MG, a relatively large feature set was available which resulted from pooling
features from CC and MLO view. For both unimodal classifiers, feature selection
reduced the variance of the learned models and thus contributed to better gener-
alization. Both unimodal CADx systems benefited from feature selection, while
leading to a statistically significant performance improvement in multimodal
classification despite only using unimodal feature selection.

The available database reflected an often encountered situation where more
unimodal than multimodal data is available. Consequently, the adopted training
scheme was tailored to utilize the entire available breadth of unimodal data. The
actual decision fusion was carried out by averaging calibrated unimodal SVM
malignancy estimates, which caused an improvement over unimodal classification
yielding the best AUC observed in this study. A similar observation was reported
by Yuan et al. [3], who found a significant increase in AUC from 0.74 (MG)
resp. 0.78 (MRI) to 0.87 for multimodal CADx, adopting a feature selection and
classification scheme in multimodal feature space. Although in our study the
improvement by multimodal CADx was not statistically significant, the joining
of unimodal scores by averaging appears as a feasible solution to merge a single
multimodal malignancy estimate that can be presented to an observer in MG-
MRI CADx in addition to or in lieu of unimodal scores.

In summary, this work described a decision fusion-based system for multi-
modal classification of breast mass lesions in MG and MRI using L1-penalized
SVM feature selection and subsequent nonlinear SVM classification. It could
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be demonstrated that unimodal feature selection caused a significant increase
in multimodal classification performance. Calculating a multimodal malignancy
estimate by averaging of unimodal decision scores allowed for a noteworthy in-
crease in performance over unimodal CADx alone and can provide a useful tool
for generation of a single joint CADx score in the multimodal setting.

Directions for future work include the evaluation of additional training schemes
for multimodal classification as well as the investigation of automated strategies
for multimodal lesion linking, such as learning of multimodal feature correspon-
dences.
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Abstract. The size of a lesion is a feature often used in computer-aided
detection systems for classification between benign and malignant le-
sions. However, size of a lesion presented by its area might not be as
reliable as volume of a lesion. Volume is more independent of the view
(CC or MLO) since it represents three dimensional information, whereas
area refers only to the projection of a lesion on a two dimensional plane.
Furthermore, volume might be better than area for comparing lesion
size in two consecutive exams and for evaluating temporal change to dis-
tinguish benign and malignant lesions. We have used volumetric breast
density estimation in digital mammograms to obtain thickness of dense
tissue in regions of interest in order to compute volume of lesions. The
dataset consisted of 382 mammogram pairs in CC and MLO views and
120 mammogram pairs for temporal analysis. The obtained correlation
coefficients between the lesion size in the CC and MLO views were 0.70
(0.64-0.76) and 0.83 (0.79-0.86) for area and volume, respectively. Two-
tailed z-test showed a significant difference between two correlation coef-
ficients (p=0.0001). The usage of area and volume in temporal analysis
of mammograms has been evaluated using ROC analysis. The obtained
values of the area under the curve (AUC) were 0.73 and 0.75 for area
and volume, respectively. Although a higher AUC value for volume was
found, this difference was not significant (p=0.16).

Keywords: digital mammography, temporal change, lesion classifica-
tion, CAD, breast density.

1 Introduction

In developed computer-aided detection (CAD) systems one of the features that
has been used for the classification between benign and malignant lesions is the
size computed as the area of a lesion [I]. However, since the mammogram is a
two dimensional projection of a three dimensional breast, the area of a lesion
visible in two mammographic views, namely craniocaudal (CC) and mediolateral
oblique (MLO), might differ. To overcome this issue one could calculate volume
of a lesion, as the volume might be a more reliable feature that should remain

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 96-1L03] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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the same in both views and might be better for use in CAD systems than the
area of a lesion. In addition, volume might give reliable information about the
lesion seen in two consecutive exams, i.e. for evaluating temporal change in
the size of a lesion. Since benign lesions have tendency to stay the same over
time and malignant lesions tend to grow, volume might be a useful feature for
distinguishing between benign and malignant lesions in temporal comparison of
digital mammograms.

Volume of dense tissue in digital mammograms can be computed using the
method developed by van Engeland et al. [2]. In this study we investigated the
use of volume as a measure of lesion size compared to area. We were interested in
the area and volume of a lesion in CC and MLO views. We hypothesized that the
effective radius of a lesion obtained from volume is more similar in the two views
than the one obtained from area. Additionally, we analysed the effective radius
obtained from area and volume in the temporal mammogram pairs. In particular,
we explored the possibility of volume as a feature to distinguish benign and
malignant lesions in temporal comparison of mammograms.

2 Method

2.1 Dataset

Digital mammograms for this study were collected from the screening-institution
Preventicon, Utrecht, the Netherlands, where they were acquired with a Hologic
Selenia FFDM system. All mammograms used in the study have a visible lesion
that has been biopsy proven as benign or malignant. In this study under the term
lesion we consider masses, architectural distortion and bilateral asymmetry. We
have included only lesions that are projected within the breast area, i.e. not
overlapping with the pectoral muscle.

The dataset for the analysis of area and volume performance for CC and
MLO views consisted of 382 digital mammogram pairs with lesion visible in both
views, of which 164 were benign and 218 malignant lesions. For the temporal
analysis the dataset comprised 120 mammogram pairs, of which 74 benign and
46 malignant lesions that were visible in both prior and current mammogram.
All FFDM mammograms were downsampled to a resolution of 200 microns using
bilinear interpolation.

2.2 Area and Volume Computation

The center location of each region that contained a lesion was annotated by
a radiologist and was used as a seed point for automated segmentation. The
segmentation method is based on the region boundary information and grey
level distribution of a region of interest around the lesion. The best contour is
selected using an optimisation technique known as dynamic programming. The
method is explained in detail in [3].

For each pixel in the segmented region we have determined the thickness of
dense tissue based on a physical model of image acquisition. The model proposed
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by van Engeland et al. [2] assumes that the breast is composed of two types of
tissue, dense glandular tissue and fatty tissue. The attenuation of a mixture of
dense and fatty tissue at a given location is given by

I o0
= [ pE)e By M)
E=0

where I is the X-ray exposure, p(E) is the normalized photon energy spectrum,
ttq and py are linear attenuation coefficients for dense and fatty tissue, respec-
tively, and hq and hy are thicknesses of dense and fatty tissue, respectively.

Since in an unprocessed full field digital mammograms pixel values are pro-
portional to the total exposure I(r), the image model is obtained from () by
replacing exposure value (I) with pixel value (g)

e M (B)hs(r)—pa(E)ha(r) g g

®_ [
g(r
g / p(E)
E=0
o0
_ / p(B)e 4 B~ (ualB) =3 (E)ha(o) g @)
E=0
In this equation the normalized photon energy spectrum p(F) and the attenua-
tion coefficients pf(E) and pq(E) are known from the empirical data. Compu-
tation of the dense breast tissue thickness hg(r) would be straightforward if it
would be possible to determine breast thickness h(r) and the pixel value associ-
ated with the incident X-ray beam gg. Unfortunately, it is not easy to accurately
obtain estimates of these parameters in practice.

Hence, van Engeland et al. [2] applied thickness correction transform on the
mammogram in which a layer of adipose tissue with attenuation coefficients
p¢(E) and thickness H — h(r) was added to the breast. In the obtained image
the following relation holds

E=0

In this image pixel values only vary with dense tissue thickness. By setting
ha(r)=0 in @) image model for purely fatty tissue is obtained as

z—gz / p(E)e PG, (4)
E=0

By substituting the pixel value of fatty tissue gy in (B]) we obtain
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In principle, hg(r) can be solved from this equation if H is known. However, due
to the internal calibration with a fatty tissue pixel value, the value of H is not
critical anymore.

To simplify the computations, van Engeland et al. [2] computed effective at-
tenuation coefficients for fatty and dense tissue. The effective attenuation co-
efficients depend on acquisition parameters and are computed as a function of
the anode and filter material, tube voltage and breast thickness H. For typi-
cal spectra used in mammographic imaging this attenuation can very well be
approximated by an exponential function. As such, we obtain the logarithm of
attenuation written as

1
In T —pfeths — pdethd
0

= —pfefi(H — ha) — paertha (6)

Q

where H is breast thickness, and pyer and pqes are effective attenuation co-
efficients for fatty and dense tissue, respectively. By applying the exponential
approximation (@) and rewriting (B)) with the effective attenuation coefficients
tf.ef and piq o the explicit dependency of H dissapears. The thickness of dense
tissue at a location r is obtained by the following relation
ha(r) = —;ln @ (7)
Hd,eff — Hf eff gr

From the obtained thickness and area of the lesion we have computed its volume.
For the comparative analysis of the performance of area and volume as a measure
of lesion size we have computed effective radiuses as follows:

A

Teff area = ; (8)
3/ 3V
Teff volume = ¥ E (9)

where A is area and V volume of the segmented region.

3 Results

The comparison of area and volume was performed for the corresponding lesions
in the CC and MLO views as well as in the temporal mammogram pairs using
the effective radiuses. In order to evaluate volume compared to area in CC and
MLO views we computed Pearson’s correlation coefficient. The correlation plots
for all data, i.e. both benign and malignant lesions, are presented in Fig. [l The
correlation coefficient between CC and MLO views for the area of a lesion is 0.70,
with 95% confidence interval 0.64-0.76. The correlation coefficient between CC
view and MLO view for the volume of a lesion is 0.82, with 95% confidence
interval 0.79-0.86. The significance of the difference between two correlation
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Fig. 1. Correlation for effective radiuses of lesion area and lesion volume between CC
and MLO views

coefficients was assessed with a two-tailed z-test. The obtained z-score was 4.03
which corresponds to the p-value of 0.0001 and shows that the difference is
significant.

For the analysis of temporal mammogram pairs we used Pearson’s correlation
coefficient between current and prior mammogram for lesion area and volume.
Correlation plots for temporal change in area and volume in subsequent screening
intervals for benign and malignant lesions are presented in Fig.[2l The correlation
coefficient for the area of a lesion is 0.79, with 95% confidence interval 0.68-0.86,
for benign lesions and 0.63, with 95% confidence interval 0.38-0.79, for malignant
lesions. The correlation coefficient for the volume of a lesion is 0.86, with 95%
confidence interval 0.79-0.91, for benign lesions, and 0.69, with 95% confidence
interval 0.47-0.83, for malignant lesions.

Assuming that benign lesions are stable and malignant lesions grow, we used
change of lesion size as an indicator of malignancy and computed the receiver
operating characteristic (ROC) curve using change in lesion size as a single
feature. The feature was computed in two ways, using size of a lesion in the
current view and in the prior view obtained by

Agir = Acurrent - Aprior (10)

Vdiff = churrent - Vprior (11)

where Acurrent and Aprior are areas of a lesion in the current and prior view,
and Veurrent and Virior are volumes of a lesion in the current and prior view.
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ROC curves for area and volume change were plotted using the ROCR package
[4] and are shown in Fig. Bl The obtained values of the area under the curve
(AUC) were 0.73, with 95% confidence interval 0.62-0.82, and 0.75, with 95%
confidence interval 0.66-0.85, for area and volume, respectively. However, use of
volume compared to area did not show significant improvement in distinguishing
between benign and malignant lesions as assessed by bootstrapping (p=0.16)
using the pROC package [5].

Correlation between lesion area in temporal pairs Correlation between lesion volume in temporal pairs
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Fig. 2. Correlation for effective radiuses of lesion area and lesion volume between cur-
rent and prior mammogram

4 Discussion

To the best of our knowledge this is the first paper that validates lesion volume
size both in CC and MLO digital mammograms and in temporal mammogram
pairs. Results showed that when comparing area and volume of a lesion in the
CC and MLO views, area is less consistent between the views than volume, which
suggests that volume is a more accurate feature for assessing the size of a lesion.
These results suggest that volume might be a better feature in CAD systems for
measuring size of a lesion than area.

Although in the temporal analysis volume did not significantly outperform
area in its performance of distinguishing between benign and malignant lesions,
results indicate that it might be a better feature for representing size of a lesion.

Obviously, results depend on the lesion segmentation method that was em-
ployed. It is remarked that when lesions are embedded in fatty tissue it will
not affect the volume estimates if lesions are oversegmented, as the area outside
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ROC for the area and volume
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Fig. 3. ROC curves for the area and volume of a lesion

the lesion will not contribute to its volume due to the fact that in this area dense
tissue thickness will be zero. This makes volume a more robust feature.
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Abstract. A parallel x-ray beam that is made by an asymmetric-cut Bragg
monochromator-collimator (MC) is incident on breast tissue so that the beam
containing information from the breast tissue is incident upon a Laue-case angle
analyzer (LAA). This beam is subsequently split into a forward diffracted beam
and a separate diffracted beam. We acquire two beams simultaneously each of
which contains relating angular information on specimen so that one can deduce
simultaneously angular information at each pixel. In this paper, we propose an
imaging system using dark-field imaging (XDFI) for 2D image, CT
measurement and 2.5D image (tomosynthesis) based on a tandem system of
Bragg- and Laue-case crystals with two CCD cameras, along with a
data-processing method to extract information on refraction from the measured
entangled intensities by use of rocking curve fitting with polynomial functions.
Reconstructed images of soft tissues are presented and described.

Keywords: X-ray dark-field imaging, synchrotron radiation, refraction contrast,
2D image, 2.5D (tomosynthesis) image, 3D image, breast tissue, breast cancer.

1 Introduction

Imaging based on the phase-contrast term o produces much greater contrast in the case
of medical soft tissues consisting of low Z-elements than imaging based on the
absorption term f, where n = 1 — 0— if is the complex refractive index. Up to now, a
variety of imaging methods have been proposed [1-3]. Currently, the diffraction
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enhanced imaging (DEI) method [4] by means of a Bragg-case analyzer which detects
the incident beam angular deviation due to refraction is the most widespread method
utilized in medical applications. This is due to the imaging geometry having an affinity
to tomographic imaging [5-8]. DEI-CT (computed tomography) has been developed
into an excellent method to delineate biological soft tissues, with further potential to
develop other medical science applications [9,10].

The deflection angle, A (x,y: k) associated with a refraction contrast which is the
basic component of dark-field imaging can be described as follows:

zl
Alny: k) o< J. d S(xy,z: k) /dxds, )
z0

where O'(x,y,z: k) is related to the refractive index, n = I - d(x,y,z: k), z is the direction
of the x-ray beam, z, and z; mean the coordinates where the x-rays come into and out
from a sample, respectively, and let refraction take place along the x axis so that (z,x)
should be the incidence plane and y is vertical to the plane (z,x).

In our imaging system the x-ray optics named XDFI (x-ray dark-field imaging) was
proposed [11], where the Laue geometry of diffraction in a (+, -) parallel achromatic
arrangement is essential so that image contains no effect of the wavelength spread, that
may otherwise blur the contrast. Two beams, one /, toward the direction of the forward
diffraction and the other I; corresponding to the diffracted direction from an analyzer
crystal plate, can be expressed if the x rays undergo no absorption, as follows:

lo = sinr*(tn/N1+W? / A) /1 + W), 2)
I = ((cos® (tn/N1+W?2 / A) + WAL + WP, (3)
To+1Ig=1, “4)

, where f, W, A are the crystal thickness, the deviation of the angle from the Bragg
condition, expressed as W =2A sin@ v/c(60 — 63 — A6 ), and the extinction distance,
expressed as A = V/c cosBz/P[ys/ where v relates to the x-ray photon energy hv, Gs
the Bragg angle, P the polarization factor and j;; is the polarizability, expressed as ¥
=pvn —r, (Vic )ZFG /7 V¢ where r, is the classical radius of electron, Fg; the crystal
structure from factor and V is the volume of unit cell. 46, =2(1-n )/sinz 6s. Equations
(2) and (3) can be simplified as

Ioly_o= sin® (tx/A) 3)
and

IGlwo = cos’ (tx/A) (6)
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at W=0 so that these Jo and I; oscillate between 0% and 100% reflection at every
thickness change of the analyzer, Ar = pA /2, where p is an integer, while keeping the
relation between them, lo + I; =1. At corresponds to 62.5 um in case of 4,4,0
reflection at 35 keV. Its corresponding x-ray photon energy AE should be
approximately 3.05 keV. If one can achieve these conditions, that can give lo = 0%,
one can obtain dark-field imaging. In this paper is described application of XDFI to
medical imaging.

2 Experimental: Optic of X-ray Dark-Field Imaging

An explanation is given as follows: first prepare an extremely straight forward beam by
MC (monochromator-collimator) as shown in Fig .1 using asymmetric diffraction [12].
In Figure 1 is shown a sketch of a typical XDFI optics where diffracting planes of both
MC and LAA (Laue angle analyzer) are in a parallel arrangement. FD (forward
diffraction) corresponds to /o and D (diffraction) to /. Object is located between MC
and LAA. FD corresponds to dark-field imaging /o and D bright-field one /.

Synchrotron
radiation
source CCD
o — s camera
S e L

Ammfi plane

P——

Atomic plane

Mc LAA

Fig. 1. The XDFI system where the thickness of LAA (Laue angle analyzer) was chosen so that
the x-ray intensity of the forward diffraction FD becomes zero at w=0. Since one can obtain two
beams one FD and the other D can save.

We have chosen the asymmetric factor b = sin(Og - 0)/sin(@y + o), where Op is
10.6° for 440 diffraction and 35keV and o is 10.2°, to be 0.05, that can provide a
divergence of the beam incident onto the object of 0.28 prad. We would like to
emphasize that our system can thus provide complete dark- and bright- imaging
simultaneously by a single shot. Further, the dark-field imaging consists of mapping of
the refraction in an object without background. All of the previous work should belong
to the category between bright-field imaging and dark-field imaging, including that by
Ingal and Beliaevskaya [2] in the Laue geometry. Although the background of their
imaging could be reduced to some extent, it was not hundred percent by tuning the
angular position of an analyzer so that the Bragg angle would be [W[>>0.

An experiment was performed at beamline BL14C [13] using a radiation source
from a 5 Tesla vertical wiggler at the 2.5 GeV Photon Factory so that the polarization of
the radiation is vertical. This means that the plane of incidence that comprises the
incident x-rays and the diffracted x-rays is horizontal. That the plane of incidence gives
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us a big advantage over the vertical plane of incidence because one can set up the whole
imaging system on the same horizontal plane that is usually a steel plate.

X-ray images were picked up by CCD cameras (Photonic Science, pixel number:
4008 x 2670, pixel size: 12.5 x 12.5 um*, FOV: 49 mm horizontal and 33 mm vertical
size). An object placed upon a rotational stage is inserted between MC and LAA, and
the rotational axis of the object is parallel to that of rotation axis of MC and LAA. The
angular positions of the MC and LAA are fixed after being adjusted before
measurement data is collected whereupon the object axis is rotated for CT data
acquisition. The monochromatic vertical size is 33 mm at the station BL14C and the
incident horizontal beam size is § mm before MC and is expanded to a square parallel
beam by an asymmetrical Bragg-case MC to cover the full object width. The beam
impinges on the object and is refracted and absorbed by the object. The beam
containing internal information of the object impinging LAA is split into the FD and the
D beam as shown in Fig. 1. The LAA is adjusted at half up the peak, and at half down
the valley of the rocking curves for the D and FD beams, respectively. The Bragg-case
MC plays not only the role of collimating and expanding the beam, but also that of
smoothing the rocking curves which have many ripples of the LAA. Since the LAA
with size of ®80 mm x 0.29 mm" requests no deformation of the diffracting planes, by
that means the radius of curvature should be greater than 2 km. The LAA was vertically
set and attached onto a surface of a 2 mm thick mirror polished Be plate with size of
100 mm X 100 mm.

The nearly plane-wave x-rays from MC that enter object S may receive a very small
refraction effect, either left or right or both directions, against the incident beam
direction. Let’s introduce a simplified model of object. The x rays which exit from the
object S may possess information. An angle analyzer crystal LAA which takes place
diffraction corresponding to Io, such as Io = 0 % at |IWl < I. Mathematically
convolution of o or I; and S may result in two diffraction profiles. Io corresponding to
FD shows high reflectivity for almost all angular ranges, except for the central position
IWI < 1. What happens to the beam from the object because of effect due to this angular
filter which apparently has no central part. This can be called dark-field imaging. This
means that almost all refraction information the object has can remain in a visual image
with no background.

Since the theory described in (5) thickness of LAA to fulfill the condition of
dark-field imaging has to be fixed with the precision of um; if final # shows a different
value than theory still one can find out a way to adjust the condition of (5) such as
tilting the LAA so that one can change an apparent x-ray path length in LAA to adjust ¢.
Furthermore tuning the x-ray photon energy in keV is equivalent too.

3 Result of 2D Image

Fig. 2 shows two kinds of views of nodular adenosis, one pathological picture stained
with hematoxyline and eosin and the other x-ray photo taken with XDFI. The arrow
indicates lobular.
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Fig. 2. Pathological view (left) and the XDFI (right) of nodular adenosis. An arrow in the XDFI
corresponds to the arrow shown in the pathological view so that the XDFI can reveal lobular as
well by x-ray refraction contrast.

A variety of approaches to deduce refraction component have been proposed
[14-20]. Chapman et al. has made a pioneering work of first extracting information
on refraction from the both D intensity and the FD in the LAA system using an
algorithm based on linear approximation [14]. Later, Maksimenko used the tail of the
Bragg reflection curve to reflect nonlinear relations between the intensity gray scale
and the angular deviation due to refraction [15]. Yuasa et al proposed a wave theory
[16] to visualize soft tissue with refraction-based contrast. Also Bushuev et al proposed
another approach based on wave theory [17]. As an approach to acquire purely
refracted component Kitchen et al [18] introduced a concept to obtain ratio between the
beam. The incidence angle was used to find the closest match to the intensity ratio using
a linear fit between a look-up table prepared from ratio of the two rocking curves. They
showed a beautiful 2-D image of a rabbit pup thorax. On the other hand, it is necessary
extract more precisely refraction angles toward reconstruction of tomography.
Sunaguchi et al improved the precision of extraction of refraction angle without
absorption using the polynomial fitting of rocking curves [19], which is used in the
present paper.

4 Result of 3D Image

In order to reconstruct a CT image, a set of projections are collected by repeating the
measurement procedure while rotating the object. Then, the reconstruction algorithm for
refraction-contrast CT [20] is applied to projections of refraction-angle estimated with
the proposed method above. We refer to the imaging scheme as DFI-CT following
DEI-CT. The condition of XDFI [10] has been selected so that it has the deepest FD
profile and the highest D profile, respectively so that one can obtain the largest black and
white range of grey scale of x-ray intensity that can be converted to angular information.
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Fig. 3. DFI-CT image in 3D mode Fig. 4. Milk duct of DCIS

We imaged a soft tissue sample of ductal carcinoma in situ (DCIS) that was removed
surgically from a breast-cancer patient[19]. The sample size was 2.5 x 2.1 x 4.5 cm’, and
put in an acrylic cylinder filled with alcohol. The number of projections acquired
corresponded to 900. Fig. 3 shows the reconstruction in 3D mode. Fig. 4 shows a 3D
image of a milk duct consisting of 5 branches that has a relation to the structure of Fig. 3.
The overall configuration of fibrous and adipose tissue has shown well correlation in
between refraction and pathological views. In conventional absorption based X-ray CT,
the DCIS itself, except for calcification which sometimes occurs in secretory or necrotic
material, has hardly been depicted. Clear 3D view of lobular carcinoma with the spatial
resolution of 7 um has also been successfully visualized [21].

5 Result of 2.5D (Tomosynthesis) Image

Furthermore attempt was made to reconstruct a tomosynthesis (T'S) image [22]. From
the point of view of bringing the refraction-based X-ray contrast into clinical issue the
authors do not think 3D image is appropriate because patient might has to be exposed to

(a)

Fig. 5. Three ways of reconstruction of a DCIS specimen. A classical shift-and-add TS, novel
sgn+shepp filter back projection TS image and sgn+shepp filter back projection CT image.
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too much x-ray radiation dose. Nevertheless information how deep one critical part
locates in breast is always of use so that trial of obtaining 2.5D image if not complete
3D information is under way.
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Abstract. In this paper we present a cascade-based framework to detect
clusters of microcalcifications on mammograms. The algorithm is based on
a sliding window technique where a detector is structured as a “cascade”
of simple boosting classifiers with increasing complexity. Such a method
couples the effectiveness of the cascade approach with the RankBoost al-
gorithm that is aimed at maximizing the area under the ROC curve and
represents a good choice when dealing with unbalanced data sets.

Keywords: Computer aided detection, mammography, clusters of mi-
crocalcifications, cascade of classifiers, RankBoost.

1 Introduction

When grouped in cluster, microcalcifications (uCs) can be an important indica-
tor of breast cancer, since they appear in 30%-50% of cases diagnosed by mam-
mographic screenings [I] . To help radiologists in the diagnostic decision, various
Computer Aided Detection (CAD) systems have been recently proposed, espe-
cially based on machine learning techniques such as Support Vector Machines
[2845] or ensemble classifiers [GI7U8] . These methods rely on a sliding sub-
window which scans the entire image and on a dichotomizer (i.e., a two-class
classifier) classifying each subwindow as positive (containing pCs) or negative
(no uCs). However, these approaches present a high computational burden due
to the huge number of subwindows to be analyzed and the complexity of the
classifier. An useful solution to these problems is to employ an ensemble of clas-
sifiers structured as a “cascade” of dichotomizers with increasing complexity.
As highlighted in [9], where such a method has been applied for the detection
of human faces, a cascade-based approach exhibits both a low computational
complexity and good performance.

In this paper we propose a cascade of classifiers built for the detection of
1Cs clusters. Accordingly, we have devised a huge set of features suitable for
the shape of the puCs, among which the learning algorithm selects the most
discriminating ones. The proposed learning procedure employs RankBoost [10]
as dichotomizer since it has been proved [1I] to maximize the area under the
ROC curve (AUC). This makes it a good choice when dealing with strongly
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unbalanced data sets, as is the case with the detection of uC on mammograms.
The cascade detector not only locates the candidate regions, but it also provides
a confidence degree for each of them which estimates the probability of the
presence of a pC. The detector’s outputs are finally conveyed to a clustering
algorithm which uses both the spatial and probabilistic data to detect clusters.
Experiments accomplished on a full-field digital mammographic database show
that the cascade approach obtains good results in comparison with a monolithic
detector based on RankBoost.

2 Method

The proposed approach for the detection of clusters of uCs is based on a three
steps process which is composed as follows. Firstly, we employ a supervised learn-
ing framework for the detection of uCs based on a cascade of classifiers trained to
classify mammographic subwindows as likely-uCs or background. A confidence
degree which conveys the probability of the presence of a uC is also associ-
ated to each likely-uCs subwindow by the cascade. Secondly, a post-processing
step translates and merges likely-pCs subwindows into likely-uCs regions which
roughly identify the segmented pCs. Finally, these regions go through a clus-
tering step which uses both the spatial and probabilistic information to detect
clusters. In the following subsections we detail each of these steps.

2.1 Microcalcifications Detection

The underlying idea is to employ a sequence of node classifiers with increasing
complexity. A given subwindow passes to the next node if the current node clas-
sifies it as containing a pC, otherwise it is rejected. The majority of subwindows
containing easily detectable background are discarded by the early nodes, while
the most likely-pC subwindows go through the entire cascade. As a result, the
detection rate D and false positive rate F' of a cascade composed by n nodes is
given by

n n
D= H(dz) F= H(fz) (1)

i=1 i=1
where d; and f; are the detection rate and false positive rate of the ith node
respectively. Such approach, which showed to be effective also in other fields
[9], allows us to face the learning task in a more effective way. In fact, while
it is hard for a monolithic classifier to ensure both a good sensitivity and a
good specificity, the cascade provides a high constant sensitivity and a growing
specificity through the stages obtained by connecting more simpler classifiers
with high sensitivity and sufficient specificity. As an example, to build a detector
having D = 0.990 and F' = 0.001 it would be sufficient to build 6 node classifiers,
each with ¢; = 0.999 and f; = 0.3. In this way, the first stages of the cascade have
to face a simpler task (rejecting the most distinguishable background regions),
while the last stages are specialized to discriminate between actual pC’s and
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the most confusing background configurations. This should reduce the number
of false positives produced by the detector and concentrate the computational
complexity of the system on the last classifiers of the cascade.

To describe the region to be classified, some groups of Haar-like features are
used. For the first group the value of each feature is calculated as the difference
between the sum of pixels belonging to adjacent rectangular regions, aimed at
capturing edge and elongated patterns (see Fig. [Th). For the second group, the
value is calculated in a similar way, but the support regions are two concentric
rectangles, so being more suitable for the granule-like shape of uCs (see Fig.[Ib).
The third group is constituted by the 45 degrees-rotated version of the features
of the first two groups (see Fig. [[k). The features of the first two groups are
evaluated very quickly thanks to the integral image [9], while for the rotated
features a particular representation of the image is introduced, similar to the
integral image, but suited for the calculation of tilted rectangle areas. All features
are stretched and shifted across all possibile combinations on the subwindow,
leading to tens of thousands of features. As a consequence it stands out the need
of a feature selection mechanism embedded in each node classifier during the
training phase.

B = ]
RARAEA B -2

Fig.1. The Haar-like feature groups used by the proposed cascade of classifiers. (a)
Some examples of the first group. (b) An example of the second group. (c) Some
examples of the third group.

Each node classifier is actually an ensemble classifier which builds a “strong
classifier” H;(x) as a linear combination of “weak classifiers”, added in subse-
quent rounds. At each round, a weak classifier is built by picking up the feature
which provides the best weighted bipartite ranking on positive and negative sam-
ples. In other words, if we consider all the pairs made by a positive sample and
a negative sample (crucial pair) and consider how the two samples are ordered
according to a particular feature, the feature chosen is the one that minimizes
the weighted number of misranked crucial-pairs. After that, the samples forming
misranked crucial-pairs are given a weight so that they are more influential in
the following rounds. Such approach was inspired by RankBoost [10], a boost-
ing machine learning algorithm not based on a cascade mechanism. It allows
us to build node classifiers aimed at maximizing the area under the ROC curve
(AUCQC). In our application, this is a quality index for the classifier certainly more
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appropriate than accuracy which is used in other boosting algorithm such as Ad-
aBoost. Moreover, AUC is independent of the a priori probabilities of the two
classes and this makes it a good choice when dealing with unbalanced data sets.

As we said before, a consequence of the arrangement in a cascade is that
different nodes face different problems. This is considered during the learning
phase, when each node is trained with the training set used by the previous node
reduced by extracting the negative samples correctly classified by the previous
node. In this way, the training set for each node describes faithfully the problem
to be faced. It is worth noting that the learning phase require, for each node, a
validation set different from the training set and necessary to tune the classifier
in order to provide the required d; and f;. Also the validation set is updated in
the same way as the training set. The described learning mechanism obviously
causes that a high number of negative samples is removed from both the training
and the validation sets, thus significantly altering the original balancing between
positive and negative samples. For this reason, a huge pool of negative samples
is set apart for refilling and re-balancing the sets after a node is trained.

A particular strategy is adopted for the last node of the cascade that does not
reject negative subwindows, but it merely associates to each subwindow arriving
to it a confidence degree about the presence of a pC. This is achieved by using
the real number H,,(x) returned by the last node classifier (n is the total number
of nodes in the cascade) instead of applying a threshold to classify the tested
sample as it happens in the previous nodes.

A figure describing the structure of the proposed cascade classifier is given in

Fig.
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Fig. 2. The proposed cascade-based pC-classifier

2.2 Post-Processing Step

Since sliding subwindows can overlap each other, multiple likely-uC subwindows
are usually detected around the same pC region. A post-processing step which
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translates the overlapping subwindows into regions is therefore needed. Accord-
ingly, we employ an accumulation matriz, whos values are computed as follows.
Firstly the matrix is initialized with the same dimensions of the tested image
and with zero values. Secondly, for each likely-uC subwindow detected, the val-
ues inside the square of side k centered on that subwindow are incremented by
1. Finally, the connected regions of the accumulation matrix are found and a
confidence degree is associated to each of them by computing the mean of the
confidence degrees of the subwindows belonging to that region. Such regions rep-
resent a rough segmentation of the puCs, so that their centroid can be used as
the associated spatial coordinate.

2.3 The Clustering Algorithm

Since the number of clusters in the image is unknown, clustering algorithms re-
lying on this information (e.g. k-means) cannot be used. Therefore we employ
a sequential clustering algorithm described in [I2] that constructs the cluster
according to the sequence of pC-regions submitted to the algorithm. The se-
quence is ordered according to the confidence degree since regions that have a
higher confidence degree can more probably represent microcalcifications. In this
way, the first points that the algorithm will consider are those with the highest
probability of being microcalcifications. During the aggregation, each cluster C;
is represented by its the centroid ¢;, assumed as the center of mass of the uC-
regions belonging to the cluster, each weighted by its confidence degree. A new
1C-region is added to C; if the distance between its centroid and c; is less than
a given threshold R. In this case the centroid ¢; is recalculated, otherwise a new
cluster C;41 containing the pC-region will be created. In this way, the centroid
of the cluster moves towards the direction where the regions are more dense and
with higher confidence degrees.

3 Results

The experimental results were performed using 198 full-field digital mammo-
grams extracted from a non-public database. All the images were labeled by
experts, who accurately segmented the uCs and marked the clusters of uCs by
a poligonal line. In order to estabilish the size of subwindows, we firstly made
a statistical evaluation of the typical size of a uC. We found that a subwindow
of 12 x 12 pixels, corresponding to 1.2 mmx1.2 mm, can contain the 99% of
the pCs. Next, we extracted the training data from 90 of the 198 images using
non-overlapped subwindows of 12 x 12 pixels, so obtaining more than 2.000 pos-
itive and about 400.000 negative samples. In order to have a sufficiently wide
pool suited for the cascade approach, the set of negative samples was oversam-
pled by adding a huge number of subwindows partially overlapped with those
already present in the set, for a total number of about 12.000.000 negative sam-
ples. We used 20.000 and 60.000 of such negative samples for the training and
the validation set respectively, while the remaining have been used for the pool.
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The positive samples were equally distributed between the training set and the
validation set.

