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PREFACE

Ultimately, the quality of the tools available for genetic analysis and
experimental disease models will be assessed on the basis of whether they
provide new information that generates novel treatments for human
disease. In addition, the time frame in which genetic discoveries impact
clinical practice is also an important dimension of how society assesses the
results of the significant public financial investment in genetic research.
Because of the investment and the increased expectation that new treat-
ments will be found for common diseases, allowing decades to pass before
basic discoveries are made and translated into new therapies is no longer
acceptable.

Computational Genetics and Genomics: Tools for Understanding Disease
provides an overview and assessment of currently available and
developing tools for genetic analysis. It is hoped that these new tools can be
used to identify the genetic basis for susceptibility to disease. Although this
very broad topic is addressed in many other books and journal articles,
Computational Genetics and Genomics: Tools for Understanding Disease focuses
on methods used for analyzing mouse genetic models of biomedically im-
portant traits. This volume aims to demonstrate that commonly used
inbred mouse strains can be used to model virtually all human disease-
related traits. Importantly, recently developed computational tools will
enable the genetic basis for differences in disease-related traits to be rapidly
identified using these inbred mouse strains.

On average, a decade is required to carry out the development
process required to demonstrate that a new disease treatment is beneficial.
However, the analysis of mouse genetic models and the application of the
approaches described in this text will enable genetic discoveries to be made
much more quickly. Providing insight into the genes and pathways regulat-
ing the disease-related traits among the inbred strains. The results can
direct subsequent biological experimentation, clinical research, and human
genetic analysis.

The book is organized into three parts: Part I: Theory and Technical
Concepts, Part II: Selected Examples: Murine Models of Human Disease,
and Part III: Selected Examples: The Genetic Basis for Human Disease. The
chapters in the first section provide theoretical and practical overviews
of the methodology used for analysis of murine genetic models of human



disease. Chapter 1 describes how new computational methods and analysis
of biomedical traits among inbred mouse strains can accelerate the rate of
genetic discovery. The statistical methods used for genetic analysis of
murine experimental intercross progeny, which are referred to as
quantitative trait locus mapping, are described in Chapter 2.  Chapter 3 pro-
vides the first detailed overview of a recently developed haplotype-based
computational genetic analysis method.  If used by experimental mouse
geneticists, this method can exponentially accelerate the rate of
genetic discoveries made using murine disease models.  The methods for
organizing the pattern of genetic polymorphisms in the genome of inbred
strains into haplotype blocks, which can be computationally analyzed, is
described in Chapter 4. This chapter also compares the different
methods used for generating haplotype blocks for mouse and man, and
indicates how they can be used for very different applications.  The section
concludes with a description of the methods for discovering and
characterizing genetic polymorphisms found among the commonly used
inbred mouse strains in Chapter 5.

The second section provides an overview of murine models of asthma
and lung disease, osteoporosis, and substance abuse.  Although there are a
multitude of available mouse models for many different human disease-
related traits, these chapters were written by investigators who have
developed the models that are used in the disease area they investigate.
More importantly, they provide an overview of available mouse models
and what has been learned from analysis of these models.  In addition, they
also indicate what models need to be developed in order to advance our
understanding of these diseases.  Because many disease-related processes
can only be studied in vivo, it is important to examine the quality of the
available disease models.

In the third section, two chapters describe how genetic analysis of
human populations has provided information about the genetic basis for
susceptibility to asthma and other inflammatory diseases. Hopefully, we
will be able to write additional chapters about the genetic basis for many
more diseases within the next few years.

Gary Peltz, MD, PhD
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THEORY AND TECHNICAL CONCEPT





1
Computational Biology 

Are We There Yet?

Gary Peltz

1. INTRODUCTION

Any parent who has taken young children on a car trip will understand the
question in the title and its implied impatience with the duration of the jour-
ney. The same question can be put to the research community’s journey
toward understanding the genetic basis of complex disease. Recently
developed genomic technologies, such as oligonucleotide microarrays and
achievements including whole genome sequencing, have suggested that
scientists can now analyze complex genetic diseases at a much more rapid
pace. The analytic speed is further increased by the large amount of genetic
and genomic information that is available in public databases, which enables
several analytic steps to be computationally performed. However, it is clear
that we have not yet arrived at our desired destination, that of knowing the
genetic basis for complex disease susceptibility (1). Therefore, it is an appro-
priate time to ask if complex disease research is moving in the right direction
and if it is using the best road map and the appropriate type of transportation.

