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Preface

This volume of Springer’s Lecture Notes in Computer Science presents the
scientific proceedings of the 11th International Workshop on Breast Imaging
(IWDM 2012), which was held July 8–11, 2012 in Philadelphia, Pennsylvania,
USA. Formerly called the International Workshop on Digital Mammography, the
new name recognizes the move in breast imaging towards more recent emerging
technologies and multimodality imaging solutions. The IWDM meetings bring
together a diverse group of researchers, clinicians and representatives of indus-
try, who are jointly committed to developing technology for early detection and
subsequent patient management of breast cancer. The conference series was ini-
tiated at a 1993 meeting of the SPIE in San Jose, with subsequent meetings
hosted every two years by researchers around the world. Previous meetings have
been held in York (1994), Chicago (1996), Nijmegen (1998), Toronto (2000),
Bremen (2002), Durham (2004), Manchester (2006), Tucson (2008) and Girona
(2010).

The IWDM 2012 was designed as a platform to present the latest technolog-
ical developments and clinical experiences of novel breast imaging technologies,
including digital mammography, tomosynthesis, CT, MR, ultrasound, optical
and molecular imaging. Additional topics include multimodality imaging, im-
age processing and visualization, and computer-aided imaging. A total of 120
papers were submitted to the conference from research groups in 24 countries.
Each four-page extended abstract was reviewed in a fully-blinded process by at
least two members of the Scientific Program Committee, which led to the final
selection of 42 oral presentations and 58 poster presentations. The final 8-page
papers were reviewed by the volume editors. Galley proofs were approved by the
corresponding author(s) of each paper.

The proffered presentations were organized into 10 sequential oral sessions
and 2 poster sessions during the two and a half day conference. The session titles
give insight into the changes that have occurred in breast imaging in the 19
years since the first Digital Mammography conference in San Jose. Today digital
mammography is the clinical standard of care. As a result, this year only one
session was devoted to the technology of digital mammography, with a primary
emphasis on image quality and radiation dose. Rather, one sees that digital
mammography is the enabling technology for a number of new applications,
including image-based breast cancer risk assessment. Thus, substantial work was
presented on image-based measures of breast cancer risk, and other quantitative
measures used in the detection, diagnosis, treatment and prevention of breast
cancer.

A number of new and adjunctive technologies were also discussed in the work-
shop. In particular, digital breast tomosynthesis was heavily represented, both
in papers covering system development and clinical application. Related topics
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in image processing, computer-aided diagnosis and quantitative imaging were
also presented. Other new technologies including breast computed tomography
and breast molecular imaging, and advances in adjunctive technologies including
magnetic resonance imaging and ultrasound were well represented.

The invited speakers were chosen to illuminate the trends in breast imaging
and stimulate future developments. In a trend spanning the last four IWDM
meetings, tomosynthesis was again discussed in an invited lecture. This year,
Emily F. Conant (University of Pennsylvania, USA) and Etta D. Pisano (Medical
University of South Carolina, USA) presented “Tomosynthesis: Clinical Trials
and Clinical Implementation”. Thus, in a 6 year period, we have gone from
papers covering the fundamentals of the technology and positing the role for
tomosynthesis to papers discussing the successes of the technology.

John M. Lewin (Rose Breast Center, USA) presented a talk entitled “Contrast-
enhanced Digital Mammography and Tomosynthesis – Review and Update”.
Contrast-enhanced breast radiography has the potential to combine the mor-
phologic and functional signs of breast cancer. David A. Mankoff (University of
Pennsylvania, USA) discussed “Molecular Imaging of the Breast: Clinical and
Biological Considerations” in a complementary paper outlining numerous other
applications of quantitative breast imaging. Katrina Armstrong (University of
Pennsylvania, USA) provided a thought-provoking talk entitled “Moving to an
Individualized Paradigm for Breast Cancer Screening and Prevention: Opportu-
nities and Challenges”. In this presentation, the role of imaging was reviewed in
light of the larger clinical context of breast cancer. Finally, Martin J. Yaffe and
Gina Clarke (University of Toronto, Canada) provided an overview of “Quan-
titative Imaging Techniques in Pathology for Management of Breast Cancer”.
In this presentation, they demonstrated how the role of imaging continues to
expand and challenge researchers.

Finally, a meeting as large and successful as the IWDM 2012 is only possible
through the tireless work of many people. The members of the Scientific Pro-
gram Committee did an outstanding job in reviewing the papers and providing
detailed critiques to the authors as part of the peer-review process. The local
arrangements for the conference were skillfully handled by Lori Ehrich and An-
gela Scott, who are normally responsible for the continuing education program
for the Department of Radiology at the University of Pennsylvania. Technical
support of the meeting was provided by Joseph Chui of the Physics Section. Joe
has worked hard to keep the various servers running and databases communicat-
ing together. Special thanks need to go to Roshan Karunamuni and Raymond
Acciavatti who expended huge effort to put the 100 individual submissions into
a single cohesive book. Finally, thanks go to Emily Conant and Mitch Schnall for
helping to prepare the proposal for this meeting two years ago, and to Predrag
Bakic and Sara Gavenonis for making this meeting a reality.

July 2012 Andrew D.A. Maidment



Organization

The 11th International Workshop on Breast Imaging (IWDM 2012) was orga-
nized by the Physics and Breast Imaging Sections of the Department of Radiol-
ogy of the University of Pennsylvania. The organizers would like to acknowledge
the following individuals for their assistance and hard work in making this work-
shop possible.

Scientific Program Committee

Susan M. Astley University of Manchester, UK
Predrag R. Bakic University of Pennsylvania, USA
Hiroshi Fujita Gifu University, Japan
Sara Gavenonis University of Pennsylvania, USA
Maryellen L. Giger University of Chicago, USA
Nico Karssemeijer University of Nijmegen, The Netherlands
Elizabeth A. Krupinski University of Arizona, USA
Andrew D.A. Maidment University of Pennsylvania, USA
Robert Marti University of Girona, Spain
Joan Marti University of Girona, Spain
Etta D. Pisano Medical University of South Carolina, USA
Martin J. Yaffe University of Toronto, Canada
Reyer Zwiggelaar Aberystwyth University, UK

Local Organizing Committee

Raymond J. Acciavatti
Joseph H. Chui
Emily F. Conant
Lori Ehrich
Roshan Karunamuni
Mitchell Schnall
Angela Scott
Glenda Wortham



Table of Contents

Session 1: Contrast-Enhanced Imaging

Pre-clinical Evaluation of Tumour Angiogenesis with
Contrast-Enhanced Breast Tomosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Melissa L. Hill, Kela Liu, James G. Mainprize, Ronald B. Levitin,
Rushin Shojaii, and Martin J. Yaffe

The Effect of Amorphous Selenium Thickness on Imaging Performance
of Contrast Enhanced Digital Breast Tomosynthesis . . . . . . . . . . . . . . . . . . 9

Yue-Houng Hu, David A. Scaduto, and Wei Zhao

Contrast Optimization in Clinical Contrast-Enhanced Digital
Mammography Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Juan-Pablo Cruz-Bastida, Iván Rosado-Méndez,
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Abstract. Contrast-enhanced digital breast tomosynthesis (CE DBT) has been 
proposed to image the effects of tumour angiogenesis. In this work we evaluate 
the relationship between CE DBT image signal and histopathology in an animal 
tumour model to provide evidence for the underlying basis for signal enhance-
ment. A VX2 carcinoma was induced in the hind leg of 8 rabbits and grown for 
up to 3 weeks. Projection images from a 60 s contrast-enhanced CT acquisition 
were used to reconstruct CE DBT volumes. Fiducial markers implanted in the 
tumour provided a means for registration between images and stained whole-
mount sections. The relationship between CE DBT image signal and angioge-
nesis marker expression was determined. A correlation was found between CE 
DBT image signal and dextran extravasation, which strengthened during wa-
shout, while no relationship was observed with CD31 staining. These results 
suggest that for clinical CE DBT, washout phase imaging will provide informa-
tion on vascular permeability. 

Keywords: Tomosynthesis, contrast-enhanced, angiogenesis, VX2, CD31,  
dextran. 

1 Introduction 

Formation of new blood vessels within tumours is essential for the growth and spread 
of cancer [1]. The combination of mammography and clinical iodinated contrast 
agents in contrast-enhanced digital mammography (CEDM) has been demonstrated to 
reveal vascular information similar to that provided by breast MRI, and recent ap-
provals of a system for clinical use have been granted in the US, Canada and Europe. 
Clinical pilot studies of these systems have identified that the 2D nature of mammo-
graphy may limit tumour detection sensitivity due to overlap of normal tissue signal 
that may mask small and/or weakly enhancing lesions in CEDM [2]. Contrast-
enhanced digital breast tomosynthesis (CE DBT) offers the potential to overcome this 
limitation via 3D imaging. To date, CE DBT development has focused on image qual-
ity optimization, which is affected by a large parameter space including the acquisi-
tion geometry, imaging technique factors, the choice of reconstruction algorithm, and 
the subject breast characteristics [3–5]. As this modality moves toward the clinic it is 
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important to understand its diagnostic potential for appropriate medical application. 
As a first step towards an understanding of the pathology information potentially 
available from CE DBT images we aim to demonstrate the relationship between CE 
DBT image signal and histology markers for tumour angiogenesis. To our knowledge 
this is the first study of its kind for CE DBT. Similar work done in a CEDM clinical 
pilot study resulted in a poor correlation between imaging parameters and microvessel 
density [6]. The authors hypothesized that this finding could be attributed to the 
summation of tumour and normal tissue signals in CEDM, and that the signal is also 
related to functional parameters such as vessel permeability which were not captured 
in their study [6]. In this work we test both hypotheses with CE DBT in a rabbit tu-
mour model. 

2 Methods 

2.1 Experimental Protocol 

Under a protocol approved by the University Health Network Animal Care Commit-
tee, eight New Zealand White rabbits were inoculated with cell suspensions of VX2 
carcinoma in the left hind leg. Although VX2 carcinoma does not strictly model the 
characteristics of breast cancers, this animal model allowed for tight control of expe-
rimental conditions and permitted registration between histopathology and in vivo 
images. This animal model was chosen because a vascularized tumour will grow to 
roughly the size of a small breast cancer (~1 cm) within 2 to 3 weeks and the leg can 
be easily immobilized to prevent motion artifact. To provide a range of tumour sizes 
and degrees of angiogenesis, four of the rabbits were imaged at 2 weeks and four at 3 
weeks after inoculation. Immediately following imaging, the rabbits were sacrificed 
and tumours were excised for histology. A cone-beam CT system (eXplore Locus 
Ultra, GE Healthcare) with similar detector and geometry characteristics to DBT sys-
tems was used for imaging [7]. Full 3D datasets (416 projections) were acquired at 70 
kVp, 50 mA with a W/Cu anode/filter combination at one second intervals for a one 
minute period in a perfusion protocol. Anesthetized tumour-bearing rabbits were in-
jected intravenously with a single bolus of 1.5 ml/kg clinical iodinated contrast agent 
(Visipaque 270) at the onset of x-ray exposure. Post-sacrifice, 26 gauge catheters 
visible on both on x-ray and histology were implanted directly into the tumour as 
fiducial markers. The rabbit carcass with the tumour intact, and then the excised tu-
mour embedded in agar were each imaged with CT to allow for registration between 
imaging and histology. About 20 minutes prior to sacrifice, 25 mg of 70 kDa biotiny-
lated dextran (Invitrogen) was administered intravenously dissolved in 1 mL of saline 
solution for validation of vascular permeability. Immediately before sacrifice a second 
dose of contrast agent was administered for tumour visualization on post-sacrifice CT. 
Whole-mount sections of the tumour tissue and a control sample of the normal muscle 
from the contralateral leg were made for histopathological analysis. Serial sections 
were stained with haematoxylin and eosin (H&E) to identify tumour morphology, 
anti-CD31 (DAKO, clone JC70A) was used to detect vascular endothelium, and  
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streptavidin-HRP (Vector Lab. Inc., Cat# SA-5004) was used to reveal biotinylated 
dextran extravasation. 

2.2 Tomosynthesis Reconstruction 

Projection images for DBT reconstruction with a SART algorithm were sampled post-
acquisition as shown in Fig. 1. Fifteen projection images were sampled with regular 
spacing over a 42˚ angular extent such that the 0˚ projection aligned with the fiducial 
markers in the tumour, as determined using the post-sacrifice CT images (Fig. 1b).  
 

a.

b.  c.  

Fig. 1. Schematic of tomosynthesis image sampling from CT data. a) A surface rendering of 
post-sacrifice CT data illustrates the geometry of projection image sampling as determined 
from the fiducial marker (arrow) position; b) post-sacrifice CT axial slice; and c) perfusion CT 
axial slice. DBT reconstructions are generated from the perfusion scan data. 

DBT volumes were reconstructed from the raw images acquired in the CT perfu-
sion scans (Fig. 1c) with 0.2×0.2×1 mm voxels. To simulate radiation exposure at 
levels closer to a clinical DBT exam, for each projection angle, images acquired at the 
given angle from 7 individual time points were averaged together. For each perfusion 
scan, optically stimulated luminescent (OSL) chips (Landauer Inc.) were fixed to the 
inner thigh of the rabbit hind leg to monitor the dose to the animal. The OSL exposure 
readings were validated using measurements performed free in air and at the centre of 
a 10 cm diameter PMMA cylindrical phantom with an NRC calibrated farmer type 
ionization chamber (NE 2571) and electrometer (Fluke 35040). It was confirmed that 
the equivalent dose to water at the rabbit inner thigh was 0.058 ± 0.003 mGy/mAs, or 
0.007 mGy per projection image. For one 15 projection image DBT dataset when 

42
˚ 

4.8 cm 
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averaging over 7 s is performed, the equivalent dose to water is about 0.73 mGy. In 
this study we evaluate a 5 time-point temporal subtraction CE DBT exam. The first 
post-contrast time point was chosen as 15 s, the time of peak arterial contrast-
enhancement as determined from the signal in the left femoral artery in the perfusion 
CT dataset. Subsequent post-contrast volumes were reconstructed at 30, 45, and 55 s. 

2.3 CE DBT Image Analysis 

Analysis is performed on reconstructed DBT volumes subtracted between the first 
time point (4 s), where no contrast agent is present, and subsequent time points. The 
image signal in subtracted CE DBT volumes was measured as the mean voxel intensi-
ty within manually segmented regions of interest (ROI) in central slices through tu-
mour and normal tissue. One ROI was placed in the tumour and another was selected 
within the corresponding muscle in the normal leg. A qualitative registration was 
performed between an H&E stained tumour tissue section and the CE DBT volume to 
determine the DBT slice number to use for tumour signal analysis. The DBT slice 
number for normal tissue ROI placement was determined using a constant offset from 
the right femur to approximate the location of excision of normal tissue. The mea-
surement uncertainty due to ROI location was not determined and will be evaluated in 
future work. 

2.4 Histological Analysis 

Whole-mount specimen digitization was performed using a TISSUEscopeTM (Huron 
Technologies International), scanner operated in brightfield mode at 1 μm resolution. 
In this work serial sections were immunostained for CD31 and dextran with DAB 
(3,3'-diaminobenzidine) as the chromogen and counterstained with haemotoxylin. 
Tumour and normal tissue were each manually segmented from the digitized sections 
for quantification of DAB staining. To separate the stains, colour deconvolution [8] 
was applied to each segmented portion of the digitized slides using ImageJ software. 
The RGB values of haematoxylin and DAB for deconvolution were calibrated using 
single-stained slides, with a third colour vector defined as orthogonal to the other two. 
Each DAB-deconvolved section was transformed to grayscale and the staining was 
scored with an averaged threshold measure (ATM), which is a validated metric that 
quantifies the fractional area stained [9]. 

2.5 Statistical Analysis 

To test for correlations between the CE DBT image signal and immunohistochemistry 
(IHC) staining the Pearson’s correlation coefficient, r, was calculated. The relation-
ship between the signal difference (SD) of tumour and normal tissue in CE DBT and 
the difference in ATM score in tumour and normal tissue was determined for each of 
CD31 and dextran immunostained tissue sections. Correlation between CD31 and 
dextran staining was also tested. Statistical significance was determined using the 
Student’s t-test for a significance level of 0.05. 
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3 Results 

All eight VX2 inoculations successfully resulted in a primary tumour in the hind leg. 
The average diameter as measured on H&E histology sections was 1.8 ± 0.4 cm after 
2 weeks of growth and 2.8 ± 1.0 cm after 3 weeks growth. A representative VX2 tu-
mour image dataset is presented in Fig. 2 in the DBT orientation (i.e. Fig. 1). A 0.2 
mm thick CT slice is shown in Fig. 2a at the time of peak arterial contrast-
enhancement. A 1 mm thick CE DBT slice from reconstructions subtracted between 
15 s and 4 s time points is shown in Fig. 2b. The signal-vs-time curve in Fig. 2c plots 
mean CE DBT intensities in an ROI placed in the tumour and in the normal muscle. 
For comparison, the femoral artery CT signal is shown on the right y-axis to demon-
strate the time-course of the intravascular contrast agent. In Fig. 2d, blue (haematox-
ylin) stain identifies nuclei and pink (eosin) dyes the cytoplasm. In Fig. 2e and 2f 
markers of angiogenesis, CD31 and 70 kDa dextran, are stained brown (DAB). 
 

a. b.  c.  
d.  
 

e.  
 

f. 
 

Fig. 2. Tumour at 3 weeks growth sliced perpendicular to the fiducials (Fig. 1), reconstructed in 
a) CT; and b) CE DBT. c) The CE DBT signal as a function of time in the tumour as compared 
to normal muscle and the CT signal in the femoral artery (right y-axis). Histology sections: d) 
H&E, e) CD31; and f) dextran each stained with DAB (brown). 

Fig. 3 presents an example of colour deconvolution applied to a VX2 tumour. No 
pixels should be stained with the “third colour” because this indicates colour that is 
not included in DAB or haematoxylin. However, due to tissue processing and digiti-
zation artifacts and the fact that DAB is a light scatterer and not an absorber, some 
pixels are included in the third colour. In this example the fractional areas stained are 
0.15, 0.15 and 0.03 for DAB, haematoxylin and the third colour respectively. This 
amount of the third colour is representative of the deconvolution performance ob-
served for all sections evaluated in this study and is considered to be negligible. 

The measurements of fractional area of DAB staining for CD31 and dextran in tu-
mour and normal tissue are summarized in Fig. 4. The results are grouped so that 

2 mm 
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rabbits numbered 1 to 4 have 2 weeks of tumour growth and rabbits 5 through 8 have 
3 weeks of VX2 growth. Note that rabbit 4 did not receive a dextran injection. 
   

colour deconvolution 

tumour segmented 

DAB (CD31) haematoxylin 

haematoxylin + DAB

‘colour 3’ 

a. b.

c. 

1 mm 

50 μm 

 

Fig. 3. Example of tissue segmentation and colour deconvolution for quantitative histological 
analysis. a) A haematoxylin and DAB stained section; b) tumour tissue is manually segmented 
for analysis, with an inset from the region indicated; and c) the result of colour deconvolution. 

a. b.

Fig. 4. Fractional area of DAB stained for a) CD31 and b) dextran in tumour and normal tissue 

In Table 1 the results of correlation studies between the CE DBT signal difference 
at each reconstruction time point, and the fractional area (ATM score) stained with 
DAB in CD31 and dextran IHC sections. For each of the CE DBT and histology pa-
rameters, the difference between the tumour and normal tissue quantities are found, 
which largely eliminates the effect of any physiological differences between rabbits or 
changes in tissue processing conditions. The Pearson’s correlation coefficient be-
tween CD31 and dextran area of staining was 0.39, with a p-value of 0.38. 
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Table 1. Pearson’s Correlation coefficient, r, and corresponding p-value for the comparison of 
CE DBT signal difference (SD) and the difference in average threshold measurement (ATM) 
score in tumour and normal tissue for CD31 and dextran immunostained tissue sections 

CE DBT SD 
(Stumour - Snormal) 
at given time [s] 

CD31 ATM score difference 
(ATMtumour - ATMnormal) 

Dextran ATM score difference 
(ATMtumour - ATMnormal) 

r p r p 

15 -.14 .74 .59 .16 
30 .02 .96 .82 .02 
45 .08 .85 .90 .006 
55 .10 .81 .93 .003 

4 Discussion 

In this work we take the first step towards a validation of the source of the image 
signal in CE DBT. A VX2 tumour in rabbits provides a model for the study of the 
relationship between tumour angiogenesis and CE DBT image signal in a dynamic 
system. The use of a cone-beam CT permits rapid image acquisition to capture the 
contrast agent, while maintaining a similar geometry to existing DBT systems. 

Angiogenesis was induced in all rabbits by the VX2 inoculation. Analysis of his-
tology marker expression demonstrated reasonably consistent CD31 fractional area of 
staining across all rabbits. Neither CD31 expression, nor dextran extravasation had a 
clear association with the tumour size.  

A statistically significant correlation between dextran staining area and the CE 
DBT signal difference was found from 30 s onwards, and the strength of the correla-
tion increased with time. We know from the CT data, as shown in Fig 2c, that from 15 
s onwards the arterial concentration of the contrast agent was decreasing, so the tu-
mour tissue was in a washout phase when the dextran-CE DBT signal relationship 
became significant. Due to the size of dextran molecules chosen for use in this work, 
they are unlikely to extravasate from healthy endothelium, so the observation of dex-
tran extravasation is a direct indication of increased vessel permeability. Thus, the 
results of this work show that the magnitude of CE DBT image signal in the washout 
phase is directly related to vascular permeability and interrogates the content of the 
extravascular extracellular space. 

No relationship was observed between CE DBT signal and the fraction of CD31-
stained area. Given that CE DBT has superior out-of-plane signal suppression com-
pared with CEDM, it is unlikely that signal superposition is responsible for the lack of 
correlation in these parameters. Our finding that the CD31 and dextran fractional 
areas stained are not correlated suggests that there may be variability in vascular per-
meability and that some of the angiogenic microvessels may not be functional. Future 
work will include spatial correlation of dextran and CD31 staining to check for non-
functional endothelium and immunostaining for vascular endothelial growth factor 
(VEGF), which is known to increase vascular permeability. 

We believe this paper presents the first direct evidence of the relationship between 
vascular permeability at the cellular level and image signal in contrast-enhanced 
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breast imaging. These results suggest that for clinical implementation of CE DBT, 
acquisition of one or more images during contrast agent washout could have diagnos-
tic value since the image signal contains vessel permeability information in this phase. 

Although the results of this work are very encouraging, the dependence of the CE 
DBT signal on blood flow and vascular volume is still not clear. Future work will 
include the evaluation of additional CE DBT image parameters such as enhancement 
and washout gradients and area under the curve, which may help tease out the rela-
tionship with other characteristics of angiogenesis. Furthermore, alternative IHC me-
trics should be evaluated, including microvessel density, especially for comparison 
with the literature, and an assessment of marker spatial distribution to quantify IHC-
CE DBT correspondence such as between the dextran staining seen in Fig. 2f and the 
CE DBT rim enhancement in Fig. 2b. Finally, only a small tissue segment was eva-
luated in both histology and CE DBT. In future work, multiple sections of tissue will 
be evaluated on both histology and CE DBT to investigate tumour heterogeneity. 
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Abstract. Digital breast tomosynthesis (DBT) and contrast enhancement (CE) 
for both DBT (CEDBT) and planar mammography (CEDM) are being 
investigated to increase conspicuity of malignant lesions. To image above the k-
edge of iodine (33 keV), CEDBT requires x-ray energies higher than those of 
typical mammograms (~28 kVp). Increasing the thickness of the detector's 
amorphous selenium (a-Se) layer improves x-ray absorption and detective 
quantum efficiency (DQE), particularly at higher energies. For DBT, where 
systems are often designed with partially isocentric geometries, thicker a-Se 
layers may result in degradation of the modulation transfer function (MTF) for 
oblique views. We employed a cascaded linear system model to analyze the 
effect of oblique entry on MTF. Also, the model was experimentally validated 
using 200 and 300 μm a-Se flat panel imagers. Finally, we use an ideal-observer 
SNR model for projection and DBT imaging to optimize a-Se layer thickness 
for detectability of iodinated objects. 

Keywords: digital breast tomosynthesis, contrast enhancement, amorphous 
selenium, cascaded linear system model, MTF, ideal observer signal to noise ratio. 

1 Introduction 

Detection of lesions in screening mammography suffers from the obscuring effect of 
projecting three-dimensional (3D) morphology onto a two-dimensional (2D) image. 
Digital breast tomosynthesis (DBT) has been the subject of much recent work and has 
been proposed as a method of removal of overlapping tissue through 3D tissue 
discrimination. DBT consists of the acquisition of a limited number of projection 
views over a limited angular range (<45o), from which a 3D image volume may be 
reconstructed and viewed as thin image slices (1 mm) parallel to the detector plane. 
Further, contrast enhancement (CE) for both planar mammography and 3D techniques 
(i.e. DBT and breast CT) has also been proposed as a method to increase lesion 
conspicuity by a) imaging the increased uptake of blood (through the use of contrast 
agents such as iodine) resulting from angiogenesis of malignant lesions; and by b) 
removal of background tissue through image subtraction using methods such as dual 
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energy (DE) subtraction and temporal subtraction (TS).[1-4] Both DE and TS involve 
imaging at tube energies well above the k-edge of iodine (33 keV) and above those of 
standard screening mammography (28 kVp) to increase the conspicuity of contrast 
uptake with respect to breast tissue. Increasing the thickness of the amorphous 
selenium (a-Se) layer will result in an increase in x-ray absorption, measured by the 
quantum detective efficiency (QDE), and detective quantum efficiency (DQE), 
particularly at higher energies. However, increasing a-Se thickness (dSe) also leads to 
degradation of the modulation transfer function (MTF) for oblique views.[5] Using 
experimental methods, we determined the extent of the effect and use the results to 
validate theoretical predictions from a cascaded linear system model. The model was 
then used to determine the overall effects of a-Se layer thickness on object 
detectability in contrast enhanced digital mammography (CEDM) and contrast 
enhanced digital breast tomosynthesis (CEDBT). 

2 Materials and Methods 

Both CEDBT techniques (TS and DE subtraction) require the use of x-ray energies 
above the k-edge of iodine (33 keV), which is best achieved at the highest kVp (49 kVp) 
available in a mammography system.[6] Since this is much higher than those used in 
standard DBT (e.g. <32 kVp), a thicker x-ray detection layer, i.e. a-Se in direct 
conversion flat panel imagers (FPI), may be beneficial. Shown in Fig. 1(a) is a plot of 
the QDE as a function of dSe for low energy (LE: 28 kVp W/Rh) and high energy (HE: 
49 kVp W/Ti) views of a DE study. The benefit of increased a-Se layer thickness is 
clearly seen for HE imaging. However, it needs to be considered against other factors in 
DBT. Currently, most DBT systems employ a partially isocentric geometry, where the 
tube travels in an arc above a stationary detector. This geometry exacerbates image blur 
due to oblique entry of x-rays, particularly at higher angle projections. Fig. 1(b) is a 
schematic illustration of the lateral spread of energy absorption in the detector, which 
increases with angle of obliquity, x-ray energy, and dSe.[5] 
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Fig. 1. A theoretical calculation of the improvement in QDE by increasing dSe (a) as well as a 
schematic of the blurring effect of x-rays entering the detector at oblique angles (b) 
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2.1 Experimental Measurements of Detector Imaging Performance 

A prototype Siemens Mammomat Inspiration unit1, modified for CEDBT 
applications, was used for all experimental measurements. The system acquires 25 
views over a nominal angular range of 45o with continuous tube motion with the most 
oblique view acquired at a tube angle of nominally 22o. The x-ray tube energy was 
enabled up to 49 kVp and three x-ray filters were employed including 0.050 mm 
rhodium (Rh) for LE acquisitions and 0.300 mm copper (Cu) or 1.000 mm titanium 
(Ti) for use on HE acquisitions. Measurements were acquired using either of two a-Se 
FPI, each with 85 μm pixel size. The FPI differed in dSe, one with the standard dSe= 
200 μm and the other with dSe increased to 300 μm.  

LE and HE spectra were investigated employing gantry modes with stationary and 
moving x-ray tube (DBT). The MTF and noise power spectrum (NPS) were measured 
from the resulting projection images according to methods outlined previously.[7, 8] 

To calculate MTF, a 200 μm thick tungsten (W) edge was placed directly atop the 
detector cover (1.7 cm above the a-Se surface). 

2.2 Cascaded Linear System Model 

A cascaded linear system model for DBT was developed, validated, and modified for 
CE applications.[6, 9] Fig. 2 exhibits a simple flow chart for the model, which begins 
with a model of the projection domain imaging performance for a-Se detectors, which 
includes modulation transfer function (MTF) and noise power spectrum (NPS). The 
signal and NPS can be further modified with factors unique to DBT image 
acquisition, such as focal spot motion (FSM) and oblique entry of x-rays, which are 
followed by the logarithmic transformation. If image subtraction is implemented  
in the projection domain, then signal and NPS propagation for either DE subtraction 
or TS may be modeled.[6, 9-12] Additionally, a number of reconstruction filters  
may be applied including (1) ramp filter (HRA); (2) spectral apodization filter (HSA), 
which is in the form of a Hanning window applied in the tube-travel (x-) direction; 
and slice-thickness filter (HST), a Hanning window applied in the direction of  
gravity (z-).[13-15]  

Projection MTF, NPS:
detector, input spectra, 
imaging geometry

Reconstruction filters:
ramp, spectral apodization,
slice-thickness

Backprojection:
central-slice theorem

3D MTF, NPS

 

Fig. 2. Flow chart of the cascaded linear system model for CEDBT 

 
                                                           
1  Caution: Investigations Device. Limited by US Federal law to investigational use. 
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The effects of dSe on the MTF and NPS were incorporated into the projection 
image characteristics, as shown in Fig. 2. The effect of beam obliquity (which varies 
by projection angle) was determined, as outlined by Mainprize et al,[5], using: 
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where μ, φ, θ, and Eabs refer to the attenuation coefficient of a-Se, the x-ray spectrum, 
the x-ray incidence angle, and the absorbed energy, respectively. 

The 2D projection image characteristics may be extended into 3D DBT following 
the central-slice theorem, as shown in Fig. 2. The projection MTF and NPS calculated 
at a specific angle is mapped along that same angle in 3D frequency space. The 
limited angular range of DBT results in incomplete coverage of the 3D frequency 
space. The resulting 3D MTF, T(fx, fy, fz), and NPS, S(fx, fy, fz), may be used to 
calculate the ideal observer signal-to-noise ratio (SNR), d', for an in-plane object 
according to: 

2 2 2
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where O(fx, fy, fz) and Kc describe the object's frequency components and contrast, 
respectively, for an ideal observer detection task. 
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Fig. 3. Measured and MTF for an HE projection with stationary gantry (dSe = 200, squares),  
and a 22o projection for HE (dSe = 200, circles; dSe = 300, downward triangles) and LE (dSe = 
300, upward triangles) views. The modeled data are included for HE projections with dSe = 200 
(solid line) and dSe = 300 (dashed line). 
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3 Results and Discussion  

3.1 Effect of Oblique X-ray Entry on Performance of Projection Views 

The measured and modeled MTF from the two FPI are shown in Fig. 3. The results 
with a stationary gantry reflect the inherent MTF of the a-Se FPI, which has been 
investigated intensively.[16-19] The MTF is independent of the x-ray spectrum. Also 
plotted in Fig. 3 are the MTF for the 22o view of an HE DBT scan with dSe = 200 and 
dSe = 300, as well as the MTF for the 22o view of an LE DBT scan with dSe = 300. 
Modeled data for both oblique HE views were included. In each of the DBT scans, 
additional blur is incurred due to the effect of FSM and oblique entry of x-rays. At 0º 
for the experimental DBT scan, the blur due to FSM was negligible. This is because 
the edge was placed at the surface of the detector housing, which essentially has no 
magnification. At the 22º view, the effect of oblique entry of x-rays is clearly visible. 
For the HE view with dSe = 200, the MTF drops by approximately 30% at the Nyquist 
frequency (fNY). With an FPI where dSe = 300, the MTF drops by approximately 45% 
at fNY. For the LE view, the effect of beam obliquity has a less pronounced effect on 
the MTF than in the HE case, where a significant drop between 5 and 10 cycles/mm is 
incurred at a 22o projection angle. In both oblique view HE cases, the modeled and 
measured data exhibit good agreement.   

Although FSM and oblique entry of x-rays both introduce image blur as seen in the 
MTF measurements, they do not introduce noise correlation. As seen in Fig. 4, there 
is no change in the NPS with respect to projection angle for a single HE DBT scan 
using the 300 μm a-Se detector. As a result, the high frequency drop in DQE at 
oblique angles will be proportional to the square of the MTF.. 
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Fig. 4. Comparison of the NPS of a number of projection images of a HE DBT scan. 
Measurements were taken using an 300 μm a-Se FPI. 
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Our measurements showed that the DQE at zero cycles/mm improves by 
approximately 30% for the HE central view because of the thicker dSe. However, due 
to oblique entry of x-rays, the DQE at fNY decreases by a factor of 4 and 10 when 
comparing the 0o and 22o projection views for LE and HE imaging, respectively.  

3.2 Effect of a-Se Thickness on DBT Detectability 

Fig. 5(a) plots the modeled effect of the largest oblique x-ray entry angle (34o) 
associated with the most oblique projection view (22o) for the prototype CEDBT unit 
with different x-ray spectra and dSe. Fig. 5(b) shows a comparison of the effects of 
reconstruction filter, x-ray obliquity (22o), inherent detector MTF, and FSM . As seen 
in Fig. 5(a), increasing the dSe has little effect on LE views. However, increasing the 
energy of the x-rays decreases the projection MTF due to increased blurring from the 
lateral spread of collection at oblique views. This effect is exacerbated when thicker 
detector is implemented. However, in spite of this effect, as seen in Fig. 5(b), the 
dominant blurring effect of oblique projection angles remains the effect of the 
reconstruction filters, particularly the slice-thickness filter. 
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Fig. 5. Theoretical effect of the most oblique x-ray (34o) from the most oblique tube angle (22o) 
on projection MTF as a function of x-ray spectra and dSe (a) and a comparison of filter 
response, x-ray obliquity of 22o, FSM, and detector MTF (b) 

The total impact of the MTF on object detectability may be seen in Fig. 6(a) and 
(b) for projection and reconstructed in-plane images of DBT, respectively. They both 
plots normalized d'2 as a function of dSe for a 300 μm Gaussian object in a DE DBT 
study. When the 22o projection view is compared to the central view, as shown in Fig. 
6(a), there is a clear drop in d'2 as dSe increases above 350 μm. However, in Fig. 6(b), 
which plots the in-plane normalized d'2 of the reconstructed DE DBT image of the 
object, there is no decrease in d'2 as dSe increases from 200 to 600 μm. This is because 
the effect of obliquity on MTF is negligible compared to the reconstruction filter. As a 
result, losses in d'2 due to beam obliquity were found to be less than 0.4% in all cases. 
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Fig. 6. Calculation of normalized d'2 for a 300 μm object for projection views (a) and for 
reconstructed in-plane images (b) of a DE DBT scan (b) as a function of dSe including the effect 
of oblique entry of x-rays (squares, i.e. central view for projection images) and not including 
oblique entry (circles) 

4 Conclusion 

Increasing the a-Se layer thickness may improve detector imaging performance for 
both CEDM and CEDBT by improving QDE at high energies. Due to the increased 
penetration and collection of HE photons, additional losses in MTF may be incurred 
at oblique views of a DBT scan. Since the noise remains uncorrelated, this MTF 
degradation directly translates to loss in DQE at high spatial frequencies. However, 
the losses in MTF at oblique views remain dominated by the effect of reconstruction 
filters and a net increase in detectability may be observed by increasing a-Se thickness 
for both CEDM and CEDBT applications. 
 
Acknowledgments. We gratefully acknowledge the financial support from NIH (1 R01 
CA148053 and 1 R01 EB002655), and Siemens Healthcare. We also acknowledge 
helpful discussions with Drs. Olivier Tousignant and Jonathan Greenspan, as well as 
Mr. Marc Hansrou from Anrad Corporation. 

References 

1. Carton, A.-K., Li, J., Albert, M., Chen, S., Maidment, A.D.A.: Quantification for contrast-
enhanced digital breast tomosynthesis. In: Medical Imaging 2006: Physics of Medical 
Imaging, vol. 6142, pp. 61420D–61411D. SPIE, San Diego (2006) 

2. Carton, A.-K., Lindman, K., Ullberg, C., Francke, T., Maidment, A.D.A.: Dual-energy 
subtraction for contrast-enhanced digital breast tomosynthesis. In: Medical Imaging 2007: 
Physics of Medical Imaging, vol. 6510, pp. 651007–651012. SPIE, San Diego (2007) 

3. Carton, A.-K., Ullberg, C., Lindman, K., Francke, T., Maidment, A.: Optimization of a 
Dual-Energy Contrast-Enhanced Technique for a Photon Counting Digital Breast 
Tomosynthesis System. In: Krupinski, E.A. (ed.) IWDM 2008. LNCS, vol. 5116, pp. 116–
123. Springer, Heidelberg (2008) 



16 Y.-H. Hu, D.A. Scaduto, and W. Zhao 

 

4. Fredenberg, E., Hemmendorff, M., Cederstrom, B., Aslund, M., Danielsson, M.: Contrast-
enhanced spectral mammography with a photon-counting detector. Medical Physics 37, 
2017–2029 

5. Mainprize, J.G., Bloomquist, A.K., Kempston, M.P., Yaffe, M.J.: Resolution at oblique 
incidence angles of a flat panel imager for breast tomosynthesis. Med. Phys. 33, 3159–
3164 (2006) 

6. Hu, Y.-H., Zhao, W.: A 3D linear system model for the optimization of dual-energy 
contrast-enhanced digital breast tomosynthesis, pp. 79611C–79619C. SPIE (2011) 

7. Carton, A.-K., Vandenbroucke, D., Struye, L., Maidment, A.D.A., Kao, Y.-H., Albert, M., 
Bosmans, H., Marchal, G.: Validation of MTF measurement for digital mammography 
quality control. Medical Physics 32, 1684–1695 (2005) 

8. Maidment, A.D.A., Albert, M.: Conditioning data for calculation of the modulation 
transfer function. Medical Physics 30, 248–253 (2003) 

9. Hu, Y.-H., Zhao, W.: Experimental quantification of lesion detectability in contrast 
enhanced dual energy digital breast tomosynthesis, pp. 83130A–83110A. SPIE (2012) 

10. Richard, S., Siewerdsen, J.H.: Optimization of dual-energy imaging systems using 
generalized NEQ and imaging task. Medical Physics 34, 127–139 (2007) 

11. Richard, S., Siewerdsen, J.H.: Cascaded systems analysis of noise reduction algorithms in 
dual-energy imaging. Medical Physics 35, 586–601 (2008) 

12. Richard, S., Siewerdsen, J.H., Jaffray, D.A., Moseley, D.J., Bakhtiar, B.: Generalized DQE 
analysis of radiographic and dual-energy imaging using flat-panel detectors. Med. 
Phys. 32, 1397–1413 (2005) 

13. Lauritsch, G., Haerer, W.H.: Theoretical framework for filtered back projection in 
tomosynthesis. In: Medical Imaging 1998: Image Processing, vol. 3338, pp. 1127–1137. 
SPIE, San Diego (1998) 

14. Mertelmeier, T., Orman, J., Haerer, W., Dudam, M.K.: Optimizing filtered backprojection 
reconstruction for a breast tomosynthesis prototype device. In: Medical Imaging 2006: 
Physics of Medical Imaging, vol. 6142, pp. 61420F–61412F. SPIE, San Diego (2006) 

15. Zhao, B., Zhao, W.: Three-dimensional linear system analysis for breast tomosynthesis. 
Medical Physics 35, 5219–5232 (2008) 

16. Zhao, B., Zhao, W.: Imaging performance of an amorphous selenium digital 
mammography detector in a breast tomosynthesis system. Medical Physics 35, 1978–1987 
(2008) 

17. Zhao, W., Ji, W.G., Debrie, A., Rowland, J.A.: Imaging performance of amorphous 
selenium based flat-panel detectors for digital mammography: characterization of a small 
area prototype detector. Med. Phys. 30, 254–263 (2003) 

18. Zhao, W., Ji, W.G., Rowlands, J.A., Debrie, A.: Investigation of imaging performance of 
amorphous selenium flat-panel detectors for digital mammography. In: Medical Imaging 
2001: Physics of Medical Imaging, pp. 536–546. SPIE (2001) 

19. Zhao, W., Rowlands, J.A.: Digital radiology using active matrix readout of amorphous 
selenium: Theoretical analysis of detective quantum efficiency. Medical Physics 24, 1819–
1833 (1997) 



 

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 17–23, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Contrast Optimization in Clinical Contrast-Enhanced 
Digital Mammography Images 
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Abstract. CEDM is a radiological technique based on the use of digital mam-
mography equipment and the injection of an iodinated contrast medium to en-
hance the visualization of tissues of interest. In previous works, our group has 
proposed a formalism for the use of dual-energy temporal CEDM, based on 
weighted subtraction of images, that has been applied with success to phantom 
data. This methodology requires the selection of ROIs by a radiologist, to de-
termine the weight factors. In this work, we propose an alternative that im-
proves the contrast in clinical images resulting from dual-energy temporal 
CEDM subtraction, while freeing the method from ambiguities due to the ROI 
selection by a radiologist. The new subtraction algorithm is based on the use of 
weight factors calculated pixel-by-pixel. The main result after evaluation of the 
methodology on images of 10 patients randomly chosen is a substantial im-
provement of the contrast (~5 times), reaching values that are similar to those 
obtained with single energy subtraction. 

Keywords: Breast imaging, CEDM, contrast-enhanced digital mammography, 
contrast medium, angiogenesis, dual-energy, image subtraction. 

1 Background 

The increasingly common use of digital mammography worldwide, in addition to 
other well-known advantages over alternative breast imaging modalities, has profited 
from advanced applications that might improve early breast cancer detection [1]. One 
of these techniques is image subtraction under the administration of a contrast me-
dium (CM) referred to as contrast-enhanced digital mammography (CEDM). 

CEDM relies on the preferential CM uptake of aggressive cancers undergoing an-
giogenesis to enhance their visualization with respect to the structured breast back-
ground [2-3].  

There are two modalities to perform CEDM, single energy temporal (SET) and 
dual-energy (DE) [2]. SET is based on the temporal differences between images  
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acquired prior and after the CM administration. DE focuses on the changes in the 
linear attenuation coefficient (μ) due to acquisition with different X-ray spectra. In all 
CEDM modalities the subtracted image is obtained as follows [4] 

 ( ) ( )1 1 2 2ln , ln ,  ,subI I t Q I t Qα= −  (1) 

where I is a mammographic image acquired at time ti with an spectrum of quality Qi. 
The weighting factor α compensates changes between the images due to acquisition 
with different beam qualities, so that the pixel values of the non-iodinated tissue be-
comes zero after the subtraction. Evidently, α has a value of 1 for SET.  

2 The Dual-Energy-Temporal Formalism  

2.1 Previous Proposal 

Our group has proposed a formalism that combines both temporal and dual energy 
modalities (named dual-energy-temporal or DET subtraction) [5]. It is based on the 
acquisition of two mask images prior to the CM administration: one with a low energy 
X-ray spectrum (LE) and the other with a high energy one (HE). A series of CM im-
ages is acquired after the contrast medium administration, with the same radiological 
parameters as the HE mask. 

First, all images are normalized by the mean pixel value (MPV) in a region of in-
terest (ROI) identified by the radiologist as adipose tissue. Then, the LE mask is 
weight-subtracted from the CM images as indicated in Eq. (1). In this case (Eq. (2)), α 
is obtained as the ratio of MPVs in normal glandular tissue ROIs, also identified by 
the radiologist in the LE and HE masks ILE and IHE, respectively,  

 
( )( )
( )( )

glandular

glandular

MPV ROI
.

MPV ROI

LE

HE

I

I
α =  (2) 

This proposal was successfully validated with phantom data [6], and the radiological 
parameters (detailed in section 3) were optimized [5] for SET and DET modalities in 
terms of mean glandular dose and contrast to noise ratio. SET and DET results re-
ported here have followed this formalism. 

A protocol for clinical application was approved by the ethics and research com-
mittees of the Mexico National Institute of Cancerology (INCan), and the preliminary 
analysis of clinical images has revealed the following limitations for DET:  

• The definition of the glandular tissue ROI depends on the expertise of the radiolo-
gist to identify glandular regions on the breast. Thus, it can be subjective. 

• After subtraction, the remaining structured noise –due to the spatial variations of 
breast glandularity– causes the contrast between lesion and normal glandular tissue 
to be relatively modest. 
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2.2 This Work Proposal 

To compensate for spatial variations in glandular composition, and therefore increase 
the visualization of iodine, we have proposed two modifications to the original pro-
posal that better fit it to the conditions in clinical images: 

• To weight the images by a glandular density matrix G, obtained after Highnam [7],  
in order to emphasize the presence of glandular tissue in the image. 

• To construct the factor α as a matrix whose elements ˆ
ijα  (Eq. (3)) are equal to the 

ratio between corresponding pixels in the LE and HE masks ILE and IHE, respective-
ly, 

 
( )
( )

ˆ .
LE ij

ij
HE ij

I

I
α =  (3) 

The role of α as a matrix is the same as previously described for the weight factor.  
Hence, in this proposed dual-energy-temporal formalism (referred to as DETm) the 

subtracted image Isub is obtained as 

 ( ) ( ) ( )( )ˆln ln  ,sub LE CMI t G I G I tα= −    (4) 

where G is the glandular density matrix, ILE is the LE mask, and ICM is a contrast me-
dium image acquired at time t. 

3 Materials and Methods 

Image Acquisition. Patients with suspicious lesions detected in routine mammogra-
phy (BIRADS 4-5) were imaged with a Senographe DS system, following a CEDM 
optimized protocol that allows to perform DET and SET subtractions [5]. Two images 
were acquired prior to CM administration employing (anode/filter) Rh/Rh at 34 kV 
(LE mask), and 48 kV plus external 0.5cm Al (HE mask); four CM images were taken 
after CM administration, with same radiological parameters as HE mask. Iodine-
based CM (Optiray® 300, 300 iodine mg per ml) was injected using an injection sys-
tem, at a constant speed of 4 ml/s. The sequence of CM images allows the interpreta-
tion of iodine uptake in terms of dynamical absorption curves. 

Imaging System Characterization. The implementation of DETm, particularly the 
calculation of G, requires the relationship between detector output signal and pixel 
value [7]. For this purpose, PMMA blocks of different thickness were imaged using 
the same radiological parameters as LE clinical images. The detector output signal 
was calculated following Lemacks formalism [8], and the MPVs in a 5×5 cm2 ROI, 
centered at 6 cm from the edge of the detector, were calibrated. Lemacks formalism 
requires a knowledge of the X ray spectrum and the exposure during acquisition. In 
this case, X ray spectra were simulated based on Boone polynomial interpolation [9] 
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and the correlation between X-ray tube charge (mAs) and air kerma at the entrance of 
the breast (mGy), was measured on the beam central axis, at 4.5 cm from the detector, 
with a mammography ionization chamber for a range of mAs values. Kerma values 
were then transformed to the appropriate distance according to the experimentally 
verified 1/r2 relation. 

Image Processing. The raw (for processing) images of ten patients randomly chosen 
(among those who were part of the protocol) have been analyzed. Of each series, 
three images were considered for the evaluation of the subtraction formalisms: the 
two masks and the image taken 3 minutes after CM administration. Firstly, the images 
were aligned with respect to their LE mask with a moving least squares algorithm 
[10] and a median filter of radius 10 pixels was applied. Secondly, three subtraction 
formalisms were applied to the selected images: SET, DET and DETm, using a cus-
tom-made MATLAB® routine run in a personal computer with Windows® 7 and 1.80 
GHz Intel® CoreTM i7 processor. 

Enhancement Evaluation. The resulting iodine enhancement in the subtracted image 
for each subtraction modality was evaluated in terms of contrast between the lesion 
and normal glandular tissue, according to Weber (Eq. (5)):  

 ,L G

G

I I
C

I

−=  (5) 

where IL is the MPV in the lesion and IG is the MPV in a normal glandular tissue ROI. 
Lesion ROIs were selected by a radiologist in the LE mask, guided by subtracted 
images, while glandular ROIs were selected previous to any subtraction on the LE 
mask. To allow comparison, subtracted images were self-normalized and the resulting 
pixel values were mapped to an 8-bit gray scale.  

4 Results  

Figure 1 illustrates the image processing for a typical patient. Figs. 1A-C are “for 
presentation” LE and HE masks and CM image acquired at t=3 minutes, respectively. 
Fig. 1D is the SET subtraction of Figs. 1C minus 1B. The application of DET is 
shown in Fig. 1E. The background breast structure has been considerably reduced, the 
lesion is clearly visualized and the resulting contrast value (~0.3) depends strongly on 
the chosen ROIs for the adipose and normal glandular tissues. Fig. 1F is the processed 
image obtained with DETm. The breast structure has almost disappeared and the con-
trast value (~0.7) is greater than in DET (Fig. 1E). 

These general features of the subtracted images are common to all the analyzed 
clinical cases (one of the patients did not show a significant iodine uptake and thus, 
contrast was always close to zero). Individual contrast values obviously differ from 
one patient to the other depending on the individual CM uptake, but values obtained 
with the proposed DETm formalism are consistently higher than with DET.  
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Fig. 1. Images for one patient. A and B are mask images acquired with LE and HE spectra, 
respectively. C is HE image 3 minutes after CM injection. D is subtracted image following SET 
formalism, E is DET result and F is DETm. Gray value bar represents pixel values after norma-
lization of D, E and F. ROIs for adipose, glandular and lesion tissues are shown in A. 

 

Fig. 2. Contrast between lesion and normal glandular tissue for SET, DET, and DETm modali-
ties. Ten patients are reported 
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Figure 2 summarizes contrast values for all patients. Contrast derived from DETm 
is similar to that from SET, with differences (of about 10%) within the estimated un-
certainties. 

5 Discussion and Conclusions 

These preliminary results suggest that the subtraction based on pixel-by-pixel weight-
ing, compared with standard DET modality, improves the contrast in processed 
CEDM images while freeing the method from possible inconsistencies in the ROI 
determination (only the final evaluation of the contrast requires the definition of a 
region of interest.) Also, the image sharpness is apparently better, possibly due to the 
reduction of structural noise in DETm with respect to DET. Data from a sample of 10 
patients leads to DETm contrast values similar to SET subtraction, suggesting that the 
energy- change compensation by the weight factor is done correctly. This feature was 
predicted by the DET formalism, as shown in Fig. 4(a) of Ref. 5. Computation time 
was considerably greater for DETm (~1 min per image subtraction) than for the other 
formalisms (~1 s) and this might be considered when evaluating the overall advantag-
es of DETm. The pathological diagnosis and neoangiogenesis quantification are in 
process. 
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Abstract. Digital breast tomosynthesis (DBT) requires precise knowledge of ac-
quisition geometry for accurate image reconstruction. Further, image subtraction 
techniques employed in dual-energy contrast-enhanced tomosynthesis require that 
scans be performed under nearly identical geometrical conditions. A geometrical 
calibration algorithm is developed to investigate system geometry and geometrical 
consistency of image acquisition between consecutive digital breast tomosynthe-
sis scans, according to requirements for dual-energy contrast-enhanced tomosyn-
thesis.  Investigation of geometrical accuracy and consistency on a prototype DBT 
unit reveals accurate angular measurement, but potentially clinically significant 
differences in acquisition angles between scans. Further, a slight gantry wobble is 
observed, suggesting the need for incorporation of gantry wobble into image re-
construction, or improvements to system hardware. 

Keywords: geometric calibration, tomosynthesis, dual-energy, contrast-enhanced 
tomosynthesis, flat-panel detector. 

1 Introduction 

Digital breast tomosynthesis (DBT) is a three-dimensional (3D) x-ray imaging modal-
ity that reduces the effect of anatomical clutter inherent to conventional screening 
mammography. In DBT, a number of x-ray projections are acquired over a limited 
angular range (e.g. ±25°), and reconstructed using a modified filtered back-projection 
algorithm into image slices parallel to the detector. In dual-energy contrast-enhanced 
DBT (CEDBT) an iodinated contrast agent is administered to the patient and consecu-
tive tomosynthesis scans are acquired at energies above and below the K-edge of 
iodine. Using image subtraction techniques, an iodine-only image, virtually free of 
anatomical noise, can be obtained. [1] Previous studies in dual-energy computed to-
mography (CT) have shown that subtraction in the projection domain provides better 
performance than in the reconstruction domain. [2] In tomosynthesis, subtraction in 
the projection domain provides an additional advantage because it is not affected by 
reconstruction artifacts. However, implementing image subtraction in the projection 
domain requires that DBT datasets be acquired under nearly identical geometrical 
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conditions, with consistent angles of acquisition. Further, precise knowledge of acqui-
sition geometry is critical for accurate image reconstruction. [3–5] 

A number of calibration techniques have been developed for cone-beam CT and 
recently adapted for tomosynthesis, which utilize calibration phantoms with specific 
arrangements of embedded markers. Geometrical system parameters may be derived 
either through accurately known three-dimensional (3D) marker locations and their 
corresponding two-dimensional (2D) projections [6–9], or through specialized geome-
tric arrangements of markers in the calibration phantom [5, 10]. 

In this paper we describe the phantom and calibration procedure developed for a 
prototype Siemens Inspiration DBT system to determine both its geometric parame-
ters and reproducibility of the x-ray source trajectory, and discuss the impact of our 
findings in the implementation of CEDBT. 

2 Materials and Methods 

Our geometrical calibration procedure was developed for and tested on a Siemens 
Inspiration DBT system equipped with an amorphous selenium (a-Se) flat-panel de-
tector with 85 × 85 μm pixel pitch. All image processing and calibration computations 
were performed in MATLAB (TheMathWorks, Natick, MA). We used a cylindrical 
acrylic phantom with 28 tungsten beads arranged in equi-angular separation of 24° 
and spiral pitch of 90 mm (Fig. 1), which is similar in concept to those widely used in 
geometric calibration of cone-beam CT. [8] The calibration procedure developed 
relates the 3D location of a marker to its 2D projection through a projection matrix, a 
description of the unique projective mapping of an object with respect to the x-ray 
source (Fig. 2). The calibration procedure is summarized as follows. 

 

Fig. 1. Photograph (left) of the calibration phantom used in this study, and resulting x-ray pro-
jection image (right) of the phantom, with beads visible. The large central bead is used to define 
the origin of the phantom coordinate system, from which the nominal 3D coordinates of each 
bead on the spiral pattern could be determined. 
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Fig. 2. Diagram of 3D phantom coordinate mapping to 2D detector plane 

1. Acquire phantom images: The calibration phantom was compressed onto the detec-
tor cover to minimize relative phantom motion. Standard DBT scans were per-
formed, with each scan containing 25 projection images (Fig. 1) acquired over a 
nominal angular range of ±25°. 

2. Determine bead coordinates in each projection image: A bead detection algorithm 
evaluated bead shadows for size and eccentricity to determine the center coordinate 
of each projected bead. 

3. Make initial estimate of projection matrix: An initial relationship between the 3D 
bead coordinates in the phantom and the 2D projected bead coordinates was deter-
mined algebraically. Briefly, a system of equations is constructed relating the 2D 
and 3D bead coordinates by elements of the 3×4 projection matrix P, such that 
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 (1) 

where [ui,vi] represent the 2D bead coordinates in image space, and [xi,yi,zi] 
represent the 3D bead coordinates in phantom space. The weighting factor, w, 
maintains the homogeneity of the coordinates systems. Matrix multiplication, and 
elimination of the weighting factor, yields the following system of equations: 
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These expressions are used to construct a matrix, which includes the 3D bead 
coordinates and their corresponding 2D image coordinates. Singular value decom-
position is employed to find a solution to the system of equations, representing a 
linear solution of the projection matrix.  

4. Minimize re-projection error: The projection matrix is more accurately estimated 
by iteratively minimizing the square distance between measured bead  
coordinates and re-projected bead coordinates using the estimated P. We used the 
Levenberg-Marquardt nonlinear least-squares fit algorithm to minimize the objec-
tive function 

 ( )2
[ , ] , [ , , ]T T

i i i i i
i

E d u v P x y z=  . (3) 

Optimization is terminated when a minimum residual re-projection error is 
achieved. 

5. Decompose optimized projection matrix to derive source location: The projection 
matrix may be factored into three component matrices, such that 

 [ ]|P K R t=  (4) 

where the 3×3 rotation matrix R and the 3×1 translation vector t describe the orien-
tation and location of the phantom with respect to the x-ray source, and the upper 
triangular intrinsic matrix K may be decomposed as 
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where αx and αy represent pixel-scaling factors, s represents a skew-parameter for 
non-square pixels, and u0 and v0 are coordinates of the piercing point where the 
central x-ray enters the x-ray detector.  

Thus, these three matrices reveal detector orientation, source to detector distance and 
x-ray source location. For stationary detectors, the most important of these parameters 
is the x-ray source location with respect to the stationary detector. 

3 Results 

Using the method described above, projection matrices, P, were computed for each 
angle in a tomosynthesis scan, from which the x-ray source location (with respect to 
the detector plane) was derived. A plane of motion fitted to the source trajectory of 
each scan was found to be perpendicular to the detector, with a 0.85 degree rotation  
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relative to the long axis of the detector plane (see Fig. 3). The deviation of the x-ray 
source from the fitted plane (wobble) was determined for a number of consecutive 
and non-consecutive scans to determine source orbit reproducibility between scans. 
The source trajectory appears reproducible; results for five consecutive scans are 
shown in Fig. 4. 

A circular orbit was fit to the experimentally determined source locations; the ori-
gin of this circle represents the center of rotation. Gantry angles were computed for 
each acquisition location with respect to the source location at the stationary zero-
angle position. These gantry angles were found to agree reasonably well with the 
nominal values recorded by the on-board inclinometer, differing by an average of 0.2 
degrees, shown in Fig. 5. 

Differences in the angles of acquisition between scans at each projection were 
registered both by the on-board inclinometer and the computed gantry angles. Sev-
eral beads were tracked across projections for consecutive scans to study the effect 
of differences in acquisition angles between scans. The mean angular difference of 
0.1 degrees resulted in a bead projection misalignment in the tube travel direction of 
0.15 mm measured at the chest wall, and 0.22 mm measured 175 mm along the 
perpendicular to the chest wall, shown in Fig. 6. The misalignment in the direction 
perpendicular to tube travel was negligible, which suggests repeatable gantry trajec-
tories, albeit with slight variations in projection angles between tomosynthesis 
scans. 

 

 

 
 
 

 

Fig. 3. Source trajectory was determined by 
fitting a plane to the experimentally deter-
mined source locations for a complete tomo-
synthesis scan. A slight angle was observed 
between the detector plane and the source 
plane. 

Fig. 4. Deviation of the x-ray source from 
the fitted plane of motion (gantry wobble) 
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Fig. 5. Inclinometer accuracy was evaluated by comparing inclinometer readings with calcu-
lated gantry angles using calibration algorithm, and found to agree within ±0.7 degrees, with a 
mean difference of 0.2 degrees 

 

Fig. 6. Beads were tracked across projections for consecutive scans. A mean angular difference 
of 0.1 degrees between consecutives scans resulted in a mean bead projection misalignment of 
0.15 mm at the chest wall, and 0.22 mm measured 175 mm from the chest wall. 

0 5 10 15 20 25
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 

In
cl

in
om

et
er

 R
ea

di
ng

 -
 C

al
cu

la
te

d 
G

an
tr

y 
A

ng
le

[d
eg

re
es

]

Projection Number

 Scan 1
 Scan 2
 Scan 3
 Scan 4
 Scan 5

0 5 10 15 20 25
-0.2

-0.1

0.0

0.1

0.2

0.3

 

M
ea

n 
D

iff
er

en
ce

 in
 B

ea
d 

C
en

tr
oi

d 
Lo

ca
tio

n 
[m

m
]

Projection Number

 x-direction, at chest wall
 y-direction, at chest wall
 x-direction, chest wall + 175 mm
 y-direction, chest wall + 175 mm



30 D.A. Scaduto and W. Zhao 

 

4 Discussion 

Our analysis of the source locations for complete scans indicates a deviation from the 
source plane due to gantry wobble, resulting in non-ideal acquisition geometry that 
should be incorporated into image reconstruction. 

We find close agreement between angles of acquisition registered by the on-board 
inclinometer and those computed using the geometric calibration algorithm, assuring 
the reliability of using the inclinometer readings for each reconstruction. However, 
the exact acquisition angles at specific projections differ slightly between scans, sug-
gesting that image registration may be needed if dual-energy subtraction is to be per-
formed in projection space. It is important to note that the maximum misalignment 
due to projection angle inconsistency is ~2.5 pixels; patient motion is expected to 
further exacerbate this misalignment, necessitating image registration. 

One strategy to facilitate image registration would be to place a small marker on 
the periphery of the compression paddle, i.e., outside the region of the breast. The 
projection of this bead could be tracked across consecutive scans, from which projec-
tion misalignments due to gantry angle inconsistency could be calculated, as de-
scribed above.  

Projection angle variations may ultimately be minimized by improving the syn-
chronization between gantry motion and x-ray exposure.  

It is important to note that the accuracy of source position determined during geome-
trical calibration is affected by the continuous gantry motion during image acquisition, 
which results in additional focal spot blur (FSB). A gantry speed of 25.45 mm/sec and 
an exposure time of 200 msec result in an effective focal spot travel length of 0.33 mm 
for objects 4 cm above the detector. This blur introduces uncertainty in the projected 
bead centroids, thus increasing uncertainty in the calculated x-ray source locations, and 
its correspondence with the time instance of inclinometer reading.  

Finally, it should be noted that the present algorithm determines the projection ma-
trix at each angle independently of all other angles. In reality, certain geometrical 
parameters remain constant across acquisition angles. For example, pixel pitch re-
mains constant and equal in both horizontal and vertical directions; the orientation of 
the detector also remains stationary with respect to the phantom coordinate system if 
the phantom is held stationary on top of the detector. Future revisions to the algorithm 
will constrain the optimization problem by holding constant these stationary geome-
trical parameters. 
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Abstract. An assessment is ongoing of the ability of dual energy contrast-
enhanced digital breast tomosynthesis (CE-DBT) to depict the morphologic and 
vascular characteristics of breast cancer in comparison with breast MRI and 
digital mammography (DM). Eight patients with newly diagnosed breast cancer 
were imaged with an automated dual-energy CE-DBT system. High energy/low 
energy image pairs of the index breast were obtained at 1 pre- and 3 post-
contrast timepoints. Post-contrast images were obtained after intravenous ad-
ministration of Visipaque (1 mL/kg). Anatomic images were reconstructed us-
ing filtered backprojection, and contrast-enhanced images were generated using 
simple backprojection followed by temporal or dual-energy subtraction. Dual-
energy CE-DBT was able to demonstrate the index malignant lesion in 7 of 8 
patients (9 of 10 lesions). Morphologic characteristics including margin detail 
and associated microcalcifications were qualitatively concordant with DM. 
Vascular characteristics were identifiable qualitatively on post-processed im-
ages in some cases, and judged to be qualitative concordant with breast MRI. 

1 Introduction 

On imaging, malignant breast lesions are characterized by both structural and func-
tional features[1-4]. Currently, multimodality imaging provides complementary in-
formation that is useful in the assessment and staging of breast cancer. However, 
while MRI can provide vascular information about breast lesions [5-6], it has lower 
spatial resolution than digital mammography and microcalcifications are not directly 
visible on MRI. Conversely, projection digital mammography can demonstrate mor-
phology with high spatial resolution, but is susceptible to artifacts from superimposed 
tissues and does not provide functional information about breast lesions. 

CE-DBT can potentially integrate into one breast imaging tool many of the strengths 
of existing multimodality imaging while also avoiding some limitations of existing 
modalities.  The unique combination into a single imaging modality of the ability to 
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acquire functional characteristics of breast lesions together with high spatial resolution 
similar to digital mammography results in a potentially powerful breast imaging tool. 
An additional strength of CE-DBT lies in the underlying technology of digital breast 
tomosynthesis (DBT), which circumvents the limitations of two-dimensional projection 
mammography. DBT is an emerging x-ray based breast imaging technique in which 
high resolution tomographic images of the breast are obtained at a dose comparable to 
projection mammography [11, 12]. In clinical trials, DBT provides improved sensitivity 
and specificity relative to projection mammography[12].   

Thus, the purpose of this study was to assess the ability of dual-energy CE-DBT to 
demonstrate morphologic and vascular characteristics of breast cancer in comparison 
with breast MRI and digital mammography.  Our hypothesis is that these features of 
breast cancers will be demonstrable on CE-DBT images. 

2 Methods 

2.1 Acquisition Protocol 

This prospective research study received IRB approval and is HIPAA compliant.  
After informed consent was obtained, 8 patients (age range 48 – 68 years) with newly 
diagnosed breast cancer were imaged with an automated dual-energy CE-DBT system 
(Hologic, Bedford MA). High energy/Low energy image pairs of the index breast 
were obtained at 1 pre and 3 post-contrast timepoints. Dynamic post-contrast images 
were obtained after intravenous administration of Visipaque (1 mL/kg) using a power 
injector (2-3 ml/sec). Images were reconstructed using backprojection (Figure 1).  
Subtraction images were generated and reviewed (dual energy and temporal).  In this 
preliminary study, no motion correction processing was applied.  Qualitative compar-
ison with breast MRI and DM in each case was performed. 

DM: DM was obtained as part of the standard clinical workup, prior to diagnosis.  

MRI: The breast MRI was performed either before or after the CE-DBT exam (6 on 
the same day, 1 the day after MRI, and one 12 days after MRI.)  MRI was performed 
with the patient prone in a 1.5-T scanner (Siemens) with a dedicated surface breast 
coil array. For contrast imaging, a rapid bolus injection of 0.1 mmol/kg gadobenate 
dimeglumine (MulitHance, Bracco Diagnostics Inc, Princeton, NJ) followed by a 
saline flush was administered (via peripheral intravenous access).  The clinical breast 
MRI protocol includes the following series: pre-contrast T1-weighted, pre-contrast 
T2-weighted fat suppressed, pre-contrast T1-weighted fat suppressed, dynamic post-
contrast T1-weighted fat suppressed (3 timepoints, 90 second intervals), delayed axial 
T1-weighted fat suppressed. Sagittal subtraction images are generated. 

CE-DBT: Each patient underwent unilateral CE-DBT using the Hologic Selenia Di-
mensions CE-DBT prototype system (Table 1). Patients were seated for the duration 
of the exam. Initial pre-contrast DBT high and low energy pair in the MLO projection 
(or optimal projection for visualization of the index lesion) was obtained  
(7 MLO, 1 XCCL).  The low energy series was used as an unenhanced anatomic  



34 S. Gavenonis et al. 

 

baseline for tomographic a
high energy series was use
breast remained in this com
injection of 1ml/kg iodixan
made(via peripheral intrave
flush.  Three post-contrast h
(20 seconds, 1 minute 25 
mencement.)  The timing of
for breast MRI with multip
lesion was then decompress
of approximately 3.0 mGy
procedure time is less than 

Tabl

Target 

kVp 

Filter 

SID 

Detector 

Angular Rang

Scan Time 

Projections 

Fig. 1. Dual Energy Processin
DE tomosynthesis images wer
cal interpretation. 

ssessment of microcalcifications and margin analysis. T
ed as the tomographic mask for temporal subtraction. T
mpression for the remainder of the study. Then, a cont
nol (Visipaque-320,GE Healthcare Inc., Princeton, NJ) w
enous access) using a power injector followed by a sal
high energy/low energy (HE/LE) image sets were obtai
seconds, and 3 minutes 25 seconds after injection co

f the post-injection CE-DBT images is based on prior w
le post-contrast time points [10]. The breast with the in
sed. Our current technique results in a mean glandular d
y per HE/LE image set for a 4.5 cm breast. Current to
8 minutes. 

le 1. Hologic Prototype CE-DBT system 

W 

49 (HE) / 32 (LE) 

Cu (HE) / Al (LE) 

70 cm 

3 fps, 2x2 binning 

ge 15° 

7.3 seconds 

22, 11(HE), 11(LE) interleaved 

 

g. FBP = Filtered Back Projection, BP = Back Projection. Sou
re post processed per this schematic to create the images for cl

The 
The 
trast 
was 
line 
ned 
om-

work 
ndex 
dose 
otal 

urce 
lini-



 Initial Experience with Dual-Energy CE-DBT 35 

 

2.2 Image Interpretation 

Images were reviewed by a fellowship-trained breast imager. The size of the in-
dex lesion (at least the greatest linear dimension) was measured. Findings regard-
ing the margins of the index lesion were recorded using descriptors in the ACR 
BIRADS lexicon. Vascular enhancement kinetics were assessed and characterized 
as Persistent, Plateau, or Washout for the index lesion (as per the BI-RADS lex-
icon[1]). 

Ratings on a 10-point scale (10 = best, equivalent to DM) of the conspicuity of 
margins on CE-DBT relative to DM and on MRI relative to DM were recorded. Simi-
larly, the visibility of any associated microcalcifications on CE-DBT and MRI were 
separately evaluated relative to DM and recorded. 

3 Results 

Dual-energy CE-DBT was able to demonstrate the index malignant lesion in 7 of 8 
patients (9 of 10 lesions). The one lesion in one patient that was not demonstrated was 
secondary to a far posterior location of the tumor, which was not an area that could be 
imaged mammographically (the finding had been detected on physical exam and eva-
luated with ultrasound).   

Morphologic characteristics including margin detail were visualized on CE-DBT.  
Presence of associated microcalcifications were visualized on CE-DBT processed 
images in 4/4 lesions with associated microcalcifications. Benign microcalcifications 
away from the index lesion were visualized and characterized as benign on tomosyn-
thesis images in 1 case. Qualitative concordance with digital mammography was 
judged to be achieved. Vascular characteristics were identifiable qualitatively on post-
processed dual energy subtraction images in 4 cases. Qualitative concordance with 
breast MRI was judged to be achieved in those cases. (Table 2) (Figures 2 and 3) 

4 Discussion 

CE-DBT can potentially integrate into one breast imaging tool many of the strengths 
of existing multimodality imaging while also avoiding some limitations of existing 
modalities.  The unique combination into a single imaging modality of the ability to 
acquire functional characteristics of breast lesions together with high spatial resolu-
tion similar to digital mammography results in a potentially powerful breast imaging 
tool. An additional strength of CE-DBT lies in the underlying technology of digital 
breast tomosynthesis (DBT), which circumvents the limitations of two-dimensional 
projection mammography. DBT is an emerging x-ray based breast imaging technique 
in which high resolution tomographic images of the breast are obtained at a dose 
comparable to projection mammography [11, 12]. In clinical trials, DBT provides 
improved sensitivity and specificity relative to projection mammography[12]. 
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Fig. 2. DCIS. Segmental clumped enhancement in the upper breast.  From left to right: Pre-
contrast low energy DBT, Post-contrast DE subtraction at 20 s, Post-contrast DE subtraction at 
3 m 25 s, and subtraction image from breast MRI at 3 min. Clip at site of prior biopsy. 

 

Fig. 3. Invasive ductal carcinoma. Irregular enhancing mass in the upper breast, with washout 
kinetics. From left to right: Pre-contrast low energy DBT, Post-contrast DE subtraction at 20 s, 
Post-contrast DE subtraction at 3 m 25 s, and (bottom) subtraction MRI at 3 min.   
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Early preliminary studies7 have demonstrated that CE-DBT using an iodinated vas-
cular contrast agent has the potential to demonstrate morphology and vascular en-
hancement information of malignant breast lesions concordant with that of MRI. A 
temporal subtraction CE-DBT technique was performed in 13 patients, where one 
pre- and one or more post-contrast tomosynthesis time-points are acquired using a 
spectrum beyond the K-edge of iodine (32.3 keV). Logarithmic subtraction yields 
iodine-enhanced images. In this early pilot group, 11 of 13 patients had malignancy [6 
invasive ductal carcinoma; 4 DCIS; and 1 invasive lobular carcinoma]. Suspicious 
enhancing lesions were demonstrated in 10 of 11 cases of pathology proven breast 
cancer using this temporal subtraction CE-DBT technique. Also, when present, spicu-
lated margins were more conspicuous on CE-DBT than on breast MRI. Furthermore, 
one case of breast cancer was initially detected by CE-DBT, and was only demon-
strated on MRI on repeat imaging. 

Additional early investigations into a dual-energy technique for CE-DBT have 
been performed[8]. At each time point, iodine-enhanced images are calculated by 
weighted logarithmic subtraction of the low-energy and high-energy (LE and HE) 
images[9, 10, 13, 14]. In a pilot study of one patient[8] with a known malignancy, a 
combined temporal and dual-energy CEDBT technique was performed with a total 
mean glandular radiation dose within prescribed limits for x-ray breast imaging 
(6.48mSv for this patient with a breast thickness of 5 cm in compression). In addition 
to providing morphologic and vascular information about the malignant lesion, dual 
energy CE-DBT also appeared more resilient to motion artifacts when compared with 
temporal subtraction CE-DBT in this one case. 

Thus, the purpose of the current study was to assess more fully the ability of dual-
energy CE-DBT to demonstrate morphologic and vascular characteristics of breast 
cancer in comparison with breast MRI and digital mammography.  Our hypothesis 
that these features of breast cancers will be demonstrable on CE-DBT images is sup-
ported by the qualitative results obtained to date. 

One of the technical factors that may have led to nonvisualization of the index le-
sion is the location of the finding.  In one case, the finding was far posterior and could 
not be visualized on mammographic techniques, as the region could not be included 
in the image.  This is not a limitation that is unique to tomosynthesis or CE-DBT. 

Another factor that may have influenced contrast agent uptake is that in this current 
series, the breast remained in compression for the injection in order to allow for tem-
poral subtraction of the pre image from the post images.  This compression force may 
have impeded vascular flow through the breast and to the lesion.  This factor is under 
consideration as further studies are planned.  Thus, future work would include opti-
mizing the compression force used (if any) during contrast injection.   

In addition, visualization of uptake may be affected by the timing of image acquisi-
tion post-contrast.  Either imaging too early or too late could affect this.  Future work 
also includes optimizing the image acquisition timing post contrast injection. 

If there were associated microcalcifications, these findings were very well demon-
strated on the CE-DBT study.  In future work, if vascular enhancement visualization 
can be optimized, then this would facilitate correlation of any visualized enhancement 
with the calcifications. 
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5 Significance and Future Directions 

The results from this pilot study support the hypothesis that CE-DBT can demonstrate 
both high-resolution morphologic features of breast cancers (including microcalcifica-
tions) and vascular characteristics that are qualitatively concordant with DM and 
breast MRI. Additional reader studies are planned. Furthermore, CE-DBT may also 
theoretically offer quantitative evaluation of contrast uptake and perfusion given the 
linear relationship between attenuation and contrast-agent concentration. Additional 
work in this exciting direction is also planned. 

This work is supported in part by Grant IRG-78-002-31 from the American Cancer 
Society, and Grant UL1RR024134 from the National Center For Research Resources. 
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Abstract. Clinical research has shown that the sensitivity of mammog-
raphy is significantly reduced by increased breast density, which can mask
some tumours due to dense fibroglandular tissue. In addition, there is a
clear correlation between the overall breast density and mammographic
risk. We present an automatic mammographic density segmentation
approach using a novel binary model based Bayes classifier. The Mammo-
graphic Image Analysis Society (MIAS) database was used in a quanti-
tative and qualitative evaluation. Visual assessment on the segmentation
results indicated a good and consistent extraction of mammographic den-
sity. With respect to mammographic risk classification, substantial agree-
ments were found between the classification results and ground truth
provided by expert screening radiologists. Classification accuracies were
85% and 78% in Tabár and Breast Imaging Reporting and Data Sys-
tem (Birads) categories, respectively; whilst in the corresponding low
and high categories, the classification accuracies were 93% and 88% for
Tabár and Birads, respectively.

1 Introduction

Breast cancer is the most common cancer in the UK and across Europe [1]. It has
been considered a major health problem, and it is estimated that between one
in eight and one in twelve women will develop breast cancer during their lifetime
[2]. An evident rise in breast cancer and the lack of understanding of the disease
development makes early breast cancer detection crucial. Clinical evidence has
indicated a strong correlation between mammographic density and the likelihood
of a woman developing breast caner; and the sensitivity of mammography is
significantly reduced by increased breast density, which can mask some tumours
due to dense fibroglandular tissue. Due to radiologist subjective appraisal of
mammograms, automatic mammographic risk assessment is expected to play a
significant role in the development of breast screening programs and computer
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aided mammography, in order to reduce inter and intra observer variability in
risk classification.

Using mammographic parenchymal patterns, Tabár et al. have proposed a
mammographic modelling scheme based on mixtures of four building blocks
composing the normal breast anatomy (i.e. nodular, linear, homogeneous and
radiolucent). Nodular densities mainly corresponds to Terminal Ductal Lobular
Units (TDLU); linear densities correspond to either ducts, fibrous or blood ves-
sels; homogeneous densities correspond to fibrous tissue which appears as bright
areas in mammographic images, hides the underlying normal TDLU, ducts and
their alterations; radiolucent areas are related to adipose fatty tissue which ap-
pears as dark areas in mammographic images [3]. Wolfe [4] used different mam-
mographic parenchymal patterns to divide mammograms into four risk classes.
Strongly influenced by such a modelling approach, Boyd et al. [5] developed a
method to measure percentage mammographic densities using a computer-aided
technique, and divided mammograms into six categories.

In mammographic risk assessment, inter and intra observer variability are
introduced due to radiologist’s subjective appraisal of mammograms. To stan-
dardise mammography reporting, and to reduce confusion in breast imaging
interpretations, the American College of Radiology’s Breast Imaging Reporting
and Data System (Birads) [6] was developed as a quality assurance tool, covers
the significant relationship between increased breast density and decreased mam-
mographic sensitivity in detecting cancer [7]. Mammographic breast composition
is categorised into four patterns: 1) Birads I, the breast is almost entirely fat
(< 25% glandular); 2) Birads II, the breast has scattered fibroglandular densities
(25%− 50%); 3) Birads III, the breast consists of heterogeneously dense breast
tissue (51% − 75%); and 4) Birads IV, the breast is extremely dense (> 75%
glandular). Such a quantitative measure suggests the use of an accurate and re-
peatable mammographic density segmentation technique, to perform automatic
mammographic risk assessment, and allows quantification of change in the rela-
tive proportion of dense breast tissue [3]. Fig. 1 shows example mammographic
images.

Various methods have been investigated to perform mammographic density
segmentation. Early research [8,9,10] focused on estimating parameters for sta-
tistical models, which were subsequently used to segment the fibroglandular
tissue. Such approaches led to more sophisticated model parameter estimation,
based on detailed knowledge of the mammographic system and the imaging pa-
rameters, which is refereed to as the Standard Mammogram Form (SMF) [11].
Grey-level histogram information [12,13], and texture features [14,15] are com-
monly used for mammographic segmentation and risk classification. A statistical
based texton technique [16] was employed to model the whole mammogram; and
the statistical distributions over a texton dictionary (histogram information) was
used as basis for mammographic risk classification. Texture features were directly
extracted from mammographic images in [17], and the ratio of segmented fatty
and dense breast tissue were used for automatic classification of breast density.
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Fig. 1. Mammographic images with respect to Birads risk classification. From left to
right showing Birads I-IV, corresponding from low to high mammographic risk.

This paper investigates mammographic density segmentation using texture
features derived from grey-level histograms, and a novel binary model matching
pattern based Bayes classifier. The extracted texture features contain not only
periodic aspect but also spatial and geometric information; which are expected to
be rich and discriminative for glandular tissue with distinct characteristics. The
developed method was quantitatively evaluated, and the Mammographic Image
Analysis Society (MIAS) database [18] was used to facilitate the experiment.

2 Data and Method

The MIAS database contains 321 available images (file mdb295ll is excluded
for historical reasons). A total of 643 mammographic patches (199 nodular, 253
linear, 70 homogeneous and 121 radiolucent) were subsampled from randomly
selected mammograms by an expert mammographic screening radiologist. The
collection of the patches consists of representative Tabár’s mammographic build-
ing block samples, covering various sizes of anatomical structures, densities and
risk categories. In addition, for 136 mammographic patches, tissue specific re-
gions were annotated in detail.

The proposed method can be broken down into the following stages: 1) breast
tissue feature extraction, 2) mammographic building block model generation, 3)
building a binary model based Bayes classifier, 4) mammographic segmentation,
and 5) mammographic risk classification.

To extract texture features of various mammographic building blocks, four sets
(i.e. nodular, linear, homogeneous and radiolucent) of mammographic patches
containing tissue specific samples were used, regardless of the associated risk class
for the original mammograms. As a multi-resolution approach, a set of square
windows (i.e. 41, 31 and 21 pixels) were used to compute local texture features.
The window sizes were determined using local patches, based on a range of breast
anatomical structures (e.g. from large to small structures) and Fourier analysis.
For each pixel, three grey-level histograms are constructed; the number of bins
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were empirically defined as 250, 150 and 50, respectively. For each histogram,
11 histogram features are computed to encode various texture features: contrast
C, energy E1, skewness S, kurtosis K, entropy E2, homogeneity H , standard
deviation SD, and moments up to the fourth order M1,2,3,4. Therefore, with
respect to a histogram bin configuration, a feature vector of 33 dimensions (11
features × 3 resolutions) is generated. The feature extraction resulted in a total
of 12 sets of feature vectors (4 tissue types × 3 histogram bin configurations).
Note that for each type of tissues, about 5,000,000 pixels were randomly sampled.

The resultant feature vectors were fed into K-means clustering to group sim-
ilar texture features as a means of establishing mammographic building block
models. This clustering processing is performed over the feature vectors gen-
erated for one mammographic building block and one of the three histogram
bin configurations, at a time. Empirical testing on the detail annotated mam-
mographic patch segmentation and visual assessment on the correctness of the
segmentation, indicated that the optimal number of cluster centres for nodular,
linear, homogeneous and radiolucent tissue types were 3, 5, 2, and 7, respectively.
This resulted in a total of 9, 15, 6, and 21 models for the four mammographic
building blocks, respectively.

At the stage of building the binary model based Bayes classifier, the mammo-
graphic building blocks were separated into three groups based on the density
characteristics, where linear and radiolucent tissue are considered non-dense tis-
sue, and nodular and homogeneous tissue are considered semi-dense and dense tis-
sue, respectively. To build the classifier, four sets of mammographic patches with
detail annotations were used. The same feature extraction was applied to each
pixel of a specific mammographic building block; the resultant feature vector is
compared with the learnt tissue models, using the nearest neighbour methodol-
ogy. The similarity comparison was performed with the tissue models associated
with one histogrambin configuration at a time. The closest matchmammographic
building block is labelled as a binary value 1, or otherwise 0. This process generates
a binary pattern (see Fig. 2 for example). The three binary codes are converted
to the corresponding decimal numbers to facilitate building the classifier. In par-
ticular, the counts of these decimal values are allocated into three look up tables
(LUTs) for dense, semi-dense and non-dense tissue, respectively. The size of such
a look up table is defined as 9 (possible decimal values for three digits binary

Fig. 2. Example binary model pattern. N , L, H and R denote nodular, linear, homo-
geneous and radiolucent, respectively.
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code) × 9 × 9 bins. The dense (i.e. homogeneous), semi-dense (i.e. nodular) and
non-dense (i.e. linear and radiolucent) tissue prior probabilities are calculated
as: nPixels = nPixels(tissue) + nPixels(¬tissue), priorProbability(tissue) =
nPixels(tissue)

nPixels , priorProbability(¬tissue) = nPixels(¬tissue)
nPixels ; where ‘nPixels′ in-

dicates number of total pixels of a specific (e.g. homogeneous) and other types
of tissue (e.g. nodular, linear and radiolucent). The probabilities for a particu-
lar tissue belonging to a specific tissue and non-tissue classes are calculated as:

probability(D1,2,3|tissue) =
nPixels(tissue)[D1,2,3 ]

nPixels(tissue) , probability(D1,2,3|¬tissue) =
nPixels(¬tissue)[D1,2,3 ]

nPixels(¬tissue) ; where D1,2,3 indicate the converted decimal values. The

mammographic segmentation process is straightforward, where tissue class of
an unseen pixel is determined by calculating the probability of it being one
of the four mammographic building blocks; it is labelled to the observed tis-
sue class where the probability is the highest. The tissue probability is cal-
culated as: A = LUTs(tissue)[D1][D2][D3] × priorProbability(tissue), B =
LUTs(¬tissue)[D1][D2][D3] × priorProbability(¬tissue), tissueProbablity =

A
A+B . The relative proportions of dense, semi-dense and non-dense tissue were
calculated from the resultant mammographic segmentation; and mammographic
risk classification was performed using the derived tissue proportions and leave-
one (woman)-out methodology.

3 Results

All the available images in the MIAS database were used in the evaluation.
Example mammographic segmentation is shown in Fig. 3. Tab. 1 (left) shows
classification accuracies for discriminating between Tabár’s categories. Total ac-
curacy was 85%, whilst the accuracy for the corresponding low (Tabár I and
II/III) and high (Tabár IV and VI) category was 93%. To avoid bias and deter-
mine the robustness of the classifier, we also performed classification based on
Birads categories. Classification results as seen in Tab. 1 (right), were in 78% and
88% accuracies for Birads four categories, and the corresponding low and high
category, respectively. Note that the ground truth used is based on the majority
risk classification rated by three expert radiologists; when using an alternative
ground truth based on an expert screen radiologist, the accuracies achieved in
74% and 87% for Birads four categories, and the corresponding low and high
category, respectively. It is encouraging to see small variances in classification
accuracies when using a different ground truth. However, the risk classification

Table 1. Classification confusion matrices

Tabár Pattern I II/III IV V Accuracy

I 112 0 4 3 94%
II/III 14 74 5 0 80%
IV 7 1 70 3 80%
V 1 0 9 18 64%

Birads Pattern I II III IV Accuracy

I 84 0 1 2 97%
II 13 73 17 0 71%
III 0 17 73 4 78%
IV 0 2 12 23 62%
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Fig. 3. Example segmentation (mdb108rl); non-dense, semi-dense and dense tissue are
colour coded yellow, red and blue, respectively

performance seems to be better when using the ground truth based on Tabár’s
risk scheme. This may due to the training mammographic pathes containing
tissue specific structures (i.e. mammographic building blocks) were subsampled
based on Tabár’s scheme. Visual assessment indicated that radiolucent tissue
models may be over trained. The number of models for homogeneous type of tis-
sue is relatively less than other types of mammographic building blocks, which
may reflect that homogeneous tissue is less represented in the segmentation.
Note that the numbers of Tabár V and Birads IV are relatively low.

4 Discussion

The prior knowledge of probabilities to be a tissue and non-tissue pixel can be
constructed to serve as our best estimation, provided the number of sampling
pixels is large enough. In our case the number of pixel sampled for each type
of tissue was about 1,000,000, which seems to be sufficient to build a statisti-
cally meaningful classifier. At the same time, an unbalanced number of training
samples can lead to under or over training, which should be avoided.

All the patches were normalised to zero mean and unit variance during the
training stage to reduce intensity distribution variance (e.g. contrast and bright-
ness). This process can potentially alter inter and intra class variation, which
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makes it difficult to draw decision lines in the feature space; a poorly sepa-
rated decision space can lead to unsatisfactory segmentation results when using
a model driven segmentation. The use of binary model as basis of the classifier
is a probability based approach, which seems to be robust in dealing with inter
and intra class variation.

The number of annotated regions for nodular is relatively small, and may not
cover the full range of anatomical samples; therefore it may not be adequate to
be a strong training dataset. In addition, visual inspection indicated that some of
the annotated data is less precise which may be related to hand tremor and other
limitations during the manual process; as a consequence the annotation data
contains artifacts and noise which are not beneficial for the feature extraction
and the subsequent model generation, leading to incorrect segmentation.

Future work will focus on algorithm improvement (e.g. using balanced training
data across various densities and anatomical structures, experimenting other
feature extraction technique) and possible evaluation in a clinical environment.

5 Conclusions

The developed mammographic segmentation has shown anatomically consistent
results with expert radiologist’s annotations. All the available images in the
MIAS database were used in the evaluation based on both Tabár and Birads
risk categories. Strong correlations were found between the classification results.
The total classification accuracies were 93% and 85% in Tabár’s categories and
the corresponding low and high category, respectively; 88% and 78% accuracies
in Birads categories and the corresponding low and high category, respectively.
The novelty aspect and primary finding of this study are: 1) using a novel binary
model matching pattern as basis to train a Bayes classifier and 2) the developed
probability based classifier is robust in dealing with inter and intra class varia-
tion. The initial segmentation results are promising; the developed method can
be found useful in quantification of change of relative proportion of dense tissue,
as means of aiding radiologists’ estimation in mammographic risk assessment.
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Abstract. Determining MRI to X-ray mammography correspondence
is a clinically useful task that is challenging for radiologists due to the
large deformation that the breast undergoes. In this work we propose an
intensity-based registration framework with a new integrated transfor-
mation module that uses a biomechanical model of the breast in order to
simulate the mammographic compression. The breast model is patient-
specific and is extracted from the MRI of the patient. The transforma-
tion model has seven degrees of freedom and uses a fast explicit Finite
Element (FE) solver that runs on the graphics card, enabling it to be
fully integrated into the optimisation scheme. The iteratively updated
parameters include both parameters of the biomechanical model simu-
lation, and also rigid transformation parameters of the breast geometry
model. The framework was tested on five clinical cases. The mean regis-
tration error was 7.6±2.4mm for the CC and 10.2±2.3mm for the MLO
view registrations, indicating that this could be a useful clinical tool.

Keywords: multimodal registration, 2D/3D registration, FEM-based
transformation model.

1 Introduction

MRI is often used as a complementary modality to X-ray mammography to inves-
tigate symptomatic patients and women with dense breasts. However, identifying
corresponding regions can be problematic, due to the differences in image ap-
pearance and the large breast deformation between the two modalities. Women
are lying prone in the MR scanner with their breasts pendulous, while during X-
ray mammography acquisition women are standing with their breast compressed
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between two plates. There are typically two images acquired, one Cradio-Caudal
(CC) and one Medio-Lateral Oblique (MLO) view. An automated MRI to X-ray
registration algorithm would be a valuable tool that could help radiologists in
the diagnosis and management of breast cancer.

Previously, authors have used feature-based techniques for this task ([1], [2]).
However these cannot be easily integrated into clinical practice, as the robust
selection of corresponding, distinctive features from both breast MR and X-ray
images remains unresolved. In addition the possibility of mismatched features
can lead to the need for impractical, manual interaction.

A patient-specific FE modelling approach that simulates mammographic com-
pression was proposed by Ruiter et al. [3]. This implementation used the breast
outline for alignment and applied displacements on the breast surface in two
stages: once in the direction of the projection to match the chest wall to nipple
distance and once in the perpendicular direction to account for the anisotropic
behaviour of the breast and match the breast outline. More recently, a FEM-
based approach with a contact model was proposed [4]. This employed an iter-
ative intensity-based registration framework. However, the updated parameters
were limited to the degree of compression and the 2D rotation of the simulated
mammogram.

We have previously investigated the performance of an intensity-based frame-
work using simpler transformation models, such as an affine transformation [5]
and a statistical deformation model learnt from biomechanical simulations [6].
In this work, we are using the same iterative optimisation framework with a new
patient-specific FEM-based transformation model.

The original contribution of our technique, compared to other approaches that
used biomechanical modelling for the same application, is the use of an intensity-
based registration framework with an iterative update of both the model param-
eters and the rigid transformation parameters. This is enabled by the use of an
integrated transformation module that runs on the Graphics Processing Unit
(GPU) [7], providing shorter execution times than commercial packages.

2 Methodology

In our method, patient-specific biomechanical models are built from the pre-
contrast MRI of the subject. Initially, we segment the breast volume from the
background using a simple region-growing algorithm and then apply Gaussian
smoothing and downsample the extracted binary mask to an isotropic volume of
10mm resolution, to produce smooth meshes and reduce the computational cost
of the FE solver. The surface mesh is extracted using a VTK implementation of
the marching cubes algorithm and the tetrahedral elements are extracted using
the opensource software package TetGen1. A typical breast model of the five
used in this study consists of around 2, 500 elements and 800 nodes.

We are using a nearly incompressible and hyperelastic neo-Hookean model for
modelling [8]. This is transversely isotropic, to account for the reinforcement of

1 http://tetgen.berlios.de/
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biomechanical properties from fiber-like connective tissues in a preferred direc-
tion that was previously observed [9]. We simulate the plate compression using
a frictionless contact model and we approximate the position of the pectoral
muscle nodes to lie on a plane, constraining their movement to be planar.

The transformation model consists of seven parameters which are iteratively
updated during registration. Four of these account for the positioning of the
breast before compression. More specifically these are:

– Two translations within the plane perpendicular to the direction of the pro-
jection

– Two rotations, one for the rotation of the breast about the anterior-posterior
axis (rolling) and one about the superior-inferior axis (in-plane rotation).

The remaining three transformation parameters control the material properties
and the compression simulation of the FEM deformation. These are:

– Amount of compression - constrained between: no compression (0%) and
90% of the maximum distance between the nodes in the direction of the
projection

– Ratio of tissue enhancement coefficient - constrained between [0−512] (range
taken from the literature [9])

– Poisson’s ratio - constrained between 0.45 and 0.499

The compression is simulated using the same amount of displacement for both
compression plates. The optimised parameter is the distance between the two
plates. We assume that the breast tissue is homogeneous with Young’s modulus
4kPa.

Before registration, the MRI intensities are transformed to X-ray attenuation
using the methodology described in [5]. This new volume and the real X-ray
mammogram are the inputs to the registration pipeline. The breast volume is
positioned above the detector and the distance between the X-ray source and
the detector is fixed and extracted from the DICOM file of the mammogram
(f = 660mm). The initial translation parameters are set such that the centre of
mass of the volume is projected onto the centre of mass of the real mammogram.
This provides a good initial position for registration, which is important for the
optimisation scheme in order to converge to a global minimum. The rotation
parameters are initialised to 0�for the CC view mammogram registrations, while
for the MLO view the roll is set to 45�, to account for the different direction of
the projection, and the in-plane rotation is set to 30�, as the breast in MLO view
mammograms appears to have an in-plane rotation.

To avoid resampling the 3D volume into the transformed position and then
ray-casting using this new volume grid, the transformation is performed as the
ray transverses the 3D grid of the undeformed, moving volume. More specif-
ically, during the registration process we use ray-casting from the 2D target
space through the 3D grid of the moving image and integrate the intensities of
each transformed intersection of the ray with the 3D grid. For a point xi, which



Intensity-Based MRI to X-ray Mammography Registration 51

is the intersection of the ray with the volume grid of the moving image, the
transformation is given by the equation:

T (xi) = T2rigid(Tnon−rigid(T1rigid(xi))) (1)

where T1rigid(xi) = Ttranslation(Rin−plane(xi)) and T2rigid(xi) = Rrolling(xi).
The non-rigid transformation Tnon−rigid is the interpolated displacement at the
current position xi and is computed by the FE solver at the current parameter
position.

The geometry of the model is stored in an xml file, which is used as an addi-
tional input into the registration pipeline. The optimised parameters are part of
a transformation module that is integrated in the Insight Toolkit [10], without
requiring the geometry model to be reloaded at each iteration of the algorithm.
This implementation also provides the flexibility to use different similarity mea-
sures and optimisation techniques.

At each iteration the model is transformed using a rigid transformation and an
FE compression simulation and it is projected into 2D using a perspective ray-
casting projection. The similarity measure used is normalised cross correlation
and the optimisation scheme is hill climbing. The value of each parameter p at
iteration i is given by:

pi = pi−1 ± step

w(p)
(2)

where w(p) is a scalar weight factor that controls the relative magnitude of the
step size step for each parameter. At each iteration one parameter is updated,
that which results in the largest increase of the similarity measure, at the current
relative step size. The parameter pi is updated only if the similarity increases
and the step is decreased if the similarity does not improve using the current
parameters.

In our current implementation the algorithm requires approximately 2 hours
for each registration, on a single core, 64-bit machine, with a 2.8GHz processor.
A typical registration task converges usually within 30 iterations (approximately
450 simulations). The performance can be further optimised to include a GPU
implementation of the ray-casting algorithm.

3 Experiments

For validation, we used clinical data from five patients. The MR images of two
cases had a voxel size of [0.7×0.7×1.3]mm3, two had [0.7×0.7×2]mm3 and one
had [0.9× 0.9× 1]mm3. The X-ray mammograms of three patients had pixel size
[0.1 × 0.1]mm2, one had [0.07 × 0.07]mm2 and one [0.08 × 0.08]mm2. All mam-
mograms were resampled by a factor of 10 for registration, to reduce the compu-
tational cost of the ray-casting and more closely match the MRI resolution.

Three of the above patients had lesions visible in both the MRIs and in the
CC and MLO view mammograms. The annotations of these lesions were used as
ground truth correspondences between the modalities. The other two patients
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had an MRI and X-ray compatible clip that was used as a known corresponding
point.

For each registration, the error was calculated as the 2D Euclidean distance
between the centre of mass of the annotation/clip position in the X-ray mammo-
gram and the centre of mass of the MRI annotation/clip position projected into
2D at the final registration position. We consider this metric more appropriate
than an overlap measure for our application, as the size of the annotations can
vary significantly both between different patient pathologies and between the
two modalities, since they measure different physical properties of the tissue.

The registration results for all cases are shown in Table 1, where our approach
is compared against an affine transformation [5]. For the CC view the FEM
transformation performs better with a mean error of 7.6± 2.4mm, compared to
13±7.1mm of the affine, while for the MLO view the mean error (10.2±2.3mm)
is comparable to the affine transformation (11 ± 4.7mm). We can also see that
the variance of the registration error is smaller for our FEM-based transforma-
tion model than the affine, showing that the performance of this technique is
more consistent. Example registration results are shown for two patients with
annotations in Figure 1 and the two patients with clips in Figure 2.

Table 1. Registration error (in mm) of our FEM transformation method and compar-
ison with an affine transformation [5]. The clip cases are patients p4 and p5.

p1 p2 p3 p4 p5 mean std

FEM CC 8.0 6.8 7.2 4.8 11.4 7.6 2.4

Affine CC 14.6 13.5 3.7 9.9 23.4 13.0 7.1

FEM MLO 12.2 11.5 10.3 11.1 6.2 10.2 2.3

Affine MLO 11.9 7.2 9.4 7.7 18.9 11.0 4.7

4 Discussion

In Figure 1 it is clear that the two modalities can give different estimates of the
lesion size. In general, the projections of the MRI annotations appear larger than
the ones on the X-ray images. This difference can be partially explained by the
fact that the two modalities measure different physical properties of the tissue
and also by the effect of the manual annotations, which are generally harder to
perform accurately for 3D structures. Moreover, when the lesions are deformed
during registration, their radius can be reduced in the direction of the projection
and consequently increased in the perpendicular plane. This is expected since
we are using a homogeneous material for the FEM simulations and therefore the
lesions are not modelled as rigid structures.
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(a) p3: CC 7.2mm (b) MLO 10.3mm (c) p1: CC 8mm (d) MLO 12.2mm

Fig. 1. Registration results for two patients, p1 and p3. The X-ray annotation is shown
in red and the projection of the MR annotation in green; their overlap is yellow. In-
evitably each modality can give different estimates of lesion size, but all cases show
overlap.

(a) p5: CC 11.4mm (b) MLO 6.2mm (c) p4: CC 4.8mm (d) CC sim.mammo

Fig. 2. Registration results for the two patients with MR and X-ray compatible clips,
p4 and p5. The clip location on the X-ray mammogram is visible as the high intensity
region (and a red arrow for p4). The MR annotation is shown in green. For the patient
p4 we also show the simulated CC X-ray mammogram (d).
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Table 1 shows that our proposed FEM-based transformation model is less
accurate for the MLO than the CC view registrations. One factor that might
have contributed to this difference is our modelling of the pectoral muscle that
is currently approximated with a plane. As the effect of the pectoral muscle
is larger for the MLO view, we expect our approximation to be less accurate
for these registrations than for the ones of the CC view mammograms. Also the
muscle is excluded from the simulation but is visible in the mammogram. Further
validation tests on a larger data set will show whether there is a significant
difference in the algorithm’s performance between the two views.

Compared to other patient-specific FEM-based methods used for this task,
quantitative results on clinical cases showed a mean error of 4.3mm on 6 cases
[3], and in a more recent semi-automated implementation of the same approach
11.8±6.5mm on CC view mammograms of 11 patients [11]. However, meaningful
comparison is not possible unless an algorithm could be tested on the same data
sets. We would welcome the opportunity to do this on a common data set.

5 Conclusion

We have presented a framework for an intensity-based MRI to X-ray mammog-
raphy registration using a novel iteratively updated FEM breast compression
simulation. The results on five clinical data sets indicate that this could be a
useful tool and potential aid to breast cancer detection and diagnosis.

We believe that the proposed method, in which we simultaneously optimise
both the pose, via four degrees of freedom, and the biomechanical model pa-
rameters, via a further three degrees of freedom, provides the most physically
realistic transformation model to date, for this application. In addition, incorpo-
rating this transformation model into an intensity-based registration framework,
maximises the amount of information used by the optimisation, increasing the
likelihood of the correct transformation being obtained.

The only interactive step of the current implementation is the pectoral muscle
segmentation. However automated methods exist [12], which could be incorpo-
rated into our method, to create a fully-automated pipeline suitable for clinical
use.

Finally, future work includes further validation on a larger data set and in-
vestigation of the effect that a more accurate modelling of the breast has on the
registration accuracy. For example this could include assigning different mate-
rial properties to the fibro-glandular, the adipose tissue, the tumour and the skin
and also precise modelling of the boundary between the pectoral muscle and the
breast.
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Abstract. Simulations have become a very important tool in study-
ing the details of the physical processes underlying imaging systems.
With the current generation of many-core computer architectures, it has
become possible to have realistic simulations in reasonable computing
times. In this work, we briefly describe hybridmantis, a fast Monte Carlo
tool for simulating indirect x-ray detectors that uses a hybrid approach
to maximize the utilization of CPUs and GPUs in a workstation. hy-
bridmantis is based on the mantis code with an improved geometrical
model. Moreover, hybridmantis can run on GPUs for maximum compu-
tational efficiency. We compare hybridmantis results on point response
and modulation transfer function for a CsI scintillator screen against ex-
perimental and mantis results. For quantitative analysis, we calculate
the root mean square (RMS) difference and Swank factors for simulated
and experimental data. We find that hybridmantis matches the experi-
mental results as good as or better than mantis, especially in the high
spatial frequency range. The RMS values were lower (0.025, 0.028 for 40
and 70 kVp input spectra respectively) for hybridmantis than for man-
tis (0.049, 0.075 respectively) when compared to experimental data. The
comparison of Swank factors suggests that hybridmantis and mantis are
both consistent with the experimental data. Our models of detector re-
sponse are useful tools for the design and optimization of breast imaging
systems and for improved description of the forward problem in recon-
struction algorithms.

Keywords: Monte Carlo, scintillator detector, mantis, Graphics Pro-
cessing Units (GPU).

1 Introduction

The detailed analysis of imaging systems requires thorough understanding of
the underlying physical processes through theory, experiments and simulations.
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With the advent of parallel computer architectures, it is now possible to per-
form realistic simulations, especially an advantage in medical imaging, where
large number of images are required to obtain low uncertainities in performance
estimates. Some examples of computationally intensive simulation tools include
penelope [1] and mantis [2] for performing x-ray, electron and optical pho-
ton transport. Graphics Processing Units (GPU) are suitable for problems like
optical photon transport involving independent photon histories. To overcome
this problem, we describe and perform initial validation studies for a novel hy-
brid Monte Carlo approach using CPUs and GPUs in parallel. We refer to it
as hybridmantis. It is a fast Monte Carlo package for modeling indirect x-ray
imagers.

2 Methods

In this section we summarize the hybrid concept, present key features of hy-
bridmantis, and explain the methods used for validation of hybridmantis with
mantis and experimental data.

2.1 Hybrid Concept

The hybrid approach can be applied to any problem consisting of two processes.
The first process runs in a CPU and the other can be run independently in a
GPU. This approach can provide a balanced utilization of the CPUs and GPUs
in a single or multiple workstations. For this work, we consider the x-ray and
electron transport as process 1, which runs in a CPU and the optical transport
as process 2 (runs in a GPU). Process 1 outputs the energy and locations of
energy deposition events in the scintillator and buffers them. This buffer is sent
to process 2 which calculates the number of optical photons to be simulated and
transports them. By the time the GPU transports these optical photons, the
CPU simulates more x-ray transport and re-fills the buffer. Thus both process 1
and 2 are run in parallel [3].

2.2 hybridmantis

penelope 2006 was used for the x-ray and electron transport. The modeled x-
ray source was a 30 µm diameter circular parallel beam with two energy spectra
at 40 and 70 kVp. Cesium Iodide (CsI) was used as detector material. The optical
photons were transported using fastdetect2, a rewrite of the optical transport
code detect2 used in mantis. It offers improved features as compared to de-
tect2 in terms of columnar geometry description and computational efficiency.
penelope generates the locations and deposited energy of the interaction events
which are used by fastdetect2 to sample optical photons following a Poisson
distribution. An optical photon can either be absorbed (at the top surface or in
the bulk) or lost (exits the detector boundary) or detected (at non-ideal sensor
plane located at the bottom of the detector) during its transport. In addition,
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Table 1. Simulation parameters for hybridmantis

Detector lateral dimensions 50 x 50 mm2

Detector thickness 170 µm

Column radius 5.1 µm

Refractive index of columns 1.8 (Cesium Iodide)

Refractive index inter-col. space 1.0 (Air)

Top surface absorption fraction 0.1

Bulk absorption coefficient 0.0001 µm−1

Surface roughness coefficient 0.2

Minimum dist. to next column 1 µm

Maximum dist. to next column 280 µm

Non-ideal sensor reflectivity 0.25

Input X-ray spectra 40 and 70 kVp

Light yield 55 optical photons per keV

to accurately model the roughness of surface walls we implemented the rough-
ness model used in mantis. The simulation parameters are given in Table 1 (see
Ref. [3] for details).

hybridmantis addresses some of the limitations of mantis. For instance man-
tis stores all columnar array details in memory, making it difficult to model
large area detectors. In hybridmantis, we solve this issue by modeling columns
on the fly, which means that the columnar array details are computed dynam-
ically. Once a photon travels out of a column, we sample a distance uniformly
between a minimum and maximum value to locate the new column. The photon
is then transported to the surface of this new column. Another limitation of
mantis is that due to its regular columnar arrangement, it does not match the
randomness of real columnar structure. To compensate for this, a uniform CsI
layer is added at the bottom of the detector to allow photons to travel laterally
at different angles, thus matching the experimental response. In hybridmantis,
as the columns are modeled on the fly, they can be described with randomness
in terms of shape, size, tilt angle and material properties. We have implemented
an algorithm (referred to as columnar crosstalk) to allow photons to cross over
to the adjacent column without undergoing reflection or refraction. This sim-
ulates regions where columns are physically connected as seen in the scanning
electron microscope (SEM) image of the screen in Fig. 1 (left). For this work, we
implemented a linear model of crosstalk with depth (see right image of Fig. 1).

hybridmantis simulations were performed using one core of an Intel R© Core
i7 920 CPU and an NVIDIA R© GeForce GTX 580 GPU1. C language was used
for programming on the CPU and CUDA (version 4.0) for the GPU. mantis

1 The mention of commercial products herein is not to be construed as either an actual
or implied endorsement of such products by the Department of Health and Human
Services. This is a contribution of the Food and Drug Administration and is not
subject to copyright.
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Fig. 1. (Left) SEM image of the screen (courtesy Radiation Monitoring Devices Inc.,
Watertown MA) used for comparison of hybridmantis with the experimental results
in this work. (Right) Columnar crosstalk model as a function of depth. Here depth
is defined in the direction of x-rays entrance. In the first 20% of the detector, all the
photons can crossover to adjacent columns. This crossover decreases linearly to half at
50% depth, and then increases linearly back to 100% crossover at the sensor plane of
the detector.

simulations were performed using one core of Intel R© Xeon R© E5410 CPU. hy-
bridmantis source codes are available for free download at
http://code.google.com/p/hybridmantis.

2.3 Experimental and mantis Data

Freed et al. [4] validated mantis simulation results against four CsI scintillator
screens with different properties. For the experiments, they measured the point
response functions (PRF) for all the screens for 40 and 70 kVp spectra and
at four incidence angles (0◦, 15◦, 30◦ and 45◦). A 30-µm pinhole was used in
front of the x-ray beam. mantis simulations incorporated the details of the
geometrical structure for each specific screen and were produced with 500,000
x-ray histories. For comparison in this work, we have used their experimental
and mantis data for only one screen, shown in Fig. 1 (left) at 0◦ incidence angle.
Its manufacturer specifications can be found in Table 1, and mantis simulation
parameters in Table 2 of Reference [4].

2.4 Simulation Output and Data Analysis

All PRFs were obtained for an area of 909×909 µm2 around the center of the
sensor plane using a 9 µm pixel pitch and have been normalized by their max-
imum value. Line spread functions (LSF) were calculated by integrating each
column or row of the PRF and the modulation transfer functions (MTF) were
calculated as the discrete Fourier transform of the LSF. Pulse-height spectra
(PHS) were generated for all hybridmantis simulations.

We compare the data quantitatively based on the root mean square difference
between the experimental and simulated MTF data averaged over the range
(0.1,10) mm−1.
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RMS =

√
√
√
√

1

N

N∑

i=1

(ei − si)
2

(1)

where N is the number of spatial frequency bins in the range (0.1,10) mm−1,
ei is the experimental and si is the simulated MTF data. In addition, we also
calculate the Swank or information factor (As) for comparison with mantis. As

characterizes the noise associated with converting x-ray to optical (light) energy
and can be obtained from the PHS. As can be calculated using the zeroth (m0),
first (m1) and second moments (m2) of the PHS [5],

As =
m2

1

m0m2
. (2)
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Fig. 2. PRF and PHS for 40 and 70 kVp spectra using hybridmantis

3 Results and Discussion

We compare our hybridmantis results against mantis and experimental data
for the two input spectra (40 kVp and 70 kVp). All the hybridmantis results
shown in this work are for simulating 1 million x-ray histories. Table 1 lists the
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Fig. 3. LSF and MTF comparison of experimental, mantis and hybridmantis data
for the two spectra. LSFs (a-d) are obtained by integrating each column of the PRF
(marked with C) while (e-h) are obtained by integrating the PRF row-wise (marked
with R). MTFs are the discrete fourier transform of the LSF.

simulation parameters used for hybridmantis. Fig. 2 shows the PRF and corre-
sponding PHS for hybridmantis simulations. We observe that the PHS changes
significantly between the two spectra due to the difference in the relative pho-
toelectric fraction. Fig. 3 provide the LSF and MTF comparisons between the
simulation and experimental results. Figs. 3 (a) to (d) show the LSF by inte-
grating each column of the PRF while plots (e) to (h) integrate each row. We do
not observe any significant difference between the two types of LSF calculations.
From Fig. 3 we observe that hybridmantis matches the experimental better
than mantis especially at higher spatial frequencies and for 70 kVp spectra.

We calculated the RMS values for comparing hybridmantis and mantis simu-
lations with the experimental data. RMS was calculated using MTFs from Fig. 3
(b, d). When comparing hybridmantis with the experimental data, RMS values
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are 0.025 and 0.028 for the 40 and 70 kVp spectra respectively. For comparing
mantis with experimental results, we obtain RMS of 0.049 (40 kVp) and 0.075
(70 kVp). hybridmantis has lower RMS values and thus matches the experimen-
tal better than mantis. In addition, we used the As as a metric for the validation
of hybridmantis. For this comparison we used the experimental As obtained by
Zhao et al. in Ref. [6,5]. This data was collected for monoenergetic input from 2
to 140 keV, obtained in steps of 2 keV. Fig. 4 depicts the As for hybridmantis,
mantis and experimental data from Ref. [6,5] at these energies. We see that
both hybridmantis and mantis are consistent with the experimental results.

Our results suggest that hybridmantismatches the experimental data as good
as or better than mantis for this screen, especially in the high spatial frequency
range. We postulate that this is because hybridmantis more closely follows
the realism of the columnar array due to its on-the-fly geometry and columnar
crosstalk features as compared to mantis. A more comprehensive comparison
will be presented elsewhere.

hybridmantis is significantly more computationally efficient than mantis be-
cause of the hybrid CPU-GPU approach used in it. We obtained high speed-up
factors of 4967 (for 40 kVp) and 4209 (for 70 kVp) when using hybridmantis
as compared to mantis.
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Fig. 4. Swank factor (As) comparison of hybridmantis with mantis and experimental
data (from Ref. [6,5])

4 Conclusion

We described hybridmantis and highlighted its key features in comparison with
mantis. The hybridmantis point response and modulation transfer function
results were compared against experimental and mantis results obtained from
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Reference [4]. We calculated root mean square and Swank factor and demon-
strated that hybridmantis matches the experimental results as good as or better
than mantis for the screen considered in this work, especially in the high spatial
frequency range. Our hybridmantis package is computationally more efficient
than mantis achieving speed-ups of up to 4967 over mantis. This package can
facilitate the design and optimization of breast imaging systems and modeling
for reconstruction algorithms.

Acknowledgement. The authors thank M. Freed for sharing the experimental
data she obtained and reported on in Ref. [4].
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Abstract. Automatic classification of breast masses in mammograms
has been considered a major challenge. Mass shape, margin and density
define the malignancy level according to a standardized description, the
BI-RADS lexicon. Unlike other approaches, we do not segment masses
but instead, we attempt to describe entire regions. In this paper, contin-
uos (Zernike) and discrete (Krawtchouk) orthogonal moments were used
to characterize breast masses and their discriminant power to classify
benign and malign masses, was assessed. Firstly, Regions of Interest se-
lected by an expert are projected onto two sets of orthogonal polynomials
functions, continuous and discrete, thereby drawing shape global infor-
mation onto a feature space. Using a simple euclidean metric between
vectors, the projected images are automatically classified as benign or
malign by a k-nearest neighbor strategy. The parameter space is char-
acterized using a set of 150 benign and 150 malign images. The whole
method was assessed in a set of 100 masses with different shape and
margins and the classification results were compared against a ground
truth, already provided by the database. These results showed that dis-
crete Krawtchouk outperformed Zernike moments, reaching an accuracy
rate of 90, 2% (compared to 81% for Zernike moments), while the area
under the curve in a ROC evaluation yielded Az = 0.93 and Az = 0.85
for the Krawtchouk and Zernike strategies, respectively.

Keywords: Breast mass, Zernike moments, krawtchouk moments, Or-
thogonal moments.

1 Introduction

Breast cancer is the most frequently diagnosed cancer in women and is considered
as the largest public health problem in women population worldwide [1]. This dis-
ease is fully curable when an early diagnosis is achieved and mammography is the
more efficient method for visualizing abnormalities in these stages [2]. However,
mammographic interpretation is a really difficult task, especially when a mass is
present, due to its high inter and intra observer variability. Previous studies have
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reported that between 10% and 25% of breast cancer are not detected in mam-
mography, a finding that has been associated to the variability introduced by
the observer. The American College of Radiology has therefore designed a pro-
tocol, currently known as the Breast and Imaging Report and Database System
(BI-RADS) that has permitted to standardize the radiological work flow and to
improve the radiological reading reproducibility [3]. This agreement established
that radiologic semiology signs are shape, margin and mass density. Ultimately,
development of Computer Assisted Diagnosis Systems (CAD) for mammography
has decreased this observer variability since the radiologists can support their
diagnosis using the evidence stored in a particular database, becoming a well
accepted clinical practice to assist radiologists [4]. However, for mass detection
and/or classification, these systems have reported poor accuracy. In breast mass
analysis, the feature extraction process plays the most important role because
its effectiveness directly determines the system performance. A main problem is
then that those extracted features have to be discriminative enough to represent
different kinds of pathological characteristics.

In the context of image analysis, shape analysis based on moments theory
have been used to distinguish between different objects, characters, aircrafts,
chromosomes, and industrial parts [5]. Since Hu [6] introduced moments in-
variants, moments and functions of moments have been widely used because of
their ability to represent global features of an image [7]. However, these mo-
ments are not orthogonal in general, whereby this representation is redundant
and can be hardly used for reconstruction. However, Teague [8] suggested the
use of Legendre and Zernike polynomials by an appropriate approximation of
the integrals [9], allowing minimal information redundancy, low noise and high
image reconstruction capability. Previous works have reported that Zernike mo-
ments perform better than others continuous orthogonal moments [10], but their
geometric and numerical error have limited their use. Orthogonal polynomials
were firstly introduced by Mukundan et al. [7], who proposed a set of discrete
orthogonal moment functions, based on the discrete Tchebichef polynomials.
Another new set of discrete orthogonal moment functions, based on the discrete
Krawtchouk polynomials, was presented by Yap et al. [11]. It was shown therein
that discrete orthogonal moments perform better than conventional continuous
orthogonal moments in terms of image representation. These investigations sug-
gest the Krawtchouk moments are better suited for shape analysis. Furthermore
the Krawtchouk moments can be used to extract local features of an image,
unlike other orthogonal moments, which generally capture the global features.

In previous works, many approaches based on moments analysis have been
proposed for classification of masses in mammography [12,13,14]. Most of them
are higher dependent of previous segmentation, in which morphology is described
using Zernike moments [14].

In this paper we proposed a breast mass characterization strategy based on a
set of discrete orthogonal functions, known as krawtchouk polynomials. This set
of bases has permitted to define a new type of discrete orthogonalmoments, which
are herein formulated, implemented and evaluated on a breast mass classification



66 F. Narváez and E. Romero

problem. We evaluate the performance of both continuous (Zernike) and discrete
(Krawtchouk) orthogonal moments. Firstly, these regions are projected onto a set
of orthogonal polynomials functions, continuous and discrete, respectively. Once
these basic features are computed, a further dimensionality reduction is achieved
using a standard Principal Component Analysis (PCA), reducing the Krawtchouk
initial descriptor from 820 to 30 and the Zernike descriptors, from 961 to 40 di-
mensions. Finally, these features are classified using a K-nearest-neighbor strat-
egy under a Euclidean metric. The strategy was assessed by classifying a set of 100
masses with different shapes and margins, using as the ground truth the radiolo-
gist’s annotation, already provided by the data base. Results showed that discrete
Krawtchouk moments obtained an accuracy of 90, 2% for the classification task,
in contrast with 81% obtained with Zernike moments, while the area under the
curve in a ROC evaluation yielded Az = 0.93 and Az = 0.85 for the Krawtchouk
and Zernike strategies, respectively. The rest of this article is organized as follows:
next section presents the methodology, results are shown in section 3 and the last
section discusses future works and conclusions.

2 Methodology

After the radiologist selects a mass, the corresponding Region of Interest ROI
is pre-processed to enhance the mass shape. Unlike other approaches, we do not
segment masses but instead, we attempt to describe entire region. Afterward,
this ROI is transformed to any of the spaces defined by any of the selected
bases, either Zernike or Krawtchouk. The number of selected moments is set by
determining a polynomial order that achieves a good reconstruction error for
both types of representations, in this case, an order of 50 was found to produce
a low reconstruction error(0.23 and 0.196 Zernike or Krawtchouk moments re-
spectively). This polynomial order generates a number of basic features, 961 for
the Zernike moments and 820 for the Krawtchouk moments. Once these basic
features are computed, a further reduction of dimensionality is achieved using
a standard Principal Component Analysis (PCA), setting a Zernike descriptor
of 40 and Krawtchouk of 30 dimensions, which preserve a 85% of variability in
the data for both descriptor, respectively. Finally, regions are classified with a
K-nearest-neighbor strategy using Euclidean distance.

2.1 RoI Pre-processing

Breast mass analysis is very likely one of the most difficult radiological exam-
inations since these images capture a very complicated anatomical object with
a limited spatial resolution. Every image was herein size reduced using 16-8
bit conversion technique [15] , stretched to the maximum and minimum gray
level values ([0, 255]) followed by a bin reduction from 256 to 12 bins, adap-
tively equalizing the histogram so that structural details were preserved. This
step aims to conserve exclusively what is relevant for the classification task. Re-
sultant images were smoothed out by a median filter to remove the remaining
noise. Figure 1 shows an example of the resultant preprocessed images (benign
and malign masses).
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Fig. 1. RoI pre-processing: RoIs of columns (a) original images, (b) stretched images,
(c) images with bin reduction

2.2 Zernike Moments

According to BI-RADS, the two more important properties for diagnosis are
shape and texture [3,16,17]. Teague [8] suggested that the use of orthogonal
bases in terms of the Legendre and Zernike polynomials are good shape descrip-
tor but also rotation-invariant, robust to noise and constitute multiresolution
shape representations [18]. Zernike polynomials based representation turns out
to be more robust to noise [9], allowing reconstruction with minimal losses. The
Zernike polynomials are a set of complex polynomials which form an orthogonal
complete set Vpq(x, y) within the unitary circle [8] and are defined as:

Vpq(x, y) = Rpq(r)e
jqθ , r ∈ [−1, 1] (1)

where r =
√

x 2 + y2 is the vector magnitude and θ = tan−1
(
y
x

)
its angle.

In general, the Zernike Moments are defined as:

Zpq =
p+ 1

π

∫ π

−π

∫ 1

0

[Vpq(r, θ)]
∗f(r, θ)rdrdθ (2)

where f(r, θ) is the image in polar coordinates. With a numerical approximation,
the complex Zernike moments are derived from the real-valued radial polynomi-
als, given by:

Rpq(r) =

(p−|q|)/2∑

s=0

(−1)s
(p− s)!

s!(p+|q|
2 − s)!(p−|q|

2 − s)!
rp−2s (3)

where p and q are subjected to p− |q| is even, 0 � |q| � p, and p � 0. Then the
complex Zernike moments of order p, with q repetitions for an image intensity
function f(x, y) are given by:

Zpq =
p+ 1

π

∑

x

∑

y

V ∗
pq(x, y)f(x, y) (4)

where ∗ stands for the conjugated complex of Vpq(x, y).



68 F. Narváez and E. Romero

Since that the domain of the Zernike basis functions is the unitary circle,
images are mapped to the unitary circle and their centers must coincide with
the unitary circle center [19,9] .

2.3 Krawtchouk Moments

The basis functions of Krawtchouk moments are the discrete orthogonal
Krawtchouk polynomials satisfying

N∑

x=0

j(x)kn(x)kn(x) = ρ(N,n, p)δpq, 0 � m,n � N (5)

where ρ(N,n, p) =

(
N
n

)
pn(1−p)n, and q = (1−p). The explicit hypergeometric

(F ) representation of the Krawtchouk polynomial is given by [11] as

Kn(x) = qn
(
x
n

)
F
(−n, x−N ;x− n;− p

q

)
(6)

and the weight function j(x) =

(
N
x

)
pxqN−x.

Krawtchouk moments [11], unlike Zernike and Legendre moments, belong to
the class of discrete orthogonal moments. Therefore, implementation of these
moments does not involve any numerical approximation. Moreover, Krawtchouk
polynomials do not require coordinate space transformations. Krawtchouk mo-
ments with order m+ n are defined as

Knm(x) = [ρ(N,n, p)ρ(N,m, p)]−1
N−1∑

x=0

N−1∑

y=0

j(x)kn(x)j(y)km(y)f(x, y) (7)

for m,n = 0, 1, 2, ...N where kn(x) and km(y), given by (6) are used as the
basis set. The inverse moment transform is used to reconstruct the image and is
defined by

f(x, y) =

N∑

m=0

N∑

n=0

Knmkn(x)km(y) (8)

2.4 Reconstruction Error

The normalized (RMS) root-mean-square error (ε) is used for measuring the
accuracy of the moments in reconstructing the image and is determined as

ε =

√√
√
√
√
√

∑

i

∑

j

[f(i, j)− F (i, j)]
2

∑

i

∑

j

[f(i, j)]2
(9)

where f(i, j) and F (i, j) are the original and reconstructed images, respectively.
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A minimum image reconstruction error calculating the root-mean-square
(RMS), shown in Table 1 for both Krawtchouk and Zernike moments, allowed
to choose the optimum order of moments to be used in the classification task.

Table 1. Minimum Reconstruction Error (RMS)

Max. Order Krawtchouk Zernike

10 0.796 1.032

20 0.624 0.742

30 0.323 0.532

40 0.281 0.319

50 0.196 0.230

60 0.179 0.779

70 0.176 1.299

80 0.172 1.298

An order of 50 was chosen since it generates a low reconstruction error for
both Zernike and Krawtchouk moments.

3 Experimental Results

The strategy was evaluated on a total of 100 RoIs, including pathological masses
previously annotated as benign and malign by a group of radiologists, extracted
from theDigital Database for Screening Mammography (DDSM) [20]. This dataset
was split into training (300) and test (100), (50 benign-50malign) subsets. Classifi-
cation performance was evaluated byK-NN strategy using the euclidean distance
as the space metrics since this classifier has been successfully used as a baseline in
image annotation tasks [21]. The optimal number of used RoIs was estimated by a
10-fold cross validation assessment (k=7). The Zernike strategy, set to 40 dimen-
sions by the PCA method, reported an accuracy of 81%. The obtained confusion
matrix reads as: accuracy = TP+TN

TP+FP+FN+TN , where TP is the number of True
Positives, TN true negatives, FP false positives, FN false negatives, respectively.

The performance of classification was evaluated by the area under the ROC
curve, which reported a Az = 0.85 as illustrated in Figure 2. The ROC curve
was generated using a threshold value to make a classification decision, which
were proportional to each K-nearest distance [22].

On the other hand, Krawtchouk strategy with 50 order moments was eval-
uated. For this, a vector feature was reduced to a set of 30 features by PCA
analysis. Results reported an accuracy of 90.2%, while the area under the curve
in a ROC evaluation yielded Az = 0.93. Figure 2 present the classification per-
formance for Krawtchouk and Zernike moments, respectively.
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Fig. 2. Classification results : ROC curves for Zernike and Krawtchouk moments

4 Conclusions and Future Works

The use of Krawtchouk moments for describing shape of mammography masses
was evaluated in this paper. The performance by using this descriptor in a
bening-malign classification task was evaluated using images obtained from a
well known public database. Classification was performed using a single K-NN
classifier. Results were compared with description performed by the state of the
art shape descriptor, named Zernike moments, which have been used previously
for breast mass representation. Experimental results indicate that the shape de-
scriptor based on the Krawtchouk moments improve they obtained by the use
of the Zernike moments. Future works include the fusion of this descriptor with
other visual features such as texture that allows to improve the classification
performance in the most challenging tasks.
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Radiológicas usando Semántica Latente” Grant: 110152128803, ”CONVOCA-
TORIA COLCIENCIAS 521 de 2010”.

References

1. Society, A.C.: Cancer facts & figures 2008. Technical report, ACS (2008)
2. Buseman, S., Mouchawar, J., Calonge, N., Byers, T.: Mammography screening

matters for young women with breast carcinoma. Cancer 97, 352–358 (2003)



Breast Mass Classification Using Orthogonal Moments 71

3. ACR: Illustrated Breast Imaging Reporting and Data System (BI-RADS), 3rd edn.
American College of Radiology, Reston (1998)

4. Nishikawa, R.M.: Current status and future directions of computer-aided diagnosis
in mammography. Computerized Medical Imaging and Graphics 31, 224–235 (2007)

5. Mukundan, R., Ramakrishnan, K.R.: Moment Functions in Image Analysis: Theory
and Applications. World Scientific, Singapore (1998)

6. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on
Information Theory 8(2), 179–187 (1962)

7. Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by tchebichef moments. IEEE
Trans. Image Process 10(9), 1357–1364 (2001)

8. Teague, M.R.: Image analysis via the general theory of moments. J. Optical Soc.
Am. 70, 920–930 (1980)

9. Wee, C.Y., Paramesran, R.: On the computational aspects of zernike moments.
Image and Vision Computing 25, 967–980 (2007)

10. Yin, J., Pierro, A., Wei, M.: Analysis for the reconstruction of a noisy signal based
on orthogonal moments. Appl. Math. Comput. 132(2), 249–263 (2002)

11. Yap, P., Paramesran, R., Ong, S.: Image analysis by krawtchouk moments. IEEE
Trans. Image Process. 12(11), 1367–1377 (2003)

12. Tahmasbi, A., Saki, F., Shokouhi, S.B.: Classification of benign and malignant
masses based on zernike moments. Computers in Biology and Medicine 41, 726–
735 (2011)

13. Oliver, A., Torrent, A., Llado, X., Marti, J.: Automatic diagnosis of masses by
using level set segmentation and shape description. In: International Conference
on Pattern Recognition, pp. 2528–2531 (2010)

14. Wei, C.H., Chen, S.Y., Liu, X.: Mammogram retrieval on similar mass lesions.
Computer Methods and Programs in Biomedicine 3, 1–15 (2010)

15. AbuBaker, A.A., Qahwaji, R.S., Aqel, M.J., Saleh, M.H.: Mammogram image size
reduction using 16-8 bit conversion technique. International Journal of Biological
and Medical Sciences 2, 103–110 (2006)

16. Homer, M.J.: Mammographic Interpretation: A Practical Approach, 2nd edn., New
York (1997)

17. Maggio, C.D.: State of the art of current modalities for the diagnosis of breast
lesions. Eur. J. Nucl. Med. Mol. Imaging 31(suppl.1), S56–S69 (2004)

18. Kim, H., Kim, J.: Region-based shape descriptor invariant to rotation, scale and
translation. Signal Proc.: Image Communication 16, 87–93 (2000)
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Abstract. Digital breast tomosynthesis (DBT) is a young technology,
and the current imaging protocols are not yet fully optimized. Numerous
recent studies have focused on optimizing DBT scan geometries, but the
optimal DBT scan geometry is inextricably linked to the exposure de-
livery scheme. It is possible that alternative, variable-exposure delivery
schemes could change our understanding of the optimal DBT scan. There
is a need for strategies to evaluate and optimize DBT exposure delivery
on a task- and patient-specific basis. To this end, we developed a simu-
lation framework that uses fast, GPU-enabled Monte Carlo simulations
and linear observer models to evaluate variable-exposure DBT systems.
We tested three different exposure schemes: Equal, Central, and Oblique
exposure. Preliminary results indicate that for the specific task of detect-
ing a small signal in low density breast phantoms (15%), the alternative
Central and Oblique exposure schemes may increase detectability.

Keywords: tomosynthesis, breast, variable-exposure, task-specific, im-
age quality.

1 Introduction

Digital breast tomosynthesis (DBT) is a young technology, and researchers in the
field generally agree that the current imaging protocols are not fully optimized.
Numerous recent studies have focused on optimizing DBT scan geometries in a
task-specific manner. However, the optimal DBT scan geometry for a particular
task is inextricably linked to the exposure delivery scheme. Thus, it is important
to study how to optimize exposure delivery alongside optimizing the scan ge-
ometry. It is possible that alternative, variable-exposure delivery schemes could
change our understanding of the optimal DBT scan. There is a need for strategies
to evaluate and optimize DBT exposure delivery on a task- and patient-specific
basis. Due to the many variables in this optimization problem, there is an addi-
tional need for fast, accurate software tools for virtual DBT system evaluation.
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2 Methods

We are developing a virtual trial engine for DBT system evaluation. The virtual
DBT trial engine involves six computational steps:

1. Generate an ensemble of breast phantoms.
2. Frame the image quality problem with a specific, clinically-relevant task.
3. Simulate DBT projection data with scatter.
4. Model detector noise.
5. Postprocess the data for analysis of raw or reconstructed images.
6. Perform model observer (linear discriminant) analysis.

*Adjust parameters of interest in steps #1-6 and repeat.*

With this approach, it is possible to evaluate various DBT systems by appropri-
ately modifying interesting parameters at each step in the virtual trial. In the
following subsections, we provide more detail on each of the steps.

2.1 Generate an Ensemble of Breast Phantoms

We used the UPENN breast phantom model[1] to generate ensembles of 400
voxelized phantoms for each of three different percent density classes: 15%, 25%,
and 40% (Fig. 1). Each phantom contained randomly-varying compartments of
adipose (gray) and fibroglandular (white) tissue.

15% 25% 40%

Fig. 1. Example compressed breast phantoms (ML slices) from three different density
classes
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2.2 Frame the Image Quality Problem

We simulated a detection task by embedding identical spherical masses into half
of the breast phantoms at the center-of-rotation of the x-ray source arc (Fig.
2). We repeated the task for two signal sizes – small (3 mm) and large (8 mm).
Each mass was inserted into a phantom by changing the density coefficients of
the voxels at the signal location from the existing background density to 1.044
g/cm3. The fibroglandular and adipose tissue densities were set to 1.035 and
0.928 g/cm3 based on previously published values[2]. The voxel size was 500
microns, so the small signal occupied a volume of 112 voxels and the large signal
occupied a volume of 2096 voxels.

Δθ

X-ray Source

Breast Phantom

Detector ROI

R=59 cm

z=0

z=4.1 cm
z=6 cm 

26 x 7 cm2

θscan

Fig. 2. Schematic (not to scale) of the simulated partial-isocentric DBT geometry
(left). The detector ROI shifts with projection angle. The right image is a slice through
a 25% density breast phantom at z = 6 cm, showing a small signal (in yellow) as well
as random overlapping background structures.

2.3 Simulate DBT Projection Data

To generate projection images, we used the open source MC-GPU[3] Monte
Carlo code appropriately modified for partially-isocentric DBT geometries. MC-
GPU takes advantage of the highly-parallelized architecture of current GPUs.
To model a polyenergetic x-ray source, we used CDRH/FDA measured spectral
data[4] in conjunction with the parameters in Table 1. For a single phantom, MC-
GPU can easily handle 1011 or 1012 photon histories on recent GPU hardware.
For ensembles of hundreds of phantoms, however, we chose to evaluate two lower
exposure levels – 1.5× 109 and 1010 photons per phantom – to reduce the time
required for the virtual trials.
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Table 1. X-ray source parameters for generating MC-GPU input spectrum

Target/Filter Tungsten/Al (0.9 mm)
kVp 28 kVp, 13◦ anode angle
HVL 0.537 mm Al
Mean x-ray energy 20.04 keV

We considered a simple 3-projection DBT acquistion (0◦,±48◦) with three
different exposure-delivery schemes. In the first scheme – Equal exposure – each
projection received 1/3 of the total photons. The next two schemes were chosen
based on the fact that the thickness of tissue increases roughly with the cosine of
the projection angle. In the “Central exposure” scheme, the oblique projections
received 1/3 of the total times the cosine of the projection angle. In other words,
the 48◦ projection consumed N0

3 cos 48◦ photons. The 0◦ projection received the
remaining photons, or N0(1− 2

3 cos 48
◦). In the “Oblique exposure” scheme, the

0◦ projection consumed N0

3 cos 48◦ photons while the oblique projections each

received N0

6 (3 − cos 48◦) photons. These three exposure-delivery methods are
summarized in Table 2.

Table 2. Exposure fractions (fraction of the total photons) at each of the 3 projection
angles for three different exposure-delivery schemes:

−48◦ 0◦ 48◦

Equal exposure 1/3 1/3 1/3
Central exposure 1

3
cos 48◦ 1− 2

3
cos 48◦ 1

3
cos 48◦

Oblique exposure (3− cos 48◦)/6 1
3
cos 48◦ (3− cos 48◦)/6

2.4 Model Detector Noise

In MC-GPU, a 26 x 7 cm2 perfectly-absorbing detector was used with 100 micron
pixels (2600 x 700 total pixels). Thus, the data in this study only suffered from
object/anatomical noise due to the randomly-varying phantom backgrounds and
quantum noise due to the finite sampling of x-ray photons. We neglected other
sources of detector noise (e.g. scatter in the scintillator, electronic noise) to study
the variable-exposure effects in relative isolation.

2.5 Postprocess for Analyzing Raw or Reconstructed Images

If we are interested in hardware evaluation only – i.e. finding the upper limits of
signal detectability before reconstruction – we can apply model observers directly
to the raw projection data. The dimensions of the projection data are large, how-
ever, which presents difficulties for model observers. Park et. al. have shown that
Laguerre-Gauss (LG) channels are fairly robust for capturing statistical infor-
mation from various signals in non-Gaussian randomly-varying backgrounds[6].
To reduce the dimensionality problem, we applied 5 LG channels to each of the
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projections (Fig. 3) and concatenated the resulting channel outputs. The chan-
nel width parameter σ approximately matched the signal diameter in the central
projection (σ = 25 for 3 mm signals, σ = 75 for 8 mm signals).

Fig. 3. The 5 Laguerre-Gauss channels used for dimensionality reduction

There is scant literature on how to design optimal data-reducing channels
for 3D breast imaging modalities like DBT. In model observer design, the goal
is typically to “tune” the channel parameters (i.e. LG width and number of
channels) to the task for maximum signal detectability with as few channels as
possible. This reduces the risk of unstable observer models due to finite sam-
ple size effects[5]. In previous studies using noisefree raytracing images with a
Poisson model for high-exposure noise and a 3 mm signal, we plotted AUC at
the 0◦ projection angle as a function of the number of channels for three rep-
resentative widths σ = 10, 25, and 50 called “Skinny”, “Medium”, and “Broad”
channels (Fig. 4). In this study, the percent density was 25% and condition num-
ber regularization was used to stabilize the data covariance. Fig. 4 indicates that
the Medium (σ = 25) channel profile was best tuned to the task, reaching an
asymptotic AUC limit after approximately 5 channels.

2.6 Perform Model Observer/Linear Discriminant Analysis

To evaluate signal detectability, we used a linear discriminant classifier applied
to the concatenated channel outputs from three projection angles. We have used
this approach previously[8], and it has since been called a 3Dp channelized
Hotelling observer (CHO)[7]. We used functions provided in Matlab’s Statis-
tical Toolbox (v7.6) to estimate the linear classifiers and perform ROC analysis
on the channel outputs. For each set of 400 DBT scans, we divided the channel
outputs into 200 for training the discriminant and 200 for testing/computing
ROC curves and AUCs. In each subset of 200 phantoms, half contained signals.

3 Results

For a total exposure of 1.5 × 109 photons, we computed AUC values for each
exposure delivery scheme, and repeated the process for 3 different ensembles of
breast phantoms having percent densities 15%, 25%, and 40%. The results for
15% and 25% densities are shown in Figs. 5 and 6. At 40% density, the task was
too difficult and the mean AUCs were ≈ 0.5 for all three exposure schemes.



A Task-Specific Argument for Variable-Exposure Breast Tomosynthesis 77
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Fig. 4. AUC versus the number of channels at the 0◦ projection angle for three different
channel sizes: σ = 10 (Skinny), 25 (Medium), and 50 (Broad). The medium (σ = 25)
channel width appears to be best suited for the 3 mm signal detection task and reaches
an asymptote after 5 channels

AUC

Equal Central Oblique
0.5

0.6

0.7

0.8

1

Fig. 5. For 15% density phantoms and a 3 mm signal diameter, we found a significant
increase in AUC with alternative exposure schemes. Error bars are 95% confidence
intervals computed from 1000 bootstrap samples.

In the Equal exposure scheme, the 3 mm signal was undetectable in 15% den-
sity phantoms (AUC ≈ 0.5). With Central and Oblique exposure schemes, how-
ever, we found a statistically significant increase in AUC (Fig. 5). Similarly, for
the 25% density phantoms, Central and Oblique exposure schemes gave higher
mean AUCs, though the 95% bootstrap confidence intervals overlapped slightly
in this case (Fig. 6).

For comparison with the challenging task of detecting a 3 mm signal, we
evaluated the same exposure schemes with a larger 8 mm signal embedded into
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Fig. 6. For 25% density phantoms and a 3 mm signal diameter, Central and Oblique
exposure schemes gave higher mean AUCs, though the error bars overlapped slightly.
Error bars are 95% confidence intervals computed from 1000 bootstrap samples.

0.5
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Fig. 7. For 25% density phantoms and an 8 mm signal diameter (σ = 75), there was
no statistically significant AUC difference between the three exposure methods. Error
bars are 95% confidence intervals computed from 1000 bootstrap samples.

the 25% density phantoms (Fig. 7). We also increased the total exposure from
1.5 × 109 to 1010 photons. Fig. 7 shows that there was no significant difference
between the AUCs in the large signal case.

4 Conclusions and Future Work

The preliminary results in this work suggest that for the specific task of detect-
ing a small (3 mm) signal at the center-of-rotation in an ultra-low-dose DBT
scan, alternative exposure schemes may improve detectability. Comparing Fig-
ures 6 and 7 for the same density class, we expect that any AUC improvements
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will be task-depdendent. Central or Oblique exposure schemes may increase the
detectability of small spherical signals in low-exposure scans, but this does not
necessarily apply to other types of signals. At high total exposure levels, this
effect could disappear completely. The results of this preliminary study should
not be construed as a rule – rather, they provide evidence that variable-exposure
schemes may offer image quality advantages in some specific scenarios.

Future challenges are to increase the realism of the DBT simulations, im-
prove the observer model, and broaden the scope of the experiments to perform
optimization over a range of clinically-relevant tasks and exposure schemes. To
incorporate the correlation information between the angular projections, we ap-
plied 2D LG channels to each projection and concatenated the output vectors;
but there are other variants such as 3D LG channels that could offer theoretical
or practical advantages in detectability experiments[7]. In this study, we were
plagued by large error bars in all of the AUC calculations. This is likely caused
by using a small sample set of 400 phantoms for training and testing the model
observer. We should investigate the effects of sample size on our AUC results.
While MC-GPU has made it possible to simulate hundreds of low-dose DBT
scans in less than a day, we are still far from the thousands of scans needed
to reduce the statistical uncertainty in our AUC estimates. In future work, we
plan to investigate hybrid analytical/Monte Carlo approaches that allow us to
scale up to a larger optimization space while still taking advantage of MC-GPU’s
state-of-the-art scatter modeling capabilities.
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Abstract. The spatial frequency dependent detective quantum efficiency (DQE) 
of a CsI-CMOS x-ray detector was measured in two operating modes: a high 
dynamic range (HDR) mode and a high sensitivity (HS) mode. DQE calcula-
tions were performed using the IEC-62220-1-2 Standard. For detector entrance 
air kerma values between ~7 µGy and 60 µGy the DQE is similar in either 
HDR mode or HS mode, with a value of ~0.7 at low frequency and ~ 0.15 – 
0.20 at the Nyquist frequency fN = 6.7 mm-1. In HDR mode the DQE remains 
virtually constant for operation with Ka values between ~7 µGy and 119 µGy 
but decreases for Ka levels below ~ 7 µGy. In HS mode the DQE is approx-
imately constant over the full range of entrance air kerma tested between 1.7 
µGy and 60 µGy but kerma values above ~75 µGy produce hard saturation. 
Quantum limited operation in HS mode for entrance kerma as small as 1.7 µGy 
makes it possible to use a large number of low dose views to improve angular 
sampling and decrease acquisition time. 

Keywords: detective quantum efficiency, breast tomosynthesis, CMOS, sensi-
tivity, hybrid imaging. 

1 Introduction 

X-ray tomosynthesis of the breast promises to improve upon planar mammography in 
terms of visualization of small lesions, especially among women with radiodense 
breast tissue. However, the requirements associated with the acquisition of a series of 
rapid, low exposure projection images place greater demands on x-ray detectors used 
in tomosynthesis compared to those in planar FFDM. In particular, high quality, low 
dose tomosynthesis requires detectors with high x-ray absorption efficiency, high 
frame rates with low read noise, and low dark noise.  

We are developing a dual modality tomosynthesis (DMT) breast scanner that 
merges x-ray tomosynthesis and molecular imaging tomosynthesis modalities within a 
single system to provide co-registered three-dimensional (3D) anatomic images and 
radiotracer maps [1]. When acquiring x-ray tomosynthesis images, the x-ray tube and 
detector simultaneously rotate about the stationary, mildly compressed breast. Be-
cause of our use of the step-and-shoot method, tomosynthesis image acquisition time 
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is longer than desirable (nearly 2 minutes), significantly increasing the possibility of 
motion artifacts. With the goal of decreasing overall acquisition time, we would like 
to replace the acquisition method with continuous gantry motion with the help of the 
2923MAM CMOS detector from Dexela, a PerkinElmer company (London). The 
2923MAM has 75 micron detector elements in a 3888x3072 matrix, for an overall 
sensitive area of approximately 29 cm x 23 cm. With no pixel binning the maximum 
frame rate is 17 fps, rising to up to 78 fps for 4x4 binning. The 2923MAM tested here 
includes a columnar CsI converter. All measurements described here were performed 
without pixel binning.  

The spatial dependent detective quantum efficiency (DQE(u)) is the most generally 
used indicator of how efficiently the detector can process the input x-ray signal. For 
this reason, the widely accepted IEC-62220-1-2 Standard was followed to test the 
Dexela 2923MAM CMOS x-ray detector [2]. There are two possible operating modes 
for the Dexela detector: a high dynamic range (HDR) mode and a high-sensitivity 
(HS) mode. A comparison was made between the DQE for HDR mode operation and 
HS mode operation over a range of entrance exposures that were less than or compa-
rable to a single projection view in a typical tomosynthesis acquisition.  

2 Methods and Materials 

The IEC Protocol 62220-1-2 was followed in calculating the DQE for the Dexela 
2923MAM CMOS detector, though minor modifications were made as described in 
the following sections. As given in the IEC protocol, the equation for the frequency 
dependent DQE is: 

 DQE(u) = T2(u)·(NPSin(u)/ NPSout(u))  (1) 

T(u) is the modulation transfer function (MTF), NPSin(u) is the noise power spectrum 
at the input of the detector, and NPSout(u) is the noise power spectrum of the output 
images. The posterior-to-anterior direction (23cm dimension of the detector) is paral-
lel to the rows in the image and is designated as x in position space or u in frequency 
space. The direction parallel to the image columns in the 29 cm dimension of the 
detector will be denoted as y in position space or v in frequency space. 
NPSin is determined by Eq (2):  

 NPSin = Ka· SNRin
2 (2) 

where Ka is air kerma in units of 1/(mm2·μGy) and SNRin
2 is the squared signal-to-

noise ratio of the input signal per unit air kerma, which is a constant provided in Table 
2 of IEC-62210-1-2 for a given target/filter combination.  

2.1 Geometry and Radiation Quality 

The distance between the focal spot and the closest point on the detector surface is 
81cm. The x-ray tube contains a tungsten target, exit window filtration of 0.76 mm of 
beryllium, and an external filter of 0.050 mm of rhodium. Addition external filtration 
of 1.4 mm of Al was added to match the half value layer (HVL) of 0.75mm of Al 
specified in the IEC Protocol for W/Rh target/filter systems operated at 28 kVp. As 
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per protocol requirements, all images and measurements were taken at a tube voltage 
of 28 kVp. From this setup, we were able to use 5975 (mm2·μGy)-1 as the SNRin

2 
value for a tungsten target, 50μm rhodium filter at 28 kVp.  

2.2 Detector Response and Determination of Conversion Function 

The conversion function is the relationship between the large area detector output (i.e. 
average pixel value) in a corrected image and the input x-ray fluence. Prior to the 
determination of the average pixel value in all of the images used, corrections were 
made to the raw images (replacement of bad pixels, dark image subtraction, and flat-
fielding) as permitted by the standard. The conversion function was then used to  
convert pixel values into units of fluence. For many digital x-ray detectors, this rela-
tionship is linear to a high degree in which case the conversion function reduces to a 
proportionality constant and a pixel value offset.  

The detector response was measured for each mode by recording the average pixel 
value over a range of input kerma values in the uncorrected images. A Radcal Accu-
Pro ion chamber was used for determining the air kerma, and inverse square law cor-
rections were made to calculate the exposure at the detector surface  

2.3 MTF and NPSout 

The MTF was measured using a straight-edged piece of tungsten rather than the alu-
minum test device suggested by the IEC Standard. The presampling MTF was calcu-
lated using a program based upon the method described by Fujita et al [3]. It was 
written by our lab in the Interactive Data Language programming environment (IDL; 
Research Systems, Boulder, Colorado).  

The protocol was followed in determining NPSout for each exposure. An ROI cho-
sen within the image for the NPS calculation had dimensions of 17.85cm x 27.48cm 
corresponding to an area of 8720320 pixels2. The final 2D NPSout was found by aver-
aging over noise power spectra from 459 overlapping 256x256 pixel sub-regions 
within the ROI. The 1-D NPSout(u) was obtained by averaging over 7 rows above and 
7 rows below the v = 0 mm-1 frequency axis. The same was done for NPSout(v) about 
the u = 0 mm-1 frequency axis. Additionally, per the IEC standard an optional 2D 
second-order polynomial fit was subtracted from each ROI to remove low frequency 
noise prior to NPS estimation.  

3 Results 

3.1 Detector Response and Conversion Function  

Figure 1 is a plot of the mean pixel value, within a region of interest (ROI) drawn at 
the focal spot projection in uncorrected images, versus exposure. The portion of each 
curve in Figure 1 that is linear has been fit with a linear equation and projected for-
ward to show the detector’s deviation from a linear response at higher input fluences. 
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The highest tested air kerma levels chosen for each mode are just below the point at 
which the detector stops behaving linearly with increasing fluence. The air kerma 
levels tested here are 1.69 μGy, 3.57 μGy, 7.34 μGy, 15.1 μGy, 30.0 μGy, and 60.1 
μGy for HS mode. The same levels were tested in HDR mode with two additional 
levels at 89.9 μGy and 119 μGy. 

The conversion function for both modes is shown in Figure 4. In HDR mode, the 
conversion function slope is 0.008388 ADU·mm2/photon and in HS mode it is 
0.02750 ADU·mm2/photon. The zero fluence values shown in Fig. 4 are due primari-
ly to DC offset values digitally added to each pixel value during the dark subtraction 
and uniformity correction procedures. 

 

 

Fig. 1. Mean pixel value versus air kerma. 
Pixel values come from uncorrected images 
taken with nothing in the x-ray beam except 
for the internal and external filters. Least 
squares fits are shown to the portion of each 
curve exhibiting linear behavior. 

Fig. 2. Conversion function in both HDR 
mode and HS mode. A linear fit was applied 
to each curve and the fit equation and R-
squared values are shown next to each curve.  

3.2 NPSout 

As an additional quantification of image noise, a log-log plot of the standard deviation σ 
in the NPSout images versus Ka is shown in Fig. 3 for both HS mode and HDR mode. In 
all cases it was verified that the integral of the 2-D NPS between ±Nyquist frequencies 
was equal to σ2. As a measure of quantum limited behavior a power fit was applied to 
both curves. The fit equation and the R2 value are shown next to each curve. 

3.3 DQE 

Figs. 4 and 5 are plots of DQE(u) and DQE(v), respectively for HDR mode. Figs. 6 
and 7 are plots of DQE(u) and DQE(v), respectively for HS mode. A subset of all 
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exposures tested is shown in each figure. Data are plotted within a frequency range of 
0 mm-1 to the Nyquist frequency of 6.67 mm-1. The 0 mm-1 frequency points were 
omitted since it does not correspond to an achievable physical quantity. 

 

 

Fig. 3. Log-log plot of standard deviation of the linearized NPSout images σ versus air kerma for 
both HS mode and HDR mode. A power fit was applied to both curves. The fit parameters and 
the R2 values are displayed next to each curve.  

 

Fig. 4. DQE along detector rows at the tested exposure levels of 1.69 μGy, 7.34 μGy, 30.0 μGy, 
60.1 μGy, 89.9 μGy and 118.9 μGy in HDR mode 
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Fig. 5. DQE along detector columns at the tested exposure levels of 1.69 μGy, 7.34 μGy, 30.0 
μGy, 60.1 μGy, 89.9 μGy and 118.9 μGy in HDR mode 

 

Fig. 6. DQE along detector rows at the tested exposure levels of 1.69 μGy, 7.34 μGy, 30.0 μGy, 
and 60.1 μGy in HS mode 
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Fig. 7. DQE along detector columns at the tested exposure levels of 1.69 μGy, 7.34 μGy, 30.0 
μGy, and 60.1 μGy in HS mode 

4 Discussion and Conclusion 

For Ka values between ~7 µGy and 60 µGy the DQE is similar in either HDR mode or 
HS mode, with a value of ~0.7 at low frequency and ~ 0.15 – 0.20 at the Nyquist fre-
quency fN = 6.7 mm-1. As would be expected, the change in DQE at either very low or 
very high input fluence differs between the two modes of operation. In HDR mode, the 
DQE remains virtually constant for operation with Ka values between ~7 µGy and 119 
µGy but decreases for Ka levels below ~ 7 µGy. In HS mode, the DQE is approximate-
ly constant over the full range of entrance air kerma tested between 1.7 µGy and 60 
µGy but, as seen in Figure 1, kerma values above ~75 µGy produce hard saturation.  

Comparison of DQE(u) and DQE(v) show that for either HDR mode or HS mode 
operation, a slight difference exists between the shapes of the DQE in the x- and y-
directions, with DQE(v) having a more linear drop off with increasing spatial fre-
quency compared to DQE(u). The results show a slightly better detector performance 
in the posterior-to-anterior direction than in the orthogonal dimension. Higher  
efficiency in the x-direction will be necessary, especially when focal spot blur will 
degrade the resolution further in this orthogonal dimension if the gantry is put into 
continuous motion during acquisition.  