The cascade detector has been built with d; = 0.99 and f; = 0.3. The training
stage produced 13 nodes employing respectively 22, 26, 33, 43, 44, 28, 38, 29,
28, 32, 28, 30, 26 features automatically selected from the 11.879 possible ones.
The overall detection and false positive rate obtained by the cascade on the
validation set were 0.87 and 8.83 x 10~3 respectively.

We fixed the parameter k of the post processing to k = 4 since this configura-
tion has been found to provide the best results. The threshold R of the clustering
algorithm was fixed to R = 8 mm as suggested by the experts. Only clusters
with at least three uCs were considered.

To have a comparison with a non-cascade boosting approach, a monolithic
RankBoost detector has been implemented and trained with the same training
data and feature set of the cascade detector. We have built several models (with
different sizes for the set of negative samples and different numbers of boosting
rounds) and picked the best one in order to have a fair comparison. The best
results were obtained with a training set of 400.000 negative samples and 100
boosting rounds.

The cascade detector and the monolithic one were evaluated on the remaining
108 images of the initial set of 198 mammograms. 100 of such images contained
one ore more clusters of uCs, while the remaining 8 ones did not contain any
cluster. The evaluation has been performed in terms of Free-response Receiver
Operating Characteristics (FROC) curve, that plots the True Positive Rate, i.e.,
the number of clusters correctly detected in the test set, versus the False Positive
per image, i.e., the number of detected non-clusters per image. The criterion used
to evaluate a cluster detection as true or false is based on the area of intersection
between the automatically detected clusters and the labeled clusters and it is
detailed as follows. Given the area A(L) of a labeled cluster L, the area A(C)
of cluster C detected by the classifier, the total number of labeled clusters [ and
automatic detected clusters ¢, we have:

— a true positive if A(L N J;_,(A(Ci)) > CFiqp - A(L) where CFyqp is the
groundtruth coverage factor;

— a false negative if A(LNJ;_;(A(C;)) < CFgp - A(L);

— a false positive if A(C' N Uizl(A(Li)) < CFauto - A(C) where CF 40 is the
detected clusters coverage factor.

We have experimentally fixed the coverage factors as CFy,, = 0.3 and CF,y40 =
0.1 by visual inspection of the obtained results with the help of an expert.

The curves which show the result of the comparison are reported in Fig. Bl
and were obtained by varying the threshold on the confidence degree associated
to likely-uC regions. The comparison shows that the cascade approach significa-
tively outpeforms the monolithic RankBoost. In particular, at 1.0 false positive
per image the detection rate of the cascade classifier is 0.95, while the Rank-
Boost’s one is 0.71, with a gain of about 25%. It is also worth noting that
the cascade approach reduced the elaboration time of 55% with respect to the
RankBoost approach.
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Fig. 3. The FROC curves comparing our cascade-based approach with a monolithic
RankBoost classifier trained with the same data and feature set. The True Positive
Rate is the number of clusters correctly detected and the False Positive per image is
the number of detected non-clusters per image

4 Discussion

In this paper, we have presented a new approach for the detection of clustered mi-
crocalcifications based on a cascade architecture employing rank-based boosting
classifiers. An experimental analysis accomplished on a full-field digital mam-
mographic database demonstrated that the proposed approach is effective and
computationally convenient.

The good detection performance is mainly due to the detection system that
is actually made of an ensemble of classifiers, each trained on a part of the
available data. In this way, during the learning phase we can use a huge num-
ber of negative samples without any drawback due to overfitting because they
are distributed among the classifiers, each of them learning a training set not
excessively imbalanced.

On the other hand, the cascade architecture helps in limiting the computa-
tional load of the detector because it allows to spend the right computational
resource for each region to be classified: only the most difficult samples traverse
all the cascade, while the easy-to-recognize background regions are discarded by
the first stages. This is not possible for a monolithic detector which cannot tune
its effort according to the sample to be classified.

There are some issues that need to be addressed, however. First, different
types of features could be verified. Second, an alternative architecture could be
considered that decouples the feature selection step from the classifier learning
step. This would allow us to employ in the node classifier learning algorithms
not necessarily based on boosting.
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Abstract. According to recent reports, DBT is a useful diagnostic procedure
compared to 2D mammography. In this paper, we evaluated the diagnostic im-
pact of adjunction of DBT to FFDM and in comparison with FFDM only, in ac-
cordance with pathological findings and breast density. 303 women, having 333
lesions, (age 29-84, mean age 54.0 years old) that were recruited for this study
gave informed consent. The results indicated that adjunction of DBT to FFDM
was superior to FFDM only, regarding diagnostic performance.

Keywords: Digital Mammography, Tomosynthesis, DBT, FFDM, MMG.

1 Introduction

According to recent reports, DBT is a useful diagnostic procedure compared to 2D
mammography because breast structures are superimposed onto a two-dimensional
(2D) image [1-8] .We evaluated the diagnostic impact of adjunction of DBT to FFDM
and in comparison with FFDM only, in accordance with pathological findings and
breast density with reference to recent reports.

2 Materials and Methods

This study was approved by the IRB at our institute. 303 women, having 333 lesions,
(age 29-84, mean age 54.0 years old) that were recruited for this study gave informed
consent. The images were taken as diagnostic mammograms from October in 2009

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 119-J26] 2012.
© Springer-Verlag Berlin Heidelberg 2012



120 N. Uchiyama et al.

to October in 2011. 45 cases were referred from other institutions by US and 258
cases were referred by MMG or palpation. Clinical image data were acquired by an a-
Se FFDM system with a spatial resolution of 85pm (MAMMOMAT Inspiration,
Siemens, Germany).Two-view DBT was performed with the same rotation angle
(¥25°) and compression pressure as the FFDM. With one-view DBT, the radiation
dose was 1.5 times compared to one-view FFDM. The radiation dose, utilizing ACR
156 phantom by FFDM, was 1.20mGy. Images were reconstructed by the shift and
add method and the filtered back projection (FBP) method. FFDM and reconstructed
slice images of DBT were reviewed at a dedicated workstation (MAMMO Report,
Siemens, Germany). Before stating clinical evaluation, our technologists performed
an evaluation of image quality utilizing an ACR156 Phantom. The thickness was
changed utilizing a PMMA Plate and image quality was evaluated by counting de-
tectable numbers of fibers, masses, and calcifications. As for the results, DBT showed
better image quality compared to FFDM regarding fibers and masses. However, re-
garding calcifications, FFDM showed better image quality compared to DBT. Ac-
cording to the preliminary results, we designed clinical study how adjunction of DBT
to FFDM could contribute to improve diagnostic accuracy [Fig.1.] [9]. Two radiolo-
gists and four breast surgeons evaluated and reached diagnostic consensus regarding
the findings of each lesion by FFDM only and the adjunction of DBT to FFDM before
surgery and in accordance with BIRADS categories; BIRADS1-2 (no findings or
benign), BIRADS 3 (probably benign, but short-term follow-up or additional diagnos-
tic procedure necessary), and BIRADS 4-5(highly suspicious or definitely malignant
and a biopsy necessary). The author and the other five co-authors (two radiologists
and four breast surgeons) each have over ten years’ experience in reading mam-
mograms. In addition, to read screening mammograms in our country, it is necessary
to get a certificate from the committee on quality control of mammographic screening
by taking a qualifying examination and the certificate must be renewed every five
years. The author and the other five co-authors all passed the qualifying examina-
tion with A rank results. All the examination scores were over 90% in sensi-
tivity and over 92% in specificity. All cases were operated on and confirmed as
malignant or borderline lesions pathologically.
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3 Results

181 cases were diagnosed as fatty or scattered (BIRADS density 1-2) and 122 cases
were diagnosed as inhomogeneous dense or dense (BIRADS density 3-4). Of the
pathological findings, 186 lesions were diagnosed as Invasive Ductal Carcinoma(IDC),
60 lesions were diagnosed as Ductal Carcinoma in Situ(DCIS), 33 lesions were IDC
predominantly Ductal Carcinoma in Situ (DCIS), 16 lesions were diagnosed as Invasive
Lobular Carcinoma (ILC), 7 lesions were diagnosed as Lobular Carcinoma in Situ
(LCIS), 5 lesions each were diagnosed as Mucinous Carcinoma (Muc Ca) and Intra-
ductal Papilloma (IDP), 4 lesions were diagnosed as Apocrine Carcinoma, 3 lesions
each were diagnosed as Mixed IDC+ILC and Intracystic Papillary Tumor (ICPT), two
lesions each were diagnosed as Invasive Micropapillary Carcinoma (IMPC), DCIS
with LCIS, and Phyllodes Tumor, and one lesion each was diagnosed as SCC, ILC
with DCIS, ILC predominantly DCIS, ILC predominantly LCIS, and Muc Ca predo-
minantly DCIS (Tablel.). With FFDM only, the detection rate was 88.9% (176/198)
for breasts with BIRADS density 1-2 and 83.7% (113/135) for breasts with BIRADS
density 3-4. The findings by FFDM only were mass (n=142; 42.6%), Focal Asymme-
try (FA) (n=31; 9.3%), distortion (n=15; 4.5%), microcalcifications (n=40; 12.0%),
microcalcifications with FA (n=8; 2.4%), microcalcifications with distortion (n=7;
2.1%), microcalcifications with mass (n=46; 13.8%), and none (n=44; 13.2%).

With adjunction of DBT to FFDM, the detection rate (BIRADS3-5) was 97.4%
(193/198) for breasts with BIRADS density 1-2 and 94.8% (128/135) for breasts with
BIRADS density 3-4. The average detection rate was 86.8% by FFDM only and
96.4% by adjunction of DBT to FFDM. There was a statistically significant difference
between the FFDM only and adjunction of DBT to FFDM among BIRADS density 1-
2 and BIRADS density 3-4 (P<0.05). On the other hand, there was no statistically
significant difference according to breast density (FFDM only: P=0.221, 3-4; adjunc-
tion of DBT to FFDM: P=0.202) (Table 1.). By BIRADS category with FFDM only,
44 lesions (13.2%) were diagnosed as BIRADS 1 or 2, 75 lesions (22.5%) were diag-
nosed as BIRADS 3, 214 lesions (64.3%) were diagnosed as BIRADS 4 or 5. On the
other hand, with adjunction of DBT to FFDM, 12 lesions (3.6%) were diagnosed as
BIRADS 1 or 2, 21 lesions (6.3%) were diagnosed as BIRADS 3, 300 lesions (90.1%)
were diagnosed as BIRADS 4 or 5 (Table 2., Fig.2.).By adjunction of DBT to FFDM,
32 more lesions were detected in comparison with FFDM only (IDC n=11, ILC n=2,
ILC pred LCIS n=1, DCIS n=15, LCIS n=1, IDP n=2). In addition, regarding radio-
logical findings, diagnostic accuracy was improved in 96 lesions (28.8%) in cases of
BIRADS 1-2 to BIRADS 3-5 and BIRADS 3 to BIRADS 4-5. These included 93
mass-related lesions (mass, FA, or distortion) and three microcalcifications -related
lesions (microcalcifications, microcalcifications and FA, or microcalcifications and
distortion). However, diagnostic confidence was improved in cases of microcalcifica-
tions-related lesions owing to the presence of masses or focal dense areas with micro-
calcifications. In accordance with pathological subtypes, improvement of the detec-
tion rate and diagnostic accuracy in invasive cancer was 4.7% and 14.1% in Sci Ca,
7.9% and 31.7% in Pap-Tub Ca, 8.2%and 35.8% in Sol-Tub Ca, and 14.3% and
43.8% in ILC. On the other hand, improvement of detection rate in non-invasive can-
cer (DCIS) was 39.5% and 45.0% in diagnostic accuracy (Table 3.).
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Table 1. The Detection Rate in accordance with Breast Density (n=333)

FFDM only Adjunction of DBT to FFDM
P<0.05
1
BIRADS density 1-2 BIRADS density 1-2
(Fatty or Scattered)
P>0.05 88.9% (176/198) 97.4% (193/198) P>0.05
BIRADS density 3-4 BIRADS density 3-4
(Inhomogeneous Dense or Dense)
83.7% (113/135) 94.8% (128/135)
I
P<0.05
Average Detection Rate Average Detection Rate

86.8% L J 96.4%
P<0.05

Table 2. Category Changes of FFDM Only Vs. Adjunction of DBT to FFDM (n=333)

FFDM only Adjunction of DBT to FFDM
BIRADS 1 or 2 n=44 BIRADS 1 or 2 n=12
*BIRADS 3 n=10
*BIRADS 4 or 5 n=22
BIRADS 3 n=75 BIRADS 3 n=11
*BIRADS 4 or 5 n=64

BIRADS 4 or 5 n=214 BIRADS 4 or 5 n=214

* Improved diagnostic accuracy: BIRADS 1-2 to 3-5 or 3 to 4-5 (n=96: 28.8 %)

(a) FFDM image (b) DBT image (c) DBT image
Fig. 2. FFDM (Fig.2a) showed no abnormality in the left breast by CC view except metal clips.
Corresponding to the post-operative area (white arrow), DBT (Fig.2b.-c.) showed two irregular

shaped masses on different slices (white arrows). The pathological diagnosis was recurrence of
IDC (Pap-Tub Ca). (Category Change: BIRADS 1 to 4)
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Table 3. Radiological Findings of FFDM and Adjunction of DBT to FFDM in comparison with
Pathological Findings

IDC (Sci Ca) n=92

FFDM only Adjunction of DBT to FFDM

Mass (n=58: *RM n=1, IRM n=30, SPM n=27)
Microcalcifications (n=4)

Mass (n=58: IRM n=4, SPM n=54)
Microcalcifications (n=1)
Microcalcifications with FDA (n=1)
Microcalcifications with RM (n=1)
Microcalcifications with SPM (n=1)
Microcalcifications with FDA (n=1)
Microcalcifications with IRM (n=4)
Microcalcifications with SPM (n=1)
Microcalcifications with IRM (n=6)
Microcalcifications with SPM (n=4)
*SPM (n=8)
*Mass (n=4: RM n=1

, IRM n=2, SPM n=1)
None (n=2)

Microcalcifications with
Focal Asymmetry or Distortion (n=06)

Microcalcifications with Mass (n=10)

Focal Asymmetry or Distortion (n=8)

None (n=6)

Improvement of detection rate 4.7%, Improvement of diagnostic accuracy 14.1% (13/92)

IDC (Pap-Tub Ca) n=41

FFDM only Adjunction of DBT to FFDM

Microcalcifications with IRM (n=8)
Microcalcifications with SPM (n=1)

**Microcalcifications with RM (n=1)

Focal Asymmetry or Distortion (n=8)

Microcalcifications with IRM (n=6)
Microcalcifications with SPM (n=4)

*IRM (n=4), *SPM (n=4)

None (n=3)
Mass (n=20:* RM n=1, IRM n=13, SPM n=6)
Improvement of detection rate7.9%

*RM (n=1), *IRM (n=1), *SPM (n=1)
Mass (n=20: IRM n=9, SPM n=11)
Improvement of diagnostic accuracy 31.7% (13/40)

IDC (Sol-Tub Ca) n=53

FFDM only Adjunction of DBT to FFDM

Microcalcifications with IRM (n=11)
Microcalcifications with SPM (n=1)
Focal Asymmetry or Distortion (n=9)
None (n=4)

Microcalcifications with IRM (n=6)
Microcalcifications with SPM (n=6)
*IRM (n=7), *SPM (n=2)
*IRM (n=3), *SPM (n=1)
Mass (n=27: *RM n=6, IRM n=15, SPM n=6) Mass (n=27: IRM n=13, SPM n=14)
Microcalcifications (n=1) Microcalcifications with FDA (n=1)
Improvement of detection rate 8.2%, Improvement of diagnostic accuracy 35.8% (19/53)
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Table 3. (continued)

ILC (n=16)
FFDM only

Adjunction of DBT to FFDM

Focal Asymmetry or Distortion (n=5)

None (n=2)
Mass (n=7: SPM n=6, IRM n=1)
Microcalcifications with IRM (n=2)

*IRM (n=1)

*SPM (n=4)

*RM (n=2)

Mass (n=7: SPM n=7)
Microcalcifications with IRM (n=1)
Microcalcifications with SPM (n=1)

Improvement of detection rate14.3%, Improvement of diagnostic accuracy 43.8% (7/16)

IDC Pred DCIS (n=33)
FFDM only

Adjunction of DBT to FFDM

Microcalcifications (n=13)

Microcalcifications with
Focal Asymmetry or Distortion (n=7)

(BIRADS 3 n=2, BIRADS 4-5 n=5)

Microcalcifications with RM (n=3)
or with IRM (n=2)

Focal Asymmetry or Distortion (n=5)
Mass (n=3: SPM n=2, IRM n=1)

Microcalcifications (n=4)
Microcalcifications with FDA (n=5)
Microcalcifications with RM or IRM (n=4)

Microcalcifications with FDA
and Distortion or Spiculation
(n=6)
(BIRADS 3 n=1, BIRADS 4-5 n=5)
**Microcalcifications with IRM (n=1)
(**BIRADS 3 to 4-5 n=1)
Microcalcifications with IRM (n=4)
or with SPM
(n=1)
FDA (n=1), *IRM (n=1), *SPM (n=3)
Mass (n=3: SPM n=2, IRM n=1)

Improvement of detection rate 0%, Improvement of diagnostic accuracy 15.2% (5/33)

DCIS (n=60)
FFDM only Adjunction of DBT to FFDM
None (n=22) None (n=7)

*FDA with

Microcalcifications (n=14)

Microcalcifications with

Distortion or Spiculation (n=5)
*Mass (n=10; RM n=5, IRM n=2, SPM n=3)
Microcalcifications (n=10)
Microcalcifications with FDA

or with Distortion or Spiculation (n=4)

Microcalcifications with FDA or Distortion (n=4)
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Table 3. (continued)

Focal Asymmetry or Distortion(n=5)  *Microcalcifications with Mass (n=1)
Microcalcifications with Mass (n=1) Microcalcifications with Mass (n=1)
Focal Asymmetry or Distortion (n=9) FDA (n=1)
*FDA with Distortion or Spiculation (n=2)
*Mass (n=6; IRM n=6)
Mass (n=9: IRM n=6, *RM=3) Mass (n=9: IRM n=4, SPM n=5)

Improvement of detection rate 39.5%, Improvement of diagnostic accuracy 45.0% (27/60)

FDA: Focal Dense Area RM: Round, Oval, or Lobulated Mass
Irregular Shaped Mass (IRM): Indistinct or Microlobulated Mass ~ SPM: Spiculated Mass
*Improved Diagnostic Accuracy regarding Mass-related Lesions

**Improved Diagnostic Accuracy regarding Microcalcification-related Lesions

4 Discussion

According to recent reports, DBT is a useful diagnostic procedure compared to 2D
mammography because breast structures are superimposed onto a two-dimensional
(2D) image [1-8] .The outline of the lesion can be potentially obscured. Our prelimi-
nary results also indicated that adjunction of DBT to FFDM contributed not only to
detecting the lesion, but also to clarifying the diagnostic accuracy, especially with
regard to mass-related lesions. On the other hand, regarding microcalcifications-
related lesions, only using DBT slice image, it is difficult to recognize the overview
of the clustered microcalcifications and analyze the morphology of each microcalcifi-
cation’s outline at current settings for image acquisition and reconstruction. That cor-
responded to our preliminary phantom study and clinical study by Spangler ML, et.al.
[8][9].As a result, adjunction of DBT to FFDM is the best current option. Detection
rate by adjunction of DBT to FFDM was improved compared to FFDM only and
especially improved in non-invasive cancer; DCIS.32 more lesions were detected by
adjunction of DBT to FFDM, not only 14 invasive cancers, but also 18 non-invasive
cancerous or borderline lesions. Adjunction of DBT to FFDM was useful to detect
early stage breast cancer and it is not affected by breast density.

5 Conclusion

In this study, the results indicated that adjunction of DBT to FFDM was superior to
FFDM only, regarding diagnostic performance. In addition, it could decrease addi-
tional other diagnostic procedures.

Acknowledgment. This study was supported by Grant-in-Aid for Scientific Research
(C) (No. 23591810) in Japan.
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Abstract. Volumetric breast density was determined using Quantra™ (Hologic)
in 1356 women undergoing routine breast screening. Self-reported ethnicity,
age, HRT use, weight and height were also available. 1038 women declared
themselves to be White (British or Irish), 71 Black, 77 Asian, 91 Jewish, 31
Mixed Race and 48 Other European. Most of the Jewish group were Ashkenazi,
a group in which there is a high probability of genetic susceptibility to breast
cancer. Women with screen-detected or previous cancers were excluded. The
only significant difference in breast density found between ethnic groups was
between the Jewish women and women of White (British or Irish) ethnicity,
where mean volumetric densities were 19.61% and 16.89% respectively
(p=0.012), however this difference is only of borderline significance (p=0.053)
once adjustments are made for age, Body Mass Index (BMI) and use of Hor-
mone Replacement Therapy (HRT). The Jewish women had on average a lower
BMI and were more likely to have used HRT.

Keywords: Breast density, ethnicity, mammography, volumetric, Quantra.

1 Introduction

Increasingly, screening programmes are looking for alternatives to the one-size-fits-
all approach currently adopted for women without a family history of breast cancer.
Screening could be made more effective by adapting the imaging modality and
screening interval to the properties of a woman’s breasts or to their individual risk of
cancer. Women identified as being at high risk of developing the disease could also be
offered risk-reducing interventions. An example of this is the PROCAS (Predicting
Risk of Cancer At Screening) trial in the UK [1,2]. All women attending routine
breast screening in the Greater Manchester Breast Screening Programme are invited
to participate; those that consent undergo conventional screening mammography and
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complete a questionnaire providing information about physical characteristics, life-
style, family history and other factors associated with breast cancer risk. Question-
naire data are used to identify a high risk population via the Tyrer-Cuzik model [3].
Breast density is measured from the screening mammograms, and those women with
a Tyrer-Cuzick 10-year risk of at least 8%, or a 10-year risk of at least 5% and area-
based breast density in the top 10% among study participants, are informed of their
risk and offered appropriate advice. Breast density is a key feature of PROCAS not
only because it is an important risk factor for cancer; unlike many risk factors it is
modifiable by lifestyle and other interventions giving the opportunity to reduce risk
[4, 5], and it has become easier to quantify objectively and routinely with the advent
of digital mammography.

Increased mobility of the world population has resulted in many countries having a
diverse ethnic mix, now apparent in the screening age group in Greater Manchester
[6]. Ethnicity affects risk of breast cancer, with women of White ethnicity having high
incidence of developing this disease in comparison to other racial groups [7]. In one
study, approximately 141 per 100,000 women of White ethnic origin were found to
have developed breast cancer, compared to 119 for African Americans, 96 for Asian
Americans, 90 for Hispanic/Latina women and 50 for American Indians/Alaskan
natives [8]. Survival also differs between women from different ethnic groups [9,10]
although this may in part be due to inequalities in treatment [11].

Published data on ethnicity and breast density has yielded mixed results. A UK
study of 428 patients symptomatic patients using Quantra’™ showed significantly
differences between White, Asian and Black women, but did not control for any con-
founding factors such as age or HRT use [12]. White, Hispanic, Asian, Native Amer-
ican and Black woman participated In a study of 28,501 mammograms of women
enrolled on a breast-screening programme in western Washington [13]. Adjusting for
age, differences in breast density were found between Native American and White
women, and White and Asian women. However, when BMI, HRT use, menopausal
status and parity were taken into account the difference between Native American and
White women was no longer significant. More recent research in similar ethnic
groups evaluated the breast density of 442 women [14]. African-Americans were
found to have higher density than Asian-Americans after adjusting for BMI, family
history, menstrual and reproductive factors. In this work, Asian-American and White
ethnic group were found to have similar mammographic densities. In contrast with
this, a British study found that Asian women had significantly lower breast density
assessed using Wolfe grades than Caucasian participants [15]. However, in a study of
15,292 women of Asian, White, African-American and Other (American Indian and
Caribbean) racial backgrounds no significant differences were found when confound-
ing factors including bra size were taken into account [16]. The picture is thus
unclear; previous studies have evaluated different populations using a variety of me-
thodologies including subjective assessment of density.

The work reported here uses a fully automated, volumetric breast density measure,
(Quantra™) as opposed to visual assessment or computer assisted methods as re-
ported previously in the literature. Whilst Quantra™ has not yet been validated with
respect to its relationship to risk to the same extent as subjective and area-based



Ethnic Variation in Volumetric Breast Density 129

methods of density measurement, it holds several advantages over such methods in-
cluding objectivity, reproducibility, suitability for population-based studies, resolution
and the ability to assess absolute, rather than relative, breast density [17]. Regardless
of the degree of association with risk, the identification of women with high mammo-
graphic density is important because the detection of cancers using conventional
mammography is more difficult in this case [18], and it may be appropriate to use
alternative screening methodologies.

2 Methods

Data used in this study comprised image and questionnaire data for all non-White
British or Irish participants recruited to PROCAS before 15th June 2011 for whom
raw digital mammograms and a completed questionnaire were available, and for the
first 1038 White British or Irish participants in the wider trial for whom questionnaire
data had been entered in the study database and raw mammogram data were available.
Women diagnosed with cancer at the time of screening and women with previous
breast cancers were excluded.

The mammograms were analysed using Hologic’s Quantra™™ (Version 1.3; Holog-
ic Inc.) software which provided measures of breast volume, glandular volume and %
density by volume for left and right breasts. These were averaged to provide a single
measure of each type per women.

Questionnaire data on ethnicity, date of birth, Hormone Replacement Therapy
(HRT) use, weight and height were extracted from the PROCAS study database.
Body Mass Index (BMI) was calculated from the self-reported height and weight data.
One way analysis of variance (ANOVA) was used to determine whether a relation-
ship existed between the breast density measures and ethnicity. Further analysis was
then completed using a General Linear Model (ANCOVA) in which adjustment was
made for age, BMI and HRT use.

2.1  Ethnicities

The ethnic categories available for participants to select on the questionnaire were:
Asian or Asian British — Bangladeshi, Indian, Pakistani, Chinese; Black or Black
British — African or Caribbean; Jewish Origin; Jewish Ashkenazi; Mixed — White and
Black African/Asian/Black Caribbean; White - British or Irish; and Other — please
specify. Women were instructed ‘Please tick all that apply’. In subsequent analysis,
the Jewish Ashkenazi women were included in the Jewish Origin category.

3 Results

The age of participants ranged from 46 to 74 years. The mean BMI for all the ethnic
groups in the study was greater than 25, in the overweight range. Mean ages and BMI
for each group are tabulated in Table 1.
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Table 1. Mean Body Mass Index and Age in each ethnic group studied

Ethnicity Mean BMI (SD) Mean Age (SD)

White British or Irish 27.36 (5.49) 58.8 (6.99)
Black or Black British 29.49 (4.60) 57.9 (7.36)
Asian or Asian British 26.24 (4.64) 57.5(6.75)
Jewish origin 25.52 (4.22) 60.1 (6.87)
Mixed 29.75 (5.83) 56.7 (6.29)
Others 25.50 (4.66) 58.8 (6.37)
All 27.45 (5.37) 58.7 (6.96)

Just over a third of the women in the study had used HRT at some time. Usage was
highest in the Jewish group and lowest in women of Black origin and those of Asian
or Mixed race (Table 2). The mean age of women who reported ever using HRT
(61.41 years) was significantly greater than that of women who had never used it
(57.19 years) (p<0.01). This may relate to the menopausal status of the individuals

taking part in this study.

Table 2. HRT use for women of different ethnicities

Ethnicity Ever Used HRT (%)
White British or Irish 37.5
Black or Black British 23.5
Asian or Asian British 26.7
Jewish 429
Mixed 26.7
Others 354
All ethnicities 36.2

The volumetric breast densities of women in the different ethnic groups are
presented in Table 3, and the volumetric percentage breast densitiesare shown in

Table 4.

Table 3. Volumetric breast density (cm®) for women of different ethnicities
Ethnicity Gland volume (cm®) | Breast volume (cm®)

Mean SD Mean SD
White 101.9 58.9 642.4 363.2
Black or Black British 126.4 72.2 777.8 442.5
Asian or Asian British 78.9 47.9 454.8 259.2
Jewish Origin 100.7 50.2 544.5 260.9
Mixed 117.0 45.5 694.6 293.5
Others 97.5 63.3 596.3 450.1
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Table 4. Volumetric breast density (%) for women of different ethnicities

Ethnicity Breast density (%)

Mean SD
White 16.9 6.5
Black or Black British 17.1 5.9
Asian or Asian British 18.3 6.0
Jewish Origin 19.6 7.5
Mixed 17.3 3.9
Others 18.1 6.4

A one-way analysis of variance (ANOVA) was performed to determine whether a
direct association existed between average breast density and ethnicity. Pairwise
comparisons were carried out on each ethnic group out using Scheffe’s test. Slight
differences were observed in the average breast density in all ethnic groups. However,
the results concluded that only women of Jewish ethnic origin had significantly higher
breast density than the White British or Irish population (p = 0.012).

A General Linear Model was used to further investigate the link between average
breast density and ethnicity whilst adjusting for HRT use, BMI and age. Univariate
analysis of the variables was performed and pairwise comparisons were done using
Bonferroni’s test. Once adjusted for age, BMI and HRT use, the results showed that
the difference between average breast density of the Jewish participants and that of
the white British or Irish women was of borderline significance (p= 0.053).

4 Discussion

Investigation of the relationship between breast density and ethnicity, whilst facili-
tated by the availability of automated methods of measuring density, remains difficult
because of the many confounding factors such as the possible impact of a change in
lifestyle on second generation immigrants, and wide variations between definitions of
ethnic groups. This study is the first that has specifically compared breast density in
Jewish women with that of White British or Irish women; this comparison is particu-
larly interesting because of the known difference in genetic susceptibility to breast
cancer of Ashkenazi Jewish women [19]. The high rate of HRT use found in this
group is of interest.

The population studied is unlikely to be representative of women of screening age
in Greater Manchester, as attendance at screening is not uniform across all ethnic
groups, with women of non-White origin less likely to present for screening [20].
Further, the sample was selected on a pragmatic basis aimed at maximizing the pro-
portion of non-White British participants. The mobile units used for screening
re-locate to facilitate access, and uptake of screening and the proportion of women
consenting to take part in PROCAS vary according to location, with lower rates in
less affluent areas of the city.
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In this sample we found that the only ethnicities for which, after adjusting for po-
tential confounding factors, there was some limited evidence of a difference in breast
density were White British or Irish and Jewish women. This is in contrast to recently
reported data from the UK which found that Asian women had lower breast density as
measured by Quantra™, however that research was carried out in a symptomatic pop-
ulation rather than a screening population, and did not adjust for confounding factors
such as age and BMI [12]. Quantra™ also provides data on volume of glandular tis-
sue in the breast. This may be more reliable than percentage density as it is affected
less by the weight of the women at the time of imaging [21]. A future line of research
would be to investigate any differences in the absolute volume of gland between the
ethnic groups, and to establish the impact of increased weight on breast volume.
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Abstract. A methodology for patient-oriented calculations of mean
glandular dose (MGD) is introduced in this study. The method takes
into consideration the influence of the glandular tissue distribution in
the MGD. The glandular tissue information was estimated from conven-
tional mammography images using breast density assessment software
followed by the Mammography-Image Based (MIB) method presented
in this work. The corresponding dose conversion coefficients (Dgn—_nrB)
were determined using a Heterogeneously-Layered Breast (HLB) geom-
etry. The effect of the glandular tissue distribution on the MGD was
studied using a set of HLB models and their corresponding homoge-
neous model. Dyn_prB values were between 48% lower and 24% larger
than the value calculated using a homogeneous glandular tissue distri-
bution, despite the current methods predicting the same coefficient for
all glandular tissue distributions. The proposed methods were applied to
a group of patients. For the cases analyzed, the variation in MGD was
as large as 14.8% for a highly heterogeneous dense breast.

Keywords: breast imaging dosimetry, mean glandular dose,
breast anatomy.

1 Introduction

The geometric model used in current dosimetric calculations approximates the
breast as a homogeneous mix of adipose and glandular tissues, surrounded by
skin.[2I4TTIT2] This simplified breast model overlooks the heterogeneous distri-
bution of the glandular and adipose tissues within the breast, and introduces a
severe limitation in the dosimetric calculations for anatomical breasts.

This limitation has been reported by Dance et al.[3] who found differences as
high as 48% in the conversion coefficients due to the distribution of glandular
tissue. However, no changes were recommended to the current dosimetry pro-
tocols to allow for this, due to the lack of a practical method to determine the
glandular tissue distribution for a large group of patients.
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In the present work, we introduce the Mammography-Image Based (MIB)
method to estimate the glandular tissue distribution for individual patients us-
ing conventional mammography images. The MIB method is used in combination
with breast density assessment software. In addition, a Heterogeneously-Layered
Breast (HLB) geometry is used in the calculation of the dose conversion coeffi-
cients. The HLB geometry allows variations in the distribution of the glandular
tissues. The methodology introduced in this work provides the basis for patient-
oriented estimations of MGD.