The power law relationship between the image noise and the input kerma with ex-
ponent of ~0.5 (Figure 3) shows that the image variance increases approximately 
linearly with increasing input fluence as would be expected for quantum limited  
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operation. However, in addition to the deviation from quantum limited operation at 
low exposure in HDR mode operation, there is a slight deviation at high exposure in 
either mode most prominently in HDR mode. 

The fact that quantum limited operation is available in HS mode for entrance ker-
ma as small as 1.7 µGy makes it possible to use a very large number of very low dose 
views in order to improve angular sampling and decrease artifacts since there would 
be minimal penalty in terms of the effects of system noise. However the choice of 
number of views must also take into account the maximum acceptable tomosynthesis 
scan time, maximum available detector frame rate, and the optimal x-ray tube settings 
for a given subject. For example, a tomosynthesis scan of a 5 cm thick acrylic phan-
tom using a Hologic Dimensions scanner in Autofilter mode results in a full scan 
detector entrance kerma of 340 µGy, corresponding to 200 1.7 µGy views. Operated 
at its maximum full resolution frame rate of 17 fps, this would correspond to an 11.8 
second scan time for the 2923MAM. A more practical choice might be 85 views in 5 
seconds with a detector entrance kerma of 4 µGy per view. Of course, for a given 
breast type the desirable full scan kerma is dependent on the detector, beam quality, 
and reconstruction algorithm used. Using the maximum possible number of views 
may not necessarily maximize image quality, so these are example possibilities only. 
System-specific image optimization studies are required to determine the best acquisi-
tion parameters. 

In summary, the two operating modes of the 2923MAM together provide high 
DQE over a large exposure range. The combined abilities of very low dose operation 
and rapid readout make dense angular sampling tomosynthesis feasible with accepta-
bly short overall scan time and without image degradation from system noise. 
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Abstract. In this work, a classifier combination approach for computer
aided diagnosis (CADx) of breast mass lesions in mammography (MG)
and magnetic resonance imaging (MRI) is investigated, using a database
with 278 and 243 findings in MG resp. MRI including 98 multimodal
(MM) lesion annotations. For each modality, feature selection was per-
formed separately with linear Support Vector Machines (SVM). Using
nonlinear SVMs, calibrated unimodal malignancy estimates were ob-
tained and fused to a multimodal (MM) estimate by averaging. Eval-
uating the area under the receiver operating characteristic curve (AUC),
feature selection raised AUC from 0.68, 0.69 and 0.72 for MG, MRI
and MM to 0.76, 0.73 and 0.81 with a significant improvement for MM
(P=0.018). Multimodal classification offered increased performance com-
pared to MG and MRI (P=0.181 and P=0.087). In conclusion, unimodal
feature selection significantly increased multimodal classification perfor-
mance and can provide a useful tool for generating joint CADx scores in
the multimodal setting.

1 Introduction

Multimodal breast imaging is becoming of increasing clinical interest, enabling
the exploitation of complementary diagnostic characteristics of the individual
imaging modalities. One example is combined mammography (MG) and dy-
namic contrast enhanced-magnetic resonance imaging (DCE-MRI), which is be-
ing investigated e.g. for screening of high-risk patients [1]. In parallel, multimodal
decision support systems for computer aided diagnosis (CADx) are researched
with the focus of providing decision support based on a combination of modali-
ties [2] [3].

In multimodal CADx systems, different information fusion strategies can be
pursued, including pooling of image features or joining classifier decisions [4].
Pooling features from MG-MRI CADx allows to exploit complementary effects
of multimodality directly in feature space as one classifier is trained on the joint
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feature set [3]. Conversely, a decision fusion scheme joins the final output scores
of multiple classifiers, which may be particularly useful if classifiers were trained
on different feature sets [5].

Often multimodal breast imaging databases comprise more unimodal than
multimodal imaging data [6]. In this situation, a decision fusion approach allows
to exploit the entire breadth of unimodal imaging and generate multimodal
scores at the same time. Particularly if the multimodal subset is relatively small,
the approach of unimodal decision fusion may contribute to stability of feature
selection and classification, as a smaller feature space and more training data
can be considered.

In this work, the fusion of two independent CADx systems (MG and MRI) to
generate a multimodal malignancy estimate was investigated. In total, a database
of 278 findings in MG and 243 findings in MRI was available, whereas 98 of
these findings comprised joint MG-MRI multimodal imaging. 53 features were
extracted from each MG view and 46 from MRI. Unimodal CADx employed lin-
ear Support Vector Machines (SVM) for feature selection in a first stage to filter
less relevant features which may impair SVM classification performance [7] [8].
Finally, nonlinear SVMs were used for lesion classification [9]. Unimodal malig-
nancy estimates were fused by averaging, which has shown to be an effective and
robust classifier combination method [5]. The performance of the generated ma-
lignancy estimates was evaluated using receiver operating characteristic (ROC)
analysis.

2 Materials and Methods

2.1 Image Database

The database consisted of full field digital MG images from 179 patients includ-
ing craniocaudal (CC) and mediolateral oblique (MLO) views, comprising 243
findings (115 benign, 128 malignant) which manifested as masses, architectural
distortions or asymmetries. Analogously, MRI data from 209 patients were avail-
able with 278 annotated findings (122 benign, 156 malignant). Lesion outlines
were provided by radiologists including links of lesions across views or modal-
ities. A subset of 90 patients had joint MG-MRI image sessions with 98 (31
benign, 67 malignant) multimodal (MM) lesions visible in both modalities. The
ground truth for classification was obtained by biopsy for all malignant lesions.
Benign lesions were either proven by biopsy or their benign characteristics were
confirmed in follow-up imaging.

2.2 Features

For each annotated region in MG, 53 image features including neural network
based malignancy likelihoods, context, spiculation, gradient, linear texture, mor-
phology, location and density descriptors were extracted for each view [10]. The
features from CC and MLO were pooled so that each MG feature vector con-
sisted of 106 features. In case a finding was only visible in one view, the features
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vectors have been completed by duplication of features from the other view. In
DCE-MRI, 46 descriptors were available per annotated lesion including kinetic,
pharmacokinetic and morphological features. High spatial resolution images were
used to derive kinetic curve and morphology characteristics such as baseline,
initial enhancement and washout characteristics resp. lesion size, compactness,
elongation and others [11]. Based on a series of low resolution images at a higher
repetition frequency, voxel-based pharmacokinetic parameters such as extracel-
lular volume Ve, volume transfer coefficient KTrans and rate constant Kep of the
kinetic model were obtained [12].

2.3 SVM-Based Feature Selection and Classification

Support Vector Machines (SVM) were used for feature selection and classifi-
cation. For labeled training data of the form (xi, yi), i ∈ {1, . . . , l}, where xi

represents the feature vector and yi ∈ {−1, 1} the label of finding i, a decision
function

f(x) = wTφ(x) + b (1)

is fitted with weight vector w and bias value b representing a separating hyper-
plane. Nonlinear decision boundaries in the input data space can be obtained by
projecting the data using a mapping φ(x). SVMs find the separating hyperplane
by maximizing distances to its closest data points thus embedding it in a large
margin between the classes. This can be expressed via the optimization problem:

min
w,b

p(w) + C
∑l

i=1 max(1 − yif(xi), 0), (2)

where C serves as a user-defined regularization parameter for elements inside the
margin and p(w) acts as a penalty term on the coefficients of the weight vector

w. Choosing an L1 penalty term p(w) := ‖w‖1 =
∑l

i=1 |wi| leads to sparse
solutions. In linear classification with φ(x) := x this approach can be used for
feature selection as “uninformative” features are assigned zero weight, with C
controlling the sparsity of the solution [13].

Lesion malignancy scores were computed based on an L2 penalty (p(w) :=

‖w2‖2 =
∑l

i=1 w
2
i ) and nonlinear classification using aGaussian kernelK(x, x′) =

φ(x)T φ(x′) = exp(−γ ‖ x− x′ ‖2), leaving the regularization weight C and the
kernel width γ as a free parameters. The decision scores of the nonlinear SVM
were translated into probability estimates in the interval [0, 1] using Platt’s prob-
abilities, i.e. by fitting a sigmoid curve to pooled decision scores from training data
which were generated by leave-one-out cross validation [14]. For lesions visible in
MG and MRI the unimodal malignancy estimates were joined into a multimodal
(MM) score by averaging the calibrated SVM output scores [5].

2.4 Evaluation

The quality of the malignancy estimations was characterized using ROC analy-
sis and computing the area under the curve (AUC). Differences between AUC
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(including 95% confidence intervals (CI) and two-tailed p-values) were assessed
using the bootstrapping method with 5000 times resampling as described in [15].
Differences in AUC were considered statistically significant at the α = 0.05 level.

3 Experiments and Results

3.1 Feature Selection

First the free parameter Cfs for feature selection using L1-penalized linear SVM
(L1P-SVM) was determined. For this purpose, two unimodal validation data sets
consisting of 108 findings in MG (63 benign, 45 malignant) resp. 157 findings
in MRI (59 benign, 75 malignant) were selected from patients in the database
with only unimodal data and therefore were not part of the multimodal data
set. Each data set was split using 10-fold cross validation (CV) and the optimal
penalty parameter Cfs was determined by grid search over Cfs ∈ {10i|i =
−3,−2,−1, 0, 1, 2, 3}. In each fold the data were standardized by subtracting the
mean and dividing by the standard deviation computed on training data. For
MG and MRI, Copt

fs = 0.1 resp. Copt
fs = 10 maximized AUC with AUCMG = 0.73

and AUCMR = 0.77. Finally, the L1P-SVM was fit to the entire standardized
validation data set using Copt

fs , yielding 15 features for MG and 18 features for
MRI.

For MG, the selected set comprised 5 CC and 10 MLO view features (4 like-
lihood, 5 (iso-)density, two spiculation and single features measuring gradient,
contrast, morphology and distance to the nipple). In MR, the selected feature
set comprised 3 baseline, 3 relative enhancement, two washout characteristic, 5
morphology features and 5 pharmacokinetic parameters (two for KTrans, one for
Kep and two for Ve).

3.2 Lesion Classification

Nonlinear Gaussian SVM classification with Platt’s score calibration was used to
generate malignancy estimates. For each of the multimodal lesions two unimodal
classification scores - MG and MRI - and a multimodal score were generated as
follows.

The set of multimodal lesions was split according to a leave-one-patient-out
cross validation scheme (LOPO-CV), resulting in 90 folds (see Section 2.1). For
each fold, the unimodal feature spaces were separately processed. For MG, the
multimodal training data were joined with the independent MG data which were
not part of the multimodal data set and a dedicated MG classifier was trained
using the MG features. For MRI, the procedure was carried out analogously. The
data were standardized using the mean and the standard deviation computed
on the training data. The parameters for the Gaussian SVM were found by grid
search over 10-fold CV inside the training data. The kernel width γ was estimated
as the median of all pairwise distances in the training data and Copt was selected
using grid search over C ∈ {10i|i = −3,−2,−1, 0, 1, 2, 3} maximizing AUC on
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the training set. For lesions which appeared in MG and MRI, a multimodal (MM)
malignancy estimate was computed by averaging the MG and MRI scores.

The procedure was carried out using the complete feature sets for MG resp.
MRI and the reduced feature sets obtained from feature selection.

Table 1. AUC comparison of the MG, MRI and MM scores obtained when using all
106 available features for MG resp. 46 for MRI in SVM classification and a reduced
number of features for MG and MRI with 15 and 18 features, respectively

All features Selected features
Score Type AUC 95% CI AUC 95% CI P-Value

MG 0.68 [0.56,0.79] 0.76 [0.66,0.86] 0.056
MRI 0.69 [0.57,0.79] 0.73 [0.63,0.83] 0.071
MM 0.72 [0.59,0.83] 0.81 [0.71,0.89] 0.018

Fig. 1. ROC curves for mammography (MG), MRI and multimodal (MM) CADx using
15 features for MG and 18 features for MRI lesion classification

Using all features, parameter estimation for MG chose an average C̄opt
MG = 4.6

with standard deviation sd = 10.88 during LOPO-CV. Using the reduced feature
set C̄opt

MG = 1 with sd = 0 was found during CV. For MRI, using all features

resulted in C̄opt
MR = 2.6 with sd = 3.44 respectively C̄opt

MR = 1 with sd = 0 for
the reduced feature set, indicating less varying models learned for MG and MR
when less features were used. The corresponding AUC for MG, MRI and MM is
reported in Table 1. Using the complete feature sets available, the performance
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of MG and MR was approximately similar. Averaging their scores resulted in
a mild performance increase compared to sole unimodal scoring. By using the
reduced feature sets, AUC generally increased, whereas MG offered mildly better
classification than MRI. In addition, the joint MM score showed a significant
improvement in AUC (P = 0.018) and exhibited the best performance obtained
in this study. Comparison of the MG, MRI and MM score (see Figure 1) showed
that no statistically significant performance difference was obtained between MM
and MG (P=0.181) as well as MM and MR (P=0.087). The difference between
MR and MM score was more pronounced than between MG and MM.

4 Discussion and Conclusion

In this work, a multimodal breast lesion classification system was proposed re-
lying on fusion of two independent, unimodal CADx systems. Each unimodal
CADx system employed L1-penalized SVM feature selection on independent uni-
modal data and a nonlinear SVM for classification, whereas the final multimodal
malignancy estimates were averaged in order to generate a single multimodal de-
cision score.

The dimensionality of the unimodal feature spaces was reduced by filtering
features prior to classification. Using L1-penalized SVM classification allowed for
a straightforward feature selection scheme which required little effort in terms
of parametrization. Relevant feature sets were successfully identified comprising
14 % (MG) and 39% (MRI) of the original feature sets. Particularly in the case
of MG, a relatively large feature set was available which resulted from pooling
features from CC and MLO view. For both unimodal classifiers, feature selection
reduced the variance of the learned models and thus contributed to better gener-
alization. Both unimodal CADx systems benefited from feature selection, while
leading to a statistically significant performance improvement in multimodal
classification despite only using unimodal feature selection.

The available database reflected an often encountered situation where more
unimodal than multimodal data is available. Consequently, the adopted training
scheme was tailored to utilize the entire available breadth of unimodal data. The
actual decision fusion was carried out by averaging calibrated unimodal SVM
malignancy estimates, which caused an improvement over unimodal classification
yielding the best AUC observed in this study. A similar observation was reported
by Yuan et al. [3], who found a significant increase in AUC from 0.74 (MG)
resp. 0.78 (MRI) to 0.87 for multimodal CADx, adopting a feature selection and
classification scheme in multimodal feature space. Although in our study the
improvement by multimodal CADx was not statistically significant, the joining
of unimodal scores by averaging appears as a feasible solution to merge a single
multimodal malignancy estimate that can be presented to an observer in MG-
MRI CADx in addition to or in lieu of unimodal scores.

In summary, this work described a decision fusion-based system for multi-
modal classification of breast mass lesions in MG and MRI using L1-penalized
SVM feature selection and subsequent nonlinear SVM classification. It could
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be demonstrated that unimodal feature selection caused a significant increase
in multimodal classification performance. Calculating a multimodal malignancy
estimate by averaging of unimodal decision scores allowed for a noteworthy in-
crease in performance over unimodal CADx alone and can provide a useful tool
for generation of a single joint CADx score in the multimodal setting.

Directions for future work include the evaluation of additional training schemes
for multimodal classification as well as the investigation of automated strategies
for multimodal lesion linking, such as learning of multimodal feature correspon-
dences.
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Abstract. The size of a lesion is a feature often used in computer-aided
detection systems for classification between benign and malignant le-
sions. However, size of a lesion presented by its area might not be as
reliable as volume of a lesion. Volume is more independent of the view
(CC or MLO) since it represents three dimensional information, whereas
area refers only to the projection of a lesion on a two dimensional plane.
Furthermore, volume might be better than area for comparing lesion
size in two consecutive exams and for evaluating temporal change to dis-
tinguish benign and malignant lesions. We have used volumetric breast
density estimation in digital mammograms to obtain thickness of dense
tissue in regions of interest in order to compute volume of lesions. The
dataset consisted of 382 mammogram pairs in CC and MLO views and
120 mammogram pairs for temporal analysis. The obtained correlation
coefficients between the lesion size in the CC and MLO views were 0.70
(0.64-0.76) and 0.83 (0.79-0.86) for area and volume, respectively. Two-
tailed z-test showed a significant difference between two correlation coef-
ficients (p=0.0001). The usage of area and volume in temporal analysis
of mammograms has been evaluated using ROC analysis. The obtained
values of the area under the curve (AUC) were 0.73 and 0.75 for area
and volume, respectively. Although a higher AUC value for volume was
found, this difference was not significant (p=0.16).

Keywords: digital mammography, temporal change, lesion classifica-
tion, CAD, breast density.

1 Introduction

In developed computer-aided detection (CAD) systems one of the features that
has been used for the classification between benign and malignant lesions is the
size computed as the area of a lesion [1]. However, since the mammogram is a
two dimensional projection of a three dimensional breast, the area of a lesion
visible in two mammographic views, namely craniocaudal (CC) and mediolateral
oblique (MLO), might differ. To overcome this issue one could calculate volume
of a lesion, as the volume might be a more reliable feature that should remain
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the same in both views and might be better for use in CAD systems than the
area of a lesion. In addition, volume might give reliable information about the
lesion seen in two consecutive exams, i.e. for evaluating temporal change in
the size of a lesion. Since benign lesions have tendency to stay the same over
time and malignant lesions tend to grow, volume might be a useful feature for
distinguishing between benign and malignant lesions in temporal comparison of
digital mammograms.

Volume of dense tissue in digital mammograms can be computed using the
method developed by van Engeland et al. [2]. In this study we investigated the
use of volume as a measure of lesion size compared to area. We were interested in
the area and volume of a lesion in CC and MLO views. We hypothesized that the
effective radius of a lesion obtained from volume is more similar in the two views
than the one obtained from area. Additionally, we analysed the effective radius
obtained from area and volume in the temporal mammogram pairs. In particular,
we explored the possibility of volume as a feature to distinguish benign and
malignant lesions in temporal comparison of mammograms.

2 Method

2.1 Dataset

Digital mammograms for this study were collected from the screening-institution
Preventicon, Utrecht, the Netherlands, where they were acquired with a Hologic
Selenia FFDM system. All mammograms used in the study have a visible lesion
that has been biopsy proven as benign or malignant. In this study under the term
lesion we consider masses, architectural distortion and bilateral asymmetry. We
have included only lesions that are projected within the breast area, i.e. not
overlapping with the pectoral muscle.

The dataset for the analysis of area and volume performance for CC and
MLO views consisted of 382 digital mammogram pairs with lesion visible in both
views, of which 164 were benign and 218 malignant lesions. For the temporal
analysis the dataset comprised 120 mammogram pairs, of which 74 benign and
46 malignant lesions that were visible in both prior and current mammogram.
All FFDM mammograms were downsampled to a resolution of 200 microns using
bilinear interpolation.

2.2 Area and Volume Computation

The center location of each region that contained a lesion was annotated by
a radiologist and was used as a seed point for automated segmentation. The
segmentation method is based on the region boundary information and grey
level distribution of a region of interest around the lesion. The best contour is
selected using an optimisation technique known as dynamic programming. The
method is explained in detail in [3].

For each pixel in the segmented region we have determined the thickness of
dense tissue based on a physical model of image acquisition. The model proposed
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by van Engeland et al. [2] assumes that the breast is composed of two types of
tissue, dense glandular tissue and fatty tissue. The attenuation of a mixture of
dense and fatty tissue at a given location is given by

I

I0
=

∞∫

E=0

p(E)e−µf (E)hf−µd(E)hddE (1)

where I is the X-ray exposure, p(E) is the normalized photon energy spectrum,
μd and μf are linear attenuation coefficients for dense and fatty tissue, respec-
tively, and hd and hf are thicknesses of dense and fatty tissue, respectively.

Since in an unprocessed full field digital mammograms pixel values are pro-
portional to the total exposure I(r), the image model is obtained from (1) by
replacing exposure value (I) with pixel value (g)

g(r)

g0
=

∞∫

E=0

p(E)e−µf (E)hf (r)−µd(E)hd(r)dE

=

∞∫

E=0

p(E)e−µf (E)h(r)−(µd(E)−µf (E))hd(r)dE. (2)

In this equation the normalized photon energy spectrum p(E) and the attenua-
tion coefficients μf (E) and μd(E) are known from the empirical data. Compu-
tation of the dense breast tissue thickness hd(r) would be straightforward if it
would be possible to determine breast thickness h(r) and the pixel value associ-
ated with the incident X-ray beam g0. Unfortunately, it is not easy to accurately
obtain estimates of these parameters in practice.

Hence, van Engeland et al. [2] applied thickness correction transform on the
mammogram in which a layer of adipose tissue with attenuation coefficients
μf (E) and thickness H − h(r) was added to the breast. In the obtained image
the following relation holds

ḡ(r)

g0
=

∞∫

E=0

p(E)e−µf (E)H−(µd(E)−µf (E))hd(r)dE (3)

In this image pixel values only vary with dense tissue thickness. By setting
hd(r)=0 in (3) image model for purely fatty tissue is obtained as

ḡf
g0

=

∞∫

E=0

p(E)e−µf (E)HdE. (4)

By substituting the pixel value of fatty tissue ḡf in (3) we obtain

ḡ(r)

ḡf
=

∞∫
E=0

p(E)e−µf (E)H−(µd(E)−µf (E))hd(r)dE

∞∫
E=0

p(E)e−µf (E)HdE

(5)
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In principle, hd(r) can be solved from this equation if H is known. However, due
to the internal calibration with a fatty tissue pixel value, the value of H is not
critical anymore.

To simplify the computations, van Engeland et al. [2] computed effective at-
tenuation coefficients for fatty and dense tissue. The effective attenuation co-
efficients depend on acquisition parameters and are computed as a function of
the anode and filter material, tube voltage and breast thickness H . For typi-
cal spectra used in mammographic imaging this attenuation can very well be
approximated by an exponential function. As such, we obtain the logarithm of
attenuation written as

ln
I

I0
≈ −μf,effhf − μd,effhd

= −μf,eff(H − hd)− μd,effhd (6)

where H is breast thickness, and μf,eff and μd,eff are effective attenuation co-
efficients for fatty and dense tissue, respectively. By applying the exponential
approximation (6) and rewriting (5) with the effective attenuation coefficients
μf,eff and μd,eff the explicit dependency of H dissapears. The thickness of dense
tissue at a location r is obtained by the following relation

hd(r) = − 1

μd,eff − μf,eff
ln

ḡ(r)

ḡf
. (7)

From the obtained thickness and area of the lesion we have computed its volume.
For the comparative analysis of the performance of area and volume as a measure
of lesion size we have computed effective radiuses as follows:

reff,area =

√
A

π
(8)

reff,volume =
3

√
3V

4π
(9)

where A is area and V volume of the segmented region.

3 Results

The comparison of area and volume was performed for the corresponding lesions
in the CC and MLO views as well as in the temporal mammogram pairs using
the effective radiuses. In order to evaluate volume compared to area in CC and
MLO views we computed Pearson’s correlation coefficient. The correlation plots
for all data, i.e. both benign and malignant lesions, are presented in Fig. 1. The
correlation coefficient between CC and MLO views for the area of a lesion is 0.70,
with 95% confidence interval 0.64-0.76. The correlation coefficient between CC
view and MLO view for the volume of a lesion is 0.82, with 95% confidence
interval 0.79-0.86. The significance of the difference between two correlation
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Fig. 1. Correlation for effective radiuses of lesion area and lesion volume between CC
and MLO views

coefficients was assessed with a two-tailed z-test. The obtained z-score was 4.03
which corresponds to the p-value of 0.0001 and shows that the difference is
significant.

For the analysis of temporal mammogram pairs we used Pearson’s correlation
coefficient between current and prior mammogram for lesion area and volume.
Correlation plots for temporal change in area and volume in subsequent screening
intervals for benign and malignant lesions are presented in Fig. 2. The correlation
coefficient for the area of a lesion is 0.79, with 95% confidence interval 0.68-0.86,
for benign lesions and 0.63, with 95% confidence interval 0.38-0.79, for malignant
lesions. The correlation coefficient for the volume of a lesion is 0.86, with 95%
confidence interval 0.79-0.91, for benign lesions, and 0.69, with 95% confidence
interval 0.47-0.83, for malignant lesions.

Assuming that benign lesions are stable and malignant lesions grow, we used
change of lesion size as an indicator of malignancy and computed the receiver
operating characteristic (ROC) curve using change in lesion size as a single
feature. The feature was computed in two ways, using size of a lesion in the
current view and in the prior view obtained by

Adiff = Acurrent −Aprior (10)

Vdiff = Vcurrent − Vprior (11)

where Acurrent and Aprior are areas of a lesion in the current and prior view,
and Vcurrent and Vprior are volumes of a lesion in the current and prior view.
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ROC curves for area and volume change were plotted using the ROCR package
[4] and are shown in Fig. 3. The obtained values of the area under the curve
(AUC) were 0.73, with 95% confidence interval 0.62-0.82, and 0.75, with 95%
confidence interval 0.66-0.85, for area and volume, respectively. However, use of
volume compared to area did not show significant improvement in distinguishing
between benign and malignant lesions as assessed by bootstrapping (p=0.16)
using the pROC package [5].
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Fig. 2. Correlation for effective radiuses of lesion area and lesion volume between cur-
rent and prior mammogram

4 Discussion

To the best of our knowledge this is the first paper that validates lesion volume
size both in CC and MLO digital mammograms and in temporal mammogram
pairs. Results showed that when comparing area and volume of a lesion in the
CC and MLO views, area is less consistent between the views than volume, which
suggests that volume is a more accurate feature for assessing the size of a lesion.
These results suggest that volume might be a better feature in CAD systems for
measuring size of a lesion than area.

Although in the temporal analysis volume did not significantly outperform
area in its performance of distinguishing between benign and malignant lesions,
results indicate that it might be a better feature for representing size of a lesion.

Obviously, results depend on the lesion segmentation method that was em-
ployed. It is remarked that when lesions are embedded in fatty tissue it will
not affect the volume estimates if lesions are oversegmented, as the area outside
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Fig. 3. ROC curves for the area and volume of a lesion

the lesion will not contribute to its volume due to the fact that in this area dense
tissue thickness will be zero. This makes volume a more robust feature.
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Abstract. A parallel x-ray beam that is made by an asymmetric-cut Bragg 
monochromator-collimator (MC) is incident on breast tissue so that the beam 
containing information from the breast tissue is incident upon a Laue-case angle 
analyzer (LAA). This beam is subsequently split into a forward diffracted beam 
and a separate diffracted beam. We acquire two beams simultaneously each of 
which contains relating angular information on specimen so that one can deduce 
simultaneously angular information at each pixel. In this paper, we propose an 
imaging system using dark-field imaging (XDFI) for 2D image, CT 
measurement and 2.5D image (tomosynthesis) based on a tandem system of 
Bragg- and Laue-case crystals with two CCD cameras, along with a 
data-processing method to extract information on refraction from the measured 
entangled intensities by use of rocking curve fitting with polynomial functions. 
Reconstructed images of soft tissues are presented and described. 

Keywords: X-ray dark-field imaging, synchrotron radiation, refraction contrast, 
2D image, 2.5D (tomosynthesis) image, 3D image, breast tissue, breast cancer. 

1 Introduction 

Imaging based on the phase-contrast term δ produces much greater contrast in the case 
of medical soft tissues consisting of low Z-elements than imaging based on the 
absorption term β, where n = 1 − δ − iβ is the complex refractive index. Up to now, a 
variety of imaging methods have been proposed [1-3]. Currently, the diffraction 
                                                           
* Corresponding author. 
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enhanced imaging (DEI) method [4] by means of a Bragg-case analyzer which detects 
the incident beam angular deviation due to refraction is the most widespread method 
utilized in medical applications. This is due to the imaging geometry having an affinity 
to tomographic imaging [5-8]. DEI-CT (computed tomography) has been developed 
into an excellent method to delineate biological soft tissues, with further potential to 
develop other medical science applications [9,10]. 

The deflection angle, Δ (x,y: k) associated with a refraction contrast which is the 
basic component of dark-field imaging can be described as follows: 

   Δ (x,y: k) ∝  - 
1

0

z

z

∂ δ (x,y,z: k) / ∂ x dz,           (1) 

where δ (x,y,z: k) is related to the refractive index, n = 1 - δ (x,y,z: k), z is the direction 
of the x-ray beam, z0 and z1 mean the coordinates where the x-rays come into and out 
from a sample, respectively, and let refraction take place along the x axis so that (z,x) 
should be the incidence plane and y is vertical to the plane (z,x).  

In our imaging system the x-ray optics named XDFI (x-ray dark-field imaging) was 
proposed [11], where the Laue geometry of diffraction in a (+ , -) parallel achromatic 
arrangement is essential so that image contains no effect of the wavelength spread, that 
may otherwise blur the contrast. Two beams, one Io toward the direction of the forward 
diffraction and the other IG corresponding to the diffracted direction from an analyzer 
crystal plate, can be expressed if the x rays undergo no absorption, as follows:  

 Io = sin2(tπ / 21 W+ / Λ) /(1 + W2),          (2) 

 IG = ((cos2 (tπ / 21 W+ / Λ) + W2)/(1 + W2),         (3) 

 Io + IG = 1,                (4) 

, where t, W,  Λ are the crystal thickness, the deviation of the angle from the Bragg 
condition, expressed as W = 2Λ sinθB ν/c(θ − θB − Δθ0 ), and  the extinction distance, 
expressed as Λ = ν/c cosθB / P|χG|  where ν  relates to the x-ray photon energy hν,  θB 

the Bragg angle, P the polarization factor and χG is the polarizability, expressed as χG 

= βνη − re (ν/c)2FG /π VC, where re is the classical radius of electron, FG the crystal 
structure from factor and VC is the volume of unit cell. Δθ0 =2(1-n)/sin2θB. Equations 
(2) and (3) can be simplified as  

Io|W=0 = sin2 (tπ /Λ)                         (5)  

and  

IG|W=0 = cos2 (tπ /Λ)                         (6)  
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at W=0 so that these Io and IG oscillate between 0% and 100% reflection at every 
thickness change of the analyzer, Δt = pΛ /2, where p is an integer, while keeping the 
relation between them, Io + IG =1. Δt corresponds to 62.5 μm in case of 4,4,0 
reflection at 35 keV. Its corresponding x-ray photon energy ΔE should be 
approximately 3.05 keV. If one can achieve these conditions, that can give Io = 0%, 
one can obtain dark-field imaging. In this paper is described application of XDFI to 
medical imaging.  

2 Experimental: Optic of X-ray Dark-Field Imaging 

An explanation is given as follows: first prepare an extremely straight forward beam by 
MC (monochromator-collimator) as shown in Fig .1 using asymmetric diffraction [12]. 
In Figure 1 is shown a sketch of a typical XDFI optics where diffracting planes of both 
MC and LAA (Laue angle analyzer) are in a parallel arrangement. FD (forward 
diffraction) corresponds to Io and D (diffraction) to IG. Object is located between MC 
and LAA. FD corresponds to dark-field imaging Io and D bright-field one IG. 

 
Fig. 1. The XDFI system where the thickness of LAA (Laue angle analyzer) was chosen so that 
the x-ray intensity of the forward diffraction FD becomes zero at w=0. Since one can obtain two 
beams one FD and the other D can save. 

We have chosen the asymmetric factor b = sin(ΘB - α)/sin(ΘB + α), where ΘB is 
10.6o for 440 diffraction and 35keV and α is 10.2o, to be 0.05, that can provide a 
divergence of the beam incident onto the object of 0.28 μrad. We would like to 
emphasize that our system can thus provide complete dark- and bright- imaging 
simultaneously by a single shot. Further, the dark-field imaging consists of mapping of 
the refraction in an object without background. All of the previous work should belong 
to the category between bright-field imaging and dark-field imaging, including that by 
Ingal and Beliaevskaya [2] in the Laue geometry. Although the background of their 
imaging could be reduced to some extent, it was not hundred percent by tuning the 
angular position of an analyzer so that the Bragg angle would be |W|>>0.  

An experiment was performed at beamline BL14C [13] using a radiation source 
from a 5 Tesla vertical wiggler at the 2.5 GeV Photon Factory so that the polarization of 
the radiation is vertical. This means that the plane of incidence that comprises the 
incident x-rays and the diffracted x-rays is horizontal. That the plane of incidence gives 
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us a big advantage over the vertical plane of incidence because one can set up the whole 
imaging system on the same horizontal plane that is usually a steel plate.  

X-ray images were picked up by CCD cameras (Photonic Science, pixel number: 
4008 × 2670, pixel size: 12.5 × 12.5 μm2, FOV: 49 mm horizontal and 33 mm vertical 
size). An object placed upon a rotational stage is inserted between MC and LAA, and 
the rotational axis of the object is parallel to that of rotation axis of MC and LAA. The 
angular positions of the MC and LAA are fixed after being adjusted before 
measurement data is collected whereupon the object axis is rotated for CT data 
acquisition. The monochromatic vertical size is 33 mm at the station BL14C and the 
incident horizontal beam size is 8 mm before MC and is expanded to a square parallel 
beam by an asymmetrical Bragg-case MC to cover the full object width. The beam 
impinges on the object and is refracted and absorbed by the object. The beam 
containing internal information of the object impinging LAA is split into the FD and the 
D beam as shown in Fig. 1. The LAA is adjusted at half up the peak, and at half down 
the valley of the rocking curves for the D and FD beams, respectively. The Bragg-case 
MC plays not only the role of collimating and expanding the beam, but also that of 
smoothing the rocking curves which have many ripples of the LAA. Since the LAA 
with size of Φ80 mm × 0.29 mmT requests no deformation of the diffracting planes, by 
that means the radius of curvature should be greater than 2 km. The LAA was vertically 
set and attached onto a surface of a 2 mm thick mirror polished Be plate with size of 
100 mm × 100 mm. 

The nearly plane-wave x-rays from MC that enter object S may receive a very small 
refraction effect, either left or right or both directions, against the incident beam 
direction. Let’s introduce a simplified model of object. The x rays which exit from the 
object S may possess information. An angle analyzer crystal LAA which takes place 
diffraction corresponding to Io, such as Io = 0 % at |W| ≤ 1. Mathematically 
convolution of Io or IG and S may result in two diffraction profiles. Io corresponding to 
FD shows high reflectivity for almost all angular ranges, except for the central position 
|W| ≤ 1. What happens to the beam from the object because of effect due to this angular 
filter which apparently has no central part. This can be called dark-field imaging. This 
means that almost all refraction information the object has can remain in a visual image 
with no background.  

Since the theory described in (5) thickness of LAA to fulfill the condition of 
dark-field imaging has to be fixed with the precision of μm; if final t shows a different 
value than theory still one can find out a way to adjust the condition of (5) such as 
tilting the LAA so that one can change an apparent x-ray path length in LAA to adjust t. 
Furthermore tuning the x-ray photon energy in keV is equivalent too.  

3 Result of 2D Image 

Fig. 2 shows two kinds of views of nodular adenosis, one pathological picture stained 
with hematoxyline and eosin and the other x-ray photo taken with XDFI. The arrow 
indicates lobular.         
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Fig. 2.  Pathological view (left) and the XDFI (right) of nodular adenosis. An arrow in the XDFI 
corresponds to the arrow shown in the pathological view so that the XDFI can reveal lobular as 
well by x-ray refraction contrast.  

A variety of approaches to deduce refraction component have been proposed 
[14-20].   Chapman et al. has made a pioneering work of first extracting information 
on refraction from the both D intensity and the FD in the LAA system using an 
algorithm based on linear approximation [14]. Later, Maksimenko used the tail of the 
Bragg reflection curve to reflect nonlinear relations between the intensity gray scale 
and the angular deviation due to refraction [15]. Yuasa et al proposed a wave theory 
[16] to visualize soft tissue with refraction-based contrast. Also Bushuev et al proposed 
another approach based on wave theory [17]. As an approach to acquire purely 
refracted component Kitchen et al [18] introduced a concept to obtain ratio between the 
beam. The incidence angle was used to find the closest match to the intensity ratio using 
a linear fit between a look-up table prepared from ratio of the two rocking curves. They 
showed a beautiful 2-D image of a rabbit pup thorax. On the other hand, it is necessary 
extract more precisely refraction angles toward reconstruction of tomography. 
Sunaguchi et al improved the precision of extraction of refraction angle without 
absorption using the polynomial fitting of rocking curves [19], which is used in the 
present paper. 

4 Result of 3D Image 

In order to reconstruct a CT image, a set of projections are collected by repeating the 
measurement procedure while rotating the object. Then, the reconstruction algorithm for 
refraction-contrast CT [20] is applied to projections of refraction-angle estimated with 
the proposed method above. We refer to the imaging scheme as DFI-CT following 
DEI-CT. The condition of XDFI [10] has been selected so that it has the deepest FD 
profile and the highest D profile, respectively so that one can obtain the largest black and 
white range of grey scale of x-ray intensity that can be converted to angular information. 
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              Fig. 3. DFI-CT image in 3D mode                  Fig. 4. Milk duct of DCIS 

We imaged a soft tissue sample of ductal carcinoma in situ (DCIS) that was removed 
surgically from a breast-cancer patient[19]. The sample size was 2.5 × 2.1 × 4.5 cm3, and 
put in an acrylic cylinder filled with alcohol. The number of projections acquired 
corresponded to 900. Fig. 3 shows the reconstruction in 3D mode. Fig. 4 shows a 3D 
image of a milk duct consisting of 5 branches that has a relation to the structure of Fig. 3. 
The overall configuration of fibrous and adipose tissue has shown well correlation in 
between refraction and pathological views. In conventional absorption based X-ray CT, 
the DCIS itself, except for calcification which sometimes occurs in secretory or necrotic 
material, has hardly been depicted. Clear 3D view of lobular carcinoma with the spatial 
resolution of 7 μm has also been successfully visualized [21].  

5 Result of 2.5D (Tomosynthesis) Image 

Furthermore attempt was made to reconstruct a tomosynthesis (TS) image [22]. From 
the point of view of bringing the refraction-based X-ray contrast into clinical issue the 
authors do not think 3D image is appropriate because patient might has to be exposed to  
 

 
(a)                         (b)                       (c) 

Fig. 5. Three ways of reconstruction of a DCIS specimen. A classical shift-and-add TS, novel 
sgn+shepp filter back projection TS image and sgn+shepp filter back projection CT image.  
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too much x-ray radiation dose. Nevertheless information how deep one critical part 
locates in breast is always of use so that trial of obtaining 2.5D image if not complete 
3D information is under way.  
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Abstract. In this paper we present a cascade-based framework to detect
clusters of microcalcifications onmammograms. The algorithm is based on
a sliding window technique where a detector is structured as a “cascade”
of simple boosting classifiers with increasing complexity. Such a method
couples the effectiveness of the cascade approach with the RankBoost al-
gorithm that is aimed at maximizing the area under the ROC curve and
represents a good choice when dealing with unbalanced data sets.

Keywords: Computer aided detection, mammography, clusters of mi-
crocalcifications, cascade of classifiers, RankBoost.

1 Introduction

When grouped in cluster, microcalcifications (µCs) can be an important indica-
tor of breast cancer, since they appear in 30%-50% of cases diagnosed by mam-
mographic screenings [1] . To help radiologists in the diagnostic decision, various
Computer Aided Detection (CAD) systems have been recently proposed, espe-
cially based on machine learning techniques such as Support Vector Machines
[2,3,4,5] or ensemble classifiers [6,7,8] . These methods rely on a sliding sub-
window which scans the entire image and on a dichotomizer (i.e., a two-class
classifier) classifying each subwindow as positive (containing µCs) or negative
(no µCs). However, these approaches present a high computational burden due
to the huge number of subwindows to be analyzed and the complexity of the
classifier. An useful solution to these problems is to employ an ensemble of clas-
sifiers structured as a “cascade” of dichotomizers with increasing complexity.
As highlighted in [9], where such a method has been applied for the detection
of human faces, a cascade-based approach exhibits both a low computational
complexity and good performance.

In this paper we propose a cascade of classifiers built for the detection of
µCs clusters. Accordingly, we have devised a huge set of features suitable for
the shape of the µCs, among which the learning algorithm selects the most
discriminating ones. The proposed learning procedure employs RankBoost [10]
as dichotomizer since it has been proved [11] to maximize the area under the
ROC curve (AUC). This makes it a good choice when dealing with strongly
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unbalanced data sets, as is the case with the detection of µC on mammograms.
The cascade detector not only locates the candidate regions, but it also provides
a confidence degree for each of them which estimates the probability of the
presence of a µC. The detector’s outputs are finally conveyed to a clustering
algorithm which uses both the spatial and probabilistic data to detect clusters.
Experiments accomplished on a full-field digital mammographic database show
that the cascade approach obtains good results in comparison with a monolithic
detector based on RankBoost.

2 Method

The proposed approach for the detection of clusters of µCs is based on a three
steps process which is composed as follows. Firstly, we employ a supervised learn-
ing framework for the detection of µCs based on a cascade of classifiers trained to
classify mammographic subwindows as likely-µCs or background. A confidence
degree which conveys the probability of the presence of a µC is also associ-
ated to each likely-µCs subwindow by the cascade. Secondly, a post-processing
step translates and merges likely-µCs subwindows into likely-µCs regions which
roughly identify the segmented µCs. Finally, these regions go through a clus-
tering step which uses both the spatial and probabilistic information to detect
clusters. In the following subsections we detail each of these steps.

2.1 Microcalcifications Detection

The underlying idea is to employ a sequence of node classifiers with increasing
complexity. A given subwindow passes to the next node if the current node clas-
sifies it as containing a µC, otherwise it is rejected. The majority of subwindows
containing easily detectable background are discarded by the early nodes, while
the most likely-µC subwindows go through the entire cascade. As a result, the
detection rate D and false positive rate F of a cascade composed by n nodes is
given by

D =
n∏

i=1

(di) F =
n∏

i=1

(fi) (1)

where di and fi are the detection rate and false positive rate of the ith node
respectively. Such approach, which showed to be effective also in other fields
[9], allows us to face the learning task in a more effective way. In fact, while
it is hard for a monolithic classifier to ensure both a good sensitivity and a
good specificity, the cascade provides a high constant sensitivity and a growing
specificity through the stages obtained by connecting more simpler classifiers
with high sensitivity and sufficient specificity. As an example, to build a detector
having D = 0.990 and F = 0.001 it would be sufficient to build 6 node classifiers,
each with ti = 0.999 and fi = 0.3. In this way, the first stages of the cascade have
to face a simpler task (rejecting the most distinguishable background regions),
while the last stages are specialized to discriminate between actual µC’s and
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the most confusing background configurations. This should reduce the number
of false positives produced by the detector and concentrate the computational
complexity of the system on the last classifiers of the cascade.

To describe the region to be classified, some groups of Haar-like features are
used. For the first group the value of each feature is calculated as the difference
between the sum of pixels belonging to adjacent rectangular regions, aimed at
capturing edge and elongated patterns (see Fig. 1a). For the second group, the
value is calculated in a similar way, but the support regions are two concentric
rectangles, so being more suitable for the granule-like shape of µCs (see Fig. 1b).
The third group is constituted by the 45 degrees-rotated version of the features
of the first two groups (see Fig. 1c). The features of the first two groups are
evaluated very quickly thanks to the integral image [9], while for the rotated
features a particular representation of the image is introduced, similar to the
integral image, but suited for the calculation of tilted rectangle areas. All features
are stretched and shifted across all possibile combinations on the subwindow,
leading to tens of thousands of features. As a consequence it stands out the need
of a feature selection mechanism embedded in each node classifier during the
training phase.

a b

c

Fig. 1. The Haar-like feature groups used by the proposed cascade of classifiers. (a)
Some examples of the first group. (b) An example of the second group. (c) Some
examples of the third group.

Each node classifier is actually an ensemble classifier which builds a “strong
classifier” Hi(x) as a linear combination of “weak classifiers”, added in subse-
quent rounds. At each round, a weak classifier is built by picking up the feature
which provides the best weighted bipartite ranking on positive and negative sam-
ples. In other words, if we consider all the pairs made by a positive sample and
a negative sample (crucial pair) and consider how the two samples are ordered
according to a particular feature, the feature chosen is the one that minimizes
the weighted number of misranked crucial-pairs. After that, the samples forming
misranked crucial-pairs are given a weight so that they are more influential in
the following rounds. Such approach was inspired by RankBoost [10], a boost-
ing machine learning algorithm not based on a cascade mechanism. It allows
us to build node classifiers aimed at maximizing the area under the ROC curve
(AUC). In our application, this is a quality index for the classifier certainly more
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appropriate than accuracy which is used in other boosting algorithm such as Ad-
aBoost. Moreover, AUC is independent of the a priori probabilities of the two
classes and this makes it a good choice when dealing with unbalanced data sets.

As we said before, a consequence of the arrangement in a cascade is that
different nodes face different problems. This is considered during the learning
phase, when each node is trained with the training set used by the previous node
reduced by extracting the negative samples correctly classified by the previous
node. In this way, the training set for each node describes faithfully the problem
to be faced. It is worth noting that the learning phase require, for each node, a
validation set different from the training set and necessary to tune the classifier
in order to provide the required di and fi. Also the validation set is updated in
the same way as the training set. The described learning mechanism obviously
causes that a high number of negative samples is removed from both the training
and the validation sets, thus significantly altering the original balancing between
positive and negative samples. For this reason, a huge pool of negative samples
is set apart for refilling and re-balancing the sets after a node is trained.

A particular strategy is adopted for the last node of the cascade that does not
reject negative subwindows, but it merely associates to each subwindow arriving
to it a confidence degree about the presence of a µC. This is achieved by using
the real number Hn(x) returned by the last node classifier (n is the total number
of nodes in the cascade) instead of applying a threshold to classify the tested
sample as it happens in the previous nodes.

A figure describing the structure of the proposed cascade classifier is given in
Fig. 2.

RankBoost 
classifier 1

RankBoost 
classifier 2

RankBoost 
classifier n

non-µC  
subwindows

computational complexity

likely-µC     
subwindows 

+
confidence 

degrees

all     
subwindows

likely-µC     
subwindows

Fig. 2. The proposed cascade-based µC-classifier

2.2 Post-Processing Step

Since sliding subwindows can overlap each other, multiple likely-µC subwindows
are usually detected around the same µC region. A post-processing step which
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translates the overlapping subwindows into regions is therefore needed. Accord-
ingly, we employ an accumulation matrix, whos values are computed as follows.
Firstly the matrix is initialized with the same dimensions of the tested image
and with zero values. Secondly, for each likely-µC subwindow detected, the val-
ues inside the square of side k centered on that subwindow are incremented by
1. Finally, the connected regions of the accumulation matrix are found and a
confidence degree is associated to each of them by computing the mean of the
confidence degrees of the subwindows belonging to that region. Such regions rep-
resent a rough segmentation of the µCs, so that their centroid can be used as
the associated spatial coordinate.

2.3 The Clustering Algorithm

Since the number of clusters in the image is unknown, clustering algorithms re-
lying on this information (e.g. k-means) cannot be used. Therefore we employ
a sequential clustering algorithm described in [12] that constructs the cluster
according to the sequence of µC-regions submitted to the algorithm. The se-
quence is ordered according to the confidence degree since regions that have a
higher confidence degree can more probably represent microcalcifications. In this
way, the first points that the algorithm will consider are those with the highest
probability of being microcalcifications. During the aggregation, each cluster Ci

is represented by its the centroid ci, assumed as the center of mass of the µC-
regions belonging to the cluster, each weighted by its confidence degree. A new
µC-region is added to Ci if the distance between its centroid and ci is less than
a given threshold R. In this case the centroid ci is recalculated, otherwise a new
cluster Ci+1 containing the µC-region will be created. In this way, the centroid
of the cluster moves towards the direction where the regions are more dense and
with higher confidence degrees.

3 Results

The experimental results were performed using 198 full-field digital mammo-
grams extracted from a non-public database. All the images were labeled by
experts, who accurately segmented the µCs and marked the clusters of µCs by
a poligonal line. In order to estabilish the size of subwindows, we firstly made
a statistical evaluation of the typical size of a µC. We found that a subwindow
of 12 × 12 pixels, corresponding to 1.2 mm×1.2 mm, can contain the 99% of
the µCs. Next, we extracted the training data from 90 of the 198 images using
non-overlapped subwindows of 12 x 12 pixels, so obtaining more than 2.000 pos-
itive and about 400.000 negative samples. In order to have a sufficiently wide
pool suited for the cascade approach, the set of negative samples was oversam-
pled by adding a huge number of subwindows partially overlapped with those
already present in the set, for a total number of about 12.000.000 negative sam-
ples. We used 20.000 and 60.000 of such negative samples for the training and
the validation set respectively, while the remaining have been used for the pool.
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The positive samples were equally distributed between the training set and the
validation set.

The cascade detector has been built with di = 0.99 and fi = 0.3. The training
stage produced 13 nodes employing respectively 22, 26, 33, 43, 44, 28, 38, 29,
28, 32, 28, 30, 26 features automatically selected from the 11.879 possible ones.
The overall detection and false positive rate obtained by the cascade on the
validation set were 0.87 and 8.83× 10−3 respectively.

We fixed the parameter k of the post processing to k = 4 since this configura-
tion has been found to provide the best results. The threshold R of the clustering
algorithm was fixed to R = 8 mm as suggested by the experts. Only clusters
with at least three µCs were considered.

To have a comparison with a non-cascade boosting approach, a monolithic
RankBoost detector has been implemented and trained with the same training
data and feature set of the cascade detector. We have built several models (with
different sizes for the set of negative samples and different numbers of boosting
rounds) and picked the best one in order to have a fair comparison. The best
results were obtained with a training set of 400.000 negative samples and 100
boosting rounds.

The cascade detector and the monolithic one were evaluated on the remaining
108 images of the initial set of 198 mammograms. 100 of such images contained
one ore more clusters of µCs, while the remaining 8 ones did not contain any
cluster. The evaluation has been performed in terms of Free-response Receiver
Operating Characteristics (FROC) curve, that plots the True Positive Rate, i.e.,
the number of clusters correctly detected in the test set, versus the False Positive
per image, i.e., the number of detected non-clusters per image. The criterion used
to evaluate a cluster detection as true or false is based on the area of intersection
between the automatically detected clusters and the labeled clusters and it is
detailed as follows. Given the area A(L) of a labeled cluster L, the area A(C)
of cluster C detected by the classifier, the total number of labeled clusters l and
automatic detected clusters c, we have:

– a true positive if A(L ∩ ⋃c
i=1(A(Ci)) ≥ CFlab · A(L) where CFlab is the

groundtruth coverage factor;
– a false negative if A(L ∩⋃c

i=1(A(Ci)) < CFlab · A(L);

– a false positive if A(C ∩⋃l
i=1(A(Li)) < CFauto · A(C) where CFauto is the

detected clusters coverage factor.

We have experimentally fixed the coverage factors as CFlab = 0.3 and CFauto =
0.1 by visual inspection of the obtained results with the help of an expert.

The curves which show the result of the comparison are reported in Fig. 3
and were obtained by varying the threshold on the confidence degree associated
to likely-µC regions. The comparison shows that the cascade approach significa-
tively outpeforms the monolithic RankBoost. In particular, at 1.0 false positive
per image the detection rate of the cascade classifier is 0.95, while the Rank-
Boost’s one is 0.71, with a gain of about 25%. It is also worth noting that
the cascade approach reduced the elaboration time of 55% with respect to the
RankBoost approach.
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Fig. 3. The FROC curves comparing our cascade-based approach with a monolithic
RankBoost classifier trained with the same data and feature set. The True Positive
Rate is the number of clusters correctly detected and the False Positive per image is
the number of detected non-clusters per image

4 Discussion

In this paper, we have presented a new approach for the detection of clustered mi-
crocalcifications based on a cascade architecture employing rank-based boosting
classifiers. An experimental analysis accomplished on a full-field digital mam-
mographic database demonstrated that the proposed approach is effective and
computationally convenient.

The good detection performance is mainly due to the detection system that
is actually made of an ensemble of classifiers, each trained on a part of the
available data. In this way, during the learning phase we can use a huge num-
ber of negative samples without any drawback due to overfitting because they
are distributed among the classifiers, each of them learning a training set not
excessively imbalanced.

On the other hand, the cascade architecture helps in limiting the computa-
tional load of the detector because it allows to spend the right computational
resource for each region to be classified: only the most difficult samples traverse
all the cascade, while the easy-to-recognize background regions are discarded by
the first stages. This is not possible for a monolithic detector which cannot tune
its effort according to the sample to be classified.

There are some issues that need to be addressed, however. First, different
types of features could be verified. Second, an alternative architecture could be
considered that decouples the feature selection step from the classifier learning
step. This would allow us to employ in the node classifier learning algorithms
not necessarily based on boosting.



118 A. Bria et al.

References

1. Kopans, D.B.: Breast Imaging, 3rd edn. Williams & Wilkins, Baltimore (2007)
2. El Naqa, I., Yang, Y., et al.: A support vector machine approach for detection

of microcalcifications. IEEE Transactions on Medical Imaging 21(12), 1552–1563
(2002)

3. Wei, L., et al.: Relevance vector machine for automatic detection of clustered mi-
crocalcifications. IEEE Transactions on Medical Imaging 24(10), 1278–1285 (2005)

4. Singh, S., Kumar, V., Verma, H.K., Singh, D.: SVM based system for classification
of microcalcifications in digital mammograms. In: Proc. 28th Annu. Int. Conf. Eng.
Med. Biol. Soc., vol. 1, pp. 4747–4750 (2006)

5. Dheeba, J., Selvi, S.T.: Classification of malignant and benign microcalcification
using SVM classifier. In: ICETECT 2011, pp. 686–690 (2011)

6. Zhang, X., et al.: MCs detection approach using Bagging and Boosting based twin
support vector machine. Systems, Man and Cybernetics, 5000–5505 (2009)

7. Zhang, X.: A New Ensemble Learning Approach for Microcalcification Clusters
Detection. Journal of Software 4(9) (2009)

8. Oliver, A., Torrent, A., Tortajada, M., Lladó, X., Peracaula, M., Tortajada, L.,
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Abstract. According to recent reports, DBT is a useful diagnostic procedure 
compared to 2D mammography. In this paper, we evaluated the diagnostic im-
pact of adjunction of DBT to FFDM and in comparison with FFDM only, in ac-
cordance with pathological findings and breast density. 303 women, having 333 
lesions, (age 29-84, mean age 54.0 years old) that were recruited for this study 
gave informed consent. The results indicated that adjunction of DBT to FFDM 
was superior to FFDM only, regarding diagnostic performance.  

Keywords: Digital Mammography, Tomosynthesis, DBT, FFDM, MMG. 

1 Introduction 

According to recent reports, DBT is a useful diagnostic procedure compared to 2D 
mammography because breast structures are superimposed onto a two-dimensional 
(2D) image [1-8] .We evaluated the diagnostic impact of adjunction of DBT to FFDM 
and in comparison with FFDM only, in accordance with pathological findings and 
breast density with reference to recent reports. 

2 Materials and Methods 

This study was approved by the IRB at our institute. 303 women, having 333 lesions, 
(age 29-84, mean age 54.0 years old) that were recruited for this study gave informed 
consent. The images were taken as diagnostic mammograms from October in 2009 
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to October in 2011. 45 cases were referred from other institutions by US and 258 
cases were referred by MMG or palpation. Clinical image data were acquired by an a-
Se FFDM system with a spatial resolution of 85μm (MAMMOMAT Inspiration, 
Siemens, Germany).Two-view DBT was performed with the same rotation angle 
(±25°) and compression pressure as the FFDM. With one-view DBT, the radiation 
dose was 1.5 times compared to one-view FFDM. The radiation dose, utilizing ACR 
156 phantom by FFDM, was 1.20mGy. Images were reconstructed by the shift and 
add method and the filtered back projection (FBP) method. FFDM and reconstructed 
slice images of DBT were reviewed at a dedicated workstation (MAMMO Report, 
Siemens, Germany). Before stating clinical evaluation, our technologists performed 
an evaluation of image quality utilizing an ACR156 Phantom. The thickness was 
changed utilizing a PMMA Plate and image quality was evaluated by counting de-
tectable numbers of fibers, masses, and calcifications. As for the results, DBT showed 
better image quality compared to FFDM regarding fibers and masses. However, re-
garding calcifications, FFDM showed better image quality compared to DBT. Ac-
cording to the preliminary results, we designed clinical study how adjunction of DBT 
to FFDM could contribute to improve diagnostic accuracy [Fig.1.] [9]. Two radiolo-
gists and four breast surgeons evaluated and reached diagnostic consensus regarding 
the findings of each lesion by FFDM only and the adjunction of DBT to FFDM before 
surgery and in accordance with BIRADS categories; BIRADS1-2 (no findings or 
benign), BIRADS 3 (probably benign, but short-term follow-up or additional diagnos-
tic procedure necessary), and BIRADS 4-5(highly suspicious or definitely malignant 
and a biopsy necessary). The author and the other five co-authors (two radiologists 
and four breast surgeons) each have over ten years’ experience in reading mam-
mograms. In addition, to read screening mammograms in our country, it is necessary 
to get a certificate from the committee on quality control of mammographic screening 
by taking a qualifying examination and the certificate must be renewed every five 
years. The author and the other five co-authors all passed the qualifying examina-
tion with A rank results. All the examination scores were over 90% in sensi-
tivity and over 92% in specificity. All cases were operated on and confirmed as 
malignant or borderline lesions pathologically.   

 

Fig. 1. Image Quality Evaluation by ACR156 
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3 Results 

181 cases were diagnosed as fatty or scattered (BIRADS density 1-2) and 122 cases 
were diagnosed as inhomogeneous dense or dense (BIRADS density 3-4). Of the 
pathological findings, 186 lesions were diagnosed as Invasive Ductal Carcinoma(IDC), 
60 lesions were diagnosed as Ductal Carcinoma in Situ(DCIS), 33 lesions were IDC 
predominantly Ductal Carcinoma in Situ (DCIS),16 lesions were diagnosed as Invasive 
Lobular Carcinoma (ILC), 7 lesions were diagnosed as Lobular Carcinoma in Situ 
(LCIS), 5 lesions each were diagnosed as Mucinous Carcinoma (Muc Ca) and Intra-
ductal Papilloma (IDP), 4 lesions were diagnosed as Apocrine Carcinoma, 3 lesions 
each were diagnosed as Mixed IDC+ILC and Intracystic Papillary Tumor (ICPT), two 
lesions each were diagnosed as Invasive Micropapillary Carcinoma (IMPC), DCIS 
with LCIS, and Phyllodes Tumor, and one lesion each was diagnosed as SCC, ILC 
with DCIS, ILC predominantly DCIS, ILC predominantly LCIS, and Muc Ca predo-
minantly DCIS (Table1.). With FFDM only, the detection rate was 88.9% (176/198) 
for breasts with BIRADS density 1-2 and 83.7% (113/135) for breasts with BIRADS 
density 3-4. The findings by FFDM only were mass (n=142; 42.6%), Focal Asymme-
try (FA) (n=31; 9.3%), distortion (n=15; 4.5%), microcalcifications (n=40; 12.0%), 
microcalcifications with FA (n=8; 2.4%), microcalcifications with distortion (n=7; 
2.1%), microcalcifications with mass (n=46; 13.8%), and none (n=44; 13.2%). 

With adjunction of DBT to FFDM, the detection rate (BIRADS3-5) was 97.4% 
(193/198) for breasts with BIRADS density 1-2 and 94.8% (128/135) for breasts with 
BIRADS density 3-4. The average detection rate was 86.8% by FFDM only and 
96.4% by adjunction of DBT to FFDM. There was a statistically significant difference 
between the FFDM only and adjunction of DBT to FFDM among BIRADS density 1-
2 and BIRADS density 3-4 (P<0.05). On the other hand, there was no statistically 
significant difference according to breast density (FFDM only: P=0.221, 3-4; adjunc-
tion of DBT to FFDM: P=0.202) (Table 1.). By BIRADS category with FFDM only, 
44 lesions (13.2%) were diagnosed as BIRADS 1 or 2, 75 lesions (22.5%) were diag-
nosed as BIRADS 3, 214 lesions (64.3%) were diagnosed as BIRADS 4 or 5. On the 
other hand, with adjunction of DBT to FFDM, 12 lesions (3.6%) were diagnosed as 
BIRADS 1 or 2, 21 lesions (6.3%) were diagnosed as BIRADS 3, 300 lesions (90.1%) 
were diagnosed as BIRADS 4 or 5 (Table 2., Fig.2.).By adjunction of DBT to FFDM, 
32 more lesions were detected in comparison with FFDM only (IDC n=11, ILC n=2, 
ILC pred LCIS n=1, DCIS n=15, LCIS n=1, IDP n=2). In addition, regarding radio-
logical findings, diagnostic accuracy was improved in 96 lesions (28.8%) in cases of 
BIRADS 1-2 to BIRADS 3-5 and BIRADS 3 to BIRADS 4-5. These included 93 
mass-related lesions (mass, FA, or distortion) and three microcalcifications -related 
lesions (microcalcifications, microcalcifications and FA, or microcalcifications and 
distortion). However, diagnostic confidence was improved in cases of microcalcifica-
tions-related lesions owing to the presence of masses or focal dense areas with micro-
calcifications. In accordance with pathological subtypes, improvement of the detec-
tion rate and diagnostic accuracy in invasive cancer was 4.7% and 14.1% in Sci Ca, 
7.9% and 31.7% in Pap-Tub Ca, 8.2%and 35.8% in Sol-Tub Ca, and 14.3% and 
43.8% in ILC. On the other hand, improvement of detection rate in non-invasive can-
cer (DCIS) was 39.5% and 45.0% in diagnostic accuracy (Table 3.). 
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Table 1. The Detection Rate in accordance with Breast Density  (n=333) 

               FFDM only Adjunction of DBT to FFDM
P<0.05

BIRADS density 1-2 BIRADS density 1-2
(Fatty or Scattered)

P>0.05 88.9% (176/198)  97.4% (193/198) P>0.05
BIRADS density 3-4 BIRADS density 3-4

(Inhomogeneous Dense or Dense)
83.7% (113/135) 94.8% (128/135)  

                                    
                                                               P<0.05

Average Detection Rate                Average Detection Rate
                               86.8%                                           96.4%

P<0.05  

Table 2. Category Changes of FFDM Only Vs. Adjunction of DBT to FFDM (n=333) 

 FFDM only   Adjunction of DBT to FFDM 

BIRADS 1 or 2    n=44 BIRADS 1 or 2         n=12 

 *BIRADS 3           n=10 

 *BIRADS 4 or 5       n=22 

BIRADS 3        n=75 BIRADS 3             n=11 

 *BIRADS 4 or 5       n=64 
BIRADS 4 or 5    n=214 BIRADS 4 or 5         n=214 

          * Improved diagnostic accuracy: BIRADS 1-2 to 3-5 or 3 to 4-5 (n=96: 28.8%) 
 

   
 
 
                                      
 
 
 
 
 
 
                                      

     
 (a) FFDM image          (b) DBT image       (c) DBT image 

Fig. 2. FFDM (Fig.2a) showed no abnormality in the left breast by CC view except metal clips. 
Corresponding to the post-operative area (white arrow), DBT (Fig.2b.-c.) showed two irregular 
shaped masses on different slices (white arrows). The pathological diagnosis was recurrence of 
IDC (Pap-Tub Ca). (Category Change: BIRADS 1 to 4) 



 Diagnostic Impact of Adjunction of DBT to FFDM and in Comparison with FFDM 123 

Table 3. Radiological Findings of FFDM and Adjunction of DBT to FFDM in comparison with 
Pathological Findings   

IDC (Sci Ca) n=92 
 

FFDM only  Adjunction of DBT to FFDM 
Mass (n=58: *RM n=1, IRM n=30, SPM n=27)   Mass (n=58: IRM n=4, SPM n=54) 

Microcalcifications (n=4)  Microcalcifications  (n=1)       

 

Microcalcifications with FDA (n=1)  

 

Microcalcifications with RM (n=1)     

 

Microcalcifications with SPM (n=1)  

Microcalcifications with  Microcalcifications with FDA (n=1) 

       Focal Asymmetry or Distortion (n=6)   Microcalcifications with IRM (n=4)   

 

Microcalcifications with SPM (n=1)   

Microcalcifications with Mass (n=10) Microcalcifications with IRM (n=6)     

 

Microcalcifications with SPM (n=4) 

Focal Asymmetry or Distortion (n=8)   *SPM (n=8) 

None (n=6)  *Mass (n=4: RM n=1 
, IRM n=2, SPM n=1)  

 

None (n=2)   

                                       
Improvement of detection rate 4.7%, Improvement of diagnostic accuracy 14.1% (13/92)  
         

IDC (Pap-Tub Ca) n=41 
 

FFDM only  Adjunction of DBT to FFDM 
Microcalcifications with IRM (n=8)  Microcalcifications with IRM (n=6) 

Microcalcifications with SPM (n=1)  Microcalcifications with SPM (n=4) 

**Microcalcifications with RM (n=1)  
 

Focal Asymmetry or Distortion (n=8) *IRM (n=4), *SPM (n=4) 

None   (n=3)  *RM (n=1), *IRM (n=1), *SPM (n=1)  

Mass (n=20:* RM n=1, IRM n=13, SPM n=6)    Mass (n=20: IRM n=9, SPM n=11)  
Improvement of detection rate7.9%      Improvement of diagnostic accuracy 31.7% (13/40) 
 
IDC (Sol-Tub Ca) n=53 

 

FFDM only  Adjunction of DBT to FFDM 
Microcalcifications with IRM (n=11)    Microcalcifications with IRM (n=6) 

Microcalcifications with SPM (n=1) Microcalcifications with SPM (n=6) 

Focal Asymmetry or Distortion  (n=9) *IRM (n=7), *SPM (n=2)  

None (n=4)  *IRM (n=3), *SPM (n=1) 
Mass (n=27: *RM n=6, IRM n=15, SPM n=6) Mass (n=27: IRM n=13, SPM n=14) 

Microcalcifications (n=1)  Microcalcifications with FDA (n=1) 
Improvement of detection rate 8.2%, Improvement of diagnostic accuracy 35.8% (19/53)                

 
 



124 N. Uchiyama et al. 

 

Table 3. (continued) 

ILC (n=16) 
 

FFDM only  Adjunction of DBT to FFDM 
Focal Asymmetry or Distortion (n=5)  *IRM (n=1) 

 

*SPM (n=4) 

None (n=2)   *RM (n=2) 
Mass (n=7: SPM n=6, IRM n=1) Mass (n=7: SPM n=7) 

Microcalcifications with IRM (n=2)  Microcalcifications with IRM (n=1)   

 

Microcalcifications with SPM (n=1)  

Improvement of detection rate14.3%, Improvement of diagnostic accuracy 43.8% (7/16) 
 
IDC Pred DCIS (n=33) 

 

FFDM only  Adjunction of DBT to FFDM 
Microcalcifications (n=13)    Microcalcifications (n=4)         

 

Microcalcifications with FDA (n=5) 

 

Microcalcifications with RM or IRM (n=4) 

Microcalcifications with Microcalcifications with FDA 

    Focal Asymmetry or Distortion (n=7)    
            and Distortion or Spiculation 
(n=6) 

(BIRADS 3 n=2, BIRADS 4-5 n=5)     (BIRADS 3 n=1, BIRADS 4-5 n=5) 

 

**Microcalcifications with IRM (n=1) 

 

 (**BIRADS 3 to 4-5 n=1) 

Microcalcifications with RM (n=3)  Microcalcifications with IRM (n=4)  

              or with IRM (n=2)       
                           or with SPM 
(n=1) 

Focal Asymmetry or Distortion (n=5) FDA (n=1), *IRM (n=1), *SPM (n=3) 

Mass (n=3: SPM n=2, IRM n=1)  Mass (n=3: SPM n=2, IRM n=1) 

Improvement of detection rate 0%, Improvement of diagnostic accuracy 15.2% (5/33) 
 

DCIS (n=60) 
 

FFDM only  Adjunction of DBT to FFDM 
None  (n=22)   None  (n=7)   

 

*FDA with  

 

           Distortion or Spiculation (n=5)     

 

*Mass (n=10; RM n=5, IRM n=2, SPM n=3) 
Microcalcifications (n=14)   Microcalcifications  (n=10)      

 

Microcalcifications with FDA  

 

           or with Distortion or Spiculation (n=4) 

Microcalcifications with     Microcalcifications with FDA or Distortion (n=4) 
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Table 3. (continued) 

  Focal Asymmetry or Distortion(n=5)  *Microcalcifications with Mass (n=1) 

Microcalcifications with Mass (n=1)   Microcalcifications with Mass (n=1)  

Focal Asymmetry or Distortion (n=9)   FDA (n=1)        

 

*FDA with Distortion or Spiculation (n=2)     

 

*Mass (n=6; IRM n=6) 

Mass (n=9: IRM n=6, *RM=3)  Mass (n=9: IRM n=4, SPM n=5) 

Improvement of detection rate 39.5%, Improvement of diagnostic accuracy 45.0% (27/60) 
 
FDA: Focal Dense Area    RM: Round, Oval, or Lobulated Mass     
Irregular Shaped Mass (IRM): Indistinct or Microlobulated Mass   SPM: Spiculated Mass  
*Improved Diagnostic Accuracy regarding Mass-related Lesions 
**Improved Diagnostic Accuracy regarding Microcalcification-related Lesions          

4 Discussion 

According to recent reports, DBT is a useful diagnostic procedure compared to 2D 
mammography because breast structures are superimposed onto a two-dimensional 
(2D) image [1-8] .The outline of the lesion can be potentially obscured. Our prelimi-
nary results also indicated that adjunction of DBT to FFDM contributed not only to 
detecting the lesion, but also to clarifying the diagnostic accuracy, especially with 
regard to mass-related lesions. On the other hand, regarding microcalcifications-
related lesions, only using DBT slice image, it is difficult to recognize the overview 
of the clustered microcalcifications and analyze the morphology of each microcalcifi-
cation’s outline at current settings for image acquisition and reconstruction. That cor-
responded to our preliminary phantom study and clinical study by Spangler ML, et.al. 
[8][9].As a result, adjunction of DBT to FFDM is the best current option. Detection 
rate by adjunction of DBT to FFDM was improved compared to FFDM only and 
especially improved in non-invasive cancer; DCIS.32 more lesions were detected by 
adjunction of DBT to FFDM, not only 14 invasive cancers, but also 18 non-invasive 
cancerous or borderline lesions. Adjunction of DBT to FFDM was useful to detect 
early stage breast cancer and it is not affected by breast density.  

5 Conclusion 

In this study, the results indicated that adjunction of DBT to FFDM was superior to 
FFDM only, regarding diagnostic performance. In addition, it could decrease addi-
tional other diagnostic procedures. 

Acknowledgment. This study was supported by Grant-in-Aid for Scientific Research 
(C) (No. 23591810) in Japan. 
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Abstract. Volumetric breast density was determined using QuantraTM (Hologic) 
in 1356 women undergoing routine breast screening. Self-reported ethnicity, 
age, HRT use, weight and height were also available. 1038 women declared 
themselves to be White (British or Irish), 71 Black, 77 Asian, 91 Jewish, 31 
Mixed Race and 48 Other European. Most of the Jewish group were Ashkenazi, 
a group in which there is a high probability of genetic susceptibility to breast 
cancer.  Women with screen-detected or previous cancers were excluded. The 
only significant difference in breast density found between ethnic groups was 
between the Jewish women and women of White (British or Irish) ethnicity, 
where mean volumetric densities were 19.61% and 16.89% respectively 
(p=0.012), however this difference is only of borderline significance (p=0.053) 
once adjustments are made for age, Body Mass Index (BMI) and use of Hor-
mone Replacement Therapy (HRT). The Jewish women had on average a lower 
BMI and were more likely to have used HRT.  

Keywords: Breast density, ethnicity, mammography, volumetric, Quantra. 

1 Introduction  

Increasingly, screening programmes are looking for alternatives to the one-size-fits-
all approach currently adopted for women without a family history of breast cancer. 
Screening could be made more effective by adapting the imaging modality and 
screening interval to the properties of a woman’s breasts or to their individual risk of 
cancer. Women identified as being at high risk of developing the disease could also be 
offered risk-reducing interventions. An example of this is the PROCAS (Predicting 
Risk of Cancer At Screening) trial in the UK [1,2]. All women attending routine 
breast screening in the Greater Manchester Breast Screening Programme are invited 
to participate; those that consent undergo conventional screening mammography and 
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complete a questionnaire providing information about physical characteristics, life-
style, family history and other factors associated with breast cancer risk. Question-
naire data are used to identify a high risk population via the Tyrer-Cuzik model [3]. 
Breast density is measured from the screening mammograms, and those women with 
a Tyrer-Cuzick 10-year risk of at least 8%, or a 10-year risk of at least 5% and area-
based breast density in the top 10% among study participants, are informed of their 
risk and offered appropriate advice. Breast density is a key feature of PROCAS not 
only because it is an important risk factor for cancer; unlike many risk factors it is 
modifiable by lifestyle and other interventions giving the opportunity to reduce risk 
[4, 5], and it has become easier to quantify objectively and routinely with the advent 
of digital mammography. 

Increased mobility of the world population has resulted in many countries having a 
diverse ethnic mix, now apparent in the screening age group in Greater Manchester 
[6]. Ethnicity affects risk of breast cancer, with women of White ethnicity having high 
incidence of developing this disease in comparison to other racial groups [7]. In one 
study, approximately 141 per 100,000 women of White ethnic origin were found to 
have developed breast cancer, compared to 119 for African Americans, 96 for Asian 
Americans, 90 for Hispanic/Latina women and 50 for American Indians/Alaskan 
natives [8]. Survival also differs between women from different ethnic groups [9,10] 
although this may in part be due to inequalities in treatment [11].  

Published data on ethnicity and breast density has yielded mixed results. A UK 
study of 428 patients symptomatic patients using QuantraTM showed significantly 
differences between White, Asian and Black women, but did not control for any con-
founding factors such as age or HRT use [12].  White, Hispanic, Asian, Native Amer-
ican and Black woman participated In a study of 28,501 mammograms of women 
enrolled on a breast-screening programme in western Washington [13]. Adjusting for 
age, differences in breast density were found between Native American and White 
women, and White and Asian women. However, when BMI, HRT use, menopausal 
status and parity were taken into account the difference between Native American and 
White women was no longer significant. More recent research in similar ethnic 
groups evaluated the breast density of 442 women [14]. African-Americans were 
found to have higher density than Asian-Americans after adjusting for BMI, family 
history, menstrual and reproductive factors. In this work, Asian-American and White 
ethnic group were found to have similar mammographic densities. In contrast with 
this, a British study found that Asian women had significantly lower breast density 
assessed using Wolfe grades than Caucasian participants [15]. However, in a study of 
15,292 women of Asian, White, African-American and Other (American Indian and 
Caribbean) racial backgrounds no significant differences were found when confound-
ing factors including bra size were taken into account [16]. The picture is thus  
unclear; previous studies have evaluated different populations using a variety of me-
thodologies including subjective assessment of density.  

The work reported here uses a fully automated, volumetric breast density measure, 
(QuantraTM) as opposed to visual assessment or computer assisted methods as re-
ported previously in the literature. Whilst QuantraTM has not yet been validated with 
respect to its relationship to risk to the same extent as subjective and area-based  
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methods of density measurement, it holds several advantages over such methods in-
cluding objectivity, reproducibility, suitability for population-based studies, resolution 
and the ability to assess absolute, rather than relative, breast density [17]. Regardless 
of the degree of association with risk, the identification of women with high mammo-
graphic density is important because the detection of cancers using conventional 
mammography is more difficult in this case [18], and it may be appropriate to use 
alternative screening methodologies.  

2 Methods 

Data used in this study comprised image and questionnaire data for all non-White 
British or Irish participants recruited to PROCAS before 15th June 2011 for whom 
raw digital mammograms and a completed questionnaire were available, and for the 
first 1038 White British or Irish participants in the wider trial for whom questionnaire 
data had been entered in the study database and raw mammogram data were available. 
Women diagnosed with cancer at the time of screening and women with previous 
breast cancers were excluded. 

The mammograms were analysed using Hologic’s QuantraTM (Version 1.3; Holog-
ic Inc.) software which provided measures of breast volume, glandular volume and % 
density by volume for left and right breasts. These were averaged to provide a single 
measure of each type per women.  

Questionnaire data on ethnicity, date of birth, Hormone Replacement Therapy 
(HRT) use, weight and height were extracted from the PROCAS study database. 
Body Mass Index (BMI) was calculated from the self-reported height and weight data. 
One way analysis of variance (ANOVA) was used to determine whether a relation-
ship existed between the breast density measures and ethnicity. Further analysis was 
then completed using a General Linear Model (ANCOVA) in which adjustment was 
made for age, BMI and HRT use.   

2.1 Ethnicities 

The ethnic categories available for participants to select on the questionnaire were: 
Asian or Asian British – Bangladeshi, Indian, Pakistani, Chinese; Black or Black 
British – African or Caribbean; Jewish Origin; Jewish Ashkenazi; Mixed – White and 
Black African/Asian/Black Caribbean; White - British or Irish; and Other – please 
specify. Women were instructed ‘Please tick all that apply’. In subsequent analysis, 
the Jewish Ashkenazi women were included in the Jewish Origin category.  

3 Results 

The age of participants ranged from 46 to 74 years. The mean BMI for all the ethnic 
groups in the study was greater than 25, in the overweight range. Mean ages and BMI 
for each group are tabulated in Table 1. 
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Table 1. Mean Body Mass Index and Age in each ethnic group studied 

Ethnicity Mean BMI (SD) Mean Age (SD) 

White British or Irish 27.36 (5.49) 58.8 (6.99) 

Black or Black British 29.49 (4.60) 57.9 (7.36) 

Asian or Asian British 26.24 (4.64) 57.5 (6.75) 

Jewish origin 25.52 (4.22) 60.1 (6.87) 

Mixed 29.75 (5.83) 56.7 (6.29) 

Others 25.50 (4.66) 58.8 (6.37) 

All 27.45 (5.37) 58.7 (6.96) 

Just over a third of the women in the study had used HRT at some time. Usage was 
highest in the Jewish group and lowest in women of Black origin and those of Asian 
or Mixed race (Table 2). The mean age of women who reported ever using HRT 
(61.41 years) was significantly greater than that of women who had never used it 
(57.19 years) (p<0.01). This may relate to the menopausal status of the individuals 
taking part in this study. 

Table 2. HRT use for women of different ethnicities 

Ethnicity Ever Used HRT (%) 
White British or Irish 37.5 
Black or Black British 23.5 
Asian or Asian British 26.7 
Jewish  42.9 
Mixed 26.7 
Others 35.4 
All ethnicities 36.2 

 
The volumetric breast densities of women in the different ethnic groups are 

presented in Table 3, and the volumetric percentage breast densitiesare shown in 
Table 4.  

Table 3. Volumetric breast density (cm3) for women of different ethnicities 

Ethnicity Gland volume (cm3) Breast volume (cm3) 
Mean SD Mean SD 

White 101.9 58.9 642.4 363.2 
Black or Black British 126.4 72.2 777.8 442.5 
Asian or Asian British 78.9 47.9 454.8 259.2 
Jewish Origin 100.7 50.2 544.5 260.9 
Mixed 117.0 45.5 694.6 293.5 
Others 97.5 63.3 596.3 450.1 
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Table 4. Volumetric breast density (%) for women of different ethnicities 

Ethnicity Breast density (%) 
Mean SD 

White 16.9 6.5 
Black or Black British 17.1 5.9 
Asian or Asian British 18.3 6.0 
Jewish Origin 19.6 7.5 
Mixed 17.3 3.9 
Others 18.1 6.4 

A one-way analysis of variance (ANOVA) was performed to determine whether a 
direct association existed between average breast density and ethnicity. Pairwise 
comparisons were carried out on each ethnic group out using Scheffe’s test. Slight 
differences were observed in the average breast density in all ethnic groups. However, 
the results concluded that only women of Jewish ethnic origin had significantly higher 
breast density than the White British or Irish population (p = 0.012).  

A General Linear Model was used to further investigate the link between average 
breast density and ethnicity whilst adjusting for HRT use, BMI and age. Univariate 
analysis of the variables was performed and pairwise comparisons were done using 
Bonferroni’s test. Once adjusted for age, BMI and HRT use, the results showed that 
the difference between average breast density of the Jewish participants and that of 
the white British or Irish women was of borderline significance (p= 0.053).  

4 Discussion 

Investigation of the relationship between breast density and ethnicity, whilst facili-
tated by the availability of automated methods of measuring density, remains difficult 
because of the many confounding factors such as the possible impact of a change in 
lifestyle on second generation immigrants, and wide variations between definitions of 
ethnic groups. This study is the first that has specifically compared breast density in 
Jewish women with that of White British or Irish women; this comparison is particu-
larly interesting because of the known difference in genetic susceptibility to breast 
cancer of Ashkenazi Jewish women [19]. The high rate of HRT use found in this 
group is of interest.  

The population studied is unlikely to be representative of women of screening age 
in Greater Manchester, as attendance at screening is not uniform across all ethnic 
groups, with women of non-White origin less likely to present for screening [20]. 
Further, the sample was selected on a pragmatic basis aimed at maximizing the pro-
portion of non-White British participants. The mobile units used for screening  
re-locate to facilitate access, and uptake of screening and the proportion of women 
consenting to take part in PROCAS vary according to location, with lower rates in 
less affluent areas of the city.  
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In this sample we found that the only ethnicities for which, after adjusting for po-
tential confounding factors, there was some limited evidence of a difference in breast 
density were White British or Irish and Jewish women. This is in contrast to recently 
reported data from the UK which found that Asian women had lower breast density as 
measured by QuantraTM, however that research was carried out in a symptomatic pop-
ulation rather than a screening population, and did not adjust for confounding factors 
such as age and BMI [12].  QuantraTM also provides data on volume of glandular tis-
sue in the breast. This may be more reliable than percentage density as it is affected 
less by the weight of the women at the time of imaging [21]. A future line of research 
would be to investigate any differences in the absolute volume of gland between the 
ethnic groups, and to establish the impact of increased weight on breast volume. 
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Abstract. A methodology for patient-oriented calculations of mean
glandular dose (MGD) is introduced in this study. The method takes
into consideration the influence of the glandular tissue distribution in
the MGD. The glandular tissue information was estimated from conven-
tional mammography images using breast density assessment software
followed by the Mammography-Image Based (MIB) method presented
in this work. The corresponding dose conversion coefficients (DgN−HLB)
were determined using a Heterogeneously-Layered Breast (HLB) geom-
etry. The effect of the glandular tissue distribution on the MGD was
studied using a set of HLB models and their corresponding homoge-
neous model. DgN−HLB values were between 48% lower and 24% larger
than the value calculated using a homogeneous glandular tissue distri-
bution, despite the current methods predicting the same coefficient for
all glandular tissue distributions. The proposed methods were applied to
a group of patients. For the cases analyzed, the variation in MGD was
as large as 14.8% for a highly heterogeneous dense breast.

Keywords: breast imaging dosimetry, mean glandular dose,
breast anatomy.

1 Introduction

The geometric model used in current dosimetric calculations approximates the
breast as a homogeneous mix of adipose and glandular tissues, surrounded by
skin.[2,4,11,12] This simplified breast model overlooks the heterogeneous distri-
bution of the glandular and adipose tissues within the breast, and introduces a
severe limitation in the dosimetric calculations for anatomical breasts.

This limitation has been reported by Dance et al.[3] who found differences as
high as 48% in the conversion coefficients due to the distribution of glandular
tissue. However, no changes were recommended to the current dosimetry pro-
tocols to allow for this, due to the lack of a practical method to determine the
glandular tissue distribution for a large group of patients.
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In the present work, we introduce the Mammography-Image Based (MIB)
method to estimate the glandular tissue distribution for individual patients us-
ing conventional mammography images. The MIB method is used in combination
with breast density assessment software. In addition, a Heterogeneously-Layered
Breast (HLB) geometry is used in the calculation of the dose conversion coeffi-
cients. The HLB geometry allows variations in the distribution of the glandular
tissues. The methodology introduced in this work provides the basis for patient-
oriented estimations of MGD.

2 Methods

The dose conversion coefficients were obtained using Monte Carlo techniques
(MCNP5, Los Alamos, NM). The imaging geometry used in all simulations was
based on the configuration described by Dance.[2] All simulations used a mo-
noenergetic photon source with energies in the range between 0 keV and 30 keV,
in 0.5 keV steps. The spectra used for these calculations were generated using
methods described in detail elsewhere.[1,10] The breast geometry used in all sim-
ulations is based on the HLB model which consists of a breast core divided into
layers parallel to the image receptor plane. The percent glandular composition
for each layer can be modified separately and heterogeneous glandular tissue
distributions can be simulated. The HLB core is surrounded by a 3.5 mm thick
adipose tissue layer and a 1.5 mm thick skin layer.[8]

The particular HLB geometry used in this work had three layers of equal
thickness and a semicircular breast projection with 8 cm radius (Fig. 1). The
glandular fractions of the core layers were modified according to the purpose of
each of the studies performed. The elemental compositions of the tissue mate-
rials used in all the simulations were based on those reported by Hammerstein
et al.[5]

Fig. 1. Heterogeneously-layered breast (HLB) model. Each of the shaded areas corre-
sponds to a breast core layer with different glandular composition. The breast core is
wrapped in adipose tissue and skin layers.
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2.1 Calculation of Dose Conversion Coefficients

The calculation of the HLB based dose conversion coefficient (DgN−HLB) was
performed using :

DgN−HLB = k

Emax∑

E=Emin

[
E Φ(E)

Aent surf

mg

(
3∑

i=1

fi(E)Gi

)]
(1)

where the subindex i = 1, 2, 3 indicates each of the breast core layers, the con-
stant k corrects for unit conversions, E is the source energy, Φ(E) the spectrum
of photons/mm2 normalized to 1 R, Aent surf is the beam entrance plane sur-
face area at the top of the breast, mg is the mass of the glandular portion of
the breast tissue, fi(E) corresponds to the fractional energy absorption and Gi

corrects the normalized dose calculation to the glandular tissue component in
the breast core as calculated by:

Gi =
fg,i

(
μen

ρ

)

g,i

fg,i

(
μen

ρ

)

g,i
+ (1− fg,i)

(
μen

ρ

)

a,i

(2)

where fg,i refers to the fraction of glandular tissue with respect to the total
breast tissue, μen

ρ corresponds to the mass-energy absorption coefficients, and
the subscripts a and g indicate adipose tissue and glandular tissue respectively.
The dose conversion coefficient based on the homogeneous breast core geometry
(DgN ) corresponds to the particular case of the HLB geometry where all the
breast core layers have the same glandular composition.

2.2 Impact of Glandular Tissue Distribution Using the HLB Model

The effect of the glandular tissue distribution on the MGD was studied using a set
of HLB models and their corresponding homogeneous model. The set of Monte
Carlo HLB models used in this study had an average glandular composition of
25%. This value is in agreement with the mean glandular compositions found
by Yaffe et al.[13] The percentage glandular composition of the individual core
layers was varied to simulate four different glandular tissue configurations as
shown in Table 1.

2.3 Patient-Oriented Use of HLB Model

The main obstacle to incorporating the glandular tissue distribution in the cal-
culation of MGD is the lack of three dimensional tissue distribution information
from conventional mammography images.[9] The solution proposed in this work
makes use of the information provided by the mammography images through
their breast density map.[6,7] This method has the advantage that it provides
an approximation to the actual glandular tissue distribution within the breast
using conventional mammography images.
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Table 1. Heterogeneous glandular tissue distributions for HLB model

Configuration Percentage glandular composition (%)
ID Layer I∗ Layer II Layer III

A 30 35 10
B 35 30 10
C 10 35 30
D 10 30 35

∗Layer I is the breast core layer closest to the beam entrance surface.

The current version of the MIB algorithm divides the breast density map into
three sections and calculates the amount of glandular tissue in each section of
the projected breast. The MIB algorithm also segments out of the density map
any chest-wall structures, such as the pectoral muscle.

Because the breast density map provides the glandular tissue information in
the direction perpendicular to the plane of the image receptor, the density map
for a mediolateral oblique (MLO) view approximates the glandular tissue distri-
bution in the plane parallel to the image receptor plane for the corresponding
craniocaudal (CC) image, and viceversa. An underlying assumption of this ap-
proach is that, while the breast compression may change the position of the
individual breast elements, the overall glandular composition remains the same.

The resulting approximation to the actual glandular tissue distribution, can
then be incorporated into the calculation of patient-oriented MGD using the
corresponding HLB Monte Carlo model.

Breast density maps were generated from patient mammograms using the spe-
cialized software VolparaTM (Matakina Technology, Wellington, New Zealand).
The MIB method was used to determine their corresponding glandular tissue
distributions. The resulting HLB geometries were used in the determination of
the patient-oriented dose coefficients DgN−HLB using Monte Carlo methods. In
addition, the corresponding homogeneous core model was developed for each
patient and the DgN coefficient was determined for each case. The spectrum
used in this comparison had a Rh anode, 25 μm thick Rh filter, and 28 keV
with 0.40 mmAl HVL. The characteristics of the patient group and the patient-
oriented HLB models are shown in Table 2.

3 Results and Discussion

3.1 Impact of Glandular Tissue Distribution Using the HLB Model

The differences found in this study were 24% lower to 48% higher than the
value estimated using the homogeneous breast model. According to the current
dosimetry methods, all the models in this set would have been considered to
be equivalent to the 25% homogeneous model. This means that, despite the
anatomical differences, the MGD would have been estimated as the same in all
these cases. The full results of this study are shown in Fig. 2.
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3.2 Patient-Oriented Use of HLB Model

The DgN−HLB values obtained from the patient-based HLB models were com-
pared to the DgN from the corresponding homogeneous models. The largest
variation in the coefficient was found for a heterogeneously dense breast, where
the DgN−HLB was 14.8% higher than what was expected from the homogeneous
glandular tissue distribution approximation. The complete results of this patient
study are shown in Table 2.

These results suggest that the anatomical differences in patients have an effect
on the dose conversion coefficients, and consequently on the value of MGD. The
magnitude of this effect is dependent on the distribution of the glandular tissue
within the breast of the patient and is expected to increase for thicker and more
heterogeneously dense breasts.

Table 2. Comparison of DgN−HLB from patient-oriented HLB models to the DgN

from their corresponding homogeneous breast core models

Glandular composition

Case ID

Compressed
breast

thickness
(cm)

Whole
breast (%)

Layer I
(%)

Layer II
(%)

Layer III
(%)

DgN vs.
DgN−HLB

1a 5.8 2.6 2.4 2.9 2.5 -2.2%
1b 8.1 5.4 3.7 7.2 4.7 39.4%∗∗

1c 5.2 3.7 4.3 4.0 2.8 6.4%
1d 8.0 3.7 6.8 3.3 0.9 39.0%∗∗

2a 5.1 5.4 3.7 7.2 4.7 -9.1%
2b 5.2 5.6 7.1 7.0 2.6 13.8%
2c 4.8 6.7 4.0 8.1 7.4 -14.3%
2d 5.1 6.7 6.3 8.3 5.6 0.7%
3a 4.6 12.0 15.6 14.0 5.0 10.6%
3b 4.6 12.6 12.1 15.4 10.3 1.3%
3c 4.9 11.3 11.8 14.6 6.8 4.1%
3d 5.0 11.7 17.6 10.5 7.0 14.8%
4a 3.7 22.9 20.6 29.7 15.8 -1.3%
4b 4.3 23.9 16.4 32.1 23.3 -6.1%
4c 4.3 27.0 26.5 32.9 19.7 0.9%
4d 4.3 27.1 24.0 34.0 23.4 -1.0 %

a: MLO, left breast ; b: CC, left breast ; c: MLO, right breast ; d: CC, right breast
∗∗The higher variations found for cases 1b and 1d can be explained due to the
inclusion of additional anatomical structures that cannot be segmented out of the
MLO images.

4 Conclusions

Our results suggest that the use of the homogeneous approximation to the distri-
bution of glandular tissue leads to potentially large inaccuracies in the estimation
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of the MGD. The use of a breast geometry that can simulate different glandular
tissue distributions, such as the HLB model, could reduce the uncertainty in
the calculation of the dose conversion coefficients used for clinical dose studies.
The magnitude of the uncertainty reduction depends on the particular anatomy
studied, with a larger impact expected for thick, heterogeneously dense breasts.

Acknowledgments. The authors are grateful to Vikram Adhikarla, Paulina
Galavis and Ivan M. Rosado-Méndez for their contributions in this study.
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Abstract. Mammographic tissue structure has been shown to exhibit
directionality, with a preferred orientation towards the nipple. However,
this property is absent in the small-scale tissue model of current breast
phantoms. To improve existing breast phantoms, a model for simulating
oriented breast tissue has been developed, and has been included into an
existing anthropomorphic breast phantom. Within this model, direction-
ality was introduced by filling compartments with binarized power-law
noise that was oriented towards the nipple. Mammograms were simulated
based on the original and the new directional phantom. Tissue orientation
was measured in the simulated mammogram. Visually, the appearance of
the enhanced phantom was more realistic. Further, the distribution of the
orientation measure computed from the enhanced phantom was more sim-
ilar to that in actual mammograms. In conclusion, the use of a directional
model to simulate fibroglandular tissue greatly improves the realism of the
breast phantom.

Keywords: antropomorphic breast phantom, power-law noise.

1 Introduction

X-ray breast imaging is moving toward 3D. Breast tomosynthesis and computed
tomography clinical research prototypes have been developed, and, to date, a first
tomosynthesis unit has received FDA approval for use in breast cancer screening
and diagnosis. However, system optimization, both in terms of data acquisition
and reconstruction, still needs to be performed. Since cancer detection and diag-
nosis are primarily limited by the complex anatomic structure of fibroglandular
tissue in the breast, system optimization requires a realistic, anthropomorphic
phantom to ensure that the outcome of systems optimization translates to higher
quality images in clinical practice.

Several research groups have been developing statistically defined breast phan-
toms [2,1,4]. Our previous work in phantom development has produced a realistic-
looking anthropomorphic breast phantom (Fig. 1) [6]. However recent work
showed that breast structure is directional, and that it is oriented towards the
nipple [7]. The previous phantom lacked the directional property of actual breast
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Fig. 1. Parallel projection of the original phantom, filled with isotropic power-law noise
and compressed. Pixel size is 0.5 mm.

tissue. Thus the purpose of this work was to model directional breast structure,
and to include this new tissue model into the phantom.

2 Method

2.1 Phantom Generation

The breast was modeled in two stages. First, the gross breast anatomy such as
the overall breast shape and Cooper’s ligaments were generated using Bakic’s
algorithm [1]. However, in this work, no dense tissue region is generated so that
this base phantom only consists of skin, adipose tissue, and Cooper’s ligaments.
In the second stage, compartments bounded by Cooper’s ligaments were filled
with binarized power-law noise to mimic fibroglandular tissue. Previously, the
noise had an isotropic power-spectrum, which produces noise that lacks any
directionality [6]. The projection image of such a phantom is shown in Fig. 1. In
this work, directionality was introduced by generating power-law noise with an
ellipsoidal power spectrum P (f),

P (f) =
c′

(fTRTQ
−1

Rf)β′/2
(1)

where R is a matrices produced from three rotation matrices about the x and
z-axes, R = Rx(γ)Rz(δ)Rx(α), and α, δ, γ are Euler angles. The angles were
chosen such that the orientation of the noise field is towards the nipple. The
amount of directionality is determined by Q, a diagonal matrix with diagonal
elements qii = h, where each element of h is the half-axis ratio of a spheroid. In
this work, power spectra had a prolate symmetry.

The directional power-law noise volume was generated through an inverse
Fourier transform of a complex volume with magnitude given by

√
P (f ) and a

random phase.

2.2 Phantom Ensemble Parameters

For quantitative evaluation of the new phantom, 60 phantoms were generated
from 20 empty shells. Each shell contained 150 compartments, of which 50 were
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filled with binarized power-law noise. The glandular fraction of each filled com-
partment was sampled from a uniform distribution bounded by 0.05 and 0.3.
The amount of directionality was randomized by sampling the ellipsoid axis-
ratio from 1/f(a, b) where f is a beta distribution with a = 5, b = 5. A cut-off
value was introduced to limit the axis-ratio to 4.0 or less.

Using the same 20 empty shells and random number generator seeds, another
set of 60 phantoms was generated where compartments were filled with isotropic
(i.e., non-directional) binarized power-law noise.

These phantoms were compressed, upsampled and parallel-projected to pro-
duce simulated mammograms with 100μm × 100μm pixel size. Blur and noise
were added to the projections using a method originally proposed by Saunders
et al. [8]. The modulation transform function (MTF) and noise-power spectrum
(NPS) were those of a GE Essential mammography unit [5,6].

2.3 Quantitative Analysis

Power-law analysis was performed as described in [7]. Briefly, square regions-of-
interest (ROI) were extracted from the uniform thickness region of the simulated
mammograms and the periodogram was computed as the squared magitude of
the Fourier transform. A Hann window was used to prevent spectral leakage. The
spatial-frequency (f) dependence of the periodogram was assumed to follow a
power-law, P (f) = c/fβ . Power-law parameters β and log(c) were estimated
from the periodogram assuming elliptic symmetry, and ellipse axis ratio and
orientation angle were estimated as well. This analysis is described in detail in
Ref. [7].

3 Results

Figure 2 shows slices through the directional phantom with h = [4, 1, 1]. All
breast structure is oriented towards the nipple, located at (x = 150, y = 150, z =
150). A parallel projection of this phantom, after it has been compressed, is
shown in Fig. 3. Note that the coordinates of the nipple changed due to the
compression. The orientation of the breast structure can be clearly observed in
the slices through the volume, as well as in the parallel projection.

The effect of the strength of the directionality, h, is shown in Fig. 4. The
orientation can still be observed, but the directionality is weaker than in the
phantom shown in Fig. 3.

Figure 5 shows regions of interested extracted from behind the nipple (top row),
or from the upper quadrant of the breast (bottom row). With respect to Figs. 1,
3, 4, the ROI centers were located at (x = 80, y = 190) and (x = 80, y = 310),
respectively. The texture in the ROIs from the original phantom is similar. In the
ROIs extracted from phantoms with directionality, there is a distinct difference in
the texture orientation in both ROIs, and the ROI location within the breast can
be inferred from the preferred direction of the simulated tissue.

Figure 6 shows the power-law parameters β and log(c) for the ensemble of
phantoms. For the isotropic and directional phantom, (< β >, σβ) = (-3.36,
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Fig. 2. Slices through the uncompressed phantom volume. For this phantom, h =
[4, 1, 1]. Voxel size is 0.5mm isotropic.
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Fig. 3. Parallel projection of the compressed directional phantom. For this phantom,
h = [4, 1, 1]. Pixel size is 0.5mm.
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Fig. 4. Parallel projection of the directional phantom with h = [2.1, 1, 1]. Pixel size is
0.5mm.
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Fig. 5. Top row: ROIs extracted behind the nipple (centered on x=80, y=190 in Figs. 1,
3,4). Bottom row: ROIs extracted from the upper quadrant of the breast (centered
x=80, y=310 in Figs. 1, 3,4). Left column: Original phantom, filled with isotropic
power-law noise. Center column: Phantom with directional power-law noise (h =
[2.1, 1, 1]). Right column: Phantom with directional power-law noise (h = [4, 1, 1]).
ROI size is 6cm × 6cm.
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Fig. 6. Power-law parameters β and log(c), estimated from 256×256 pixel ROIs
(2.56cm×2.56cm). Elliptic periodogram symmetry was assumed.

0.38) and (< log(c) >, σlog(c)) = (-3.38, 0.39), while for the directional phantom,
(< β >, σβ) = (-3.29, 0.38) and (< log(c) >, σlog(c)) = (-3.4, 0.39). This is similar
to what is observed in clinical mammograms [7,3]. The correlation between β and
log(c) for the isotropic and directional phantom was 0.77 and 0.91, respectively.
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Fig. 7. Histograms of axis ratios and orientation angles. Orientation angles were in-
cluded in the histogram for ROIs with an axis ratio greater than 1.2 only.
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Figure 7 shows histograms of axis ratios and orientation angles for ROIs ex-
tracted from the simulated mammograms, for different ROI sizes (1282, 2562,
3842). The histogram of orientation angles includes only ROIs for which the axis
ratio in the periodogram was greater than 1.2 only, since an axis ratio of less
than 1.2 corresponds to a periodogram that is essentially spherically symmetric.
The average axis ratio decreases with decreasing ROI size, indicating that the
directionality occurs on a small scale, and becomes less prominent on a larger
scale. For all ROI sizes, the distribution of tissue structure orientation angles is
more uniform for the isotropic phantom than it is for the directional phantom.

Table 1 lists the distribution parameters of the orientation angle for both
phantoms. The average orientation angle is about 20 deg for the directional
phantoms, indicating that on average, the tissue structure is pointing towards
the nipple. For the istropic phantoms, average orientation angle is smaller. Thus,
the average orientation for the directional phantom is more similar to what was
observed for actual mammograms [7].

However the width of the angular distribution is wider for the simulated mam-
mograms, compared to what was found for actual mammograms, and in addition,
no ROI-size dependence of the axis ratio was observed in clinical images [7].

Table 1. Distribution parameters of the orientation angle θ for mammograms simu-
lated from isotropic and directional phantoms

ROIsize < θ > (iso) σθ (iso) < θ > (dir) σθ (dir)

128 3.17 51.15 14.4 44.3

256 9.05 49.5 20.6 37.1

384 10.54 47.8 26.4 29.4

4 Discussion

The use of a directional fibroglandular tissue model visually improves the real-
ism of the breast phantom. Quantitative comparison of power-law parameters
indicate that the directional phantom produces some features observed in real
mammograms, such as a preferred orientation towards the nipple, which is not
observed in isotropic phantoms. On the other hand, the width of the distribution
of orientation angles is larger than what is observed in real mammograms, and
the amount of directionality, as measured by the axis ratio, depends on the size
of ROIs that were analyzed. This may be due to the filling of individual com-
partments. In an actual breast, a given directionality may prevail throughout
the entire breast without being disrupted at compartment borders.

5 Conclusion

A phantom with a directional tissue model has been developed, which mimics the
orientation of small-scale tissue structure in clinical mammograms more closely.
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Power-law parameters of this new phantom are similar to those in phantoms
without directionality, and similar to what is observed in clinical images.

This phantom may be well suited for systems optimization in 3D breast imag-
ing. Future research will include phantom validation through observer studies.
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Abstract. A general case for simulation of partial volume (PV) averaging in 
software breast phantoms is presented.  PV simulation could improve the quali-
ty of phantom images by reducing quantization artifacts near borders between 
different materials. The validity of phantom studies depends on the realism of 
simulated images, which is affected by the size of phantom voxels.  Large vox-
els may cause notable quantization artifacts; small voxels, however, extend the 
generation time and increase the memory requirements.  An improvement in 
image quality without reducing voxel size is achievable by the simulation of PV 
averaging in voxels containing more than one simulated tissue type; the linear 
x-ray attenuation coefficient of such voxels is represented by a combination of 
attenuation coefficients proportional to voxel subvolumes occupied by different 
tissues. In this paper, we present results of simulated PV in the general case of 
voxels containing up to three materials.   

Keywords: Digital mammography, computer breast phantom, partial volume 
simulation, computational geometry.  

1 Introduction 

This study is motivated by the desire to improve the quality of synthetic images gen-
erated using software breast phantoms.  The partial volume (PV) averaging can help 
reduce the quantization artifacts on boundaries of regions with different simulated 
materials. The software phantoms in this study have been generated based upon the 
recursive partitioning of the phantom volume using octrees [1]. In this paper, we pro-
pose a solution for a general PV case with up to three simulated materials in a voxel. 
This work represents the first PV simulation in software phantoms generated based 
upon the rules for simulating anatomical structures [1-4].  PV simulation has been 
indirectly reported in a method for generating phantoms based upon the CT images of 
mastectomy specimen [5].  In that method, the values of each reconstructed breast CT 
image voxel were scaled and interpreted as the percentage of adipose breast tissue in 
the voxel.   
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In this paper, we present an overview of the PV simulation method including de-
tails of a planar approximation and the PV computation.  The improvement of image 
quality is qualitatively validated.  The results are shown in the form of slices and si-
mulated X-ray projections of phantoms with and without PV. 

2 Method 

The effective linear x-ray attenuation in a voxel which contains more than one simu-
lated material can be calculated as: 

 
ii iii iV pV

V  == μμμ 1 ; %100×=
V

V
p i

i
, (1) 

where |V| is the voxel volume, |Vi| is the subvolume of material i with the linear x-ray 
attenuation μi, and pi is the percentage of the material i in the voxel (Fig. 1a). One can 
distinguish the following cases of PV (Fig 1b):  

A. Two materials with one bounding surface:  (1) Skin and air; (2) Cooper’s li-
gament and adipose tissue; (3) Ligament and fibroglandular dense tissue; (4) 
Skin and dense tissue; (5) Skin and adipose tissue, and (6) Skin and Cooper’s 
ligament;  

B. Three materials with two bounding surfaces: (7) Skin, ligament, and dense 
tissue; and (8) Skin, ligament, and adipose tissue 

 

 
           (a)          (b)  

Fig. 1. (a) The concept of PV simulation; V denotes the voxel volume and Vi is the sub-volume 
occupied by dense tissue.(b) Different cases of material combination in a voxel.  
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The PV Vi in a voxel shown in Fig. 3 has been computed using planar approxima-
tions as follows.  Consider a voxel of linear size Δx, with a vertex v located above 
planes π1 and π2.  (If no such vertex exists, the PV should be zero).   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3. A voxel containing skin, Cooper’s ligament and fat tissue and planar approximations π1 

and π2 of the tissue boundaries 

The divergence (or Gauss-Ostrogradsky) theorem [7] is employed to compute the 
partial volume |Vi| of the voxel above planes π1 and π2, where the volume Vi is 
bounded by planes π1 and π2 and at most 6 sides of the voxel. The divergence theorem 
can be described as the following integral equation: 

 dSFdVF
iV S  ⋅=⋅∇ )()( n . (4) 

The left side is a volume integral over the partial volume Vi of voxel, the right side is 
the surface integral over the boundary of the volume Vi, and n is the outward pointing 
unit normal vector of the boundary. 

After the appropriate choice of the vector field function inside the integral at left 
side, i.e., F(x) = x, the whole quantity at the left side becomes 3|Vi|, and the right side 
can be rewritten as: 

 ( )1 2 3 1 1 2 2S S S x A d A dπ π+ + Δ + + ,  (5) 

where Si, i=1,3 are surface areas of the boundary formed by the voxel sides σ1 ,σ2 and 
σ3, that do not contain the vertex v;  Aπ1 and Aπ2 are surface areas of the boundary of 
Vi belonging to planes π1 and π2.   
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Subsequently, the PV can be calculated as: 

 
3

)( 2211321 dAdAxSSS
Vi

ππ ++Δ++= , (6) 

where 
111 ˆ)( nxv −=d , and 

222 ˆ)( nxv −=d  are distances of the vertex v to planes π1 

and π2. 

 

Fig. 4. Partial volume Vi of the voxel V above planes π1 and π2 and containing vertex v. S1, S2 

and S3(here S3=0) are surface areas of parts of the volume boundary belonging to voxel sides 
σ1, σ2 and σ3 that do not contain the vertex v. 

3 Results and Discussion 

Fig. 5 illustrates the PV simulation in a 450ml software breast phantom with 400μm 
voxels. Shown is the segmentation of phantom detail into air and voxels containing 
one, two or three materials.  For the corresponding phantom detail, shown also are the 
equivalent linear x-ray attenuations, and percentages of ligament tissue and skin tissue. 

Fig. 5 suggests that the PV simulation on the ligaments-fat boundary was qualita-
tively correct. The voxels containing two materials are detected at the boundaries of 
two materials (e.g., skin, compartment).  Similarly, the three material voxels are de-
tected where the skin meets Cooper’s ligaments and a compartment.  Fig. 5b indicates 
that the PV helped smooth the appearance of boundaries between regions with differ-
ent x-ray attenuations.  The computed percentages of ligament and skin tissues in a 
voxel (Figs. 5c, 5d) suggest the correctness of the applied algorithm.  The voxels in 
the interior of skin/ligaments contain 100% of the corresponding tissues, while the 
percentages gradually decrease at the boundaries.   
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Fig. 5.  Detail of a 450ml phantom with 400μm voxel size:  (a) Segmentation of a phantom into 
air and voxels containing one (light gray), two (dark gray) or three (black) materials; (b) Simu-
lated linear attenuation coefficients of voxels in (a) (in cm-1, assuming monoenergetic x-ray 
beam at 20 keV); and percentage of (c) ligament tissue and (d) skin tissue in voxels from (a).   

Fig. 6 shows simulated x-ray projections of phantoms with and without simulated 
PV.  The simulated acquisition assumed a monoenergetic x-ray beam (at 20 keV) and 
parallel x-ray propagation, without scatter or quantum noise.  The projections corres-
pond to three phantoms with identical distributions of compartments: the phantom 
with 400μm voxels and no PV (Fig. 6a); the 400μm phantom with simulated PV (Fig. 
6b); and the phantom with 200μm voxels and no PV (Fig. 6c).  Shown also is the 
difference between the projections with and without simulated PV (Fig. 6d). 

In a projection of the phantom with PV in Fig. 6b, the skin and Cooper’s ligaments 
appear thinner (as compared to the phantom without PV, Fig. 6a).  We believe this is 
caused by the reduction in the effective x-ray attenuations of voxels on the liga-
ment/adipose tissue boundaries, which are lower than the x-ray attenuation of dense 
tissue (see Fig. 5b).  Further, the characteristic stair-step quantization artifacts on 
tissue boundaries were noticeably reduced with simulated PV, as seen in the differ-
ence between PV and non PV projections (Fig 6d).  Comparison of Figs. 6b and 6c 
indicates similar appearance of a phantom with PV simulated at a lower resolution 
(400μm) to a phantom simulated at a higher resolution (200μm) with no simulated 
PV.  Hence, the application of PV may lead to an improvement in image quality with-
out reducing voxel size. 

a b c 

(a) 

(c) (d)

(b)
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 (a)          (b)      (c)             (d) 

Fig. 6. Simulated projections of (a) a phantom with 400μm voxels and no PV; (b) the phantom 
from (a) with simulated PV; and (c) the same phantom generated at 200 μm voxels and no PV. 
(d) The difference between (a) and (b); the image contrast was enhanced for display purposes. 

4 Conclusion 

We have developed and qualitatively assessed a method for PV simulation of phan-
tom voxels containing up to three simulated materials.  The percentage of simulated 
tissues was estimated based upon the use of the Gauss-Ostrogradsky theorem.  Cross-
section and projections of phantoms with and without PV simulation were visually 
compared.  PV simulation can improve the quality of phantom images by reducing the 
quantization artifacts caused by large voxel sizes.   
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Abstract. Increasing sensitivity by reducing the ring diameter of breast PET 
system may degrade image performance at field of view periphery. In this 
work, the authors present a framework for computing and incorporating an ac-
curate system model of breast PET utilizing GATE Monte Carlo simulation to 
compensate for this performance degradation. The system matrix (SM) genera-
tion count statistics was maximized by taking into account the geometric sym-
metry of the scanner. The SM was incorporated into MLEM reconstruction and 
compared with the Siddon ray-tracing algorithm to evaluate point source resolu-
tion and contrast recovery coefficient (CRC) of hot spheres at various radial  
locations. Both spatial resolution and CRC using SM based MLEM was ap-
proximately position invariant, whereas the CRC and spatial resolution with 
Siddon based MLEM was substantially lower for locations near the periphery of 
the FOV. The CRC vs noise tradeoff was markedly better with the SM based 
MLEM.  

Keywords: System matrix, MLEM Reconstruction, Breast PET. 

1 Introduction 

Over the past several years it has become clear that PET imaging with fluoro-
deoxyglucose (FDG) can play an important role in the detection and diagnosis of 
breast cancer. Many encouraging studies using whole-body PET systems to image 
breast cancer have been reported [1], however, it is now evident that smaller PET 
systems dedicated to imaging the breast have substantial advantages. A number of 
different dedicated breast PET systems have been proposed and developed [2-4]. To 
improve count statistics for dedicated breast PET, it is desirable to have high sensitivi-
ty. Improved sensitivity can also allow for reduced radiation dose to the patient, as 
well as minimizing acquisition time. Scanner designs that maximize geometric effi-
ciency by placing the PET detectors close to the breast are therefore appealing. In a 
ring PET geometry, this means using a small bore designed to have a diameter just 
larger than the maximum diameter breast size to be imaged. In addition to high sensi-
tivity, another desired goal of breast PET systems is high resolution, necessary for 
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accurate detection of sub-cm lesions. PET spatial resolution is degraded by various 
detector and radiotracer properties. 

In this work, we utilized GATE Monte Carlo simulation software for estimating 
system matrix (SM) to address these degradation factors in MLEM reconstruction. 
Symmetry of the ring PET geometry is taken advantage of by using polar voxels to 
represent the object to be reconstructed. This results in a block-circulant SM where 
only one block column needs to be stored in memory. In addition, since the SM is 
sparse, only non-zero values are stored. This SM is then used with an iterative MLEM 
algorithm using data stored in LOR histograms [5]. For efficient implementation, the 
projector and backprojector operations used a rotator to take advantage of the polar 
voxel object representation. 

2 Method 

2.1 System Modeling 

For this study, a hypothetical breast PET system is modeled, using a full ring geome-
try encompassing the breast with detector coverage of 360 degrees. The scanner is 
based on 12 detector modules with each module consisting of 32 x 96 LYSO crystals 
of size 2 x 2 x 20 mm. Therefore, there are 96 rings in the scanner, with a ring defined 
as one crystal in the axial direction. In this study, we consider 2D reconstruction, 
where the system matrix probabilities only describe lines-of-response (LOR) that fall 
within the same ring.  

By geometrically limiting the acceptable LORs to those that connect a crystal with-
in a module to its’ opposite seven modules based on maximal breast size of 18cm 
obtained from analyzing 23 patients breast CT images in our laboratory, there are 384 
x 224 = 86016 possible LORs (this geometric constraint would allow for complete 
coverage of a 16.6 diameter breast). One-half of these LORs are redundant; therefore 
there are 43008 possible non-redundant LORs.  If the 2D reconstruction matrix is 
defined as 200 x 200 with 1 mm voxels, then the SM will have 43008 x 200 x 200 = 
1.72 x 109 elements. By using a polar voxel representation of the object, the system 
matrix becomes block-circulant. This means that all elements of the SM can be ob-
tained from only one block column, thereby reducing storage by a factor of 12. This 
one block column represents the probabilities for LORs connecting one detector mod-
ule to its opposite seven modules.   

2.2 GATE Setup 

The Monte Carlo simulation software package GATE [6] has been widely used to 
simulate PET acquisition. It can track photon interactions both through the object and 
within the detector including crystal penetration and scatter. In this work GATE has 
been used to estimate system matrix elements. The system matrix elements represent  
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the probability of an emission at object voxel j being detected by a specific detector 
pair (LOR) i. These probabilities model the physics of photon transport within the 
detector, but not object interactions such as photon attenuation and scatter in the ob-
ject. To compute the SM probability, a cylindrical activity source in air, (diameter of 
18 cm - large enough to cover all possible expected object locations) is simulated 
using the above mentioned breast PET model.  GATE allows objects to be simulated 
in air by using the option of back-to-back photon emission (i.e., without actually 
modeling positron emission). Thus positron range is not modeled in the system ma-
trix. 

2.3 Calculation Efficiency 

As mentioned previously, probabilities for 1.72 x 109 elements in the SM need to be 
calculated for complete coverage of a 16.6 cm PET FOV. However, most of these 
probabilities are zero, thereby making the system matrix highly sparse. In other 
words, for each emission point in the object only a relatively small number of LORs 
can be feasibly measured.  To utilize the sparseness of the SM, and thereby reduce 
computational burden and storage space, a linked-list LOR data structure was used. 
This data structure stores probabilities for only non-zero SM elements. Utilizing this 
linked list data format allowed for reducing the storage space by more than 99% 
(from 1.72 x 109 to 1.42 x 107). To further reduce storage space, a polar voxel basis 
function is utilized to represent the object (Fig. 1), thereby causing system matrix to 
be block-circulant. This means that there is substantial redundancy in the system ma-
trix, and only elements describing the LOR probabilities from one module need to be 
computed and stored (these probabilities make up one block column of the system 
matrix). 

2.4 Estimating Probabilities for the System Matrix 

In forming the system matrix, simulated events producing LORs in a single module 
(module 0) were obtained by rotating the simulated LORs measured in other modules 
in such a way that one end of the LOR always resided in module 0 (Fig. 2). Upon 
completion of assigning all LORs in the event list, the SM probabilities represented 
the probability for a photon emitted from voxel j and detected at LOR i in module 0 
(post-rotation). However, the desired SM element values were the probability of a 
photon emitted from voxel j and detected at LOR i in any module (not just module 0), 
i.e. before rotating all LORs to module 0 (pre-rotation).  Thus an adjustment was 
implemented by using the following expression, ݌ሺ݅, ݆ሻ ൌ ݐݏ݋݌ ݆ ݈݁ݔ݋ݒ ݉݋ݎ݂ ݅ ܴܱܮ ݊݅ ݀݁ݐܿ݁ݐ݁݀ ݏݐ݊ݑ݋ܥ െ ݐݏ݋݌ ݆ ݈݁ݔ݋ݒ ݉݋ݎ݂ ݀݁ݐݐ݅݉݁ ݏݐ݊ݑ݋ܥ݊݋݅ݐܽݐ݋ݎ െ ݊݋݅ݐܽݐ݋ݎ  ൈ ݁ݎ݌ ݆ ݈݁ݔ݋ݒ ݉݋ݎ݂ 0 ݈݁ݑ݀݋ܯ ݋ݐ ݏݐ݊ݑ݋ܥ  െ ݁ݎ݌ ݆ ݈݁ݔ݋ݒ ݉݋ݎ݂ ݏݐ݊ݑ݋ܿ ݈ܽݐ݋ܶ݊݋݅ݐܽݐ݋ݎ െ ݊݋݅ݐܽݐ݋ݎ  

(1) 



160 K. Saha, K.J. Straus, and S.J. Glick 

 

 

Fig. 1. The polar voxel comprises of concentric rings of equal radial dimension with each of the 
ring divided into number of angular subsectors corresponding to scalar multiple of number of 
crystals in transaxial orientation. The number of angular subsectors increases as concentric 
rings is farther away from center. 

 

Fig. 2. LORs originating at modules other than ‘0’ (example LOR 1 in figure) are rotated to 
module 0 (new LOR 1’) utilizing rotational symmetry of the cylindrical scanner to improve 
statistics. LORs originally from module 0 (LOR 2) are not rotated. 

2.5 Reconstruction Method 

Reconstruction is performed using the MLEM algorithm. The measured data were 
binned into LOR histogram format prior to implementing reconstruction, where any 
LOR bins with zero events were not stored. The back projection matrix is calculated 
once for a unique LOR voxel pair instead of multiple times for each LOR voxel pair 
thus reducing computational burden by reducing the number of times the forward 
projection matrix is required to be calculated for a LOR.  

௝௠ାଵߣ  ൌ ఒೕ೘∑ ௣೔ೕ಺೔సభ ∑ ௜ೖᇲ௝݌ ௡ೖᇲ∑ ௣೔ೖᇲ್ఒ೘್಻ᇲ್సభேᇲ௞ᇲୀଵ   ,               (2) 
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where m is the iteration number, λ୨୫is the intensity in voxel j at iteration m, p୧୨ is p (de-
tected in LOR i | emitted in voxel j), N′ is the number of distinct LORs, J′is the total 
number of voxels lying in LOR i୩′, n୩′  is the number of events detected in LOR ݅௞′. 
2.6 Performance Evaluation 

To evaluate the tomographic spatial resolution performance of reconstruction algo-
rithms at various locations in reconstruction space (Fig. 3, left), a comparison of the 
resolution of reconstructed point sources at various FOV locations was performed for 
SM based reconstruction and Siddon line-integral based reconstruction [7]. Point 
sources were simulated at radial offsets of 0, 15, 25, 35, 45, 55 and 65 mm from the 
center in both the x and y directions (Fig. 3, left). Resolution of point sources were 
estimated by fitting the 2D count profile in a region surrounding the point source (10 
mm×10 mm ROI with point source at the center) by a 2D Gaussian to obtain the 
FWHMs of the Gaussian fit. 

In order to evaluate the contrast performance of spheres located in various loca-
tions as a function of noise, contrast recovery of spheres was compared with respect 
to background noise at various radial locations. Signal to background activity concen-
tration was 8:1 and a 1 minute acquisition was simulated. Three spheres of 8 mm 
diameter located at 2, 4 and 6 cm from the center of the PET FOV are included for 
analysis (Fig. 3, right). In order to estimate signal counts, a region of interest (ROI) 
was drawn over the sphere. For the background, a ROI of same size was drawn di-
agonally opposite to the sphere (Fig. 3, right). The contrast recovery coefficient 
(CRC) and noise were estimated based on equations 3 and 4. Quantitative comparison 
of CRC as a function of noise was performed for SM based and Siddon line-integral 
based MLEM reconstruction at 10, 20, 30, 40, 60, 80 iterations. 

ሺ%ሻܥܴܥ  ൌ  ௌ஻ ൈ 100 ,                            (3) 

ሺ%ሻ݁ݏ݅݋ܰ  ൌ  ఙಳ஻ ൈ 100 ,                           (4) 

where S represents the mean counts in a sphere, B represents the mean counts in the 
background and  ߪ஻ is the standard deviation of background counts. 

 

Fig. 3. Left: Point source locations for resolution phantom, Right: Modeled sphere and back-
ground locations and dimension for contrast evaluation 
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3 Results 

3.1 Resolution Performance 

The tomographic resolution of point sources as a function of x-axis and y-axis loca-
tions are shown in Fig. 4, left and right respectively. The figure illustrates overall 
improved resolution by the SM based MLEM method as compared to the Siddon [7] 
line-integral approach due to better modeling of detector response at the FOV peri-
phery. Improvement in resolution increased as a function of distance offset from the 
center of the FOV with the smallest improvement at 15 mm (1.5 times) and the largest 
improvement at 65 mm (3 times) from center. 

 
Fig. 4. Comparison of resolution of point source as function of location offset from FOV center 
for x-axis (left) and Y-axis (right) locations 

 

Fig. 5. CRC vs. noise for spheres at various locations from center of PET FOV (given in le-
gend) from Siddon line-integral based MLEM and system matrix based MLEM reconstruction 
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3.2 Contrast Performance 

For SM based MLEM reconstruction, the CRC of hot spheres (8:1) is independent of 
location (from the center of FOV) while location has a strong impact on CRC values 
for sphere reconstruction obtained with Siddon’s line-integral technique (Fig. 5). The 
CRC value improved by a factor of 2 and 1.3 for spheres located at 4cm and 6cm 
respectively from the center for SM based MLEM compared to Siddon line-integral 
based MLEM. CRC values were similar from both techniques for sphere near to the 
center. Moreover, the SM based technique demonstrates reduced noise level com-
pared to Siddon based MLEM reconstruction (Fig. 5) due to more accurate modeling 
of the detector physics. 

4 Discussion 

A novel technique for estimating the system transfer matrix using Monte Carlo simu-
lation software that allows for modeling of photon interaction within the detector in 
MLEM reconstruction, unlike Siddon ray-tracing technique which estimates SM 
based on simple ray-tracing in image space, is presented. The technique improves 
various parameters of image quality such as resolution, contrast and noise as com-
pared to that obtained using MLEM with Siddon ray tracing to model the system  
matrix. 

The main advantage of utilizing SM based reconstruction was increased resolution 
by reducing noise particularly in FOV periphery. A similar reduction of noise in the 
sphere contrast estimate was previously observed with SM based reconstruction tech-
niques [8]. One reason for the reduced noise may be due to accurate modeling of the 
detector response producing reduced mis-positioning of counts in reconstruction 
space. Reduced noise may allow for reduced dose to the patient. 

5 Conclusions 

Quantitative and qualitative evaluation illustrated the improved contrast and resolu-
tion performance of SM based MLEM reconstruction compared to Siddon line-
integral based MLEM reconstruction. The technique promises to reduce reconstruc-
tion distortion at FOV periphery for smaller bore PET systems by improved modeling 
of the PET system response. 

References 

1. Champion, L., Brain, E., Giraudet, A.L., Le Stanc, E., Wartski, M., Edeline, V., Madar, O., 
Bellet, D., Pecking, A., Alberini, J.L.: Breast cancer recurrence diagnosis suspected on tu-
mor marker rising: value of whole-body 18FDG-PET/CT imaging and impact on patient 
management. Cancer 117(8), 1621–1629 (2011) 

2. Murthy, K., Aznar, M., Thompson, C.J., Loutfi, A., Lisbone, R., Gagnon, J.H.: Results of 
preliminary clinical trials of the positron emission mammography system PEM-I: a dedicat-
ed breast imaging system producing glucose metabolic images using FDG. J. Nucl. 
Med. 41, 1851–1858 (2000) 



164 K. Saha, K.J. Straus, and S.J. Glick 

 

3. Zhang, Y., Ramirez, R., Li, H., Liu, S., An, S., Wang, C., Baghaei, H., Wong, W.H.: The 
system design, engineering architecture and preliminary results of a lower-cost high-
sensitivity high-resolution Positron Emission Mammography Camera. In: IEEE NSS Conf. 
Rec., pp. M10–M138 (2008) 

4. Bowen, S.L., Wu, Y., Chaudhari, A.J.: Initial Characterization of a dedicated breast 
PET/CT scanner during human imaging. JNM 50, 1401–1408 (2009) 

5. Kadrmas, D.J.: LOR-OSEM: statistical PET reconstruction from raw line-of-response his-
tograms. Phys. Med. Biol. 49, 4731–4744 (2004) 

6. Staelens, S., Strul, D., Santin, G., Vandenberghe, S., Koole, M., D’Asseler, Y., Lemahieu, 
I., Van de Walle, R.: Monte Carlo simulations of a scintillation camera using GATE: valida-
tion and application modelling. Phys. Med. Biol. 48, 3021–3042 (2003) 

7. Siddon, R.L.: Fast calculation of the exact radiological path for a three-dimensional CT ar-
ray. Med. Phys. 12(2), 252–256 (1985) 

8. Panin, V., Kehren, F., Michael, C., Casey, M.: Fully 3-D PET reconstruction using system 
matrix derived from point source measurements. IEEE Trans. Med. Imaging. 25, 907–921 
(2006) 
 



A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 165–172, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Comparison of Contact Spot Imaging on a Scanning 
Mammography System to Conventional Geometric 

Magnification Imaging 

Gillian Egan1, Elizabeth Keavey2, and Niall Phelan1 

1 Breastcheck, The National Cancer Screening Service,  
36 Eccles St., Dublin 7, Ireland 

2 Breastcheck, The National Cancer Screening Service,  
Newcastle Rd., Galway, Ireland 

{gillian.egan,elizabeth.keavey,niall.phelan}@breastcheck.ie 

Abstract. The performance of contact spot imaging on a scanning photon-
counting system was evaluated and compared to conventional geometric magni-
fication imaging for the assessment of screen-detected lesions.  Three digital 
mammography systems were compared in terms of image quality and dose; 
Philips MDM, Hologic Selenia, GE Essential.  Assessment imaging is per-
formed on the scanning system in contact mode by reducing the scan width in 
combination with increased radiation exposure.  Imaging optimisation was per-
formed prior to comparative evaluation as preliminary studies established that 
the current performance of conventional magnification imaging was poorly op-
timised. Each system was investigated in terms of its ability to image simulated 
masses and mircrocalcifications using breast-tissue equivalent phantoms.  Con-
trast-to-Noise Ratio and Average Glandular Dose were measured according to 
the EUREF guidelines and a Performance Index was formulated to facilitate 
comparison of the three systems.  The scanning system performed at least com-
parably to conventional geometric magnification and offers workflow advan-
tages. 

Keywords: Digital Mammography, Breast Imaging, Magnification, Photon-
Counting, Image Quality, Image Optimisation. 

1 Introduction 

Conventionally, assessment of screen-detected lesions has utilised geometric magnifi-
cation imaging. A magnification platform positions the breast closer to the x-ray 
source while the image receptor remains at a fixed distance. The inherent geometry of 
the scanning photon counting system renders this method of acquiring magnification 
views impossible. As a result users have been cautious to use the photon counting 
systems for assessment views. The purpose of this study was to investigate the effi-
cacy of the photon counting systems for further investigation of screen-detected le-
sions as compared to standard geometric magnification. 
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2 Method 

Three different Full Field Digital Mammography (FFDM) systems were examined in 
this study; Philips MDM (Philips, Solna, Sweden) employing a W anode and an Al 
filter; Hologic Selenia (Hologic Bedford, MA, USA) which uses a W anode and a Rh 
or Ag filter; GE Seno Essential (GE Medical Systems, Buc, France) utilising a choice 
of Mo or Rh target and filter. 

The study investigated the performance of each system in terms of dose and con-
trast for the detection of both masses and microcalcifications. CIRS (Norfolk, VA, 
USA) phantoms of breast equivalent material with a range of thickness and composi-
tion (glandular/adipose), 4cm (50/50), 5cm (30/70) and 6cm (20/80) were imaged. 
Each CIRS phantom contains a detail of 100% glandularity which was used to simu-
late a tumour mass. An Al square of 0.2mm thickness embedded in PMMA was used 
to simulate mircocalcifications as advocated by Zanca [1]. 

Conventional geometric magnification imaging is performed using a magnification 
table to position the breast closer to the x-ray source while the image receptor remains 
at a fixed distance. Table 1 below details the altered geometry for each magnification 
setup examined in this study.  Use of the small focal spot is necessary for geometric 
magnification.  In magnification geometry, an anti-scatter grid is not required since 
the increased air gap acts to reject scatter.  The irradiated volume of the breast is 
smaller in magnification imaging as the x-ray beam is collimated to the specific area 
of interest.  An area factor is applied to the Dance dose calculation to account for the 
fraction of the breast that is exposed [2].  For the Hologic and GE systems investi-
gated, magnification factor of 1.8 and focal spot size of 0.1mm were used. 

Table 1. Comparison of geometry in standard contact mode compared to MAG mode 

  Focus to Breast Distance [cm] 

 Philips Hologic GE 

 STD DS STD MAG STD MAG 

4cm Breast 60 60 60 35 59.5 33.8 

5cm Breast 59 59 59 34 58.5 32.8 

6cm Breast 58 58 58 33 57.5 31.8 

When using the Philips MDM in Diagnostic Scan (DS)  mode, the active image re-
ception area is reduced to approximately half width which provides coverage of the 
spot compression area and some additional coverage for the purpose of orientation.  
The collimator movement is limited corresponding to the reduced X-ray field, as seen 
in Figures 1 and 2 below.  Exposure parameters in Diagnostic Scan mode are deter-
mined from the breast thickness measured under compression.  The Diagnostic Scan 
function takes effect when the spot compression paddle is selected. This allows it to 
be used in the normal workflow for spot compression imaging without altering the 
modality setup.  Diagnostic Scan images are displayed with a preset zoom on the spot 
compression area. 
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     Fig. 1.   Diagnostic Scan Image Receptor Area                       Fig. 2. Limited Collimation  

Images of all phantoms were produced in manual mode using a range of peak tube 
voltages from 24kV to 36kV at intervals of 2kV.  The current time product (mAs) 
values were chosen in order to obtain a constant pixel value (PV) level in a reference 
zone of each image. This reference zone is labelled background in Figures 3 and 4.  

The Contrast to Noise Ratio (CNR) was calculated according to the method of the 
European guidelines for quality assurance in mammography screening (EUREF) [3].  
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Fig. 3. CIRS Phantom – tumour simulation 

 

Fig. 4. Al embedded in PMMA - microcalcifi-
cation simulation 
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For each exposure setting, half value layer (HVL) and entrance surface air kerma 
(ESAK) were measured and the corresponding Average Glandular Dose (AGD) was 
calculated according to the method of Dance [2]. 

Overall performance results were obtained by combining the image characteristics 
for different exposure factor choices with corresponding AGD results.  A Perform-
ance Index (PI) typically used for optimisation studies of digital systems was calcu-
lated for all imaging conditions examined. 

nCNR
PI

AGD
=                                                     (2) 

A value of n=2 is typically used for optimisation of screening mammography [4].   
Since this study concentrates on secondary diagnostic procedures, a value of n=4 was 
used to allow additional weight to the increased importance of image quality relative 
to dose for the follow-up assessment imaging of screen-detected lesions. This method 
was suggested previously by Koutalonis [5].  Increasing the value of the exponent (n) 
in Equation 2 amplifies the difference between the systems based predominantly on 
their imaging ability. 

Koutalonis has also recommended normalisation of the PI in order to better cross 
compare data between systems.  As a result of this normalisation, the PI should have a 
value of 1 for the ideal spectral imaging conditions. 

 
       

                           (3) 

where; 

highsys
norm CNR

CNR
CNR

_

=  ie. CNR normalised to maximum 

and; 

    
lowsys

norm AGD

AGD
AGD

_

=  ie. AGD normalised to minimum 

3 Results 

Optimum exposure factors (Opt) were determined for each system using the method 
described above and these were compared to the standard automatic exposure control 
(AEC) factors in terms of normalised PI.  The results of this comparison are shown in 
Figures 5 and 6, including 10% variation.  Where a PI increase of more than 10% was 
observed, the optimisation was judged to be successful. Where the PI increase was 
less than 10%, the system AEC was considered to be well optimised. 

norm

norm
n

norm AGD

CNR
PI =
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Fig. 5. Normalised PI for each system under AEC & using optimised factors for mass detection 
(bars indicate 10% variation) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 5 6

Breast Thickness [cm]

PI
_n

or
m

 (n
=4

)

Philips AEC Philips Opt Hologic AEC Hologic Opt GE AEC GE Opt

 
Fig. 6. Normalised PI for each system under AEC & using optimised factors for microcalcifica-
tion detection (bars indicate 10% variation) 

Once the optimum factors were determined for each system, for each breast type 
and for each detection task, the three systems were compared in terms of normalised 
PI. Where the system AEC yielded the best PI, these factors were then used for fur-
ther analysis.  These results are shown in Figures 7 and 8. 



170 G. Egan, E. Keavey, and N. Phelan 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 5 6

Breast Thickness [cm]

PI
_n

or
m

 (n
=4

)
Philips Hologic GE

 
Fig. 7. Normalised PI for all systems at each breast thickness for mass detection 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 5 6

Breast Thickness [cm]

PI
_n

or
m

 (n
=4

)

Philips Hologic GE

 
Fig. 8. Normalised PI for all systems at each breast thickness for μcalcification detection 

4 Discussion 

The results demonstrate that for the detection of masses, all systems in the study were 
well optimised with the exception of larger breasts on the GE system.  

For investigation of microcalcifications, there was improved detection through use 
of our suggested factors for all imaging conditions considered.  The benefits of our 
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optimisation scheme for imaging microcalcifications were most significant for smaller 
breasts on the Philips system and for larger breasts on the GE system. 

The optimum choice of factors for detection of masses was not the same as that for 
microcalcification detection. 

The Philips system was optimal for detection of a mass in a smaller breast, while 
the GE system was the optimal choice for detection of a mass in a larger breast. All 
systems performed comparably for mass detection in an average size breast. 

Regardless of breast size and composition, the Philips system performed optimally 
for microcalcification detection. It also offers inherent workflow advantages since 
modality setup was not altered for Diagnostic Scan views. All three systems demon-
strated comparable results for microcalcification detection at larger breast sizes. 

In the past it has been reported that geometric magnification mammography pro-
duced better spatial resolution and signal-to-noise ratio performance than contact 
mammography [6-9]. As a result, users have been reluctant to select the Philips sys-
tem as it does not utilise the traditional magnification geometry. However a study by 
Kim et al. in 2010 illustrated that using zoom could yield similar radiologist results in 
the diagnosis of micorcalcifications as compared to those from geometric magnifica-
tion images [10]. The conclusions of our study have validated the effectiveness of the 
Philips system for magnification mammography. 

Previous work by Koutalonis [5], based on a Monte Carlo study of CNR and AGD 
in magnification mammography, outlined a simulation method for optimisation of 
magnification setup and comparison of same. We have applied a similar method in 
this experimental scenario.  

In our screening programme, women are randomly assigned to a mammography 
machine at time of imaging - there is no preferential selection by system type. Follow-
ing the practical application of the Koutalonis method, we have derived a set of guide-
lines for users, to recommend the best choice of system for further imaging, based on 
breast size and individual symptoms. Our results suggest that some selection prefer-
ence may be advantageous for the acquisition of magnification mammographic views 
at assessment.  

This study has also demonstrated that some systems might benefit from an alterna-
tive AEC setup in line with the optimal factors proposed here.  However, it is noted 
that because the same factors are not optimum for the detection of masses and calcifi-
cations, a decision would have to be made allowing the AEC setup to favour detection 
criteria for the imaging task.  We suggest that the AEC setup be amended to favour 
calcification detection since this is most typically the purpose of magnification views 
at assessment [6-9].   

This study has shown that the scanning system performs comparably or better than 
conventional geometric magnification for the detection of masses and mircrocalcifica-
tions, for the range of breast sizes and compositions examined in this study, with the 
exception of mass detection in the larger breast, where the GE conventional geometric 
magnification yields a superior result. 
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Abstract. Our aim is to compare two mammograms (left-right, temporal) in an 
unsupervised manner. To this end, we propose a novel region matching 
algorithm (RMA) for mammograms based upon the non-emergence and non-
enhancement of maxima and the causality principle of integral invariant scale 
space (in a limited sense). The algorithm has several advantages over 
commonly used methods for comparing segmented regions as shapes. First, it 
gives improved key-points alignment for optimal shape correspondence. 
Second, it identifies new growths and complete/partial occlusion in 
corresponding regions by dividing the segmented region into sub-regions based 
upon the extrema that persist over all scales. Third, the algorithm does not 
depend upon the spatial locations of mammographic features and eliminates the 
need for registration to identify salient changes over time. Finally, the algorithm 
is fast to compute and requires no human intervention.  

Keywords: CAD, breast cancer, temporal study, shape analysis, region 
matching, integral invariants. 

1 Background 

The analysis of two or more mammograms in order to detect anomalies by way of 
clinically significant changes is a key problem in digital mammography. However, 
even when the two mammograms are of the same patient, the breasts may vary in size 
and in the way in which they are imaged.  However, the internal structure is generally 
quite similar. Of the three pairwise comparisons most commonly made (L-R, CC-
MLO, temporal), we are initially most interested in the temporal study of 
mammograms, since it is not only important for the detection of cancers but is also 
used increasingly for post-treatment care. It provides a quantitative measure of how a 
certain region in the breast may have evolved over time. This paper addresses 
temporal comparison of mammograms by employing integral invariants, in particular 
exploiting its scale space, for local (sub-) region matching in segmented masses. The 
temporal mammograms in this study are first segmented, and then the resulting 
regions are matched by performing shape matching. Efforts previously been made to 
compare two shapes regionally, for example registration techniques [6, 7]. However 
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in most studies this phenomenon is dependent on the ‘shape space’ that requires a set 
of training data before we can do actual comparisons [5]. The best matching shapes 
are then divided into local /sub -regions and RMA is applied for local region 
matching.  

Temporal images are used by the radiologist to reduce the number of false 
positives and corresponding suspicious lesions over time and to detect possible 
masses. However, changes in the breast density, positioning, and the growth and 
development of lesions, together with the intrinsically projective nature of 
mammography, mean that establishing temporal correspondences remains a 
challenging task. Most published algorithms use rigid or non-rigid registration to 
compare images, and they typically yield a dense warp map, establishing 
correspondences for all pixels in the mammograms.  However, the appearance of a 
mammogram can change markedly with small changes in compression, with small 
changes in the imaging parameters, and any rotation of the breast prior to 
compression.  For example, such small changes can change the textural properties of 
stromal tissue.  Fortunately, most such changes are clinically irrelevant.  Rather, 
correspondences are only relevant for regions of interest, typically locally dense 
regions that may (or happily, may not) be lesions.  (We accept that this does not 
extend completely to architectural distortions; but they are a separate problem that 
requires a measure of (a) symmetry).  That case will be addressed subsequently. 

The temporal pairs mammograms that are used in this study were made available 
to us by Mātakina Technologies. We begin by applying a hierarchical algorithm based 
on iso-contours [1] to segment the breast into regions that are considered to be 
significant. The first reason for using this algorithm is that it is computationally very 
efficient, and indeed it can be the basis of a real time system, even without resorting 
to a GPU implementation. The algorithm segments the complete internal topography 
of the breast in a structured way that can subsequently be used to establish 
correspondences between mammograms. The shapes of the regions of interest are 
defined on iso-levels that give a notion of pattern and texture change in a limited 
sense. This is important because, in this study, image segmentation relies on the fact 
that pixels inside a suspected mass have different physiology than pixels in the other 
parts of the breast.  The algorithm has worked well on the dozens of mammograms 
we have processed to date.  An example of the segmentation of nested regions is 
shown in Figure 3 while the initial alignment of those regions is demonstrated in 
Figure 2.  

We refer to each of the regions segmented in this way as a shape. Mathematically, 
a shape is considered to be a single closed contour that describes a solitary entity. To 
compare two shapes that are slightly different from each other and which may be 
rotated relative to each other, it is important to align them irrespective of their size 
and location. The algorithm that we have developed does this by using multi-scale 
integral invariants to describe them, as described in [4] and to align the two shapes 
before supplementary correspondences are established. Depending upon the sizes of 
the two shapes, it select various integration kernel scales for different regions 
segmented within a breast, thus keeping a certain relation between the number of 
regions within each shape.  
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2 Method  

2.1 Integral Invariants 

The core idea underlying our method is the use of circular Integral Invariants, then to 
take advantage of the associated scale space. Hong [2] defines the circular area 
integral invariants by considering a disc ܤ௥ሺ݌ሻ of radius ݎ applied to every point ݌ of 
a closed contour ܥ, the characteristic function is then given by,  ߯ሺܤ௥ሺ݌ሻ, ሻݔሻ ሺܥ ൌ  ൜1 ݂݅ ߳ݔ൛ܤ௥ሺ݌ሻ ת  Cሶ ൟ0 ݁ݏ݅ݓݎ݄݁ݐ݋  

Where ܥሶ  is the interior of the curve ܥ. The local integral area ܫ௥ሺܥሻ of the curve C is 
given by the function ܫ௥ሺ݌ሻ at every point ܥ ߳ ݌ with integral kernel ߯ as follows:  

ሻ݌௥ሺܫ ൌ  න ߯ሺܤ௥ሺ݌ሻ, Ωݔሻ݀ݔሻ ሺܥ  

Where Ω is the domain of the curve C.   Two examples are shown in Figure 1. Figure 
1a is a simple rectangle, showing that points of high curvature (typically detected by 
differential operators) can be found effectively, and without noise sensitivity, using 
integral invariants.  Figure 1c is the automatically segmented outline of a lesion  and 
Figure 1d is its integral invariant signature at one particular scale. 

  
a b c d 

Fig. 1. a) and c) are  two examples of closed polygons with integration kernels imposed on 
them and highlighting the integration area in red, b) and d) are the corresponding integral 
invariants for the complete curves. c) is the boundary of a segmented mass in mdb010 from the 
Mini-MIAS mammographic database. 

2.2 Scale Space and Scale Selection 

Changing the size of the integral invariant kernel creates a scale space, whose lower 
bound defines what is meant by "fine", and whose upper bound "coarse". We note that 
this integral invariant scale space satisfies the established scale space properties of 
non-emergence, non-enhancement of maxima and the causality principle in a limited 
sense. Properties of scale space are given in [3].  
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As is often the case with scale space, a major challenge is scale selection for the 
integral invariant function for each segmented lesion, as these shapes may be of 
varying sizes with significantly large difference of ratios. Small scales can very well 
correspond or identify a complete occlusion in small shapes but they fail to describe 
large shapes. Large scales give consistent results for shape matching but do not pick 
small regions as distinct comparisons. Therefore a certain ratio of size of the shape 
and the maximum scale of integral invariant is used as described below.  

Let ݎ௠௔௫ be the maximum scale indicator (this equates to the radius of the circular 
integral invariant disc at the maximum scale). Then comparing shapes ሺ ଵܵ,  ܵଶሻ for 
region matching where the area of shape to integral invariant ration (SIR) is fixed, the 
scale indicator  ݎ௠௔௫ is, ݎ௠௔௫ ൌ ඃmin ሺݎௌభ೘ೌೣ,        ,ௌమ೘ೌೣሻඇݎ

Where ݎௌ೔೘ೌೣ ൌ  ට஺௥௘௔ ௢௙ ௌ೔ௌூோ כ గ    , ݅ ൌ ሾ1, 2ሿ 
Though scale selection depends to a large extent upon the size of the shape we have 
observed experimenally that it also depends upon the variability in shape boundary. 
To date we have not established a relation between the two. 

2.3 Initial Key-Points Alignment and Region Matching 

The peaks of the integral invariant signature at the highest scale are considered to be 
salient points for being causal. Intervals between those points give the general 
structure of that shape. Shapes are divided into integral invariant regions (segments) 
based upon key points at the coarsest scale that follows the causality principle and 
prevail over all scales. All regions are evaluated for similarity against each other 
using the sum of squared differences and the regions that are most similar are 
considered to be the starting regions and their starting points as the points of initial 
alignment.  

The first segment starts from the point of initial alignment and extends to the first 
extremum. All subsequent segments are defined by successive extrema. The last 
region is then selected from the point of the last extremum to the end. In this way, 
both shapes are divided into segments, each with a varying length. To have the best 
comparison, we stretch or shrink all segments to the same length using bilinear 
interpolation.   

To compare integral invariant regions, the sum of squared differences (SD) is 
calculated between each pair of regions using integral invariant values along the 
region’s boundary at all scales.  

,ଵݔሺܦܵ ଶሻݔ  ൌ  ෍ሺݔଵሺ݊ሻ െ ,ଵݔሺ ݄ݐ݈݃݊݁ ݏ݅ ܯ ݁ݎ݄݁ݓ    ଶሺ݊ሻሻଶݔ  ଶሻெݔ 
௡ୀଵ  

The scale factor (SF) between two regions is also measured as follows,   ܵܨሺݔଵ, ଶሻݔ  ൌ ቈ1 െ  min  ሺ ݈݄݁݊݃ݐሺݔଵ, ଶሻሻmaxݔ    ሺ ݈݄݁݊݃ݐሺ ,ଵݔ ଶሻሻ቉ଶݔ      
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,ଵݔሺ ݁ݎ݄݁ݓ ሺ ݏ݁݌݄ܽݏ ݂݋ ݏ݊݋݅݃݁ݎ ݁ݎܽ ଶሻݔ  ଵܵ,  ܵଶሻ. Then the overall discrepancy 
measure (DM) is  ܯܦ ሺݔଵ, ଶሻݔ  ൌ ,ଵݔሺܦܵ  ଶሻݔ  ൅ ,ଵݔሺܨܵ   ଶሻݔ 

 

Fig. 2. Above is the scale space signature of two corresponding shapes in Figure 3 at the 
coarsest scale. On the left, the signatures are unaligned whereas on the right side they are 
aligned using RMA.  

3 Results 

Pairs of mammograms are segmented before performing shape or region matching. 
The segmentation algorithm develops parent-child relations in a (topographic) family 
tree structure, called an inclusion tree. The intensity range of an image is divided 
linearly into a certain number of iso-levels, and the contours are formed at those 
locations. Salient regions have a dense set of surrounding iso-contours. A concentric 
group of contours represents the diffusion of intensity in a dense pattern from the core 
of the object to the surrounding tissues. Regions with a higher family count or nesting 
depth beyond a certain threshold are selected as significant regions. A threshold of 
minimum family count was observed to discard regions falling beyond to reduce 
dense glandular structure from further analysis. The outermost iso-contour is 
considered boundary of that region. 

Figure 3 presents the segmented regions of temporal mammograms along with 
their scale space, where Figure 2 gives the initial alignment of those segmented 
regions. Though RMA matches regions in shapes irrespective of their sequence 
however in this particular case the accuracy of matching is obvious by comparing 
integral invariant signature of both mammograms after initial key-point alignment.     

Shape correspondence using RMA has been applied to the regions segmented in 
this way illustrated in Figure 4.  The mammograms are de-noised using a Perona-
Malik anisotropic diffusion filter. The lesions from pairs of temporal mammograms 
given are put into regional correspondences. In some cases the algorithm identifies the 
segments (and associated sub-regions) that correspond to new growth, while at the 
same time calculating the percentage change in other sub-regions. It may be noted 
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that the number of regions in both shapes may not equal. Some obvious mismatches 
can also be seen where the regional differences are substantial or the non-
corresponding regions are very similar. The correspondence of regions does not 
currently depend upon the texture or gradient information enclosed in them.  

 

 
 

Fig. 3. Segmented regions from temporal mammograms on the left while their corresponding 
scale spaces is given on the right hand side 

 

 

 

Fig. 4. Region matching of corresponding contours on the temporal mammograms. The red 
circles in the shapes identify points of initial alignment. Regions are color-coded and show both 
good and bad examples of regional correspondences.  
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Fig.4. (continued) 

4 Discussion 

Shape matching and correspondence algorithms usually match and establish point-
wise correspondences between two shapes and may even handle partial occlusion.  
However, they typically do not quantify partial occlusions nor identify complete 
occlusions or new growth.  It is important to measure regional differences 
quantitatively within each shape and establish correspondences based upon region 
matching. For masses it is vital to analyse their growth and notice the emergence or 
disappearance of any region. This can be helpful in detecting new growths and 
identifying their orientation. Following region of interest segmentation, we have 
introduced a method of local shape correspondence and region matching using 
integral invariant scale space. Integral invariant are calculate for segmented shapes 
from mammograms at all scales. The algorithm identifies causal peaks of this scale 
space as key points and breaks the shape into sub-regions based upon them. The best 
matching region is selected as a point of initial alignment and regions are 
corresponded based on a similarity measure. Though the emphasis of this paper is not 
on segmentation however if a better segmentation algorithm is used, RMA may 
produce very promising results in detecting growth of tumour and its aggressiveness 
with respect to shape. This region-matching technique is independent of any 
computational algorithms like Fast Marching or Djikstra's algorithm (Dynamic 
programming) and hence is very fast to compute. The proposed algorithm is quite 
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general, easy to implement and has a broad range of applications; considerably 
beyond mammography. 
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Abstract. Understanding, and accurately being able to predict, breast
cancer risk would greatly enhance the early detection, and hence
treatment, of the disease. In this paper we describe a new metric for
mammographic structure, “orientated mammographic entropy”, via a
comprehensive classification of image pixels into one of seven basic im-
age feature (BIF) classes. These classes are flat (zero order), slope-like
(first order), and maximum, minimum, light-lines, dark-lines and saddles
(second order). By computing a reference breast orientation with respect
to breast shape and nipple location, these classes are further subdivided
into 23 orientated BIF classes. For a given mammogram a histogram
is constructed from the proportion of pixels in each of the 23 classes,
and the orientated mammographic entropy, Hom, computed from this
histogram. Hom, shows good correlation between left and right breasts
(r2 = 0.76, N=478), and is independent of both mammographic breast
area, a surrogate for breast size (r2 = 0.07, N=974), and breast density,
as estimated using VolparaTM software (r2 = 0.11, N=385). We illus-
trate this metric by examining its relationship to familial breast cancer
risk, for 118 subjects, using the BOADICEA genetic susceptibility to
breast and ovarian cancer model.

1 Introduction

In the UK, for every 1000 women screened for breast cancer in the national
programme, on average 16 women will present with a suspicious lesion and be
recalled for further examination. Of these, two women will be correctly diagnosed
with breast cancer (12%); in one woman the cancer will be missed and subse-
quently detected in the symptomatic clinic (6%); whilst the remaining thirteen
women (81%) will have been falsely recalled; a stressful experience for the women
involved and a waste of health service resources [1]. This high false positive rate
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is a direct consequence of the large number of normal women in the screen-
ing population, which amplifies imperfections in the specificity of the screening
process. Clearly this could (and should) be improved.

Breast cancer risk is an active research field. A link with mammographic
breast density, as estimated from X-ray mammograms and breast cancer risk,
has been known for a number of years and has been observed in numerous studies
[15,4,11]. The reason for this link is poorly understood, however, and the extent
to which this risk factor is determined by genetic vs environmental factors is an
on-going research topic.

The motivation for our research is to investigate whether breast cancer risk
is related to the pattern of structure of the glandular tissue in an X-ray mam-
mogram, as opposed to a global measure of breast density. There have been
many publications describing mammographic texture analysis methods. These
have included application of statistical, histogram based measures; grey-level co-
occurrence calculations; spatial filtering; fourier analysis; wavelet decomposition
and fractal analysis [8,3,10,9]. Much of this work has focussed on developing
automated alternatives to manual measurements of breast density for predict-
ing risk. In many cases the performance of these algorithms has been shown to
be comparable to manual methods but an independent association with breast
cancer risk has not been demonstrated [8,3,10]. For instance Manduca et al. [10]
describe a comparison of a number of these methods. They found the strongest
prediction of breast cancer risk for features applied at a coarse scale, reported a
degree of correlation with breast density and were unable to show a significant
improvement in prediction when the features were combined with percent den-
sity. However in a recent study involving 245 women diagnosed with breast cancer
and 250 controls, Nielsen et al. [12] demonstrated that a computer-based texture
measure (described in [13]), applied to baseline mammograms 2 to 4 years prior
to diagnosis, out-performed automated and manual density measures, achieving
a significant separation between cases and controls.

A distinctive characteristic of all these methods is that no prior information
on the “expected” orientation of fibro-glandular tissue has been incorporated.
Reiser et al. have shown that, not unexpectedly, breast structure is oriented with
respect to the nipple [14]. In this paper we incorporate this information explic-
itly by presenting a new measure of the breast phenotype which characterizes
mammographic features according to their orientation with respect to the nipple.
Rather than compute an ad hoc measure of texture, however, we comprehen-
sively classify all features in the image according to their zero, first and second
order intensity characteristics. In so doing we hypothesise that mammograms
which do not exhibit a regular structure of features pointing towards the nipple,
indicates a higher risk of breast cancer i.e. that higher risk is associated with a
more chaotic microstructure of the breast parenchyma.

In the following sections we describe our methodology and present the results
of analyzing 979 digital mammograms, from 250 subjects, to determine how this
measure varies within subjects (between left and right breasts). We also inves-
tigate how it relates to breast density across subjects and present initial results
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relating values to familial breast cancer risk as estimated using the established
risk estimation software BOADICEA [2]. BOADICEA takes as input the family
history of breast, ovarian, prostate and pancreatic cancer of an individual as
well as the ages at which these these cancers were diagnosed. It also uses infor-
mation on any BRCA1 or BRCA2 genetic testing that has been performed and
the ages of unaffected family members. The software then gives an estimate of
risk of breast cancer over time, using a logistic regression model derived from 22
population based studies of breast or ovarian cancer.

2 Method

All the images used in this study were “raw” full-field digital mammograms
(FFDM) which were log-inverted to ensure that image intensity was linearly
related to total attenuation.

(a) Right CC. (b) Right MLO. (c) Left MLO. (d) Left CC.

Fig. 1. An illustration of the reference ductal orientation result for four patient mam-
mographic views

2.1 Breast Region, Pectoral Muscle and Nipple

In order to restrict the region of analysis in the X-ray mammogram to the breast,
we first compute a binary mask to eliminate the pectoral muscle region and the
background of the image, including any labels and/or annotations. We segment
the pectoral muscles of all MLO view mammograms manually, to ensure ac-
curate segmentations are obtained in all cases. The breast region is segmented
from the background using a combination of breast edge detection and region
growing. The nipple location is determined by estimating the most anterior point
on the breast edge in CC view mammograms, and in MLO view mammograms
by computing the most distal breast edge point, perpendicular to the pectoral
muscle boundary. Compared to manual nipple locations identified on 1,313 mam-
mograms by an imaging scientist, this automated approach had an accuracy of
10mm (std. dev. 11mm).
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2.2 Reference Breast Structure Orientation

As described above, the hypothesis is that mammograms which exhibit a less
regular pattern of structure pointing towards the nipple, represent breasts with
a higher risk of developing cancer. In order to test this hypothesis, it is nec-
essary to first compute a default or “expected” glandular orientation at each
point in the breast. The reference orientation is created by generating a series of
contours, emerging from the nipple, between the upper and lower breast edges
and the breast centerline. The breast centerline passes through the nipple and
is orthogonal to the pectoral muscle boundary (MLO views) or posterior edge
of the image (CC views). In contrast to [5] we do not assume a parabolic shape
of the breast but instead place n regularly spaced control points, starting at the
nipple location, o, on each of (i) the breast edge above the nipple, U , (ii) the
breast edge below the nipple, V , and (iii) the breast centerline, W :

U = {o,u1, . . . ,un−1} , (1)

V = {o,v1, . . . ,vn−1} , (2)

W = {o,w1, . . . ,wn−1} . (3)

U and V are constrained to be convex by calculating their curvature and linearly
extrapolating each locus if this curvature rises above an empirically set threshold.
The contours are then piecewise linear trajectories, Cu (above the centerline)
and Cv (below the centerline), which divide the lines between corresponding
control points on either upper or lower breast edges and the centerline, by a
fixed fraction, a, such that 0 < a < 1:

Cu = {o, au1 + (1 − a)w1, . . . , aun−1 + (1− a)wn−1} (4)

Cv = {o, av1 + (1− a)w1, . . . , avn−1 + (1− a)wn−1} (5)

This creates the curved arrangement of orientations illustrated in figure 1.

2.3 Basic Image Features

The Basic Image Features (BIFs) system [7,6] classifies pixels in a 2D image into
one of seven classes according to the local zero, first or second order structure.
This structure is computed using a bank of six derivative of Gaussian filters
(L00, L10, L01, L20, L11 and L02) which calculate the nth (where n=0,1,2) order
derivatives of the image in x and y (S00, S10, S01, S20, S11 and S02) at a particular
scale σ. By combining the outputs of these filters, any given pixel can be classified
according to the largest component of:

⎧
⎨

⎩

flat

εS00,

slope−like

2
√

S2
10 + S2

01,
maximum

λ ,
minimum

−λ ,

light line

λ+ γ√
2

,

dark line

λ− γ√
2

,
saddle
γ

⎫
⎬

⎭
(6)

given

λ = σ2 (S20 + S02)

2
; γ = σ2

√

(S20 + S02)
2
+ 4S2

11



Characterizing Breast Phenotype 185

where ε is a noise threshold below which regions are assumed to be flat. In
addition, slopes, light lines, dark lines, and saddles can be further characterised
according to their orientation. This orientation is computed with respect to the
reference glandular orientation described above.We quantise this orientation into
four 45-degree quadrants. This produces 23 orientated BIF classes,B = b0 . . . b22.
There are eight slope sub-classes (b1 to b8), and four sub-classes for each of
light lines (b11 to b14), dark lines (b15 to b18) and saddles (b19 to b22). The
unorientated classifications of flat, maximum and minimum are classes b0, b9
and b10 respectively.

Once each pixel in the breast region has been classified into one of the 23
orientated BIF classes, a histogram can be generated. This is normalised by
the number of pixels in the breast region, producing a 23 value feature vector,
P = p0 . . . p22, each element of which captures the proportion of pixels in the
breast region falling into each of the 23 classes.

To obtain an overall measure of the pattern of mammographic structure, we
compute the Shannon entropy of the orientated BIF histogram, and call this the
orientated mammographic entropy, Hom.

Hom = −
∑

i=0...22

pi log(pi) (7)

This parameter quantifies the distribution of BIF classes represented by P . It
will have a high value if all the orientated BIF classes are equally represented
and a low value if the mammogram is dominated by a small number of classes.
It therefore captures the heterogeneity of mammographic structure, orientated
with respect to the nipple.

3 Results

We have applied this analysis to 979 mammograms from 250 subjects for which a
complete set of data was available. We performed the BIF computation at a fine
scale of σ = 400μmm, with the noise threshold set close to zero (ε = 1.0e−05),
to capture as much information in the image as possible. The mammograms
with the most extreme values of orientated mammographic entropy, Hom, are
shown in figures 2(a) and 2(b). The mammogram with the highest value of Hom

exhibits an irregular mammographic structure, and this is much less pronounced
in the low Hom mammogram.

The correlation of Hom for 478 left and right breasts (956 mammograms)
was r2 = 0.76 (figure 3(a)). The area of the mammogram ROI also correlated
closely between left and right breasts (r2 = 0.96), however there was negligible
correlation between the area of the ROI and orientated mammographic entropy
(r2 = 0.07, 974 mammograms). There was also little correlation between Hom

and breast density as measured using VolparaTM (Matakina Technology Ltd.)
(r2 = 0.11, 385 subjects) (figure 3(b)).

Finally figures 4(b) and 4(a) show initial results for orientated mammographic
entropy vs familial breast cancer risk, as estimated using BOADICEA [2] (118
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(a) Minimum entropy mammo.
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(b) Maximum entropy mammo.

Fig. 2. Mammograms with extreme values of orientated mammographic entropy, Hom,
and their corresponding BIF histograms, P . The left image is dominated by a small
number of slope classes (b2, b3, b7 and b8), and a greater proportion of light line (b11 to
b14) to dark line (b15 to b18) structures, creating a low entropy. In the right image the
breast tissue is more chaotic in structure and hence pixels are more evenly distributed
across all classes. This produces a high value of BIF entropy. The images have been
histogram equalised for display purposes.
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Fig. 3. (a) Orientated mammographic entropy,Hom, for left vs right breasts (956 mam-
mograms). (b) Orientated mammographic entropy, Hom, vs breast density estimated
using VolparaTM (385 subjects).

subjects). Figure 4(a) appears to show a difference in the distribution of data
points below a BOADICEA risk value of 0.05 compared to risk values greater
than 0.05, however more data points are required to confirm or refute this. No
correlation between BOADICEA risk and VolparaTM was observed (r2 = 0.007,
227 subjects).
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(a) All data plotted.
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(b) x axis expanded between 0 and 0.1.

Fig. 4. Orientated mammographic entropy, Hom, vs BOADICEA risk at age 50 (118
subjects)

4 Conclusion

In this study we have developed a new metric to quantitatively characterize
mammographic fibroglandular structure, according to the comprehensive analy-
sis of zero, first and second order features orientated with respect to the breast’s
shape and nipple location. By calculating the correlation between left and right
breasts, we have demonstrated that this parameter offers a reproducible mea-
sure of breast phenotype, exhibiting a greater variation between subjects, than
between the breasts of a given subject. This parameter is independent of both
the area of the ROI used in the analysis and breast density as estimated using
VolparaTM . We have also shown initial results for the distribution of the metric
with familial breast cancer risk at age 50 using the BOADICEA susceptibility
to breast and ovarian cancer model.
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Abstract. A decentralized breast cancer screening program was started in 2002; 
in 2005 full-field digital mammography (FFDM) was introduced. The 
mammographic film-screen systems were gradually replaced by both computed 
radiography (CR) and direct digital mammography (DR). Quality control (QC) 
following the European Guidelines has been implemented for the technical 
aspects and for screening indicators. A previous study in our central breast unit 
(CBU) over the period 2005 till 2008 had shown no significant difference 
between the screening indicators of film-screen mammography (FSM) and 
FFDM. Today we are challenged with a variety of different types of 
mammography systems and questioned whether any difference would be 
present from cohorts imaged with CR versus DR. Therefore a new retrospective 
study over the period 2007 till 2009 has been performed, which shows no 
statistically significant difference in cancer detection rate (CDR), % of ductal 
carcinoma in situ (DCIS) and positive predictive value (PPV) between the CR 
and DR group, with exception of the recall rate (RR) in the subsequent round 
(p-value = 0,04). 

Keywords: digital imaging, mammography, breast cancer screening. 

1 Background 

Film-screen mammography is so far the only breast imaging technique for which it 
has been proven that it can reduce breast cancer mortality if the quality of the whole 
process is well controlled [1]. Today FFDM is massively replacing FSM. For this to 
be justified, new performance parameters should not be inferior to what had been 
obtained with FSM. In selected papers this has been investigated. Most of the 
comparative FSM and FFDM studies in a screening setting show a higher RR, a 
higher CDR and a comparable to higher PPV for FFDM [2-6]. Some studies show a 
higher DCIS rate in the FFDM group [2], [3], [5], [6]. 
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A diverse range of digital mammography systems and technologies is on the 
market. Based on the physical characteristics a distinction can be made between 
indirect or computed radiography systems (CR) and direct digital systems (DR). 
Indirect systems use a phosphor plate that stores the energy of the X-rays via the 
electrons of the phosphor plate; the reader is a separate device. In direct digital 
radiology, the conversion from X-rays to signal is ‘direct’ and does not require a 
separate reading process. 

Knowing that CR systems perform worse than DR in terms of detective quantum 
efficiency and contrast detail analysis [7], [8], it is important to investigate the impact 
of this group of digital systems on the performance parameters of screening actions. 
Clinical studies with CR systems are rare and we are not aware of scientific papers on 
performance parameters of large CR based screening programs. During the Journées 
Françaises de Radiologie in Paris (October 2011), French data showed inferior 
screening performance for CR compared to DR. In some studies, the results obtained 
with the CR systems are part of a much larger study [9]. In an additional report of the 
DMIST trial, no significant difference in area under the curve (AUC), sensitivity or 
specificity was found between Fuji 5000 CR system, Fisher Senoscan, GE 
Senographe 2000D, Hologic Selenia DR systems and FSM, however large reader 
variations occurred with each modality [10]. A prospective paired study on the 
performance of CR (Fuji IP HR with Siemens 3000 Nova) and DR (GE Senographe 
2000D) on BIRADS 4 and 5 lesions showed that the detection of breast lesions with 
calcifications is favorable with DR, but the diagnostic efficiency was identical [11]. A 
smaller study on 100 patients by the group of Schulz-Wendtland et al. showed no 
difference between CR and DR [12]. In 2009, we have also conducted a study on the 
effect of the introduction of digital mammography on the screening indicators in our 
CBU [13]. This study showed no statistically significant difference in terms of RR, 
CDR, PPV and detection rate of DCIS between FFDM and FSM. In that study there 
was only one CR system (Fuji CR system) included but the percentage of cancers in 
this group was too low to apply any statistics tests on the difference between CR and 
DR systems. 

In the meantime, more mammography units have switched to FFDM, with a 
substantial part of them using CR technology. We have therefore decided to run a 
another retrospective study that we report in present text: the comparison of screening 
indicators for CR and DR systems. The study was performed for all mammographic 
units linked to our CBU during the period 2007-2009. 

2 Methods and Materials 

2.1 Screening Program in Flanders (Belgium) 

Our screening program is based upon the European Guidelines [14] and has 
developed a national quality assurance manual. Acquisition of mammograms is 
decentralized and can take place in any radiological practice as long as the radiologist 
is licensed for screening and his equipment is certified. Second reading is centralized 
in one of the 5 central breast units.  
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In 2005, the use of digital mammography has been allowed and the existing quality 
manual was updated. There were no restrictions on the type of digital systems used as 
long as the system had passed first a type test procedure and then a site specific 
acceptance test [15], [16]. The type test protocol copies the European Guidelines for 
physico-technical QA and adds a radiological evaluation on 25 examinations to assess 
stability of processing and the global appearance of the images. Next, a set of 10 
images is used to verify the data transmission of the images from the mammography 
center to the center for second reading and to verify the global image quality and 
visualization on the work station in the center for second reading. Only softcopy 
reading is allowed. Accreditation of a mammographic unit requires also that daily, 
weekly and (half)yearly physico-technical quality control of the mammography 
system and the viewing station is performed. In parallel to this, first and second 
readers have to take part in educational programs concerning theoretical concepts as 
well as image reading sessions.  

In our Belgian screening program bilateral two-view mammography is performed. 
The program offers a biennial mammography screening to women aged between 50 
and 69 years [15]. The participating women sign an informed consent that allows 
further data processing.  

A total of 65 radiologists act as first reader and 6 radiologists act as second reader 
in our CBU. First as well as second readers are also working in a diagnostic breast 
center. This is deemed important seen the continuous feedback in terms of patient 
outcome following positive screening results. All second readers have to read a 
minimum of 5,000 examinations per year and are approved by the Radiological Board 
of the screening organization. In case of discordance between first and second reader, 
third reading is done by a qualified and independent second reader. All reading results 
are collected via an IT network. 

The screening mammograms are scored with a five-point rating scale: 1 = normal 
finding, 2 = benign finding, 3 = probably benign finding, 4 = probably malignant 
finding, 5 = malignant finding.  

Since 2001, a continuous and individual evaluation is done for all first and second 
readers in terms of RR, the number of readings and the discordance between the first 
and second reader. Several training courses and meetings are organized to improve 
possible poor results.  

2.2 Image Acquisition 

The period investigated was 2007-2009 and includes all screening activities with 
digital mammography in the CBU of Leuven. At that time, there were 13 different DR 
systems: 1 GE Senographe Essential system, 3 Hologic Lorad systems, 1 Siemens 
Novation system, 6 Siemens Inspiration systems and 2 Sectra systems. There were 9 
CR systems: 8 Fuji CR systems and 1 Konica CR system. All systems had passed the 
European quality criteria and participated in a daily QC program for both the X-ray 
unit (with every day 2 flat field images and centrally supervised automatic analysis) 
and the monitor using the MoniQA pattern [16]. 
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The different mean glandular doses (MGD) as calculated from automatic exposure 
controlled measurements of PMMA slabs of 20 mm, 40 mm and 60 mm of the 
different participating systems are summarized in Table 1. 

Table 1. MGD as calculated from automatic exposure controlled measurements of 20 mm, 40 
mm and 60 mm PMMA of the different participating systems 

CR system 
20 mm PMMA* 

(mGy) 
40 mm PMMA* 

(mGy) 
60 mm PMMA* 

(mGy) 
Hologic Lorad Selenia 
+ Fuji Profect CS 

0.3 1.2 3.2 

Siemens Mammomat 3000 Nova 
+ Fuji Profect CS 

0.4 1.3 1.7 

Planmed Sophie 
+ Fuji Profect CS 

0.5 1.3 3.3 

Siemens Mammomat 3000 Nova 
+ Fuji Profect CS 

0.4 1.0 2.7 

Hologic M-IV 
+ Fuji Profect CS 

0.6 1.1 2.6 

Siemens Mammomat 3000 Nova 
+ Fuji Profect CS 

0.5 1.6 1.9 

Siemens Mammomat 3000 Nova 
+ Fuji Profect CS 

0.4 1.0 2.7 

Philips Mammo Diagnost 
+ Fuji Profect CS 

0.6 1.5 3.9 

GE Senographe 800T 
+ Fuji Profect CS 

0.5 1.4 2.9 

Planmed Sophie 
+ Konica CR 

0.6 1.6 3.6 

DR system 
20 mm PMMA* 

(mGy) 
40 mm PMMA* 

(mGy) 
60 mm PMMA* 

(mGy) 
Sectra (2 systems) 0.4-0.6 0.5-0.9 1.0-1.6 
GE Senograph Essential 0.6 0.9 1.8 
Hologic Lorad Selenia 
(3 systems) 

0.6-0.8 (0.7)** 1.3-1.5 (1.4)** 1.5-3.5 (2.4)** 

Siemens Inspiration 
(6 systems) 

0.4-0.6 (0.5)** 0.8-1.1 (0.9)** 1.4-1.9 (1.6)** 

Siemens Novation 0.5 1.0 2.0 

* 20 mm PMMA  21 mm breast; 40 mm PMMA  45 mm breast; 60 mm PMMA  75 mm 
breast 
** range (mean) 

2.3 Diagnostic Work Up and Data Analysis 

The images and reports of cases that have to be recalled are sent back to the first 
reader and in parallel the CBU sends a letter to the woman with the recommendation 



 Performance of Computed Radiography and Direct Digital Radiography 193 

 

to contact her general practitioner or other referring specialist (the woman’s choice). 
The epidemiologist in the screening unit collects the reports of all recalls and a 
questionnaire to collect data on the results of the work up is sent after 3 months to the 
referring physician. 

The following screening indicators were calculated for the period 2007-2009, for 
initial and subsequent round: RR, CDR, PPV and the proportion of DCIS. The RR is 
defined as the proportion of screened women for whom further work up was 
recommended (following the European Guidelines this should be < 5% in initial, < 
3% in subsequent rounds). The CDR is the number of pathologically proven 
malignant lesions of the breast (both in situ and invasive) detected in a screening 
round per 1,000 women screened in that round. It should be higher than 3 times the 
incidence rate (IR) for initial screening examinations and 1.5 times higher than the 
incidence rate for subsequent screening: the background incidence of breast cancer in 
the absence of screening is for our country expected to be 1.25 per 1,000 women [17]. 
The PPV is the fraction of cancers found in the recalled women. 

Results of the CR and DR group for the investigated screening parameters were 
compared using the chi-squared test and a value less than 0.05 was regarded as 
statistically significant.  

3 Results 

A total of 42,958 digital mammograms was evaluated. The number of digital 
mammograms increased significantly over the 3 year’s period, with 5,578 in 2007, 
10,526 in 2008 and 26,854 in 2009.  

Table 2. Overview of the screening indicators for the Leuven CBU for the period 2007-2009 
for CR and DR technology, initial versus subsequent rounds 

 CR-group DR-group p-value 
Number Initial Subseq Initial Subseq Initial Subseq 
Screened women 4,216 13,346 4,994 20,402   
Recalled women 
(%) 

100 
(2.37) 

122 
(0.91) 

110 
(2.20) 

235 
(1.15) 

0.59 0.04 

Cancer detection 
(‰) 

30 
(7.12) 

69 
(5.17) 

26 
(5.21) 

107 
(5.24) 

0.24 0.92 

DCIS  
(%) 

5 
(16.67) 

6 
(8.70) 

5 
(19.23) 

15 
(14.02) 

0.80 0.34 

PPV (%) 30.00 56.56 23.64 45.53 0.43 0.25 
 

The screening indicators are summarized in Table 2. All results are conform the 
European Guidelines [17]. Our RR can be considered as low, but the CDR is in 
accordance with the European Guidelines. A consequence of these numbers is the 
high PPV, up to 30% for initial and 56,6% for subsequent rounds in the CR group and 
23,6% for initial and 45,5% for subsequent rounds in the DR group. There was no 
significant difference between CR and DR in terms of CDR and PPV, but a 
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significant difference (p = 0.04) was seen between CR and DR for the RR of 
subsequent rounds.  

Concerning the fraction of DCIS, there was no significant difference between CR 
and DR. We cannot exclude that this is due to the relatively low absolute numbers.  

4 Discussion 

The advantage of digital mammography is the separation between acquisition, 
processing and display. Each of these steps can be optimized separately or changed 
independently. A challenge for CR technology is that plates and readers can be 
combined with a variety of X-ray systems, each present with their own beam qualities 
and preset dose levels. At acceptance, most installations of CR systems required a 
careful adjustment, usually in a cooperation between the manufacturer and the 
physicist. Notwithstanding this approach, some systems barely pass the acceptance 
tests. The impact of this situation, with some systems being much more critical than 
others, on our screening indicators could not be studied as the number of cases is too 
small to allow an image quality level based evaluation.  

CR has economic advantages over DR systems and smaller centres have therefore 
chosen to implement these systems. About 54% of the German screening units are 
using CR technology and 34% FFDM with soft-copy reading [18]. The proportion of 
CR systems in France is even larger. As the number of mammography units with CR 
technology may be substantial (certainly when viewed on a worldwide scale), it is 
important to investigate the impact of this technology on the screening indicators, 
certainly when recent reports on the results of a lower performance of CR compared 
to DR appear. From 2005 onwards, our CBU supported the image acquisition and first 
readings of 65 certified radiologists and coped with all the European norms. A first 
study, reported in 2010 showed that the transition to FFDM had not changed our 
screening performance [13]. Present study shows that there is also no statistically 
significant difference in RR in the initial rounds, CDR, percentage of DCIS and PPV 
obtained with CR and DR systems separately. Since the start of the screening in 2001, 
more than 80% of all images have been read by the same group of second readers, 
what can be considered a strength for our studies: the group of readers is not an extra 
variable. 

We attribute our results to (1) a strict follow up of the radiological aspects 
individually for all the first readers, (2) a strict control of the radiological image 
quality by the second readers who report to the first reader and to the physicists all 
artefacts or causes of quality deterioration, (3) a physico-technical QA, with daily 
centralized control of the quality of both X-ray system and monitor. Passing the 
European limiting values in terms of contrast thresholds and contrast to noise ratio 
requires a dose setting in which CR operates at doses that can be more than double the 
doses used with DR. We have no intention to allow the lowering of the CR dose 
setting. A more interesting study, based upon results reported in the SPIE conference 
2012 [19], would be to study the performance of DR technology when operated at 
higher doses. 
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The higher recall rate in the DR group in the subsequent round may cause the 
somewhat higher percentage of DCIS (subsequent round: 14,02% in the DR group 
versus 8,70% in the CR group) in the subsequent rounds which is in line with the 
results of other studies in which the detection of DCIS (or microcalcifications) is 
higher in FFDM [2], [3], [5], [6]. 

The main limitation of the study is the limited number of cases in some of the 
groups. A larger national study is on-going. We preferred to report our data separately 
as this allows to exclude confounding parameters such as other second readers, other 
physicists controlling the systems, other epidemiologists, etc. An analysis of our CBU 
separately and its discussion in an international forum will face us clearly with our 
true situation and is considered an important aspect of our local QA goals. 

Second limitation is the limited number of systems. Grouping per system is not 
possible due to the limited number of cases per brand. This is the result of allowing all 
types of systems in the screening pending a successful type test and acceptance test. 
Most vendors of digital mammography equipment subscribed for the type test 
procedure indeed. 

We can conclude that CR can be implemented in a well-controlled screening 
organization without impact on the performance parameters. Present study did not 
lead to any alarming situation concerning our CR technology. We propose to continue 
all efforts to control its quality. Larger studies should be performed to increase the 
statistical confidence. 

References 

1. Tabar, L., Vitak, B., TonyChen, H.H., Yen, M.F., Duffy, S.W., Smith, R.A.: Beyond 
randomized controlled trials: organized mammographic screening substantially reduces 
breast carcinoma mortality. Cancer 91(9), 1724–1731 (2001) 

2. Skaane, P., Skjennald, A.: Screen-film versus full-field digital mammography with soft-
copy reading: randomized trial in population-based screening program – The Oslo II study. 
Radiology 232, 197–204 (2004) 

3. Vigeland, E., Klaasen, H., Klingen, T.A., et al.: Full-field digital mammography compared 
to screen-film mammography in the prevalent round of a population-based screening 
program: the Vestfold County Study. Eur. Radiol. 18, 183–191 (2008) 

4. Vinnicombe, S., Pereira, P., McCormack, F., et al.: Full-field digital versus screen-film 
mammography: comparison within the UK Breast Screening Program and Systematic 
review of published data. Radiology 251, 347–358 (2009) 

5. Karssemeijer, N., Bluekens, A.M., Beijerinck, D., Deurenberg, J.J., Beekman, M., Visser, 
R., van Engen, R., Bartels-Kortland, A., Broeders, M.J.: Breast Cancer Screening Results 5 
Years after Introduction of Digital Mammography in a Population-based Screening 
Program. Radiology 253(2), 353–358 (2009) 

6. Del Turco, M.R., Mantellini, P., Ciatto, S., et al.: Full-field digital versus screen-film 
mammography: comparative accuracy in concurrent screening cohorts. AJR 189, 860–866 
(2007) 

7. Marshall, N.W., Monnin, P., Bosmans, H., Bochud, F.O., Verdun, F.R.: Image quality 
assessment in digital mammography: Part I. Technical characterization of the systems. 
Phys. Med. Biol. 56(14), 4201–4220 (2011) 



196 C. Van Ongeval et al. 

 

8. Bick, U., Diekmann, F.: Digital mammography: what do we and what don’t we know? 
Eur. Rad. 17(8), 1931–1942 (2007) 

9. Heddson, B., Rönnow, K., Olsson, M., Millder, D.: Digital versus screen-film 
mammography: a retrospective comparison in a population-based screening program. Eur. 
J. Rad. 64, 419–425 (2007) 

10. Hendrick, R.E., Cole, E.B., Pisano, E.D., et al.: Accuracy of Soft-Copy Digital 
Mammography versus that of Screen-Film Mammography according to Digital 
Manufacturer: ACRIN DMIST Retrospective Multireader Study. Radiology 247(1), 38–48 
(2008) 

11. Schueller, G., Riedl, C., Mallek, R., Eibenberger, K., Langenberger, H., Kaindl, E., 
Kulinna-Cosentini, C., Rudas, M., Helbich, T.: Image quality, lesion detection, and 
diagnostic efficacy in digital mammography: full-field digital mammography versus 
computed radiography-based mammography using digital storage phosphor plates. Eur. J. 
Radiol. 67(3), 487–496 (2008) 

12. Schulz-Wendtland, R., Lell, M., Wenkel, E., Böhner, C., Dassel, M.S., Bautz, W.: DR (a-
Se) versus CR (DLR) – is an improvement of the accuracy possible? A retrospective 
histologic analysis (n = 100). Röntgenpraxis 56(4), 129–135 (2007) (in German) 

13. Van Ongeval, C., Van Steen, A., Vande Putte, G., Zanca, F., Bosmans, H., Marchal, G., 
Van Limbergen, E.: Does digital mammography in a decentralized breast cancer screening 
program lead to screening performance parameters comparable with film-screen 
mammography? Eur. Radiol. 20(10), 2307–2314 (2010) 

14. van Engen, R., Young, K., Bosmans, H., Thijssen, M.: The European protocol for the 
quality control of the physical and technical aspects of mammography screening. Part B: 
Digital mammography. In: Fourth Edition of the European Guidelines for Breast Cancer 
Screening (2005), http://www.euref.org 

15. Vlaams Agentschap Zorg en Gezondheid, Afdeling Preventie, Belgium. Draaiboek Vlaams 
bevolkingsonderzoek naar borstkanker, http://www.zorg-en-gezondheid.be 

16. Thierens, H., Bosmans, H., Buls, N., De Hauwere, A., Bacher, K., Jacobs, J., Clerinx, P.: 
Typetesting of physical characteristics of digital mammography systems for screening 
within the Flemish breast cancer screening programme. Eur. J. Radiol. 70(3), 539–548 
(2009) 

17. Perry, N., Broeders, M., de Wolf, C., Törnberg, S., Holland, R., von Karsa, L.: European 
guidelines for quality assurance in mammography screening, 3rd edn. European 
Commission, Luxembourg (2006) 

18. Skaane, P.: Digital Mammography in European population-based screening programs. In: 
Bick, U., Diekmann, F. (eds.) Medical Radiology – Diagnostic Imaging (2009) ISBN 978-
3-540-78449-4; Baert, A.L., Reiser, M.F., Hricak, H., Knauth, M. (eds) Digital 
Mammography 

19. Warren, L.M., Mackenzie, A., Cooke, J., Given-Wilson, R., Wallis, M.G., Chakraborty, 
D.P., Dance, D.R., Young, K.C.: Investigating the relationship between calcification 
cluster detection in digital mammography and threshold gold thickness measurements. In: 
Proc. SPIE Medical Imaging, vol. 8313, pp. 8313–8318 (2012) 
 

 



 

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 197–204, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

A Quality Control Framework Using Task-Based 
Detectability Measurements for Digital Mammography 

Aili K. Bloomquist1, James G. Mainprize1, Gordon E. Mawdsley1, Martin J. Yaffe1, 2 

1 Sunnybrook Research Institute, Toronto, Canada 
{aili.bloomquist,james.mainprize, 

mawdsley,martin.yaffe}@sri.utoronto.ca 
2 Department of Medical Biophysics, University of Toronto, Toronto, Canada 

Abstract. Quality control for digital mammography should be objective, re-
producible and applicable across different manufacturers’ systems and tech-
nologies.  Ideally it should be possible to set clearly defined thresholds of 
acceptable behaviour that can be universally applied.  Other works have pro-
posed combining measurements of detector performance with an observer 
model and task function to calculate the detectability index d′.  This work 
builds on those concepts by proposing a simple phantom design for measur-
ing system performance from a single image, allowing the calculation of 
NEQ and d′ and including effects due to scatter and all noise sources.  A 
second contrast-detail test-object is proposed for validation of the model us-
ing a 4AFC observer study design. 

Keywords: quality control, observer model, task, detectability, NEQ. 

1 Background 

Current quality control protocols for digital mammography often rely heavily on sub-
jective assessments of phantom images for overall image quality, or employ overly 
simplistic measures that may not reflect clinical image quality or may not reliably 
capture all modes of failure.  Another difficulty is that many measures cannot be 
expressed in system-independent units, making comparisons between different manu-
facturers’ systems difficult.  Model observers have been proposed to quantify the 
signal to noise ratio achieved for relevant imaging tasks without the variability and 
subjectivity associated with the human reader by calculating the detectability index 
(d′).  To calculate d′, the system must be characterized. We present here a method for 
simply and reliably estimating the elements needed to calculate the system noise 
equivalent quanta (NEQ) of a digital mammography unit from a single phantom im-
age. These data can then be used in the calculation of the detectability index (d′) of 
arbitrary test objects using a non-pre-whitening model observer (NPWE) incorporat-
ing an eye-filter and internal noise. We also suggest a framework for validating the 
method using four alternative forced choice (4AFC) observer studies of a suitably 
designed contrast-detail test object. 
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2 Methods 

2.1 QC Phantom 

For the measurement of NEQ and contrast, such that detectability can be estimated, 
we propose imaging a 40 mm thick uniform block of polymethyl methacrylate 
(PMMA), on whose upper surface two strips of copper foil have been positioned, 
angled by approximately 5° from the sides of the block as depicted in Fig.1 (left pan-
el).  The uniform regions of the PMMA are used to evaluate the noise power spec-
trum (NPS) and the slanted edges of the copper foil strips are used to calculate the 
pre-sampled modulation transfer function (MTF) in the x and y directions.  A one-
mm-thick disc of PMMA with a diameter of 25 mm is used to estimate the radiologi-
cal contrast of the detection tasks.  The material and thickness of the contrast disc 
could be changed to suit the detection task being evaluated. 

To validate the detectability calculations, a 4AFC observer study is being con-
ducted using a contrast-detail test object.  The test object consists of cylindrical posts 
of PMMA milled to have heights ranging from 0.0442 to 1.0 mm, with diameters 
ranging from 0.312 to 3.536 mm on top of a PMMA base with a thickness of 40 mm.  
Five thicknesses are used for each disc diameter, with the relevant thickness range 
determined from preliminary reader studies using a contrast-detail test object imaged 
on several digital mammography systems.  This range includes the thicknesses likely 
to encompass discs that are just visible to just not visible under typical mammograph-
ic exposures.  The thickness and diameter combinations used are described below in 
Table 1.  For each disc diameter, a reference disc thickness that should always be 
visible is listed. 

 

Fig. 1. Radiographs of the NEQ measurement phantom (left) and the contrast-detail test object 
(right) being used to validate the modeled detectability values 
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Table 1. Diameters and thicknesses of discs for contrast-detail test object. All measurements 
are in mm. 

 Disc Thicknesses 
Diameter Reference Test 1 Test 2 Test 3 Test 4 Test 5 
0.312 1.25 1.0 0.7071 0.5 0.3536 0.25 
0.625 1.0 0.5 0.3536 0.25 0.1768 0.125 
1.250 1.0 0.25 0.1768 0.125 0.0884 0.0625 
2.500 1.0 0.25 0.1768 0.125 0.0884 0.0625 
3.536 1.0 0.1768 0.125 0.0884 0.0625 0.0442 

2.2 Detectability 

The detectability index (d′) for a particular detection task is calculated using a varia-
tion of the formula proposed by Burgess [1] and modified by Segui and Zhao [2] as 
follows: 

 

(1)

where ∆S is the signal difference between the object and the background, O is the 
integrated signal power (perceived signal) calculated using the non-prewhitening 
observer (NPWE) model with eye filter described by Segui and Zhao and given in 
Equation (2), N is the integrated noise in the system as given in Equation (3) and Ni is 
the added internal noise of the viewer.   

 
(2)

 
(3)

where W(u,v) is the task function, MTF(u,v) is the 2-dimensional (2D) MTF of the 
imaging system, NPS(u,v) is its 2D noise power spectrum, and E(u,v) is the eye filter 
describing the contrast sensitivity of the human visual system.  Because the task ex-
plored here is detecting a disc, W is taken to be a “jinc” function (Hankel transform of 
a disc). Note in our formulation we calculate a single system noise rather than separat-
ing out quantum, scatter and electronic noise sources. Following the work of Burgess 
[3], the internal noise Ni was taken to be a scale factor, a, of the system noise N ac-
cording to Equation (4). 

 
(4)

The internal noise scale factor, a, was fit to be 1.5. 
The pre-sampled MTF is obtained in both the x and y directions using the standard 

algorithm described by Fujita et al [4]. The relatively wide (40 mm) bands of copper 
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foil ensure that any low-frequency drop in MTF due to off-focal radiation, scatter 
and/or glare in the phosphor on indirect flat panel systems can be accurately characte-
rized. The MTF along x and y were averaged together and then radially rotated to 
create a 2D MTF.  This is an approximation of the true 2-D MTF, which likely has 
non-rotationally symmetric components such as that due to the rectangular shape of 
the detector element. 

The two-dimensional NPS is calculated using the multi-taper method (MTM), with 
adaptive weighting [5]. Using the MTM method results in a “cleaner” NPS with re-
duced low-frequency distortions, at the cost of some broadening (loss of spectral reso-
lution) of any peaks (i.e. grid artefact) in the spectrum.   Regions of interest (ROIs) 
are selected from the portions of the image where only PMMA was present in the 
beam.  The ROIs are chosen such that the solid angle of the x-ray beam (θ) is less 
than 4.7° so changes in beam intensity across the ROI  (proportional to cos3(θ) ) are 
kept to less than 1%.   

Ideally, ∆S would be derived from the radiological subject contrast of the object 
being evaluated in a given task.  For example, the subject contrast could be measured 
for a series of discs of different thicknesses in a contrast-detail test object.  In this 
work, it is approximated using the measured image contrast for the 1 mm thick con-
trast disc.  Over small ranges, log-relationships can be treated as linear, so assuming 
a linear relationship between disc thickness and induced signal difference; ∆S can be 
estimated for arbitrary disc thicknesses by multiplying ∆S1 by the desired disc thick-
ness in mm, t according to equation (5): 

 
(5)

ADUdisc and ADUbackground are the mean pixel values or analog-to-digital units (ADUs) 
measured in ROIs selected in the image of the contrast disc and nearby background 
areas of the phantom.  For systems with limited flat-fielding (such as CR) it may be 
necessary to perform a manual gain correction on the image data (using images of a 
uniform phantom) before making this measurement. 

The eye filter is modeled using the common functional form of 
 [6], where n and c are experimental parameters selected to 

match the viewing conditions of a human reader.  The parameters n and c were itera-
tively adjusted along with the internal noise factor, a, to yield the best agreement 
between measured thickness thresholds and model determined thresholds. A best fit to 
measured data was found with n = 0.81, c = 1.12 and a = 1.5.  This appears to hold 
across different systems when images are viewed at the same physical magnification. 

2.3 4AFC Design 

To validate the calculated detectability values, we compare them to the measured 
proportion correct found in a four-alternative forced choice (4AFC) observer study 
using a range of disc diameters and thickness.  Images of the contrast-detail test ob-
ject are acquired at techniques matching those used to image the NEQ phantom.  
Twenty-four images are acquired on each system tested to achieve sufficient different 
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noise realizations to be able to distinguish a difference of less than 0.8 in d′ with a 
power of 0.8 [7]. Regions of interest will be cropped from the images such that a disc 
appears in one of the four corners of the ROI. The selection of which corner contains 
the disc is randomized.  A psychometric function is fit between the percent correctly 
detected in the 4AFC study and disc thickness for each disc diameter.  Then the de-
tectability (d′) of that disc thickness and diameter can be estimated from the propor-
tion taken from the psychometric fit and compared to the model d′ determined from 
the QC phantom measurements.  Fitting the reader data removes some of the mea-
surement noise and avoids difficulties with infinite values resulting from test objects 
where the readers achieved a 100% correct detection rate.  The fits were done using 
the “psignifit” software package and a bootstrapping technique [8].  

2.4 Systems Tested 

The methodology was evaluated on three different mammography units, two GE Se-
nographe DS systems and a Planmed Nuance system.  The DS detectors have 100 
micron dels and a cesium-iodide scintillation layer on a photo-diode thin-film transis-
tor array.  The Planmed detector has 85 micron dels and an amorphous selenium 
conversion layer on an electrode array. 

3 Results 

In Fig. 2, we show preliminary measurements of MTF, normalized NPS (NNPS) and 
noise equivalent quanta (NEQ) using the proposed phantom on three different mam-
mography systems. In Fig. 3 we show the modeled d′ plotted against the d′ values 
measured by the 4AFC.reader study.  For each system the linear fits between mod-
eled d′ and measured d′ for the individual readers were compared using the F test to 
the 95% confidence level.  The results of this analysis are given in Table 2.  Subse-
quently, the reader data were pooled and the linear fits for each system type were 
compared using the F test.  The results of this analysis are given in Table 3. 

Table 2. Test for significant differences between readers looking at the parameters of linear 
least-squares fits to the modeled and measured d′ values for each reader and system. A 1 
indicates a statistically significant difference in the parameter to the 95% confidence level. 

Parameter 1 vs. 2 1 vs. 3 1 vs. 4 2 vs. 3 2 vs. 4 3 vs. 4 
GE 1 m 0 0 0 0 0 0 
GE 1 b 0 1 1 0 0 0 
GE 2 m 0 0 0 0 1 1 
GE 2 b NA NA NA NA NA NA 
Planmed 1 0 0 0 0 0 0 
Planmed 2 0 0 0 0 0 0 
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Table 3. Test for significant differences between systems looking at the parameters of linear 
least-squares fits to the modeled and measured d′ values. A 1 indicates a statistically significant 
difference in the parameter to the 95% confidence level. 

Parameter GE 1 vs. GE 2 GE 1 vs. Planmed GE 2 vs. Planmed 
m 0 1 0 
B 0 1 1 

 
Fig. 2. Graphs of MTF (top left), NNPS (top right), and NEQ (bottom left) for three different 
systems at a typical exposure level and the NEQ at five different exposure levels for one system 
(bottom right) 

4 Discussion 

We have presented a framework for calculating the detectability index (d′) for low 
contrast detection tasks that can be defined using functions in the Fourier domain.  
The proposed method requires only one image of one phantom to obtain the necessary 
measures of system performance. With a validated method of objectively measuring 
system performance for specific imaging tasks, it should be possible to propose 
broadly applicable and easily measurable standards for system performance. 

One of the limitations of this study is that the ambient lighting conditions and 
viewing distance were not rigorously controlled.  However, inter reader variability 
was not statistically significant most of the time. 
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The slopes of the linear fits between the measured and modeled d′ values appear to 
be different for the different mammography systems.  This difference was found to 
be statistically significant between the second GE system and the Planmed system.  
In addition, the intercept for the Planmed system was different than that for the GE 
systems.  This suggests that the model used to calculate d′ needs further refinement 
to generate completely system-independent results.  Areas for improvement include a 
better estimation of the eye-filter parameters and inclusion of a scatter estimate in the 
calculation of radiographic contrast. 

Future work includes extending the 4AFC study to more vendors and more readers, 
doing a more thorough error propagation and analysis, and extending the model and 
phantom used to calculate d′ to predict the results of evaluating the CDMAM phan-
tom. 

 

Fig. 3. Left side: Plot of modeled d′ vs. measured d′ values for three different mammography 
systems.  The measured d′ values are averages of the values taken from the psychometric fits 
made for the individual readers participating in the 4AFC study. Right side: Plot of d′ values 
both measured from the reader study and modeled, for a disc diameter of 1.25 mm versus in-
creasing disc thickness. 
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Abstract. High mammographic breast density is associated with increased risk 
of breast cancer, but how risk varies with longitudinal change in density is less 
clear. To investigate, a case-control study of 30 women with screen-detected 
cancer and 30 women with a normal mammogram, all with two previous nor-
mal mammograms, was conducted. Percentage density for all mammograms 
was estimated with the thresholding software Cumulus. Mean density at first 
screen was not significantly different in cases and controls in contralateral (36.5 
vs. 32.6, p = 0.23) or ipsilateral (36.0 vs. 32.9 p = 0.37) breasts, but mean re-
duction in density from first to third screen was significantly different in both 
contralateral (10.7 vs. 5.1, p = 0.02) and ipsilateral (11.7 vs. 6.2, p = 0.04) 
breasts. Using logistic regression, and controlling for age and HRT use, breast 
cancer risk was found to be associated with change in density from first to third 
screen. 

Keywords: Mammographic density, breast cancer risk, case-control study, 
Cumulus. 

1 Introduction 

Mammographic breast density is the proportion of the breast occupied by radiopaque 
‘dense’ fibroglandular tissue as opposed to radiolucent ‘non-dense’ adipose tissue on 
a mammogram. The association between high mammographic density and increased 
risk of developing breast cancer is well established, having been first described by 
Wolfe in 1976 [1-2]. A meta-analysis conducted thirty years later reported that the 
relative risk of developing breast cancer for women with ≥75% density compared to 
those with <5% density was 4.64 (95% CI: 3.64-5.91) [3]. However, the relationship 
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between change in density over time and breast cancer risk is less well understood. 
While risk increases with age, and is associated with high density, density declines 
with age.  Of the few studies examining the issue, some have found evidence of an 
association between change in breast density and breast cancer risk, whereas others 
have found no evidence of such an association. One study found that an increase (de-
crease) in density, as classified by the four-category American College of Radiology 
Breast Imaging Reporting and Data System (BI-RADS) breast composition classifica-
tion [4], over a period of approximately three years was associated with an increased 
(decreased) rate of breast cancer relative to women whose density classification did 
not change during the same period [5]. A second study, where mammograms were 
automatically classified to one of four density categories: <5%, 5-25%, 26-75% or 
>75%, made similar findings over a 10 year follow-up period [6]. However, two stu-
dies found no association between longitudinal change in percentage density, as 
measured by computer-assisted interactive thresholding [9], and breast cancer risk [7-
8]. The purpose of the current work is to further explore longitudinal change in breast 
density and its possible association with breast cancer risk, by examining whether 
such an association exists in a case-control study. 

2 Method 

The study population consisted of 60 women who had attended routine breast screen-
ing through the Greater Manchester Breast Screening Programme, part of the UK 
NHS Breast Screening Programme. Of these, 30 women had screen detected cancer in 
one breast, and the remainder had normal screening mammograms. The women with 
cancer (referred to as the cases) were drawn consecutively from those with screen 
detected cancer who had normal mammograms in the two previous screening rounds. 
The women with normal screening mammograms (referred to as the controls) were 
randomly selected from women with normal screening mammograms who also had 
normal mammograms in the two previous screening rounds. Whereas all of the 
mammograms from the most recent round of screening consisted of both mediolateral 
oblique (MLO) and craniocaudal (CC) views, some of the mammograms from the two 
previous rounds of screening contained only MLO views.  Henceforth the most re-
cent, diagnostic, screen will be referred to as the third screen and the two previous, 
prediagnostic, screens will be referred to as the first and second screens.  The mean 
(SD) time between first and third screen was 6.5 (0.8) years for cases and 6.4 (0.9) 
years for controls. 

Mammographic breast density was assessed for all mammograms from all three 
rounds of screening using the interactive thresholding software Cumulus (Version 4.0; 
Sunnybrook Health Sciences Centre, Toronto, Canada) [9], which has been shown to 
have a strong association with risk [13], and has been called the gold standard of  
density measurement [10]. All mammogram films were digitised, anonymised and 
randomised into small batches before being read by a single trained and validated 
Cumulus reader.  The images used in Cumulus were 8-bit grayscale depth with a 
pixel size of 0.25 mm × 0.25 mm. Randomisation meant that the reader was blinded 
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to the case-control status of all mammograms. The reader segmented the breast area 
from the background using a pixel value threshold and/or piecewise linear mask, then 
set a second threshold to separate the dense from the non-dense breast tissue within 
the breast area. The proportion of the breast area occupied by dense tissue was calcu-
lated as a percentage by the software. 

As well as measurements of breast density, information on the age of the subjects 
at screening and whether they had ever used hormone replacement therapy (HRT) 
was available for inclusion in the analysis. Both age and the use of HRT are known 
risk factors for breast cancer and are associated with breast density. The risk of devel-
oping breast cancer increases with age and with the use of HRT. Breast density de-
creases with age but increases with the use of HRT [11]. Due to the possible effect on 
breast density measurements of the presence of breast cancer in the mammograms of 
cases at the third screen, separate analyses were conducted for the contralateral and 
ipsilateral breasts. For controls, one breast was randomly assigned to be the contrala-
teral side and the other breast the ipsilateral side. 

Two-sided independent samples t-tests were used to compare the mean age of cas-
es and controls at first and third screen, the mean densities for cases and controls at 
first screen, and the mean change in density from first to third screen for cases and 
controls. Logistic regression was used to investigate how density at first screen and 
change in density from first to third screen predicted case-control status. The results 
presented here were produced using only the MLO views, as only the MLO views 
were available for every subject at all three rounds of screening. 

3 Results 

The mean ages of the case and control groups at the first and third screens are shown 
in Table 1. How many of the cases and controls had ever used HRT is shown in Table 
2.  Mean age was not significantly different in cases and controls at the time of first 
screen (p = 0.45) or third screen (p = 0.40). The two groups are similar in terms of the 
number of subjects who had ever used HRT, and indeed a χ2 test with continuity cor-
rection applied found no evidence to reject the independence of HRT use and case-
control status (p = 1.00). 

Table 1. Age in years of cases and controls at first and third screen 

Screen Mean (SD) age 
Cases Controls 

First 57.2 (4.2) 56.3 (5.0) 
Third 63.7 (4.3) 62.7 (5.0) 

Table 2. HRT use of cases and controls 

HRT use Cases Controls 
Ever used 18 17 
Never used 12 13 
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The mean percentage density of the cases and controls at first, second and third 
screens is given in Table 3 and dot plots of the densities for the contralateral side are 
shown in Fig. 1. Mean density at first screen was not significantly different in cases 
and controls in either the contralateral side (p = 0.23) or the ipsilateral side (p = 0.37). 

Mean percentage density decreased from first to third screen in both the contrala-
teral and ipsilateral sides of cases and controls. The mean reduction in percentage 
density was significantly different for cases and controls in both the contralateral side 
(10.7 vs. 5.1, p = 0.02) and ipsilateral side (11.7 vs. 6.2, p = 0.04).  To illustrate the 
reduction in density, a scatterplot showing the percentage density in the contralateral 
side at first and third screen is shown in Fig. 2. 

Table 3. Percentage density at first and third screen of the contralateral and ipsilateral breasts 
of cases and controls 

Screen Mean (SD) percentage density 
Cases Controls 

Contralateral Ipsilateral Contralateral Ipsilateral 
First 36.5 (13.8) 36.0 (13.4) 32.6 (11.1) 32.9 (13.5) 
Second 31.4 (12.3) 31.3 (14.9) 29.2 (12.9) 29.1 (13.1) 
Third 25.8 (12.8) 24.4 (12.5) 27.5 (14.2) 26.7 (12.4) 

 
Fig. 1. Dot plots of percentage density of the contralateral breast at first, second and third 
screen. A horizontal line represents the mean for that plot. 
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Fig. 2. Scatterplot of percentage density of the contralateral breast at first and third screen 

The logistic regression model for the contralateral breast included age at third 
screen and HRT status alongside change in density from first to third screen as predic-
tors of case-control status. The output from the model can be seen in Table 4. Change 
in density made a significant contribution to the model (p = 0.02) and had an odds 
ratio of 1.09 (95% CI: 1.01-1.17). By the Cox & Snell R2 the model explained 11.5% 
of the variation in case-control status, and by the Nagelkerke R2 it explained 15.4%. 
The model correctly classified 63.3% of cases, however with a χ2 value of 14.9 and p 
= 0.06 the model only marginally escaped being rejected by the Hosmer–Lemeshow 
goodness-of-fit test. 

Table 4. Logistic regression model for the contralateral side 

Term Coefficient SE Wald statistic p Odds ratio 
(95% CI) 

Age 0.06 0.06 1.12 0.29 1.07 (0.95, 1.20) 
HRT use 0.00 0.56 0.00 1.00 1.00 (0.33, 3.01) 
Change in 
density 

0.09 0.04 5.16 0.02 1.09 (1.01, 1.17) 
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A similar logistic regression model was fitted for the ipsilateral side. The output is 
shown in Table 5. Again the change in density from first to third screen was signifi-
cant in the model (p = 0.04), with an odds ratio of 1.06 (95% CI: 1.00-1.12). This 
model performed better according to the Hosmer–Lemeshow goodness-of-fit test (χ2 
= 6.6 , p = 0.57), but explained less of the variation in case-control status as measured 
by the Cox & Snell R2 (8.9%) and by the Nagelkerke R2 (11.9%). The model correctly 
classified 56.7% of cases. 

Table 5. Logistic regression model for the ipsilateral side 

Term Coefficient SE Wald statistic p Odds ratio 
(95% CI) 

Age 0.06 0.06 1.07 0.30 1.07 (0.95, 1.20) 
HRT use -0.15 0.57 0.07 0.79 0.86 (0.28, 2.62) 
Change in 
density 

0.06 0.03 4.34 0.04 1.06 (1.00, 1.12) 

 
When logistic the regression models were fitted with density at first screen as an 

explanatory variable, the models were found not to be statistically significant. 

4 Discussion 

Mammographic breast density declined from first to third screen in both the contrala-
teral and ipsilateral breasts of cases and controls, with the mean reduction being 
greater for cases than controls. Furthermore, the reduction from first to third screen 
was associated with case-control status in a logistic regression model that included 
subject age and HRT use as confounding variables. No association was found be-
tween density at first screen and breast cancer risk for this group of women, even 
accounting for subject age and HRT use. 

The primary objective of this study was to test for the presence of an association 
between change in density and cancer risk. Such an association was found, with the 
results suggesting that increased risk was associated with a greater reduction in densi-
ty. This was not the result that would have been expected, as the existing literature on 
the subject [5-8] suggests either an association in the opposite direction or no associa-
tion. However, there are several limitations to the present study that restrict firm con-
clusions from being drawn. The sample size was small compared to other studies of 
change in percentage density and breast cancer risk [7,8], cases were not matched to 
controls and the selection of cases was not random. It has been suggested that analys-
es of breast density and breast cancer risk should always take account of age and body 
mass index (BMI) [10]. While information on the age of the subjects at screening was 
available, data on BMI was not. Furthermore, the information available on subject 
HRT use was limited.  Some variability in the results may be attributed to differences 
in positioning, compression and exposure of the breast in different screening rounds, 
as well as the subjective element in density estimation using Cumulus.  The introduc-
tion of automated volumetric methods of density estimation for full-field digital 
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mammography (FFDM) has the promise of reducing this variability, hence these 
technologies, once mature and once sufficient rounds of FFDM screening have been 
conducted, may help to further elucidate the relationship between change in breast 
density and breast cancer risk. 
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Abstract. Contrast-detail measurements were made at approximately weekly 
intervals for three months, for two full-field mammography systems with dif-
ferent types of detector. The measured threshold contrast values were found 
to be reasonably stable but with some random variation. The coefficient of 
variance was 8-10% for detail sizes 0.1 and 1.0mm, and 3-5% for detail sizes 
0.25 and 0.5mm. The output of both X-ray sets was also monitored, and 
found to vary within ±1% of the mean. The variation in threshold contrast is 
likely to be mainly due to variation of noise in the CDMAM images. Care 
should be taken when setting baselines and acceptable limits, so that meas-
ured changes in threshold contrast that are of the order of ±10% of the mean 
are not wrongly interpreted as significant changes in performance of a digital 
mammography system. 

Keywords. Image quality, threshold contrast, CDMAM. 

1 Background 

Contrast-detail measurements are widely used in Europe for the evaluation of image 
quality in digital mammography, as described in the European quality control proto-
col [1]. Under this protocol, multiple images of the CDMAM test object (Artinis, 
Nijmegen) are acquired and analysed using standard software available from the 
EUREF website, http://www.euref.org (CDMAM Analyser version 1.5.1). The errors, 
twice the standard error (2 SE), quoted in the output tables of the software, are based 
on repeated random sampling of 8, 16 or 32 images out of sets of 64 acquired on a 
single occasion, for each of four different full-field digital mammography systems [2]. 
Other previous work has also sampled large data sets acquired on one occasion [3, 4] 
or two occasions [5]. 

It is not clear whether these results give a realistic estimate of the errors of mea-
surement for contrast-detail measurements carried out at six-monthly intervals, as is 
standard practice in Europe for quality control purposes. Reproducibility of the paddle 
and test object positioning might have some effect on the reproducibility of results. 
To provide a more accurate estimate of the error, measurements were repeated at 
weekly intervals, on the assumption that the imaging system was stable over this time 
and that variations were due to measurement error. The results should provide a more 
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appropriate estimate of errors of measurement than those published previously [2-5]. 
It is suggested that these estimates of errors be applied to routine quality control  
measurements (but not that the measurements themselves be carried out at weekly 
intervals). 

2 Method 

The CDMAM phantom was positioned on the breast platform, with a 2cm thickness 
of polymethyl methacrylate (PMMA) above and below, and sixteen images were 
acquired on each of two systems, one with an amorphous selenium detector (Hologic 
Selenia Dimensions) and the other with caesium iodide-amorphous silicon detector 
(GE Essential). Measurements were repeated twelve times at weekly intervals. The 
same phantom was always used, and the same operator made all the measurements. 
The exposures were made in manual mode, with the same exposure parameters used 
every time. The exposure parameters were chosen by imaging a 5cm thickness of 
PMMA under automatic exposure control (AEC); the same kV, target and filter were 
used for the CDMAM images, and the nearest fixed mAs to that selected automatical-
ly for 5cm PMMA. 5cm was chosen because the CDMAM phantom with 4cm 
PMMA is equivalent to 5cm PMMA or a 6cm average breast. The same compression 
paddle (size 18 x 24cm) was used every time. Both the compressed breast thickness 
and the initial position of the phantom on the breast support table were the same for 
each set of measurements. The phantom was moved by a small distance, typically 
1mm, between image acquisitions, as specified in the test protocol. 

After acquiring each set of CDMAM images, the air kerma at the standard position 
was measured with an ion chamber to detect any variation in X-ray output. 

Raw images were obtained from each system for subsequent analysis. The 
CDMAM images were analysed using the CDMAM Analyser version 1.5.1 software. 
For the images of 5cm PMMA, the mean glandular dose (MGD) to a 6cm thick 
equivalent breast was calculated by the method of Dance et al [6]. 

3 Results 

Figure 1a, b, c, d shows the results of weekly contrast-detail measurements on the 
amorphous selenium system (Hologic Selenia Dimensions), for detail sizes 0.1, 0.25, 
0.5 and 1mm. Figure 1e, f, g, h shows the corresponding results for the caesium 
iodide-amorphous silicon system (GE Essential). There was some variation from 
week to week but most of the results lay within ±10% of the mean for the Dimensions 
and ±13% of the mean for the Essential. Variation was greater for the 0.1mm and 
1.0mm detail sizes than for the other details, as shown in Table 1. 
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Fig. 1. Threshold-contrast measurements for the 0.1, 0.25, 0.5 and 1.0mm detail sizes, for a 
Hologic Selenia Dimensions (a, b, c, d) and a GE Essential (e, f, g, h). Error bars are 2 SE 
(standard error). The “Achievable” level is defined in the European Protocol [1]. 
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Fig. 1. (continued) 
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Fig. 1. (continued) 

Contrast-detail curves for two sets of data for one system are shown in Figure 2. 
These curves were chosen to illustrate the maximum variation observed in the 
twelve data sets acquired. Similar differences were seen in the results for the other 
system. 
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Fig. 2. Contrast-detail curves for two sets of measurements, for a Hologic Selenia Dimensions 

The X-ray output showed much less variation over time. All the measured values 
were within ±1% of the mean. 

Table 1. Coefficient of variance (CoV) estimated from the analysis software and measured 
values for two different digital mammography systems 

Detail size 
(mm) 

CoV estimated 
from analysis 

software  

CoV measured: 
Hologic Selenia 

Dimensions 

CoV measured: 
GE Essential 

0.1 4% 8% 10% 
0.25 4% 3% 4% 
0.5 4% 5% 4% 
1.0 5% 9% 8% 

4 Discussion 

Although the conditions of measurement were standardised, the threshold gold thick-
nesses determined by contrast-detail measurements varied from week to week. In 
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most cases the values lay within a range of ±10% from the mean for the Hologic Se-
lenia Dimensions and ±13% for the GE Essential. The coefficient of variance was 
greater (8-10%) for the smallest and largest detail sizes (0.1 and 1.0mm), than for the 
0.25 and 0.5mm detail sizes (3-5%). It is clear from the contrast-detail curves shown 
in Figure 2 that points in the middle of the curve are likely to show less variation than 
those at the ends of the range. On the CDMAM test object, this corresponds to the 
smallest and largest details having fewer nearest neighbours whose values can be used 
in the curve-fitting. The software estimates a coefficient of variance of 4-5% for all 
detail sizes. This difference from the experimental results may be related to taking 
repeated smaller samples from a large pool of images, as has been suggested in earlier 
work [5]. 

Clearly an initial baseline value based on eight or sixteen measurements might not 
be suitable for setting a range (e.g. ±10%) within which subsequent measurements 
might be expected to lie, due to this observed variation. A value based on the mean of 
several sets of measurements would be more suitable in setting a baseline and range, 
such that values outside the range would indicate problems with the imaging perfor-
mance of a system. 

The X-ray output for both systems was stable to within ±1%, and the detector tem-
peratures were constant, so it seems likely that the variation in contrast-detail mea-
surements arises only from variation in random noise in the images of the CDMAM 
test object. This can be verified in future work using mathematical modeling of dif-
ferent digital mammography systems to generate large sets of simulated CDMAM 
images [7]. Experimental work on other digital mammography systems might also be 
worthwhile, as not all systems may be as stable in performance as those described 
here.  

These results suggest a need for further development to improve the reproducibility 
of image quality measurements. 

5 Conclusions 

Over a period of about three months, contrast-detail measurements for two different 
digital mammography systems showed no obvious trends, but results mostly varied by 
up to 10% from the mean value for an amorphous selenium system and by up to 
±13% for a caesium iodide-amorphous silicon system. Care should be taken when 
setting a baseline, and when interpreting a single set of measurements, as an increase 
or decrease within approximately ±10% or ±15% of the mean is unlikely to indicate a 
significant change in equipment performance. 
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Abstract. Stereoscopic displays are being considered for 3D breast
imaging applications. Characterization of the physical properties of the
display devices in terms of parameters of relevance for medical imaging
tasks is needed. Among the set of relevant characteristics of stereoscopic
displays, luminance noise introduced by the device has not been studied
so far. We present two methods for measuring spatial noise in stereo dis-
plays, one visual and one quantitative, and report a comparison between
them.We have applied bothmethods to a stereo-mirror display. The visual
method is based on the TG18-AFC pattern. The quantitative method re-
lies on the evaluation of the noise power spectrum (NPS) using high resolu-
tion images acquired with a photometric CCD camera. Bothmethods were
tested on different stereo display configurations. The visual results show
higher variability among observers compared to the 2D display mode. The
NPS shows peaks corresponding to the pixel and sub-pixel structure.

1 Introduction

With the advent of digital imaging and the recent advancements in display tech-
nology, stereoscopic display techniques are now being reconsidered and rapidly
being developed in several applications besides the medical field [1]. Stereoscopic
displays have also been proposed for breast imaging. In standard 2D digital mam-
mography lesions are hidden by underlying and overlying normal tissue, which
is projected in one single 2D image. Stereoscopic digital mammography can help
in unmasking lesions from normal anatomical background. This has been shown
to increase sensitivity and specificity [2,3]. Similar volumetric information can
be obtained with two orthogonal projections in standard 2D mammography, but
it has been shown [4] that, in the case of stereo imaging, the dose delivered is
lower, due to binocular summation by the human visual system. Stereoscopic
display techniques can also be used for the visualization of 3D medical sets. For
example in Ref. [5] stereo has been shown to improve detection performance of
lung nodules in CT data sets compared to other methods.

Methods for the characterization of 2D display systems have been extensively
analyzed [6,7]. However, methods for testing 3D stereo displays are only just
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now beginning to be developed. In particular, methods for noise and resolution
have not been addressed in the literature. In this work we discuss a spatial noise
characterization methodology as applied to a stereo-mirror display. Two different
methods to estimate the spatial luminance noise of a stereo display system are
used and compared: a visual method based on the use of the TG18-AFC pattern
[8] performed by 12 observers, and a quantitative method based on the evaluation
of noise power spectrum (NPS) and variance, σ2.

2 Methods

2.1 Display

The two methods were tested on a stereo-mirror display (courtesy of A. Abileah,
Planar Systems, Inc.). The system is schematized in Fig. 1. This device is based
on the separation of the two stereo views using linear polarization and consists of
two LCDs, a half-mirror, and passive cross-polarized glasses. The two LCDs have
an angular separation of 110◦ and the mirror is placed on the bisect plane between
the two displays. The image of the lower display is transmitted with no change
in polarization, whereas the image of the upper display is reflected by the mirror.
Through reflection the image gets polarized at 90◦ and mirrored. The right lens
(RL) transmits the bottom image and blocks the upper one, whereas the left lens
(LL) operates in the opposite way. Since the image of the top LCD is specular
due to reflection on the mirror, the top image has to be inverted before sending
it to the LCD. The images coming out of the glasses are reconstructed by the
observer in one 3D image through stereopsis. The display system requires an
alignment. This is done by looking at the same image on both displays (see Fig.1).
The tilt of the mirror is adjusted, by means of two screws located beneath the
mirror support, until the two images coincide.

The monitors are two identical 20′′ displays (PL201OM-BK, Planar). The
spatial noise is due to variations in luminance across the screen and to the pixel
structure. Each pixel is composed of 3 sub-pixels and inactive area connecting
them, as shown in Fig. 2.

2.2 Visual Method

In order to perform a visual analysis of noise in a stereo display, a visual exper-
iment was designed that provides a numerical score for different display config-
urations. Using the display described above, 6 test scenarios were created (see
Table 1). The user was asked to position his head at about 40 cm away from
the screen. The experiments were performed in a dark laboratory. Depending
on which scenario was being tested, one or both monitors were switched on, the
mirror was set in place, and the user wore polarized glasses. The TG18-AFC test
pattern [8], used to evaluate noise for 2D displays, was displayed. The pattern
is organized into 4 quadrants each with different signal sizes. Each quadrant
consists of 58 (59) squares for the top quadrants (bottom quadrants), containing
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Fig. 1. Set up of stereo-mirror display: two LCD monitors placed oriented at 110◦,
half-mirror on the bisect-plane, and passive cross-polarized glasses. The right eye will
see the mirrored 90◦ polarized image, whereas the left eye will perceive the image from
the bottom display (Planar Systems, Inc.).
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Fig. 2. a) Image of display acquired with high resolution CCD camera. b) Vertical and
horizontal profiles of top image.

signals. The user was asked to label which signals were visible in each of the
squares in the test pattern. After the user had finished the first 3 scenarios, the
test image was rotated to prevent the user from unconsciously memorizing the
signal locations, and thus skewing the results.

A total of 12 observers performed the test, 6 males and 6 females within the
age of 18-30 years, 50% of whom had corrected vision. No stereo visual check
was performed on the readers.

2.3 Quantitative Method

For the evaluation of NPS and σ2, all the elements of the stereoscopic system were
measured together, and left and right eye views were tested separately. The lumi-
nance noise was estimated using high-resolution images of a uniform pattern dis-
played on the stereo display. The images were acquired with a photometric CCD
camera (Lumetrix P144F,Westboro Photonics). The grey level was set to 230, the
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Table 1. Visual analysis setup configurations

Experiment bottom screen top screen mirror glasses

a pattern off
b pattern pattern x x
c pattern off x x
d pattern uniform x x
e off pattern x x
f uniform pattern x x

same value as the background of the test pattern used for the visual method. The
camera consisted of an array of 1392×1032 4.65 μmpixels coupled to a macro lens,
Nikon AF Micro-Nikkor (60 mm f/2.8D), with aperture set to f/11. This aperture
reduces the veiling glare inside the camera and maximizes the depth of field allow-
ing objects not exactly on the true focal plane to be captured with relatively good
sharpness. The camera was at a distance of 100 cm from the bottom display, on a
rail parallel to the bottom display, and it could move parallel to the display, hori-
zontally and vertically. This alignment ensured constant magnification within one
image (CCD plane) and between different images (across the display plane) (see
Fig. 3). A second alignment was needed to have the pixel arrays of the CCD and
display aligned. The displays support was tilted slightly, until the pixel columns
of the display were vertical on the CCD image.

The glasses were mounted 1 cm in front of the camera, and, in order to
facilitate switching between the two lenses, they were free to move parallel to
the display plane. The left lens (LL) is the one paired to the bottom screen
and the right lens (RL) is the one paired to the top screen. In order to reduce
cross talk between the two lenses, it is crucial that the polarization axes of the
lenses be parallel and orthogonal to the polarization axes of the images. This
was ensured by a level placed on the bow connecting the lenses.

Different configurations, listed in Table 2, have been used to measure the noise
of the stereo display. The measurements were performed in a dark laboratory,
to minimize direct illumination of the camera and reflection. The displays were
switched on 20 min before acquisition. A series of dark images were taken, which
were required by the software (Lumetrix RT32) supplied with the camera, to flat-
field correct the images.

The optimal focus setting was determined bymanually rotating the focus ring of
the lens until the image appeared visually in focus. This procedure had been tested
to be satisfactory for the noise evaluationmeasurement. The images were acquired
with the same software.The corrected luminancemapswere saved inASCII format,
and readwithMATLAB intomatrices of 1032×1392 pixels. The regions at the edge
of the CCD chip (64 pixels on each side) were discarded, resulting in an image of
968×1328 pixels. For each image the variance, σ2, was computed:

σ2 =

G∑

i=1

H∑

j=1

(I(i, j)− Ī)2 (1)
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Fig. 3. Setup used to estimate noise luminance: (left) side view and (right) front view

Table 2. List of different configurations used to measure NPS of the stereo display
system

Experiment bottom top mirror left lens right lens
screen screen LL RL

1 on
2 on on x x
3 on on x x
4 on x x
5 on x x
6 on x x
7 on x x

where G and H are the image dimensions, I(i, j) the luminance value for the
pixel of coordinates (i, j) and Ī is the mean luminance value of the image. The
variance was used to calculate the coefficient of variation, COV, defined as:

COV = 100σ/Ī (2)

The noise power spectrum, NPS, was used to quantify the frequency content of
the variations. The image was divided in square areas of 128×128 pixels, ROIs,
and the 2-dimensional Fast Fourier Transform (FFT) was applied to each ROI:

nps(un, vk) =
128∑

i,j=1

I(i, j)e−2iπ(uni+vkj) (3)

The NPS is defined as the average of the squared absolute value of the FFT of
each ROI [9]:

NPS(un, vk) =
(Δx)2

M · 128 · 128
M∑

m=1

|nps(un, vk)|2 (4)
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where Δx is the CCD camera pixel size, M is the number of ROIs and un, vk
are frequency components. The NPS was then normalized by dividing by the
relative signal power, i.e., σ2, and then frequency reorganized, and the 3 central
columns and rows were eliminated, which correspond to the zero frequency. In
order to have a lower limit for the noise measurements, the NPS of the CCD
camera was measured. Images of a uniform illuminated scene, generated with
an integrating sphere, were acquired. The luminance level of this had been set
to the same value used for the NPS measurement of the display, and measured
with a photometer.

3 Results

3.1 Visual Method

For the visual tests, the percentage of correct signal detection was calculated.
Each user was given four scores per test scenario, one for each quadrant of the
test pattern. Fig. 4(a) shows that in the first quadrant almost all users could
see all the signals. However, in quadrant 2, most users begin to show a decline
in signal detection accuracy. The results for the second quadrant show a good
spread, see Fig. 4(a), separately plotted in Fig. 4(b). The overall group scores
for each different scenario are shown in Fig. 4(b). The observer variability for
stereo viewing increases compared to the 2D mode (configuration a in Table 1).
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Fig. 4. a) Percentage of signal detection for each quadrant respect to the first quadrant.
The different curves indicate the different setups used. b) Percentage of correct signal
detection for quadrant 2 as a function of different setups. The edges of the box indicate
the 25% and 75% percentage of correct detection, the whiskers extend to the most
extreme data points, not considered outliers. The outliers are shown with markers.
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3.2 Quantitative Method

First the σ2 and NPS were estimated for different regions across the bottom
display. Since the luminance varies across the display, each image was corrected
with an offset to match one image chosen as reference.

The camera was placed in the center of the display and images of the different
setups listed in Table 2 were acquired for the NPS evaluation. The results are
shown as 1D traces along the 64th pixel row and column (see Fig. 5), representing
the NPS in the x and y direction. The NPS peaks at a frequency values of
39 mm−1, 78 mm−1 and 117 mm−1, corresponding to the size of the pixel and
subpixels of 26 μm, 13 μm and 8.5 μm. The 1D NPS traces of the CCD are
shown in Fig. 6(a).
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Fig. 5. 1D traces along the 64th pixel row and column, representing the NPS in the x
(a) and y (b) direction for different setups

0 20 40 60 80 100 120
10

−5

10
−4

10
−3

frequency (mm−1)

lo
g1

0(
N

P
S

)[
m

m
2 ]

NPS x−direction
NPS y−direction

(a)

10 15 20 25 30 35 40
40

50

60

70

80

90

100

COV

P
C

(1,a)

(2,b)

(3,c)

(4,d)

(5,e)

(b)

Fig. 6. a) Noise power spectrum of CCD camera. b) Comparison visual and quanti-
tative results: on the y-axis the percentage of correct signal identification (visual), on
the x-axis the coefficient of variation (quantitative).
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3.3 Discussion

The visual noise results relative to quadrant 2 are compared with the quantitative
results in Fig. 6(b). The data appear uncorrelated, suggesting that the visual
test is not applicable to stereo-systems. We speculate that in the visual method
the observer suffers from signal cross talk since the head is free to move, whereas
when the camera is used, the lenses are aligned with the axes of polarization.
If this holds the two methods should be correlated in the 2D mode. This could
be tested with different displays. Our analysis needs to be extended to different
stereo displays technologies, as well as to a range of luminance levels.

4 Conclusions

The aim of this study was to assess methodologies to estimate spatial noise in
stereo display systems. Two methods, visual and quantitative, have been applied.
Both methods appear to be uncorrelated, which implies that the visual method
might not be applicable to stereo display systems. More research is needed to
characterize noise, in particular for mammography stereo devices. In future work
the noise characterization will be complemented with a study of resolution of
the display and CCD system.

Acknowledgments. The authors would like to thank Rachel Wilk for the as-
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Abstract. Mammographic density, defined as the proportion of the breast area 
in a mammogram that contains fibroglandular tissue, is associated with risk of 
breast cancer. However, measures of mammographic density are subject to var-
iation in the underlying imaging process and in the assessments of observers. 
Automatic volumetric measures of breast density remove much of this variabili-
ty, but their association with risk is less well established. We present density 
measurements produced using area-based visual analogue scales (VAS) and by 
volumetric assessment software (QuantraTM, Hologic Inc.) in the PROCAS 
study. The distributions of VAS scores (n = 22 327) and volumetric quantities 
(n = 11 653) are given, as are their relationships for subjects with results by 
both (n = 11 096), but these are not directly comparable as one is area-based 
and the other volumetric. Inter-observer variability in visual area-based estima-
tion is examined by a scatter plot matrix. 

Keywords: Breast density, area-based measures, volumetric measures, inter-
observer variation, Quantra. 

1 Introduction 

The association between high mammographic breast density and increased risk of 
developing breast cancer is well established for area-based measures of density [1]. In 
such measures, density is usually defined as the proportion of the breast area, as  
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projected on a mammogram, that contains radiopaque fibroglandular tissue rather than 
radiolucent adipose tissue. Although area-based measures of breast density have been 
shown to be related to breast cancer risk, they do have drawbacks. Firstly, as density 
is measured from the two-dimensional projection of the breast on the mammogram 
image, measurements are subject to change if the breast is positioned or compressed 
differently. Secondly, many area-based methods of measuring breast density depend 
upon the subjective assessments of a human observer. Such area-based methods in-
clude classification schemes such as the American College of Radiology Breast Imag-
ing Reporting and Data System (BI-RADS) breast composition categories [2], Boyd 
categories [4], visual assessment on a continuous percentage scale and semi-
automated interactive thresholding methods such as Cumulus (Sunnybrook Health 
Sciences Centre, Toronto, Canada) [3]. 

Volumetric measures of breast density aim to improve upon area-based measures 
by estimating the volume of dense tissue in the breast rather than its projection on a 
mammogram. Such measures should provide more precise estimates of the amount of 
dense tissue and therefore, as breast cancer generally originates in such tissue, could 
more accurately describe the relationship between density and risk. However, volu-
metric methods are a recent development and are yet to surpass area-based density 
measures as predictors of breast cancer risk [16], which may be due to refinements in 
methodology being required, or due to the relatively small amount of follow-up data 
available to date. Volumetric methods can provide data on the quantity of glandular 
tissue independently of the quantity of fatty tissue in the breast, hence they may also 
prove to be a more consistent indicator of risk than area-based measures, as there is 
evidence that fluctuations in a woman’s weight are reflected in the amount of fat in 
their breasts [7]. In addition, many volumetric methods are fully automated and so 
also eliminate observer variability from density estimates. Volumetric measures can 
be divided into those in which the signal from the mammography unit, in terms of the 
pixel values of a digitised film or unprocessed (“raw”) full-field digital mammogra-
phy (FFDM) image, is calibrated using differing thicknesses of tissue equivalent ma-
terials [8-12], and those where an imaging physics model is employed, such as Stan-
dard Mammogram Form [13] for screen-film mammography, and QuantraTM [14] and 
VolparaTM [15] for FFDM. 

Research into the measurement of breast density for breast cancer risk prediction 
takes place against a backdrop of wider research into the estimation of breast cancer 
risk. In particular, large-scale studies such as the Predicting Risk Of Cancer At 
Screening (PROCAS) study [5-6], based in Manchester, UK, and the Swedish Karma 
study [17] are attempting to predict breast cancer risk on an individual level for pa-
tients attending breast screening. Although current risk models typically do not in-
clude breast density as a component of risk, there is some evidence that they would 
benefit from doing so [18-19]. In the current work preliminary density results from 
the PROCAS study, both area-based and volumetric, are presented. 
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2 Method 

2.1 The PROCAS Study 

The PROCAS (Predicting Risk Of breast Cancer At Screening) study is collecting 
risk information at the time of routine breast screening, calculating individual breast 
cancer risk from this information and feeding back the calculated risk to the patient, 
with the aim of facilitating risk-reducing interventions where appropriate. The study 
aims to recruit 60 000 participants from those invited to screening by the Greater 
Manchester Breast Screening Programme, part of the UK NHS Breast Screening Pro-
gramme, and has to date recruited over 38 000. Those who consent to join the study 
fill in a questionnaire, from which data on their family history of breast cancer, and 
lifestyle and hormonal risk factors is extracted and used to estimate their risk of de-
veloping breast cancer using the Tyrer-Cuzik model [20]. Breast density data is ob-
tained using the screening mammograms, and approximately 10% of those recruited 
provide a saliva sample for genetic analysis. Currently the study feeds back risk in-
formation to those women classified as high risk, defined as having a Tyrer-Cuzick 
10-year risk of at least 8% or a 10-year risk of at least 5% and area-based breast den-
sity in the top 10% among study participants, and to a subset of those deemed to be at 
low risk, defined as having a 10-year risk of less than 1.5% and area-based density of 
10% or lower. 

2.2 Density Measurement in PROCAS 

Area-based density estimation in PROCAS is provided by visual assessment, recorded 
on a visual analogue scale (VAS). Two mammogram readers from a pool of 13 radi-
ologists and advanced practitioner radiographers independently view a subject’s 
mammograms and mark their percentage density estimates on a set of 10cm horizon-
tal lines labelled 0% and 100% at the ends. Each of the two readers estimates the den-
sity for the mediolateral oblique (MLO) and craniocaudal (CC) views of each breast. 
The VAS readings are scanned and automatically converted to percentages. Values 
are averaged across the four views, and the two readers' averages combined to pro-
duce a single estimate for each subject. Assignment of readers to subjects is not pre-
determined, and depends on workflow. Reading is blind in the sense that readers do 
not know the identity of the second reader and cannot see their results. 

Volumetric density estimation is provided by the assessment software QuantraTM 
(Version 1.3; Hologic Inc.). Raw FFDM mammogram images from screening are 
retained and processed by QuantraTM. Breast volume, glandular tissue volume and 
percentage density (their ratio) are given per breast rather than per individual view, 
and the average of the results for the two breasts is then taken as the single QuantraTM 
percentage density estimate. 
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To aid the illustration of results from the methods, only VAS results for FFDM 
mammograms are presented here. It has been observed in the PROCAS study that 
VAS results for screen-film mammography tend to be lower than those for FFDM. 
We present the VAS results for 22 327 subjects and QuantraTM results for 11 653 
subjects. The distribution of these density estimates is displayed, as is the relationship 
between the VAS and QuantraTM measures for the 11 096 subjects that have results by 
both methods. To illustrate the inter-reader variation present in the VAS density esti-
mates, a scatter plot matrix of VAS estimates by individual readers is shown. 

3 Results 

The histograms of results produced by VAS and QuantraTM displayed in Fig. 1 show 
that the VAS density estimates take a much larger range of values than those pro-
duced by QuantraTM, with the VAS estimates tending to take lower values: the median 
VAS density is 21.38% (IQR: 12.12-33.38) and the median QuantraTM density is 
15.50% (IQR: 13.00-19.00). For QuantraTM gland volume and breast volume the me-
dians are 89.0 cm3 (IQR: 63.0-126.0) and 556 cm3 (IQR: 370.5-805.0) respectively. 

 
Fig. 1. Histograms of VAS density estimates and QuantraTM density, breast volume and gland 
volume estimates 

Fig. 2 contains pairwise scatterplots of the four variables from Fig. 1 for subjects 
with both VAS and QuantraTM density results. As one would expect from volumetric 
and area-based measures, QuantraTM density broadly increases with VAS density, and 
in a non-linear manner. Also in line with expectations is QuantraTM gland volume 
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Fig. 3. Scatter plot matrix of VAS density estimates by individual readers, labelled 1 to 13. Plot 
(i,j) contains all subjects whose density was estimated by both Readers i and j. Each plot con-
tains the line of perfect concordance. 

4 Discussion 

While the plots in Fig. 1 and Fig 2 show different distributions of breast density esti-
mates by the area-based VAS and the volumetric QuantraTM, it is our assertion that a 
direct comparison is inappropriate. A trivial example of the difference between area-
based and volumetric density measurement is shown in Fig. 4, where the two smaller 
cubes represent regions of gland in an otherwise fatty breast. In a projection in which 
the glandular regions completely coincide (A) an area-based method will show one 
square unit of dense tissue, whilst in a different projection of the same breast (B), the 
measured area would be two square units. A volumetric measure would always yield 
a volume of two cubic units of glandular tissue. In reality the situation is compounded 
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by variations in shape and density, but the limitations of attempting to derive a ma-
thematical relationship between volumetric and area-based approaches to density 
measurement are apparent from this simple example. 

Area-based density estimates are based on the relative areas of gland and of the 
whole breast in a projection on a two-dimensional image, and are thus subject to vari-
ation in positioning, compression and imaging conditions. Volumetric methods such 
as QuantraTM estimate the absolute volume of glandular tissue and of the whole breast 
and should be subject to less variation, more accurately reflecting breast composition. 

 

Fig. 4. Example of two cubic regions of gland in an otherwise fatty cubic breast 

The departures from the lines of perfect concordance in Fig. 3, demonstrate the in-
ter-reader variability present in the VAS results. To account for this variability, we 
have developed methods of making VAS readings comparable across a set of readers 
through calibration to the overall distribution across all readers. This will be applied 
to density data from the PROCAS study. Although automatic volumetric methods of 
assessing density do not have to contend with inter-observer variability, association 
between such methods and breast cancer risk requires validation. Data from the 
PROCAS study will be used for this purpose when available in sufficient quantities. 
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Abstract. We performed a study to assess the potential value of absolute and 
relative measures of area and volumetric breast density in predicting breast 
cancer risk. A case-control study was performed. The raw mediolateral-oblique 
(MLO) view digital mammography (DM) images of 106 women with unilateral 
breast cancer and 318 age-matched controls were retrospectively analyzed. The 
unaffected breast of the cancer cases was used as a surrogate of higher cancer 
risk. For each image, area and volumetric breast density measures were 
estimated using fully-automated software. The performance of the density 
metrics to distinguish between cancer cases and controls was assessed using 
linear discriminant and ROC curve analysis. Absolute measures of dense tissue 
content had stronger discriminatory capacity (AUCs=0.65-0.67) than percent 
density (AUCs=0.57). Shape-location features also showed modest 
discriminatory power (AUC=0.56-0.65). A combined area-volumetric model 
was able to outperform (AUC=0.70) any single-feature model. Absolute 
measures of fibroglandular tissue content were seen to be more discriminative 
than percent density estimates, indicating that total fibroglandular tissue content 
may be more reflective of cancer risk than relative measures of density. Our 
results suggest that area and volumetric breast density measures could be 
complementary in breast cancer risk assessment. 

Keywords: Volumetric breast density, digital mammography, breast cancer risk.  

1 Introduction 

Breast cancer is the most commonly diagnosed cancer in women and is the second 
leading cause of cancer death in women in the United States [1]. Work by Gail et al. 
has shown that several factors are associated with an increased risk for developing 
breast cancer, such as current age, age at menarche, age at first live birth, and number 
of first-degree relatives with breast cancer [2], which forms the basis of the standard 
model presently used by the National Cancer Institute (NCI) for assessing breast 
cancer risk in the general population. However, while this model has been shown to 
work well at the population level in predicting group-wise cancer rates, it has only a 
modest discriminatory capacity at the individual level in identifying which women 
will eventually develop breast cancer, with a reported area under the receiver 
operating characteristic (ROC) curve (AUC) of 0.58 [3]. Increased knowledge of 
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individual risk is therefore critical to the improvement of patient management with 
regards to appropriately personalized screening recommendations [4] and 
preventative strategies [5]. 

Beginning with work by Wolfe et al., multiple studies have established that 
mammographic breast density, the relative amount of fibroglandular tissue in the 
breast as seen through mammography, is a strong, independent risk factor for breast 
cancer [6, 7]. Previous work investigating the incorporation of area breast percent  
density as a predictor of breast cancer risk to the Gail model found that addition area 
breast percent density lead to only a marginal improvement of discriminatory capacity 
[8]. However, while the majority of these studies have focused on assessing breast 
cancer risk as a function of the relative amount, or percentage, of dense tissue in the 
breast, recent studies have also suggested that absolute measures of the dense tissue 
content should also be assessed in addition to relative measures of breast density [9].  

Breast density has been most commonly assessed subjectively through either visual 
categorization [10] or via semi-automated thresholding methods [11]. Research into 
the creation of repeatable, fully automated measures of breast density from full-field 
digital mammograms (FFDM) is ongoing [12, 13]. Area-based measures of breast 
density are effectively estimates of fibroglandular tissue content measured from a 
projection image of the breast, and it has been suggested that such measures may not 
properly measure the actual amount of fibroglandular tissue content in the breast[14]. 
Volumetric measures have been more recently proposed and are shown to provide 
orthogonal information about cancer risk when compared to the Gail risk factors [15]. 
Area and volumetric measures are known to have only moderately strong correlation 
to one another [16], further indicating the existence of a complimentary role. A 
recently emerging hypothesis is that volumetric measures of density may be more 
indicative of breast cancer risk than the area-based measures [17], as volumetric 
estimates may allow for more accurate assessment of the total fibroglandular tissue 
content of the breast [14]. Figure 1 illustrates two cases with similar volume percent 
density scores and different area percent density scores. 

In this study we compare the potential utility of area and volumetric estimates of 
fibroglandular tissue content in breast cancer risk assessment. Both absolute and 
relative measures are considered. A retrospective case-control study is performed, 
using the unaffected breast of the cancer cases as a surrogate of cancer risk. The 
performance of the area and the volumetric density measures is assessed using linear 
discriminant classification and ROC curve analysis. A multivariable model using 
feature-selection is also assessed in order to evaluate the complimentary role, if any, 
of the area and the volumetric breast density estimates in assessing breast cancer risk. 
The results of this investigation could have significant implications on the 
implementation of breast density risk stratification in clinical practice. 

2 Methods 

The raw (i.e., “For Processing”) mediolateral-oblique (MLO) digital mammography 
(DM) images from 106 women with unilateral breast cancer and 318 age-matched 
controls were retrospectively collected and analyzed under Health Insurance 
Portability and Accountability Act (HIPAA) guidelines and Institutional Review  
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[19] method for digital mammography, which seeks to quantify a volumetric estimate 
of breast density from an acquired mammographic image based on the x-ray 
attenuation properties of fibroglandular and adipose tissue. QuantraTM provides 
estimates of fibroglandular tissue and whole breast volume as well as a volumetric 
percent density score (VPD%).  

As the breast density metrics tend to follow a log-normal distribution, all metrics 
considered in this work are log-transformed before being entered into the model. The 
strength of the association between the area and volumetric density measures was 
assessed by linear regression and Pearson’s correlation, both for the absolute tissue 
content estimates and percent density. Student’s paired t-test was used to determine if 
there are systematic differences between the 2D and 3D measures. The discriminatory 
capacity of each of the features relative to cancer status was assessed using leave-one-
woman out cross-validation of a predictive, linear discriminant model (LDA) and 
Receiver Operating Characteristic (ROC) curve analysis. The area under the curve 
(AUC) was computed in order to assess LDA performance. Finally, the performance 
of a combined model incorporating area and volumetric density features selected via a 
linear stepwise feature selection [20] stage was compared to individual feature 
classifier performance in order to determine if area and volumetric descriptors of 
breast density provide complementary information and improve the discriminatory 
capacity of predictive models of cancer risk. 

Table 1. Receiver Operating Curve (ROC) performance analysis of the area and volumetric 
density features in classifying cancer cases versus controls (univariate analysis). Metric names 
and associated area under the ROC curve (AUC) are reported. All AUCs were found to be 
statistically significant (p<0.05). 

Metric AUC 

Dense Area 0.65 

Breast Area 0.67 

Area PD% 0.57 

Compactness 0.55 

Eccentricity 0.56 

Distance from skin-line 0.66 

Dense Volume 0.67 

Breast Volume 0.64 

Volume PD% 0.57 

3 Results 

Area and volumetric estimates of breast density were found to be significantly 
correlated (p<0.001). Area and volumetric estimates of absolute fibroglandular tissue 
content were found to be more strongly associated (r=0.73) than percent density  
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Fig. 2. ROC performance plots of the area percent density (PD%) (dash-dot), the combined 
area-volumetric LDA model (solid) and reference AUC=0.5 line (dotted). All AUCs were 
found to be statistically significant (p<0.05). 

estimates (r=0.62). Paired Student’s t-tests indicated that area and volume methods, 
both the absolute and the percent density measures, are different (p<0.001). 

When comparing the performance of the univariate LDA classifiers to distinguish 
between cancer cases and controls, the absolute measures of dense tissue content 
outperformed the percent density measures for both the area and volumetric density 
assessment methods (Table 1), with dense tissue volume demonstrating the highest 
overall performance (AUC=0.67). Total breast size also was able to distinguish cancer 
status, regardless of whether breast area (AUC=0.67) or volume was considered 
(AUC=0.64). Each of the three area shape-location features considered in this work 
(i.e., compactness, eccentricity and distance from skin-line) were able to distinguish 
cancer status to some degree, with the location feature, e.g., distance from skin-line,  
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showing the strongest discriminatory capacity (AUC=0.66).  When the feature-set 
was considered in aggregate to create a multivariable model, stepwise linear feature 
selection choose a total of four features from the ones in Table 1 as being statistically 
independent (p<0.01): Dense tissue area, dense tissue volume, compactness and 
distance from skin-line. Performance of the combined LDA model comprised of these 
four features showed improved discrimination in assessing cancer status (AUC=0.70; 
Figure 2) as compared to any of the single feature models. 

4 Discussion and Conclusion 

In this study, we have evaluated the discriminatory capacity of fully-automated area 
and volume-based measures of breast density in cancer risk assessment. When 
considered individually, area and volume measurements show comparable 
discriminative capacity for distinguishing cancer status, regardless of whether relative 
percent breast density or absolute breast density estimates. Furthermore, absolute 
measures of fibroglandular tissue content were seen to be more discriminative than 
percent density estimates, both for area and volumetric assessments of breast density. 
These results indicate that the total amount of fibroglandular tissue volume may be 
more reflective of cancer status than the relative content.  

Shape-location features of the area based dense tissue segmentation were shown to 
have some discriminatory capacity for cancer status, in particular the distance of the 
dense tissue segmentation from the skin line. This implies that the spatial location of 
the dense tissue within the breast may play a role in overall breast cancer risk. Future 
work will look to further analyze this finding, as well as further in investigating and 
quantifying the relative individual contributions of area, volume, and morphometry in 
breast cancer risk prediction. 

Interestingly, while there did not appear to be a difference in the performance of 
the area and volume based density measures when considered individually, the use of 
stepwise feature selection showed that a combined area-volume model considering 
both total fibroglandular volume and area, as well as dense tissue shape and location, 
outperformed any of the single-feature models, indicating that the volumetric and area 
descriptors of dense tissue may play complimentary roles in assessing breast cancer 
risk, with the combination model having an AUC of 0.70. This indicates that a 
combined model considering both volume and area breast density may be most 
beneficial in terms breast cancer risk prediction. Future work will seek to validate 
these findings with larger clinical studies and to incorporate these measures with other 
known risk factors for breast cancer into breast cancer risk prediction models. 
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Abstract. We propose an automated segmentation method for estimating the 
fibroglandular (i.e., dense) tissue in breast MRI. The first step of our method is 
to segment the breast as an organ from other imaged parts through an integrated 
edge extraction and voting algorithm. Then, we apply the nonparametric non-
uniform intensity normalization (N3) algorithm to the segmented breast to 
correct bias field which is common in breast MRI. After that, fuzzy C-means 
clustering is performed to categorize the breast tissue into two clusters, i.e., 
fibroglandular tissue and fat. The automated segmentation results are compared 
to manual segmentations, verified by an experienced breast imaging radiologist, 
to assess the accuracy of the algorithm, where the Dice’s Similarity Coefficient 
(DSC) shows a 0.73 agreement in our experiments. The benefit of the bias 
correction step is also shown through the comparison with the results obtained 
by excluding the bias correction step. 

Keywords: Breast segmentation, fibroglandular tissue segmentation, breast 
MRI. 

1 Introduction 

Mammography has been the standard image modality for breast cancer screening, 
where the percentage density (PD%), which measures the relative amount of 
fibroglandular tissue in the breast as seen mammographically, is an established 
independent image-derived risk factor for breast cancer risk assessment [7, 8]. Since 
mammographic imaging is the 2D projection of 3D breast structures, the PD% 
estimation suffers from the tissue superposition problem and is also sensitive to 
certain imaging properties (e.g., body position, compression level, and detector 
settings, etc.), which may impact the resulting estimation of cancer risk [1]. Breast 
magnetic resonance imaging (MRI) provides 3D scanning and has emerged as an 
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effective modality for the clinical management of breast cancer [12]. Studies also 
indicate that the percentage of fibroglandular tissue (FT%) computed in breast MRI is 
correlated to mammographic breast PD% [3, 4, 5, 6], which suggests that breast MRI 
may also play a role in breast cancer risk prediction. To estimate the FT% in breast 
MRI, accurate segmentation of the fibroglandular tissue from the breast is a 
fundamental step.  

Fibroglandular tissue segmentation in breast MRI is challenging in several aspects. 
First, the fibroglandular tissue appears only within the breast; hence, segmenting the 
breast as an organ from the remaining parts of the MR images is critical, which is done 
mostly by manual or semi-automated delineation method in previous work. Second, 
fibroglandular tissue may present anywhere over the breast with varying amounts and 
appearances, which is hard to model by computational segmentation algorithms. Third, 
within the segmented breast region in MR images there are no obvious anatomical clues 
associated with the fibroglandular tissue that may potentially serve as contextual 
information to aid identifying the fibroglandular tissue. In addition, the bias field is 
common in breast MRI where the intensity inhomogeneity may considerably affect the 
appearance of tissue properties. The problem of automated fibroglandular tissue 
segmentation has received little attention in the literature to date [1]. In addition to the 
qualitative estimation of the amount of fibroglandular tissue by visual assessment [15], 
most previous studies rely on semi-automated segmentation methods such as interactive 
thresholding [3, 5] or clustering [2, 4, 6]. Fuzzy C-means (FCM) has been used where 
the number of clusters is either interactively determined by users [4] or based on initial 
intensity range assumptions followed by interactive adjustments [2]. It is known that 
visual assessment produces subjective results and interactive methods introduce inter- 
and intra-reader variability [2, 3, 4, 5, 6]. In dealing with the intensity inhomogeneity,  
 

 

Fig. 1. Proposed algorithm steps for fibroglandular tissue segmentation. (a) A breast MRI slice. 
(b) Segmented breast. The darker regions are the fibroglandular tissue. (c) After performing 
bias field correction. (d) The segmented fibroglandular tissue. 
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FCM, N3 [9], and CLIC [10] algorithms have been recently tested for breast MR 
images [1], where different combinations of these algorithms yield varying 
performance, which is based on the visual evaluation by radiologists. 

In this work, we propose a fully automated method for fibroglandular tissue 
segmentation. The method consists of three algorithmic steps: breast segmentation, 
bias field correction, and clustering-based fibroglandular segmentation, all are fully 
automated and no manual interaction is needed at any step of our method. In the 
experimental evaluation, segmentation accuracy is reported on the agreement of the 
algorithm- and manual-generated results from an experienced breast imaging 
radiologists using the Dice’s Similarity Coefficient (DSC). We also compare the 
segmentation accuracy between applying and excluding the bias correction step, to 
demonstrate the importance of the bias correction step. 

2 Methods 

The three main steps of the proposed segmentation method are shown in Figure 1. 
All of the three steps are fully automated. The first step is to segment the breast as an 
organ from other imaged parts in breast MR images, which is implemented based on 
the integrated edge extraction and voting algorithm previously reported in [11]. This 
step is critical to the fibroglandular tissue estimation because it precludes the 
interferences coming from the non-breast regions [14]. Second, we further process 
the segmented breast by applying the nonparametric non-uniform intensity 
normalization (N3) algorithm [9] to correct bias filed. This way the intensity 
inhomogeneity is removed or reduced and as a result, there is better discrimination 
between the intensity ranges of the different tissues, corresponding to the 
fibroglandular tissue and fat, respectively. Attributed to the first two steps in breast 
segmentation and intensity inhomogeneity correction, we are allowed to predefine 
the number of clusters to be equal to two for the subsequent clustering step, where 
we guide the fuzzy C-means (FCM) algorithm to divide the breast into two broad 
intensity-based clusters: fibroglandular tissue and fat. Since fibroglandular tissue 
appears darker than fat in the non-fat-suppressed breast MR images, we can select 
the cluster that has a lower average intensity value as the segmented fibroglandular 
tissue from the two clusters. 

3 Results 

We use 10 3D bilateral MRI cases selected from a high-risk screening population 
[13], with cancer-unaffected, T1-weighted, non-fat-suppressed imaging in sagittal 
view. The 10 cases are randomly selected from the sets of ACR Breast Imaging 
Reporting and Data System Atlas (BI-RADS) density categories 3 and 4; hence these 
breasts have relatively high fibroglandular tissue density. There are 56 slices for each 
scan, resulting in 10x56=560 2D MRI slices used in the validation experiments.  
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Women in our study were imaged prone in a 1.5T scanner with dedicated surface 
breast coil; matrix size: 256×256; slice thickness: 2-3.5mm; flip angle: 20°. The 
algorithm-generated fibroglandular tissue segmentation results are compared with 
manually segmented results, confirmed from an experienced breast imaging 
radiologist, which are considered as ground truth here for validation purposes. The 
manual fibroglandular tissue segmentation is aided by an in-house developed 
interactive tool, where the operator first selects one or multiple region(s) of interest 
outlining the rough region of the fibroglandular tissue in the breast and then tunes an 
intensity threshold to determine the segmentation of fibroglandular tissue.  

The segmentation accuracy is based on assessing the agreement between the 
algorithm- and manual-generated segmentation in terms of the Dice's Similarity 
Coefficient (DSC). We also compare the segmentation performance between applying 
and excluding bias correction (i.e., step 2) to evaluate the benefit resulting from the 
N3 algorithm. Table 1 lists the volumetric DSC performance for each of the 10 cases 
in terms of applying and excluding step 2. Overall we achieve an average 
segmentation accuracy of DSC=0.73 when step 2 applied and the accuracy decreases 
to 0.70 when step 2 is excluded. This suggests improved segmentation due to the bias 
correction step. To further illustrate the segmentation performance, Fig. 2 shows the 
slice-wise DSC for each of the 10 cases, where the accuracy is also compared 
between applying and excluding step 2. It is observed that in general the segmentation 
accuracy is relatively low for boundary slices compared to the central slices. Selected 
segmentation examples are shown in Fig. 3 with the comparison to corresponding 
manual segmentations. As can be seen, the automated segmentation results are 
generally accurate except for a small area near the top right corner of the breast where 
the intensities of some fat tissue fall in the range of fibroglandular tissue. 

Table 1. Segmentation performance (DSC) for the 10 cases 

Case #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average 
FCM with Bias 

Correction 
0.70 0.62 0.64 0.90 0.78 0.74 0.78 0.66 0.71 0.77 0.73 

FCM without 
Bias Correction

0.63 0.49 0.63 0.84 0.77 0.73 0.77 0.64 0.68 0.77 0.70 

4 Discussion and Conclusion 

We propose a fully-automated method for fibroglandular tissue segmentation in breast 
MRI, which includes three main algorithm steps. The first two steps, namely breast 
area segmentation and intensity normalization, are important in the sense that they 
maximize the preclusion and reduction of a variety of interferences such that we can 
directly pre-determine the number of clusters (e.g., 2) for the subsequent FCM 
clustering algorithm. Our method is validated by 10 3D MRI scans, on a total of 560 
2D MRI slices, and experimental results demonstrate that the proposed method is able 
to produce reasonable fibroglandular tissue segmentation. It is also shown that the N3 
algorithm improves the segmentation accuracy from 0.70 to 0.73 for the 10 cases. 
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Fig. 2. Slice-wise segmentation performance (DSC) for each of the 10 cases, which is also 
shown in terms of applying or excluding bias correction (i.e., step 2) 
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Fig. 3. Segmentation examples with the comparison to manual segmentation. Each row shows 
for one case example. (a) Segmented and bias corrected breast. (b) Contour (green) of the 
segmented fibroglandular tissue. (c) Final automated segmentation. (d) Manual segmentation. 

As observed in Fig. 2, segmentation for the superior/inferior slices is relatively less 
accurate compared to the central slices. We attribute this result mostly to the signal 
attenuation and the strong noise effect in the boundary slices. Specific pre- or post-
processing may be applied to those slices, as part of future work, to improve 
segmentation.  
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The current segmentation by FCM is based on intensity information. As can be 
seen from the examples shown in Fig. 3, some false positive segmentation results 
indicate that intensity information alone may not be fully adequate to sufficiently 
discriminative in identifying the fibroglandular tissue versus fat in breast MR images. 
Additional tissue/anatomical properties, such as relevant tissue priors, may be useful 
to become incorporated in the segmentation algorithm to improve segmentation. 

Bias field is a major factor to accommodate in fibroglandular tissue segmentation 
for breast MRI. Bias field impact the intensity distribution in breast MR images and 
therefore the FCM may suffer from the consequence of the bias field. While the N3 
algorithm is used in this study, we will continue to test other MRI bias correction 
algorithms and compare the resulting segmentation performance. 

In future work, we also plan to further evaluate the performance of our algorithm in 
larger datasets and also compare the segmentation accuracy to readers’ inter-reader 
variability.  

Breast MRI allows for more accurate estimation of the true (e.g., 3D) amount of 
fibroglandular tissue in the breast and our proposed automated method is an essential 
step for quantitative segmentation of the fibroglandular tissue in breast MRI. Based 
on the segmentation results, it is straightforward to derive a volumetric percentage of 
fibroglandular tissue (FT%), which may ultimately aid in clinical breast cancer risk 
estimation. 
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Abstract. Breast density is a key component of risk assessment for personalised 
screening, necessitating robust, repeatable measures. The Standard Attenuation 
Rate (SAR) enables the quantification of breast tissue radiodensity at each pixel, 
relative to the attenuation of a reference material, so may be used as a measure of 
volumetric breast density. A major complication is quantification of tissue in the 
periphery of the breast, the (often substantial) region between the skin boundary 
and the point at which the breast occupies the entire distance between the plates, 
since the thickness is governed by the shape of the compressed breast, rather than 
the separation of the plates. We present a method to measure the compressed 
shape from the image, hence the thickness at each point in the periphery. The 
method exploits the vastly different attenuation of the various breast tissues from 
that of air, and uses spatial smoothing to glean a signal estimating solely the un-
derlying thickness. An iterative refinement procedure allows for variation in scat-
ter in the periphery arising from the air boundary edge effects. The outcome of the 
inclusion of the periphery in breast density quantified by this method is analysed, 
and the importance of this region's inclusion illustrated. 

Keywords: volumetric breast density, quantitative mammography, periphery 
equalisation. 

1 Introduction 

In recent years, there has been substantial progress towards personalised screening, 
including: when to start screening; screening frequency; and the possibility of using 
multiple screening modalities [1]. Breast density, together with factors such as age, 
biopsy results, and family history of breast cancer, have been found to be powerful 
indicators of who might benefit from earlier and more frequent screening, and to jus-
tify the use of modalities additional to x-ray, such as MRI and ultrasound. In order to 
fully exploit the clinical information captured in breast density, repeatable measures 
of volumetric breast density that are robust to inter and intra patient/image variations 
are required. The Standard Attenuation Rate (SAR) [2-3] has been developed for tis-
sue quantification in breast density assessment and computer aided diagnosis. It in-
corporates a complete model of the imaging process, including photon production in 
the x-ray tube, explicit consideration of both absorption and scattering phenomena 
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within the breast, and detector signal formation; which is used to quantify relative 
attenuation against a reference material (analogous to the Hounsfield unit). The SAR 
image depends only on the attenuation of the underlying anatomy (decoupled from 
the x-ray characteristics used for imaging). Also, through the use of forward simula-
tion using the image formation model, the appearance of any given tissue den-
sity/lesion may be estimated in a given surroundings. For example, a 20mm thickness 
of fibroglandular tissue gives a different projected attenuation when surrounded by 
40mm of adipose, than when surrounded by 30mm; since it is the fibroglandular tis-
sue that is of primary interest, it follows that by forward simulation using the two 
different backgrounds, the models underlying SAR enable an identical underlying 
feature to be ascertained between the images of varying backgrounds. Specifically, 
using Beer's law of attenuation and assuming a monoenergetic primary: I ൌ eି൫µౘ౗ౙౡౝ౨౥౫౤ౚ൫Hି୲ౚ౛౤౩౟౪౯൯ାµౚ౛౤౩౟౪౯୲ౚ౛౤౩౟౪౯൯I଴ 

where the resulting image signal is I, the incident photon fluence is I଴, H is the com-
pressed breast thickness, the background attenuation is, µୠୟୡ୩୥୰୭୳୬ୢ, and the density is 
of attenuation µୢୣ୬ୱ୧୲୷ and thickness tୢୣ୬ୱ୧୲୷. It may be observed that the appearance 
of the density depends not only on its size and attenuation; but also on the thickness 
of the compressed breast and the attenuation of the tissues in the surroundings. There-
fore, to make meaningful like-for-like comparison of densities between images and 
patients, these factors must be accounted for and normalised. Originally, this idea was 
developed for exploitation in computer aided detection and diagnosis applications for 
lesions. However, while assessing the efficacy of SAR for breast density assessment 
the need for "thickness normalisation" quickly became apparent. Specifically, when 
using a volumetric breast density measure, such as SAR, the way in which the breast 
deforms under compression affects the observed attenuation for a given area. For 
example, fibroglandular tissue is stiffer than adipose, so the deformation may force 
the adipose tissue surrounding a central volume of fibroglandular tissue toward the 
periphery, while the fibroglandular tissue itself maintains a near constant shape. The 
reduction in thickness of adipose results in the observed attenuation within the associ-
ated area of the projection image increasing, even though the fibroglandular volume is 
the same, as a forward SAR simulation would allow one to ascertain. So, when meas-
uring the ratio of fibroglandular to adipose ("density"), it is imperative to include the 
entire breast since the tissue displaced to the periphery must be included to get the 
correct ratio. The complication arises in measuring the composition of the tissue in 
the periphery due to the need to know the anatomical thickness at any given pixel. 
This paper presents a technique to estimate this information from the acquired image. 

2 Materials and Methods 

The method exploits the fact that the attenuation of adipose and fibroglandular tissue 
are similar when compared to the vastly different attenuation of air. The radiodensity 
values computed in the periphery are therefore governed principally by the breast 
thickness; tissue composition being a second order effect. Using functions constrained 
to the smoothness of the shape of the compressed breast, and spatial averaging, the 
shape of the periphery may be estimated. 
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First, the breast air boundary, and the inner edge of the periphery, that is the point 
at which breast tissue occupies the full spacing between the compression plate, is 
segmented (as shown in Fig. 1). 

 

Fig. 1. The segmentation of the breast air boundary and the inner periphery edge where the 
breast is full thickness (magenta boundary/green fill) 

Next an approximating function must be chosen that describes the intensity profile 
in the periphery in such a way as to approximate the variation in the signal arising 
from the tailing off of the thickness, rather than any changes in tissue composition 
(radiodensity) or image noise. To this end, we begin by assuming that the shape of the 
compressed breast is symmetrical about the midline and that its 3D edge shape fol-
lows a quadratic (parabola). That is, taking any section through the breast periphery 
perpendicular to the breast-air boundary, and plotting the thickness against the spatial 
distance from the boundary, will yield a parabola. Fig. 2 illustrates the geometry 
adopted to describe the acquisition of the mammographic image. 

 

 
Fig. 2. The geometry used to derive the function describing pixel intensity variation arising 
from the change in thickness of the breast within the periphery 
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In Fig. 2, given the symmetry ܪ ൌ 2݄ and so |ࡻ૚࡭| ൌ |࡮૚ࡻ| ൌ ݄, let us also sup-
pose that |ࡻ૚ࡱ| ൌ ݀. The ray at angle ߠ is shown. In the world coordinate frame ࢅࢄࡻ, the ray is ሾݔ, ݔ ሿ. At the top of the compression plateߠ݊ܽݐݔ ൌ -and the y dis ,ܦ
placement is ߠ݊ܽݐܦ. If we denote ߠ݊ܽݐ ൌ ߬, then in essence, since ܦ is known, we 
have ݕ~߬, and we want to ascertain the ray traversal length through the breast is 
quadratic in ߬, thereby following the shape we have assumed for the compressed 
breast. To analyse the quadratic assumption for ࡮ࡱ࡭, the local coordinate frame ࢄࡻ૚ࢅ૚ is established. In this coordinate frame, ࡭ and ࡮ are the points where the  
breast leaves the compression plates. Evidently, because of the compression, the tan-
gent to the breast above ࡭ and ࡮ is vertical, but not of course below. The quadratic is: 

ଵݕ  ൌ ିௗି௛మ ሺݔଶ െ ݄ଶሻ  (1) 

Translating back into the mammography world coordinate frame, gives the breast 
edge as: 

ሻݑሬሬሬሬԦሺࢋ࢜  ൌ ሺݑ െ ݄ሻଙ̂ ൅ ൬ܶ ቀ ௗ௛మቁ ሺݑଶ െ ݄ଶሻ൰ ଚ ̂ (2) 

for െ݄ ൏ ݑ ൏ ݄. Of interest in this application are two cases, as depicted in Fig. 3, the 
first being where the ray enters the breast outside the periphery, but exits within it 
(upper in the figure); and the second where the ray both enters and exits in the periph-
ery (lower in the figure). 

 

Fig. 3. The two cases of ray intersection with the tissue in the breast periphery 

In the first case, the ray intersects the top compression plate at ሾܦ, -ሿ, and inter߬ܦ
sects the surface of the compressed breast given by equation (2) at ሾݑ,  :ሿ, soܶݑ

ܶݑ  ൌ ܶ െ ቀ ௗ௛మቁ ሺݑଶ െ ݄ଶሻ (3) 
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The traversal distance of interest, i.e. that over which the primary ray is attenuated 
leading to the image signal, is |ࡾࡽ| and is given by: 

 ܴܳଶ ൌ ሺݑ െ ଶሻሾ1ܦ ൅ ߬ଶሿభమ (4) 

It may be observed that ሾ1 ൅ ߬ଶሿభమ is at most quadratic in ߬, and is in fact between 
linear and quadratic. For the second case, the traversal distance is given by: 

 |ሺݑଵ, ,ଵሻݑ߬ ሺݑଶ, |ଶሻݑ߬ ൌ ሺ1 ൅ ߬ଶሻ ቂఛమା ସ൫ௗ/௛మ൯ሺ்ାௗሻሺௗ/௛మሻ ቃ (5) 

which has order ඥ߬ଶሺ߬ଶሻଵ/ଶ~߬ଷ, though to a very good approximation is governed  
by ߬ଶ.  

We therefore take the pixel intensity profile of the projection of the breast edge to 
be at most quadratic, and allow it to vary between linear and quadratic. This is of 
course subject to the assumption the compressed breast shape is a symmetrical parab-
ola: an assumption we believe to be reasonable.  

A linear relation is adopted just inside the air boundary, smoothly joined to a quad-
ratic relation for the remainder, and is fitted to the intensity profile observed perpen-
dicular to each point on the air boundary. An example point is shown in Fig. 4, where 
the coefficient of determination being 1 to 2 significant figures shows the small effect 
of the tissue signal, visible as the slight undulations around the fit. This fitted function 
is used to describe the thickness, assuming the tissue composition to be the average of 
that at the periphery inner edge. 

 

Fig. 4. The segmentation of the breast air boundary and the inner periphery edge where the 
breast is full thickness (left), and a periphery profile perpendicular to the air boundary (right). 

Scatter complicates the problem yet further, since the image signal resulting from 
scatter fluctuates considerably within the periphery, as the proximity to the skin edge 
causes the volume of the tissue contributing scatter to vary significantly. This may be 
observed in Fig. 5, where the scatter signal is shown for both a periphery assumed to 
be a constant thickness equal to that of the rest of the breast, and for a periphery  
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varying in thickness, as measured from a clinical image using the proposed technique. 
The difference is quantified for a horizontal profile across the periphery in terms of 
the scatter-to-primary ratio in Fig. 6. 

 

Fig. 5. The scatter image for a sample breast, adopting a constant thickness equal to that of the 
breast as a whole over the periphery (left), and the actual measured periphery thickness (right) 

Through the explicit model of scatter that forms a part of SAR the variation in scat-
ter is accounted for by using the current estimate of the breast shape to calculate the 
scatter field in the periphery, and then refining the shape estimate given the calculated 
scatter. These feed forward refinement cycles are repeated until convergence. 

 

Fig. 6. The scatter/primary ratio of a profile across the periphery for the cases shown in Fig. 5 
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3 Results 

Fig. 7 shows the thickness map, a 3D rendering of the breast shape and the SAR im-
age computed using the breast shape computed by the proposed technique. Since each 
pixel intensity in a SAR image is a measure of the radiodensity of the corresponding 
cone of tissue above that pixel's physical detector element, breast density is measured 
as the mean of the SAR image pixels. Here it is converted to an adi-
pose/fibroglandular fraction to aid comparison with other techniques. Table 1 com-
pares breast density with and without the periphery. 

 

Fig. 7. A colour map of the thickness relative to the breast thickness (left) and a 3D rendering 
(centre), and the final SAR image including the periphery given the thickness map (right) 

Table 1. Breast density readings using SAR for a typical case, with and without the periphery 

 CC MLO 
DICOM 
Breast 

Thickness 

Density 
(full 

thickness 
only) 

Density 
(including 
periphery)

DICOM 
Breast 

Thickness

Density 
(full 

thickness 
only) 

Density 
(including 
periphery) 

Left 51mm 19.21% 13.06% 56mm 17.76% 13.24% 
Right 47mm 21.20% 13.96% 55mm 13.30% 10.24% 

4 Discussion 

The results in Table 1 show the importance of the periphery in measuring density, 
with all but the R-MLO being within 1% of each other, and the discrepancy between 
views/sides dropping notably. The density readings may be seen to drop when the 
periphery is included, supporting the hypothesis that adipose tissue is pushed to the 
periphery during the compression. In the CC case, where the compressed breast 
thickness is smaller in the case of the right, the magnitude of the change in breast 
density when including the periphery may be seen to be largest. The R-MLO has a 
markedly lower density in both the measures with and without the periphery. 
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5 Conclusion 

The breast periphery should be considered to obtain accurate breast density readings, 
a result of the varying deformations arising from differing breast compressions, and 
hence compressed breast thicknesses, between exams. 
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Abstract. Digital x-ray acquisition allows the sophisticated processing of ac-
quired images before display to the reader, making possible such operations as 
the removal in software of the systematic blurring effect of scatter. A method 
for analysing scatter removal is presented. The scatter model incorporated 
within the Standard Attenuation Rate (SAR) is used, which is a method for cal-
culating a normalised image of tissue radiodensity. The model builds on the 
fundamental physical relations underlying Monte Carlo techniques; but through 
optimal information sampling and interpolation is able to execute in a clinically 
realistic time. The scatter kernel arising around each primary ray is calculated, 
and these are superimposed to give the scatter image. An iterative refinement 
procedure is used to calculate the radiodensity and scatter at each ray/pixel, cy-
clically feeding back to each other, to yield the scatter field. Image sharpness 
and contrast-to-noise (CNR) analysis is presented for two tissue equivalent 
phantoms. The algorithm is found to be able to match image sharpness without 
the grid, to that with the grid present, confirmed by residual analysis using 
autocorrelation plots which show the difference is almost white noise within a 
95% C.I. The increased fluence in the absence of the grid is shown to allow 
dose to be reduced by 37-49%, whilst delivering equivalent contrast and CNR. 

Keywords: scatter, dose reduction, acquisition post processing. 

1 Introduction 

An under-exploited benefit of digital mammography is the decoupling of the appear-
ance of the underlying anatomy presented to the reader from how the image is ac-
quired, facilitated by the ability to run software image processing algorithms on the 
digital image before presentation. Acquisition may therefore be optimised to glean the 
maximum signal-to-noise (SNR) ratio, where signal fundamentally means the attenua-
tion characteristics of the underlying anatomy, as opposed to optimising contrast for 
human perception. Scattered photons result in a reduction in image contrast due to the 
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systematic low frequency blurring of the primary image, so a physical grid is usually 
introduced to filter a portion of them out according to their angle of incidence, though 
this approach is somewhat crude since the primary fluence is also attenuated. With 
digital post processing, it is possible to remove the effect of scatter in software, and 
the need for the grid is removed. This paper presents and analyses the performance of 
such a processing algorithm. 

The Standard Attenuation Rate (SAR) [1-2] is a quantitative, normalised measure 
of tissue radiodensity per unit distance traversed by the primary (independent of scat-
ter), and may be thought of as analogous to the CT Hounsfield unit. It is computed 
through the use of a detailed model of the physics of image acquisition, considering 
both primary and scattered photons, and it is the model of scatter, originally designed 
for quantitative analysis, that we consider here for grid replacement. 

The scatter model utilises optimal information sampling and interpolation (to yield 
a clinical usable execution time) to calculate scattering using the molecular form fac-
tor and the coherent free electron cross section; and the incoherent scatter function 
and the differential Klein-Nishna collision cross section: the highly accurate funda-
mental physical relations underlying Monte Carlo dosimetry techniques. The scatter 
kernel arising around each primary ray is calculated as follows: 

1. A model of the tube calculates the spectra of the photon beam of which the primary 
ray comprises and is incident upon the upper surface of the breast. 

2. A computationally efficient ray tracer calculates the collection of tissues/materials 
and the traversal distance through each, that a primary ray encounters. Importantly, 
the spatial variation in scatter kernels, particularly prominent at the edges of the 
breast, are accounted for. Figure 1 shows a typical primary beam.  
 

 
Fig. 1. The division of a primary ray into closely sampled points for scatter kernel calculation 

3. The traversal path for all tissues/materials other than air is considered as a set of 
closely sampled points p. The scatter originating from each such p that is incident 
on detector pixels C near the intersection of the primary ray and the detector sur-
face (B) is computed, using the fundamental scatter relations. 

4. The scattered photons are attenuated according to photoelectric absorption that oc-
curs along p to C. We ignore the possibility of multiple scattering. (Optionally: if 
there is an anti-scatter grid, both the scattered and primary photons are attenuated 
according to the absorption of the grid.) 
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A number of sampling and interpolation schemes are employed to streamline the cal-
culation, as the above steps are highly computationally intensive. The scatter kernels 
for all the primary rays within the image are combined by superposition to yield the 
scatter image. The model may be used for both forward simulation of scatter, and in 
reverse, to estimate the scatter in an acquired image. However, in this case a compli-
cation arises in that the tissue radiodensity along the primary ray AB is unknown. This 
is resolved through the use of an iterative method that begins by approximating the 
scatter through the assumption of a constant scatter-to-primary ratio, and using this 
estimate to calculate the SAR radiodensity at each pixel. The process then begins a 
second iteration, feeding these values for the attenuation encountered by the primary 
ray back into the calculation outlined above. These iterative cycles proceed until such 
time as convergence is reached, and with it, the scatter arising from the homogenous 
tissue mix within the breast accounted for. 

2 Materials and Methods 

To assess the performance of any image enhancement technique the signal-to-noise 
ratio per unit dose is considered. In raw mammographic images the signal is taken to 
be contrast due to the complex relationship between the underlying radiodensity and 
pixel intensity. However, in a SAR image the effect of the imaging parameters are 
normalised, so pixel intensity only reflects radiodensity and the contrast of a given 
feature will always be the same. Specifically, the image quality metric adopted here is 
taken from Young et al [3], in which contrast is defined as: ݐݏܽݎݐ݊݋ܥ ൌ ݉݁ܽ݊ሺܾ݃݀ሻ െ ݉݁ܽ݊ሺ݂݃݀ሻ݉݁ܽ݊ሺܾ݃݀ሻ ൈ 100%                             ሺ1ሻ 

and the contrast-to-noise ratio as: ܴܰܥ ൌ ݉݁ܽ݊ሺܾ݃݀ሻ െ ݉݁ܽ݊ሺ݂݃݀ሻටሾ݀ݏሺܾ݃݀ሻଶ ൅ ሺ݂݃݀ሻଶሿ2݀ݏ                                           ሺ2ሻ 

The image sharpness (a measure of the distinctness of a features edges) and contrast 
(the magnitude of the difference between two locations) are closely related in that in a 
noise-free x-ray image of a fine detail arising from a discontinuity in radiodensity: the 
contrast will depend on the exact location of the two points chosen to measure con-
trast between, and the resulting variation in contrast between slightly varying loca-
tions of the two measurement points, will be governed by the image sharpness. In a 
technique analogous to anisotropic diffusion, we measure image sharpness here by 
plotting local contrast between two points either side of, and equidistant from, the 
centre of an image feature (in this case the discontinuity), against the distance be-
tween the points. The shape of the resulting plot describes image sharpness. 

The SAR transformation is described, at each pixel I୶,୷, corrupted by noise ε: SAR ൌ m୶,୷log൫I୶,୷ േ ε െ s୶,୷൯ ൅ c୶,୷                                        ሺ3ሻ 
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where s୶,୷ is the estimated scatter signal, and m୶,୷ and c୶,୷ are the linear coefficients 
of the normalisation transform to the reference material, and hence depend on the 
image acquisition parameters. Since SAR is independent of scatter, and hence the 
presence of a grid, the contrast in the SAR image will be constant for any given fea-
ture (by definition since it reflects only the underlying radiodensity), and so attention 
turns to the effect of the SAR transformation on the noise term in the denominator of 
the ܴܰܥ. Quantum noise is described by the Poisson distribution where the variance 
in the number of events is equal to the count (regardless of photon paths, breast thick-
ness and tissue attenuation). Therefore, if the photon count in the without grid case is 
reduced to match that of the with grid case, i.e. the dose is reduced by the Bucky fac-
tor (generally around 2), then the variance in the noise arising from quantum effects 
will become equal, as the counts will be equal. The addition of the noiseless normalis-
ing offset, c୶,୷, in the SAR transform has no effect on the variance, and the noiseless 
normalising coefficient m୶,୷ is slightly smaller in the without grid case due to the 
absence of the grid interspace material, therefore the noise amplification arising from 
this coefficient in the SAR transform is less without the grid. The subtraction of the 
scatter component, s୶,୷, is more complicated, since it is calculated by what amounts to 
a spatially varying deconvolution (of course, since the scatter kernels vary spatially, it 
cannot be computed by a conventional deconvolution), taking the noisy image, I୶,୷ േ ε, as its input. The SAR model does not take account of stochastic noise, since 
no possibility exists for identifying the combination of random events that occurred 
during any given exposure, therefore the presence of stochastic noise will propagate 
through, and will result in variation in the calculated s୶,୷ between exposures of the 
same object (when in an ideal noiseless world they'd be constant). The noisy estimate 
of s୶,୷, when subtracted from the acquired image in equation (3), will have the effect 
of introducing noise into the SAR image, and hence will increasing the variance in the 
SAR image. The noise component in a given s୶,୷ depends upon the noise component 
in all the surround pixel values, since scatter is contributed to any given pixel from 
the volume of material in the immediate surroundings. Therefore the degrading effect 
of noise in s୶,୷ on the overall CNR of the SAR image will depend on the variation in 
radiodensity/composition of the object from which the image is being acquired. Were 
it possible to have a noise free s୶,୷, the dose could be reduced by the Bucky factor in 
the grid's absence. In reality noise will be present, and in the next section we present 
an empirical analysis of the CNR for two phantoms to establish dose reductions. 

3 Results and Discussion 

Validation experiments have been conducted on a GE Senographe Essential, using 
two CIRS tissue equivalent phantoms. The first comprises of a sharp vertical discon-
tinuity between adipose and fibroglandular tissue equivalents, 40mm thick, with a 
10mm thickness of adipose placed above and below to mimic the subcutaneous fat 
layer just beneath the skin. The second is a BR3D phantom, which the manufacturer 
states was designed to "assess detectability of various size lesions within a tissue 
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equivalent, complex, heterogeneous background" and contains an assortment of mi-
crocalcifications, fibrils and masses, and thus provides a more clinically realistic test. 

Fig. 2 shows the experimental acquisitions of the discontinuity phantom with and 
without the grid present, and the effect of the grid on the sharpness of the discontinui-
ty may be qualitatively assessed visually. 

 

Fig. 2. Empirical image acquisitions acquired at 29kVp Mo-Rh 71mAs of the discontinuity 
phantom with (left) and without (right) an anti-scatter grid present 

Fig. 3 shows the scatter image, s୶,୷, and the primary image, I୶,୷  െ  s୶,୷, from equa-
tion (3) calculated from the empirical acquisitions. Note the degrading of the discon-
tinuity detail when comparing the without grid to the with grid scatter image, and the 
high degree of similarity in the primary images. 

 

Fig. 3. The scatter image, in the with (far left) and without (centre left) grid case, and the pri-
mary image in the with (centre right) and without (far right) grid case calculated by SAR from 
the experimental acquisitions of the discontinuity phantom 

Fig. 4 plots the variation in CNR with spatial distance horizontally from the dis-
continuity, and analogously, Fig. 5 plots the variation in image contrast (i.e. the image 
sharpness), for the raw and SAR empirical images of the discontinuity phantom, with 
and without the grid. The mean and standard deviation in equations (2) and (3) are 
calculated for vertical lines of 50 pixels. In the case of the raw data, the absence of the 
grid returns the superior CNR measure, however as may be seen from the contrast 
variation in Fig. 5, the presence of the grid returns the sharper image. The percentage 
increase in contrast between the with and without grid contrast in the raw images has 
a mean of 27.09%, and standard deviation 4.55. The improvement in contrast/image 
sharpness shown suggests the designer of this digital mammography system favours 
image sharpness, over CNR, and thus has included a grid. The CNR in the SAR  
 



 Digital Scatter Removal for Mammography 265 

 

image remains superior in the absence of the grid, as would be expected, in fact it 
may be seen that the exposure (and hence dose) may be reduced by 37% (from 
71mAs to 45) before the CNR measures become approximately equal.  

 

Fig. 4. The spatial variation in CNR measured around the discontinuity 

 

Fig. 5. Spatial variation in contrast (image sharpness) measured around the discontinuity 

-120.00

-70.00

-20.00

30.00

80.00

130.00

0 2 4 6 8 10 12 14 16 18 20

Co
nt

ra
st

-t
o-

N
oi

se
 R

at
io

 in
 S

A
R 

Im
ag

e

Spatial Distance from Discontinuity (mm)

SAR 71mAs With Grid SAR 71mAs Without Grid

SAR 45mAs Without Grid Raw 71mAs With Grid



266 C. Tromans, M. Cocker, and M. Brady 

 

The shape of the contrast plots in Fig. 5 shows the improvement in image con-
trast/sharpness arising from the SAR processing in both the cases without and with a 
grid (since the grid isn't 100% efficient in filtering scatter, especially at low angles). A 
linear scaling, such as that used in the window and level procedure for image display 
has been applied to the SAR values, so the maximum contrast matches that exhibited 
in the raw images, factors of -5.81 with the grid, and -4.52 without. It should be noted 
that such a scaling has no effect on the CNR values (which as previously discussed 
are matched when the without grid exposure is reduced from 71 to 45mAs). The simi-
larity in the shape of the SAR contrast plots confirms that the algorithm has achieved 
equivalent image sharpness in the absence of the grid, to that with the grid, but has 
allowed the dose to be reduced by 37%, whilst returning equivalent CNR. 

Turning attention now to the BR3D phantom, Fig. 6 shows SAR images with and 
without the grid, and their subtraction after a rigid translation registration. The need 
for the registration arises from having to physically dismantling the machine to re-
move the grid, despite our experiments employing a positioning jig. The spatial posi-
tion markers show the rigid translation to not quite be sufficient, due to the presence 
of a rotation component, and hence image detail may be observed at the edges of the 
subtraction image. 

 

Fig. 6. SAR images of the BR3D phantom at 29kVp MoRh, 71mAs with grid (left), 36mAs 
without grid (centre), and the residual from subtraction of these two images (right) 

The residuals in the subtraction of the without and with grid should be random 
noise. We test this by plotting the autocorrelation for the region in the centre of the 
subtraction image free from registration artefact, as shown in Fig. 7. It may be ob-
served that all bar one of the lag points is contained within the 95% confidence 
bounds surrounding the conclusion of white noise, supporting the assertion the sub-
traction residual is random. 

For a simple phantom, like the discontinuity analysed earlier, image sharpness and 
CNR plots are very informative, they become impractical with the image complexity 
of the BR3D. We therefore adopt a slightly different approach to measuring the CNR. 
Firstly we note that by definition the contrast in the SAR images is the same in both 
the with and without grid cases, since the phantom is identical and the SAR pixel 
intensity depends solely on the underlying radiodensity. This is confirmed above by 
subtraction, and analysis of the residual by autocorrelation to confirm randomness. To 
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Abstract. A novel image denoising algorithm has been proposed for quantum 
noise reduction in digital mammography. The method uses the Anscombe trans-
formation to stabilize noise variance and convert the signal-dependent Poisson 
noise into an approximately signal-independent Gaussian additive noise. In the 
Anscombe domain, noise is removed through an adaptive Wiener filter, whose 
parameters are obtained considering local image statistics. Thus, the method 
does not require any a priori knowledge about the original signal, because all 
the necessary parameters are estimated directly from the noisy image. The me-
thod was applied on synthetic mammograms generated based upon an anthro-
pomorphic software breast phantom with different levels of simulated quantum 
noise. The evaluation of the proposed method was performed by calculating the 
peak signal-to-noise ratio (PSNR) and the mean structural similarity index 
(MSSIM) before and after denoising. Results show that the proposed algorithm 
improves image quality by reducing image noise without significantly affecting 
image sharpness. 

Keywords: Digital mammography, quantum noise, image denoising, Ans-
combe transformation, Wiener filter. 

1 Introduction 

Full Field Digital Mammography (FFDM) is currently the standard tool for breast 
imaging and is gradually replacing screen-film mammography as the preferred tool 
for breast cancer screening [1]. However, mammographic interpretation is a complex 
task, preventing radiologists from the ideal of detecting all abnormalities visualized 
on mammograms. Among the lesions evaluated in mammographic reading, special 
attention is given to clustered microcalcifications because they may represent the only 
sign of malignancy [2]. Due to their small size and the confounding effects of image 
noise, the visibility of microcalcifications may sometimes be relatively poor. Image 
quality significantly influences the performance of radiologists in mammography 
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interpretation. Thus, high quality mammograms are required for accurate detection 
and characterization of suspicious lesions in breast cancer screening. 

In this context, image processing algorithms have been utilized to increase the vi-
sibility of microcalcifications, with the hope of improving the performance of radiol-
ogists [3]. However, for proper use of preprocessing techniques in mammographic 
images, some important aspects must be considered. First, use of image processing 
algorithms for the enhancement of high-frequency components, such as microcalcifi-
cations, has the undesirable effect of increasing the image noise [4]. On the other 
hand, image processing for noise suppression typically reduces sharp transitions be-
tween pixel intensities, which results in image blurring. This could impair the detec-
tion of fine detail and small structures in the breast image.  

Denoising techniques are, in general, based on the assumption that noise is additive 
and signal independent (that is, there is no correlation between pixel values and the 
values of noise components) [4]. However, mammography images are acquired using 
the minimum radiation dose consistent with ensuring both adequate image quality and 
patient safety; as such, the quantum noise should be apparent. Quantum noise is non-
additive and signal-dependent (that is, noise components values are correlated with 
respect to the radiation intensity). A recent study has shown that quantum noise is the 
dominant image quality factor in mammography and exerts greater influence than 
spatial resolution for the tasks of detecting microcalcifications and discrimination of 
masses by radiologists. A failure to address noise issues can impede diagnostic per-
formance [5]. 

We propose a novel image denoising algorithm for quantum noise reduction in dig-
ital mammography, aimed at improving image quality, and consequently improving 
radiologists’ performance in clinical interpretation. The method uses the Anscombe 
transformation [6] to stabilize noise variance and convert the signal-dependent quan-
tum noise into an approximately signal-independent Gaussian additive noise. In the 
Anscombe domain, image noise is removed through an adaptive Wiener filter, whose 
parameters are obtained considering local image statistics. Thus, the method does not 
require any a priori knowledge of the original signal, because all the necessary para-
meters are estimated directly from the noisy image. 

2 Methods and Materials 

The following model describes the image degradation process during acquisition [4]: 

 ݃ሺݔ, ሻݕ ൌ ݂ሺݔ, ሻݕ כ ݄ሺݔ, ሻݕ ൅  ݊ሺݔ,  ሻ (1)ݕ

where g(x,y) is the degraded image, f(x,y) is the input image, h(x,y) is the degradation 
function, n(x,y) is the additive noise and the operator “∗” indicates convolution.  

Restoration techniques usually manipulate this equation to obtain an estimate, መ݂ሺݔ,  ሻ, of the input image when h(x,y) and n(x,y) are known. The additive noiseݕ
n(x,y) is incorporated by the digitization process and can be modeled as signal-
independent Gaussian noise. However, f(x,y) cannot be considered a noise-free image 
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because mammographic images are also corrupted by quantum noise, which is a non-
additive noise and is normally modeled by a Poisson statistical distribution. 

The Anscombe transformation is a variance-stabilizing transformation that con-
verts a random variable with a Poisson distribution into a variable with an approx-
imately additive, signal-independent Gaussian distribution with zero mean and unity 
variance [6,7]. Let the degraded image, g(x,y), be the random variable. The Anscombe 
transformation of g(x,y) is given by [6]: 

,ݔሺݖ  ሻݕ ൌ  2ට݃ሺݔ, ሻݕ ൅ ଷ଼
. (2) 

This equation can be represented by the following additive model [7]: 

,ݔሺݖ  ሻݕ ൌ  ቆ2ටݑሺݔ, ሻݕ ൅ ଵ଼ቇ ൅ ,ݔሺݒ  ሻ, (3)ݕ

where u(x,y) is the rate of the Poisson distributed image (i.e., the expected value) and 
v(x,y) is the additive term, which is independent of the signal s(x,y) and has an ap-
proximately Gaussian distribution.  

After the Anscombe transformation, the additive term v(x,y) includes both the 
quantum noise converted into Gaussian noise and the electronic white noise, original-
ly incorporated by the digitization process. Thus, this transformation allows the use of 
any well-known denoising technique to reduce Gaussian additive noise by working on 
the image z(x,y) in the Anscombe domain [7]. 

In this work, we use the adaptive Wiener filter to obtain an estimate, ̂ݏሺݔ,  ሻ, ofݕ
the expected noise-free mammographic image in the Anscombe domain [7]. The 
Wiener filter calculates an estimate of a noise-free image that minimizes the mean 
squared error. Specifically, when z(x,y) is assumed to have a Gaussian additive noise 
with zero mean, the Wiener filter is the optimal filter and has the following expres-
sion: 

,ݔሺݏ̂  ሻݕ ൌ ҧݏ ൅ ఙೞమఙೞమାఙೡమ ሾݖሺݔ, ሻݕ െ  ҧሿ, (4)ݖ

where ݏҧ and ߪ௦ଶ are the mean and variance of the signal, respectively; ݖҧ is the mean 
of the image z(x,y); and ߪ௩ଶ is the variance of the noise.  

In the Anscombe domain, we can assume that ߪ௩ଶ is equal to 1. Moreover, ݖҧ is 
equal to ݏҧ because the mean of the noise, ݒҧ, is equal to zero [7]. Thus, we can rewrite 
the equation (4) as follows: 

,ݔሺݏ̂  ሻݕ ൌ ҧݏ ൅ ఙೞమఙೞమାଵ ሾݖሺݔ, ሻݕ െ  ҧሿ. (5)ݏ

Parameters ݏҧ and ߪ௦ଶ can be estimated by local statistics of a preliminary estimate of 
the signal in the Anscombe domain, ̂ݏመሺݔ,  ሻ. We considered a square neighborhood ofݕ
variable size around the pixel being processed. The preliminary estimate of the signal, ̂ݏመሺݔ,  ሻ, was obtained by blurring the image z(x,y) with an averaging filter mask ofݕ
size 3 × 3 [4]. 
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After the adaptive Wiener filtering procedure, the inverse Anscombe transforma-
tion is applied to obtain the estimate, ݑොሺݔ, -ሻ, of an approximately noise-free mamݕ
mographic image in the spatial domain. The inverse Anscombe transformation is 
given by the following equation [7]: 

,ݔොሺݑ  ሻݕ ൌ ଵସ ,ݔሺݏ̂ ሻଶݕ െ ଵ଼
. (6) 

3 Results 

The assessment of the proposed denoising algorithm was performed considering syn-
thetic mammograms generated based upon an anthropomorphic software breast phan-
tom [8] with a cluster of microcalcifications with 50% and 25% of normal contrast. 
The contrast of the microcalcifications is specified as the relative linear x-ray attenua-
tion coefficient compared to the tabulated attenuation of hydroxyapatite. All mammo-
grams were generated using three different levels of quantum noise, simulating the 
normal clinical dose, half of the normal dose and a quarter of the normal dose. All of 
the images were restored using the proposed filter. 

In order to evaluate the performance of the proposed methodology, we calculated 
two widely used image quality parameters: the peak signal-to-noise ratio (PSNR) [9] 
and the mean structural similarity index (MSSIM) [10]. Ideal mammograms without 
quantum noise were also generated to provide the ground-truth reference. These pa-
rameters were measured in full mammographic images (4096 × 1792 pixels) and two 
regions-of-interest (ROI) of 256 × 256 pixels containing, respectively, microcalcifica-
tion clusters with 50% contrast and 25% contrast.  

Figure 1 shows one example of the results obtained with the denoising algorithm 
on the synthetic images. The image on the left shows a ROI with a cluster of micro-
calcification with 50% of contrast extracted from the mammogram generated with a 
quantum noise correspondent to a quarter of normal clinical dose. In the center is the 
same image after denoising and on the right is the ideal image used as reference.  

 

Fig. 1. ROIs (256 × 256) of a cluster of microcalcifications with 50% of contrast extracted from 
the mammogram generated with a quantum noise correspondent to a quarter of normal clinical 
dose. Left: noisy image; center: restored image; right: ideal image without noise. 
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Table 1 shows the PSNR and MSSIM measurements obtained with the proposed 
denoising algorithm for the synthetic FFDM images before and after denoising. The 
relative improvement of image quality achieved using the denoising methodology 
was also calculated. Figure 2 and Figure 3 show, respectively, the improvement in 
PSNR and MSSIM measurements after denoising as a function of the radiation 
dose. 

Table 1. Results of PSNR and MSSIM measured for the proposed algorithm before and after 
denoising. Synthetic mammograms were generated with quantum noise corresponding to 100%, 
50% and 25% of the normal clinical dose. Parameters were measured in the full mammographic 
images and two ROIs of 256 × 256 pixels containing, respectivelly, microcalcification clusters 
(MC) with 50% and 25% contrast. The relative improvement on image quality after denoising 
was also calculated.  

Phantom Images 
PSNR(dB) MSSIM 

Before After Improve-
ment(dB) Before After Improve-

ment (%) 
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Full image 51.30 60.84 9.54 0.9921 0.9993 0.73 

ROI with 
50% MC 
contrast 

40.13 44.92 4.79 0.9329 0.9815 5.21 

ROI with 
25% MC 
contrast 

40.02 44.84 4.82 0.9317 0.9814 5.33 
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Full image 48.33 57.98 9.65 0.9845 0.9987 1.44 

ROI with 
50% MC 
contrast 

36.81 42.12 5.31 0.8728 0.9751 11.72 

ROI with 
25% MC 
contrast 

36.93 42.28 5.35 0.8741 0.9755 11.60 
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Full image 45.36 54.90 9.54 0.9702 0.9975 2.81 

ROI with 
50% MC 
contrast 

33.50 38.20 4.70 0.7776 0.9640 23.97 

ROI with 
25% MC 
contrast 

33.54 38.31 4.77 0.7771 0.9640 24.05 
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Fig. 2. Improvement in the PSNR measurements after denoising as a function of dose 

 

Fig. 3. Improvement in the MSSIM measurements after denoising as a function of dose 
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4 Discussion 

In this work we investigated the use of the Anscombe transformation and the adaptive 
Wiener filter to reduce the quantum noise of digital mammography images. Im-
provement on mammographic image quality resulting from the proposed denoising 
method was evaluated. First, we compared the noisy and the reference images in 
terms of two widely used signal fidelity index: PSNR and MSSIM. As expected, it 
was found that images acquired at lower dose levels resulted in lower image quality 
index values, as shown in Table 1. This indicates that mammography quantum noise 
is signal-dependent and increases with a reduction in radiation dose, as expected. 

In order to evaluate the proposed denoising methodology, the same image quality 
metrics were measured again after denoising, considering both the restored and the 
reference images. Results showed that the proposed filter improved image quality 
index values, as shown in Table 1. Increases of up to 9.65 dB in the PSNR and up to 
24% in the MSSIM measurements were observed. This indicates that the proposed 
denoising filter produced restored images which accurately preserved the detail seen 
in the noise-free reference images. It was noticed that the relative improvement on 
image quality after denoising, evaluated by means of the MSSIM, was higher for 
images with lower simulated dose (Figure 3). However, little variation on PSNR mea-
surements was observed as a function of the radiation dose (Figure 2). 

Image quality assessment was also performed considering two ROIs of clustered 
microcalcifications extracted from the mammograms: one with 50% of contrast and 
one of 25% of contrast. Results suggested that the proposed methodology produced 
better quality images by reducing noise without noticeably affecting image sharpness, 
as seen at Figure 1. 

In future work we will study the effect of the proposed denoising filter on the per-
formance of microcalcification detection using observer studies and ROC analysis, in 
order to evaluate the clinical use of the proposed methodology in breast-cancer 
screening. 
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Abstract. We propose a novel paradigm for clinical diagnostic software
using a mobile multi-touch device for user interaction and dedicated
monitors for image display. We show a demonstrator implementing a
workflow-based breast MRI reading system tailored to multi-touch in-
teraction. The demonstrator explores the feasibility of touch interaction
for diagnostic reading of MRI patient cases. We show a patient-centric,
workflow-oriented concept that is arranged around a multi-touch capable
hybrid input-output device.

In this contribution we introduce clinically useful concepts of the
demonstrator. Firstly, a mechanism that we dubbed location aware-
ness takes care of security issues. Reading is supported by (1) a patient
browser with graphical patient history and cancer risk factors; (2) a
workflow concept using hanging protocols; (3) dedicated ROI definition,
annotation, and measurement tools using multi-touch gestures. Gesture
concepts and interaction paradigms are introduced for intuitive user ex-
periences while maintaining accuracy.

1 Introduction and Prior Art

The spread of mobile devices in society is reflected by a likewise high number
of radiologists owning iPhones, Android phones, iPads, and other touch display
equipped personal mobile devices. Recent estimates prospectively spoke of 80%
of radiologists intending to own an iPad by the end of 2012. We also note a high
demand for radiology software on mobile devices, reflected in growing numbers
of presentations on major conferences, and also reflected by company efforts to
support their respective clinical software platforms on mobile devices. Even FDA
approved iPad-based reading software is already available on the market.

There are only very few scientific publications exploring the subject of mobile
device based interaction for clinical image-based diagnostic reading. We specu-
late that on the one hand, mobile multitouch devices are not available for long
enough to be profoundly researched for this application, and on the other hand
there is no clear paradigm visible how such devices should be employed to be
useful and intuitive. Our contribution aims to help in both challenges. We want
to provide a novel approach to integrate a mobile device in a clinical setting,
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and we want to present a demonstrator that implements our paradigm on a
challenging clinical topic that can be explored clinically.

Prior work that we acknowledge has been presented by Lundström et al.
[3], who employ multitouch gestures for interaction with medical images, and
use a flexible tool selection menu. Their work, however, is aimed towards team
interaction on a very large display table. A very similar approach has been pre-
sented for the application on digital pathology [4] and for medical team meetings
[2,1]. A work closer to the system proposed by us has been described in the US
2011/0113329 A1 patent publication. In this work, the author proposes a static
setup on the mobile device, where touch wheels and buttons are depicted and
usable with two hands. BrainLab employs a wall-mounted multi-touch display
for use in brain surgical interventions, and has also foreseen the integration of a
multi-touch mobile device, which is, however to be attached to the main system
(Pat. EP 2 031 531 A2). IBM has proposed a system in which the image data is
viewed on the mobile device (Pat. US 2010/0293500 A1).

Reviewing the cited body of scientific work, patents, and available tools, we
have condensed the following tachometry of concepts. It served as the outline out
of which we designed and described the dedicated support we want to contribute.

Paradigm. Generally, the mobile device is foreseen to be used independently of
the hospital information systems, though connected to it by WiFi. Either an
App (Application, like eg. downloaded in Apples AppStore or on the Android
market), or a fully web-based user interface provides the functionality.

Viewing. In particular, images are generally viewed on the device, and interac-
tion with the images is conducted on the screen. For interaction, a reduced
set of tools is offered in toolbars, emulating the interface of the corresponding
workstation software.

Interaction. Usually, the tools provided follow the workstation tools, and work
like those. One notable exception in some cases is the zoom/pan functional-
ity, where eg. zooming is accomplished with a two-finger pinch gesture.

Workflow. Workflow is generally not an issue addressed by the mobile apps,
since they are mostly not intended to be used for diagnostic image reading.
Hence, no structured review of images is implemented, rather a random-
access toolbox is provided.

Security. Login to the hospital IT is required; the device acts as a remote
viewing station.

Intended use. Most applications seem to be targeting the casual user who
wants to have a quick look at a specific image while away from a workstation.
For example, a radiologist on call might appreciate to see a case on his mobile
device to decide if he needs to drive to hospital to see the emergency patient.

In our contribution, we follow a different paradigm, propose a concept and setup
that targets diagnostic reading, makes use of a different approach to security
and data handling, and consequently has a different user group in mind: the
radiologist doing diagnostic reading.

With our work, we want to challenge several aspects of conventional breastMRI
workstations, and provide a clinically usable setup centered around a combination



278 M. Harz et al.

of stationary display devices and a mobile device that provides ubiquitous inter-
action with clinical data. Most importantly, we wish to move away from the static
random access toolbox approach in current reading workstations, and introduce
workflows into breast MRI reading. In this attempt, we see the display devices
with attached IT systems and hospital IT connectivity as one unit together with
the mobile device, as opposed to the more conventional approach in which the
mobile device emulates a mouse and keyboard to pose as a better remote.

While in this contribution we will focus on the application to diagnostic read-
ing of MRI series, other potential applications are already identified and will
shortly be mentioned in the conclusions below.

2 Material and Methods

The proposed system consists of a server side implementation that hosts the
data and displays all images on screen. It is accompanied by a client side imple-
mentation that runs as a native program on the mobile device. The two parts
are connected with a basic and efficient network protocol to exchange informa-
tion and events using wireless LAN on the mobile device side, and any network
connectivity to the same network on the server side.

The software demonstrator has been implemented based on MeVisLab, an ex-
tensible medical image processing development environment, where C++-based
programming is efficiently combined with Python scripting and a powerful GUI
description language. The device demonstrator has been implemented using the
Apple inbuilt development environment, and is written for the iOS framework
in ObjectiveC. The C++ implementation of the gesture framework has been
accomplished based on the Qt framework, and not on the mobile device to al-
low for the easy integration of mobile devices with different operating systems,
and for arbitrary extensions without device dependencies. With application-side
interpretation and implementation of gestures, coherent interaction is guaran-
teed regardless of mobile device. Technically, for the workflow the device is only
required to send one or multiple touch points, and all intended interaction is
evaluated on the server computer.

2.1 Paradigm

In our setup, the mobile device poses as a hybrid image display and interaction
device, changing its role during the workflow. The fundamental principle is not
to show images for clinical diagnosis on the device. The major reasons are (1) the
limited screen real estate, where for example correlated viewing of orthogonal
reconstructions in sufficient size is not feasible; and (2) the fact that during
interaction the fingers will occlude a large portion of the small screen. Hence,
in our opinion image display is better left with dedicated display devices. These
can be tailored to their purpose, e.g. a defined contrast range for diagnostic
reading, or large screen sizes in a operating theater. The mobile device also
never stores data locally, which increases security, though the concept might
also include secured storage of selected key images per patient for patient visits
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or interdisciplinary board meetings. In the general setting, the data is provided
by a server that is typically connected to the hospital IT. The login procedure
to access the data is accomplished by linking the mobile device with the display
device.

Fig. 1. iPad screens. From left: (1) Reading the QR code. (2) The patient browser
interface. (3) The iPad user interface during reading. MR images are displayed on the
display devices (not shown).

2.2 Authentication and Location Awareness

In our setup, we think of the mobile device as a personal item belonging to
the radiologist. He will log in to his device and authenticate towards it. To
connect to a display device, different mechanisms are conceivable. In our current
implementation, the internal camera of the mobile device reads a QR code that
is displayed on the display device and that encodes the location and capabilities
of the display device. By reading in the QR code, the mobile device learns about
the display device, and configures itself such that the available tools are offered,
and only the applicable patient data is shown to the radiologist. In practice, in
a patient room only the data pertaining to the patients in this room are offered,
and diagnostic tools, annotations, and reporting functionality are not provided;
in a meeting room only the data of today’s tumor board meeting might be
shown with annotation functionality, while in a diagnostic reading room, all
functionality will be provided for all patients assigned to the doctor.

2.3 Workflow

In contrast to existing workstations for breast MRI reading, we have removed
all tool bars and menus from the application. Two reasons exist for that: (1)
From an assessment of several experienced breast MR readers’ usage of breast
MR workstations, we observed that a very small subset of available tools was
frequently used. (2) With a touch-based interaction paradigm, tool bars and
menus are no longer a convincing means of interaction, because they necessitate
a pointing device.

Workflow analysis was carried out in a community hospital breast care center,
where an above-average number of MRI exams are being read (local high-risk
population). We have been trained on the same workstation by independent ex-
perts prior to the workflow analyses, such that we knew all tools that can be
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employed during reading. With this background, we have observed four radiolo-
gists while reading MRI exams and video-taped their work. We have interrogated
the radiologists on their tool usage, and on their reasons for using or not using
them. One remarkable finding was that the only annotation tool that we have
seen in use was an arrow pointing to a location of interest. Sizes have been
determined with a ruler, and the results either stored using a screenshot or by
dictation into a reporting system. Segmentation of findings for kinetic character-
ization was never employed. We also noted that the tools were often selected via
the menu bar and submenues of that, but less frequently using keyboard short-
cuts or icons. A notable problem which was also reported by the radiologists was
that the ways the mouse has to travel is rather large, and that it is impossible
to remember the available functions and how to invoke them.

Fig. 2. Application and tools. Left: a two-monitor setup is operated by the mobile
device. Middle: Bringing up the context sensitive circular menu with a tap and hold
gesture. Right: The iPad screen while a measurement is performed. Breast shape shown
for orientation.

From these assessments of breast MR reading workflows, we designed a novel
user interface both for the mobile device and the display devices. Main driving
factors were to provide intuitive usage, and to minimize the necessity of large-
scale movements to access functionality. The most complex interaction is patient
selection and workup of patient history, which is consequently handled on the
mobile device in an intuitive patient browser that shows the patient history with
clinical events and risk data (cf. Fig. 1, middle). Annotations are correlated be-
tween sketch (left), image series (middle), and time line (right) using distinctive
colors.