2 Methods

The dose conversion coefficients were obtained using Monte Carlo techniques
(MCNP5, Los Alamos, NM). The imaging geometry used in all simulations was
based on the configuration described by Dance.[2] All simulations used a mo-
noenergetic photon source with energies in the range between 0 keV and 30 keV,
in 0.5 keV steps. The spectra used for these calculations were generated using
methods described in detail elsewhere.[IJI0] The breast geometry used in all sim-
ulations is based on the HLB model which consists of a breast core divided into
layers parallel to the image receptor plane. The percent glandular composition
for each layer can be modified separately and heterogeneous glandular tissue
distributions can be simulated. The HLB core is surrounded by a 3.5 mm thick
adipose tissue layer and a 1.5 mm thick skin layer.[§]

The particular HLB geometry used in this work had three layers of equal
thickness and a semicircular breast projection with 8 cm radius (Fig. [l). The
glandular fractions of the core layers were modified according to the purpose of
each of the studies performed. The elemental compositions of the tissue mate-
rials used in all the simulations were based on those reported by Hammerstein
et al.[5]

Fig. 1. Heterogeneously-layered breast (HLB) model. Each of the shaded areas corre-
sponds to a breast core layer with different glandular composition. The breast core is
wrapped in adipose tissue and skin layers.
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2.1 Calculation of Dose Conversion Coefficients

The calculation of the HLB based dose conversion coefficient (Dyn—fprp) was
performed using :

Epax 3
max Aen sur
Dyn—mrE =k Z E®(E) niif (Z fi(E) Gz)} (1)
E=FEmin g i=1

where the subindex ¢ = 1, 2, 3 indicates each of the breast core layers, the con-
stant k corrects for unit conversions, F is the source energy, #(E) the spectrum
of photons/ mm? normalized to 1 R, Aent sur ¢ is the beam entrance plane sur-
face area at the top of the breast, m, is the mass of the glandular portion of
the breast tissue, f;(E) corresponds to the fractional energy absorption and G
corrects the normalized dose calculation to the glandular tissue component in
the breast core as calculated by:

G; =

o (%)g,i + (1= fgi) (HT)M @

where f,; refers to the fraction of glandular tissue with respect to the total
breast tissue, £¢2 corresponds to the mass-energy absorption coefficients, and
the subscripts @ and ¢ indicate adipose tissue and glandular tissue respectively.
The dose conversion coefficient based on the homogeneous breast core geometry
(Dgn) corresponds to the particular case of the HLB geometry where all the
breast core layers have the same glandular composition.

2.2 Impact of Glandular Tissue Distribution Using the HLB Model

The effect of the glandular tissue distribution on the MGD was studied using a set
of HLB models and their corresponding homogeneous model. The set of Monte
Carlo HLB models used in this study had an average glandular composition of
25%. This value is in agreement with the mean glandular compositions found
by Yaffe et al.[I3] The percentage glandular composition of the individual core
layers was varied to simulate four different glandular tissue configurations as
shown in Table [1}

2.3 Patient-Oriented Use of HLB Model

The main obstacle to incorporating the glandular tissue distribution in the cal-
culation of MGD is the lack of three dimensional tissue distribution information
from conventional mammography images.[9] The solution proposed in this work
makes use of the information provided by the mammography images through
their breast density map.[6J7] This method has the advantage that it provides
an approximation to the actual glandular tissue distribution within the breast
using conventional mammography images.
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Table 1. Heterogeneous glandular tissue distributions for HLB model

Configuration Percentage glandular composition (%)

ID Layer I* Layer II Layer III
A 30 35 10
B 35 30 10
C 10 35 30
D 10 30 35

*Layer I is the breast core layer closest to the beam entrance surface.

The current version of the MIB algorithm divides the breast density map into
three sections and calculates the amount of glandular tissue in each section of
the projected breast. The MIB algorithm also segments out of the density map
any chest-wall structures, such as the pectoral muscle.

Because the breast density map provides the glandular tissue information in
the direction perpendicular to the plane of the image receptor, the density map
for a mediolateral oblique (MLO) view approximates the glandular tissue distri-
bution in the plane parallel to the image receptor plane for the corresponding
craniocaudal (CC) image, and viceversa. An underlying assumption of this ap-
proach is that, while the breast compression may change the position of the
individual breast elements, the overall glandular composition remains the same.

The resulting approximation to the actual glandular tissue distribution, can
then be incorporated into the calculation of patient-oriented MGD using the
corresponding HLB Monte Carlo model.

Breast density maps were generated from patient mammograms using the spe-
cialized software Volpara™ (Matakina Technology, Wellington, New Zealand).
The MIB method was used to determine their corresponding glandular tissue
distributions. The resulting HLB geometries were used in the determination of
the patient-oriented dose coefficients Dgn_ g p using Monte Carlo methods. In
addition, the corresponding homogeneous core model was developed for each
patient and the Dgyy coeflicient was determined for each case. The spectrum
used in this comparison had a Rh anode, 25 pym thick Rh filter, and 28 keV
with 0.40 mmAl HVL. The characteristics of the patient group and the patient-
oriented HLB models are shown in Table

3 Results and Discussion

3.1 Impact of Glandular Tissue Distribution Using the HLB Model

The differences found in this study were 24% lower to 48% higher than the
value estimated using the homogeneous breast model. According to the current
dosimetry methods, all the models in this set would have been considered to
be equivalent to the 25% homogeneous model. This means that, despite the
anatomical differences, the MGD would have been estimated as the same in all
these cases. The full results of this study are shown in Fig.
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3.2 Patient-Oriented Use of HLB Model

The Dyn_grB values obtained from the patient-based HLB models were com-
pared to the Dyn from the corresponding homogeneous models. The largest
variation in the coefficient was found for a heterogeneously dense breast, where
the Dgn—pmrp was 14.8% higher than what was expected from the homogeneous
glandular tissue distribution approximation. The complete results of this patient
study are shown in Table

These results suggest that the anatomical differences in patients have an effect
on the dose conversion coefficients, and consequently on the value of MGD. The
magnitude of this effect is dependent on the distribution of the glandular tissue
within the breast of the patient and is expected to increase for thicker and more
heterogeneously dense breasts.

Table 2. Comparison of Dgn_pmrp from patient-oriented HLB models to the Dyn
from their corresponding homogeneous breast core models

Glandular composition

Compressed
Case ID breast Whole Layer I ~ Layer II Layer IIl Dgn vs.
thickness  breast (%) (%) (%) (%) Dyn-HLB
(cm)

la 5.8 2.6 2.4 2.9 2.5 -2.2%
1b 8.1 5.4 3.7 7.2 4.7 39.4%**
lc 5.2 3.7 4.3 4.0 2.8 6.4%
1d 8.0 3.7 6.8 3.3 0.9 39.0%*"
2a 5.1 5.4 3.7 7.2 4.7 -9.1%
2b 5.2 5.6 7.1 7.0 2.6 13.8%
2c 4.8 6.7 4.0 8.1 7.4 -14.3%
2d 5.1 6.7 6.3 8.3 5.6 0.7%
3a 4.6 12.0 15.6 14.0 5.0 10.6%
3b 4.6 12.6 12.1 154 10.3 1.3%
3c 4.9 11.3 11.8 14.6 6.8 4.1%
3d 5.0 11.7 17.6 10.5 7.0 14.8%
4a 3.7 22.9 20.6 29.7 15.8 -1.3%
4b 4.3 23.9 16.4 32.1 23.3 -6.1%
4c 4.3 27.0 26.5 32.9 19.7 0.9%
4d 4.3 27.1 24.0 34.0 234 -1.0 %

a: MLO, left breast ; b: CC, left breast ; c: MLO, right breast ; d: CC, right breast
**The higher variations found for cases 1b and 1d can be explained due to the
inclusion of additional anatomical structures that cannot be segmented out of the
MLO images.

4 Conclusions

Our results suggest that the use of the homogeneous approximation to the distri-
bution of glandular tissue leads to potentially large inaccuracies in the estimation
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of the MGD. The use of a breast geometry that can simulate different glandular
tissue distributions, such as the HLB model, could reduce the uncertainty in
the calculation of the dose conversion coefficients used for clinical dose studies.
The magnitude of the uncertainty reduction depends on the particular anatomy
studied, with a larger impact expected for thick, heterogeneously dense breasts.

Acknowledgments. The authors are grateful to Vikram Adhikarla, Paulina
Galavis and Ivan M. Rosado-Méndez for their contributions in this study.
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Abstract. Mammographic tissue structure has been shown to exhibit
directionality, with a preferred orientation towards the nipple. However,
this property is absent in the small-scale tissue model of current breast
phantoms. To improve existing breast phantoms, a model for simulating
oriented breast tissue has been developed, and has been included into an
existing anthropomorphic breast phantom. Within this model, direction-
ality was introduced by filling compartments with binarized power-law
noise that was oriented towards the nipple. Mammograms were simulated
based on the original and the new directional phantom. Tissue orientation
was measured in the simulated mammogram. Visually, the appearance of
the enhanced phantom was more realistic. Further, the distribution of the
orientation measure computed from the enhanced phantom was more sim-
ilar to that in actual mammograms. In conclusion, the use of a directional
model to simulate fibroglandular tissue greatly improves the realism of the
breast phantom.

Keywords: antropomorphic breast phantom, power-law noise.

1 Introduction

X-ray breast imaging is moving toward 3D. Breast tomosynthesis and computed
tomography clinical research prototypes have been developed, and, to date, a first
tomosynthesis unit has received FDA approval for use in breast cancer screening
and diagnosis. However, system optimization, both in terms of data acquisition
and reconstruction, still needs to be performed. Since cancer detection and diag-
nosis are primarily limited by the complex anatomic structure of fibroglandular
tissue in the breast, system optimization requires a realistic, anthropomorphic
phantom to ensure that the outcome of systems optimization translates to higher
quality images in clinical practice.

Several research groups have been developing statistically defined breast phan-
toms [2JT4]. Our previous work in phantom development has produced a realistic-
looking anthropomorphic breast phantom (Fig. ) [6]. However recent work
showed that breast structure is directional, and that it is oriented towards the
nipple [7]. The previous phantom lacked the directional property of actual breast

* Corresponding author.
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Fig. 1. Parallel projection of the original phantom, filled with isotropic power-law noise
and compressed. Pixel size is 0.5 mm.

tissue. Thus the purpose of this work was to model directional breast structure,
and to include this new tissue model into the phantom.

2 Method

2.1 Phantom Generation

The breast was modeled in two stages. First, the gross breast anatomy such as
the overall breast shape and Cooper’s ligaments were generated using Bakic’s
algorithm [I]. However, in this work, no dense tissue region is generated so that
this base phantom only consists of skin, adipose tissue, and Cooper’s ligaments.
In the second stage, compartments bounded by Cooper’s ligaments were filled
with binarized power-law noise to mimic fibroglandular tissue. Previously, the
noise had an isotropic power-spectrum, which produces noise that lacks any
directionality [6]. The projection image of such a phantom is shown in Fig.[Il In
this work, directionality was introduced by generating power-law noise with an
ellipsoidal power spectrum P(f),

Cl

(fTRTQ'Rf)5/2

where R is a matrices produced from three rotation matrices about the z and
z-axes, R = Ry;(y)R.(§)Rs(a), and «, 6, are Euler angles. The angles were
chosen such that the orientation of the noise field is towards the nipple. The
amount of directionality is determined by Q, a diagonal matrix with diagonal
elements ¢;; = h, where each element of h is the half-axis ratio of a spheroid. In
this work, power spectra had a prolate symmetry.

The directional power-law noise volume was generated through an inverse
Fourier transform of a complex volume with magnitude given by /P (f) and a
random phase.

P(f) =

(1)

2.2 Phantom Ensemble Parameters

For quantitative evaluation of the new phantom, 60 phantoms were generated
from 20 empty shells. Each shell contained 150 compartments, of which 50 were
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filled with binarized power-law noise. The glandular fraction of each filled com-
partment was sampled from a uniform distribution bounded by 0.05 and 0.3.
The amount of directionality was randomized by sampling the ellipsoid axis-
ratio from 1/f(a,b) where f is a beta distribution with @ = 5,b = 5. A cut-off
value was introduced to limit the axis-ratio to 4.0 or less.

Using the same 20 empty shells and random number generator seeds, another
set of 60 phantoms was generated where compartments were filled with isotropic
(i.e., non-directional) binarized power-law noise.

These phantoms were compressed, upsampled and parallel-projected to pro-
duce simulated mammograms with 100pum x 100um pixel size. Blur and noise
were added to the projections using a method originally proposed by Saunders
et al. [8]. The modulation transform function (MTF) and noise-power spectrum
(NPS) were those of a GE Essential mammography unit [5/6].

2.3 Quantitative Analysis

Power-law analysis was performed as described in [7]. Briefly, square regions-of-
interest (ROI) were extracted from the uniform thickness region of the simulated
mammograms and the periodogram was computed as the squared magitude of
the Fourier transform. A Hann window was used to prevent spectral leakage. The
spatial-frequency (f) dependence of the periodogram was assumed to follow a
power-law, P(f) = ¢/f? . Power-law parameters 3 and log(c) were estimated
from the periodogram assuming elliptic symmetry, and ellipse axis ratio and
orientation angle were estimated as well. This analysis is described in detail in
Ref. [7].

3 Results

Figure [2] shows slices through the directional phantom with h = [4,1,1]. All
breast structure is oriented towards the nipple, located at (x = 150,y = 150, z =
150). A parallel projection of this phantom, after it has been compressed, is
shown in Fig. Bl Note that the coordinates of the nipple changed due to the
compression. The orientation of the breast structure can be clearly observed in
the slices through the volume, as well as in the parallel projection.

The effect of the strength of the directionality, h, is shown in Fig. @ The
orientation can still be observed, but the directionality is weaker than in the
phantom shown in Fig. Bl

FigureBlshows regions of interested extracted from behind the nipple (top row),
or from the upper quadrant of the breast (bottom row). With respect to Figs. [I]
B [ the ROI centers were located at (x = 80,y = 190) and (z = 80,y = 310),
respectively. The texture in the ROIs from the original phantom is similar. In the
ROIs extracted from phantoms with directionality, there is a distinct difference in
the texture orientation in both ROIs, and the ROI location within the breast can
be inferred from the preferred direction of the simulated tissue.

Figure [fl shows the power-law parameters § and log(c) for the ensemble of
phantoms. For the isotropic and directional phantom, (< 8 >,08) = (-3.36,
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Fig. 2. Slices through the uncompressed phantom volume. For this phantom, h =
[4,1,1]. Voxel size is 0.5mm isotropic.
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Fig. 3. Parallel projection of the compressed directional phantom. For this phantom,
h = [4,1,1]. Pixel size is 0.5mm.

Fig. 4. Parallel projection of the directional phantom with h = [2.1, 1, 1]. Pixel size is
0.5mm.
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Fig. 5. Top row: ROIs extracted behind the nipple (centered on x=80, y=190 in Figs.[d]
BHE). Bottom row: ROIs extracted from the upper quadrant of the breast (centered
x=80, y=310 in Figs. [ BH). Left column: Original phantom, filled with isotropic
power-law noise. Center column: Phantom with directional power-law noise (h
[2.1,1,1]). Right column: Phantom with directional power-law noise (h = [4,1,1]).
ROI size is 6cm x 6em.
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Fig. 6. Power-law parameters B and log(c), estimated from 256x256 pixel ROIs
(2.56cmx2.56cm). Elliptic periodogram symmetry was assumed.

0.38) and (< log(c) >, O1og(c)) = (-3.38, 0.39), while for the directional phantom,
(< B>,08)=(-3.29,0.38) and (< log(c) >, Olog(c)) = (-3.4, 0.39). This is similar
to what is observed in clinical mammograms [7)3]. The correlation between 3 and
log(c) for the isotropic and directional phantom was 0.77 and 0.91, respectively.
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Fig. 7. Histograms of axis ratios and orientation angles. Orientation angles were in-
cluded in the histogram for ROIs with an axis ratio greater than 1.2 only.
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Figure [[ shows histograms of axis ratios and orientation angles for ROIs ex-
tracted from the simulated mammograms, for different ROI sizes (1282, 2562,
3842). The histogram of orientation angles includes only ROIs for which the axis
ratio in the periodogram was greater than 1.2 only, since an axis ratio of less
than 1.2 corresponds to a periodogram that is essentially spherically symmetric.
The average axis ratio decreases with decreasing ROI size, indicating that the
directionality occurs on a small scale, and becomes less prominent on a larger
scale. For all ROI sizes, the distribution of tissue structure orientation angles is
more uniform for the isotropic phantom than it is for the directional phantom.

Table [ lists the distribution parameters of the orientation angle for both
phantoms. The average orientation angle is about 20 deg for the directional
phantoms, indicating that on average, the tissue structure is pointing towards
the nipple. For the istropic phantoms, average orientation angle is smaller. Thus,
the average orientation for the directional phantom is more similar to what was
observed for actual mammograms [7].

However the width of the angular distribution is wider for the simulated mam-
mograms, compared to what was found for actual mammograms, and in addition,
no ROI-size dependence of the axis ratio was observed in clinical images [7].

Table 1. Distribution parameters of the orientation angle 6 for mammograms simu-
lated from isotropic and directional phantoms

ROIsize|< 6 > (iso)|og (iso)|< 6 > (dir)|og (dir)
128 3.17 51.15 14.4 44.3
256 9.05 49.5 20.6 37.1
384 10.54 47.8 26.4 29.4

4 Discussion

The use of a directional fibroglandular tissue model visually improves the real-
ism of the breast phantom. Quantitative comparison of power-law parameters
indicate that the directional phantom produces some features observed in real
mammograms, such as a preferred orientation towards the nipple, which is not
observed in isotropic phantoms. On the other hand, the width of the distribution
of orientation angles is larger than what is observed in real mammograms, and
the amount of directionality, as measured by the axis ratio, depends on the size
of ROIs that were analyzed. This may be due to the filling of individual com-
partments. In an actual breast, a given directionality may prevail throughout
the entire breast without being disrupted at compartment borders.

5 Conclusion

A phantom with a directional tissue model has been developed, which mimics the
orientation of small-scale tissue structure in clinical mammograms more closely.
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Power-law parameters of this new phantom are similar to those in phantoms
without directionality, and similar to what is observed in clinical images.

This phantom may be well suited for systems optimization in 3D breast imag-
ing. Future research will include phantom validation through observer studies.
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Abstract. A general case for simulation of partial volume (PV) averaging in
software breast phantoms is presented. PV simulation could improve the quali-
ty of phantom images by reducing quantization artifacts near borders between
different materials. The validity of phantom studies depends on the realism of
simulated images, which is affected by the size of phantom voxels. Large vox-
els may cause notable quantization artifacts; small voxels, however, extend the
generation time and increase the memory requirements. An improvement in
image quality without reducing voxel size is achievable by the simulation of PV
averaging in voxels containing more than one simulated tissue type; the linear
x-ray attenuation coefficient of such voxels is represented by a combination of
attenuation coefficients proportional to voxel subvolumes occupied by different
tissues. In this paper, we present results of simulated PV in the general case of
voxels containing up to three materials.

Keywords: Digital mammography, computer breast phantom, partial volume
simulation, computational geometry.

1 Introduction

This study is motivated by the desire to improve the quality of synthetic images gen-
erated using software breast phantoms. The partial volume (PV) averaging can help
reduce the quantization artifacts on boundaries of regions with different simulated
materials. The software phantoms in this study have been generated based upon the
recursive partitioning of the phantom volume using octrees [1]. In this paper, we pro-
pose a solution for a general PV case with up to three simulated materials in a voxel.
This work represents the first PV simulation in software phantoms generated based
upon the rules for simulating anatomical structures [1-4]. PV simulation has been
indirectly reported in a method for generating phantoms based upon the CT images of
mastectomy specimen [5]. In that method, the values of each reconstructed breast CT
image voxel were scaled and interpreted as the percentage of adipose breast tissue in
the voxel.

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 149 2012.
© Springer-Verlag Berlin Heidelberg 2012
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In this paper, we present an overview of the PV simulation method including de-
tails of a planar approximation and the PV computation. The improvement of image
quality is qualitatively validated. The results are shown in the form of slices and si-
mulated X-ray projections of phantoms with and without PV.

2 Method

The effective linear x-ray attenuation in a voxel which contains more than one simu-
lated material can be calculated as:
vi

x100% )
V]

1
Hy zmziﬂi|vi|:ziluipi; pi =

where |V] is the voxel volume, |Vl is the subvolume of material i with the linear x-ray
attenuation 4;, and p; is the percentage of the material i in the voxel (Fig. 1a). One can
distinguish the following cases of PV (Fig 1b):
A. Two materials with one bounding surface: (1) Skin and air; (2) Cooper’s li-
gament and adipose tissue; (3) Ligament and fibroglandular dense tissue; (4)
Skin and dense tissue; (5) Skin and adipose tissue, and (6) Skin and Cooper’s
ligament;
B. Three materials with two bounding surfaces: (7) Skin, ligament, and dense
tissue; and (8) Skin, ligament, and adipose tissue

Adipose
Adipose
. Ligament
| Adipose
Voxel, V
Ligament
4
Adipose *
|V-V| Adipose
Adipose
(@) (b)

Fig. 1. (a) The concept of PV simulation; V denotes the voxel volume and V; is the sub-volume
occupied by dense tissue.(b) Different cases of material combination in a voxel.
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The simulation of PV case (1) has been reported previously [6]; it can be easily ex-
tended to cases (2)-(6). In this abstract we present a general case of PV simulation
based upon the planar approximation of up to two bounding surfaces in a voxel, ad-
dressing cases (7)-(8).

The planar approximation for the boundary between Cooper’s ligaments and adi-
pose tissue, as simulated in our software breast phantom [1], can be obtained as fol-
lows. Adipose compartments C; and C;, which may be given by shape functions f; and
J;» determine a Cooper’s ligament between them as the locus of points within a dis-
tance of D/2 from a surface F;(x)= fi(x)- fi(x), see Fig. 2. Consider a voxel V with
center X.. We define a planar approximation 7; of the boundary between the Cooper’s
ligament and the compartment C; as

7 :(X_Xl)'Sign(Ey' (XC ))VE'J'(XC):O’ 2
where
Fix) | VA )
e 97, )

X, =X, +sign(Ej (x,)] D/2- (3)

Fi(x) increases ;’ n Compartment Cj

7/ (fattissue)

Voxel V '/VF,.,(x) |x=xc (F(x)>0)

? -------
‘DI2
Fix)=ff=0 s

Compartment C;
(fat tissue)

Coopers
Ligament (dense tissue)

Fig. 2. Planar approximation of a boundary between Cooper’s ligament and a compartment

In a general PV case with three simulated materials and two bounding surfaces in a
voxel, we can construct a planar approximation for each bounding surface (Fig. 3).

The result of the approximation are planes 7T (x—xl)ﬁ1 =0 and

7Ty i (x— xz)ﬁ1 = 0. The partial volumes IVl of interest are subsequently calculated

as the volume of a portion of the voxel V (with center x.) that is bellow/above the
planes. For example, the PV V; corresponding to the fat tissue in Figure 4 is computed
as a volume of a part of the voxel that is both above planes m; and m,.
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The PV V; in a voxel shown in Fig. 3 has been computed using planar approxima-
tions as follows. Consider a voxel of linear size Ax, with a vertex v located above
planes ; and 7, (If no such vertex exists, the PV should be zero).

Voxel V

Vi Fat tissue

n; T

Skin

Ligament-fat

boundary

[

/ | /Skin Cooper’s ligament
/ boundary

Fig. 3. A voxel containing skin, Cooper’s ligament and fat tissue and planar approximations 1,
and T, of the tissue boundaries

The divergence (or Gauss-Ostrogradsky) theorem [7] is employed to compute the
partial volume |V} of the voxel above planes m; and m,, where the volume V; is
bounded by planes 7, and 7, and at most 6 sides of the voxel. The divergence theorem
can be described as the following integral equation:

my (V-F)dV :ﬁS(F-n)dS. )

The left side is a volume integral over the partial volume V; of voxel, the right side is
the surface integral over the boundary of the volume V;, and n is the outward pointing
unit normal vector of the boundary.

After the appropriate choice of the vector field function inside the integral at left
side, i.e., F(X) = X, the whole quantity at the left side becomes 31V/l, and the right side
can be rewritten as:

(Sl + S2 + S3)AX+ Aﬂ'ldl + Aﬂzdz, ®))

where S;, i=1,3 are surface areas of the boundary formed by the voxel sides ¢, ,6, and
O3, that do not contain the vertex v; A, and A, are surface areas of the boundary of
Vi belonging to planes 7, and 7.
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Subsequently, the PV can be calculated as:

(S + S, +SOAx+ A d +A,Ld,
3 ,

Vi

(6)

where d, =(v—x/)n,,and d, =(v—Xx,)h, are distances of the vertex v to planes 7,

and T,.

Voxel V

S2

Fig. 4. Partial volume V; of the voxel V above planes m; and 7, and containing vertex v. S, S,
and S;(here S;=0) are surface areas of parts of the volume boundary belonging to voxel sides
G}, G, and o3 that do not contain the vertex v.

3 Results and Discussion

Fig. 5 illustrates the PV simulation in a 450ml software breast phantom with 400um
voxels. Shown is the segmentation of phantom detail into air and voxels containing
one, two or three materials. For the corresponding phantom detail, shown also are the
equivalent linear x-ray attenuations, and percentages of ligament tissue and skin tissue.

Fig. 5 suggests that the PV simulation on the ligaments-fat boundary was qualita-
tively correct. The voxels containing two materials are detected at the boundaries of
two materials (e.g., skin, compartment). Similarly, the three material voxels are de-
tected where the skin meets Cooper’s ligaments and a compartment. Fig. 5b indicates
that the PV helped smooth the appearance of boundaries between regions with differ-
ent x-ray attenuations. The computed percentages of ligament and skin tissues in a
voxel (Figs. 5c, 5d) suggest the correctness of the applied algorithm. The voxels in
the interior of skin/ligaments contain 100% of the corresponding tissues, while the
percentages gradually decrease at the boundaries.
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Fig. 5. Detail of a 450ml phantom with 400um voxel size: (a) Segmentation of a phantom into
air and voxels containing one (light gray), two (dark gray) or three (black) materials; (b) Simu-
lated linear attenuation coefficients of voxels in (a) (in cm™, assuming monoenergetic x-ray
beam at 20 keV); and percentage of (c) ligament tissue and (d) skin tissue in voxels from (a).
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Fig. 6 shows simulated x-ray projections of phantoms with and without simulated
PV. The simulated acquisition assumed a monoenergetic x-ray beam (at 20 keV) and
parallel x-ray propagation, without scatter or quantum noise. The projections corres-
pond to three phantoms with identical distributions of compartments: the phantom
with 400um voxels and no PV (Fig. 6a); the 400um phantom with simulated PV (Fig.
6b); and the phantom with 200um voxels and no PV (Fig. 6¢). Shown also is the
difference between the projections with and without simulated PV (Fig. 6d).

In a projection of the phantom with PV in Fig. 6b, the skin and Cooper’s ligaments
appear thinner (as compared to the phantom without PV, Fig. 6a). We believe this is
caused by the reduction in the effective x-ray attenuations of voxels on the liga-
ment/adipose tissue boundaries, which are lower than the x-ray attenuation of dense
tissue (see Fig. 5b). Further, the characteristic stair-step quantization artifacts on
tissue boundaries were noticeably reduced with simulated PV, as seen in the differ-
ence between PV and non PV projections (Fig 6d). Comparison of Figs. 6b and 6¢
indicates similar appearance of a phantom with PV simulated at a lower resolution
(400pum) to a phantom simulated at a higher resolution (200pum) with no simulated
PV. Hence, the application of PV may lead to an improvement in image quality with-
out reducing voxel size.
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Fig. 6. Simulated projections of (a) a phantom with 400pm voxels and no PV; (b) the phantom
from (a) with simulated PV; and (c) the same phantom generated at 200 pm voxels and no PV.
(d) The difference between (a) and (b); the image contrast was enhanced for display purposes.

4 Conclusion

We have developed and qualitatively assessed a method for PV simulation of phan-
tom voxels containing up to three simulated materials. The percentage of simulated
tissues was estimated based upon the use of the Gauss-Ostrogradsky theorem. Cross-
section and projections of phantoms with and without PV simulation were visually
compared. PV simulation can improve the quality of phantom images by reducing the
quantization artifacts caused by large voxel sizes.
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Abstract. Increasing sensitivity by reducing the ring diameter of breast PET
system may degrade image performance at field of view periphery. In this
work, the authors present a framework for computing and incorporating an ac-
curate system model of breast PET utilizing GATE Monte Carlo simulation to
compensate for this performance degradation. The system matrix (SM) genera-
tion count statistics was maximized by taking into account the geometric sym-
metry of the scanner. The SM was incorporated into MLEM reconstruction and
compared with the Siddon ray-tracing algorithm to evaluate point source resolu-
tion and contrast recovery coefficient (CRC) of hot spheres at various radial
locations. Both spatial resolution and CRC using SM based MLEM was ap-
proximately position invariant, whereas the CRC and spatial resolution with
Siddon based MLEM was substantially lower for locations near the periphery of
the FOV. The CRC vs noise tradeoff was markedly better with the SM based
MLEM.

Keywords: System matrix, MLEM Reconstruction, Breast PET.

1 Introduction

Over the past several years it has become clear that PET imaging with fluoro-
deoxyglucose (FDG) can play an important role in the detection and diagnosis of
breast cancer. Many encouraging studies using whole-body PET systems to image
breast cancer have been reported [1], however, it is now evident that smaller PET
systems dedicated to imaging the breast have substantial advantages. A number of
different dedicated breast PET systems have been proposed and developed [2-4]. To
improve count statistics for dedicated breast PET, it is desirable to have high sensitivi-
ty. Improved sensitivity can also allow for reduced radiation dose to the patient, as
well as minimizing acquisition time. Scanner designs that maximize geometric effi-
ciency by placing the PET detectors close to the breast are therefore appealing. In a
ring PET geometry, this means using a small bore designed to have a diameter just
larger than the maximum diameter breast size to be imaged. In addition to high sensi-
tivity, another desired goal of breast PET systems is high resolution, necessary for

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 157-[164] 2012.
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accurate detection of sub-cm lesions. PET spatial resolution is degraded by various
detector and radiotracer properties.

In this work, we utilized GATE Monte Carlo simulation software for estimating
system matrix (SM) to address these degradation factors in MLEM reconstruction.
Symmetry of the ring PET geometry is taken advantage of by using polar voxels to
represent the object to be reconstructed. This results in a block-circulant SM where
only one block column needs to be stored in memory. In addition, since the SM is
sparse, only non-zero values are stored. This SM is then used with an iterative MLEM
algorithm using data stored in LOR histograms [5]. For efficient implementation, the
projector and backprojector operations used a rotator to take advantage of the polar
voxel object representation.

2 Method

2.1  System Modeling

For this study, a hypothetical breast PET system is modeled, using a full ring geome-
try encompassing the breast with detector coverage of 360 degrees. The scanner is
based on 12 detector modules with each module consisting of 32 x 96 LYSO crystals
of size 2 x 2 x 20 mm. Therefore, there are 96 rings in the scanner, with a ring defined
as one crystal in the axial direction. In this study, we consider 2D reconstruction,
where the system matrix probabilities only describe lines-of-response (LOR) that fall
within the same ring.

By geometrically limiting the acceptable LORs to those that connect a crystal with-
in a module to its’ opposite seven modules based on maximal breast size of 18cm
obtained from analyzing 23 patients breast CT images in our laboratory, there are 384
x 224 = 86016 possible LORs (this geometric constraint would allow for complete
coverage of a 16.6 diameter breast). One-half of these LORs are redundant; therefore
there are 43008 possible non-redundant LORs. If the 2D reconstruction matrix is
defined as 200 x 200 with 1 mm voxels, then the SM will have 43008 x 200 x 200 =
1.72 x 10° elements. By using a polar voxel representation of the object, the system
matrix becomes block-circulant. This means that all elements of the SM can be ob-
tained from only one block column, thereby reducing storage by a factor of 12. This
one block column represents the probabilities for LORs connecting one detector mod-
ule to its opposite seven modules.

2.2  GATE Setup

The Monte Carlo simulation software package GATE [6] has been widely used to
simulate PET acquisition. It can track photon interactions both through the object and
within the detector including crystal penetration and scatter. In this work GATE has
been used to estimate system matrix elements. The system matrix elements represent
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the probability of an emission at object voxel j being detected by a specific detector
pair (LOR) i. These probabilities model the physics of photon transport within the
detector, but not object interactions such as photon attenuation and scatter in the ob-
ject. To compute the SM probability, a cylindrical activity source in air, (diameter of
18 cm - large enough to cover all possible expected object locations) is simulated
using the above mentioned breast PET model. GATE allows objects to be simulated
in air by using the option of back-to-back photon emission (i.e., without actually
modeling positron emission). Thus positron range is not modeled in the system ma-
trix.

2.3 Calculation Efficiency

As mentioned previously, probabilities for 1.72 x 10’ elements in the SM need to be
calculated for complete coverage of a 16.6 cm PET FOV. However, most of these
probabilities are zero, thereby making the system matrix highly sparse. In other
words, for each emission point in the object only a relatively small number of LORs
can be feasibly measured. To utilize the sparseness of the SM, and thereby reduce
computational burden and storage space, a linked-list LOR data structure was used.
This data structure stores probabilities for only non-zero SM elements. Utilizing this
linked list data format allowed for reducing the storage space by more than 99%
(from 1.72 x 10°to 1.42 x 107). To further reduce storage space, a polar voxel basis
function is utilized to represent the object (Fig. 1), thereby causing system matrix to
be block-circulant. This means that there is substantial redundancy in the system ma-
trix, and only elements describing the LOR probabilities from one module need to be
computed and stored (these probabilities make up one block column of the system
matrix).