Image series thumbnails in the middle can be previewed in larger size on the
diagnostic screens together with additional information. To select a series for
diagnostic reading, the series thumbnail is double-tapped, which leads into the
reading workflow. The screen on the mobile device changes to the appearance in
Fig. 1 (right), where the predefined workflow steps (hangings) are indicated with
icons on the top, while the rest of the space is left for gesture-based interaction.
Preconfigured workflow steps are then executed swipe-by-swipe.
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2.4 Navigation

Breast MRI diagnostic workstations usually offer viewports to show different
aspects of the data, statically arranged on one or more monitors. The user may
change the layout, or zoom viewports to fullscreen and interact. This is not
feasible in our system. Instead, we defined a number of viewport arrangements
(hangings), where always one viewport is shown in larger size and takes all
input (the master viewport), and all others support the reading with additional
information. These hangings are then executed in sequence.

Navigation and interaction is done using gestures, and all gestures always ap-
ply only to the master viewport. Other viewports providing additional image
data, derived data, orthogonal projections of the master view etc. are continu-
ously updated to match the position on the master viewport.

Fig. 3. Gestures. From left: (1) One finger moves selection. (2) Two fingers swipe to
stack through images, move through time points, dim color overlay. (3) Three-finger
swipe: previous/next workflow step. (4) Five-finger tap: back.

Gestures are composed of a number of fingers used, and a pattern of how
the fingers move. We have designed the gestures such that frequently used func-
tionality is easier to access, and that accidental triggering of harmful actions is
avoided. Also, gestures are used similarly across contexts.

The following gestures are implemented currently (cf. Fig. 3):

One finger tap and move. Navigate on a master viewport.

One finger double-tap and move. Window/Level control.

One finger tap and hold. Bring up the context-sensitive circular tools menu.

Two finger swipes. Up-Down to stack through the images. In dynamic series:
Left-Right to navigate through time points. In color overlays: Left-Right
controls transparency.

Three finger swipes. Previous/next hanging in the workflow. Direct access of
hangings: select in hanging bar.

Five finger tap. Save results, finish the session. Returns to patient selection
screen.

This set of gestures can be adapted to further applications, e.g. mammogra-
phy and tomosynthesis screening workflows. Regarding tool support during the
workflow, all applications will share some common properties, as follows.
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2.5 Tool Menu

During each workflow step, tools are only offered when they apply to the reviewed
series, and to the currently selected location. Our segmentation algorithm, for
example, requires a subtraction image with sufficient contrast near the seed
point. Thus, the segmentation tool will be offered only if the preconditions are
met.

Bringing up the tool menu is done by touching and holding a point of in-
terest. A circular menu around the finger on the touch display, and around the
selected location on the display screens will show all options that apply at this
location, e.g. measurement, annotation, and segmentation tools. Once a find-
ing is segmented, it can be annotated. In any case it will be indicated with a
color mark both on the screens and the touch display. Also, it will be stored in
the case database, and displayed with a graphical icon in the patient overview
screen. You can always navigate to the image slices corresponding to a finding
by clicking the color bar. Of course, all views are immediately synchronized.

For size measurements, we implemented a two finger scale gesture that antic-
ipates the desired size and zooms the images automatically to enable the precise
measurement even of very small structures. For reporting of finding locations,
one finger interactively indicates the location of interest, and from precomputed
locations of chest wall and nipples, the shortest distances are annotated and
indicated.

3 Results

Our demonstrator has been presented at different major European and inter-
national radiology meetings. A formal evaluation is lacking at this point of de-
velopment; the general setup and paradigm, however, was appreciated. We are
currently preparing first clinical tests regarding the speed of the workflow, and
detailed experiments to assess accuracy and speed of the individual tools. This
answers the most critical remarks, which focussed on the speed that can be
achieved by using touch interaction instead of a mouse, demanding for experi-
mental performance figures compared with special keypads, and of course mouse
and keyboard. The second most critical remark concerned the accuracy, given
that fingers always touch an area rather than a point. Both criticisms will be
addressed in the experiments.

4 Discussion

We propose a novel system setup utilizing a multitouch-capable mobile device
to replace mouse and keyboard, where the image display is done on dedicated
display devices, while auxiliary information and interaction capabilities are pro-
vided on the mobile device.

It is our intention to develop this system into a useful tool, and to evaluate it in
terms of performance and user experience. Our current aim is to collect remarks
and comments of the prospective users, and the breast imaging community.



A Novel Workflow-Centric Breast MRI Reading Prototype 283

Our goal for the future is to extend the applications beyond breast MRI. Since
display devices exist in many places in the hospital, like e.g. in patient rooms,
in meeting rooms, in dedicated diagnostic reading facilities, in the operating
theater, and in recreational areas. These display devices may be of different
nature: HD television in the patient room, projectors in meeting rooms, certified
multi-monitor setups in the reading room and so on. The mobile device can then
be utilized to provide seamless, location-specific interaction with images, always
using the same general gesture-based approach, but providing task-specific tools
or views on the patient data, depending on the current situation.
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Abstract. We investigated the appropriateness of four different mammography 
phantoms for image quality evaluation in Digital Breast Tomosynthesis (DBT). 
We tested the CIRS BR3D phantom, the ACR Prototype FFDM Accreditation 
Phantom, the Penn anthropomorphic breast phantom and the Quart mam/digi 
EPQC phantom. This work discusses the advantages and shortcomings of each 
phantom and concludes that none of them, in their current form, can be consi-
dered to be adequate as an image quality evaluation phantom for DBT. 

Keywords: Digital Breast Tomosynthesis, Quality evaluation, Phantoms. 

1 Purpose 

Digital Breast Tomosynthesis (DBT), recently approved by the FDA for screening 
and diagnosis of breast abnormalities, improves upon mammography by providing 3-
dimensional resolution that allows depth discrimination and overcomes the problem 
of signal degradation by overlying anatomy. It is regulated under the Mammography 
Quality Standards Act (MQSA), which requires quantitative image quality evaluation 
with a human observer as well as objective image quality evaluation. For the quantita-
tive evaluation, human observers have to score the visibility of specific objects in the 
phantom. The objective evaluation is software-based and provides information  
about image quality metrics such as resolution, noise and contrast-to-noise ratio 
(CNR). However, since image quality evaluation in DBT is currently based on quality 
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evaluation in projection mammography, specific properties unique to DBT, such as 
the slice-sensitivity profile, may not be sufficiently captured. To our knowledge no 
study exists that would present a phantom specifically designed for DBT which can 
be used to perform complete quality control and acceptance tests. So far studies on 
quality control phantoms for DBT have only focused on single parameters of image 
quality such as in-plane resolution and slice thickness [1, 2].  

In light of the necessity to characterize clinical image quality in DBT, the purpose 
of this study was to investigate the appropriateness as well as limitations of four cur-
rently available phantoms for image quality evaluation in DBT.  

2 Material and Methods 

For all image acquisitions, we used a Selenia Dimensions Digital Breast Tomosynthesis 
device (Hologic, Inc., Bedford, MA, USA) located at the Hospital of the University of 
Pennsylvania (Philadelphia, PA). All phantoms were scanned applying the “AutoFilter” 
exposure control mode of the system that automatically chooses filter, tube voltage and 
tube current.  For each scan, 15 images were acquired at 1.07° intervals over an angle 
range of ±7.5°. The device reconstructs images in planes parallel to the breast support in 
1 mm increments through the thickness of the phantom. We assessed the reconstructed 
images in the same way as DBT images are viewed under clinical conditions (i.e. slice-
wise evaluation). If the phantom allowed a subjective image evaluation, it was always 
performed by 4 human observers. The four phantoms tested in this study were: 

The CIRS Model 020 BR3D Mammography phantom (CIRS, Norfolk, VA, 
USA) consists of a set of 6 slabs made of two tissue equivalent materials mimicking 
100% adipose and glandular tissues “swirled” together in an approximate 50/50 ratio 
by weight. One of the slabs contains an assortment of speck groups, fibers and 
masses; its diameters are given in Table 1. The CIRS phantom has been used in for-
mer studies for example to investigate the performance of DBT [3] or the potential of 
an implemented scatter correction in the image reconstruction algorithm [4].  

Table 1. Diameter of the objects embedded in the target slab of the CIRS phantom 

 Fibers Specks Masses 
1 0.60 mm 0.400 mm 6.3 mm 
2 0.41 mm 0.290 mm 4.7 mm 
3 0.38 mm 0.230 mm 3.9 mm 
4 0.28 mm 0.196 mm 3.1 mm 
5 0.23 mm 0.165 mm 2.3 mm 
6 0.18 mm 0.130 mm 1.8 mm 
7 0.15 mm   

The ACR Prototype FFDM Accreditation Phantom (CIRS, Norfolk, VA, USA) 
is based on the well-known Mammographic Accreditation Phantom (CIRS Model 
015) but with a phantom size in the range of the detector size and a finer gradation of 
the test objects. It contains 6 fibers, 6 speck groups and 6 masses of diameters given 
in Table 2. The objects are embedded in a homogeneous wax insert positioned within 
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a PMMA block. Further, the phantom contains a cavity to calculate the CNR and 
large homogeneous regions to analyze the noise properties of the image.  

Table 2. Diameter of the objects embedded in the ACR phantom 

 Fibers Specks Masses 
1 0.89 mm 0.33 mm 1.00 mm 
2 0.75 mm 0.28 mm  0.75 mm 
3 0.61 mm 0.23 mm 0.50 mm 
4 0.54 mm 0.20 mm 0.38 mm 
5 0.40 mm 0.17 mm 0.25 mm 
6 0.30 mm 0.14 mm 0.20 mm 

The Penn anthropomorphic breast phantom was developed at the University of 
Pennsylvania specifically for 3-dimensional breast x-ray imaging [5, 6]. It was  
designed based upon the Penn software anthropomorphic breast phantom [7]. The 
phantom consists of several slabs of tissue-equivalent adipose and glandular material 
simulating a dense fibroglandular pattern resulting in images that are qualitatively 
similar to clinical images with the grayscale range of adipose and fibroglandular ele-
ments approximating the pattern seen in a heterogeneously dense breast. An addition-
al, interchangeable slab contains iodinated lesions with 5 different diameters and two 
different iodine concentrations. The additional slab was designed for the use with 
contrast enhanced digital breast tomosynthesis [6]. 

The Quart mam/digi EPQC phantom (Quart GmbH, Zorneding, Germany) is a 
relatively new phantom developed for mammography as well as for breast tomosyn-
thesis [8, 9]. It consists of a PMMA body containing a wedge of 12 steps on the chest 
wall side to simulate different densities of breast tissue material. A titanium strip, 
which is equivalent to 100 μm bone material, divides each step and therefore allows 
the calculation of the CNR for various thicknesses. The MTF can be calculated using 
the edges of a brass and a lead square and a slot for a suited dosimeter detector 
enables performing dose measurements according to the EPQC guidelines [10]. Addi-
tionally, the phantom features so-called Landolt (broken) rings that are contained 
within two different layers separated by 20 mm. These rings have a gap at either of 4 
different directions (top, bottom, left and right) and are sorted in groups of 6 rings of 
decreasing size on each step. By focusing on the planes that contain the Landolt rings, 
it is possible to determine the distance between planes as well as to subjectively quan-
tify object visibility at two different heights. In order to do that, a human observer has 
to estimate the position of the gaps for the ring groups corresponding to the 7 thickest 
steps using appropriate zoom and contrast window. The number of correctly per-
ceived gaps gives one of the imaging performance parameters. For mammography, 20 
gaps have to be called correctly for the image to pass the test, but for DBT an official 
threshold has not yet been established.  

Further, each of the 12 steps contains a low-contrast number indicating the PMMA 
thickness corresponding to the step. The thicker the step on which the numbers can be 
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read, the better is the image, so that the visibility of these numbers is an additional 
imaging performance parameter.  

The objective image analysis was done with a user-written Mathematica code, be-
cause the manufacturer’s software to automatically analyze the image parameters has 
not yet been released. To calculate the MTF, the brass square was used, since it is 
further away from the step wedge and therefore suffers less from reconstruction arti-
facts. Both the MTF perpendicular and parallel to the breast wall were calculated. In 
order to estimate the noise variance, the noise power spectrum (NPS) was calculated 
averaging over the homogenous region in the center of the phantom of all available 
slices.   

3 Results 

Reconstructed images of each phantom under investigation are presented in Fig. 1. 
All images are shown with the same magnification in order to give the reader an im-
pression about the different sizes of the phantoms and their structures.  

Figure 1a shows the slice of the CIRS BR3D phantom that contains the objects. 
Even though the objects are hardly visible in Fig. 1, the four human observers  
 

 

Fig. 1. Reconstructed images of the mammography phantoms under investigation: a) CIRS 
BR3D phantom, b) ACR FFDM phantom, c) anthropomorphic phantom and d) Quart phantom 
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detected on average 4 ½ speck groups, 5 fibers and 3 masses on a suitable screen. How-
ever, it turned out that the actual scoring depends not only on the reader, but also 
slightly on the order of the slabs, which is influenced by the heterogeneous background.  

In the ACR phantom, shown in Fig. 1b, the objects are embedded in a homogenous 
background. The four human observers detected on average all 6 masses, 3 ½ speck 
groups and 4 ½ fibers.  

Figure 1c shows that the anthropomorphic phantom is composed of dense fibrog-
landular tissue in the inner region in which compartments of adipose tissue are em-
bedded. The outer region is composed of adipose tissue supported by a matrix of 
Cooper’s ligaments. Since no objects are embedded in the phantom, it can only be 
stated that the phantom produces a realistic image of a breast, but neither a quantita-
tive nor objective analysis can be performed.  

The Quart phantom, shown in Figure 1d, provides means to assess image quality me-
trics objectively. The brass (top) and lead (bottom) squares on the right can be used to 
calculate the MTF and the homogeneous area in the center of the phantom allows calcu-
lating the NPS. We look at these two parameters to develop means to assess image quali-
ty as constancy testing. The MTF was calculated using the edges of the brass square 
perpendicular and parallel to the chest wall. The resulting MTF curves, shown in Fig. 2a, 
demonstrate the difference in resolution between the two directions. The 2-dimensional 
NPS is shown in Fig. 2b as a function of the spatial frequency. As expected, the NPS has 
the double-cone shape characteristic of a tomosynthesis NPS [11, 12].  

The manufacturer recommends calculating the CNR using the step wedge. Howev-
er, it can be seen in Fig. 1d that the step wedge affords only small ROIs which are 
very inhomogeneous in the reconstructed images due to edge enhancement effects. 
This makes it difficult to use it for CNR calculations in DBT. The CNR may be more 
reliably estimated using the brass and lead contrast squares. Even though they do not 
allow calculating a thickness specific CNR as the step wedge, they can be used for a 
simple CNR calculation at one specific height. 

 

   
 (a) (b) 

Fig. 2. MTF calculated from the brass square perpendicular and parallel to the chest wall (a) 
and the 2-dimensional NPS in mm2 as a function of the spatial frequency in mm-1 (b) 
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Scoring the Landolt rings turned out to be a challenging task, because finding the 
appropriate zoom and windowing level needs some time and experience. Further, the 
evaluation is quite time-consuming and wearisome for the eyes. On average the hu-
man observers were able to correctly detect 19 gaps which is slightly below the  
preliminary threshold for the image to pass the test. The manufacturer recommends 
evaluating more images in case the number of detected gaps is between 18 and 22 to 
have reliable results. However, since the tomosynthesis device is not on-site and our 
study focused on testing the phantom for its advantages and shortcomings, we did not 
acquire any additional images.   

4 Discussion 

Each phantom has its advantages and is useful for the purpose for which it was origi-
nally designed. However, we concluded that none of them by itself can be used as 
either a quantitative or objective phantom that provides information useful for image 
quality evaluation in DBT images. Further, none of these phantoms under investiga-
tion provide means to measure in-plane distance accuracy, slice-sensitivity profiles or 
the amount of breast tissue missed at the chest wall.  

The advantages and shortcomings of each phantom can be summarized as follows: 
The CIRS phantom features different objects in a heterogeneous background. It al-

lows the qualitative evaluation of one reconstructed image slice that corresponds to 
the height in which the objects are positioned. Careful choice of the windowing level 
as well as high magnification and a trained reader are required to score the image.  
Also, visibility of the objects is dependent upon the ordering of the slabs, as the struc-
tures above and below the plane of reconstruction contribute to the image complexity. 
Therefore, it is important, in case this phantom is used for constancy tests, to always 
maintain the same order of slabs. Its shortcomings are that it is neither possible to 
check the reconstruction depth nor objective image parameters such as resolution, 
noise variance or CNR.   

The ACR phantom allows the scoring of different objects in a homogenous back-
ground and enables the calculation of the noise variance and the CNR. However, 
since all masses are easily detectable, it still has to be proven that the phantom is suf-
ficiently discriminative of differences in image quality and overall system perfor-
mance for DBT. Moreover, the objects are only arranged at one specific depth so that 
neither the reconstruction depth nor the object visibility at different depths can be 
analyzed. 

The Penn anthropomorphic phantom allows the evaluation of whether the scanner 
provides natural looking reconstruction images with breast like structures. It includes 
a controlled amount of dense tissue, which could be used to validate breast density 
estimation. Currently it only contains a limited variety of targets for a quantitative 
scoring of the images and no features that would enable an objective image quality 
evaluation. However, additional slabs containing defined objects for quantitative 
analysis or other features such as inserts for dosimeters (e.g., optically stimulated 
luminescence dosimeters) are feasible. With its realistic structure and 3-dimensional 
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extension, this phantom has the potential to become useful for image quality analysis 
as well as direct dose and dose distribution measurements in DBT.  

The Quart phantom is the only phantom we tested, that had features to objectively 
measure the image quality parameters such as MTF, NPS or CNR. Depending on the 
performance and user-friendliness of the upcoming software to automatically evaluate 
the image quality, the phantom may potentially be useful for DBT. However, since it 
was primarily designed for mammography, it also suffers from several shortcomings. 
One issue is that the step wedge affords only small ROIs which are very inhomogeneous 
in the reconstructed images due to edge enhancement effects. Even though the manufac-
turer has informed us that the upcoming software will address this issue, the results of 
the CNR calculation may not be reliable. Moreover, due to the straight alignment of the 
inserted objects in this phantom, it is not possible to calculate an oversampled MTF, as 
required for mammography in the IEC standard [13], from an image that has been ac-
quired according to the manufacturer’s instructions. Finally, the Landolt rings allow 
checking the accuracy of reconstruction depth and object visibility in tomosynthesis 
images. The subjective evaluation with the Landolt rings however is wearisome and 
time-consuming, so that this test can hardly be part of a regular quality control in the 
clinic. Additionally, since the human observer mostly guesses the position of the gap, it 
has to be investigated whether the observer’s memory begins to retain the position of 
the gaps and therefore achieves better results after repeated scoring. 
5 Conclusions 

Although each phantom under study has its advantages, none of them allows a tho-
rough quality evaluation of reconstructed tomosynthesis images. The phantoms, in 
their current form, may be still better suited for projection mammography. In some 
cases (e.g. the Penn anthropomorphic phantom) the inclusion of additional layers 
permitting 3-dimensional analysis is feasible; while in others (e.g. the ACR FFDM 
phantom) major phantom redesign would be necessary for use in DBT. For all 4 phan-
toms tested, neither subjective nor objective evaluations involving all the recon-
structed planes are possible. Since there is no other phantom on the market, for our 
knowledge that includes the features to measure all image properties relevant in DBT, 
it is necessary to design a new phantom. In order to allow a clinical implementation 
the new phantom has to allow a quick subjective image evaluation or provide user-
friendly software to automatically analyze the objective image parameters that opti-
mally could be measured in only one scan.  
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Abstract. Prior studies have shown that temporal compensation of medical dis-
plays improve the performance in detecting lesions for digital breast tomosyn-
thesis (DBT). This has been proven both by using computer simulations as well 
as clinical experiments. This paper, by using computer simulations, studies (i) 
the effect of the maximum luminance (Lmax) and contrast (Lmax/Lmin) of the 
medical display on lesion detection performance, and (ii) the effect of temporal 
compensation of the display (by comparing displays with and without this fea-
ture) on lesion detection performance, with several slice browsing speeds using 
a fractional frame repeat (FFR) scheme to model displays' behavior when the 
refresh rate is not an integer multiple of the browsing speed. 

Keywords: Medical display, digital breast tomosynthesis (DBT), clinical stu-
dies, channelized Hotelling observers (CHO), browsing speed. 

1 Introduction 

Digital Breast Tomosynthesis (DBT) is a three-dimensional imaging technology that 
involves acquiring images of a stationary compressed breast at multiple angles during 
a short scan. The individual images are then reconstructed into a series of thin high-
resolution slices that can be displayed individually or in a dynamic mode. Because 
reviewing images for this modality typically is done in a dynamic mode, which was 
not the case with full field digital mammography, and because breast cancer screening 
requires the best image display quality, a display optimized for DBT modality was 
developed (BARCO MDMG 5221). This display was optimized with improved intrin-
sic key characteristics such as contrast, luminance and temporal response. This article 
presents the result of a follow up study reported in [1]. Additional browsing speeds 
and display parameters such as contrast and luminance are considered and reported. In 
addition, input generated by a voxelized breast model [2] is also used. This is part of 
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virtual clinical trial (VCT) platform that is under development, with the objective to 
compare real DBT images in which artificial lesions were introduced and fully simu-
lated DBT images. For fully managing a VCT, every step in the chain should be con-
trollable. Hence, using a phantom generator in VCT simulations to provide a custo-
mized input is necessary. 

1.1 Prior Work 

In [1], DBT reconstructed slices were used in which single micro calcifications were 
inserted.  We have available to us a compiled version of a commercially used DBT 
reconstruction engine along with anonymized and pre-processed projection data (P) 
from real patients and geometry information necessary to reconstruct those projec-
tions using the DBT reconstruction engine. By pre-processed projections, we mean 
that any vendor/device specific projection processing such as bad pixel correction and 
beam hardening correction have already been performed on the raw projection data 
and that projection data can be now used as input to a known reconstruction algo-
rithm. The DBT reconstructed images we reviewed consist of about 50 slices, each on 
a 1200 x 2400 matrix. The DBT voxel size was approximately 0.1 mm x 0.1 mm x 1.0 
mm. A display with improved features such as temporal response compensation was 
clinically evaluated with the use of a numerical observer described in [3]. The numer-
ical observer is an extension of a Channelized Hotelling Observer (CHO) for multiple 
slices that can be applied for quantifying the effect of the browsing speed of a system 
on lesion detection performance. A multi-reader multi-case (MRMC) analysis [4] was 
performed with 5 readers, each trained with 500 image pairs, and all reading the same 
500 test image pairs. Only integer frame repeats (FR) were used that correspond to 
slice browsing speeds of Frefresh/FR (50, 25, 50/3, 12.5, 10 slice per second, for Frefresh 
of 50 frames per second) which is very limiting as on real displays that browsing 
speed is desired to be changed continuously. A sample slice and a 1-D plot (central 
pixel luminance over slice number) are shown in Figure 1. 
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Fig. 1. Example of cropped (64 x 64 pixels) DBT slices from a 41-slice stack with a 0.4 mm 
lesion inserted in the center and a 1-D plot central pixels through 11 slices in cd/m² for tempor-
al-response compensated and uncompensated displays. The signal is inserted in slice 21. 
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2 Methods 

A key prerequisite of excellent system design in imaging systems is the control of the 
interplay of all its elements. Typical elements are the technology of image capture, the 
representation of the images as digital data, processing or enhancing of these data for 
a specific image display, the nature of the display technology (print or softcopy), and 
the psychometric judgment of the images through a human visual observer model [5]. 
An integrated approach, which combines a complete system model for a given imag-
ing technology and a human visual observer model in one computational workbench, 
does therefore represent a great improvement for systematic image system design, 
optimization and even simulation of technology feasibility prior to prototypes. Engel-
drum proposed a methodology named the Image Quality Circle [6], which shows the 
different phases to control and simulate a complete chain in the domain of vision. It 
also shows the links and relations between technology variables that we control from 
a product to the physical image parameters that we get from system modeling. The 
resulting image quality should be correlated to and optimized for the human percep-
tion or customer perceived preferences. From technology variables to user’s prefe-
rences, the circle covers the complete chain. This methodology was used to develop 
and optimize a medical display for the digital breast tomosynthesis modality. A C++ 
simulation platform called MEVIC (Medical Virtual Imaging Chain) was used for 
simulating the complete chain from the image capture until the visualization of the 
images [7]. The virtual medical imaging chain starts with simulation of the image 
acquisition, over a hardware and software image processing pipeline and ends with 
the visualization by the medical specialist on the image display. The aforementioned 
chain is modeled as a cascade of three main modules: the virtual image capture, the 
virtual display and the virtual observer. 

The key techniques that are used in MEVIC simulations for the current study are 
briefly described in the remainder of this section. 

2.1 Simulation of DBT Images 

As described in the prior work, reconstructed DBT slices from a real acquisition de-
vice were used as input images to the virtual imaging chain. In total, 6000 cropped 
64x64-pixel 41-slice stacks were used. The pixel values are coded in 10 bits. This 
dataset have two categories: healthy and diseased. The synthesized 3D mass breast or 
micro calcification lesion of a given density is inserted in the reconstructed back-
ground volume. In comparison with the original images in [1], the input images are 
modified to have the maximum possible contrast (covering the full span of [0, 1023]) 
with a single offset/gain transform in each stack. This corresponds with clinical prac-
tice to use contrast-enhancement and window-level settings to maximally make use of 
the available grayscales of the medical display. 

As the second objective to this study, we want to use the artificial backgrounds 
generated by anthropomorphic software breast phantom developed at the University 
of Pennsylvania [8]. It simulates the breast anatomy based upon the detailed analysis 
of histological and radiological images. The arrangement of breast tissues at the large 
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and medium spatial scales is realistically simulated using a region growing approach. 
Synthetic x-ray images of the phantom are generated by simulating the breast defor-
mation during the mammographic compression using a finite element model proposed 
in [9], followed by a model of the x-ray projections of the compressed phantom, as-
suming mono-energetic x-rays without scatter. 1648 stacks, each consisting of 32 
64x64-pixel slices of phantom were used. The lesions are inserted using the procedure 
described in [1] to make the diseased stacks. The stacks are then randomly re-ordered 
to make it less likely that corresponding healthy and diseased images fall into the 
same training or test sets. 

2.2 Display Simulation Chain 

2.2.1 Contrast and Luminance 
The native curve of the display is used for factoring in the effect of contrast and lu-
minance of the display in MEVIC. Native curve value for a certain digital drive level 
(DDL) is the measured luminance of the display when a certain DDL is applied at the 
input for a long time. Lmax, the maximum luminance of the display, is reached when 
the largest DDL (e.g. 1023, for a 10-bit display) is applied. Lmax / Lmin is the contrast 
with Lmin being the minimum luminance of the display, reached for DDL of 0 
(Lmin=1.05cd/m² and Lmax=1000cd/m²). The luminance values correspond to a 
BARCO MDMG 5221 medical display. 

2.2.2 Temporal Compensation of Display 
The temporal response improvement is a proprietary solution from Barco (US Patent 
Application No: 2010/0207,960, ‘devices and methods for reducing artifacts in dis-
play devices by the use of overdrive’). This solution allows the display to reach gray 
intensity values within one frame time without enhancing temporal noise or introduc-
ing artifacts. This technology was integrated in a FDA approved display optimized for 
digital breast tomosynthesis. 

2.2.3 Fractional Frame Repeat (FFR) 
The ability to continuously adjust the browsing speed is a desirable feature. Using 
integer frame repeats, simulations will be limited as described below. Let Fbrowse show 
the slice browsing speed, Frefresh show the frame refresh rate (a display property in 
Hz), and FR show frame repeat. Fbrowse = Frefresh/FR. For example, at Frefresh of 50 
frame per second (fps), if each slice is fed twice to the display at consecutive refresh-
es (FR = 2), the apparent slice browsing speed is 50/2 = 25 slice per second (sps). In 
other words, FR = Frefresh/Fbrowse = 50/25 = 2. Hence, the browsing speeds that can be 
simulated with integer FRs are very limited. 

By allowing a fractional frame repeat, one can have arbitrary browsing speeds as 
follows. As an example, Fbrowse of 40 sps can be achieved if we make 5 frames out of 
every 4 slices. In this case FR = Frefresh/Fbrowse = 50/40 = 5/4. To that end, we use an 
error accumulation method to find out which slices should be repeated: starting from 
the beginning of the stack (the residue is initially set to zero), each slice is copied 
floor(FR+residue) times, generating that many frames, and the residue is updated to 
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FR+residue-floor(FR+residue). This way, when the residue goes above one, an extra 
frame with a copy of the current slice is inserted. To have a slice browsing speed of 
40 sps, on a 41-slice stack (comprised of slices 1, 2, ..., 41), when Frefresh is 50 fps, the 
following slices are written to the frame buffer: 1  2  3  4  4  5  6  7  8  8  9  10  11  12  
12  13  14  15  16  16  17  18  19  20  20  21  22  23  24  24  25  26  27  28  28  29  30  
31  32  32  33  34   35  36  36  37  38  39  40  40  41. In this example, slice n is copied 
twice if mod(n, 4) = 0, and all other slices are copied only once. 

2.3 Multi-slice Channelized Hotelling Observer (msCHO) 

The multi-slice Channelized Hotelling model Observer (msCHO) described in [1, 3] 
is used with 10 LG channels of spread 15 for both real and artificial background data. 
The msCHO performance is computed for the pixel values achieved at the end of each 
refresh cycle during the Tbrowse. For example, when the frame repeat FR = 3 (see 
Tables 1 and 2), the detection performance is computed for image content at the end 
of each 1 × Trefresh, 2 × Trefresh and 3 × Trefresh. Our observer only uses the three central 
slices of each stack as the other slices are lesion-free. 

3 Results 

3.1 Results on Real DBT Reconstructed Slices 

The results on real DBT background slices are reported in Table 1. They show that 
FFR is working as expected since the AUCs for the FFR-generated browsing speed are 
similar to AUCs for speeds generated by regular (integer) frame repeating. Table 2, 
reports the same for a display without temporal compensation. 

Table 1. Detection performance on real DBT reconstructed slices for 2 FFRs (30 & 40 sps) and 
three integer frame repeats (16.67, 25 & 50 sps) for a temporally compensated display on 
contrast-stretched data. The computations are performed in an MRMC study with Nrd = 5 
readers, each trained with an independent subset of Ntr = 500 image pairs and all reading the 
same test set of Nts = 500 test image pairs. The size of the ROI is 3. The AUCs and standard 
deviations are calculated using the one-shot method [4]. 

 Which after 
LCD frame is 
used to train 
2D-CHO? 

FR=1 FR= 
50/40 

FR= 
50/30 

FR=2 FR=3 

AUC 
± std 

Frame 1 0.800 
±0.014 

0.801 
±0.014 

0.800 
±0.014 

0.800 
±0.014 

0.800 
±0.014 

Frame 2 N/A N/A  N/A 0.801 
±0.014 

0.801 
±0.014 

Frame 3 N/A N/A N/A N/A 0.801 
±0.014 

Average 0.800 
±0.014 

0.800 
±0.014 

0.800 
±0.014 

0.801 
±0.014 

0.801 
±0.014 
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To study the effect of luminance and contrast on detection performance, we simu-
lated two displays: (i) a low-contrast (LC) display with the same Lmax as that of 
MDMG 5221 but a 50% lower contrast, and (ii) a low-luminance (LL) display with 
the same Lmax/Lmin as that of MDMG 5221 but a 50% lower Lmax. The simulated de-
tection performance of these displays at FR=1 are both less than 1% different than 
MDMG 5221. 

Table 2. Detection performance on real DBT reconstructed slices for 2 FFRs (30 & 40 sps) and 
three integer frame repeats (16.67, 25 & 50 sps) for a display without temporal compensation. 
The settings are given in Table 1 caption. 

 Which after 
LCD frame is 
used to train 
2D-CHO? 

FR=1 FR= 
50/40 

FR= 
50/30 

FR=2 FR=3 

AUC 
± std 

Frame 1 0.607 
±0.026 

0.607 
±0.026 

0.656 
±0.022 

0.608 
±0.026 

0.607 
±0.026 

Frame 2 N/A N/A  N/A 0.800±
0.014 

0.801 
± 0.014 

Frame 3 N/A N/A N/A N/A 0.801 
± 0.014 

Average 0.607 
±0.026 

0.607 
±0.026 

0.656 
±0.022 

0.704 
±0.020 

0.736 
±0.018 

3.2 Results on Artificial DBT Reconstructed Slices 

In Table 3, results of our preliminary experiments with the dataset generated from a sam-
ple simulated breast phantom [8] are presented: the detection performance with its stan-
dard deviation is listed for a temporally compensated display at four browsing speeds. 

When a small (3%) subset of stacks with non-stationary background is added to the 
dataset, the AUCs drop by about 2%. 

Table 3. Detection performance on artificial DBT reconstructed slices for 2 FFRs (30 & 35 
sps) and two integer frame repeats (25 & 50 sps) for a temporally compensated display. The 
computations are performed in an MRMC study with Nrd = 3 readers [4], each trained with an 
independent subset of Ntr = 412 image pairs and all reading the same test set of Nts = 412 test 
image pairs. The size of the ROI is 3. The AUCs and standard deviations are calculated using 
the one-shot method. 

 Which afterLCD 
frame is used to 
train 2D-CHO? 

FR=1 FR=50/35 FR=50/30 FR=2 

AUC 
± std 

Frame 1 0.833 
±0.014 

0.827 
±0.015 

0.854 
±0.013 

0.835 
±0.023 

Frame 2 N/A 
 

N/A N/A 0.853 
±0.013 
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4 Discussion 

The insertion of single micro calcifications lesions is not completely accurate. Mi-
micking the x-ray absorption and generating anisotropic 3D shapes is, however, more 
realistic than simply inserting a simple 3D Gaussian sphere as a signal such as it is 
done in numerous model observer studies. The former was successfully used several 
times in past studies [1]. In future, within the VCT framework, lesions will be gener-
ated during the creation of the phantom. 

The display MDMG 5221 used in this study features temporal response compensa-
tion. The target luminance values are reached within one frame whereas for a display 
without this feature, such as MDMG 5121, two to three frames are needed for final 
luminance values to be reached. This can be also observed in Table 1: the detection 
performance remains the same (within the double standard deviation range) no matter 
which refresh is fed to the observer. On the other hand, for an uncompensated display 
(Table 2), when the first frame of the slice is fed to the observer the detection perfor-
mance is significantly lower. Also, as observed in Table 1 and Table 2, with the cur-
rent model observer, one cannot achieve a higher AUC just by increasing the frame 
repeat. That is because the frames fed to the observer become almost the same after 
the second refresh in the display with or without temporal compensation. 

In this paper and in [1], a multi slice CHO is used by computing scores for image 
content at the end of each 1 × Trefresh, 2 × Trefresh and 3 × Trefresh. An alternative to this 
is feeding all ROI frames (those that may have part of lesion in them) to the model 
observer. This approach will generate results that are less consistent with those re-
ported in [1]. Nevertheless, the average of AUCs from different refresh values mim-
ics, in a sense, the visualization of the different frames by the observer. Further inves-
tigation will take into account the continuous light transition instead of discrete lu-
minance values that are currently used, as well as properties of the human visual sys-
tem (e.g., temporal contrast sensitivity function) in the observer model. 

Detection must be performed in JND domain rather than luminance. Typically, the 
AUCs calculated in luminance domain are slightly lower (about 1%) than the results 
reported in Section 3-table 3. 

Larger fluctuations in the AUC values for the experiment with the artificial dataset 
(Section 3.2, Table 3), as compared to the corresponding results for real data (Table 
1), may be attributed to the facts that (i) fewer images are used in the experiment 
and/or (ii) the source of all images used in the experiment is the same phantom; thus 
the images have less variety. Also note that there is no significance in the fact that 
AUC values in Table 3 are generally larger than those in Table 1 and Table 2. This 
difference is a undesired side effect of the lesion insertion process: the insertion densi-
ty is changed until the AUC becomes around 80%, making the classification of the set 
an average task (not too difficult or too easy). 

We observed that the effect of temporal compensation is considerably higher than 
those of increasing luminance or contrast. This observation is against clinical studies 
with human observers and is another indication that the model observer must be im-
proved to be a better representative of human observers. Such improvements may be 
achieved, as mentioned earlier, by integrating the properties of human visual system 
with the model observer. 
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5 Conclusion 

In this study we gained a better understanding of current capabilities and limitations 
of channelized Hotelling observers to be used in virtual clinical trial framework. 
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Abstract. This study’s objective is to compare image quality in 3-D molecular 
breast imaging tomosynthesis (MBIT) with that in planar molecular breast 
imaging (MBI) over a range of breast radioactivity concentrations. Using 
gelatin and point source phantoms lesion contrast, lesion signal-to-noise ratio 
(SNR) and spatial resolution were compared for a range of lesion sizes and 
depths. For both MBI and MBIT, lesion contrast is essentially constant with 
changing activity while SNR decreases by a factor of 1.5 – 2 between 100% and 
25% activity levels. For nearly all lesion sizes and locations contrast and SNR 
are significantly higher for MBIT than MBI, potentially permitting greater 
reductions in injected dose. Spatial resolution in MBI is dependent on lesion 
depth but independent of lesion location with MBIT. Reconstructed MBIT 
spatial resolution is substantially better than that in the projection images, 
suggesting future use of higher sensitivity collimators for even further 
reductions in injected activity. 

Keywords: tomosynthesis, molecular breast imaging, radiation dose. 

1 Introduction 

Breast cancer is one of the most commonly diagnosed cancers among US women. In 
2011, an estimated 230,480 new cases of invasive and 57,650 cases of non-invasive 
(in situ) breast cancer are expected to be diagnosed [1]. Nevertheless, breast cancer 
death rates have been steadily declining since 1991 and this is thought to be partially a 
result of earlier detection through screening. 

The current gold standard for breast cancer screening is x-ray mammography. 
However, the sensitivity of mammography is significantly reduced among the 40 – 60 % 
of women with radiodense breasts. The recent advent of x-ray tomosynthesis, in which 
multiple views of the breast are taken at different angles and then combined to form a 3-
dimensional image, has shown promise for reducing the masking effect of radiodense 
breast tissue by providing some resolution along the direction of breast compression.  

At the same time, new imaging modalities are being investigated as functional 
imaging adjuncts to the anatomical images of x-ray mammography and x-ray 
tomosynthesis. Breast scintigraphy using small field of view, dedicated breast gamma 
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cameras and the radiopharmaceutical 99mTc-sestamibi, referred to as Molecular Breast 
Imaging (MBI) or Breast Specific Gamma Imaging (BSGI), is a relatively new 
functional imaging modality and has entered clinical practice. Although MBI provides 
functional information complementary to the anatomical information of 
mammography [3][5], with currently recommended tracer injected activity (740 – 
1110 MBq) it results in an effective whole body radiation dose of ~6 – 9 mSv. 
Although the additional radiation dose to the breast from MBI is comparable to that of 
a single mammographic view, other organs also receive dose, resulting in the larger 
effective dose for MBI compared to screening mammography (0.7–1.0 mSv)[5]. 
While this dose is comparable to that of many nuclear medicine scans, it may be more 
than is necessary for good quality MBI, especially given the improving imaging 
technologies becoming available. Thus efforts are underway to investigate the impact 
on MBI image quality of lowering the amount of injected radiotracer [4].  

Our group is developing a dual modality tomosynthesis (DMT) scanner in which x-
ray breast tomosynthesis (XBT) and molecular breast imaging tomosynthesis (MBIT) 
images are obtained with the breast in a single configuration under mild compression. 
Like XBT, in MBIT multiple gamma emission views are obtained over a range of 
viewing angles. Both modalities are mounted on a common upright mammography-
style gantry. Following XBT the gamma camera is positioned above the breast and 
rotated through a range of viewing angles. For each view linear translation stages are 
used to position the camera as closely as possible to the breast surface. Following 
reconstruction the resulting 3-D tracer map can then be readily co-registered with the 
volumetric XBT image.  

The objective of this phantom study is to compare image quality in MBIT with that 
in MBI over a range of radioactivity concentrations in the breast. The image metrics 
of lesion contrast, lesion signal-to-noise ratio (SNR) and spatial resolution are 
compared for a range of lesion sizes and depths under conditions of equal total 
number of detected counts, using a single gamma camera operated in either MBIT 
mode or MBI mode.  

2 Methods 

2.1 Experimental Setup  

For simplicity rather than using the full DMT system a bench-top setup was 
constructed to perform the phantom MBIT study. To permit adjustable camera-to-axis 
of rotation (AOR) separation in addition to varying viewing angle an apparatus was 
built consisting of a motor-controlled rotation stage mounted on a linear  
translation stage (Figure 1). In this setup the y-axis is defined to coincide with the 
AOR, the z-axis is defined to point along the short dimension of the phantom, and the 
x-axis is defined to result in a right-handed coordinate system.  The dose study 
experiments were done by fabricating gelatin breast phantoms containing spherical 
simulated lesions. The gamma camera, built at the Jefferson Lab, has a 15 cm x 20 cm 
field of view and is equipped with a high resolution parallel hole collimator. The  
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overall camera 
sensitivity is 110.4 
cps/MBq (absolute 
efficiency of 1.1 x 
10-4). The 
phantom volume 
was 840 mL, 
which was the 
average breast 
volume of the 
subjects partici-
pating in our pilot 
study of DMT [7]. 
The background 
activity concentra-
tion of the phan-
toms was 0.33 
µCi/mL, corresponding to an injected activity of approximately 25 mCi [8]. As the gelatin 
hardened as it was refrigerated, hollow, spherical, thin-walled acrylic lesions filled with 
10x the background radioactivity concentration (3.3 µCi/mL) were placed in the phantom 
[2] (see Figure 2). The phantom was contained in a 6.3 cm (z-dimension) x 12 cm (x-
dimension) x 7.1 cm (y-dimension) acrylic box to simulate compression to a thickness of 
6.3 cm. The box containing the phantom was then mounted on the rotation stage for 
imaging. The resulting counting rate into the images was approximately 450 cps. 

2.2 Image Acquisition  

For the study described here 9 evenly spaced views were obtained over 135 degrees. 
For each view the phantom was positioned as close to the camera as possible, 
resulting in a maximum camera-to-AOR distance of 13.5 cm (for views 67.5 degrees 
away from the z-axis) and a minimum camera-to-AOR distance of 6.23 cm (for the 
view along the z-axis). 

In order to evaluate the impact of reduction in injected activity, for each view 
projection images were obtained over 120 s, 90 s, 60 s, and 30 s to simulate injection 
of 100%, 75%, 50%, and 25% of the full 25 mCi activity, respectively. Times were 
adjusted slightly during the course of scanning to take into account radioactive decay. 
The volumetric MBIT images were reconstructed using an expectation maximization 
(EM) algorithm developed specifically for MBIT at UVa, which includes resolution 
recovery and attenuation correction. 

In addition to the MBIT projection images, planar MBI images were obtained in 
which the number of detected counts equaled the total number of counts in the MBIT 
scans. For example, for the 50% dose acquisition, a 9 minute single-view acquisition 
time was used for MBI and 9 views x 60 seconds per view for MBIT. For the MBI 
images the phantom was positioned for viewing along the z-axis and as close as 
possible to the camera (camera-to-AOR distance of 6.23 cm).  

 

 

Fig. 1. Gamma camera (top left) 
and vertical axis rotation stage 
(lower right), mounted atop the 
linear translation stage. For clarity 
the phantom is not shown. 

Fig. 2. Lesion phantom containing 
a series of simulated lesions with 
various sizes, placed at two 
different z locations (depths) 
within the phantom. In the photo 
the z-dimension is into the page.  
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The spatial resolution of planar MBI and MBIT was compared by imaging a point 
source phantom  containing four acrylic posts, each with a 1 mm diameter, 1 mm deep 
well drilled in its top surface (see Figure 3). A small drop of 99mTc solution was 
placed in each well to create four point-like sources in air. MBIT data was obtained 
using a circular orbit with camera-to-AOR distance of 12.5 cm and 9 views over 135 
degrees. The MBI image was taken at 0 degree view. Total acquisition time was 120 
seconds for both. 

 

Fig. 3. Point source phantom. Drops of 99mTc solution were added to each of four wells of 
varying heights in y and depths in z and imaged using MBIT and planar MBI 

Table 1. Size of ROIs drawn for MBIT contrast and SNR analysis 

Lesion Location 
Lesion Inner  
Diameter 

Area of  
Circular ROI (pixels) 

5 cm (Deep) 1.5 cm 16 
1.2 cm 20 
0.9 cm 9 
0.76 cm 9 
Background 416 

1 cm (Shallow) 1.5cm 12 
1.2cm 12 
0.9cm 9 
0.76cm 3 
Background 544 

2.3 Image Analysis  

Lesion contrast and signal-to-noise ratio (SNR) was calculated for MBIT by 
constructing regions of interest (ROIs) in the MBIT slices intersecting the lesion 
centers. Lesion contrast was calculated by taking the mean pixel value of an ROI 
centered on the lesion and dividing it by the mean pixel value of a nearby background  
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Table 2. Size of ROIs drawn for planar MBI contrast and SNR analysis 

Lesion Location 
Lesion Inner  
Diameter 

Area of Circular 
ROI (pixels) 

5 cm (Deep) 1.5 cm 60 
1.2 cm 44 
0.9 cm 34 
0.76 cm 11 

1 cm (Shallow) 1.5 cm 52 
1.2 cm 34 
0.9 cm 31 
0.76 cm 34 
Background 1647 

 
 
ROI. SNR was calculated by subtracting the mean pixel value of the background ROI 
from that of the lesion ROI and dividing the result by the standard deviation of the 
background ROI. Similar ROI analysis was performed on the MBI images. ROI sizes 
for MBIT analysis and MBI analysis are listed in Tables 1 and 2, respectively. The 
projection images are 150 x 110 pixels with 1.4 mm x 1.4 mm pixel size and the 
reconstructed MBIT slices are 94 x 69 with a 2.24 mm x 2.24 mm pixel size. 

Spatial resolution was calculated by finding the full width at half maximum 
(FWHM) of 1-D profiles through the center of the point source images along the x, y, 
z directions for MBIT and along the y direction for MBI. 

3 Results 

For the study described here the gelatin phantom contained two each of four sizes of 
lesion: 1.5 cm, 1.2 cm, 0.9 cm, and 0.76 cm inner diameter. One lesion of each size 
was placed 1 cm from the side of the phantom closest to the camera (shallow lesions) 
and the other four lesions were placed 5 cm from the side of the camera closest to the 
camera (deep lesions).  

Figure 4 shows the lesion contrasts and SNR for both MBIT and MBI plotted 
versus the percent of the current clinical radiotracer dose. Each graph shows the 
results for a given lesion type (diameter and depth). Error bars signify the standard 
deviations in 4 repeat trials of nominally identical scans.  

Figure 5 compares the spatial resolutions of MBIT and MBI obtained from scans 
of the point source phantom.  For reference, Figure 6 shows the results of a capillary 
measurement of the gamma camera FWHM spatial resolution over a range of source-
to-collimator distances. Given the 12.5 cm AOR-to-detector distance used for the 
scans of Figure 5, and the fact that the AOR was approximately centered within the 
phantom, the source-to-collimator distances for the four sources were 8.5, 10.5, 12.5 
and 14.5 cm, respectively. Thus the FWHM resolution results for MBI are in 
substantial agreement with those predicted from the capillary assessment. 
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Fig. 4. Plots of lesion contrast and SNR verse the percent of the current clinical radiotracer dose 
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Fig. 5. Comparison of MBIT and planar MBI 
spatial resolution. Sources with more positive z-
positions are on the camera side of the AOR. 

  

Fig. 6. Measured gamma camera 
spatial resolution versus source-to-
collimator separation 

4 Discussion 

For all lesion sizes and locations tested the contrast and SNR are higher in the images 
acquired using MBIT compared to those using planar MBI. For both MBIT and MBI 
there is little change in lesion contrast with changing injected activity. As would be 
expected, the SNR falls with decreasing total number of image counts for both MBIT 
and MBI, decreasing by a factor of 1.5 – 2 between activity levels of 100% and 25%. 
However the superior SNR of MBIT suggests that compared to MBI greater 
reductions in injected dose might be possible using MBIT. In fact, using only 25% of 
the activity level as MBI, MBIT has superior contrast and comparable SNR for all 
lesion sizes and depths. 

The spatial resolution in the reconstructed MBIT images is nearly independent of 
source position within the phantom, unlike that in the MBI images, where resolution 
is rapidly degraded with increasing source depth. In fact, for all source positions the 
reconstructed MBIT spatial resolution is substantially superior to that of the gamma 
camera itself over the range of source-to-collimator separations during the MBIT 
scan. This fact raises the possibility of utilizing a higher sensitivity collimator which 
would permit even further reductions in injected activity without unacceptable lesion 
contrast reduction due to partial volume averaging.  

In summary, the contrast, SNR, and spatial resolution of MBIT images were found 
to be consistently better than those of planar MBI over a range of lesion sizes and 
locations. Determination of how much these improvements will ultimately allow the 
radiation dose to the patient to be reduced before lesion detectability will be 
unacceptably reduced will require further study. Human studies are needed to 
evaluate the impact on detectability of inhomogeneous radiotracer distribution in 
breast tissue. However, these results provide encouragement that MBIT might make 
substantially lower doses possible than would be possible with planar imaging. 
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Abstract. Breast lesion boundaries have been mostly extracted by us-
ing conventional approaches as a previous step in the development of
computer-aided diagnosis systems. Among these, region growing is a
frequently used segmentation method. To make the segmentation com-
pletely automatic, most of the region growing methods incorporate auto-
matic selection of the seed points. This paper proposes a new automatic
seed placement algorithm for breast lesion segmentation on ultrasound
images by means of assigning the probability of belonging to a lesion for
every pixel depending on intensity, texture and geometrical constraints.
The proposal has been evaluated using a set of sonographic breast im-
ages with accompanying expert-provided ground truth, and successfully
compared to other existing algorithms.

Keywords: seed placement, ultrasound, segmentation, breast cancer.

1 Introduction

Breast cancer constitutes a leading cause of death for women in developed coun-
tries, and is most effectively treated when diagnosed at an early stage [8]. Digital
Mammography is currently the most powerful screening tool for breast cancer [5],
although ultrasound images can provide useful complementary information in
cases where a tumor presence can be shielded due to dense glandular breast
tissue [9]. Despite ultrasound imaging is a non-expensive and non-invasive tech-
nique with no side effects, its use in CAD systems is still under development.
A feasible explanation is that performing automatic segmentation in US images
is currently a challenge because they often suffer from poor quality and tend
to generate artifacts: weak edges due to acoustic similarity between adjacent
tissues, shadows as a consequence of the signal attenuation preventing to screen
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any further, low contrast when the ultrasound wave is attenuated by the tissue
media, or, speckle which is an unwanted collateral artifact produced by coherent
interface of scatterers that appear as a granular structure superimposed on the
image.

Among the reported techniques proposals for both guided and automatic seg-
mentation of lesions in ultrasound images, region growing procedures that ex-
pand a seed accordingly to some criteria are widely used [6]. However, a proper
selection of the seeds highly determines the final segmentation results.

The goal of this work is to compare three well known automatic procedures
for selecting seed points [3,7,1] with a novel seed region selection methodology
that makes use of texture and intensity features with geometric constraints. The
experimental results have been obtained using a set of sonographic images with
expert-provided ground truth, which have been tested using an already existing
framework for segmenting breast lesions in ultrasound images [4].

2 Background

Given the noisy nature of the ultrasound images and the presence of other struc-
tures rather than lesions with similar acoustic properties, placing seed points on
an ultrasound image with the aim to segment breast lesions is not a trivial task
at all. Thus, an automatic seed placement procedure is usually required when
dealing with fully automatic segmentation procedures. Three existing automatic
seed placement procedures have been analyzed and tested according to their
ability to later produce reliable segmented regions that match lesions:

– Pixel Rewarding (PR)[3]. To avoid manual delineation of the tumor bound-
aries, this proposal combines texture, intensity, gradient and a deformable
model along with empirically determined domain specific knowledge to auto-
matically find lesion margins in ultrasound images. Each pixel of the image
is rewarded according to an assessment function using its position, intensity
and texture. A recursive refinement stage removes outliers and provides a
close estimate of the true boundary to a deformable model which produces
the final segmentation. The deformable model operates on the directional
gradient, making it more robust to noise. Its main advantage is its spatially
constrained seed rewarding along with the fact that the lesion’s appearance
is obtained by means of a learning step. On the other hand, its major dis-
advantage remains in choosing an appropriated neighborhood for the term
representing the probability mean of the surrounding pixels when calculating
the pixel reward. If the neighborhood used is too small, it might incorrectly
reward a noisy region; otherwise, if the used neighborhood is too large, a
proper seed can be hidden due to its neighbors’ low recall.

– Intensity Binarized Ranked Regions (IBRR) [7]. A score function to rank
the regions not connected with the boundary or having intersection with the
image center window is used, with no need of prior information of training
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process. The function takes into account both the homogeneous texture fea-
tures and the spatial features of the breast lesions.

– Gradient-Based (GB)[1]. After initial Radial Gradient Index [2] filtering, the
lesion candidates are segmented from the background by maximizing an
Average Radial Gradient (ARD) index for regions grown from the detected
points. A round robin analysis to assess the quality of the classification of
lesion candidates into actual lesions and false-positives by a Bayesian neural
network is used, yielding to a good overall performance. The main drawback
of this seed selection procedure is its associated computational cost, which
has been partially solved by means of subsampling techniques. However, due
to the comprehensive nature of the seed determination, the method remains
unadvisable for online applications.

3 ITG: A Novel Seed Placement Methodology for Region
Selection

Characterizing breast lesions by means of image analysis techniques usually com-
bines intensity and texture as high specificity features [9]. Besides, it is a fact
that radiologists tend to center the lesions when acquiring the images [3]. Thus,
the proposed methodology makes use of Intensity, Texture and Geometric con-
straints (ITG) and takes advantage of the mentioned statements in order to
select a seed region for further region growing expansion, as is shown in Fig-
ure 1. The proposal evaluates the probability of a pixel being part of a lesion
depending on its intensity, texture and position to generate a joint probability
or total probability plane.

Afterwards, the largest region composed by connected pixels with a posterior
probability that satisfies the imposed confidence level of being a lesion is selected.
In order to compute the posterior probability, a Bayesian framework is assumed
accordingly to equation 1.

P (Lesion|I, T ) = P (I, T |Lesion) · P (Lesion)

P (I, T )
(1)

Texture probabilityIntensity probability

Joint probability

Seed Region Selection

I(x, y)
T (x, y)

Γ(i) = P (Lesion|I) Γ(t) = P (Lesion|T )

R0(x, y)

Γ(x, y)
P (T (x, y)|Lesion)

P (I(x, y)|Lesion)

Fig. 1. Block diagram describing the seed region selection proposal
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Fig. 2. Lesion occurrence on a normalized grid, where the probability is represented
according to a color code, from blue (lowest) to red (highest)

Where Intensity (I) and Texture (T ) are two Independent and Identically Dis-
tributed (IID) features, and P (Lesion) is assumed to be a centered multivariate
Gaussian distribution proportional to the image. This is a reasonable assump-
tion, since most of the lesions are centered as corroborates the probability map
obtained from the dataset ground truth delineations (see fig. 2). Notice that
the denominator P (I, T ) can be ignored since is common for the two classes
{Lesion, Lesion} and cancels out. Thus, the final posterior probability can be
calculated accordingly to equation 2 where P (I|Lesion) and P (T |Lesion) are
the Intensity and Texture Probability Density Function (pdf) determined during
the training step.

P (Lesion|I, T ) = P (I|Lesion) · P (T |Lesion) · P (Lesion|x, y) (2)

The used texture measure is given by the Equation 3 and corresponds to the
difference between the pixel intensity value I(x, y) and the mean intensity value
of its N nearest neighbors (here, 8-pixel neighborhood has been used).

T (x, y) = I(x, y)− 1

N

N−1∑

δ=0

Iδ(x, y) (3)

Once determined the posterior probability, the probability plane is thresholded
and the largest area from the foreground is selected as the seed region. The
threshold has been empirically set at 0.8 as a good tradeoff between large fore-
ground regions and low lesion belonging recall.

In summary, the proposed seed placement methodology makes use of five
inputs to automatically determine a seed region: the intensity image, the texture
image, the intensity and texture Probability Density Functions, and the seed
location prior; along with a fixed parameter to split the probability plane into
foreground and background.
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  GCS-based segmentation 

R(x, y)

R0(x, y)

Seed Placement

Region Growing

Determine the Best 
Fitting Gaussian

Gaussian Constraining 
Segmentation

I(x, y)

GμΣ(x, y)

St(x, y) ∈ [0, 1]

I(x, y)user defined
R0(x, y)

user defined
R(x, y)

Fig. 3. Block diagram for the Gaussian Constraining Segmentation framework used to
evaluate the proposal

4 Results

4.1 Experimental Setup

In order to evaluate the performance of the proposed methodology, a dataset
of 25 sonographic images acquired at the Hospital Dr. Josep Trueta of Girona
and theUDIAT-Diagnostic Center of Sabadell has been used. Since each im-
age was annotated by seven radiology experts who provided the lesion delin-
eations, the Simultaneous Truth and Performance Level Estimation (STAPLE)
algorithm [10] to obtain the Hidden Ground Truth (HGT) has been used. The
μ-coefficient proposed as a variance of the True-Positive Ratio (TPR) or Jaccard
coefficient was then used in order to take into account the experts agreement
by means of the HGT. The proposed ITG methodology along with the GB,
PR, and IBRR procedures have been tested through the Gaussian Constrain-
ing Segmentation framework proposed by Massich et al. [4]. Figure 3 states the
basic operations for such GCS-based segmentation framework: after an initial
region R0(x, y) is determined, it is converted into a preliminary lesion delin-
eation R(x, y) by means of a region growing algorithm. Such lesion delineation
is used to obtain a multivariate Gaussian function describing the shape, position
and orientation of the lesion (GμΣ(x, y)). Finally, the Gaussian Constraining
Segmentation (GCS) procedure refines the segmentation by thresholding an in-
tensity dependent function Ψ(x, y) constrained by the multivariate Gaussian
describing the lesion.

Figure 4 shows the segmentation results obtained for two clinical cases de-
pending on the seed placement procedure. The blue delineation indicates the
obtained seed region, while the red delineation indicates the Ground Truth, and
the green delineation the obtained segmentation through the different region
growing methods.

4.2 Seed Region Location

The effect of the initial seed position cannot be neglected when evaluating the
performance of the proposed methodology. Thus, Figure 5a illustrates the ten
Areas-of-Interest to test the influence of the lesion center distance and orientation
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Segmentation results: each row contains a clinical case (a-c,d-f), while each
column corresponds to a different seed placement method: ITG (a,d), PR (b,e), and
IBRR (c,f)

when seeding. The Areas-of-Interest have been selected as belonging to four dif-
ferent classes: out of the lesion (area 1), inside the lesion close to the boundaries
(areas 2 to 5), inside the lesion but slightly shifted from the central part (areas 6
to 9), and central part of the lesion (area 10). For evaluation purposes, the region
growing algorithm has been applied to each of the ten Areas-of-Interest using
15 randomly sampled seed regions for every area of interest. Figure 5b shows
the segmentation results for each Area-of-Interest according to the μ value. It
clearly shows that to achieve good segmentation results highly depends on the
location of the seed regions within the lesion (the best segmentation results are
achieved when placing the seed in the areas 6 to 10). The figure also indicates
that three main classes a to c can be identified: (a) Areas-of-Interest 6 to 10 that
correspond to the inner lesion area, (b) Areas-of-Interest 2 to 5 that correspond
to the boundary area, and (c) Area-of-Interest 1 that corresponds to anywhere
outside the lesion. The results indicates that the better segmentation results are
achieved when the seed is placed in the (a) Areas-of-Interest (the inner lesion
area, away from the boundaries), but not necessarily in the innest region.

4.3 Methodology Evaluation

Besides determining the role of the seed region location in terms of the achieved
segmentation results, the performance of the proposed methodology has been
also evaluated by comparing to the methods referred in section 2 (Pixel Reward-
ing, Intensity Binarized Ranked Regions, and Gradient-Based), as is shown in
Figure 6: the first plot (Figure 6a) shows the ability of each methodology to place
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Fig. 5. (a) The 10 Areas-of-Interest to place seed regions, and (b) segmentation results
for each Area-of-Interest in terms of the µ-coefficient
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Fig. 6. Comparison between the proposed method ITG and the PR, IBRR, and GB
methods: (a) distributions of seed region location, and (b) final segmentation perfor-
mance depending on the seed location

the selected seed regions along the three main classes a to c for the Areas-of-
Interest, while the boxplot (Figure 6b) indicates the mean and standard variation
of the final segmentation results for each methodology. Although the PR and
IBRR methods place more seeds in the central area than the ITG method, this
new proposed method has the highest performance in terms of final segmentation
results, as can be observed in Figure 6b.

5 Conclusions

The importance of a good seed placement for a region growing-based segmen-
tation procedure has been stated. A new automatic seed placement algorithm
for breast lesion segmentation on ultrasound images has been proposed. The
proposal makes use of the intensity, texture and geometrical constraints to eval-
uate the probability of a pixel being part of the lesion. Performance of the new
proposal has been successfully evaluated in terms of segmentation results on
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a dataset of 25 sonographic images, and compared to three existing automatic
procedures. Future work includes to assess the robustness of the new proposed
methodology using a larger database.
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Abstract. A proposed European protocol for dosimetry in digital breast tomo-
synthesis (DBT) has been applied to estimate the average glandular breast dose 
(AGD) for two different DBT units. AGD was measured for the examination of 
series of women and for breast-simulating polymethyl methacrylate (PMMA) 
phantoms, thus assessing the suitability of the phantoms used for dosimetry in 
2D mammography for DBT dosimetry. For the first system the mean values of 
the AGD for breast thicknesses of 21mm, 53mm and 90mm, were 1.21±0.06 (2 
s.e.m), 2.12±0.07 and 4.90±0.11 mGy respectively. The corresponding values 
for the equivalent PMMA thicknesses of 20mm, 45mm and 70mm were 0.92, 
2.08 and 4.65 mGy respectively. Similar agreement was found for the second 
system. It is concluded that the use of standard PMMA phantoms of appropriate 
thicknesses (as used for 2D dosimetry) to simulate the breast in DBT provides a 
reasonable estimate of the AGD. 

Keywords: digital breast tomosynthesis, average glandular dose, PMMA phan-
toms, breast dosimetry. 

1 Background 

The estimation of the average dose to the glandular tissues within the breast (AGD) is 
an essential part of mammographic quality control, and knowledge of this dose is 
necessary for the optimisation of any breast imaging system which uses X-rays. In the 
European quality control protocol [1] for 2D mammographic imaging, breast dose is 
estimated both for series of patients, and using polymethyl methacrylate (PMMA) 
phantoms which simulate the breast. For digital breast tomosynthesis (DBT), a proto-
col has recently been developed for breast dosimetry [2], which is a straightforward 
extension of the method used for 2D imaging, and is under consideration for use as a 
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European protocol for DBT.  In this paper we present the results of applying this  
protocol to surveys of patient doses for two DBT units with very different imaging 
geometries, and show for each system how the dose varies with the thickness of the 
compressed breast. Because of the beam angulations used for DBT and the absence of 
an anti-scatter grid, it is not clear that breast equivalent phantoms designed for use in 
2D imaging can also be used in 3D imaging to represent the same compressed breast 
thickness. The variation of DBT dose with breast equivalent thickness has therefore 
also been determined for the PMMA phantoms used for 2D imaging to validate the 
use of these phantoms for breast dosimetry in DBT. For comparison purposes, results 
are also presented for 2D imaging using the same two X-ray units. 

2 Method 

In the proposed European protocol for breast dosimetry in DBT, the average glandular 
dose (DG) is estimated using: 

DG = KgcsT 

where K is the incident air kerma at the upper surface of the breast, the factor g is a 
conversion factor giving the AGD for a breast of average glandularity 50%, the factor 
c corrects for the composition of the breast, the factor s corrects for the particular X-
ray spectrum used and the factor T is a correction factor for DBT. The factors g, c, s 
and T have all been estimated using a Monte Carlo model of the breast and imaging 
system [2-5], and the first three are also the factors used in the European protocol for 
breast dosimetry for 2D mammography [1]. The factor T has to be determined by 
integrating angular dependent tomography conversion factors, t, over the angles used 
for the DBT exposure, and factors are given in [2] as a function of breast thickness for 
the two DBT systems used in this study. 

The patient doses for DBT have been determined for a Hologic Selenia Dimen-
sions unit, which acquires 15 projections in the angular range -7.5º to +7.5º and a 
Siemens Inspiration unit, which acquires 25 projections in the angular range -24º to 
+24º. For the former unit, the tomo factor T was in the range 0.992 to 0.997, and for 
the latter unit, it was in the range 0.960 to 0.980, so that for the same exposure fac-
tors, the AGD would be very similar to that for 2D imaging. For the Hologic unit the 
patient sample comprised 357 exposures (cranio-caudal and oblique views) of women 
aged 40-75y attending for screening or assessment, with compressed breast thick-
nesses in the range 20mm to 98mm. For the Siemens unit, the sample comprised 184 
exposures (cranio-caudal and oblique views) of women aged 36-66y attending for 
symptomatic mammography with compressed breast thicknesses in the range 26mm 
to 103mm. For the Hologic unit, the target/filter combination of the X-ray tube was 
W/Al for tomosynthesis and the tube voltage range 26 kV to 43 kV, and these para-
meters for the Siemens unit were W/Rh and 26 kV to 32 kV. 
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Both systems were used in a mode which made a combined 2D and tomosynthesis 
acquisition so that all patients had both 2D and tomosynthesis for each view taken. 
For the Hologic unit the target/filter combination of the X-ray tube for 2D imaging 
was W/Rh and the tube voltage range 25 kV to 32 kV, or W/Ag with a tube voltage 
range from 30 kV to 35 kV, depending on breast thickness. These parameters for 2D 
imaging with the Siemens unit were W/Rh target/filter combination and tube voltage 
range 26 kV to 32 kV. 

The equivalence used in 2D imaging between breasts of various thicknesses and 
PMMA [1] is based on Monte Carlo simulations, and is for women attending for 
breast screening in the UK in the age range 50-64. Tables 1 and 2 give the corres-
ponding equivalent breast thicknesses and glandularities. For both systems the DBT 
and 2D AGDs were determined for PMMA slabs in the thickness range 20 mm to 70 
mm using automatic exposure control. An air gap was used on top of the PMMA to 
increase the compressed thickness to that of the equivalent breast. 

3 Results 

Patient doses at different breast thickness are compared to phantom dose estimates in 
tables 1 and 2. The patient doses shown are the average of exposures where the breast 
thickness is within 5mm of the equivalent breast thicknesses shown in column 2 of 
the tables. Figures 1 and 2 show the individual 2D and DBT patient doses and the 
PMMA phantom doses for the Hologic Selenia Dimensions system and the Siemens 
Inspiration system respectively. 

The ratios of the mean patient AGD values for DBT to that for 2D imaging for the 
two systems were 1.2 and 1.5. 

Table 1. Dose measurement using Hologic Selenia Dimensions system 

PMMA 
thickness 

(mm) 

Equiv. 
breast 

thickness 
(mm) 

Glandu-
larity (%) 

Conventional Tomosynthesis 

Phantom  
AGD 
mGy 

Patient 
AGD 
mGy  

(± 2sem) 

Phantom  
AGD 
mGy 

Patient 
AGD 
mGy  

(± 2sem) 

20 21 97 0.60 0.87 ± 0.06 0.92 1.21 ± 0.06 

30 32 67 0.84 0.98 ± 0.08 1.13 1.23 ± 0.06 

40 45 41 1.19 1.53 ± 0.11 1.58 1.78 ± 0.06 

45 53 29 1.44 1.76 ± 0.12 2.08 2.12 ± 0.07 

50 60 20 2.03 2.26 ± 0.18 2.52 2.60 ± 0.11 

60 75 9 2.74 3.02 ± 0.17 3.77 3.79 ± 0.06 

70 90 4 3.12 3.98 ± 0.96 4.65 4.90 ± 0.11 
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Table 2. Dose measurement using the Siemens Inspiration system 

 

Fig. 1. AGD for patient and phantom measurements for the Hologic Selenia Dimensions sys-
tem (a) doses for 2D digital mammography and (b) doses for DBT. The open symbols represent 
the patient doses and the solid line the doses estimated using PMMA phantoms. 
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PMMA 
thickness 

(mm) 

Equiv. 
breast 

thickness 
(mm) 

Glandu-
larity (%) 

Conventional Tomosynthesis 

Phantom  
AGD 
mGy 

Patient 
AGD 
mGy  

(± 2sem) 

Phantom  
AGD 
mGy 

Patient 
AGD 
mGy  

(± 2sem) 

20 21 97 0.47 0.51 ± n/a 0.91 1.02 ± 0.08 

30 32 67 0.63 0.75 ± 0.19 1.20 1.38 ± 0.32 

40 45 41 0.90 1.15 ± 0.09 1.63 1.88 ± 0.15 

45 53 29 1.03 1.39 ± 0.12 1.86 2.13 ± 0.17 

50 60 20 1.28 1.56 ± 0.19 2.13 2.26 ± 0.21 

60 75 9 1.70 1.91 ± 0.16 2.80 2.73 ± 0.22 

70 90 4 2.17 2.55 ± 0.90 3.46 3.37 ± 0.77 
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Fig. 2. AGD for patient and phantom measurements for the Siemens Inspiration system (a) 
doses for 2D digital mammography and (b) doses for DBT. The open symbols represent the 
patient doses and the solid line the doses estimated using PMMA phantoms. 

4 Discussion 

Overall the phantom estimates of 2D dose were slightly lower than the 2D doses cal-
culated for real patients. It is believed that this is because modern automatic exposure 
control (AEC) systems tend to increase dose where areas of high local breast density 
are detected, whereas for phantom exposures the image is uniform over the area used 
by the AEC. The PMMA-measured doses in DBT were also less than the patient dos-
es, but the difference was much smaller than for the 2D doses. This may reflect a 
difference in complexity of the algorithms used by the two systems for AEC in 2D 
mammography and in DBT. 

5 Conclusions 

The PMMA phantoms currently used for the determination of AGD for 2D mammo-
graphy can also be used to provide a reasonable estimate of patient doses in DBT, and 
are therefore recommended for use in routine quality control of DBT systems. For the 
two systems investigated the differences between the average patient-measured values 
of the AGD for DBT and phantom-measured values of the AGD were no more than 
24% and 13% respectively, and on average 8% and 7% respectively, of the patient 
AGD over the breast (phantom) thickness range 21 mm - 90 mm (20 mm – 70 mm). 
These differences are much smaller than the patient-to-patient variation for a given 
breast thickness. 
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For the two systems investigated, the AGD values for a single DBT view were on 
average factors of 1.2 and 1.5 higher than those for a single 2D mammogram. The 
significance of this dose increase must be assessed in relation to the clinical perfor-
mance and future role of DBT systems. 
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Abstract. For quality control (QC) protocols in full field digital mammography 
polymethyl methacrylate (PMMA) phantoms are generally used. The possibility 
of using alternative materials has been investigated for digital breast tomosyn-
thesis (DBT) because of the increased importance of scatter and more complex 
imaging geometries. We have investigated the use of PMMA in combination 
with polyethylene (PE) to simulate a range of typical breasts using a computa-
tion model of the imaging system. The scatter-to-primary ratios (SPRs) of both 
breast and phantom were also investigated and a difference up to 18% is found. 
Neglecting this difference in SPR in designing phantoms for DBT may lead to 
dosimetry errors. Taking into account estimated SPR values and relevant X-ray 
spectra, a combination of PMMA-PE slabs has been proposed to simulate typi-
cal breasts of thicknesses 30, 60 and 90 mm. The dosimetric error associated 
with using these phantoms for relevant X-ray spectra is less than 10%.  

Keywords: Quality control, digital breast tomosynthesis, phantoms, scatter-to-
primary ratio. 

1 Background 

Currently, different digital breast tomosynthesis (DBT) systems are available for 
clinical use. Although most DBT systems are based on full field digital mammogra-
phy (FFDM) platforms, or even suited for both FFDM and DBT imaging, there are 
significant differences. For instance, most FFDM systems use an anti-scatter grid, 
unlike DBT systems. Consequently, when designing breast equivalent phantoms, the 
scatter properties of the breast and phantom need to be taken into account for DBT, 
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whereas this is known not to be important for FFDM systems [1]. Similar to FFDM 
systems, DBT systems are equipped with an automatic exposure control (AEC) sys-
tem to determine the appropriate exposure settings to obtain images of sufficient  
image quality. In the European Guidelines for quality assurance in breast cancer 
screening and diagnosis [2], polymethyl methacrylate (PMMA) slabs are used to 
simulate typical breasts for both image quality and breast dosimetry assessments in 
FFDM. For this purpose, the thicknesses of PMMA required to simulate typical 
breasts for a range of thicknesses were established using a combination of measure-
ments and Monte Carlo simulations. Typical compressed breasts from 20 to 110 mm 
thick can be simulated by PMMA slabs 19 to 86 mm thick [3]. Thus, the thicknesses 
of typical breasts and the corresponding phantoms do not match. For the mammogra-
phy systems in use at that time, this difference was of minor importance as the AEC 
system responses were solely based on the absorbed energy in the image receptor. 
However, as AEC systems became more advanced, the difference in thickness be-
came more important as it could influence the exposure settings selected. For in-
stance, advanced AEC systems may use information of the height of the compression 
paddle, the applied compression force and/or a pre-exposure to determine the expo-
sure. This means that this difference in thickness needs to be corrected. For FFDM, 
spacers are used for this purpose. Currently, the method of operation of AEC systems 
for DBT (which varies by manufacturer) is not known exactly. However, it is ex-
pected that their functionality is comparable with AEC systems used for FFDM. 
Switching towards 3D techniques requires that the whole imaged volume is evaluated 
instead of only the projection of this volume. Therefore the thicknesses of breast and 
phantom should be more consistent, which means that spacers can no longer be used.  

Evaluating the AEC in terms of image quality and dosimetry is an important part in 
quality control protocols like the European Guidelines. In this study, we have investi-
gated whether a combination of two materials, PMMA and polyethylene (PE), can be 
used to simulate typical breasts for dosimetry measurements in DBT. For this evalua-
tion we have determined the breast equivalence of PMMA and PE and calculated the 
scatter-to-primary ratio (SPR) of both the breast model and phantom in absence of an 
anti scatter grid. So we can assess the impact of SPR on the PMMA-PE breast equiva-
lence.  

2 Method 

The typical breast compositions used in this work are described in the papers of 
Dance et al [3]. These are the compositions used in the European Protocol for do-
simetry of FFDM [2] and are a representation of woman attending for breast cancer 
screening in the UK. To design phantoms which simulate typical breasts in thickness 
and produce the same absorbed energy per unit area at the image receptor, combina-
tions of plastics slabs needs to be investigated which have a linear attenuation coeffi-
cient of appropriate magnitude. As can be seen from fig. 1 in the mammographic 
energy range, PMMA and PE are suitable materials for this purpose.  
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Fig. 1. Linear attenuation coefficient of PMMA, PE, adipose and glandular tissue [4] 

Using a combination of PMMA and PE allows changing the standard set-up as 
used in FFDM towards a configuration that simulates typical breasts in both attenua-
tion and thickness (fig. 2). 

 

Fig. 2. (a) Standard set-up for assessing breast dose in FFDM (b) the proposed set-up for tomo-
synthesis. Note the air gap between the PMMA and the compression paddle in (a). 

To determine the required slab thicknesses for each material, the energy absorption 
(X) in the image receptor is matched for both phantom and breast using:   ܺ ൌ ෍ ܧ∆ሻܧሺܰܧ · ݁∑ ିఓ೔·௧೔݂ሺܧሻሺ1 ൅ ܴܵܲሻ                             ሺ1ሻ 

where E is the photon energy, N(E) is the number of X-ray photons of energy E and 
ΔE is the bin width of the X-ray spectrum. The μi and ti are respectively the linear 
attenuation coefficients and thicknesses of all the materials along the path of the  
primary X-ray beam. The scatter-to-primary ratio, SPR, is the ratio of the energies 
absorbed per unit area of the detector from scattered and primary photons and f(E) is 

0.1

1

10

10 15 20 25 30 35 40

L
in

ea
r 

at
te

nu
at

io
n 

 c
oe

ff
ic

ie
nt

 (
cm

-1
)

Energy (keV)

PMMA

PE

Adipose

Glandular

PMMA

PE

PMMA

Standard set-up FFDM Proposed set-up DBT

Compression paddle Compression paddle

Bucky table Bucky table

Air gap

Spacers



 Phantoms for QC Procedures of DBT 325 

 

the energy absorption efficiency of the image receptor. Earlier work by Dance et al 
[1] has shown that f(E) has a minor influence on phantom thickness, and initial calcu-
lations were therefore done assuming an ideal detector (f(E)=1 for all energies, E), 
and equal phantom and breast SPR. This approach is appropriate when SPR is small 
(e.g. for FFDM or scanning DBT systems which uses a narrow X-ray beam). Combi-
nations of PMMA and PE were found that satisfy equation 1 for these conditions for 
three simulated breast thicknesses (30, 60 and 90 mm) and three X-ray spectra (28 kV 
Mo/Mo, 32 kV W/Rh and 40 kV W/Al). The X-ray spectra from Boone et al. [5] were 
used for this purpose.  

Full field DBT systems do not use an anti-scatter grid, and therefore it cannot be 
assumed that the SPR will be the similar for phantom and breast. A second series of 
calculations were therefore made in which a Monte Carlo model of the imaging sys-
tem was used to estimate the SPR. The Monte Carlo simulations were based on the 
Geant4 toolkit [6, 7] using a model that was developed previously [8]. The X-ray tube 
was simulated as a point source 66 cm above the image receptor in a stationary posi-
tion which produces 1010 photons per simulation. The compression paddle and bucky 
table were assumed to be 2.4 mm polycarbonate and 1.2 mm carbon fibre respec-
tively. The image receptor was positioned 1.5 cm below the bucky table. During the 
simulation only photons reaching the image receptor in an ROI of area 10 x 10 mm2, 
centred 6 cm from chest wall were recorded. The PMMA-PE slabs can be arranged in 
different ways, we have investigated whether the arrangement of the slabs will affect 
the SPR for two configurations (fig. 3).  

 

Fig. 3. Phantom configurations used to assess the effect of the arrangement of the plastic blocks 
on the SPR. The total amount of PMMA and PE are the same in both configurations. a) con-
figuration I: PE slabs of equal thickness on the top and bottom of the PMMA and b) configura-
tion II: PMMA positioned on the bucky table with the PE slab on top.  

Besides the effect of the slab order, the SPR was calculated for two phantom shapes: 
a rectangular phantom with constant cross section of 180 x 240 mm2 (similar to practi-
cal phantoms) and a cylinder with semi-circular cross section for which the radius 
increases with phantom thickness (similar to the breast model used), see table 1. 

Table 1. Radii of the cylinder used for different thicknesses 

Thickness 
[mm] 

Radius 
[mm] 

30 80 
60 120 
90 150 

a) b)

PMMA

PE

Configuration II

PMMA

PE

PE

Configuration I
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3 Results 

Table 2 gives the PMMA and PE slab thicknesses corresponding to the different simu-
lated breast thicknesses and X-ray spectra, calculated on the assumption that the breast 
and phantom SPR is constant and f(E) equals 1 for all energies (ideal detector). These 
PMMA-PE thicknesses were used in the Monte Carlo program to calculate phantom 
SPR. PMMA-PE breast equivalences are only given for clinical relevant X-ray spectra.  

Table 2. PMMA and PE thicknesses corresponding to typical breasts assuming constant SPR 
and f(E)=1 for all energies 

Breast thickness [mm] 
(Glandularity) 

30 [mm]
(72%) 

60 [mm]
(21%) 

90 [mm] 
(4.0%) 

28 kV Mo/Mo (30 μm)  
HVL = 0.366 mm Al 

PMMA:27.0 
PE: 3.0 

PMMA: 33.7  
PE: 26.3  

 

32 kV W/Rh (50 μm) 
HVL = 0.569 mm Al 

PMMA:25.6 
PE: 4.4  

PMMA: 31.4  
PE: 28.6  

PMMA: 34.7  
PE: 55.3  

40 kV W/Al (700 μm) 
HVL = 0.778 mm Al  

 
PMMA: 25.4  
PE: 34.6  

PMMA: 26.1  
PE: 63.9  

The calculated phantom SPR for the different slab arrangements is shown in fig. 
4(a) and for different phantom cross sections in fig. 4(b). In this figure results for 32 
kV W/Rh are given. Results for other X-ray spectra are similar.  

 
(a) 

 
b) 

Fig. 4. Phantom SPR using 32 kV W/Rh for a) phantom configurations I and II and rectangular 
cross sections b) two different phantom cross sections and configuration II 

From those figures we can conclude that the arrangement of the slabs has a small 
effect on the phantom SPR. The maximum difference in SPR was found for a 90 mm 
breast and was less than 10%. For practical reasons all additional Monte Carlo simu-
lations will be performed using configuration II unless stated differently. Likewise, 
we found small differences in phantom SPR using different cross sectional areas and 
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shapes. The largest differences are found for a 30 mm breast and can go up to 6% for 
the relevant X-ray spectra. Again, for practical reasons we decided to continue using 
rectangular cross sections.  

In fig. 5 the calculated breast and phantom SPR are plotted against breast thickness 
for 32 kV W/Rh. This figure shows that compared to the breast SPR, the phantom 
SPR is larger. The maximum difference between phantom and breast SPR is 18%. 
The observed difference between phantom and breast SPR seems to depend slightly 
on the X-ray spectra used and therefore only the results for 32 kV W/Rh is shown.  

 

 

Fig. 5. Breast and phantom SPR calculated using Monte Carlo simulations using an energy 
spectrum of 32 kV W/Rh 

Inclusion of the SPR (for full field images without an anti-scatter grid) in the calcu-
lation of the PMMA-PE breast equivalence resulted in different slab thickness as 
shown in table 3. From this table it is concluded that due to the SPR the amount of 
PMMA needed to achieve the equivalence increased. From equation 1, it is evident 
that neglecting this difference in SPR results in underestimation of the energy accu-
mulated in the image receptor.  

Table 3. PMMA and PE thicknesses corresponding to typical breasts assuming f(E)=1 for all 
energies and using the breast and phantom SPRs calculated using the Monte Carlo simulations 

Breast thickness [mm] 30 [mm] 60 [mm] 90 [mm] 

28 kV Mo/Mo (30 μm)  
PMMA: 29.4 
PE:  0.6 

PMMA: 34.9 
PE: 25.1  

 

32 kV W/Rh (50 μm) 
PMMA: 27.5 
PE:  2.5 

PMMA:  33.9 
PE:  26.1 

PMMA: 37.6 
 PE: 51.5 

40 kV W/Al (700 μm)  
PMMA:  31.4 
PE:  28.6 

PMMA: 32.1  
PE: 57.9 
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For QC purposes it is practical to use a single PMMA-PE combination, per thick-
ness, to simulate typical breasts. For each thickness, an optimal set of PMMA and PE 
slabs was selected using clinical relevant X-ray spectra with the restriction that indi-
vidual slab thicknesses are multiples of 2.5 mm. The chosen thicknesses with the 
corresponding maximum error in accumulated energy for a 30, 60 and 90 mm breasts 
are given in table 4. This table shows that the error in accumulated energy at the im-
age receptor is less than 10%. This error is sufficiently small and comparable with 
errors using current dose evaluations using PMMA phantoms for FFDM.  

Table 4. Selected PMMA-PE slab thicknesses for simulating typical breast with corresponding 
maximum error in accumulated energy in the image receptor 

Breast thickness Slab thickness [mm] Max error  

[mm] PMMA PE  (%) 

30 27.5 2.5 7 

60 32.5 27.5 9 

90 32.5 57.5 9 

4 Discussion and Conclusions 

Combinations of PMMA and PE are proposed to simulate typical breasts for dose 
measurement in DBT. It was found that the use of these phantoms will result in esti-
mated doses for typical breasts with an error of less than 10%.  

In order to design PMMA-PE combinations for simulating typical breasts, the 
PMMA-PE breast equivalence was determined by matching primary energy deposition 
and thickness. The PMMA-PE equivalence that was found is used to determine and 
compare breast and phantom SPR. It was found that phantom SPR is larger (maximum 
18%) than the breast SPR depending slightly on the X-ray spectrum. This means that 
SPR affects the PMMA-PE breast equivalence. Including the SPR in determining the 
breast equivalence resulted in using more PMMA. In general, neglecting the influence 
of SPR will result in an underestimation of the breast dose. Furthermore the effect of 
the phantom cross sectional areas and the arrangement of slabs were investigated. It 
was found that different configuration and cross sections had a small effect on SPR. 
For practical reasons it was decided to position the PMMA slabs on the bucky with the 
PE slab on top and to use slabs with a rectangular cross section. 

Further work is required to implement the proposed phantoms in QC-procedures. 
There is a need to evaluate the effects of image receptors and the effect of the angled 
radiation on the PMMA-PE breast equivalence. Furthermore a validation survey 
needs to be performed to compare patient doses with doses measured with the pro-
posed phantoms.  
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Abstract. Seven Hologic Dimensions digital breast tomosynthesis (DBT) sys-
tems have been installed for the TOMMY trial, a UK based multi-centre trial 
comparing conventional 2D digital mammography with DBT. In the absence of 
established guidelines for DBT quality control, a specific protocol was devel-
oped and applied. Physics tests of 2D and DBT performance were conducted at 
baseline and are repeated every 6 months, and include dose to the European 
standard breast model, tomosynthesis contrast to noise ratio, geometric distor-
tion, z-resolution and threshold contrast detail detection. In addition routine per-
formance checks (daily, weekly and monthly) are conducted on each system 
and reviewed centrally.  Doses delivered under automatic exposure control by 
the systems were found to be well matched, with a mean glandular dose for the 
standard breast model (53mm equivalent breast thickness) of 1.89 mGy (range 
1.79 to 2.00 mGy) for DBT and 1.41 mGy (range 1.36 to 1.48 mGy) for 2D im-
aging. Detector performance and image quality measurements were also well 
matched. All the systems exceeded the achievable image quality standard in the 
European guidelines for conventional digital mammography. 

Keywords. Digital breast tomosynthesis, QC, mean glandular dose, contrast 
noise ratio, geometric distortion, z-resolution, threshold contrast detail  
detectability. 

1 Introduction 

The TOMMY trial is a UK trial comparing conventional 2D digital mammography 
with digital breast tomosynthesis (DBT). Seven Hologic Dimensions systems with 
tomosynthesis capability have been installed at six sites. Prior to starting the trial the 
technical performance of each of these systems in conventional and DBT imaging 
was assessed during the second half of 2011. The protocol for tomosynthesis quality 
control was based upon a draft protocol for the Highrex project, development work 
for which has been published [1] and [2]. The tests described in the Highrex protocol 
were adapted for the TOMMY trial following our experience in testing Hologic Di-
mensions tomosynthesis systems. Physics tests will be repeated at six month intervals 
during the trial and radiographers are carrying out additional performance tests daily, 
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weekly and monthly. The expected duration of the clinical image collection period of 
the trial is fifteen to eighteen months. This paper outlines the methods used and 
presents results from the initial physics tests and the regular radiographer tests cover-
ing a period of from three to seven months following commissioning. 

2 Method 

Dose. The mean glandular dose (MGD) to the European standard breast model was 
measured using a range of PMMA thicknesses for both conventional and tomosynthe-
sis images acquired under AEC control using the method described for conventional 
mammography in the European protocol [3]. For DBT the method of dose calculation 
was as described by Dance et al [4]. 

CNR. Contrast to noise ratio (CNR) measurements were made in conventional mode 
using 0.2mm thick aluminium foil, as described in the European protocol . Tomosyn-
thesis CNR measurements were made in a similar manner, using the same aluminium 
foil. To reduce the effect of the non-uniformity of the tomosynthesis images on CNR 
measurement, the 5mm x 5mm regions of interest (ROIs) used were subdivided into 
1mm x1mm elements as shown in Figure 1. The tomosynthesis CNR was averaged 
over measurements made in 5 focal planes closest to the plane representing the actual 
height of the aluminium foil above the breast support table. 

 

Fig. 1. Positioning of ROIs used for tomosynthesis CNR 

Tomosynthesis Geometric Distortion. A 2mm thick sheet of polymethylmethacrylate 
(PMMA), engraved and painted with a diagonal grid of lines at 1cm intervals, was 
successively sandwiched at heights of 5, 30 and 55mm above the breast support table 
between plain slabs of PMMA making up a total thickness of 57mm PMMA. Tomo-
synthesis images were visually assessed to find the plane for which the image of the 
lines appeared to be best in focus.  This was repeated at several positions within the 
image and the apparent vertical distortion at each position given in terms of apparent 
height of best focus relative to that at the centre of the chest wall edge of the image. 
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Tomosynthesis z-Resolution. A 5mm thickness of PMMA containing six 1mm di-
ameter aluminium spheres was imaged successively at three heights within a total 
thickness of 55mm PMMA as described above for geometric distortion.  Polynomial 
spline curves were fitted to line profiles taken in the vertical direction through the 
centre of each sphere, as shown in Figure 2, in order to assess the full width half max-
imum for each. 

 

 

Fig. 2. A vertical reslice through a stack of focal planes showing the appearance of the 1mm 
aluminium sphere, and a line profile taken vertically through the centre. The line AB indicates 
from where the line profile is taken and the letter C indicates the region from which the mini-
mum is taken to calculate the FWHM. 

Detector MTF. The method described in the IEC protocol [5] was used. 

Threshold Contrast Detail Visibility. This was assessed using the CDMAM test 
object as described in the European protocol.  Sixteen images were acquired in con-
ventional mode and in tomosynthesis mode.  Each reconstructed tomosynthesis image 
was split (using a Hologic proprietary tool) into a set of two dimensional images 
representing focal planes at 1mm interval heights above the breast support table.  
From each set one image was selected, which represented the height of the CDMAM 
and in which the CDMAM was best in focus.  The sixteen conventional images and 
the sixteen selected tomosynthesis images were analysed using CDCOM [6] and 
CDMAM [7] analysis software. Where CDMAM images are not flat, CDCOM can 
either fail to read or inaccurately read CDMAM images, and so it was found to be 
necessary to apply a flattening algorithm to the tomosynthesis focal planes. 

Radiographer QC. Tomosynthesis tests are carried out in addition to the usual digital 
mammography quality control. Each day a tomosynthesis image of a 45mm PMMA 
block is acquired and each month tomosynthesis images of PMMA blocks with thick-
nesses of 2cm and 7cm are also acquired, all under AEC control.  These images are  
 



 Development of a Quality Control Protocol for DBT Systems 333 

 

checked for artefacts and the exposure factors compared against baseline values.  
Each week a conventional and a tomosynthesis image of a plain 45mm PMMA block 
and a tomosynthesis image of a 50mm PMMA block containing a single 1mm diame-
ter aluminium ball are sent for analysis at our centre. 

3 Results 

Dose. Under AEC control, the MGD to the standard breast model (53mm equivalent 
breast thickness) was 1.89 mGy (range 1.79 to 2.00 mGy) for DBT and 1.41 mGy 
(range 1.36 to 1.48 mGy) for conventional imaging. Figure 3 and Table 1 show the 
average MGDs for the seven systems for conventional imaging and DBT for a range 
of equivalent breast thicknesses. The European dose limits for conventional digital 
mammography are also shown in Figure 3. 
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Fig. 3. MGD to the standard breast averaged over the seven systems, for conventional and 
tomosynthesis images 

Table 1. MGD to the standard breast and CNR, averaged over the seven systems and 
coefficient of variation (CoV), for conventional and tomosynthesis images 

Equivalent 
breast thick-
ness (mm) 

MGD for 2D im-
ages (mGy) 

Average MGD for 
tomo images 

(mGy) 
Average CNR for 

2D images 
Average CNR for 

tomo images 
Average CoV Average CoV Average CoV Average CoV 

21 0.60 3.4% 0.89 3.1% 10.9 2.9% 29.1 2.5% 
32 0.84 2.4% 1.04 3.5% 9.9 2.3% 22.2 2.8% 
45 1.17 2.4% 1.43 3.9% 9.0 3.5% 18.9 2.8% 
53 1.41 3.2% 1.87 4.2% 8.4 3.4% 18.5 3.5% 
60 1.98 1.6% 2.29 3.8% 8.6 3.3% 17.2 3.7% 
75 2.69 2.1% 3.39 4.3% 8.3 3.0% 14.8 4.7% 
90 3.03 2.5% 4.25 3.6% 6.7 4.7% 11.3 4.3% 
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CNR. Average CNR measurements in conventional and tomosynthesis modes for the 
seven systems involved in the trial are shown in Figure 4 and Table 1. The limiting 
values derived from the European standard for conventional mammography are also 
shown in Figure 4. 
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Fig. 4. CNR for conventional exposures (left) and tomosynthesis exposures (right) 

Tomosynthesis Geometric Distortion. For all systems, the height of best focus as-
sessed at multiple positions within the image deviated by no more than 1mm from 
that assessed at the centre of the chest wall edge.  No distortion was observed in the x 
and y directions. 

Tomosynthesis z-Resolution. The z-resolution for 1mm aluminium balls was found 
to range between 10mm and 12mm with some dependence on position within the 
image.  No significant variation between the systems was seen. 

Detector MTF. Only small differences in MTF were seen between the seven systems. 
The MTF measurements are shown in Figure 5 and Table 2. 
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Fig. 5. The MTF measured for the seven systems 
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Table 2. Average MTF measurements for the seven systems 

Spatial frequency 
(mm-1) Average MTF

Standard deviation 
in MTF 

Coefficient of 
variation 

2.0 0.804 0.005 0.7% 
4.0 0.605 0.010 1.7% 
6.0 0.444 0.012 2.6% 
8.0 0.308 0.010 3.3% 

10.0 0.187 0.009 4.8% 
12.0 0.093 0.009 9.7% 

Threshold Contrast Detail Visibility. Figure 6 and Table 3 below show the thre-
shold gold thickness for a range of detail diameters for conventional and tomosynthe-
sis images of a CDMAM test object. The results from all systems are shown and 
compared against the minimum acceptable and achievable values for conventional 
mammography as defined in the European protocol. 
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Fig. 6. Contrast detail curves from each of the systems for 2D (left) and DBT (right) images 

Table 3. Average threshold gold thickness and coefficient of variation for 2D and tomo 
CDMAM images 

 2D Tomo European limiting values for 
2D mammography 

Detail 
size 

(mm) 
Threshold gold 
thickness (µm) CoV 

Threshold gold 
thickness (µm) CoV 

Minimum 
acceptable Achievable 

0.10 0.655 8.3% 1.277 6.7% 1.680 1.100 
0.25 0.175 4.0% 0.218 2.3% 0.352 0.244 
0.50 0.075 6.8% 0.095 2.3% 0.150 0.103 
1.00 0.040 12.3% 0.043 8.9% 0.091 0.056 

Radiographer QC. Analysis of routine QC images acquired by radiographers has 
shown that dose and SNR in both conventional and tomosynthesis images have re-
mained stable and no clinically significant artefacts have been seen. The variation in 
dose and SNR measurements for each system over time are shown in Figure 7. 
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Fig. 7. Variation in 2D and tomo dose and SNR from analysis of weekly QC images of 45mm 
PMMA (each system represented by a different symbol) 

4 Discussion 

The initial technical performance measurements demonstrated that the seven systems 
are well matched and routine quality control tests show that performance has re-
mained stable during the three to seven months since commissioning. 

The results of analysis of tomosynthesis CDMAM images show that detection of a 
range of contrast detail sizes is not quite as good as for conventional mammography, 
but close to the achievable level defined in the European standard. In clinical practice 
the substantial advantage that tomosynthesis gains by reducing obscuration by overly-
ing breast structure will tend to compensate for this difference. 

The QA protocol described will be further developed and applied to tomosynthesis 
systems from other manufacturers. Additions are likely to include measurements of 
spatial resolution within tomosynthesis planes and more sophisticated methods of 
assessing geometric distortion and Z-resolution. Some initial measurements on a Sie-
mens tomosynthesis system have demonstrated that the methods detailed above could 
be successfully applied. In testing the performance of tomosynthesis systems from 
other manufacturers account needs to be taken of differences in reconstruction algo-
rithms and rotation geometry which may affect tomosynthesis uniformity, geometric 
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distortion and reconstruction artefacts, which in turn may affect details of the method 
used to quantify image quality. The ability to download DICOM reconstructed tomo-
synthesis images with minimal post reconstruction processing applied is critical in 
allowing assessment of tomosynthesis imaging performance. 
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Abstract. Planar 2D X-ray mammography is the most common screening 
technique used for breast cancer detection. Digital breast tomosynthesis (DBT) 
is a new and emerging technology that overcomes some of the limitations of 
conventional planar imaging. However, it is important to understand the impact 
of these two modalities on cancer detection rates and patient recall. Since it is 
difficult to adequately evaluate different modalities clinically, a collection of 
modeling tools is introduced in this paper that can be used to emulate the image 
acquisition process for both modalities. In this paper, we discuss image 
simulation chains that can be used for the evaluation of 2D-mammography and 
DBT systems in terms of both technical factors and observer studies. 

Keywords: Digital breast tomosynthesis, 2D-mammography, modeling, 
simulation. 

1 Introduction 

Breast cancer is one of the major causes of mortality in women in North America and 
Western Europe [1]. As a result breast screening programmes have been introduced in 
many western countries [2]. Mammography is the accepted radiological imaging 
technique for this purpose that uses low energy X-rays to image internal structures of 
the breast. An ideal mammogram is one in which the normal breast tissues such as 
adipose and glandular tissues can be differentiated from lesions and calcifications that 
are the signatures of malignancy. In reality, the quality and interpretation of a 
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mammogram are affected by factors, such as overlapping tissues, dose, image 
processing and system characteristics.  

One of the most promising advances in the field of breast cancer imaging is digital 
breast tomosynthesis (DBT) - a technique that uses low dose projections acquired at 
different angles to construct tomographic planes parallel to the detector. A commonly 
used reconstruction algorithm is the filtered back projection [3] because of its rapid 
execution time, but the 3D reconstruction is not perfect due to the limited number of 
projections. Further, tomosynthesis also suffers from similar quality degradation 
issues as a conventional 2D mammogram. However, tomosynthesis is considered to 
be a step forward in the field of breast imaging because clinical studies [4] have 
shown that a better visualization of lesions and calcifications can be achieved by 
blurring the appearance of overlapping tissues in the image. 

It is important to understand the impact of tomosynthesis on the detection and 
recall rates of the patients who are invited for screening before considering this new 
modality for routine breast screening. Performing a comparison clinically is 
particularly time consuming and expensive, and some evaluations could be conducted 
more easily using mathematical modeling tools. 

In this paper, we address this issue by introducing a modeling framework which 
includes a collection of simulation tools that can be used to represent the image 
acquisition process for planar mammography and for DBT. With this framework, it is 
possible to perform a comparison of 2D mammography and DBT systems. A brief 
introduction to the modeling tools is given in Section 2 and some selected simulation 
results are presented in Section 3. 

2 Materials and Methods 

For the initial development of the model, we have simulated 2D and DBT systems 
manufactured by Hologic (Bedford, Massachusetts, USA), as such systems are 
available in our centre, though the methodology can in principle be applied to any 
mammographic imaging system. The Hologic Selenia Dimensions 3D system is 
equipped with an a-Se (amorphous selenium) detector with a pixel pitch of 70 µm. 
The system can operate in both 2D mammography and 3D tomosynthesis mode. The 
dimensions of the detector are 24x29 cm2 and an anti-scatter grid can be positioned 
above the detector to reduce the scatter during the acquisition of 2D mammograms. 
When operating in tomosynthesis mode, the X-ray source moves continuously over 
the angular range +7.5º to -7.5º, and 15 projections are acquired during this process. 
The center of rotation of the X-ray tube is directly above the a-Se layer of the 
detector. After acquisition, the pixels are resampled to a pitch of 140µm. No anti-
scatter grid is used during tomosynthesis acquisition and the projections are 
reconstructed into breast planes of 1mm thickness.  

Figure 1 shows the flowcharts of the modeling framework. A brief description of 
each module is given in section 2.1 followed by the methodology in section 2.2.       
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Fig. 1. Flowcharts illustrating the simulation chains described in Section 2.2, (a) using breast 
phantom and (b) using clinical projections 

2.1 Modeling Tools 

Breast Phantom. We used the software breast phantoms developed by Bakic et al 
[5]. These phantoms include all the primary breast tissues such as adipose tissue, 
fibroglandular tissue, Cooper’s ligaments and skin. The simulation parameters of the 
breast model can be modified to account for variations in the breast anatomy such as 
thickness and glandularity.  

Lesion Simulation Model. We used lesion simulation tool proposed by Rashidnasab 
et al [6-7], which uses fractal growth methods such as DLA (diffusion limited 
aggregation) and Random walk, to grow lesions in a 3D space. The model parameters 
can be varied to control the simulated mass structure and size. The DLA approach 
generates lesions that have porous interior and irregular boundaries, whereas Random 
walk approach generates lesions with relatively symmetric appearance. The dataset 
used here included both benign and malignant simulated masses. The methods had 
been validated by means of observer studies and found to provide realistic lesions. 

Micro-calcification Simulation Model. We used the validated built 3D models of 
micro-calcification clusters developed by Shaheen et al [8]. The authors scanned 
biopsy specimen containing micro-calcifications using a micro-CT scanner, and 
subsequently segmented the calcifications from the background using thresholding 
techniques. The dataset used here included mainly malignant micro-calcification 
clusters, and their realistic appearance had been validated by means of observer 
studies. 

Ray Tracing Tool. We used a ray tracing tool based on the Siddon algorithm [9] which 
computes the path traveled by an X-ray photon inside a voxelized phantom. The tool 
stores an individual record of each unique tissue and its path length traversed by a ray. 
This information was used to create a primary image using Beer’s law and attenuation 
coefficients [10] corresponding to the appropriate mammographic X-ray spectrum [11].  

Scatter Addition Tool. We used the scatter kernels proposed by Diaz et al [12], as a 
replacement for Monte Carlo simulations, to model scatter in mammography and 
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tomosynthesis systems. Scatter kernels, whose coefficients depend on the breast 
thickness, glandularity and air gap at each pixel point, were convolved with the 
primary image to generate the scatter map. The model also accounted for the scatter 
from the compression paddle and the incident angle of the x-ray photons.  

Conversion of Image Quality Tool. We used the methods of Mackenzie et al [13], 
which use measurements of the signal transfer properties, pre-sampled MTF 
(Modulation Transfer Function) and NPS (Noise Power Spectrum) performed on a 
tomosynthesis imaging system, to adapt the image quality of acquired images or 
simulated images. These measurements were used to blur the projection images and 
then add noise corresponding to a specific detector pixel size and specific exposure 
parameters respectively. The image was first scaled such that the pixel value was 
equivalent to the detector air kerma. The blurring process involved convolving a pre-
sampled MTF and movement blur of the system being modeled with the projection 
images as shown in equation 1, where I0 is the projection image and H(u,v) is MTF of 
the system.    

{ }{ }),(),(0
1 vuMTFyxIFFTFFTIblur ⋅= −  (1) 

Subsequently, addition of noise to the blurred images involved creation of three flat 
field images, one for each major noise source (structure, electronic, quantum) from 
the NPS coefficients calculated for a detector air kerma of 1 µGy. The noise 
coefficients were then converted into real images (Ie: electronic noise, Iq: quantum 
noise and Is: structure noise) equivalent to the noise at 1 µGy. The noise was added as 
shown in equation 2 using the knowledge of the dose to the detector and its response 
to electronic, quantum and structure noise.    

),(),(),(),(),(),( yxIyxIyxIyxIyxIyxII blurblursblurqenoiseblur +++=+  (2) 

Image Processing Tool. The Selenia V4.7.3 FFDM image processing package was 
used to convert the raw image thus calculated into an image for presentation to the 
radiologists. 

Tomosynthesis Reconstruction Tool. The Hologic reconstruction software was used 
to reconstruct the tomographic breast image planes from the projection images.  

2.2 Methodology 

An initial experiment was conducted whereby the masses [6-7] and micro-
calcifications [8] were inserted into the breast phantom [5] by replacing the tissue 
voxels with lesion/micro-calcification voxels at appropriate locations. One 
mammogram and 15 tomosynthesis primary projections were acquired using the ray 
tracing tool [9], Beer’s law and attenuation coefficients [10] corresponding to the 
appropriate X-ray spectrum [11], at different angles in accord with the Hologic 
specification. The information such as thickness, glandularity, and air gap that is 
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required for the selection of appropriate scatter kernels [12] was extracted from the 
ray tracing results and fed into the tool, for addition of scatter to the primary images. 
Using the MTF and noise model [13], a system MTF was applied to the projections 
corresponding to the detector and system, and noise was added to the projections 
corresponding to a specific dose. The effect of projection angle on the pre-sampled 
MTF and NPS were also taken into account. Each 2D-mammogram was post-
processed using the Selenia V4.7.3 FFDM image processing package. The remaining 
15 tomosynthesis projections were processed using the Hologic tomosynthesis 
reconstruction tool.  

In a second experiment, the aforementioned methodology was adapted as follows: 
instead of a phantom, lesions and micro calcifications were inserted into clinical 2D-
mammograms and individual tomosynthesis projections. The method of insertion into 
2D-mammogram was adopted from Rashidnasab et al [6-7], and the method of 
insertion into tomosynthesis  projections was adopted  from Shaheen et al [8]. A 
series of templates were created from the projections of the lesion or micro-
calcifications. At the desired location of insertion, each pixel in the template was 
multiplied by the corresponding pixel in each of the raw projection images. Prior to 
insertion, the scatter was removed from the insertion site, and after modification of 
the transmission factors by multiplication of the template, the scatter was added back.   

Further, the model was validated by simulating a phantom that is used for routine 
quality control of mammography equipments, and comparing the modeled outcome 
with the ground truth data. The phantom comprised a 4.5cm polymethyl methacrylate 
(PMMA) block resting on the breast support, and an aluminum foil of dimension 
10x10x0.2 mm3 placed 1 cm above the breast support. Since this setup is 
representative of a 5.3cm breast, which is typically used for exposure measurements, 
an airgap of 8mm is allowed between the compression paddle and the top of the 
PMMA block for geometrical and exposure consistency. Other modeling parameters 
included:  23µGy average detector entrance air kerma per projection; tungsten target 
and aluminum filter (0.7mm) at 31kVp; and SPR (scatter to primary ratio) of 0.5. The 
average detector entrance air kerma for the modeled projections, for the sake of noise 
addition, was estimated from the known signal transfer properties of the detector and 
the average pixel value in the actual projections. Both actual and modeled projections 
were reconstructed using the same version of the reconstruction software for 
consistency.   

3 Results  

Figure 2 shows the actual and modeled projections along with the corresponding 
reconstructed tomographic planes. CNR (contrast to noise ratio) measurements were 
performed on the in focus plane at which the aluminum foil was located. The CNR 
measurement for the actual and modeled planes had a reasonably good agreement; the 
percentage error was approximately 15%. Discrepancy in the CNR may have been 
due to error in the detector air kerma approximation and also possibly due to 
reconstruction artifacts. Other contributing factors could have been the effect of phase 
lag and blurring due to finite size of the focal spot, which were not accounted for.  
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Fig. 2. (a) Actual projection; (b) modeled projection; (c) actual plane; (d) modeled plane 

                                                                    
 

Fig. 3. (a) Simulated lesion rendered in 3D; (b) 2D projection of the lesion; (c) micro-
calcifications; (d) breast phantom with micro-calcifications inserted into an adipose region to 
highlight visibility 

Figure 3 shows the results of insertion of a micro-calcification cluster (cluster size: 
5mmx4mmx4mm; >30 calcifications) into the breast phantom (thickness: 65mm; 
dense tissue: 25%) alongside an example of a simulated mass and micro-calcification 
cluster. Figure 4 shows the results of insertion of a relatively large (~12mm) 
conspicuous lesion (method: random walk; fractal dimension:2.82) into clinical 
projections followed by the application of the reconstruction software. Figure 5 shows 
a processed 2D mammogram and reconstructed tomographic plane of a breast with a 
small (~5mm) subtle simulated lesion (method: DLA; fractal dimension: 2.54). It is 
obvious from Figure 5 that there are significant variations in the lesion appearance 
between both modalities. Impact of this distinction on the cancer detection can be 
determined by conducting further studies using the proposed framework. 
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Fig. 4. Reconstructed tomographic breast plane from (a) clinical projections prior to insertion 
of a simulated lesion; (b) clinical projections after insertion of a 12mm obvious simulated 
lesion; (c) breast phantom projections with inserted micro-calcifications 

         
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. (a) Processed 2D mammogram of a breast with a 5mm subtle simulated lesion; (b) 
reconstructed tomographic plane of the same breast; (c-d) thumbnail insets showing inserted 
regions in detail 

4 Discussions and Conclusions 

A modeling framework to simulate 2D-mammography and digital breast 
tomosynthesis systems has been proposed to allow comparative studies. The 
simulation chain using breast phantoms demonstrated its use for studying the impact 
of technical factors on the image formation and image quality. The other simulation 
chain using clinical images demonstrated that this is useful for conducting observer 
performance studies to investigate the detectability of lesions in 2D and DBT. 
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Abstract. There exist various reconstruction algorithms for digital breast tomo-
synthesis (DBT). However, when optimizing the data acquisition parameters for 
better image quality in terms of a specific task, researchers usually pick one of 
their favorite or available reconstruction algorithms.  It is unclear whether us-
ing a different reconstruction algorithm would yield a different conclusion in 
the system optimization, thereby yielding a different optimized acquisition con-
figuration.  We look into this problem through simulation and present our  
preliminary results in this report. 

Keywords: Digital Breast Tomosynthesis, Reconstruction Algorithms, System 
Optimization. 

1 Introduction 

In DBT, the x-ray tube travels over a limited angular range and radiates the object at a 
certain number of locations along its trajectory to generate multiple projection views.  
The reconstruction algorithms then take the projection views and reconstruct a 3D 
volume of the scanned object.  Such reconstructed 3D volumes can help reveal the 
structures that are usually overlapped in traditional 2-view mammographic images, 
potentially leading to improved decisions on breast cancer malignancy [1, 2].  Differ-
ent from traditional CT, projection views in DBT are collected within a limited angu-
lar span. They are insufficient for volume reconstruction.  It is necessary to optimize 
the system geometry, such as the angular span, angular sampling and x-ray exposure, 
for improved image quality. 

Research has been conducted to investigate the problem of optimizing data acquisi-
tion parameters for DBT.  Although there exist various reconstruction algorithms for 
DBT, researchers usually pick one of their favorite or available reconstruction me-
thods when trying to optimize the data acquisition parameters, such as in the studies 
using the filtered back projection (FBP) method [3], the maximum-likelihood (ML) 
method [4] or the simultaneous algebraic reconstruction technique (SART) [5].   
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While the data acquisition condition determines how much information is collected 
about the object, the different reconstruction methods likely provide reconstructed 
DBT volumes with different properties.  Therefore a natural question arises on the 
optimization of the DBT scanning geometry: will the use of different reconstruction 
algorithms yield very different outcomes? 

In this work, we present our initial attempt to address this question using images 
generated through a simulated DBT system.  The simulation includes modeling the 
DBT system data acquisition process, utilizing realistic breast phantoms, applying 
various image reconstruction algorithms including FBP and iterative methods, and 
performing a task-based image-quality evaluation with model observers.  The me-
thod and results are described in the following report. 

2 Methods 

2.1 System Simulation 

The simulated DBT system had an ideal detector and a point x-ray source traveling 
along an arc trajectory.  The distance from the x-ray source to the detector was 65 cm 
and the rotation center of the x-ray tube was located 4.5 cm above the detector.  The 
detector element size was 500 x 500 μm2 and the detector was large enough to cover 
the projections of the object from all the angles within the angular spans simulated in 
this work.  The photon scatter was ignored in the simulated x-ray transport process.  
Only quantum noise was considered, with a uniform photon flux of 3x104 counts and 
20 keV energy across the detector elements. 

To simulate the breast, we used the Bakic voxelized breast phantom software [6] to 
generate a set of digital breast phantoms of 500 μm resolution along each of the three 
dimensions. Specifically, we set the breast phantoms to be of cup size B, compressed 
thickness of 5 cm and glandular density of 25%. With these parameter values, the 
software created a set of 3D breast phantoms of 409x130x103 voxels with random 
tissue structures. We assigned the glandular and adipose tissues to have attenuations 
of 0.0802 /mm and 0.0456 /mm, respectively, according to the values measured at 20 
keV in [7]. To simulate lesion-present breasts, we embedded six oblate spheroids in 
the digital breast phantoms. The spheroids had a major axis of 8 mm and a minor axis 
of 4 mm. They were all located in the center plane of the object, about 26 mm above 
the detector. The six lesions were well separated from each other in that plane. Figure 
1a shows an example image of the middle plane of a lesion-present breast phantom. 

To generate projection views, we used the forward projector developed by Long et 
al [8], the MATLAB implementation of which is available in the online reconstruc-
tion package: http://web.eecs.umich.edu/~fessler/code/index.html.  
For reconstruction, we set the slice interval to be 2 mm and the in-slice resolution to 
be 500 μm, the same as that of the breast phantom.  Details of the reconstruction 
methods are described next. 
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2.2 Reconstruction Algorithms 

The purpose of this work is to evaluate the effect of different reconstruction algo-
rithms on system optimization.  We picked four types of reconstruction algorithms 
for this purpose: the filtered back projection (FBP)[9], the simultaneous algebraic 
reconstruction technique (SART) [10], the maximum-likelihood (ML) method [9, 
10]and the total-variation regularized least-square reconstruction method (TVLS) [10, 
11].  The first three are extensions of reconstruction algorithms for conventional full-
view computed tomography.  They have been applied to tomosynthesis since the 
origination of such systems.  While FBP is an analytical reconstruction method, the 
other three are iterative reconstruction methods.  SART finds a solution to a group of 
linear equations associated with the integrals of attenuation along the rays received at 
the detector elements.  It aims to purely match the data without considering the noise 
in the measured data.  ML is a statistical reconstruction method.  It estimates the 
image by maximizing a likelihood function of the data under an assumed probability 
density function.  The TVLS, on the other hand, attempts to find a solution that mi-
nimizes a cost function containing a disagreement measure between the estimate and 
the data and a total-variation based smoothness constraint function on the estimate.  
We chose to include these four types of reconstruction algorithms because we believe 
together they are fairly representative of the categories of methods that are currently 
actively applied to the DBT systems.   

Each of the reconstruction algorithms has its tunable parameters.  To limit the re-
construction space, we fixed the parameters so that the computation was efficient and 
the reconstructed images had reasonably good image quality. The image quality we 
considered in this work was lesion detectability using a Channelized Hotelling model 
observer (CHO), which will be described in Section 2.3.   

For FBP, the ramp filter is usually modified to have smooth roll-offs at the high-
frequency ends by multiplying with a window function.  There are various choices 
on the window function that can result in different tradeoffs between the image reso-
lution and noise level.  However, due to the linearity of the filtering process, the var-
ious window functions may not significantly affect the lesion detectability of a Hotel-
ling (optimal linear) model observer [12].  Therefore we selected a commonly-used 
Hann filter for the FBP reconstruction.   

For the other three types of iterative algorithms, the step size and the total number 
of iterations need to be determined.  Step size usually affects the convergence rate of 
the cost function.  To achieve a fast convergence speed, we manually tuned the step 
size to be as large as possible, while still keeping the optimization process stable and 
hence able to reach an optimal solution.  Usually an iterative process terminates 
when the cost function starts to converge.  However, due to the limited number of 
views and the measurement noise, we note that iterating until a full convergence may 
not yield pleasing final images.  Since we considered lesion detectability to be the 
image quality metric, we picked the number of iterations for each algorithm to have 
approximately the best lesion detectability in an ensemble of breast phantoms.  Spe-
cifically, we generated a small set of breast phantoms, with half of them containing 
lesions, and passed them into the simulated DBT system; we then reconstructed and 
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saved the DBT volumes at each iteration from the 1st up to the 12th iteration; after-
ward, we estimated and compared the lesion detectability of the DBT volumes ob-
tained at each iteration to find the optimal iteration number for each iterative recon-
struction algorithm.   

Besides the step size and the number of iterations, the TVLS algorithm has another 
special parameters that controls the trade-off between the data agreement term and the 
regularization term.  We did not optimize the trade-off parameter.  Instead, we se-
lected two parameter values, one having stronger regularization and one milder regu-
larization, which we will call TVLS-strong and TVLS-mild, respectively.   

To summarize, five reconstruction algorithms were evaluated in this work, namely, 
FBP, SART, ML, TVLS-strong and TVLS-mild. 

2.3 Image Quality Assessment 

To assess image quality, we considered the task of detecting lesions that were embed-
ded in digital breast phantoms, i.e., a binary decision problem of discriminating 
whether an image contains a certain signal.  We used a channelized Hotelling model 
observer (CHO) to detect the lesions. The detectability signal-to-noise ratio (SNR) 
was considered to be the figure of merit.   

The CHO builds upon the Hotelling model observer [13].  It works as follows.  
Given a reconstructed image f, the CHO calculates the decision variable as the matrix 
product of the channelized signal template su, the inverse of the noise covariance 

ufK and the channelized image fu as follows,  

 uu u
t fKs f

1T −= , (1) 

where the (.)u indicates a channelization is applied to the variable. The purpose of 
channelization is to reduce the data dimensionality while maintaining the observer’s 
ability to extract useful information from the data.  By comparing the value of t to a 
certain threshold value, the observer determines whether the image contains a lesion 
or not.  Therefore, the better the distributions of t are separated under the signal-
present and signal-absent cases, the more likely the CHO arrives at a correct decision.  
This separability can be quantified by the signal to noise ratio (SNR) of t, as defined 
below in Eq. (2), to summarize the lesion-detection based image quality: 

 2/)(/|| 2
0

2
101 σσ +−= ttSNRt , (2) 

where 1t   and 0t  are the means, and  2
1σ   and 2

0σ   are the variances of the deci-

sion variable t in the lesion-present (subscript of 1) and lesion-absent (subscript of 0) 
cases, respectively.  

The Laguerre-Gauss (LG) functions were used as the channel functions [14] as they 
are efficient to describe rotationally symmetric functions, such as a Hotelling template 
estimated using stationary backgrounds and rotationally symmetric signals.  As the 
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signal diameter was about 8 mm, we set the width of the LG functions to be 4 mm and 
utilized 12 channels. The CHO was applied to a set of 2D subimages (31x31 pixels) 
that surrounded the expected lesion location at the focal slice of the lesion. The le-
sion-present subimages were cropped from the lesion-present DBT volume and the 
lesion-absent subimages from the lesion-absent DBT volumes. Among the extracted 
subimages, a subset of them was used to train the observer (i.e., estimate the cova-
riance) and the rest was used as a testing set to estimate the SNRt. Because the back-
ground structure was not uniform, the signal templates were obtained by subtracting 
the reconstructed lesion-absent from the lesion-present mean background DBT im-
ages, where the mean background was an average over multiple breast phantoms. 

With the image quality as defined above, we may investigate the effect of recon-
struction methods on ranking system acquisition parameters. Suppose we are trying to 
optimize the angular span for lesion detectability; we may simulate projection data 
across a set of angular span with a fixed number of views.  Each set of projection 
data is reconstructed by each of the selected reconstruction algorithms. For each re-
construction algorithm, the system acquisition parameters can be ranked based on the 
image quality of the reconstructed volumes.  If the rankings agree despite the use of 
different reconstruction algorithms, we may be able to conclude that optimization of 
the system acquisition parameters are not sensitive to the reconstruction algorithms; 
otherwise, the findings of optimal data acquisition parameters would be expected to 
vary based on the reconstruction algorithm being used in the DBT system. 

3 Results and Discussion 

To determine the optimal number of iterations for each iterative algorithm, we used 
30 lesion-present and 30 lesion-absent breast phantoms. For each of the 30 lesion-
present breast phantoms, six lesions were inserted in the middle of the breast phan-
toms. Nine views and a 50o angular span were used as the system acquisition parame-
ters to generate the projection views. Figure 1 shows the slice of one digital breast 
phantom that contains the lesion centers, along with its DBT slices reconstructed us-
ing the aforementioned reconstruction algorithms.  Figure 2 shows the curves of 
lesion detectability vs. the iteration number. Based on those curves, we determined 
the total numbers of iterations to be 1 for SART and 5 for ML, TVLS-strong and 
TVLS-mild.  

With the reconstruction parameters having been determined, we then examined the 
effect of the reconstruction algorithms on the optimization of angular span in the DBT 
system. For this purpose, we generated another set of 80 breast phantoms. Lesions of 
the same size and shape were inserted into 40 of breasts at the same locations.  We 
fixed the number of views at 9 but varied the angular span from 10 to 60 degrees to 
generate projection views.  The lesion detectability SNR of the reconstructed DBT 
volumes was estimated using the method described in Sect 2.2.  Figure 3 shows the 
curves of lesion detectability vs. angular span for the five reconstruction algorithms. It 
can be seen that the curves present similar trends: lesion detectability increases as the 
scan angle increases, reaches a peak at the 50 degree span and drops afterward.  The 
consistent trends among reconstruction algorithms suggest that the DBT system opti-
mization may not be very sensitive to the reconstruction algorithm being used.   
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a) one phan-
tom slice 

b) FBP c) SART d) ML e) TVLS-
strong 

f) TVLS-
mild 

Fig. 1. a) One slice of a 3D breast phantom that contain the spherical lesion centers and the 
corresponding DBT slices reconstructed using b) FBP, c) SART, d) ML e) TVLS-strong and f) 
TVLS-mild from 9 noisy projection views in a 50 degree angular span. The window level of the 
FBP slice is [-0.2 0.6] and the window level for the other four is [0 0.8].   
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Fig. 2. Lesion detectability vs iteration number of the reconstruction algorithms at the acquisi-
tion of 9 views within 50 degrees.  FBP is an analytical method, so there is only one iteration. 
SART has the best performance at the 1st iteration; the other three reach their optimum at about 
the 5th iteration.   

The major goal of this work is to evaluate how the reconstruction algorithm may 
affect DBT system optimization. The preliminary results reported in this paper show 
that the choice of which algorithm to use may not be critical for optimizing the angu-
lar span. Future work is needed to see how the other acquisition parameters may be 
affected by the reconstruction algorithms.  As the simulated scenario in this work 
was limited to a detection task of a simple-shaped lesion, further evaluation based on 
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other tasks, such as detecting calcifications or discriminating between regular and 
irregular shapes, will be conducted.  It is also desirable to include an uncertainty 
estimate on the detectability SNR in order to test the significance of the possible find-
ings. 
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Fig. 3. Lesion detectability vs the angular span with the number of views of 9. The trends are 
similar among the various reconstruction algorithms. 

4 Conclusions 

In this work, we simulated various DBT systems and used realistic breast phantoms to 
examine the effect of reconstruction algorithm on system acquisition parameter opti-
mization. Specifically, we selected five representative algorithms (FBP, SART, ML, 
TVLS with strong and mild regularizations) and a simple task of optimizing lesion 
detectability with regard to the angular span.  Our preliminary results show that the 
ranking of the system parameters were consistent among the five reconstruction algo-
rithms. This suggests that optimizing the system acquisition parameters, in particular 
angular span, may not be sensitive to the reconstruction algorithm for the detection of 
simple spherical lesions. However, a particular reconstruction algorithm may be pre-
ferred based on other factors like the computation time and memory requirements. 
Future work on validating this finding on a larger optimization space, a larger phan-
tom set and for other clinically relevant tasks will be conducted. It will also be inter-
esting to investigate how the ranking may change with a 3D model observer which 
incorporates 3D spatial correlation using multiple reconstruction slices, or when di-
rectly using the projection data rather than the reconstructed images in the image 
quality assessment stage.  
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Abstract. We assessed the radiological findings and capability of DBT in ad-
junction to FFDM to predict response to NAC in comparison with other diag-
nostic modalities. 25 women (ages 29-73, mean age, 53.0 years old) having 26 
lesions were recruited for this study and gave informed consent. In accor-
dance with  this preliminary study, the adjunction of DBT to FFDM combined 
with other diagnostic modalities will contribute to more accurate assessment of 
pathological response to NAC. 

Keywords: Digital Mammography, Tomosyntthesis, Neoadjuvant Chemothe-
rapy, DBT, US, FFDM. 

1 Introduction 

Neoadjuvant chemotherapy (NAC) is performed to reduce tumor size prior to surgery 
in women with breast cancer. The imaging methods that have been used until now to 
assess tumor response to neoadjuvant chemotherapy have serious limitations; for 
example, mammography alone cannot identify mass lesions in very dense breasts or 
distinguish viable residual lesions from the surrounding fibrous reaction after NAC 
[1]-[8].  Digital breast tomosynthesis has been only recently applied clinically. The 
diagnostic advantages in comparison to mammography have been reported on, includ-
ing the fact that the slice images can be evaluated because tomosynthesis decreases 
the overlap in breast tissue [9]-[14]. In this study, we assessed the radiological find-
ings and capability of DBT in adjunction to FFDM to predict response to NAC in 
comparison with other diagnostic modalities. 
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2 Materials and Methods 

This study was approved by the IRB at our institute. 25 women (ages 29-73, mean 
age, 53.0 years old) having 26 lesions were recruited for this study and gave informed 
consent. Images utilizing adjunction of DBT to FFDM were taken for diagnosis from 
December, 2009 to October, 2011. Pathological diagnosis was confirmed by Core 
Needle Biopsy (CNB) and the pathological subtypes were Invasive Ductal Carcinoma 
(n=20), Invasive Lobular Carcinoma (n=3), Invasive Micropapillary Carcinoma 
(n=2), and Mucinous Carcinoma (n=1). The diagnostic procedures were performed 
within one month prior to surgery. For each patient, MMG and US were both per-
formed on the same day, but not always in the order and were evaluated independent-
ly. Examination utilizing other modalitieswere carried out later. 

Contrast-enhanced MRI was performed on 15 patients, and contrast-enhanced CT 
was performed on 10 patients both before NAC and after NAC. Imaging utilizing 
adjunction of DBT to FFDM was performed before and after NAC in 10 out of 25 
cases. In 15 out of 25 cases, imaging utilizing adjunction of DBT to FFDM was per-
formed only after NAC. Whole-breast US was performed with an 8 MHz wide-band 
high-resolution transducer (aplioTM XV, Toshiba Medical Systems, Japan). Transverse 
and longitudinal scans were acquired. Breast MRI was performed with a 3-Tesla sys-
tem (Magnetom Trio, Siemens, Germany).Patients were studied in the prone position 
with a dedicated breast surface coil. The entire breast was imaged once before and 
four times after intravenous injection of 0.1mmol of Gd-DTPA/Kg of body weight 
(Magnevist; Schering, Germany). The post-processing procedures included digital 
image subtraction, Maximum Intensity Projection (MIP) and Multiplanar Reconstruc-
tion (MPR) by slices of 3mm thickness. Breast CT was performed with multi-detector 
raw CT (MDCT) (Aquilion64, Toshiba Medical Systems, Japan). The images were 
acquired before injection of an iodine contrast medium, and 60 seconds after, and 3 
minutes after injection of the total amount of 100ml, at the rate of 3ml/second (Iopa-
midol 300, Bayer AG, Germany). The images were reconstructed as slices of 2mm 
thickness and evaluated.  

With regard to DBT and FFDM, clinical image data were acquired by an a-Se 
FFDM system with a spatial resolution of 85μm (MAMMOMAT Inspiration, Sie-
mens, Germany).Two-view DBT was performed with the same compression angle 
and compression pressure as the FFDM. With one-view DBT, the radiation dose was 
1.5 times compared to one-view FFDM. The radiation dose with ACR 156 was 
1.2mGy with FFDM. FFDM and reconstructed 1mm slice images from DBT were 
reviewed at a dedicated workstation.  

The author and the other five co-authors (two radiologists and four breast surge-
ons) each have over ten years’ experience in reading mammograms. In addition, to 
read screening mammograms in our country, it is necessary to get a certificate from 
the committee on quality control of mammographic screening by taking a qualifying 
examination and the certificate must be renewed every five years. The author and the  
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other five co-authors all passed the qualifying examination with A rank results. All 
the examination scores were over 90% in sensitivity and over 92% in specificity. In 
addition, the two radiologists and four breast surgeons are experienced not only with 
regard to mammography, but also with regard to US, MRI, and CT. 

The clinical response to chemotherapy was classified into the following categories, 
based on the “response evaluation criteria in solid tumors” (RECIST), using the mea-
surements obtained with the different imaging methods: 1) Complete Response (CR): 
no clinical evidence of residual tumor, 2) Partial Response (PR): reduction in size of 
the tumor by more than 30%; 3) Non-Responders : a: Stable disease (SD): reduction 
in size of the tumor by less than 30%, 4) Progressive disease (PD): increase in size of 
tumor or presence of new lesions. Pathological response to chemotherapy was classi-
fied into four categories: Grade 0 (No Response), Grade 1(Slight Response), Grade 2 
(Fair Response), and Grade 3 (Complete Response) [15]. The clinical stages of the 
patients before NAC were II or III. All patients underwent surgery based on their 
response to NAC and residual tumor size estimated by diagnostic imaging was com-
pared with the residual tumor size determined by surgical pathology. 

3 Results 

Pathological responses of the lesions to NAC were Grade 0 (n=1), Grade 1 or Grade 2 
(n=21), and Grade 3 (n=4).MMG findings of pathological Grade 3 were microcalcifi-
cations only (n=1), scar only (n=1), and microcalcifications with reduced mass lesion 
(n=2). Two out of four (50.0%) lesions demonstrated CR, and two out of four lesions 
demonstrated PR (50.0%). Regarding the Grades 1-2 cases, lesions were diagnosed as 
reduced mass with or without microcalcifications (n=19) demonstrated  PR (19/21, 
90.5%) and 2 lesions diagnosed as only distortion or scar demonstrated CR (2/21, 
9.5%). Regarding the Grade 0 case, the lesion detected as an enlarged mass (n=1) was 
diagnosed as PD (1/1, 100.0%). Adjunction of DBT to FFDM findings of pathological 
Grade 3 were microcalcifications only (n=1), Scar only (n=1), and microcalcifications 
with scar without any density (n=2) that suggest CR (Fig.1). Regarding pathological 
Grades 1-2, the lesions were detected as reduced masses with or without microcalcifi-
cations (n=20) that suggested 20 cases were PR (20/21, 95.2%), and 1 case of only 
distortion or scar (n=1) that suggested CR (1/21, 4.8%). Regarding the Grade 0 case, 
the lesion was detected as an enlarged mass (n=1) that suggested PD (1/1, 100.0%). 
US findings of pathological Grade 3 (n=4) were diagnosed as CR (n=2, 50.0%), SD 
(n=1, 25.0%) and PR (n=1, 25.0%).  

US findings of pathological Grades 1-2 (n=21) were diagnosed as PR (n=17, 
81.0%), SD (n=3, 14.3%) and CR (n=1, 4.8%). In the case of US findings of patho-
logical Grade 0 (n=1), the lesion was diagnosed as PD (n=1, 100.0%).  

MRI (n=15) findings of pathological Grade 3 (3 lesions) were diagnosed as CR 
(n=2, 66.7%) and PR (n=1, 33.3%). MRI (n=15) findings of pathological Grades 1-2  
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(11 lesions) were diagnosed as PR (n=10, 90.5%) and CR (n=1, 9.5%). In the case of 
MRI findings of Grade 0(n=1), the lesion was diagnosed as PD (n=1, 100.0%).  

CT (10 cases with 11 lesions) findings of pathological Grade 3 (n=1) were diag-
nosed as CR (n=1, 100.0%). CT findings of pathological Grades 1-2 (n=10) were 
diagnosed as PR (n=10, 100.0%).  

MMG only resulted in two under-diagnosed lesions (2/26, 7.7%) and two over-
diagnosed lesions (2/26, 7.7%).US resulted in one under-diagnosed lesion (1/26, 
3.8%) and five over-diagnosed lesions (5/26, 19.2%). MRI resulted in one under-
diagnosed lesion (1/15, 6.7%) and one over-diagnosed lesion (1/15, 6.7%). Compared 
to MMG, US showed no statistically significant difference (P>0.08), while CT, MRI 
and adjunction of DBT to FFDM showed statistically significant differences; 0.02, 
0.04 and 0.04, respectively (Table1).  

Table 1. Comparison of NAC Response by Diagnostic Evaluation and Pathological Evaluation 

*Pathological  
Response      

MMG 
(n=26) US ( n=26) CT  

(n=11) 
  MRI 
(n=15) 

*** DBTFFDM 
( n=26)  

Grade 0  PD: 1/1  PD: 1/1   PD: 1/1     PD: 1/1  

100.0% 100.0% 100.0% 100.0% 

Grades 1-2 PR: 19/21   PR: 17/21 PR: 10/10  PR: 10 /11 PR: 20/21  

90.5% 81.0% 100.0% 90.9% 95.2% 

CR: 2/21   SD: 3/21   CR: 1/11 CR: 1/21  

9.5% 14.3% 9.1% 4.8% 

CR: 1/21 

4.80% 
 

Grade3 CR: 2/4 CR: 2/4 CR: 1/1 CR: 2/3 CR: 4/4  

50.0% 50.0% 100.0% 66.7% 100.0% 

PR: 2/4 PR: 1/4   PR: 1/3 

50.0% 25.0% 33.3% 

SD: 1/4 
 

25.0% 
                              **P=0.08    P=0.02      P=0.04       P=0.04 
 
 

* The clinical response to chemotherapy was classified in accordance with RECIST 

**Analyzed by t-Test                 *** DBTFFDM: Adjunction of DBT to FFDM 

4 Discussion 

Accurate evaluation of tumor response to NAC is necessary for optimization of preo-
perative planning. MRI and CT have recently developed the potential to assist the 
other traditional imaging methods in the evaluation of response to NAC [4]-[8]. By 
mammography, it is difficult to identify a mass lesion in dense breasts or to distin-
guish a viable lesion from a fibrous reaction owing to NAC. Using US only can result 
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in over-diagnosis of chemotherapy-induced fibrosis, because in the case of a hypo-
echoic lesion, it is difficult to differentiate between a fibrotic change induced by 
neoplastic change and a reduction in the tumor by NAC. In addition, it is difficult to 
measure by hand-held probe the overview of a large mass lesion or multi-centric le-
sions, such as locally advanced tumors that could be treated by NAC (Fig.1).  

On the other hand, adjunction of DBT to FFDM has potential diagnostic advantag-
es. In accordance with our study, compared to FFDM only, adjunction of DBT to 
FFDM can evaluate the inside of and the outline of the lesion. Compared to US, ad-
junction of DBT to FFDM can evaluate the overview of the lesion objectively.  

Accurate evaluation of tumor response to the pharmacological treatment is funda-
mental for optimal surgical planning. CE-MRI and CE-CT have recently developed 
the potential to assist the other traditional imaging methods in the evaluation of re-
sponse to chemotherapy. These are able to discriminate between neoplastic and fibrot-
ic tissue, based on the rate of contrast media enhancement. In addition, the higher 
sensitivity of MRI can detect non-invasive lesions as enhanced lesions that can be 
over-diagnosed as residual invasive components (Fig.2). According to our study, 
compared to CE-CT or CE-MRI, with adjunction of DBT to FFDM, it is possible to 
correlate the macroscopic evaluation with the pathological diagnosis without utilizing 
a contrast medium.  

The combination of adjunction of DBT to FFDM with other diagnostic modalities 
will contribute to improved diagnostic accuracy with regard to NAC response to lo-
cally advanced breast cancer. According to our preliminary results, adjunction of 
DBT to FFDM could have a possibility for alternative diagnostic procedure of CE-CT 
and CE-MRI. 

 

       
   (a) FFDM         (b) FFDM          (c) DBT            (d) DBT 

 Pre NAC          Post NAC           Pre NAC            Post NAC 

Fig. 1. (Grade 1 Case) FFDM (Fig.1a-b) showed reduced masses after NAC (white arrow). 
DBT (Fig.1c-d) showed reduced masses with scar with partial density inside of the correspond-
ing lesion after NAC (white arrow). 
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(a) FFDM          (b) FFDM          (c) DBT            (d) DBT 

     Pre NAC           Post NAC          Pre NAC           Post NAC 

      

       (e) US                      (f) US 
        Pre NAC                    Post NAC 

         
 (g) CE-MRI MPR Image       (h) CE-MRI MPR Image 

 Pre NAC                    Post NAC 

Fig. 2. (Pathological Grade 3 Case) FFDM (Fig.2a-b) demonstrated a reduced mass with 
microcalcifications after NAC (white arrow). DBT (Fig.2c-d) demonstrated microcalcifications 
with scar without core density inside of the corresponding lesion after NAC (white arrow). US 
(Fig.2e-f) demonstrated a reduced hypo-echoic mass as a suspicious residual lesion after NAC 
(white arrow). The coronal image of CE-MRI (Fig.2g-h) demonstrated small enhanced nodules 
as a suspicious residual lesion after NAC (white arrow). Pathological diagnosis demonstrated 
residual DCIS corresponding to the enhanced lesions by CE-MRI. 
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5 Conclusion 

The adjunction of DBT to FFDM combined with other diagnostic modalities will 
contribute to more accurate assessment of pathological response to NAC. 
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Abstract. The development of new 3D imaging systems in the mammographic 
field is raising questions on its superiority of performance over 2D digital mam-
mography in all aspects. Researchers are currently investigating the performance 
of  digital breast tomosynthesis (DBT) compared to 2D digital mammography in 
terms of detectability of lesions (masses and microcalcifications) and diagnostic 
accuracy. Since a morphological description of the shape of microcalcifications is 
a determining factor for recalling the patient or not, we have investigated the effi-
ciency of DBT in describing the morphology of microcalcifications within clus-
ters compared to digital mammography. Four radiologists participated in the study 
and have described the shapes of microcalcifications in 71 clusters in 2D images 
and DBT series that were read in separate blinded sessions. An agreement test 
based on the kappa statistic was applied to evaluate the consistency of each read-
er’s evaluation in 2D and DBT. An inter-rater variability test was also applied for 
each modality. Results have shown that there is good agreement between the ob-
servers’ evaluations in these two modalities. The inter-rater test also revealed 
good agreement between the observers performance of assessment. In conclusion, 
this preliminary study has shown that the morphology of microcalcification clus-
ters does not differ substantially in 2D versus DBT. 

Keywords: Digital mammography, breast tomosynthesis, microcalcifications, 
morphology of microcalcifications. 

1 Introduction 

Digital breast tomosynthesis (DBT) is a newly introduced 3D technology in the  
world of mammography. One major advantage of DBT systems is the possibility to 
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overcome the problem of overlapping tissues, a known limitation of 2D planar mam-
mography where normal breast structure could hide pathology of interest. Despite this 
extra 3D information, it is not yet clear whether DBT could be used in screening, or 
should be used for diagnostic evaluation only or in high risk women. Gennaro et al. 
[1] and Andersson et al. [2] have compared DBT to full-field digital mammography 
(FFDM) in terms of cancer detection and characterization. They have found that le-
sion conspicuity increases in DBT compared with FFDM and in [2] even concluded 
that DBT has a higher specificity for breast cancer detection. Moreover, Spangler et 
al. [3] have found that FFDM was more sensitive and specific than DBT for the de-
tection of microcalcifications. 

Microcalcifications are considered a characteristic sign for localization of malig-
nancy [4]. Their morphology is one of the most important characteristics indicating 
malignancy or benignity [5]. Therefore, it is important for any mammographic system 
to allow not only detection but also correct categorization of breast microcalcifica-
tions since this impacts on the recall rate, an important indicator and performance 
measure for screening. Whereas most authors agree that DBT might have advantages 
in detecting and categorizing masses, its value for microcalcifications is not yet de-
termined [2].  

The aim of this study was to investigate characterization of microcalcifications, by 
comparing the morphological description of microcalcifications within clusters be-
tween DBT and 2D FFDM in an observer performance study. Whereas most observer 
studies comparing these two modalities apply a side by side reading, where the ob-
server evaluates each case with the presence of both 2D and tomosynthesis, in our 
study, we opted to evaluate both techniques in separate, blinded sessions. 

2 Materials and Methods 

The observer study was performed with a total of 71 microcalcification clusters (cas-
es). Thirty five cases were patients with real microcalcification clusters and 36 were 
clusters simulated into patient images [6]. Simulated clusters have been used to in-
crease the number of cases. The 3D microcalcification clusters were previously vali-
dated for their realistic appearance against real clusters in an observer performance 
study and the results showed no statistically significant difference between real and 
simulated clusters of microcalcifications in both 2D FFDM and DBT [6]. The simula-
tion framework ray traced 3D models of microcalcification clusters and adjusted the 
contrast for the x-ray spectrum that has been used in the patient image into which the 
calcifications were simulated. Each real microcalcification cluster present in a real 
breast was imaged in 2D and tomosynthesis using the same system (MAMMOMAT 
Inspiration TOMO, Siemens AG Healthcare, Erlangen, Germany). For the simulated 
clusters, the same patient background was also imaged using the same system and the 
cluster was simulated into the same position in 2D and DBT as described in [6]. All 
raw projection images were processed: the 2D images were processed using the de-
fault image processing software (OpView2, Siemens, Erlangen) and the projection 
tomosynthesis images were reconstructed using the Siemens software (TomoEngine, 
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Siemens, Erlangen, Germany) that is based on the Filtered Back-projection algorithm 
(FBP) [7]. The in-plane resolution of the reconstructed slices was 0.085 mm x 0.085 
and the planes were reconstructed with 1 mm inter-slice distance. All patient doses in 
DBT are approximately double the dose of 2D FFDM, e.g. for a typical breast of 
thickness 45 mm the dose of one view 2D is 0.83 mGy and 1.79 mGy for one view 
DBT. 

Four radiologists participated in the study. They evaluated the mediolateral 
(MLO) views of the patient cases using a user friendly software Sara2 (Qaelum NV, 
Belgium) on a high resolution 5 megapixel monitor (Barco MDNG5121CB) in our 
mammography reading room. The radiologists were trained first to read tomosyn-
thesis series containing microcalcifications along with the 2D images from the 
PACS environment. Afterwards, they had two training sessions one for 2D and one 
for DBT, to learn the use of the Sara2 software. In the subsequent observer study, 
they evaluated the 2D images in separate sessions from the DBT sessions to guaran-
tee an independent reading. As the goal of this study was to evaluate the morpholo-
gy of the microcalcifications within the clusters and not detectability, each cluster 
was presented to the observers with a rectangle around it. The cases were presented 
to the radiologist one by one with the possibility to zoom in/out, change window 
level settings, toggle on/off the defining rectangle and scroll between planes in the 
case of DBT series. The radiologists were asked to describe the morphology of the 
microcalcifications in the cluster using one or more of the following four shapes: 
round, irregularly round, linear, and amorphous. Fig. 1 shows an example of the 
reading.  

Comparison between the 2D and DBT setups was performed for each of the 4 
shape categories (round, irregular round, linear and amorphous) separately using kap-
pa statistics, and the observed agreement as well as the p-value were reported. No 
correction for multiple testing was performed in this preliminary study. Inter-rater 
agreement was assessed between each pair of the readers again using kappa statistics. 
A p-value of <0.05 was considered to indicate statistical significance.  

 

Fig. 1. Example of a reading session 
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3 Results 

Table 1 shows the results of the agreement test based on kappa statistics with the cor-
responding p-value comparing 2D and DBT. The agreement was reported per shape 
category and observer. Agreements varied between 0.65 and 0.78 for the round shape, 
between 0.59 and 0.69 for the irregular round shape, between 0.75 and 0.83 for the li-
near shape, and between 0.76 and 1 for the amorphous shape. Generally, the agreement 
between the two modalities in the assessment of morphological description can be con-
sidered good, but only limited significance can be found in this limited population size. 

Tables 2 and 3 show the results of inter-rater agreement between all observers for 
both 2D and DBT techniques, respectively. For 2D FFDM, the agreement varied from 
0.73 to 0.78 indicating good agreement between readers in the evaluation of the mor-
phological shapes of microcalcification clusters. For DBT, the agreement varied from 
0.72 to 0.82 indicating good agreement as well.   

Table 1. Agreement according to Kappa statistics and uncorrected p-values for comparison 
between 2D and DBT in terms of morphological description for the different shapes and observers 

Observer 
  

Shape 

Round irregular round 

Agreement p-value Agreement p-value 

1 0.65 0.028 0.61 0.099 

2 0.79 0.070 0.62 0.094 

3 0.78 0.478 0.59 0.315 

4 0.78 0.025 0.69 0.018 
 

Observer 

Shape 

Linear Amorphous 

Agreement p-value Agreement p-value 

1 0.79 0.136 0.82 0.018 

2 0.83 0.679 0.79 0.310 

3 0.75 0.690 1 <0.0001 

4 0.80 0.119 0.76 0.209 

Table 2. Inter-rater observed agreement based on kappa statistics  between the four observers 
for all evaluations in 2D 

2D FFDM 

Observer 1 2 3 4 

1 1 0.78 0.76 0.76 

2 - 1 0.76 0.73 

3 - - 1 0.76 

4 - - - 1 
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Table 3. Inter-rater observed agreement based on kappa statistics between the four observers 
for all evaluations in DBT 

DBT 

Observer 1 2 3 4 

1 1 0.77 0.72 0.73 

2 - 1 0.82 0.81 

3 - - 1 0.81 

4 - - - 1 

4 Discussion 

The introduction of new technologies requires extensive research. Currently, a num-
ber of studies are investigating the role of DBT in the field of breast imaging. Some 
studies are interested in the physical development and optimization of the systems 
while other studies are evaluating the capabilities of DBT compared to 2D FFDM in 
clinical applications. Some studies show that DBT offers superior detectability for 
masses but is equal to 2D FFDM for microcalcifications. Other studies have focused 
on general detectability of microcalcifications and masses and found no significant 
difference between 2D and DBT [1, 2]. One major aspect that is not yet fully investi-
gated is the characterization of microcalcifications. This study setup stems from the 
validation procedure of simulated microcalcification clusters when some differences 
were noticed between the appearance of clusters in 2D compared with the same clus-
ters in DBT, as shown in Fig. 2. Fig. 2(a) is a microcalcification cluster in 2D and Fig. 
2(b) is the same cluster in a DBT reconstructed plane (in focus plane). Table 4 shows 
the assessment of the cluster in Fig. 2 by all four observers in both 2D and DBT. It is 
clear that two observers have changed their interpretation from round to irregular 
round. The linear shape of calcifications was missed by all observers in DBT. When 
asked to provide feedback after having read all cases, the radiologists commented that 
generally the appearance of microcalcifications was slightly different in DBT when 
compared to 2D in terms of distribution over planes and reconstruction artifacts. But 
they didn’t refuse the existence of reconstruction artifacts because they revealed the  
presence of irregularly shaped microcalcifications due to the peaks at the border of the 
microcalcification. The observers also commented that DBT images are noisier. 

This study has focused on the morphological appearance of microcalcification 
clusters in 2D and DBT in highlighted regions. Although this was done intentionally, 
another approach would be to design the study as a search (detectability) and diagnos-
tic task with a standardized descriptor such as Le Gal [8] or BIRADS [9]. Another 
limitation was the relatively low sample size, which was reflected in the non-
significant correlation statistics (Table 1) where the p-values were reported for com-
pleteness. In future studies, a prospective setup in a larger patient population needs to 
be performed to further assess correlations between the 2D and DBT setups. 
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                                 (a)                                                                       (b) 

Fig. 2. An example of a microcalcification cluster in (a) 2D FFDM and in (b) DBT recon-
structed plane (in focus plane) 

Table 4. The assessment of the cluster in Fig. 2 by all four observers in both 2D and DBT 

 Assessment in 2D FFDM Assessment in DBT 

Observer 1 round irregular round 

Observer 2 round, irregular round, linear round, irregular round 

Observer 3 round irregular round 

Observer 4 round, linear Round 

5 Conclusion 

A comparison in terms of morphological description was applied between 2D FFDM 
and DBT. A total of 71 microcalcification clusters were evaluated by four radiologists 
who were asked to describe the shapes of the microcalcifications in the clusters in 
terms of round, irregular round, linear or amorphous. The observer study was imple-
mented in blinded sessions, where the observers read the 2D images in separate ses-
sions from the DBT series. An agreement test was calculated using kappa statistics 
between the two modalities (2D and DBT) and the results showed good agreement 
among readers per shaped category indicating that the morphology of microcalcifica-
tion clusters does not substantially differ in 2D versus DBT.  
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Abstract. Investigations reporting digital breast tomosynthesis (DBT) describe 
better depiction of masses and architectural distortions and reduced recall for 
additional imaging. The purpose of this study was to evaluate the conspicuity 
and characterization of common findings (mass/distortion or calcifications) on 
DBT examinations performed by both 15° and 30° scan angles. Three readers 
independently reviewed 61 DBTs containing 78 findings, without knowledge 
which were 15° versus 30°acquisitions, and rated DBT lesion depiction using a 
7-point Likert scale. An evaluation of image quality with respect to eliminating 
superimposed tissue and an overall DBT preference were also recorded. Our 
study showed no overall difference in readers’ rating between 150 and 300 angle 
acquisition DBT exams for masses and distortions; for calcifications, there was 
a statistically significant preference favoring the narrow-angle scans. For over-
all image quality, a slight trend preferring narrow angle DBT was found, with 
readers’ overall preference for narrow angle DBT being statistically significant.  

Keywords: Digital Breast Tomosynthesis (DBT), acquisition angle, reader  
preference study. 

1 Introduction 

Breast cancer screening using x-ray projection mammography has contributed to re-
ducing breast cancer mortality. Despite this success, lesion detectability in conven-
tional digital mammography is limited by the anatomic background structure created 
by the projection of complex 3D parenchymal tissues onto a 2D image plane. To 
overcome this limitation, 3D breast imaging techniques are being developed, includ-
ing digital breast tomosynthesis (DBT). Of interest is the variation in design of 
emerging DBT systems, particularly the angle of scanning used to acquire DBT image 
data.  

In DBT, projection images acquired over a limited angular scan are reconstructed 
into a volume composed of thin slices (nominally 1 mm) oriented parallel to the  
detector plane and allowing the visualization of the breast at a specific depth while 
decreasing the obscuring effect of overlapping tissues. Minimizing the effect of over-
lapping tissue aids in the detection of masses, which is limited largely by breast tissue 
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structural noise. The detection of microcalcifications, however, is to a greater degree 
limited by quantum and detector noise. Preliminary clinical studies have shown that 
the removal of overlapping breast tissue reduces image clutter and increases detecta-
bility of large, low contrast lesions [1, 2]. However, other studies as well as anecdotal 
evidence, suggest decreased conspicuity of small, high contrast objects such as micro-
calcifications [3, 4]. 

The purpose of this study was to evaluate the conspicuity and characterization of 
common mammography findings on DBT examinations performed by both 15° and 
30° scan angles in patients with BI-RADS® 0 (The American College of Radiology 
“Breast Imaging Reporting and Data System”) assessment on screening digital mam-
mography. 

Table 1. DBT system scan Angles (α), no. of images acquired (n) and angular sampling 
distance (∆α) 

SYSTEM SCAN 
ANGLE (α) 

Number of images 
acquired (n) 

Angular sampling dis-
tance (∆α), degrees 

Scan time 
(sec) 

Hologic 15 15 1 4 
Siemens 50 25 2 25 
General 
Electric 

25 9 2.8 10 

Sectra 11 21 0.5 10 

2 Methods 

Rationale: DBT differs from conventional computed tomography in that it is a form 
of limited angle tomography. While DBT reduces overlap of parenchymal structures 
and potential breast lesions, the limited angle acquisition results in image slices that 
maintain some visibility of structures in the slices above and below the slice where an 
object of interest resides. This is similar to the characteristics of film-based linear 
tomography. As a general rule, wider angle tomosynthesis scans reduce the visibility 
of out-of-plane structures to a greater degree than narrow angle scans. Another gener-
al rule regarding in-plane resolution is that wider angle tomosynthesis scans produce 
images with poorer in-plane resolution while narrow angle scans have higher resolu-
tion. The degradation of resolution for wider angle scans results from several factors, 
including the oblique incidence of imaging photons on the detector and reconstruction 
artifacts. Though theoretical simulations and phantom studies have been reported 
[5,6], it is not immediately apparent what the optimal DBT scan angle for breast im-
aging should be. Wide angle scans will better reduce shadows from parenchymal 
breast tissue beyond a slice of interest; however, narrow angle scans will allow better 
visualization of microcalcification clusters due to the higher resolution and because 
more calcifications in a cluster will be imaged in a given slice. Similarly, a spiculated 
lesion might be better appreciated in a narrow angle DBT acquisition, because both 
the lesion’s “mass” component and its out-of-plane spiculations can be seen sharply 
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in a given slice. There are additional practical considerations in comparing narrow 
versus wider angle scans. For example, wide angle scans can result in smaller fields 
of view. They also require longer scan times that increase the potential for patient 
motion. Finally, wide angle scans result in x-rays travelling through a thicker effec-
tive breast, which may result in increased noise or increased patient dose. 

Imaging System: For this trial, a Hologic Selenia Dimen-
sions (Bedford, MA) DBT system was modified and used 
to acquire both 15° and 30° angle scans. The detector has 
3328 X 4096 pixels with a 70 µm pitch. The target/filter 
combination of Tungsten (W)/Aluminum (Al) was used 
exclusively for DBT acquisition. For DBT acquisition in 
this study, the x-ray tube moved in a ± 7.5 degree or ±15 
degree arc about a center of rotation located at the detector 
plane and acquiring 21 (15° angle acquisition) projection 
images or 30 (30° angle acquisition) projection views 
using 2x2 binned detector resolution of 140 microns (Fig-
ure 1). Image acquisition time was approximately 5 
seconds for the 15 degree scan and 7.5 seconds for the 30 
degree scan. The source to imager distance (SID) is 70 cm and the source to center of 
rotation distance is also 70 cm. Dose was controlled using auto AEC mode, and for 
any given subject, the same dose, equal to 1.5X standard screening digital mammo-
graphy dose, was used for both 15° and 30° angle scans. The dose for a standard size 
(4.2 cm) and composition (50% fat, 50% glandular) breast was approximately 2.2 
mGy.  

Image Reconstruction: Tomosynthesis image reconstruction was performed using a 
modified filtered back projection algorithm and reconstructed into images with ap-
proximately 100 micron in-plane resolution and 1mm slice separation. 

Subject Eligibility and Enrollment: Institutional Review Board Committee approval 
was obtained for this Health Insurance Portability and Accountability Act compliant 
protocol. Written informed consent was obtained. Females, at least 40 years of age, 
with a screening mammogram categorized as BI-RADS® 0 (The American College of 
Radiology “Breast Imaging Reporting and Data System” assessment category 0) be-
cause of suspected mass density, focal asymmetry, or calcifications were eligible for 
this study if they had both their screening and diagnostic mammograms performed on 
a Hologic 2D Selenia Mammography System. In addition to standard care diagnostic 
imaging, all participants underwent two experimental DBT acquisitions, in two pro-
jections (Cranio-Caudal and Mediolateral Oblique) on the breast of concern by both 
15° and 30° acquisition angle, in a randomized order. A total of 110 subjects, includ-
ing 3 African American and 107 Caucasian women (average age: 52 years; range: 40-
74 years), were enrolled prospectively at a single institution and 106 subjects  
completed the experimental imaging. Four patients were excluded for the following 
reasons: 2 subjects did not have time to complete the imaging, 1 subject was discon-
tinued for not meeting inclusion/exclusion criteria, and 1 subject could not be imaged 

Fig. 1. X-ray tube rotates 

in an arc 15
0
 or 30

0 
above 

the breast 
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because the technologist had not completed the DBT system QC testing. Of the 106 
eligible subjects, 14 (13%) underwent biopsy of the lesion of concern; 4 (29%) sub-
jects were confirmed pathologically to have cancer and the remaining 10 had benign 
lesions. 

Reader Study: Of the 106 DBT scan pairs 
(15° and 30°) performed in this study, 61 
“review” cases comprising a total of 78 dif-
ferent lesions, underwent independent evalua-
tion by each of 3 readers from 3 separate 
locations. All readers were MQSA certified 
and had greater than 10 years of experience 
interpreting mammograms; 1 reader was an 
academic radiologist and 2 were community 
practice radiologists. Cases selected for this 
review were all cases proven to have a lesion 
of concern (mass density, architectural distor-
tion, or calcifications) on diagnostic mammo-
graphy work-up, including the 14 cases that went on to biopsy. Cases assessed at the 
originating institution as negative (summation artifact) were excluded from the reader 
study. Each reader evaluated and scored the 61 DBT “review cases” (78 lesions) at 
their own institution. The cases were viewed on a digital mammography workstation 
equipped with 2 high resolution 5 megapixel monitors using a specific DBT hanging 
protocol. The cranio-caudal (CC) narrow and wide angle DBT studies were displayed, 
followed by the medio-lateral oblique (MLO) narrow and wide angle DBT studies. 
Throughout the review, the narrow and wide angle tomo exams appeared randomly on 
the left or right screens, but for consistency, they were hung uniformly for a given 
case. For example, the wide angle CC and MLO exam were always shown on the 
same monitor for a given case, while the narrow angle exam will have hung on the 
opposite monitor. Readers were unaware which scans were 15° versus 30° DBT ac-
quisitions. After viewing the CC and MLO DBT studies, the hanging protocol dis-
played the conventional 2-D screening mammogram and accompanying diagnostic 
work-up; however, these studies were available to the readers at any time by using the 
workstation’s display “navigator”. Each DBT study was evaluated for the presence of 
2 common mammographic lesions: mass/distortion & calcifications. Readers were 
aware of what abnormality(ies) they were evaluating for each case because the 2D 
digital mammograms, including any diagnostic images for each case were available to 
them. For each case, readers compared the DBT scan on the left monitor to that on the 
right monitor. Specifically, for masses/architectural distortions readers recorded the 
conspicuity, margin sharpness and ability to characterize the lesion (by BI-RADS 
criteria) on a 7-point scale for each scan pair. For calcifications, similar comparisons, 
also using a 7-point scale, were made between the 2 DBT scans for conspicuity, 
sharpness/shape, ability to characterize and ability to assess distribution. Comparisons 
of which (if any) DBT scan best eliminated superimposed breast tissue, an overall 
scan preference, a BI-RADS lesion assessment for each scan and a rating of the breast 

Table 2. Scoring Key 

Wide Angle 
Diagnostically Better -3 
Moderately Better -2 
Slightly Better -1 
 

Equal  0 
 
Narrow Angle 
 Slightly Better  1 
 Moderately Better  2 
 Diagnostically Better  3  
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parenchymal density (based on standard BI-RADS criteria) were also collected. The 
data reporting form used for the reader study is given in Appendix A (“DBT Lesion 
Evaluation and Rating Form”). 

Table 3. Individual Readers’ Assessments of 150 versus 300 DBT scans for Image Features and 
Quality 

Mass/Distortion Reader 1 Reader 2 Reader 3 
Conspicuity 0.13 -0.09 0.07 
Margin Sharpness 0.15 -0.05 0.09 
Characterization -0.04 -0.07 0.04 
Calcium    
Conspicuity 0.85 0.29 0.43 
Sharpness/Shape 0.80 0.33 0.50 
Characterization 0.55 0.21 0.43 
    
Distribution 0.20 0.00 0.56 
Overall Image Quality    
Elimination of Superimposed Tissue -0.01 0.05 0.18 
Overall Preference 0.24 0.01 0.22 

 
Data Analysis and Results  
Each item evaluated by each reader on the wide (30° angle) versus the narrow (15° 
angle) scans was scored using the scale given in Table 2. Table 3 gives the results of 
individual readers’ ratings for masses/ disotortions, calcifications and overall image 
quality when comparing narrow and wide angle DBT. Scores > 0 indicate a prefe-
rence for narrow angles scans, scores < 0 a preference for wide angle. For masses and 
distortions, no one reader strongly preferred wide or narrow angle scans. For calcifi-
cations, readers more often preferred narrow angle DBT, except for Reader 2’s evalu-
ation of the distribution of calcifications, where there was no preference. Regarding 
overall scan angle preference, Readers1 and 3 strongly preferred the narrow angle 
scans and Reader 3 was neutral. Table 4 shows the distribution of pooled reader rating 
ratings, based on whether the wide or narrow angle DBT scan was rated as superior 
and gives the results of Wilcoxon Signed-Rank tests of statistical significance for 
pooled reader data comparing narrow (150) to wide (300) angle DBT scans. For cases 
with masses and/or architectural distortions, we found no difference between wide 
versus narrow angle scans with respect to readers’ grouped ratings of lesion conspicu-
ity, how well the mass margins were seen or ability to characterize the lesions as ma-
lignant or benign. The average reader ratings for all evaluations related to 
mass/architectural distortions were approximately 0 (Table 4), with variation in the 
responses for individual cases (some cases preferred in the narrow angle and others in 
the wide angle scans – Table 3). For microcalcifications, there were significant differ-
ences between the pooled reader ratings for the narrow vs. wide angle scans. Readers’ 
rated narrow angle DBT scans significantly better for microcalcification conspicuity 
and sharpness, as well as the ability to evaluate shape and distribution and to charac-
terize calcifications as benign or malignant. The pooled reader ratings of overall DBT 
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scan quality indicated a slight preference for the narrow angle scans. Finally, there 
was a statistically significant overall preference by readers for narrow angle DBT 
scans for evaluating commonly encountered breast abnormalities in this study.  

Table 4. Pooled Results for All Readers and P-Values (*) 

 
Wide angle 
superior  

Narrow angle 
superior  

Ratings  -3 -2 -1 0 1 2 3 
Avg 

rating P-value 

Statis-
tically 
signif-
icant? 

Mass/Distortion                  
Conspicuity 2 4 15 114 27 4 0 0.04 0.45 No 
Margin Sharpness 1 5 13 118 23 5 1 0.0.6 0.32 No 
Characterization 1 7 10 128 17 3 0 0.02 0.60 No 
Calcium                 
Conspicuity 2 2 3 28 27 8 2 0.50 0.0001 Yes 

Sharpness/Shape 2 2 3 27 25 13 0 0.53 
<0.000

1 Yes 
Characterization 2 1 4 35 20 10 0 0.39 0.001 Yes 
Distribution  2 0 4 44 15 4 2 0.27 0.011 Yes 
Overall  
Image Quality                  
Elimination of 
Superimposed 
Tissue 1 5 19 157 32 8 0 0.07 0.12 No 
Overall Preference 2 8 14 140 46 12 0 0.15 0.007 Yes 

(*) scores < 0 indicate preference for wide angle scans, scores > 0 indicate preference for 
narrow angle scans 

3 Discussion 

Our pilot study evaluated the effect of DBT image angle acquisition on readers’ rat-
ings of overall quality and how well common breast lesions (masses/distortions and 
calcifications) were depicted with respect to conspicuity, sharpness and ability to 
characterize lesion features. The study showed no overall difference between readers’ 
ratings of narrow (150 ) angle acquisition and wide (300) angle acquisition DBT exams 
for masses and distortions, with a spread of responses indicating some cases were 
preferred in narrow angle and some with wide angle. Differences in readers’ ratings 
of narrow vs. wide angle DBT scans for evaluating microcalcifications were statisti-
cally significant with respect to all metrics evaluated for microcalcifications, includ-
ing conspicuity, sharpness, and readers’ ability to evaluate shape, distribution and to 
characterize the calcifications as benign or malignant. Readers’ ratings of overall 
DBT scan quality indicated a slight preference for the narrow angle scans. Finally, a 
statistically significant difference between readers’ DBT scan preference ratings 
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showed they more often preferred the narrow angle scans when evaluating commonly 
encountered breast abnormalities in the study. A limitation of our study is that it eva-
luated a single DBT system. The “standard” DBT acquisition commercially available 
on this system is the 150 angle acquisition and this DBT imaging mode may be best 
for screening and general evaluations. Because scan angles and scan times vary wide-
ly among different DBT systems, patient motion artifact might impact systems with 
longer scanning times. Even slight motion could affect the depiction and conspicuity 
of microcalcifications. Therefore, we recommend that further evaluation be performed 
to ascertain if and under what conditions, a 300 DBT scan might be valuable as an 
added diagnostic feature. This would provide the radiologist an option to further eva-
luate masses and architectural distortions differently from the standard 15-degree 
scan, if desired, for the isolated cases where a wider angle might offer an advantage.  
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Abstract. The purpose was to study the ability of radiologists to detect breast 
cancers using 1-view breast tomosynthesis (BT) compared to 2-view digital 
mammography (DM) correlated with their experience in mammography. The 
patient population was enriched with difficult cases (89 abnormal and 96 
normal/benign breasts). Eight breast radiologists with various experience levels 
in mammography interpreted the BT and DM image sets individually in a 
FROC study. Their performance was measured by the JAFROC figure-of-merit 
θ (non-parametric area under the AFROC curve) and analyzed as a function of 
experience level. The improvement was significant for the highly experienced 
radiologists, mean θBT-DM = 0.092; 95% CI: [0.023, 0.161] and for the 
experienced radiologists, mean θBT-DM = 0.094; 95% CI: [0.034, 0.149] while  
it was not for the less experienced radiologists, mean θBT-DM = 0.021: 95% CI: 
[-0.161, 0.202]. The results indicate that experience is necessary to achieve 
optimal performance in BT. 

Keywords: Breast tomosynthesis, digital mammography, radiologist, 
experience, performance. 

1 Background 

Screening mammography plays a key role in the early detection of breast cancer, but 
reported sensitivities of 68-88% (as low as 48% for extremely dense breasts) and 
specificities of 82-98% indicate that the mammography performance can be improved 
further [1]. A problem with both screen-film mammography and digital 
mammography (DM) is that the anatomical noise (e.g. superimposed breast tissue 
onto the receptor plane) can hamper the detection of breast cancer. Breast 
tomosynthesis (BT) is a newly developed three-dimensional (3D) imaging modality 
with the potential to improve the performance of mammography by reducing the 
tissue overlap. To date this has been demonstrated in several clinical studies [1-5], but 
it needs to be confirmed in larger screening studies. 
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In general, reader variability in clinical studies is one of the largest source of 
variability and means that a larger number of readers need to be used in order to 
obtain a reliable average [6]. The choice of readers can affect the result significantly – 
experienced radiologists usually involve less intra-observer variations than 
inexperienced radiologists. While the use of highly experienced radiologists might 
require less numbers of readers, it is essential to realize that this might not reflect the 
clinical situation where various ranges of experience usually are involved. It can be 
hypothesized that the higher breast cancer visibility of BT [2, 3] would result in a 
larger performance improvement for inexperienced radiologists than for experienced 
radiologists; if the detection task is easier it should be less dependent on radiologist 
skill. Subtle signs of malignancy should on the other hand require more experience to 
detect. Smith et al [2] investigated the hypothesis and did not find any correlation 
between performance differences for BT and DM in relation to DM alone linked with 
radiologists’ skill but found that all readers improved their performance with the BT 
modality. In a recent study that examined the diagnostic accuracy of 1-view BT and 
2-view DM using an enriched population the authors demonstrated a statistically 
significant improvement using BT compared to DM [1]. The current work, based on 
the same patient population, was designed to investigate the performance using 1-
view BT and 2-view DM related to various experience levels.  

2 Methods 

The study was approved by the Regional ethics comittee board at Lund University 
(Dnr 159/2006) and the local Radiation Safety Committee. The patients underwent 
informed consent and all examinations were voluntary. The BT system used and 
image acquisition for data collection has been described previously [1]. Each DM 
examination consisted of the mediolateral oblique (MLO) and craniocaudal (CC) 
views, while the MLO view was chosen for the BT examinations in 88% of the cases 
(the CC view was used in the remaining cases). The patient population was enriched 
with difficult cases by selecting cases with subtle signs of malignancy on DM and/or 
ultrasonography [1, 3]. Patients with suspicious lesions underwent surgery and 
histopathological examination of the specimens. Patients not undergoing surgery had 
a 1-year follow-up. Two experienced breast radiologists - non-participants in the 
studies - set the gold standard by determining the abnormal regions and their 
boundaries by aligning them using an electronic marker. This was done in the BT and 
DM images using all available information including BT, DM, ultrasonography, 
needle biopsy and pathology. Retrospectively, the study population comprised 89 
abnormal cases (containing 95 abnormalities) and 96 normal/benign cases, which 
were entered into a reader study. The radiologists who participated in the reader study 
represent a range of clinical experience and were categorized into three experience 
levels: four were highly experienced (16, 23, 25 and 30 years of experience; mean 
23.5 years), two were experienced (7 and 7 years of experience; mean 7 years) and  
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two were less experienced (1 and 1 year of experience; mean 1 year). The readers 
were blinded to the true state (positive/negative) of the images. All radiologists were 
familiar with the DM interpretation, but none had any significant experience in 
reviewing BT images prior to a training session of 30 BT and the 30 corresponding 
DM cases before the study. BT had just been implemented at the institution and the 
study was performed before the readers had any clinical experience of BT. The 
intention with the training session was to familiarize the readers with the appearance 
of the normal tissue and the general appearance of various cancer types in BT. The 
readers did not receive any information of the case-mix of the study population (i.e. 
that it was enriched with difficult cases). The task was to mark and rate any finding 
suspicious for malignancy and any benign finding that they would normally report in 
the screening programme. The probability of malignancy was rated on a BIRADS-
based scale with five levels (3, 4A, 4B, 4C and 5) of increasing probability for 
malignancy and no time limit was imposed on the readers’ interpretations. A 
graphical user interface was used to display the images, and to collect and score the 
radiologist data. The radiologists’ marks and ratings were recorded by the software at 
any given location in the DM and BT cases. The interpretations of the images were 
made on two 5 mega-pixel flat panel monitors (SMD21500, EIZO GmbH, Karlsruhe, 
Germany), calibrated according to DICOM part 14, using a Sun Microsystem Ultra 24 
Workstation. The minimum luminance was 0.4 cd/m2 and the maximum luminance 
was 355 cd/m2. The ambient light level was lower than 3 lux. The cases were 
displayed one at a time using one 5 MP monitor per view. No limit was imposed on 
the interpretation time. The cases were presented in random order in eight reading 
batches of two blocks of 25 cases per modality: i.e., 25 1-view BT cases and 25 2-
view DM cases. The modality presentation order was alternated and a period of 1-3 
weeks separated consecutive viewings of the same case in the two modalities. 

2.1 Statistical Analysis 

If a mark with malignancy rating was located inside the aligned boundary of an 
abnormality it was scored as a lesion localization (LL), otherwise as a non-lesion 
localization (NL). The reader data was analyzed by the jackknife alternative free 
response receiver operating characteristic (JAFROC) method [6]. The JAFROC figure 
of merit (θ) is the probability that the rating of the highest rated and correctly 
localized lesion (LL) on an abnormal case exceeds the rating of the highest rated mark 
on a normal/benign case (NL); equivalent to the non-parametric area under the 
AFROC curve [6]; NLs on abnormal images were not used in the analysis. 
Significance testing was performed using the Dorfman-Berbaum-Metz multiple-
reader multiple case (DBM-MRMC) mixed model analysis of variance (ANOVA) 
procedure applied to θ. The analysis was performed for random-readers random-
cases, fixed-readers random-cases and random-readers fixed-cases. 

Parametric reader-averaged AFROC curves fitted by search model are presented 
and the search-model parameters [6]. Parameter ν is the probability that a breast 
cancer (signal-site) was considered for marking, while λ denotes the corresponding 
mean number of noise sites per image that were considered for marking in the 
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Fig. 5. Two BT cases that reflect differences in the experience categories, in medio lateral 
oblique views (a.1, b.1) and close-ups (a.2, b.2). (a.1): A 53-year old woman with a 20 mm, 
invasive ductal carcinoma grade 3. The tumor indicated by the arrow in (a.1-a.2) has a dense 
nucleus with somewhat irregular borders and quite coarse spiculations that in its caudal parts 
blend into the surrounding dense breast parenchyma. It was detected by the highly experienced 
and experienced radiologists but not by the less experienced radiologists. (b.1) A 64-year old 
woman with a 34 mm invasive ductal carcinoma grade 3. The tumor, indicated by the arrow in 
(b.1-b.2), was detected by all the highly experienced radiologists, none of the experienced, and 
one of the less experienced radiologists. It has fine spiculations in some slices causing a slight 
retraction in its cranial parts, but is located in an area with somewhat irregular breast 
parenchyma, which may have caused difficulties in the detection task.  

 
 

 (a.1) 

     (a.2) 

 (b.1) 

(b.2)
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4 Discussion and Conclusion 

In this paper the performance of eight readers in BT and DM were analyzed with 
regards to experience in mammography. All radiologists improved their performance 
with BT compared to DM; the improvement was significant using all reader data for 
different generalizations of the populations of readers and cases. When analyzing the 
data separately in categories of reader experience, the performance improvement of 
less experienced radiologists was not statistically significant, while it was for both the 
experienced radiologists and the highly experienced radiologists. The AFROC curves 
averaged for each experience category illustrated that higher experience in 
mammography was related with both higher LLF and FPF. A probable reason is that 
the less experienced radiologists were not as good as the other readers at reporting 
breast cancer with subtler radiographic appearances. This may be a result of lack of 
knowledge and experience of the heterogeneity of breast cancer growth patterns in 
less experienced radiologists. Operating further out on the x-axis, allow the curves to 
level out and may have been particularly important since the population was enriched. 
The search-model parameters showed some interesting features; the v’s were higher 
for increased experience in a linear fashion for both BT and DM, which showed that 
the probability that a breast cancer was considered for marking was higher in 
accordance with increased experience. The higher μ for BT characterizes the higher 
ability on BT of the radiologists to extract information from a signal site during 
cognitive evaluation. The difference in μ for BT in relation to DM was in general 
larger for increased experience, but not particularly pronounced for the less 
experienced radiologists. 

There was a considerable spread among operating points (Figure 4) but it was not 
significantly different in between the modalities. Reader variability in operating 
points is attributable to the radiologists’ variable thresholds for reporting disease. 
When this is accounted for in combined performance measures, the variability in 
diagnostic abilities of the radiologists is considerably smaller. Although, the results of 
this study were conclusive it should be noted that the numbers of readers were limited 
and the individual reader variation in performance within each experience category 
was rather large. Furthermore, an enriched study population was used, which may not 
reflect a true clinical or screening setting. Future work will involve increasing the 
reader data with more mid-level experience and less experienced readers, which is 
needed to confirm the initial findings of this work. This would help to determine how 
much experience with BT that is needed to reach the skill to identify more subtle 
lesions. Information about limitations in the BT interpretation is also desirable to 
devise targeted training strategies. In summary, although BT has the potential to 
provide ‘clearer’ images to the radiologist than DM the results indicate that there still 
will be detection and interpretation tasks that are highly experience-dependent. 
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Abstract. In digital breast tomosynthesis (DBT), oblique x-ray incidence shifts 
the image of an object in sub-pixel detector element increments with each 
projection angle. Our previous work has shown that DBT is capable of super-
resolution as a result of this property. Although super-resolution is achievable 
over a broad range of positions for frequencies parallel to the chest wall side of 
the breast support, it is feasible at fewer positions for frequencies perpendicular 
to the chest wall. This finding arises because translational shifts in the image 
between projections are minimal in the chest wall-to-nipple direction. To 
optimize super-resolution, this work proposes an acquisition geometry in which 
the detector is translated in the chest wall-to-nipple direction between 
projections. At various increments of detector translation, we calculate the 
reconstruction of a sine input whose frequency is greater than the detector alias 
frequency. The model gives a proof-of-principle justification that detector 
translation promotes super-resolution. 

Keywords: Digital breast tomosynthesis (DBT), aliasing, super-resolution, 
image reconstruction, Fourier Transform, spectral leakage, precision translation, 
optimization. 

1 Introduction 

In digital breast tomosynthesis (DBT), a 3D image of the breast is generated from a 
limited range of low-dose x-ray projections. Early clinical trials show that DBT has 
improved sensitivity and specificity for cancer detection relative to 2D digital 
mammography (DM), the current gold standard for breast cancer screening [1]. 

In DBT, the image of an object is translated in sub-pixel detector element 
increments with each increasing projection angle. Our previous work has 
demonstrated that DBT is capable of super-resolution (i.e., sub-pixel resolution) as a 
result of this property [2]. The existence of super-resolution is dependent on the 
directionality of the input frequency and on position in the reconstruction. Although 
super-resolution is feasible over a broad range of positions for frequencies parallel to 
the chest wall side of the breast support, it is achievable at fewer positions for 
frequencies oriented along the posteroanterior (PA) direction. For example, super-
resolution along the PA direction is not possible for input objects within the  
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mid-plane perpendicular to the chest wall and to the breast support. Since this mid-
plane has extent in both the PA and source-to-support (SS) directions, it will be 
termed the mid PA/SS plane throughout the remainder of this work (Figure 1). 

Super-resolution along the PA direction is not feasible in the mid PA/SS plane 
because translational shifts in the image between projections are minimal. To 
optimize super-resolution, this work proposes an acquisition geometry in which the 
detector is translated in the PA direction between projections. This design feature can 
be implemented through precision translation of the detector. 

2 Methods 

An analytical model of super-resolution is developed by calculating the reconstruction 
of a sine input whose frequency is greater than the alias frequency of the detector. 
Defining the xz plane as the chest wall (Figure 1), the input is taken to be a 
rectangular prism whose attenuation coefficient varies sinusoidally along the y 
direction. The input is positioned between the heights z = z0 ± ε/2 above the detector, 
where z0 is the central height of the input and ε is its thickness (Figure 2). Denoting C 
as the amplitude of the waveform and f0 as its frequency, the attenuation coefficient 
μ(x, y, z) can be written as C · cos(2πf0y) · rect[(z – z0)/ε]. The 1D Fourier transform of 
the input along the y direction is a sum of delta functions peaking at the frequencies 
fy = ±f0. Since only the positive frequency is of interest in a physical measurement, 
this input is useful for modeling the reconstruction of a single input frequency. 

 

Fig. 1. In DBT, the nth x-ray projection is acquired within the plane of the chest wall (i.e., the xz 
plane) at the angle ψn relative to the z axis. 
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In DBT, x-ray projections are acquired as the x-ray tube rotates in a circular arc 
within the plane of the chest wall. In many systems, the midpoint of the chest wall 
side of the detector serves as the center-of-rotation (COR) of the x-ray tube. Defining 
the origin O as the COR, the vector from O to any point A in the tube’s arc is thus 

OA ( sin ) ( cos )n nh hψ ψ= − +i k


, where n nψ ψ= ⋅ Δ . In these expressions, h denotes 

the source-to-origin distance, ψn is the projection angle, n is the projection number, 
and Δψ is the angular spacing between projections. In a system with N total 
projections, the index n varies from +(N – 1)/2 to –(N – 1)/2 during the scan time. 

The incident angle can now be calculated at any point B on the detector. Since 

1 2OB u u= +i j


, it follows that 1 2BA OB OA ( sin ) ( cos )n nu h u hψ ψ= − + = − + − +i j k
  

, 

and hence the incident angle can be evaluated from the dot product 

BA
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BA
nθ = k

k




  , 
2 2 2

1 2

cos
arccos

( sin ) ( cos )
n

n

n n

h

u h u h

ψθ
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 
 =
 + + + 

 .              (1) 

Detector signal for each projection can now be determined by tracing the ray between 
points A and B. Defining w to be a free parameter, the equation of the ray can be 
written in terms of three parametric equations: x = w(u1 + hsinψn) – hsinψn, y = wu2, 
and z = (1 – w)hcosψn. The focal spot at point A has been defined to correspond with 
w = 0, and the incident point at B has been defined to correspond with w = 1. The x-ray 
path length n through the input for the nth projection is determined from the 

intersection of the incident ray with the planes z = z0 ± ε/2. The values of w for these two 
points are 1

01 ( / 2) secn nw z hε ψ± −= − ± . For the nth projection, the total attenuation 

μ(n) is given by the integral ∫μds, where ds is the differential arc length along n. 

 
2 2 2
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     
      (2) 

Combining Eqs. (1) and (2), it follows that ds = hcos(ψn)sec(θn)dw. The total x-ray 
attenuation at the detector position (u1, u2) is thus 

 
0 2 0 2

0 2
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where κn = C · hcos(ψn)sec(θn). To simplify Eq. (3), recall the sum-to-product 
trigonometric identity sin(b1) – sin(b2) = 2cos[(b1 + b2)/2]sin[(b1 – b2)/2] for real 
numbers b1 and b2. 

 ( ) ( )0 2 0 2( ) ( ) cos sincn n n n n n nn w w f u w w f u w wμ κ π− + + − − +   = − + −                 (4) 
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         (5) 
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In Eq. (5), it is assumed that sinc(u) ≡ sin(πu)/(πu). This expression for total 
attenuation implicitly assumes that the detector possesses an x-ray converter with a 
modulation transfer function (MTF) of unity at all frequencies. An amorphous 
selenium (a-Se) photoconductor operated in drift mode is a good approximation for 
an x-ray converter with this property [3]. 

 

Fig. 2. In acquiring the central projection, a cross section of the input object in the mid PA/SS 
plane is shown. The attenuation coefficient varies sinusoidally along the PA direction (y). 

In order to calculate the digitized detector signal, one must take into account the 
presence of a thin-film transistor (TFT) array which samples the total attenuation in 
pixels (i.e., detector elements). The logarithmically-transformed signal for the nth 
projection is found by averaging the signal over the mth detector element 
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Detector elements are taken to be square with sides of length a. During the acquisition 
of the first projection for which n = +(N – 1)/2, detector elements are centered on the 
coordinates u1 = mxa and u2 = (my + 1/2)a. In each subsequent projection, detector 
elements are translated in the PA direction (+y) by the amount δa, where δ is a 
parameter which expresses the translation between projections as a fraction of 
detector element length. Because θn should not vary considerably within each detector 
element, total attenuation can be approximated as 
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≡m  ,                 (7) 

where θmn is the evaluation of the incident angle at the centroid of each detector 
element. Hence 
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In Eq. (8), the midpoint formula has been used to evaluate the integral [4]. For the nth 
projection, the signal μ(u1 ,u2) recorded by the detector can now be written as 
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Using this expression, simple backprojection (SBP) reconstruction can be performed. 

3 Results 

Reconstructions are simulated for a DBT unit comparable to the Selenia Dimensions 
system (Hologic Inc., Bedford, MA) with 15 projections taken at an angular spacing 
(Δψ) of 1.07°, assuming z0 = 50.0 mm, ε = 0.5 mm, h = 70.0 cm, C = 1/ε = 2.0 mm-1, 
and a = 0.14 mm. To illustrate the potential for super-resolution, an input frequency 
(f0) of 5.0 lp/mm has been chosen, since this frequency is higher than the detector 
alias frequency 0.5a-1 (3.6 lp/mm). 

In a conventional geometry in which the detector is not translated between 
projections (δ = 0), Figure 3(a) shows SBP reconstruction versus position y measured 
perpendicular to the chest wall at the height z = z0 = 50.0 mm within the mid PA/SS 
plane (x = 0). Super-resolution is not achievable since translational shifts in the image 
of the object are minimal between projections. SBP reconstruction resembles a single 
projection whose signal varies with position y in a step-like manner, with the width of 
each step matching the detector element length. The corresponding 1D Fourier 
transform of SBP reconstruction along the y direction has a major peak at 2.7 lp/mm 
as evidence of aliasing [Figure 3(b)]. Although Figure 3(a) is plotted over the region 
y∈[29.4 mm, 30.6 mm], similar plots hold over a broad range of y values. 

By translating the detector in the PA direction between projections, super-
resolution in the mid PA/SS plane can be achieved. Figure 3(a) considers translations 
of 25% of detector element length between projections (δ = 0.25). The major peak of 
the Fourier transform [Figure 3(c)] correctly occurs at the input frequency, 5.0 lp/mm. 

Due to the PA detector translations, it would initially seem that the new geometry 
has the drawback of loss of x-ray coverage at the chest wall with each successive 
projection. However, it can be shown that the net translation of the detector during the 
scan time is minimal; in this example, the net translation is (N – 1)δa or 0.49 mm. For 
this reason, the loss of x-ray coverage at the chest wall is negligible. 



 Proposing an Acquisition Geometry That Optimizes Super-Resolution in DBT 391 

 

 

Fig. 3. Within the mid PA/SS plane, SBP reconstructions are plotted versus position y 
measured perpendicular to the chest wall for PA detector motions of 0% and 25% of detector 
element length between projections. The corresponding one-dimensional Fourier transforms 
along the y direction are also shown. The quality of super-resolution can be determined from 
the ratio (r) of the Fourier amplitudes at the aliased frequency (2.7 lp/mm) to the input 
frequency (5.0 lp/mm). By plotting this ratio versus δ, it is shown that super-resolution is not 
achievable at integer values of δ. That is, in order to maximize sub-pixel sampling gain between 
projections, the PA detector translation should occur in fractional multiples of detector element 
length. 
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Fig. 3. (continued) 

In order to assess the quality of super-resolution in the reconstruction, the ratio (r) 
of the amplitude of the Fourier peaks at 2.7 lp/mm to 5.0 lp/mm can be calculated. 
Super-resolution is present provided r < 1, and is absent provided r ≥ 1. The 
dependency of r on δ is investigated in Figure 3(d). For measurements taken within 
the mid PA/SS plane, this plot illustrates that super-resolution along the PA direction 
is not feasible (r > 1) if detector translation between projections occurs in integer 
multiples of detector element length. To maximize sub-pixel sampling gain between 
projections, the PA translational shifts of the detector should occur in fractional 
multiples of detector element length. As shown in Figure 3(d), there is a relatively 
broad range of δ values over which r is sufficiently less than unity. For example, over 
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the range δ∈[0.24, 0.76], the ratio of the amplitude of the Fourier peaks at 2.7 lp/mm 
to 5.0 lp/mm is less than 1:5 (i.e., 0.20). Consequently, the existence of super-
resolution in the mid PA/SS plane is relatively insensitive to the precise translational 
shifts between projections, provided that these shifts are not sufficiently close to 
integer multiples of detector element length. 

A DBT detector may be designed with either discrete or continuous translations in 
the PA direction during the scan time. Although this work implicitly considers 
discrete translations, continuous translations should also show super-resolution in the 
mid PA/SS plane, since the detector translation during a typical exposure time for 
each projection should be significantly smaller than the detector element length. 

4 Discussion 

We have shown that translating the detector in the PA direction between projections 
broadens the positions over which super-resolution is achievable in DBT. Although 
SBP reconstructions are useful for illustrating this concept as proof-of-principle, 
future work should be directed at incorporating filters into the reconstruction [5]. In 
addition, other subtleties of the imaging system, such as noise [6] and focal spot 
blurring [5], can be modeled. 

There are additional acquisition geometries which promote super-resolution in DBT. 
Future studies will investigate whether super-resolution can be optimized with x-ray 
tube motion having a component in the y direction in addition to the x and z directions. 
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Abstract. A methodology for adjusting mammographic images taken on a 
given imaging system to simulate their appearance if taken on a different 
system for use in observer studies is presented. The process involves adjusting 
the image sharpness and noise, which takes into account the detector, breast 
thickness, and beam quality. The method has been tested by converting images 
acquired using an a-Se detector of a CDMAM test object and ‘Rachel’ 
anthropomorphic breast phantom. They were degraded to appear as if acquired 
using a computed radiography (CR) detector. Good agreement was achieved in 
the resulting threshold gold thickness for the simulated CR images with 
measured real values for CDMAM images. Power spectra comparisons of real 
and simulated images of the ‘Rachel’ phantom agree with an average difference 
of 4%. This tool in conjunction with observer studies can be used to understand 
the effects of the detector characteristics on cancer detection in mammography. 

Keywords: simulation, noise power spectra, modulation transfer function. 

1 Introduction 

Clinical evaluation of image quality is expensive and time-consuming. Clinical trials 
to compare the effectiveness of different systems are rarely conducted as they would 
require large numbers of patients to achieve both sufficient numbers of detected 
cancers and statistical significance. In particular it would be desirable to repeat 
exposures on the same breast with the same positioning and compression to minimise 
confounding differences in the projection of the breast tissues, but this raises ethical 
issues. Alternative methods of evaluation involving some degree of image simulation 
have the potential to enable comparisons at reduced cost and time and without 
additional radiation exposure. For this purpose it is desirable to be able to acquire 
images on a given system and to simulate their appearance on a second system, so the 
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performance of the two systems can be compared. This may be possible when the 
performance of the second system is inferior to that of the first system. Such a method 
would enable the background tissue and compression to be matched in different arms 
of a study, either using real cancers or the insertion of simulated cancers.  

The aim of this work is therefore to develop and test a methodology for adjusting 
mammographic images taken on a given imaging system to simulate their appearance 
if taken on a different system. The methodology presented extends previous work [1] 
with improved modelling of the noise power spectra, which takes into account the 
breast thickness and beam quality. 

2 Method 

2.1 Summary of Methodology for Changing Image Quality 

The conversion methodology blurs the original image to match the blurring of a target 
system using measurements of the modulation transfer function. The difference in 
noise between the original system and the target system is then calculated and added 
in real space to the blurred image, ensuring that the magnitude and correlation of the 
noise matches the total noise in the target system. The method also accounts for the 
magnitude of the signal in the image. It has been validated using images of a contrast 
detail test object for situations where the noise characteristics were measured at the 
same beam quality as the image to be converted. 

2.2 Linearisation of Images 

The analysis below assumes that images have been linearised so that the pixel value is 
a measure of the energy absorbed per unit area of the detector. This can be achieved 
by a combination of measurements of the incident air kerma at the front face of the 
detector and Monte Carlo simulations. The Geant4 Monte Carlo code 
(http://geant4.cern.ch/) was used to calculate the absorbed energy per unit area for a 
reference beam quality, and to relate this to the incident air kerma at the front face of 
the image receptor. X-ray spectra from the work of Boone et al [2] filtered by the X-
ray tube window, filter, compression paddle, object being imaged (test phantom or 
breast) and breast support were used for this purpose. The attenuation coefficients 
were obtained from Berger et al [3]. The signal transfer properties (STP) thus 
calculated for a given detector were assumed to apply to any beam quality for that 
detector so that the pixel value was a measure of the energy absorbed per unit area for 
all beam qualities. 

2.3 Characterisation of Noise Power Spectra (NPS) 

The noise was characterised by the NPS (W) which was split into components for 
electronic, quantum and structure noise at a reference beam quality. For this purpose, 
a series of collimated flat field images were acquired over a wide dose range using a 
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28 kV, Mo/Mo anode/filter combination and 4.5 cm polymethyl methacrylate 
(PMMA) at the tube head and the NPS was calculated for each dose. The three noise 
components for the reference condition were estimated by fitting a second order 
polynomial of NPS against absorbed energy for each spatial frequency. 

2.4 Correction of Noise and Signal for Beam Quality 

Clinical mammograms are acquired over a range of compressed breast thicknesses 
and radiographic factors and so the model needs to be able to take account of a range 
of beam qualities. When originally developed the methodology used measurements of 
the NPS appropriate to the beam quality used. In the present work we have improved 
the modelling of the NPS to take account of beam quality and breast 
thickness/composition. For this purpose, it was assumed that the three noise sources 
are affected by beam quality as follows: 

• Electronic noise is independent of beam quality. No correction is required. 
• The quantum noise is comprised of a number of different sources (primary 

quantum noise, excess noise, and secondary quantum noise) and is dependent 
on the number of photons detected and energy absorbed. 

• Structure noise is proportional to the signal from the detector. No correction 
for beam quality is required. 

The beam quality affects both the proportion of energy absorbed and the quantum 
noise. To estimate the effect of beam quality on the quantum noise, a series of flat 
field images were taken as described in section 2.3, but using a range of PMMA 
thicknesses, tube voltages and anode/filter combinations. These images were then 
linearised using the reference STP, so that the linearised pixel value equalled the 
absorbed energy per unit area irrespective of the beam quality.  

Using the above flat field images, the NPS was calculated for each beam quality, 
and the results used to determine the parameters in a model of the NPS applicable to 
any beam quality (Eq. 1).  
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In this equation ωe, ωq and ωs (with units of mm2) are ‘noise coefficients’ for 
electronic, quantum and structure noise respectively at absorbed energy per unit area 
at a reference beam quality Eo, E is the absorbed energy per unit area at the beam 
quality under consideration and u and v are spatial frequencies. In accordance with 
the assumptions in the bullet points above, the electronic and structure noise 
coefficients are independent of beam quality. The quantum noise coefficient, ωq, is 
also independent of beam quality; the variation of the quantum noise with beam 
quality additional to the factor E in Eq. 1 is accounted for by the beam quality 
correction factor (B). The beam quality parameter λ is average photon energy of the 
beam incident on the detector and was calculated using the X-ray spectra model 
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described in section 2.2. For breast images, λ can be calculated if an assumption about 
the breast composition is made [4].  

2.5 Validation of the Conversion Using Images of CDMAM Test Object  
and Anthropomorphic Phantoms 

The validation of the conversion from one detector to another was undertaken using 
the following two systems: 

ASE:  Hologic Selenia X-ray system, amorphous selenium (a-Se) detector. Pixel 
pitch 70 µm. 

CR:  Carestream CR900 reader with EHR-M2 CR plates. Pixel pitch 50 µm. 

Sixteen images of the CDMAM contrast detail test object were acquired on both 
systems at two beam qualities. The CDMAM test object was imaged on the breast 
support on a base of 2 cm PMMA (‘thin’) using 26 kV, Mo/Mo and then with an 
additional 4 cm PMMA (‘thick’ – total of 6 cm PMMA) on top of the test object and 
imaged using 34 kV, Mo/Rh. The image conversion methodology was applied to the 
ASE CDMAM images to convert them to appear at the same image quality and dose 
as the CR images. The sets of target and simulated CDMAM images for CR were 
automatically read using CDCOM software version 1.5.2 (www.euref.org). Contrast 
detail curves were produced for both the simulated and target images, which were 
then compared [5].  

The Rachel anthropomorphic breast phantom (Gammex RMI, WI, USA) was 
designed to mimic a 5 cm compressed breast. It was imaged five times using both 
detectors at 31 kV, Mo/Rh. The phantom was shifted slightly between images. The 
ASE images were converted to appear with the imaging characteristics of the CR 
detector and X-ray system used. The largest rectangular region of interest (ROI) away 
from the skin edge was extracted from the same location for the real CR and 
simulated CR images. Smaller overlapping sub-ROIs of size 256 × 256 were extracted 
from this ROI and the measured power spectra from all of the sub-ROIs were 
averaged for each system. 

2.6 Clinical Images: Subjective Evaluation and Demonstration of Image 
Conversion 

Mammography images have been collected for an image database. For the systems 
included in this study, images from 234 women (ASE) and 233 (CR) were collected. 
The ASE had 31 abnormal cases, while all of the CR images were as normal.  

Firstly, a preliminary test of realism of the converted images was undertaken. A set 
of normal ASE and CR images were selected. A reasonable match between ASE and 
CR images in terms of compressed breast thickness, appearance of the breast and 
radiographic factors was made. The ASE images were converted to appear with the 
imaging characteristics of the CR system and its associated X-ray system. Both sets of  
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images were processed using Agfa Musica 2. A simulated CR and a real CR image 
were shown to a set of 6 observers and they were asked to identify the real CR image. 
The observers were shown 10 pairs of images.  

Secondly, a sub-set (six images) of the ASE images containing a confirmed cancer 
classified as being ‘subtle’ were selected. To demonstrate the conversion process, 
these images were changed to appear with the imaging characteristics of the CR 
detector using the same X-ray system and grid as the ASE system. Therefore no 
correction was made for differences in scatter and grid attenuation. The simulated 
images were visually examined for the effects of the conversion. 

3 Results and Discussion 

3.1 Conversion of CDMAM Test Object Images 

The threshold gold thicknesses of simulated CR CDMAM images and the 
corresponding real CR images for two beam qualities and PMMA thicknesses show a 
close match (Fig. 1). The average differences between the results were 2.5% and 0.3% 
for the thin and thick phantoms respectively. This is an encouraging result because the 
CDMAM test object provides a good overall measure of the image quality in terms of 
noise, sharpness and contrast. 
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Fig. 1. Threshold gold thickness curves for CDMAM images acquired for the thin (2 cm 
PMMA) phantom (left), the thick (6 cm PMMA) phantom (right). Results are shown for 
simulated and target (real) images obtained with the CR detector and for the original ASE 
images from which the CR images were simulated. 

3.2 Power Spectra of Conversion of Images of Rachel Anthropomorphic 
Phantom 

No artefacts were seen in the simulated image of the Rachel phantom. The power 
spectra of real and simulated Rachel phantom images obtained with the CR system 
are shown in Fig. 2. The results show a good match between the images, with a 
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maximum difference of 17% between the simulated and real images, the average 
difference was 2% over all spatial frequencies. 
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Fig. 2. Power spectra of ‘Rachel’ phantom of target CR and simulated CR 

3.3 Subjective Evaluation of Realism of Converted Images 

Using 6 observers and 10 image pairs of a real and simulated CR image, the real 
image was correctly identified 32 times out of 60 and the simulated CR image was 
incorrectly selected as the real CR image 28 times out of 60. There was a slight 
majority of the real image being correctly identified. While these number of results 
are very small, it does give an indication that the images produced do look realistic. 

3.4 Examples of Conversion of Clinical Images Suitable for an Observer Study 

Figs. 3 & 4 show on the left a high quality image of a lesion acquired on a ASE 
system. The image on the right shows the image after it has been degraded to have the 
image quality of a CR system. There are noticeable differences between the ASE and 
simulated CR images in terms of sharpness and noise. The cancers are still visible in 
the CR images but the interest of this work is whether the detector used affects the 
detection and diagnosis of cancer in breast imaging. An observer study has been 
undertaken using this image modification process. The study showed a difference in 
the detection of subtle calcifications between ASE detector and a generic CR detector 
[6]. The advantage of this method is that the only difference between the two sets of 
images is the detector, and that differences due to breasts, compression, anti-scatter 
grid, X-ray tube have been removed.  

This methodology can be applied to simulate images from different detectors or 
even theoretical detectors. A range of observer studies can be undertaken on the effect 
of the receptor performance and dose on the detection of different signs of breast 
cancer (e.g. masses, calcifications). 
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Fig. 3. Example images of micro-calcification cluster for the original ASE system (left) and 
simulated CR (right) 

 

Fig. 4. Example images of mass for the original ASE system (left) and simulated CR (right) 

4 Conclusions 

We have developed a conversion methodology to change an image to appear as if 
acquired on a different imaging system which accounts for the change in detector, 
X-ray system and beam quality. The methodology has been successfully applied to 
contrast detail measurements. Images with the appearance of a realistic clinical CR 
mammogram can be produced without artefacts. The use of this tool in conjunction 
with observer studies can be used to understand the effects of detector characteristics 
on cancer detection. 
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Abstract. The use of Tc-99m-Sestamibi in molecular breast imaging is com-
mon due to its preferential uptake in malignant tissue. However, quantification 
of the baseline uptake in normal, healthy breast tissue is not possible using pla-
nar-imaging devices. Using our dedicated breast SPECT-CT system, an IRB 
approved pilot study is underway to quantify mean activity in normal breast tis-
sue, and to differentiate uptake between adipose and glandular tissues. A cohort 
of patients at normal breast cancer risk undergoing another diagnostic Sestamibi 
study was imaged using the breast SPECT-CT system. SPECT images were 
corrected and quantitatively reconstructed using previously developed methods, 
and registered with the CT images. The CT images were segmented, and the 
average activity concentration was measured for glandular, adipose, and total 
breast tissue. Results indicate no preferential uptake between tissues and low 
average uptake, which may be used to determine a universal threshold for can-
cer detection. 

Keywords: breast cancer, breast imaging, quantification, SPECT, CT,  
Sestamibi. 

1 Introduction 

The utilization of nuclear medicine imaging devices in the diagnosis and staging of 
breast cancer is on the rise. Nuclear medicine offers unique functional information 
different from other imaging modalities. The use of Tc-99m-Sestamibi (MIBI) as a 
tracer for breast cancer has been well established, and serves as the primary tracer for 
a number of commercially available 2D molecular breast imaging (MBI) or breast 
specific gamma imaging (BSGI) systems [1]. The tracer has shown preferential up-
take in malignant breast tissue, potentially offering a useful tool for diagnosis or stag-
ing of breast cancer [2], especially with the use of high performance dedicated breast 
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imaging devices. However, absolute quantification of tracer uptake is not possible 
with current commercially available planar (2D) MBI/BSGI imaging devices [3]. 
Several commercially available systems use planar detectors with mild/moderate 
compression, similar to mammography, which are only capable of relative measures 
of tracer uptake [4, 5]. Furthermore, studies have shown standard whole body clinical 
gamma cameras for breast scintigraphy are similarly unsuited for quantitative breast 
imaging: limitations in energy and spatial resolution lead to partial volume averaging, 
and bulkiness prevents proximal access to the breast. We have developed a compact, 
hybrid high-performance SPECT-CT system for dedicated breast imaging, which 
allows for fully 3D breast imaging and accurate quantification of tracer uptake [6].  

While MIBI has a 6:1 tumor-to-background uptake in breast tissue, the baseline 
quantitative uptake values for normal healthy tissue have not been established per se 
[7]. Such data could be useful for establishing a lower threshold for distinguishing 
cancerous regions from regions of healthy tissue. This study aims to image a small 
cohort of patients to quantitatively determine the average activity concentration of 
MIBI in normal risk, cancer-free women for use in establishing this threshold. Fur-
thermore, the ability to differentiate between fatty and glandular tissue with the dedi-
cated breast CT sub-system offers the possibility to determine the (non)uniformity of 
the non-specific uptake of the tracer as quantitatively determined by dedicated breast 
SPECT. 

2 Materials and Methods 

A dedicated breast SPECT-CT system has been developed [8] with the potential to 
diagnose and/or stage cancer in patients, with minimal discomfort to the patient. The 
system is designed such that the patient lies prone on a bed with a hole in the center, 
allowing one of the patient’s breasts to be positioned pendant through the opening. 
Below the bed, a CT and SPECT system are mounted orthogonally to each other on a 
common gantry, and rotate around the uncompressed breast while acquiring data, and 
yield 3D image volumes. 

The CT system uses a RAD94 (Varian Medical Systems, Inc.) and a 20x25cm2 dig-
ital flat-panel detector (Paxscan 2520, Varian Medical Systems, Inc.) which rotate in a 
simple circle azimuthally around the uncompressed, pendant breast in a step-and-
shoot fashion. All CT images are scatter corrected with measurements using a beam 
stop array (BSA), and iteratively reconstructed using an OSC algorithm [9]. Addition-
ally, the quasi-monochromatic cone beam source imparts an overall CT dose <5mGy 
[10] and minimal beam hardening, yielding little cupping artifact in CT [11]. 

The SPECT system consists of a LumaGEM 3200S gamma camera (Gamma Me-
dica, Inc.) with a hexagonal close-packed parallel hole collimator. The high-Z com-
pound, near room-temperature CZT semi-conductor detector has 2.5mm pixilation 
and 6.7% energy resolution at 140keV. The gamma camera system has been de-
scribed in detail elsewhere [12]. In brief summary, it has three degrees of freedom 
(azimuthal, polar tilt, radius of rotation) that allow for customized, contoured non-
traditional trajectories to be acquired; specifically, the projected sinusoidal 
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(PROJSINE) trajectory, illustrated in Figure 1, has been shown to yield optimal re-
constructions with accurate quantification. Due to the implementation of non-
traditional 3D trajectories, resultant data are reconstructed using an iterative OSEM 
algorithm. 

 

Fig. 1. Image illustrating the projected sine-wave (PROJSINE) 3D trajectory used in acquisi-
tions. The PROJSINE orbit allows for nearly-complete sampling of the breast volume while 
providing useful data from the chest wall that may otherwise not be collected. 

Women undergoing diagnostic parathyroid SPECT studies are consented and 
scanned using the dedicated breast SPECT-CT system as part of this ongoing IRB-
approved study. Subject volunteers are excluded if they have a positive breast cancer 
history, current pregnancy, or weight >160kg. Subjects are injected with 25mCi MIBI 
for their parathyroid study and imaged with breast SPECT-CT between their routine 
scintigraphy (10 minutes post injection) and diagnostic SPECT scan (2 hours post 
injection). The left or right breast is randomly selected for dedicated imaging, and 
dual-modality fiducial markers are attached to the breast to allow for accurate image 
registration of the reconstructed images.  

The procedure for data collection and quantification is outlined in Figure 2. For 
SPECT, a flood and point source acquisition are used for quality assurance purposes. 
ListMode data is processed to generate projections at the lower, scatter energy win-
dow for scatter correcting the SPECT data using the well-established dual-energy 
window method [13]. SPECT data are first reconstructed to 2 iterations (8 subsets); 
the images are then used to define a mask for attenuation correction using the NIST 
value for water of 0.1545cm-1 at 140keV. The SPECT data are then reconstructed 
with attenuation and scatter corrections to 20 iterations (8 subsets) and decay cor-
rected to the injection time point. For CT, 240 projections are acquired azimuthally 
about 360 degrees. Additionally, 6 BSA projections (at 60 degree increments) are 
acquired. The BSA projections are spline fit across 60 degrees for the full 360 degree 
acquisition, and used to estimate and subtract scatter from the CT projections. Scatter-
corrected images are iteratively reconstructed using OSC to 5 iterations (16 subsets). 
Resultant SPECT and CT images are registered using the fiducial markers and 
AMIDE visualization software. 

In CT datasets, the skin boundary, which would normally be visible in the glandu-
lar-only data sets, was manually removed so that it would not contribute to the distri-
bution measurements. After skin removal, all breast tissue below the lower threshold 
of 0.26cm-1 was assumed to be fatty, while all tissue above the upper threshold 
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0.28cm-1 was assumed to be glandular (Figure 3); attenuation coefficient thresholds 
were chosen based on one patient who exhibited easily distinguishable distributions of 
glandular and fatty tissue in the histogram. The crossover point (minimum) was esti-
mated for the two distributions, and the thresholds of ±0.01cm-1 where chosen in an 
attempt to minimize overlap between tissue regions. Corresponding VOIs for each 
tissue volume were superimposed on the registered SPECT data, and the average 
activity concentration of adipose, glandular, and the total breast were determined for 
each patient.  

 

Fig. 2. The flowchart above outlines the protocol for acquiring data and quantifying SPECT 
images and registering SPECT and CT image volumes 

 

Fig. 3. A representative histogram from a subject data set. Two peaks are easily discernible, 
representing the different tissue types within the breast. Vertical bars indicate the lower and 
upper threshold values used to segment the breast into fatty and glandular tissue.  
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3 Results 

To date, seven women undergoing diagnostic parathyroid studies were consented and 
scanned for this study. Four subject data sets were of sufficient quality to allow the  
 

  

 

Fig. 4. (LEFT COLUMN) CT sagittal image slices through the medial breast of the four seg-
mentable subjects. Images reveal the glandular, skin and adipose tissue within the breast. The 
CT images were segmented into adipose (CENTER COLUMN) and glandular (RIGHT 
COLUMN) tissue types using the described dual-threshold procedure. Segmented images were 
used for VOI quantification of SPECT images after registration. Note that segmented edges 
appear blocky due to the manual removal of the skin.  

Table 1. Results from the quantification of the total breast, adipose tissue, and glandular tissue 
for each of the seven patients are given below. The measured mean activity concentration and 
standard deviation for each patient, as well as the overall average activity concentration across 
the patient cohort are included.  

  Total Breast Adipose Tissue Glandular Tissue 

Subject 
Mean 

(µCi/mL) 
Std. 
Dev. 

Mean 
(µCi/mL) 

Std. 
Dev. 

Mean 
(µCi/mL) 

Std. 
Dev. 

1 0.055 0.47 0.045 0.35 0.082 0.49 
2 0.152 0.58 0.152 0.51 0.097 0.41 
3 0.052 0.31 0.056 0.31 0.06 0.29 
4 0.148 0.61 0.125 0.49 0.165 0.68 
5 0.061 0.42 - - - - 
6 0.036 0.24 - - - - 
7 0.11 0.62 - - - - 

Total: 0.09 0.18 0.09 0.21 0.10 0.23 
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CT images to be segmented using the dual threshold method described; unusable 
subject CT images had severe motion artifacts (major patient shift) or truncation due 
to a breast size larger than the CT and/or SPECT system FOVs. Figure 4 illustrates 
the CT images for which tissue segmentation was performed, and Figure 5 shows an 
example of a fused SPECT-CT patient data set. Note that the skin boundary was ma-
nually removed prior to the segmentation. The results of the quantification of the 
seven patients are given in Table 1.  

 

Fig. 5. Representative fused SPECT-CT image of a patient’s breast. SPECT activity (hot color 
scale) seen above the breast is due to allowing views into and beyond the chest wall allowed by 
the 3D PROJSINE trajectory. 

4 Discussion 

The results given in Table 1 indicate an average tracer activity concentration of 
0.09µCi/mL in normal breast tissue, with no preferential uptake of MIBI by either 
glandular or adipose tissue. The lack of preferential uptake between tissue types is 
different from results seen with FDG PET imaging, but is not necessarily surprising 
since the metabolic mechanisms of FDG and MIBI uptake and utilization are different 
[14]. The standard deviation of these initial results is large due to some potential fac-
tors: the low overall radioactivity within the breast; the acquired projections having 
few counts, leading to noisy reconstructed images; a majority of the voxels within the 
breast having zero or near zero values. These zero valued voxels, as well as a few 
unrealistically high (noisy) voxels, are included within the measurements and yield a 
large standard deviation. Such trends in the data indicate that assuming a Gaussian 
distribution of tracer uptake values may not be appropriate. More patients are also 
needed to increase the precision and confidence of the measurements, especially with 
the limited tissue-segmentation group. The current results indicate that approximately 
30 subjects must be quantified to have 95% confidence that the mean tracer uptake in 
normal breast tissue has been established. We are actively recruiting more subjects. 
Further study on subjects with known breast cancer would also be beneficial to de-
termine average measured values of non-malignant background regions and how 
similar they are to the normal tissue uptake measured here. Additionally, imaging 
those cancer patients’ foci of uptake will establish the typical differences in absolute 
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activity concentration seen between suspected lesions and the non-specific uptake in 
otherwise normal, background volumes. 

5 Conclusions 

No preferential uptake or distribution of MIBI was observed in fatty or glandular 
breast tissue with dedicated breast SPECT-CT. This is different from results seen with 
FDG PET imaging, but is not necessarily surprising. No preferential uptake may indi-
cate that breast composition would not interfere with a global threshold-based method 
for determining malignancy. While the overall noise seen in the SPECT images is 
high, the trends for values within the seven patients suggest that it may be possible to 
designate a low, normal-tissue threshold for characterizing regions of interest within 
breast tissue. However, more patients are needed to increase the precision and confi-
dence of our measurements.  
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Abstract. The impact of digitalization on the average glandular doses in 49 mam-
mographic units participating in the Flemish Breast Cancer Screening Program was 
studied. Screen-film was changed to direct digital radiography and computed radio-
graphy in 25 and 24 departments respectively. Average glandular doses were calcu-
lated before and after digitalization for different PMMA-phantom thicknesses and 
for groups of 50 successive patients. For the transition from screen-film to computed 
radiography both phantom and patient dose data show a significant increase of dose 
with digitalization. For the transition from screen-film to direct digital radiography 
the evolution of the average glandular dose depends on the phantom thickness. For 
20mm PMMA a significant increase in dose was found, for 45mm and 70mm 
PMMA there was a significant decrease in dose. The median average glandular dose 
of the patient dosimetry showed a smaller but significant decrease. 

Keywords: mammography, screening, breast cancer, digitalization, average 
glandular dose, screen-film, computed radiography, direct digital radiography. 

1 Introduction 

After a typetesting procedure [1-2] the first digital mammographic units were ac-
cepted within the Flemish Breast Cancer Screening Program in 2007. It is often 
claimed by manufacturers and in the media that “digitalization” in mammography 
leads to a dose reduction. However over the past 5 years, medical physicists in Fland-
ers encountered that for individual mammographic centers the dose is sometimes 
higher after digitalization than before. Since asymptomatic woman between age 50 
and 69 are systematically screened for breast cancer every two years in Flanders, it is 
necessary to assure the balance between benefit and the risk of the screening program. 
Therefore it is important to check the impact of the changes in average glandular dose 
caused by digitalization of the screening units on the radiation-induced breast cancer 
risk of the Flemish Breast Cancer Screening Program.  

2 Method 

The impact of digitalization on the average glandular doses was studied in 49 mam-
mographic units participating in the Flemish Breast Cancer Screening Program. 
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for small details. In contrast a reduction of 12% in AGD was achieved on average for 
an average patient with a transition from screen-film mammography to direct digital 
radiography. We believe a stronger dose reduction for the transition from SF to DR 
can be accomplished by optimizing the automatic exposure control of the DR sys-
tems. This because for 20mm PMMA phantom doses are higher for DR than for SF. 
From our yearly and half yearly test results, we know that image quality in terms of 
contrast-to-noise ratio is much higher at 20mm PMMA than at larger thicknesses. As 
the European Quality Control Protocol [4] demands a constant contrast-to-noise ratio 
for all thicknesses, there is a potential of dose reduction for DR-systems at smaller 
thicknesses. Care must be taken that the overall contrast-to-noise level stays high 
enough to see small low-contrast details even in dense and thick breasts. 

Whether and to what extent the patient dose decreases or increases in an individual 
mammographic unit after digitalization therefore largely depends on the choice for 
CR or for DR and is also determined by the brand and type of the formerly used 
screen-film combination and x-ray unit. 

An increase of 38% in average glandular dose for the transition from SF to CR 
could change the detection over induction ratio (DIR) of the Flemish breast cancer 
program from 50 to 35 provided that the cancer detection rate stays the same. There-
fore we plan to investigate for the same 49 mammography units, the impact of digita-
lization on the breast cancer screening performance parameters such as recall rate, 
cancer detection rate, fraction of invasive cancers, fraction of invasive cancers smaller 
than 1cm, fraction of ductal carcinoma in situ (DCIS) and the positive predictive 
value. This in order to calculate the DIR for digital mammography screening in Flan-
ders and to ensure the overall quality of the digitalized Flemish breast screening pro-
gram. 

5 Conclusion 

In present study it was shown that transition from screen-film to digital mammogra-
phy will not necessarily result in a dose reduction. In fact the use of computed radio-
graphy leads to an important increase in average glandular dose (38%). On the other 
hand direct digital mammography contributed to a small but significant decrease in 
average glandular dose (12%). Direct digital mammography can be further optimized 
for smaller compressed breast thicknesses without compromising image quality.  

From patient dose point of view, direct digital mammography has to be preferred 
over computed radiography in digitalization of mammography screening. A close 
collaboration between radiographers and medical physicists is indicated. 

Manufacturers of direct digital mammography systems are advised to investigate 
how the automatic exposure control can be further optimized for smaller thicknesses: 
care should be taken that clinical as well as physical image quality parameters meet 
all requirements in lowering the dose setting. 

Results obtained in present study are clearly in favor of direct digital radiography 
in digitalization of the screening program. 
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Abstract. Silver nanoaprticles have been investigated as an alternative to iodine 
in dual-energy breast x-ray imaging.  Dual-energy imaging involves acquiring 
images at two distinct energy windows (low and high).  Weighting factors are 
then applied to create an image where the contrast between background tissues 
has been suppressed.  Silver (Ag) represents an attractive contrast material due 
to its favorable x-ray attenuation properties (k-edge of 25.5 keV).  Theoretical 
analysis using polychromatic spectra shows that silver can provide similar, if 
not better, contrast to iodine.  Spherical Ag nanoparticles with an average di-
ameter of 4 ±2 nm were synthesized using the Brust method in water.  The par-
ticles were surface stabilized with polyethylene glycol and showed little cellular 
toxicity in T6-17 fibroblast cells.  These results have encouraged further inves-
tigation into validation and testing in living system models.  Silver nanopar-
ticles represent an exciting avenue for the development of a novel dual-energy, 
x-ray breast imaging agent.  

1 Introduction 

Contrast-enhanced dual-energy (DE) x-ray imaging provides a technique to increase 
the contrast of radiographic imaging agents by suppressing the variation in signal 
between various tissue types. In the breast, this involves the suppression of the signal 
variation between admixtures of glandular and adipose tissue. By reducing the effect 
of this “anatomical noise”, it is then possible to more accurately segment and quantify 
the signal from the contrast agent. Dual-energy imaging utilizes two distinct energy 
windows (low- and high-) to quantify the variation in attenuation with energy. To 
achieve a suitable contrast between imaging agent and tissue, it is therefore necessary 
that their respective attenuation profiles do not follow the same general trend from 
low- to high- energy. This can be done by using a contrast material whose k-edge lies 
between the two energy windows. The discrete jump in attenuation due to the photoe-
lectric effect of the extra k-shell electrons means that the contrast material exhibits a 
markedly different attenuation profile to the surrounding tissue.  

Currently, the majority of research that is performed in dual-energy x-ray imaging 
involves iodinated contrast agents. Silver (Ag) represents an attractive alternative due 
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to the location of its k-edge (25.5 keV) within the range of clinically-used mammo-
graphic energies. Silver filtration is also common in the clinical setting, which could 
provide additional benefit with a silver imaging agent. The aim of this study is to 
provide an experimental argument for Ag in breast DE x-ray imaging, and to develop 
a prototype Ag nanoagent for testing in living systems. 

2 Results (Theoretical Simulations) 

Monoenergetic Analysis: A monoenergetic analysis was first performed to identify 
candidate combinations of low (LE) and high (HE) energies. Linear attenuation coef-
ficients (LAC) were calculated for various admixtures of glandular and adipose tis-
sues ranging from 0 to 100% glandular. Separately, the LAC were calculated for a 
50% glandular, 50% adipose composite with increasing concentrations of contrast 
material.  Mass attenuation coefficients needed for this calculation were obtained 
from the NIST XCOM online physics database [1]. Energy pairs ranging from 15 to 
45 keV (in 1 keV intervals) were studied.  For each energy-pair, two-dimensional 
maps of linear attenuation coefficients for tissue were calculated in terms of glandu-
larity and concentration of silver (see Figure 1). Linear relationships were observed 
for both variables. The metric R was defined as the angular separation between these 
two linear fits.  

An energy pair of (20, 30) keV was identified to maximize R (44°) using a silver 
contrast agent. A similar calculation for iodine showed that R was maximum at an 
energy pair of (30, 40) keV with a value of 39°. These energy pairs were further stu-
died with polychromatic spectral analysis.  

 

Fig. 1. Two dimensional map of LAC for variations of glandularity and concentration of silver, 
the metric R was defined as the angle between the two linear fits 



420 R. Karunamuni et al. 

 

 

Fig. 2. Surface plot of R for various combinations of low- and high- energy pairs. A maximum 
occurs at (20, 30) keV providing an R of 44°. 

Polychromatic Spectra: Tungsten polychromatic spectra were designed using the 
interpolating method of Boone et al [2]. Hundreds of combinations of kVp and filter 
materials were tested until three spectra with mean energies of roughly 20 (S1), 30 
(S2) and 40 keV (S3) were chosen, as shown in Table 1. It is expected that a spectral 
pair of S1, S2 would be more beneficial to a silver contrast agent compared to iodine 
while a spectral pair of S2, S3 would be better suited to an iodinated contrast agent.  

Table 1. Parameters used for the simulation of the 3 spectra with various average energies. 
Abbreviations used for the filter: Ag (silver), Al (aluminum), Cu (copper). 

 kVp Filter Combination 
Average 

Energy (keV) 
S1 32 80 µm Ag 21.6 
S2 45 0.2 cm Al 30.0 
S3 49 0.03 cm Cu 38.0 

Weighting Factors: For each spectrum, the transmission through 1 cm of tissue of 
varying breast tissue composition (0% to 100 % glandular) was calculated. A thick-
ness of 1 cm was chosen as an initial starting point for our calculations. The transmis-
sion was then converted to signal intensity (S) given by:  

 ܵ ൌ ݈݊ ቌ෍ ܧ ൈ ாܫ ൈ ݁ିµಶ௧௞௏௣
ாୀ଴ ቍ                                         ሺ1ሻ  
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Where E is the energy in keV, IE is the incident photon fluence (photons/mm2) at that 
energy, µE is the linear attenuation coefficient of the breast tissue composition at that 
energy E, and t is the thickness of tissue.  This formulation assumes that an ideal 
energy-integrating detector is used. The dual-energy signal (SD) was defined as the 
weighted subtraction of the low- and high-energy SI: ܵ஽ ൌ ܵுா െ ݓ ൈ ܵ௅ா                                                       ሺ2ሻ 

For a given pair of tissue glandularities (see Figure 3, G1 and G2), a weighting factor 
was determined such that the DE signal from G1 was equal to that of G2. ܵ஽ሺG1ሻ ൌ ܵ஽ሺG2ሻ ՜ ݓ  ൌ 1ܪ െ 1ܮ2ܪ െ 2ܮ                                        ሺ3ሻ 

Thus, in a DE image no contrast would be observed between these two tissue types 
using this calculated weighting factor. 

 

Fig. 3. Schematic setup for determining the weighting factor for a given pair of tissue glandu-
larities (G1, G2). A weighting factor is chosen so as to equate the SD of the two materials. SD is 
given by a weighted subtraction of the high and low signal intensities.  

The weighting factor needed to suppress various combinations of tissue glandulari-
ties are shown for a high/low spectral combination of S0, S1 (Figure 4) and S1, S2 (Fig-
ure 5). The weighting factor is relatively invariant with tissue composition. This would 
imply that for a given spectral pair of low- and high-energy beams, it should be possible 
to effectively null the contrast between the underlying tissue structures in the breast.  

Contrast Calculation: The calculated values of w were used to determine DE signals 
for background tissue (50% adipose, 50 % glandular) and contrast enhanced tissue 
(50% adipose, 50% glandular + 1mg/mL of contrast material). The contrast (C) was 
calculated as the difference in SD of tissue with and without contrast material. Values 
of C using silver, iodine and various low/high spectral pairs are tabulated in Table 2. 
The data correlates well with those predicted by monoenergetic calculations.  
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Fig. 4. Weighting factors calculated for S1 (low) and S2 (high) 

 

Fig. 5. Weighting factors calculated for S2 (low) and S3 (high) 

1. The contrast observed for each contrast material is greater when using the spectral 
pair that brackets the k-edge of that material. The contrast observed for silver is 
greater when using the (S1,S2) spectral pair. Conversely, the contrast observed for 
iodine is greater when using the (S2,S3) spectral pair.  
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The cellular toxicity of the stabilized AgNP was measured in T6-17 fibroblast cells 
using the MTT assay. Figure 7 shows the relationship between concentration of Ag in 
AgNP and percent cell viability after 24 hour incubation. Compared to a sham treated 
control, total cell viability of 50% was maintained at an Ag concentration of 10 mM 
(roughly 1 mg Ag/mL). These results show marked improvement over cell viability 
studies using AgNP in the literature [4-5] and have encouraged us to begin analysis of 
the particles in living systems.  

 

 
Fig. 7. Cellular toxicity of AgNP in T6-17 cells after 24-hour incubation 

4 Discussion 

Silver is being investigated as a novel imaging agent for dual-energy breast x-ray 
imaging. Monoenergetic analysis of linear attenuation coefficients showed that com-
pared to iodine it is possible to achieve a greater separation between tissue with and 
without contrast when silver is used.  These results were corroborated by polyenerget-
ic spectra simulation where silver showed up to twice the radiographic contrast of 
iodine. 

It should be noted that only a small subset of the possible spectral pairs were tested 
in the polyenergetic simulations. The results should therefore not be considered as 
conclusive as the true optimal contrast values for each material may differ slightly if a 
more extensive search was performed. However, both the monoenergetic and polye-
nergetic simulations demonstrate that there exists enormous potential for the use of 
silver in DE breast x-ray imaging.  

Initial work has been completed on the synthesis and testing of AgNP. Spherical 
AgNP (d = 4 ±2 nm) were synthesized using the Brust method, and stabilized with 
PEG surface ligands. Little cellular toxicity was observed in cells for silver concentra-
tions up to 1mg/mL. The testing of these particles in living systems is currently un-
derway.  
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Silver nanoparticles represent an exciting avenue for the development of a novel 
DE breast x-ray imaging agent. Simulations have demonstrated that within the mam-
mographic energy range, silver is able to offer comparable, if not greater DE contrast 
to iodine. This work provides the initial groundwork for a rich, new direction in con-
trast-enhanced DE breast imaging.  
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Abstract. A new, high resolution 40x30cm2 area CsI-TFT based CT imager 
having 127μm pixel pitch was developed for fully-3D breast CT imaging as 
part of a SPECT-CT system. The imager has two narrow edges suited for pen-
dant breast CT imaging close to the chest wall. The scintillator thickness of 600 
microns provides >90% absorption for the 36keV mean x-ray energy of the 
cone beam source. The 2D MTF is ~7.5% at the 3.9 lp/mm Nyquist frequency. 
The imager has excellent linearity over the full dynamic range. The imager is 
mounted on the CT device and initial tomographic imaging of geometric and 
breast phantoms demonstrate the reliable and robust imaging capabilities of this 
device for breast CT. 

Keywords: Imaging, X-ray imaging, breast CT, mammography, mammotomo-
graphy, tomosynthesis, flat panel imaging arrays. 

1 Introduction  

We have developed a dual modality SPECT-CT system for dedicated breast imaging 
[1-2]. The CT subsystem of the scanner uses an ultra-thick K-edge filtered, quasi-
monochromatic x-ray cone beam and a 20x25cm2 active sensor area for 3D imaging 
of a pendant, uncompressed breast. For developing the advanced version of the dedi-
cated SPECT-CT mammotomography device that will enable fully-3D CT imaging 
including near chest-wall access in an improved system design, a new, high resolution 
detector with smaller pixels than currently available in commercial units of this size 
has been developed. Importantly, the imager has very narrow bezels at two edges, 
rendering it well suited for pendant breast CT imaging close to the chest wall. This 
paper evaluates the high resolution, large area digital imager for inclusion in the 
breast CT portion of the hybrid imaging device, or as a stand-alone breast CT system. 
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filtration (21mm) was added to meet RQA5 requirements [3]. The image acquisition 
was with 1x1 binning at 2 fps. 32 calibrations frames are used to apply corrections for 
offset, gain and defective pixels prior to object imaging. An MTF edge is arranged on 
the imager with its measurement edge producing a 2-3 degree angle relative to the 
panel.  Two sets of data are taken, one with the MTF pattern in portrait vertical as 
shown below (Fig. 2) and one with the pattern landscape horizontal. An offset calibra-
tion is performed prior to each data set. Gain and defect calibrations are performed 
only once.  For each arrangement of the MTF pattern, a sequence of 32 exposed 
frames is gathered and averaged to produce a single image. 

 
Fig. 2. Photo of the 2D MTF edge arranged on detector for 2D MTF characterization 

2.3 CT Data Acquisition 

The CT sub-system of our hybrid imaging device uses a rotating tungsten target  
x-ray source (model Rad 94, Varian Medical Systems) with a 0.4mm focal spot and 
14° anode angle (Fig. 1). The tube potential was set to 60kVp with a 1.25 mAs expo-
sure through the 0.7cm Ce filter rendering the beam quasi-monochromatic, with a 
mean energy of 36keV and FWHM of 15%. The new 4030 flat panel imager was 
externally mounted to the azimuthal rotation stage (Fig. 1). The source-to-image dis-
tance (SID) was 79.6cm, and source-to-object distance (SOD) was 47.8cm. Varian’s 
image acquisition software, VIVA was used for acquiring the data. Phantoms were 
positioned near the iso-center of the imaging system and 240 projection images were 
acquired over a 360 degree azimuthal acquisiton. Images were acquired in 2x2 pixel 
binned “Fluoro” mode at 0.33 fps leading to a slower, 12 min scan on the current 
system configuration. The projections were reconstructed using a ray driven, iterative 
ordered subsets algorithm (OSC). Reconstruction parameters were set to 5 iterations, 
16 subsets and a reconstruction grid size up to 1000x1000x1000, with a reconstructed 
voxel size of 254µm on a side. Reconstructions took approximately 6 min on the Intel 
Core i7 2nd Generation (Extreme Edition) CPU. 
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2.4 Phantoms 

An acrylic mini-rod phantom (rods with diameters from 1.1mm to 4.6mm spaced on 
twice their diameter, and with 2cm axial extent, Data Spectrum, Hillsborough, NC) 
was initially used to measure directional offsets as well as the center of rotation offset 
for the newly mounted detector. The cylinder was 8.2cm in diameter with a 3.25mm 
thick wall. Once determined, these offsets were used as input parameters for the OSC 
reconstruction algorithm.  

A novel 3D MTF phantom was imaged based on our previous work [7]. The phan-
tom consists of three nearly-orthogonally positioned tungsten wires, each of a uniform 
50.8 µm diameter and ~11cm length, tightly suspended in an acrylic box frame [7].  

The imager was also assessed using two geometric phantoms (cylinder and cone) 
and one anthropomorphic breast phantom (~800 mL) (Radiology Support Devices, 
Newport Beach, CA). Diameters of these phantoms varied from 8-15cm and were 
filled with water. 

3 Results 

3.1 2D MTF Measurements 

The horizontal and vertical MTF was calculated from the measured projection im-
ages. A 2D MTF of ~7.5% was measured at the 3.9 lp/mm Nyquist frequency in both 
horizontal and vertical dimensions (Fig. 3).  

 

Fig. 3. Horizontally and vertically measured MTFs 

3.2 Cold Rod Phantom 

Projection images of the rod phantom were obtained and reconstructed with different 
directional and rotation offsets due to centering of the detector. Some shimming and 
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leveling of the detector relative to the source and rotation axis was implemented in an 
effort to minimize blurring in the reconstructions. Line profiles were drawn across the 
reconstructed rods to determine offset values due to detector offsets and reconstruc-
tion that resulted in the narrowest line profiles. The resultant images demonstrate both 
the clear separation of the rods as well as some scatter between them (Fig. 4 and 5) 
seen by the non-zero values between rods in the profiles. 

 

   

Fig. 4. (LEFT) Projection image of the cold rod phantom, and (RIGHT) 3D volume rendering 
of the reconstructed object image 

     

Fig. 5. (LEFT) Reconstructed image of the cold rod phantom having 254micron isotropic vox-
els, and (RIGHT) plotted profiles at the illustrated (blue) lines at LEFT 
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The offset correction values initially used to correct the reconstructed cold rod 
phantom are sufficient for larger objects and lower frequencies. However, use of 
those same values resulted in some artifacts in the reconstructed images of the very 
high frequency 3D MTF phantom. Thus, the reconstructed 3D MTF phantom data is 
initially presented qualitatively; as we believe even better system alignment can be 
achieved prior to fully-3D MTF analysis. Notably, the tungsten wires are all visible 
throughout their entire expanse in the projections (Fig. 6). The reconstructed image, 
however, still yielded non-converged line sources shaped like tubes and split lines, 
indicating that the detector positioning shifts, rotations, etc. have not been completely 
accurately determined at this point. Therefore, 3D MTF measurements could not be 
made on this data. Nonetheless, an initial surface rendered volumetric image of the 
3D MTF phantom is shown alongside the projection images (Fig. 6). 

 

 

Fig. 6. (LEFT) Projection image of the 3D MTF phantom with three orthogonal tungsten wires, 
and (RIGHT) 3D Volume rendering of the reconstructed MTF phantom 

3.3 Geometric and Anthropomorphic Breast Phantoms 

The water-filled cylinder, cone and anthropomorphic breast phantoms were also 
scanned using the same techniques as for the geometric phantoms. Initial reconstruc-
tions show artifacts similar to the cold rod and 3D MTF phantoms, where the edges of 
the phantoms are slightly blurred (Fig. 7). Additionally, some ring artifacts are also 
visible on these uniform phantoms, with no egregious circular artifacts that would 
indicate pixel or line errors in projection space. The observed large centrally located 
cylinder has consistently appeared in images of uniformly filled phantoms with our 
2520 detector, and is a visual artifact with slightly lower noise characteristics in the 
center. Based on our previous experience, we do not expect it to be as obvious in non-
uniformly filled or structurally noise containing phantoms. 
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Fig. 7. (TOP LEFT & MIDDLE) Coronal slices and (TOP RIGHT) one sagittal slice along with 
(BOTTOM) volume renderings of reconstructed images of (LEFT) cylinder, (MIDDLE) cone 
and (RIGHT) anthropomorphic breast phantoms 

4 Discussion  

This newly developed imager will contribute to the new SPECT-CT system under 
development to obtain very high resolution, fully-3D sampled breast CT images 
without truncation. That system under development has fully-3D motion incorporated 
into the data acquisition sequence, and with this very narrow edge (at chest wall) 
imager will allow for routine chest wall and whole breast imaging. With an SID of 
60cm, the current Paxscan 2520 provides an untruncated FOV of 15.4cm diameter. 
For the increased SID of 79cm and near-identical magnification, the new 4030 
considerably improves the untruncated FOV to 24.4cm. The increased imaging area 
along with high intrinsic resolution and wide dynamic range, should lead to improved 
imaging capabilities for a very large number of breast sizes. 
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Abstract. This study compares the quantitative potential of cone-beam dedicat-
ed breast CT (bCT) and digital breast tomosynthesis (DBT) for contrast-
enhanced (CE) imaging in the assessment of 3D lesion extent and iodinated 
contrast-agent uptake. bCT and DBT topologies were modeled assuming per-
fect energy-integrating detectors. Projection images were simulated using opti-
mized spectra for iodine imaging and primary photons only. Lesion extent and 
lesion-to-background-contrast were measured in reconstructed images of breast 
tissue equivalent phantoms containing iodinated lesions. Lesion extent was es-
timated using an automatic estimator. A full factorial experiment was used to 
evaluate the effect of 3D lesion dimension, position and iodine concentration on 
measurement precision. Preliminary results show that for CE-DBT and CE-
bCT, precision is similar in the in-plane direction, while CE-bCT is superior in 
the depth direction. Lesion-to-background-contrast greatly depends on lesion 
diameter in CE-DBT and is almost independent of lesion diameter for CE-bCT. 

Keywords: quantitative imaging, breast, computed tomography, digital breast 
tomosynthesis, contrast-enhanced imaging, dual energy. 

1 Background 

In a breast cancer therapy setting, quantitative imaging methods for the characteriza-
tion of tumors play an important role for improved clinical decision making and dis-
ease outcome. Today, CE-MRI, CE full-body CT, PET and PET/CT are used for 
quantitative assessment of breast tumors before, during and after therapy. These tech-
niques have shown to correlate strongly with pathology. CE-MRI is however very 
costly and not widely available, while two key disadvantages of CE full-body CT and 
PET/CT are their high radiation dose and limited spatial resolution.   

An alternative less expensive imaging technique dedicated for the breast providing 
accurate quantitative information on breast lesions’ location, morphology, and func-
tional information is of high clinical and economical interest. CE-DBT and CE-bCT 
are two potential candidates. It is anticipated that the quantitative potential of CE-
DBT is however limited, due to the inherent low depth-resolution of reconstructed 
CE-DBT images. CE-bCT with quasi-isotropic spatial resolution and voxel signal 
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intensity proportional to the linear attenuation coefficient is believed to offer more 
accurate quantitative information.   

This paper investigates the quantitative potential of CE-DBT and CE-bCT in  
the assessment of 3D lesion extent and iodinated contrast-agent uptake through theo-
retical modeling. As a first step, previously described cone-beam topologies and  
acquisition techniques were compared. For CE-DBT, a topology similar to that of a 
prototype GE Senographe DS-based CE-DBT system (GE Healthcare, Chalfont St 
Giles, UK) using a dual-energy (DE) subtraction technique was investigated [1]. For 
CE-bCT, a cone-beam topology similar to that published by Boone et al. [2] scanning 
the breast before and after contrast agent injection was simulated. 

2 Method 

2.1 Image System Simulations 

Fig. 1 demonstrates the investigated CE-DBT and CE-bCT topologies and phantoms. 
Table 1 summarizes the model parameters to simulate the CE-DBT and CE bCT im-
plementations. Two 50% fibro-glandular equivalent mathematical phantoms were 
simulated (Fig. 1 and Table 1). For CE-DBT, a 5 cm thick half-cylinder was used to 
mimic the breast under compression, while for CE-bCT a 14 cm diameter cylinder 
was used to mimic the same breast without applying compression and with the patient 
in prone position [3]. Spherical lesions with 2 to 20 mm diameters and 0.5, 1.0, 2.5 
and 5.0 mg/cm3 iodine concentrations were embedded in the phantoms. They were 
positioned at three distances from the chest wall side of the detector, in order to to 
assess the effect of the cone-beam artifact. 

For CE-DBT and CE bCT, perfect energy-integrating detectors that do not generate 
any kind of noise or blurring were assumed. X-ray projections were simulated using 
mono-energetic and poly-energetic spectra [4–6] assuming  primary x-rays only. The 
simulations were repeated without quantum noise and with quantum noise  
corresponding to a total average glandular dose (AGD) equal to 3 mGy. AGD was 
computed using previously described methods [7, 8]. For CE-DBT, a DE subtraction 
technique was used [9]. For CE-bCT two breast scans, one before and one after  
contrast-agent injection were simulated [10]. For CE-DBT, x-ray spectra and AGD 
allocations between the low-energy (LE) and high-energy (HE) images delivering 
optimal iodine enhanced images were used [11, 12]. For CE-bCT, an x-ray spectrum 
was used that has previously been shown to deliver optimally enhanced iodine images 
[13]. The AGD was the same for the pre- and post-contrast images.  

For CE-DBT, LE and HE projection images were recombined into iodine projec-
tions using the algorithm of Puong et al. [9]. Tomographic reconstruction of the 
iodine projections was then performed using a filtered-back-projection (FBP), with a 
filter designed following the methodology described in [14], to obtain reconstructed 
iodine images parallel to the detector array with 1 mm spacing and an in-plane voxel 
pitch of 0.1 mm. CE-bCT pre- and post-projection images were also reconstructed by 
FBP, using a ramp filter and a 0.410 mm isotropic voxel size, to obtain pre- and post-
contrast reconstructed breast volumes. 
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Table 1. Parameters used to simulate the CE-bCT and CE-DBT implementations  

 
All simulations were performed using CatSim, a software package previously de-

veloped and validated at GE Healthcare [15].  

2.2 Quantitative Analysis 

Lesion extent was evaluated independently in the x, y, z directions (Fig. 1), using the 
reconstructed iodine images for CE-DBT and the post-contrast reconstructed volume 
for CE-bCT. Lesion extent, ܦ෩, was estimated using an automatic estimator, ܦ .ܣ෩ was 
computed as the maximum of the convolution of a 1D profile through the lesion’s 
center of mass (COM), ݂, with a sliding rectangle function, ݄, with varying width ܦௐ. 
For example, ܦ෩ in the x-direction was computed as: ܦ෩ ൌ arg ݉ܽݔ஽ೈሼ݂ሺݔሻ כ ݄ሺݔሻሽ , with ݄ሺݔሻ ൌ ൜ 1 ⁄ௐܦ , |ݔ| ൑ ௐ/2െܦ 1 ሺܰ െ ⁄ௐܦ ሻ,  (1)     ݁ݎ݄݁ݓ݁ݏ݈݁

where N is the length of ݄ሺݔሻ. A calibration was performed to exclude any bias in 
lesion extent estimation due to the inherent imaging characteristics of CE-DBT and 
CE-bCT; the difference between ܦ෩ and ܦ௧௥௨௘, the true lesion dimension, was mini-
mized through linear regression: 
 

Model parameters CE-DBT CE-bCT 
Spectrum Mono-energetic 20 & 34 keV 34 keV 
 Poly-energetic Rh/Rh 27kV & Mo/Cu 49kV W/Cu 47kV 
Geometry Magnification (SDD/SID) 660mm / 620mm 880mm / 460mm 

no. of projections 15 & 40° range 300 & 360° range 
Phantom Thickness: 5 cm Diameter: 14 cm 

Composition 50 % fibro-glandular equivalent 
  Diameter: 2, 5, 10, 15, 20 mm 
 Lesions Iodine concentration: 0.5, 1.0, 2.5,5.0 mg/cm3 
  Distance from chest wall: 20, 45, 70 mm 
Flat detector Pixel size 0.100 mm 0.394 mm 
Reconstruction FBP FBP 
 Voxel size 0.1x0.1x1.0 mm 0.410x0.410x0.410 mm 

SDD: source-to-detector distance / SID: source-to-isocenter distance  

Fig. 1. CE-bCT and CE-DBT topologies and phantom configurations. Iodine-enhanced lesions 
were positioned along the rotation axis, at distance ݀ from the chest wall side of the detector. 
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௧௥௨௘ܦ  ൌ ߙ ڄ ෩ܦ ൅ βᇣᇧᇧᇤᇧᇧᇥ ௘௦௧௜௠௔௧௜௢௡ ௢௙ ஽೟ೝೠ೐ ൅ ε                                             (2) 

where ߙ and ߚ are calibration parameters and ε is the residual error. The regression 
was repeated for each axis direction separately and included all lesion diameters, posi-
tions and iodine concentrations. 

Since digital detectors are not shift invariant, the imaged lesion size depends on its 
alignment with respect to the sampling grid. Therefore, the simulations were repeated 
by shifting the lesions’ COM by sub-voxel values in all three directions. The large 
obtained dataset (>1000 simulated lesions) allowed to calculate the residual error’s 
mean, ߝ ҧ, and standard deviation, ߪఌ. Since ߝ ҧ tends towards zero (Equation 2), lesion 
size estimation precision is only characterized by ߪఌ. 

Finally, a full factorial experiment was designed to understand the impact of iodine 
concentration, lesion diameter and position (the independent variables) on the mea-
surement precision, described by ߪఌ (the observations). A general linear equation with 
crossed terms describes the interactions within the model: ߪఌ ൌ a଴ ൅ ܽୱܺୱ ൅ ܽ୮ܺ୮ ൅ ܽୡܺୡ … ൅ ܽୱ୮ܺୱܺ୮ ൅ ڮ ൅ ܽୱ୮ୡܺୱܺ୮ܺୡ                (3) 

where ܺ௦, ܺ௣ and ܺ௖ represent lesion size, position and iodine concentration values, 
respectively. Statistical hypothesis tests were applied to verify the statistical signific-
ance of each factor in the model. The significance level for the p-values was set at 
0.05. The data analysis was performed using software package MINITAB®.  

Relative lesion-contrast-to-background contrast, ܥ௥௘௟, was computed in the recon-
structed slices centered at the lesion’s COM as: ܥ௥௘௟ ൌ ௜௢ௗ௜௡௘ܫܵ െ ௜௢ௗ௜௡௘ଵ଴ ௠௠ܫ௕௚ܵܫܵ െ ௕௚ܫܵ                                                             ሺ4ሻ 

where ܵܫ௜௢ௗ௜௡௘  and ܵܫ௕௚ are the mean per-pixel signal intensity in a ROI inside the 
iodine enhanced lesion and a background region. In DE CE-DBT, ܵܫ௕௚ is measured in 
a ROI surrounding the lesions, while in CE-bCT ܵܫ௕௚is measured in a ROI of lesions 
in the pre-contrast image. To account for the different signal intensity scaling of the 
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Fig. 2. Method for automatic lesion extent assessment; ܣ represents the automatic estimator, ݂ሺݔሻ and ݄ሺݔሻ a 1D lesion profile and the rectangle window function in the x direction  
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CE-DBT and CE-bCT reconstruction algorithms, the absolute lesion-contrast-to-
background (numerator in Equation 4) was normalized to the absolute lesion-contrast-
to-background of a 10 mm diameter reference lesion, positioned at 20 mm from the 
chest wall side of the detector and with the same iodine concentration as the lesion 
under consideration. Note that ܥ௥௘௟ is independent of iodine concentration. 

3 Results 

3.1 Lesion Extent Precision for Noise-Free Mono-energetic Simulation 

Our results indicate that the linear regression fit is adequate to estimate ܦ௧௥௨௘; R2 
values were found to be larger than 0.999 (t-test, p<0.001) for all axes and both topol-
ogies, except for the y-direction in CE-DBT (R2=0.79). Due to CE-DBT’s limited 
depth resolution in the y-direction, lesions appear ~3 times larger in that direction. 
Assuming that the reconstructed volume is limited to the 5 cm phantom thickness, the 
automatic estimator is unable to differentiate lesions >15 mm in diameter positioned 
at mid-depth in the phantom. To assess the precision to estimate lesion dimension in 
the y-direction, we repeated the analysis with 10 cm thick phantoms and lesions posi-
tioned at mid-depth. This resulted in an improved fit in the y-direction (R2>0.995, t-
test, p<0.001) without affecting the original calibration parameters in the x- and z-
direction. 

Fig. 3a summarizes the overall precision in lesion diameter estimation; for both to-
pologies ߪఌ is shown for the x-, y- and z-directions. For CE-DBT, the precision to 
estimate lesion diameter in the in-plane direction is about twice the in-plane voxel 
dimension (0.1 mm), while the precision in the y-axis direction is about half the spac-
ing between reconstructed slices. For CE-bCT the precision to estimate lesion dimen-
sion is similar in all three axes directions; the precision is approximately half the vox-
el dimension (0.410 mm). 

Fig. 3b summarizes the factorial analysis experiment; for both topologies ߪఌ is 
shown as a function of each independent variable and for the x-, y- and z-direction. In 
CE-DBT, measurement precision is affected by the true lesion diameter in the three 
directions (t-test, p-values, 0.001, 0.064, and 0.001 for the x-, y- and z-direction re-
spectively) and by the lesion’s iodine concentration (t-test, p=0.029). The magnitude 
of these effects is however smaller than the voxel dimensions, in all three directions. 
In CE-bCT, measurement precision is only affected by the true lesion diameter (t-test, 
p<0.001). Again, the magnitude of this effect is smaller than the voxel dimension. In 
CE-DBT and CE-bCT, measurement precision is not affected by lesion position in the 
phantom. 

3.2 Contrast Uptake for Noise-Free Mono-energetic Simulation 

Fig. 4 shows average ܥ௥௘௟ values as a function of lesion diameter and position in the 
phantom for quantum noise-free mono-energetic simulations. For CE-DBT, ܥ௥௘௟ is 
greatly affected by lesion diameter. For CE-bCT, ܥ௥௘௟ is almost constant as a function 
of lesion diameter, except for the 2 mm diameter lesion which has a slightly lower  
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Fig. 3.  a) Overall precision to estimate lesion diameter with CE-DBT and CE-bCT by evaluat-
ing the standard deviation, ߪఌ, of the residual errors, ߝ, in the three axis directions; b) Main 
effect of independent variables on lesion extent estimation precision. 

 
Fig. 4.  ܥ௥௘௟ as a function of lesion diameter, for lesions positioned at different distances from 
the chest wall. For CE-DBT, ܥ௥௘௟ is 60% higher for 20 mm diameter lesions than for 10 mm 
lesion, while for CE b-CT  ܥ௥௘௟ is almost independent of lesion diameter. ܥ௥௘௟. In this case, measurement accuracy is affected by the voxel dimension. For CE-
DBT and CE-bCT the cone-beam artifact has only a small effect on ܥ௥௘௟; for lesions 
positioned further away from the chest-wall side ܥ௥௘௟ decreases up to 1% and 5%  for 
CE-DBT and CE-bCT respectively. 

3.3 Lesion Extent Estimation and Contrast Uptake for Poly-energetic 
Simulation, Including Quantum Noise 

Fig. 5a illustrates ROIs in CE-bCT slices through the lesions’ COM, for simulations 
using poly-energetic spectra and quantum noise corresponding to a total AGD equal 
to 3 mGy. As illustrated in Fig 5b, it was found that the automatic estimator was not 
reliable for lesions with low inherent contrast-to-noise ratio’s (CNR). After some 
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investigation, we found that these lesions were however clearly discernable by the 
human eye and a human observer could thus assess their dimension in a more accu-
rate way. The same observation was made in CE-DBT images. 

Fig. 4 shows mean (markers) and standard deviation (error bars) in ܥ௥௘௟ values for 
CE-DBT and CE-bCT. Average ܥ௥௘௟ were found very similar to those obtained for 
simulations without noise. For CE-DBT, standard deviation remains constant with 
increasing lesion size, while for CE-bCT, standard deviation decreases with increas-
ing lesion size. For lesions >10 mm in diameter CE-bCT was more precise than CE-
DBT. 

4 Discussion 

This paper compares the quantitative potential of a cone-beam CE-bCT and a  
cone-beam CE-DBT topology in the assessment of lesion extent and iodinated con-
trast-agent uptake. To assess lesion extent in the reconstructed slices, a calibrated 
automatic estimator was proposed. Without quantum noise, this estimator was shown 
to be robust to all simulated lesions and a factorial experiment demonstrated the effect 
of lesion size, position and iodine concentration on estimation precision. With quan-
tum noise, the automatic estimator was shown to be inefficient for lesions with low 
CNR.  In addition, the efficiency of the estimator with respect to the human observer 
(i.e. the radiologist) is not understood. Further studies, including human observers, are 
necessary to properly assess the accuracy and precision of lesion extent estimation in 
the presence of noise. 

To assess iodine concentration, relative image contrast between iodine enhanced 
lesions and background breast tissue was used as figure of merit. As suggested  

Fig. 5.   a) Set of ROIs from different reconstructed CE-bCT slices passing through the lesions’ 
COM; b) histogram from a hundred automatic measurements in one axis direction for a 10 mm 
diameter lesion containing 1.0 mg/cm3 of iodine. The left band in the histogram highlights the 
percentage of outlier measurements, as can be seen in the nearer profile example. 
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previously, relative image contrast can be used to estimate the iodine area density when 
the appropriate transformation is known. Since contrast in CE-DBT depends on lesion 
size (Fig. 4), the accuracy of iodine concentration estimation could be improved by 
including the estimated lesion extent as a priori information. Relative image contrast 
showed very good agreement in simulations with and without quantum noise. 

Our results are a first step in the comparison of CE-DBT and CE-bCT for their 
quantitative performance. Inclusion of more realistic physics phenomena in the image 
simulation chain and a comparison of dual-energy CE-DBT and bCT are underway. 

Acknowledgements. This study was funded by the ANRT, under the PhD CIFRE 
convention 2010/756. 
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Abstract. Based on earlier work demonstrating more complete, 3D cone beam 
sampling acquisition approaches that additionally facilitate chest wall imaging 
posterior to an uncompressed breast, a new, clinic-ready, low-dose breast CT 
system was developed and is undergoing initial clinical validation. The system 
includes a small focal spot pulsed x-ray source and 30x30cm2 flat panel detec-
tor having 3 degrees of freedom of motion, and a radiopaque patient support 
that facilitates whole-breast and universal anterior chest-wall imaging. Data is 
acquired with fully-3D trajectories and iteratively reconstructed within minutes 
of acquisition. Performance characteristics include: sub-200 micron isotropic 
reconstructed resolution, low-dose (<4.5 mGy) fully-3D scans acquired in ~1.5 
min, clinic throughput of 1patient/11min, and DICOM compatible images. To 
date, 25 subjects have been successfully scanned. Characterization results and 
volumetric clinical images are presented including demonstration of routine an-
terior chest wall imaging and comparison with digital mammography. 

Keywords: Breast imaging, computed tomography, mammography, breast CT, 
breast cancer, screening, diagnostic imaging. 

1 Introduction 

We have developed a clinic-ready 3D breast CT system for dedicated breast imaging. 
The system was based on an earlier, fully-3D prototype with which more complete 
cone-beam sampling and anterior chest wall imaging was demonstrated, through the 
use of polar titling trajectories[1,2,3,4]. The unique orbiting capability[3,4] together 
with a custom formed patient support allow for full breast and chest wall access while 
maximizing patient comfort and consequently minimizing patient motion. A custom 
user interface has been developed whereby scans can be operated independently by a 
(mammography) technologist, raw image results are packaged in DICOM format, and 
reconstructions are performed automatically and rapidly. This paper presents the first 
imaging results of the system including a pilot clinical study. 
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2 Methods 

2.1 Breast CT System 

The clinic ready breast CT system development is built upon earlier work on 
prototypes developed at Duke University [2,3]. The development of a commercially 
realizable system took place with the following goals in mind: (1) increase scan speed 
to reduce scan time from ~10 min down to ~1.5 min/breast; (2) increase patient 
comfort; (3) achieve a total procedure time faster than current mammography; (4) 
increase the number of degrees of freedom of motion from 2 to 3; (5) achieve full 
breast and chest wall access; (6) develop a custom user interface to allow a imaging 
technologist to perform the scans independently; (7) develop a DICOM compatible 
flow through from acquisition through reconstruction, with final 3D results viewable 
in 3rd party DICOM viewers; and (8) reduce the reconstruction time from hours to 
minutes. 

The basic system components used to build the cone-beam CT system include: a 
30x30cm2 CsI flat panel detector with 197 micron pixels and 8mm narrow dead-edge; 
a single pole 0.3mm focal spot x-ray tube capable of output to 49 kVp; an x-ray gene-
rator capable of fast pulsed x-ray generation up to 30 fps; direct drive motors for 3 
degrees of freedom of motion in step-and-shoot mode up to 10 fps. This system is 
capable of being moved around the pendant, uncompressed breast of a prone patient 
in any arbitrary trajectory. The elements were arranged on a custom developed and 
machined chassis. Multi-threaded software was written in C# to sychronize all com-
ponents and perform a step and shoot acquisition. The completed system is shown in 
Figure 1. The device has a METLab certification indicating conformance with UL 
electrical safety standards and is considered a non-significant risk device. 

2.2 Geometric and Anthropomorphic Phantoms 

A large variety of geometric and anthropomorphic phantoms (in addition to 
supermarket produce) were scanned with the system prior to any human scanning. 
These phantoms include resolution (acrylic rod and tube) and materials phantoms in 
various media having different target to background ratios to simulate breasts of 
different densities containing known objects. Additionally, a cadaver breast was 
imaged under various conditions, with and without addition of a silicone implant 
above the suspended biological tissue. Then, radiation dose measurements were 
performed using a calibrated ionization chamber (Radcal model 10X5-6M) located at 
the system isocenter, and read-out by a Radcal Accu-Pro monitor. 

2.3 Healthy Volunteers 

The first cohort of 7 subjects were healthy volunteers who have been through the 
“mammography experience”, but with no history of breast cancer and at otherwise 
normal risk for the disease. The left breast was scanned first in all cases. Each subject 
placed their breast through the visible hole in the patient support (Figure 1). The  
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technologist verified that their breast was centered in the FOV through open  
shielded doors on the side of the system, both visually and with the assistance of a 
laser sight, then began the scan. After one breast was scanned, the procedure was 
repeated for the opposite breast without the subject leaving the support structure. 
After the scan, the subject stepped off the system and got dressed. Then she was asked 
to fill in a brief questionnaire about her experience.  

2.4 BIRADS 4/5 Subjects 

Scans of 20 BIRADS 4 and 5 patients have been completed at the time of this paper 
submission. The ultimate goal of this pilot study is to perform a reader study compari-
son of both screening and diagnostic mammograms (where available) with that of 
breast CT for a total of 20 BIRADS 4/5 subjects with suspicious masses. Two cases 
are qualitatively presented in this paper comparing mammograms to breast CT for 
cases of: (1) a cyst, and (2) suspicious non-spiculated mass. 

3 Results 

3.1 Completed Breast CT System 

A complete clinic-ready system is shown in its current configuration in Figure 1. The 
custom contoured patient support allows for comfortable uncompressed patient imag-
ing procedures to image both breasts in 11 min ± 47sec, with a repositioning time 
between breasts of less than 1 min. Not shown in the figure is a set of stairs for the 
patient to ease the effort in climbing on to the system. In addition, the system has 
been designed with an open geometry allowing for the future addition of intervention-
al devices. To date, with a total of 27 subjects scanned (mean age: 56, range: 41-75, 
breast cup size range: A-DD), all patients have rated the system in a post scan ques-
tionnaire as 4/5 or 5/5, where 5 is Easy for getting on and off the system. It is recog-
nized that there may be patients who may have some difficulty in getting on and off 
the system. However, with proper assistance from clinic staff, our initial experience is 
that the vast majority of patients will be able to get on and off the system and sustain 
a scan without discomfort. 

With scans operated by a clinical mammography technologist, raw data sets are  
automatically forwarded to a reconstruction server. The CPU-based reconstruction 
server performs ordered subsets convex (OSC) reconstructions with 5 iterations, 15 
subsets in under 15 minutes, where these reconstructions would previously have taken 
several hours.  

Figure 2 illustrates the existing technologist interface for operating the breast CT 
system. Training time for the operation of the system is approximately 1 hour. This 
includes going through the user interface as well as the procedure for positing the 
patient, centering the breast, and conducting scout images to ensure proper position-
ing prior to starting the scan. 
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Fig. 1. Completely shielded breast CT system enclosure used for imaging. Upper right section 
covered in a yellow sheet is where the patient lies prone and extends her breast through the 
opening (white arrow). Lower left section covered in pink polka-dots is for hip and leg support. 
The inside of this section is also used for housing various motion control components. 

 

Fig. 2. Screen shot of the user interface used by the technologist to control the breast CT scan 
and post-scan data publishing. The technologist has access to an animation (upper left – yellow 
arrow) that shows the actual system position in real time. The large central area also comprises 
a real time projection by projection view of the actual individual projections being taken by the 
scanner. The right column contains patient data and technique information. 

3.2 Geometric and Anthropomorphic Phantom Results 

Initial results from geometric and anthropomorphic phantom scans, as well as a ca-
daver breast scan, were completed prior to any human scanning (Figure 3).  
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Fig. 3. (Left) Resolution phantom scan completed as early test scan on the newly constructed sys-
tem. Acrylic rod sizes are from 1.1mm to 4.6mm in diameter, with spacing on twice their diameters 
throughout. (Middle) Materials phantom scan results with the following materials (clockwise from 
white arrow): delrin, acrylic, glandular-equivalent, fat, and polyethylene equivalent bathed in water. 
(Right) Sagittal cadaver breast image slice from 58y.o. donor with posterior breast implant placed 
by researchers to observe contrast differences between breast tissue and implant as well as perfor-
mance of new system on human tissue prior to human volunteers. Black region between implant 
and breast is an air space; darker grey region near air pocket is portion of chest muscle. 

3.3 Healthy Volunteer Results 

Initial human results are shown in Figure 4. Figure 5 illustrates the capability of the system 
to easily access the chest wall. A close look at the sagittal view shows significant access to 
the chest wall as indicated by viewable pectoralis muscle and several ribs (at arrows).  

 
Fig. 4. (Left) Raw projection image obtained of the suspended uncompressed breast from a 
patient lying prone on the support. (Middle) Coronal slice of fully-3D reconstructed images 
which can be sliced in any orientation. (Right) Sagittal view of the same breast. 

 
Fig. 5. Sagittal view of a subject whose anterior ribs and pectoralis muscle are clearly visible at 
arrows, in addition to the full volume of her breast 
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3.4 BIRADS 4/5 Subjects Breast CT versus Mammography 

Two cases are presented illustrating breast CT results versus diagnostic and screening 
mammography for BIRADS 4/5 volunteers. Note that our reader study has not yet 
begun so the following are for illustrative purposes only and do not represent quan-
titative reader results.  

Case 1: 51y.o. white female presenting with palpable subareolar lump in right hetero-
genously dense breast. Mammogram findings indicate obscured mass in 6 o’clock 
position without associated architectural distortion or microcalcifications. Ultrasound 
indicated 0.7x0.6x0.6 cm irregular hypoechoic mass with microlobulations. Breast CT 
clearly indicates an oval circumscribed cystic mass approximately 4.1cm in diameter 
(Figure 6). Breast CT finding confirmed by follow-up diagnostic work-up and aspira-
tion. 

 

   

Fig. 6. (Left) Diagnostic mammogram right MLO mag-view. Patient presents with palpable 
subareolar lump in position indicated by BB marker. (Middle) Single sagittal slice from breast 
CT through cyst indicated by arrow. (Right) Coronal view shows different perspective of cyst 
in a different plane of the 3D reconstruction. 

Case 2: 48y.o. African-American female with screening mammogram finding of 8mm 
lobular mass at 4 o’clock position in left breast with additional 7mm asymmetry iden-
tified in MLO view only. Diagnostic mammogram indicates 7mm asymmetry as nor-
mal tissue and identifies 1.0cm mass in 6 o’clock position. This correlates with 
0.8x0.5x0.6cm hypoechoic lobular mass seen in ultrasound. Breast CT indicates 3 
distinct lobular masses in right breast (Figure 7). 

Based on the exposure measurements and comparisons with our earlier work [5], 
the dose delivered to the subjects ranged between 4.1 and 4.8 mGy with an average 
dose of approximately 4.5 mGy. 
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Fig. 7. (Left) Diagnostic mammogram MLO view left breast. Radiology report indicates suspi-
cious mass at arrow. (Middle) Single sagittal slice from breast CT through same mass indicated 
by arrow. Note difference in appearance. (Right) Coronal view shows two additional lobular 
masses in a different plane of the 3D reconstruction. 

4 Discussion and Conclusion  

A clinic-ready dedicated breast CT system has been developed that achieves the 
initial design goals. The scans are performed by an imaging technologist with total 
procedure times faster than conventional mammography. Surveys indicate a high 
level of patient comfort and satisfaction with a scan, yielding minimal patient motion. 
Reconstructions are achieved within minutes of the scan and are ready while the 
patient is still present. Initial patient scans have shown access to the complete breast 
and chest wall across the variety of 27 subjects. Additional patient studies are in 
progress with this BIRADS 4/5 diagnostic cohort to compare their diagnostic 
mammograms with 3D breast CT. Initial results comparing breast CT to digital 
mammography are promising. The breast CT system will initially be used for 
diagnostic purposes, but with technological improvements, isotropic image resolution, 
patient comfort, low dose, and speed, we ultimately foresee the device as having the 
potential to replace screening mammography. 
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Abstract. In multi-modality, multi-information breast cancer diagnosis frame-
work, radiologists take into account all the information available in making di-
agnosis, one of which can be the information from reference cases. The purpose 
of this study is to investigate the relationship between pathological concordance 
and image similarity of breast masses for exploring the utility of similar images 
and determining the effective similarity index for image retrieval. Twenty-
seven images of masses, three from each of 9 pathologic types, were used in 
this study. Subjective similarity ratings for all possible pairs (351 pairs) were 
provided by 8 expert readers. Thirteen image features were determined, and 
their usefulness as a similarity index was examined. Generally, masses with the 
same pathologic types were considered more similar (0.75) than those with dif-
ferent types (0.43) by the experts, although cysts and fibroadenomas appeared 
very similar on mammograms. Perimeter, ellipticity, radial gradient index, and 
full-width at half maximum of radial gradient histogram were considered poten-
tially useful (correlation, r>0.4) for estimating subjective similarity among  
image features. Similar images together with their clinical data may serve as a 
useful reference for diagnosis of breast lesions. 

Keywords: subjective similarity, objective similarity, breast masses, reference 
images, image retrieval, pathological classification. 

1 Introduction 

Mammography is considered a very effective examination for screening breast cancer 
in women with normal risk [1-3]. When a suspicious lesion is found on mammo-
grams, usually it would be evaluated with other imaging modalities. Even in such 
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multimodality diagnostic framework, it is important to independently assess findings 
on mammograms and to anticipate results from other examinations before a final 
decision is made on the basis of the combined information. It can be, however, diffi-
cult to diagnose and classify lesions on mammograms. In order to assist radiologists 
in differentiating lesions between benign and malignant, computer-aided diagnosis 
systems that provide the likelihood of malignancy of lesions have been suggested and 
found potentially useful in observer performance studies [4-6]. Although the probabil-
ity is straightforward and easy to interpret, the reasons for the computed probability 
are blinded to radiologists. For providing more descriptive and evidential data, re-
searchers have suggested to present reference cases with known diagnoses in the field 
of breast lesions on mammograms and lung nodules in CT [7-12]. 

Conventionally, image retrieval methods were often based on the difference in im-
age feature values or the distance in feature space [7-11]. However, to select reference 
images that may be helpful in the diagnosis, it is important to quantify and evaluate 
image similarity in the radiologists’ point of view. There have been a small number of 
studies that investigated the subjective similarity of lesions by radiologists [12-13]. 
To select visually similar images, we have been investigating a similarity measure 
that correlates with radiologists’ visual impression [14-16]. In the previous study, 
radiologists’ subjective similarity ratings for pairs of masses on digitized mammo-
grams were obtained to be used for determination and evaluation of similarity meas-
ures. In that study, we found that presentation of similar images may be useful to 
radiologists in the distinction between benign and malignant masses; however, it was 
also found that some atypical cases, i.e., benign masses that are very similar to malig-
nant masses, as well as malignant masses that are very similar to benign masses, can 
cause detrimental effects [17]. In our previous studies, masses are largely categorized 
to benign and malignant types, although it is known that masses with different patho-
logic types are expected to have different characteristics. In this study, to analyze the 
similarity of masses in more detail, we investigated subjective similarities of masses 
within and between different pathologic types, and also the usefulness of image fea-
tures in classifying subtypes and determining objective similarity. 

2 Material and Methods 

2.1 Database 

Digital mammograms used in this study were acquired at Nagoya Medical Center, 
Nagoya, Japan from December 2006 to April 2010. They were obtained with use of 
phase contrast mammography (PCM) system (Mermaid or Pureview, Konica Minolta 
Holdings, Inc.), Fuji digital mammography (DM) system (Amulet, Fujifilm Corpora-
tion), or computed radiography (CR) systems (MAMMOMAT 3000, Siemens, with 
C-Plate, Konica, or Profect, Fujifilm). The pixel size of the original images is 25, 
43.75, or 50 µm, and the pixel values are stored in gray levels of 10, 12, or 14 bits 
depending on the systems used. To facilitate image comparison and computation, the 
pixel size was adjusted to 50 µm by the linear interpolation, and the gray level was 
down-sampled to 10 bits.  
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On the basis of the radiologic and pathologic reports, two radiologists placed 
square regions of interest (ROIs) in confining masses on both craniocaudal and medi-
olateral oblique views if a lesion was visible. The size of the ROIs varied from 168 x 
168 to 1888 x 1888. As a result, the mass database consisted of 552 ROIs extracted 
from 272 cases. The numbers of lesions and ROIs with different pathologic types are 
listed in Table 1. All of the malignant cases were confirmed by biopsy and/or surgery, 
and benign cases were confirmed by biopsy or follow-up by mammography and ultra-
sonography. 

In this study, 9 pathologic types with at least 5 lesions, except invasive ductal car-
cinoma (IDC) without other specification (unknown subcategories), were considered. 
The 9 types included ductal carcinomas in situ (DCIS), invasive lobular carcinomas 
(ILC), mucinous carcinomas (MC), papillo-tubular carcinomas (PTC), scirrhous car-
cinomas (SC), solid-tubular carcinomas (STC), cysts, fibroadenomas (FA), and be-
nign phyllodes tumor (PT). Note that PTC, SC, and STC are the 3 subcategories of 
IDC. From each of the 9 groups, 3 ROIs with representative characteristics of the 
subtype were selected and included in this study. No ROIs from the same patients 
were selected. The effective diameters of these 27 masses ranged from 8 to 34 mm 
with mean of 15.5 mm. Subjective and objective similarities were determined for all 
possible 351 pairs. 

Table 1. Numbers of lesions and ROIs obtained 

 Number of lesions Number of ROIs 
Ductal carcinoma in situ 10 17 
Invasive lobular carcinoma 9 17 
Mucinous carcinoma 7 12 
Papillotubular carcinoma 21 41 
Scirrhous carcinoma 50 91 
Solid-tubular carcinoma 24 44 
Other malignant types 37 74 
Cyst 68 112 
Fibroadenoma 71 118 
Benign phyllodes tumor 6 10 
Other benign types 9 16 

2.2 Subjective Similarity Data 

Subjective similarity ratings for the 351 pairs were obtained from 8 physicians who 
are certified for breast image reading by the Central Committee on Quality Control of 
Mammographic Screening in Japan. The mean years of experience in reading 
mammograms was 12 years with the range of 4 to 25 years. Each expert reader 
individually provided the subjective similarity for the pairs of masses on a continuous 
rating scale between dissimilar to similar based on the overall impression for 
diagnosis including shape, density, and margin with consideration of predicted 
pathologic types. The observers were told that the masses include 9 pathologic types. 
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They were asked not to consider the size of lesions and the surrounding normal tissue. 
During the reading session, a pair of ROIs was placed side by side on a 17 inch (1280 
x 1024 pixel resolution) liquid crystal display (LCD) monitor (Eizo Nanao Co.), and 
thier corresponding mammograms (entire views) were provided on a 27 inch (2560 x 
1440 pixel resolution) LCD monitor (Dell Inc.). The observers could adjust the 
contrast and density levels of the ROIs, if desired. In the begining of the session, 5 
training cases including pairs with the same and different pathologic types were 
provided for readers to become familier with appearances of similar and dissimilar 
pairs. The order of the pairs was randomized for each observer. 

2.3 Image Features 

Thirteen image features were determined: shape features included the area, effective 
diameter, perimeter, circularity, irregularity, ellipticity, elliptical irregularity, and ratio 
of minor-to-major axis of the fitted ellipse; density features included the contrast and 
standard deviation of pixel values; and edge features included the average edge 
strength, radial gradient index (RGI), and full-width at half-maximum (FWHM) of 
radial gradient histogram. The definitions of these features are described elsewhere 
[14]. The shape features were based on mass outlines determined manually by a co-
author (CM), although they should be replaced by the automatic contours in the 
future. The edge features which can characterize smoothness or spiculation were 
determined in the margin area around the outline. 

3 Results 

Interreader agreement on subjective similarity ratings between observers in terms of 
Pearson’s correlation coefficient ranged from 0.43 to 0.71, with the mean of 0.58. The 
observers strongly agreed on those of the cyst pairs and the sirrhous carcinoma pairs, 
inferred by the small standard deviations of 0.09 for both. These two types of lesions 
have characteristic features in the opposite extreme. On the other hand, the observers 
tended to disagree on pairs including mucinous carcinomas, although such results 
may be due to specific cases included in this study rather than the pathologic trend. 

In general, the observers considered pairs with the same pathologic types more 
similar than those with the different types, indicated by the average ratings of 0.75 
and 0.43, respectively. Figure 1 shows the average subjective ratings for pairs within 
and between different pathologic types. Only the highest 3 types for each are shown 
in the figure. Note that for each type, the result for pairs within group is the average of 
3 ratings, while that for pairs between groups is the average of 9 ratings. It can be 
seen that although the masses with the same pathologic types are often rated high, 
except for the mucinous carcinomas, masses with other pathologic types could be 
considered similar. Especially, cysts and FAs were considered very similar to each 
other, while they were considered dissimilar to those of malignant types. SCs were 
considered very similar to ILCs and somewhat similar to STCs; however, they were  
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dissimilar to other types (similarities < 0.41).  DCIS, PTC, and STC are considered to 
have similar apparence. The pairs with the high average ratings for masses of the 
same and difference pathologic types are shown in Fig. 2. The difficulty of 
distinguishing these masses with the different pathologic types is apparent. 

When the differences in feature values were compared with the average subjective 
similarity ratings, the perimeter of the lesion, degree of ellipticity, RGI, and FWHM 
could be considered potentially useful for determining objective similarity measures, 
indicated by the moderate correlation above 0.40. The correlation coefficients 
between the subjective ratings and the differences in the feature values are listed in 
Table 2. The highest correlation was obtained with the FWHM for the 351 pairs. 
Three cysts used in this study had comparable values in shape and edge features. SCs 
and ILCs, which often appears spiculated, had smaller RGI values and larger FWHM 
values than the other types of lesions as expected. However, the ranges of the values 
are larger than that of the cysts. This fact indicates that the differences in feature 
values may not be simply and linearly related to the subjective similarity. 

Table 2. Correlation coefficients between the average subjective ratings and the differences in 
feature values for 351 pairs 

Image features Pearson’s correlation coefficient 
FWHM of radial gradient histogram -0.63 
Degree of ellipticity -0.54 
Perimeter of a mass -0.50 
Radial gradient Index (RGI) -0.46 
Circularity -0.28 
Contrast -0.23 
Degree of elliptical irregularity -0.23 
Effective diameter -0.21 
Area of a mass -0.12 
Minor-to-major axis ratio -0.07 
Standard deviation in pixel values -0.06 
Average edge gradient -0.01 

4 Discussion and Conclusion 

In general, masses with the same pathologic type were considered very similar to each 
other by the experts, indicating a potential utility of presenting similar cases as a 
diagnostic reference. It must be noted, however, that masses with some pathologic 
types could appear very similar, such as cysts and fibroadenomas, which may be 
differentiated by ultrasonography. Some mucinous carcinoma lesions could appear 
similar to fibroadenomas, while others may look similar to malignant lesions. 
Therefore, when reference images would be presented, the pathologic information, 
not only the benignity and malignancy, should be provided along with similar images 
preferably with the prevalence of such lesions. 
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For the 351 pairs used in this study, some shape and edge features were found 
potentially useful for determining the objective similarity measures. On the other 
hand, the correlation coefficients for the contrast and stadard deviation of pixel values 
were not very high. Since the density of masses are also considered an important 
feature for diagnosing masses by the experts, better definition of density features must 
be explored. Although edge features were considered useful, the ranges of the values 
for circumscribed lesions could be much smaller than those for spiculated lesions, 
causing non-linearity between the difference in feature values and subjective 
similarity. The relationship between subjective similarity and image features must be 
investigated further. 
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Abstract. A method is presented which quantifies the radiodensity of lesions in 
projection images, providing a diagnostic indicator to better inform the deci-
sions of both human readers and computer algorithms.  The models of image 
formation underlying the Standard Attenuation Rate (SAR) are used to facilitate 
the forward simulation of the appearance of a lesion in a breast.  By forming 
hypotheses, informed from measurements on the acquired image, virtual 3D 
scenes are constructed which predict the size, position and radiodensity of a 
suspect lesion and the surrounding breast tissue.  Comparisons between simula-
tions of this scene, and the acquired image enable both the refinement of the 
hypothesis, and the assessment of the likelihood of the hypothesis being correct.  
In the event of a high likelihood of correctness, the hypothesised lesion informs 
diagnosis.  The application of the method to a patient image containing a cyst 
shows it has an attenuation corresponding to water (SAR 1.246), and an inva-
sive carcinoma which is considerably denser at SAR 2.27.  Thus the technique 
yields a quantitative radiodensity measure for discrimination in diagnostic deci-
sion making. 

Keywords: Quantitative mammography, mass, cyst, computer-aided diagnosis. 

1 Introduction 

An enormous number of mammograms are acquired annually, each of which has to be 
read expertly, primarily to avoid false-negatives.  Unfortunately, false-positive results 
are also too frequent, which result in a stressful and unpleasant patient experience.  
For example, Román et al found the cumulative false-positive risk for women who 
started screening at age 50-51 was 20.39%, ranging from 51.43% to 7.47% in the 
highest and lowest risk profiles, respectively [1].  In order to improve the sensitivity 
and specificity of mammography double reading is employed, as well as the use of 
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computer aided detection/diagnosis (CAD) algorithms.  In this paper we propose a 
technique which supplements the information available to human readers and current 
CAD systems, beyond that which may be gleaned solely from visual image features, 
by providing quantitative measurements of the radiodensity of suspect lesions and 
calcifications.  By applying the technique in reverse, a method is developed to predict 
the appearance of a lesion, for use as a search template in computer aided detection.  
This extra information has the potential to improve sensitivity, and perhaps more 
importantly, specificity rates. 

The Standard Attenuation Rate (SAR) [2-4] has been developed for tissue quantifi-
cation and incorporates a complete model of the imaging process, including photon 
production in the x-ray tube, explicit consideration of both absorption and scattering 
phenomena within the breast, and detector signal formation.  This is used to quantify 
relative attenuation against a reference material on a continuous scale (analogous to 
the Hounsfield unit).  The SAR image thus depends only on the attenuation of the 
underlying anatomy (decoupled from the x-ray characteristics used for imaging).  The 
underlying models of primary and scattered photons used in SAR, as well as the nor-
malised radiodensity measure, are adopted as the foundation of the technique pre-
sented here. 

The appearance of a lesion, be it a mass, or a microcalcification, in a raw x-ray de-
pends upon a multiplicity of factors regarding the image acquisition settings (tube 
voltage, exposure, anode and filter materials and the detector response characteristics) 
and the anatomical surroundings.  The computation of the SAR image addresses the 
effect of the acquisition settings.  Here, we propose a method to remove the depen-
dency of the rest, which relate to the anatomical surroundings of the lesion, i.e. it 
normalises the lesion within an image with respect to both breast thickness and densi-
ty of the surrounding tissue. 

The results presented here relate to a pilot study we have undertaken to establish 
the efficacy of the proposed technique in order to establish if it is worth the invest-
ment in undertaking a more complete study.  The technique is applied to a single case 
selected at random from the clinic, which whilst allowing the potential of the tech-
nique to be assessed, lacks the statistical power to draw definitive conclusions regard-
ing the population at large. 

2 Materials and Methods 

To illustrate the image formation process consider the case of solely the primary pho-
ton fluence and a monoenergetic beam.  This is a reasonable simplification given the 
use of the SAR image which depends solely on the underlying tissue radiodensity, 
and is thus normalised with respect to the beam quality selected and the effects of 
scatter.  If one were to consider a ray passing through a compressed breast, of thick-
ness, H, comprising of a homogenous tissue background, µୠୟୡ୩୥୰୭୳୬ୢ, and containing  
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a lesion of attenuation µ୪ୣୱ୧୭୬, and thickness t୪ୣୱ୧୭୬, and for which the incident photon 
fluence is I଴, then the resulting image signal, I, at any given pixel would be given by: I ൌ eି൫µౘ౗ౙౡౝ౨౥౫౤ౚሺHି୲ౢ౛౩౟౥౤ሻାµౢ౛౩౟౥౤୲ౢ౛౩౟౥౤൯I଴ 

Note that the appearance of the lesion depends not only on its size and attenuation, 
but also on the thickness of the compressed breast and the attenuation of the tissues in 
its background surroundings.  Fig. 1 illustrates the effects of the thickness and tissue 
composition of the surrounding anatomy, using pixel plots along the minor axis, 
through an ellipsoidal lesion with major and minor axes of length 8mm and 5mm 
respectively, and of 80/20 fibroglandular/adipose composition.  Despite the x-ray 
acquisition parameters being held constant, notable differences in both contrast across 
the lesion, and the absolute pixel values may be observed for both varying breast 
thickness (between 40 and 80mm) and background composition (from pure adipose to 
60/40).  Our approach to normalising these effects, and thereby quantifying the radi-
odensity of the lesion, which itself is a direct function of its underlying chemical 
composition, adopts a classic hypothesis-test methodology, and may be summarised 
by the following steps: 

1. Compute the SAR image for the raw x-ray image, to remove the effects of beam 
quality and scatter, yielding the radiodensity encountered by the primary ray [4]. 

2. Segment the suspect lesion of interest within the SAR image. 
3. Build a “virtual” three dimensional scene comprising of the compressed breast 

containing the suspect lesion (the hypothesis).  These scenes may be of vastly vary-
ing complexity.  For example, they may be as simple as assuming that a calcifica-
tion or cyst is an ellipsoid; measuring the dimensions of the major and minor axes 
from the segmentation, and assuming the length of the axis in the “unknown” pro-
jection image plane perpendicular to the image receptor surface is the average of 
the measured major and minor axial lengths; using the average of the SAR values 
around the boundary of the segmentation as the radiodensity of the background tis-
sue; and the measured compressed breast thickness from the DICOM header.  
Conversely, a highly complex scene describing an invasive mass may require the 
use of a voxelised volume in which SAR values are set for each individual voxel, 
allowing stellate shapes and spicules to be included. 

4. The three dimensional virtual scene is passed as the input to the forward simulator 
using the primary photon model underlying the SAR calculation.  The normalised 
SAR image is then calculated for this simulated image. 

5. Direct comparison between the simulation and actual observed SAR images (the 
test) using a suitable similarity metric (for example root mean squared difference 
over the area of the lesion) yields a value quantifying the likelihood the hypothesis 
as to the lesions attenuation in the virtual scene is valid. 

6. Steps 3 to 5 may be repeated to iterate the hypothesis in light of the similarity ob-
served in step 5. 
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Fig. 1. Simulations of a spheroid lesion in a homogenous background of a range of thicknesses 
and compositions using the SAR models at 29kVp Mo-Rh 71mAs on a GE Essential 

The measurements taken from the segmentations in step (2) and which are subse-
quently used to build the virtual 3D scene in step (3) in effect set values for µୠୟୡ୩୥୰୭୳୬ୢ and t୪ୣୱ୧୭୬, and the degree of freedom to be resolved is the hypothesis of 
the lesion radiodensity, µ୪ୣୱ୧୭୬.  The image signal is computed at each pixel by for-
ward situation of the image in step (4).  Quantification of the differences between the 
acquired and simulated image measures the likelihood of the validity of the hypothe-
sis in step (5), hence the likely validity of µ୪ୣୱ୧୭୬ in the virtual scene. 

3 Results and Discussion 

To illustrate the method, the technique is applied here to images of a 64 year old 
women, exhibiting multiple lesions, imaged on a GE 2000D.  The original radiolo-
gists report concluded with a BIRADS 4 (suspicious abnormality - biopsy should be 
considered) verdict.  Two features of note included in the report are:  "a circum-
scribed hyperdense spherical structure in upper lateral quadrant right, probably a 
cyst", and "directly behind nipple, dense area badly differentiated with spicules and 
microcalcs".  The case went on to needle biopsy and mastectomy, where the pathol-
ogy report confirmed the cyst and declared the "dense area" to be an invasive ductal 
carcinoma. 
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The left of fig. 2 shows the normalised, scatter accounted, SAR radiodensity im-
age of the "circumscribed hyperdense spherical structure" identified by the radiolo-
gist as a probable cyst.  The major/minor axes of the ellipse measure 9.2/7.5mm 
respectively, and it is assumed to consist of water (SAR value 1.246, compared to 
Hammerstein [5] Fibroglandular at 1.207).  This may be seen in blue in the 3D visual 
rendering of the virtual scene describing the breast in the upper centre of fig. 2.  
What would appear to be feature noise, in all likelihood a Cooper's ligament running 
along a different projection plane to the ellipsoid, can be seen crossing its centre.  It 
has a diameter of 0.539mm, and using the area of "quiet" background immediately 
below the bottom right corner of the sphere an iterative search using hypothesis-test 
cycles, finds the SAR radiodensity of the structure to be 3.5.  This radiodensity being 
considerably higher than fibroglandular tissue, suggests a dense fibrous connective 
tissue, providing substantial support to the hypothesis it is a Cooper's ligament.  This 
may be seen in the 3D rendering of the virtual scene as the long fine yellow structure 
above the ellipsoid.  The SAR image of the forward simulation of the virtual scene is 
shown in the bottom centre of fig. 2, and on the right colour maps allow quantitative 
comparison of the actual data and the hypothesised scene.  The close agreement of 
the progression of colours across the area of the suspected cyst confirm the validity 
of the prediction the lesion comprises of primarily water, and the change in colour of 
the linear structure as it leaves the lower right of the suspected cyst confirms the 
hypothesis of a superimposed linear structure, as opposed to a spicule emanating 
from within it. Fig. 3 allows more accurate quantification of the agreement between 
the simulation of the hypothesised breast and lesion structure, by presenting horizon-
tal pixel intensity plots through the centre of the lesion.  The high level of agreement 
shown shows this lesion is largely water, and hence provides substantial evidence it 
is a cyst. 

 

Fig. 2. The region in the SAR image identified by the radiologist as hyperdense and being 
suspicious of a cyst (left); a visual rendering of the 3D virtual scene built to describe the lesion, 
comprising of a spheroid containing water with a linear structure passing over it (upper centre); 
the SAR image of the simulated x-ray of the 3D virtual scene (lower centre); and the observed 
SAR image of the cyst and the simulated hypothesised scene plotted using identical colour 
maps (right). 
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Fig. 3. Horizontal pixel intensity plots through the actual and simulated SAR images 

Turning attention now to the region identified by the radiologist as "dense area 
badly differentiated with spicules and microcalcs".  The left of Fig. 4 shows the area 
in question of the SAR image.  Whilst the mass in the greyscale image does appear to 
be badly differentiated, as noted by the radiologist, once the region is plotted on a 
colour map, the extent of the mass becomes clear, and it can be seen to have the char-
acteristics of a spheroid in shape. 

 

Fig. 4. The region in the SAR image identified by the radiologist as "a dense area badly differ-
entiated with spicules and microcalcs" and latter confirmed as being an invasive ductal carci-
noma (left); the region plotted on a colour map (centre); and the simulated SAR image of the 
hypothesised ellipsoid of SAR 2.27 plotted on an identical colour map (right). 

Measuring the major and minor axes of the projected ellipse give sizes of 8.7mm 
and 7.2mm respectively.  Taking the "thickness" of the spheroid in the z-direction to 
be the average of these two lengths, gives 7.95mm.  Fig. 5 shows a plot relating the 
radiodensity observed in the SAR processed projection image of a 7.95mm thick  
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ellipsoid within a 65mm thickness of breast tissue with a SAR attenuation of 0.85 
(that measured in the immediate surroundings of the lesion in the acquired patient 
image), to the SAR radiodensity at the centre of the lesion.  Measuring the average 
radiodensity of a small circle of pixels (13 pixels diameter) in the centre of the sus-
pected lesion in the acquired patient image, gives a SAR value of 1.019 for the case in 
Fig. 4.  Using the relation in Fig. 5, this gives an underlying SAR radiodensity of the 
lesion as 2.27.  It may be noted that the relation is linear, and thus only two forward 
simulations are required to ascertain the radiodensity of a given lesion.  The forward 
simulation of the hypothesised scene using this radiodensity for the lesion is shown on 
the right of Fig. 4, where comparison via the colour map with the acquired data shows 
good agreement across the entire area of the lesion.  Unfortunately the current version 
of our ray tracer doesn't yet support orientating a shape at a given angle, so aligning 
the simulation with the acquired data is not possible, and hence it is not yet possible, 
though highly desirable, to calculate a quantitative measure of agreement. 

 

 

Fig. 5. The relationship between the radiodensity observed in the SAR processed projection 
image of a 7.95mm thick ellipsoid within a 65mm thickness of breast tissue with a SAR at-
tenuation of 0.85, and that of the underlying SAR radiodensity of which said lesion comprises 

In order to assess the sensitivity of measuring the lesion radiodensity using the me-
thod described, the linear relation plotted in Fig. 5 were calculated for lesion ellipsoid 
thicknesses equal to both the sizes measured for the major and minor axes from the 
acquired patient data.  The resulting lesion SAR radiodensities for 7.2mm and 8.7mm 
thick were 2.41 (5.3% above the value resulting from averaging the lengths of the 
major and minor axes to glean the thickness) and 2.15 (6.2% below) respectively.   
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Comparing the SAR radiodensity for this pathology proven infiltrating ductal car-
cinoma at 2.27, to the SAR radiodensity of water at 1.246, which was observed to 
match that of the cyst in this patient, the potential to discriminate between the benign 
cyst, and the malignant lesion, on the basis of in-vivo measurements of their radi-
odensity using this technique clearly exists. 

An area we wish to pursue in our further work is the comparison of in-vivo mea-
surements of lesion radiodensity, with radiodensity values measured from "pure" in-
vitro samples, such as slices prepared for histological analysis by the pathology labor-
atory, or fluid aspirated from cysts. 

4 Conclusion 

A technique for quantifying the radiodensity of a suspect lesion is presented using  
hypothesis-test cycles comparing the observed acquired images and simulated images 
of the hypothesis (as it is iteratively refined) computed using the image formation 
models within SAR.  The potential shown in the results to discriminate between an 
invasive carcinoma (seen to exhibit a radiodensity of 2.27) and a cyst (seen to exhibit 
the radiodensity of water at 1.246) based on the radiodensity measured by the pre-
sented technique, in a study for which the radiologist concluded BIRADS 4 "suspi-
cious abnormality - biopsy should be considered", illustrates the positive effect the 
technique offers on improving the specificity of the screening programme.  The prom-
ise shown by these results suggest merit lies in fuller investigation on a larger dataset 
to establish robustness across the population. 
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Abstract. It is well established that breast density is related to breast cancer 
risk; making that connection precise, and understanding how to use it in clinical 
practice, has been a major academic focus since the 1970’s. However, it trans-
pires that the first clinical uses of breast density have not been for risk predic-
tion, rather they are for judging when to recommend further imaging. In this 
paper, we show how scientific research has had to be adapted in order to create 
the automated volumetric breast density assessment tool, Volpara®, to make it 
ready for actual clinical use and how it is impacting patient management.  

Keywords: Breast density, BI-RADS®. 

1 Introduction 

Since the mid-1970’s, breast density has been a major area of epidemiological re-
search because of its increasingly established connection to breast cancer risk. How-
ever, clinical application of such research has been hampered by a lack of ability to 
automatically and objectively measure breast density, the lack of a risk model includ-
ing breast density and the lack of options once a woman is recognized as being of 
high risk of developing breast cancer due to breast density. 

However, the need for breast density assessment in clinical practice is now accele-
rating in the US, and elsewhere, due to a wider understanding of how the sensitivity 
of mammography becomes worse with denser breasts [1,2] and that supplementary 
imaging techniques such as whole-breast ultrasound or MRI can pick up extra cancers 
in those breasts. For example, from reports it appears that whole-breast ultrasound has 
the ability to detect almost twice the number of cancers in women with denser breasts, 
albeit at the cost of more false positives [3,4]. Thus, the major question now for clini-
cal application of density is how best to measure it in order to convey sensitivity of 
mammography and how to use that measurement to ensure the correct women are 
selected for supplemental imaging. 
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The judgment of what is a “dense” breast that is commonly used today is based on the 
radiologist's own density assessment which is generally based on visually assessed 
area-based categories as outlined in the 4th Edition of BI-RADS® : 

Category 1: The breast is almost entirely fat (<25% glandular). 
Category 2: There are scattered fibroglandular densities (approximately 25-50% glan-
dular). 
Category 3: The breast tissue is heterogeneously dense, which could obscure detec-
tion of small masses (approximately 51% – 75% glandular). 
Category 4 : The breast tissue is extremely dense. This may lower the sensitivity of 
mammography (>76% glandular). 
 
Though at first sight these definitions appear to be quantitative and thus objective, in 
reality BI-RADS breast density assessments are highly subjective. As the American 
College of Radiology’s own submissions to the FDA have stated: “There is signifi-
cant observer variability in the assignment of a breast density category” and “The 
assessment of breast density is not reliably reproducible”. The published literature [3-
10] shows that readers only agree moderately in their assessments of density. 

It is because of the subjectivity and time requirements of BI-RADS breast  
density, that automated and objective volumetric techniques of determining breast 
density have been developed as demanded by some physicians [11]. With such 
techniques, models of the physics of mammogram formation are used to find x-ray 
attenuation.  From the attenuation, the actual physical breast composition in terms 
of the volume of fibroglandular tissue cm3, the volume of breast tissue cm3, and  
the ratio of the two, which is equated to the volumetric breast density can be  
estimated [10, 12-14].   

However, there have been further more technical issues with getting volumetric 
breast density measurements into clinic practice, including: 

1. Current clinical information systems (in the USA) are all built around a BI-
RADS breast density category. They store a number, from 1 to 4, not volu-
metric measures, and many such systems incorporate automated reporting 
mechanisms based upon that number.  In particular, certain terms from the 
BI-RADS definitions are inserted into the letters sent to the individual 
woman automatically based upon the 1-4 categories. 

2. The volumetric densities are in the range 0-35% [12, 13], whereas area-based 
visual assessment of density is 0-100%.  Further, it has been seen that area-
based estimates can change dramatically according to the vendor specific 
post-processing applied to the mammogram prior to presentation and the 
subjective assessment of the reader.  This mis-match of actual (volumetric) 
density versus area-based, visual density needs to be addressed to ensure 
confidence in the volumetric results. 
 
 



468 R. Highnam et al. 

 

3. Many imaging centres have mammography machines from multiple vendors 
in regular usage, which implies that to be useful and used in practice, the 
volumetric technique has to produce comparable numbers across vendors 
else there is lack of confidence and confusion for the radiologist. 

4. Volumetric techniques need reliable calibration data, and in clinical practice 
it should be expected that some errors in the calibration data are inevitable 
compared to a more research based setting. 

In this paper, we described how we modified our original work on volumetric density 
estimation [15, 16] into software in a form ready for clinical use, namely Volpara® 
[12,13]. Questions 3 & 4 were addressed in [12,13] for Volpara and we cover more of 
Q3 in this paper, but the focus is on questions 1 & 2 - how do we get breast density 
measurements into the clinical systems used today and in a way which the radiologists 
trust? The answer is to translate the volumetric numbers into the BI-RADS scale. We 
start the paper by addressing that before we detail one clinical use of volumetric 
breast density as assessed by Volpara in which accuracy is important, but patient 
workflow and convenience turn out to be the critical factors. 

2 Translating Volumetric Density for Clinical Use 

In order to facilitate a comparison to the radiologist's assessment of BI-RADS,  we 
had to map the volumetric breast density measures to a BI-RADS density category; 
we did this using data reported from DMIST [1,12,13] and we optimized the matching 
to maximize the agreement between the radiologist and what we termed the Volpara 
Density Grade (VDG®). That latter term was specifically chosen so that the radiolo-
gist would recognize that it is a volumetric driven grade, rather than a BI-RADS cate-
gory per se which also has a non-quantitative element, as is evident from the BI-
RADS definitions provided above. The following thresholds were used for version 1.5 
of Volpara Imaging Software to partition the volumetric densities into VDG: 0-4.5%, 
4.5-7.5%, 7.5-15.5%, and over 15.5%. 

Table 1 show confusion matrices for Volpara versus radiologist(s) at two major 
breast imaging clinics (UVA = University of Virginia, EWBC = Elizabeth Wende 
Breast Clinic) and with different mammography systems (HX stands for Hologic, GE 
for GE). EWBC-2 represents a second set of data from EWBC but with images from 
mixed machines and the BI-RADS assessed in a more clinical than research fashion. 

From the data in Table 1 we generated Table 2 where we show the overall agree-
ment percentage between the radiologist(s) and Volpara.  More importantly, we show  
the percentage of times that Volpara agreed with the radiologist's assessment that a 
woman should be classified as BI-RADS 3 or 4, which is generally the criterion that 
is used in the United States to determine whether or not a woman has an abnormally 
dense breast. 
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Table 1. Volpara versus radiologists at different sites and on different x-ray machines 

UVA 
GE X-ray BI-RADS 

  1 2 3 4 
1 60 22 1 0 83 

Volpara 2 16 34 28 0 78 
3 0 5 52 14 71 
4 0 0 13 51 64 

76 61 94 65 296 

EWBC-1 
GE X-ray BI-RADS 

  1 2 3 4 
1 12 6 0 0 18 

Volpara 2 4 15 6 0 25 
3 0 7 18 7 32 
4 0 1 4 17 22 

16 29 28 24 97 

EWBC-1 
HX X-ray BI-RADS 

  1 2 3 4 
1 15 2 1 0 18 

Volpara 2 7 16 5 0 28 
3 0 4 22 5 31 
4 1 1 3 15 20 

23 23 31 20 97 
       

  
EWBC-2 
HX & GE BI-RADS    

  1 2 3 4  
 1 49 41 2 0 92 
Volpara 2 6 94 28 0 128 
 3 0 26 99 3 128 
 4 0 0 11 25 36 
  55 161 140 28 384 

Table 2. % Agreement between Volpara and radiologist at various sites across the US 

Site %Overall Agreement %Agreement on 3 & 4 
UVA - GE 66.6 81.8 

EWBC 1 - GE 63.9 88.5 
EWBC 1 - HX 70.1 88.2 
EWBC 2 - Mix 69.5 85.4 
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We note that these results show strong and repeatable consistency across sites and 
across the machines from different vendors.  We should not expect perfect agreement 
due to reader subjectivity and the inherent differences between volumetric and area 
based assessment of density. We also note that such results also highlight a number of 
trends that are found in clinical practice, as compared to academic research; for ex-
ample, many radiologists tend to avoid using BI-RADS categories 1 & 4 in clinical 
practice and that is demonstrated in the EWBC-2 data. 

As further evidence in support of our claim of consistency across sites, we compare 
our BI-RADS assessments to those of Kopans [17].  First, collaborators took 15,000 
mammography studies from Toronto and applied Volpara Imaging Software 1.4.  The 
top graph in Figure 1 shows as a function of age the percentage of mammograms for 
which Volpara recommended a BI-RADS score of 3&4 versus 1&2. The lower graph 
compares this to the equivalent percentages reported by Kopans [17] from a study of 
3,000 film-screen mammograms.  

 
   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
    

Fig. 1. % of women at each age with BIRADS 1&2 v 3 as judged by Kopans and Volpara 
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Clearly, these numbers are very high and they show how critical it is going to be to 
have objective, reliable density scoring across the US. Note that these cost numbers 
are highly conservative: they do not for example take account of reduced surgery or 
adjuvant therapy costs from cancers being found early and do not include false-
positive related costs. 

4 Discussion 

The translation of scientific findings into routine clinical use inevitably takes time: 
clinicians need to be confident that any new science will improve their performance 
and that it will do so within practical constraints.  Such translation can take a  
frustratingly long time, especially when clinical practice and systems are already es-
tablished. In the case of measuring volumetric breast density, the BI-RADS breast 
density categories have existed for many years and are incorporated in the mammo-
graphy information systems which dominate breast screening, especially in the USA. 
Working out how volumetric breast density relates to BI-RADS categories and ensur-
ing that we get consistent results across sites and x-ray machines has been critical to 
gain acceptance into clinical use. 

Further, whereas our initial essentially academic focus concerned breast cancer 
risk, there remains uncertainty in clinical breast screening what such epidemiological 
research implies for an individual woman deemed to be at high risk. However, the 
women’s advocacy groups in the US concerned about breast density, coupled with the 
trials of whole breast ultrasound, have opened up a more immediate use for breast 
density assessment tools. Judging what is a “dense breast” and a key factor in our 
success to date has, of course, been the scientific work; but critically it is the ability to 
give breast density to the woman while she is still physically at the breast imaging 
center.  In short, workflow advantages can often be key to the adoption of scientific 
ideals. 
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Abstract. Image texture features for detecting malignant masses in
screening mammograms are proposed that are independent of back-
ground intensity mean and variation. Subtracting local means and divid-
ing by local standard deviation reveals linear structures of approximately
0.7 mm width in screening mammograms. A simple texture feature cal-
culated from on this derived image is used to demonstrate that tex-
ture information associated with the location of cancer is retained in the
mean and standard deviation normalized image. Such texture features
have the potential to provide evidence of malignancy that better comple-
ments intensity based features for detecting breast cancer in screening
mammograms.

Keywords: computer-aided mammography, breast cancer, texture,
mass detection.

1 Introduction

Changes in tissue texture patterns have been associated with increased risk of
breast cancer [13],[6],[14]. In addition, measures of texture have been used along
with other computed image features to distinguish between benign and malig-
nant masses in computer-aided mammography schemes [2], [3], [9], [7], [1]. Some
texture measures are motivated by the experience of radiologists. For example,
the quantification of the spiculated pattern associated with malignant masses is
such a texture measure [10] as is the quantification of patterns of fibrous struc-
ture associated with architectural distortions [4], [8]. Other measures of texture,
particularly measures based on textons, are not linked directly to known biology
of cancer [11], [1]. Studies of this nature are motivated by the conjecture that
cancer tissue may differ from normal tissue in ways that manifest in mammo-
grams at levels of contrast and scale that are not be visible to human readers and
thus do not form part of the experience of radiologists. Evidence exists that this
is indeed the case [12], but accurate characterization of such texture differences
is the subject of ongoing research.

One problem in searching for texture measures that are not motivated directly
by biological understanding of breast tissue and cancer is the difficulty of evaluat-
ing if proposed texture measures are indeed associated with cancer and if so, that
information provided by the texture measure is independent of existing image
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features. This problem is exacerbated by the nonlinear relation between tissue
density (actually X-ray attenuation) and image intensity in screening mammo-
grams. For example, in texture analysis based on textons, a filterbank is used
to establish a high-dimensional texture signature for every pixel in the image
[5]. These responses are clustered to form textons and classification of a region
within the image is based on the distribution of textons associated with the
region. The difficulty is that regions of high image intensity result in high fil-
ter responses. Since malignant masses are high intensity features, classification
based on textons may result in high sensitivity (albeit with poor specificity) if
the textures are, in fact, surrogates for intensity. Correcting for background in-
tensity does not solve this problem (Section 2) because of the nonlinear response
of the imaging system.

Here texture features are proposed based on images corrected so that local
mean intensities are zero and local standard deviations are one. Texture patterns
in these normalized images are thus independent of mean intensity and variation
and thus have the potential to provide information regarding the disease state
independent of intensity based features. Section 2 demonstrates problems that
result from basing texton analysis on images that are not normalized and Section
3 demonstrates that texture patterns in normalized image have the potential to
contribute distinguishing cancer from normal tissue.

2 Texton Analysis without Normalization

Several studies were conducted to ascertain the value of texton based texture
features for detecting malignant masses in screening mammograms. These stud-
ies differed mainly in terms of the choice of filterbank and number of textons
chosen in the clustering step. Only one of these studies is reported here in detail
but the results are representative.

2.1 Materials and Methods

For this initial study, 89 cases were chosen from the Digital Database for Screen-
ing Mammography (DDSM). In all cases, a confirmed malignant mass was present
in one breast. Annotation information from the DDSM data base was used to
extract regions of interest (ROI) containing the malignant mass from each MLO
and each CC view in the set, resulting in a collection of 178 ROI with ma-
lignancies present. For each such ROI (referred to here as a malignant ROI) a
corresponding normal ROI was extracted from the breast image without the can-
cer from the same woman at the corresponding location of the malignant ROI.
The site of the normal ROI was determined manually based on the left-right
symmetry between breasts. Of the original 89 cases, 49 were randomly selected
for training and 40 were reserved for testing. The images were subsampled to
250 μm resolution.

For each pixel, the intensities at the eight neighboring pixels were recorded
to form an eight-dimensional feature space. This is tantamount to applying a
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Fig. 1. On the left is the original mammogram X. The bars show the horizontal and
vertical extent of a malignant mass. The middle panel shows the ”backpmap” image
obtained by replacing each pixel in X by the classification label. The result shown is
for the case of K = 16 textons. The right panel shows the backmap image for the right
breast. The backmap images indicate that the texture features are identified with high
intensity regions and not specifically with cancer.

filterbank of size eight where filter i comprises a 3× 3 array with zeros in every
position except at position i where the value is one. K-means clustering was
used with values K = 8, 16, 20, 25, 30, 34, 40 to produce seven different texton
dictionaries. All the pixels in an ROI were mapped to a texton using nearest
the neighbor criterion and each ROI was then represented by the distribution
of textons to which its pixels were mapped. The Fisher criterion was used for
classification.

2.2 Results and Consequences

One complication in texton analysis is deciding on the number of textons, or
in other words, the value of K in the clustering step. The larger the number of
textons, the larger the feature space for classification. Hence, several values of
K were tested. As expected, the Az score for classification performance on the
training data increased with K (Table 1) with a top Az score of 0.812 for K = 40
textons. Also as expected, Az scores for testing data was consistently lower and
with no obvious relation to K. A top score of Az = 0.644 was found for K = 8.
These numerical performance results do not indicate if these texture measures
are indeed useful for distinguishing between normal and cancer tissue because



Intensity Independent Texture 477

Fig. 2. On the left is the original mammogram X. The bars show the horizontal and
vertical extent of a malignant mass. The middle panel is the local mean subtracted
image Dr (in this panel, the background has been set to the minimum value of the
image to facilitate the display) and the right panel is the local standard deviation image
Sr. Due to the nonlinearity of the imaging process, bright regions in X appear as a
relatively dark regions in Sr. For this example r = 5 pixels.

Table 1. Classification scores for seven texton dictionaries

K 8 16 20 25 30 34 40

Az Training 0.691 0.710 0.735 0.747 0.758 0.780 0.812
Az Testing 0.644 0.629 0.571 0.594 0.586 0.614 0.563

inflated performance scores are expected when high-dimensional features spaces
are used for classification.

To explore the connection between the texture features and cancer, texton
combinations allegedly associated with cancer were mapped back to the original
full images (Fig. 1). The results indicate that these texton combinations were
associated with high intensity regions generally and not specifically with can-
cer. Accordingly, these texture measures provide little if any additional value to
detection of cancer, despite some reasonable performance scores.

3 Texture in Normalized Images

One method for testing if texture features can provide information about the
presence of breast cancer independent of background intensity is to compute
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Fig. 3. Normalized mammograms. Each panel shows the normalized image Nr obtained
from the image in Fig. 2 for values of r = 1, 10, 22 respectively (left to right). The insets
in the lower right of each panel show the region of the known malignant mass indicated
by the bars in Fig. 2. The left panel shows essentially no structure for r = 1, not
even the breast outline, but structure emerges with increasing r. In each panel, the
background has been set to the minimum image value to facilitate display.

texture features on ”flattened” images. An example of a flattened image is Dr

defined by

Dr(p) = X(p)−mean(X(B(p, r))),

where X is the original image and B(p, r) is the disk of radius r centered at pixel
p. However, due to the nonlinearity of the imaging process, the local variation is
also a function of background intensity (Fig. 2). Thus texture measures extracted
from Dr will still reflect local background intensity.

In order to remove dependence on local variation, the normalized image Nr

is defined by

Nr(p) =
Dr(p)

Sr(p)
, where Sr(p) = std(X(B(p, r))).

To explore textures based on these normalized images, Nr was computed using
radii r = 3n+1 for n = 0, 1, . . . , 7 (pixels) on full resolution (≈ 50μm per pixel)
mammograms. No structure could be seen for low values of r, but significant
linear structure appeared for larger values of r (Fig. 3).

To see if the linear structures found in the normalized images Nr could be
used as a feature to distinguish normal and cancer tissue, an experiment was
conducted to check if the distributions of orientations of the linear structures
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Fig. 4. On the left is the original image. The middle panel shows the variation of the
oriented filterbank responses at each pixel. The combination of high intensity (above a
fixed threshold T1) and low variation (below a fixed threshold T2) identifies the region
shown in the far right panel.

is different. A filterbank comprising ten oriented filters was applied to Nr with
r = 22 (the image in the far right panel of Fig. 3). Filter j consisted of a rounded
rectangular filter of width 15 pixels (≈ 0.7 mm) and length 60 pixels (≈ 3.0
mm) oriented at an angle (j − 1)π/10, j = 1, 2, . . . , 10. Thus for every pixel, a
feature vector comprising oriented filter responses at ten angles was constructed.
The variation of these filter responses was recorded as a single texture feature
(middle panel of Fig. 4). Using the image intensity (original image) and this
single texture feature the mass region of the image was correctly delineated in
the example image with no false positive regions within the image (right panel
of Fig. 4) simply by setting an empirically defined thresholds for each of the two
features (Fig. 5).