2.4  Estimating Probabilities for the System Matrix

In forming the system matrix, simulated events producing LORs in a single module
(module 0) were obtained by rotating the simulated LORs measured in other modules
in such a way that one end of the LOR always resided in module 0 (Fig. 2). Upon
completion of assigning all LORs in the event list, the SM probabilities represented
the probability for a photon emitted from voxel j and detected at LOR i in module 0
(post-rotation). However, the desired SM element values were the probability of a
photon emitted from voxel j and detected at LOR i in any module (not just module 0),
i.e. before rotating all LORs to module O (pre-rotation). Thus an adjustment was
implemented by using the following expression,

Counts detected in LOR i from voxel j post — rotation

L,j)= - - -
p@.j) Counts emitted from voxel j post — rotation

Counts to Module 0 from voxel j pre — rotation

Total counts from voxel j pre — rotation

ey
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Fig. 1. The polar voxel comprises of concentric rings of equal radial dimension with each of the
ring divided into number of angular subsectors corresponding to scalar multiple of number of
crystals in transaxial orientation. The number of angular subsectors increases as concentric
rings is farther away from center.

MODULE 0
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B

Fig. 2. LORs originating at modules other than ‘0’ (example LOR 1 in figure) are rotated to
module 0 (new LOR 1°) utilizing rotational symmetry of the cylindrical scanner to improve
statistics. LORs originally from module O (LOR 2) are not rotated.

2.5 Reconstruction Method

Reconstruction is performed using the MLEM algorithm. The measured data were
binned into LOR histogram format prior to implementing reconstruction, where any
LOR bins with zero events were not stored. The back projection matrix is calculated
once for a unique LOR voxel pair instead of multiple times for each LOR voxel pair
thus reducing computational burden by reducing the number of times the forward
projection matrix is required to be calculated for a LOR.
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where m is the iteration number, Kl-mis the intensity in voxel j at iteration m, py;is p (de-
tected in LOR i | emitted in voxel j), N’ is the number of distinct LORs, ]'is the total
number of voxels lying in LOR i, ny is the number of events detected in LOR i, .

2.6 Performance Evaluation

To evaluate the tomographic spatial resolution performance of reconstruction algo-
rithms at various locations in reconstruction space (Fig. 3, left), a comparison of the
resolution of reconstructed point sources at various FOV locations was performed for
SM based reconstruction and Siddon line-integral based reconstruction [7]. Point
sources were simulated at radial offsets of 0, 15, 25, 35, 45, 55 and 65 mm from the
center in both the x and y directions (Fig. 3, left). Resolution of point sources were
estimated by fitting the 2D count profile in a region surrounding the point source (10
mmx10 mm ROI with point source at the center) by a 2D Gaussian to obtain the
FWHMs of the Gaussian fit.

In order to evaluate the contrast performance of spheres located in various loca-
tions as a function of noise, contrast recovery of spheres was compared with respect
to background noise at various radial locations. Signal to background activity concen-
tration was 8:1 and a 1 minute acquisition was simulated. Three spheres of § mm
diameter located at 2, 4 and 6 cm from the center of the PET FOV are included for
analysis (Fig. 3, right). In order to estimate signal counts, a region of interest (ROI)
was drawn over the sphere. For the background, a ROI of same size was drawn di-
agonally opposite to the sphere (Fig. 3, right). The contrast recovery coefficient
(CRC) and noise were estimated based on equations 3 and 4. Quantitative comparison
of CRC as a function of noise was performed for SM based and Siddon line-integral
based MLEM reconstruction at 10, 20, 30, 40, 60, 80 iterations.

CRC(%) = gx 100 , 3)
Noise(%) = %B x 100 , )
where S represents the mean counts in a sphere, B represents the mean counts in the

background and o is the standard deviation of background counts.
l4cm
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—_—t 17cm 17¢cm
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Fig. 3. Left: Point source locations for resolution phantom, Right: Modeled sphere and back-
ground locations and dimension for contrast evaluation
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3 Results
3.1 Resolution Performance

The tomographic resolution of point sources as a function of x-axis and y-axis loca-
tions are shown in Fig. 4, left and right respectively. The figure illustrates overall
improved resolution by the SM based MLEM method as compared to the Siddon [7]
line-integral approach due to better modeling of detector response at the FOV peri-
phery. Improvement in resolution increased as a function of distance offset from the
center of the FOV with the smallest improvement at 15 mm (1.5 times) and the largest
improvement at 65 mm (3 times) from center.

Resolution of point source with respect to x-axis locations

Resolution of point source with respect to y-axis locations

6 6
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Fig. 4. Comparison of resolution of point source as function of location offset from FOV center
for x-axis (left) and Y-axis (right) locations

CRC vs Noise
L L L L L
8 w ° A IN
.0 a  °
|}
61 A [ ] u
s
v L]
o e
&
4 B a
N 5] a
% g ® 2cm (SM-MLEM)
B ©  4om (SM-MLEM)
2 v 6ocm (SM-MLEM)
& A 2cm (Siddon)
B 4cm (Siddon)
@ 6cm (Siddon)
0 10 20 30 40 50 60
Noise (%)

Fig. 5. CRC vs. noise for spheres at various locations from center of PET FOV (given in le-
gend) from Siddon line-integral based MLEM and system matrix based MLEM reconstruction
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3.2 Contrast Performance

For SM based MLEM reconstruction, the CRC of hot spheres (8:1) is independent of
location (from the center of FOV) while location has a strong impact on CRC values
for sphere reconstruction obtained with Siddon’s line-integral technique (Fig. 5). The
CRC value improved by a factor of 2 and 1.3 for spheres located at 4cm and 6¢cm
respectively from the center for SM based MLEM compared to Siddon line-integral
based MLEM. CRC values were similar from both techniques for sphere near to the
center. Moreover, the SM based technique demonstrates reduced noise level com-
pared to Siddon based MLEM reconstruction (Fig. 5) due to more accurate modeling
of the detector physics.

4 Discussion

A novel technique for estimating the system transfer matrix using Monte Carlo simu-
lation software that allows for modeling of photon interaction within the detector in
MLEM reconstruction, unlike Siddon ray-tracing technique which estimates SM
based on simple ray-tracing in image space, is presented. The technique improves
various parameters of image quality such as resolution, contrast and noise as com-
pared to that obtained using MLEM with Siddon ray tracing to model the system
matrix.

The main advantage of utilizing SM based reconstruction was increased resolution
by reducing noise particularly in FOV periphery. A similar reduction of noise in the
sphere contrast estimate was previously observed with SM based reconstruction tech-
niques [8]. One reason for the reduced noise may be due to accurate modeling of the
detector response producing reduced mis-positioning of counts in reconstruction
space. Reduced noise may allow for reduced dose to the patient.

5 Conclusions

Quantitative and qualitative evaluation illustrated the improved contrast and resolu-
tion performance of SM based MLEM reconstruction compared to Siddon line-
integral based MLEM reconstruction. The technique promises to reduce reconstruc-
tion distortion at FOV periphery for smaller bore PET systems by improved modeling
of the PET system response.
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Abstract. The performance of contact spot imaging on a scanning photon-
counting system was evaluated and compared to conventional geometric magni-
fication imaging for the assessment of screen-detected lesions. Three digital
mammography systems were compared in terms of image quality and dose;
Philips MDM, Hologic Selenia, GE Essential. Assessment imaging is per-
formed on the scanning system in contact mode by reducing the scan width in
combination with increased radiation exposure. Imaging optimisation was per-
formed prior to comparative evaluation as preliminary studies established that
the current performance of conventional magnification imaging was poorly op-
timised. Each system was investigated in terms of its ability to image simulated
masses and mircrocalcifications using breast-tissue equivalent phantoms. Con-
trast-to-Noise Ratio and Average Glandular Dose were measured according to
the EUREF guidelines and a Performance Index was formulated to facilitate
comparison of the three systems. The scanning system performed at least com-
parably to conventional geometric magnification and offers workflow advan-
tages.

Keywords: Digital Mammography, Breast Imaging, Magnification, Photon-
Counting, Image Quality, Image Optimisation.

1 Introduction

Conventionally, assessment of screen-detected lesions has utilised geometric magnifi-
cation imaging. A magnification platform positions the breast closer to the x-ray
source while the image receptor remains at a fixed distance. The inherent geometry of
the scanning photon counting system renders this method of acquiring magnification
views impossible. As a result users have been cautious to use the photon counting
systems for assessment views. The purpose of this study was to investigate the effi-
cacy of the photon counting systems for further investigation of screen-detected le-
sions as compared to standard geometric magnification.

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 165-[[72] 2012.
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2 Method

Three different Full Field Digital Mammography (FFDM) systems were examined in
this study; Philips MDM (Philips, Solna, Sweden) employing a W anode and an Al
filter; Hologic Selenia (Hologic Bedford, MA, USA) which uses a W anode and a Rh
or Ag filter; GE Seno Essential (GE Medical Systems, Buc, France) utilising a choice
of Mo or Rh target and filter.

The study investigated the performance of each system in terms of dose and con-
trast for the detection of both masses and microcalcifications. CIRS (Norfolk, VA,
USA) phantoms of breast equivalent material with a range of thickness and composi-
tion (glandular/adipose), 4cm (50/50), Scm (30/70) and 6¢cm (20/80) were imaged.
Each CIRS phantom contains a detail of 100% glandularity which was used to simu-
late a tumour mass. An Al square of 0.2mm thickness embedded in PMMA was used
to simulate mircocalcifications as advocated by Zanca [1].

Conventional geometric magnification imaging is performed using a magnification
table to position the breast closer to the x-ray source while the image receptor remains
at a fixed distance. Table 1 below details the altered geometry for each magnification
setup examined in this study. Use of the small focal spot is necessary for geometric
magnification. In magnification geometry, an anti-scatter grid is not required since
the increased air gap acts to reject scatter. The irradiated volume of the breast is
smaller in magnification imaging as the x-ray beam is collimated to the specific area
of interest. An area factor is applied to the Dance dose calculation to account for the
fraction of the breast that is exposed [2]. For the Hologic and GE systems investi-
gated, magnification factor of 1.8 and focal spot size of 0.1mm were used.

Table 1. Comparison of geometry in standard contact mode compared to MAG mode

Focus to Breast Distance [cm]

Philips Hologic GE
STD DS STD MAG STD MAG
4cm Breast 60 60 60 35 59.5 33.8
Scm Breast 59 59 59 34 58.5 32.8
6¢cm Breast 58 58 58 33 57.5 31.8

When using the Philips MDM in Diagnostic Scan (DS) mode, the active image re-
ception area is reduced to approximately half width which provides coverage of the
spot compression area and some additional coverage for the purpose of orientation.
The collimator movement is limited corresponding to the reduced X-ray field, as seen
in Figures 1 and 2 below. Exposure parameters in Diagnostic Scan mode are deter-
mined from the breast thickness measured under compression. The Diagnostic Scan
function takes effect when the spot compression paddle is selected. This allows it to
be used in the normal workflow for spot compression imaging without altering the
modality setup. Diagnostic Scan images are displayed with a preset zoom on the spot
compression area.
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4

Fig. 1. Diagnostic Scan Image Receptor Area Fig. 2. Limited Collimation

Images of all phantoms were produced in manual mode using a range of peak tube
voltages from 24kV to 36kV at intervals of 2kV. The current time product (mAs)
values were chosen in order to obtain a constant pixel value (PV) level in a reference
zone of each image. This reference zone is labelled background in Figures 3 and 4.

The Contrast to Noise Ratio (CNR) was calculated according to the method of the
European guidelines for quality assurance in mammography screening (EUREF) [3].

PV (sig)— PV (bgd)

\/ SD(sig)> + SD(bgd )’
2

CNR = ey

Background

Fig. 3. CIRS Phantom — tumour simulation  Fig. 4. Al embedded in PMMA - microcalcifi-
cation simulation
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For each exposure setting, half value layer (HVL) and entrance surface air kerma
(ESAK) were measured and the corresponding Average Glandular Dose (AGD) was
calculated according to the method of Dance [2].

Overall performance results were obtained by combining the image characteristics
for different exposure factor choices with corresponding AGD results. A Perform-
ance Index (PI) typically used for optimisation studies of digital systems was calcu-
lated for all imaging conditions examined.

CNR"
= 2
AGD

A value of n=2 is typically used for optimisation of screening mammography [4].
Since this study concentrates on secondary diagnostic procedures, a value of n=4 was
used to allow additional weight to the increased importance of image quality relative
to dose for the follow-up assessment imaging of screen-detected lesions. This method
was suggested previously by Koutalonis [5]. Increasing the value of the exponent (n)
in Equation 2 amplifies the difference between the systems based predominantly on
their imaging ability.

Koutalonis has also recommended normalisation of the PI in order to better cross
compare data between systems. As a result of this normalisation, the PI should have a
value of 1 for the ideal spectral imaging conditions.

PI

CNR " norm
PI =
norm AGDnUrm (3)
where;
CNR,,,. = ﬂ ie. CNR normalised to maximum
CNnys_high
and;
AGD
AGD,  =——— ie. AGD normalised to minimum
A GDsys _low
3 Results

Optimum exposure factors (Opt) were determined for each system using the method
described above and these were compared to the standard automatic exposure control
(AEC) factors in terms of normalised PI. The results of this comparison are shown in
Figures 5 and 6, including 10% variation. Where a PI increase of more than 10% was
observed, the optimisation was judged to be successful. Where the PI increase was
less than 10%, the system AEC was considered to be well optimised.
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Fig. 5. Normalised PI for each system under AEC & using optimised factors for mass detection
(bars indicate 10% variation)
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(n=4)

Pl_norm
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Fig. 6. Normalised PI for each system under AEC & using optimised factors for microcalcifica-
tion detection (bars indicate 10% variation)

Once the optimum factors were determined for each system, for each breast type
and for each detection task, the three systems were compared in terms of normalised
PI. Where the system AEC yielded the best PI, these factors were then used for fur-
ther analysis. These results are shown in Figures 7 and 8.
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Fig. 7. Normalised PI for all systems at each breast thickness for mass detection
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Fig. 8. Normalised PI for all systems at each breast thickness for [Lcalcification detection

4 Discussion

The results demonstrate that for the detection of masses, all systems in the study were
well optimised with the exception of larger breasts on the GE system.

For investigation of microcalcifications, there was improved detection through use
of our suggested factors for all imaging conditions considered. The benefits of our
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optimisation scheme for imaging microcalcifications were most significant for smaller
breasts on the Philips system and for larger breasts on the GE system.

The optimum choice of factors for detection of masses was not the same as that for
microcalcification detection.

The Philips system was optimal for detection of a mass in a smaller breast, while
the GE system was the optimal choice for detection of a mass in a larger breast. All
systems performed comparably for mass detection in an average size breast.

Regardless of breast size and composition, the Philips system performed optimally
for microcalcification detection. It also offers inherent workflow advantages since
modality setup was not altered for Diagnostic Scan views. All three systems demon-
strated comparable results for microcalcification detection at larger breast sizes.

In the past it has been reported that geometric magnification mammography pro-
duced better spatial resolution and signal-to-noise ratio performance than contact
mammography [6-9]. As a result, users have been reluctant to select the Philips sys-
tem as it does not utilise the traditional magnification geometry. However a study by
Kim et al. in 2010 illustrated that using zoom could yield similar radiologist results in
the diagnosis of micorcalcifications as compared to those from geometric magnifica-
tion images [10]. The conclusions of our study have validated the effectiveness of the
Philips system for magnification mammography.

Previous work by Koutalonis [5], based on a Monte Carlo study of CNR and AGD
in magnification mammography, outlined a simulation method for optimisation of
magnification setup and comparison of same. We have applied a similar method in
this experimental scenario.

In our screening programme, women are randomly assigned to a mammography
machine at time of imaging - there is no preferential selection by system type. Follow-
ing the practical application of the Koutalonis method, we have derived a set of guide-
lines for users, to recommend the best choice of system for further imaging, based on
breast size and individual symptoms. Our results suggest that some selection prefer-
ence may be advantageous for the acquisition of magnification mammographic views
at assessment.

This study has also demonstrated that some systems might benefit from an alterna-
tive AEC setup in line with the optimal factors proposed here. However, it is noted
that because the same factors are not optimum for the detection of masses and calcifi-
cations, a decision would have to be made allowing the AEC setup to favour detection
criteria for the imaging task. We suggest that the AEC setup be amended to favour
calcification detection since this is most typically the purpose of magnification views
at assessment [6-9].

This study has shown that the scanning system performs comparably or better than
conventional geometric magnification for the detection of masses and mircrocalcifica-
tions, for the range of breast sizes and compositions examined in this study, with the
exception of mass detection in the larger breast, where the GE conventional geometric
magnification yields a superior result.
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Abstract. Our aim is to compare two mammograms (left-right, temporal) in an
unsupervised manner. To this end, we propose a novel region matching
algorithm (RMA) for mammograms based upon the non-emergence and non-
enhancement of maxima and the causality principle of integral invariant scale
space (in a limited sense). The algorithm has several advantages over
commonly used methods for comparing segmented regions as shapes. First, it
gives improved key-points alignment for optimal shape correspondence.
Second, it identifies new growths and complete/partial occlusion in
corresponding regions by dividing the segmented region into sub-regions based
upon the extrema that persist over all scales. Third, the algorithm does not
depend upon the spatial locations of mammographic features and eliminates the
need for registration to identify salient changes over time. Finally, the algorithm
is fast to compute and requires no human intervention.

Keywords: CAD, breast cancer, temporal study, shape analysis, region
matching, integral invariants.

1 Background

The analysis of two or more mammograms in order to detect anomalies by way of
clinically significant changes is a key problem in digital mammography. However,
even when the two mammograms are of the same patient, the breasts may vary in size
and in the way in which they are imaged. However, the internal structure is generally
quite similar. Of the three pairwise comparisons most commonly made (L-R, CC-
MLO, temporal), we are initially most interested in the temporal study of
mammograms, since it is not only important for the detection of cancers but is also
used increasingly for post-treatment care. It provides a quantitative measure of how a
certain region in the breast may have evolved over time. This paper addresses
temporal comparison of mammograms by employing integral invariants, in particular
exploiting its scale space, for local (sub-) region matching in segmented masses. The
temporal mammograms in this study are first segmented, and then the resulting
regions are matched by performing shape matching. Efforts previously been made to
compare two shapes regionally, for example registration techniques [6, 7]. However
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in most studies this phenomenon is dependent on the ‘shape space’ that requires a set
of training data before we can do actual comparisons [5]. The best matching shapes
are then divided into local /sub -regions and RMA is applied for local region
matching.

Temporal images are used by the radiologist to reduce the number of false
positives and corresponding suspicious lesions over time and to detect possible
masses. However, changes in the breast density, positioning, and the growth and
development of lesions, together with the intrinsically projective nature of
mammography, mean that establishing temporal correspondences remains a
challenging task. Most published algorithms use rigid or non-rigid registration to
compare images, and they typically yield a dense warp map, establishing
correspondences for all pixels in the mammograms. However, the appearance of a
mammogram can change markedly with small changes in compression, with small
changes in the imaging parameters, and any rotation of the breast prior to
compression. For example, such small changes can change the textural properties of
stromal tissue. Fortunately, most such changes are clinically irrelevant. Rather,
correspondences are only relevant for regions of interest, typically locally dense
regions that may (or happily, may not) be lesions. (We accept that this does not
extend completely to architectural distortions; but they are a separate problem that
requires a measure of (a) symmetry). That case will be addressed subsequently.

The temporal pairs mammograms that are used in this study were made available
to us by Matakina Technologies. We begin by applying a hierarchical algorithm based
on iso-contours [1] to segment the breast into regions that are considered to be
significant. The first reason for using this algorithm is that it is computationally very
efficient, and indeed it can be the basis of a real time system, even without resorting
to a GPU implementation. The algorithm segments the complete internal topography
of the breast in a structured way that can subsequently be used to establish
correspondences between mammograms. The shapes of the regions of interest are
defined on iso-levels that give a notion of pattern and texture change in a limited
sense. This is important because, in this study, image segmentation relies on the fact
that pixels inside a suspected mass have different physiology than pixels in the other
parts of the breast. The algorithm has worked well on the dozens of mammograms
we have processed to date. An example of the segmentation of nested regions is
shown in Figure 3 while the initial alignment of those regions is demonstrated in
Figure 2.

We refer to each of the regions segmented in this way as a shape. Mathematically,
a shape is considered to be a single closed contour that describes a solitary entity. To
compare two shapes that are slightly different from each other and which may be
rotated relative to each other, it is important to align them irrespective of their size
and location. The algorithm that we have developed does this by using multi-scale
integral invariants to describe them, as described in [4] and to align the two shapes
before supplementary correspondences are established. Depending upon the sizes of
the two shapes, it select various integration kernel scales for different regions
segmented within a breast, thus keeping a certain relation between the number of
regions within each shape.
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2 Method

2.1  Integral Invariants

The core idea underlying our method is the use of circular Integral Invariants, then to
take advantage of the associated scale space. Hong [2] defines the circular area
integral invariants by considering a disc B, (p) of radius r applied to every point p of
a closed contour C, the characteristic function is then given by,

X(Br(p), €) (x) = {1 ifoxoet{hBerr(\f/)isQ E

Where C is the interior of the curve C. The local integral area I,(C) of the curve C is
given by the function .(p) at every point p € C with integral kernel y as follows:

() = fg 2B, (), C) (W)dx

Where Q is the domain of the curve C. Two examples are shown in Figure 1. Figure
la is a simple rectangle, showing that points of high curvature (typically detected by
differential operators) can be found effectively, and without noise sensitivity, using
integral invariants. Figure 1c is the automatically segmented outline of a lesion and
Figure 1d is its integral invariant signature at one particular scale.

3 8 8 ¢ 8 8

L W me ®o M0 0 &0 70 &0 8

a b C d

Fig. 1. a) and c) are two examples of closed polygons with integration kernels imposed on
them and highlighting the integration area in red, b) and d) are the corresponding integral
invariants for the complete curves. c) is the boundary of a segmented mass in mdb010 from the
Mini-MIAS mammographic database.

2.2 Scale Space and Scale Selection

Changing the size of the integral invariant kernel creates a scale space, whose lower
bound defines what is meant by "fine", and whose upper bound "coarse". We note that
this integral invariant scale space satisfies the established scale space properties of
non-emergence, non-enhancement of maxima and the causality principle in a limited
sense. Properties of scale space are given in [3].
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As is often the case with scale space, a major challenge is scale selection for the
integral invariant function for each segmented lesion, as these shapes may be of
varying sizes with significantly large difference of ratios. Small scales can very well
correspond or identify a complete occlusion in small shapes but they fail to describe
large shapes. Large scales give consistent results for shape matching but do not pick
small regions as distinct comparisons. Therefore a certain ratio of size of the shape
and the maximum scale of integral invariant is used as described below.

Let 75,4, be the maximum scale indicator (this equates to the radius of the circular
integral invariant disc at the maximum scale). Then comparing shapes (S;, S,) for
region matching where the area of shape to integral invariant ration (SIR) is fixed, the
scale indicator 7,y is,

Tmax = [mln (rslmax’ 7"Szmax)-l’

_ |Areaof S; ,

Whererg, = o b= [1,2]
Though scale selection depends to a large extent upon the size of the shape we have
observed experimenally that it also depends upon the variability in shape boundary.

To date we have not established a relation between the two.

2.3 Initial Key-Points Alignment and Region Matching

The peaks of the integral invariant signature at the highest scale are considered to be
salient points for being causal. Intervals between those points give the general
structure of that shape. Shapes are divided into integral invariant regions (segments)
based upon key points at the coarsest scale that follows the causality principle and
prevail over all scales. All regions are evaluated for similarity against each other
using the sum of squared differences and the regions that are most similar are
considered to be the starting regions and their starting points as the points of initial
alignment.

The first segment starts from the point of initial alignment and extends to the first
extremum. All subsequent segments are defined by successive extrema. The last
region is then selected from the point of the last extremum to the end. In this way,
both shapes are divided into segments, each with a varying length. To have the best
comparison, we stretch or shrink all segments to the same length using bilinear
interpolation.

To compare integral invariant regions, the sum of squared differences (SD) is
calculated between each pair of regions using integral invariant values along the
region’s boundary at all scales.

M
SD(xq, x3) = Z(xl(n) — x,(n))? where M is length (x;, x;)
n=1

The scale factor (SF) between two regions is also measured as follows,

min (length(x,, x,))]°

SF(Xl, xz) = [1 - max (length(xp xz))
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where (x;1, x,) are regions of shapes (S;, S;). Then the overall discrepancy
measure (DM) is

DM (x, x,) = SD(xy, x;) + SF(xy, x;)

Integral invariant signatures of two shapes wthout keypoint alignment Shapes aligned based on best matching regions
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Fig. 2. Above is the scale space signature of two corresponding shapes in Figure 3 at the
coarsest scale. On the left, the signatures are unaligned whereas on the right side they are
aligned using RMA.

3 Results

Pairs of mammograms are segmented before performing shape or region matching.
The segmentation algorithm develops parent-child relations in a (topographic) family
tree structure, called an inclusion tree. The intensity range of an image is divided
linearly into a certain number of iso-levels, and the contours are formed at those
locations. Salient regions have a dense set of surrounding iso-contours. A concentric
group of contours represents the diffusion of intensity in a dense pattern from the core
of the object to the surrounding tissues. Regions with a higher family count or nesting
depth beyond a certain threshold are selected as significant regions. A threshold of
minimum family count was observed to discard regions falling beyond to reduce
dense glandular structure from further analysis. The outermost iso-contour is
considered boundary of that region.

Figure 3 presents the segmented regions of temporal mammograms along with
their scale space, where Figure 2 gives the initial alignment of those segmented
regions. Though RMA matches regions in shapes irrespective of their sequence
however in this particular case the accuracy of matching is obvious by comparing
integral invariant signature of both mammograms after initial key-point alignment.

Shape correspondence using RMA has been applied to the regions segmented in
this way illustrated in Figure 4. The mammograms are de-noised using a Perona-
Malik anisotropic diffusion filter. The lesions from pairs of temporal mammograms
given are put into regional correspondences. In some cases the algorithm identifies the
segments (and associated sub-regions) that correspond to new growth, while at the
same time calculating the percentage change in other sub-regions. It may be noted
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that the number of regions in both shapes may not equal. Some obvious mismatches
can also be seen where the regional differences are substantial or the non-
corresponding regions are very similar. The correspondence of regions does not
currently depend upon the texture or gradient information enclosed in them.
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Fig. 3. Segmented regions from temporal mammograms on the left while their corresponding

scale spaces is given on the right hand side
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Fig. 4. Region matching of corresponding contours on the temporal mammograms. The red
circles in the shapes identify points of initial alignment. Regions are color-coded and show both

good and bad examples of regional correspondences.
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Fig.4. (continued)

4 Discussion

Shape matching and correspondence algorithms usually match and establish point-
wise correspondences between two shapes and may even handle partial occlusion.
However, they typically do not quantify partial occlusions nor identify complete
occlusions or new growth. It is important to measure regional differences
quantitatively within each shape and establish correspondences based upon region
matching. For masses it is vital to analyse their growth and notice the emergence or
disappearance of any region. This can be helpful in detecting new growths and
identifying their orientation. Following region of interest segmentation, we have
introduced a method of local shape correspondence and region matching using
integral invariant scale space. Integral invariant are calculate for segmented shapes
from mammograms at all scales. The algorithm identifies causal peaks of this scale
space as key points and breaks the shape into sub-regions based upon them. The best
matching region is selected as a point of initial alignment and regions are
corresponded based on a similarity measure. Though the emphasis of this paper is not
on segmentation however if a better segmentation algorithm is used, RMA may
produce very promising results in detecting growth of tumour and its aggressiveness
with respect to shape. This region-matching technique is independent of any
computational algorithms like Fast Marching or Djikstra's algorithm (Dynamic
programming) and hence is very fast to compute. The proposed algorithm is quite
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general, easy to implement and has a broad range of applications; considerably
beyond mammography.
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Abstract. Understanding, and accurately being able to predict, breast
cancer risk would greatly enhance the early detection, and hence
treatment, of the disease. In this paper we describe a new metric for
mammographic structure, “orientated mammographic entropy”, via a
comprehensive classification of image pixels into one of seven basic im-
age feature (BIF) classes. These classes are flat (zero order), slope-like
(first order), and maximum, minimum, light-lines, dark-lines and saddles
(second order). By computing a reference breast orientation with respect
to breast shape and nipple location, these classes are further subdivided
into 23 orientated BIF classes. For a given mammogram a histogram
is constructed from the proportion of pixels in each of the 23 classes,
and the orientated mammographic entropy, Hom, computed from this
histogram. Hom, shows good correlation between left and right breasts
(r2 = 0.76, N=478), and is independent of both mammographic breast
area, a surrogate for breast size (r*> = 0.07, N=974), and breast density,
as estimated using Volpara™ software (r? = 0.11, N=385). We illus-
trate this metric by examining its relationship to familial breast cancer
risk, for 118 subjects, using the BOADICEA genetic susceptibility to
breast and ovarian cancer model.

1 Introduction

In the UK, for every 1000 women screened for breast cancer in the national
programme, on average 16 women will present with a suspicious lesion and be
recalled for further examination. Of these, two women will be correctly diagnosed
with breast cancer (12%); in one woman the cancer will be missed and subse-
quently detected in the symptomatic clinic (6%); whilst the remaining thirteen
women (81%) will have been falsely recalled; a stressful experience for the women
involved and a waste of health service resources [1]. This high false positive rate
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is a direct consequence of the large number of normal women in the screen-
ing population, which amplifies imperfections in the specificity of the screening
process. Clearly this could (and should) be improved.

Breast cancer risk is an active research field. A link with mammographic
breast density, as estimated from X-ray mammograms and breast cancer risk,
has been known for a number of years and has been observed in numerous studies
[I54ITT]. The reason for this link is poorly understood, however, and the extent
to which this risk factor is determined by genetic vs environmental factors is an
on-going research topic.

The motivation for our research is to investigate whether breast cancer risk
is related to the pattern of structure of the glandular tissue in an X-ray mam-
mogram, as opposed to a global measure of breast density. There have been
many publications describing mammographic texture analysis methods. These
have included application of statistical, histogram based measures; grey-level co-
occurrence calculations; spatial filtering; fourier analysis; wavelet decomposition
and fractal analysis [8IBJI0/9]. Much of this work has focussed on developing
automated alternatives to manual measurements of breast density for predict-
ing risk. In many cases the performance of these algorithms has been shown to
be comparable to manual methods but an independent association with breast
cancer risk has not been demonstrated [S3UT0]. For instance Manduca et al. [10]
describe a comparison of a number of these methods. They found the strongest
prediction of breast cancer risk for features applied at a coarse scale, reported a
degree of correlation with breast density and were unable to show a significant
improvement in prediction when the features were combined with percent den-
sity. However in a recent study involving 245 women diagnosed with breast cancer
and 250 controls, Nielsen et al. [I2] demonstrated that a computer-based texture
measure (described in [13]), applied to baseline mammograms 2 to 4 years prior
to diagnosis, out-performed automated and manual density measures, achieving
a significant separation between cases and controls.

A distinctive characteristic of all these methods is that no prior information
on the “expected” orientation of fibro-glandular tissue has been incorporated.
Reiser et al. have shown that, not unexpectedly, breast structure is oriented with
respect to the nipple [14]. In this paper we incorporate this information explic-
itly by presenting a new measure of the breast phenotype which characterizes
mammographic features according to their orientation with respect to the nipple.
Rather than compute an ad hoc measure of texture, however, we comprehen-
sively classify all features in the image according to their zero, first and second
order intensity characteristics. In so doing we hypothesise that mammograms
which do not exhibit a regular structure of features pointing towards the nipple,
indicates a higher risk of breast cancer i.e. that higher risk is associated with a
more chaotic microstructure of the breast parenchyma.

In the following sections we describe our methodology and present the results
of analyzing 979 digital mammograms, from 250 subjects, to determine how this
measure varies within subjects (between left and right breasts). We also inves-
tigate how it relates to breast density across subjects and present initial results
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relating values to familial breast cancer risk as estimated using the established
risk estimation software BOADICEA [2]. BOADICEA takes as input the family
history of breast, ovarian, prostate and pancreatic cancer of an individual as
well as the ages at which these these cancers were diagnosed. It also uses infor-
mation on any BRCA1 or BRCA2 genetic testing that has been performed and
the ages of unaffected family members. The software then gives an estimate of
risk of breast cancer over time, using a logistic regression model derived from 22
population based studies of breast or ovarian cancer.

2 Method

All the images used in this study were “raw” full-field digital mammograms
(FFDM) which were log-inverted to ensure that image intensity was linearly
related to total attenuation.

(a) Right CC. (b) Right MLO. (c) Left MLO. (d) Left CC.

Fig. 1. An illustration of the reference ductal orientation result for four patient mam-
mographic views

2.1 Breast Region, Pectoral Muscle and Nipple

In order to restrict the region of analysis in the X-ray mammogram to the breast,
we first compute a binary mask to eliminate the pectoral muscle region and the
background of the image, including any labels and/or annotations. We segment
the pectoral muscles of all MLO view mammograms manually, to ensure ac-
curate segmentations are obtained in all cases. The breast region is segmented
from the background using a combination of breast edge detection and region
growing. The nipple location is determined by estimating the most anterior point
on the breast edge in CC view mammograms, and in MLO view mammograms
by computing the most distal breast edge point, perpendicular to the pectoral
muscle boundary. Compared to manual nipple locations identified on 1,313 mam-
mograms by an imaging scientist, this automated approach had an accuracy of
10mm (std. dev. 11mm).
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2.2 Reference Breast Structure Orientation

As described above, the hypothesis is that mammograms which exhibit a less
regular pattern of structure pointing towards the nipple, represent breasts with
a higher risk of developing cancer. In order to test this hypothesis, it is nec-
essary to first compute a default or “expected” glandular orientation at each
point in the breast. The reference orientation is created by generating a series of
contours, emerging from the nipple, between the upper and lower breast edges
and the breast centerline. The breast centerline passes through the nipple and
is orthogonal to the pectoral muscle boundary (MLO views) or posterior edge
of the image (CC views). In contrast to [5] we do not assume a parabolic shape
of the breast but instead place n regularly spaced control points, starting at the
nipple location, o, on each of (i) the breast edge above the nipple, U, (ii) the
breast edge below the nipple, V', and (iii) the breast centerline, W:

U={o,u1,...,upn_1}, (1)
V ={o,v1,...,0n-1}, (2)
W ={o,wi,...,wn_1}. (3)

U and V are constrained to be convex by calculating their curvature and linearly
extrapolating each locus if this curvature rises above an empirically set threshold.
The contours are then piecewise linear trajectories, C,, (above the centerline)
and C, (below the centerline), which divide the lines between corresponding
control points on either upper or lower breast edges and the centerline, by a
fixed fraction, a, such that 0 < a < 1:

Cy={o,au; + (1 — a)ws,...,au,_1+ (1 —a)w,_1} (4)
Cy ={o0,avi + (1 —a)wy,...,avn_1 + (1 —a)wp_1} (5)

This creates the curved arrangement of orientations illustrated in figure [Il

2.3 Basic Image Features

The Basic Image Features (BIFs) system [7/0] classifies pixels in a 2D image into
one of seven classes according to the local zero, first or second order structure.
This structure is computed using a bank of six derivative of Gaussian filters
(Loo, L10, Lo1, Lo, L11 and Lo2) which calculate the nth (where n=0,1,2) order
derivatives of the image in = and y (Soo, S10, So1, S20, S11 and Spz2) at a particular
scale o. By combining the outputs of these filters, any given pixel can be classified
according to the largest component of:

slope—like light line dark line

flat maximum minimum ) A — saddle
€SOO72\/ 5120+S(%17 )\ ) _)\ ) W’Y ) Wpy 9 Y (6)

_ 2520+ S02).
2 i

given

v = 02\/(520 + 502)2 + 483,
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where € is a noise threshold below which regions are assumed to be flat. In
addition, slopes, light lines, dark lines, and saddles can be further characterised
according to their orientation. This orientation is computed with respect to the
reference glandular orientation described above. We quantise this orientation into
four 45-degree quadrants. This produces 23 orientated BIF classes, B = by . . . bas.
There are eight slope sub-classes (b to bg), and four sub-classes for each of
light lines (by; to b14), dark lines (by5 to big) and saddles (big to bg2). The
unorientated classifications of flat, maximum and minimum are classes by, bg
and byg respectively.

Once each pixel in the breast region has been classified into one of the 23
orientated BIF classes, a histogram can be generated. This is normalised by
the number of pixels in the breast region, producing a 23 value feature vector,
P = pg...pao, each element of which captures the proportion of pixels in the
breast region falling into each of the 23 classes.

To obtain an overall measure of the pattern of mammographic structure, we
compute the Shannon entropy of the orientated BIF histogram, and call this the
orientated mammographic entropy, Ho,.

Hypm = — Z pi IOg(pl) (7)

1=0...22

This parameter quantifies the distribution of BIF classes represented by P. It
will have a high value if all the orientated BIF classes are equally represented
and a low value if the mammogram is dominated by a small number of classes.
It therefore captures the heterogeneity of mammographic structure, orientated
with respect to the nipple.

3 Results

We have applied this analysis to 979 mammograms from 250 subjects for which a
complete set of data was available. We performed the BIF computation at a fine
scale of ¢ = 400umm, with the noise threshold set close to zero (¢ = 1.0e=%),
to capture as much information in the image as possible. The mammograms
with the most extreme values of orientated mammographic entropy, H,,,, are
shown in figures and The mammogram with the highest value of H,,,
exhibits an irregular mammographic structure, and this is much less pronounced
in the low H,, mammogram.

The correlation of H,,, for 478 left and right breasts (956 mammograms)
was 72 = 0.76 (figure . The area of the mammogram ROI also correlated
closely between left and right breasts (r? = 0.96), however there was negligible
correlation between the area of the ROI and orientated mammographic entropy
(r? = 0.07, 974 mammograms). There was also little correlation between Hy,
and breast density as measured using Volpara’™ (Matakina Technology Ltd.)
(r? = 0.11, 385 subjects) (figure[3(b)).

Finally figures[4(b)|and |4(a)| show initial results for orientated mammographic
entropy vs familial breast cancer risk, as estimated using BOADICEA [2] (118
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Froauency, P

g 2
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Orleted BIF Class, &

(a) Minimum entropy mammo. (b) Maximum entropy mammo.

Fig. 2. Mammograms with extreme values of orientated mammographic entropy, Hom,
and their corresponding BIF histograms, P. The left image is dominated by a small
number of slope classes (b2, b3, b7 and bg), and a greater proportion of light line (b11 to
b14) to dark line (b1s to big) structures, creating a low entropy. In the right image the
breast tissue is more chaotic in structure and hence pixels are more evenly distributed
across all classes. This produces a high value of BIF entropy. The images have been
histogram equalised for display purposes.
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Fig. 3. (a) Orientated mammographic entropy, Hom, for left vs right breasts (956 mam-
mograms). (b) Orientated mammographic entropy, Hom, vs breast density estimated
using Volpara™ (385 subjects).

subjects). Figure appears to show a difference in the distribution of data
points below a BOADICEA risk value of 0.05 compared to risk values greater
than 0.05, however more data points are required to confirm or refute this. No
correlation between BOADICEA risk and Volpara’™™ was observed (r? = 0.007,
227 subjects).
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Fig. 4. Orientated mammographic entropy, Hom, vs BOADICEA risk at age 50 (118
subjects)

4 Conclusion

In this study we have developed a new metric to quantitatively characterize
mammographic fibroglandular structure, according to the comprehensive analy-
sis of zero, first and second order features orientated with respect to the breast’s
shape and nipple location. By calculating the correlation between left and right
breasts, we have demonstrated that this parameter offers a reproducible mea-
sure of breast phenotype, exhibiting a greater variation between subjects, than
between the breasts of a given subject. This parameter is independent of both
the area of the ROI used in the analysis and breast density as estimated using
Volpara”™ . We have also shown initial results for the distribution of the metric
with familial breast cancer risk at age 50 using the BOADICEA susceptibility
to breast and ovarian cancer model.
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Abstract. A decentralized breast cancer screening program was started in 2002;
in 2005 full-field digital mammography (FFDM) was introduced. The
mammographic film-screen systems were gradually replaced by both computed
radiography (CR) and direct digital mammography (DR). Quality control (QC)
following the European Guidelines has been implemented for the technical
aspects and for screening indicators. A previous study in our central breast unit
(CBU) over the period 2005 till 2008 had shown no significant difference
between the screening indicators of film-screen mammography (FSM) and
FFDM. Today we are challenged with a variety of different types of
mammography systems and questioned whether any difference would be
present from cohorts imaged with CR versus DR. Therefore a new retrospective
study over the period 2007 till 2009 has been performed, which shows no
statistically significant difference in cancer detection rate (CDR), % of ductal
carcinoma in situ (DCIS) and positive predictive value (PPV) between the CR
and DR group, with exception of the recall rate (RR) in the subsequent round
(p-value = 0,04).

Keywords: digital imaging, mammography, breast cancer screening.

1 Background

Film-screen mammography is so far the only breast imaging technique for which it
has been proven that it can reduce breast cancer mortality if the quality of the whole
process is well controlled [1]. Today FFDM is massively replacing FSM. For this to
be justified, new performance parameters should not be inferior to what had been
obtained with FSM. In selected papers this has been investigated. Most of the
comparative FSM and FFDM studies in a screening setting show a higher RR, a
higher CDR and a comparable to higher PPV for FFDM [2-6]. Some studies show a
higher DCIS rate in the FFDM group [2], [3], [5], [6].

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 189-196] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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A diverse range of digital mammography systems and technologies is on the
market. Based on the physical characteristics a distinction can be made between
indirect or computed radiography systems (CR) and direct digital systems (DR).
Indirect systems use a phosphor plate that stores the energy of the X-rays via the
electrons of the phosphor plate; the reader is a separate device. In direct digital
radiology, the conversion from X-rays to signal is ‘direct’ and does not require a
separate reading process.

Knowing that CR systems perform worse than DR in terms of detective quantum
efficiency and contrast detail analysis [7], [8], it is important to investigate the impact
of this group of digital systems on the performance parameters of screening actions.
Clinical studies with CR systems are rare and we are not aware of scientific papers on
performance parameters of large CR based screening programs. During the Journées
Francaises de Radiologie in Paris (October 2011), French data showed inferior
screening performance for CR compared to DR. In some studies, the results obtained
with the CR systems are part of a much larger study [9]. In an additional report of the
DMIST trial, no significant difference in area under the curve (AUC), sensitivity or
specificity was found between Fuji 5000 CR system, Fisher Senoscan, GE
Senographe 2000D, Hologic Selenia DR systems and FSM, however large reader
variations occurred with each modality [10]. A prospective paired study on the
performance of CR (Fuji IP HR with Siemens 3000 Nova) and DR (GE Senographe
2000D) on BIRADS 4 and 5 lesions showed that the detection of breast lesions with
calcifications is favorable with DR, but the diagnostic efficiency was identical [11]. A
smaller study on 100 patients by the group of Schulz-Wendtland et al. showed no
difference between CR and DR [12]. In 2009, we have also conducted a study on the
effect of the introduction of digital mammography on the screening indicators in our
CBU [13]. This study showed no statistically significant difference in terms of RR,
CDR, PPV and detection rate of DCIS between FFDM and FSM. In that study there
was only one CR system (Fuji CR system) included but the percentage of cancers in
this group was too low to apply any statistics tests on the difference between CR and
DR systems.

In the meantime, more mammography units have switched to FFDM, with a
substantial part of them using CR technology. We have therefore decided to run a
another retrospective study that we report in present text: the comparison of screening
indicators for CR and DR systems. The study was performed for all mammographic
units linked to our CBU during the period 2007-2009.

2 Methods and Materials

2.1  Screening Program in Flanders (Belgium)

Our screening program is based upon the European Guidelines [14] and has
developed a national quality assurance manual. Acquisition of mammograms is
decentralized and can take place in any radiological practice as long as the radiologist
is licensed for screening and his equipment is certified. Second reading is centralized
in one of the 5 central breast units.
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In 2005, the use of digital mammography has been allowed and the existing quality
manual was updated. There were no restrictions on the type of digital systems used as
long as the system had passed first a type test procedure and then a site specific
acceptance test [15], [16]. The type test protocol copies the European Guidelines for
physico-technical QA and adds a radiological evaluation on 25 examinations to assess
stability of processing and the global appearance of the images. Next, a set of 10
images is used to verify the data transmission of the images from the mammography
center to the center for second reading and to verify the global image quality and
visualization on the work station in the center for second reading. Only softcopy
reading is allowed. Accreditation of a mammographic unit requires also that daily,
weekly and (half)yearly physico-technical quality control of the mammography
system and the viewing station is performed. In parallel to this, first and second
readers have to take part in educational programs concerning theoretical concepts as
well as image reading sessions.

In our Belgian screening program bilateral two-view mammography is performed.
The program offers a biennial mammography screening to women aged between 50
and 69 years [15]. The participating women sign an informed consent that allows
further data processing.

A total of 65 radiologists act as first reader and 6 radiologists act as second reader
in our CBU. First as well as second readers are also working in a diagnostic breast
center. This is deemed important seen the continuous feedback in terms of patient
outcome following positive screening results. All second readers have to read a
minimum of 5,000 examinations per year and are approved by the Radiological Board
of the screening organization. In case of discordance between first and second reader,
third reading is done by a qualified and independent second reader. All reading results
are collected via an IT network.

The screening mammograms are scored with a five-point rating scale: 1 = normal
finding, 2 = benign finding, 3 = probably benign finding, 4 = probably malignant
finding, 5 = malignant finding.

Since 2001, a continuous and individual evaluation is done for all first and second
readers in terms of RR, the number of readings and the discordance between the first
and second reader. Several training courses and meetings are organized to improve
possible poor results.

2.2 Image Acquisition

The period investigated was 2007-2009 and includes all screening activities with
digital mammography in the CBU of Leuven. At that time, there were 13 different DR
systems: 1 GE Senographe Essential system, 3 Hologic Lorad systems, 1 Siemens
Novation system, 6 Siemens Inspiration systems and 2 Sectra systems. There were 9
CR systems: 8 Fuji CR systems and 1 Konica CR system. All systems had passed the
European quality criteria and participated in a daily QC program for both the X-ray
unit (with every day 2 flat field images and centrally supervised automatic analysis)
and the monitor using the MoniQA pattern [16].
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The different mean glandular doses (MGD) as calculated from automatic exposure
controlled measurements of PMMA slabs of 20 mm, 40 mm and 60 mm of the
different participating systems are summarized in Table 1.

Table 1. MGD as calculated from automatic exposure controlled measurements of 20 mm, 40
mm and 60 mm PMMA of the different participating systems

20 mm PMMA* 40 mm PMMA* 60 mm PMMA*

CR system
Y (mGy) (mGy) (mGy)
Hologic Lorad Selenia
. 1.2 2
+ Fuji Profect CS 0.3 3
Siemens Mammomat 3000 Nova
4 1. 1.7
+ Fuji Profect CS 0 3
Planmed Sophie
. 1. .
+ Fuji Profect CS 05 3 33
Siemens Mammomat 3000 Nova
4 1. 2.7
+ Fuji Profect CS 0 0
Hologic M-IV
. 1.1 2.
+ Fuji Profect CS 06 6
Siemens Mammomat 3000 Nova
. 1.6 1.
+ Fuji Profect CS 05 ?
Siemens Mammomat 3000 Nova
4 1. 2.7
+ Fuji Profect CS 0 0
Philips Mammo Diagnost
.6 1.5 3.
+ Fuji Profect CS 0 ?
GE Senographe 800T
5 1.4 2.
+ Fuji Profect CS 0 ?
Planmed Sophie
+ Konica CR 0.6 1.6 3.6
DR svstem 20 mm PMMA* 40 mm PMMA* 60 mm PMMA*
Y (mGy) (mGy) (mGy)
Sectra (2 systems) 0.4-0.6 0.5-0.9 1.0-1.6
GE Senograph Essential 0.6 0.9 1.8
Hologic Lorad Selenia 0.6-0.8 (0.7)** 1.3-1.5 (1.4)** 1.5-3.5 (2.4)**
(3 systems)
Siemens Inspiration 0.4-0.6 (0.5)** 0.8-1.1 (0.9)** 1.4-1.9 (1.6)**
(6 systems)
Siemens Novation 0.5 1.0 2.0

*20 mm PMMA - 21 mm breast; 40 mm PMMA - 45 mm breast; 60 mm PMMA - 75 mm
breast
** range (mean)

2.3  Diagnostic Work Up and Data Analysis

The images and reports of cases that have to be recalled are sent back to the first
reader and in parallel the CBU sends a letter to the woman with the recommendation
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to contact her general practitioner or other referring specialist (the woman’s choice).
The epidemiologist in the screening unit collects the reports of all recalls and a
questionnaire to collect data on the results of the work up is sent after 3 months to the
referring physician.

The following screening indicators were calculated for the period 2007-2009, for
initial and subsequent round: RR, CDR, PPV and the proportion of DCIS. The RR is
defined as the proportion of screened women for whom further work up was
recommended (following the European Guidelines this should be < 5% in initial, <
3% in subsequent rounds). The CDR is the number of pathologically proven
malignant lesions of the breast (both in situ and invasive) detected in a screening
round per 1,000 women screened in that round. It should be higher than 3 times the
incidence rate (IR) for initial screening examinations and 1.5 times higher than the
incidence rate for subsequent screening: the background incidence of breast cancer in
the absence of screening is for our country expected to be 1.25 per 1,000 women [17].
The PPV is the fraction of cancers found in the recalled women.

Results of the CR and DR group for the investigated screening parameters were
compared using the chi-squared test and a value less than 0.05 was regarded as
statistically significant.

3 Results

A total of 42,958 digital mammograms was evaluated. The number of digital
mammograms increased significantly over the 3 year’s period, with 5,578 in 2007,
10,526 in 2008 and 26,854 in 2009.

Table 2. Overview of the screening indicators for the Leuven CBU for the period 2007-2009
for CR and DR technology, initial versus subsequent rounds

CR-group DR-group p-value

Number Initial Subseq [Initial Subseq [Initial = Subseq
Screened women 4,216 13,346 4,994 20,402

Recalled women 100 122 110 235 0.59 0.04
(%) (2.37) (0.91) (2.20) (1.15)

Cancer detection 30 69 26 107 0.24 0.92
(%0) (7.12) (5.17) (5.21) (5.24)

DCIS 5 6 5 15 0.80 0.34
(%) (16.67)  (8.70)  (19.23) (14.02)

PPV (%) 30.00 56.56 23.64 45.53 0.43 0.25

The screening indicators are summarized in Table 2. All results are conform the
European Guidelines [17]. Our RR can be considered as low, but the CDR is in
accordance with the European Guidelines. A consequence of these numbers is the
high PPV, up to 30% for initial and 56,6% for subsequent rounds in the CR group and
23,6% for initial and 45,5% for subsequent rounds in the DR group. There was no
significant difference between CR and DR in terms of CDR and PPV, but a
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significant difference (p = 0.04) was seen between CR and DR for the RR of
subsequent rounds.

Concerning the fraction of DCIS, there was no significant difference between CR
and DR. We cannot exclude that this is due to the relatively low absolute numbers.

4 Discussion

The advantage of digital mammography is the separation between acquisition,
processing and display. Each of these steps can be optimized separately or changed
independently. A challenge for CR technology is that plates and readers can be
combined with a variety of X-ray systems, each present with their own beam qualities
and preset dose levels. At acceptance, most installations of CR systems required a
careful adjustment, usually in a cooperation between the manufacturer and the
physicist. Notwithstanding this approach, some systems barely pass the acceptance
tests. The impact of this situation, with some systems being much more critical than
others, on our screening indicators could not be studied as the number of cases is too
small to allow an image quality level based evaluation.

CR has economic advantages over DR systems and smaller centres have therefore
chosen to implement these systems. About 54% of the German screening units are
using CR technology and 34% FFDM with soft-copy reading [18]. The proportion of
CR systems in France is even larger. As the number of mammography units with CR
technology may be substantial (certainly when viewed on a worldwide scale), it is
important to investigate the impact of this technology on the screening indicators,
certainly when recent reports on the results of a lower performance of CR compared
to DR appear. From 2005 onwards, our CBU supported the image acquisition and first
readings of 65 certified radiologists and coped with all the European norms. A first
study, reported in 2010 showed that the transition to FFDM had not changed our
screening performance [13]. Present study shows that there is also no statistically
significant difference in RR in the initial rounds, CDR, percentage of DCIS and PPV
obtained with CR and DR systems separately. Since the start of the screening in 2001,
more than 80% of all images have been read by the same group of second readers,
what can be considered a strength for our studies: the group of readers is not an extra
variable.

We attribute our results to (1) a strict follow up of the radiological aspects
individually for all the first readers, (2) a strict control of the radiological image
quality by the second readers who report to the first reader and to the physicists all
artefacts or causes of quality deterioration, (3) a physico-technical QA, with daily
centralized control of the quality of both X-ray system and monitor. Passing the
European limiting values in terms of contrast thresholds and contrast to noise ratio
requires a dose setting in which CR operates at doses that can be more than double the
doses used with DR. We have no intention to allow the lowering of the CR dose
setting. A more interesting study, based upon results reported in the SPIE conference
2012 [19], would be to study the performance of DR technology when operated at
higher doses.
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The higher recall rate in the DR group in the subsequent round may cause the
somewhat higher percentage of DCIS (subsequent round: 14,02% in the DR group
versus 8,70% in the CR group) in the subsequent rounds which is in line with the
results of other studies in which the detection of DCIS (or microcalcifications) is
higher in FFDM [2], [3], [5], [6].

The main limitation of the study is the limited number of cases in some of the
groups. A larger national study is on-going. We preferred to report our data separately
as this allows to exclude confounding parameters such as other second readers, other
physicists controlling the systems, other epidemiologists, etc. An analysis of our CBU
separately and its discussion in an international forum will face us clearly with our
true situation and is considered an important aspect of our local QA goals.

Second limitation is the limited number of systems. Grouping per system is not
possible due to the limited number of cases per brand. This is the result of allowing all
types of systems in the screening pending a successful type test and acceptance test.
Most vendors of digital mammography equipment subscribed for the type test
procedure indeed.

We can conclude that CR can be implemented in a well-controlled screening
organization without impact on the performance parameters. Present study did not
lead to any alarming situation concerning our CR technology. We propose to continue
all efforts to control its quality. Larger studies should be performed to increase the
statistical confidence.
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Abstract. Quality control for digital mammography should be objective, re-
producible and applicable across different manufacturers’ systems and tech-
nologies. Ideally it should be possible to set clearly defined thresholds of
acceptable behaviour that can be universally applied. Other works have pro-
posed combining measurements of detector performance with an observer
model and task function to calculate the detectability index d'. This work
builds on those concepts by proposing a simple phantom design for measur-
ing system performance from a single image, allowing the calculation of
NEQ and d' and including effects due to scatter and all noise sources. A
second contrast-detail test-object is proposed for validation of the model us-
ing a 4AFC observer study design.

Keywords: quality control, observer model, task, detectability, NEQ.

1 Background

Current quality control protocols for digital mammography often rely heavily on sub-
jective assessments of phantom images for overall image quality, or employ overly
simplistic measures that may not reflect clinical image quality or may not reliably
capture all modes of failure. Another difficulty is that many measures cannot be
expressed in system-independent units, making comparisons between different manu-
facturers’ systems difficult. Model observers have been proposed to quantify the
signal to noise ratio achieved for relevant imaging tasks without the variability and
subjectivity associated with the human reader by calculating the detectability index
(d"). To calculate d’, the system must be characterized. We present here a method for
simply and reliably estimating the elements needed to calculate the system noise
equivalent quanta (NEQ) of a digital mammography unit from a single phantom im-
age. These data can then be used in the calculation of the detectability index (d') of
arbitrary test objects using a non-pre-whitening model observer (NPWE) incorporat-
ing an eye-filter and internal noise. We also suggest a framework for validating the
method using four alternative forced choice (4AFC) observer studies of a suitably
designed contrast-detail test object.
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2 Methods

2.1 QC Phantom

For the measurement of NEQ and contrast, such that detectability can be estimated,
we propose imaging a 40 mm thick uniform block of polymethyl methacrylate
(PMMA), on whose upper surface two strips of copper foil have been positioned,
angled by approximately 5° from the sides of the block as depicted in Fig.1 (left pan-
el). The uniform regions of the PMMA are used to evaluate the noise power spec-
trum (NPS) and the slanted edges of the copper foil strips are used to calculate the
pre-sampled modulation transfer function (MTF) in the x and y directions. A one-
mm-thick disc of PMMA with a diameter of 25 mm is used to estimate the radiologi-
cal contrast of the detection tasks. The material and thickness of the contrast disc
could be changed to suit the detection task being evaluated.

To validate the detectability calculations, a 4AFC observer study is being con-
ducted using a contrast-detail test object. The test object consists of cylindrical posts
of PMMA milled to have heights ranging from 0.0442 to 1.0 mm, with diameters
ranging from 0.312 to 3.536 mm on top of a PMMA base with a thickness of 40 mm.
Five thicknesses are used for each disc diameter, with the relevant thickness range
determined from preliminary reader studies using a contrast-detail test object imaged
on several digital mammography systems. This range includes the thicknesses likely
to encompass discs that are just visible to just not visible under typical mammograph-
ic exposures. The thickness and diameter combinations used are described below in
Table 1. For each disc diameter, a reference disc thickness that should always be
visible is listed.

Fig. 1. Radiographs of the NEQ measurement phantom (left) and the contrast-detail test object
(right) being used to validate the modeled detectability values
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Table 1. Diameters and thicknesses of discs for contrast-detail test object. All measurements
are in mm.

Disc Thicknesses
Diameter Reference Test1 Test2 Test3 Test4 Test5

0.312 1.25 1.0 0.7071 0.5 0.3536 0.25
0.625 1.0 0.5 0.3536 0.25 0.1768 0.125
1.250 1.0 0.25 0.1768 0.125  0.0884 0.0625
2.500 1.0 0.25 0.1768 0.125  0.0884 0.0625
3.536 1.0 0.1768 0.125  0.0884 0.0625 0.0442

2.2 Detectability

The detectability index (d) for a particular detection task is calculated using a varia-
tion of the formula proposed by Burgess [1] and modified by Segui and Zhao [2] as
follows:

d =AS x (1)

where AS is the signal difference between the object and the background, O is the
integrated signal power (perceived signal) calculated using the non-prewhitening
observer (NPWE) model with eye filter described by Segui and Zhao and given in
Equation (2), N is the integrated noise in the system as given in Equation (3) and Ni is
the added internal noise of the viewer.

2
0= (JL W2, V)MTF?(u, v)E2(u, v)dudv) ,and 2

N= _’L W?2(u, v) NPS(u, v)MTF?(u, v)E*(u, v)dudv, (3)

where W(u,v) is the task function, MTF(u,v) is the 2-dimensional (2D) MTF of the
imaging system, NPS(u,v) is its 2D noise power spectrum, and E(u,v) is the eye filter
describing the contrast sensitivity of the human visual system. Because the task ex-
plored here is detecting a disc, W is taken to be a “jinc” function (Hankel transform of
a disc). Note in our formulation we calculate a single system noise rather than separat-
ing out quantum, scatter and electronic noise sources. Following the work of Burgess
[3], the internal noise N; was taken to be a scale factor, a, of the system noise N ac-
cording to Equation (4).

N;=a?xN )

The internal noise scale factor, a, was fit to be 1.5.
The pre-sampled MTF is obtained in both the x and y directions using the standard
algorithm described by Fujita et al [4]. The relatively wide (40 mm) bands of copper
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foil ensure that any low-frequency drop in MTF due to off-focal radiation, scatter
and/or glare in the phosphor on indirect flat panel systems can be accurately characte-
rized. The MTF along x and y were averaged together and then radially rotated to
create a 2D MTF. This is an approximation of the true 2-D MTF, which likely has
non-rotationally symmetric components such as that due to the rectangular shape of
the detector element.

The two-dimensional NPS is calculated using the multi-taper method (MTM), with
adaptive weighting [5]. Using the MTM method results in a “cleaner” NPS with re-
duced low-frequency distortions, at the cost of some broadening (loss of spectral reso-
lution) of any peaks (i.e. grid artefact) in the spectrum. Regions of interest (ROIs)
are selected from the portions of the image where only PMMA was present in the
beam. The ROIs are chosen such that the solid angle of the x-ray beam (6) is less
than 4.7° so changes in beam intensity across the ROI (proportional to cos’(d) ) are
kept to less than 1%.

Ideally, AS would be derived from the radiological subject contrast of the object
being evaluated in a given task. For example, the subject contrast could be measured
for a series of discs of different thicknesses in a contrast-detail test object. In this
work, it is approximated using the measured image contrast for the 1 mm thick con-
trast disc. Over small ranges, log-relationships can be treated as linear, so assuming
a linear relationship between disc thickness and induced signal difference; AS can be
estimated for arbitrary disc thicknesses by multiplying AS; by the desired disc thick-
ness in mm, ¢ according to equation (5):

AS(t) = tAS; = t X (ADUpscigrouna — ADUgisc )- (5)

ADU jisc and ADUpacrgrouna are the mean pixel values or analog-to-digital units (ADUs)
measured in ROIs selected in the image of the contrast disc and nearby background
areas of the phantom. For systems with limited flat-fielding (such as CR) it may be
necessary to perform a manual gain correction on the image data (using images of a
uniform phantom) before making this measurement.

The eye filter is modeled using the common functional form of
E(f) = f"exp(—cf?) [6], where n and ¢ are experimental parameters selected to
match the viewing conditions of a human reader. The parameters n and ¢ were itera-
tively adjusted along with the internal noise factor, a, to yield the best agreement
between measured thickness thresholds and model determined thresholds. A best fit to
measured data was found with n = 0.81, ¢ = 1.12 and @ = 1.5. This appears to hold
across different systems when images are viewed at the same physical magnification.

2.3  4AFC Design

To validate the calculated detectability values, we compare them to the measured
proportion correct found in a four-alternative forced choice (4AFC) observer study
using a range of disc diameters and thickness. Images of the contrast-detail test ob-
ject are acquired at techniques matching those used to image the NEQ phantom.
Twenty-four images are acquired on each system tested to achieve sufficient different
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noise realizations to be able to distinguish a difference of less than 0.8 in d’ with a
power of 0.8 [7]. Regions of interest will be cropped from the images such that a disc
appears in one of the four corners of the ROI. The selection of which corner contains
the disc is randomized. A psychometric function is fit between the percent correctly
detected in the 4AFC study and disc thickness for each disc diameter. Then the de-
tectability (d') of that disc thickness and diameter can be estimated from the propor-
tion taken from the psychometric fit and compared to the model d" determined from
the QC phantom measurements. Fitting the reader data removes some of the mea-
surement noise and avoids difficulties with infinite values resulting from test objects
where the readers achieved a 100% correct detection rate. The fits were done using
the “psignifit” software package and a bootstrapping technique [8].

2.4  Systems Tested

The methodology was evaluated on three different mammography units, two GE Se-
nographe DS systems and a Planmed Nuance system. The DS detectors have 100
micron dels and a cesium-iodide scintillation layer on a photo-diode thin-film transis-
tor array. The Planmed detector has 85 micron dels and an amorphous selenium
conversion layer on an electrode array.

3 Results

In Fig. 2, we show preliminary measurements of MTF, normalized NPS (NNPS) and
noise equivalent quanta (NEQ) using the proposed phantom on three different mam-
mography systems. In Fig. 3 we show the modeled d' plotted against the d' values
measured by the 4AFC.reader study. For each system the linear fits between mod-
eled d' and measured d’ for the individual readers were compared using the F test to
the 95% confidence level. The results of this analysis are given in Table 2. Subse-
quently, the reader data were pooled and the linear fits for each system type were
compared using the F test. The results of this analysis are given in Table 3.

Table 2. Test for significant differences between readers looking at the parameters of linear
least-squares fits to the modeled and measured d’ values for each reader and system. A 1
indicates a statistically significant difference in the parameter to the 95% confidence level.

Parameter 1vs.2 1vs.3 1vs.4 2vs.3 2vs.4 3vs. 4

GE 1l m 0 0 0 0 0 0
GE1b 0 1 1 0 0 0
GE2m 0 0 0 0 1 1
GE2b NA NA NA NA NA NA
Planmed 1 O 0 0 0 0 0

Planmed 2 O 0 0 0 0 0
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Table 3. Test for significant differences between systems looking at the parameters of linear
least-squares fits to the modeled and measured d’ values. A 1 indicates a statistically significant
difference in the parameter to the 95% confidence level.

Parameter GE 1 vs. GE2 GE 1 vs. Planmed GE 2 vs. Planmed
m 0 1 0
B 0 1 1

1 0.015
—  GE1 ——  GE1
0.8 -~ GE 2 e )
Planmed 0.01 Planmed
06
B g
= =z
0.4 Ed !
0.005 1}
02
0 0
0 2 4 6 0 2 4 6
spatial frequency (mm™") spatial frequency (mm™")
x 10
14
12 GE 1
Planmed
[e]
w
z
0 2 4 6
spatial frequency (mm") spatial frequency (mm")

Fig. 2. Graphs of MTF (top left), NNPS (top right), and NEQ (bottom left) for three different
systems at a typical exposure level and the NEQ at five different exposure levels for one system
(bottom right)

4 Discussion

We have presented a framework for calculating the detectability index (d") for low
contrast detection tasks that can be defined using functions in the Fourier domain.
The proposed method requires only one image of one phantom to obtain the necessary
measures of system performance. With a validated method of objectively measuring
system performance for specific imaging tasks, it should be possible to propose
broadly applicable and easily measurable standards for system performance.

One of the limitations of this study is that the ambient lighting conditions and
viewing distance were not rigorously controlled. However, inter reader variability
was not statistically significant most of the time.
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The slopes of the linear fits between the measured and modeled d’ values appear to
be different for the different mammography systems. This difference was found to
be statistically significant between the second GE system and the Planmed system.
In addition, the intercept for the Planmed system was different than that for the GE
systems. This suggests that the model used to calculate d’ needs further refinement
to generate completely system-independent results. Areas for improvement include a
better estimation of the eye-filter parameters and inclusion of a scatter estimate in the
calculation of radiographic contrast.

Future work includes extending the 4AFC study to more vendors and more readers,
doing a more thorough error propagation and analysis, and extending the model and
phantom used to calculate d’ to predict the results of evaluating the CDMAM phan-
tom.

GE1 * GE 1 Reader Data
GE 1 linear fit, R = 0.96 GE 1 Model Data
+ GE2 + GE 2 Reader Data
wnssnnasnnnn GE 2 |inear'm‘ R=0.98 ssennnnnnnnnnnnns GE 2 Model Data
° Planmed ° Planmed Reader Data
e Blanmed linear fit, R = 0.98 e Planmed Model Data
Linear fit to ensemble average, R = 0.94

d’ measured with fit
dr

0.05 0.1 0.15 0.2 0.25 0.3
d’ theoretical disc thickness

Fig. 3. Left side: Plot of modeled d’ vs. measured d’ values for three different mammography
systems. The measured d’ values are averages of the values taken from the psychometric fits
made for the individual readers participating in the 4AFC study. Right side: Plot of d’ values
both measured from the reader study and modeled, for a disc diameter of 1.25 mm versus in-
creasing disc thickness.
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Abstract. High mammographic breast density is associated with increased risk
of breast cancer, but how risk varies with longitudinal change in density is less
clear. To investigate, a case-control study of 30 women with screen-detected
cancer and 30 women with a normal mammogram, all with two previous nor-
mal mammograms, was conducted. Percentage density for all mammograms
was estimated with the thresholding software Cumulus. Mean density at first
screen was not significantly different in cases and controls in contralateral (36.5
vs. 32.6, p = 0.23) or ipsilateral (36.0 vs. 32.9 p = 0.37) breasts, but mean re-
duction in density from first to third screen was significantly different in both
contralateral (10.7 vs. 5.1, p = 0.02) and ipsilateral (11.7 vs. 6.2, p = 0.04)
breasts. Using logistic regression, and controlling for age and HRT use, breast
cancer risk was found to be associated with change in density from first to third
screen.