4 Discussion

The image in the right panel of Fig. 3 is flat in the sense that the bright regions
in the original image (left panel in Fig. 3) do not appear in this image. The
texture feature computed from this image (variation of oriented filter outputs) is
therefore independent of background intensity. This texture feature shows a clear
response in the region of the mass (middle panel in Fig. 4). Thus this response
is viewed as associated with the texture properties of the mass but independent
of background intensity. Neither this texture feature alone nor image intensity
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Fig. 5. The panel on the left shows the regions of the original image with intensity
above threshold T1. The middle panel shows the image of variation to oriented filter
response (the middle panel of Fig. 4) below threshold T2. The right panel shows the
intersection of the previous two panels.

alone suffice to classify tissue as cancerous (Fig. 5). However, when the texture
feature is combined with image intensity, the result is that the region of the mass
is identified but other bright regions in the original image are not identified.

The purpose of this paper is to establish that texture features exist that
contribute to the identification of breast cancer independently of image intensity.
The purpose is not to quantify this contribution and so no effort was made to
test the observation on a large data set. A more complete analysis of texture on
flattened images is currently underway.
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Abstract. The purpose of the study is to evaluate the inter- and intra-observer 
variability of the radiologists in evaluation of the similarity between the query 
and retrieved ulatasound images containing breast masses by the Content-Based 
Image Retrieval (CBIR) CADx system. Three radiologists rated the similarity 
between the query masses and the computer-retrieved (ED-CBIR) masses. 
Three CBIR systems based on each radiologist’s subjective similarity ratings 
(R-CBIRs) were formed and compared with the ED-CBIR.  The intra-observer 
variability was smaller than the inter-observer variability for all three 
radiologists. The radiologists’ performance with the R-CBIRs produced 
similarity ratings results close to the radiologists’ performance with the ED-
CBIR. The average difference in classification accuracy (Az) between the ED-
CBIR and the R-CBIRs was slightly lower than the average difference in Az 
between the R-CBIRs. The relatively large intra- and inter-observer variability 
may make more difficult to evaluate the effect of the CBIR CADx systems on 
radiologists’ performance. 

Keywords: computer-aided diagnosis, content-based image retrieval, inter-
observer variability, intra-observer variability, breast masses, breast 
ultrasonography. 

1 Background 

We are developing a Content-Based Image Retrieval (CBIR) CADx system to assist 
radiologists in characterizing masses on ultrasound (US) images [1-3]. We have 
designed and studied the performance of CBIR CADx systems that incorporated 
input-feature-based similarity measures such as Euclidean distance measure (ED) and 
cosine distance measure [1], output-score-based similarity measures such as linear 
discriminant analysis and Bayesian neural network [1], as well as decision tree based 
similarity measures [2].   A relevance feedback was also used in the design of our ED-
based CBIR CADx (ED-CBIR) system [3].  In order to compare the performance of 
the different retrieval methods, we performed a number of observer studies with 
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radiologists. An important factor influencing the effect of CBIR CADx on 
radiologists’ performance is the radiologists’ variability in perceiving the similarity 
between the query case and the retrieved cases.  In this study, we evaluated the inter- 
and intra-observer variability of the radiologists in evaluation of the similarity 
between the query and retrieved US images containing breast masses by the CBIR 
CADx system based on radiologists’ visual similarity assessment. 

2 Methods 

Two observer studies were performed to evaluate the radiologists’ inter- and intra-
observer variability in visual similarity assessment of pairs of masses in US images.  

In Study 1, for a query mass, 3 most similar masses were retrieved with ED-CBIR 
[1] and were presented to the radiologists in random order. Three Mammography 
Quality Standards Act (MQSA) approved radiologists (R1, R2, R3) rated the 
similarity between the query mass and the computer-retrieved masses using a 9-point 
similarity scale (1=very dissimilar, 9=very similar). The data set included 100 query 
masses on 100 (49 malignant and 51 benign) images and 121 reference library masses 
on 230 (79 malignant and 151 benign) images collected with IRB approval. All 
masses were biopsy-proven. Therefore, 300 image pairs (query mass - retrieved mass) 
((100query) X (top 3 retrieved)=300) were evaluated by the radiologists R1, R2 and 
R3 (defined as Reading 1).  Approximately a year later the same 300 image pairs 
were evaluated again by the same radiologists R1, R2 and R3 (defined as Reading 2). 

In Study 2 a second data set consisting of 62 (31 malignant and 31 benign) masses 
was used. All masses were biopsy-proven. The similarities of 1891 image pairs from 
the 62 masses (full combination set, 62X61/2=1891) were also rated by the 3 
radiologists R1, R2 and R3 using the 9-point similarity scale.  

By using the radiologists’ similarity ratings from Study 1 (Reading 1 and Reading 
2), we estimated the intra- and inter-observer variability of radiologists in evaluation 
of the similarity between pairs of the retrieved mass and query mass. By using the 
radiologists’ similarity ratings from Study 2 we were able to estimate the inter- 
observer variability of radiologists in evaluation of all possible 1891 image pairs 
obtained from 62 masses.   

Using the similarity ratings of the three radiologists from Study 2, we formed three 
CBIR systems (R1-CBIR, R2-CBIR, R3-CBIR), each of which used one of the 
radiologists’ similarity ratings for image retrieval. We estimated the inter-observer 
variability of the radiologists by simulation experiments as follows. For each R-CBIR 
system, a leave-one-out method was used for image retrieval, 10 most similar masses 
to each query mass (the left out-mass) were retrieved from the reference library (the 
remaining 61 masses). The retrieved images were evaluated by using the R1, R2 or 
R3 similarity ratings, allowing the estimation of the inter-observer variability. In  
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addition, a similar experiment using the computerized ED-CBIR was performed with 
the same 62 masses and the retrieved images were also evaluated by using the R1, R2 
and R3 similarity ratings. The performance of the computerized ED-CBIR was 
compared with that of the R-CBIR systems in terms of classification accuracy. The 
ratio of the number of retrieved malignant masses to the total number of retrieved 
masses (10) was used as a decision variable for every query mass.  

The intra-observer variability was estimated as the average difference and the 
average absolute difference between the radiologist’s ratings from Reading 1 and 
Reading 2. The inter-observer variability was estimated as the average difference and 
the average absolute difference between the radiologists’ ratings (R1-R2, R1-R3, and 
R2-R3). For example, the inter-observer variability (IOV) for R1 was IOV(R1) = 
(|R1-R2|+|R1-R3|)/2. 

3 Results 

3.1 Intra-observer Variability 

The estimated intra-observer variability for R1, R2 and R3 are presented in Table 1 
and Figure 1. For all 3 radiologists the difference in similarity ratings between 
Reading 1 and Reading 2 was statistically significant. R1 had the smallest average 
absolute difference and R2 had the largest average absolute difference. From Figure 1 
it can be observed that R1 has the largest number of ratings with difference of 0, 1 or 
-1 compared to the other two radiologists.  
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Fig. 1. Distribution of the difference between Reading 1 and Reading 2 similarity ratings for 
radiologists R1, R2 and R3 
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Table 1. Average similarity ratings of radiologists R1, R2 and R3 performing Reading1 and 
Reading 2 one year apart for 300 image pairs 

 Evaluated by 

 R1 R2 R3 

Reading 1 5.71 4.63 5.61 

Reading 2  6.13 5.02 6.29 

Difference 0.42±1.38 0.39±1.95 0.68±1.70 

AbsoluteDifference 1.06±0.98 1.50±1.30 1.41±1.17 

p (paired t-test) <0.001 <0.001 <0.001 

3.2 Inter-observer Variability 

The trends of the average absolute differences and corresponding standard deviations 
between similarity ratings of radiologists R1, R2 and R3 in Study 2 are similar to 
those observed in Study 1 (both for Reading 1 and Reading 2). The results are 
presented in Tables 2 and 3 and Figures 2, 3 and 5. 

Table 2. Average difference and average absolute difference between similarity ratings of 
radiologists R1, R2 and R3 based on the evaluation of 300 pairs of mass US images 

 R1-R2 |R1-R2| R1-R3 |R1-R3| R2-R3 |R2-R3| 

Reading 1 1.08±2.02 1.76±1.46 0.10±1.85 1.46±1.13 -0.98±2.23 1.89±1.53 

Reading 2  1.11±1.74 1.66±1.23 -0.16±1.74 1.37±1.08 -1.27±2.16 1.99±1.52 

Similarity ratings difference  
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

N
u

m
b

er
 o

f 
im

ag
e 

p
ai

rs

0

10

20

30

40

50

60

70
R1-R2 
R1-R3 
R2-R3 

 

Fig. 2. Distribution of the differences in similarity ratings for Reading 1 
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Table 3. Average difference and average absolute difference between similarity ratings of 
radiologists R1, R2 and R3 based on the evaluation of 1891 pairs 

 R1-R2 |R1-R2| R1-R3 |R1-R3| R2-R3 |R2-R3| 

Study 2 0.59±1.78 1.45±1.20 -0.01±1.71 1.30±1.11 -0.60±1.95 1.52±1.37 
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Fig. 3. Distribution of the differences in similarity ratings for Reading 2 
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Fig. 4. Distribution of similarity ratings for radiologists R1, R2 and R3 for 1891 image pairs 
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The smallest average absolute difference and standard deviation were between R1 
and R3. The largest average absolute difference and standard deviation were between 
R2 and R3.  The inter-observer variability for Reading 1 was IOV(R1)= 1.61±1.31, 
IOV(R2)= 1.83±1.50, IOV(R3)= 1.68±1.34; for Reading 2 was IOV(R1)= 1.52 ±1.16, 
IOV(R2)= 1.83±1.38, IOV(R3)= 1.68±1.32; and for Study 2 was IOV(R1)= 
1.38±1.16, IOV(R2)= 1.49±1.29, IOV(R3)= 1.41±1.25.  

The inter-observer variability was the smallest for R1, followed by R3, and the largest 
for R2. The similarity ratings for radiologists R1, R2 and R3 for 1891 image pairs are 
plotted in Figure 4, using R1’s ratings in descending values to order the 1891 pairs. 
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Fig. 5. Distribution of the difference in similarity ratings in Study 2 

3.3 Comparison of the Accuracy of the Automated ED-CBIR System to the  
R-CBIR Systems and Inter-observer Variability of the Radiologists When 
Evaluating the CBIR Systems 

For the comparison of the accuracy of the ED-CBIR system to the R-CBIR systems, 
the similarities of 1891 image pairs were used.  For all 62 query masses, the Az values 
of R1-CBIR, R2-CBIR, R3-CBIR, and ED-CBIR at k=10 were 0.93±0.03, 0.85±0.05, 
0.92±0.04, and 0.89±0.03, respectively. The average absolute difference in Az among 
the R-CBIRs was 0.05±0.04. The average absolute difference in Az between the ED-
CBIR and the R-CBIRs was 0.04±0.03. 

Table 4. Average similarity ratings of R1, R2 and R3 for retrievals from different CBIR 
systems (R1-CBIR, R2-CBIR, R3-CBIR, or ED CBIR) for k=10 

 Evaluated by    

Retrieved by R1 R2 R3 |R1-R2| |R1-R3| |R2-R3| 

R1-CBIR 6.85 5.53 6.29   0.76 

R2-CBIR 5.90 7.14 6.38  0.48  

R3-CBIR 5.97 5.60 7.57 0.37   

ED CBIR 5.31 4.95 5.75    
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The average similarity ratings for the different CBIR systems are presented in 
Table 4. The absolute difference of the average similarity ratings for evaluation of 
R1-CBIR by the other two radiologists (i.e. the absolute difference between the 
average similarity ratings of R2 evaluating R1-CBIR retrievals and that of R3 
evaluating the same retrievals) was 0.76 (Table 4). The absolute difference for 
evaluation of R2-CBIR by R1 and R3, and R3-CBIR by R1 and R2 were 0.48 and 
0.37, respectively (Table 4). The average absolute difference in similarity ratings in 
test mode (averaged over the 3 CBIRs retrievals) was 0.54. These estimations reveal 
the inter-observer variability of the three radiologists evaluating the three R-CBIR 
systems. 

Table 5. Absolute difference between averages of the similarity ratings of R1, R2 and R3 for 
retrievals from different CBIR systems (R1-CBIR, R2-CBIR, R3-CBIR, or ED CBIR) for k=10 

 Evaluated by  

Difference R1 R2 R3 Average 

Diff(R1-CBIR, 
ED CBIR) 

- |5.53-4.95|=0.58 |6.29-5.75|=0.54  

Diff(R2-CBIR, 
ED CBIR) 

|5.90-5.31|=0.59 - |6.38-5.75|=0.63  

Diff(R3-CBIR, 
ED CBIR) 

|5.97-5.31|=0.66 |5.60-4.95|=0.65 -  

Average 0.63 0.62 0.59 0.61 

 
The average absolute differences in the similarity ratings for R1 when evaluating 

the ED-CBIR system and CBIR systems based on the other two radiologists (i.e., 
absolute differences in similarity ratings between R1 evaluating ED-CBIR retrievals, 
R1 evaluating R2-CBIR retrievals and R1 evaluating R3-CBIR retrievals) was 0.63 
(Table 5). These absolute differences for R2 and R3 were 0.62 and 0.59, respectively 
(Table 5). The average absolute difference in similarity ratings was 0.61. The above 
estimations show the variability of every individual radiologist evaluating the ED-
CBIR and the R-CBIR systems. For the three radiologists these variabilities were 
relatively consistent. The average variability of 0.61 was slightly higher than the 
inter-observer variability of the three radiologists evaluating the three R-CBIR 
systems (0.54). 

4 Discussion 

The intra-observer variability was smaller than the inter-observer variability for all 
three radiologists. The inter-observer variability was consistent for the three 
radiologists in the repeat experiments Reading 1 and Reading 2, and slightly smaller 
when evaluating Study 2. The rank order of the radiologists, based on the magnitude 
of their intra- and inter-observer variability, was consistent in both observer studies. 
The radiologists’ performance with the R-CBIR systems in the simulated evaluation 
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experiments produced results close to the radiologists’ performance with the ED-
CBIR system. The average difference in classification accuracy between the ED-
CBIR and the R-CBIRs was slightly lower than the average difference in accuracy 
among the R-CBIRs. The ED-CBIR may be useful for classification of US breast 
masses as malignant and benign. However, the relatively large intra- and inter-
observer variability may make more difficult to evaluate the effect of the CBIR 
systems on radiologists’ performance. 
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Abstract. Only 70-80% of breast cancer is detected in the screening environ-
ment.  Detection of microcalcifications is generally incomplete and limits ef-
fectiveness of controlling breast cancer through early detection. Any advantage 
in detection of microcalcifications would be highly welcome. Anecdotal com-
ments from practicing radiologists suggest that increased luminance provides 
one way to increase the detection of relevant microcalcifications. This paper 
aims to study the effect of increased display luminance on the detection proba-
bility of microcalcifications. 

1 Background 

The ACRIN DMIST trial found significantly better diagnostic accuracy of digital 
mammography, as compared with screen-film mammography, in women with dense 
breasts; Studying the cancers, this was most likely attributable to differences in image 
contrast, attributable primarily to differences in the display and acquisition characte-
ristics [1].  Small calcifications provide evidence of breast cancer.  The specific size, 
shape, and clustering of these microcalcifications can be used to categorize breast 
images following examples in an atlas [2].  The microcalcifications of interest are on 
the order of 0.5mm.  Determination of the shape of such objects is possible with 
digital mammography detectors having a range of 50-100 microns. Categorization of 
microcalcifications per atlas is well correlated with breast cancer [3].  

Breast-screening images are typically presented to radiologists for interpretation on 
multiple medical-grade displays with a resolution of 5 mega pixels (5MP). These 
displays have a typical luminance of 500 cd/m² (AAPM TG18 and FDA require a 
minimum luminance of 450 cd/m² for primary reading of mammography images). 
When seated at such a display system, 500 – 600 mm is a typical viewing distance. 
0.125 mm – 1mm (in the breast) calcifications are the size of interest. The spatial 
frequency is thus between 3.1 and 29.8 cycles/degree, when using the whole 5MP 
screen to view each image.   

Contrast and luminance affect our ability to see details in mammography and other 
medical images. Consider the typical image below in figure 1.  On the left it is pre-
sented with nominal luminance, on the right with twice that luminance (The exact 
ratio being subject to the limitations of print and digital media). 
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Fig. 1. Example of how luminance affects visibility of image details 

The luminance of softcopy displays has evolved over the past 10 years. When the 
FDA first approved Full Field Digital Mammography for breast screening as an alter-
native to film-screen mammography, softcopy displays were based primarily on CRT 
technology. There was a trade-off between focus and electron beam current that li-
mited the practical luminance. With the advent of LCD displays, its luminance has 
evolved upwards.   

Table 1. Overview of display luminance evolution 

Year display was  
introduced 

Technology Luminance in candela  
per square meter 

1997  CRT 300 
2002 CRT 450 
2004 LCD 600 
2011 LCD 1000 

Contrast and luminance are both strongly correlated with conspicuity of mammo-
graphic targets. Using FDA-trained inspectors to score phantoms, it was found that 
the mass and speck scores were significantly higher both with higher luminance and 
with greater contrast [4].   

Anecdotal comments from practicing radiologists about superiority of higher lu-
minance need to be tested before the importance of this observation can be deter-
mined.  Failure to perceive mammographic details is an important category of error 
in missed breast cancer [5]. Breast cancer, when present, is detected in screening 70-
80% of the time. When cancer is detected in subsequent screenings, visible evidence 
can often be found in the prior screening images.  Based on data collected in the 
Dutch screening program based in Nijmegen, half of undetected cancers have minim-
al signs present [6].  From this we can assume a detection probability in the original 
screening to be on the order of 85% - accounting for half of the 30% missed in the 
screening. 

This paper aims to quantify the clinical value of increasing the luminance of medi-
cal displays by determining the advantage in microcalcification detection. 
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2 Method 

In order to determine the clinical value of higher display luminance, detection proba-
bility of typical microcalcifications will be calculated as a function of display lumin-
ance. These calculations will be based on generally accepted models of the human 
visual system. The calculations will be performed for a 21.3 inch 5 Mega Pixel medi-
cal display with contrast ratio of approximately 900:1. Many medical displays used 
for mammography have a typical calibrated luminance value of 500 cd/m². This 
means that over the entire lifetime of the display, the white-point will be at 500 cd/m². 
We will use 500 cd/m² as a reference point and we will compare higher calibrated 
luminance values of 1000 cd/m² and 2300 cd/m² with the reference point. 

As a first step, the simple DICOM GSDF (Grayscale Standard Display function) 
model [7] will be used.  The GSDF forms the basis of current medical display cali-
bration technology. The GSDF curve (see figure 2) defines the luminance (cd/m²) in 
function of JNDs (Just Noticeable Differences). A JND is the difference in luminance 
that is necessary such that a typical observer will be able to see the target in lumin-
ance in 50% of the cases. The GSDF curve allows computing the total number of just 
noticeable differences that a display system can generate, as well as the JNDs per step 
that reflect the perceived contrast of a medical display system. 

 

 

Fig. 2. DICOM Grayscale Standard Display Function 

The Grayscale Standard Display function is based on Barten’s model [8] of the 
Contrast Sensitivity Curve (CSF). The CSF represents the amount of minimum con-
trast at each spatial frequency that is necessary for a visual system to distinguish 
sinusoidal gratings or Gabor patterns over a range of spatial frequencies surrounded 
by a uniform field. Barten’s CSF model has been heavily validated by means of mul-
tiple psycho visual studies and as of today is considered to be one of the most accu-
rate contrast sensitivity models of the human visual system. In this paper we will 
make use of the general CSF model of Barten of which the main formula is shown in 
figure 3. 
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Fig. 3. Barten’s model of Contrast Sensitvity Function 

When DICOM/NEMA generated the GSDF curve, Barten’s CSF model was used 
where the target is assumed to have a 4 cycles degree spatial frequency and a angular 
size of 2 degrees and for a ‘typical’ medical display. Therefore, a more accurate result 
can be obtained by using the CSF model with specific parameters corresponding to 
the correct spatial frequency and size of microcalcifications, correct display size and 
luminance, etc.  

Finally, the link will be made between sensitivity of the eye and actual detection 
probability of microcalcifications. This relationship is described by the psychometric 
function [9] that can be approximated with a Weibull function.  

3 Results 

3.1 GSDF Model Calculations 

As a first result, the total number of available JNDs (Just Noticeable Differences) is 
calculated based on the GSDF curve and this for the three calibrated luminance levels.  

The medical display running at 500 cd/m² has a black point of 0.556 cd/m² (and of 
course a white-point of 500 cd/m²). Note that this corresponds to a contrast ratio of +/- 
900:1. As can be derived from the GSDF curve, 500 cd/m² corresponds to JND value 
706 and 0.556 cd/m² corresponds to JND value 50. This means that this display has 
657 available JNDs (706-50+1) or 2.566 JNDs per step if images of 256 grey levels 
are shown. 

The medical display running at 2300 cd/m² has a black point of 2.556 cd/m² (and 
of course a white-point of 2300 cd/m²), again corresponding to a contrast ratio of +/- 
900:1. As can be derived from the GSDF curve, 2300 cd/m² corresponds to JND value 
938 and 2.556 cd/m² corresponds to JND value 138. This means that this display has 
801 available JNDs or 3.129 JNDs per step if images of 256 grey levels are shown. 

This means that increasing the calibrated luminance of a medical display from 500 
cd/m² to 1000 cd/m² results into a 12% increase in perceived contrast (even though 
the physical contrast ratio remains unchanged). A further increase to 2300 cd/m²  
results into a 22% increase in perceived contrast compared to the 500 cd/m² reference. 
These results have been summarized in the table below. 
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Table 2. Influence of display luminance on #JNDs and perceived contrast 

 
 

As has been explained before, the GSDF model is based on Barten’s more general 
model of the Contrast Sensitivity Function where the target is assumed to have a 4 
cycles per degree spatial frequency and a angular size of 2 degrees and for a ‘typical’ 
medical display. The next section will calculate more accurate results of the CSF for 
the specific medical display used in this paper and micro calcifications as targets to be 
detected. 

3.2 Refined CSF Model Calculations 

Based on Barten’s CSF model and the formula shown in figure 3, calculations have 
been made for the same 21.3 inch 5 Mega Pixel medical displays, viewing distance 50 
cm, three calibrated luminance levels (500 cd/m², 1000 cd/m² and 2300 cd/m²) and 
target size corresponding to typical microcalcifications. Microcalcifications of interest 
(that are often missed) are in the order of 0.5 mm. The relevant spatial frequencies are 
around 15 cycles/degree, when using the whole 5MP screen to view each image. The 
resulting CSF curves are shown in the left side of figure 4 (please note the logarithmic 
scale of this figure). 

In line with the expectations, there is mostly improvement for higher spatial fre-
quencies. This also perfectly corresponds with previously received feedback from 
radiologists that higher luminance mostly helps for detecting subtle, small microcalci-
fications (that correspond to higher spatial frequencies). 

 

Fig. 4. (left) Contrast Sensitivity curves, (right) Improvement in sensitivity 
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Figure 4 (right side) shows the increase in contrast sensitivity for calibrated lumin-
ance levels 1000 cd/m² and 2300 cd/m² compared to the reference 500 cd/m². It is 
confirmed that the higher luminance mostly makes a difference for higher spatial 
frequencies (>4 cycles per degree) with maximum benefit for spatial frequencies of 
10 cycles per degree and higher. In that range of spatial frequencies, increasing the 
luminance from 500 cd/m² to 1000 cd/m² results into a 19.4% higher sensitivity, while 
increasing from 500 cd/m² to 2300 cd/m² even results into a 37.0 % higher sensitivity. 
Simple GSDF model only predicted an increase of 12.0% (1000 cd/m² versus 500 
cd/m²) and 21.9% (2300 cd/m² versus 500 cd/m²).  

3.3 Detection Probability of Microcalcifications 

To finally estimate the clinical value of higher luminance of medical displays we need 
to know the increase in detection probability for microcalcifications. The JND values 
and CSF results need to be related back to detection probability of microcalcifica-
tions. The psychometric function [10] is used to convert signal strength/sensitivity 
into detection probability. For this paper we use a Weibull function [9] to estimate the 
psychometric function. The Weibull function has one parameter ‘k’. For details about 
this parameter ‘k’ we refer to [9; 10] and [8] pp. 11-15. Generally accepted values for 
‘k’ are in the range 2-3. Figure 5 shows detection probability as a function of signal 
strength. 

 

Fig. 5. Weibull function for k-values 2; 2.5 and 3 

In order to calculate what the effect of increased luminance is on detection proba-
bility we need to have one calibration point on the psychometric curve. We choose a 
detection probability for microcalcifications on a display with calibrated luminance 
1000 cd/m² of 85%, based on the Netherlands data [6] that was collected with very 
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bright analog displays. By means of this calibration point we can now calculate the 
detection probability for 500 cd/m² and 2300 cd/m². 

Sensitivity has shown to be 37% higher at 2300 cd/m² and 19% higher at 1000 
cd/m² compared to 500 cd/m². Similarly, but now putting the reference point at 1000 
cd/m²: sensitivity is 15.1% higher at 2300 cd/m² compared to 1000 cd/m², and sensi-
tivity is 16.0% lower at 500 cd/m² compared to 1000 cd/m². 

By inspecting the psychometric function, we observe that 85% detection (for k-
value 2.5) corresponds to normalized signal strength 1.42. Increasing luminance from 
1000 cd/m² to 2300 cd/m² corresponds to increasing the sensitivity and normalized 
signal strength with 15.1%. Therefore detection probability at 2300 cd/m² can now be 
read from the psychometric function (k-value 2.5) at normalized signal strength 1.42 
x 1.151 = 1.635 and equals 94.1% probability of detection. Detection probability at 
500 cd/m² can also be read from the psychometric function (k-value 2.5) at 
1.42x0.840= 1.193 and equals 68.3% probability of detection. The table below also 
shows this calculation but now for all three k-values (2; 2.5; 3). 

Table 3. Detection probability in function of display luminance 

 

Depending on the exact k-value used, increasing the calibrated luminance of a 
medical display from 1000 cd/m² to 2300 cd/m² will increase detection probability of 
microcalcifications from 85% to between 92.6% and 95.3%. 

4 Future Work 

Barten’s model that was used in this paper has been extensively validated by several 
independent academic groups. Anecdotal comments from practicing radiologists 
about superiority of higher luminance, and previous publications in literature also 
support the results of this paper. Nevertheless, observer studies will be done to con-
firm the results of this paper. An observer study is being prepared where practicing 
radiologists will be asked to detect microcalcifications at several display luminance 
settings.  

5 Conclusions 

Detection of microcalcifications is generally incomplete and limits effectiveness of 
controlling breast cancer through early detection. As shown in the Nijmegen study 
[6], as many as 50% of prior exams had unrecognized evidence of malignancy.  Any 
advantage in detection would be welcome.  
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Two models of the human visual system have been used to estimate the increase in 
detection when luminance is increased from 500 cd/m² to 1000 cd/m² and even 2300 
cd/m². Increasing the calibrated luminance of a medical display from 1000 cd/m² to 
2300 cd/m² increases detection probability of microcalcifications from 85% to 92.6%-
95.3%.  

Therefore, recent technological advances of medical display systems that offer lu-
minance levels up to 2300 cd/m² hold a lot of promise for increased clinical perfor-
mance of breast cancer screening. 
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Abstract. Image quality in digital mammography can be achieved by 
conducting periodic tests. It is recommended that some quality parameters be 
measured from images acquired by exposing specific phantoms, as CDMAM 
3.4, in such systems. Whereas this task is hard-working and time consuming, 
this study has attempted to develop and compare two computational methods in 
order to assist the technical professional in performing the tests with such 
phantom images, reducing the subjectivity due to the observers. Tests used 27 
phantom images obtained from six different digital mammography systems – 
five CR-type and one DR-type. Both methods proved to be effective in 
detecting structures. However, the first one allowed the complete image 
processing and not just a region of interest, which makes it quite advantageous. 

Keywords: digital mammography, quality assurance in mammography, 
phantom CDMAM, computer-assisted detection. 

1 Introduction 

Mammography image quality can be assured by performing periodic tests to check for 
instance high contrast details and the low contrast threshold. These parameters can be 
evaluated by phantom images, which can determine the distinction between the signal 
of interest and the background.  

With the growing development of digital mammography systems, as CR and DR 
units, new procedures have been developed to evaluate the image quality produced by 
such equipment. Phantom CDMAM 3.4 [1] was developed specially for performing 
high and low contrast tests. It is consisted by an aluminum plate inside acrylic, 
composing a matrix. Four other acrylic plates simulate the breast thickness. In each 
matrix cell two identical gold discs are randomly disposed. They are between 0.03µm 
and 2.0µm thick and their diameters diverge from 0.06mm up to 2.0mm. The matrix 
is rotated 45o so that to eliminate structures which are easily detectable and those 
which will surely not be detected. Figure 1 illustrates an image from phantom 
CDMAM 3.4. 
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Fig. 1. Frontal view of phantom CDMAM 3.4 – Artinis Contrast-Detail Phantom 

As stated by the European Protocol [2], the test should be done annually by 3 
observers who read two images verifying the discs location by means of a template in 
order to determine the contrast threshold. However the phantom image reading is 
considered tiresome and time consuming. In addition, this reading is quite dependent 
on the reader subjectivity, which can cause errors, mainly among different observers. 
In order to minimize this subjectivity, a software named CDCOM was proposed by 
Karssemeijer [3]. CDCOM searches for finding the accurate discs positioning in 
DICOM images. Nevertheless, an optimal method to interpret data is not defined, 
which impairs the search for contrast threshold, and a data correction or validation is 
necessary [4,5]. 

Thus, this work proposes the development of computer techniques to detect the 
discs in these phantom images, working as an aid tool to the digital mammography 
systems quality control, allowing to reduce the subjectivity due to the human 
observer. Furthermore, we attempted to correlate these techniques to the human 
vision, which can discard the need of correcting the measured threshold values. 

2 Methods 

Two methodologies were developed and compared relatively to the detection 
accuracy and computational cost. The first is based on the correlation matching 
technique, consisted by developing circular filters. The filters external ring matches 
with the image background and the internal ring matches with the structure (disc) to 
be detected. In the second methodology, the discs were found from their contrasts, 
calculated by means of circular filters providing the average of pixels values as those 
corresponding to the image background as well as to the discs. 
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To correlate these measures with the human vision, we are studying the experiment 
proposed by Tseng [6], in which the human vision threshold is obtained by the Weber 
ratio modified by parameters defining the structure visibility as its contrast relative to 
the background. 

2.1 Techniques for Computer Detection 

CDMAM 3.4 images from five CR units and one DR system were obtained. 
Parameters as kVp and mAs were set according to the European Protocol. Twelve 
images were acquired from a Selenia® Hologic/Lorad DR mammography system; 
other 15 images were obtained from the following CR units (3 from each one): Agfa 
75, Agfa 85, Fuji 50, Fuji 100 and Kodak 975.  

The first methodology was developed by using Java and plugins from the software 
ImageJ®. This eliminated the need of developing a new interface. 

In the procedure the first step is determining the initial scanning point. A Sobel 
borders detector was used allowing to apply the Hough Transform in order to 
determine the coordinates corresponding to the vertices of the matrix cells in the (x,y) 
plane. The correlation matching [7] technique was used to detect the discs. It was 
applied with concentric circular filters composed by two peripheral regions (one 
external and other internal, according to the illustration in Fig. 2). The internal region 
is a circle which comprises the structure and attempts to match its interior, while the 
external one is a ring which attempts to match the background. Filters were made by 
varying their diameters according to the diameters of the discs existent in the phantom 
image used as template.   

The procedure of locating the structures returns a list of structures marked for each 
detection. The image is 45o rotated to allow the scanning to be made for each line of 
the image. The decision on the detection or not of a single structure of interest is 
based on the contrast between the structure and the background as well as on the 
background gray scale. 

 

Fig. 2. Filter model used for discs detection 

In the second methodology, also concentric circular filters (Fig. 2) are used. The 
internal filter comprises the structure and the average of pixel values inside the circle 
is calculated. The external filter is a ring which provides the calculation of the average 
of pixel values in a region embracing the image background. The number of pixels of  
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the circle and the ring is the same. The contrast is calculated by the difference 
between the averages of pixel values corresponding to the background and the 
structure of interest. The center of a singular disc and the vertices of the searching 
region should be selected, according to Fig. 3. 

 

Fig. 3. Selecting the center of the structure to be located 

2.2 Correlation with the Human Vision 

In order to correlate the image reading made by the computer and the human  
vision reading, the technical report was used to select the threshold disc which 
predominates in 50% or more of images [6]. By using ImageJ®, for each image the 
average of pixel values of image background (B) as well as of 12 chosen threshold 
discs (B0) was obtained. Then, the Weber ratio was calculated from the relation ΔB/B, 
were ΔB = B0 – B.  

This ratio describes the human vision behavior in discriminating the contrast in 
images analysis [8]. The Weber ratio is close to a constant, β, on a significant range of 
gray intensities, which can be obtained from the information on the graph (ΔB/B x B), 
as well as the maximum value of |ΔB/B|. From these data, the graph corresponding to 
log(ΔB) x log(B) can be determined [6]. 

3 Results 

3.1 Correlation Matching Technique 

In the correlation matching method, when a structure of interest is detected, the 
software marks the location corresponding to the found disc, illustrated by Fig. 4. In 
the thumbnail, there is an example of two found discs located in one of the matrix 
cells. 



502 M.A.Z. Sousa, H. Schiabel, and R.B. Medeiros 

 

 

Fig. 4. Result from the discs detection with the method of correlation matching 

In this case, the purpose was only detecting the discs in the center and in one of the 
vertices of each cell. This allowed to detect indeed all the discs in all phantom images, 
including those not visible to the human eye. 

3.2 Average of Pixel Values 

After the first test above, the average of filters pixel values were determined 
comprising only the diameters considered visible according to the technical report. 
The purpose was reducing the execution time and the computational cost, since the 
searching is performed cell by cell. The diameters were defined according to a 
reference image. As a result, in the region of interest comprising one cell, both the 
discs were located and marked. The center of each mark was stored as a variable. 

However, each disc was marked more than once. And, in some cases, the software 
yielded a wrong result, detecting one of the matrix borders as a structure of interest. 
This is due to the fact that the border gray level is very close to that corresponding to 
the disc in such phantom region. As this problem is inherent to the region selected by 
the user, we could observe that the detection still can be influenced by the user.  

As the searching was being done in regions with thinner but larger diameter discs, 
the detection hardness was increasing, considering that the disc fills big part of the 
searching region. This limits the region belonging to the background, where the 
contrast is smaller. Thus, the number of discs detections increased significantly. This 
error can be minimized by enlarging the searching step. 

We could verify that this improvement is valid only for discs with larger diameters. 
Applying a 3 pixels step for discs smaller than 0.5mm in diameter, the error happens 
again. So, the results were obtained by using only a 1 pixel step as searching interval, 
since knowing the exact discs positioning was not necessary in this case. Therefore, 
we have considered correctly detected the marked structures, even when indicated 
more than once. 
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For most of the cases of threshold structures selected by the technical report, only 
one disc was detected inside the cell. The considered accuracy rate involved all the 
right detections indicating both discs inside a cell in each image. Results regarding 
only one disc detected in a single cell were considered erroneous, as well as when the 
matrix border was detected. Table 1 shows the discs detection rate for the second 
methodology, for the 27 images used, considering those obtained by CR systems, as 
well as those acquired from a DR Selenia® Hologic/Lorad unit. 

Table 1. Accuracy detection rate corresponding to the method of pixel values average 

 Detection Rate 

Accuracy rate  83% 
Matrix borders detection 6% 
Detection of only one disc in the cell 11% 
Total of errors 17% 

 
Such errors sometimes can be corrected by changing the searching step or 

decreasing the region of interest, which however makes the technique relatively 
dependent on the user. 

When analyzed separately, the results obtained for images acquired by the DR 
Selenia® were verified superior relatively to those obtained for CR systems – 
reaching an accuracy rate of 86%, while for the CR systems, this rate was 81%. In 
addition, a decrease of 5% in border detections was also observed. In 9% of cases, 
only one disc was detected in the cell for the DR images.  

Even so, in a general comparison, results for all equipment were similar, with 
differences no larger than 10% among them. 

We should stress that such analysis allow us to compare our software sensitivity, 
considering the different equipment under study. This means that all the performed 
investigations compare the single units and not necessarily the different technologies 
of digital mammography images acquisition. 

3.3 Parameters for Correlation with the Human Vision 

Contrast for each threshold disc as well as the Weber ratio were calculated in order to 
determine the parameter β needed for the final equations (Table 2).  

Graph in Fig.5 shows the curve obtained from experimental data. Approximation 
by parts was performed by the minimum squares method, resulting in parameters 
B1=10960, B2=13000 e B3=19000 required to complete the equations to establish the 
human vision threshold.  

With all the parameters, the human vision threshold can be estimated for each disc 
to be located in the image in order to allow that the software only determines the limit 
discs perceptible by human vision. 
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Table 2. Result from contrast calculation for each selected threshold disc (respective parameter 
β obtained equal to 0.07) 

Threshold Background (B) Contrast 

1 27543 0.15 
2 26962 0.08 
3 25690 0.10 
4 24185 0.11 
5 23592 0.06 
6 21974 0.05 
7 21447 0.08 
8 21790 0.06 
9 21347 0.04 
10 20309 0.04 
11 20443 0.03 
12 21218 0.03 
Average 23042 0.07 
Stand. Dev. 2521 0.04 

 

Fig. 5. Graph referent to log(ΔB) x log(B) 

4 Conclusions 

The first methodology was verified efficient in discs detection, performing the 
scanning in the entire image, being not time consuming and of low computational 
cost. Besides, the interface associated to the ImageJ® software made the method 
totally automatic and simple to be performed. All the discs could be detected, which 
characterizes the method as a random process, since it does not allow to classify 
detections between right or wrong. This leads to the need of applying also procedures 
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such as the correlation with the human vision, presented in the test stage, in order to 
achieve the adequate classification. 

The second procedure, although also with a simple interface, has been quite 
dependent on the user, which causes variation in the results. The double detection of 
some structures was not a problem, since the purpose was only to check the presence 
of discs in the cell center and in one of its corners.  The scanning by regions of 
interest instead of the entire image implied a long time expended in the software 
execution, being also tiresome to the user. However the technique also could be 
considered efficient, since it was able to detect discs in 83% of all the tests.  

Thus, comparatively, the first methodology could be considered more adequate to 
the procedure of automatic detection of contrast threshold from the CDMAM 3.4 
phantom image analysis. 

New tasks could be incorporated to the software in the future by using the 
ImageJ® interface. Our estimative is that this work is an initial process to optimize 
the quality evaluation of digital mammography systems in determining the image 
quality parameter describe by the detail-contrast curve. 
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Abstract. We have developed a method for massively parallelized breast anat-
omy simulation and a corresponding GPU implementation using OpenCL. The 
simulation method utilizes an octree data structure for recursively splitting the 
simulated tissue volume.  Several strategies to optimize the GPU utilization 
were proposed and evaluated, including the use of synchronization constructs in 
the language and minimization of buffer allocations. The task of tissue classifi-
cation was separated from the voxelization to further improve the balance of the 
control flow. The proposed anatomy simulation method provides for fast gener-
ation of high-resolution anthropomorphic breast phantoms.  Currently, it is 
possible to generate an octree representation of 450 ml breasts with 50 μm vox-
el size on a AMD Radeon 6950 GPU with 2GB of memory at a rate of 7 phan-
toms per minute, 32 times faster than a multithreaded C++ implementation.   

Keywords: Digital mammography, anthropomorphic breast phantom, Paralleli-
zation, GPU. 

1 Introduction 

Breast tissue simulation is of great importance for pre-clinical testing and optimization 
of imaging systems or image analysis methods.  Currently, the standard for imaging 
systems validation includes pre-clinical evaluation performed with simple geometric 
phantoms, followed up by clinical imaging trials involving large numbers of patients 
and repeated imaging using different acquisition conditions.  Such an approach fre-
quently causes delays in technology dissemination, due to the duration and cost of these 
trials. In addition, there are many factors which place strict limitations on the number of 
test conditions, such as the use of radiation in x-ray imaging trials.   

Use of software anthropomorphic phantoms for pre-clinical evaluations offers a 
valuable alternative approach which can reduce the burden of clinical trials.  In this 
paper, we present a GPU (Graphical Processing Unit) implementation of a method for 
generating software anthropomorphic breast phantoms.  The breast anatomy simula-
tion method is based upon recursive partitioning of the simulated volume utilizing 
octrees. The octree-based algorithm allows generation and processing of octree nodes 
at the same tree level independently (i.e., in any arbitrary order), which makes the 
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algorithm a good candidate for parallelization.  Using profiler analysis we have iden-
tified the bottleneck steps in the CPU implementation of the algorithm and developed 
a corresponding GPU implementation using OpenCL. The performances of the GPU 
and CPU implementations were compared in terms of the time needed for generating 
phantoms of various voxel sizes. The effects of several implementation parameters 
are discussed.  

2 Methods 

Our proposed method of breast anatomy simulation using GPUs is based on the algo-
rithm originally proposed by Pokrajac et al [1]. The paper proposed a method of using 
octrees to represent simulated volumes of various tissue types. We recently proposed 
a roadmap [2] to migrate its implementation to a platform that directly utilizes mas-
sively parallel processors such as GPUs. Specific milestones were defined to allow 
incremental migration in implementations and regression testing. A multiple threaded, 
concurrent version targeting multiple-core CPUs had been implemented along the 
roadmap. Figure 1 shows the flowchart of this version of algorithm. 

 
Fig. 1. Flowchart of the concurrent version of the octree-based algorithm, where nodes are 
processed concurrently to determine their tissue types 
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We chose OpenCL [3] as our software platform to implement a massively parallel 
version of the algorithm. Each individual octree node is identified as the finest granu-
larity in the parallelization. To map it to OpenCL, each OpenCL work item is indexed 
to a unique node at each tree level. The concurrent part of the algorithm is ported into 
OpenCL kernels which are functions invoked and executed by the GPUs. 

Profiling was performed on the initial OpenCL implementation to identify its po-
tential bottlenecks using AMD APP SDK v2.6 [4]. The data transfer between the host 
memory and the device memory was identified as the major bottleneck in the pipe-
line. To reduce the amount of data transferred between the host and the devices, the 
process of splitting the nodes into child nodes was ported as an OpenCL kernel, so 
that the uploading of octree data to the devices was no longer needed. Figure 2 shows 
a float chart where the node splitting is parallelized on the GPU.   

 
Fig. 2. A massively parallel version of the octree algorithm. At each octree level, two paralle-
lized steps are performed. The first step is to split each splitable node into 8 child nodes. The 
second step is determining the tissue type of each node. 

Because OpenCL does not allow allocation of memory by its kernels, buffers  
of sufficient sizes have to be allocated by the host in advance. Therefore, the GPU 
implementation has to determine, in advance, the number of octree nodes requiring 
for splitting. A technique similar to reduction [5] is used to accelerate the counting 
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process. The implementation first counts the number of nodes which require splitting 
in each work group using a counter in local memory. Next, the counts of each 
workgroup are accumulated so that the accumulation result multiplied by 8 would be 
the index where each workgroup starts splitting its nodes in parallel. Figure 3 shows 
an example of the parallelized splitting process.  

……………………………….

…………
0..7 0..7 0..7

i‐th level

(i+1)‐th 
level

……………………………….Threads

Leaf node

Non‐leaf node

0..7

Workgroup 0 Workgroup n

0 23  

Fig. 3. Illustration of GPU threads splitting its each node into eight nodes in parallel. In this 
example, workgroup 0 has 3 nodes (0, 6, and 7) requiring splitting. Indexes 0 to 23 (= 3 x 8 - 1) 
are reserved for workgroup 0, while the next workgroup splits the nodes into child nodes start-
ing from index 24. 

Built-in OpenCL atomic functions atom_inc() and atom_add() were utilized 
to increment and add the counters on multiple threads to guard against a race condi-
tion. 

During software profiling, several other GPU-specific bottlenecks were also identi-
fied. First, buffer allocations on GPUs require significant time. Secondly, excessive 
use of flow control in the kernels running on the GPUs slows down the execution of 
work groups. 

To address the buffer allocation problem, instead of re-allocating new buffers for 
every level of octrees, buffers were retained on the devices until the current ones were 
no longer big enough for the next tree level. This was especially effective for phan-
toms of high resolution, where the buffers created for an octree section could often be 
reused for subsequent sections. 

To tackle the issue of excessive use of flow control, the OpenCL kernels imple-
mented in this study were refactored manually. Programming methods using branch-
ing that are designed for sequential computation are often unsuitable for parallel  
computation [6]. Instead, costly functions called on different control paths can be 
consolidated into a single call on the main path.  

Our concurrent, non-parallel version of the algorithm conditionally voxelizes vo-
lumes on some of its control paths based on each node’s tissue types. The whole 
workgroup is blocked when there is a work item in this group requires voxelization of 
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its octree node. To improve the utilization of the GPU, the voxelization was separated 
from the kernel that determines each node’s tissue type. 

We validated the implementation by comparing the generated octrees with the ones 
generated by previous implementations using the same set of parameters. In order to 
assess the performances of various implementations, the simulation times at different 
target resolutions were compared. We also measured the effects of workgroup sizes 
on the performance. Performances of the implementations were assessed by their 
duration times on a desktop PC with Intel® Core™ i7-2600K CPU @ 3.40GHz and 
16GB of RAM and Radeon 6950 GPU with 2GB of VRAM. 

3 Results 

Figure 4 shows the orthogonal sections of a phantom with 400 μm and 50 μm voxel 
resolutions. With the same inputs, the identical octrees were constructed by the differ-
ent implementations. 

 

Fig. 4. Orthogonal sections of a simulated breast phantom of (a) 400μm and (b) 50μm  
resolutions 

The performance of the OpenCL implementation was assessed by comparing the 
duration times to generate phantoms of various voxel sizes. The duration time of each 
configuration was measured by averaging the duration times of 5 independent phan-
toms; each phantom was generated from a different set of ellipsoids modeled random-
ly inside the simulated breast. Figure 5 is a graph showing the duration times of 2 
implementations at different voxel resolutions. Figure 6 shows the duration times 
measured for 25μm resolution using different OpenCL workgroup sizes. 
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Fig. 5. Average duration times of different implementations of the octree-based algorithm for 
various voxel sizes (12.5, 25, 50, 100 and 200 μm) 

 
Fig. 6. The duration times using different OpenCL workgroup sizes (16, 32, 64, 128, and 256) 
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4 Discussion and Conclusions 

We have successfully implemented an efficient parallelized version of an algorithm to 
simulate the breast anatomy for anthropomorphic phantoms by utilizing some of the 
strategies targeted for GPUs such as reuse of buffers and reduction of flow control.  
We measured, on average, a 32-fold improvement for the GPU implementation over 
the multi-threaded CPU implementation when simulating 50 μm phantoms.  

Based on the measured duration times using different workgroup sizes, a 
workgroup of 64 yielded the best performance. Since the GPU used in this study has a 
wavefront size of 64 work items, any work group size less than 64 may underutilize 
the GPUs. On the other hand, a workgroup of more than 64 items would increase the 
memory contention among the units. Since the optimal workgroup size is hardware 
dependent, benchmarking on individual hardware is required to determine the optimal 
work group size.  

The performance of the implementation is sufficient to create phantoms of reason-
ably high resolution in near real time. By generating and storing the data on the GPU, 
it becomes feasible to develop real time visualization software that interoperates with 
the same set of data on the GPU. This arises, in part, because the octree data structure 
offers a superior memory footprint compared to a 3D voxel representation. Therefore, 
an octree is an ideal data structure for storage on GPUs (that are typically available 
with limited memory). For simulations requiring higher resolution, the simulated 
phantom can be subdivided into sub-volumes small enough for the individual GPUs.  

We observed a CPU usage of 2% by the application when the octrees are generated 
on the GPU. Thus, porting the code to the GPU not only resulted in the performance 
being significantly improved, but shifting the processing from the CPU to the GPU 
frees the CPU for other operations such as voxelization, data compression and I/O. 
Our GPU implementation can be further enhanced by operating it upon multiple 
GPUs; a feature supported by most mainstream performance computing hardware. It 
is noteworthy that it is more feasible to assemble hardware with multiple GPUs than 
hardware with multiple CPUs. 

Our latest profiling results indicate that further improvements in performance can 
be achieved by extending the parallelization to the evaluation of shape functions for 
each octree.  Please note that the estimated slope of the dependence of the computa-
tion time vs. voxel size for the GPU implementation (Fig. 5) is less than two.  The 
computation time consists of two components. The first component, related to build-
ing and maintaining the octree structure of the phantom, is believed to be quadratic 
function of the inverse voxel size [1].  The second component includes overhead of 
initializing the OpenCL kernels that has linear or constant complexity as a function of 
the inverse voxel size.  For larger voxel sizes, this linear component becomes domi-
nant, influencing the estimate slope of the regression line.   

It is further observed that when the resolution is sufficiently high, the duration in-
creased slightly more than a quadratic as a function of the inverse voxel size.  This is 
caused mainly by the overhead of the data transfers between the host and the devices, 
which accrue a cost proportional to the cube of the inverse voxel size. For simulations 
that require resolutions higher than 25 μm, further investigations of performance  
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improvement are needed.  Such work should emphasize the reduction of the cost of 
operations for each sub-volume, such as voxelization and communication between the 
host and devices.  Finally, the frequency of buffer allocation on the devices can be 
reduced if an accurate maximum buffer size can be estimated in advance for different 
sets of parameters. 
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Abstract. We conducted a preliminary study to compare computerized meas-
ures of breast parenchymal pattern (BPP) on full field digital mammogram 
(FFDM) and digital breast tomosynthesis (DBT). A set of 123 subjects who had 
corresponding clinical FFDM of the same breast was collected from our DBT 
database. In a retroareolar region on the CC view, texture measures including 
run-length statistics (RLS), region-size statistics (RSS), and power spectrum 
were extracted from both modalities. Correlation analysis was performed to 
evaluate the similarities of the individual BPP measures between FFDM and 
DBT. It was found that the Pearson’s correlation coefficients for the individual 
BPP measures between the matched pairs of FFDM and DBT ranged from 0.02 
to 0.61. Our results indicated that the BPP measures were different between 
FFDM and DBT in this limited data set. 

Keywords: Breast parenchymal pattern, cancer risk, full-field digital mammo-
gram (FFDM), digital breast tomosynthesis (DBT). 

1 Introduction 

Breast cancer ranks second as a cause of death among women [1]. Currently, women 
in U.S. have a 12%, or a 1 in 8, lifetime risk of being diagnosed with breast cancer. 
Dense breast parenchyma is a risk factor for breast cancer [2, 3]. Studies indicated 
that mammographic density is useful for the prediction of breast cancer risk. Our 
recent case-control study further showed that computerized mammographic paren-
chymal pattern (MPP) analysis has the potential to predict breast cancer risk [4]. 

To date, most of the quantitative methods to evaluate mammographic density  
are based on digitized screen-film mammograms (SFM). FFDM has become the main 
modality for breast cancer screening recently. DBT [5] is an emerging breast imaging 
modality that has the potential to improve the detection and diagnosis of breast can-
cer. In this study, we compared breast parenchymal pattern (BPP) analysis on the  
two digital imaging modalities, FFDM and DBT, from the subjects among biopsy 
population. 
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(a) Digital breast tomosynthesis system (b) Illustration of system geometry 

Fig. 1. GE prototype digital breast tomosynthesis system for image acquisition 

2 Materials and Methods 

2.1 Materials 

With IRB approval, we have been collecting DBT from breast imaging patients with 
written informed consent. Eligible subjects were patients who were recommended for 
biopsy due to suspicious masses or clustered microcalcifications. For this preliminary 
study, a total of 123 subjects including 36 with biopsy-confirmed cancer and 87 with 
benign lesions who had corresponding clinical FFDM of the same breast were col-
lected from our DBT database. The DBTs were acquired with a second generation GE 
prototype system in the breast imaging research laboratory at the University of Mich-
igan as shown in Figure 1. The DBT system acquired 21 PVs in 3-degree increments 
over an arc of 60 degrees. The DBT system has a CsI phosphor/a:Si active matrix flat 
panel digital detector with a pixel size of 100μm x 100μm. We used the simultaneous 
algebraic reconstruction technique (SART) for DBT reconstruction. BPP was ana-
lyzed on the central slice of the reconstructed DBT volume. The clinical FFDMs were 
collected from patient files retrospectively. The FFDMs were acquired with either GE 
Senographe 2000D or Essential systems (GE Medical Systems, Milwaukee, Wis). The 

Digital Detector 

30° 
30°



516 J. Wei et al. 

GE systems have a CsI phosphor/a:Si active matrix flat panel digital detector with a 
pixel size of 100μm x 100μm and 14 bits per pixel. The raw FFDMs were used in this 
study, which had an inverted gray scale. We use an inverted logarithmic function [6] 
to transform the raw data before the BPP analysis. The time interval between FFDM 
and DBT was 0-28 days. All imaging was performed before biopsy. Our BPP analysis 
was performed on the craniocaudal (CC) views for both FFDM and DBT. 

2.2 Methods 

Our BPP analysis approach is shown in Figure 2. For an input FFDM or DBT slice, 
the first step was to perform breast boundary detection to separate the breast region 

from the directly exposed area. A previously developed automated boundary tracking 
technique [7] was used in this study. Parenchymal analysis was then performed only 
within the breast region.  

 

 
Fig. 2. Block diagram of breast parenchymal pattern analysis 

After boundary detection, the image was automatically oriented such that the 
chest wall would be on the right side of the image in order to simplify the process. 
The left-most point of the breast boundary was identified as a reference point and the 
ROI for BPP analysis was centered along a horizontal line from the reference point 
to the chest wall edge of the image. The ROI was chosen to be a 512 x 512-pixel 
region in the retroareolar region. If the breast region was too small to accommodate 
the 512 x 512-pixel ROI, the ROI was reduced to the maximum size that could fit 
within the breast region. Texture and power spectral analyses were performed within 
the ROI.  

 

Input Breast Image 

Breast Boundary Detection 

Parenchymal Feature Extraction 

ROI Localization  
in Retroareolar Region 
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(a) Image examples from a subject with benign finding 
 

 

(b) Image examples of a subject with biopsy-proven breast cancer 
 

Fig. 3. Image examples of regions of interest (ROIs) from FFDM (left) and matched DBT 
(right) 

For computerized BPP analysis, two types of texture measures, run-length statistics 
(RLS) and region-size statistics (RSS), in the spatial domain and power spectral anal-
ysis in the frequency domain were extracted to characterize the BPP. The details of 
texture measures from RLS and RSS for characterizing BPP can be found in our pre-
vious study [4]. A total of 20 RLS and 5 RSS features were extracted. For power 
spectral analysis, we followed the power-law model, ( ) of the paren-
chymal power spectrum as described by Burgess[8]. In short, the 2D power spectral 
density was first estimated in the frequency domain with discrete Fourier transform in 
the same ROI as that for texture analysis. The average power spectrum along the radi-
al direction was then calculated from low frequency to the Nyquist frequency. The 
power-law exponent β was estimated by linear least-squares fit to the average power 
spectrum in the log-log scale and used as a BPP measure to characterize the com-
plexity of the breast parenchyma.  
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Correlation analysis was performed to evaluate the similarities of the individual 
BPP measures between FFDM and DBT. To assess the difference in BPP between 
subjects with cancer and subjects with benign lesions, the area under the receiver 
operating characteristic (ROC) curve, Az, was used to compare the difference in the 
BPP measures between the two groups. 

3 Results 

Figure 3 showed examples of ROIs on FFDM and DBT extracted from a subject with 
breast cancer and a subject with benign lesion. For the entire data set, our analysis 
found that the Pearson’s correlation coefficients for the individual measures between 
matched pairs of FFDM and DBT ranged from 0.02 to 0.61. The β measure of the 
power spectrum had the highest correlation while the RLS and RSS texture measures 
had lower correlation (ranging from 0.02 to 0.31). The scatter plot of the β measures 
of the power spectra on FFDM and those on DBT is shown in Figure 4. The texture 
and power spectral measures from DBT had slightly better ability (Az values of 0.52 - 
0.65) than those from FFDM (Az values of 0.50 - 0.57) in differentiating the BPP of 
subjects with cancer from those with benign lesions. The best texture measure on 
FFDM to distinguish the two groups was an RSS feature with Az value of 0.57±0.03 
while the best measure on DBT was an RLS feature with Az value of 0.65±0.03.  

4 Discussion 

Our previous study [4] indicated the promise of BPP analysis on mammograms for 
breast cancer risk prediction. The current study is a preliminary investigation of how 
BPP measures extracted from DBT may be related to those from mammograms. The 
initial results demonstrated that the texture and power spectral measures obtained 
from DBT and FFDM had low correlation, suggesting that the BPP analysis devel-
oped for mammograms may not be directly transferrable to DBT. The specific meas-
ures and parameters may have to be redesigned based on the characteristics of DBT 
images. The dependence of the BPP measures and parameters on the various DBT 
acquisition and reconstruction parameters will also have to be investigated. In addi-
tion, although some texture and power spectral measures from DBT appear to show a 
slightly greater difference between subjects with malignant lesions and subjects with 
benign lesions than those from FFDM, the differences between the two groups were 
small. This is probably because subjects with benign lesions may also have an ele-
vated risk of breast cancer, as shown in the Gail risk model. Furthermore, the useful-
ness of BPP analysis for breast cancer risk prediction will rely on its ability to diffe-
rentiate subjects who will develop breast cancer from those remaining normal in fu-
ture years. Such a data set for BPP analysis is not available at present because DBT is 
a new modality and few prior DBTs a few years before cancer diagnosis exist. Such 
studies should be conducted to assess the BPP analysis on DBT for breast cancer 
prediction when a larger set with prior DBT becomes available.  
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β measure of power spectrum on FFDM
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Fig. 4. Scatter plot of the β measures of power spectra from FFDM and DBT of the same breast 
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Abstract. The presence of microcalcification clusters is a primary sign
of breast cancer. It is difficult and time consuming for radiologists to
diagnose microcalcifications. In this paper, we present a novel method
for classification of malignant and benign microcalcification clusters in
mammograms. We analyse the connectivity/topology between individ-
ual microcalcifications within a cluster using multiscale morphology. A
microcalcification graph is constructed to represent the topological struc-
ture of clusters. A multiscale topological feature vector is generated by
extracting two microcalcification graph properties. The validity of the
proposed method is evaluated using a dataset taken from the MIAS
database. The performance of including SFS feature selection is investi-
gated. Using a k-nearest neighbour classifier, a classification accuracy of
95% and an area under the ROC curve of 0.93 are achieved. A comparison
with existing approaches is presented.

1 Introduction

Breast cancer is currently the most common cancer to affect women worldwide.
Mammography is one of the most reliable and effective methods for detecting
breast cancer at its early stages [1–10]. The presence of microcalcification clus-
ters is a primary sign of breast cancer, which are small deposits of calcium in
breast tissue that appear as small bright spots in mammograms [1, 2, 5, 7].
The radiological definition of microcalcification clusters is that at least three
microcalcifications are present within 1 cm2 region [5, 10]. However, not all
microcalcification clusters necessarily indicate the presence of cancer, only cer-
tain kinds of microcalcifications are associated with a high probability of ma-
lignancy [13]. It is difficult and time consuming for radiologists to distinguish
malignant from benign cases, which results in a high rate of unnecessary biopsy
examinations [1, 10]. Recently, computer-aided diagnosis (CAD) systems have
gained popularity in order to reduce the false positive rate while maintaining
sensitivity [1, 8].
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Numerous approaches for the (semi-) automatic analysis of mammographic
images have been developed over the last two decades. A variety of features have
been used in the literature for the characterisation and classification of microcalci-
fications, such as shape, morphological, cluster and texture features. Shen et al. [2]
developed a set of shape factors to quantitatively measure the roughness of indi-
vidual microcalcifications. Three shape features including compactness, moments
and Fourier descriptors were computed based on the extracted boundaries of re-
gions for microcalcification classification. Ma et al. [5] proposed a novel shape fea-
ture on the basis of [2]. A three level wavelet transformwas used to analyse the fre-
quency of the normalised distance signature of each closed contour. A novel metric
line was defined based on the band pass approximation to quantify the roughness
of eachmicrocalcification.Mathematical morphology has also been applied to seg-
ment and analyse microcalcifications in the aspect of shape/geometry: Dengler et
al. [3] used a morphological filter to reconstruct the original shape of smoothed
microcalcifications. Betal et al. [4] used morphological operations to analyse four
shape properties of segmentedmicrocalcifications, including infolding, elongation,
narrow irregularities and wide irregularities. Chan et al. [6] used morphological
features to describe the size, shape, and contrast of individual microcalcifications
and their variations within a segmented cluster. Cluster features such as cluster
area, number of microcalcifications, average and standard deviation of distances
betweenmicrocalcifications were used in [4], [7] and [8] to describe the global prop-
erties of the whole cluster. Texture features were investigated for malignancy anal-
ysis in [7] and [9]. The global texture features were computed based on the spatial
grey level dependence (co-occurrence) matrix, and the local texture features were
extracted based on the wavelet transform. A comparison of the performance of dif-
ferent types of features for malignant and benign microcalcification classification
was presented in [10]. The multiscale representation based on multiwavelet trans-
formwas demonstrated to outperform the shape and texture features. In addition,
due to the ability of graphs to represent properties and relationships among differ-
ent parts of an object, graph based techniques have been regarded as a powerful
tool for pattern recognition [11]. Moreover, graph based representation has been
applied to image classification. In [12], a graph of resulting regions from morpho-
logical segmentation was used to represent natural images for classification.

In this paper, we analyse the topology of microcalcification clusters at mul-
tiple scales and define a multiscale topological feature vector to discriminate
malignant from benign cases. Malignant microcalcifications tend to be small,
numerous and densely distributed, while benign microcalcifications are generally
larger, smaller in number and more diffusely distributed [13]. The distribution
of microcalcifications associated with a malignant process may be different from
that associated with a benign process. This forms different topological structure
of microcalcification clusters. We investigate the connectivity between individual
microcalcifications within a cluster using morphological operations at multiple
scales. A graph of microcalcifications connectivity is extracted to represent the
topological structure of microcalcifications within the cluster.
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Fig. 1. Example microcalcification clusters: malignant (top row) and benign (bottom
row). Left column: mammographic image patches; middle column: manual annotation
images; right column: dilated microcalcifications. Note that the microcalcification clus-
ter region is zoomed for better illustration. Microcalcification No. 16 is not displayed
in the bottom images as it falls outside the zoomed region.

2 Data and Method

The data used in the experiments are twenty image patches taken from the
Mammographic Image Analysis Society (MIAS) database [14], each containing
a microcalcification cluster. The size of the image patches is 512 × 512 pix-
els, and the spatial resolution is 50μm× 50μm per pixel. This dataset includes
biopsy proven nine malignant and eleven benign microcalcification clusters. All
the individual microcalcifications have been manually annotated by an expert.
The median number of microcalcifications in the clusters is 27. There are a few
outliers and 80% of the clusters are within the 6 to 62 range. Example micro-
calcification clusters and corresponding annotation images are shown in Fig. 1.

2.1 Morphological Operation

Firstly, each individual microcalcification is segmented. For separately located
microcalcifications, the boundary pixels are merged with the interior region.
For connecting microcalcifications, the boundary pixels between the background
and microcalcifications are straightforward merged with the microcalcifications,
while the common boundary pixels between two microcalcifications are assigned
to either microcalcification. After that, morphological dilation is performed on
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(a) (b)

Fig. 2. Microcalcification graphs: (a) malignant (ns = 4, δs = 1.23); (b) benign (ns =
8, δs = 1.00). The numbering of nodes is consistent with the sequence number in Fig. 1.

each segmented individual microcalcification at multiple scales, using a disk-
shaped structuring element with radius equal to the scale. The dilation results
of the two example microcalcification clusters are also shown in Fig. 1, where
the radius of the structuring element is equal to six pixels. Each individual mi-
crocalcification is ordered with a sequence number and the boundaries of dilated
microcalcifications are displayed using different colours. It is indicated that the
morphological dilation operation adds neighbouring pixels to the boundaries of
individual microcalcifications, resulting in a change in the connectivity between
individual microcalcifications within clusters.

2.2 Microcalcification Graph

The topology of individual microcalcifications within a cluster can be repre-
sented in the form of a microcalcification graph. The microcalcification graph is
constructed based on the spatial connectivity relationship between microcalcifi-
cations, where each node represents an individual microcalcification, and there
is an edge between two nodes if the two corresponding microcalcifications are
connected or overlap with each other. Here, we generate a directed graph where
the nodes are ordered according to the spatial location of the corresponding mi-
crocalcifications in the image patch, and two connected nodes are linked by a
directed edge from the smaller to the larger numbered node. The resulting graphs
of dilated microcalcifications in Fig. 1 are shown in Fig. 2. The numbering of
nodes is consistent with the sequence number in Fig. 1. It is shown that the
topological structure of microcalcification clusters is effectively represented by
the microcalcification graphs, with useful properties for characterising the dis-
tribution of microcalcification clusters. Here, we focus on two properties of the
microcalcification graph. The first property is the number of independent con-
nected subgraphs within the graph generated from one microcalcification cluster,
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which represents the number of independent connected components within the
cluster. The second property is the degree of each node defined as the number
of edges starting from the node, which describes the connectivity of the corre-
sponding microcalcification with its neighbouring particles.

2.3 Multiscale Topological Feature Vector

We define an upper-triangular adjacency matrix to encode the microcalcification
graph, denoted by A = (aij), aij ∈ {0, 1}, i, j = 1, . . . ,m, where m is the number
of nodes within the graph. aij = 1 indicates node i and node j are connected,
node i is the source node and node j is the sink node. A source node i is
called a root node if

∑m
k=1 aki = 0. A sink node j is called a terminal node

if
∑m

k=1 ajk = 0. A path from node i to node j is defined as a sequence of
nodes starting from node i and ending with node j. The number of connected
subgraphs (denoted by n) is determined by traversing the graph. We traverse the
graph starting at each root node and explore as far as possible along each path
until arriving at the terminal node. The traversal sequences including common
nodes are combined into a single sequence. The number of the final sequences is
the number of connected subgraphs. The degree of node i (denoted by δ(i)) is
computed by δ(i) =

∑m
k=1 aik.

We construct a set of microcalcification graphs G = (G0, G1, . . . , GS−1) based
on morphologically dilated microcalcifications at multiple scales, which represent
the topology of microcalcification clusters at S scales. We analyse the two proper-
ties of the resulting microcalcification graphs G using the way described above,
which forms two vectors N = (n0, n1, . . . , nS−1) and Δ = (δ1, δ2, . . . , δS−1),
where ns(s = 0, 1, . . . , S−1) denotes the number of connected subgraphs at scale
s, and δs(s = 0, 1, . . . , S−1) denotes the average node degree at scale s, computed
by δs =

1
m

∑m
i=1 δ(i)s. We normalise N and Δ by ns/m and δs/max δ(i)s, where

max δ(i)s is the maximum node degree at scale s. The two normalised vectors are
concatenated into a single feature vector. We call such a vector multiscale topo-
logical feature vector, representing the multiscale topological characteristics of
microcalcification clusters, which can be used for the classification of malignant
and benign microcalcification clusters.

3 Experimental Results

To evaluate the potential of the proposed method in discriminating malignant
from benign microcalcification clusters, it has been tested using the twenty image
patches extracted from the MIAS database [14]. For each cluster, we analysed the
morphological topology of microcalcifications at 129 scales (s = 0, 1, . . . , 128, S =
129) by means of computing the number of connected subgraphs ns and the
average node degree δs using the corresponding microcalcification graph at scale
s. The dimensionality of the multiscale topological feature vectors was 258.

A k-nearest neighbour classifier (kNN) was used for classification. The Eu-
clidean distance was used to measure the similarity between feature vectors.
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Table 1. Comparison of our results with those obtained by some related work

Method Database # Case Feature Classifier Result

[2] unknown 18 shape kNN CA = 100%
[4] Liverpool 38 shape/cluster kNN Az = 0.79 Az = 0.84
[5] DDSM 183 shape αmax Az = 0.96
[6] unknown 145 morphological LDC Az = 0.79
[7] unknown 191 texture & cluster ANN Az = 0.86
[8] MIAS 25 cluster SVM Az = 0.81
[9] unknown 54 texture ANN Az = 0.88
[10] Nijmegen 103 multiwavelet kNN Az = 0.89

Our
MIAS 20 multiscale topology kNN CA = 90% Az = 0.91
MIAS 20 SFS selected kNN CA = 95% Az = 0.93

Leave-one-out cross validation was used for evaluation. When classifying one
cluster, all remaining clusters were used as the training set. Sequential forward
selection (SFS) was applied to choose the most discriminating subset of features
in the feature space and thus generate a compact multiscale topological repre-
sentation containing the most meaningful scales. In the feature selection process,
SFS was performed based on the training set excluding the testing sample to
avoid bias. To quantitatively assess the performance of the multiscale topological
features to classify malignant versus benign cases, a ROC curve was constructed
and the area under the ROC curve (denoted by Az) was computed. The ROC
curve graphically represents the trade-off between the true positive rate (TPR)
against the false positive rate (FPR). Here, TPR is defined as the number of
correctly classified malignant cases divided by the total number of malignant
cases, and FPR is defined as the number of benign cases incorrectly classified
as malignant divided by the total number of benign cases. The construction
of the ROC curve is based on a decision criterion which can be regarded as a
threshold to decide a testing sample as either positive or negative. We defined a
malignancy measure (denoted by M) as the decision criterion based on the kNN
classifier. The malignancy measure M of a testing microcalcification cluster was
defined to be the number of malignant clusters among its k nearest neighbours,
ranging from 0 to k. Thus, a threshold L was set from -1 to k, and the testing
cluster was classified as malignant if M was larger than L. When L = −1, all
the microcalcification clusters were classified as malignant with TPR and FPR
equal to 1. At the other extreme, when L = k, all the microcalcification clusters
were classified as benign with TPR and FPR equal to 0. The remaining TPR
and FPR were obtained by varying L from 0 to k−1. This produced k+2 points
of TPR and FPR. Finally, Az was computed using the trapezoidal rule.

We tested a range of k values in the kNN classifier. Using the unreduced di-
mensionality of the feature space, the best overall classification accuracy (CA)
was 90% obtained with k = 3 where 9 of the 11 benign cases were classified cor-
rectly without misclassifying any malignant cases, and the largest Az value was
0.91 obtained when k = 5. Using the reduced feature space, the best overall CA
was increased to 95% for k = 3, while the largest Az value was increased to 0.93
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for k = 5. We compared our proposed method with some related publications.
Table 1 shows a summary of the comparison. Note that the various approaches
use different images taken from different databases, and therefore it is a qualita-
tive comparison. In [2], the 100% CA was obtained by classifying 143 individual
calcifications from 18 biopsy proven cases (and a leave-one-calcification-out ap-
proach was used), which is different from the goal of our classification of micro-
calcification clusters. In [5], the classification of microcalcification clusters was
based on the maximum feature value obtained by a selected microcalcification
rather than the whole cluster (and some manual aspects were involved in the
extraction process). It is shown that our classification results are comparable to
or better than the various approaches in Table 1.

4 Discussion and Conclusions

To our knowledge, this work is a first attempt to analyse microcalcifications in
terms of the connectivity and topology for discriminating malignant from be-
nign clusters. Unlike most features in previous publications extracted at a single
scale, a representation covering the multiscale characteristics was developed in
this paper. The obtained results demonstrate the extracted features based on the
morphological topology are useful for the classification of microcalcification clus-
ters. When analysing the topology of microcalcification clusters, we focused on
two microcalcification graph properties, the number of connected subgraphs and
the degree of nodes. A range of other properties can be investigated to generate
a more sophisticated representation. Other features such as shape and texture
of individual microcalcifications and the whole cluster can be incorporated to
build a complete microcalcification analysis framework. Weighted graphs may
be applied to involve the spatial distance between two microcalcifications. The
definition of a similarity measure between graphs can be investigated in order
to realise classification using the graph based representation directly without
generating feature vectors. On the other hand, alternative approaches to feature
selection (e.g. genetic algorithm) will be investigated to select the best subset of
features. Moreover, other classifiers (e.g. decision tree, artificial neural network,
and support vector machine) will also be investigated.

One limitation of this method is that it cannot provide a reliable classifica-
tion for the case where the cluster is structureless or few microcalcifications are
segmented within the cluster. An extreme is that if only a single microcalcifica-
tion is detected from the cluster by the CAD detection method, it will fail to
discriminate malignant from benign based on the topology and tend to classify
this kind of cases as benign. The evaluation of the method is currently based on
manually segmented microcalcifications from twenty cases. A further extension
of the current work will be straightforward using CAD detection results instead
of using manual segmentation results. In addition, further evaluation using a
large dataset taken from the DDSM database and a dataset of full-field digital
mammograms to confirm the validity of the method is in progress.

In summary, we have presented a novel method for classifying malignant and
benign microcalcification clusters in mammograms. The topological structure of
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microcalcification clusters was analysed using the multiscale morphology. Using
manual annotations of microcalcifications, good classification results have been
achieved, which indicates the potential of the proposed method for the analysis
and classification of mammographic microcalcification clusters.
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Abstract. Breast density is associated with an increased risk of de-
veloping breast cancer, and several methods have been proposed re-
cently for the fully-automatic assessment of volumetric breast density.
However, conventional algorithms require an accurate estimation of the
breast shape and thickness for the separation into adipose and glandular
tissue within the breast. Here, a spectral extension of a recently devel-
oped automatic volumetric breast density algorithm is investigated. The
proposed approach measures the adipose and glandular tissue content
without any additional breast thickness model. The feasibility of the
spectral glandularity assessment is illustrated with measurements from
an energy-resolving photon-counting mammography system using refer-
ence materials including the BR3D phantom.

Keywords: volumetric breast density, breast cancer risk assessment,
mammography, spectral imaging, material decomposition.

1 Introduction

Breast density is associated with an increased risk of developing breast can-
cer [21,16,3]. Recently, regulation authorities have acted by requiring the enlist-
ing of breast density in the mammographic report with a recommendation for
subsequent ultra-sound or MRI examinations for women with dense breasts [20].

However, in current clinical practice, breast density is evaluated as mammo-
graphic percent density on basis of a 2D mammogram with high inter-reader
variability [5,6]. Therefore, various methods for automatically estimating breast
density as mammographic percent density and volumetric breast density have
been proposed.

Two-dimensional methods [15,7,14] mimic the behaviour of mammographic
readers and compute the fraction of the projected glandular tissue on the pro-
jected breast area from the mammogram, whereas volumetric methods [10,19]
estimate the absolute volume of glandular tissue inside the breast using a phys-
ical model of the mammographic image formation process.

Accurate estimation of both mammographic percent density and volumetric
breast density on full-field digital mammography devices requires a thorough
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calibration of the detector as well as a good model of the breast shape being
compressed between support and compression plate. An error in the estimation
of the compression height will result in an equal relative error in the estimation
of the linear attenuation coefficient within the breast, but in a two to three times
higher error in the estimate of the glandular fraction [1].

This effect becomes even stronger in the peripheral regions of the breast, where
the breast height is not equal to the compression thickness, i.e. the distance be-
tween the support and the compression plate. In these peripheral regions, a
breast shape model has to be used to estimate the local breast height, and any
error in this estimate will additionally effect the accuracy of the glandular frac-
tion computation. Furthermore, the compression plate itself can be tiltable and
bend significantly along the breast contact area [13], which requires additional
correction steps [18].

To overcome these problems of breast thickness estimation, additional infor-
mation has to be acquired along with the mammogram. One possible solution is
to acquire a second mammogram at a different X-ray energy at the cost of in-
creasing the mean glandular dose level. Another option is to perform the energy-
separation in a photon-counting detector after the X-ray beam has traversed the
breast. In this case, a single exposure with the same mean glandular dose as a
conventional mammogram suffices.

In the following, a feasibility study of spectral glandularity assessment on a
Philips MicroDose prototype system using a photon-counting silicon strip de-
tector with two energy bins [12] is presented. Compared to previous work on
spectral breast density assessment [8,17], the new approach does not require a
dual-energy exposure. Moreover, the geometry of the MicroDose mammography
device yields virtually scatter-free X-ray images [2] and thus enables a direct
material separation without additional scatter correction steps.

While the conventional approach uses one measurement and an estimation
of the compression thickness to compute a 2D or 3D breast density value, the
spectral method acquires two measurements from which both a thickness and
a glandularity map can be computed. Hence, with spectral mammography the
breast thickness is measured and does not need to be estimated.

2 Methods and Materials

The suggested approach for spectral volumetric breast density assessment has
been developed using pre-processed data (0.05 × 0.05mm2 resolution), from
a prototype Philips MicroDose spectral X-ray mammography systems (Philips
Healthcare, Solna, Sweden) as input data.

For the spectral separation of adipose and glandular tissue, the mammogra-
phy device has been calibrated using adipose and glandular equivalent material
(CIRS, Norfolk, VA), see Fig. 1a. To demonstrate the feasibility of the spectral
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(a) calibration phantom (b) BR3D phantom

Fig. 1. Adipose and glandular equivalent material. (a) A calibration phantom consist-
ing of adipose and glandular tissue equivalent material, assembled in a step wedge.
With a constant height, the phantom contains steps with 0, 10, . . . , 100% of either
tissue type. (b) Stack of misaligned CIRS Model 020 BR3D Mammography Phantom
(BR3D phantom) as used for the evaluation of the spectral tissue separation.

material separation, both the glandularity and the thickness of a mis-aligned
stack of a BR3D phantom (CIRS, Norfolk, VA – cf. Fig. 1b) have been measured
and evaluated.

2.1 Spectral Material Decomposition

The expected counts of the photon-counting silicon strip detector of the Micro-
Dose system are modelled as

Si = N0

∞∫

0

φ(E) · e−(μgland(E)·hgland+μadp(E)·hadp)Γi(E)ηi dE , i = 1, 2 , (1)

where N0 is the incident number of photons, φ(E) is the normalized incident
energy spectrum, μadp(E) and μgland(E) are the linear attenuation coefficients
of adipose and glandular tissue, respectively. Furthermore, Γi(E) denotes the bin
sensitivity function for the two energy bins i = 1, 2, which measure the signal
of the low and high energy photons, respectively, and ηi denotes the quantum
efficiency for the two energy bins.

For the material separation of adipose and glandular tissue, the forward model
(1) of the system, can be used to generate lookup tables directly mapping high
and low energy photon counts to breast thickness and breast glandularity. Such
an approach was employed to measure breast density and glandularity variations
in breast tissue using the forward model (1) for the MicroDose mammography
system [11].

Instead of modelling the detector response, we decided to use a calibration
based approach similar to [9]. However, an additional scatter correction step
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could be omitted due to the virtually scatter-free acquisition on the MicroDose
system. In contrast to the iterative approach presented in [9], the material decom-
position could be performed directly in one step using the nonlinear eight-term
rational functions

hadp (L1, L2) =
α0 + α1L1 + α2L2 + α3L

2
1 + α4L1L2 + α5L

2
2

1 + β1L1 + β2L2
, (2)

hgland (L1, L2) =
γ0 + γ1L1 + γ2L2 + γ3L

2
1 + γ4L1L2 + γ5L

2
2

1 + δ1L1 + δ2L2
, (3)

where L1 and L2 denote the line-integral value of the low and high energy signal,
i.e. Li = − ln

(
Si/S

air
i

)
, for i = 1, 2 , with the low and high energy signal Sair

i of
the spectrum without any object. The eight-term rational forms (2) and (3) of
the conic surface equation are known to provide a fast and accurate material de-
composition [4]. The coefficients αp, γq, p, q = 0, . . . , 5 and βr, δs, r, s = 1, 2 have
been determined from calibration measurements with the adipose and glandular
equivalent phantoms as depicted in Fig. 1a and explained in the following.

2.2 Spectral Calibration

A spectral mammogram consisting of a low-energy and a high-energy image,
can be separated into its adipose and glandular contributions by evaluation of
(2) and (3), once the calibration coefficients αp, βr, γq, δs have been identified.
To this end, a collection of calibration phantoms has been used to measure the
log-signal in the low and high energy bin for various tissue compositions and
phantom heights.

The tissue compositions have been realized using adipose and glandular equiv-
alent materials that constitute complementary step phantoms. Each single phan-
tom comprises 11 cuboid volumes of glandularity 0%, 10%, . . . , 100% and have
been manufactured for the heights ĥ = 2 cm and ĥ = 4 cm in the configuration
depicted in Fig. 1a as well as with interchanged adipose and glandular compart-
ments.

Additional adipose and glandular equivalent material slabs are used for sam-
pling the intermediate heights ĥ = 3 cm and ĥ = 5 cm in the original and the
complementary phantom configuration. The maximum height in this measure-
ment was ĥ = 6 cm with the two calibration phantoms on top of each other.
Therefore, 55 non-redundant data samples were available. Together with the
corresponding samples from the complementary phantoms, this results in a to-
tal ofN = 110 calibration points that could be used for the calibration procedure
at one specific X-ray spectrum, given by the tube settings.

With the known material heights ĥ
(j)
adp and ĥ

(j)
gland of the adipose and glandular

calibration phantoms and the corresponding measured line integral values L
(j)
1
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and L
(j)
2 in the low and high energy bin for the calibration points j = 1, . . . , N ,

we derive the non-linear least-squares minimization problems

argmin
αp,βr

N∑
j=1

(
ĥ
(j)
adp − hadp

(
L
(j)
1 , L

(j)
2

))2

, (4)

argmin
γq,δs

N∑
j=1

(
ĥ
(j)
gland − hgland

(
L
(j)
1 , L

(j)
2

))2

. (5)

Finally, the calibration coefficients αp, γq, p, q = 0, . . . , 5 and βr, δs, r, s = 1, 2
are computed solving (4) and (5) using the Levenberg-Marquardt algorithm.

Since it is possible to perform acquisitions with different X-ray spectra, a
separate set of calibration coefficients is stored for each X-ray spectrum, i.e. tube
voltages U ∈ {26 kV, 29 kV, 32 kV, 35 kV, 38 kV} for the examined system.

The quality of the presented approach has been evaluated in two complement-
ing experiments. In a first experiment, the slabs of the BR3D phantom, each
consisting a mixture of adipose and glandular tissue with a height of 10mm, are
arranged as depicted in Fig. 1b, such that they form a step wedge. Computing
the calibration coefficients via (4) and (5), and evaluating the material separa-
tion (2) and (3), we derive a height map h(x, y) = hadp(x, y) + hgland(x, y) of

0.5mm resolution that we compare to the true heights ĥ = 10, . . . , 60mm of the
different combinations of slabs.

In a second experiment we demonstrate the feasibility of accurate tissue de-
composition using additional layers of adipose and glandular tissue on top of
four slabs of the BR3D phantom. We compute hadp(x, y) and hgland(x, y) as well
as the total height h(x, y) = hadp(x, y) + hgland(x, y). From the heights of the
two components we derive the total volume of glandular tissue and compute the
glandularity

g(x, y) =
hgland(x, y)

hadp(x, y) + hgland(x, y)
. (6)

3 Results

Comparing true heights ĥ = 10, . . . , 60mm of the BR3D step wedge to the
measured heights we achieve absolute errors between 0.2mm and 0.6mm cor-
responding to relative errors of 0.4% to 3.0%. The standard deviation σ from
the measured height increases with the total height as a result of the increasing
quantum noise.

The measurements show excellent correlation with the true heights with small
standard deviations and non-overlapping extremal values. Experiments with dif-
ferent configurations in terms of tissue heights and X-ray spectra indicate a
strong robustness of the height measurement. Refer to Fig. 2 for two examples
and a quantitative analysis of the height map for a setting with six shifted BR3D
slabs.

Figure 3 depicts an example decomposition as part of the second experiment.
It is evident, that all additional stripes add a constant height offset to the total
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(a) four BR3D slabs (b) six BR3D slabs (c) height map quality

Fig. 2. Total tissue height reconstruction using spectral imaging for (a) four slabs of
the BR3D phantom, i.e. ĥ = 10, . . . , 40mm, U = 32 kV, (b) six slabs of the BR3D
phantom, i.e. ĥ = 10, . . . , 60mm total height, U = 35 kV, and (c) box-whisker plot
depicting the accuracy of the height map with 0.5mm resolution, boxes correspond to
±1σ, whiskers denote the minimum and maximum values, the correlation of measured
heights h with true heights ĥ is r = 0.9997

height map, whereas they separate well in the adipose and glandular tissue height
maps, even on top of the highly textured BR3D phantom slabs. The measured
heights of the stripes are hadp = 9.5mm and hgland = 9.6mm compared to

ĥadp = 9.8mm and ĥgland = 9.9mm determined via mechanical measurement.
The total volume of the phantom arrangement for this example is V = 755 cm3

with volume of glandular tissue is Vgland = 438 cm3 corresponding to a mean
glandularity ḡ = 58%.

4 Discussion

The assessment of conventional volumetric breast density aims at estimating two
physical quantities at the same time and therefore requires at least two indepen-
dent measurements for its physical quantification. So far, a priori information
is incorporated in conventional volumetric breast density estimation algorithms
to overcome this problem at the cost of a decreased accuracy, particularly in
the peripheral regions of the breast and when using flexible compression plates.
The presented work demonstrates the feasibility of accurately measuring the vol-
ume of glandular tissue using two independent measurements by exploiting the
spectral information of an energy-discriminating detector unit. Using the virtu-
ally scatter-free Philips MicroDose prototype device enabled a straightforward
material decomposition without the need for a second pass scatter correction
step.

The presented examples illustrate the benefit of spectral glandularity assess-
ment that simultaneously measures the height and the composition of the phan-
tom without any a priori knowledge. An accurate measurement of mis-aligned
slabs of the BR3D phantom could be achieved in both height and tissue compo-
sition, which would otherwise not be possible with conventional methods.
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(a) height map (b) adipose tissue (c) glandular tissue (d) glandularity

Fig. 3. Decomposition of a phantom scan consisting of four BR3D slabs and additional
pieces of ĥadp = 10mm pure adipose and ĥgland = 10mm pure glandular tissue, respec-
tively. (a) Total tissue height h(x, y), (b) adipose tissue height hadp(x, y), (c) glandular
tissue height hgland(x, y), and (d) resulting glandularity g(x, y)

In clinical practice, the accuracy of conventional volumetric breast density
assessment depends on the precision of the system model or system calibration
as well as on the quality of the underlying breast shape or height model. The
spectral approach reduces these dependences to only one system calibration and
will be used in our future work for a clinical comparison study of conventional
breast density and spectral glandularity.
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Abstract. “Power-law” characterization of breast tissues can be achieved in dif-
ferent ways, as can be found in literature. The outcomes of all such characteri-
zations appear to be in line with early observations stating that the power-law 
exponent β has a value between two and four for mammography images. Am-
biguous aspects of power-law characterization and their implementation are ad-
dressed in this paper, including data representation, filtering, frequency range 
and ROI size. It is shown how different implementations have an effect on 
computed β values, using three different datasets (mammography images, chest 
x-ray images, and non-medical images). It is found that differences in computed 
β value within the mammography image dataset can be even larger than the dif-
ferences between the mammography image dataset, chest x-ray images, and the 
non-medical images.  A clear description of the used methodology is therefore 
essential for the interpretation and relevance of any power-law characterization.  

Keywords: Mammography, Image Processing, Power Spectrum. 

1 Background 

In recent years, a growing number of papers is referring to “power-law” characterization 
as a means to classify breast structure and as a means to quantifying the detectability of 
lesions and calcifications in breasts.  The key-point of the power-law characterization is 
that a 1D power spectrum (1DPS) of an image is of a form similar to 

 ܲሺ݂ሻ ൌ ஼௙ഁ , (1) 

in which f represents spatial frequency (lp/mm), C is an (arbitrary) constant, P is the 
power spectrum and β is a factor that determines the slope of the resulting graph. By 
calculating the optimal fit between the derived 1DPS and equation (1) parameters β 
and C can be determined.  

Initially, Burgess [1] used the power-law characterization to understand statistical 
properties of breast structure and their effects on lesion detectability. To achieve this, 
β estimation was performed on digitized films that were mathematically adjusted in 
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order to reflect true breast attenuation properties. Furthermore only a specific region-
of-interest (ROI) in the image was used to construct the 1DPS and it was stated that 
the power-law characterization should be limited to a small range of frequencies due 
to quantum noise and due to the desired frequency resolution. If power-law characte-
rization was performed in this way, breast structure could be characterized by a β in 
the range of two to four, average three. Following this publication, many researchers 
have used power-law characterization to classify breast structure. Other papers have 
also used this characterization for breast-tomosynthesis images and/or breast-CT im-
ages (e.g., [2]). However, not all papers rigorously stick to the restrictions mentioned 
in [1]. Nevertheless, the outcomes always appear to be in line with early observations 
stating that β is between two and four for mammograms. 

Literature results are based on different sets of data, obtained using different 
equipment and different methodological approaches. Assuming that β is a characteris-
tic of breast-structure (and hence does not depend on equipment type) it remains un-
clear how the exact methodology of computing β appears to have little or no effect on 
the final result. 

In this paper, relevant issues concerning these restrictions on power-law characte-
rization of breast images are addressed. It will be shown that different implementa-
tions have been chosen and how all these implementations in literature lead to very 
similar values of β.  

2 Method 

The following subsections will cover aspects of power-law characterization that 
should (more or less chronologically) be considered when computing β. The sequence 
of  aspects to be covered is illustrated in Figure 1. 

 

Fig. 1. Illustration of β-computation, showing computational sequence with some variants 

2.1 Image Selection 

Because power-law characterization requires digital image analysis, the image should 
be in a digital format. This can e.g. be achieved by directly using full-field digital 
mammography (FFDM) images or by using digitized films. One should be aware of 
what the pixels in the image actually reflect, which is certainly not as trivial as it ap-
pears. Pixel values can be proportional to exposure at the detector-level for image A, 
proportional to breast-attenuation properties for image B, or related to some film-
characteristics for Image C. In [1] it was argued that proportionality to breast-
attenuation properties should be favoured, since this is the physical property of  
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interest. This would imply that anyone using images with different pixel representa-
tions should either convert their images through some mathematical procedure (e.g. 
log(..) ) or be well aware (and state explicitly) their pixel representation. In this con-
text it is also important to consider image post-processing. FFDM images are typical-
ly available as “for processing” and “for presentation”. The first one represents the 
un-edited image whereas the second is the result of some image-enhancement soft-
ware that typically makes the image suitable for viewing by a radiologist. Using the 
same argument of proportionality to breast-attenuation it would appear most appro-
priate to use the “for processing” images, although a recent study claims adequate 
results on “for presentation” images [3]. There are to our knowledge no pros and cons 
for using either Medio Lateral Oblique (MLO)  or Cranio Caudal (CC) views. 

2.2 ROI Selection 

Power-law analysis is never performed on the image as a whole but always on one or 
more ROIs in the image. In literature, square shaped ROIs are most common but 
some use a rectangular shape. A square shape is mathematically straightforward to 
process and hence often used. ROI size varies greatly in literature. Restrictions on size 
are given by the requirement that the ROI should have statistical uniform properties 
(not too large), and the requirement of a certain resolution in the frequency domain 
(not too small). ROIs of either 128*128 pixels or 256*256 pixels are often used. In [1] 
a ROI of at least 1024*1024 was used. The location of an ROI in the image can be 
chosen freely to zoom in on a certain aspect of the image. If the goal is to characterize 
the breast as a whole, it is common to use multiple ROIs (which may or may not over-
lap), covering the whole breast area and use the statistics of all ROIs to characterize 
the whole breast-area. In some papers special care is given to characterize only breast 
area that is compressed to equal thickness and to exclude muscle tissue from further 
analysis.  

2.3 Filtering 

Before computing the Fourier transform of an image it is common to perform filtering 
in order to avoid spectral leakage due to discontinuities at the edges of the image. For 
this purpose 2D-Hamming and 2D-Hanning filters are used in literature. Although 
most appear to use the Hanning filter (which fully eliminates discontinuities), there 
are to our knowledge no strong arguments against the Hamming filter. 

2.4 2D-Power Spectrum 

Commonly, a 2D implementation of the fast Fourier transform (hence the ROI size 
2N) is used to compute the 2D-power spectrum (2DPS) of the filtered ROI. The result 
of this Fourier operation is a complex matrix, from which a magnitude plot, a phase 
plot or a power plot (spectrum) may be constructed. The power spectrum is the square 
of the magnitude plot. 
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2.5 1D-Power Spectrum 

In order to arrive at a more intuitive representation of the Power spectrum, the 2DPS 
is commonly converted to a 1DPS. Under the assumption that any orientations of 
breast structures in the ROI are random, most power-law related studies use “radial 
averaging” to perform this conversion. For each index in the 2DPS, the radial fre-
quency is determined based on the root of the sum of squared 2DPS frequencies. This 
results in the 1DPS, in which power is plotted against frequency.  

It should be noted that breast structures are not entirely randomly oriented, e.g. 
ducts run towards the nipple. Currently such orientations are mostly ignored in power-
law characterization. This appears a valid initial approach, with possible future im-
provements. 

2.6 Power-Law Fit 

The key-point of the power-law characterization is the fit between the 1DPS and equ-
ation (1). To allow for an easy computation of this fit, log(power) is displayed against 
log(frequency), the result of which should resemble a line as  

 log൫ܲሺ݂ሻ൯ ൌ log ቀ ஼௙ഁቁ ൌ logሺܥሻ െ log൫݂ఉ൯ ൌ logሺܥሻ െ ߚ כ logሺ݂ሻ. (2) 

The slope of this equation equals -β  and can be determined by fitting the 1DPS 
curve to this equation, this is usually performed in a least-squares approach. The 
range of frequencies over which the fit is computed varies greatly in literature. Some 
include all available frequencies (as determined by the ROI size) whereas others use a 
limited range, e.g. 0.15-0.7 lp/mm. The motivation behind limiting the frequency 
range lies in the fact that power at very high frequencies is dominated by quantum 
noise and hence does not reflect breast structures, whereas power at very low fre-
quencies is difficult to assess because of the limited information available in the 2DPS 
on these frequencies. 

3 Data Analysis 

Three different sorts of data analysis have been performed to illustrate the versatility 
of data that can be used for computing β. Firstly, a literature review is conducted in 
which 15 papers have been analyzed and they are characterized by the way in which β 
is computed. Secondly, β computations are performed following different definitions 
in the process of determining β. For this purpose, a dataset was used containing 80 
mammograms (20 women, bilateral, MLO and CC views). All imaging was per-
formed using an IMS Giotto direct mammography system with a 0.085 mm/pixel size. 
For this system, pixel value in the raw image is proportional to exposure at the detec-
tor. Thirdly, in order to compare mammographic β computations to other classes of 
images, β is computed for 16 ROIs taken from a chest x-ray image (being other medi-
cal images, previously used and described in [4]) and for a set of 10 cartoon images 
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(being unrelated non-medical images, obtained using a Google image search, con-
verted to grayscale 256*256 images and assuming system-resolution equal to the 
mammography images). Our mammography-related computations were performed 
using raw digital images, using 256*256 ROIs covering the whole breast with an 
overlap of 128 pixels. ROIs outside the breast area and close to the contour of the 
breast were automatically excluded from further analysis. Bilateral breast images 
were included as well as both CC and MLO views. Figure 2 shows an example of 
how one image is divided into multiple ROIs. 

 

Fig. 2. Illustration of β computations for one mammogram divided into many ROIs with each 
their own β. Three ROIs (max, mean, min β) are zoomed in on (purely for illustration). 

A Hanning filter was applied prior to computing the Fourier transform. The 2DPS 
was radially averaged and β was determined over a frequency range from 0.15 lp/mm 
to X lp/mm. X was determined for each ROI separately based on the best linear fit 
(R2) to the 1DPS. This approach to determining the upper-frequency of the β range 
was also used in [2], but was not originally implemented in [1]. Typical examples of 
the ROIs that are used are shown in Table 1.  

Table 1. Illustration of typical ROIs taken from the datasets of images 

 Mammography Chest X Cartoon 

Nr. images 20*2*2 16 10 

Example 
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The effect of applying a log-transform to the data as well as the use of either the 
power or the magnitude of the Fourier transformed image will be examined. Results 
will be shown for both options. 

4 Results 

The results of our literature review are shown in Table 2.  

Table 2. Different approaches to computing β as found in literature1 

A
uthor (Y

ear) 

 

A
nalog/digital 

R
aw

/P
rocessed 

M
odality 

L
og(im

age)/N
o log

P
ow

er/M
agnitude 

W
indow

 

B
eta(std) 

F
req.band (lp/m

m
)

R
O

I size (pixels) 

Bliznakova (2010) [5] A ? Mammo ? ? Hann 2.96 (0.009) 0.156-5 256*256 

[5] A P2 Mammo ? ? Hann 2.78 (0.07) 0.156-5 400*400 

Burgess (1999) [1] A R Mammo Log P Hann 2 - 4 0.1-1 >1024 

Burgess (2007) [6] ? ? ? Log ? ? ? ? ? 

Chen (2011) [2] D ? Mammo No log ? Hamm 3.06 (0.25) F1-F23 ? 

[2] D ? Mam-Tom ? ? ? 2.91 (0.35) F1-F2 ? 

[2] D ? CT ? ? ? 1.8 (0.23) F1-F2 ? 

Engstrom (2009) [7] D R Mam-Tom No log P Hann 
3.06 (0.21) 

2.87 (0.24) 
0.15-0.7 128*128 

[7] A ? Mammo ? ? ? 2.74 (0.19) 0.15-1 ? 

Fredenberg (2011) [8] D R Mammo No Log P Hann 2.7(0.06) 0.1- 256*256 

Gang (2010) [9] D ? Phantom No Log P Hann 2.0-4.0 0.063-0.31 50*50 

Heine (2002) [10] D ? Mammo Log ? Hann 2β= 2.8-3 All 69*96 (mm) 

Lau (2011) [11] D R+P Mam-Tom [Burgess] 
[Bur-

gess] 
Hann 2.4-3.2 [Engstrom] 

128*128/ 

256*256/ 

320*320 

Li (2008) [12] A ? Mammo No Log P Hann 
HR 2.92(0.28)  

LR 2.47(0.2) 
All 256*256 

Metheany (2008) [13] D ? CT No Log P Hann 2 0.07-0.5 128*128 

[13] A ? Mammo ? ? Hann 3.01 (0.32) ? 256*256 

Reiser (2006) [14] A R Mammo Log ? ? 2.6-3.0 ? 256*256 

Reiser (2010) [15] D (3D) Mam-Tom No Log P Hann 3.1 (model) ? ? 

Reiser (2011) [16] D ? ? No Log P ? ? ? ? 

Zheng (1996) [17] A ? Mammo ? ? ? 1.8-2.0 1.0-4.0 128*128 

1 Only methodological issues included. Equipment specs. (manufacturer) should not affect β 
computation (unless used for image post-processing). 

2 Processed using General Electric post-processing software. 
3 Upper and lower frequency determined based on optimal fit (R2). 
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Results on β computations are shown in Table 3. 

Table 3. β computations for mammography images, chest x ray images and cartoon images 
computed using four different approaches 

 
 

Mammo Chest X Cartoon 
β Std(β) β Std(β) β Std(β) 

Log Power 3.80 0.13 4.75 1.27 2.76 0.30 

Log Magnitude 1.90 0.07 2.37 0.64 1.38 0.15 

No log Power 3.14 0.18 3.25 0.53 2.67 0.17 

No log Magnitude 1.57 0.09 1.62 0.26 1.33 0.09 

5 Discussion 

For four different methodologies, β was computed. It was shown that the methodolo-
gies using log-transformed data result in a significantly higher β compared to metho-
dologies using untransformed data. The two methodologies using the power of the 
Fourier spectrum result in a β in the range of {2-5}. Results for six out of twelve 
computations could be described as being between two and four (as often stated in 
literature for expected β values). Results for the mammography log transformed pow-
er data and the mammography untransformed power data differ by as much as ~17%.  

To illustrate the importance of this: the difference in computed β values between 
untransformed mammography images and log-transformed cartoon images is only 
~12% and the difference in computed β values between untransformed mammogra-
phy images and untransformed chest x-ray images is only ~4%. This implies that 
inter-study comparisons of β values require a thorough description of the used metho-
dology. If such a description is lacking, results are no more similar than a comparison 
to unrelated images.  

Using magnitude instead of power halves the computed β . Because log(x2) = 
2*log(x) this result was to be expected. This factor 2 difference can however not be 
seen in the results from literature. Results showing a β below 2 are not reported. It 
should be mentioned here that most papers state the use of the ‘power spectrum’ and 
hence implicitly indicate the use of power instead of magnitude without directly stat-
ing the quadratic term. It often remains unclear as to whether the quadratic term is 
introduced prior to radial averaging or following radial averaging.  

The high β value for chest X ray images can be explained by the fact that many of 
the 16 ROIs were positioned over lung-structures (as in Table 1). In such structures 
there are few small structures and hence there are less high frequency components in 
the power spectrum, resulting in a steep descending curve and hence a high β. The 
chest X ray ROIs which were not placed over the lungs, had a lower β, which resulted 
in a large standard deviation overall.  

It is the authors opinion that adequate β computation on mammographic images 
should be based on images reflecting breast-attenuation properties (which may or may 
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not involve applying the log-transform), using either a 2D-Hanning or 2D-Hamming 
filter, computing the power spectrum followed by (radial) averaging to obtain a 1D 
power spectrum and using a frequency range roughly from 0.15 – 0.8  lp/mm. The 
upper frequency limit could also be iteratively determined by fitting equation 2 to the 
obtained data (R2) for multiple upper frequency limits and selecting the best fit. Such 
an approach appears methodologically correct and leads to reproducible results.  
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Abstract. Breast density calibrations and stability measurements were  
undertaken on digital mammography systems to investigate whether a single ca-
libration could be used for extended periods. The results indicated that the cali-
bration did not change over time and was the same for two units investigated. 
The daily mean pixel value per mAs (MPV/mAs) for five systems was recorded 
over 22 months and showed varying periods of stability up to more than a year. 
However, step changes in MPV/mAs were noted and resulted from, for exam-
ple, detector re-calibration or replacement. During stable periods the MPV/mAs 
for the static units varied mostly by <±5%, excluding outliers. This corresponds 
to <±2mm error on dense tissue thickness. The stability was worse for the mo-
bile units. These results indicate that it should be possible to use a single cali-
bration over extended periods of time, provided allowance is made for changes 
in stability exceeding 5%. 

Keywords: Breast density, digital mammography, calibration, stability. 

1 Introduction 

Breast density is a well-established risk factor and modifiable marker for breast can-
cer [1]. Consequently, in recent years considerable effort has been made to introduce 
objective and quantitative ways of measuring breast density. In particular, methods 
have been developed for determining the volume of dense (glandular) tissue in the 
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breast, originally for screen-film mammography and now for full-field digital mam-
mography (FFDM). The different methods fall broadly into two categories: those 
based primarily on an imaging physics approach [2-4], and ‘calibration’ methods in 
which the detector signal is calibrated in terms of dense tissue thickness above each 
pixel, using suitable tissue equivalent materials [5-10]. 

Our calibration method for measuring volumetric breast density (VBD) in screen-
film mammography involved imaging a step-wedge alongside the breast in every 
mammogram [5-6]. While this had the advantage of taking into account variations in 
film processing and drifts in x-ray tube potential (kV) or product of tube current and 
exposure time (mAs), the use of a step-wedge was cumbersome and it would be more 
convenient to avoid such a procedure. With the advent of FFDM and the need to mod-
ify our method, the intention was to try and eliminate the need for the step-wedge. 

The aim of this investigation was therefore to determine whether an initial calibra-
tion of an FFDM system (in this study the GE Senographe Essential) can be used 
during routine mammography for extended periods without the need to re-calibrate. 
Three calibrations were performed on two systems between 2009 and 2012 to see 
whether the calibration data sets differed in either absolute or relative terms. In addi-
tion, the daily mean pixel value per mAs (MPV/mAs), measured as part of routine 
quality control (QC) procedures, was examined for five FFDM systems over a period 
of 22 months to quantify the performance stability of each system. 

Similar work to that reported here has been published for the earlier GE Seno-
graphe 2000D system [10-12].  Although a direct comparison is difficult due to dif-
ferences in the presentation of results, the conclusions appear to be broadly similar. 

2 Methods 

2.1 Calibration 

All calibration and stability measurements were undertaken on equipment used in the 
Greater Manchester Breast Screening Programme, part of the UK National Health 
Service Breast Screening Programme (NHSBSP). Calibrations were carried out on 
two GE Senographe Essential FFDM systems used mainly for symptomatic and as-
sessment work at the Nightingale Centre and Genesis Prevention Centre. The first 
unit, denoted by Room 1, was calibrated in January 2012 and again in March 2012, 
while the second unit, Room 3, had previously been calibrated in January 2009. It was 
originally intended to also calibrate Room 3 in January 2012 but this proved impossi-
ble due to a detector failure. 

The procedure followed was similar to that used previously [5], except that the 
step-wedge was omitted and MPV was recorded instead of digitised film density. In 
summary, semi-circular phantoms composed of adipose and glandular tissue equiva-
lent materials were used to simulate a range of breast compositions and thicknesses. 
Epoxy-resin based tissue substitutes AP6 and WT1 were used to simulate adipose and 
glandular tissue respectively [13]. The total breast phantom thicknesses (T) ranged 
from 20-70mm, with compositions of 0-100% glandular tissue. Each composition and 
thickness combination was then imaged under the same manual exposure factors: kV, 
mAs and target/filter combination, as used by Kaufhold et al [10]. MPV/mAs for each 
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image was obtained over a 200x200 pixel region-of-interest (ROI) near the centre of 
the image of the phantom, similar to that used in the QC measurements. The first two 
calibrations used only glandular tissue proportions of 0, 50 and 100% for 11 combina-
tions of kV/target/filter [10]. The third calibration was made in March 2012 as a re-
peat of that performed in January 2012. However, the main purpose of this calibration 
was to generate a comprehensive calibration dataset of all possible breast composi-
tions, given the available phantom thicknesses (i.e. 5mm steps of glandular tissue), as 
opposed to the limited values of 0, 50 and 100% used in the earlier calibrations. Time 
constraints prevented measurements being made at more than one combination of kV, 
target and filter. For this calibration 29kV and a target/filter of Rh/Rh was used. This 
target/filter is by far the most commonly selected automatically by the GE equipment 
at the Nightingale Centre for clinical mammograms across all breast thicknesses and 
compositions, while 29kV is typical for an average breast. 

From these data, calibration curves were constructed relating the glandular tissue 
thickness (tg) to measured MPV/mAs and total breast thickness, for each combination 
of kV and target/filter.  

2.2 Performance Stability 

Stability measurements were undertaken on five GE Senographe Essential FFDM 
systems. Three of these were static units used for symptomatic and assessment work 
and included the two units on which calibrations were performed. The remaining two 
units were mounted on mobile breast cancer screening vans. The system stability was 
investigated through analysis of daily quality control (QC) measurements, performed 
according to manufacturer’s requirements and national QC protocols [14]. The QC 
test utilised for this work was the ‘SNR daily system check’, designed to detect 
changes in the performance of the x-ray set or image receptor. The test involves imag-
ing a 40mm thick Perspex block using exposure factors for the kV, mAs and  
target/filter given by the clinically used automatic setting. The MPV and standard 
deviation are calculated from the raw QC image by means of a 200x200 pixel ROI 
drawn on the midline, 6cm from the edge of the image furthest from the gantry. For 
QC purposes a tolerance level of ±10% of the baseline value for mAs and MPV is 
used, so no remedial action would be taken unless these limits were exceeded.  

The daily MPV/mAs values over a period of 22 months, beginning 1 January 2010, 
were analysed to determine if the system performance was stable over long periods, 
and to identify any daily deviations from the mean value. The system service reports, 
completed by the manufacturer’s engineer and stored at the Nightingale Centre, were 
scrutinised to identify possible causes for deviations from, or changes to, the mean 
MPV/mAs. Such events might have included system re-calibrations, software up-
grades, routine service visits or replacement of faulty parts.  

Following analysis of the data, an attempt was made to locate the original images 
from PACS for any outliers, defined as individual MPV/mAs values more than 1.5 
times the inter-quartile range outside the upper or lower quartiles. This was not al-
ways possible, as raw images are not required to be kept on the system, but those that 
could be retrieved had their MPV/mAs recalculated from the raw image data to inves-
tigate possible causes. 
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3 Results 

3.1 Calibration 

Figure 1 shows an example set of calibration data for Room 1, obtained in March 
2012 for 29kV, rhodium target and rhodium filter (29kV, Rh/Rh). The measured data 
points are well described by a log function of the form: 

 tg = a*ln(MPV/mAs) + b  (1) 

where tg is the thickness of glandular tissue (mm) and the fitted parameters a and b are 
functions of T, kV and target/filter. Equation (1) gives values of tg to within 1mm of 
the known phantom thicknesses. The values for the fitted parameters are given in 
Table 1, along with those for the earlier calibrations. 

 

Fig. 1. Calibration data for 29kV, Rh/Rh and total phantom thicknesses (T) from 20-70mm, 
obtained in March 2012 for Room 1 

Table 1. Comparison of fitted parameters for 29kV, Rh/Rh for the three sets of calibration data. 
Also shown is the MPV/mAs for the T = 40mm, tg = 40mm exposure 

T (mm) 
Jan 2009 (Room 3) Jan 2012 (Room 1) Mar 2012 (Room 1) 

a b a b a b 
20 -32.81 142.7 -32.93 144.4 -32.66 143.1 
30 -34.42 133.3 -34.40 134.7 -34.68 135.2 
40 -35.34 120.8 -35.51 122.9 -35.79 123.3 
50 -36.75 108.9 -36.74 110.8 -36.84 110.7 
60 -38.42 96.52 -38.28 98.39 -37.88 97.24 
70   -39.61 84.49 -39.45 83.92 

       
MPV/mAs 9.99 10.47 10.41 
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There is very little difference between the three calibration sets. On average the 
gradients of the fits agree to within 1%, with the maximum difference being 1.4%, 
while the intercepts differ by <2%.  

In order to investigate whether one of these calibrations could be used to calculate 
tg on the two other dates, an adjustment has to be made to allow for any differences in 
performance, as indicated by the differences in MPV/mAs obtained under standar-
dised conditions (see last row in Table 1). Denoting these MPV/mAs by S1, S2 and S3 
for Jan 2009, Jan 2012 and March 2012, the MPV/mAs values used in Jan 2009 and 
Jan 2012 were multiplied by S3/S1 and S3/S2 to calculate the MPV/mAs values that 
would have been obtained had the measurements been undertaken in March 2012. 
The two sets of adjusted MPV/mAs were then inserted into equation (1) and tg calcu-
lated. It was found that the March 2012 calibration predicted tg to within 1mm of the 
known values on the other dates. 

Figure 1 can also give an indication of the errors incurred if the system stability 
changes. Differentiating equation (1) gives: 

 δtg = a*δ(MPV/mAs)/(MPV/mAs) (2) 

Thus, for example, a 5% change in MPV/mAs would give an error of 1.5-2mm for the 
glandular tissue thickness. This would seem to be a reasonable target to aim for as it is 
approximately the same, or better than, the magnitude of the error incurred by uncer-
tainties in the measurement of total breast thickness [7,10]. 

3.2 Stability 

The performance stability of each mammography unit is shown in figure 2. A number of 
outliers are evident, but those exceeding an MPV/mAs of 30 have been omitted from 
the plots for clarity. The numbers of such cases involved were one for Room 1, one for 
Room 2, none for Room 3, eight for Van 1 and none for Van 2. Some outliers were 
resolved by reference to those original raw images still available, and were found to be 
due to errors in data input. The reasons for the remaining outliers and the generally 
worse stability for the mobile units need further investigation to identify the causes and 
whether they represent genuine variations in performance. It may be noted that tempera-
ture, rate of temperature change and humidity can affect detector performance, although 
we are not aware of any publications in the literature quantifying these effects. 

For the static units, the mean MPV/mAs was remarkably stable over long periods, 
whereas the variations were much greater for the mobile units. Discontinuities were 
evident where there were systematic changes in MPV/mAs. Apart from three occa-
sions where the cause was unknown, these were traced to the installation of a new 
detector (Room 1, day 472), bucky changes and/or detector re-calibrations (Room 1, 
day 277; Room 2, day 260; Van 1, day 224), routine service (Room 1, day 83) or 
raising input voltage (Van 1, day 553).  

Table 2 summarizes the mean MPV/mAs during each stable period and the number 
of days where the MPV/mAs exceeded ± 5% and ± 10% from the mean. These figures 
are relevant in view of the effects such changes have on the glandular tissue thickness 
errors (see section 3.1). 

For the most part, the daily MPV/mAs does not vary from the mean by more than 
± 5%, but there are significant exceptions to this, notably for the mobile vans. Further 
work is needed to investigate these outliers. 
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Fig. 2. Daily MPV/mAs values for the five mammography units investigated 
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Table 2. Summary of stability data for each unit 

 Day range No. days 
with data 

Mean 
MPV/mAs 

No. days MPV/mAs 
outside ±5% of mean

No. days MPV/mAs 
outside ±10% of mean 

Room 1 4-83 56 17.91 1 1 
 84-277 132 18.19 1 0 
 278-472 124 16.83 1 1 
 473-686 144 18.14 5 3 
Room 2 4-260 178 17.15 3 3 

 279-631 244 18.00 0 0 

Room 3 70-697 427 17.39 11 5 
Van 1 4-71 38 19.65 2 0 

 103-224 84 23.99 36 20 
 225-553 207 17.56 27 14 
 554-569 11 19.12 0 0 
 578-645 44 18.76 0 0 

Van 2 141-543 260 17.01 29 19 
 546-649 69 18.01 3 3 

4 Conclusions 

Breast density calibrations performed on two GE Senographe Essential FFDM sys-
tems indicate that the relative calibration does not change with time or with equip-
ment, although similar measurements performed on more systems would be desirable 
to confirm this. A simple correction derived from daily QC measurements of 
MPV/mAs can take into account changes in equipment performance and allow a sin-
gle absolute calibration to be applied. Excluding uncertainties in total breast thick-
ness, this allows the thickness of glandular tissue above each pixel in a mammogram 
to be determined to within 1mm. 

An analysis of QC records showed that there were long periods where the 
MPV/mAs did not vary by more than ± 5% from the mean, implying a glandular tis-
sue thickness error of up to ± 2mm. Nevertheless, there were a significant number of 
deviations much greater than this, especially for systems installed on mobile vans. In 
addition, step changes in mean MPV/mAs were observed, corresponding to the instal-
lation of new components or other actions by the service engineer. Such step changes 
could relatively easily be taken into account. However, further work is needed to re-
solve the large apparent variations in MPV/mAs that occurred on 118 out of 2018 
days. 
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2 Philips Research, Röntgenstr. 24-26, 22335 Hamburg, Germany

Abstract. Detection of mass lesions in mammograms via visual read-
ings is a challenging task, and the radiographic density of the breast
tissue or its strong anatomical structure may render lesions completely
invisible. In order to assess visibility of lesions of a certain size in a given
mammogram, we propose a measure for prediction of lesion visibility
that complements established approaches for breast density assessment
by taking also local structure into account. This measure is based on the
analysis of spectral anatomical noise in terms of local standard deviation
values for several frequency bands of the mammogram. The resulting
values are used to generate two dimensional visibility maps for different
lesion sizes. Phantoms of structured tissue equivalent materials were im-
aged using a full-field digital mammography (FFDM) system, and spher-
ical lesions of different sizes were artificially added to the images. In an
observer study with ten observers visibility thresholds were determined
from a total of 290 simulated lesions. The resulting nonlinear threshold
curve was verified in a second observer study, where 66 lesions were artifi-
cially added in clinical mammograms of varying breast density according
to BI-RADS classification. A prediction accuracy of 92% was obtained,
suffering mostly from different image characteristics in the breast tissue
regions near the skinline or the pectoral muscle.

Keywords: Lesion visibility, tissue structure, digital mammography,
anatomical noise, nodule.

1 Introduction

Image-based indicators for breast cancer risk increasingly gain importance in
mammography [7,13,15]. These indicators cover both statistical (or lifetime) risk
[13], and oversight risk (or mammographic sensitivity) [1] as two major attention
points in assessing breast cancer risk. Although these effects are not independent
[1], they characterize different aspects of breast cancer risk.

Today, mammographic breast density assessment is an accepted measure for
assessing breast cancer risk [11] without addressing these two risk factors distinc-
tively, fostering the impression that radiographic density is the dominant factor
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for reduced sensitivity. Nevertheless, a mass lesion may not only be obscured
by the global level of density of the breast, but also by the inherent anatomical
structure or pattern of the breast tissue. In consequence, low contrast lesions
may not be visible inside strongly structured breast tissue of rather low radio-
graphic density. At the same time, it may well be that a lesion is clearly visible
inside a region of dense but homogenous tissue.

In both situations, approaches that estimate oversight risk solely from ra-
diographic density will be misleading. On the one hand, oversight risk for small
regions of strongly structured tissue is underestimated, while, on the other hand,
oversight risk is overestimated for large regions of dense, but homogeneous tissue.

The concept of anatomical noise has also been extensively studied in the
academic literature for at least a decade [2,3,5,6,10,12]. Nevertheless, localized
information about anatomical noise has not yet been employed in the context
of breast cancer risk assessment.

Hence, we propose a local measure of mass lesion visibility in order to ad-
equately capture the oversight risk arising from the inherent tissue structure.
The approach uses simple thresholding techniques on localized parameter maps
in the space domain that are equivalent to concentric regions in frequency do-
main, which are usually employed in the analysis of anatomical noise. Thresholds
for visibility of mass lesions were empirically derived in a first observer study
using phantom images, and validated in a second observer study using clinical
image data.

2 Methods and Materials

The proposed approach has been developed using image data from a Philips
MammoDiagnost DR 2.0 X-ray FFDM system (Philips Medical Systems DMC
GmbH, Hamburg, Germany), presented as dose-proportional signal intensity
with a resolution of 0.085× 0.085mm2 and a matrix size of 2084× 2800 pixels.

According to [6], the characteristics of breast tissue structure can be described
by anatomical noise σ2 using an approximated power-law function

σ2 = NPS(f) = αf−β +A, (1)

where f is the radial frequency, α and β are constants, and A is a residual term
describing high frequency system noise. The lower frequency anatomical noise,
which is described by α and β can be determined in the Fourier domain by cal-
culating the squared modulus on concentric rings (cp. [2,3,10,12]). Equivalently,
a spectral decomposition of the mammogramm can be obtained using a bank
of bandpass filters. Consequently, α and β can be approximated by employing
variance or standard deviation as measure on the each bandpass image [2], thus
approximating the squared modulus in the Fourier domain.

The flow of the presented approach is depicted in Figure 1 for an exemplary
case. Each of its steps will be described in more detail in the following.

To measure the local strength of structure of the breast tissue, we at first
decompose the mammogram into several frequency bands analogous to [14], by
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Fig. 1. Exemplary depiction of algorithm flow for creation of lesion visibility maps.
Original X-ray image (far left) is decomposed in several frequency band images (third
column) relating to different structure sizes (second column). Local structuredness is
measured by calculating local standard deviation (fourth column) on each of the fre-
quency band images. Binary lesion visibility maps (right column) for each structure size
are finally generated from the standard deviation maps by appropriate thresholding.

using a Laplacian image pyramid (Figure 1, third column). At first, the original
image I is convolved with a small box kernel of 3 × 3 pixels. By subtracting
the result I ′0 from the original image a high-frequency image I−1 is generated.
This image is disregarded for the remaining analysis as it is assumed that this
image is dominated by high frequency system noise A as described in (1). Now,
band pass images Ik, k ≥ 0 of decreasing spatial frequencies are generated it-
eratively by the following process. In order to generate the next pyramid level
image I ′k+1, the current image I ′k is convolved with a smoothing filter kernel and
subsequently subsampled in each direction by a factor of 2. The band pass image
Ik is obtained by upsampling I ′k+1 and subtracting it from I ′k. Usually, this pro-
cess is stopped after eight frequency band images have been obtained. In each
frequency band image Ik, only structural information of a certain size range (e.g.
0.25mm, 0.5mm, 1mm, 2mm, 4mm, 8mm, 16mm and 32mm median structure
size) relating to the frequency band are retained.

For each of the frequency band images I3, . . . , I7, that carry information equiv-
alent to the sizes of anatomical soft tissue structures (2, . . . , 32mm), the stan-
dard deviation is measured locally in a second step. For each pixel inside the
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Fig. 2. Data point generation for observer study evaluation. On the top left, an X-ray
of a BR3D plate with artificially added lesions can be seen. On the top right, a map
of locally measured standard deviation values for the frequency band image relating
to the considered lesion size is shown. To generate a data point, the contrast C of the
added lesion to the background and the median value of the standard deviation map
restricted to the array position of the artificial lesion are calculated.

breast area, which has been segmented similar to [9], the standard deviation of
its neighborhood is calculated. The neighborhood is defined by a sliding window
of 5× 5 pixels, which corresponds to a neighbourhood that scales with structure
size of the current frequency band, e.g. 2mm× 2mm for structure sizes with a
diameter of 2mm. In that way, a two dimensional standard deviation map for
each frequency band image is produced (see Figure 1, fourth column). These
maps can already be interpreted as a continuous measure corresponding to the
likelihood that a lesion of size corresponding to the frequency band is obscured
by the surrounding tissue structure.

In order to increase the usability of this measure, thresholds are applied to
each standard deviation map, dividing the parameter space into three categories
(surely visible, visibility uncertain, surely obscured). The thresholds were mod-
eled as nonlinear threshold curves of a form similar to (1) with respect to lesion
size, and calibrated in an observer study with 10 observers (2 image process-
ing specialists, 3 application specialists for mammography, 3 software tester for
mammography systems, 1 clinical scientist, 1 student). The setup of the thresh-
old estimation process is summarized in Figure 2.

In this study, X-ray images of randomly structured plates of tissue equiv-
alent material (BR3D phantom, CIRS Inc.) representing an equal mixture of
fatty and glandular tissue were imaged using an FFDM system, and differently
sized spherical lesions (diameter ranging from 1 mm to 20 mm) with attenua-
tion coefficients of muscle tissue were simulated into the structured regions (see
Figure 2, top left image, for an exemplay arrangement). The observers had to
decide whether or not they can detect a lesion in an array of possible lesion
positions. In total, 413 array positions had to be evaluated containing a total
of 290 simulated lesions. For each array position containing a simulated lesion,



Lesion Visibility Prediction 557

the following data was recorded: Firstly, the local contrast C of the simulated
lesion to the structured background as described by

C =
SL − SH

SH
, (2)

where SL, SH are the average signal intensities of the lesion and the surrounding
background. And secondly, the median of the local standard deviation (corre-
sponding to simulated lesion size) of the structured background at the array
location of the lesion (see Figure 2, top right image).

A threshold curve was computed in the form of

σthreshold = [a · l(h) · C]
1
b (3)

by correlating these parameters to the observer results, while considering the
increasing contrast loss l with increasing compression height h. In this way, a
lesion lying inside of a region with a standard deviation above the given threshold
is categorized as surely obscured.

In Figure 1, far right column, exemplary lesion visibility maps are shown for
three different structure sizes, where regions of the standard deviation maps with
parameter values above the threshold curve, i.e. where lesions are surely obscured,
are marked black and regions, where lesions may be visible, are indicated in
white. With a second threshold curve, all lesions that were surely visible can be
predicted in an additional visibility map.

3 Results

To characterize the image data of the observer study, results were analyzed using
kappa statistics between the visibility decisions of each single observer and the
visibility decision of the majority, revealing an agreement ranging between 0.59
and 0.88 (average: 0.78) with actual agreements ranging between 0.79 and 0.94
(average: 0.89) and per chance agreement between 0.49 and 0.53. See Table 1
for details.

Table 1. Reader agreement from observer study for threshold estimation. Numbers
of lesions classified as visible or non-visible for each individual reader are given in top
rows, kappa score against majority vote is given in bottom row.

Reader R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 maj

visible 194 130 160 201 179 216 166 171 116 184 178

non-visible 219 283 253 212 234 197 247 242 297 229 235

kappa vs majority 0.84 0.71 0.87 0.84 0.82 0.59 0.88 0.81 0.68 0.73 n/a

Corresponding threshold curves are shown in Figure 3 in a plot of local stan-
dard deviation versus contrast with logarithmic scaling of both axes. Each sim-
ulated lesion is marked by a square colored according to the size of the lesion.
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Fig. 3. Estimation of threshold curves for visibility prediction of lesions. Data points
marked with a black cross are detected by the majority of observers. Data point colors
indicate corresponding structure sizes. Two curves can be estimated for dividing data
points in three categories: surely visible, visibility uncertain and surely obscured.

If the lesion is detected by the majority of observers, the square is overlaid by
a black cross. The estimated threshold curve dividing surely obscured lesions
from all others is given as red line, the curve dividing surely visible lesions from
all others is given as a green line, with the corresponding regions being colored
respectively.

To verify these lesion visibility threshold curves, a second observer study with
clinical mammograms and simulated spherical lesions of different size was carried
out. The same 10 observers were asked to detect 66 differently sized lesions from
2 to 17 mm in 16 different mammograms of different breast density categories
according to the BI-RADS standard [4] (ACR class I-IV). In the first study,
lesions bigger than 17 mm were always detected and therefore not considered
in this second study. The mammograms were using the vendor’s standard post-
processing to ensure a setup that is comparable to the clinical workflow.

The observers had to specify, if and in which quadrant of a quadratic area a
lesion was located. Reader agreement characteristics were again calculated using
kappa statistics (see Table 2) with respect to the majority voting, revealing
similar performance of the readers.

The prediction with the aid of the threshold curves was surely visible for 12
lesions and surely obscured for 13 lesions. All surely visible lesions were correctly
detected by at least 5 observers and only 2 of 13 surely obscured lesions were
detected by more than 4 observers. A prediction accuracy of 92% for lesion visi-
bility was computed for this study. For lesions of category visibility uncertain, a
detection probability can be given by appropriately transforming the continuous
measure derived from the local standard deviation between the two threshold
curves. Between this probability and the percentage of observers who correctly
detected a lesion, a correlation of 0.67 for all lesions was computed.
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Table 2. Reader agreement from observer study for threshold validation. Numbers of
lesions classified as visible or non-visible for each individual reader are given in top
rows, kappa score against majority vote is given in bottom row.

Reader R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 maj

visible 22 31 27 34 37 24 45 26 30 32 29

non-visible 44 35 39 32 29 42 21 40 36 34 37

kappa vs majority 0.71 0.82 0.94 0.79 0.64 0.85 0.54 0.91 0.79 0.73 n/a

4 Discussion

The results of the second observer study show that it is possible to predict the
visibility of soft tissue lesions through spectral standard deviation maps and
to determine clinically meaningful threshold curves. The applicability of the
developed method is verified by the high prediction accuracy obtained in the
second observer study.

It has to be noted that the proposed method provides information from a
single image that is multi-dimensional in terms of the frequency spectrum, which
needs careful interpretation. For example, some aspects of the results displayed
in Figure 1 may seem implausible on first glance as they indicate that a lesion
of approx. 4 mm will be obscured almost in the entire breast, while a lesion of
approx. 8 mm will be visible almost everywhere. But if we add a hazelnut and
a pea in bag of coffee beans and produce an X-ray image of the bag, we expect
to detect the hazelnut much more easily than the pea, as the structural pattern
of the former is distinct from structural pattern of the coffee beans, whereas the
structural pattern of the latter is rather indistinct from the coffee beans.

In both studies, we observed that big lesions lying in the region of the breast
boundary or in the vicinity of the pectoral muscle led to false predictions. This
is attributed to the strong gradient in low frequency bands which is present in
both of these regions. By omitting lesions in breast boundary regions (only one
in the second observer study) the prediction accuracy increases to 95.8%. Hence,
future work will address to incorporate inclusion of segmentation methods for the
pectoral muscle as well as modeling approaches for the breast boundary regions
(as presented in e.g. [8,9]) to further improve the robustness of the developed
method in the entire breast region.

Moreover, the clinical use case of the method needs to be investigated further.
Although the proposed measure is invariant with respect dose as it depends on
contrast rather than signal strength (see eq. (2)), contrast may be influenced to
some extent by the choice of tube voltage. This may allow to use the proposed
method as an additional feature for the optimization of individualized image
acquisition parameter settings. At the same time, visual comparisons to existing
breast density assessment solutions [8] show that the information derived from
the proposed method contains additional or even complementary aspects.
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Hence, larger observer studies with more images and experienced observers
are needed to investigate and demonstrate usability and benefit of the approach
for automated image acquisition parameter optimization and as an adjunct to
mammographic breast density assessment in daily clinical routine.
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Abstract. Mammographic density is strongly associated with breast
cancer, being considered one of the most important risk indicators for
the development of this type of disease. Likewise, the sensitivity of au-
tomatic breast lesion detection systems is significantly dependent on
breast tissue characteristics. Therefore, the measurement of density is
definitely useful for detecting breast cancer. The aim of this work is to
adapt our previously developed automatic breast tissue density classifi-
cation methodology for digitized mammograms to full-field digital mam-
mograms (FFDM), as well as to evaluate the possible improvements and
the classification results. After breast area extraction and peripheral en-
hancement, the method segments the breast area into fatty and dense
tissue, then morphological and texture features from each class are ex-
tracted and finally FFDM are classified according to a standard qual-
itative criteria. Results show a strong correlation (κ = 0.88) between
automatic and expert assessments and a better classification correction
percentage (CCP = 92%) compared to our earlier work.

Keywords: Breast density classification, full-field digital mammogra-
phy, feature extraction and selection, peripheral enhancement.

1 Introduction

Mammographic density represents the amount of radiodense tissue within the
breast and it is one of the strongest risk factors for breast cancer. Most of the
studies about the relationship between breast density and breast cancer report
that women with high dense breast have greater risk of breast cancer than those
with low dense breast [2]. Besides risk of developing breast cancer, density is also
related to the difficulty of detecting breast cancer [13]. The latest studies show
that even though breast density does not affect the sensitivity of microcalcifica-
tion detection Computer Aided Detection (CAD) systems, it significantly affects
mass detection, so the sensitivity of CAD systems for mass detection decreases
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in dense mammograms [15]. Therefore, breast density assessment is regarded as
an important tool to help radiologists and CAD systems to detect breast cancer.

Mammographic density can be measured both quantitatively and qualitatively.
Quantitative studies use the estimation of the percentage of breast density (dense
area divided by total area), the absolute dense area or the breast density vol-
ume [8].Whereas for qualitative assessment, theWolfe categories, the Tabár grade
or the Breast Imaging Reporting and Data System (BIRADS) score [12] can be
used. However, BIRADS classification is becoming a standard on the evaluation
of mammographic density where four patterns are used: (I) the breast is almost
entirely fat (< 25% glandular), (II) there are scattered fibroglandular densities
(25− 50% glandular), (III) the breast tissue is heterogeneously dense (51− 75%
glandular) and (IV) the breast tissue is extremely dense (> 75% glandular).

We have previously presented a breast tissue density classification method-
ology for digitized mammograms [14]. The main purposes of this work are to
extend our method for digitized mammograms to FFDM, to assess the bene-
fits of the updates, and finally to classify digital mammograms according to the
BIRADS score.

2 Original Methodology

The classification method is based on our previously developed algorithm for
breast tissue density classification [14]. The original method consisted in: (1)
preprocessing, (2) segmentation in fatty and dense tissue, (3) feature extraction
from both classes, and (4) classification according to BIRADS categories.

(1) Preprocessing: During the preprocessing step, the breast skin-line and the
pectoral muscle are detected using the approach of Kwok et al. [11]. Mam-
mograms are divided in breast area, background and pectoral muscle, and
only the breast area is kept.

(2) Segmentation: Gray-level information in combination with the fuzzy C-
means (FCM) clustering approach is used to group the pixels of the breast
area into fatty and dense tissue classes.

(3) Feature extraction: Once the breast area is divided into two classes, a set
of morphological and texture features for fatty and dense tissue are extracted.
As morphological features, the relative area and the first four moments of
the histogram are calculated and as texture features, the ones derived from
co-occurrence matrices.

(4) Classification: BIRADS classification of mammograms is performed using
three classifiers: K-Nearest Neighbor (KNN), the C4.5 decision tree and a
Bayesian classifier based on the combination of KNN and C4.5.

3 Updated Methodology

Although the general idea of the methodology is preserved, some changes have
been done to adapt the method to FFDM. The main differences are: (1) a periph-
eral enhancement is applied during the preprocessing stage and (2) additional fea-
ture selection techniques and classifiers are tested during the classification stage.
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(a) (b) (c)

Fig. 1. Example of the preprocessing process: (a) original image, (b) breast area seg-
mentation and (c) peripheral enhancement

3.1 Peripheral Enhancement

The first results of the FCM segmentation were not accurate enough due to the
presence of an overexposed area in the majority of mammograms (see Fig. 1(a)-
(b) and Fig. 2(a)). This is a known issue that happens during mammographic
acquisition because of breast thickness changes. During mammographic acqui-
sitions, breast is compressed with a tilting compression paddle, so the breast
thickness can be non uniform, being lower in the periphery and overexposing
this area. We decided to compensate the thickness variations in the periphery
of the breast by a peripheral enhancement method that is similar to the work
of Karssemeijer et al. [10] but using a multiplicative model. After extracting
the breast boundary and the pectoral muscle, the overexposed area is deter-
mined by Otsu’s thresholding and a correction factor is applied over each pixel
of the detected region. To calculate the correction factor, firstly a distance map
is generated using the distance from each point (x) in a mammogram (M) to
the breast skin line. From the furthest peripheral pixel to the closest, each pixel
value M(x) at distance i is divided by the mean value of its neighborhood at
distance i (Ni(x)) and multiplied by the mean value of its neighborhood at dis-
tance i+1 (Ni+1(x)), where Ni(x) = {t ∈ M at distance i : distance(t, x) ≤ k},
being k an experimentally set parameter (100 for our case). An example of the
overall process can be seen in Fig.1.

3.2 Feature Selection and Classification

Due to the large number of features, a feature-selection step is included selecting
the most effective subset of features. Various feature selection techniques are
evaluated (using WEKA [18] data mining software) such as Principal Component
Analysis [9], Gain Ratio attribute evaluation [17] or Support Vector Machine
(SVM) [6]. The classification of mammograms according to BIRADS categories
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is also performed with WEKA. We used more recent classifiers like Random
Forest [3] or SVM [4] and some combinations of classifiers as AdaBoost [5] or a
binary tree of SVM. The binary tree consists in firstly, classification of digital
mammograms in low or high breast density category and then low dense cases
are classified in BIRADS I or II and independently, high dense cases in BIRADS
III or IV. The reason was to convert our multiclass classification problem into
multiple binary classification problems as SVM is originally a binary classifier [1].

4 Results

The method was applied to the whole set of 236 FFDM acquired with a Selenia
FFDM system that form our local digital database. This database is composed
of left or right Medio-Lateral Oblique mammograms from 236 healthy women.

(a) (b) (c) (d)

Fig. 2. Example of the segmentation process: (a) original breast area, (b) FCM without
previous peripheral enhancement, (c) breast area after peripheral enhancement and (c)
FCM with previous peripheral enhancement.

4.1 Preprocessing and Segmentation

To determine not only the quality of the preprocessed images but also the seg-
mentation results, visual assessment was performed by one observer with more
than 10 years of experience in mammographic images. To evaluate the enhance-
ment process, the observer labeled the images as correctly enhanced or not and
a total of 83% of the images were considered to be improved with the peripheral
enhancement. An example of the enhancement results can be seen in Fig. 1(c).
To assess the segmentation improvements, the observer evaluated the differences
in the segmentation results when images were enhanced or not. Around 92% of
the segmentations obtained after image enhancement were considered similar or
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better than the ones obtained before enhancement. Specifically, the 45% were re-
garded as strictly better, therefore results show that there is a clear improvement
in the segmentation results when images are previously peripheral enhanced (see
Fig. 2).

4.2 Classification

Experts Classification. Four expert mammographic readers classified all the
images using BIRADS (current readers are different from the ones that partic-
ipated in the study [14]). The ground truth was determined by majority vote.
In case of tie, the median value was considered as the consensus opinion (like
in [14]).

Table 1(A)-(D) shows the confusion matrices for the classification of FFDM
for the four readers and the consensus opinion in year 2011. Like in our previous
work [14], the results show an evident interobserver variability, illustrating the
difficulty of the breast tissue density classification task. In low dense breasts
categories {BIRADS I & II}, expert B tends to classify in BIRADS I (17 mam-
mograms were classified as BIRADS I being BIRADS II) whereas experts C and
D tend to classify in BIRADS II (31 and 34 mammograms respectively were
classified as BIRADS II being BIRADS I). Note also that expert B repeats this
underestimation assignment when classifying in BIRADS II (8 mammograms
were classified as BIRADS II being BIRADS III) and expert C repeats the over-
estimation appointment when classifying in BIRADS III (11 mammograms were
classified as BIRADS III being BIRADS II). In high dense categories {BIRADS
III & IV}, expert D differs from the rest considering a few BIRADS III mam-
mograms (18/46) and a lot of BIRADS IV (27 mammograms were classified
as BIRADS IV being BIRADS III). When considering the individual BIRADS
classes, the correct classification percentage (CCP) values for expert A are really
high (99%, 98%, 85%, 100%, respectively). The results of the other experts are
less homogeneous and lower, except for expert C in BIRADS III with CCP =
91%. Using the Cohen’s kappa coefficient (κ) values, the agreement of expert A
with the consensus opinion belongs to the almost perfect category (κ = 0.94)
whereas the agreement of experts B, C and D with the consensus opinion belong
to the substantial category (κ = 0.78, 0.70, 0.61 respectively).

Furthermore, a few years ago, one of the experts classified the same database
according to BIRADS. Table 1(D)-(E) shows the confusion matrices for the
classification of FFDM for one reader and the consensus opinion, in two different
periods of time. Results reveal intraobserver variability in BIRADS II and III
classification. In the past the reader classified 88 mammograms as BIRADS II
whereas now the number increases to 120. On the other hand, 52 mammograms
were considered BIRADS III opposite to the current 20. Examining each class,
there are no significant variations in CCP values for BIRADS I (before: 58%,
after: 60%), BIRADS III (before: 37%, after: 39%), and BIRADS IV (before:
94%, after: 100%), opposite to the CCP values for BIRADS II (before: 59%,
after:97%).
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Table 1. (A)-(D) Confusion matrices for four expert radiologists and their consensus
opinion and (E) confusion matrix for one expert radiologist and the consensus opinion
in 2005.

Expert A Expert B Expert C Expert D Expert D
(Year 2011) (Year 2011) (Year 2011) (Year 2011) (Year 2005)

κ = 0.94 κ = 0.78 κ = 0.70 κ = 0.61 κ = 0.41

CCP = 96% CCP = 86% CCP = 79% CCP = 73% CCP = 57%

I II III IV I II III IV I II III IV I II III IV I II III IV

C
o
n
se
n
su
s I 84 1 0 0 85 0 0 0 54 31 0 0 51 34 0 0 49 36 0 0

II 1 86 1 0 17 67 4 0 0 77 11 0 0 85 2 1 0 52 35 1
III 0 0 39 7 0 8 36 2 0 2 42 2 0 1 18 27 0 0 17 29
IV 0 0 0 17 0 0 4 13 0 0 3 14 0 0 0 17 1 0 0 16

(A) (B) (C) (D) (E)

Automatic Classification. To evaluate our algorithm, we used a leave-one-out
methodology, i.e., each digital mammogram is analyzed by a classifier trained
using the mammograms of all other women in the database. Table 2(C) shows
the best confusion matrix after analyzing different feature selection and classifi-
cation methods. Specifically the confusion matrix is obtained using SVM feature
selection followed by binary tree of SVM classification and this combination
achieved a κ of 0.88 and a CCP of 92% (216/236). These values are higher than
the values of experts B, C and D although they are lower than the ones of the
expert A. When considering each BIRADS classes, the CCP for BIRADS I is
93% (79/85), for BIRADS II is 89% (78/88), for BIRADS III is 93% (43/46) and
for BIRADS IV is 94% (16/17). Note that BIRADS III reaches the highest CCP
value in comparison with the ones reached by the experts (A: 85%, B: 78%, C:
91%, D: 39%).

Table 2. Confusion matrices for MIAS, DDSM and digital databases classification
and their respectively consensus opinion: (A) Bayesian combination of KNN and C4.5
classifiers in MIAS, (B) Bayesian combination of KNN and C4.5 classifiers in DDSM
and (C) SVM Selection (SVS) + Binary Tree of SVM classification (BTSVC) in digital
database.

Bayesian MIAS Bayesian DDSM SVS + BTSVC
κ = 0.81 κ = 0.67 κ = 0.88

CCP = 86% CCP = 77% CCP = 92%

I II III IV I II III IV I II III IV

C
o
n
se
n
su
s I 79 1 3 4 58 25 23 0 79 6 0 0

II 3 86 6 8 15 295 26 0 5 78 5 0
III 0 2 85 8 12 46 196 1 0 2 43 1
IV 0 6 4 27 5 18 18 93 0 0 1 16

(A) (B) (C)
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Table 2(A)-(B) also shows the best confusion matrices of our work in [14]. In
this case the used classifier was a Bayesian combination of KNN and C4.5 clas-
sifiers and the classification method was tested using two public databases: the
Mammographic Image Analysis (MIAS) database [16] and the Digital Database
for Screening Mammography (DDSM) [7] which were obtained from scanned or
digitized film images. Although a direct comparison with our previous results
is difficult because the datasets used are different, in principle, the confusion
matrix of the digital database (Table 2(C)) seems to be better than the others
because there are less non-zeros off-diagonal elements. When comparing κ and
CCP values in digital and digitized databases (κ = 0.81, CCP = 86% (277/322)
for MIAS and κ = 0.67, CCP = 77% (642/831) for DDSM), they are slightly
better in the digital case. Examining the individual BIRADS classes, the CCP
for MIAS data set were 91%, 84%, 89% and 73% (respectively) and for DDSM
were 55%, 88%, 77% and 69% (respectively). All these values are also somewhat
better in the digital case (93%, 89%, 93% and 94%), although the highest differ-
ence is in BIRADS IV. Using the two-class classification (low vs high density),
the CCP for low case is 97% for digital, 89% for MIAS and 89% for DDSM,
whereas for high case is 97% for digital, 94% for MIAS and 79% for DDSM, so
in both cases, the percentage is higher for digital database. These results make
explicit the improvement reached with the updated method.

5 Conclusions

We have provided a breast density classification method that can be applied to
both digitized and digital mammograms. For our digital database we obtained
a κ of 0.88 and a CCP of 92% that represents a better agreement in 3 out of
4 radiologists. Results are also better than our previous work using MIAS and
DDSM, which indicates that the included changes improve the overall method.
In the future, we plan to work in two directions: (1) although the segmentation
results are qualitatively better when including peripheral enhancement, other
segmentation algorithms will be investigated; and (2) regions of interest will be
described using other texture features.
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Abstract. Determine whether or not improvements to the calibration procedure 
for a novel dual-energy x-ray mammography technique improve the uniformity, 
accuracy, and/or reproducibility of the measured breast composition. The long-
term goal of this project is to develop a technique that will improve the specific-
ity of mammography diagnosis. Energy dependent corrections for light-field, 
dark-field, and Heel effect were made for each measurement. A total of 20 
women who were scheduled for additional imaging prior to biopsy underwent 
an additional dual-energy/low dose full-field digital mammography scan as part 
of a pilot study investigating the use of breast composition measures in mam-
mography. The estimated water/lipid/protein content of suspicious lesions were 
measured. The modified x-ray calibration procedure resulted in over a 3-fold 
improvement in the uniformity of a flat-field calibration phantom with known 
breast density. Some preliminary results from women are available and show 
that different types of breast lesions have different compositions. 

Keywords: mammography, dual-energy x-ray imaging, breast cancer. 

1 Introduction 

Since 2002, cancer has been the leading cause of death in US adults under 85 years 
old, and breast cancer is the most prevalent cancer among women accounting for 31% 
of all cancers (1). In 2005 alone, there were an estimated 200,000+ new breast cancer 
cases diagnosed in the US and 41,000 deaths from breast cancer second only to lung 
cancer. X-ray mammography is currently the primary diagnostic tool for early breast 
cancer detection. However, one third of all women who are screened with mammo-
graphy have abnormal results even though no breast cancer is present increasing the 
cost of mammographic screening by 33% (2). Thus, there is an urgent need for tech-
niques to decrease false positive results while maintaining high sensitivity. Newer 
methods being evaluated to improve mammographic sensitivity and specificity in-
clude the use of intravenous (IV) contrast such as iodine dual-energy methods to  
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increase the contrast of breast lesions (3). But IV contrast procedures have limited 
applicability because of potentially severe side effects associated with iodine-based 
contrast agents (4) and because they increase the cost of mammography and would 
require the presence of a radiologist at the time of imaging. In addition, IV contrast 
may potentially turn well women off screening if they are averse to injections. 

We have developed a dual-energy x-ray mammography technique that allows the 
estimation of the lipid, water, and protein content of the breast. The technique is based 

on the measurement of the low-energy 
x-ray attenuation (standard screening 
mammography image), the high-
energy x-ray attenuation (high-energy 
x-ray mammography image in combi-
nation with three millimeter alumi-
num filter), and the breast thickness 
using a geometric phantom (Figure 1) 
and software code used to model the 
breast edges. Given these three inde-
pendent measurements, and the as-
sumption that the density of water, 
lipid, and protein remain constant in 
the breast, the water, lipid, and protein 
content of the breast may be estimated 
independently.  

While theoretically straightforward, developing a method enabling accurate esti-
mation of the water, lipid, and protein content has been challenging because of both 
temporal and spatial variations in the performance of the mammography system. The 
largest source of error that we have observed is spatial dependence of the detector 
illumination owing to spatial and temporal variation of the system properties. To re-
move spatial dependence in detector illumination, we have developed a multistep 
calibration procedure that removes spatial variations in both illumination and x-ray 
spectrum. That work is described in this manuscript. 

2 Methods 

A 3-compartment compositional model was defined for the breast using specific com-
positional definitions. First, the mass of the breast was defined to be exclusively com-
posed of protein, lipid, and water with all other residual components (soft-tissue min-
eral, glycogen, etc.) representing less than 1% of breast mass (5). For each compart-
ment, well-described stoichiometries that others have found to be representative of 
human compositional compartments (6) were used: water without salinity (H2O), 
standard protein, C100H159N26O32S0.7 (7,8), human fatty acid, C51H98O6, and soft tissue 
mineral as calcium hydroxyapatite ([Ca3(PO4)2]3Ca(OH)2). Phantom materials were  
 

Fig. 1. Image of geometric used for breast thick-
ness estimation 
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chosen that mimicked the X-ray attenuation properties in the mammographic range 
(10-50 keV) of the above molecules using standard techniques and tables. We found 
that solid water (CIRS, Inc, Norfolk, VA), machinable wax for lipid (McMaster Carr, 
Inc, Elmhurst, IL), and Delrin plastic as protein (McMaster Carr) were good approxi-
mations for X-ray imaging. Following previous work, (9) the three mass components 
were solved assuming the following three measures were known: tissue thickness, and 
two X-ray attenuations at a low and high-energy. For example, the low-energy attenu-
ation equation is written as: 
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A similar equation can be derived for the high-energy attenuation, AHE. Lastly, the 
sum of the three compositional thicknesses, T, equals the total thickness of tissue 
projected into a pixel. T is found using the SXA phantom method as described in 
(10,11). Prior work demonstrated the ability to separately estimate the water, lipid, 
and protein content of breast tissue. (11) 

2.1 Imaging Procedure 

The low-energy x-ray attenuation was obtained from a standard screening mammo-
gram.  The high-energy x-ray attenuation was obtained from a high-energy mammo-
gram taken immediately after the standard screening mammogram without releasing 
the patient’s breast from the compression paddle.  The x-ray acceleration voltage for 
the mammogram was 39 kVp and the exposure was 40 μAs. A 3 mm thick aluminum 
filter was added to filter out low-energy x-ray from the high-energy mammogram.  
The high-energy mammogram increased the dose by roughly 10% compared to a 
standard mammogram. All images were taken on a Hologic Selenia digital mammo-
graphy unit. 

2.2 Analysis Procedure 

The pioneering work described in Laidevant et al estimated low-energy and high-
energy x-ray attenuation using spatially constant detector offsets and light-field cor-
rections.  Unfortunately, spatial variations in detector offset, x-ray illumination over 
the detector, and x-ray spectrum resulted in significant non-uniformity (>10%) across 
the field of view for estimates of water, lipid, and protein content of a plastic calibra-
tion phantom. This nonuniformity is problematic for estimation of lesion composition 
because the typical lesion comprises less than 20% of breast thickness and lesion 
protein content is expected to comprise less than 10% of that lesion thickness. 

We developed a calibration procedure to remove this nonuniformity. Quantitative 
estimates of low-energy and high-energy x-ray attenuation were obtained in the fol-
lowing fashion. First, local variations in the detector offset were measured. The detec-
tor offset with no x-ray exposure across the entire CCD was measured three times and 
the average exposure value for each pixel was selected.  This detector offset image 
was subtracted from detector results. Second, local variations in the average x-ray 
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intensity, detector sensitivity, and x-ray incidence angle were measured using a uni-
form four centimeter thick phantom chosen to have 50% breast density (CIRS) at the 
voltages chosen for the low-energy and high-energy mammograms. For each meas-
ured image, the total image attenuation relative to the four centimeter thick phantom 
was estimated by taking the ratio of the measured image to the appropriate light field 
image. Finally, spatial variations owing to changes in the x-ray incident angle in the 
x-ray spectrum were compensated by measurement of the incremental attenuation 
from a uniform one centimeter thick phantom applied to the four centimeter phantom.  
The measured incremental attenuation was normalized to the estimated attenuation in 
a two centimeter strip adjacent to the breast edge. The measured normalized incre-
mental attenuation was smoothed using a five pixel Gaussian filter and applied to the 
measured relative attenuation from each patient image. 

2.3 Patient Population 

Twenty women scheduled for repeat imaging with suspicious mammography findings 
were recruited and imaged with 3-component breast imaging before their biopsies. Four 
had no mammographically identifiable findings and were ex-
cluded. In addition, two women did not generate usable data 
owing to irretrievable protocol failures. Of the 14 remaining 
women, 18 lesions were identified by a trained radiologist.  Of 
those findings, three CC (cranio-caudal) and one MLO (medi-
olateral-oblique) view were excluded either because of poor 
compositional results owing to proximity to the breast edge or 
because of superposition of the chest wall. Of those four le-
sions, only one was not available in the other view direction 
and was excluded. The results for CC and MLO views were 
averaged for those lesions for which both views were availa-
ble. Seventeen lesions had usable findings. There were 4 be-
nign breast tissue findings (BBT), 7 fibroadenomas (FA), 2 
ductal carcinoma-in-situ (DCIS), and 4 intraducal carcinoma 
(IDC). This study was conducted with approval from the Insti-
tutional Review Board at the University of California, San 
Francisco. All women received both CC and MLO views of 
the affected breast or breasts. All received a biopsy of the sus-
picious area and breast biopsies were clinically reviewed by 
our Pathology Department.  Inclusion Criteria: Only women  
receiving a breast biopsy were included in the study. Exclusion 
Criteria: Women with prior biopsy of the affected  
breast or history of breast cancer were excluded from the 
study. In addition, findings that were on the breast  
edge were excluded from the analysis because the thickness 
model used for the analysis was not sufficiently accurate at the 
breast edge. Finally, images with no mammographically  
identifiable region of interest that could be delineated by the 

Fig. 2. Delineated 
regions for patient with 
invasive ductal cancer. 
The innermost region 
indicates the cancer and 
the region surrounding 
the region immediately 
surrounding the cancer 
indicates the chosen 
background region.  
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Table 1. Average lesion compositions (5th - 95th %centiles shown in 
brackets). Negative values indicate the compartment is below the 
surrounding tissue averages. 

Finding (n) Water(cm) Protein (cm) Lipid (cm) 
Invasive cancer(n=4) 0.19 

(-0.17-0.62) 
0.21 
(-0.03-0.77) 

-0.46  
(-0.88—0.15) 

Ductal carcinoma in 
situ (n=2) 

0.31 
(0.095-0.52) 

0.038 
(0.00-0.075) 

-0.34 
(-0.53—0.16) 

FA (n=7) 0.83  
(0.11-1.80) 

0.096 
(-0.13-0.47) 

-1.03 
(-1.88—0.097) 

BBT (n=4) 0.19 
(-0.17-0.62) 

0.22  
(-0.027-0.77) 

-0.46 
(-0.88--0.16) 

radiologist were excluded from the analysis. All lesions were delineated by an  
experienced MQSA certified radiologist. Lesion composition was estimated as  

the difference 

between the  
median value 
inside the deli-
neated lesion 
and the median 
value in the 
region 2.5 to 5 
millimeters dis-
tant from the 
edge of the deli-
neated  lesion. 