Keywords: Mammographic density, breast cancer risk, case-control study,
Cumulus.

1 Introduction

Mammographic breast density is the proportion of the breast occupied by radiopaque
‘dense’ fibroglandular tissue as opposed to radiolucent ‘non-dense’ adipose tissue on
a mammogram. The association between high mammographic density and increased
risk of developing breast cancer is well established, having been first described by
Wolfe in 1976 [1-2]. A meta-analysis conducted thirty years later reported that the
relative risk of developing breast cancer for women with >75% density compared to
those with <5% density was 4.64 (95% CI: 3.64-5.91) [3]. However, the relationship
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between change in density over time and breast cancer risk is less well understood.
While risk increases with age, and is associated with high density, density declines
with age. Of the few studies examining the issue, some have found evidence of an
association between change in breast density and breast cancer risk, whereas others
have found no evidence of such an association. One study found that an increase (de-
crease) in density, as classified by the four-category American College of Radiology
Breast Imaging Reporting and Data System (BI-RADS) breast composition classifica-
tion [4], over a period of approximately three years was associated with an increased
(decreased) rate of breast cancer relative to women whose density classification did
not change during the same period [5]. A second study, where mammograms were
automatically classified to one of four density categories: <5%, 5-25%, 26-75% or
>75%, made similar findings over a 10 year follow-up period [6]. However, two stu-
dies found no association between longitudinal change in percentage density, as
measured by computer-assisted interactive thresholding [9], and breast cancer risk [7-
8]. The purpose of the current work is to further explore longitudinal change in breast
density and its possible association with breast cancer risk, by examining whether
such an association exists in a case-control study.

2 Method

The study population consisted of 60 women who had attended routine breast screen-
ing through the Greater Manchester Breast Screening Programme, part of the UK
NHS Breast Screening Programme. Of these, 30 women had screen detected cancer in
one breast, and the remainder had normal screening mammograms. The women with
cancer (referred to as the cases) were drawn consecutively from those with screen
detected cancer who had normal mammograms in the two previous screening rounds.
The women with normal screening mammograms (referred to as the controls) were
randomly selected from women with normal screening mammograms who also had
normal mammograms in the two previous screening rounds. Whereas all of the
mammograms from the most recent round of screening consisted of both mediolateral
oblique (MLO) and craniocaudal (CC) views, some of the mammograms from the two
previous rounds of screening contained only MLO views. Henceforth the most re-
cent, diagnostic, screen will be referred to as the third screen and the two previous,
prediagnostic, screens will be referred to as the first and second screens. The mean
(SD) time between first and third screen was 6.5 (0.8) years for cases and 6.4 (0.9)
years for controls.

Mammographic breast density was assessed for all mammograms from all three
rounds of screening using the interactive thresholding software Cumulus (Version 4.0;
Sunnybrook Health Sciences Centre, Toronto, Canada) [9], which has been shown to
have a strong association with risk [13], and has been called the gold standard of
density measurement [10]. All mammogram films were digitised, anonymised and
randomised into small batches before being read by a single trained and validated
Cumulus reader. The images used in Cumulus were 8-bit grayscale depth with a
pixel size of 0.25 mm x 0.25 mm. Randomisation meant that the reader was blinded
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to the case-control status of all mammograms. The reader segmented the breast area
from the background using a pixel value threshold and/or piecewise linear mask, then
set a second threshold to separate the dense from the non-dense breast tissue within
the breast area. The proportion of the breast area occupied by dense tissue was calcu-
lated as a percentage by the software.

As well as measurements of breast density, information on the age of the subjects
at screening and whether they had ever used hormone replacement therapy (HRT)
was available for inclusion in the analysis. Both age and the use of HRT are known
risk factors for breast cancer and are associated with breast density. The risk of devel-
oping breast cancer increases with age and with the use of HRT. Breast density de-
creases with age but increases with the use of HRT [11]. Due to the possible effect on
breast density measurements of the presence of breast cancer in the mammograms of
cases at the third screen, separate analyses were conducted for the contralateral and
ipsilateral breasts. For controls, one breast was randomly assigned to be the contrala-
teral side and the other breast the ipsilateral side.

Two-sided independent samples #-tests were used to compare the mean age of cas-
es and controls at first and third screen, the mean densities for cases and controls at
first screen, and the mean change in density from first to third screen for cases and
controls. Logistic regression was used to investigate how density at first screen and
change in density from first to third screen predicted case-control status. The results
presented here were produced using only the MLO views, as only the MLO views
were available for every subject at all three rounds of screening.

3 Results

The mean ages of the case and control groups at the first and third screens are shown
in Table 1. How many of the cases and controls had ever used HRT is shown in Table
2. Mean age was not significantly different in cases and controls at the time of first
screen (p = 0.45) or third screen (p = 0.40). The two groups are similar in terms of the
number of subjects who had ever used HRT, and indeed a y* test with continuity cor-
rection applied found no evidence to reject the independence of HRT use and case-
control status (p = 1.00).

Table 1. Age in years of cases and controls at first and third screen

Screen Mean (SD) age

Cases Controls
First 57.2 (4.2) 56.3 (5.0)
Third 63.7 (4.3) 62.7 (5.0)

Table 2. HRT use of cases and controls

HRT use Cases Controls
Ever used 18 17
Never used 12 13




208 C. Ting et al.

The mean percentage density of the cases and controls at first, second and third
screens is given in Table 3 and dot plots of the densities for the contralateral side are
shown in Fig. 1. Mean density at first screen was not significantly different in cases
and controls in either the contralateral side (p = 0.23) or the ipsilateral side (p = 0.37).

Mean percentage density decreased from first to third screen in both the contrala-
teral and ipsilateral sides of cases and controls. The mean reduction in percentage
density was significantly different for cases and controls in both the contralateral side
(10.7 vs. 5.1, p = 0.02) and ipsilateral side (11.7 vs. 6.2, p = 0.04). To illustrate the
reduction in density, a scatterplot showing the percentage density in the contralateral
side at first and third screen is shown in Fig. 2.

Table 3. Percentage density at first and third screen of the contralateral and ipsilateral breasts
of cases and controls

Screen Mean (SD) percentage density
Cases Controls
Contralateral Ipsilateral Contralateral Ipsilateral
First 36.5 (13.8) 36.0 (13.4) 32.6 (11.1) 32.9 (13.5)
Second 31.4(12.3) 31.3(14.9) 29.2 (12.9) 29.1 (13.1)
Third 25.8 (12.8) 24.4 (12.5) 27.5 (14.2) 26.7 (12.4)
Cases Controls
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Fig. 1. Dot plots of percentage density of the contralateral breast at first, second and third
screen. A horizontal line represents the mean for that plot.
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Fig. 2. Scatterplot of percentage density of the contralateral breast at first and third screen

The logistic regression model for the contralateral breast included age at third
screen and HRT status alongside change in density from first to third screen as predic-
tors of case-control status. The output from the model can be seen in Table 4. Change
in density made a significant contribution to the model (p = 0.02) and had an odds
ratio of 1.09 (95% CI: 1.01-1.17). By the Cox & Snell R* the model explained 11.5%
of the variation in case-control status, and by the Nagelkerke R” it explained 15.4%.
The model correctly classified 63.3% of cases, however with a y* value of 14.9 and p
= 0.06 the model only marginally escaped being rejected by the Hosmer—Lemeshow
goodness-of-fit test.

Table 4. Logistic regression model for the contralateral side

Term Coefficient SE | Wald statistic P Odds ratio

(95% CI)
Age 0.06 | 0.06 1.12 | 0.29 | 1.07 (0.95, 1.20)
HRT use 0.00 | 0.56 0.00 | 1.00 | 1.00(0.33, 3.01)
Change in 0.09 | 0.04 5.16 | 0.02 | 1.09 (1.01, 1.17)
density
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A similar logistic regression model was fitted for the ipsilateral side. The output is
shown in Table 5. Again the change in density from first to third screen was signifi-
cant in the model (p = 0.04), with an odds ratio of 1.06 (95% CI: 1.00-1.12). This
model performed better according to the Hosmer—Lemeshow goodness-of-fit test ()
= 6.6, p =0.57), but explained less of the variation in case-control status as measured
by the Cox & Snell R* (8.9%) and by the Nagelkerke R* (11.9%). The model correctly
classified 56.7% of cases.

Table 5. Logistic regression model for the ipsilateral side

Term Coefficient SE | Wald statistic /4 Odds ratio

(95% CI)
Age 0.06 | 0.06 1.07 | 0.30 | 1.07 (0.95, 1.20)
HRT use -0.15 | 0.57 0.07 | 0.79 | 0.86 (0.28, 2.62)
Change in 0.06 | 0.03 434 | 0.04 | 1.06 (1.00, 1.12)
density

When logistic the regression models were fitted with density at first screen as an
explanatory variable, the models were found not to be statistically significant.

4 Discussion

Mammographic breast density declined from first to third screen in both the contrala-
teral and ipsilateral breasts of cases and controls, with the mean reduction being
greater for cases than controls. Furthermore, the reduction from first to third screen
was associated with case-control status in a logistic regression model that included
subject age and HRT use as confounding variables. No association was found be-
tween density at first screen and breast cancer risk for this group of women, even
accounting for subject age and HRT use.

The primary objective of this study was to test for the presence of an association
between change in density and cancer risk. Such an association was found, with the
results suggesting that increased risk was associated with a greater reduction in densi-
ty. This was not the result that would have been expected, as the existing literature on
the subject [5-8] suggests either an association in the opposite direction or no associa-
tion. However, there are several limitations to the present study that restrict firm con-
clusions from being drawn. The sample size was small compared to other studies of
change in percentage density and breast cancer risk [7,8], cases were not matched to
controls and the selection of cases was not random. It has been suggested that analys-
es of breast density and breast cancer risk should always take account of age and body
mass index (BMI) [10]. While information on the age of the subjects at screening was
available, data on BMI was not. Furthermore, the information available on subject
HRT use was limited. Some variability in the results may be attributed to differences
in positioning, compression and exposure of the breast in different screening rounds,
as well as the subjective element in density estimation using Cumulus. The introduc-
tion of automated volumetric methods of density estimation for full-field digital
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mammography (FFDM) has the promise of reducing this variability, hence these
technologies, once mature and once sufficient rounds of FFDM screening have been
conducted, may help to further elucidate the relationship between change in breast
density and breast cancer risk.
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Abstract. Contrast-detail measurements were made at approximately weekly
intervals for three months, for two full-field mammography systems with dif-
ferent types of detector. The measured threshold contrast values were found
to be reasonably stable but with some random variation. The coefficient of
variance was 8-10% for detail sizes 0.1 and 1.0mm, and 3-5% for detail sizes
0.25 and 0.5mm. The output of both X-ray sets was also monitored, and
found to vary within £1% of the mean. The variation in threshold contrast is
likely to be mainly due to variation of noise in the CDMAM images. Care
should be taken when setting baselines and acceptable limits, so that meas-
ured changes in threshold contrast that are of the order of £10% of the mean
are not wrongly interpreted as significant changes in performance of a digital
mammography system.

Keywords. Image quality, threshold contrast, CDMAM.

1 Background

Contrast-detail measurements are widely used in Europe for the evaluation of image
quality in digital mammography, as described in the European quality control proto-
col [1]. Under this protocol, multiple images of the CDMAM test object (Artinis,
Nijmegen) are acquired and analysed using standard software available from the
EUREEF website, http://www.euref.org (CDMAM Analyser version 1.5.1). The errors,
twice the standard error (2 SE), quoted in the output tables of the software, are based
on repeated random sampling of 8, 16 or 32 images out of sets of 64 acquired on a
single occasion, for each of four different full-field digital mammography systems [2].
Other previous work has also sampled large data sets acquired on one occasion [3, 4]
or two occasions [5].

It is not clear whether these results give a realistic estimate of the errors of mea-
surement for contrast-detail measurements carried out at six-monthly intervals, as is
standard practice in Europe for quality control purposes. Reproducibility of the paddle
and test object positioning might have some effect on the reproducibility of results.
To provide a more accurate estimate of the error, measurements were repeated at
weekly intervals, on the assumption that the imaging system was stable over this time
and that variations were due to measurement error. The results should provide a more
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appropriate estimate of errors of measurement than those published previously [2-5].
It is suggested that these estimates of errors be applied to routine quality control
measurements (but not that the measurements themselves be carried out at weekly
intervals).

2 Method

The CDMAM phantom was positioned on the breast platform, with a 2cm thickness
of polymethyl methacrylate (PMMA) above and below, and sixteen images were
acquired on each of two systems, one with an amorphous selenium detector (Hologic
Selenia Dimensions) and the other with caesium iodide-amorphous silicon detector
(GE Essential). Measurements were repeated twelve times at weekly intervals. The
same phantom was always used, and the same operator made all the measurements.
The exposures were made in manual mode, with the same exposure parameters used
every time. The exposure parameters were chosen by imaging a Scm thickness of
PMMA under automatic exposure control (AEC); the same kV, target and filter were
used for the CDMAM images, and the nearest fixed mAs to that selected automatical-
ly for 5cm PMMA. 5cm was chosen because the CDMAM phantom with 4cm
PMMA is equivalent to Scm PMMA or a 6cm average breast. The same compression
paddle (size 18 x 24cm) was used every time. Both the compressed breast thickness
and the initial position of the phantom on the breast support table were the same for
each set of measurements. The phantom was moved by a small distance, typically
Imm, between image acquisitions, as specified in the test protocol.

After acquiring each set of CDMAM images, the air kerma at the standard position
was measured with an ion chamber to detect any variation in X-ray output.

Raw images were obtained from each system for subsequent analysis. The
CDMAM images were analysed using the CDMAM Analyser version 1.5.1 software.
For the images of Scm PMMA, the mean glandular dose (MGD) to a 6cm thick
equivalent breast was calculated by the method of Dance et al [6].

3 Results

Figure la, b, ¢, d shows the results of weekly contrast-detail measurements on the
amorphous selenium system (Hologic Selenia Dimensions), for detail sizes 0.1, 0.25,
0.5 and Imm. Figure le, f, g, h shows the corresponding results for the caesium
iodide-amorphous silicon system (GE Essential). There was some variation from
week to week but most of the results lay within £10% of the mean for the Dimensions
and +13% of the mean for the Essential. Variation was greater for the 0.lmm and
1.0mm detail sizes than for the other details, as shown in Table 1.
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Fig. 1. Threshold-contrast measurements for the 0.1, 0.25, 0.5 and 1.0mm detail sizes, for a
Hologic Selenia Dimensions (a, b, ¢, d) and a GE Essential (e, f, g, h). Error bars are 2 SE
(standard error). The “Achievable” level is defined in the European Protocol [1].
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Fig. 1. (continued)

Contrast-detail curves for two sets of data for one system are shown in Figure 2.
These curves were chosen to illustrate the maximum variation observed in the
twelve data sets acquired. Similar differences were seen in the results for the other

system.
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Fig. 2. Contrast-detail curves for two sets of measurements, for a Hologic Selenia Dimensions

The X-ray output showed much less variation over time. All the measured values
were within +1% of the mean.

Table 1. Coefficient of variance (CoV) estimated from the analysis software and measured
values for two different digital mammography systems

Detail size CoV estimated CoV measured: CoV measured:
(mm) from analysis Hologic Selenia GE Essential
software Dimensions
0.1 4% 8% 10%
0.25 4% 3% 4%
0.5 4% 5% 4%
1.0 5% 9% 8%

4 Discussion

Although the conditions of measurement were standardised, the threshold gold thick-
nesses determined by contrast-detail measurements varied from week to week. In
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most cases the values lay within a range of +10% from the mean for the Hologic Se-
lenia Dimensions and +13% for the GE Essential. The coefficient of variance was
greater (8-10%) for the smallest and largest detail sizes (0.1 and 1.0mm), than for the
0.25 and 0.5mm detail sizes (3-5%). It is clear from the contrast-detail curves shown
in Figure 2 that points in the middle of the curve are likely to show less variation than
those at the ends of the range. On the CDMAM test object, this corresponds to the
smallest and largest details having fewer nearest neighbours whose values can be used
in the curve-fitting. The software estimates a coefficient of variance of 4-5% for all
detail sizes. This difference from the experimental results may be related to taking
repeated smaller samples from a large pool of images, as has been suggested in earlier
work [5].

Clearly an initial baseline value based on eight or sixteen measurements might not
be suitable for setting a range (e.g. +10%) within which subsequent measurements
might be expected to lie, due to this observed variation. A value based on the mean of
several sets of measurements would be more suitable in setting a baseline and range,
such that values outside the range would indicate problems with the imaging perfor-
mance of a system.

The X-ray output for both systems was stable to within +1%, and the detector tem-
peratures were constant, so it seems likely that the variation in contrast-detail mea-
surements arises only from variation in random noise in the images of the CDMAM
test object. This can be verified in future work using mathematical modeling of dif-
ferent digital mammography systems to generate large sets of simulated CDMAM
images [7]. Experimental work on other digital mammography systems might also be
worthwhile, as not all systems may be as stable in performance as those described
here.

These results suggest a need for further development to improve the reproducibility
of image quality measurements.

5 Conclusions

Over a period of about three months, contrast-detail measurements for two different
digital mammography systems showed no obvious trends, but results mostly varied by
up to 10% from the mean value for an amorphous selenium system and by up to
+13% for a caesium iodide-amorphous silicon system. Care should be taken when
setting a baseline, and when interpreting a single set of measurements, as an increase
or decrease within approximately £10% or £15% of the mean is unlikely to indicate a
significant change in equipment performance.

References

1. European Commission (EC): European Guidelines for Quality Assurance in Breast Cancer
Screening and Diagnosis, 4th edn. Office for Official Publications of the European Com-
munities, Luxembourg (2006)



Long-Term Stability of Image Quality Measurements 219

. Young, K.C., Alsager, A., Oduko, J.M., Bosmans, H., Verbrugge, B., Geertse, T., Van En-
gen, R.: Evaluation of software for reading images of the CDMAM test object to assess dig-
ital mammography systems. In: Proceedings of SPIE Medical Imaging, 69131C, 1-11
(2008)

. Young K.C., Cook J.J.H., Oduko J.M., Bosmans H.: Comparison of software and human
observers in reading images of the CDMAM test object to assess digital mammography sys-
tems. In: Proceedings of SPIE Medical Imaging, vol. 614206, pp. 1-13 (2006)

. Young, K.C., Cook, J.J.H., Oduko, J.M.: Automated and Human Determination of Thre-
shold Contrast for Digital Mammography Systems. In: Astley, S.M., Brady, M., Rose, C.,
Zwiggelaar, R. (eds.) IWDM 2006. LNCS, vol. 4046, pp. 266-272. Springer, Heidelberg
(2006)

. Yang, C.-Y.J., Van Metter, R.: The variability of software scoring of the CDMAM phantom
associated with a limited number of images. In: Proceedings of SPIE Medical Imaging,
65100C (2007)

. Dance, D.R., Young, K.C., van Engen, R.E.: Further factors for the estimation of mean
glandular dose using the United Kingdom, European and IAEA dosimetry protocols. Phys.
Med. Biol. 54, 4361-4372 (2009)

. Mackenzie, A., Dance, D.R., Workman, A., Yip, M., Wells, K., Young, K.C.: Development
and validation of a method for converting images to appear with noise and sharpness cha-
racteristics of a different detector and X-ray system. Med. Phys. 39(5), 2721-2734 (2012)



Characterization of Spatial Luminance Noise
in Stereoscopic Displays for Breast Imaging

Cecilia Marini-Bettolo*, Joel Wang, Wei-Chung Cheng,
Robert J. Jennings, and Aldo Badano

Division of Imaging and Applied Mathematics, Center for Devices and Radiological
Health, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring,
MD 20993 USA
cecilia.bettolo@fda.hhs.gov

Abstract. Stereoscopic displays are being considered for 3D breast
imaging applications. Characterization of the physical properties of the
display devices in terms of parameters of relevance for medical imaging
tasks is needed. Among the set of relevant characteristics of stereoscopic
displays, luminance noise introduced by the device has not been studied
so far. We present two methods for measuring spatial noise in stereo dis-
plays, one visual and one quantitative, and report a comparison between
them. We have applied both methods to a stereo-mirror display. The visual
method is based on the TG18-AFC pattern. The quantitative method re-
lies on the evaluation of the noise power spectrum (NPS) using high resolu-
tion images acquired with a photometric CCD camera. Both methods were
tested on different stereo display configurations. The visual results show
higher variability among observers compared to the 2D display mode. The
NPS shows peaks corresponding to the pixel and sub-pixel structure.

1 Introduction

With the advent of digital imaging and the recent advancements in display tech-
nology, stereoscopic display techniques are now being reconsidered and rapidly
being developed in several applications besides the medical field [1]. Stereoscopic
displays have also been proposed for breast imaging. In standard 2D digital mam-
mography lesions are hidden by underlying and overlying normal tissue, which
is projected in one single 2D image. Stereoscopic digital mammography can help
in unmasking lesions from normal anatomical background. This has been shown
to increase sensitivity and specificity [213]. Similar volumetric information can
be obtained with two orthogonal projections in standard 2D mammography, but
it has been shown [4] that, in the case of stereo imaging, the dose delivered is
lower, due to binocular summation by the human visual system. Stereoscopic
display techniques can also be used for the visualization of 3D medical sets. For
example in Ref. [5] stereo has been shown to improve detection performance of
lung nodules in CT data sets compared to other methods.

Methods for the characterization of 2D display systems have been extensively
analyzed [07]. However, methods for testing 3D stereo displays are only just
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now beginning to be developed. In particular, methods for noise and resolution
have not been addressed in the literature. In this work we discuss a spatial noise
characterization methodology as applied to a stereo-mirror display. Two different
methods to estimate the spatial luminance noise of a stereo display system are
used and compared: a visual method based on the use of the TG18-AFC pattern
[8] performed by 12 observers, and a quantitative method based on the evaluation

of noise power spectrum (NPS) and variance, o2.

2 Methods

2.1 Display

The two methods were tested on a stereo-mirror display (courtesy of A. Abileah,
Planar Systems, Inc.). The system is schematized in Fig. [l This device is based
on the separation of the two stereo views using linear polarization and consists of
two LCDs, a half-mirror, and passive cross-polarized glasses. The two LCDs have
an angular separation of 110° and the mirror is placed on the bisect plane between
the two displays. The image of the lower display is transmitted with no change
in polarization, whereas the image of the upper display is reflected by the mirror.
Through reflection the image gets polarized at 90° and mirrored. The right lens
(RL) transmits the bottom image and blocks the upper one, whereas the left lens
(LL) operates in the opposite way. Since the image of the top LCD is specular
due to reflection on the mirror, the top image has to be inverted before sending
it to the LCD. The images coming out of the glasses are reconstructed by the
observer in one 3D image through stereopsis. The display system requires an
alignment. This is done by looking at the same image on both displays (see Fig[I).
The tilt of the mirror is adjusted, by means of two screws located beneath the
mirror support, until the two images coincide.

The monitors are two identical 20” displays (PL2010M-BK, Planar). The
spatial noise is due to variations in luminance across the screen and to the pixel
structure. Each pixel is composed of 3 sub-pixels and inactive area connecting
them, as shown in Fig. 2l

2.2 Visual Method

In order to perform a visual analysis of noise in a stereo display, a visual exper-
iment was designed that provides a numerical score for different display config-
urations. Using the display described above, 6 test scenarios were created (see
Table [[). The user was asked to position his head at about 40 cm away from
the screen. The experiments were performed in a dark laboratory. Depending
on which scenario was being tested, one or both monitors were switched on, the
mirror was set in place, and the user wore polarized glasses. The TG18-AFC test
pattern [8], used to evaluate noise for 2D displays, was displayed. The pattern
is organized into 4 quadrants each with different signal sizes. Each quadrant
consists of 58 (59) squares for the top quadrants (bottom quadrants), containing
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Fig.1. Set up of stereo-mirror display: two LCD monitors placed oriented at 110°,
half-mirror on the bisect-plane, and passive cross-polarized glasses. The right eye will
see the mirrored 90° polarized image, whereas the left eye will perceive the image from
the bottom display (Planar Systems, Inc.).
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Fig. 2. a) Image of display acquired with high resolution CCD camera. b) Vertical and
horizontal profiles of top image.

signals. The user was asked to label which signals were visible in each of the
squares in the test pattern. After the user had finished the first 3 scenarios, the
test image was rotated to prevent the user from unconsciously memorizing the
signal locations, and thus skewing the results.

A total of 12 observers performed the test, 6 males and 6 females within the
age of 18-30 years, 50% of whom had corrected vision. No stereo visual check
was performed on the readers.

2.3 Quantitative Method

For the evaluation of NPS and o2, all the elements of the stereoscopic system were
measured together, and left and right eye views were tested separately. The lumi-
nance noise was estimated using high-resolution images of a uniform pattern dis-
played on the stereo display. The images were acquired with a photometric CCD
camera (Lumetrix P144F, Westboro Photonics). The grey level was set to 230, the
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Table 1. Visual analysis setup configurations

Experiment |bottom screen |top screen|mirror glasses
a pattern off
b pattern pattern b X
c pattern off X X
d pattern uniform X X
e off pattern b X
f uniform pattern X X

same value as the background of the test pattern used for the visual method. The
camera consisted of an array of 1392x 1032 4.65 pm pixels coupled to a macro lens,
Nikon AF Micro-Nikkor (60 mm f/2.8D), with aperture set to f/11. This aperture
reduces the veiling glare inside the camera and maximizes the depth of field allow-
ing objects not exactly on the true focal plane to be captured with relatively good
sharpness. The camera was at a distance of 100 cm from the bottom display, on a
rail parallel to the bottom display, and it could move parallel to the display, hori-
zontally and vertically. This alignment ensured constant magnification within one
image (CCD plane) and between different images (across the display plane) (see
Fig.B)). A second alignment was needed to have the pixel arrays of the CCD and
display aligned. The displays support was tilted slightly, until the pixel columns
of the display were vertical on the CCD image.

The glasses were mounted 1 c¢cm in front of the camera, and, in order to
facilitate switching between the two lenses, they were free to move parallel to
the display plane. The left lens (LL) is the one paired to the bottom screen
and the right lens (RL) is the one paired to the top screen. In order to reduce
cross talk between the two lenses, it is crucial that the polarization axes of the
lenses be parallel and orthogonal to the polarization axes of the images. This
was ensured by a level placed on the bow connecting the lenses.

Different configurations, listed in Table[2], have been used to measure the noise
of the stereo display. The measurements were performed in a dark laboratory,
to minimize direct illumination of the camera and reflection. The displays were
switched on 20 min before acquisition. A series of dark images were taken, which
were required by the software (Lumetrix RT32) supplied with the camera, to flat-
field correct the images.

The optimal focus setting was determined by manually rotating the focus ring of
the lens until the image appeared visually in focus. This procedure had been tested
to be satisfactory for the noise evaluation measurement. The images were acquired
with the same software. The corrected luminance maps were saved in ASCII format,
and read with MATLAB into matrices of 1032 x 1392 pixels. The regions at the edge
of the CCD chip (64 pixels on each side) were discarded, resulting in an image of
968 x 1328 pixels. For each image the variance, o2, was computed:

G H
o> =" (1(i,5) = I)° (1)

i=1 j=1
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Fig. 3. Setup used to estimate noise luminance: (left) side view and (right) front view

Table 2. List of different configurations used to measure NPS of the stereo display
system

Experiment|bottom| top |mirror|left lens|right lens

screen |screen LL RL

1 on

2 on on X X

3 on on X X

4 on X X

5 on X X

6 on X X

7 on X X

where G and H are the image dimensions, [ (,4) the luminance value for the
pixel of coordinates (i, ) and I is the mean luminance value of the image. The
variance was used to calculate the coefficient of variation, COV, defined as:

COV =1000/1 (2)

The noise power spectrum, NPS, was used to quantify the frequency content of
the variations. The image was divided in square areas of 128128 pixels, ROIs,
and the 2-dimensional Fast Fourier Transform (FFT) was applied to each ROIL:

128
nps(u'mvk) = Z I(i,j)e_%ﬂ(“"i""vkj) (3)

i,5=1

The NPS is defined as the average of the squared absolute value of the FFT of
each ROI [9]:

NPS(up,v) = 198 128 128 198 Z [nps (tn, vr)|* (4)



Spatial Luminance in Stereoscopic Displays 225

where Az is the CCD camera pixel size, M is the number of ROIs and u,,, vk
are frequency components. The NPS was then normalized by dividing by the
relative signal power, i.e., 02, and then frequency reorganized, and the 3 central
columns and rows were eliminated, which correspond to the zero frequency. In
order to have a lower limit for the noise measurements, the NPS of the CCD
camera was measured. Images of a uniform illuminated scene, generated with
an integrating sphere, were acquired. The luminance level of this had been set
to the same value used for the NPS measurement of the display, and measured
with a photometer.

3 Results

3.1 Visual Method

For the visual tests, the percentage of correct signal detection was calculated.
Each user was given four scores per test scenario, one for each quadrant of the
test pattern. Fig. shows that in the first quadrant almost all users could
see all the signals. However, in quadrant 2, most users begin to show a decline
in signal detection accuracy. The results for the second quadrant show a good
spread, see Fig. separately plotted in Fig. |4(b)l The overall group scores
for each different scenario are shown in Fig. he observer variability for
stereo viewing increases compared to the 2D mode (configuration a in Table [I]).
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Fig. 4. a) Percentage of signal detection for each quadrant respect to the first quadrant.
The different curves indicate the different setups used. b) Percentage of correct signal
detection for quadrant 2 as a function of different setups. The edges of the box indicate
the 25% and 75% percentage of correct detection, the whiskers extend to the most
extreme data points, not considered outliers. The outliers are shown with markers.
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3.2 Quantitative Method

First the 02 and NPS were estimated for different regions across the bottom
display. Since the luminance varies across the display, each image was corrected
with an offset to match one image chosen as reference.

The camera was placed in the center of the display and images of the different
setups listed in Table Bl were acquired for the NPS evaluation. The results are
shown as 1D traces along the 64 pixel row and column (see Fig.[5]), representing
the NPS in the x and y direction. The NPS peaks at a frequency values of
39 mm~!, 78 mm~! and 117 mm™!, corresponding to the size of the pixel and
subpixels of 26 pym, 13 pym and 8.5 ym. The 1D NPS traces of the CCD are
shown in Fig.
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Fig. 5. 1D traces along the 64'" pixel row and column, representing the NPS in the x
(a) and y (b) direction for different setups
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Fig. 6. a) Noise power spectrum of CCD camera. b) Comparison visual and quanti-
tative results: on the y-axis the percentage of correct signal identification (visual), on
the x-axis the coefficient of variation (quantitative).
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3.3 Discussion

The visual noise results relative to quadrant 2 are compared with the quantitative
results in Fig. The data appear uncorrelated, suggesting that the visual
test is not applicable to stereo-systems. We speculate that in the visual method
the observer suffers from signal cross talk since the head is free to move, whereas
when the camera is used, the lenses are aligned with the axes of polarization.
If this holds the two methods should be correlated in the 2D mode. This could
be tested with different displays. Our analysis needs to be extended to different
stereo displays technologies, as well as to a range of luminance levels.

4 Conclusions

The aim of this study was to assess methodologies to estimate spatial noise in
stereo display systems. Two methods, visual and quantitative, have been applied.
Both methods appear to be uncorrelated, which implies that the visual method
might not be applicable to stereo display systems. More research is needed to
characterize noise, in particular for mammography stereo devices. In future work
the noise characterization will be complemented with a study of resolution of
the display and CCD system.

Acknowledgments. The authors would like to thank Rachel Wilk for the as-
sistance during the visual tests.
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Abstract. Mammographic density, defined as the proportion of the breast area
in a mammogram that contains fibroglandular tissue, is associated with risk of
breast cancer. However, measures of mammographic density are subject to var-
iation in the underlying imaging process and in the assessments of observers.
Automatic volumetric measures of breast density remove much of this variabili-
ty, but their association with risk is less well established. We present density
measurements produced using area-based visual analogue scales (VAS) and by
volumetric assessment software (Quantra™, Hologic Inc.) in the PROCAS
study. The distributions of VAS scores (n = 22 327) and volumetric quantities
(n = 11 653) are given, as are their relationships for subjects with results by
both (n = 11 096), but these are not directly comparable as one is area-based
and the other volumetric. Inter-observer variability in visual area-based estima-
tion is examined by a scatter plot matrix.

Keywords: Breast density, area-based measures, volumetric measures, inter-
observer variation, Quantra.

1 Introduction

The association between high mammographic breast density and increased risk of
developing breast cancer is well established for area-based measures of density [1]. In
such measures, density is usually defined as the proportion of the breast area, as

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 228-235] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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projected on a mammogram, that contains radiopaque fibroglandular tissue rather than
radiolucent adipose tissue. Although area-based measures of breast density have been
shown to be related to breast cancer risk, they do have drawbacks. Firstly, as density
is measured from the two-dimensional projection of the breast on the mammogram
image, measurements are subject to change if the breast is positioned or compressed
differently. Secondly, many area-based methods of measuring breast density depend
upon the subjective assessments of a human observer. Such area-based methods in-
clude classification schemes such as the American College of Radiology Breast Imag-
ing Reporting and Data System (BI-RADS) breast composition categories [2], Boyd
categories [4], visual assessment on a continuous percentage scale and semi-
automated interactive thresholding methods such as Cumulus (Sunnybrook Health
Sciences Centre, Toronto, Canada) [3].

Volumetric measures of breast density aim to improve upon area-based measures
by estimating the volume of dense tissue in the breast rather than its projection on a
mammogram. Such measures should provide more precise estimates of the amount of
dense tissue and therefore, as breast cancer generally originates in such tissue, could
more accurately describe the relationship between density and risk. However, volu-
metric methods are a recent development and are yet to surpass area-based density
measures as predictors of breast cancer risk [16], which may be due to refinements in
methodology being required, or due to the relatively small amount of follow-up data
available to date. Volumetric methods can provide data on the quantity of glandular
tissue independently of the quantity of fatty tissue in the breast, hence they may also
prove to be a more consistent indicator of risk than area-based measures, as there is
evidence that fluctuations in a woman’s weight are reflected in the amount of fat in
their breasts [7]. In addition, many volumetric methods are fully automated and so
also eliminate observer variability from density estimates. Volumetric measures can
be divided into those in which the signal from the mammography unit, in terms of the
pixel values of a digitised film or unprocessed (“raw”) full-field digital mammogra-
phy (FFDM) image, is calibrated using differing thicknesses of tissue equivalent ma-
terials [8-12], and those where an imaging physics model is employed, such as Stan-
dard Mammogram Form [13] for screen-film mammography, and Quantra™™ [14] and
Volpara™ [15] for FFDM.

Research into the measurement of breast density for breast cancer risk prediction
takes place against a backdrop of wider research into the estimation of breast cancer
risk. In particular, large-scale studies such as the Predicting Risk Of Cancer At
Screening (PROCAS) study [5-6], based in Manchester, UK, and the Swedish Karma
study [17] are attempting to predict breast cancer risk on an individual level for pa-
tients attending breast screening. Although current risk models typically do not in-
clude breast density as a component of risk, there is some evidence that they would
benefit from doing so [18-19]. In the current work preliminary density results from
the PROCAS study, both area-based and volumetric, are presented.
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2 Method

2.1  The PROCAS Study

The PROCAS (Predicting Risk Of breast Cancer At Screening) study is collecting
risk information at the time of routine breast screening, calculating individual breast
cancer risk from this information and feeding back the calculated risk to the patient,
with the aim of facilitating risk-reducing interventions where appropriate. The study
aims to recruit 60 000 participants from those invited to screening by the Greater
Manchester Breast Screening Programme, part of the UK NHS Breast Screening Pro-
gramme, and has to date recruited over 38 000. Those who consent to join the study
fill in a questionnaire, from which data on their family history of breast cancer, and
lifestyle and hormonal risk factors is extracted and used to estimate their risk of de-
veloping breast cancer using the Tyrer-Cuzik model [20]. Breast density data is ob-
tained using the screening mammograms, and approximately 10% of those recruited
provide a saliva sample for genetic analysis. Currently the study feeds back risk in-
formation to those women classified as high risk, defined as having a Tyrer-Cuzick
10-year risk of at least 8% or a 10-year risk of at least 5% and area-based breast den-
sity in the top 10% among study participants, and to a subset of those deemed to be at
low risk, defined as having a 10-year risk of less than 1.5% and area-based density of
10% or lower.

2.2 Density Measurement in PROCAS

Area-based density estimation in PROCAS is provided by visual assessment, recorded
on a visual analogue scale (VAS). Two mammogram readers from a pool of 13 radi-
ologists and advanced practitioner radiographers independently view a subject’s
mammograms and mark their percentage density estimates on a set of 10cm horizon-
tal lines labelled 0% and 100% at the ends. Each of the two readers estimates the den-
sity for the mediolateral oblique (MLO) and craniocaudal (CC) views of each breast.
The VAS readings are scanned and automatically converted to percentages. Values
are averaged across the four views, and the two readers' averages combined to pro-
duce a single estimate for each subject. Assignment of readers to subjects is not pre-
determined, and depends on workflow. Reading is blind in the sense that readers do
not know the identity of the second reader and cannot see their results.

Volumetric density estimation is provided by the assessment software Quantra'™
(Version 1.3; Hologic Inc.). Raw FFDM mammogram images from screening are
retained and processed by Quantra™. Breast volume, glandular tissue volume and
percentage density (their ratio) are given per breast rather than per individual view,
and the average of the results for the two breasts is then taken as the single Quantra™
percentage density estimate.
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To aid the illustration of results from the methods, only VAS results for FFDM
mammograms are presented here. It has been observed in the PROCAS study that
VAS results for screen-film mammography tend to be lower than those for FFDM.
We present the VAS results for 22 327 subjects and Quantra'™ results for 11 653
subjects. The distribution of these density estimates is displayed, as is the relationship
between the VAS and Quantra™ measures for the 11 096 subjects that have results by
both methods. To illustrate the inter-reader variation present in the VAS density esti-
mates, a scatter plot matrix of VAS estimates by individual readers is shown.

3 Results

The histograms of results produced by VAS and Quantra™ displayed in Fig. 1 show
that the VAS density estimates take a much larger range of values than those pro-
duced by Quantra™, with the VAS estimates tending to take lower values: the median
VAS density is 21.38% (IQR: 12.12-33.38) and the median Quantra’™ density is
15.50% (IQR: 13.00-19.00). For Quantra™ gland volume and breast volume the me-
dians are 89.0 cm’ (IQR: 63.0-126.0) and 556 cm® (IQR: 370.5-805.0) respectively.
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Fig. 1. Histograms of VAS density estimates and Quantra™ density, breast volume and gland
volume estimates

Fig. 2 contains pairwise scatterplots of the four variables from Fig. 1 for subjects
with both VAS and Quantra™ density results. As one would expect from volumetric
and area-based measures, Quantra’™ density broadly increases with VAS density, and
in a non-linear manner. Also in line with expectations is Quantra™ gland volume
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increasing with breast volume, which it is of course bounded by. It is interesting to
note that both the larger VAS and Quantra™ densities tend to occur at more moderate
values of gland volume and particularly breast volume. Fig. 3 shows a scatter plot
matrix for the individual VAS results produced by the 13 readers. The departures
from the lines of perfect concordance show the extent of variation in the readers’
opinions. In the absence of a ground truth, it not possible to assess reader accuracy
with this data, only inter-reader variation.
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Fig. 3. Scatter plot matrix of VAS density estimates by individual readers, labelled 1 to 13. Plot
(i,j) contains all subjects whose density was estimated by both Readers i and j. Each plot con-
tains the line of perfect concordance.

4 Discussion

While the plots in Fig. 1 and Fig 2 show different distributions of breast density esti-
mates by the area-based VAS and the volumetric Quantra™, it is our assertion that a
direct comparison is inappropriate. A trivial example of the difference between area-
based and volumetric density measurement is shown in Fig. 4, where the two smaller
cubes represent regions of gland in an otherwise fatty breast. In a projection in which
the glandular regions completely coincide (A) an area-based method will show one
square unit of dense tissue, whilst in a different projection of the same breast (B), the
measured area would be two square units. A volumetric measure would always yield
a volume of two cubic units of glandular tissue. In reality the situation is compounded
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by variations in shape and density, but the limitations of attempting to derive a ma-
thematical relationship between volumetric and area-based approaches to density
measurement are apparent from this simple example.

Area-based density estimates are based on the relative areas of gland and of the
whole breast in a projection on a two-dimensional image, and are thus subject to vari-
ation in positioning, compression and imaging conditions. Volumetric methods such
as Quantra™ estimate the absolute volume of glandular tissue and of the whole breast
and should be subject to less variation, more accurately reflecting breast composition.

B

B

= 90

Fig. 4. Example of two cubic regions of gland in an otherwise fatty cubic breast

The departures from the lines of perfect concordance in Fig. 3, demonstrate the in-
ter-reader variability present in the VAS results. To account for this variability, we
have developed methods of making VAS readings comparable across a set of readers
through calibration to the overall distribution across all readers. This will be applied
to density data from the PROCAS study. Although automatic volumetric methods of
assessing density do not have to contend with inter-observer variability, association
between such methods and breast cancer risk requires validation. Data from the
PROCAS study will be used for this purpose when available in sufficient quantities.
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Abstract. We performed a study to assess the potential value of absolute and
relative measures of area and volumetric breast density in predicting breast
cancer risk. A case-control study was performed. The raw mediolateral-oblique
(MLO) view digital mammography (DM) images of 106 women with unilateral
breast cancer and 318 age-matched controls were retrospectively analyzed. The
unaffected breast of the cancer cases was used as a surrogate of higher cancer
risk. For each image, area and volumetric breast density measures were
estimated using fully-automated software. The performance of the density
metrics to distinguish between cancer cases and controls was assessed using
linear discriminant and ROC curve analysis. Absolute measures of dense tissue
content had stronger discriminatory capacity (AUCs=0.65-0.67) than percent
density (AUCs=0.57). Shape-location features also showed modest
discriminatory power (AUC=0.56-0.65). A combined area-volumetric model
was able to outperform (AUC=0.70) any single-feature model. Absolute
measures of fibroglandular tissue content were seen to be more discriminative
than percent density estimates, indicating that total fibroglandular tissue content
may be more reflective of cancer risk than relative measures of density. Our
results suggest that area and volumetric breast density measures could be
complementary in breast cancer risk assessment.

Keywords: Volumetric breast density, digital mammography, breast cancer risk.

1 Introduction

Breast cancer is the most commonly diagnosed cancer in women and is the second
leading cause of cancer death in women in the United States [1]. Work by Gail et al.
has shown that several factors are associated with an increased risk for developing
breast cancer, such as current age, age at menarche, age at first live birth, and number
of first-degree relatives with breast cancer [2], which forms the basis of the standard
model presently used by the National Cancer Institute (NCI) for assessing breast
cancer risk in the general population. However, while this model has been shown to
work well at the population level in predicting group-wise cancer rates, it has only a
modest discriminatory capacity at the individual level in identifying which women
will eventually develop breast cancer, with a reported area under the receiver
operating characteristic (ROC) curve (AUC) of 0.58 [3]. Increased knowledge of
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individual risk is therefore critical to the improvement of patient management with
regards to appropriately personalized screening recommendations [4] and
preventative strategies [5].

Beginning with work by Wolfe et al., multiple studies have established that
mammographic breast density, the relative amount of fibroglandular tissue in the
breast as seen through mammography, is a strong, independent risk factor for breast
cancer [6, 7]. Previous work investigating the incorporation of area breast percent
density as a predictor of breast cancer risk to the Gail model found that addition area
breast percent density lead to only a marginal improvement of discriminatory capacity
[8]. However, while the majority of these studies have focused on assessing breast
cancer risk as a function of the relative amount, or percentage, of dense tissue in the
breast, recent studies have also suggested that absolute measures of the dense tissue
content should also be assessed in addition to relative measures of breast density [9].

Breast density has been most commonly assessed subjectively through either visual
categorization [10] or via semi-automated thresholding methods [11]. Research into
the creation of repeatable, fully automated measures of breast density from full-field
digital mammograms (FFDM) is ongoing [12, 13]. Area-based measures of breast
density are effectively estimates of fibroglandular tissue content measured from a
projection image of the breast, and it has been suggested that such measures may not
properly measure the actual amount of fibroglandular tissue content in the breast[14].
Volumetric measures have been more recently proposed and are shown to provide
orthogonal information about cancer risk when compared to the Gail risk factors [15].
Area and volumetric measures are known to have only moderately strong correlation
to one another [16], further indicating the existence of a complimentary role. A
recently emerging hypothesis is that volumetric measures of density may be more
indicative of breast cancer risk than the area-based measures [17], as volumetric
estimates may allow for more accurate assessment of the total fibroglandular tissue
content of the breast [14]. Figure 1 illustrates two cases with similar volume percent
density scores and different area percent density scores.

In this study we compare the potential utility of area and volumetric estimates of
fibroglandular tissue content in breast cancer risk assessment. Both absolute and
relative measures are considered. A retrospective case-control study is performed,
using the unaffected breast of the cancer cases as a surrogate of cancer risk. The
performance of the area and the volumetric density measures is assessed using linear
discriminant classification and ROC curve analysis. A multivariable model using
feature-selection is also assessed in order to evaluate the complimentary role, if any,
of the area and the volumetric breast density estimates in assessing breast cancer risk.
The results of this investigation could have significant implications on the
implementation of breast density risk stratification in clinical practice.

2 Methods

The raw (i.e., “For Processing”) mediolateral-oblique (MLO) digital mammography
(DM) images from 106 women with unilateral breast cancer and 318 age-matched
controls were retrospectively collected and analyzed under Health Insurance
Portability and Accountability Act (HIPAA) guidelines and Institutional Review
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Fig. 1. Sample mammograms with similar estimates of volumetric percent density but different
estimates of area percent density. Left) Mammogram with similar volumetric percent density
(15%) and area percent density (20%) estimates. Right) Mammogram with a similar volumetric
percent density (18%), but an increased area percent breast density (47%) estimate.

Board (IRB) approval. DM was performed with either a GE Healthcare 2000D or DS
FFDM system at 0.1 mm/pixel resolution and 14 bit gray-levels. The images of the
unaffected (e.g., contralateral) breast of the cancer cases were used as a surrogate of
higher cancer risk and age-matched controls were subsequently side (i.e., right/left)
matched to the cases.

Area-based breast density analysis was performed using a previously validated
method [13] that segments the fibroglandular tissue through a combination of
unsupervised and supervised machine learning techniques. Essentially, an adaptive k-
class fuzzy c-means algorithm is applied which partitions the breast to into several
regions based on gray-level intensity values. A linear discriminant classifier is then
applied to identify and aggregate those sub-regions of the breast which are
predominantly dense into a single dense tissue segmentation. The area of the dense
tissue segmentation is then used to calculate the amount of absolute dense tissue and
whole breast area and the corresponding breast percent density (PD%) measures. In
addition, a series of standard shape descriptors of binary segmentations [18] were
used to characterize the morphometry of the dense tissue segmentations acquired
using the validated method described above, namely compactness, eccentricity, and
center of mass location of the dense tissue area relative to the skin line. Compactness
and eccentricity were used to provide global descriptors of the shape of the dense
tissue area; location information was used to investigate if density locality has a
predictive role in breast cancer risk assessment. Volumetric breast density analysis
was performed using Quantra™ (Hologic Inc.), an FDA approved and commercially
available, fully-automated software based on an extension of the Highnam & Brady
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[19] method for digital mammography, which seeks to quantify a volumetric estimate
of breast density from an acquired mammographic image based on the x-ray
attenuation properties of fibroglandular and adipose tissue. Quantra™ provides
estimates of fibroglandular tissue and whole breast volume as well as a volumetric
percent density score (VPD%).

As the breast density metrics tend to follow a log-normal distribution, all metrics
considered in this work are log-transformed before being entered into the model. The
strength of the association between the area and volumetric density measures was
assessed by linear regression and Pearson’s correlation, both for the absolute tissue
content estimates and percent density. Student’s paired t-test was used to determine if
there are systematic differences between the 2D and 3D measures. The discriminatory
capacity of each of the features relative to cancer status was assessed using leave-one-
woman out cross-validation of a predictive, linear discriminant model (LDA) and
Receiver Operating Characteristic (ROC) curve analysis. The area under the curve
(AUC) was computed in order to assess LDA performance. Finally, the performance
of a combined model incorporating area and volumetric density features selected via a
linear stepwise feature selection [20] stage was compared to individual feature
classifier performance in order to determine if area and volumetric descriptors of
breast density provide complementary information and improve the discriminatory
capacity of predictive models of cancer risk.

Table 1. Receiver Operating Curve (ROC) performance analysis of the area and volumetric
density features in classifying cancer cases versus controls (univariate analysis). Metric names
and associated area under the ROC curve (AUC) are reported. All AUCs were found to be
statistically significant (p<0.05).

Metric AUC
Dense Area 0.65
Breast Area 0.67
Area PD% 0.57
Compactness 0.55
Eccentricity 0.56
Distance from skin-line 0.66
Dense Volume 0.67
Breast Volume 0.64
Volume PD% 0.57

3 Results

Area and volumetric estimates of breast density were found to be significantly
correlated (p<0.001). Area and volumetric estimates of absolute fibroglandular tissue
content were found to be more strongly associated (r=0.73) than percent density
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Fig. 2. ROC performance plots of the area percent density (PD%) (dash-dot), the combined
area-volumetric LDA model (solid) and reference AUC=0.5 line (dotted). All AUCs were
found to be statistically significant (p<0.05).

estimates (r=0.62). Paired Student’s t-tests indicated that area and volume methods,
both the absolute and the percent density measures, are different (p<0.001).

When comparing the performance of the univariate LDA classifiers to distinguish
between cancer cases and controls, the absolute measures of dense tissue content
outperformed the percent density measures for both the area and volumetric density
assessment methods (Table 1), with dense tissue volume demonstrating the highest
overall performance (AUC=0.67). Total breast size also was able to distinguish cancer
status, regardless of whether breast area (AUC=0.67) or volume was considered
(AUC=0.64). Each of the three area shape-location features considered in this work
(i.e., compactness, eccentricity and distance from skin-line) were able to distinguish
cancer status to some degree, with the location feature, e.g., distance from skin-line,
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showing the strongest discriminatory capacity (AUC=0.66). When the feature-set
was considered in aggregate to create a multivariable model, stepwise linear feature
selection choose a total of four features from the ones in Table 1 as being statistically
independent (p<0.01): Dense tissue area, dense tissue volume, compactness and
distance from skin-line. Performance of the combined LDA model comprised of these
four features showed improved discrimination in assessing cancer status (AUC=0.70;
Figure 2) as compared to any of the single feature models.

4 Discussion and Conclusion

In this study, we have evaluated the discriminatory capacity of fully-automated area
and volume-based measures of breast density in cancer risk assessment. When
considered individually, area and volume measurements show comparable
discriminative capacity for distinguishing cancer status, regardless of whether relative
percent breast density or absolute breast density estimates. Furthermore, absolute
measures of fibroglandular tissue content were seen to be more discriminative than
percent density estimates, both for area and volumetric assessments of breast density.
These results indicate that the total amount of fibroglandular tissue volume may be
more reflective of cancer status than the relative content.

Shape-location features of the area based dense tissue segmentation were shown to
have some discriminatory capacity for cancer status, in particular the distance of the
dense tissue segmentation from the skin line. This implies that the spatial location of
the dense tissue within the breast may play a role in overall breast cancer risk. Future
work will look to further analyze this finding, as well as further in investigating and
quantifying the relative individual contributions of area, volume, and morphometry in
breast cancer risk prediction.

Interestingly, while there did not appear to be a difference in the performance of
the area and volume based density measures when considered individually, the use of
stepwise feature selection showed that a combined area-volume model considering
both total fibroglandular volume and area, as well as dense tissue shape and location,
outperformed any of the single-feature models, indicating that the volumetric and area
descriptors of dense tissue may play complimentary roles in assessing breast cancer
risk, with the combination model having an AUC of 0.70. This indicates that a
combined model considering both volume and area breast density may be most
beneficial in terms breast cancer risk prediction. Future work will seek to validate
these findings with larger clinical studies and to incorporate these measures with other
known risk factors for breast cancer into breast cancer risk prediction models.
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Abstract. We propose an automated segmentation method for estimating the
fibroglandular (i.e., dense) tissue in breast MRI. The first step of our method is
to segment the breast as an organ from other imaged parts through an integrated
edge extraction and voting algorithm. Then, we apply the nonparametric non-
uniform intensity normalization (N3) algorithm to the segmented breast to
correct bias field which is common in breast MRI. After that, fuzzy C-means
clustering is performed to categorize the breast tissue into two clusters, i.e.,
fibroglandular tissue and fat. The automated segmentation results are compared
to manual segmentations, verified by an experienced breast imaging radiologist,
to assess the accuracy of the algorithm, where the Dice’s Similarity Coefficient
(DSC) shows a 0.73 agreement in our experiments. The benefit of the bias
correction step is also shown through the comparison with the results obtained
by excluding the bias correction step.

Keywords: Breast segmentation, fibroglandular tissue segmentation, breast
MRI.

1 Introduction

Mammography has been the standard image modality for breast cancer screening,
where the percentage density (PD%), which measures the relative amount of
fibroglandular tissue in the breast as seen mammographically, is an established
independent image-derived risk factor for breast cancer risk assessment [7, 8]. Since
mammographic imaging is the 2D projection of 3D breast structures, the PD%
estimation suffers from the tissue superposition problem and is also sensitive to
certain imaging properties (e.g., body position, compression level, and detector
settings, etc.), which may impact the resulting estimation of cancer risk [1]. Breast
magnetic resonance imaging (MRI) provides 3D scanning and has emerged as an
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effective modality for the clinical management of breast cancer [12]. Studies also
indicate that the percentage of fibroglandular tissue (FT%) computed in breast MRI is
correlated to mammographic breast PD% [3, 4, 5, 6], which suggests that breast MRI
may also play a role in breast cancer risk prediction. To estimate the FT% in breast
MRI, accurate segmentation of the fibroglandular tissue from the breast is a
fundamental step.

Fibroglandular tissue segmentation in breast MRI is challenging in several aspects.
First, the fibroglandular tissue appears only within the breast; hence, segmenting the
breast as an organ from the remaining parts of the MR images is critical, which is done
mostly by manual or semi-automated delineation method in previous work. Second,
fibroglandular tissue may present anywhere over the breast with varying amounts and
appearances, which is hard to model by computational segmentation algorithms. Third,
within the segmented breast region in MR images there are no obvious anatomical clues
associated with the fibroglandular tissue that may potentially serve as contextual
information to aid identifying the fibroglandular tissue. In addition, the bias field is
common in breast MRI where the intensity inhomogeneity may considerably affect the
appearance of tissue properties. The problem of automated fibroglandular tissue
segmentation has received little attention in the literature to date [1]. In addition to the
qualitative estimation of the amount of fibroglandular tissue by visual assessment [15],
most previous studies rely on semi-automated segmentation methods such as interactive
thresholding [3, 5] or clustering [2, 4, 6]. Fuzzy C-means (FCM) has been used where
the number of clusters is either interactively determined by users [4] or based on initial
intensity range assumptions followed by interactive adjustments [2]. It is known that
visual assessment produces subjective results and interactive methods introduce inter-
and intra-reader variability [2, 3, 4, 5, 6]. In dealing with the intensity inhomogeneity,

Fig. 1. Proposed algorithm steps for fibroglandular tissue segmentation. (a) A breast MRI slice.
(b) Segmented breast. The darker regions are the fibroglandular tissue. (c) After performing
bias field correction. (d) The segmented fibroglandular tissue.
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FCM, N3 [9], and CLIC [10] algorithms have been recently tested for breast MR
images [1], where different combinations of these algorithms yield varying
performance, which is based on the visual evaluation by radiologists.

In this work, we propose a fully automated method for fibroglandular tissue
segmentation. The method consists of three algorithmic steps: breast segmentation,
bias field correction, and clustering-based fibroglandular segmentation, all are fully
automated and no manual interaction is needed at any step of our method. In the
experimental evaluation, segmentation accuracy is reported on the agreement of the
algorithm- and manual-generated results from an experienced breast imaging
radiologists using the Dice’s Similarity Coefficient (DSC). We also compare the
segmentation accuracy between applying and excluding the bias correction step, to
demonstrate the importance of the bias correction step.

2 Methods

The three main steps of the proposed segmentation method are shown in Figure 1.
All of the three steps are fully automated. The first step is to segment the breast as an
organ from other imaged parts in breast MR images, which is implemented based on
the integrated edge extraction and voting algorithm previously reported in [11]. This
step is critical to the fibroglandular tissue estimation because it precludes the
interferences coming from the non-breast regions [14]. Second, we further process
the segmented breast by applying the nonparametric non-uniform intensity
normalization (N3) algorithm [9] to correct bias filed. This way the intensity
inhomogeneity is removed or reduced and as a result, there is better discrimination
between the intensity ranges of the different tissues, corresponding to the
fibroglandular tissue and fat, respectively. Attributed to the first two steps in breast
segmentation and intensity inhomogeneity correction, we are allowed to predefine
the number of clusters to be equal to two for the subsequent clustering step, where
we guide the fuzzy C-means (FCM) algorithm to divide the breast into two broad
intensity-based clusters: fibroglandular tissue and fat. Since fibroglandular tissue
appears darker than fat in the non-fat-suppressed breast MR images, we can select
the cluster that has a lower average intensity value as the segmented fibroglandular
tissue from the two clusters.

3 Results

We use 10 3D bilateral MRI cases selected from a high-risk screening population
[13], with cancer-unaffected, T1-weighted, non-fat-suppressed imaging in sagittal
view. The 10 cases are randomly selected from the sets of ACR Breast Imaging
Reporting and Data System Atlas (BI-RADS) density categories 3 and 4; hence these
breasts have relatively high fibroglandular tissue density. There are 56 slices for each
scan, resulting in 10x56=560 2D MRI slices used in the validation experiments.
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Women in our study were imaged prone in a 1.5T scanner with dedicated surface
breast coil; matrix size: 256x256; slice thickness: 2-3.5mm; flip angle: 20°. The
algorithm-generated fibroglandular tissue segmentation results are compared with
manually segmented results, confirmed from an experienced breast imaging
radiologist, which are considered as ground truth here for validation purposes. The
manual fibroglandular tissue segmentation is aided by an in-house developed
interactive tool, where the operator first selects one or multiple region(s) of interest
outlining the rough region of the fibroglandular tissue in the breast and then tunes an
intensity threshold to determine the segmentation of fibroglandular tissue.

The segmentation accuracy is based on assessing the agreement between the
algorithm- and manual-generated segmentation in terms of the Dice's Similarity
Coefficient (DSC). We also compare the segmentation performance between applying
and excluding bias correction (i.e., step 2) to evaluate the benefit resulting from the
N3 algorithm. Table 1 lists the volumetric DSC performance for each of the 10 cases
in terms of applying and excluding step 2. Overall we achieve an average
segmentation accuracy of DSC=0.73 when step 2 applied and the accuracy decreases
to 0.70 when step 2 is excluded. This suggests improved segmentation due to the bias
correction step. To further illustrate the segmentation performance, Fig. 2 shows the
slice-wise DSC for each of the 10 cases, where the accuracy is also compared
between applying and excluding step 2. It is observed that in general the segmentation
accuracy is relatively low for boundary slices compared to the central slices. Selected
segmentation examples are shown in Fig. 3 with the comparison to corresponding
manual segmentations. As can be seen, the automated segmentation results are
generally accurate except for a small area near the top right corner of the breast where
the intensities of some fat tissue fall in the range of fibroglandular tissue.

Table 1. Segmentation performance (DSC) for the 10 cases

Case #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 | Average
FCM with Bias| 7 | 062 | 0.64 | 090 | 078 | 0.74 | 0.78 | 066 | 071 | 077 | 073
Correction

FCM without

. . 0.63 | 049 | 0.63 | 0.84 | 0.77 | 0.73 | 0.77 | 0.64 | 0.68 | 0.77 0.70
Bias Correction

4 Discussion and Conclusion

We propose a fully-automated method for fibroglandular tissue segmentation in breast
MRI, which includes three main algorithm steps. The first two steps, namely breast
area segmentation and intensity normalization, are important in the sense that they
maximize the preclusion and reduction of a variety of interferences such that we can
directly pre-determine the number of clusters (e.g., 2) for the subsequent FCM
clustering algorithm. Our method is validated by 10 3D MRI scans, on a total of 560
2D MRI slices, and experimental results demonstrate that the proposed method is able
to produce reasonable fibroglandular tissue segmentation. It is also shown that the N3
algorithm improves the segmentation accuracy from 0.70 to 0.73 for the 10 cases.
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Fig. 2. Slice-wise segmentation performance (DSC) for each of the 10 cases, which is also
shown in terms of applying or excluding bias correction (i.e., step 2)
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Fig. 3. Segmentation examples with the comparison to manual segmentation. Each row shows
for one case example. (a) Segmented and bias corrected breast. (b) Contour (green) of the
segmented fibroglandular tissue. (c) Final automated segmentation. (d) Manual segmentation.

As observed in Fig. 2, segmentation for the superior/inferior slices is relatively less
accurate compared to the central slices. We attribute this result mostly to the signal
attenuation and the strong noise effect in the boundary slices. Specific pre- or post-
processing may be applied to those slices, as part of future work, to improve
segmentation.
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The current segmentation by FCM is based on intensity information. As can be
seen from the examples shown in Fig. 3, some false positive segmentation results
indicate that intensity information alone may not be fully adequate to sufficiently
discriminative in identifying the fibroglandular tissue versus fat in breast MR images.
Additional tissue/anatomical properties, such as relevant tissue priors, may be useful
to become incorporated in the segmentation algorithm to improve segmentation.

Bias field is a major factor to accommodate in fibroglandular tissue segmentation
for breast MRI. Bias field impact the intensity distribution in breast MR images and
therefore the FCM may suffer from the consequence of the bias field. While the N3
algorithm is used in this study, we will continue to test other MRI bias correction
algorithms and compare the resulting segmentation performance.

In future work, we also plan to further evaluate the performance of our algorithm in
larger datasets and also compare the segmentation accuracy to readers’ inter-reader
variability.

Breast MRI allows for more accurate estimation of the true (e.g., 3D) amount of
fibroglandular tissue in the breast and our proposed automated method is an essential
step for quantitative segmentation of the fibroglandular tissue in breast MRI. Based
on the segmentation results, it is straightforward to derive a volumetric percentage of
fibroglandular tissue (FT%), which may ultimately aid in clinical breast cancer risk
estimation.
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Abstract. Breast density is a key component of risk assessment for personalised
screening, necessitating robust, repeatable measures. The Standard Attenuation
Rate (SAR) enables the quantification of breast tissue radiodensity at each pixel,
relative to the attenuation of a reference material, so may be used as a measure of
volumetric breast density. A major complication is quantification of tissue in the
periphery of the breast, the (often substantial) region between the skin boundary
and the point at which the breast occupies the entire distance between the plates,
since the thickness is governed by the shape of the compressed breast, rather than
the separation of the plates. We present a method to measure the compressed
shape from the image, hence the thickness at each point in the periphery. The
method exploits the vastly different attenuation of the various breast tissues from
that of air, and uses spatial smoothing to glean a signal estimating solely the un-
derlying thickness. An iterative refinement procedure allows for variation in scat-
ter in the periphery arising from the air boundary edge effects. The outcome of the
inclusion of the periphery in breast density quantified by this method is analysed,
and the importance of this region's inclusion illustrated.

Keywords: volumetric breast density, quantitative mammography, periphery
equalisation.

1 Introduction

In recent years, there has been substantial progress towards personalised screening,
including: when to start screening; screening frequency; and the possibility of using
multiple screening modalities [1]. Breast density, together with factors such as age,
biopsy results, and family history of breast cancer, have been found to be powerful
indicators of who might benefit from earlier and more frequent screening, and to jus-
tify the use of modalities additional to x-ray, such as MRI and ultrasound. In order to
fully exploit the clinical information captured in breast density, repeatable measures
of volumetric breast density that are robust to inter and intra patient/image variations
are required. The Standard Attenuation Rate (SAR) [2-3] has been developed for tis-
sue quantification in breast density assessment and computer aided diagnosis. It in-
corporates a complete model of the imaging process, including photon production in
the x-ray tube, explicit consideration of both absorption and scattering phenomena
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within the breast, and detector signal formation; which is used to quantify relative
attenuation against a reference material (analogous to the Hounsfield unit). The SAR
image depends only on the attenuation of the underlying anatomy (decoupled from
the x-ray characteristics used for imaging). Also, through the use of forward simula-
tion using the image formation model, the appearance of any given tissue den-
sity/lesion may be estimated in a given surroundings. For example, a 20mm thickness
of fibroglandular tissue gives a different projected attenuation when surrounded by
40mm of adipose, than when surrounded by 30mm; since it is the fibroglandular tis-
sue that is of primary interest, it follows that by forward simulation using the two
different backgrounds, the models underlying SAR enable an identical underlying
feature to be ascertained between the images of varying backgrounds. Specifically,
using Beer's law of attenuation and assuming a monoenergetic primary:

I = e_(Pbackground(H_tdensity)+Pdensitytdensity)IO

where the resulting image signal is I, the incident photon fluence is Iy, H is the com-
pressed breast thickness, the background attenuation is, ppackground» and the density is
of attenuation Ugensiry and thickness tgensity- It may be observed that the appearance
of the density depends not only on its size and attenuation; but also on the thickness
of the compressed breast and the attenuation of the tissues in the surroundings. There-
fore, to make meaningful like-for-like comparison of densities between images and
patients, these factors must be accounted for and normalised. Originally, this idea was
developed for exploitation in computer aided detection and diagnosis applications for
lesions. However, while assessing the efficacy of SAR for breast density assessment
the need for "thickness normalisation" quickly became apparent. Specifically, when
using a volumetric breast density measure, such as SAR, the way in which the breast
deforms under compression affects the observed attenuation for a given area. For
example, fibroglandular tissue is stiffer than adipose, so the deformation may force
the adipose tissue surrounding a central volume of fibroglandular tissue toward the
periphery, while the fibroglandular tissue itself maintains a near constant shape. The
reduction in thickness of adipose results in the observed attenuation within the associ-
ated area of the projection image increasing, even though the fibroglandular volume is
the same, as a forward SAR simulation would allow one to ascertain. So, when meas-
uring the ratio of fibroglandular to adipose ("density"), it is imperative to include the
entire breast since the tissue displaced to the periphery must be included to get the
correct ratio. The complication arises in measuring the composition of the tissue in
the periphery due to the need to know the anatomical thickness at any given pixel.
This paper presents a technique to estimate this information from the acquired image.