 

3 Results 

Breast thickness uniformity was determined using a four centimeter plastic calibration 
phantom of known composition. Images were taken using the standard three-
component image protocol described above and analyzed using both the prior image 
protocol and the newly implemented protocol. The spatial uniformity was measured 
corner to corner. 

 100*
minmax

minmax

TT

TT
Uniformity

+
−=   (2) 

where maxT is the highest measured compositional thickness and 
minT  is the lowest 

measured compositional thickness on a line drawn corner to corner in the image. The 
spatial uniformity of the water, lipid, and protein measurement improved from >10% 
to <3% for a uniform plastic calibration phantom designed to mimic breast tissue. 

We categorized findings as either benign (fibroadenoma, benign breast tissue) or 
malignant (invasive cancer, DCIS) findings and then constructed a logistic model. To 
reduce sample-size dependent bias and eliminate complete separation problems, we 
used Firth’s method to reduce likelihood bias.(12) We found that the Beta coefficient 
(the regression coefficient and intercepts) for lesion water content was close to statis-
tically significant even at this small sample size (P=0.064).   

4 Discussion 

Improvements to the breast thickness model and to the x-ray calibration procedure 
resulted in significant improvement to both the accuracy of the thickness measure and 
the spatial uniformity of the compositional estimate. We are encouraged by the low  
P-value with this limited sample size and expect that further data acquisition will 
better characterize the biological variance in different lesion types and improve the  
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predictive models.  In addition, larger sample number will allow the incorporation  
of lesion characteristics that are typically indicative of malignancy, such as  
calcifications. 

Potential advantages associated with improved visualization of the protein com-
partment include fewer missed cancers, clearer visualization of subtle structures used 
to differentiate benign and malignant lesions (e.g. spiculations) and thus reductions in 
false positive findings and screening cost. The image acquisition, analysis, and recon-
struction techniques used in FFDCM could be integrated into existing FFDM units 
following inexpensive modifications. With the infrastructure necessary for the im-
plementation of FFDM largely in place, the application of compositional imaging to 
clinical studies would be swift. 
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Abstract. We study the effect on Swank noise of different recombi-
nation algorithms for secondary carriers implemented in ARTEMIS, a
detailed Monte Carlo transport that simulates the three-dimensional spa-
tial and temporal transport of electron-hole pairs in semiconductor x-ray
detectors. Two modeling approaches for recombination are compared in-
cluding a first-hit (FH) algorithm that recombines the first pair from
the list of candidate carriers, and a more realistic nearest-neighbor al-
gorithm (NN). We report simulated pulse-height spectra (PHS) in a Se
detector for two clinical mammography spectra, and use the entire PHS
distribution to calculate Swank noise. We found that the FH and NN
recombination results in terms of pulse-height spectra and Swank noise
agree within the mammography energy range. The NN algorithm in-
creased the simulation time by 30% compared to FH at 4 V/µm applied
bias and 10% at 30 V/µm.

Keywords: Recombination, Swank, ARTEMIS, Monte Carlo simula-
tion, amorphous Selenium.

1 Introduction

X-ray medical imaging has grown to become one of the most widely used tech-
niques for medical diagnosis. Digital x-ray detectors have demonstrated per-
formance superior to traditional film-based detectors, and amorphous selenium
(a-Se) direct digital x-ray detectors have shown great promise in improving per-
formance and lowering costs. Digital imagers using stabilized a-Se as the pho-
toconductive material can be used for a wide range of applications[1], including
digitial mammgraphy[2,3].
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In direct digital x-ray detectors, the incident x-ray photons lead to creation
of high energy electrons and large numbers of electron-hole pairs. This high
concentration of oppositely charged carriers leads to recombination of many
electron-hole pairs, and significantly degrades the detector performance. It has
been shown that this recombination process occurs in the nanometer scale,
where drift and diffusion of electron-hole pairs plays a significant role[4]. Essen-
tially, electron-hole pairs recombine due to the Coulomb attraction of oppositely
charged carriers. Practically, a high applied electric field has been used to sepa-
rate the electron-hole pairs to improve detector performance. However the high
electric field causes higher leakage and break down of the photoconductor. We
study the effect of different recombination algorithms on Swank noise taking into
account detailed Monte Carlo (MC) transport of electron-hole pairs.

2 Method

2.1 Swank Noise

The Swank factor[5], also known as the information factor is a critical per-
formance parameter of x-ray imaging detectors[6]. Swank noise represent the
statistical variation in the detected signal per primary quantum, defined as:

I =
M2

1

M0M2
. (1)

These statistical fluctuations can be due to random events such as Compton scat-
tering, K-fluorescence, photoelectric and Compton electron range, and transport
of electron-hole pairs, where Mn is the nth moment of the electron-hole pair PHS
distribution:

Mn =
∑

m

p(m)mn , (2)

and the fluctuations in m (number of detected electron-hole pairs) are given by
the probability distribution, p(m). In semiconductor x-ray detectors, the Swank
factor, I, is a statistical factor that arises from the fluctuations in the number
of electron-hole pairs detected per absorbed x-ray. Alternatively, the definitions
of the mean (μ) and standard deviation (σ) of the distribution can be used to
estimate I,

μ =
M1

M0
, σ2 =

M2

M0
−
(
M1

M0

)2

, I =
μ2

μ2 + σ2
. (3)

2.2 Monte Carlo Simulations

This work utilizes a custom Monte Carlo transport code, ARTEMIS (pArti-
cle transport, Recombination, and Trapping in sEMiconductor Imaging Simula-
tions) specifically developed for detailed simulation of electron-hole-pair
transport in direct x-ray detectors[4]. The simulation of the signal formation
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process in ARTEMIS is based on PENELOPE[7] for the simulation of photon
and secondary-electron transport coupled with a novel transport code for the
spatiotemporal simulation of electron-hole pair transport. We modeled an a-Se
detector with a thickness of 150 μm with a pencil beam source.

We consider two recombination algorithms, first-hit (FH) and nearest-neighbor
(NN), in the simulation model. In an array of electron-hole pairs, the FH algo-
rithm recombines the first candidate that are within the recombition radius
where the Coulomb attraction between the electron and hole are considered too
strong for escape. For one carrier at a time, the NN algorithm calculate the dis-
tance between electrons and holes and recombines the pair that has the smallest
distance apart. The NN algorithm provides a more accurate physical model re-
combining the electron and hole that is the closest to each other but requires
longer simulation time. The two recombination algorithms considered in this
study are described in detail in previous work[8]. The probability of recombi-
nation for electron-hole pairs, recombination fraction (fR), is calculated as the
ratio between the number of recombined and generated electron-hole pairs.

2.3 Signal Formation Process

X rays can interact with the atoms of the semiconductor material through vari-
ous mechanisms. In the energy range of medical imaging applications, an incident
photon can interact through the following main mechanisms: Rayleigh scattering,
Compton scattering, and photoelectric absorption. The interaction cross-sections
are a function of the energy and the material, and for a-Se, photoelectric ab-
sorption is the dominant photon interaction mechanism in the diagnostic energy
range. In the case of photoelectric absorption, a secondary electron is created
with most of the energy of the initial x ray and therefore capable of producing
many electron-hole pairs. This high-energy secondary electron gradually loses
energy through inelastic scattering as it travels through the detector material,
and the energy lost, Ed, is deposited in the semiconductor material.

The energy deposited, Ed, in the semiconductor can lead to either phonon
emission or ionization. The number of electron-hole pairs created, NEHP , is
modeled using a Poisson random variable utilizing a semi-empirical formula
developed by Que and Rowlands[9], for the ionization energy, W0. When an
electron-hole pair is created, it has been postulated[10] that the electron and
the hole lose their initial kinetic energy in a thermalization process, after which
they are separated by a finite distance r0. We defined the concept of a burst
as the cloud (spatiotemporal distribution) of electrons and holes generated after
a local deposition of energy given an assumed thermalization distance r0[8]. In
this work, the shape of the burst is modeled as a spherical shell.

2.4 Clinical Spectra

We used two known mammography beam qualities generated with methods de-
scribed by Boone et al.[11] Both beam qualities are taken from the table of
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radiation qualities in IEC document 62220-1-2 (2007). The spectra chosen in-
clude tungsten and molybdenum anodes and a tube voltage of 28 kVp shown
in Fig. 1. The molybdenum spectrum (RQA-M 2) includes a molybdenum filter
of 32 μm and an additional 2 mm aluminum filter and the tungsten spectrum
includes an aluminum filter of 2.5 mm.
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Fig. 1. Mammography beam qualities used in the Swank factor simulations

3 Results and Discussions

The simulated PHS for both radiation qualities are shown in the following figures.
The x axis is in number of electron-hole pairs detected per incident x ray. For
molybdenum, Fig. 2 shows the PHS for transport at 4 V/μm applied electric
field with the FH and NN models, and Fig. 3 shows the PHS for transport at
30 V/μm. The Swank factor calculated from the PHS, and the recombination
fraction are listed in Table 1. Comparing the two applied bias conditions, the
number of detected electron-hole pairs signficantly increased from the 4 to 30
V/μm case, while maintaining the general shape of the PHS. The simulation
results are comparable for the FH and NN recombination algorithms, with an
increase in the simulation time from approximately 10 to 30 percent.

For tungsten, Fig. 4 shows the PHS for transport at 4 V/μm applied electric
field with the FH and NN models, and Fig. 5 shows the PHS for transport at 30
V/μm. The tungsten PHS have higher Swank factor because the molybdenum
input spectrum have two characteristic peaks at 17.5 and 19.5 keV, much closer
to the K-edge of a-Se at 12.6 keV causing degradations in the Swank factor,
while the tungsten spectrum is centered around 23.5 keV, farther from the a-Se
K-edge.
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Fig. 2. Simulated PHS with molybdenum mammography spectrum as a function of
electron-hole pair transport for 4 V/µm applied electric field using FH and NN recom-
bination algorithms
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Fig. 3. Simulated PHS with molybdenum mammography spectrum as a function of
electron-hole pair transport for 30 V/µm applied electric field using FH and NN re-
combination algorithms

Table 1 lists the Swank factors and recombination fractions with the two re-
combination algorithms for the molybdenum and tungsten spectra. The total
simulation time is reported for ten million incident x-ray photons. Both the
Swank noise and recombination results agree well between the FH and NN
algorithm, while the simulation time increases for lower applied bias because
electron-hole pairs take more time to separate and therefore, recombination is
more likely to occur.
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electron-hole pair transport for 4 V/µm applied electric field using FH and NN re-
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Fig. 5. Simulated PHS with tungsten mammography spectrum as a function of
electron-hole pair transport for 30 V/µm applied electric field using FH and NN re-
combination algorithms

A detailed MC code taking into account spatial and temporal transport of
electron-hole pairs is used to study the effect of different recombination algo-
rithms on Swank noise for a-Se x-ray detectors. The results show that the in-
cident photon energy and the bias voltage affect the magnitude of Swank noise
and that results for FH and NN recombination algorithms agree reasonably well
in their prediction of PHS, Swank noise and recombination fraction.
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Table 1. Simulated Swank factor and recombination fraction for Mo/Mo (RQA-M 2)
and W/Al standard radiation qualities with varying transport conditions

Radiation Quality 4V/µm 30V/µm
(IEC 61267) FH NN FH NN
Mo/Mo (RQA-M 2) I(E) 0.878 0.878 0.922 0.922

fR 96.5% 96.5% 80.0% 80.1%
Time (s) 1.18 × 107 1.51 × 107 7.75× 106 8.66 × 106

W/Al I(E) 0.903 0.904 0.937 0.937
fR 96.5% 96.4% 79.6% 80.1%
Time (s) 1.38 × 107 1.80 × 107 9.29× 106 1.03 × 107

4 Conclusion and Future Work

The effect on Swank noise from different carrier recombination algorithms is
studied by implementing a more realistic NN algorithm in ARTEMIS and com-
paring the results to those obtained with the faster FH algorithm. PHS results
for a-Se detector show that Swank noise and recombination fraction computed
with the two algorithms are consistent within the clinical mammography energy
range with an approximate 10% to 30% increase in simulation time for the cases
of 4 and 30 V/μm applied electric field.

The distribution of electron-hole pairs and their spatial proximity upon
creation can affect the recombination fraction. Different burst models can be
explored to examine its effect on the recombination models. For this work, a
constant carrier mobility is used for both holes and electrons. The effect of dif-
ferent carrier mobilities and detector thicknesses on the recombination models
can be explored in the future. We are also currently working on validation of the
simulation results with pulse-height spectroscopy experimental measurements.
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Abstract. This report describes the initial result of a prospective clinical trial to 
compare 3D stereoscopic mammography (3DSDM) and standard full-field digi-
tal mammography (FFDM) for detection of biopsy proven cancers in a diagnos-
tic population.  In 3DSDM exam, an additional low-dose image is taken from 
4 degree right after taking standard FFDM images in left/right CC and MLO.  
A total of 2,016 patients underwent 3DSDM exams since February, 2011 
through March, 2012, which were read by different radiologists independently.  
Compared to FFDM, 3DSDM significantly reduced false positive detection by 
29.4% (p=0.007).  Cancer detection was slightly improved by 3D 4% although 
there was no statistical significance (p=0.317). 

Keywords: 3D mammography, stereoscopic, prospective study. 

1 Introduction 

Over the last decade, there has been a progressive shift in breast imaging.  
Two-dimensional full-field digital mammography (FFDM) took over film-screen 
mammography (FSM) in this digital era. Superior performance as indicated by the 
ACRIN DMIST results [1], image acquisition workflow, improved technologist prod-
uctivity, reading features, sharing, storage and retrieval were the main factors for 
technology adoption. However, like FSM, diagnostic outcomes were limited by over-
lapping tissues, especially in dense breasts, due to the two-dimensional nature of the 
projection images.   

3D stereo digital mammography (3DSDM) is expected to help radiologists over-
come this limitation, leading to potential reduction of false readings and thereby fur-
ther improving diagnoses of breast cancer. Getty, et al. conducted a large prospective 
study [2] and reported that 3DSDM could provide higher sensitivity and specificity 
compared to FFDM and that 3DSDM reading time could be shorter than FFDM.   
However, Getty, et al. used double dose for 3DSDM acquisition compared to FFDM 
and it was not clear if some improvements came from 3D effect or dose increase. 
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FFDM findings in cases with different BI-RADS in FFDM and 3DSDM were also 
analyzed.  There were a total of 12 negative those cases. Out of 12 cases, 11 were 
turned out to FP by FFDM and TN by 3DSDM and their breakdowns are as follows; 6 
masses, 2 calcs, 1 mass+calc and 1 unknown. The remaining one case, which was a 
FP by 3DSDM and a TN by FFDM, was a calcification case. Although there are too 
few cases, 3DSDM might help readers to categorize masses.   

Only mammography exams are performed in this hospital and all patients who 
need additional exams are referred to other breast clinics, breast centers, or hospitals.  
Mostly these patients go to special breast centers for biopsy. They bring their mam-
mograms on a CD and take them to referred breast centers. Normally, additional ul-
trasound would be done in breast centers, especially if a suspect mass or architecture 
distortion were found by FFDM/3DSDM. The correlation between FFDM/3DSDM 
and US are normally done at the breast centers. If there is clear correlation, the biopsy 
normally is done assisted by ultrasound control, otherwise a stereotactic biopsy. In 
case of microcalcification, normally a vacuum biopsy is used assisted by mammogra-
phy.  The concordance/discordance of biopsy results are normally discussed in tu-
mor-conferences at the breast centers. 

According to Table 1, biopsies were performed to some of cases with BI-RADS 3, 
2 and 1.  These could be caused by some of the following reasons; (a) a clinical hint, 
e. g. some palpable mass, (b) outside made ultrasound by the assigning doctor (out-
side our clinic) or a breast center with a suspect result or (c) the explicit wish of some 
patients for the biopsy, because they were fearful and didn´t want to wait for a control 
mammography. 

There is a special guideline, called S3 guidance, in Germany for negative biopsy 
cases.  These patients have to go through 6 month follow-up.  

Although diagnostic population has been used in this study, this initial result indi-
cates that a low dose 3DSDM may have great potential in a substantial reduction of 
the recall rate. 
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Abstract. We compare mammographic density in 44 women with screen-
detected breast cancer and a control group of 923 women with normal screening 
mammograms. Multiple regression was used to compare the effects of case-
control status on breast density of the contra-lateral breast. Two breast density 
measures were investigated: the average visual assessment, recorded on a visual 
analogue scale (VAS), for the two views and two independent readers; and vo-
lumetric percentage density measured by QuantraTM. We adjusted for confound-
ing factors of BMI, HRT use, age and menopausal status. Initially there was no 
significant difference in mean percentage density between cases and controls 
using either measure of density: VAS (cases 27.5%, controls 26.9%) and Qua-
ntraTM (cases 17.2%, controls 18.2%). However, when confounding factors 
were controlled for, case-control status had a statistically significant effect on 
breast density as measured by QuantraTM (adjusted means: cases 19.2%, con-
trols 14.8%; p = 0.002) but not by VAS. 

Keywords: Breast density, breast cancer, Visual Analogue Scale, volumetric, 
mammography, Quantra. 

1 Introduction 

Mammographic breast density, measured as the proportion of the breast area occupied 
by dense fibro-glandular tissue, has a well-established link with the risk of developing 
breast cancer [1]. Much of the previous research in this area has used either visual 
estimation of density [2] or semi-automated assessment [3]. With the advent of full-
field digital mammography (FFDM), fully automated methods of quantifying density 
have become available, and with them, an interest in establishing the relationship of 
such measures with risk. These methods compute breast density in a volumetric way, 
and in addition to a relative measure of percentage density, they can also output the 
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breast volume and the volume of glandular tissue within the breast. Since they are 
fully automatic they are suitable for mass screening. 

This work forms part of a larger trial, PROCAS (Predicting Risk Of Cancer At 
Screening)  aiming to identify women attending routine breast screening who are at 
higher than average risk of developing breast cancer, so they can be offered risk-
reducing interventions including lifestyle advice [4-5]. Those with dense breasts may 
also benefit from alternative forms of screening such as Digital Breast Tomosynthesis 
or Magnetic Resonance Imaging. Women recruited to the PROCAS trial have pro-
vided risk information via a questionnaire at the time of screening, and the density of 
their digital screening mammograms was both subjectively assessed using a visual 
analogue scale (VAS) and computed by Hologic’s QuantraTM software. This paper 
describes the first reported case-control study in the screening age group that uses 
both VAS and QuantraTM, and allows adjustment for confounding factors. 

2 Methods 

2.1 Selection of Cases and Controls 

The PROCAS study invites the participation of all women in the Greater Manchester 
Breast Screening Programme, part of the UK nationwide National Health Service 
Breast Screening Programme (NHSBSP). Consenting women undergo routine mam-
mography either on a mobile unit or at a static site. Data from the first 109 consenting 
women with screen-detected cancer were obtained; of the mammograms, 64 were im-
ages obtained on a GE Senographe Essential FFDM system that were amenable to 
processing with Hologic’s QuantraTM software. The remainder were analogue mam-
mograms, images obtained on a Fischer Senoscan FFDM system to which QuantraTM 

could not be applied, or images for which raw digital data were not available. Out of 
the 64 cases for which volumetric measures of density were available, 13 had not been 
visually assessed as part of the PROCAS study and were excluded. A further seven 
cases were excluded because of missing questionnaire data relating to confounding 
factors. Of 1207 women with normal screening mammograms, 110 were excluded due 
to lack of QuantraTM or VAS data and 174 were excluded due to incomplete question-
naire data. This resulted in a set of 44 cases (screen-detected cancers) and 923 controls 
(women with normal screening mammograms). All the cancers were uni-lateral. 

2.2 Assessment of Mammographic Density 

A visual assessment of breast density was made by two independent expert mammo-
graphic film readers as part of the PROCAS study.  Readers were drawn from a pool 
of 7 Consultant Radiologists, 2 Advanced Practitioner Radiographers and 2 Breast 
Physicians. All are readers within the NHSBSP and interpret an annual volume of 
between 5000 and 10000 mammograms. Experience in reading mammograms ranged 
from <1 year to 22 years, and in assessing density experience ranged from <1 year to 
8 years. Reader performance on synthetic images with known density has previously 
been characterized [6] and observations of differences in reader performance de-
scribed [7]. Pairing of readers in PROCAS is done on a pragmatic basis. 
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Each reader marked a 10cm visual analogue scale for each of the four radiographic 
projections obtained during screening. The scales were scanned and automatically 
converted to percentages according to the positions of the marks. An average percen-
tage density per breast was obtained for each woman from the two readers’ assess-
ments of the two views. 

One of the aims of the PROCAS study is to establish the relationship of volumetric 
density measures with risk of developing breast cancer. Full validation has not yet 
been achieved because of the relatively recent introduction of FFDM and the need to 
acquire suitable longitudinal data for analysis, but validation data are encouraging [8]. 
In this study we use QuantraTM (Version 1.3; Hologic Inc.); although this software 
was developed for use on Hologic FFDM data, it is also commercially available for 
other FFDM systems including the GE Senographe Essential. 

For each woman, the density of only one breast was used. In the cancer group, den-
sity values were obtained for the contra-lateral breast. In the control group, left or 
right breast values were selected randomly subject to the constraint that the proportion 
should be similar to that in the cancer group. Body Mass Index (BMI) was calculated 
from self-reported weight and height, and age at the time of screening was determined 
to the nearest day. 

2.3 Analysis 

Independent samples t-tests were conducted to compare the percentage breast density, 
by VAS and QuantraTM, of the contralateral breasts of cases and controls. A standard 
multiple regression model was used to assess the effect of case-control status on per-
centage density as measured by VAS and QuantraTM once age, menopausal status, 
current HRT use and BMI were controlled for. 

3 Results 

The characteristics of the women in the case and control groups are illustrated in Ta-
ble 1. These data were taken from, or computed from, the self-reported information in 
the completed questionnaires. 

Table 1. Characteristics of the case and control populations 

  Cases n=44 Controls n=923 

  Mean (SD) Mean (SD) 

Age 63.1(5.7) 59.6 (7.0) 

BMI 27.6 (4.5) 27.2 (5.4) 

Postmenopausal (%) 86.4 70.7 

HRT ever used (%) 40.9 33.4 

Years of HRT use 7.0 (5.8) n=18 6.8 (6.1) n=309 

Still on HRT(%) 6.8 7.9 



592 L. Nutine et al. 

 

Table 2. Summary of density of case and control populations 

 Cases n=44 Controls n=923 

 Mean      (SD) Mean      (SD) 

Quantra average density (L+R) % 16.8(7.2) 17.2(6.7) 

Quantra glandular volume R 101.1(46.7) 102.4(65.1) 

Quantra glandular volume L 98.2(57.3) 100.5(56.0) 

VAS average density (L+R) % 28.7(17.9) 27.0(17.1) 

Contralateral breast VAS % dens. 26.9(19.0) 27.5(19.1) 

Contralateral breast Quantra % dens. 18.2(7.2) 17.2(6.9) 

 
The mean percentage density of the contralateral breast, as measured by VAS, was 

27.5% for controls and 26.9% for cases, but the standard deviations were very large 
(see Table 2). Conversely, breast density as measured by QuantraTM was 18.2% for 
the contralateral breasts of cases and 17.2% for controls. The density values are sum-
marised in Table 2.  

There was no significant difference in the percentage density of the contralateral 
breasts of cases and controls, with density measured by VAS (p > 0.05) and by Qua-
ntraTM (p > 0.05).  In the regression model for percentage density as measured by 
QuantraTM, the variable that made the biggest contribution was BMI (p < 0.001). In 
addition, case-control status (p = 0.002), menopausal status (p = 0.032) and current 
use of HRT (p = 0.036) were all found to have a statistically significant effect on den-
sity. Age made no statistically significant contribution towards the variation in breast 
density. The model explained 19.2% of the variation in breast density. Standardized 
coefficients from the model are presented in Table 3.  Once adjusted for the  
 

Table 3. The multiple regression model coefficients illustrating the strength of the contribution 
towards the outcome of the dependent variable (Beta) and the statistical significance of the 
contribution (Sig.) to the dependent variable which is contralateral breast density % as 
measured by QuantraTM 

  
Dependent Variable: Contralateral breast density %         
Quantra 

  Standardized Coefficients  

  Beta Sig. 

Cases vs. controls 0.148 0.002 

Age  0.045 0.411 

Menopausal status 0.117 0.032 

BMI -0.376 0.000 

Currently on HRT 0.109 0.036 
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confounding variables in the regression model, the mean percentage densities by Qu-
antraTM for cases (19.2%) and controls (14.8%) were significantly different (p = 
0.002).  In the regression model for percentage density as measured by VAS, case-
control status was found not to be a significant predictor of density (p = 0.160) . 

4 Discussion 

Visual analogue scales provide an accessible, quantitative method of recording sub-
jective area-based density assessments. A relationship between VAS density and risk 
of developing cancer was demonstrated in a study in which readers assigned densities 
to film-screen mammograms that were followed up for six years [9]. In that study, the 
association matched that of the best computer-assisted method. There is, however, no 
such evidence for a similar visual assessment of full-field digital mammograms, and 
in our research we have found that visual assessments recorded using visual analogue 
scales depend on reader, on modality (digital vs. film-screen) and to a lesser extent on 
FFDM manufacturer. The results obtained in this study show no significant difference 
between the VAS density of the contralateral breast of women with cancer and of 
controls; this is unsurprising given the relatively small number of cancer cases availa-
ble and subjective nature of assessment.  Furthermore, this study differs from that 
conducted by Duffy et al. in that we are only able to examine images from one screen-
ing round, rather than measuring density in prior mammograms. 

In this work, all the women were imaged on similar FFDM systems. Visual as-
sessments were made by readers from a pool of experienced density assessors, and it 
is likely that inter-observer variability may have contributed to the lack of signific-
ance of the visually assessed results [7], [10]. With large cohorts it is not feasible to 
have the same assessors for every case; we adopted a pragmatic design with a view to 
correcting assessments post-hoc based on an ongoing analysis of individual reader 
performance. Where visual assessment is used clinically such analysis is crucial; it is 
interesting to note that in many of the key research papers in which mammograms 
have been assessed subjectively a very small number of highly experienced assessors 
were used [11], [12].  

Fully automated volumetric breast density measures offer a number of benefits 
over visual assessment: there is no disruption to normal screening workflow; values 
obtained are repeatable; differences in imaging parameters are accounted for; and 
absolute (rather than relative) density measures are possible, eliminating inaccuracies 
due to temporary weight gain [13].   

Our results using QuantraTM are promising, yielding a statistically significant rela-
tionship with case-control status, with the contra-lateral breasts of cases having a 
higher density than those of controls. Our results became significant only when BMI, 
HRT use, menopausal status and age were accounted for. This is of clinical signific-
ance because in many screening programmes not all of these data are routinely col-
lected. It would be interesting to explore the possibility of using breast volume (as 
output by automated volumetric methods such as QuantraTM) as a surrogate for weight 
as there is doubt over the reliability of self-reported weight [14], and such an ap-
proach would provide a snapshot at the time of imaging and risk assessment. In order 
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to properly assess the validity of this, an objective measure of weight would be neces-
sary. This is, however, difficult within the context of routine screening on mobile 
units where space and privacy are limited. It is of concern that reliability of self-
reported weight and height is reduced in overweight women, since this group com-
prises a significant part of the screening population.   

In this study it was not practical to exactly match the case and control groups with 
respect to all prognostic factors, however the small disparities between the case and 
control groups (mainly for age and menopausal status) were adequately adjusted for 
in the statistical analysis ensuring that these differences could not have confounded 
the breast density comparisons. Future research will focus on assessing the utility of 
volumetric measures for risk prediction as longitudinal data become available. 
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Abstract. We investigate the potential of mammographic parenchymal
texture as a surrogate marker of the risk to develop Estrogen Recep-
tor (ER) sub-type specific breast cancer. A case-control study was per-
formed, including 118 cancer cases stratified by ER receptor status and
354 age-matched controls. Digital mammographic (DM) images were ret-
rospectively collected and analyzed under HIPAA and IRB approval. The
performance of the texture features was compared to that of the standard
mammographic density measures. We observed that breast percent den-
sity PD% and parenchymal texture features can both distinguish between
cancer cases and controls (Az >0.70). However, for ER subtype-specific
classification, PD% alone does not provide sufficient classification (Az =
0.60), while texture features have significant classification performance
(Az = 0.70). Combining breast density with texture features achieves
the best performance (Az = 0.71). These findings suggest that mam-
mographic texture analysis may have value for sub-type specific breast
cancer risk assessment.

Keywords: Breast cancer, sub-type specific risk, mammogram parenchy-
mal texture.

1 Introduction

Growing evidence suggests etiologic and risk profile differences between women
who tend to develop estrogen receptor ER+ and ER- breast cancer. Higher risk
of ER+ breast cancer appears to be associated with increased endogenous over-
all exposure to estrogen and cycling reproductive hormones [1]. Biomarkers of
such hormonal exposure could be used during screening procedures to identify
women at high risk of ER+ breast cancer, implementing targeted chemopreven-
tion strategies [2]. Increased breast density has been shown to strongly associate
with the risk of breast cancer, however, data with respect to subtype-specific risk
(e.g., ER+ vs ER-) are still inconclusive [3,4]. Growing evidence in literature
shows a potential causal association between risk and mammographic texture

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 596–603, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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[5,6]. Mammographic parenchymal patterns are also shown to reflect the change
of their structure in response to hormonal exposure [3,7]. Here we investigate
the potential role of mammographic texture analysis for ER sub-type specific
breast cancer risk assessment.

2 Materials

Digital mammographic (DM) images were retrospectively collected and ana-
lyzed under HIPAA and IRB approval. Cases included the contralateral (i.e.,
unaffected) images of women diagnosed with unilateral breast cancer (n = 118),
stratified by ER-positive (n = 88) and ER-negative (n = 30) receptor status
after pathology confirmation. Controls included DM images randomly selected
from our screening program during the same time period at 3:1 ratio to cases
(n = 354) and side and age-matched based on 5-yr intervals. Images were aquired
using GE Senographe 2000D and DS machines with a pixel depth of 12 bit and 10
pixel/mm resolutions. Post-processed PremiumViewTM images (GE Healthcare)
with MLO views were analyzed. All images were normalized prior to sub-sequent
analysis with Z-score normalization.

3 Methods

3.1 Texture Feature Extraction

For each mammogram, three broad categories of texture features are extracted
namely Gaussian derivatives (n-jet), coherence properties of structure tensor
and structure enhancing diffusion tensor, representing the orientation and het-
erogeneity of the parenchymal tissue within breast [8,9].

Gaussian Derivatives. Physiological evidence suggests that the visual recep-
tive fields in the primate eye are shaped like the sum of a Gaussian function and
its Laplacian generating Gaussian derivative-like fields [10]. Based on these fields,
it can be expected to provide an assessment similar to the human visual system
in image processing algorithms. For every pixel in the mammogram, Gaussian
derivative features are extracted at four different Gaussian scales, namely 2, 4, 8,
and 16 mm considering the typical resolution of mammogram (i.e. 10 pixel/mm).
In addition, 10 different combinations of partial derivatives of the image inten-
sities with respect to x-y coordinates at particular scale σ are extracted. This
contributes to a total of 40 jet features per pixel for four different scales in each
mammogram.

Structure Tensor and Structure Enhancing Diffusion. Structure tensor
is a second-moment matrix, derived from the gradient of a function. It sum-
marizes the predominant directions of the gradient in a specified neighborhood
of a point, and the degree to which those directions are coherent [11]. Features
based on structure tensors are invariant to affine intensity transformations and
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rotationally invariant. In addition, point-wise robustness is provided through
convolution with Gaussian kernel of scales σ. Computation of structure tensor
S for a mammogram image I(x,y) is shown in Equation 1

Sσ(I(x,y)) = Gσ ∗

⎡
⎢⎣

∂I2

∂x2
∂2I
∂x∂y

∂2I
∂x∂y

∂I2

∂y2

⎤
⎥⎦ (1)

Structure Enhancing Diffusion acts as a denoising model that suppresses the
noise as well as preserves the flow-like structure, which has special interest in
mammography, since mammographic parenchymal pattern has flow-like, thin,
linear structures within breast vasculature representing significant textural in-
formation [12]. It adapts its Eigenvalues to enhance the structure, hence the
Eigenvalues are related to the anisotropy of the image represented by two con-
ductivity terms β1 and β2 in the direction of gradient and isophote at a given
scale respectively. Detailed information can be found in [11,13]. Structure en-
hancing diffusion tensor D is defined in the following Equation 2 as

Dσ(I(x,y)) = Gσ ∗ 1√
l2 − norm(I σ
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where β2 = e
−

∂I2

∂x2 + ∂I2

∂y2

η2 , β1 = 1
5 ∗β2, and Gσ denotes the Gaussian with standard

deviation σ (aperture size over which the orientation information is averaged).
Both S and D can be decomposed by Eigen analysis. Eigensystem of these 2D

tensors carries orientation information of the image that allows us to separate
the image into constant areas, corners and straight edges according to number of
non-zero Eigenvalues. The parameter to measure the spread of the Eigenvalues
is the coherence C. For every sampled pixel, coherence features C based on
Eigenvalues of structure tensor matrix S at four different scales σ of 2, 4, 8, and
16 mm are computed as shown in Equation 3

Cσ = (
λ1 − λ2

λ1 + λ2 + η
)2 (3)

Where, λ1 and λ2 are eigen values of the tensor at specific scale σ and λ1 >λ2. η
is a small positive number to avoid numerical stability problems in a the planner
region of an image where λ1 ≈ λ2 ≈ 0.

In this way, the extracted texture features includes 48 features in total for
each pixel location from three aforementioned feature categories, contributing 40
features for Gaussian derivative, and 4 coherence features each from structure
tensor and structure enhancing diffusion as shown in Figure 1. In addition to
these 48 features a position feature of each pixels from the centroid of the breast
is added.
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Fig. 1. (a-c) Representative 3-jet features at three different scales, (d-f) Examples of
Coherence feature map of structure tensor at three different scales

(a) A mammogram (b) Within breast (c) Within dense re-
gion

(d) Within nondense
region

Fig. 2. Illustration of the feature sampling process (e.g., pixel locations) within various
region of mammogram, considered for texture analysis, representing the total breast
area, and specifically the dense and the fatty (e.g., non-dense) tissue regions

Breast percent density PD% of a mammogram is computed by a multi-class
fuzzy c-means (FCM) algorithm based on an optimal number of clusters derived
by the tissue properties of the specific mammogram as described in Keller et al.
[14].
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3.2 Feature Classification and Scoring

A pixel based approximate k-nearest neighbor (k-NN) classifier [15] is used for
the classification of texture features. Dimensionality of the feature space is re-
duced to a maximum feature of 6 from the initial 48 features by using a rank
based feature selection algorithm [16] followd by 10 fold cross validation with
recognition rate quantified as the area under the receiver operating characteristic
curve (AUC). The texture features selected by feature selection mostly include,
2nd and 3rd order Gaussian derivatives and coherence features of structure ten-
sors at scale 4 and 8mm.

The task of classification is stratified by two experiments: (1) cancer cases
versus controls and (2) ER+ versus ER- cancer cases. In both experiments, we
sample pixel locations from three different regions of the mammogram namely, (i)
the entire breast region, (ii) the dense breast region delineated by the automated
segmentation method [14], and (iii) the non-dense breast region, calculated as
the total breast area minus the dense region. Pixel locations selected for feature
extraction from various breast regions are shown in Figure 2. We investigate a
range for the set of points consisting 500, 1000, 2000 and 3000 number of pixels
in each region. We average the score from all set of points as explained below.

Let AP be the array of point set with number of pixel location considered
within the mammogram region, DTR as a training set and k be the number of
nearest neighbor in k-NN , then the procedure to compute a score SCR for a
mammogram is explained in Algorithm 1.

Initial analysis was done within each region of the breast separately (namely,
entire breast, dense region, non-dense region, and PD%). Scores obtained from
each region of a mammogram are added together with percent dentsity (PD%)
to make a multivariate model and a series of logistic regression analysis is done
to identify variable that were associated with the class label in each experiment.
To measure the sensitivity and specificity of each region, the c-statistics i.e. area
under receiver operator characteristic (ROC) curve for logistic regression model
was calculated. Standard error of AUC is computed using the methods of Hanley
and McNeil [18], which guide in determining the size of the sample required to
provide a sufficiently reliable estimate of this area.

4 Result and Discussion

Figure 3 shows the performance of the texture measures extracted from the
various regions of the mammogram for the task of both (1) cancer vs con-
trols and (2) ER subtype specific classification. Breast (PD%) and parenchy-
mal texture features can both distinguish between cancer cases and controls (Az

>0.70, see Figure 3(a)). These results supports previous research findings by
Kerlikowske et al. [19]wherewomenwithhighmammographic density are reported
to have increased risk of both ER-positive and ER-negative breast cancers Az =
0.70.However, forERsubtype-specificdiscrimination(seeFigure 3(b)),PD%alone
does not provide sufficient information (Az = 0.61), while texture features
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Algorithm 1. Mammogram scoring procedure

Input: AP = {500, 1000, 2000, 3000}, Training set DTR, k = 100, SCR = 0
Output: The summary of mammogram score.

for ps = 1 to size of AP do
for n = 1 to size of ps do

Extract fourty eight texture features and one position feature of nth pixel within
specified region of a given mammogram.
Do Rank based feature selection on DTR.
Compute the class label probability of nth pixel using k-NN with k number of
nearest neighbour.
Store the class label probability in array SC

end for
SCRps = SC

end for
SCR = SCRps
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(b) ER+ vs ER- classification

Fig. 3. Area under Receiver Operative Characteristic Curve (Az) and standard er-
ror (SE) required to compute statistical significance by DeLong test[17] for various
experiments
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independently discriminate with significant classification accuracy (Az = 0.70).
Combining breast PD% with texture features achieves the best performance (Az

= 0.71). In addition, we observe that the discrimination between ER subtypes
becomes better while considering the dense region only than the non-dense region
(see Figure 3). Further investigation is underway to help better understand the
link between percent density, mammographic parenchymal texture features and
ER specific subtype risk.

5 Conclusion

Our study suggests that mammographic texture potentially has value for ER spe-
cific breast cancer risk assessment. To the best of our knowledge our study is the
first to explore the potential of mammographic parenchymal texture analysis for
ER subtype-specific breast cancer risk assessment. This could have significant im-
pact in personalized risk-reduction interventions, such as selective estrogen re-
ceptor modulators (SERMs) and aromatase inhibitors. Currently, evaluation of
ER-status is performed by means of immunohistochemistry (IHC) at the time of
diagnosis, while there is no method to predict the risk in advance [20]. Studies have
shown the association of different factors including breast density with ER status
[21]. To date, to the best of our knowledge no study has shown the associationwith
mammographic texture and the risk for ER-specific breast cacncer. If our hypothe-
sis proves to be true, mammographic texture can be used as a non-invasive imaging
biomarker during screening procedures to identify women who are at high risk of
ER+ breast cancer and would benefit most from SERM chemoprevention. Larger
prospective clinical studies are warranted, with patient follow-up, to prospectively
validate these findings considering additional risk factors.
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Society Grant RSGHP-CPHPS-119586, United States Department of Defense
Concept Award BC086591, and National Institutes of Health PROSPR Grant
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Abstract. Digital mammography (DM) is commonly used as the breast imaging 
screening modality. For research based on DM datasets with various sources of 
x-ray detectors, it is important to evaluate if different detectors could introduce 
inherent differences in the images analyzed. To determine the extent of such 
effects, we performed a study to compare the effects of two DM detectors, the GE 
2000D and DS, on texture analysis using a validated breast texture phantom 
(Yaffe et. al, University of Toronto). DM images are acquired in Cranio-Caudal 
(CC) view, and texture features are generated for both raw and post-processed 
DM images. Image intensity profiles and texture features are compared between 
the two detector systems. Our results suggest that there are inherent differences 
in the images. For raw and processed images, the image intensity cumulative 
distribution function (CDF) curves reveal that there is a scaling and shifting 
factor respectively between the two detectors. Image normalization with z-score 
can reduce detector differences for grey-level intensity and the histogram-based 
texture features. The differences between co-occurrence and run-length texture 
features persist after intensity normalization, suggesting that simple z-scoring 
cannot alleviate all the detector effects, potentially also due to differences in the 
spatial distribution of the intensity values between the two detectors.  

Keywords: Digital mammography, detectors, breast phantom, texture analysis.  

1 Introduction 

Breast cancer is considered a major health problem in western countries, as it 
comprises 10.4% of the cancer incidence among women, making it the second most 
common type of cancer. Early screening and proper treatment after diagnosis for 
individual women are both important aspects of current breast cancer research, and 
digital mammography (DM) is the main screening tool for cancer detection [1].  

The Gail Model [2] has been shown be able to estimate breast cancer at the 
population level, however with limited capacity at the individual level. There’s 
intensive research for individual breast cancer risk estimation, and mammographic 
density, estimated as the percent of dense tissue area within the breast, has been shown 
to be the strongest risk factor for breast cancer after age [3, 4]. Studies [5-8] also 
support a relationship between mammographic texture and breast cancer risk, as 
mammographic texture features may be able to quantify the local distribution of the 
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parenchymal pattern, potentially providing complementary information for breast 
cancer risk estimation.  

In the process of developing proper imaging biomarkers for risk estimation, it is 
commonly the case that studies use DM images acquired with different imaging 
systems and different x-ray detectors. It may be important and necessary to treat the 
detector source as an additional parameter in the analysis, as different detectors may 
possibly introduce inherent differences in the DM images [9]. To determine the effects 
of x-ray detectors in mammographic texture analysis, we designed a physical breast 
phantom study. The image intensity and extracted texture features [10-12] from the 
breast phantom are compared between two x-ray detectors for both raw and the vendor 
post-processed (a.k.a., processed) images. The rationale is that since images are 
generated from the same phantom, quantitative imaging features should be consistent 
between the images (e.g., affected only minimally by noise). Instead of limiting to a 
square of region of interest (ROI) behind the nipple as has been done in prior work [6, 
8], the textures of the whole breast region are used for the analysis. The results of this 
comparison study could guide the proper choice of more robust texture features that are 
less sensitive to detector differences. Our study can be potentially helpful for any 
studies utilizing texture analysis in digital mammography, including breast cancer risk 
assessment, breast tissue classification and computed aided lesion detection, as a 
method for assessing potential detector differences.  

2 Methods 

The Gammex 169 “Rachel” breast phantom was used in our experiments (Yaffe. et al, 
University of Toronto) [13]. Image acquisition was performed on GE Healthcare 
2000D and DS FFDM system at 0.1mm/pixel resolution, 14 bit gray-levels. On each 
machine, the clinically optimized phototimed setting of (kVp, mAs) was chosen, which 
was 29 kVp, 71 mAs for the 2000D; and 29 kVp, 90 mAs for the DS system. The image 
acquisition process was repeated 5 times for both machines. The average of the 5 
images was used to reduce the effects of noise in the imaging process. 

In the original phantom image, the outer bounding case appeared in the image (Figure. 
1). Therefore, as an additional preprocessing step, in order to avoid the operational 
artifacts (e.g. the phantom may not be centered perfectly on the two detectors and the 
outer case artifacts), we cropped a region of interest (ROI) corresponding to the breast 
area, as shown in the middle of Figure 1, and used a synchronic threshold scheme to 
generate the breast masks for the two detectors. Based on the assumption that the breast 
area in the image is the same using the two detectors, we optimize the thresholds of 
post-processed image intensity by solving the optimization problem: 

                  ),(),2000(minarg 21
),( 21

tDSBAtDBA
tt

−                      (1) 

here breast area is denoted as BA, t1, t2 as the intensity threshold for the post-processed 
images from the two detectors. BA(detector, t) = the cardinal of the set {p| the pixel p is 
in the ROI and the post-processed image intensity at p >=t}. 
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Fig. 1. Processed DM image acquired on the 2000D system; Left: original phantom image, 
Middle: manually cropped ROI, Right: the final breast region mask 

Multiple texture features are extracted using an automated breast image analysis 
software pipeline [14], including 1) grey-level histogram features, 2) co-occurrence 
texture features, and 3) run-length features. These features have been shown in 
previous studies to have value in breast cancer risk estimation [5-7]. The texture images 
are generated by calculating texture features within a series of adjacent square regions 
covering the original breast region, with the side length of the square equals to 16 
pixels. A total of 26 texture features were computed. A summary of these texture 
features is shown in Table 1. 

Table 1. Texture descriptors included in parenchymal texture analysis 

Grey-Level 
Histogram 

5th /5thmean/95th/95thmean/ max/mean/min/sum 
entropy/kurtosis/sigma/skewness 

Co-occurrence 
cluster shade/ inverse difference moment 

correlation/energy/entropy/inertia 
Haralick correlation 

Run-Length 

grey level nonuniformity/ run length nonuniformity 
high grey level run emphasis/ long run emphasis 
low grey level run emphasis/short run emphasis 

run percentage 

Our comparison study is based on comparing the image intensity and texture feature 
profiles of both the raw and processed DM phantom images, where the cumulative 
distribution function (CDF) curves of each image feature are computed and compared 
between the two x-ray detectors. All features in Table 1 are generated for both original 
images and the z-scored images, and the effects of z-scoring on detector differences are 
also evaluated. The Kolmogorov-Smirnov distance, which defined as the maximum 
of the absolute vertical difference between two CDF curves [15, 16], is used as the 
distance between two CDF curves in the result. 
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3 Results   

The size of the ROI is 1842×775 pixels for the images of both detectors, with optimized 
threshold of (t1

*, t2
*) = (1068, 456), with BA(2000D, t1

*) = 939916 (pixels), and BA(DS, 
t2

*)=940598 (pixels). The |breast area difference|/BA(2000D,t1
*) = 0.07%.  

On the 2000D system, for raw and processed images, the standard deviation of the 5 
times of phototimed imaging in terms of the maximum/minimum/standard deviation of 
the image intensity is 2.25/7.29/0.52 and 9.4/4.2/0.0821 respectively. On the DS 
system, the corresponding values are 24.4/5.39/1.1 and 5.1/4.3/0.12. In the following 
analysis, the average of the 5 phototimed images was used for each detector to reduce 
the effects of noise in the imaging process. The cumulative distribution function (CDF) 
of the image intensity within the breast region is shown for the two detectors (Fig. 2).  

   

Fig. 2. The image intensity CDF of the original image. Left: raw, right: processed images. 

The CDF comparison in the raw/processed images indicates that the intensity 
differences between the images from two detectors may be affected by a 
scaling/shifting factor respectively. After z-scoring the image intensity within the 
breast area, the differences in the CDF of the image intensity are alleviated, as shown in 
Figure 3. The distance between CDF curves of the two detectors are reduced from 
0.4730/0.4731 to 0.0249/0.0263 for raw/processed images respectively.  
 

 

Fig. 3. The image intensity CDF of z-scored image. Left: raw, Right: processed image. 
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Comparisons are also done for all the texture features listed in Table 1. Our results 
indicate that texture features can be broadly categorized into three groups, according to 
how they are affected by the detector differences and z-scoring. Certain features are not 
affected by detectors, others are affected but compensated by z-score, and some are 
affected regardless. 

Specifically, the first group of features that is minimally affected by detectors 
includes the grey-level histogram features (e.g., entropy, kurtosis, sigma, skewness). 
The CDF curves of the texture feature kurtosis is shown as an example in Figure 4, for 
which the distance between the CDF curves is 0.0839/0.0732 for the original raw and 
processed images, after z-scoring, the distance remains the same 0.0839/0.0732. 
 

 

Fig. 4. Left: CDF of feature image from original image, right: CDF of feature image from 
z-scored image. (Grey-level histogram feature: kurtosis) 

The second group of features is affected by detectors, but the differences in the CDF 
can be alleviated by z-scoring the original image. This includes the remaining 
grey-level histogram features and the cluster shade co-occurrence feature. As an 
example in Figure 5, for the grey-level histogram feature mean, the distance between 
the CDF curves of the two detectors is 0.4732/0.4728 for raw and processed images, 
after z-scoring, the distance is decreased to 0.0255/0.0328. 
 

 

Fig. 5. Left: CDF of feature image from original image, right: CDF of the feature image from 
z-scored image. (Grey-level histogram feature: mean) 
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The third group of features is affected by detectors; however simple z-scoring cannot 
reduce the observed differences. This group mainly includes the co-occurrence texture 
features (except cluster shade) and run-length features. As an example in Figure 6, for 
the co-occurrence feature inverse difference moment, the distance between the CDF 
curves between two detectors is 0.2331/0.2301 for raw and processed images, however 
after z-scoring, the distance is increased to 0.3229/0.4145. 

 

Fig. 6. Left: CDF of feature image from original image, right: CDF of feature image from 
z-scored image (Co-occurrence texture feature: inverse difference moment) 

4 Discussion and Conclusion 

In this study, we compared the image intensity and texture profiles of two GE DM x-ray 
detectors using a physical breast phantom. The rationale is that since images are 
generated from the same phantom, the resulting image features should remain very 
similar (e.g., effected only minimally by noise). Our results show that the CDF curves 
for processed and raw image intensity values between two detectors reveal a shifting 
and scaling pattern respectively. Comparing the different texture features suggests that 
the texture features can be broadly categorized into three groups. In summary, after 
z-scoring the image intensity of the original phantom images, the differences in the 
intensity values and the grey-level histogram features are alleviated, however the 
differences in texture features may depend not only on absolute gray-level intensity 
values in the image, but also on the spatial distribution of the image intensity values, 
such as most of the co-occurrence and run-length texture features differences between 
the two detectors, which are not reduced by simple intensity normalization z-scoring.  

The CDF curve information studied in this study is used as the first step comparison 
study on how different x-ray detectors may affect the image intensity and texture. 
Further work is underway to fully-investigate such differences, and to develop a 
comprehensive feature standardization scheme that can be potentially used to reduce 
effects introduced by the imaging system on the subsequent image analysis process. 
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Abstract. Several low-dose images are necessary to obtain an image that can be 
used for diagnosis. However, it is clinically undesirable to expose a patient to 
multiple exposures in order to obtain an optimal image. The purpose of this 
study was to simulate a low-dose image from the image generated by a routine 
dose. Images of acrylic steps were obtained using multiple doses in digital 
mammography with computed radiography to generate additional noise. This 
noise was added to take into account the resolution of the X-ray detector using 
the some filters. The image simulated using the filter based on the WS was sim-
ilar to an actual low-dose image. The image simulated using the presampled 
MTF filter was less similar to an actual low-dose image. By using the proposed 
method, we were able to obtain a simulated low-dose image from an image 
generated by a routine dose.  

Keywords: simulation, computed radiography, dose reduction. 

1 Introduction 

To reduce patients’ exposure to radiation during digital mammography, it is prefera-
ble to acquire images using a minimum dose. Recently, owing to the developments of 
X-ray detectors, the exposure dose required for acquiring a digital image has been re-
examined. It is necessary to assess several low-dose images in order to establish a 
diagnosis. However, it is clinically undesirable to expose a patient to several exposure 
conditions for determining an optimal image. Even if the technique involves the use 
of a phantom, considerable time is required for obtaining several images. Therefore, it 
is necessary to generate a low-dose image through simulation. The purpose of this 
study is to simulate a low-dose image from the image generated using a routine dose. 
The noise in an image varies because the detected photons pass through materials 
consisting of different substances and having varying thicknesses. Hence, it is neces-
sary to add a different noise to each pixel value in the image. In previous studies, the 
noise was not changed for pixel by pixel [1] or the resolution of the X-ray detector on 
noise differed from actual measurement [2]. The aim of this study is the addition of a 
different noise for each pixel by considering the resolution of the X-ray detector. 
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addition, when using the digital MTF filter, it is necessary to divide noise into com-
ponents. This is because certain noise is influenced by the resolution of the X-ray 
detector (e.g., quantum noise) while certain other noise is not (e.g., structure noise). In 
addition, the dominant noise component depends on the amount of photons absorbed 
by the X-ray detector. We believe that the simulation becomes even more precise 
when the additional noise is also divided into noise component. We consider that the 
reason for the difference in the vision evaluation is change between observers and the 
setting interval of a score is large. I would like to examine whether dose reduction can 
henceforth be focused on as a viable technique as compared with the image in the 
auto mode. 
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Abstract. Interest in measuring breast tissue density due to its association with 
breast cancer risk grows, though the majority of studies use qualitative density 
measures manually reported by radiologists, which are time-consuming and 
costly. The purpose of this study was to compare the accuracy of Hologic’s FDA-
approved, commercially available automatic quantitative Quantra technique to a 
semi-automatic quantitative MRI-based Fuzzy C-Means technique in a screening 
population.  

MRI and mammographic images were retrospectively analyzed from 123 
women who had both types of exams within four years, a BIRADs diagnosis 
outcome of 1 or 2, and no history of breast cancer or surgery. Both techniques 
produced three measures: total breast volume, fibroglandular tissue volume, and 
percent fibroglandular tissue, which were compared. 

Correlations between the three measures produced by the two techniques  
were mixed, with total volume having the highest correlation (R2=0.8909), 
percent fibroglandular density having moderate correlation (R2=0.5015), and 
fibroglandular tissue volume having the lowest correlation (R2=0.3853). Quantra 
results for percent fibroglandular density were significantly compressed in 
comparison with that of MRI, by about two-fold. 

Keywords: Volumetric breast density, MRI segmentation, Fuzzy C-Means, Ho-
logic Quantra. 

1 Introduction 

There is growing interest in measuring breast tissue density due to its association with 
breast cancer risk. The majority of studies up until now link breast density to breast 
cancer risk using qualitative mammographic density measures manually reported by 
radiologists, which are time-consuming and costly to obtain. The purpose of this 
study is to compare the accuracy of Hologic’s automatic quantitative Quantra 
technique (Hologic, Inc., Bedford, MA)  to a semi-automatic quantitative MRI-based 
Fuzzy C-Means technique in a screening population. 

2 Background 

The measure of dense breast tissue volume from mammograms has been shown to be 
a strong risk factor for breast cancer [1]. Tissue volume, however, is most accurately 
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described by three-dimensional imaging techniques such as MRI or CT. Techniques 
reconstructing the breast in three-dimensions from two-dimensional mammograms 
have been developed in recent years as mammography is foreseen to remain the most 
prevalent screening modality and digital systems are much more conducive to a 
method that is both automated and quantitative. 

3 Methods 

Our study design was a retrospective analysis to compare breast density measured 
from MRI exams to that from digital mammograms on a screening population of 
women. The methods used to assess volumetric breast density are a fuzzy clustering 
segmentation method on the MRI images [2] and the Quantra method on Full-Field 
Digital Mammography (FFDM) images [3]. 

3.1 Subjects 

For a woman to have been included in our study, she must have had a set of screening 
digital mammograms and a screening MRI exam acquired within 4 years of each 
other (majority being within 2 years, visits alternating between mammography and 
MRI from being at high-risk), a completed breast health questionnaire, no previous 
history of breast cancer or breast surgery, and a BI-RADS diagnostic outcome of 
either 1 or 2. 123 women seen at the University of California, San Francisco (UCSF) 
Medical Center’s Breast Health Clinic between April 2007 and November 2010 met 
these criteria. 

3.2 MRI Imaging and Breast Density Analysis 

MRI imaging was performed on either a 1.5 or 3 Tesla GE scanner (General Electric 
Medical Systems, Milwaukee, WI) using a bilateral phased array breast coil (Medical 
Devices, Madison, WI) in a prone position. T1-weighted precontrast images of the left 
laterality were analyzed using a quantitative Fuzzy C-Means (FCM) technique 
previously described by Klifa et al [2]. Briefly, a region of interest corresponding to 
the breast volume was identified per slice on T1 fat-saturated images using a semi-
automated method. Segmentation at first is adjusted manually, then for subsequent 
slices, voxels are automatically segmented into one of six clusters depending on 
intensity. Voxels of higher intensity corresponded to fibroglandular tissue and those 
of lower intensity corresponded to fat. Percent dense volume was calculated as the 
ratio of fibroglandular tissue volume to total breast volume. 

3.3 Mammographic Imaging and Density Analysis 

All mammograms were acquired on one of six Hologic Selenia FFDM systems at 
UCSF. These systems use a molybdenum anode x-ray tube and have a pixel spatial 
resolution of 70 µm x 70 µm. The raw (unprocessed) format images of the left 
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Cranial-Caudal (CC) view were archived and processed through Hologic’s Quantra 
algorithm. Quantra is an FDA-approved, commercially-available, and fully-automated 
software for quantifying volumetric breast density estimation previously described by 
Harman et al [3]. The method estimates the thickness of fibroglandular breast tissue 
associated with each pixel in the image and aggregates these values to compute the 
total breast volume. The fibroglandular tissue volume is found by referencing each 
pixel’s attenuation to the attenuation of pixels that are labeled exclusively as fat. The 
estimated fibroglandular tissue volume is then divided by the total breast volume to 
calculate the volumetric percentage of fibroglandular tissue in the breast. 

3.4 Statistics 

Basic statistics were performed on results from the two methods. As the distributions 
were not observed to be normal, sign tests were used to determine difference between 
medians of Quantra and MRI. Linear regression was performed between Quantra 
results and those of MRI. Pearson’s correlation coefficients were calculated from 
these relationships. Regression equation parameters were calculated and tested for 
significance with t-tests. A similar analysis carried out in 2010 by Kontos comparing 
low and high Quantra values with MRI density in 32 women was also studied here 
with this dataset [4]. 

4 Results 

Basic statistics seen in table 1 reveal no significant differences between the medians 
of three measures produced by Quantra and MRI.  The range of Quantra’s percent 
fibroglandular volume is significantly compressed in comparison to MRI’s, however, 
by about two-fold. A boxplot of the two method’s percent fibroglandular volume 
distributions can be seen in figure 1 which diagrams this difference and both methods 
being skewed toward higher densities. 

Table 1. Basic statistics of three measures from two techniques. Medians and interquartile 
ranges shown instead of means and standard deviations as distributions are not normal.  

 MRI
 

FFDM Quantra

 Median 
(Quartile 
range) 

Min Max Median 
(Quartile 
range) 

Min Max

Left Breast Volume 
(ml) 

480.0 
(400.1) 

49.9 1828.4 465.0 
(352.0) 

51.0 1870.0

Left Breast Dense 
Volume (ml) 

111.8 
(107.5) 

14.3 338.1 101.0 
(96.0) 

9.0 425.0

Left Breast Percent 
Density (%) 

24.0  
(33.0) 

2.0 85.0 21.0 
(15.0) 

9.0 49.0
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Fig. 1. Box of two techniques’ percent fibroglandular density distributions, both showing 
skewness toward higher densities 

 

Fig. 2. Linear regression of total volume measure between Quantra and MRI 
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Fig. 3. Linear regression of fibroglandular volume measure between Quantra and MRI 

 

Fig. 4. Linear regression of percent fibroglandular volume measure between Quantra and MRI 
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Linear regression plots can be seen in figures 2-5 below. Pearson’s coefficients for 
total volume, fibroglandular volume, and percent fibroglandular volume are 0.9439, 
0.6207, and 0.7082 respectively. Total volume measures were highly correlated with 
each other (R2=0.8909). Glandular volume calculations between the two methods had 
low correlation (R2=0.3853). Percent fibroglandular density values were moderately 
correlated (R2=0.5015). 

Regression parameters can be seen in table 2 along with R-Squared and Root Mean 
Squared Errors calculated.  

Table 2. Linear regression parameters in comparison of MRI and Quantra. From t-test: 
*Significantly different than 1, P-value < 0.0001. ** Significantly different than 0, P-
value<0.0001. 

MR = Quantra ×
Slope + Intercept

Slope Intercept Slope 
(int=0)

R2 RMSE

Total volume 
 

0.897* 40.2** 0.949 0.8909 110.55

Dense volume
 

0.579* 39.7** 0.814 0.3853 55.10

Percent dense 
volume 

0.326* 13.0** 0.628 0.5015 6.48

  

A reproduction of Kontos’ 2010 comparison of Quantra and MRI density in 32 
women, where a subgroup analysis of data points below 11% and above 11% MRI 
density was performed, can be seen in figure 5 below showing similar, but attenuated 
results. 

 

Fig. 5. Linear regression fits for the Quantra and MRI measures of fibroglandular tissue volume 
for women with ≥ 11% and < 11% MRI density 
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5 Discussion 

Correlations between Quantra and MRI measures were mixed. The total volume 
measure had the highest correlation out of the three between the methods, with 
Quantra and MRI being highly correlated. This ability to abstract volume from a two-
dimensional image is highly encouraging that the mammographic approach of 
volumetric breast density is possible. The differences seen are likely to be largely a 
product of different amounts of the breast tissue being imaged by the two modalities. 
MRI delineation of breast tissue up to the pectoral muscle may extend well beyond 
what is captured within CC views in mammography. Also, Quantra’s reconstruction 
of total volume from two-dimensional images will inevitably have some noise given 
the modeling necessary to accomplish this. 

Fibroglandular volume saw the lowest correlation out of the three measures, 
showing the two methods having a low correlation. Quantra and MRI fibroglandular 
tissue density are moderately correlated, with persistently lower density values seen 
with Quantra, whose range is significantly compressed. The fundamental difference in 
the approach between the two techniques is apparent here. Quantra’s dependence on a 
particular image’s pixel distribution for calculation of percent density can be seen in 
figure 4, where data points associated with higher MRI density compare to Quantra 
values that span nearly its entire range. The fat references selected by Quantra from 
images of predominantly fibroglandular tissue appear to produce more noise in the 
percent fibroglandular density results, and even more so fibroglandular volume 
results.  

Regression equation slope parameters were all significantly different than one, and 
intercepts significantly different than zero. Quantra appears able to find dense tissue 
in breasts that appear completely fatty to a segmentation technique like the Fuzzy C-
Means technique. Perhaps skin is being misinterpreted as dense tissue with the 
former. Root Mean Squared Errors are of similar magnitudes for total volume and 
dense volume, though Quantra measures were, in general, half the magnitude of MRI 
measures.  

Subgroup analysis to mimic that of Kontos produced similar, but attenuated results. 
It is not clear whether 11% MRI fibroglandular density should be the threshold for 
this set of data. It would be worthwhile to pursue such subgroup analysis further, 
however, as clinical significance will be dependent upon being able to better separate 
those that are at higher risk of cancer due to having denser breasts. 

6 Conclusion 

Agreement between the measures produced by the two techniques was mixed. The 
two techniques agree well in the measure of total breast volume, which is encouraging 
for the pursuit of a quantitative mammographic measure of volumetric breast density. 
The measures of fibroglandular tissue volume and density produced by the two 
techniques studied here have agreements to lesser degrees, likely as a result of 
Quantra’s method in selection of fat references.  
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Abstract. X-ray mammography (XRM) andMagnetic Resonance Imag-
ing (MRI) are likely to provide complementary diagnostic information for
early breast cancer detection. However, topographic correlation of both
modalities is challenging due to different dimensionality of images, patient
positioning and compression state of the breast. In this paper we present
an automated registration method, which allows prediction of the posi-
tion of a lesion in the contrary modality. It is based on a FEM simula-
tion mimicking the mammographic compression and is carried out using
a patient-specific biomechanical model. An intensity-based optimization
of the registration parameters is proposed to incorporate with the clinical
variability of datasets. After registration, the position of a point of interest
can be estimated within the three-dimensional MRI volume based on two
mammograms acquired from different projection angles. The method was
evaluated with 47 datasets from clinical routine. The mean registration
error for localizing a lesion in the 3DMRI volume was 14.3 mm. The auto-
matic registration method enables localization of e.g. microcalcifications
which are only visible in XRM, within the corresponding MRI volume. It
is therefore likely to assist radiologists in multimodal diagnosis.

Keywords: 2D/3D Registration, Magnetic Resonance Imaging, X-ray
Mammography, Multimodal Diagnosis, Lesion Localization.

1 Introduction

It is widely known that breast cancer is the most common cancer among women
in Europe and North America [1,2]. Currently, the established screening method
to detect breast cancer is X-ray mammography (XRM). Yet, it frequently pro-
vides poor contrast for tumors located within glandular tissue [3]. Additionally,
Magnetic Resonance Imaging (MRI) can be used for diagnosis. It offers a high
contrast of soft tissue and high diagnostic accuracy [4].

Due to their different physical basis, XRM and MRI are likely to provide
complementary diagnostic information and hence are often read in combination
for definite diagnosis. However, topographic correlation of both modalities is
challenging and requires a high level of training due to different dimensionality
of images, patient positioning and compression states of the breast.
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Image registration may help reduce the complexity of multimodal diagnosis
by providing a mapping between both modalities. In previous work we pre-
sented a method which is capable to predict the position of a lesion in the
contrary modality (e.g. [5,6]). It is based on biomechanical simulation of the
mammographic compression to register XRM images with MRI volumes [7]. For
example, contrast-enhancing regions depicted by MRI can be located within the
mammogram [6]. In this work we extended the method to map lesions vice versa:
e.g. microcalcifications, which are only visible in XRM, can be located within
the MRI volume. In contrast to approaches in literature (e.g. [8,9,10,11,12]), our
registration method is fully automated and was evaluated with a significantly
larger number of datasets (47) which represent the variability of clinical routine
images.

2 Methods

The general idea of our registration method is mimicking the compression which
is applied to the breast during XRM by a Finite Element Simulation. The un-
derlying patient specific biomechanical Finite Element Method (FEM) model
is built on the basis of the pre-processed (i.e. segmented and cropped) MRI
volume. Material parameter from literature as well as metadata and
geometric information from the mammogram is used to parameterize the de-
formation process. Afterwards the FEM simulation is carried out, resulting in
a compressed configuration of the MRI volume. The deformed MRI volume is
comparable to the compressed configuration of the breast imaged during XRM.
Hence by projecting the deformed MRI volume along the mammographic pro-
jection axis, an artificial mammogram can be created. The position of a lesion
which is visible in the MRI volume can directly be transferred to the mam-
mogram and the corresponding region in the mammogram can be retrieved
(Fig. 1).

Fig. 1. Simplified illustration of the registration process
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2.1 Preprocessing

Images of both modalities have to be preprocessed. They are rotated to fit the
internally used coordinate system and the XRM is downsampled to match the
resolution of the MRI. An interpolation between slices is applied to the MRI
volume in order to obtain isotropic voxels. Images are segmented automatically
into background and object using a toolbox of thresholding, morphological oper-
ations, active contours, de-islanding and three-dimensional smoothing methods.
In the same fashion, fatty and glandular tissue are segmented in the MRI volume
in order to model the characteristics of these predominant structures individu-
ally. In an automatic global alignment, the amount of breast tissue imaged in
XRM and the MRI volume is matched by estimating the breast volumes based
on the segmented images.

2.2 Registration

To simulate the compression, which is applied to the breast during XRM, a
biomechanical model is generated. FEM is used for numerical solution of the
deformation process. To describe the geometry of the biomechanical model, the
segmented volume image is passed to a meshing algorithm [13] resulting in a
mesh with approximately 25,000 tetrahedral elements. Nodes at the back of the
model are held in position to model the fixation of the breast at the chest wall.

The physical behavior of the model is described by the material model and
the boundary conditions of the compression simulation. The stress-strain rela-
tionship of the breast tissue is approximated by a Neo-Hookean model using
material parameters of Wellman [14]. The stiffness parameters for fatty respec-
tively glandular tissue are assigned to each Finite Element based on the MRI
volume segmentation by a majority decision. Isotropic behavior of the material
is assumed.

The mammographic compression is mimicked by a two-step approach. Both
steps are computed using the commercial FEM package Abaqus [15]. In the
first step, compression plates are added to the simulation, which are moved
closer until the individual compression thickness is achieved. The thickness of
the breast during mammography is readout from the mammogram’s metadata.
The contact between compression plate and breast surface is assumed to undergo
only small frictions and therefore modeled in Abaqus by a small-sliding interface.

Due to uncertainties and simplifications in the biomechanical model, the cir-
cumferences of the deformed volume image and the XRM usually do not overlay
completely after the first simulation step. Therefore, in the second step, a three-
dimensional target model of the deformed configuration of the breast during
XRM is estimated on basis of the mammogram. This model is compared to the
deformed volume image derived from the first simulation step. Displacement vec-
tors between surface nodes of the FEM mesh and the target model are defined
by a nearest neighbor measure and used to describe the boundary conditions
for the second simulation step. It results in a configuration of the MRI volume
which shows congruently overlaying circumferences with the mammogram. All
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FEM simulations are solved using non linear solvers for large deformations [16].
A detailed description of the registration algorithm can be found in [6].

Variability in patient positioning and mammographic projection angle might
cause less accurate results than proposed by the original method [7]. We ap-
proximate this misregistration by iteratively rotating the MRI volume around
the anterior/posterior axis. For each rotation step, the registration process is
carried out. The optimal rotation angle is estimated by an intensity-based opti-
mization. An X-ray mimicking projection of the deformed MRI volume after the
second simulation step and the corresponding mammogram are compared using
a image similarity metric S. The registration R using rotation angle α delivering
the best value Smax is used as final result:

Smax = max(S(R(α))) (1)

2.3 Localization of a Lesion in the MRI Volume

Based on two mammograms acquired from different projection angels, the po-
sition of a point of interest can be estimated within the three-dimensional MRI
volume (Fig. 2). To retrieve the 3D position, the center point of the mammogram
lesion is mapped to the third dimension, i.e. a straight line perpendicular to the
mammogram plane is mapped into the deformed MRI volume. The deformation
field calculated by the described registration method is inverted (”decompres-
sion”), converting the line into a curve within the undeformed MRI volume.
Ideally, curves from two different mammographic projection angles intersect in
a point, which is defined as the estimated 3D center of the lesion. In case of non-
intersecting curves, the two points on both lines with the smallest Euclidean
distance, i.e. the smallest distance between the curves, is calculated. The center
position of these points is is then used as the estimated 3D center of the lesion.

3 Results

The method was evaluated by 47 datasets from clinical routine, acquired at
University Hospital of Jena, Germany. Each dataset consists of a MRI vol-
ume and the corresponding mammograms of the patient from cranio-caudal and
medio-lateral oblique projection angle. MRI volumes were acquired on 1.5T
scanners (Siemens Magnetom Symphony, Sonata and Avanto). The measure-
ment parameters followed the internal guidelines (T1-weighted spoiled gradient
echo scans, matrix size= 384× 384 pixel, slices= 33 - 44 depending on scanner,
in-plane resolution= 0.9× 0.9mm, slice thickness= 3-4mm). XRM images were
acquired digitally with a resolution of 0.094× 0.094mm.

Datasets included in this study had to depict clearly at least one lesion in the
MRI volume and both mammograms for evaluation of the registration accuracy.
Center points of theses lesions were identified by two experienced radiologists in
consensus.



Localization of Mammographically Depicted Lesions in Breast MRI 631

undeformed MRI

d
ec

om
p
re

ss
io

n

de
co

m
pr

es
sio

n

cranio caudal mammogram

oblique m
am

m
ogram artificially compressed 

MRI (cranio-caudal)

artificially compressed 

MRI (oblique)

Fig. 2. Estimation of a lesion position in the three-dimensional MRI volume based on
two mammograms from cranio-caudal respectively oblique projection angle

The registration was carried out for cranio-caudal and medio-lateral oblique
mammograms using the intensity-based optimization approach. MRI volumes
were rotated around the anterior/posterior axis in a range of −20◦ to +20◦ from
the mammographic projection angle recorded by the XRM device in order to
account for rotation of images against each other. Maximization of Normalized
Mutual Information was used as optimization criterion. Afterwards the lesion
localization within the MRI volume was carried out according to the described
method.
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Fig. 3. Histogram of the target registration error (TRE)

The target registration error (TRE) of the lesion localization within the
MRI was calculated by the three-dimensional Euclidean distance between the



632 T. Hopp and N.V. Ruiter

estimated lesion position and the annotated lesion position in the MRI volume.
The mean displacement for all 47 datasets was 14.3mm (median: 13.4mm, SD:
8.8mm). For 17 datasets (36%) the TRE was below 10mm, for 26 datasets
(55%) the TRE was below 15mm. A histogram of the TRE is illustrated in
Figure 3. The transversal MRI slice containing the center point of the marked
lesion could be estimated with an uncertainty of ±2.4 slices. Resulting images
are shown in Fig. 4.

Fig. 4. Estimation of a lesion position in the three-dimensional MRI. Volume rendering
of the MRI dataset from six patients with estimated position (black dot), marked
position (white dot) and point tracking curve from cranio-caudal (red) respectively
medio-lateral oblique (blue) mammogram.

4 Conclusion

In this work we presented a novel automated approach to localize lesions de-
picted in XRM images within a three-dimensional MRI volume. Even though
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the method is completely automated, the mean registration accuracy evaluated
by 47 datasets from clinical routine was in a clinically valuable range below
15mm. Reducing uncertainties in marking the same center of the lesion in both
modalities correctly may increase registration accuracy further. With the mean
registration accuracy presented, we believe that the method is likely to bene-
fit multimodal diagnosis. The registration accuracy is currently limited by the
pre-deformations of the datasets, which are likely to occur by patient-specific
positioning on the MRI breast coils and the XRM compression plates. Improv-
ing the algorithm to deal with the pre-deformations is subject to our current
research, e.g. extending the parameter search space of the intensity-based opti-
mization might reduce the TRE.

The presented method enables localizing small-scale structures like microcal-
cifications which are only visible in XRM within the corresponding MRI volume.
It is therefore likely to assist radiologists in combined reading. The estimated po-
sition may give hints where to have a closer look in the MRI, even in cases with a
suboptimal registration accuracy. Furthermore the method allows for evaluating
upcoming MRI protocols, which e.g. focus on the imaging of calcifications [17].
Due to the automation of the software, no manual steps have to be carried out
by radiologists. Because of the use of standard devices and standard imaging
parameters, no additional non-routine-imaging has to be carried out.
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15. Dassault Systèmes: Abaqus 6.11 Online Documentation (2011)
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Abstract. A simple protocol for routine technical quality control of digital 
breast tomosynthesis (DBT) systems of the type Hologic Selenia Dimensions 
was developed from a national protocol for FFDM systems and the manufactur-
er’s QC manual. The protocol was implemented in conjunction with a clinical 
DBT study. Analyzing test results collected over a 13 month period we found a 
100 % pass rate for the majority of tests. Some deviations were seen in dose 
level (mAs), Signal-to-Noise Ratio and for the review monitors. Based on our 
results and experiences a revised test regimen is suggested. 

Keywords: Mammography, tomosynthesis, quality control, constancy control. 

1 Introduction 

In mammography it is paramount to obtain images with sufficient image quality at 
acceptable dose levels. Quality control (QC) of the imaging equipment is among the 
tools to achieve this. In established mammography environments, such controls are 
usually divided between annual and semi-annual controls by physicists, and more 
frequent tests performed by technologists, sometimes referred to as constancy tests. 

Standard projection (conventional) mammography is considered the method of 
choice for breast cancer screening. With this technique, the three-dimensional breast 
is projected into a two-dimensional image plane, and overlaying tissue may obscure 
actual lesions. This can make the images difficult to interpret, and lead to cancers 
being missed. 

Recently, digital breast tomosynthesis (DBT) has been introduced as a breast imag-
ing alternative with a potential to reduce the problem with overlaying tissue. In DBT, 
multiple images of millimeter thickness are reconstructed from x-ray exposures made 
with the x-ray tube at a limited range of angles. 

The actual performance of DBT in a clinical environment can only be assessed 
through clinical trials. When a trial of DBT was planned in our breast screening pro-
gram, a protocol for technical quality control was also developed. The purpose of this 
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paper is to report results and experiences from the constancy control program per-
formed by the technologists, and to suggest revisions to the protocol, if indicated. 

2 Method 

The mammography x-ray units used in our study were two systems of the type Holog-
ic Selenia Dimensions (Hologic, Inc., Bedford, MA, USA). The units allow both 2D 
(full field digital mammography – FFDM) and 3D (DBT) imaging. Softcopy reading 
of mammograms was done using three dedicated workstations in separate rooms. The 
protocol developed for constancy tests included elements from the protocol used in 
our national screening program for conventional FFDM units [1] and procedures sug-
gested in the manufacturer’s QC manual for this particular system. A summary of the 
tests performed is given in Table 1, followed by a brief description of each test. 

Table 1. Summary of test items in the constancy control protocol. The following abbreviations 
are used: SP: Standard national protocol for FFDM systems. HP: Hologic protocol for Selenia 
Dimensions. Q: quantitative test assessment. S/V: subjective/visual test assessment. 

Procedure Source Frequency Evaluation 
Daily Control of AEC SP Daily Q 
Ambient Light (reading room, 
mammography lab) 

SP Daily S/V 

Monitors SP Daily S/V 
Detector Flat-Field Calibra-

tion (Gain Calibration) 
HP Weekly Q 

Artifact Evaluation HP Weekly S/V 
Phantom Image Quality Eval-

uation 
HP Weekly S/V 

Signal-To-Noise/Contrast-To-
Noise Measurements 

HP Weekly Q 

Detector Uniformity SP Weekly Q 
Diagnostic Review Worksta-
tion Quality Control 

HP, SP Weekly S/V 

Compression Thickness Indi-
cator 

HP Biweekly Q 

Unit Assembly Evaluation SP Quarterly V 
Reject Analysis HP Quarterly S/V/Q 
Geometry Calibration HP Semi-

annually 
Q 

• Daily Control of AEC: 45 mm PMMA imaged with “clinical” settings. mAs rec-
orded, mean pixel value and standard deviation determined for ROI with standard 
size and position, SNR calculated. mAs and SNR required to be within +/- 10 % of 
reference value. 

• Ambient Light: Desired conditions in reading rooms described in checklist. 
• Monitors: Quick visual assessment of the AAPM TG18 QC image, focus on ob-

vious defects like flicker, large distortions or dead pixels. 
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• Artifact Evaluation: Images of 40 mm PMMA phantom evaluated visually for the 
presence of i.e. bad pixels or sharp lines of demarcation. 2D: Images with Rh and 
Ag filter. 3D: Al filter used, projection images evaluated. 

• Phantom Image Quality Evaluation: The ACR Mammographic Accreditation Phan-
tom imaged in “combo” mode (a combined mode where a 3D acquisition is direct-
ly followed by 2D acquisition without changing the compression or positioning  
between acquisitions) with system settings. Images scored according to the 1999 
ACR Mammography Quality Control Manual. 

• Signal-To-Noise/Contrast-To-Noise measurements: SNR and CNR values com-
puted manually or automatically (our study) by the system on the image of the 
ACR phantom with a small acrylic disk. Recommended performance criteria given 
in the QC manual. 

• Detector Uniformity: Mean pixel values from ROIs placed in the center and cor-
ners of the image from the daily AEC test registered. The ROI with the largest pix-
el value deviation compared to the central ROI is determined and the percentage 
deviation calculated. The largest deviation not to exceed 10 %. 

• Diagnostic Review Workstation Quality Control: The AAPM TG18-QC test image 
loaded onto the viewing monitors from the PACS and evaluated according to a 
checklist derived from the AAPM TG18 report [2]. In addition, results from tests 
run by the application MediCal QAWeb Agent, installed on the review stations, 
confirmed to be OK or repeated if not OK.. 

• Compression thickness indicator: The ACR phantom compressed to approximately 
133 dN using the 7.5 cm spot contact compression paddle. Measured thickness 
should be within +/- 5 mm from the actual thickness. 

• Unit assembly evaluation: Performed according to checklist. 
• Reject Analysis. 

In addition, “Detector Flat-Field Calibration” and “Geometry Calibration”, two pro-
cedures described in the vendor’s QC manual, were routinely performed. Simple 
spreadsheets for recordkeeping, calculation of certain parameters, and graphic render-
ing of results were developed in MS Excel. 

3 Results 

Test data for a total of 13 months from November 2010 through December 2011 are 
included in our analyses. During this period up to 50 patients were imaged per system 
per day. A majority of these examinations were in so called “combo” mode, i.e. both 
2D and 3D mammography in the same compression. Results from the analyses of 
tests performed on the x-ray systems and review monitors are summarized in Table 2 
and Table 3 respectively. We do not report any results from the reject analysis, as 
collection of data for this procedure did not start until towards the end of the data 
collection period specified above. No data was collected for the protocol item Am-
bient Light. 

In the daily AEC test, mAs (equivalent to dose level) and signal-to-noise ratio 
(SNR) are tracked over time. For one of the x-ray systems, intentional interventions 
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by the manufacturer, like adjustment of dose level, software upgrades, and tube re-
placement, occasionally gave a shift in mAs level. These shifts are clearly visible on 
plots of mAs versus time. Other than this, mAs failed to fall within the designated 
limits a total of ten times for the two systems combined. For SNR the total number of 
failed tests was four. 

Table 2. Summary of results of tests on the x-ray units. In Daily Control of AEC, two 
parameters (mAs and SNR) are tracked. *Number of failed tests for this procedure is given as 
failed mAs tests/failed SNR tests. 

Procedure Frequency Number of tests 
performed 

Number of 
failed 
tests 

Daily Control of AEC Daily 466 10/4* 
Detector Flat-Field Calibra-

tion (Gain Calibration) 
Weekly 97 0 

Artifact Evaluation Weekly 93 0 
Phantom Image Quality Eval-

uation 
Weekly 93 0 

Signal-To-Noise/Contrast-To-
Noise Measurements 

Weekly 89 0 

Detector Uniformity Weekly 93 0 
Compression Thickness Indi-

cator 
Biweekly 53 0 

Unit Assembly Evaluation Quarterly 10 1 
Geometry Calibration Semi-annually 6 0 

Table 3. Summary of results of tests of the review station monitors 

Procedure Frequency Number of tests 
performed 

Number of 
failed tests

Percentage of 
failed tests 

Monitors Daily 110 10 9.1% 
Diagnostic Review Workstation 
Quality Control (Standard protocol) 

Weekly 74 0 0 % 

Diagnostic Review Workstation 
Quality Control (Hologic protocol) 

Weekly 71 3 4.2 % 

4 Discussion 

Among the test procedures performed on the x-ray systems, failed test results were 
only recorded for two: The Daily Control of AEC, and the Unit Assembly Evaluation. 
The one deviating test result recorded for the latter was due to the buttons on the  
gantry not working properly. One failed test result for the Daily Control of AEC pro-
cedure was due to a genuine problem which prompted a service intervention. The 
remaining failed test instances seem to be caused by random variation. 

The AEC test procedure highlighted shifts in dose level (mAs level) following in-
terventions by the manufacturer. As these interventions were not always announced, 
the test procedure contributed to alerting the technologists to when such deliberate 
changes in dose (mAs) level were made. In addition to providing daily information on 
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dose level and SNR, the daily procedure revealed a problem with the compression 
assembly. It also showed artifacts caused by a filter at an earlier stage than would 
have been the case if only relying on the weekly or bi-weekly Artifact and Compres-
sion Thickness Indicator tests. Summing up, we found the daily test of the AEC to be 
valuable, quick and easy to perform. Further, it yielded daily information about fea-
tures covered in the two above mentioned, less frequently performed, test procedures. 

The majority of the failed monitor tests (Table 3) were attributable to improper light-
ing conditions. On closer inspection, the deviating results were seen to occur in two 
separate clusters, indicating that this was a systematic rather than random problem. 

The implementation of a constancy control regimen requires time and effort on part 
of the technologists. It should therefore only include procedures that are considered 
necessary and useful. The nearly perfect pass rates for the tests performed on the x-
ray systems raises the question of whether the systems simply performed without fault 
with regard to the features tested, or if the test procedures were not sensitive enough 
to detect potential system problems. When considering answer to these questions one 
should keep in mind that constancy tests are designed to monitor the stability of the 
system performance. Our data indicates that these were indeed two x-ray systems that 
performed stably with regard to technical parameters including dose level and detec-
tor output. Close inspection of our data, and recommendations published by others, 
lead us to believe that some test procedures can be omitted or replaced, and test fre-
quencies changed. 

Artifacts and problems with the compression assembly were occasionally picked 
up by the daily test. This could indicate that a more frequent evaluation of artifacts 
and the compression assembly is warranted. We suggest to include evaluation of arti-
facts as part of the daily test, and only performing the specific procedures for Artifact 
Evaluation, and Compression Thickness Indicator as diagnostic tools if the daily arti-
fact evaluation indicates a problem might exist. 

For digital mammography, Yaffe et al. [3] recommend that routine use of the ACR 
accreditation phantom should be replaced by more discriminative tests, including 
signal-difference-to-noise ratio (SDNR), which is equivalent to contrast-to-noise ratio 
(CNR). In our study we did not record any failed test instances for the Phantom Image 
Quality Evaluation test. This supports the conclusion of Yaffe et al. We therefore 
suggest that this test is omitted. 

A weekly evaluation of CNR was included in our test regimen. The test results 
were very stable throughout the study period, thus a reduced test frequency could be 
considered. We suggest that the CNR assessment be made monthly, and after changes 
to hardware or software. Based on our results it also seems sufficient to make monthly 
assessments of detector uniformity. Feedback from the technologists leads us to sug-
gest that the quarterly Unit Assembly Evaluation be replaced by continuous registra-
tion, reporting, follow-up and repair of findings for a specifically defined selection of 
relevant system features. 

Daily test procedures were proposed both for the x-ray systems and monitors. 
Tables 2 and 3 show that the number of daily monitor tests performed is less than 50 
% of the number of daily tests on the x-ray systems. This could be a reflection of the 
fact that while the technologists were responsible for performing the tests, reading 
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rooms and monitors are mainly used by the radiologists. It could therefore be better if 
the radiologists assumed responsibility for making sure the criteria in the daily as-
sessment of ambient light and monitor quality are met. We do not propose changing 
the frequency of the daily Monitors test. However, we think the low failure rate found 
for the weekly monitor tests could warrant a reduced test frequency for these. Table 4 
show suggested test items and frequencies for a revised protocol for constancy tests. 

Table 4. Suggested test items and frequencies. Q: quantitative test assessment. S/V: 
subjective/visual test assessment. 

Procedure Frequency Evaluation 
Daily AEC, Artifact and Compression 

Assembly Evaluation 
Daily Q 

Ambient Light (reading room, mam-
mography lab) 

Daily S/V 

Monitors Daily S/V 
Detector Flat-Field Calibration (Gain 

Calibration) 
Weekly Q 

Artifact Evaluation If indicated by results 
of daily evaluation 

S/V 

Signal-To-Noise/Contrast-To-Noise 
Measurements 

Monthly; after changes 
in hard- or software 

Q 

Detector Uniformity Monthly Q 
Diagnostic Review Workstation Quali-
ty Control 

Monthly S/V 

Compression Thickness Indicator If indicated by results 
of daily evaluation 

Q 

Unit Assembly Evaluation Revised: Continuous 
registration 

V 

Reject Analysis Not evaluated in study S/V/Q 
Geometry Calibration Semi-annually Q 

 
Our study included data from one system model only. This model is designed for 

both 2D and 3D mammography. Some tests in the protocol included 3D specific ele-
ments: Artifact Evaluation (for which images with the filter only used in 3D are 
among those evaluated), Phantom Image Quality Evaluation, and Geometry Calibra-
tion. In the suggested revision of the test protocol, the evaluation of ACR phantom 
images is omitted. Based on the arguments presented above, we believe the exclusion 
of this particular test item is warranted for all 2D and 3D full field digital mammogra-
phy (FFDM) systems. With regard to routine tests for the 3D element of mammogra-
phy systems, our advice is to consult the quality control manual developed by the 
manufacturer for the system in question. Because systems differ in design, specifical-
ly tailored test procedures might be called for. 

The remaining test items are not particular to 3D systems. Experience with other 
2D system models indicates that this selection of tests and limiting values can be  
suitable for any FFDM system. For tests that are not performed daily, it might be 
advisable to investigate what the optimal test frequency is for a particular system 
before settling on a final protocol. 
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Abstract. The presence of anatomical structure in 2D mammograms and digital 
breast tomosynthesis (DBT) images impacts cancer detection. Previous work 
has shown that the low frequency range of the power spectrum (PS) of breast 
structure in mammograms can be characterized by a power law with exponent 
(β). This work reports our experience with the development of a self-similar 
phantom that produces a structured background in both 2D mammography and 
breast tomosynthesis. Theory predicts that this phantom produces a PS with 
power law exponent related to its fractal dimension. Results of a phantom with 
acrylic spheres in air and in water respectively, evaluated on a Siemens mam-
mographic system with tomosynthesis option, show power law exponents of 
2.90 and 3.18 for 2D, 2.91 and 2.45 for DBT projections and, 2.06 and 1.66 for 
DBT reconstructions. These values were within the range of the exponents 
measured in patient data. 

Keywords: 2D digital mammography, digital breast tomosynthesis, phantom, 
anatomical breast structure, power spectrum analysis. 

1 Background  

Two-dimensional (2D) digital mammography is the standard imaging modality for 
breast cancer screening and diagnostics. A major drawback of this technique is the 
projection of three-dimensional (3D) overlying tissues, a factor which 3D techniques 
such as digital breast tomosynthesis (DBT) attempt to overcome. In order to justify 
the application of this technique, performance testing of the system including an in-
vestigation of the removal or the reduction of overlying tissue is required. In contrast 
with 2D mammography, where image quality is expressed in terms of contrast thre-
sholds at specific diameters, the quality of DBT is determined by the visualization of 
details in the focal plane and its efficiency of suppressing the overlying tissue. The 
presence of a structured background surrounding the details is therefore crucial for 
performance test methods. Burgess et al investigated breast structure in radiographic 
images via power spectrum (PS) measurements and found that structure was characte-
rized by a power law of the form κ/ƒβ, where ƒ is the radial spatial frequency and β 
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2.2 Patient Dataset 

The patient dataset consisted of 50 lesion-free patient cases with 80 mammograms 
and DBT image series in cranio-caudal (CC) and/or medio-lateral oblique (MLO) 
view. Breast thickness varied between 28 and 86 mm and all density classes were 
represented. Given that our hospital only performs DBT for further investigation of 
BIRADS 3, 4 or 5 cases, requiring a diagnostic workup for an asymmetry or a sus-
pected lesion, the majority of the lesion-free breasts contained dense fibroglandular 
structures. 

2.3 Measurement of Power Spectral Density 

Power spectra were measured in 2D, DBT projections and DBT reconstruction  
images of the sphere-phantom and patients. The PS was calculated at a fixed, approx-
imately central position (x-y) within the breast for all projection images and recon-
structed planes. Square regions adapted to the size of the breast were extracted from 
the centre of the breast and records of size 128 x 128 pixels were taken from this re-
gion, overlapping by 64 pixels in both x and y directions. Records were input to a 
standard 2D PS calculation with a Hann window applied to each record. The final PS 
was the radial average of the ensemble, including the 0° and 90° spatial frequency 
axes. Normalization of the projection image PS was effected by dividing the ensemble 
by the square of the signal mean from the linearized image i.e. by (air kerma)². This 
form of normalization for x-ray signal was not applied to the PS calculated from the 
reconstructed planes as the pixel value (PV) in reconstructed planes is independent of 
dose used for the acquisition. Additionally radial averaged PS were compared with PS 
calculated in both horizontal and vertical direction in the reconstructed planes since 
radial non-isotropy was noted in the majority of the reconstructed breast images. Dif-
ferent spatial frequency ranges have been proposed for the curve fit from which β is 
determined [1, 6-7]; a typical range of 0.2 to 0.7 mm-1 was used for both the patient 
images and the sphere-phantom in this study. A least squares method was used for the 
curve fit. 

2.4 Mean Glandular Dose Calculation 

Mean glandular dose (MGD) was calculated using Dance’s method [8]: 

 MGD = Kgcs 

where K is the incident air kerma at the upper surface of the breast, measured without 
backscatter, g is the incident air kerma to mean glandular dose conversion factor (the 
g-factor corresponds to a glandularity of 50%), the factor c corrects for any difference 
in breast composition from 50% glandularity and the factor s corrects for the x-ray 
spectrum used. 



 Design and Evaluation of a Phantom with Structured Background 645 

 

3 Results and Discussion 

3.1 Reproducibility of Power Law Exponents in Sphere-Phantom  

Short and long term reproducibility of the power law exponents of the ‘sphere-
phantom with air’ background was tested by scanning the phantom multiple times on 
different days while shaking the phantom between each image acquisition. Shaking 
was done to ensure that the smallest spheres did not remain on the bottom of the 
phantom, limiting the self-similarity and introducing bias to the PS calculations. As 
the spheres were free to move inside the phantom, the background changed slightly 
but remained unchanged in terms of ensemble statistics. Short term reproducibility of 
power law exponents was assessed with the coefficient of variation (COV); mean 
COVs were 6%, 5% and 9% for 2D, DBT projections and reconstructed images re-
spectively. Long term variations were slightly higher, with a COV from 4% to 13%. 

3.2 Measurement of Power Law Characteristics in Phantom and Patient Images 

In order to validate the structure in the sphere-phantom for mammographic purposes, 
we compared its PS results and power law exponents with those from patient breast 
images. The frequency region of the PS, expected to follow a power law characteris-
tic, is delimited by the largest and smallest diameters of the spheres in the phantom 
[4]. These frequencies cover almost the complete range that was used for the fitting, 
namely from 0.06 to 0.63 mm-1. In figure 2a, log(PS) plots of patient data (grey 
curves) are shown, together with the curve of an acquisition of the ‘sphere-phantom 
with air’ (black curve, squares), the ‘sphere-phantom with water’ (black curve, dots) 
and a homogeneous PMMA phantom of 4 cm thickness (black curve, triangles) for 
2D mammography images. Additionally, figure 2b illustrates the log(PS) of the DBT 
central projection images. The patient and sphere-phantom PS curves are reasonably 
parallel, suggesting some agreement in texture in the images, however the noise mag-
nitude is higher in the phantom with spheres in air. This can be due to the higher at-
tenuation differences between acrylic spheres and air and therefore higher contrast in 
the images, increasing the noise magnitude. Another reason for the difference in noise 
magnitude is the lower AEC controlled dose for the ‘spheres in air phantom’ when 
compared to the ‘spheres in water phantom’. As a reference, the figure also includes 
the analysis performed on homogenous PMMA. The flat region of the PS curve of the 
PMMA phantom extends down to approximately 0.5 mm-1, probably due to absence 
of structure in the PMMA test object. Figure 2c shows the un-normalized PS curves 
of the central reconstructed planes of patients, the sphere-phantoms and PMMA. The 
difference in noise magnitude between that for the sphere-phantom with air and those 
of the patients is reduced when compared to the projection images and this may be 
due to a global reduction in image contrast by the reconstruction algorithm. The PS 
curve for PMMA increases as a function of spatial frequency (until ~2mm-1).  
This is more obvious with this radially averaged PS than in a 0° or 90° power spec-
trum (results not shown) since this increase of power is only seen in tube-travel  
direction; greater non-isotropy will be seen in images of homogeneous objects as this 
object-type clearly shows the influence of the various filters used in the reconstruction 
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[9]. The texture is mainly characterized by the power law exponent; exponents are 
tabulated in table 1, where power law exponents for 2D and DBT patient and phantom 
images can be compared. 

 

Fig. 2. Power spectrum curves for (a) 2D projection mammography, (b) DBT central projection 
images and (c) DBT central reconstructed planes. Data are shown for patients (grey curves), 
sphere-phantom with air (black curve, squares), sphere-phantom with water (black curve, dots) 
and homogeneous PMMA (black curve, triangles). 

Table 1. Power law exponents of 2D and DBT images of patients and sphere-phantoms 

  2D DBT projection DBT reconstruction 

 Patients 
Spheres 

in air 
Spheres 
in water 

Patients 
Spheres 

in air 
Spheres 
in water 

Patients 
Spheres 

in air 

Spheres 
in 

 water 

min 2.63 2.61 2.93 2.09 2.71 2.22 1.11 1.06 1.49 
max 3.94 3.34 3.48 3.45 3.26 2.72 3.23 2.55 1.76 
mean 3.37 2.90 3.18 2.92 2.91 2.45 2.41 2.06 1.66 
stdev 0.29 0.22 0.18 0.34 0.17 0.23 0.41 0.29 0.09 

3.3 Radial (an)isotropy in Power Spectrum Analysis 

Potential radial (an)isotropy in the low frequency range of the PS of structured back-
grounds was further investigated. Since horizontal (chest wall-nipple direction) and 
vertical (tube-travel direction) PS are different for reconstructed planes, the radial 
average for each plane is not a correct or complete representation of the PS. This  

a

c

b
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Table 2. Power law exponents of radial averaged PS and, horizontal and vertical PS separately 
for a subset of ten patients compared to the phantom with spheres in air and in water 

 Radial Horizontal Vertical 
Patients 2.41 1.68 1.35 

Spheres in air 1.88 2.12 1.75 
Spheres in water 1.92 1.45 1.17 

3.4 Phantom and Patient Dosimetry 

Testing of clinical performance of 2D digital mammography and DBT systems in-
cludes the investigation of the mean glandular dose (MGD). In order to produce a 
clinically relevant test object, the dose of the phantom should be similar to patient 
doses. Phantom doses with air were 1.1 mGy and 1.7 mGy for 2D and DBT respec-
tively and, 1.9 mGy and 3.1 mGy for the phantom filled with water. The results of the 
sphere-phantom with air are in good agreement with patient doses of our dataset (av-
erage: 1.0 mGy and 1.6 mGy) for a breast equivalent thickness of 75 mm, assuming 
that the sphere-phantom and PMMA thickness of 60mm can be treated the same and 
are equivalent to 75mm of compressed breast (Figure 5). 

 

Fig. 5. Mean glandular doses (MGD) of sphere-phantom filled with air exposures are in good 
agreement with 2D and DBT patient doses of the dataset. Doses of the phantom filled with 
water are significantly higher compared to patient doses. 

4 Conclusion 

Development of three-dimensional techniques in breast imaging have increased the 
need for a more clinically relevant phantom with structures that simulate breast anat-
omy in three dimensions. Many physical phantoms have been developed for 2D 
mammography, usually embedding details in a homogeneous background or possibly 
with a thin layer of two-dimensional structure projected on top of the details. Compu-
terized Imaging Reference Systems (CIRS), Incorporated (Virginia, USA), have  
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produced a phantom with lesions that vary in size embedded within a breast tissue 
equivalent, complex, heterogeneous background, showing a swirl pattern. Recently, 
Park et al have developed a physical phantom with spheres of different sizes and den-
sities for simulating tissue compositions and textures similar to those of the breast for 
testing performance [12]. However, evidencing clinical relevance of these back-
grounds is more difficult. The proposed phantom in this paper does not aim for an 
exact simulation of anatomical breast structures. However, the relative position of the 
PS curves of the sphere-phantom with air and with water to the patient curves,  
expressed also by overlapping confidence intervals of the power law exponents, sug-
gests the viability of the sphere-phantom as a 3D heterogeneous background: the self-
similar spheres background mimics the texture and the statistical properties of the 
power spectrum of patient breast images in low frequencies. As the phantom allows 
the insertion of target details simulating microcalcifications, fibrils or masses, it is a 
potential candidate for close-to-clinically relevant detection tasks for 2D and (pseudo) 
3D breast imaging. 
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Abstract. There are two basic tomosynthesis data acquisition modes: step-and-
shoot. Most experimental research on tomosynthesis has been done using com-
mercial breast tomosynthesis systems, which can operate in only a single mode, 
either step-and-shoot or continuous motion. Thus the only studies that have 
been done to compare these two imaging modes for otherwise identical systems 
have been simulation studies. In this paper we describe a versatile, bench-top 
3D breast imaging system that can acquire tomosynthesis data using either 
mode. Preliminary experimental studies of in-plane blur and artifact propaga-
tion using different acquisition protocols are discussed. Our initial results indi-
cate that, noticeable difference was observed in system MTF from projection 
views between step-and-shoot mode and continuous motion mode while there 
was little difference in other measures from reconstruction slices. This system 
provides great flexibility for studying breast imaging and image quality under 
different acquisition protocols. 

Keywords: breast tomosynthesis, step-and-shoot, continuous motion, angular 
sampling protocol.  

1 Introduction 

For the past few decades, 2D mammography has been the accepted imaging modality 
for breast cancer screening. However, due to the nature of 2D projection imaging, 
mammography has limitations in both sensitivity and specificity that are thought to be 
caused at least in part by the effects of superimposed normal breast structures.[1] 
Volumetric techniques such as tomosynthesis, because they reduce or remove the 
superimposition of tissue structures, may improve the ability to distinguish malignant 
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lesions from normal structures. They may also improve the specificity of cancer diag-
nosis by revealing features that distinguish malignant from benign lesions. 

Currently there are two available acquisition modes for x-ray tube motion during 
tomosynthesis data acquisition: step-and-shoot and continuous motion. While much 
research effort has been directed to acquisition mode, geometry optimization, detector 
performance and reconstruction algorithms, [1-5] most studies have been based on 
commercial breast tomosynthesis systems, which, to the authors’ knowledge, use 
either step-and-shoot or continuous motion, but not both. Researchers have studied 
the differences between the two modes, but due to the lack of an experimental imag-
ing system capable of acquiring data in both modes, these studies have been limited to 
simulation investigations.[6]  

Previously, we reported on the development of a flexible 3D breast imaging system 
using step-and-shoot mode, and included some sample images.[7] This paper de-
scribes the current status of this system, which can now perform tomosynthesis acqui-
sition in both step-and-shoot and continuous motion modes. With this system we have 
conducted a preliminary experimental comparison of in-plane blur and the propaga-
tion of reconstruction artifacts generated by signals in the focal plane to off-focus 
planes, for both acquisition modes.  

2 Materials and Methods 

The system consists of three major components: x-ray source, motion control sys-
tem, and image acquisition system. The x-ray source has a changeable configuration 
of high voltage generator and x-ray tube. In our breast tomosynthesis studies, a 
Varian RAD71SP mammography tube (Varian, Inc., Palo Alto, CA) with tungsten 
target, Be window, and both 0.1 mm and 0.3 mm focal spots is used in combination 
with a Sedcal SHF-1030-M mammographic x-ray generator (Sedecal USA, Inc., 
Buffalo Grove, IL). The system can also operate with a general-purpose radiograph-
ic generator and x-ray tube capable of producing x-ray spectra suitable for breast 
CT.  

The motion control system provides the geometry and acquisition mode versatili-
ty. It comprises three rotary stages (axes 5, 6 and 7 in Figure 1) and four linear 
stages (axes 1, 2, 3 and 4 in Figure 1), all driven by stepper motors and controlled 
by a “6k Compumotor” motion controller (Parker Hannifin Corp., Rohnert Park, 
CA).  
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Fig. 1. Schematic diagram of the 3D breast imaging system. The in-plane direction normal to 
the direction of motion is perpendicular to the plane of the diagram. 

The image acquisition system is a flat-panel x-ray detector (Pixium 4343RF, 
Thales USA, Inc., Arlington, VA). The detector has a 2880×2881 pixel array with 148 
µm pixels. The hardware components have been integrated with custom control cir-
cuitry and a LabVIEW software user interface. The software also handles automatic 
image transfer and storage in the control workstation (Dell Precision T3400 running 
Microsoft Windows Vista OS).  

To investigate the impact on image quality of the tube motion, pre-sampled MTFs 
were calculated for both acquisition modes from images of a 0.001 inch silver edge 
placed about 50mm away from the detector. Images were acquired at 28kV with 1 
mm Al added filtration. The exposure time was 400 ms, the tube current was 25 mA, 
and the 0.1 mm focal spot was used. The tangential velocity of the focal spot was 10 
mm/sec in continuous motion mode. Images were acquired at the 0 degree position 
with the pivot 70 mm from the detector and radius of the tube arc 605 mm. 

In order to compare in-plane object blur and artifact propagation into different  
reconstruction planes for the two tomosynthesis acquisition modes, a customized 
phantom with uniform background was used. The phantom consists of the wax insert 
from an ACR phantom, sandwiched between layers of epoxy-based material simulat-
ing 50% glandular and 50% adipose breast-tissue (CIRS, Norfolk, VA). The thickness 
of the phantom was 42.94 mm with the wax insert located approximately 15.65 mm 
from the front surface (facing the x-ray source) and 19.93 mm from the back surface 
(facing detector). The back surface of the phantom was 15 mm away from the  
detector. 
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In order to minimize the effects of quantum noise, a relatively high x-ray exposure 
level was used to image the phantom. The x-ray projection acquisition parameters 
were 28 kVp, 1 mm Al added filtration, 400 ms exposure time and 125 mA tube cur-
rent. The 0.3 mm focal spot was used. The tangential speed for x-ray tube motion was 
10 mm/s in the continuous motion acquisition mode. This combination of tube veloci-
ty and exposure time produces a focal spot displacement of 4 mm during each projec-
tion image exposure. 

Using the flexibility of the system, we varied geometric parameters to explore their 
impacts on image quality. As a preliminary study, the distance from pivot (center of 
the tube’s circular trajectory) to detector surface was varied from 0 to 70 mm. All 
other geometric parameters were kept constant, for both step-and-shoot mode and 
continuous motion modes. The detector to object center distance (DOD) was 36.5 
mm. The distance between x-ray source and pivot was 675 mm. Three sets of 11 pro-
jection views were acquired with 15°, 30° and 60° angle spans for each acquisition 
mode. The projection data sets were reconstructed with a SART algorithm[8] with 1 
mm slice thickness and 148 µm in-plane pixel size. 

3 Results and Discussion 

Pre-sampled MTF was calculated from the center (0°) projection view for both step 
and shoot mode and continuous motion mode. From Figure 2, the degradation of MTF 
from the continuous tube motion scheme was clearly demonstrated. 

 

Fig. 2. Pre-sampled MTFs for step-and-shoot mode and continuous motion mode 

Reconstructed data sets were analyzed using methods similar to some of the  
methods described by Zhang et al[3]. In order to investigate the impact on in-plane 
image quality of different tube motion modes, we analyzed the blur of the top micro-
calcification from the smallest speck group that could be clearly visualized (0.32 mm) 
in the phantom with all those different imaging geometries.  
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Fig. 3. Pivot-to-detector distance is 70mm: (a) The in-plane spread for the micro-calcification 
along the tube-motion direction. (b) The in-plane spread for the micro-calcification normal to 
the tube-motion direction. (c) and (d) is for the pivot on detector case. 
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4 Conclusion 

We have described a bench-top 3D breast imaging system that is capable of acquiring 
tomosynthesis data in both step-and-shoot and continuous motion mode. A prelimi-
nary experimental study using this system to compare in-plane blur and artifact prop-
agation for the two acquisition modes has been presented. From the pre-sampled MTF 
measurements, a degradation of spatial resolution from continuous tube motion was 
clearly shown, however results from reconstructed slices show little difference be-
tween the two modes for both in-plane blurring and artifact spread, for the conditions 
studied, which might be attributed to the inaccuracies in geometry calibration and the 
induced reconstruction blur.  
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Abstract. We previously developed a dynamic 4D anthropomorphic breast 
phantom, which can be used to optimize contrast-based breast imaging systems, 
accounting for patient variability and contrast kinetics [1]. In this study we aim 
to compare the performance of contrast-enhanced mammographic and tomosyn-
thesis imaging protocols followed by temporal subtraction and dual-energy  
subtraction, qualitatively and quantitatively across a couple of patient models. 
Signal-difference-to-noise ratio (SDNR) is measured for the six paradigms of 
contrast enhanced, temporally subtracted, and dual-energy subtracted mammo-
graphy and tomosynthesis and compared. The results show how the perfor-
mance is more dependent on the breast model in mammography than in  
tomosynthesis. Also, it is observed that dual-energy subtraction can be benefi-
cial in mammography, whereas it is not advantageous in tomosynthesis. Lastly, 
the results suggest that temporal subtraction in general outperforms dual-energy 
subtraction.    

Keywords: Virtual Breast Model, Anthropomorphic Breast Model, Tomosynthe-
sis, Mammography, Dual-energy Subtraction, Temporal Subtraction. 

1 Introduction 

The increased blood supply requirements of malignancies and hence the process of 
angiogenesis have motivated the application of contrast agents to increase lesion con-
spicuity. To further augment the lesion visibility, post-processing contrast enhance-
ment techniques have been introduced that involve multiple acquisitions before and/or 
after administration of the contrast agent at one or more energies. In the particular 
case of x-ray imaging, contrast agents are usually iodine-based solutions that are in-
jected to the patient at a rate of 1 ml/kg of patient’s weight.  
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One contrast enhancement technique is temporal subtraction, which involves ac-
quiring images before and after the administration of the contrast agent and then sub-
tracting them. The principal behind this technique is the fact that after administration 
of the contrast agent, the areas with most blood infusion show the highest contrast. 
Hence, when the two images are subtracted most of the anatomy is subtracted out and 
the malignant lesions that have blood pooling around them will be what remain.  

Another contrast enhancement technique, dual-energy subtraction, involves acquir-
ing images after the administration of the contrast agent at energies below and above 
the k-edge of iodine, which happens at 33.2 keV. At the higher energy acquisition, 
areas with most blood infusion will result in highest attenuation and hence highest 
contrast. Therefore, if the two images are subtracted, most of the anatomy could can-
cel out and malignancies could remain visible.   

In order to design and optimize breast imaging systems that involve contrast  
enhancement there are many questions that need to be answered. First, the optimal 
enhancement technique needs to be selected. Next, beam parameters such as the ener-
gies and filters to be used need to be optimized. Also, system timing should be studied 
and optimized. Furthermore, issues such as patient motion, contrast kinetics, and an-
gulation mismatch, which can affect the performance should also be considered.  

In a previous study we presented a suite of 4D dynamic anthropomorphic breast 
phantoms for contrast-based breast imaging, which are capable of modeling patient 
variability and kinetics of contrast agent uptake in the breast [1]. In the present study 
we incorporate these phantoms in order to compare temporal and dual-energy subtrac-
tions in contrast-enhanced breast imaging, specifically mammography and tomosyn-
thesis. The present study is specifically different from [1] in a few ways. The focus of 
the current work is on the application of the phantoms in imaging system optimization 
rather than the development of the phantoms themselves. The present work targets six 
more clinically relevant imaging paradigms and carefully compares them numerically. 
Furthermore, two patient-based models are used for inferring the conclusions rather 
than just one patient-based model to represent a wider range of patients. As a result, 
very interesting conclusions have been possible.    

2 Methods 

There have been studies on the performance of contrast-enhanced breast imaging 
techniques incorporating physical phantoms or real patients. However, these studies 
were mainly limited to one patient model and rarely incorporated the kinetics of con-
trast agent uptake in the breast tissues, which are essential in extension of the results 
of such studies.   

In this study, we adopt our 4D dynamic anthropomorphic breast phantoms to eva-
luate the contrast enhancement techniques. The phantoms are based on denoised, 
scatter-corrected, and segmented real-patient dedicated breast CT data [3-4]. The 
phantoms were further equipped by modeling contrast uptake kinetics in normal tis-
sue, benign and malignant lesions to accommodate studies involving contrast agents 
over a wide range of patients. We essentially aim to compare temporal subtraction 
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and dual-energy subtraction in both mammography and tomosynthesis. We assume 
typical low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) acquisitions. 
Contrast-enhanced low-energy mammography and tomosynthesis, temporally sub-
tracted low-energy mammography and tomosynthesis, and dual-energy subtracted 
mammography and tomosynthesis amount to a total of six imaging paradigms to be 
compared. 

 

 
a. b. 

Fig. 1. A slice through the mid-depth of the 44% dense (a) and 28% dense (b) breast models. 
The grey levels are representative of tissue density 

A 28% dense and a 44% dense breast model were picked from the family of breast 
models for this study to present a wide majority of patients with denser breasts (Fig. 
1). Each breast model was compressed to 50% of its thickness. Six lesions were then 
added to these models at the mid-depth of the compressed volumes. The same lesion 
model as in [2] was used.      

A ray-tracing algorithm simulates projection images, where we include x-ray 
source spectrum and the geometry of a prototype MAMMOMAT Inspiration tomo-
synthesis unit (Siemens, Erlangen, Germany). When operating in tomosynthesis 
mode, 25 images are acquired over a 50° arc centered at the normal position of the x-
ray tube to the detector. A filtered back-projection algorithm is then used to recon-
struct these images into the compressed breast volume.       

The 4D breast phantom enables the simulation of temporal subtraction at arbitrary 
time points. The breast model at T0 is considered as the pre-contrast instance (Fig. 2). 
For the purpose of this study we consider T1 as the post-contrast instance. Temporal 
subtraction is performed by subtracting the images at T0 from images at T1. Dual-
energy subtraction on the other hand is performed by subtracting the weighted norma-
lized low-energy image at T1 from the normalized high-energy image at T1. The 
weighting factor is empirically optimized to result in best anatomical noise cancella-
tion according to measured signal-difference-to-noise ratio (SDNR) values.  

Numerical comparison of the six paradigms was done by calculating SDNR as a 
first-order figure of merit. A circular region of interest (ROI) was selected inside each 
lesion. Signal was measured by taking the average of the mean values of ROI’s in all 
the lesions. A number of circular ROI’s were selected in the background (internal 
areas of the breast farther from the edges and excluding the lesions). Noise was meas-
ured by taking the average of the mean values of the ROI’s in the background.  
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The difference between the signal and noise was divided by the standard deviation of 
the mean values of the ROI’s in the background. We did not include quantum noise or 
scattering in this first trial of our phantoms. 

 

Fig. 2. Contrast agent concentration over time for each type of enhancement pattern: Type II 
and III patterns are suggestive of malignancy, while lesions following a Type I pattern are 
mostly benign 

3 Results and Discussion 

Here we present the results of temporal subtraction and dual-energy subtraction simu-
lations applied to a 28% dense and a 44% dense breast model with six lesions inserted 
in the mid-plane. Fig. 3 shows contrast-enhanced low-energy mammography, tempo-
rally subtracted mammography, and dual-energy subtracted mammography on the 
28% dense and 44% dense models respectively.  Fig. 4 shows the slice through mid-
depth of the reconstructed breast volume acquired by contrast-enhanced low-energy 
tomosynthesis, temporally subtracted tomosynthesis, and dual-energy subtracted to-
mosynthesis on the 28% dense and 44% dense models respectively. Lastly, the meas-
ured SDNR values for all examined acquisition paradigms are shown in Fig. 5 for 
comparison. 

It is observed in Fig. 3 and 4 that the performance is more dependent on the breast 
model in mammography compared to tomosynthesis in general, which is expected 
due to the 3D nature of tomosynthesis. As presented in Fig. 5, in mammography, as a 
result of temporal subtraction, we evaluated about 10-fold increase in SDNR in a 
denser breast, compared to about 4-fold increase in a less dense breast. In tomosyn-
thesis on the other hand, the same 4-fold increase is observed in the two breast  
models.  
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Fig. 5. Measured SDNR values for contrast-enhanced low-energy (LE, T1), temporally sub-
tracted low-energy (LE, TS), and dual-energy (DE, T1) mammography (left) and tomosynthesis 
(right) applied to the 28% dense and 44% dense breast models 

Both dual-energy subtraction and tomosynthesis are techniques to reduce anatomic 
noise. The results presented in Fig. 5 suggest that in tomosynthesis, dual-energy sub-
traction is in fact not advantageous due to the inherent noise enhancement in dual-
energy subtraction; SDNR was decreased on average by 10%. On the other hand, 
mammography, which does not have the luxury of tomosynthesis’s 3D nature, can 
benefit from dual-energy subtraction; SDNR was increased on average by 56%.  

Finally, the results in Fig. 3 and 4. show that temporal subtraction tends to outper-
form dual-energy subtraction in general. As presented in Fig. 5, on average, temporal 
subtraction provided a 7-fold increase in SDNR in mammography and a 4-fold in-
crease in SDNR in tomosynthesis. This can be explained by the fact that in temporal 
subtraction the difference between absence and presence of contrast agent is being 
captured, while in dual-energy subtraction only the differential absorption of the con-
trast-agent at two different energies is being captured. It is observed that due to the 
absorption of contrast agent in normal breast tissue as well as the malignancies, there 
is more anatomical noise present in dual-energy subtraction. 

4 Conclusion 

In this paper we attempted to answer the question of whether to perform temporal 
subtraction or dual-energy subtraction in contrast-based breast imaging. Our approach 
to this problem was to employ the newly developed 4D dynamic anthropomorphic 
breast phantoms and simulate six imaging paradigms: contrast-enhanced low-energy 
mammography and tomosynthesis, temporally subtracted low-energy mammography 
and tomosynthesis, and dual-energy subtracted mammography and tomosynthesis. 
The results suggested that temporal subtraction in general outperforms dual-energy 
subtraction. In future, we aim to increase the number of breast models used to 
represent a wider population. Furthermore, we can investigate the effects of timing, 
patient motion, and weighting factor optimization into the final results.   
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[2] observed a diagnostic accuracy for mammography in high-risk women of 0.78 
(95% CI, 0.67-0.87) that increased to 0.91 (95% CI, 0.84-0.96) for mammography 
with expert hand held ultrasound. We propose that automated 3D ultrasound imaging 
[3, 4, 5] can contribute to breast cancer screening [6], particularly for younger women 
and women with dense breasts for whom mammography is less sensitive [7]. 

We have developed a technique to image the breast from both sides in the mam-
mographic geometry to retain the resolution of high frequency ultrasound. This tech-
nique is known as dual sided or opposed view imaging, OVI (see Fig. 1, and [8]). 
OVI is a viable technique for better quality images formed by registering and fusing 
opposite views since less depth penetration is needed. This allows for the use of high-
er frequencies that provide finer resolution, an aid to observation of tumor margins, 
micro-calcifications and improved characterization of internal contents.  

2 Materials and Methods 

To eventually achieve successful registration of dual-sided in vivo images, we con-
ducted early experiments with the simpler, reproducible case of a breast-mimicking 
phantom containing 39 lesions in all, 21 of which simulate cancers and 18 of which 
simulate cysts. These lesions produce realistic artifacts and provide contrast detecta-
bility. Our first goal was the automated detection and removal of artifacts such as 
shadows that would impede registration. Shadow detection on breast ultrasound was 
attempted before by Drukker et al. [9] using a nonlinear filtering technique. Machine 
learning was our choice since it has been used with considerable success for identify-
ing suspicious masses on ultrasound images [10, 11]. 

2.1 Machine Learning for Image ROI Classification 

Machine learning classifiers were used to classify image regions in the bottom half of 
the ultrasound images, which is the region of overlap between opposed views, into 
useful and less useful information for image fusion and registration purposes. The 
classifiers we selected were support vector machines (SVMs) and Artificial Neural 
Networks (ANNs). See [12, 13]. In order to train our classifiers, the phantom image 
regions of interest (ROIs) were manually labeled. Data was decompressed prior to 
feature extraction and ROIs were proportionately distributed amongst training, testing 
and validation sets. First order image statistics of overlying image pixel columns were 
sufficient features for the SVM and ANN. Six features were extracted: mean and 
standard deviation of the ROI itself and two ROIs above it. The SVM used a linear 
kernel, and the ANN used 20 neurons in a feed-forward network with one hidden 
layer. The procedure is described in full in [8]. 

2.2 Non-linear Registration of Opposed View Phantom Images 

After segmenting the image with our classifiers, registration was performed with mu-
tual information for automatic multimodality image fusion (MIAMI FuseTM, Univer-
sity of Michigan) non-rigid 3D registration [14] on the AVS platform (Advanced 
Visual Systems, Waltham, MA) [15]. This technique is based on the mutual informa-
tion objective function (see Equation 1) and thin plate spline interpolation [16]. 
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An example of fused images from the phantom is in Fig. 4. Note the improvement 
in visibility of underlying lesions in Fig. 4(b). However, resolution is lost on the fila-
ments seen in cross section on a line down the center. The averaging of data from 
both views causes blurred or even duplicate target points due to registration error or 
imperfect focusing in either image. 

4 Conclusions 

Machine learning classifiers accurately identified regions of corrupted data on a 
breast-mimicking phantom. Registration of opposed view image volumes after seg-
mentation was less vulnerable to error when using the non-linear thin-plate spline 
warping alignment technique. 
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Abstract. This study investigates the effectiveness of CAD for low-conspicuity 
malignant lesions that are subtle and sometimes missed in conventional analy-
sis. 280 malignant cases were retrospectively reviewed by a non-blinded radiol-
ogist, who identified 676 findings. A conspicuity score was assigned to each 
finding on each view, and 171 findings were of low conspicuity. CAD sensitivi-
ty of a prototype CAD algorithm (Siemens), for the high-conspicuity findings 
was 91.5%. The sensitivity for the 67 cases with low-conspicuity findings in 
both views (65.7%) was considerably higher than that reported for similar cases 
in conventional interpretation (40.2%). For the 2688 normal cases, CAD gener-
ated 1.24 false marks per case. CAD sensitivity for low-conspicuity findings did 
not significantly depend on breast density, and was significantly better for non-
invasive lesions and for masses in younger women. Thus, CAD should be most 
beneficial for avoiding oversight of low-conspicuity breast cancers, particularly 
non-invasive lesions and masses in younger women. 

Keywords: CAD, screening mammography, FFDM, low-conspicuity findings. 

1 Introduction  

Computer Aided Detection (CAD) has been described as useful for avoiding  
oversights in mammography due to distraction or fatigue. It is expected that CAD 
should also assist the novice to detect more subtle lesions and even allow experts to 
detect lesions in earlier stages. Studies have provided conflicting results regarding the 
usefulness of CAD, some showing improved cancer detection [1, 2] while others re-
porting decreased specificity [3].  

While CAD is impressive technology, its current intended use in mammography is 
as a “second reader”, after a conventional interpretation of the mammogram without 
CAD assistance, has been completed. Thus, it is irrelevant whether CAD is able to 
detect a lesion which has been detected in the initial, conventional interpretation. 
However, it is essential that CAD should detect a cancer missed in the conventional 
evaluation. It is also important that, ultimately, in the final phase of the CAD-assisted 
interpretation, the reader accepts the true CAD prompt. The lower the false mark 
(FM) rate, the higher the likelihood of the reader to accept the CAD marks for the less 
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conspicuous malignant lesions which are more subtle, and often do not have the  
typical malignant characteristics. Therefore, the sensitivity of the CAD algorithm for 
low-conspicuity findings, as well as the FM rate of the CAD algorithm should be 
investigated. To our knowledge, no published study has described the usefulness of 
CAD in detecting subtle, low-conspicuity findings that are occasionally missed in 
conventional interpretation.   

Since no added value of CAD is expected for highly conspicuous lesions, CAD 
performance could be most beneficial for lesions with low conspicuity. The current 
study was designed to evaluate the prevalence of low-conspicuity malignant findings 
and the CAD performance on these findings by lesion type, breast density, histopa-
thology and patient age.  

2 Material and Methods  

2.1 Case Acquisition and Review  

Two thousand nine hundred and eighty-six Full Field Digital Mammography (FFDM) 
cases were culled retrospectively from 6 screening facilities. Two hundred and eighty 
of the cases were pathology proven cancers, including 186 cases with mass lesions 
and 94 cases with clusters and the remaining 2706 cases were normal. Both the ma-
lignant cases and the normal cases were collected in a consecutive manner, 

All the malignant cases were retrospectively reviewed by a non-blinded expert ra-
diologist with more than 30 years of experience in mammography. The radiologist 
examined the 4 standard views of each case and identified, on a per-view basis, a total 
of 676 findings which correlated with the pathology reports (477 masses and 199 
clusters). The pathology codes, the patient age and the breast density for the patholo-
gy proven malignant cases were also recorded. BI-RADS breast density categories 1 
and 2 were considered “non-dense” breast composition, while categories 3 and 4 were 
considered “dense” breast composition. 

2.2 Analysis of Conspicuity  

This study evaluates the CAD performance on low-conspicuity findings which are 
challenging for conventional interpretation. In order to identify the low-conspicuity 
findings, the conspicuity of each finding in each view was assessed. The conspicuity 
of mass findings depends on the density of the lesion, its contrast compared to the 
surrounding tissue, its shape, its margins and the presence of architectural distortion 
or asymmetry. Although it would seem that smaller masses should be less conspi-
cuous, lesion size was not included among the factors affecting the conspicuity of a 
mass lesion. However, the conspicuity of the mass lesions was evaluated as a function 
of lesion size. The conspicuity of a cluster depends on the brightness of the calcifica-
tions, the contrast of the calcifications compared to the background, the size of the 
calcifications, and their individual shape.  Based on these parameters, each finding 
was assigned a conspicuity score, using a five-point scale. This score was assigned 
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separately to each finding for each view, since the conspicuity of a finding may differ 
from one view to the other.  The distribution of the 477 mass findings and the 199 
clusters was evaluated by the conspicuity score. Findings with a score of 1-3 were 
considered to be of low conspicuity, while those with a score of 4-5 were considered 
to be of high conspicuity.  

Of the 676 malignant findings analyzed per view, 171 were found to be of low 
conspicuity, including 118 masses and 53 clusters. Of the 171 findings with low con-
spicuity per view, 126 were invasive ductal carcinoma, 16 were invasive lobular car-
cinoma, 12 were ductal carcinomas in-situ and for 17 findings only cytology results 
were available. In 67 of the 280 malignant cases, the findings were of low conspicuity 
in both views (45 masses, 22 clusters).  

2.3 CAD Methodology 

All the cases were run with a prototype CAD algorithm (Siemens)1.The CAD algo-
rithm was designed to detect and mark suspicious findings on standard FFDM views. 
The algorithm is intended to diminish oversights by bringing the CAD marks to the 
attention of the radiologist after the initial reading has been completed. As described 
elsewhere [4], the system consists of two separate algorithms, one for detecting 
masses and the other for detecting micro-calcifications. A large library of digital 
mammograms was used to train and optimize the performance of the algorithms in 
order to detect the suspicious findings while minimizing the generation of false 
marks. The 2986 cases analyzed in the present study were “unseen cases” and none of 
them, had been used for the training of the algorithms.    

The CAD algorithm initially performs a very sensitive detection process in order to 
generate candidates for any potentially malignant finding. Then, for each candidate, 
the algorithm extracts quantitative features, which characterize the potential finding 
and its surrounding tissue. Based on this characterization, the algorithm automatically 
assigns each candidate a level of suspicion. Then, a threshold is applied to the levels 
of suspicion [5] and each candidate with a level below the threshold is filtered out. 
The filtering process decreases the number of CAD false marks, which distract the 
radiologist and decrease the likelihood of accepting the true CAD marks. After filter-
ing, only the most suspicious findings are marked by CAD and displayed on the 
mammogram.                             

2.4 Statistical Analysis 

A lesion was considered detected by CAD, if it was correctly marked by the algorithm 
on at least one of the views. The overall sensitivity of the CAD algorithm was calcu-
lated as the ratio of the cases with detected lesions to the total number of malignant 
cases. Each CAD mark on a normal case was considered false. The FM rate for the 
normal cases was calculated as the ratio of the number of marks to the total number of 
normal cases.  

                                                           
1  Not for sale in the US. 
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The performance of the CAD algorithm for the 67 cases with findings of low-
conspicuity in both views was evaluated by lesion type and breast density. The CAD 
performance by age and by histopathology, for the 171 low-conspicuity findings, was 
evaluated per finding per view, rather than per case, due to the limited sample size in 
each of these subgroups. Statistical significance was determined by Student's t-test, 
assuming unequal variances, with one-tailed  p-values. 

3 Results   

3.1 The Relationship between the Conspicuity and Size of Findings 

Figure 1 displays the distribution of the mass lesions by size for the low and the high-
conspicuity masses. The figure shows that the distribution of cases by lesion size is 
similar, regardless of conspicuity and that small masses are not more prevalent 
amongst the low-conspicuity findings. 

 

Fig. 1. The distribution of mass lesions by size for the low and the high-conspicuity masses 

3.2 CAD Sensitivity for Low-Conspicuity Findings by Lesion Type 

The CAD sensitivity for the 213 cases with high-conspicuity findings in at least one 
view was 91.5%. The sensitivity for the 67 subtle cases with findings of low conspi-
cuity in both views (65.7%) was considerably higher than reported for similar cases 
[6] in conventional interpretation (40.2%). Figure 2 displays the CAD sensitivity per 
case, by the type of finding, for the 67 cases with findings of low conspicuity in both 
views and for the 213 cases with findings of high conspicuity in at least one view. The 
FM rate per case for the 2706 normal cases was 1.24. The FM rate for masses was 
higher in dense breasts, while the FM rate for clusters was higher in older women 
mainly due to CAD marking vascular calcifications. 

Figure 2, which displays the CAD sensitivity per case by the type of finding, shows 
that the sensitivity was lower both for cases with low-conspicuity mass lesions and  
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low-conspicuity clusters. The prevalence of cases with low-conspicuity findings can 
be derived from the number of cases in each subgroup shown in Figure 2. Forty-five 
cases had low-conspicuity masses in both views and 22 cases had low-conspicuity 
clusters in both views. Thus, 24.2% of the cases with masses (45/186) were of low-
conspicuity and 23.4% of the cases with clusters (22/94) were of low-conspicuity. 
Radiologists are most likely to require CAD assistance specifically for these cases, 
which represents nearly one fourth of the population.  

  

 

Fig. 2. The CAD sensitivity for cases with findings of high and low conspicuity, by the type of 
finding. The numerical values in the bars refer to the actual number of cases in each subgroup. 

3.3 CAD Sensitivity for Low-Conspicuity Findings by Breast Density 

Figure 3 displays the CAD sensitivity for cases with low-conspicuity findings by 
breast density.  

 

Fig. 3. The CAD sensitivity for the 67 cases with low conspicuity findings by breast density. 
The numerical values in the bars refer to the actual number of cases in each subgroup.  

The figure shows that although the CAD sensitivity for cases with low-conspicuity 
findings in both views was slightly lower in women with high density breast composi-
tion, the  difference was not statisticaly significant (p=0.25). 
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3.4 CAD Sensitivity for Low-Conspicuity Findings by Histopathology  

The analysis of the CAD sensitivity for the low-conspicuity findings by histopatholo-
gy was performed per finding, per view, and not per case due to the small number of 
cases with non-invasive findings of low-conspicuity in both views (5 cases).  It should 
be noted that the CAD analysis per finding per view yields, by definition, lower sensi-
tivity than that calculated per case, since in the latter, detection in only one view is 
considered sufficient, while per finding the sensitivity would be only 50%. Figure 4 
displays the CAD sensitivity, by pathology code, for the 154 low-conspicuity find-
ings, with known pathology codes.  

 

 

Fig. 4. The CAD sensitivity by histopathology, for the 154 low-conspicuity findings per view, 
with known pathology codes. The numerical values in the bars refer to the actual number of 
findings in each subgroup.  

Figure 4 shows that for the low-conspicuity findings, CAD performed better on 
non-invasive lesions compared to invasive lesions. The sensitivity for the low-
conspicuity non-invasive findings (75.0%) was significantly higher (p<0.02) than for 
the invasive findings (43.0%). Furthermore, the CAD sensitivity for findings with 
invasive ductal carcinoma and invasive lobular carcinoma was similar (43.7% and 
37.5%).  

3.5 CAD Sensitivity for Low-Conspicuity Findings by Patient Age 

The CAD sensitivity of low-conspicuity findings by age was also analyzed per find-
ing per view and not per case, due to the limited number of women below the age of 
50 with low conspicuity findings in both views (10 cases). The CAD sensitivity of 
low-conspicuity findings analyzed per view, in women under the age of 50 (56.5%) 
was not significantly different (p = 0.16) from that in women of age 50 and above 
(45.3%). However, as shown in figure 5, when the analysis by age was performed 
only for the 118 low-conspicuity mass lesions, the CAD sensitivity per view was 
much higher for younger women.  

 

DS= Ductal carcinoma in-situ  

ID = Invasive ductal carcinoma  

IL = Invasive lobular carcinoma 
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Fig. 5. The CAD sensitivity , by age, for the 118 low-conspicuity mass findings per view. The 
numerical values in the bars refer to the actual number of findings in each subgroup. 

Figure 5 shows that of the 20 low conspicuity mass lesions in women under the age 
of 50, the CAD algorithm detected 11 findings (55.0%)  while of the 98 low-
conspicuity masses in women of age 50 or above, only 31 findings were detected 
(31.6%).  Thus, CAD performed significantly better (p<0.04) for low conspicuity 
masses in women under 50, compared to older women. 

In order to determine the prevalence of low-conspicuity masses in women under 
50, the data shown in figure 6 were used. Figure 6 displays the distribution of mass 
lesions by conspicuity score for women younger than 50 and women of age 50 and 
above.  
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Fig. 6. The distribution of mass lesions by conspicuity for women younger than 50 and women 
of age 50 and above 

This figure shows that the prevalence of low-conspicuity mass lesions (conspicuity 
scores 1-3) in younger women is 48.8%, while in older women it is only 24.9%.  
Thus, while low conspicuity mass lesions are twice as frequent in younger women, 
the CAD sensitivity for those masses in younger women is significantly higher.  

     Below age 50

        Age 50 and above 
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4 Discussion  

Since to our knowledge, no published study has reported the performance of radiolo-
gists on low-conspicuity findings in conventional interpretation, the CAD sensitivity 
for subtle, low-conspicuity findings cannot be directly compared to the conventional 
sensitivity on such findings. However, cancers missed on prior mammograms may be 
comparable to low-conspicuity findings since they are also subtle, possibly lacking 
the typical malignant characteristics. Therefore, the conventional performance on 
low-conspicuity findings was approximated using data from a study which reported 
the detection sensitivity for blinded radiologists who analyzed, in retrospect, visible 
findings that were missed on prior mammograms [6]. In that study, of 286 cases with 
visible findings on prior examinations, only 115 cases were considered actionable by 
the combined weighted assessments of 5 experienced radiologists, yielding a sensi-
tivity of 40.2% (115/286). The CAD algorithm in the current study performed much 
better (65.7%) on cases with low-conspicuity in both views.  

The overall sensitivity of the CAD algorithm, used in the above study [6], for visi-
ble findings missed on prior mammograms was reported to be 60%, which is similar 
to the sensitivity of the CAD algorithm in the current study for the low-conspicuity 
lesions (65.7%). Therefore, cases with low-conspicuity malignant findings may serve 
for the evaluation of CAD performance, rather than visible cancers that were over-
looked on prior mammograms, since prior mammograms are not always available.  

One of the limitations of the study was that only one reading was used to determine 
conspicuity, hence intra and inter-variability could not be evaluated. In future studies the 
variability in assessing conspicuity amongst several readers should also be investigated. 

Our study shows that CAD performed significantly better on low conspicuity non-
invasive lesions, than on invasive lesions. This result may be attributed to the fact that 
non-invasive lesions (DS) usually include a greater proportion of clusters for which CAD 
sensitivity was higher. CAD also performed significantly better on low-conspicuity 
masses in younger women, than in women over 50. This higher sensitivity may be re-
lated to the larger size of low-conspicuity masses found in the younger women in the 
study. CAD could be most valuable for avoiding oversight of low-conspicuity masses 
that are twice as frequent in younger women and difficult to detect conventionally.  

CAD should be most beneficial for lesions with low conspicuity, and future re-
finement of CAD should emphasize increasing the sensitivity for such findings while 
lowering the false mark rate, so that CAD marks for subtle cancers will not be dis-
missed as false marks. The low false mark rate found in this study (1.24) is substan-
tially lower than reported elsewhere [7], facilitating the reader's acceptance of CAD 
prompts for these subtle findings. 

References 

1. Birdwell, R.L., Bandodkar, P., Ikeda, D.M.: Computer-aided detection with screening 
mammography in a university hospital setting. Radiology 236, 451–457 (2005) 

2. Romero, C., Almenar, A., Pinto, J.M., Varela, C., Muñoz, E., Botella, M.: Impact on breast 
cancer diagnosis in a multidisciplinary unit after the incorporation of mammography digita-
lization and computer-aided detection systems. Am. J. Roentgenol. 197(6), 1492–1497 
(2011) 



 Detecting Low-Conspicuity Mammographic Findings 681 

 

3. Fenton, J.J., Abraham, L., Taplin, S.H., Geller, B.M., Carney, P.A., D’Orsi, C., Elmore, J.G., 
Barlow, W.E.: Breast Cancer Surveillance Consortium. Effectiveness of computer-aided de-
tection in community mammography practice. J. Natl. Cancer Inst. 103(15), 1152–1161 
(2011) 

4. Bamberger, P., Leichter, I., Merlet, N., Ratner, E., Fung, G., Lederman, R.: Optimizing the 
CAD Process for Detecting Mammographic Lesions by a New Generation Algorithm Using 
Linear Classifiers and a Gradient Based Approach. In: Krupinski, E.A. (ed.) IWDM 2008. 
LNCS, vol. 5116, pp. 358–365. Springer, Heidelberg (2008) 

5. Leichter, I., Lederman, R., Ratner, E., Merlet, N., Fung, G., Krishnapuram, B., Bamberger, 
P.: Does a Mammography CAD Algorithm with Varying Filtering Levels of Detection 
Marks, Used to Reduce the False Mark Rate, Adversely Affect the Detection of Small 
Masses? In: Krupinski, E.A. (ed.) IWDM 2008. LNCS, vol. 5116, pp. 504–509. Springer, 
Heidelberg (2008) 

6. Warren Burhenne, L.J., Wood, S.A., D’Orsi, C.J., Feig, S.A., Kopans, D.B., 
O’Shaughnessy, K.F., Sickles, E.A., Tabar, L., Vyborny, C.J., Castellino, R.A.: Potential 
contribution of computer-aided detection to the sensitivity of screening mammography. Ra-
diology 215(2), 554–562 (2000) 

7. Skaane, P., Kshirsagar, A., Stapleton, S., Young, K., Castellino, R.A.: Effect of computer-
aided detection on independent double reading of paired screen-film and full-field digital 
screening mammograms. Am. J. Roentgenol. 188(2), 377–384 (2007) 



Potential of a Standalone Computer-Aided

Detection System for Breast Cancer Detection
in Screening Mammography

Jaime Melendez, Clara I. Sánchez, Rianne Hupse,
Bram van Ginneken, and Nico Karssemeijer

Radboud University Nijmegen Medical Centre, Department of Radiology,
Geert Grooteplein Zuid 18, 6525 GA Nijmegen, The Netherlands

j.melendezrodriguez@rad.umcn.nl

Abstract. Current computer-aided detection (CAD) systems for mam-
mography screening work as prompting devices that aim at drawing ra-
diologists’ attention to suspicious regions. In this paper, we investigate
utilizing a CAD system based on a support vector machine classifier as a
standalone tool for recalling additional abnormal cases missed at screen-
ing, while keeping the associated recall rate at low levels. We tested the
system on a large database of 5800 cases containing abnormal instances
(1%) corresponding to prior examinations missed at screening. The re-
sults showed that 26% of the missed cases could be detected with a low
additional recall rate of 2%. Moreover, after extrapolating this result to a
screening program, we determined that, with our system, 0.73 additional
cancers per 20 additional recalls could be potentially detected. We also
compared the proposed system with a regular CAD system intended for
non-standalone operation. The performance of the proposed system was
significantly better.

Keywords: Screening mammography, breast cancer, computer-aided de-
tection, support vector machine.

1 Introduction

Breast cancer is one of the leading causes of death among women. Therefore, it
is essential to detect the presence of any sign of this disease as early as possible.
To accomplish this objective, screening programs have been deployed in several
countries, being mammography the preferred examination method. However, it
is known that screening mammography tends to be difficult for radiologists and
screening errors cannot be avoided. For instance, previous work (e.g., [1,2,3])
has shown in a retrospective study that between 57% and 67% of the cancers
detected at screening examination are already visible on a prior mammogram.

Taking into account these findings, the importance of developing tools that
aid radiologists in their work, such as computer-aided detection (CAD) systems,
becomes evident. In the last decades, CAD systems for screening mammography
have been introduced in clinical practice and, for instance, in the United States,
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they are nowadays applied on about three of four screening mammograms [4].
The aim of these systems is to prompt radiologists to any suspicious region on a
mammogram, thus they are designed to achieve high sensitivity, at the expense
of obtaining low specificity. In fact, they operate at a false positive rate that is
at least an order of magnitude higher than that of radiologists.

In this paper, we investigate a rather different application of CAD that, in-
stead of prompting suspicious regions, aims at detecting malignant cases poten-
tially missed by screening radiologists. The idea is to run the CAD system on
the set of not recalled cases in order to generate an additional set with the most
suspicious exemplars and then send these exemplars back to radiologists for re-
consideration. To operate at a low recall rate, the system is trained using data
following the distribution encountered in screening setting, i.e., high prevalence
of normal cases. Additionally, the CAD parameters are optimized to operate at a
recall rate of 2%, which closely matches the numbers observed in some screening
programs [5].

2 Materials and Methods

2.1 Image Database

A total of 18242 scanned film mammography images from Preventicon screen-
ing center (Utrecht, the Netherlands) have been used in our experiments. They
correspond to 5800 patients and comprise 188 images from 58 prior exams with
visible masses and architectural distortions that were not detected until a later
screening round. The remaining 18054 images (5742 exams) correspond to nor-
mal cases with no sign of pathology. For both normal and abnormal exams,
either two or four views have been included depending on their availability.

2.2 Overview of the CAD System

The developed CAD system consists of a pre-processing stage, an initial detection
stage and an interpretation stage that aims at reducing the number of false
positive detections.

During the pre-processing stage, mammograms are segmented into three re-
gions: breast tissue, pectoral muscle and background. The image background
is labeled by marking pixels with high exposure and low gradient values. This
operation is followed by morphological transformations to remove labels and
to fill small gaps. Subsequently, the pectoral muscle in the mediolateral oblique
(MLO) views is segmented as a straight line using a method based on the Hough
transform [6].

After pre-processing, locations in the tissue area are sampled on a regular grid
and, at each location, five features based on gradient and spiculation measures
are computed to determine the presence of a potentially suspicious pattern [7,8].
These features are fed into an ensemble of five neural networks that are ran-
domly initialized and trained on a small data set. In this way, a more powerful
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classifier than with a single network is obtained. For each location at the grid,
a likelihood score is computed by averaging the five network outputs. Together,
these likelihood scores form a likelihood map. After smoothing this map, each
local maximum that exceeds a threshold is selected as a candidate region and is
segmented using the dynamic programming method described in [9].

In the interpretation stage, the segmented regions are classified into normal
or malignant tissue by means of a soft margin support vector machine (SVM)
configured with a radial basis function (RBF) kernel. For this stage, a new set
of features measuring region contrast, location, linear texture, density, region
size, compactness and contextual information is computed. In addition, the five
gradient and spiculation features and the likelihood score computed in the initial
detection stage are also used. Therefore, a total of 73 features is processed. Each
of these features is normalized to have zero mean and unit standard deviation
before classification.

2.3 CAD System Training

Training of a CAD system to operate at low recall rates involves a large num-
ber of normal cases (more than 4000 per fold considering the four-fold cross-
validation evaluation scheme explained in Section 2.4). This is necessary for two
reasons: first, to achieve the high specificity required for standalone operation
and, second, to be able to accurately measure the performance of the system at
that high-specificity operation point. In this work, this set of normal cases cor-
responds to a random sample of the whole population available in the complete
Preventicon database and thus aims at modeling the actual distribution of the
data.

Another key point during training is the optimization of the SVM classifier
used in the interpretation stage. In this work, two of its parameters: the pe-
nalization parameter for the abnormal instances, C+, and a coefficient related
to the width of the RBF kernel, γ, have been determined using a grid search
procedure.

The first parameter, C+, derives from the formulation of the soft margin SVM,
which aims at dealing with non-separable classification problems [10]. Since a
hyperplane that perfectly separates the two analyzed classes may not always
exist, the soft margin method determines a hyperplane that splits the classes as
cleanly as possible, while allowing some of their instances to lie inside the margin
or even be misclassified. These elements are penalized during optimization by a
penalty parameter C by following the formulation shown below:

min
w,ξ,b

{
1

2
‖w‖2 + C

∑
i

ξi

}

subject to yi(w · xi − b) ≥ 1− ξi,
ξi > 0 ,

(1)

where w denotes the separating hyperplane. The larger the value of C, the
larger the impact of those elements on the resulting model. Essentially, C can be
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regarded as a tuning parameter and, in problems with highly imbalanced data,
such as the one dealt with in this paper, separate parameters, C+ and C−, are
used for abnormal and normal instances, respectively. Furthermore, in order to
keep the tuning process tractable, one of them is usually kept constant and the
other one is varied [11]. In this work, C− has been set to one and C+ has been
searched over C+ ∈ {1, 5, 10, 50}.

The second parameter, γ, derives from the fact that the sets to be discrimi-
nated are usually not linearly separable in the original space, thus an SVM often
maps the input data into a higher (maybe infinite) dimensional space in which
separation is expected to be easier. This mapping is achieved by means of a
kernel function K(x,x′), which in our case corresponds to the RBF:

K(x,x′) = exp(−‖x− x′‖2
γ

) , (2)

where γ is related to the kernel width and must also be tuned appropriately.
In this work, the search grid for γ has been constructed by randomly sampling
1000 data points, computing their pairwise distances, deriving the 30-, 50- 70-
and 90- percentile and averaging the results after ten trials.

The selected values for both C+ and γ correspond to those yielding the highest
sensitivity at 2% recall rate after classifying the training set using a three-fold
cross-validation.

2.4 Evaluation Method

A four-fold cross validation scheme was used for the evaluation of the proposed
CAD system. Image sets corresponding to individual cases have not been dis-
tributed among the cross-validation subsets. Moreover, the ratio of abnormal
to normal cases has been roughly the same in each subset. Afterwards, a curve
with case sensitivity values for different, increasing recall rates has been com-
puted for each classifier. The partial area under this curve (PAUC) from 0 to
2% recall rate has been used as a performance measure. The statistical analysis
has been carried out using the bootstrap method [12]. Cases were sampled with
replacement from the compete cross-validation set 5000 times.

3 Results

The performance curve obtained for the developed system is shown in Fig. 1
(solid line). The mean PAUC from 0 to 2% recall rate is 3.39 × 10−3 (95%
CI = 1.75 × 10−3 to 5.25 × 10−3), while the mean case sensitivity at 2% recall
rate is 0.264 (95% CI = 0.150 to 0.389), which indicates that 15 of the missed
cases could be detected. Furthermore, at a lower recall rate of 1%, the mean case
sensitivity is 0.202 (95% CI = 0.086 to 0.317) and thus 11 cases could still be
detected. Some examples of detected cases are shown in Fig. 2.

We have extrapolated our results to the Dutch screening program carried out
at Preventicon screening center. In a previous study, a detection rate of 0.49%
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Fig. 1. Case-based performance curve for the standalone system proposed in this paper
and the system intended for prompting tasks previously developed by our group [13]

for film-based mammography was obtained [5]. Assuming that 57% of these
detected cancers should be visible on a prior mammogram as stated before [1,3],
the additional number of detected cancers expected by applying our CAD system
can be computed. They are associated with the right vertical axis in Fig. 1.
Therefore, considering an additional recall rate of 2%, 0.73 additional detected
cancers per 20 additional recalls are expected.

For the sake of comparison, a CAD system previously developed by our group
and designed for prompting tasks has been evaluated [13]. This system com-
prises the same pre-processing and detection stages as the standalone system
and processes the same features, but utilizes an ensemble of five neural networks
in the interpretation stage. Training of these networks involves a stopping crite-
rion based on a validation learning curve generated using an independent set of
images (additional to the training set). In our experiments, these networks have
been configured with 12 nodes in the hidden layer, a learning rate of 0.005 and
a sampling ratio of 9:1 negative to positive instances presented during training.
These settings correspond to the ones used in normal operation.

The performance curve for this system is also shown in Fig. 1 (dotted line).
The mean PAUC from 0 to 2% recall rate is 1.61× 10−3 (95% CI = 0.46× 10−3

to 2.99× 10−3), while the mean case sensitivity at 2% recall rate is 0.147 (95%
CI = 0.051 to 0.258). Comparing this performance with the one achieved by
the standalone system, there is a clear and statistically significant advantage in
favor of the latter (p < 0.05).
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Fig. 2. Examples of malignant cases missed during screening that were detected by the
proposed standalone system. The detected lesions are indicated with an arrow.
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4 Discussion and Conclusion

In this paper, we have proposed a new application for a CAD system consisting of
detecting suspicious cases missed by radiologists during screening, while keeping
a low additional recall rate. We have developed a highly specific system intended
for standalone operation by training an SVM classifier with a large set of normal
cases and by optimizing its parameters at 2% recall rate. This system has been
evaluated on a large image database that aims at approximating the typical
setting observed in screening, which consists of a large number of normal cases
(99% in our database) and a very small number of abnormal ones (1% in our
database).

Moreover, to demonstrate the potential of the developed system, we have
selected the set of abnormal cases in such a way that it corresponds to exam-
inations missed by radiologists during prior screening rounds. The preliminary
experimental results showed that, operating at a similar recall rate as screening
radiologists, the developed system was able to detect 26% of these missed cases.
Extrapolating this result to a mammography screening program, the obtained
detection sensitivity corresponds to 0.73 additional detected cancers per 1000
women screened. As a consequence, several late screen-detected cancers could
be detected earlier at the expense of a 2% additional recall rate. However, we
hypothesize that, by referring the set of cases selected by the system back to
radiologists for validation, the final number of false positive cases recalled for
further examination could be considerably lowered. We are currently planning a
study to assess this hypothesis.

As part of this work, we have also compared the proposed standalone system
with a CAD system for prompting. The results showed that the performance of
the standalone system is significantly better, which is mainly due to the specific
optimization procedure followed during training, as well as the generalization
capabilities of the SVM and its ability to deal with high-dimensional spaces.
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Abstract. Observer studies and clinical studies are used to evaluate imaging 
technologies and to compare two different technologies. The area under the  
receiver operating characteristic (ROC) curve is often used as the endpoint.  
However, in clinical practice, radiologists will operate at a single point on the 
ROC curve and this will define the sensitivity and specificity of the radiologist 
using the technology. In an ROC study, sensitivity and specificity are often es-
timated based on the ratings that the radiologist gave each case, which are 
needed to generate the ROC curve. Unfortunately, because of intra-reader and 
inter-reader variability, estimates of sensitivity and specificity based on these 
ratings can lack accuracy and precision. We demonstrate using an observer 
study of computer-aided diagnosis in diagnostic mammography that estimates 
of sensitivity of a given radiologist can be either over or under estimated by  
as much as 100%. Further, the statistical power of the experiment is substantial-
ly reduced because of increased variability between readers.  By simply asking 
the observer explicitly their recommendation (e.g., biopsy on no biopsy), sensi-
tivity and specificity can be measured directly and the power of the study can 
be maximized. 

1 Introduction 

Receiver operating characteristic (ROC) analysis is a popular method for evaluating 
the effectiveness of different medical imaging technologies both in reader studies [1] 
and in clinical studies [2, 3].  The area under of the ROC curve (AUC) is often used 
as a figure of merit to summarize the ROC curve.  This allows the evaluation of a 
technology or the comparison of two technologies that is independent of whether the 
radiologist is a conservative or an aggressive reader.  Conservative readers tend to 
read with lower sensitivity, but higher specificity than aggressive readers who can 
have very high sensitivity, but much lower specificity.  The assumption is that a radi-
ologist can choose to read aggressively or conservatively, but they will maintain the 
same AUC.  That is, they will slide on their ROC curve to the right when they read 
aggressively and to the left if they read conservatively. 
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In clinical practice, a radiologist usually operates at one fixed point on the ROC 
curve and that point will determine their sensitivity and specificity.  While the AUC is 
an overall measure of performance, the fixed operating point has important clinical 
implications, for example on positive predictive value, recall or biopsy rates, and 
efficacy estimations, such as clinical utility and cost effectiveness.  Therefore, it is 
important to estimate sensitivity and specificity as accurately as possible.  

In an ROC study, the radiologist uses a rating scale to indicate their confidence that 
the case is positive or negative.  The rating scale can be a 5-point scale, a 100-point 
scale or something else.  In this paper, the number of points in the scale is unimpor-
tant.  The scale is an indirect reflection of the actual clinical recommendation that the 
radiologist would make clinically.  For example, in screening mammography, the 
scale can be used to determine whether the radiologist would recall the woman or not.  
Therefore, applying a threshold value to the rating scale would allow sensitivity and 
specificity to be estimated.  The alternative would be to directly ask the radiologist 
what their recommendation would be.  While this easy and straightforward and as we 
will show the most accurate method, it is often not done or not used to estimate sensi-
tivity and specificity. 

Accurate estimates of the sensitivity and specificity could be obtained using the 
rating scale, if the radiologists used the scale consistently.  That is, there is a threshold 
point on the scale above which the radiologist would always recall the woman and 
below which they would never recall the woman.  If the radiologist could consistently 
use that threshold for recalling women, then sensitivity can be estimated accurately.  
If the radiologist is inconsistent and uses a different threshold for different women, 
then there can be an error in estimating sensitivity.  Further, if multiple radiologists 
participate in the study, then all radiologists would have to use the same threshold 
value in order to get accurate estimates of sensitivity and specificity.  Unfortunately, 
inter-reader variability is known to be large [4] and so it is unlikely that all radiolo-
gists would use the rating scale in a similar manner. 
In this study, we will demonstrate that estimating sensitivity and specificity based on 
ROC rating data can either overestimate or underestimate the actual sensitivity and 
specificity of a radiologist.  The majority of ROC studies have in the literature asked 
only for rating data or rating data and recommendation, and in either design used only 
the rating data to estimate sensitivity and specificity. 