2 Materials and Methods

The method exploits the fact that the attenuation of adipose and fibroglandular tissue
are similar when compared to the vastly different attenuation of air. The radiodensity
values computed in the periphery are therefore governed principally by the breast
thickness; tissue composition being a second order effect. Using functions constrained
to the smoothness of the shape of the compressed breast, and spatial averaging, the
shape of the periphery may be estimated.
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First, the breast air boundary, and the inner edge of the periphery, that is the point
at which breast tissue occupies the full spacing between the compression plate, is
segmented (as shown in Fig. 1).

Fig. 1. The segmentation of the breast air boundary and the inner periphery edge where the
breast is full thickness (magenta boundary/green fill)

Next an approximating function must be chosen that describes the intensity profile
in the periphery in such a way as to approximate the variation in the signal arising
from the tailing off of the thickness, rather than any changes in tissue composition
(radiodensity) or image noise. To this end, we begin by assuming that the shape of the
compressed breast is symmetrical about the midline and that its 3D edge shape fol-
lows a quadratic (parabola). That is, taking any section through the breast periphery
perpendicular to the breast-air boundary, and plotting the thickness against the spatial
distance from the boundary, will yield a parabola. Fig. 2 illustrates the geometry
adopted to describe the acquisition of the mammographic image.

s Focal Spot

y(0)
D | Yx(0) \.\
‘\I"rimary Ray
\

Fig. 2. The geometry used to derive the function describing pixel intensity variation arising
from the change in thickness of the breast within the periphery
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In Fig. 2, given the symmetry H = 2h and so |0{A| = |01B| = h, let us also sup-
pose that |04E| = d. The ray at angle 6 is shown. In the world coordinate frame
OXY, the ray is [x, xtan8]. At the top of the compression plate x = D, and the y dis-
placement is Dtanf. If we denote tanf = t, then in essence, since D is known, we
have y~t1, and we want to ascertain the ray traversal length through the breast is
quadratic in 7, thereby following the shape we have assumed for the compressed
breast. To analyse the quadratic assumption for AEB, the local coordinate frame
0X,Y, is established. In this coordinate frame, A and B are the points where the
breast leaves the compression plates. Evidently, because of the compression, the tan-
gent to the breast above A and B is vertical, but not of course below. The quadratic is:

1 =5 (x2 —h?) ()

Translating back into the mammography world coordinate frame, gives the breast
edge as:

Tew) = @ - 0i+ (7 (%) @ = 1)) @)

for —h < u < h. Of interest in this application are two cases, as depicted in Fig. 3, the
first being where the ray enters the breast outside the periphery, but exits within it
(upper in the figure); and the second where the ray both enters and exits in the periph-
ery (lower in the figure).

s
.._/.> —_—

PR R M

[==B

Fig. 3. The two cases of ray intersection with the tissue in the breast periphery

In the first case, the ray intersects the top compression plate at [D, Dt], and inter-
sects the surface of the compressed breast given by equation (2) at [u, uT], so:

uT =T — (:—2) W? — h?) 3)
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The traversal distance of interest, i.e. that over which the primary ray is attenuated
leading to the image signal, is |QR| and is given by:

QR? = (u — D)[1 + 1°]2 @)

1
It may be observed that [1 + 72]2 is at most quadratic in 7, and is in fact between
linear and quadratic. For the second case, the traversal distance is given by:

24 4(d/h2)(T+d)]

(d/h?) )

|y, 7y, (utz, 71| = (1 4+ 72) |
which has order /72(t2)Y/2~73, though to a very good approximation is governed
by 2.

We therefore take the pixel intensity profile of the projection of the breast edge to
be at most quadratic, and allow it to vary between linear and quadratic. This is of
course subject to the assumption the compressed breast shape is a symmetrical parab-
ola: an assumption we believe to be reasonable.

A linear relation is adopted just inside the air boundary, smoothly joined to a quad-
ratic relation for the remainder, and is fitted to the intensity profile observed perpen-
dicular to each point on the air boundary. An example point is shown in Fig. 4, where
the coefficient of determination being 1 to 2 significant figures shows the small effect
of the tissue signal, visible as the slight undulations around the fit. This fitted function
is used to describe the thickness, assuming the tissue composition to be the average of
that at the periphery inner edge.

Raw Periphery Profile
Poly. (Quadratic Portion of Raw Periphery Profile)
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Fig. 4. The segmentation of the breast air boundary and the inner periphery edge where the
breast is full thickness (left), and a periphery profile perpendicular to the air boundary (right).

Scatter complicates the problem yet further, since the image signal resulting from
scatter fluctuates considerably within the periphery, as the proximity to the skin edge
causes the volume of the tissue contributing scatter to vary significantly. This may be
observed in Fig. 5, where the scatter signal is shown for both a periphery assumed to
be a constant thickness equal to that of the rest of the breast, and for a periphery
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varying in thickness, as measured from a clinical image using the proposed technique.
The difference is quantified for a horizontal profile across the periphery in terms of
the scatter-to-primary ratio in Fig. 6.

Fig. 5. The scatter image for a sample breast, adopting a constant thickness equal to that of the
breast as a whole over the periphery (left), and the actual measured periphery thickness (right)

Through the explicit model of scatter that forms a part of SAR the variation in scat-
ter is accounted for by using the current estimate of the breast shape to calculate the
scatter field in the periphery, and then refining the shape estimate given the calculated
scatter. These feed forward refinement cycles are repeated until convergence.
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Fig. 6. The scatter/primary ratio of a profile across the periphery for the cases shown in Fig. 5



258 C. Tromans and M. Brady

3 Results

Fig. 7 shows the thickness map, a 3D rendering of the breast shape and the SAR im-
age computed using the breast shape computed by the proposed technique. Since each
pixel intensity in a SAR image is a measure of the radiodensity of the corresponding
cone of tissue above that pixel's physical detector element, breast density is measured
as the mean of the SAR image pixels. Here it is converted to an adi-
pose/fibroglandular fraction to aid comparison with other techniques. Table 1 com-
pares breast density with and without the periphery.

Fig. 7. A colour map of the thickness relative to the breast thickness (left) and a 3D rendering
(centre), and the final SAR image including the periphery given the thickness map (right)

Table 1. Breast density readings using SAR for a typical case, with and without the periphery

CC MLO
DICOM | Density Density DICOM | Density Density
Breast (full (including Breast (full (including
Thickness | thickness | periphery) | Thickness | thickness | periphery)
only) only)
Left 51mm 19.21% 13.06% 56mm 17.76% 13.24%
Right| 47mm 21.20% 13.96% 55mm 13.30% 10.24%

4 Discussion

The results in Table 1 show the importance of the periphery in measuring density,
with all but the R-MLO being within 1% of each other, and the discrepancy between
views/sides dropping notably. The density readings may be seen to drop when the
periphery is included, supporting the hypothesis that adipose tissue is pushed to the
periphery during the compression. In the CC case, where the compressed breast
thickness is smaller in the case of the right, the magnitude of the change in breast
density when including the periphery may be seen to be largest. The R-MLO has a
markedly lower density in both the measures with and without the periphery.
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5 Conclusion

The breast periphery should be considered to obtain accurate breast density readings,
a result of the varying deformations arising from differing breast compressions, and
hence compressed breast thicknesses, between exams.
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Abstract. Digital x-ray acquisition allows the sophisticated processing of ac-
quired images before display to the reader, making possible such operations as
the removal in software of the systematic blurring effect of scatter. A method
for analysing scatter removal is presented. The scatter model incorporated
within the Standard Attenuation Rate (SAR) is used, which is a method for cal-
culating a normalised image of tissue radiodensity. The model builds on the
fundamental physical relations underlying Monte Carlo techniques; but through
optimal information sampling and interpolation is able to execute in a clinically
realistic time. The scatter kernel arising around each primary ray is calculated,
and these are superimposed to give the scatter image. An iterative refinement
procedure is used to calculate the radiodensity and scatter at each ray/pixel, cy-
clically feeding back to each other, to yield the scatter field. Image sharpness
and contrast-to-noise (CNR) analysis is presented for two tissue equivalent
phantoms. The algorithm is found to be able to match image sharpness without
the grid, to that with the grid present, confirmed by residual analysis using
autocorrelation plots which show the difference is almost white noise within a
95% C.I. The increased fluence in the absence of the grid is shown to allow
dose to be reduced by 37-49%, whilst delivering equivalent contrast and CNR.

Keywords: scatter, dose reduction, acquisition post processing.

1 Introduction

An under-exploited benefit of digital mammography is the decoupling of the appear-
ance of the underlying anatomy presented to the reader from how the image is ac-
quired, facilitated by the ability to run software image processing algorithms on the
digital image before presentation. Acquisition may therefore be optimised to glean the
maximum signal-to-noise (SNR) ratio, where signal fundamentally means the attenua-
tion characteristics of the underlying anatomy, as opposed to optimising contrast for
human perception. Scattered photons result in a reduction in image contrast due to the
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systematic low frequency blurring of the primary image, so a physical grid is usually
introduced to filter a portion of them out according to their angle of incidence, though
this approach is somewhat crude since the primary fluence is also attenuated. With
digital post processing, it is possible to remove the effect of scatter in software, and
the need for the grid is removed. This paper presents and analyses the performance of
such a processing algorithm.

The Standard Attenuation Rate (SAR) [1-2] is a quantitative, normalised measure
of tissue radiodensity per unit distance traversed by the primary (independent of scat-
ter), and may be thought of as analogous to the CT Hounsfield unit. It is computed
through the use of a detailed model of the physics of image acquisition, considering
both primary and scattered photons, and it is the model of scatter, originally designed
for quantitative analysis, that we consider here for grid replacement.

The scatter model utilises optimal information sampling and interpolation (to yield
a clinical usable execution time) to calculate scattering using the molecular form fac-
tor and the coherent free electron cross section; and the incoherent scatter function
and the differential Klein-Nishna collision cross section: the highly accurate funda-
mental physical relations underlying Monte Carlo dosimetry techniques. The scatter
kernel arising around each primary ray is calculated as follows:

1. A model of the tube calculates the spectra of the photon beam of which the primary
ray comprises and is incident upon the upper surface of the breast.

2. A computationally efficient ray tracer calculates the collection of tissues/materials
and the traversal distance through each, that a primary ray encounters. Importantly,
the spatial variation in scatter kernels, particularly prominent at the edges of the
breast, are accounted for. Figure 1 shows a typical primary beam.

Primary Beam

A
Breast
dt
P7, Scatter Path,
| length r
length |
| Image Pixel
V B c

Fig. 1. The division of a primary ray into closely sampled points for scatter kernel calculation

3. The traversal path for all tissues/materials other than air is considered as a set of
closely sampled points p. The scatter originating from each such p that is incident
on detector pixels C near the intersection of the primary ray and the detector sur-
face (B) is computed, using the fundamental scatter relations.

4. The scattered photons are attenuated according to photoelectric absorption that oc-
curs along p to C. We ignore the possibility of multiple scattering. (Optionally: if
there is an anti-scatter grid, both the scattered and primary photons are attenuated
according to the absorption of the grid.)



262 C. Tromans, M. Cocker, and M. Brady

A number of sampling and interpolation schemes are employed to streamline the cal-
culation, as the above steps are highly computationally intensive. The scatter kernels
for all the primary rays within the image are combined by superposition to yield the
scatter image. The model may be used for both forward simulation of scatter, and in
reverse, to estimate the scatter in an acquired image. However, in this case a compli-
cation arises in that the tissue radiodensity along the primary ray AB is unknown. This
is resolved through the use of an iterative method that begins by approximating the
scatter through the assumption of a constant scatter-to-primary ratio, and using this
estimate to calculate the SAR radiodensity at each pixel. The process then begins a
second iteration, feeding these values for the attenuation encountered by the primary
ray back into the calculation outlined above. These iterative cycles proceed until such
time as convergence is reached, and with it, the scatter arising from the homogenous
tissue mix within the breast accounted for.

2 Materials and Methods

To assess the performance of any image enhancement technique the signal-to-noise
ratio per unit dose is considered. In raw mammographic images the signal is taken to
be contrast due to the complex relationship between the underlying radiodensity and
pixel intensity. However, in a SAR image the effect of the imaging parameters are
normalised, so pixel intensity only reflects radiodensity and the contrast of a given
feature will always be the same. Specifically, the image quality metric adopted here is
taken from Young et al [3], in which contrast is defined as:
mean(bgd) — mean(fgd)

Cont t= x 1009 1
ontras mean(bgd) % €Y)

and the contrast-to-noise ratio as:
R mean(bgd) — mean(fgd)
J[sd(bgd)z + sd(fgd)?]
2

(2)

The image sharpness (a measure of the distinctness of a features edges) and contrast
(the magnitude of the difference between two locations) are closely related in that in a
noise-free x-ray image of a fine detail arising from a discontinuity in radiodensity: the
contrast will depend on the exact location of the two points chosen to measure con-
trast between, and the resulting variation in contrast between slightly varying loca-
tions of the two measurement points, will be governed by the image sharpness. In a
technique analogous to anisotropic diffusion, we measure image sharpness here by
plotting local contrast between two points either side of, and equidistant from, the
centre of an image feature (in this case the discontinuity), against the distance be-
tween the points. The shape of the resulting plot describes image sharpness.

The SAR transformation is described, at each pixel Lyy corrupted by noise €:

SAR = mX,},log(IX,y +e — sx‘y) + ey 3)
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where sy, is the estimated scatter signal, and m,; and ¢, are the linear coefficients
of the normalisation transform to the reference material, and hence depend on the
image acquisition parameters. Since SAR is independent of scatter, and hence the
presence of a grid, the contrast in the SAR image will be constant for any given fea-
ture (by definition since it reflects only the underlying radiodensity), and so attention
turns to the effect of the SAR transformation on the noise term in the denominator of
the CNR. Quantum noise is described by the Poisson distribution where the variance
in the number of events is equal to the count (regardless of photon paths, breast thick-
ness and tissue attenuation). Therefore, if the photon count in the without grid case is
reduced to match that of the with grid case, i.e. the dose is reduced by the Bucky fac-
tor (generally around 2), then the variance in the noise arising from quantum effects
will become equal, as the counts will be equal. The addition of the noiseless normalis-
ing offset, Cxy» in the SAR transform has no effect on the variance, and the noiseless
normalising coefficient my is slightly smaller in the without grid case due to the
absence of the grid interspace material, therefore the noise amplification arising from
this coefficient in the SAR transform is less without the grid. The subtraction of the
scatter component, sy y, is more complicated, since it is calculated by what amounts to
a spatially varying deconvolution (of course, since the scatter kernels vary spatially, it
cannot be computed by a conventional deconvolution), taking the noisy image,
Iyy € as its input. The SAR model does not take account of stochastic noise, since
no possibility exists for identifying the combination of random events that occurred
during any given exposure, therefore the presence of stochastic noise will propagate
through, and will result in variation in the calculated s, between exposures of the
same object (when in an ideal noiseless world they'd be constant). The noisy estimate
of sy y, when subtracted from the acquired image in equation (3), will have the effect
of introducing noise into the SAR image, and hence will increasing the variance in the
SAR image. The noise component in a given sy, depends upon the noise component
in all the surround pixel values, since scatter is contributed to any given pixel from
the volume of material in the immediate surroundings. Therefore the degrading effect
of noise in sy, on the overall CNR of the SAR image will depend on the variation in
radiodensity/composition of the object from which the image is being acquired. Were
it possible to have a noise free sy, the dose could be reduced by the Bucky factor in
the grid's absence. In reality noise will be present, and in the next section we present
an empirical analysis of the CNR for two phantoms to establish dose reductions.

3 Results and Discussion

Validation experiments have been conducted on a GE Senographe Essential, using
two CIRS tissue equivalent phantoms. The first comprises of a sharp vertical discon-
tinuity between adipose and fibroglandular tissue equivalents, 40mm thick, with a
10mm thickness of adipose placed above and below to mimic the subcutaneous fat
layer just beneath the skin. The second is a BR3D phantom, which the manufacturer
states was designed to "assess detectability of various size lesions within a tissue
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equivalent, complex, heterogeneous background" and contains an assortment of mi-
crocalcifications, fibrils and masses, and thus provides a more clinically realistic test.

Fig. 2 shows the experimental acquisitions of the discontinuity phantom with and
without the grid present, and the effect of the grid on the sharpness of the discontinui-
ty may be qualitatively assessed visually.

Fig. 2. Empirical image acquisitions acquired at 29kVp Mo-Rh 71mAs of the discontinuity
phantom with (left) and without (right) an anti-scatter grid present

Fig. 3 shows the scatter image, sy, and the primary image, Iy, — sy, from equa-
tion (3) calculated from the empirical acquisitions. Note the degrading of the discon-
tinuity detail when comparing the without grid to the with grid scatter image, and the
high degree of similarity in the primary images.

. 1

Fig. 3. The scatter image, in the with (far left) and without (centre left) grid case, and the pri-
mary image in the with (centre right) and without (far right) grid case calculated by SAR from
the experimental acquisitions of the discontinuity phantom

Fig. 4 plots the variation in CNR with spatial distance horizontally from the dis-
continuity, and analogously, Fig. 5 plots the variation in image contrast (i.e. the image
sharpness), for the raw and SAR empirical images of the discontinuity phantom, with
and without the grid. The mean and standard deviation in equations (2) and (3) are
calculated for vertical lines of 50 pixels. In the case of the raw data, the absence of the
grid returns the superior CNR measure, however as may be seen from the contrast
variation in Fig. 5, the presence of the grid returns the sharper image. The percentage
increase in contrast between the with and without grid contrast in the raw images has
a mean of 27.09%, and standard deviation 4.55. The improvement in contrast/image
sharpness shown suggests the designer of this digital mammography system favours
image sharpness, over CNR, and thus has included a grid. The CNR in the SAR
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image remains superior in the absence of the grid, as would be expected, in fact it
may be seen that the exposure (and hence dose) may be reduced by 37% (from
71mAs to 45) before the CNR measures become approximately equal.
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The shape of the contrast plots in Fig. 5 shows the improvement in image con-
trast/sharpness arising from the SAR processing in both the cases without and with a
grid (since the grid isn't 100% efficient in filtering scatter, especially at low angles). A
linear scaling, such as that used in the window and level procedure for image display
has been applied to the SAR values, so the maximum contrast matches that exhibited
in the raw images, factors of -5.81 with the grid, and -4.52 without. It should be noted
that such a scaling has no effect on the CNR values (which as previously discussed
are matched when the without grid exposure is reduced from 71 to 45mAs). The simi-
larity in the shape of the SAR contrast plots confirms that the algorithm has achieved
equivalent image sharpness in the absence of the grid, to that with the grid, but has
allowed the dose to be reduced by 37%, whilst returning equivalent CNR.

Turning attention now to the BR3D phantom, Fig. 6 shows SAR images with and
without the grid, and their subtraction after a rigid translation registration. The need
for the registration arises from having to physically dismantling the machine to re-
move the grid, despite our experiments employing a positioning jig. The spatial posi-
tion markers show the rigid translation to not quite be sufficient, due to the presence
of a rotation component, and hence image detail may be observed at the edges of the
subtraction image.

¥: 603 Y; 348
Inclex: 09941

Fig. 6. SAR images of the BR3D phantom at 29kVp MoRh, 71mAs with grid (left), 36mAs
without grid (centre), and the residual from subtraction of these two images (right)

The residuals in the subtraction of the without and with grid should be random
noise. We test this by plotting the autocorrelation for the region in the centre of the
subtraction image free from registration artefact, as shown in Fig. 7. It may be ob-
served that all bar one of the lag points is contained within the 95% confidence
bounds surrounding the conclusion of white noise, supporting the assertion the sub-
traction residual is random.

For a simple phantom, like the discontinuity analysed earlier, image sharpness and
CNR plots are very informative, they become impractical with the image complexity
of the BR3D. We therefore adopt a slightly different approach to measuring the CNR.
Firstly we note that by definition the contrast in the SAR images is the same in both
the with and without grid cases, since the phantom is identical and the SAR pixel
intensity depends solely on the underlying radiodensity. This is confirmed above by
subtraction, and analysis of the residual by autocorrelation to confirm randomness. To
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quantify the image noise, the standard deviation of the residual of subtracting two
consecutive "identical" exposures is calculated, this quantifies the image noise over
time, which is identical to quantifying it by measuring the standard deviation in an
image of a homogenous object. The image noise quantified in this way is 0.0083 with
the grid present at 71mAs, and 0.0057 without the grid at 71mAs, and 0.0081 without
the grid at 36mAs, allowing a dose reduction of 49%, whilst maintaining CNR.

Sample Autocorrelation Function
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Fig. 7. The autocorrelation the region in the centre of the subtraction image (with grid - without
grid) free from registration artefact

4 Conclusion

An analysis of image sharpness and CNR of SAR processed images taken with and
without grid, suggest that the SAR scatter algorithm is able to restore image contrast
and sharpness in the absence of a grid to that which it would be had the grid been
present. Due to the increased photon fluence reaching the detector in the absence of
the grid, the software scatter correction is able to facilitate dose reduction between 37
and 49%, for the phantoms tested, whilst delivering equivalent CNR.
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Abstract. A novel image denoising algorithm has been proposed for quantum
noise reduction in digital mammography. The method uses the Anscombe trans-
formation to stabilize noise variance and convert the signal-dependent Poisson
noise into an approximately signal-independent Gaussian additive noise. In the
Anscombe domain, noise is removed through an adaptive Wiener filter, whose
parameters are obtained considering local image statistics. Thus, the method
does not require any a priori knowledge about the original signal, because all
the necessary parameters are estimated directly from the noisy image. The me-
thod was applied on synthetic mammograms generated based upon an anthro-
pomorphic software breast phantom with different levels of simulated quantum
noise. The evaluation of the proposed method was performed by calculating the
peak signal-to-noise ratio (PSNR) and the mean structural similarity index
(MSSIM) before and after denoising. Results show that the proposed algorithm
improves image quality by reducing image noise without significantly affecting
image sharpness.

Keywords: Digital mammography, quantum noise, image denoising, Ans-
combe transformation, Wiener filter.

1 Introduction

Full Field Digital Mammography (FFDM) is currently the standard tool for breast
imaging and is gradually replacing screen-film mammography as the preferred tool
for breast cancer screening [1]. However, mammographic interpretation is a complex
task, preventing radiologists from the ideal of detecting all abnormalities visualized
on mammograms. Among the lesions evaluated in mammographic reading, special
attention is given to clustered microcalcifications because they may represent the only
sign of malignancy [2]. Due to their small size and the confounding effects of image
noise, the visibility of microcalcifications may sometimes be relatively poor. Image
quality significantly influences the performance of radiologists in mammography
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interpretation. Thus, high quality mammograms are required for accurate detection
and characterization of suspicious lesions in breast cancer screening.

In this context, image processing algorithms have been utilized to increase the vi-
sibility of microcalcifications, with the hope of improving the performance of radiol-
ogists [3]. However, for proper use of preprocessing techniques in mammographic
images, some important aspects must be considered. First, use of image processing
algorithms for the enhancement of high-frequency components, such as microcalcifi-
cations, has the undesirable effect of increasing the image noise [4]. On the other
hand, image processing for noise suppression typically reduces sharp transitions be-
tween pixel intensities, which results in image blurring. This could impair the detec-
tion of fine detail and small structures in the breast image.

Denoising techniques are, in general, based on the assumption that noise is additive
and signal independent (that is, there is no correlation between pixel values and the
values of noise components) [4]. However, mammography images are acquired using
the minimum radiation dose consistent with ensuring both adequate image quality and
patient safety; as such, the quantum noise should be apparent. Quantum noise is non-
additive and signal-dependent (that is, noise components values are correlated with
respect to the radiation intensity). A recent study has shown that quantum noise is the
dominant image quality factor in mammography and exerts greater influence than
spatial resolution for the tasks of detecting microcalcifications and discrimination of
masses by radiologists. A failure to address noise issues can impede diagnostic per-
formance [5].

We propose a novel image denoising algorithm for quantum noise reduction in dig-
ital mammography, aimed at improving image quality, and consequently improving
radiologists’ performance in clinical interpretation. The method uses the Anscombe
transformation [6] to stabilize noise variance and convert the signal-dependent quan-
tum noise into an approximately signal-independent Gaussian additive noise. In the
Anscombe domain, image noise is removed through an adaptive Wiener filter, whose
parameters are obtained considering local image statistics. Thus, the method does not
require any a priori knowledge of the original signal, because all the necessary para-
meters are estimated directly from the noisy image.

2 Methods and Materials

The following model describes the image degradation process during acquisition [4]:

9(x,y) = f(x,¥) * h(x,y) + n(x,y) ey

where g(x,y) is the degraded image, f{x,y) is the input image, A(x,y) is the degradation
function, n(x,y) is the additive noise and the operator “*” indicates convolution.
Restoration techniques usually manipulate this equation to obtain an estimate,
f(x,y), of the input image when h(x,y) and n(x,y) are known. The additive noise
n(x,y) is incorporated by the digitization process and can be modeled as signal-
independent Gaussian noise. However, f{x,y) cannot be considered a noise-free image
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because mammographic images are also corrupted by quantum noise, which is a non-
additive noise and is normally modeled by a Poisson statistical distribution.

The Anscombe transformation is a variance-stabilizing transformation that con-
verts a random variable with a Poisson distribution into a variable with an approx-
imately additive, signal-independent Gaussian distribution with zero mean and unity
variance [6,7]. Let the degraded image, g(x,y), be the random variable. The Anscombe
transformation of g(x,y) is given by [6]:

2(x,y) = 2 /g(x,y)+§. @)

This equation can be represented by the following additive model [7]:

2(x,y) = <z fux,y) + g) +v(x, ), 3)

where u(x,y) is the rate of the Poisson distributed image (i.e., the expected value) and
v(x,y) is the additive term, which is independent of the signal s(x,y) and has an ap-
proximately Gaussian distribution.

After the Anscombe transformation, the additive term v(x,y) includes both the
quantum noise converted into Gaussian noise and the electronic white noise, original-
ly incorporated by the digitization process. Thus, this transformation allows the use of
any well-known denoising technique to reduce Gaussian additive noise by working on
the image z(x,y) in the Anscombe domain [7].

In this work, we use the adaptive Wiener filter to obtain an estimate, $(x,y), of
the expected noise-free mammographic image in the Anscombe domain [7]. The
Wiener filter calculates an estimate of a noise-free image that minimizes the mean
squared error. Specifically, when z(x,y) is assumed to have a Gaussian additive noise
with zero mean, the Wiener filter is the optimal filter and has the following expres-
sion:

2
$0y) =5+ sz y) -2, )

where 5 and 62 are the mean and variance of the signal, respectively; Z is the mean
of the image z(x,y); and ¢ is the variance of the noise.

In the Anscombe domain, we can assume that ¢ is equal to 1. Moreover, Z is
equal to S because the mean of the noise, v, is equal to zero [7]. Thus, we can rewrite
the equation (4) as follows:

2
S

§(x,}’)=§+ [Z(x,}’)_g] (5)

0.
g2+1
Parameters § and o2 can be estimated by local statistics of a preliminary estimate of
the signal in the Anscombe domain, $(x,y). We considered a square neighborhood of
variable size around the pixel being processed. The preliminary estimate of the signal,

§(x,y), was obtained by blurring the image z(x,y) with an averaging filter mask of
size 3 x 3 [4].
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After the adaptive Wiener filtering procedure, the inverse Anscombe transforma-
tion is applied to obtain the estimate, #(x,y), of an approximately noise-free mam-
mographic image in the spatial domain. The inverse Anscombe transformation is
given by the following equation [7]:

~ 1, !
a(x,y) =80y — 5 (6)

-
3 Results

The assessment of the proposed denoising algorithm was performed considering syn-
thetic mammograms generated based upon an anthropomorphic software breast phan-
tom [8] with a cluster of microcalcifications with 50% and 25% of normal contrast.
The contrast of the microcalcifications is specified as the relative linear x-ray attenua-
tion coefficient compared to the tabulated attenuation of hydroxyapatite. All mammo-
grams were generated using three different levels of quantum noise, simulating the
normal clinical dose, half of the normal dose and a quarter of the normal dose. All of
the images were restored using the proposed filter.

In order to evaluate the performance of the proposed methodology, we calculated
two widely used image quality parameters: the peak signal-to-noise ratio (PSNR) [9]
and the mean structural similarity index (MSSIM) [10]. Ideal mammograms without
quantum noise were also generated to provide the ground-truth reference. These pa-
rameters were measured in full mammographic images (4096 x 1792 pixels) and two
regions-of-interest (ROI) of 256 x 256 pixels containing, respectively, microcalcifica-
tion clusters with 50% contrast and 25% contrast.

Figure 1 shows one example of the results obtained with the denoising algorithm
on the synthetic images. The image on the left shows a ROI with a cluster of micro-
calcification with 50% of contrast extracted from the mammogram generated with a
quantum noise correspondent to a quarter of normal clinical dose. In the center is the
same image after denoising and on the right is the ideal image used as reference.

4 .ud
Fig. 1. ROIs (256 x 256) of a cluster of microcalcifications with 50% of contrast extracted from

the mammogram generated with a quantum noise correspondent to a quarter of normal clinical
dose. Left: noisy image; center: restored image; right: ideal image without noise.
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Table 1 shows the PSNR and MSSIM measurements obtained with the proposed
denoising algorithm for the synthetic FFDM images before and after denoising. The
relative improvement of image quality achieved using the denoising methodology
was also calculated. Figure 2 and Figure 3 show, respectively, the improvement in
PSNR and MSSIM measurements after denoising as a function of the radiation
dose.

Table 1. Results of PSNR and MSSIM measured for the proposed algorithm before and after
denoising. Synthetic mammograms were generated with quantum noise corresponding to 100%,
50% and 25% of the normal clinical dose. Parameters were measured in the full mammographic
images and two ROIs of 256 x 256 pixels containing, respectivelly, microcalcification clusters
(MC) with 50% and 25% contrast. The relative improvement on image quality after denoising
was also calculated.

PSNR(dB) MSSIM
Phantom Images T N I .
prove mprove
Before | After ment(dB) Before | After ment (%)
TE‘ Full image 51.30 | 60.84 9.54 0.9921 | 0.9993 0.73
s 2
s = ROI with
5‘8 50% MC 40.13 | 44.92 4.79 0.9329 | 0.9815 5.21
bS] E contrast
ISEC) ROI with
§ 25% MC 40.02 | 44.84 4.82 0.9317 | 0.9814 5.33
contrast
TEv Full image 48.33 | 57.98 9.65 0.9845 | 0.9987 1.44
5 2
£ S| RO with
é Tg 50% MC 36.81 | 42.12 5.31 0.8728 | 0.9751 11.72
S E contrast
e ROI with
i 25% MC 36.93 | 42.28 5.35 0.8741 | 0.9755 11.60
contrast

Full image 45.36 | 54.90 9.54 0.9702 | 0.9975 2.81

ROI with
50% MC 33.50 | 38.20 4.70 0.7776 | 0.9640 23.97
contrast
ROI with
25% MC 33.54 | 38.31 4.77 0.7771 | 0.9640 24.05
contrast

25% of the normal
clinical dose
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4 Discussion

In this work we investigated the use of the Anscombe transformation and the adaptive
Wiener filter to reduce the quantum noise of digital mammography images. Im-
provement on mammographic image quality resulting from the proposed denoising
method was evaluated. First, we compared the noisy and the reference images in
terms of two widely used signal fidelity index: PSNR and MSSIM. As expected, it
was found that images acquired at lower dose levels resulted in lower image quality
index values, as shown in Table 1. This indicates that mammography quantum noise
is signal-dependent and increases with a reduction in radiation dose, as expected.

In order to evaluate the proposed denoising methodology, the same image quality
metrics were measured again after denoising, considering both the restored and the
reference images. Results showed that the proposed filter improved image quality
index values, as shown in Table 1. Increases of up to 9.65 dB in the PSNR and up to
24% in the MSSIM measurements were observed. This indicates that the proposed
denoising filter produced restored images which accurately preserved the detail seen
in the noise-free reference images. It was noticed that the relative improvement on
image quality after denoising, evaluated by means of the MSSIM, was higher for
images with lower simulated dose (Figure 3). However, little variation on PSNR mea-
surements was observed as a function of the radiation dose (Figure 2).

Image quality assessment was also performed considering two ROIs of clustered
microcalcifications extracted from the mammograms: one with 50% of contrast and
one of 25% of contrast. Results suggested that the proposed methodology produced
better quality images by reducing noise without noticeably affecting image sharpness,
as seen at Figure 1.

In future work we will study the effect of the proposed denoising filter on the per-
formance of microcalcification detection using observer studies and ROC analysis, in
order to evaluate the clinical use of the proposed methodology in breast-cancer
screening.
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Abstract. We propose a novel paradigm for clinical diagnostic software
using a mobile multi-touch device for user interaction and dedicated
monitors for image display. We show a demonstrator implementing a
workflow-based breast MRI reading system tailored to multi-touch in-
teraction. The demonstrator explores the feasibility of touch interaction
for diagnostic reading of MRI patient cases. We show a patient-centric,
workflow-oriented concept that is arranged around a multi-touch capable
hybrid input-output device.

In this contribution we introduce clinically useful concepts of the
demonstrator. Firstly, a mechanism that we dubbed location aware-
ness takes care of security issues. Reading is supported by (1) a patient
browser with graphical patient history and cancer risk factors; (2) a
workflow concept using hanging protocols; (3) dedicated ROI definition,
annotation, and measurement tools using multi-touch gestures. Gesture
concepts and interaction paradigms are introduced for intuitive user ex-
periences while maintaining accuracy.

1 Introduction and Prior Art

The spread of mobile devices in society is reflected by a likewise high number
of radiologists owning iPhones, Android phones, iPads, and other touch display
equipped personal mobile devices. Recent estimates prospectively spoke of 80%
of radiologists intending to own an iPad by the end of 2012. We also note a high
demand for radiology software on mobile devices, reflected in growing numbers
of presentations on major conferences, and also reflected by company efforts to
support their respective clinical software platforms on mobile devi