2 Method 

Previously, we conducted an observer study to demonstrate that computer-aided diag-
nosis (CADx) of clustered calcifications on mammograms can improve radiologist’s 
ability to recommend breast biopsies [5].  In that study 10 radiologists each read the 
same 104 cases, containing 46 malignant lesions and 58 benign lesions.  All cases 
contained at least one cluster of calcifications that was biopsy proven.  All cases  
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consisted of standard screening views, craniocaudal and mediolateral oblique, along 
with any magnification views of the breast containing the calcifications. 

Each reader read the case once without any knowledge of the CADx analysis and 
once with the CADx output that was the computer’s estimate that the cluster in ques-
tion was associated with a malignancy.  The two reads were done independently (i.e., 
in different reading sessions).  Under each reading condition, the readers were asked: 

1. their degree of suspicion that a lesion was malignant; and 
2. their recommendation for the patient from four choices: 

a. surgical biopsy; 
b. alternative tissue sampling; 
c. short-term follow-up; and  
d. routine follow-up. 
 

The first question was answered using a visual analog scale in which the left side of 
the scale was marked benign and the right side malignant.  Using a pen, the radiolo-
gists were instructed to mark near the benign end if they had a low level of suspicion 
for malignancy and near the malignant end if they had a high level of suspicion.  The 
marks were converted to a distance using a ruler.  The distances were used as the 
rating for the case.  The answer to question 2 was dichotomized into either “biopsy” 
for choices (a) and (b) or “no biopsy” for the choices (c) and (d).  The rating data 
were used to estimate AUC using MRMC ROC analysis and the biopsy/no biopsy 
data were used to determine sensitivity, specificity, and positive predictive value.  It is 
also possible to estimate sensitivity and specificity by applying a threshold to the 
rating data.   

For this study, we examined the relationship between the rating data and the rec-
ommendation data.  We computed the sensitivity and specificity for each observer 
using the two different scales.  This was straightforward for the recommendation 
since those data were binary.  For the rating scale, we applied different thresholds and 
computed sensitivity and specificity as a function threshold.  We also computed the p-
value for the differences in these metrics from the aided and unaided reading condi-
tions.  While we looked at each individual observer’s data, we applied the same thre-
shold to all readers as would be done in actual practice.  The goal was to determine 
whether sensitivity and specificity can be estimated accurately and with the same 
statistical power from the rating scale compared to the direct measurement from the 
simply asking the observer their recommendation. 

3 Results 

Table 1 gives the ratings for a subset of the 58 benign cases in ascending order for 
each reader. The numbers in red are cases for which the radiologist recommended  
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biopsy, whereas the ones in black are for cases in which a biopsy was not recom-
mended.  Table 2 gives the comparable data for the 46 malignant cases.  For the ma-
lignant cases, 70% of the readers were consistent in their use of the rating scale, that 
is, all cases recommended for biopsy had higher scores than all the cases that were not 
recommended for biopsy.  However, readers R3, R7 and R9 were inconsistent.  For 
the benign cases, only readers R1, R5, and R6 were consistent in their use of the rat-
ing scale.  These inconsistencies resulted in inaccuracies in estimating sensitivity.   

Table 1. Readers’ rating data near the division between biopsy and no-biopsy cases for benign 
cases.  The cases in black italics were not recommended for biopsy, while the cases in red were.  
For each reader the cases were sorted by biopsy recommendation and then within each group 
the cases were sorted in numerical order.  The visual analog scale marking was converted to a 
value between 0 and 50, in 0.5 increments. 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 
  4.5
  5.5
  5.5
  6.5
  7
  7
  7.5
  8
  8.5
  9
  9
  9
  9.5
  12.5
  13
  13 10.5
  13.5 10.5
  14.5 10.5
 22 15.5 11
 22 16.5 11 5 14.5 
 22.5 18.5 10.5 4.5 11.5 7 14.5 
 25 24 11 9 12 9 15 

16 10.5 25.5 26.5 11 8 13.5 13.5 9.5 15 
17.5 11.5 25.5 26.5 11 8.5 17 17.5 10.5 15 

21 14 26.5 32.5 13 8.5 19.5 18 11.5 18 
22 14 22.5 5.5 15 11 8 12 6 15.5 
22 15 24 30 15.5 11.5 8 17 8.5 16 

22.5 15 24.5 30 16.5 12.5 8 17.5 10 17.5 
 26 30.5 17 8.5 30.5 10 21 
 26.5 31.5 17 9 10.5
 26.5 31.5 9.5 11
 27 31.5 10 12
 27.5 32 10 12
 28 32 12.5 13
 28 32.5 12.5 13
 28 33 13.5
 28 34 14
   18.5
   20
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Table 2. Readers’ rating data near the division between biopsy and no-biopsy cases for 
malignant cases. The cases in black italics were not recommended for biopsy, while the cases in 
red were. For each reader the cases were sorted by biopsy recommendation and then within 
each group the cases were sorted in numerical order. The visual analog scale marking was 
converted to a value between 0 and 50, in 0.5 increments. 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

      9    
      10  7  
  21.5    14.5  7.5  

13.5 12.5 22.5 14.5 12.5 8 15 12 8.5 12 
15.5 12.5 23.5 16.5 12.5 8 22.5 12.5 10 12.5 
15.5 13 25 18 14 8 23.5 12.5 15.5 13 

20 20 22 18.5 16.5 15.5 9.5 32.5 7 16 
23.5 20 24 25.5 17 16 11 32.5 7 17 
24.5 21 25.5 31 18 16 11.5 33.5 7 18 

  26.5    12  8  
      13.5  12.5  
      14.5  13.5  

      20.5  16  
      21    
      21    

      25.5    

 
Shown in Table 3 are the estimated sensitivities and specificities for the 10 readers 

for a threshold of 14. While the estimated sensitivity for some readers is correct, other 
estimates are either too high or too low. Estimates can be as much as 20% in error. 
The situation for specificity is much more variable – the estimated value was up to 
100% in error. Thus, estimating sensitivity and specificity from rating data can be 
inaccurate. 

Shown in Table 4 are the estimated sensitivities averaged over the 10 readers when 
applying different threshold values to the readers’ rating data.  A threshold of 14 pro-
duced the closest estimates to the actual sensitivity.  Note that in an experiment where 
the readers are not directly asked for their recommendation, there is no method for 
determining what the best threshold should be, and from Table 2, the estimated sensi-
tivities are very sensitive to the threshold value.  Even though the estimates from a 
threshold of 14 are close to the actual values, the statistical power for determining the 
difference in sensitivity reading without and with CADx is much lower when the 
rating scale is used to estimate sensitivity, as can be seen by the higher p-values. The 
lower power is caused by inter-reader variability.  That is, a single threshold is not 
optimal for all readers.  
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Table 3. Comparison of the actual and estimated sensitivities and specificities for the 10 
readers.  The estimates are for a threshold of 14 on the unaided reading condition. 

Reader 
Actual     

Sensitivity 
Estimated 
Sensitivity 

% 
error

Actual    Spe-
cificity 

Estimated 
Specificity 

% 
error 

R1 0.761 0.804 6% 0.310 0.241 -22% 
R2 0.761 0.761 0% 0.155 0.172 11% 
R3 0.826 1.000 21% 0.362 0.069 -81% 

R4 0.522 0.587 13% 0.534 0.414 -23% 
R5 0.870 0.870 0% 0.086 0.086 0% 
R6 0.761 0.761 0% 0.276 0.345 25% 

R7 0.717 0.696 -3% 0.259 0.431 67% 
R8 0.609 0.609 0% 0.466 0.448 -4% 
R9 0.870 0.761 -13% 0.190 0.379 100% 

R10 0.652 0.652 0% 0.517 0.414 -20% 
Ave 0.735 0.750 0.316 0.300  

Stdev 0.113 0.124 0.154 0.146  

Table 4. Estimated sensitivities averaged over the 10 readers for different thresholds applied to 
the rating data 

 Unaided Aided p-value 

Threshold mean stdev %diff mean stdev %diff   
10 0.83 0.10 13% 0.93 0.06 6% 0.0065 
11 0.81 0.11 10% 0.91 0.07 4% 0.0039 

12 0.79 0.13 7% 0.89 0.07 2% 0.0055 
13 0.76 0.12 4% 0.88 0.07 1% 0.0017 
14 0.75 0.12 2% 0.87 0.07 0% 0.0029 

15 0.74 0.13 1% 0.86 0.07 -2% 0.0047 
16 0.72 0.13 -2% 0.84 0.08 -3% 0.0029 
17 0.71 0.13 -4% 0.83 0.08 -4% 0.0029 

18 0.69 0.13 -6% 0.83 0.09 -5% 0.0020 
19 0.68 0.14 -7% 0.82 0.09 -6% 0.0034 
20 0.67 0.14 -9% 0.81 0.09 -8% 0.0037 

actual 0.73 0.11  0.87 0.09  0.0006 

4 Discussion 

Accurate estimates of sensitivity and specificity are important because they directly 
reflect the clinical use of technologies. These metrics are often used compare different 
medical imaging technologies. More importantly, analyses of utility and cost-
effectiveness rely on sensitivity and specificity (or derivatives of these, such as posi-
tive predictive value).   
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The Breast Cancer Screening Consortium (BCSC) and the American College of 
Radiology Imaging Network (ACRIN) DMIST threshold rating scale when in many 
situations sensitivity and specificity can be directly and unambiguously by simply 
asking and recording the radiologists for their recommendation (e.g., recall or no re-
call; biopsy or no biopsy).  In fact, in the assessment of efficacy of a medical technol-
ogy, the Food and Drug Administration (FDA) requires the manufacturer to submit 
data on sensitivity and specificity estimated from thresholding the rating scale, using 
multiple thresholds.  That is, obtaining more than one set of estimates of sensitivity 
and specificity.  It is not clear how the FDA evaluates the multiple estimates. 

One limitation of the study is that we used the likelihood of malignancy as a rating 
scale.  In clinical practice, radiologists use the BI-RADS assessment scale, which for 
diagnostic breast imaging is a-5 point scale (1-5) or a 7-point scale, where 4 is subdi-
vided into 4a, 4b, and 4c.  It is possible that a given radiologist can use the BI-RADS 
scale more consistently.  Unfortunately, this study was conducted before BI-RADS 
was the clinical standard.  A study examining BI-RADS, a 100-point rating scale, and 
directly asking radiologists their clinical recommendation would address this issue. 

5 Conclusions 

Using the rating scale data to estimate sensitivity and specificity reduces the statistical 
power of the study and can produce inaccurate estimates.  We strongly recommend 
that reader studies should directly ask the readers their recommendation for each case.  
This permits a direct estimate of sensitivity and specificity, at little or no cost to con-
ducting the study.  While there may be other approaches to obtaining accurate and 
precise estimates of sensitivity and specificity, this is a simple solution.    
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Abstract. Dedicated breast CT (bCT) is an emerging technology that produces 
3D reconstructed images of the breast, thus allowing radiologists to detect and 
evaluate breast lesions in 3D. In previous work, we have developed an algorithm 
that combines radial gradient index (RGI) segmentation and a modified level set 
model for segmentation of lesions in contrast-enhanced bCT images; yielding an 
average overlap ratio (OR) of 0.69, which is higher than 0.4, the overlap ratio 
that is generally deemed “acceptable”. In this study, this segmentation algorithm, 
with the same parameter settings, was applied to the corresponding non-contrast-
enhanced bCT images. The results show that the OR obtained on non-contrast 
images was 0.62, with the segmented lesion volumes tending to be slightly 
smaller as compared with those obtained on the corresponding contrast-enhanced 
images. These results imply that while use of contrast improves segmentation 
performance, the increase may not be significant, and thus, the role of non-
contrast-enhanced breast CT should be further investigated. 

1 Introduction 

Over the past three decades, mammography has been widely accepted as a screening 
tool for breast cancer. Although the mortality was significantly reduced by 30% to 
40% in screened population [1], the very poor positive predictive value of 10% to 
30% [2] demonstrates a big room to improve the accuracy. The high rate of misdiag-
noses is in part due to tissue superimposition, which occurs when 3D tissue structures 
with similar x-ray attenuation, such as fibroglandular and tumor tissues, are projected 
onto a plane [1]. This results in substantial anatomical noise in the background, which 
can make visualization of suspected lesions difficult [2].  

Recently developed dedicated breast bCT provides 3D visualization that mitigates 
superimposition effects in mammography [1,2]. The excellent morphologic detail 
makes this emerging modality likely to play an important role in future breast cancer 
screening and diagnosis.  

With the large amount of image data that is generated by bCT [2], computer-aided-
diagnosis (CAD) methods are expected to support the radiologist and help alleviate 
the burden due to the large number of images to be reviewed. In our previous study 
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[3], we have shown that a level-set-based segmentation method can be applied on 
contrast-enhanced bCT images and yielded an average overlap ratio of greater than 
0.65. In this study, the level-set based segmentation algorithm was applied to non-
contrast enhanced bCT images. 

2 Method 

2.1 Database 

The dataset included 23 contrast/non-contrast breast CT image pairs (13 malignant 
masses and 10 benign masses) acquired at the University of California at Davis under 
an IRB approved protocol. All 46 CT images were manually outlined in the coronal, 
sagittal and axial planes by a research technologist with more than 10 years expe-
rience in mammography. 

2.2 Segmentation 

Lesion segmentation is performed in two steps. First, RGI segmentation [5,6] is per-
formed to generate an initial lesion outline, which then serves as the starting contour 
for the active contour segmentation. 

RGI segmentation is a seeded lesion segmentation technique performed on a vo-
lume of interest (VOI) centered on the lesion center. For a given contour dΩ, the 3D 
RGI is given by [5]                                             ܴܫܩଷ஽ ൌ  ∑ ,ݔറሺܩ ,ݕ ሻௗΩݖ · ,ݔሺݎ̂ ,ݕ ∑ሻݖ ,ݔറሺܩ| ,ݕ ሻௗΩݖ |                                        ሺ1ሻ 

where ܩറ is the image gradient, and ̂ݎ is a unit vector in the radial direction. 
To segment the RGI contour, the VOI is first multiplied with a 3D Gaussian con-

straint function. Next, a series of contours dΩi is generated by applying multiple gray-
level thresholds to the constraint VOI. The resulting RGI contour is the contour with 
the greatest RGI value defined as [5,6]: 

 

dΩRGI = argmax
dΩi

RGI{dΩi} i =1,.., n
 

              (2)  

To ensure that the RGI contour, which served as the input to the subsequent active 
contour segmentation, was completely contained within the lesion, we applied mor-
phological erosion to shrink RGI contour. The side length of the cubic structural  
element for erosion is 3rd root proportional to the RGI segmented lesion volume.  
This eroded RGI contour served as the starting contour for the level set model  
segmentation. 

Second, modified level-set segmentation is performed, which was previously de-
veloped for segmentation of contrast-enhanced lesions in bCT [3]: 
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ݐ߲߶߲                    ൌ ௦݃ߤ  ൤Δ߶ െ div ൬ ൰൨|߶׏|߶׏ ൅ ሺ߶ሻdivߜߣ  ൬݃ ൰|߶׏|߶׏ ൅  ν݃ߜሺ߶ሻ            ሺ3ሻ 

where ߶(x, t) is the level-set function. The contour dΩ is the zero level set of ߶, i.e., 
dΩ = {(x, t) : ߶(x, t) = 0}, x is position vector א  ଷ and t parameterizes the curve܀
evolution. 0 < ߤ is a parameter of penalizing term, 0 < ߣ and ν are constants. ߜ, ݃, 
and ݃௦ denote the Dirac function 

                                        ሺݔሻ ൌ ൝  0,                                  |ݔ| ൐ 12߳ ߝ  ቂ1 ൅ cos ቀπx
ε

ቁቃ,      |ݔ| ൑  ሺ4ሻ                                       ߝ 

indicator function                                                        ݃ ൌ  11 ൅ ఙܩ׏| כ ଶ|ܫ                                                          ሺ5ሻ 

and “softened” indicator function [4]                                                       ݃௦ ൌ  11 ൅ ఙܩ׏| כ |ܫ                                                            ሺ6ሻ 

2.3 Termination of Contour Evolution 

Due to the ambiguous margin of lesion in medical images, it is necessary to provide a 
stopping criterion for the evolving contour. Here we employ the stopping criterion 
based on the difference of mean value changing rate of the foreground and back-
ground (Δݒ௪) proposed by Yuan et al [7]:                   Δݒ௪ ൌ ܮ1  െ ݏ  ·  ሺܿଵ െ  ܿଶሻ  ·  ൣ2 · ሺ݀Ωሻതതതതതതതതܫ െ  0.7ሺܿଵ  ൅ ܿଶሻ൧ଶ  ·  denotes the lesion volume, ܿଵ denotes ݏ ,denotes the volume of the effective VOI ܮ ො                ሺ7ሻݒ 
the mean value within the lesion, ܿଶ denotes the mean gray value within the back-
ground, ܫሺ݀Ωሻതതതതതതതത denotes the mean value of contour, ݒො is outward unit vector, and w 
denotes the weighted factor 1/( ܮ െ  ,Starting curve evolution from inside the lesion .(ݏ
the changing rate of the mean in the foreground decreases less than the background. 
This is due to that the foreground is more homogeneous than the background. How-
ever, when the evolving contour crosses lesion margin, the changing rate of the fore-
ground becomes faster. Therefore we used Δݒ௪ = 0 as the sign to terminate the curve 
evolution. 

2.4 Evaluation 

Manual lesion outlines on 3 orthogonal planes were obtained to evaluate the segmen-
tation results. The performance of segmentation was evaluated by the overlap ratio 
(OR), computed as 



700 H. Kuo et al. 

 

ܱܴ ൌ  13 ቆ൬Ω ת ߱௠௔௡Ω ׫ ߱௠௔௡൰୶୷ ൅ ൬Ω ת ߱௠௔௡Ω ׫ ߱௠௔௡൰୶୸ ൅ ൬Ω ת ߱௠௔௡Ω ׫ ߱௠௔௡൰୷୸ቇ                          ሺ8ሻ 

 

where Ω is the computer-segmentation in a plane through the lesion centers, with the 
indices (x,y), (x,z), (y,z) denote the orientation of the plane. ߱௠௔௡  is the human-
outlined region in the same slice. 

3 Results 

Shown below are examples of segmentation results on contrast images and non-
contrast images. Note that once the center of the lesion on the bCT is indicated, the 
3D segmentation is fully automated. 

Fig. 1. Examples of lesion segmentation in contrast-enhanced bCT images (A, B), and  
non-contrast-enhanced bCT images (C, D). Bold: human outline. Thin: computer-segmented 
outlines. 

A 

B 

C 

D 

OR = 0.66 

OR = 0.70 

OR = 0.36 

OR = 0.60 
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The average OR in contrast-enhanced bCT images was 0.69 while the average OR 
in non-contrast-enhanced bCT images was 0.62. Figure 2 shows the cumulative over-
lap ratios for all lesions. Segmentation performance on contrast images is better than 
on non-contrast images in terms of their respective OR. 

Figure 3 shows the relationship between segmented lesion volumes in the non-
contrast and contrast-enhanced bCT images. Each data point represents one lesion. 
Overall, lesion volume for both segmentations is similar, except for two outliners 
which corresponded to failed segmentations on non-contrast bCT images. Examining 
segmentation results for the two outliners, which are circled in Fig. 3, revealed that 
segmentation in the non-contrast bCT images had failed. 

To assess the differences in lesion volume, a paired t-test was performed. Exclud-
ing these two failed segmentations, a p-value of 0.09 was found. 

4 Discussion 

In a study comparing lesion conspicuity in contrast-enhanced bCT with that in 
unenhanced bCT images, Prionas et al. [4] found that lesion conspicuity was greater 
in contrast-enhanced bCT images than in non-contrast-enhanced bCT images, 
evaluated by mean conspicuity scores. This is intuitive because lesions are enhanced 
by 55.9 HU and 17.6 HU in average for malignant and benign lesions, respectively 
[4]. Therefore, the lesion margin tends to be better visualized in contrast-enhanced 
bCT images, displaying more clear lesion margin and is easier for active contour 
algorithm to capture. Hence we made the assumption that lesion segmentation in 
contrast-enhanced bCT is more accurate, and therefore can be used as a baseline to 
evaluate segmentation perfomance on non contrast-enhanced bCT images. 

The average OR of segmentation on non-contrast images is 0.62 and is not signifi-
cantly smaller than that on contrast images (0.69). These values might be lower than 
reality for both contrast-enhanced and non-contrast-enhanced bCT images because 
human outlines tended to be loose throughout our data set. Lesion segmentation on 
non-contrast-enhanced bCT images can fail when a lesion is partially or fully embed-
ded in glandular tissue. In this situation, it is difficult for the level set algorithm to 
correctly identify the border between lesion and fibroglandular tissues. This may be 
due to the stopping criterion that was used. Here, the rate of change of mean intensity 
in the foreground and background are compared and contour evolution is stopped 
when the difference of them reaches the minimum. Without contrast agent, the CT 
values of lesion tissue and fibroglandular tissue are similar; therefore the lesion con-
tour tends to overgrow. An example of this occurring is shown in Fig. 4. 

While non-contrast and contrast bCT images were acquired without changes in pa-
tient positioning for most cases, there was a time lapse between the two acquisitions, 
during which the contrast agent was injected. This resulted in patient motion, causing 
the lesion locations in the two images to be different. Therefore human outlining had 
to be performed separately on contrast images and non-contrast images. However, 
human outlines are very similar in the contrast and non-contrast image pairs: in the 
example shown in Fig. 1B and 1D, the overlap ratio of the human outlined regions is 
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0.99. When comparing with the computer segmentation, the OR still differs: 0.7 for 
contrast and 0.6 for non-contrast. This helps demonstrate that the active contour might 
tend to stop evolving earlier without contrast agent because the lesion is less empha-
sized. Although the p-value of 0.09, yielded by t-test for contrast and non-contrast 
segmented volumes, might not be strongly significant, this still indicates the trend that 
segmentation in non-contrast bCT images tends to produce smaller lesion volumes 
than when segmenting the lesion in contrast-enhanced images. 

Fig. 4. An example showing failed segmentation when lesion is surrounded by glandular tissue. 
Left: non-contrast. Right: contrast. 

5 Conclusion 

A level set algorithm that was developed and optimized for contrast-enhanced breast 
CT, has been applied to non-contrast breast CT without any modification of algorithm 
parameters. The average OR value of 0.62 is slightly below the average OR of 0.69 
for contrast-enhanced breast CT, but still well above 0.4, which is generally deemed 
“acceptable”. This indicates that the segmentation procedure is robust and does not 
depend strongly on whether contrast agent was used.   

The p-value suggests a trend that our level-set-based active contour algorithm 
might tend to segment smaller lesion volumes on non-contrast images compared to 
contrast ones. While more data and analysis is required to investigate whether active 
contour tends to stop evolving earlier in non-contrast images, this similarity does 
demonstrate that our segmentation method can be applied on non-contrast images. 
Potentially, this modified level set segmentation method could be improved by opti-
mizing the parameters and increasing sensitivity to the difference of glandular and 
tumor tissues in non-contrast breast CT images. 
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Abstract. It is important that the clinical effectiveness of computer-aided 
detection (CADe) systems be evaluated. Since CADe is used to improve  
the effectiveness of screening mammography, it might be expected that the 
same methods and endpoints that are used to evaluate screening mammogra-
phy can be used to evaluated screening mammography when CADe is used. 
Unfortunately, this is not always true and when the assumption fails, errone-
ous conclusions are often made. In clinical studies the choice of endpoints, 
estimation of sensitivity, and the significance of DCIS are potential problem 
areas. Further, the use of ROC versus FROC can affect the measured  
performance.  

1 Introduction 

Clinical studies [1-15] and observer studies [16-19] have been used to measure  
the effectiveness of computer-aided detection systems (CADe) for screening 
mammography. The methodology used in these studies often follows those used to 
evaluate the effectiveness of screening mammography by itself. This is not unrea-
sonable since CADe is an adjunct to screening mammography. That is, if CADe  
is effective, it should enhance the outcome produced by screening mammography 
alone. Unfortunately, this approach is not always suitable. In this paper, we  
describe several subtleties in methodology, data analysis and interpretation  
when CADe is being evaluated. In many studies, these differences can make the 
difference of whether or not CADe is beneficial when interpreting screening 
mammograms. 
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2 Clinical Studies 

2.1 Cancer Detection Rate in Case Control Studies 

In a case control study of CADe, two populations of women are used: the control 
group, which does not undergo CADe, and the study group in which CADe is used by 
radiologists.  In these studies, cancer detection rate is often used as the endpoint.  That 
is, the number of cancers detected per 1000 women screened are compared between 
the two groups.  Cancer detection rate is used instead of sensitivity, because the can-
cer detection rate is easier to compute.  To calculate sensitivity, one needs to know the 
number of false negative cases, which can be problematic. There have been four clini-
cal studies published to date that use cancer detection rate in a case control study de-
sign [2, 5, 10, 14]. 

For the case control study to be valid, the two patient groups need to be identical or 
at least made to be identical statistically.  This can be done approximately when stud-
ying screening mammography alone.  However, when CADe is used this is very diffi-
cult if not impossible.  CADe will change the cancer prevalence in the population 
being screened by an unknown amount.  When the cancer prevalence decreases, the 
cancer detection rate will decrease.  Therefore, even if CADe were effective, no ap-
preciable difference in the cancer detection rate between the control and study group 
will be seen.  Determining the effectiveness of CADe using cancer detection rate in a 
case-control study is biased against CADe.  This was demonstrated in Ref. [20].  

A good example of this is from the clinical study by Gromet [14].  His study used a 
case control design, but in addition he performed follow-up on the 231,211 mammo-
graphic exams used in the study using the cancer registries from the major hospital 
systems in the Charlotte, NC, area.  The study and control groups had 118,808 and 
112,413 examinations respectively.  As expected, based on the argument above, the 
cancer detection rate per 1000 women screened was relatively unchanged: 4.12 in the 
control group and 4.20 in the study group, a 2% relative change.  The sensitivity in 
the control group was 81.4% and 90.4% in the study group, an 11.1% relative change.  
Although, no corrections were made to make the study and control groups comparable 
statistically, this study does show that there can be an increase in sensitivity even 
though the cancer detection rate does not change (appreciably).  That is, using cancer 
detection rate as the endpoint in a case-control study design will underestimate the 
effectiveness of CADe.  In fact one would conclude from this type of study design – 
case control with cancer detection rate as the endpoint – that CADe is not effective [2, 
10] when in fact it may be. 

This point is important when performing meta-analyses or systematic reviews of 
CADe.  Inclusion of case-control studies can bias the results and they should be omit-
ted from the analyses, although in the past they have not been [21-23]. 

2.2 Estimation of Sensitivity 

Sensitivity can be estimated using the equation: 

 Sensitivity=Se = Ns/(Ns+Ni)  , (1) 
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where Ns is the number of cancers detected by screening (without using CADe) and 
Ni is the number of interval cancers (i.e., cancers found outside of screening, for ex-
ample by palpation).  When CADe is used, the sensitivity is given by: 

 Sensitivity (with CADe)=Se(CADe)=(Ns+Nc)/(Ns+Ni+Nc) (2) 

where Nc is the number of cancers detected because CADe is used.  The denominator 
of the two equations is the known number of cancers in the population being 
screened.  In principle, they should be the same, assuming comparable populations are 
being screened.  However, because CADe is used, more cancers will be detected and 
therefore the denominator in Eq. 2 will be greater than the denominator in Eq. 1.  For 
a fair comparison of sensitivity, the denominator in Eq. 1 needs an additional term: 

 Sensitivity=Se(no CADe)=Ns/(Ns+Ni+Na) (3) 

where Na is an estimate of the number of cancers present in the screening population 
that would have been detected by the radiologist if CADe were used. Without such a 
term, determining the effectiveness of CADe based on sensitivity is biased against 
CADe. 

Using data from Fenton et al. [10], sensitivity without CADe using Eq. 1 was 80.4 
and using Eq. 2, 84.0.  This results in a percentage increase of 4.5%.  If we assume 
that Na=Nc (corrected for the differences in population size of the with CADe and 
without CADe cohorts) then the sensitivity when CADe is not used is 77.6%.  This 
would give a percentage increase in sensitivity of 8.2%, which is more consistent with 
the data published from other clinical CADe studies. 

To examine this effect in more detail, we used data from an observer study that we 
previously performed to measure the effect of CADe on radiologists reading screen-
ing mammograms [18].  In that study there were 69 cancers in mammograms from 66 
women and 234 mammograms from women who did not have breast cancer.  All the 
cancer cases were collected from clinically missed cancers.  Eight MQSA-qualified 
radiologists read the case in a sequential reading method (i.e., first without CADe and 
after scoring the cases, reading with CADe and rescoring the case).  When available, a 
previous exam was provided.  For this study, we randomly assigned a fraction of the 
cases to be potential interval cancers.  That is, if the cancer was not detected and the 
cases was selected as a potential interval cancer, then we assumed that it would be 
detected in the interval between screens and the case was scored a false negative.  If 
the cancer was not detected and it was not assigned to be a potential interval cancer, 
then the case was scored as a true negative.  We repeated the randomization 1000 
times and computed the three different sensitivities given in Eqs. 1-3.  We randomly 
assigned 30% of the cancers cases as potential interval cancers and we bootstrapped 
over cases. 

The three sensitivities, as given by Eqs. 1-3 were: 80.3% (unaided sensitivity), 
83.6% (aided sensitivity), and 76.1 (unaided sensitivity corrected as in Eq. 3).   
These are in close agreement with the values estimated by Fenton at al. (see Table 1).  
Further, after applying a Bonferoni correction for multiple testing – the critical  
p-value became p=0.16 – the difference between the aided and unaided (uncorrected) 
sensitivities was not statistically significant (p=0.21), the relative differences in  
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sensitivity between the aided and unaided (with correction) and the sensitivity be-
tween the corrected and uncorrected unaided sensitivities were statistically significant 
p<0.001 and p=0.004, respectively. 

Thus estimating sensitivity between reading with and without CADe needs to be 
done by properly estimating the number of false negative mammograms.  For reading 
without CADe, the number of cancers that would have been detected if CADe were 
used needs to be estimated and added to the number of interval cancers to estimate the 
number of false negative cases. 

Table 1. The effect of correcting for the number of false negative cases on the measured benefit 
on sensitivity of using CADe 

 Clinical Study Simulation using Observer Study (18) 
 Fenton (15) Average 95% CI p-value 
Sensitivity Unaided (Eq. 1) 80.4 80.3 [70,90] n/a 
Sensitivity Aided (Eq. 2) 84.0 83.6 [74,92] n/a 
Sensitivity Unaided corrected 
(Eq. 3) 77.6 76.1 [67,85] n/a 
Relative increase Aided vs. 
Unaided 4.5% 4.1% [2.5%,8.5%]  <0.001 
Relative increase Aided vs. 
Unaided corrected 8.2% 9.9% [6.1%,14.5%] 0.004 
Relative difference Unaided 
vs. Unaided corrected 3.6% 5.3% [1.4%,6.1%] 0.021 

2.3 Significance of Detecting DCIS 

One of the drawbacks of screening mammography is overdiagnosis: the detection of 
cancers that would not cause death if left untreated.  Not all ductal carcinoma in situ 
(DCIS) will become an invasive cancer and potentially life threatening.  Therefore, 
many screening opponents argue that it is detrimental to detect DCIS. 

Fenton et al. [15] have shown that the use of CADe is associated with a higher rate 
of detection of DCIS.  This could lead one to argue that CADe exacerbates the prob-
lem with DCIS.  However, this is not true.  All cancers (including DCIS) that are 
detected using CADe are visible mammographically.  Therefore, if CADe was not 
used and the cancer was missed, it would be detected on a subsequent screening 
mammogram.  That is, all cancers detected because CADe was used would eventually 
be detected if CADe were not used.  Therefore, the detection of DCIS by CADe will 
not amplify overdiagnosis, but in fact will lead to earlier detection, which is the goal 
of screening mammography. 

2.4 ROC versus FROC 

In an ROC experiment, which can be either a clinical study or an observer study,  
the reader either calls a case negative or positive. The reader does not have to specify 
where the lesion is located. This can lead to the reader correctly calling a cancer  
case positive, but by identifying a false lesion and missing the actual location of the 
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cancer. The solution to this is to use an analysis that requires the reader to localize the 
lesion correctly. Two examples are localization ROC (LROC) and free-response ROC 
(FROC). In both of these paradigms, the reader needs to specify the location of a sus-
picious lesion and if it is close to the location of the true lesion, it is considered a true-
positive detection, otherwise it is scored as a false-negative case (for LROC), and a 
false positive (for FROC) with the true lesion being missed.   

When comparing two different imaging systems, this “error” in location may not 
be important because it may be that the location error is equally likely on either imag-
ing system. However, when comparing CADe to no CADe, this is not the case. CADe 
identifies the exact location of a lesion in the image.  Therefore, a reader could call a 
case positive, but not recognize the correct location of the cancer. If CADe correctly 
identified the cancer, then when using CADe the reader may recognize the true loca-
tion and correct their response.  Thus in a ROC experiment CADe will not be benefi-
cial, but in LROC or FROC experiment, the reader will increase their sensitivity.   

We analyzed the data from the observer study [18]described in Section 2.2 to com-
pare the performance of radiologists reading mammograms without and with CADe, 
without considering location in scoring. We applied bootstrapping over readers and 
cases and computed the sensitivities of reading with and without CADe when scoring 
by location (i.e., the radiologist needed to mark the location of the cancer in the image 
within 2 cm of the center of the actual cancer) and when not considering location (i.e., 
the radiologists is given credit for detecting the cancer as long as he or she recalls the 
patient, regardless of where he or she indicates where the cancer was).  In Table 2, the 
percentage increase in sensitivity when using CADe was 10.0% when the radiologist 
was required to localize the cancer and only 4.7% when localization was not required.  
Further, the increase in sensitivity was statistically significant when location was 
considered in scoring and not significant (after correcting for multiple testing) when 
location was not considered in scoring. (See Table 2). 

We note that in clinical studies this problem of not requiring localization also ex-
ists, since a patient is recalled or not recalled whether the cancer has been correctly 
identified or not. However, once a patient is recalled and undergoes diagnostic wor-
kup, it is possible that even if the screening mammogram identified the wrong loca-
tion of the actual cancer, it may be correctly located on ultrasound or with the use of 
specialized mammographic views.  

Table 2. Computed sensitivities and relative % increase in sensitivities for reading with and 
without CADe when considering correct localization of the cancer for scoring a case. After 
correcting for multiple testing, critical p-value is 0.025 (not 0.05). 

Reading Condition Sensitivity 

Relative % in-
crease in Sensitivi-
ty from unaided to 

aided 

95% CI for 
increase in 
Sensivitity p-value 

Unaided Location 53.6 10.0% [3.3%,20%] 0.017 
Aided Location 58.8 

Unaided No Location 72.9 4.70% [0.8%,10%] 0.048 
Aided No location 76.4 
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3 Conclusions 

The evaluation of the clinical effectiveness of CADe requires careful attention to the 
planning and interpretation of study results.  Applying methods of and interpretation 
to evaluating screening mammography for comparing screening with and without 
CADe are not necessarily valid.  Specifically, we showed that: 

1. Using cancer detection rate as the endpoint in a case-control study, will un-
derestimate the benefits of using CADe. 

2. When comparing sensitivity with and without CADe measured in a clinical 
study, one needs to estimate the number of cancers that would have been de-
tected if CADe were used in the without CADe reading condition.  If this is 
not estimated and used to correct the number of false negatives, then the rela-
tive gain in sensitivity when CADe is used will be underestimated. 

3. If correct localization of the cancer is not required when scoring cancer de-
tection, then the gain in sensitivity from using CADe will be underestimated. 

4. CADe will not contribute to overdiagnosis by detecting more CADe then if 
CADe were not used. 

These four aspects have not always been considered in clinical and observer studies 
published.  As a result the benefits of CADe have been underestimated [2, 10, 15, 24], 
and some of the negative effects overestimated [10, 24]. 
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Abstract. Digital breast tomosynthesis (DBT), an emerging imaging
modality, provides a pseudo-3D image of the breast. Algorithms to aid
the human observer process these large datasets involve two key tasks:
reconstruction and registration. Previous studies separated these steps,
solving each task independently. This can be effective if reconstructing
using a complete set of data, e.g., in cone beam CT, assuming that only
simple deformations exist. However, for ill-posed limited-angle problems
such as DBT, estimating the deformation is complicated by the signif-
icant artefacts associated with DBT reconstructions, leading to severe
inaccuracies in the registration. In this paper, we present an innovative
algorithm, which combines reconstruction of a pair of temporal DBT
acquisitions with their simultaneous registration. Using various compu-
tational phantoms and in vivo DBT simulations, we show that, compared
to the conventional sequential method, jointly estimating image inten-
sities and transformation parameters gives superior results with respect
to reconstruction fidelity and registration accuracy.

1 Introduction

Digital breast tomosynthesis (DBT) involves acquiring a small number of low
dose X-ray images, over a limited angle, and reconstructing this data into a
pseudo-3D image of the breast [1]. It is of considerable interest to the research
community [2], as a potential replacement for conventional mammography, but
has been slow to be adopted into routine clinical practice.

In a breast cancer screening or diagnostic setting, radiologists routinely com-
pare conventional current and prior mammograms to detect suspicious changes
that might be indicative of malignancy. DBT has the potential to improve the
sensitivity and/or specificity of this task by reducing the confounding influence
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of overlaying tissue, but only if the large quantity of data acquired can be ef-
ficiently incorporated into the clinical workflow [3] [4] [5]. To enable the data
to be viewed as a pseudo-3D volume, it must first be reconstructed. Although
not currently a component of routine clinical practice, image registration algo-
rithms could be used to aid the clinician in comparing temporal data sets. This
would enable image features to be transformed into a common coordinate sys-
tem where abnormal differences due to disease progression can be distinguished
from differences due to patient position and breast deformation.

In other modalities, such as MRI or CT, registration has generally been per-
formed after the images have been reconstructed. In DBT however, the presence
of reconstruction artefacts due to the not insignificant null space, complicates
the registration process. Rather than separate these two tasks and perform them
sequentially therefore, we investigate an algorithm which performs them simul-
taneously, and test the hypothesis that the performance of the joint estimation
will benefit both processes.

In the following sections we describe this algorithm and present a comparison
of its performance with the sequential alternative. We test and validate the
methods using phantom data and DBT simulations generated from breast MRI.
Breast MRI is a fully 3D imaging modality which provides good visibility of
internal breast anatomy. It is therefore a good surrogate source of breast data
with which to test the performance of our algorithms.

2 Method

Two sets of limited angle X-ray acquisitions, y1 ∈ R
N2 and y2 ∈ R

N2 , obtained
at different times, can be expressed in terms of a 3D volume, x ∈ R

N3 , in two
positions related by the transformation, R, with parameters, ζp ∈ R

n, and the
system matrix A : RN3 �→ R

N2 (where N2 is the projection dimension and N3 is
the volume dimension) via

y1 = Ax, (1)

and
y2 = Ax† = ARζpx. (2)

Rather than perform the two tasks sequentially or iteratively [7, 8], we propose
a fully coupled algorithm using a simultaneous reconstruction and registration
framework summarised in Algorithm 1.

The objective function is given by

min
x,ζp∈Rn

ΦRR =
1

2

(∥∥Ax− y1

∥∥2
2
+
∥∥ARζpx− y2

∥∥2
2

)
. (3)

We combine optimisation of the two temporal reconstructions with the 12 de-
grees of freedom ζp, (p = 1, 2, . . . , 12), of an affine transformation, which globally
describes the translation, scaling, rotation and shearing between the two time
points. We can also substitute other non-rigid deformations for the affine trans-
formation in this framework, but considered an affine transformation in the first
instance due to its simplicity.
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In addition, we can also derive the gradient with respect to the image inten-
sities x and transformation parameters ζp as follows:

Ψx = AT (Ax− y1) +RT
ζp
AT (ARζpx− y2), (4)

Ψζp = (AR′
ζp
x)T (ARζpx− y2). (5)

To minimise issues of memory usage associated with processing these large
datasets, we opt for a Quasi-Newton (L-BFGS) solver.

Algorithm 1. Simultaneous Reconstruction and Registration

Input: y1, y2.
Output: x�, ζp

�.

begin
% Initialise x0 to a vector with all zero entries
% Initialise ζp

0 to a vector of the reshaped identity matrix I
x0 := 0;
ζp := RESHAPE(I);

% Calculate matrix A for the forward projection
% Matrix AT represents the backward projection
A := RAYCASTING(SIZE(x));

% Simultaneous reconstruction and registration
for (i = 0; i < m; i++) do

% Ψx and Ψζp are the analytical gradients
% of the x and ζp for the L-BFGS solver

Ψxi := AT (Axi − y1) +RT
ζp
AT (ARζpx

i − y2);

Ψζp
i := (AR′

ζp
xi)T (ARζpx

i − y2);

xi+1 := xi + (ATA)−1Ψxi1 + (ATRT
ζp
RζpA)

−1Ψxi2;

ζp
i+1 := ζp

i + (xTATAx)−1Ψζp
i ;

% Output the x� and ζp
�

x� := xi+1; ζp
� := ζp

i+1.
end

3 Results

In the following three experiments we compare the performance of (a) a se-
quential reconstruction and registration, in which n = 1000 iterations of the
reconstruction of projection images, y1 and y2, is followed by a single registra-
tion of the reconstructed volumes x1 and x2 (m = 1) and (b) our simultaneous
approach in which n = 50 iterations of the reconstruction are followed by a reg-
istration and the process repeated m = 20 times. In both cases the total number
of iterations is the same (m×n = 1000). Our test data is created from a 3D data
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set, x, which is transformed by a known transformation to produce a second
volume x†. From each of these, 11 projections covering ±25 degrees are created
to simulate the pair of temporal DBT acquisitions y1 and y2. In all experi-
ments the affine transformation parameters were selected from random uniform
distributions with the following limits: ±20 degrees for rotation, ±5 pixels for
translation, 0.9 to 1.1 for the scale factor and a small amount of shearing.

In the first experiment, a 3D toroidal phantom image was created, and sub-
jected to 20 affine transformations to test the robustness of our simultaneous
method. The simultaneous results are much more compact and accurate than
the sequential results, and the out of plane blurring is reduced (Fig. 1 (d)-(f) vs.
Fig. 1 (m)-(o)). In the second experiment, 15 randomly generated affine trans-
formations were applied to a 3D breast MR image and similar performance was
observed (Fig. 2 (d)-(f) vs. Fig. 2 (m)-(o)). The specific parameters recovered
are shown in Figs. 3 and 4. In a third experiment, we tested the methods using
two MRI acquisitions obtained before and after application of a lateral-to-medial
plate compression of the breast. There is no ground truth for the deformation
of this dataset, however from both the image appearance (Fig. 5 (d)-(f) vs. Fig.
5 (m)-(o)) and the mean squared error (MSE in Table 1), we can conclude that
our simultaneous method outperformed the sequential method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 1. Test case 1: Toroid phantom image. (a)-(c): Fixed image; (d)-(f): Moving image;
(g)-(i): Sequential result, i.e., transformed moving image reconstruction; (j)-(l): Simul-
taneous result; (m)-(o): Difference between the sequential result and the fixed image;
(p)-(r): Difference between the simultaneous result and the fixed image. (For each set
of three sub-figures: Left: Coronal view; Middle: Transverse view; Right: Sagittal view.)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 2. Test case 2: 3D breast MR image. (a)-(c): Fixed image; (d)-(f): Moving image;
(g)-(i): Sequential result, i.e., transformed moving image reconstruction; (j)-(l): Simul-
taneous result; (m)-(o): Difference between the sequential result and the fixed image;
(p)-(r): Difference between the simultaneous result and the fixed image. (For each set
of three sub-figures: Left: Coronal view; Middle: Transverse view; Right: Sagittal view.)

Fig. 3. The first experiment on a 3D toroidal phantom image. The Mean and standard
deviation of the absolute error between the recovered and the ground truth of 20
different sets of affine transformations. Parameters 4, 8, and 12 are the translations
along each axis.



718 G. Yang et al.

Fig. 4. The second experiment on 3D breast MRI. The Mean and standard deviation
of the absolute error between the recovered and the ground truth of 15 different sets
of affine transformations. Parameters 4, 8, and 12 are the translations along each axis.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 5. Test case 3: DBT simulation with in vivo compression. (a)-(c): Fixed image;
(d)-(f): Moving image; (g)-(i): Sequential result, i.e., transformed moving image recon-
struction; (j)-(l): Simultaneous result; (m)-(o): Difference between the sequential result
and the fixed image; (p)-(r): Difference between the simultaneous result and the fixed
image. (For each set of three sub-figures: Left: Coronal view; Middle: Transverse view;
Right: Sagittal view.)

Table 1. Comparison of the MSE error 1
N3

∥
∥x� − x

∥
∥2

2
(N3 is the number of voxels).

Initial Sequential Method Simultaneous Method

Toroid Phantom 1.31× 106 7.46× 103 0.24× 103

Uncompressed Breast MRI 1.18× 106 6.04× 103 3.01× 103

In vivo DBT simulation 5.32× 106 3.68× 104 3.22× 104
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4 Discussion

As far as we aware this is the first time that the simultaneous reconstruction
and registration of DBT data sets using a unified optimisation framework has
been demonstrated to be superior to the conventional sequential method. This
approach jointly considers reconstruction and registration components of DBT,
and it is capable of recovering both the deformation parameters, and an en-
hanced, reconstructed image. By integrating the registration directly into the
framework of the reconstruction problem, we are able to fully explore the inter-
dependence between the transformation parameters and the 3D volume to be
reconstructed.

Significantly, compared to previous research on combining reconstruction and
registration (or motion correction), our combined limited angle DBT problem
has a much larger null space and is severely ill-posed, which makes the inverse
problem more intriguing and more challenging. From Table 2, we can see that
for a typical 2D super-resolution problem previous studies used 5 low resolution
images to restore a high resolution image recovering only rotations and trans-
lations, and 32 low resolution images for the affine registration. In general 3D
problems, the authors used at least 60 and up to 799 forward projections cov-
ering a full-range of views, i.e., 180 degrees or 360 degrees, to perform the joint
estimations. However, for our DBT application, we have two sets of data which
are observed at two time-points. Each of the data is acquired using only 11 for-
ward projections covering just 50 degrees (±25 degrees), and the two data sets
overlap to a certain degree according to the original unknown deformations.

Table 2. Comparison of different applications of simultaneous inverse problem. (SR:
super-resolution; LR: low resolution; fwdProjs: forward projections; Recon.+Regn.:
reconstruction and registration; “–”: not mentioned; Data collected according to [9]).

Publications Application Dimension Optimiser Data

Chung et al. 2006 SR 2D Affine Gauss-Newton 32 LR images

He et al. 2007 SR 2D Rigid Conjugate Gradient 5 LR images

Yap et al. 2009 SR 2D Rigid Linear Interior Point 5 LR images

Jacobson and Fessler 2003 PET 3D Affine Gradient Descent 64 fwdProjs 180o

Fessler 2010 PET 3D – Conjugate Gradient –

Odille et al. 2008 MRI 3D Affine GMRES –

Schumacher et al. 2009 SPECT 3D Rigid Gauss-Newton 60 to 64 fwdProjs 360o

Yang et al. 2005 Cryo-EM 3D Rotation Quasi-Newton (L-BFGS) 84 fwdProjs

Chung et al. 2010 Cryo-EM 3D Rigid Quasi-Newton (L-BFGS) 799 fwdProjs

Our Recon.+Regn. Model DBT 3D Affine Conjugate Gradient or L-BFGS 22 fwdProjs 50o (±25o)

We analysed our simultaneous method with various data sets using an affine
transformation model, and the simultaneous method has clearly achieved supe-
rior results compared to the conventional sequential method. First, the experi-
ment on the 3D toroid image demonstrates the potential of this approach over
the conventional method to increase the depth resolution of the recontructed im-
age. Second, the results of the breast MR image have further strengthened our



720 G. Yang et al.

confidence in the hypothesis that the reconstruction and registration have a re-
ciprocal relationship. In addition, the recovery of the transformation parameters
was consistently accurate for both the 3D toroid and the breast MR data sets.
Next, we attempted to reconstruct and register simulated DBT data sets created
from real medio-lateral compressions of a breast imaged using MRI. As antici-
pated, the simultaneous approach still outperformed the conventional sequential
method as demonstrated by the image appearance and MSE comparison (Figure
5 and Table 1). Although the improvements were modest in this experiment, this
can be attributed, at least in part, to the fact that the affine transformation,
which is a global parametric model, is insufficient to capture such a non-rigid
breast deformation.

5 Conclusion

We have presented a method to simultaneously reconstruct and register tempo-
ral DBT datasets and compared it with performing the two tasks sequentially.
Our simultaneous method produced superior results in both registration accu-
racy and reconstructed image appearance. In future work we will incorporate
B-spline transformations and address the application to combine reconstruction
and registration of two view (cranial-caudal/mediolateral-oblique) DBT data
sets, to overcome the null-space limitation.
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Abstract. In digital breast tomosynthesis (DBT), it is desirable to achieve an 
appropriate level of image quality while keeping the radiation dose as low as 
reasonably achievable. The purpose of this study is to examine the effectiveness 
of a patch-based denoising algorithm in reducing noise while preserving details 
in DBT reconstruction. Low-dose DBT projection images were simulated with 
various levels of entrance exposure, based on the stochastic property of incident 
photons from the x-ray source. The patch-based algorithm estimates the true 
value of a pixel as a weighted average of all pixels in the projection image, 
where the weights depend on the similarity between the patches. Compared 
with local smoothing or filtering methods, patch-based techniques can reduce 
noise while preserving details. The preliminary results have demonstrated that 
the image quality of DBT can be potentially improved by the proposed tech-
nique by incorporating appropriate denoising into the iterative reconstruction 
algorithm. The suppressed noise was found to resemble the desired white noise 
except at sharp edges. The contrast is enhanced by more than 10% and the mean 
lesion signal-difference-to-noise ratio (SDNR) in homogeneous regions was in-
creased by 131.8% and 76.4% for the entrance exposure of 0.1 R and 1 R per 
projection respectively. The proposed algorithm can further reduce the total im-
aging dose in DBT by allowing a reduced exposure for each projection view.  

Keywords: Tomosynthesis, Reconstruction, Denoising, Non-local means. 

1 Introduction 

Digital breast tomosynthesis (DBT) is an x-ray acquisition and processing technique 
which is based on a set of projection images acquired over a range of angles. From the 
reconstruction of the projection images a series of cross-sectional images or slices is 
obtained. The advantage of DBT over conventional mammography is that much of the 
effect of superposition of the anatomic structures that occurs over the thickness of the 
breast is mitigated from the slice images. Resolving the depth in the image to a se-
lected slice eliminates some of the image complexity caused by structures at other 
depths and can, therefore, enhance the conspicuity of a tumour as well as facilitate 
spatial localization within the breast. Moreover, the systems are designed to operate 
such that the patient does not incur additional radiation dose compared to mammo-
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graphy. In current DBT imaging, one acquires data with a small number of projection 
views with approximately the equivalent radiation dose of a standard two-view 
mammography exam.  

However the reconstruction of a three-dimensional (3D) breast volume is challeng-
ing in DBT because the dataset is sparse and/or noisy; only a limited number of low-
dose projections are acquired over an arc. Consequently spatial resolution through the 
thickness of the breast (z-direction) is typically inferior to the resolution within the 
plane of the detector (x-y). Iterative methods for calculating the reconstruction are 
preferred when projections are sparse, noisy, or when sampling is non-uniform. 
Progress has recently been made on image reconstruction from sparse-view data, 
which can potentially allow reduction of the radiation dose [1]. For cases where data 
are highly sparse, such as when only a few (e.g. <10) projections are available, accu-
rate image reconstruction becomes more difficult. 

2 Methods 

The acquisition of the digital breast tomosynthesis was simulated for a partial-
isocentric geometry. The detector was stationary while the x-ray tube rotated around a 
pivot point. Nine (9) projections were taken over an angular range of -20° to 20°, at 5° 
increments, using monoenergetic (20 keV) x-rays. A series of mathematical phantoms 
representing the compressed breast were created with a uniform distribution of 50% 
fibroglandular and 50% adipose tissue as background. They are rectangular prisms in 
shape and each contains a simulated small tumour with various diameters (from 0.6 
mm to 8 mm) at the centre. The attenuation coefficients of the simulated tumours are 
equivalent to those measured for infiltrating ductal carcinoma (IDC) [2]. Three levels 
of entrance exposure per projection (0.1 R, 1 R and noise-free, implying infinite dose) 
were evenly distributed over the projections in the DBT simulation.  

A patch-based algorithm was used to suppress the random variations of pixel inten-
sity in the projection views before reconstruction. Patches of an image are simple 
objects defined as local square neighborhood regions of image pixels. Compared to 
pixel-based algorithms, patch-based methods are more powerful because image 
patches contain more relatively large-scale structures and textures present in natural 

images than single pixels. The patch ( , )
I
x yP located at pixel p(x, y) on the grey image I 

is defined as the set of image intensities belong to a spatially discretized local m × m 
neighborhood region of I centered at pixel (x, y). The size m is usually chosen to be an 

odd number, i.e. m = 2n + 1 (n is a natural number). Therefore, a patch ( , )
I
x yP  can be 

ordered in an m2-dimensional vector as:  

( , ) ( , ) ( , )( ,..., )I T
x y x n y n x n y nP I I− − + +=                      (1) 

Similar to the Non-Local Means scheme [3], our denoising algorithm estimates the 
true intensity value of a pixel p as a weighted average of all patches in the projection 
image, where the weights depend on the similarity (both structural and intensity-
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based) between the patches. A mathematical form of the weighting factor is given as 
following,  

2
2

( , ) 2 2

1
exp exp

2 2

noisy noisyI I

p q

p q
q Sp s r

P Pp q

W
ω

σ σ∈

 − −  = − −         
                (2) 

where p and q are the coordinates of any pixel located within the noisy image S and 
||.|| indicates the L2 norm. Compared with the local smoothing or filtering methods, 
patch-based techniques can reduce noise while preserving details. 

An iterative reconstruction method, maximum likelihood convex (ML) has been 
implemented in C++ for image reconstruction. The contrast and lesion signal-
difference-to-noise ratio (SDNR) were used as figures of merit (FOM) to evaluate the 
image quality in the reconstructed slices.  

Images were taken from a digital mammography unit Senographe DS (GE Health-
care, Chalfont St. Giles, UK) system for testing the denoising algorithm in projection 
views. In addition, a 5-cm-thick biopsy phantom was imaged with anode/filter combi-
nation of Rh/Rh,  at 29 kV and 4 mAs to produce a noisy image. The proposed me-
thod has been also tested on the projection images for a clinical DBT exam. 

3 Results 

3.1 Biopsy Phantom 

Those digital images of the biopsy phantom acquired at a very low exposure (4 mAs) 
were first converted and normalized to a log-compressed image, in which the intensity 
of each pixel is the sum of x-ray attenuation coefficients along the x-ray path, shown 
in Fig. 1a. The denoised version of the projection image by the patch-based algorithm  
 

  

Fig. 1a. Original projection 
image of a biopsy phantom 

Fig. 1b. Projection image of 
the phantom denoised by the 
patch-based technique 

Fig. 1c. Difference image 
displayed in the gray scale 
window of [-0.1, 0.1] 

is shown in Fig. 1b and the difference between the original and the denoised projec-
tion is shown in Fig. 1c. The suppressed noise appears like white noise with different 
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intensities in the phantom area and the background, consistent with the quantum noise 
in mammography being content dependent. 

A profile of the biopsy phantom along one column is plotted in Fig. 2a. As ex-
pected, the fine details in the image were preserved while random noise was removed. 
The noise power spectrum (NPS) measured by the multitaper method [4] for the dif-
ference image (Fig. 1c) between the original and the denoised projection view of the 
biopsy phantom is shown in Fig. 2b. The NPS of the difference image approaches that 
of the noisy projection above 2 mm-1, suggesting that the original projection of the 
phantom was dominated by quantum noise for higher frequencies. The suppressed 
noise resembled white noise for a wide range of frequencies while, as desired, the 
lower frequencies (< 2 mm-1), which contain more information about the main struc-
tures of the phantom are removed to a much lesser extent. 
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Fig. 2a. Profiles of the original and denoised 
projection image of a biopsy phantom 

Fig. 2b. Power spectra of the projection, the 
denoised image and the difference 

3.2 Clinical Mammograms 

The proposed method was also applied to de-identified screening mammograms 
(courtesy Dr. Roberta Jong, Sunnybrook Health Sciences Centre), as in Fig. 3a. The 
denoised projection image by the patch-based algorithm is shown in Fig. 3b and the 
difference between the original and the denoised projection is shown in Fig. 3c. The 
suppressed noise appears like white noise. Neither anatomic details nor any microcal-
cifications were observed in the difference image. 

A profile of the mammogram along one column through several microcalcifications 
is plotted in Fig. 4a. As expected, the fine details in the image were preserved while 
random noise was removed. The power spectra of the difference image (Fig. 3c) be-
tween the original and the denoised projection view of the breast are shown in Fig. 4b. 
The NPS of the difference image approaches that of the noisy projection above 3 mm-1, 
indicating that the original mammogram was dominated by quantum noise for higher 
frequencies. The suppressed noise is essentially white for a wide range of frequencies 
and, the lower frequencies (< 3 mm-1), which contain most of the information about the 
anatomic structures of the breast are removed to a much less extent. The cause of the 
peak near the frequency of 3.5 mm-1 in the NPS of the original mammogram is believed 
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to be the improper cancellation of the anti-scatter grid during flat-fielding [4], which can 
be completely eliminated by our denoising algorithm as demonstrated in the noise com-
ponent of the difference image shown in Fig. 4b (arrow). The removal of the anti-scatter 
grid effect is also obvious in Fig. 3c. This implies that our proposed patch-based denois-
ing method could also be a powerful candidate for flat-fielding and pre-processing for 
projection images. 

  

Fig. 3a. Original screening 
mammogram 

Fig. 3b. Mammogram denoised  Fig. 3c. Difference image 
displayed in [-0.02, 0.02] 
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Fig. 4a. Profiles of the original and denoised 
mammogram 

Fig. 4b. Power spectra of the mammogram, 
the denoised image and the difference 

3.3 Clinical DBT Exam, Projection Image 

The proposed method was also applied to the projection views of a clinical DBT ex-
am, one of which was shown in Fig. 5a. The denoised version of the projection image 
by the patch-based algorithm was shown in Fig. 5b and the difference between the 
original and the denoised projection was shown in Fig. 5c. The suppressed noise  
appears like white noise with different intensities in the breast area and the air region 
in background, which agrees with the fact that the quantum noise in mammography is 
content dependent. Virtually no anatomic detail was observed in the difference image. 
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Fig. 5a. Original projection 
view of a clinical DBT exam 

Fig. 5b. Projection view of 
the DBT exam denoised by 
the patch-based technique 

Fig. 5c. Noise component, 
displayed in the gray scale 
window of [-0.05, 0.05] 

A profile of the DBT projection along one column is plotted in Fig. 6a. As ex-
pected, the fine details in the image were preserved while random noise was removed. 
The power spectra of the noisy projection, the denoised version and the difference 
image (Fig. 5c) between the two of the DBT projection is shown in Fig. 6b. The NPS 
of the difference image approaches that of the noisy projection after the frequency of 
2.5 mm-1, which indicates that the original DBT projection was dominated by quan-
tum noise for higher frequencies. Comparing to the NPS of mammogram shown in 
Fig. 4b, more random noise appeared in the DBT projection image because less radia-
tion dose has been employed to the each view in order to keep the total dose at the 
same level of one mammography exam. The suppressed noise resembled the white 
noise for higher frequencies and, as desired, the lower frequencies (< 2.5 mm-1), 
which contain most information about the anatomic structures of the DBT projection 
are removed to a much less extent.  
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Fig. 6a. Profiles of the original and denoised 
projection image of a DBT exam 

Fig. 6b. Power spectra of the DBT projec-
tion, the denoised view and the difference 
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3.4 Simulation of Uniform Phantoms 

The image quality was evaluated in terms of the contrast and the lesion SDNR in the 
reconstructed central slices in the simulated phantoms with uniform background. For 
example, results for a 2 mm diameter lesion are shown as a function of reconstruction 
iteration numbers in Fig. 7 and Fig. 8. Both the contrast and lesion SDNR were en-
hanced by the denoising technique for the two levels of the entrance exposure simu-
lated in the DBT projections. On average, the contrast is increased by 16.6% and 
12.2% for 0.1 R and 1 R per projection respectively. The lesion SDNR is increased by 
131.8% and 76.4% on average for 0.1 R and 1R respectively. More importantly, the 
contrast of the 0.1 R exposure was boosted by denoising to almost the same  
performance as obtained at 1 R without denoising. This shows a great potential of the 
integration of patch-based denoising in low-dose DBT reconstructions for low con-
trast objects, such as mass tumours. 

4 Discussion 

Results from the biopsy phantom, the screening mammogram and the clinical DBT 
projection data demonstrated that the proposed technique effectively reduces noise 
while preserving most fine details in DBT. The suppressed noise appears like white 
noise and virtually no anatomic details or microcalcifications were observed in the dif-
ference image. It also implies that our proposed patch-based denoising method could be 
a powerful candidate tool for flat-fielding and pre-processing projection images. The 
preliminary results from the simulated phantom study have demonstrated that the image 
quality of DBT can potentially be improved by the proposed technique by incorporating 
appropriate denoising into the iterative reconstruction algorithm. Further investigation 
will be carried on images with heterogeneous background such as anatomic clusters in 
both simulation phantoms and patient data in clinical DBT exams.  
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Fig. 7. Contrast enhanced in the recon-
structed slices by the patch-based denoising 
technique for both levels of exposure 

Fig. 8. The lesion SDNRs in the recon-
structed slices were increased by the denois-
ing technique for both levels of exposure  
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Abstract. We propose a method for out-of-plane artifact reduction in
digital breast tomosynthesis reconstruction. Because of the limited an-
gular range acquisition in DBT, the reconstructed slices have reduced
resolution in z-direction and are affected by artifacts. The out-of-plane
blur caused by dense tissue and large masses complicates reconstruction
of thick slices volumes. The streak-like out-of-plane artifacts caused by
calcifications and metal clips distort the shape of calcifications which is
regarded by many radiologists as an important malignancy predictor.
Small clinical features such as micro-calcifications could be obscured by
bright artifacts. The proposed technique involves reconstructing a set
of super-resolution slices and predicting the artifact-free voxel intensity
based on the corresponding set of projection pixels using a statistical
model learned from a set of training data. Our experiments show that
the resulting reconstructed images are de-blurred and streak-like arti-
facts are reduced, visibility of clinical features, contrast and sharpness
are improved and thick-slice reconstruction is possible without the loss
of contrast and sharpness.

Keywords: Tomosynthesis, filtered back projection, out-of-plane arti-
facts, outlier detection, regression modeling.

1 Introduction

In Digital Breast Tomosynthesis (DBT), the 3D representation of the breast is re-
constructed from projections acquired only within a limited angular range. There
are many algorithms designed to reduce the out-of-plane artifacts, inevitable in
reconstructed DBT images [1]. While iterative reconstruction approaches reduce
artifacts better than Filtered Back Projection (FBP) methods, they do not com-
pletely remove streak-like artifacts from metal clips and calcifications and require
much longer computation time. The metal artifact reduction methods coming
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from CT are often based on segmenting the metal objects in sinograms or pro-
jection images, removing them before the reconstruction by interpolation and
then restoring them again in the resulting volume [2]. Such methods are of very
limited use in DBT, where artifacts are often caused by dense tissue or masses
with amorphous shape or by calcifications, detection and removal of which in
low dose projections is not feasible. One of the state of art artifact reduction
methods specific to tomosynthesis is the slice thickness filter which is used in
FBP reconstructions [3]. The slice thickness filter is a low pass filter which re-
duces the frequency response in z direction. It allows maintaining constant slice
thickness and limits the out-of-plane artifacts but reduces the sharpness of high
frequency features in the projections with high angle of incidence. Other meth-
ods suggest using statistical outlier detection tests during back projection to
further reduce artifacts [4]. The goal of such methods is to separate projection
pixels contributing to each reconstructed voxel into two categories: normal pix-
els and outliers which introduce artifacts to that voxel. The popular statistical
tests based on mean and standard deviation (including Grubb’s, Chauvenet’s,
Peirce’s test, etc.) assume unimodal data distribution and are not well suited
to deal with limited data samples from few projection views with considerable
fraction of them containing the artifact. In this paper we suggest designing a
smoothed statistical model that reflects distribution parameters of the normal
artifact free voxels and using the predicted parameters instead of explicitly com-
puting them during the reconstruction.

2 Method

2.1 Baseline Reconstruction Method

We used FBP with filters designed specifically for mammography images as a
baseline reconstruction method. The polynomial filter kernel in Fourier domain
was designed so that reconstructed volume resembles iterative reconstruction
results [5] with mammogram-like image impression and well differentiated tis-
sue densities. The filter parameters were derived from Simultaneous Iterative
Reconstruction Technique (SIRT) applied to a wire phantom.

2.2 Super-Resolution Reconstruction

The reconstructed voxels in DBT are highly anisotropic. For example, the data
sets acquired with MAMMOMAT Inspiration system1, Siemens, Erlangen are
typically reconstructed into 1 mm thick slices with high in-plane resolution of
0.085 × 0.085 mm2. Such voxels project into several projection pixels for high
incidence angles (see Fig. 1) resulting in non-uniform sampling for different pro-
jection angles. This problem is usually solved by slice thickness filter.

1 Breast tomosynthesis with Siemens MAMMOMAT Inspiration is an investigational
practice and is limited by U.S. law to investigational use. It is not commercially
available in the U.S. and its future availability cannot be ensured.
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Fig. 1. Projection of a voxel on the detector plane

However, to eliminate the blurring of micro-calcifications in the projections
with high angle of incidence θ, slice thickness filter is not used in our approach.
Instead, we suggest reconstructing slabs consisting of ’super resolution’ thin slices
with the total thickness S (eg. 1 mm) acceptable for clinical reading routine. Each
slab should consist of several slices (n = S/p), thin enough so that each voxel’s
projected footprint area for all incidence angles is approximately equal to the
pixel size p of acquired projections. Bilinear interpolation on the detector plane
could be used to account for overlap of voxel’s projection with more than one
pixel on the detector plane. After the artifact reduction step the stack of thin
slices could be collapsed into a slab with thickness S with average or maximum
intensity projection (MIP) of thin slices in the direction orthogonal to the slice
plane or with an angle of one of the acquired projections.

2.3 Artifact Reduction Based on Outlier Detection and Regression
Modeling

While the method suggested in this paper could be used with different out-
lier detection tests, the following mean and standard deviation test was chosen
here for artifact reduction as an example because of it’s simplicity and ease of
implementation:

if It >
1

N

N∑

j=1

Ij + kσ ⇒ It is an outlier (1)

where It, Ij are intensities of pixels contributing to the same voxel, j = 1, .., N ,
σ - standard deviation of pixels Ij , k - constant parameter determining the
strength of outlier detection, N - number of projections, and pixels contributing
to the same voxel.
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The idea is the following: instead of calculating the standard deviation, predict
it with the regression based model for normal, outlier-free data for a given mean
intensity of pixel values. Directly computed standard deviation of pixel values
contributing to a voxel with an artifact can be too high when a large fraction of
samples contain the projection of the artifact (which is often the case with a lim-
ited angular range). A smoothed model that reflects the statistical distribution
parameters of the artifact free voxels allows more reliable outlier-pixel rejection
during image reconstruction. Only mean intensities of pixel values are computed
and the distribution parameter is predicted according to the smoothed model f
(sigmoid function in our implementation). The outlier detection rule now looks
as follows:

if It >
1

N

N∑

j=1

Ij + k × f

⎛

⎝ 1

N

N∑

j=1

Ij

⎞

⎠ ⇒ It is an outlier (2)

Since the distribution parameter is predicted based on the average value of both
normal and outlier pixels, the tests based on mean are not always optimal. While
more robust statistical tests (e.g. based on median) could give better results, in
practice the mean based test gives reasonably good results in wide angle DBT
images.

2.4 Regression Modeling

The training data for the regression modeling of statistical distribution parame-
ters was collected from 58 patient cases generated with Siemens MAMMOMAT
Inspiration at four different clinical sites. The reconstructed volumes were ran-
domly sampled and the mean and standard deviation of the pixel values which
contribute to the sampled voxel were used as a training set to fit the regression
model (see Fig. 2). It is highly unlikely that any of the micro-calcifications later
used to test the model were present in the training set.

Fig. 2. Regression modeling with sigmoid function
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3 Results

3.1 Reduction of Out-of-Plane Artifacts

Out-of-plane artifacts caused by the high attenuation structures like large cal-
cifications and metals are very visible in tomosynthesis images. Fig. 3 shows
that artifacts from calcifications (A and B) were reduced considerably with the
method based on modeled statistical distribution parameters (as in Eq. 2) com-
pared with standard statistical test with computed standard deviation (as in
Eq. 1) and with the baseline reconstruction. Artifact reduction strength is the
same in both statistical artifact reduction methods. Fig. 4 provides similar visu-
alization of the effectiveness of artifact reduction method for an ROI containing
a metal clip. Although the noise was slightly higher in reconstructions with 1
mm thick slices in the new method compared to the baseline, it was considered
acceptable by the radiographer. MIP of the reconstructed volume can be used as
one of the quality measures for artifact reduction. The volume without artifact
reduction yield MIP images where artifacts obscure some of the calcifications.
Fig. 5 shows the improvement of MIP image quality with statistical artifact
reduction.

Fig. 3. ROI containing calcifications, top: (a) MIP image. Coronal slices through cal-
cification A, visualizing the artifacts; (b) Baseline reconstruction with slice thickness
filter; (c) Artifact reduction with computed standard deviation; (d) Artifact reduction
with regression-modeled standard deviation. Bottom, axial slices showing calcification
A in focus and artifacts from calcification B: (e) Baseline reconstruction with slice
thickness filter; (f) Artifact reduction with computed standard deviation; (g) Arti-
fact reduction with regression-modeled standard deviation. Images courtesy of Malmo
University Hospital, Sweden.
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Fig. 4. ROI containing metal clip of 0.5 mm diameter, top: (a) Axial slice, in-focus
plane. Coronal slices: (b) Baseline reconstruction with slice thickness filter; (c) Artifact
reduction with computed standard deviation; (d) Artifact reduction with regression-
modeled standard deviation. Bottom, axial slices, 5 mm distance from in-focus plane:
(e) Baseline reconstruction with slice thickness filter; (f) Artifact reduction with com-
puted standard deviation; (g) Artifact reduction with regression-modeled standard
deviation. Images courtesy of Leuven University Hospital, Belgium.

(a) (b)

Fig. 5. Maximum intensity projection: (a) Baseline reconstruction with slice thickness
filter; (b) Artifact reduction with regression-modeled standard deviation

3.2 Quantitative Evaluation

The experiments were designed to test the possible limitation of this method
that for certain values of the strength of artifact reduction (k), the contrast
of micro-calcifications could be reduced, leading to potential loss of faint



Out-of-Plane Artifact Reduction in Tomosynthesis 735

micro-calcification clusters. To test this hypothesis we have segmented 212 faint
micro-calcifications in baseline reconstructions (FBP with slice thickness filter)
of 58 patient images. The same segmentations were used in the images recon-
structed with our statistical artifact reduction approach to compare the contrast
of the micro-calcifications for varying levels of artifact reduction strength k with
the baseline method. We analyzed the relative contrast of calcification computed
as the ratio of contrast of calcification in images reconstructed with statistical
artifact reduction to their contrast in base line reconstruction. As it could be
seen from Fig. 6a, the mean relative contrast of micro-calcifications is higher
than 1 for k > 1. The strength of the outlier detection in the next experiment
was set such that the mean contrast of the calcification set is maximal. Fig. 6b
shows the histogram of the contrast of all micro-calcifications relative to the
baseline approach for the fixed value of k = 2.3. As it could be seen from the
figure, the relative contrast has improved for majority of calcifications (92%)
with the average improvement of 27%, a statistically significant improvement
with the p value of 0.00005 and [24:29%] confidence interval for the mean. The
contrast-to-noise ratio (CNR) was reduced by 17% on average, partially because
the segmentations were done on the baseline FBP reconstructions and did not
fully overlap with sharper reconstructions with artifact reduction.
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Fig. 6. Relative contrast of calcifications: (a) Selection of artifact reduction strength;
(b) Histogram for k = 2.3

Both contrast and CNR are not the most appropriate measures to characterize
image quality. While we use relative contrast analysis to make sure that no micro-
calcifications were lost with the proposed method, we rely on the qualitative
feedback of a human observer to make a conclusion about the quality of the
reconstruction.

3.3 Visual Qualitative Assessment

An experienced radiographer inspected 58 patient images reconstructed with
statistical artifact reduction with 1 mm and 2 mm slice thickness side by side
with the images with 1 mm slice thickness reconstructed with the baseline ap-
proach. It was observed that the contrast of calcifications has improved in 1
mm reconstructions with slightly higher noise level compared to the baseline
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approach while 2 mm thick slices appeared less noisy than the 1 mm recon-
structions. No calcifications visible in the baseline images have been missed. The
contrast and appearance of masses was improved and the out-of-plane artifacts
were noticeably diminished in both 1 and 2 mm reconstructions (see Fig. 3).

4 Conclusion

Our preliminary experiments have shown that statistical artifact reduction based
on regression modeling and outlier detection visibly reduces the out-of-plane
artifacts, especially those caused by calcifications and metals. Although the main
assumption was that this method should help to reduce streak-like out-of-plane
artifacts, we observed that it also removes some of the out-of-plane blur caused
by dense tissue, noticeably improving the visualization of mass’s morphology.
The proposed approach allows to increase the sharpness and contrast of micro-
calcifications. That, in turn, makes the reconstruction of thicker slices possible
without the loss of sharpness and contrast. In addition to improved artifact
reduction, using the distribution parameters predicted with a regression model
is computationally less expensive than of computing them on-line. The statistical
artifact reduction approach with modeled distribution parameters suggested in
this paper is applicable to other statistical outlier detection tests, for example
those that involve more robust statistical parameters like median and Median
Absolute Deviation.
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Abstract. In digital breast tomosynthesis (DBT), the image of an object is 
shifted in sub-pixel detector element increments with each increasing projection 
angle. As a consequence of this property, we have previously demonstrated that 
DBT is capable of super-resolution in reconstruction planes parallel to the 
breast support. This study demonstrates that super-resolution is also achievable 
in obliquely pitched reconstruction planes. To this end, a theoretical framework 
is developed in which the reconstruction of a sinusoidal input is calculated. It is 
demonstrated that frequencies exceeding the detector alias frequency can be 
resolved over many pitches. For experimental validation of this finding, a bar 
pattern phantom was imaged on a goniometry stand using a commercial DBT 
system. With a commercial prototype reconstruction solution, high frequency 
patterns were resolved in oblique reconstructions, and modulation contrast was 
determined at various pitches and frequencies. This work demonstrates the 
existence of super-resolution in oblique DBT reconstructions. 

Keywords: Digital breast tomosynthesis (DBT), aliasing, super-resolution, 
image reconstruction, filtered backprojection (FBP), Fourier transform, spectral 
leakage, oblique reconstruction. 

1 Introduction 

Digital breast tomosynthesis (DBT) is a 3D imaging modality in which tomographic 
sections of the breast are generated from a limited range of x-ray projections. Because 
the image of an object is translated along the detector in sub-pixel detector element 
increments with each increasing projection angle, our prior work [1] has demonstrated 
that DBT is capable of super-resolution (i.e., sub-pixel resolution). 

By convention, DBT reconstructions are created in planes parallel to the breast 
support. The feasibility of reconstructions in planes with oblique pitches relative to 
the breast support has not yet been explored based on the conventional interpretation 
of the Central Slice Theorem [2]. According to that theorem, Fourier space is sampled 
only within double-napped cones (DNCs) whose opening angle matches the angular 
range of the scan. This paper demonstrates that super-resolution is achievable in 
reconstruction planes whose pitch is well outside the scanning range. 



738 R.J. Acciavatti, S.B. Mein, and A.D.A. Maidment 

 

2 Methods 

An analytical framework for investigating super-resolution in obliquely pitched DBT 
reconstructions is now proposed. Accordingly, we calculate the reconstruction profile 
along the long axis of a thin input object whose linear attenuation coefficient varies as 

0cos(2 )C f xπ ′ ′⋅ . In this formulation, 0f ′  denotes the input spatial frequency, which 

may be chosen to be higher than the detector alias frequency. In addition, C denotes 
the amplitude of the input waveform, and x′  measures position along the oblique 
angular pitch ζ relative to point A (Figure 1). The midpoint of the waveform at A is 
taken to be positioned at the height z0 above the detector. Under these assumptions, 
DBT acquisition with a stationary detector and a parallel x-ray beam geometry is 
modeled for each projection. Although a more general formulation would consider the 
possibility of a rotating detector and a divergent x-ray beam geometry, the proposed 
formulation is approximately applicable to measurements made near the midpoint of 
the chest wall side of a clinical DBT detector. 

 

Fig. 1. A schematic diagram of the DBT acquisition geometry is shown (figure not to scale). 
The thin input object has an attenuation coefficient which varies sinusoidally along the angular 
pitch ζ. A stationary detector and a parallel beam geometry are modeled for each projection. 

As diagrammed in Figure 1, each point along the input object is translated across 
the detector by the increment dn in the nth projection. Applying trigonometry to 
triangle BCD, one can derive an expression for the translational shift dn as 
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where θn is the angle of x-ray incidence on the detector for each projection and x is 
the position along the detector relative to the origin O. In terms of these parameters, 
the signal recorded by the mth detector element for the nth projection is thus 
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where a denotes the length of the detector elements, which are taken to be centered on 
x = ma, and where 

( 1/ 2)mn n x a m
d d±

= ±
≡ . This integral can be evaluated as 
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where sinc(u) ≡ sin(πu)/(πu). Using Eq. (3), the reconstructed attenuation coefficient 
(μFBP) can now be determined at any point (x, z). The filtered backprojection (FBP) 
reconstruction is given by the expression 
 

 FBP
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where φ  is the filter and ∗  is the convolution operator [1]. Assuming N projections, 

the index n ranges from +(N – 1)/2 to –(N – 1)/2; the special case n = 0 defines the 
central projection. Following linear systems theory for DBT, the reconstruction filter 
should be written as the product of a ramp (RA) filter and a spectrum apodization 
(SA) filter in the Fourier domain, where the SA filter is typically given by a Hanning 
window function [2]. Both filters are truncated at the frequencies f = ±ξ. The net filter 
can be calculated in the spatial domain using the inverse Fourier transform [1]. 

To determine μFBP along the pitch of the input object, one must evaluate Eq. (4) 
with the constraints x = x′cosζ and z = z0 + x′sinζ. Finally, to investigate the frequency 
dependence of the reconstruction, its Fourier transform may also be calculated. 

3 Results 

3.1 Analytical Modeling 

Reconstruction is now simulated for the Selenia Dimensions x-ray unit with 15 
projections taken at a uniform angular spacing (Δθ) of 1.07°, assuming C = 1.0 mm-1, 
a = 140 μm, 0f ′  = 0.7a-1 (5.0 lp/mm), z0 = 50.0 mm, and ζ = 20°. To illustrate the 

potential for super-resolution, the input frequency has been specified to be higher than 
the detector alias frequency, 0.5a-1 (3.6 lp/mm). Also, the pitch of 20° has been 
chosen since it is well outside the DNCs with an opening angle spanning –7.5° to 
+7.5° in frequency space. 
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Figure 2 demonstrates that simple backprojection (SBP) reconstruction is capable 
of resolving the input frequency, while the central projection alone is not. In acquiring 
the central projection, the input waveform projects onto the detector as if it were the 
frequency 0 secf ζ′  (5.3 lp/mm). Due to aliasing, this frequency is represented as if it 

were (1 – 0.7secζ)a-1, or 1.8 lp/mm. Consequently, the Fourier transform of the 
central projection possesses a major peak at 1.8 lp/mm, and has minor alias peaks at 
0.7a-1secζ (5.3 lp/mm), (2 – 0.7secζ)a-1 (9.0 lp/mm), and (1+ 0.7secζ)a-1 (12.5 lp/mm). 
By contrast, the SBP Fourier transform correctly possesses a major peak at the input 
frequency, 5.0 lp/mm. 

FBP reconstructions and their Fourier transforms are also shown using either the 
RA filter alone or the RA and SA filters together, assuming a filter truncation 
frequency (ξ) of 10.0 lp/mm. Although ξ is often specified to be the detector alias 
frequency 0.5a-1 (3.6 lp/mm), it is necessary to choose a higher value in order to 
achieve super-resolution. Like SBP, the FBP Fourier transforms possess their major 
peak at the input frequency, 5.0 lp/mm. Filtering provides an improvement over SBP 
by smoothing pixilation artifacts in the spatial domain and increasing modulation. The 
two FBP reconstructions differ in that reconstruction with the RA filter alone has 
greater modulation than reconstruction with the RA and SA filters together. This 
finding is expected, since the SA filter places more relative weight on low frequencies 
to reduce high frequency noise. The drawback of reconstruction with the RA filter 
alone is increased high frequency spectral leakage in the Fourier domain. 

3.2 Experimental Validation 

The feasibility of super-resolution in an oblique reconstruction has been verified 
experimentally using a lead bar pattern phantom. The phantom was placed on a 
goniometry stand at a height of 7.6 cm above the breast support of a Selenia 
Dimensions DBT system. The goniometry stand was adjusted to vary the pitch of the 
bar patterns. At 30 kV and 14 mAs, 15 projections were acquired with a W/Al target-
filter combination and a 0.3 mm focal spot. Reconstruction was then performed along 
the pitch of the bar patterns using a commercial prototype backprojection filtering 
algorithm (BrionaTM, Real Time Tomography, Villanova, PA). The pixel size of the 
reconstruction grid (14.0 µm) was much smaller than that of the detector elements 
(140 µm), so that the alias frequency of the reconstruction grid (35.7 lp/mm) was 
significantly higher than the alias frequency of the detector (3.6 lp/mm). 

In Figure 3, the central projection is shown at a 0° pitch. As expected, frequencies 
up to 3 lp/mm can be resolved, since 3 lp/mm is less than the alias frequency of the 
detector (3.6 lp/mm). Classical signs of aliasing at higher frequencies include Moiré 
patterns [3] at 4 lp/mm and the misrepresentation of 5 lp/mm as a lower frequency  
(~3 lp/mm). At the same magnification, the central projection is also shown at a 20° 
pitch. Its aliasing artifacts are similar to the image at the 0° pitch; the main difference 
relative to the 0° pitch is compression of the alternating bright and dark bands over a 
smaller length, increasing the effective frequency projected onto the detector. 

Unlike an individual projection, reconstructions along both 0° and 20° pitches 
clearly show frequencies up to 5 lp/mm (Figure 4). The existence of super-resolution 
along the 20° pitch is significant because the input frequency is well outside the 
DNCs in frequency space having an opening angle between –7.5° to +7.5°. 
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Fig. 2. Assuming N = 15, Δθ = 1.07°, C = 1.0 mm-1, a = 140 μm, 0f ′  = 5.0 lp/mm, ζ = 20°, and 

z0 = 50.0 mm, the central projection and SBP reconstruction are plotted in both the spatial and 
Fourier domains. The central projection represents the input frequency as 1.8 lp/mm. By 
contrast, SBP reconstruction performed along the pitch of the input correctly resolves the 
object. Adding filters to the reconstruction smoothens pixilation artifacts in the spatial domain 
and increases the modulation relative to SBP. Although the reconstruction with the RA filter 
alone has the benefit of the highest modulation, it presents the trade-off of increased high 
frequency spectral leakage. The SA filter suppresses such high frequency Fourier content. The 
existence of super-resolution along a 20° pitch would not initially be expected from the 
conventional interpretation of the Central Slice Theorem. 
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Fig. 2. (continued) 

Although high frequencies are resolved along a 20° pitch, there is a slight reduction 
in image quality relative to the 0° pitch. To investigate distortions in visibility, 
modulation contrast [4] may be calculated as (I1 – I2)/(I1 + I2), where I1 and I2 are the 
mean signal intensities in the bright and dark bands at a fixed frequency. At 5 lp/mm, 
modulation contrast is 0.0034 and 0.0020 for 0° and 20° pitches, respectively (41% 
decrease). The analogous values at 4 lp/mm are 0.0074 and 0.0059 (20% decrease). 
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                   Central Projection (0° Pitch)                         Central Projection (20° Pitch) 

  
Fig. 3. With a goniometry stand, a lead bar pattern phantom was imaged at various pitches 
using the Selenia Dimensions DBT system. A single projection can only resolve frequencies 
less than the alias frequency of the detector, 3.6 lp/mm for 140 µm detector elements. Evidence 
of aliasing at higher frequencies includes Moiré patterns at 4 lp/mm and the misrepresentation 
of 5 lp/mm as a lower frequency (~3 lp/mm). 

                    Reconstruction (0° Pitch)                               Reconstruction (20° Pitch) 

  
Fig. 4. Reconstructions performed within planes along 0° and 20° pitches can resolve higher 
frequencies than a single projection (Figure 3), providing experimental evidence of super-resolution. 
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4 Discussion 

This paper demonstrates that high frequency objects can be resolved in obliquely 
pitched reconstruction planes for DBT. The range of pitches for which super-
resolution is feasible is much broader than one would initially expect from the Central 
Slice Theorem. These analytical predictions were verified experimentally. In future 
work, the analytical model can be refined by simulating additional subtleties of the 
imaging system, such as focal spot blur [2] and noise [5, 6]. Also, filters with more 
parameters can be modeled, and the parameters can be optimized for different pitches. 
 
Acknowledgments. We thank Roshan Karunamuni (UPenn) for his help assembling 
the goniometry stand, as well as Johnny Kuo, Susan Ng, and Peter Ringer (Real Time 
Tomography) for their assistance reconstructing the bar pattern images. The project 
described was supported by predoctoral training Grant No. W81XWH-11-1-0100 
through the Department of Defense Breast Cancer Research Program. The content is 
solely the responsibility of the authors and does not necessarily represent the official 
views of the funding agency. Andrew D. A. Maidment is the chair of the Scientific 
Advisory Board of Real Time Tomography. 

References 

1. Acciavatti, R.J., Maidment, A.D.A.: Investigating the potential for super-resolution in 
digital breast tomosynthesis. In: Pelc, N.J., Samei, E., Nishikawa, R.M. (eds.) Proc. of 
SPIE, Medical Imaging 2011: Physics of Medical Imaging, vol. 7961, pp. 79615K-1–
79615K-12. SPIE, Bellingham (2011) 

2. Zhao, B., Zhao, W.: Three-dimensional linear system analysis for breast tomosynthesis. 
Med. Phys. 35(12), 5219–5232 (2008) 

3. Albert, M., Beideck, D.J., Bakic, P.R., Maidment, A.D.A.: Aliasing effects in digital images 
of line-pair phantoms. Med. Phys. 29(8), 1716–1718 (2002) 

4. Barrett, H.H., Swindell, W.: Radiological Imaging: The Theory of Image Formation, 
Detection, and Processing, New York (1981) 

5. Barrett, H.H., Myers, K.J.: Foundations of Image Science. Bahaa E.A. Saleh, Hoboken 
(2004) 

6. Hu, Y.-H., Masiar, M., Zhao, W.: Breast Structural Noise in Digital Breast Tomosynthesis 
and Its Dependence on Reconstruction Methods. In: Martí, J., Oliver, A., Freixenet, J., 
Martí, R. (eds.) IWDM 2010. LNCS, vol. 6136, pp. 598–605. Springer, Heidelberg (2010) 
 
 



 

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 745–752, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 
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Abstract. Digital breast tomosynthesis (DBT) is a new breast imaging modality 
for which the factors that affect image quality and methods for improvement are 
still under investigation. Various reconstruction artifacts arise from factors in-
cluding the limited scan angular range, the limited detector field-of-view, the 
collimator shadows near the detector boundary, and the inaccurate estimation of 
path-length for x-rays near the breast periphery and the detector boundary. In 
this work, we studied the causes of some major reconstruction artifacts and  
developed correction methods for the artifacts by compensation for the tissue 
attenuation coefficient utilizing accurate geometric information of the DBT sys-
tem and breast boundary. We will discuss the different artifacts and the correc-
tion methods in DBT reconstruction. The effectiveness of the methods will be 
demonstrated by comparison of reconstructed DBT images with and without ar-
tifact reduction.  

Keywords: digital breast tomosynthesis, artifact reduction, ray-tracing, 3D 
breast surface, iterative reconstruction. 

1 Introduction 

Digital breast tomosynthesis (DBT) is an emerging breast imaging modality that pro-
vides quasi-three-dimensional (3D) volumetric information for the breast [1-3]. In 
DBT, a small number of low-dose x-ray projection view (PV) mammograms are ac-
quired when the x-ray source is moved over a limited angular range. A stack of DBT 
slices are then reconstructed from the limited-angle PVs. The reconstructed DBT 
volume provides high-resolution 2D slices parallel to the detector plane and limited 
resolution in the depth direction, which depends on the tomographic angle. DBT has 
superior structural information of the breast compared to conventional mammography 
but inferior depth information compared to breast computed tomography. 

A number of factors in DBT imaging may cause artifacts in the reconstructed im-
ages. The effects of these factors on lesion detection and the correction methods for 
the artifacts are still under investigation. These factors include the limited scan angu-
lar range, the limited detector field-of-view (FOV), the collimator shadows near the 
boundary of the detector, and the inaccurate estimation of path-length for x-rays near 
the breast periphery and the detector boundary. They may create artificial edges, dis-
continuities in the tissue voxel values, and overestimation or underestimation of linear 
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attenuation coefficients around the boundary regions of the reconstructed DBT im-
ages. The artifacts affect the image quality and may impact the accuracy of detection 
and diagnosis of breast cancer in DBT. 

In this work, we studied the causes of some major reconstruction artifacts and de-
veloped correction methods for these artifacts in DBT reconstruction to improve the 
image quality. The effectiveness of the methods will be demonstrated by comparison 
of reconstructed DBT images with and without artifact reduction. 

2 Methods 

2.1 DBT Systems 

A General Electric (GE) GEN2 prototype DBT system at the University of Michigan 
was used to acquire DBT scans in this study. The distance from x-ray focal spot to the 
fulcrum of the rotation is 64 cm and the x-ray source rotation plane is parallel to the 
chest wall and perpendicular to the detector plane. The system has a CsI phos-
phor/a:Si active matrix flat panel digital detector with a matrix size of 1920 x 2304 
pixels and a pixel pitch of 0.1 mm x 0.1 mm. The system uses a step-and-shoot design 
and acquires PV images from a total of 21 angles in 3º increments over a ±30º range 
in less than 8 seconds. The detector is stationary during the DBT scan. DBT images 
were reconstructed by the simultaneous algebraic reconstruction technique (SART). 
DBT imaging of human subjects was performed with IRB approval and written in-
formed consent. 

2.2 Artifact Correction 

X-ray attenuation artifacts 
In DBT reconstruction, estimation of the x-ray path-length through the breast tissue is 
an important step during backward and forward projections. Underestimation (or 
overestimation) of the x-ray path-length within the breast tissue will cause overesti-
mation (or underestimation) of the tissue attenuation coefficients and thus artifacts 
appearing as bright (or dark) shadows in the reconstructed DBT slices. Underestima-
tion of the path-length can occur near the top and bottom boundaries (perpendicular to 
the x-ray source motion direction) of the DBT reconstruction volume if the breast 
tissue that may extend beyond the reconstruction volume is not taken into considera-
tion. This can occur for the pectoral muscle in the oblique views or in cases that the 
breast is larger than the FOV of the PVs.  

Figure 1(a) shows the top view of the imaged volume intersected by a radial plane 
of the cone beam perpendicular to the X-Y (detector) plane and Figure 1(b) shows the 
side view of the radial plane in which the ray ܵܦതതതത intersects the imaged volume at B 
and D. Consider that the breast tissue extends beyond the left boundary, the segment ܤܣതതതത of the selected x-ray path is outside the imaged volume, while the x-ray intensity 
detected by the PV has actually been attenuated by the tissue along the entire path 
including ܤܣതതതത. If the x-ray attenuation outside the reconstruction volume is not  
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properly estimated, the error will cause over- or underestimation of the tissue attenua-
tion coefficients in voxels within the reconstructed volume along the ray, depending 
on the approximation used.  

 

 
 

 

 

 

 
(a) (b) 

Fig. 1. Underestimation of path-length across pectoral muscles because of limited imaged vo-
lume (a) top view, for a PV where S is the x-ray source location, showing a radial plane of the 
cone beam perpendicular to the X-Y plane intersecting the breast volume, ܵܣതതതത is the ray path in 
air above the breast volume, (b) side view showing the radial plane of the cone beam containing 
the ray ܵܦതതതത. The ray ܵܦതതതത intersects the imaged volume at B and D, The segment ܤܣതതതത and ܦܥതതതത 
have to be correctly treated as tissue and air, respectively.  

To calculate the x-ray attenuation, both the path-length and the tissue attenuation 
coefficient have to be estimated. The length of the segment ܤܣതതതത can be estimated from 
from the imaging geometry. Since the tissue attenuation outside the imaged volume is 
not calculated in the reconstruction process, its attenuation value has to be estimated 
from the values of the adjacent voxels inside the imaged volume. Previously we used 
a fixed threshold method to determine whether a ray path is partially outside the 
boundary and estimated the tissue attenuation outside the imaged volume by averag-
ing all voxel values along the path-length within the imaged volume, ܦܤതതതത, which 
caused underestimation of the voxel values within the reconstructed volume and 
created dark shadows in some cases [4]. In this study, a binary two-dimensional (2D) 
mask is first generated to identify the breast region on each PV by automated breast 
boundary detection. Using the imaging geometry of the DBT system, the 2D breast 
masks are back-projected to estimate the three-dimensional (3D) shape of the breast 
periphery[5]. Combining the breast periphery with the compressed breast thickness, 
the breast volume can then be defined by a 3D convex hull breast surface. At the ante-
rior breast periphery, the intersection of the x-ray path with the 3D convex hull, the 
path segment ܥܤതതതത in Figure 1(b), determines the path-length in the breast tissue.  
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At the left and right boundaries in Figure 1(b) of the imaged volume, the x-ray path 
outside the volume is treated as passing through tissue if the breast volume extends 
beyond the 3D convex hull at that intersection, or air if otherwise. If it is treated as 
tissue, the voxel value of the x-ray path outside the imaged volume will be estimated 
as the average of the current voxel values within the volume along the same x-ray 
path. The total attenuation calculation along the ray ܦܣതതതത in Figure 1 is formulated as  

Total attenuation = ׬ ҧ஻஼തതതതߤ ݈݀஺஻തതതത ׬+ ሺ݈ሻߤ ݈݀஻஽തതതത , 

where ܤܣതതതത is the segment of the ray in the breast tissue but outside the imaged volume, 
volume, ܦܤതതതത is the segment of the ray within the imaged volume, ܥܤതതതത is the segment 
within the breast tissue, ߤҧ஻஼തതതത is the average linear attenuation coefficient along the 
segment ܥܤതതതത and µሺ݈ሻ is the current linear attenuation coefficient of a voxel along the 
path ܦܤതതതത in the imaged volume. ܦܥ തതതതതis the segment in air due to the round breast 
periphery. How accurate the bottom part of the round breast periphery can be 
estimated is determined by the tomographic scan angle; the larger the angle, the more 
accurately the PVs at large angles can see the periphery. The breast periphery shape 
seen by the DBT is embedded in the 3D convex hull surface of the breast volume. The 
air gaps not seen by the 3D convex hull surface are treated as breast tissue so that ܥܤതതതത=ܦܤതതതത. 

Collimator artifacts 
Due to the changing angle of the incident x-ray beam, the collimator blades perpendi-
cular to the x-ray source motion direction have to be adjusted to collimate the beam to 
the detector area at each angle. Small inaccuracy in the collimator position may leave 
a shadow at the top and/or bottom boundaries of the PV images. Each of the shadows 
will create a band of white voxels on each DBT slice along the edge of the steps due 
to the truncated FOV of the PVs, aggravating the truncated projection artifacts (dis-
cussed below). We developed an automated algorithm to detect the collimator sha-
dows using edge detection methods. The collimator shadows, on each PV, are 
trimmed before the reconstruction.  

Truncated projection artifacts 
For each PV, the collimated x-ray beam only exposes the breast volume within the 
detector FOV. Due to the cone-beam geometry, the changing angular position of the 
x-ray source during PV acquisition, and the limited detector size, the breast tissue 
volume projected within the FOV of the detector varies from one PV to another and 
varies at different depths of the breast. If uncorrected, the reconstructed DBT slices 
will contain truncated projection artifacts (TPA) because, for a given PV updating, the 
voxel values beyond the FOV boundary cannot be updated, causing a discontinuity in 
voxel values at the FOV boundary, as illustrated in Figure 2. The TPAs appear as 
staircase strips at the FOV boundaries of the PVs perpendicular to the motion direc-
tion of the x-ray source. Previously we designed a diffusion-based TPA reduction 
method [6]. The method can reduce the TPAs well for cases that do not have large, 
dense tissue or object in the TPA region. However, in cases where the steps intersect a 
high density object, it may not approximate the structured background closely, thus 
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creating shadows around these objects that can propagate to other steps via diffusion. 
In this study, the diffusion-based correction method was refined, in which the differ-
ence between the updated voxel values inside the FOV and the un-updated voxel val-
ues is calculated along the edge of the FOV after updating with each PV. A compen-
sating image is generated by smoothly diffusing the differences from the edge of the 
FOV over the entire step. The compensated image is then updated by the next PV. 
This method preserves the structured details of the DBT image over any number of 
iterations while reducing the TPAs. 

Fig. 2. The change of the field of view (FOV) causes the discontinuity of X-ray exposure across 
the boundary of the FOV, which results in discontinuity of linear attenuation coefficient updating 

3 Results 

Figures 3(a)-(c) show an example of a reconstructed DBT slice with artifact due to 
underestimation of path-lengths, the corrected image using the method in [4] and the 
corrected image using our current correction method, respectively. Figure 3(a) dem-
onstrated that underestimation of path-lengths in the tissue due to truncation of x-ray 
path beyond the imaged volume created bright artifacts in the boundary region where 
the pectoral muscle extended beyond the reconstruction volume. Figure 3(b) shows 
that previous correction method could eliminate the bright region [4], but it might 
have overestimated the attenuation through breast tissue near the breast periphery and 
outside the top boundary of the imaged volume, thereby causing underestimation of 
the attenuation coefficients (dark shadow) at the top region within the imaged volume. 
The new method more closely estimated the attenuation of the breast tissue outside 
the top boundary thereby removing the dark shadow, and improving the visibility of 
the area, as seen in Figure 3(c).  

Figures 4(a)-(c) show an example of a reconstructed DBT slice with TPAs, TPA-
corrected image using the method in [6] (correction 1) and TPA-corrected image us-
ing the new correction method (correction 2), respectively. Figure 4(a) shows that 
without TPA correction, the step artifacts appear at both the top and bottom parts of 
the reconstructed image, which correspond to the discontinuity of voxel values across 
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the FOV boundaries in the forward and backward PV updating directions. Figure 4(b) 
demonstrates that, with the method developed in [6], the step artifacts are largely 
eliminated, but the high density tissue at the top region creates a bright shadow. With 
the new correction method, both the TPA and the bright shadow are removed as 
shown in Figure 4(c). Note that the voxel values along the boundary of the pectoral 
muscle at the top and the dense tissue at the bottom of the slice are more continuous 
after TPA reduction. Figure 5(a)-(b) show selected line profiles along the yellow lines 
(a) at the top part and (b) at the bottom part in Figure 4. As evident from the line pro-
files, both the method in [6] and the new correction method reduced the step artifacts. 
However, the new corrected method maintained the background intensity while the 
previous method increased the background intensity (see Figure 5(a)) when TPA in-
tersected a structure that had very different intensity than the background. Table 1 
shows that both correction methods reduced the average step height by above 90% at 
the top part and by above 95% at the bottom part. 

Figures 6(a)-(b) show an example of a reconstructed DBT slice with attenuation ar-
tifact and the corrected image, respectively. It can be seen that overestimation of path-
lengths caused a darker rim at the breast periphery, which was reduced by improving 
the path-length estimation during ray-tracing and hence the tissue attenuation by using 
the 3D convex hull breast surface. 

Table 1. Average step height along the selected line profiles (the yellow lines) at the top part 
and the bottom part in Figure 5 

Average Step height No correction Correction 1 Correction 2 
Top 93.8 7.8 6.7 
Bottom 187 7.3 9.7 

 

  

(a) (b) (c) 

Fig. 3. Reconstructed DBT slice with one SART iteration (a) with underestimation of the path-
length at the top reconstruction volume boundary, (b) with correction method developed in [4], 
and (c) with correction method developed in this study 
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(a) (b) (c) 

Fig. 4. Reconstructed DBT slice with five SART iterations (a) with no truncated projection 
artifact correction, (b) with correction method developed in [6] (correction 1), and (c) with 
correction method developed in this study (correction 2) 

 
(a) (b) 

Fig. 5. Line profiles along the yellow lines (a) at the top part and (b) at the bottom part in Figure 4 

 
(a) (b) 

Fig. 6. Reconstructed DBT slice with five SART iterations (a) with overestimation of the path-
length and (b) with 3D convex hull breast surface information for ray-tracing 
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4 Discussion 

Our study demonstrated that many artifacts can appear on DBT reconstructed images 
due to the limited coverage of the breast volume in DBT scans and other factors. The 
artifacts can affect image quality and the visibility of breast structures and potential 
lesions. In this study, we developed methods to correct the reconstruction artifacts due 
to the imaging geometry and breast shape. The results demonstrated that our methods 
can effectively reduce the artifacts. Reduction of the artifacts can improve the image 
quality of DBT, reduce the distraction to radiologists interpreting the images, and 
potentially may improve detection and assessment of subtle breast lesions that are in 
the areas with artifacts. 
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Abstract. Estimation of breast density suffers from high inter-observer
variability. A fully automated solution for objective and consistent as-
sessment of breast density from full field digital mammography (FFDM)
data is presented. For the computation of glandularity a region of interest
(ROI) with a corresponding height model is automatically extracted from
the mammograms. Assessment of adipose and glandular tissue volumes
is performed by means of calibration data. Volumetric breast density is
finally computed as the fraction of glandular tissue volume to overall
breast volume with respect to the ROI. The fully automated approach
provides volumetric breast density estimates that show strong non-linear
correlation with the manual reference (R2 = 0.80) and high intra-patient
consistency (R ∈ [0.92, 0.97]) among mammograms of different orienta-
tion or laterality.

Keywords: volumetric breast density, glandularity, breast cancer risk
assessment, digital mammography.

1 Introduction

Breast density is associated with an increased risk of developing breast can-
cer [16,12,1]. Moreover, detecting early stages of breast cancer in women with
dense breasts is more difficult than in women with mainly adipose breast tissue.
In [11], for example, it has been shown that breast density is a major risk factor
for interval breast cancer, i.e. women with dense breast tissue have an increased
risk that a developing breast cancer is missed during routine screening. Recently,
regulation authorities have acted by requiring the enlisting of breast density in
the mammographic report with a recommendation for subsequent ultra-sound
or MRI examinations for women with dense breasts [15].

In contrast to mammographic percent density as a pure area measure, volumet-
ric breast density or more precise breast composition [7] estimates the volume
fraction of glandular tissue within the complete breast tissue either expressed
in a percentage or an actual volume. Thus, mammographic percent density and
volumetric breast density are not interchangeable [8]. Nevertheless, Kontos et
al. found a quadratic relation between mammographic percent density estimated
via Cumulus [2] and volumetric breast density estimated via Quantra [9].

A.D.A. Maidment, P.R. Bakic, and S. Gavenonis (Eds.): IWDM 2012, LNCS 7361, pp. 753–760, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The assessment of volumetric breast density is based on a physical model
of the mammographic image formation process. Several methods for estimating
volumetric breast density have been proposed that either require the simultane-
ous acquisition of the breast with a calibration phantom [3] or try to estimate
the attenuation of an adipose pixel value directly from the image [5,14].

In the following, we present a method for the fully-automatic assessment of
volumetric breast density and breast composition that is reference free and is
based on a 3D breast model and a calibration of linear attenuation coefficients
for the two major tissue types found within the breast. The proposed method
has been validated on clinical data of 334 patients.

2 Methods and Materials

The suggested approach for volumetric breast density assessment has been devel-
oped using pre-processed data (0.085× 0.085mm2 resolution, 2084× 2800 pixel
matrix) from Philips MammoDiagnost DR 1.0 X-ray mammography systems
(Philips Medical Systems DMC GmbH, Hamburg, Germany) as input data.

The applied pre-processing comprises interpolation over defect pixels, offset
and gain correction. The images have been collected in a proprietary image file
format using anonymized headers, thus removing the patient information but
preserving all image acquisition related parameters.

2.1 Image and Ground Truth Data

Image data of 100 patients (age: 29 - 84 years, median age: 50 years) have been
collected from 4 different diagnostic institutions between July 2007 and August
2009. For each patient, bilateral standard views, i.e. cranio-caudal (CC) and
medio-lateral oblique (MLO), were acquired. Only patients that had unsuspi-
cious findings and no implants were included in the collection. Distribution of
clinical density classification was chosen to adequately represent all categories
(ACR I: 24; ACR II: 26; ACR III: 38; ACR IV: 12). Each image was rated by 5
readers on a 10 percent scale between 0 – 100%.

Additional image data in terms of the bilateral views of 245 patients (age:
34-89, median age: 60 years) have been collected from 2 different diagnostic
institutions and were used for intra-patient consistency checking.

2.2 System Calibration

In order to derive physical measurements from a digital mammography system
we calibrate the system using material with known attenuation extending on
prior work [6]. Phantom studies on different mammography systems show that
the measurements are stable. We thus calibrate the algorithm once for each type
of system and do not need to perform a dedicated calibration on each installed
clinical system.
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The observed intensity I, measured by the detector, depends on the linear
attenuation coefficients μadp and μgland of adipose and glandular tissue, respec-
tively, and on the initial non-attenuated intensity I0 according to Beer’s law

I = I0 · e−μadp·(1−g)h−μgland·g·h → μ =
ln (I0/I)

h
, (1)

where h denotes the total thickness of the radiated object and g ∈ [0, 1] denotes
the glandularity, i.e. the fraction of glandular tissue along the beam path. In
practice, we observe a total attenuation μ that results from the attenuation of
the composite tissue along the beam path.

For calibration of the attenuation coefficients a set of dedicated step wedge
phantoms (cf. Figure 1a) composed of two materials with attenuations equivalent
to adipose and glandular breast tissue was used (CIRS Inc., Norfolk, VA).

By help of these phantoms effective linear attenuation coefficients have been
derived for all combinations of specified tube voltages U ∈ 23, 24, . . . , 35 kV and
tissue heights h ∈ 10, 20, . . . , 120mm. Using biquadratic regression allows to
represent μadp (U, h) and μgland (U, h) as polynomials,

μ(U, h) = a0 + a1U + a2U
2 + a3h+ a4h

2 + a5Uh . (2)

With an average deviation of 1.5% for adipose and 2.0% for glandular tissue from
the measured attenuation, a precise and compact model for the attenuation of
breast tissue within the specified system boundaries has been derived. Figure 1b
depicts the models for μadp and μgland in a combined plot.

2.3 Tissue Segmentation

Typical mammograms contain four different major regions (background, uncom-
pressed breast tissue, compressed breast tissue, pectoral muscle – cf. Figure 2a)
that need to be identified in preprocessing steps in order to extract a region
of interest (ROI) for volumetric density estimation. According to the BI-RADS
atlas for mammography [4], the pectoral muscle should not be included in the
evaluation of breast density.

We detect the skinline using a Gauss-Deriche filter followed by a connected
component analysis [6], and classify the regions with high intensities as back-
ground. Subsequently, we extract the pectoral muscle outline by directional gra-
dient filtering [17] and a Hough transform through local feature points of plau-
sible orientation [6].

2.4 Breast Height Modelling

Volumetric breast density assessment relies on the exact height of the breast,
i.e. the thickness of irradiated tissue. Hence, it has to be modelled using prior
knowledge and assumptions about the tissue thickness. Observations indicate
that the thickness of the peripheral tissue (cf. Figure 2a) follows a semi-circular
behavior. Hence, similar to [13], the breast height h(x, y) is modelled as a block
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(a) Calibration phantom (b) Regression polynomials

Fig. 1. System calibration. (a) A calibration phantom consisting of adipose and glan-
dular tissue equivalent material, assembled in a step wedge. With a constant height,
the phantom contains steps with 0, 10, . . . , 100% of either tissue type. In order to
cover the full range of possible tissue heights the step wedges exist in different sizes,
and additional thin plates can be used to measure intermediate heights. (b) Results of
a biquadratic regression through the measured effective linear attenuation coefficients
for adipose and glandular tissue equivalent material plotted against tube voltage U
and tissue height h. The polynomials serve as model for adipose and glandular breast
tissue attenuation at a given voltage and tissue height.

of compressed tissue with constant height h0 in the interior, and by semi-circles
of matching diameter perpendicular to the skinline in the periphery, i.e.

h(x, y) =

{
2
√
ds(x, y)(h0 − ds(x, y)), ds(x, y) < 0.5h0

h0, ds(x, y) ≥ 0.5h0
, (3)

where h0 is the compression height (i.e. distance between compression paddle
and detector cover), and ds(x, y) is the distance to the extracted skinline.

2.5 Breast Composition Estimation

Using the calibration polynomials for μadp and μgland (cp. Eq. (2)), it is possible
to directly derive the volumetric fraction of glandular tissue, also called glandu-
larity or volumetric breast density. We avoid estimating attenuation references
from the image [5,14], since there are many cases where such an approach is
deteriorated. Such comprise positioning artifacts (skin folds or dips – cf. Figure
2b) or very dense breasts, where any ray through the breast necessarily passes
through glandular tissue (cf. Figure 2c). In our approach we neglect uncom-
pressed peripheral breast tissue with a height h(x, y) < 0.5h0 of less than half of
the compressed breast height according to our height model. This is due to the
fact that the influence of the skin tissue (with constant height) as well as errors
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(a) MLO breast atlas (b) Skin folds (c) Dense breast

Fig. 2. Modelling the breast. (a) Atlas of an MLO view of the breast with the relevant
regions. The peripheral regions are separated by a dashed line. Frequently occuring
examples of failure for estimating an adipose reference value comprise (b) skin folds and
(c) very dense breasts resulting in an under- and overestimation of µadp, respectively.

in the height model have stronger influence on the estimation for small overall
tissue heights.

For each position we compute the actual tissue attenuation μ(h(x, y)) as well
as the calibrated attenuation values μadp(U, h(x, y)) and μgland(U, h(x, y)). In
order to deal with outlier values in the attenuation map, we clamp the glandu-
larity for each position to the interval [0%, 100%], i.e. by defining the attenuation

μ̂(h(x, y)) =

⎧⎨
⎩

μadp(U, h(x, y)), if μ(U, h(x, y)) < μadp(U, h(x, y))
μgland(U, h(x, y)), if μ(U, h(x, y)) > μgland(U, h(x, y))

μ(h(x, y)), else
. (4)

The local glandularity g(x, y) is given by

g(x, y) =
μ̂(U, h(x, y))− μadp(U, h(x, y))

μgland(U, h(x, y))− μadp(U, h(x, y))
, (5)

and the corresponding glandular tissue volume, Vgland(x, y), is given by

Vgland(x, y) = g(x, y) · h(x, y) · px · py , (6)

with px and py denoting the pixel spacing in horizontal and vertical direction,
respectively. We derive the fraction of glandular tissue by summation over all
individual contributions and by relating it to the total breast volume, i.e.

g =

∑
Ω g(x, y) · h(x, y)∑

Ω h(x, y)
, where Ω =

{
(x, y)T

∣∣∣∣h(x, y) ≥ h0

2

}
. (7)
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(a) ACR I - ”entirely fat” (b) ACR II - ”scattered fibroglandular”

(c) ACR III - ”heterogeneously dense” (d) ACR IV - ”extremely dense”

Fig. 3. Mammograms of the four ACR classes [4] overlaid with their corresponding
colour-coded volumetric density maps (shown for h > 0.2h0)

(a) Comparison to ground truth (b) Intra-patient correlation

Fig. 4. Volumetric breast density compared against (a) percent density scores for 82
patients determined by human readers via visual inspection only and (b) Intra-patient
comparison of 245 patients for MLO and CC view as well as left and right laterality
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3 Results and Discussion

Figure 3 depicts four example mammograms together with an overlay of the
glandularity map. The map is colour-coded between blue and red, reflecting 0%
to 100%, respectively. Note the different spread and density of the tissue for the
four categories ranging from ”entirely fat” to ”extremely dense”.

In addition to qualitative visual assessment, we compare the results of au-
tomatic volumetric breast density assessment against averaged percent density
ratings of 5 readers (cf. Figure 4a). Following the assumption of Kontos et al. [9],
the dependency has been modelled by a second order polynomial. It is evident
that, with a maximum of 70.4%, volumetric breast density does not reach highest
percent density values. Generally percent density is overestimated by the reader
[10], especially for high percent density values. With a regression of R2 = 0.80 the
agreement is significant, but still deviations of up to 25% occur between human
readers and the automatically computed glandularity. Comparing the results to
Kontos et al. [9], it is evident that the regression derived similar coefficients,
however, with a slightly steeper regression curve.

Figure 4b evaluates the robustness of the proposed method by comparing
computed glandularity values for the two mammographic views (MLO and CC)
as well as for the two lateralities (left and right breast). All correlations range be-
tween R = 0.92 and R = 0.97. The mean volumetric breast density in the patient
population was computed as 22.3%, which is in accordance with the previously
reported mean density value 21.9% of Kontos et al. [9] using QuantraTM .

Regarding the excellent intra-patient correlation of results among different
lateralities or views, we conclude that the method yields very reproducible volu-
metric breast density values, which are in accordance with comparable methods
[3,9]. The results show a strong non-linear relationship with estimated percent
density scores of human readers. Since the clinical data originated from a diag-
nostic rather than from a screening setting the distribution of densities might
significantly differ for an actual screening population.

4 Conclusion and Outlook

We presented a method for volumetric breast density assessment that shows
excellent stability in terms of correlation for left and right breasts as well as MLO
and CC views. These results fit very well with the results of manual assessment
by experienced clinical readers. With the ability to compute the real volume of
glandular tissue, the method is well suited for a screening workflow, assisting
the selection of the appropriate screening interval and additional modalities.

Computation of volumetric breast density assessment requires the estimation
of the breast composition into adipose and glandular tissue compartments. This
information can only be estimated from one single mammogram by introduc-
ing additional information, such as a model for the breast thickness. Therefore,
future work will address the accurate measurement of breast thickness with spec-
tral mammography, where two mammograms are available for a decomposition
into the adipose and glandular tissue volumes.
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Abstract. In mammograms, the parenchymal patterns have been described by a 
Wiener power spectrum that has an inverse power-law shape at low spatial fre-
quencies. Its frequency content can then be described by the parameter, β. Pre-
viously, we have shown that there is some dependence of β on the relative 
amount of fibroglandular tissue or volumetric breast density (VBD). Here, we 
develop a mathematical model that simulates the distributions of β as a function 
of VBD. This model will be useful for clinically-relevant task-based image ana-
lyses that incorporate realistic tissue backgrounds. 

Keywords: parenchymal texture, anatomic noise, power spectra, cascaded  
systems model. 

1 Introduction 

The detectability of lesions in a mammogram is generally reduced by the “back-
ground” image signal arising from the complex parenchymal and stromal structures in 
the breast. Others [1] have shown that this “anatomic noise” reduces the lesion detec-
tion accuracy compared to a uniform noise background. Anatomic noise textures  
typically display a power spectral content that decreases on a log-log graph with a 
slope, -β. It has been shown that β ~ 3 for mammographic backgrounds [2]. 

Several techniques exist to simulate mammographic backgrounds (e.g. [3–5]). For 
example, we have a developed a simple model that has a nearly analytic form for a 
cascaded systems model of mammographic backgrounds that can be incorporated into 
task-based model observer studies [6].  

Any of these models have the capability of varying the texture by means of chang-
ing β along with all of the other parameters describing the compressed breast (e.g 
tissue composition). The selection of the value for β in these models will affect image 
quality [7]. The question that is raised is, how should β be modeled to represent con-
ditions in a real mammogram? 

In a recent retrospective clinical study [8] of 2762 de-identified screening mam-
mograms, the volumetric breast density (VBD) and β were measured. Volumetric 
breast density was measured using an in-house software package (Cumulus V) [9]. 
The power spectral parameter β was measured using techniques similar to those  



762 J.G. Mainprize and M.J. Yaffe 

 

published by other authors [10, 11]. It was found that there was a trend between β and 
volumetric breast density as shown in Fig. 1. It was estimated that approximately 25% 
of the variation seen in β could be explained by differences in breast density. It ap-
peared that β increases as VBD increases until a plateau is reached at roughly 40% 
VBD. 

We have previously developed an analytic cascaded systems model for predicting 
the Wiener spectra for simulated power-law backgrounds [6]. Here, we extend the 
model to include β dependence on VBD and to compare image statistics of the predic-
tion with those of clinical mammograms. Such a clinically-relevant model will be 
useful in the evaluation of image quality for task-based observer analysis.  

 

Fig. 1. A scatter plot of tissue power exponent β versus measured volumetric breast density 
measured in screening mammograms. The solid curve is the polynomial fit (Eq. (5)) and the 
gray region is the approximate 50% confidence interval. 

2 Model 

The model used here follows the approach given in Mainprize et al. [6] This model 
assumes the breast is a rectangular tissue block. The transmission through a uniformly 
compressed heterogeneous breast reaching any given point (x,y) on the detector is 
modeled by the Beer’s law expression for monoenergetic x-rays mሺx, yሻ ൌ exp ቀെ ቀµfat ൅ ∆µθ෨ሺx, yሻቁ tቁ (1)

where ߤfat is the linear attenuation of breast adipose tissue, ∆ߤ ൌ fibߤ െ  fat  is theߤ
difference in linear attenuation between fibroglandular and fat tissue, t is the com-
pressed breast thickness, and ߠ෨ሺݔ,  ሻ represents a random variable that is a map ofݕ
the texture of the mammographic background. To simulate mammographic texture, ߠ଴ሺݔ,   ሻ is generated from a uniform distribution and filtered byݕ
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ሺ݂ሻܨ ൌ 1൬1 ൅ ݂݂଴൰ఉሺ௩ሻ/ଶ , 
(2)

where β(v) is the power-law parameter as a function of breast density, ݒ א ሾ0,1ሿ, and 
f0=0.05 mm-1. This yields a random structured background, ߠFሺݔ,  ሻ. To control theݕ
range of attenuation values, the image is rescaled such that ߠሺݔ, ሻݕ ൌ ሺߠFሺݔ, ሻݕ െߠFഥ ሻ/ܾ ൅ Fഥߠ , where b is a normalization constant. The selection of b is somewhat arbi-
trary but it will dictate the scale of the tissue variation seen in an image. A convenient 
form was selected where ܾ ൌ  ఏF, andߪݓ2

ఏFଶߪ ൌ ఏ0ଶߪߨ2 ଶ݌ න 1൬1 ൅ ݂݂଴൰ఉ ݂݀௙max
଴ , (3)

giving a b that spans ±w standard deviations of ߠFሺݔ,  .ሻݕ
If ߠ଴ሺݔ,  ሻ is generated from a uniform distribution, this yields a filtered imageݕ

with a mean value ߠFഥ ൌ0.5. To generate a different tissue fraction, the following em-
pirical transformation is used  ߠ෨ሺݔ, ,ݕ ሻݒ ൌ ,ݔሺߠ ሻ௔ݕ , (4)

where ܽ ൌ lnሺݒሻ /ln ሺ0.5ሻ. Note that here we have assumed that linear attenuation 
(Eq. (1)) is linear with breast density, v. A more appropriate model would include the 

mass density changes of the tissue with, ߤ ൌ ሺߤfat ൅ /ሻߤ∆ݒ ቀ ௩ఘfib ൅ ଵି௩ఘfat ቁ, but the mod-

el equations would become much more complicated. 
From our clinical study [8], the relationship for β(v) can be partly described by a 

third-order polynomial fit of the form, ߚሺݒሻ ൌ ଷݒଷ݌ ൅ ଶݒଶ݌ ൅ ݒଵ݌ ൅ ଴݌ , (5)

with ݌ଷ=3.19, ݌ଶ=-5.8, ݌ଵ=3.33 and ݌଴=2.39, which fit over a range of 0<v<0.82. 
This yields the mean β as a function of breast density. If a clinically relevant distribu-
tion is required, β can be selected as a random variable from a distribution model that 
encompasses the variation seen in Fig. 1. 

Following an approach similar to Mainprize et al. [6], an analytic form of the 
cascaded signal and noise equations can be generated for task-based analysis as a 
function of breast density. Briefly, the latent total noise power spectrum S(f) exiting 
the breast can be described by ܵሺ݂ሻ ൌ ۃ ഥ݉ۄΦ଴ ൅ Φ଴varఏሼ ഥ݉ሽ ൅ Φ଴ଶ ௠ܶሺ݂ሻ , (6)

where ۃ ഥ݉ۄ is the mean transmission (Eq. (1)) through the breast based on VBD aver-
aged over all possible values of ߠ and breast thickness, and Φ଴ is the incident pho-
ton fluence, varఏሼ ഥ݉ሽ is the variance of the transmission through the tissue over all 
possible values of the random variable ߠ, and ௠ܶሺ݂ሻ is the Fourier transform of the 
spatial covariance of m. Following Mainprize et al.,  
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௠ܶሺ݂ሻ ൌ ฬ߲߲݉ߠ ฬଶ ఏబଶߪ ଶ൬1݌ ൅ ݂݂଴൰ఉ , (7)

and assuming varఏሼ ഥ݉ሽ is small, then ܵሺ݂ሻ ൎ ۃ ഥ݉ۄΦ଴ ൅ ۃ ഥ݉ߠ௔ିଵۄଶΦ଴Δߤଶݐଶߪఏబଶ ଶܾଶ݌ Φ଴ଶ൬1 ൅ ݂݂଴൰ఉ , (8)

where ߪఏబଶ  is the expected variance in original random map ߠ଴ሺݔ,  ሻ, and p is theݕ
detector element pitch. For simplicity we assume that the expectations reduce to ۃ ഥ݉ۄ≈expሺെሺߤfat ൅ ,ሻݐFതതതሻߠߤ∆ and (9)

ۃ ഥ݉ߠ௔ିଵۄ ൎ ۃ ഥ݉ߠۄFതതത௔ିଵ. (10)

This provides a predictive model that can be applied to image quality analysis such as 
evaluating detection tasks through model observers. Combined with the clinically 
relevant relationship between VBD and β, the performance of an imaging system can 
be evaluated both analytically and through simulation over a broad range of breast 
types. 

To help validate the model, a simulation of mammograms was also created as fol-
lows: 

1. A random uniform deviate map in the range [0,1] of size 2N×2N was generated and 
subsequently filtered by a radial filter of the form in Eq. (2). The mean value is 0.5 
and the variance is equal to ߪఏబଶ ൌ1/12. Here, N=512. 

2. To avoid edge effects and aliasing, only the central N×N region was extracted, 
called ߠF௜௝. Here, ij denote the pixel coordinates for a discretized image. 

3. A normalized tissue map was created ߠ௜௝ ൌ ቀߠF௜௝ െ ଵଶቁ /ܾ ൅ ଵଶ, where ܾ ൌ ఏFߪ8 . 

Unphysical values of ߠ௜௝ ൏ 0 or ߠ௜௝ ൐ 1 were truncated. Careful selection of b is 
required to minimize effects due to this truncation. 

4. A tissue map with an appropriate density is created: ߠ෨௜௝ ൌ ൫ߠ௜௝൯௔
. 

5. A transmission image is created using the attenuation equation,  ܯ௜௝ ൌ exp൫െ൫ߤfat ൅  .൯ݐ෨௜௝൯ߠߤ∆
6. An N×N Poisson quantum noise image (Iij) is generated with pixel averages equal 

to ܯ௜௝Φ଴݌ଶ. 
Wiener spectra were extracted from n=20 images for each β(v) using the multi-taper 
method of Wu et al. [12] As another useful parameter to compare model images and 
mammograms, the average variance of {I} was also measured and compared to that 
measured in Mainprize et al. [8] 
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Fig. 2. Examples of simulated and predicted Wiener spectra (Eq. (8)) for anatomic tissue simu-
lated images for clinically relevant breast density and values of β. The heavy dashed curve 
corresponds to the noise power spectrum of a uniform Poisson noise image through a block 
with transmission equal to ۃ ഥ݉ۄ. Gray dashed curves correspond to the model when the expecta-
tions for ۃ ഥ݉ۄ and ۃ ഥ݉ߠ௔ିଵۄ are calculated assuming Gaussian statistics for θ. 

3 Results 

Wiener spectra predicted via Eq. (8) and simulated as described above are shown for 
four breast density values, v, in Fig. 2. In all cases, a mean energy of 20 keV, a breast 
thickness of 5 cm and an incident exposure of 10 mR was used. It was noted that for 
very small densities v<0.1, the simulations deviated from the analytic curve. This is 
believed to be due to limitations from the approximations of the expectations of Eqs. 
(9) and (10). If instead, the expectations are calculated numerically by assuming 
Gaussian probability density functions for ߠF  (“extended theory”), the predicted 
curve yields a much closer match as shown by the dashed curves in Fig. 2. At higher 
densities, there is little difference between the theoretical curves suggest that the Eqs. 
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(9) and (10) are reasonable. One important caveat is that the measured breast densities 
in the simulated images are generally 0.0-0.02 larger than expected for densities less 
than v=0.5 and 0.0-0.015 smaller for densities larger than 0.5 as shown in Fig. 3(a). 

Fig. 3(b) shows the standard deviation of the breast density calculated within indi-
vidual images for the simulations and compared to that found in clinical images. The 
shaded region is the approximate 50% confidence interval illustrating the variations in 
anatomic texture, i.e. in the standard deviation, occurring from individual to individu-
al. The model appears to yield greater variance than desired at low breast densities 
and much lower variance for higher breast densities. However, the model can be made 
more realistic either by careful selection of the b parameter (larger b reduces the va-
riance) or by changing the input random generator, which changes ߪఏଶ. For example, 
for low densities, the b parameter can be increased to reduce the tissue variance. Note 
however, that this will likely increase the distortion in the measured mean breast den-
sity and the expectations in Eq. (8) must be accurately calculated.  

 

Fig. 3. (a) The measured breast density as a function of the input density for the simulations 
and model. The extended theory includes the Gaussian approximation for determining the ex-
pectation terms in Eq. (8) and shows much better agreement with the simulation results (open 
circles). (b) The tissue standard deviation from the model and simulation shown in comparsion 
to the range of breast densities seen in clinical images.  

Fig. 4 shows examples of three simulated tissue backgrounds and three mammo-
grams with the corresponding VBD and β. The parameter b was rescaled based on the 
ratio between the theoretical curve and the clinical data presented in Fig. 3(b).   
Although a simple inverse power-law model does not capture linear structures in  
the mammographic images, simulated images do appear to have the granularity or 
roughness seen in the mammographic textures. Fig. 5 shows the histograms of pixel-
by-pixel breast density for both the mammograms and simulated textures for four 
measurements of breast density and β. Note that v and β are quoted for the whole 
breast for the mammogram, not just the regions used in Fig. 4 and Fig. 5, causing 
some discrepancies between the histograms for the mammogram and the simulation. 



 A Breast Density-Dependent Power-Law Model for Digital Mammography 767 

 

 
Fig. 4. Examples of real mammographic backgrounds (upper) and corresponding simulated 
mammographic backgrounds (lower). From left to right, β={2.6, 2.96, 3.24} and v= 
{0.053,0.20,0.53}. The grey scale display is set to extend between the maximum and minimum 
pixel values in each image. 

 
Fig. 5. Histograms of the pixel-by-pixel tissue density estimated from mammograms by Cumu-
lus V and from simulation. From left to right, β={2.6, 2.96, 3.2,3.24} and v= 
{0.053,0.20,0.35,0.53}.  

4 Summary 

Using clinically relevant inverse power-law parameters and volumetric breast densi-
ties, a mathematical model is used to create simulated mammographic images. Both 
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an analytic form and a simulation algorithm can be used from the model. These mod-
els can be adjusted to match image parameters from a clinical population. The ap-
proached described here will be extended to task-based observer models for digital 
mammography and potentially to breast tomosynthesis and CT.  
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Abstract. We report on development of a new calibration approach for the Sin-
gle-Energy X-ray Absorptiometry method (SXA) to provide absolute breast tis-
sue composition accuracy in clinical conditions for the long term and realize 
cross-calibration between machines, sites and manufacturers.   

The proposed method takes into account both geometric and image related 
factors that impact the calibration of grayscale image into absolute tissue com-
position. A specially designed phantom (GEN III) is imaged in place of the 
breast and analyzed as if it were a breast.  An automatic algorithm was devel-
oped to extract all necessary parameters for recalibration. Subsequently, the 
thickness correction factors and recalibration procedures were applied during 
calculations of density. 

A breakpoint stepwise approach was used to correct the thickness variations. 
It provides the thickness measurement variations over time with a typical stan-
dard deviation of 0.2-0.3 mm. After recalibration, the recalculated %FGV of the 
GEN III region of interests are consistent over time, with a typical standard 
deviation around 1%. 

Keywords: full-field digital mammography, volumetric breast density, single 
x-ray absorptiometry, breast cancer. 

1 Introduction 

The relationship between high breast tissue density and breast cancer has shown that 
breast density is one of the strongest predictors of breast cancer risk in women. Cur-
rent mammography methods, such as scoring methods and mammographic density, 
estimate areal breast density and are semi-quantitative as well as subjective. Recently, 
research has focused on automated calibrated volumetric density measures that are 
both quantitative and accurate. Methods that use an image reference phantom, calibra-
tion and model based approaches have been reported. A full review of methodologies 
was recently published by Yaffe et al [1]. More recently, another calibration approach 
was developed by Heine et al [2].  MRI and CT can create accurate 3D images of 
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dense breast volume and have been used to accurately quantify breast density. How-
ever, these modalities are generally used for diagnostic imaging because the exams 
are more expensive and, in the case of CT, expose the patient to higher dose than 
screening mammography. Thus, there are advantages to measuring breast density in a 
mammography environment and there is a demand for method with absolute accuracy 
to serve as a “gold” standard for different approaches.  The Single-Energy X-ray 
Absorptiometry method (SXA) quantifying percentage of fibroglandular tissue vo-
lume (%FGV) and absolute fibroglandular dense tissue volume (FGV) has been de-
veloped earlier by our group and demonstrated strong  breast cancer risk prediction 
[3, 4].  The method estimates breast density by combining thickness and density 
measures determined from a calibration phantom present in each image.  In contrast 
to other volumetric calibrated and modeling methods, the accuracy of our approach 
can be verified using simple phantoms of known compositions, which also allow for 
cross-calibration between machines, and phantom quality control procedures.  These 
procedures allow us to monitor and recalibrate the SXA outputs when necessary and 
take into account both geometric and imaging parameter variations of mammography 
systems in their clinical application. The paper reports recent develops of a new cali-
bration approach for the SXA method in order to provide absolute breast tissue com-
position accuracy in clinical conditions for the long term and realize cross-calibration 
between machines, sites and manufactures.  

2 Method 

Although SXA is stable and reproducible in clinical conditions in a short term of a 
few months, the accuracy of this method is sensitive to mammography system geome-
trical changes, service procedures and detector degradation over longer periods of 
time such as several years. In order to take into account these variations, we modified 
our calibration method. A specially designed phantom (GEN III) is imaged in place of 
the breast and analyzed as a breast. It incorporates numerous innovative features to 
test and monitor mammographic system performance for accurate breast volume and 
density measures. Features of this approach include the ability to monitor reference 
grayscale values at several thicknesses and densities, paddle compression height and 
tilt angle accuracy, as well as to detect major hardware changes such as detector array 
replacement in order to recalibrate.  The GEN III phantom is composed of 9 regions 
of interest (ROI) covering 0 to 100 %FGV at 2, 4 and 6 cm thicknesses.  14 lead 
markers embedded in the phantom at specific locations allow for registering the de-
tector array coordinate system to reveal whether a detector array replacement has 
occurred. Two “bookends” on each side of the density steps offer angled/tapered sur-
faces to which the mammographic compression paddle conforms to when imaging. 
This feature allows for the compression paddle height and tilt angle to be explicitly 
known. 6 metal wires were embedded on the surface and used as markers at known  
 



A Calibration Approach for SXA Method to Provide Absolute Breast Tissue Composition 771 

 

thicknesses.  Images of the GEN III phantom were weekly acquired on 22 Hologic 
Selenia machines at 5 different sites (California Pacific Medical Center, University of 
California San Francisco, Marin General Hospital, Novato Community Hospital, and 
University of Vermont) over 2.5 years. The top view of the GEN III and SXA 
phantom, side view of the GEN III phantom with the paddle compressed to its top 
surface as during the imaging procedure is presented in Fig. 1, left and right, 
respectively. An automatic algorithm was developed to extract all necessary parame-
ters for recalibration - converting grayscale into density and correcting thickness map 
estimation. Subsequently, the thickness correction factors and recalibration proce-
dures were applied during calculations of density. Fig. 2 demonstrates  the  GEN III 
x-ray image after processing. The algorithm identifies 6 metal wires at locations with 
known thicknesses, extracts the thicknesses at their locations and calculates the 
thicknessses of 9  ROIs. It also locates 8 lead markers, projects lines to find the source 
point at their intersection and save the values to a database.  Next, the calculated and 
known thicknesses under wires are compared and correction factors are updated 
relative to the image’s acquisition date, if necessary.  Then, a standard recalibration 
procedure using the 9 GEN III ROI attenuation values and the SXA phantom 9 
thickness attenuation values is applied to update the database table which captures 
two calibration parameters (klean and km) described in [3]. Multiple consecutive im-
ages of the GEN III phantom were also obtained and analyzed to estimate the paddle 
compression error. 

   

Fig. 1. The top view of the GEN III and the SXA phantom (left), side of the GEN III phantom 
with the paddle compressed to its top surface 

3 Results 

To test the paddle compression-decompression variations, 8 consecutive scans of the 
GEN III phantom were obtained during one day. They demonstrated the %FGV error 
around 1% due to accumulative deviations of the paddle angles, compression thick-
nesses, and imaging attenuation. Using the weekly GEN III phantom measurements 
under the same conditions we validated the thicknesses at 6 locations, paddle angles,  
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ROI attenuations and %FGV of 9 steps on the phantom. We found significant devia-
tions of thicknesses and ROI attenuation pixel values from the values obtained during 
initial calibration over the monitored period of time. Time dependence of  thickness 
differences between actual and calculated thicknesses at wire 1 (thickness = 6.26 cm) is 
shown in Fig. 3 before correction and in Fig. 4  after correction.  A break point stepwise 
approach was used to correct the thickness variations. After correction the thickness 
errors are characterized by typical standard deviations between  0.2-0.3 mm.  

 

Fig. 2. The GEN III x-ray image after processing. The algorithm identifed 6 metal wires at 
locations with known thicknesses, 8 lead markers are connected with projected lines to find the 
source point at their intersection.   

 

Fig. 3. Time dependence of thickness differences between actual and calculated thicknesses at 
wire 1 (thickness = 6.26 cm) before correction 
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Fig. 4. Time dependence of thickness differences between actual and calculated thicknesses at 
wire 1 (thickness = 6.26 cm) after correction. 

Fig. 5 shows time dependence of ROI attenuation at thickness 6cm.  In the case of 
ROI attenuations, we can observe the periods of continuous changes alongside rela-
tively flat periods. This is apparently due to either continuous degradation of the 
mammography imaging system performance over time variation or after service pro-
cedure changes. Although the SXA phantom looks after small attenuation changes, it 
is not able to follow significant changes.  Thus, mammography imaging system per-
formance and thickness measurement variations give rise to %FGV errors up to 15%  
To solve this problem weekly recalibration was applied and a new look up table of 
calibration coefficients generated.  Fig. 6 demonstrates calculated %FGV after weekly 
recalibration of data presented in Fig. 5. It clearly shows efficiency of the chosen  
 

 

Fig. 5. Time dependence of ROI attenuations at thickness 6cm 
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approach. The recalculated %FGV of the GEN III ROIs are consistent over time. This 
recalibration procedure allows us to achieve standard deviations around 1% over the 
period of 2.5 years.  The initial clinical application of the new calibration approach 
demonstrated significant improvements of data consistency between different mam-
mography machines and sites.  

 

Fig. 6. Time dependence of calculated %FGV after weekly recalibration 

4 Conclusions 

A new calibration approach for the SXA method has been developed.  It provides 
stable thickness measurements and grayscale to density pixel conversion and different 
machine cross-calibration.  The cross-calibration between sites and machines could be 
achieved by Quality Control monitoring with GEN III phantom outputs. An extension 
of this approach is underway applying the method to calculations of breast %FGV and 
validating it clinically.  
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Abstract. Mammographic breast density is very important in the area of cancer 
risk evaluation, dosimetry and image quality optimization. Many studies have 
shown that a breast consisting of 50% glandular and 50% adipose tissues is not 
a representative model of typical breast composition, as the mean volumetric 
breast density has been found to be less than 20%, much lower than the 
commonly assumed value of 50/50. In this paper we investigate the 
characteristics of local breast density distribution of a breast in a large 
population. We find that the maximum local breast density, calculated from a 
densest region of a breast, is about 2.3X as high as the mean whole breast 
density. Therefore the maximum local breast density seems to match the 50/50 
model better. Since modern mammography systems employ automatic exposure 
control (AEC) to ensure acceptable image quality for dense regions of a breast, 
and since the local breast density over AEC sensor regions often fall into the 
range of 40% and higher, the 50/50 breast model and physical phantoms should 
continue to be used in development of x-ray technique and clinical evaluation 
of mammography systems. 

Keywords: volumetric breast density, local breast density, 50/50 model, 
automatic exposure control, AEC. 

1 Background 

Mammography density is a reflection of the amount of glandular tissue as opposed to 
adipose tissue in the breast. It is measured using either area based or volume based 
methods, with result expressed as percentage breast density.  Breast is a highly 
heterogeneous human organ, often showing significant local density variation in a 
mammogram. It is commonly expected to have higher breast density values when we 
perform local breast density analysis with a mammogram. There are papers discussing 
characteristics of local breast density distributions and their relations to clinical cancer 
risk [1, 2], but we have not seen studies on technical aspects of local density 
distributions, e.g., mammography instrument development, dosimetry, and x-ray 
techniques optimizations. Actually mammographic breast density is an important 
topic both clinically and technically. Studies [3] have shown that a breast model 
consisting of 50% glandular and 50% adipose tissues may not be a good 
representative model of breast composition, as the mean volumetric breast density 
over large patient population is found to be less than 20%. Therefore there have been 
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suggestions to reduce the density of mammography model and phantom to better 
match the density of clinical breast. However in certain applications, the local breast 
density is a more important consideration than the averaged density over the entire 
breast. For example, modern mammography systems employ automatic exposure 
control (AEC), which pre-images the breast with a low dose exposure to identify 
dense regions in a breast and then determines an x-ray technique accordingly to 
achieve satisfactory image quality for these dense regions. In practice a very fatty 
breast could have a very dense region inside and result in a high x-ray exposure by 
AEC control. To evaluate the clinical performance of a mammography system, the 
density of phantom should better match the highest local density of a clinical breast 
instead of the breast density averaged over the entire breast volume.  

In this paper, we apply the volumetric breast density (Vbd) method to study the 
characteristics of local breast density distributes in a breast, and the result will provide 
guidance in phantom design, x-ray technique development, and clinical evaluation of 
mammography systems.   

2 Methods 

We carried out volumetric breast density calculation with 17623 mammograms in this 
study with a FDA-approved breast density calculation software package – QuantraTM. 
The software was developed based on physical modeling of mammography system, 
and can perform volumetric assessment of breast tissue compositions [4]. Quantra can 
produce a map of glandular tissue thickness at each pixel location, and we then 
perform regional breast density analysis based on this map with an offline program, in 
which the computation time is about 10 seconds per image. The pixel size is 70 
microns in the original mammogram, and we select a local ROI size of 8.75 x 8.75 
mm2 (125 x 125 pixels, referred as super pixel) and then divide the mammogram into 
a matrix of super pixels (Fig. 1). The super pixel is selected to be of a square shape 
for convenience, and mammograms taken with large or small paddles will result to 
different super pixel matrix sizes. These super pixels are similar to the ROI sizes that 
an AEC algorithm uses in Selenia and Selenia Dimensions systems. If the AEC’s 
sensor region is too small the exposure technique can be dictated by small dense 
objects such as calcifications, and if it is too large the exposure is insensitive to local 
density variations.  In each ROI region, we integrate the total glandular tissue volume 
and the total breast tissue volume, and the ratio of the two becomes the local Vbd of 
the region. The software package has a configurable option of either including the 
skin or excluding the skin in Vbd calculation. In this study the skin content is 
included in breast density result. This is because we are interested in the impact of 
local breast density to AEC. The skin contributes to the local density measurement 
during the AEC process, so the skin effect needs to be considered from the AEC point 
of view. In general the presence of skin in volumetric breast density calculation only 
adds an offset to the final breast density result but does not change the underlining 
physics and clinical cancer risk. Among all super pixels, the one with maximum local  
Vbd (ML-Vbd) is marked in Fig. 1. We refer the whole breast Vbd as WB-Vbd as 
against the term of ML-Vbd in discussions. Each mammogram is processed to obtain 
its WB-Vbd and ML-Vbd, and then the results are analyzed all together or in each 
category like thickness, age and so on. 
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Fig. 1. A mammogram is sub-divided into matrix of super pixels with each element containing 
125 x 125 pixels (8.8x8.8 mm2). Local volumetric breast density (L-Vbd) is calculated within 
the volume of each super pixel, and the one with maximum local Vbd is marked. The breast has 
a WB-Vbd of 29% and a ML-Vbd of 67%. The histogram of L-Vbd is given in Fig.2. 

3 Results 

3.1 Characteristics of the Database 

The database consists of 17623 mammograms, with both CC and MLO views. The 
mean patient age is 53.6 year old (σ=11), with a range from 21 to 96 year old. The 
mean breast thickness is 5.8 cm (σ=1.4). The mean volumetric breast density Vbd is 
17.3% (σ=8.1%).   

3.2 Local Breast Density Distribution 

The histogram of local Vbd of the case in Fig 1 is given in Fig. 2. The histogram is 
dominated by large numbers for Vbd less than 5%, which are from these fatty regions. 
For local Vbd greater than 5%, the height of the Vbd histogram is limited within 10 
counts and is scattered approximately uniformly versus the Vbd.  The shape of this 
histogram distribution seems to agree well with the visual appearance of that 
mammogram, as the glandular tissues are scattered around uniformly inside the breast.  

We also change the size of super pixel from 125x125 pixels to other choices like 
50x50, 75x75, 150x150 and 200x200, and investigate how the size of super pixel 
affects the result.  The histograms of these choices are shown in Fig.3a-3d. 
Compared with all five super pixel sizes, the ML-Vbd decreases slightly as the super 
pixel size is increased, which is straightforward to understand. The larger the size or 
volume of a super pixel, the more chance the local Vbd is averaged to become smaller 
in that super pixel. However, the shape of histogram seems to hold consistent, as for 
Vbd larger than 5%, the histogram tends to be more flat and uniformly spreading out 
against the horizontal Vbd axis, with the maximum Vbd decreases as pixel size 
becomes larger. For the rest of analysis in this paper, we fix our choice of super pixel 
size to be 8.8 x 8.8 mm2 (125 x 125 pixels) as this size matches to the size of AEC 
sensor in many clinical mammography systems. 
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Fig. 2. Histogram of local Vbd of the case in Fig.1. The WB-Vbd is 29%, labeled by the dash 
line in the plot. The ML-Vbd is 67%. The super pixel size is 125 x125 pixels (8.8 x 8.8 mm). 

 
      (a)                                             (b) 

 
      (c)                                              (d) 

Fig. 3a-3d. Histograms of Vbd versus the size of super pixel, for a) 3.5 x 3.5 mm2; b) 5.3 x 5.3 
mm2; c) 10.5 x 10.5 mm2; and d) 14 x 14 mm2, respectively 

3.3 The Distribution of Whole Breast Vbd vs. Maximum Local Vbd 

In Fig. 4, histograms of WB-Vbd and ML-Vbd of the entire database are co-plotted. 
The shape of WB-Vbd is skewed and has a mean Vbd value of 17.3%, and with few 
breasts exceeding 40% Vbd. However, the maximum local Vbd follows a very 
different distribution. The ML-Vbd extends all the way up to 100% Vbd, and has a 
mean Vbd value of 41.3%.  
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Fig. 4. Histogram of WB-Vbd vs. ML-Vbd from all 17623 mammograms in the study 

 

Fig. 5. The scatter plot of WB-Vbd vs. ML-Vbd, and the linear regression with a slope of 2.30 

In Fig.5, we show the ML-Vbd versust Wb-Vbd of each mammogram with a 
scatter plot.  The linear regression of the data (passing through the origin of zero) has 
a slope of 2.30. The ratio of mean WB-Vbd and mean ML-Vbd is 2.39 
(=41.3%/17.3%) in the study. In average, ML-Vbd is about 2.3X times as high as 
WB_Vbd for a breast.  
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3.4 WB- and ML-Vbd Per Thickness, Age and Abd-Score, View Groups 

The WB- and ML-Vbd results are further analyzed in each category against thickness, 
age, Abd-score (a BIRADS-equivaalent score derived from WB-Vbd, renamed from 
the “ACR-score” in [5]), and view. Results are summarized in tables 1-4.  

Table 1. Mean WB-Vbd and ML-Vbd per thickness group 

cm # of images 
WB_Vbd 

(%) ML_Vbd (%) 
ML/WB 

ratio 
(1 cm - 2 cm] 34 39.6 82.0 2.07 
(2 cm - 3 cm] 530 23.7 51.1 2.15 
(3 cm - 4 cm] 1676 22.8 50.2 2.20 
(4 cm - 5 cm] 3123 20.4 47.6 2.33 
(5 cm - 6 cm] 4272 17.5 42.7 2.45 
(6 cm - 7 cm] 4470 14.8 37.1 2.50 
(7 cm - 8 cm] 2621 13.3 33.2 2.50 
(8 cm - 9 cm] 759 13.1 31.8 2.43 

(9 cm - 10 cm] 115 14.9 35.1 2.36 

Table 2. Mean WB-Vbd and ML-Vbd per age group 

age # of images 
WB_Vbd 

(%) ML_Vbd (%) 
ML/WB 

ratio 
(20 - 30] 66 24.2 49.1 2.03 
(30 - 40] 1754 20.5 47.3 2.30 
(40 - 50] 5830 19.8 45.8 2.31 
(50 - 60] 5485 15.9 38.7 2.44 
(60 - 70] 3078 14.2 35.1 2.48 
(70 - 80] 1128 14.3 37.1 2.59 
(80 - 90] 247 16.0 43.7 2.73 

(90 - 100] 30 18.0 48.1 2.67 

Table 3. Mean WB-Vbd and ML-Vbd per Abd-score  

Abd-score 
(WB_Vbd range) # of images 

WB_Vbd 
(%) ML_Vbd (%) 

ML/WB 
ratio 

1: (0% - 11.9%) 5070 9.8 24.1 2.45 
2: (11.9% - 20.2%) 7553 15.6 39.9 2.56 
3: (20.2% - 35%) 4478 25.6 58.3 2.28 
4: (35% - 100%) 519 42.0 82.2 1.96 

Table 4. Mean WB-Vbd and ML-Vbd per view 

View # of images WB_Vbd (%) ML_Vbd (%) ML/WB ratio 
R_MLO 4377 17.3 41.5 2.40 
R_CC 4407 17.2 41.1 2.38 

L_MLO 4339 17.3 41.5 2.40 
L_CC 4500 17.2 41.0 2.39 
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4 Discussion 

The analysis of local Vbd in our study confirms a common expectation that the 
maximum local Vbd is much higher than the whole breast Vbd.  The exact value of 
the ratio depends on the size of ROI used in the analysis. A smaller ROI will have a 
slightly higher ratio while a large ROI will lead to a slightly lower ratio. Based on the 
patient population in this study, the ML-Vbd is likely to be about a factor of two or 
higher than the WB-Vbd in general.  

From histograms in Fig.4, while it is rare to see a clinical breast with a WB-Vbd 
larger than 40%, it is quite common to find the ML-Vbd of a breast larger than 50%. 
This finding could have important practical implication.  Modern mammography 
systems all employ some kinds of automatic exposure control to optimize x-ray 
exposure for different breasts. In particular, the AEC ensures that the densest portion 
of breast achieves satisfactory image quality in the mammogram. A breast may appear 
very low in whole breast density but the x-ray technique and the patient dose can be 
still high as they are actually set by densest portion of the breast. Therefore local 
breast density is more important than the whole breast density in AEC control.  

Recent developments in breast density study have brought in consent that the 
average breast density is generally below 20%, much lower than the 50/50 reference 
that were widely adopted in x-ray dosimetry and phantom study in the past. There 
have been proposals that breast imaging dose should be lowered accordingly to match 
that well-agreed low value of Vbd; some suggestions also propose that image quality 
evaluation should be done with a fattier phantom instead of the 50/50 ACR phantom. 
So there are two questions related to breast density here: what density should be used 
to do dose calculation and what density phantom should be used to evaluate a 
mammography system? In mammography the mean glandular dose (MGD) is 
calculated by the product of entrance surface exposure (ESE) and the dose conversion 
DgN factor as . Breast density affects both terms here. For 
uniform phantom, both DgN and ESE are set by the mean density (WB-Vbd). For 
heterogeneous breast, DgN is set by WB-Vbd, and the ESE is set the densest part of 
the breast (ML-Vbd) through AEC. In table 5, we give typical ratios to do a 
quantitative comparison for 4.2 cm thickness phantoms and breast. AEC maintains 
constant detector count under AEC sensor so ESE is lower for the 20% density 
phantom. From table 5, if one uses a fatty 20% density phantom to evaluate the AEC 
of a system, the x-ray exposure could be off by 25% in comparison with the clinical 
scenario that a breast with the same WB-Vbd is imaged.  

Table 5. AEC dose comparison of 20% and 50% density 4.2 cm thick phantom 

  
phantom 

20% 
phantom 

50% 
breast with WB-

Vbd=20%, ML-Vbd=50% 
DgN 1.12x 1 1.12X 
ESE 0.75X 1 1 

AEC dose 0.84X 1 1.12X 
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According to the finding in this study, when we consider breast as a heterogeneous 
organ with large local density variation, the x-ray imaging dose will be dictated by the 
maximum local density that is at least 2X as high as its WB-Vbd. Since the mean ML-
Vbd is usually around 40% or higher, the 50/50 based mammography phantom should 
continue to be used to evaluate AEC dose and clinical image quality.   

In Tables 1-4, WB- and ML-Vbd results are evaluated against thickness, age, Abd-
score and view. We find that breast density drops as thickness, age and Abd-score go 
up. Abd-score serves as the BIRADS-equivalent score for a patient, which is derived 
from the Wb-Vbd result of the patient. The result also does not depend on whether it 
is the CC or MLO view, and the left or right breast. In particular, our results of ML-
Vbd of thickness group can be used as breast density reference for each thickness in 
dose calculation and system evaluation.  

5 Conclusion 

In this paper, we describe our study on the assessment of local breast density 
distribution in a mammogram.  First, we confirm the general expectation that local 
breast density can be much higher than the whole breast density; and we further 
quantify our result that the ML-Vbd is about a factor of two or higher than the WB-
Vbd. Second, we find the distribution of ML-Vbd spreads out nicely toward the upper 
limit of 100% breast density, unlike the distribution of WB-Vbd that is highly skewed 
towards a low value. While mean value of WB-Vbd in the study is only17.3%, the 
mean value of ML-Vbd is found to be as high as 41.3%. Therefore there are 
significant numbers of breast with ML-Vbd beyond the 50% reference clinically. Our 
results suggest that while in certain dosimetry applications, the reference value of 
breast composition needs to be set low to match the WB-Vbd value, in AEC related 
dose and image quality applications, the 50% reference and the 50/50 based physical 
phantom should continue to be used as they match the ML-Vbd of a breast well, 
which can better simulate the dense region of a breast to generate relevant x-ray 
technique and image quality during testing.  
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Beńıtez-Bribiesca, Luis 17
Benten, Simon 276
Berg, Jonathan 181
Berks, Michael 228
Bick, Ulrich 48
Bloomquist, Aili K. 197
Boggis, Caroline 127, 205, 589
Boone, John M. 697
Bosmans, Hilde 189, 338, 362, 642
Bottema, Murk J. 474
Bouwman, Ramona W. 322, 537
Bozek, Jelena 96
Brady, Michael 173, 252, 260, 458
Brandan, Maŕıa-Ester 17
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Galván, Héctor A. 17
Ganau, Sergi 308, 561
Gavenonis, Sara 32, 418
Gee, James C. 604
Ghate, Sujata V. 658
Giger, Maryellen L. 697
Gilbert, Fiona J. 330
Glick, Stephen J. 157
Gomi, Shiho 119
Gong, Zongyi 80, 300



784 Author Index

Gooßen, André 529, 753
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