A significant percentage of research in academic and industrial laborato-
ries is now directed toward understanding the pathogenesis of complex
human diseases. In simple terms, a complex disease does not result from an
alteration at a single genetic locus; but multiple, distinct genetic susceptibil-
ity loci contribute to its pathogenesis. Environmental factors may also have
a large impact on susceptibility. The clinical phenotypes that are part of the
spectrum of complex human diseases can be analyzed in the same manner as
any complex genetic trait; they result from summation of effects from all
contributing loci. This is fundamentally different from qualitative traits, such
as the presence or absence of a disease diagnosis, in which individual
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phenotypes fall into discrete categories (2). Complex disease-associated
traits often show quantitative variation and exhibit an approximately normal
distribution in the population. Quantitative variation is that which is
measured on a numerical scale. A quantitative trait locus (QTL) is a genetic
locus that contributes to a quantitative trait. It is the quantitative aspect of
the disease-associated traits that facilitates genetic analysis (2).

Complex diseases have been the focus of academic and industrial research
efforts because they are common in the general population and have a large
impact on human health. Rheumatoid arthritis provides one example of the
impact a complex disease has on society. It has an overall prevalence of 1%
among adults and affects approx 2.1 million people in the United States (3).
Its estimated annual cost (direct and indirect) was $8.7 billion in 1994 (4),
and this is expected to increase dramatically in the first two decades of the
21st century (5). It is known that rheumatoid arthritis susceptibility is
controlled by several different genetic loci, including those within and
outside the HLA region. Family studies have clearly demonstrated a
heritable predisposition to rheumatoid arthritis and many other common
diseases, such as asthma, autism, schizophrenia, multiple sclerosis, systemic
lupus erythematosus (SLE), and type 1 and type 2 diabetes mellitus
(reviewed in ref. 1). It is anticipated that identification of the genetic factors
regulating susceptibility to complex disease will lead to a better understand-
ing of the cause of these diseases, improved therapeutics, and even strategies
for disease prevention.

In contrast, Mendelian (simple) genetic diseases result from alterations at
a single genetic locus. For a Mendelian trait, the genetic alteration has a large
phenotypic effect, and there is a one-to-one correspondence between the
genotype and phenotype. Although these diseases may severely impact
affected individuals, they appear in a relatively small number of individuals.
For example, cystic fibrosis, the most common Mendelian-like genetic
disease, has an incidence of 1 in 3300 Caucasians. The incidence is less in
African Americans (1 in 15,300) and Asian-Americans (1 in 32,000), and is
a very rare disease (less than 1 in 50,000) in Africa and Asia (6). Linkage
analysis and positional cloning are very powerful methods that have been
used over the last 20 yr to identify the genetic loci responsible for cystic
fibrosis and for more than 100 other monogenic human diseases (7). The
same approaches also identified genes responsible for a subset of some
common disorders, such as breast cancer (BRCA-1, -2), colon cancer (famil-
ial adenomatous polyposis and hereditary nonpolyposis colon cancer),
Alzheimer’s disease (β-amyloid precursor protein, presenilin-1 and -2), and
diabetes (maturity onset diabetes of youth -1, -2, and -3) (reviewed in ref. 1).
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Computational Biology 5

However, the identified mutations account for only a small percentage of
individuals with these diseases. For example, the identification of BRCA-1
and -2 mutations that are associated with susceptibility to breast cancer was
a major accomplishment. They were identified by analysis of cohorts of indi-
viduals with an early onset and high familial incidence of breast cancer.
However, only about 3% of all primary breast cancer in the general popula-
tion (diagnosed at age <70 yr) is caused by the highly penetrant mutations
(8). Conventional linkage and positional cloning methods have had only lim-
ited success in identifying the genetic loci that underlie the most common
traits and diseases in humans. Despite considerable effort, genetic variants
accounting for susceptibility to most common disorders in the general popu-
lation have not been identified.

It is clear that a new playbook and new rules must be developed to accelerate
the rate at which complex disease-related traits can be successfully analyzed
in humans. The thesis underlying this book is that an integrative approach,
beginning with genetic analysis of complex disease-associated traits in
experimental model organisms, provides an efficient and productive process
for analysis of complex traits (Fig. 1). Most human disease-related traits can
be modeled in experimental organisms, such as the mouse or rat. The experi-
mental genetic models of complex disease-related traits can then be geneti-
cally analyzed using standard linkage and positional cloning methods.
Identification of genetic loci within the linked regions can be accelerated by
using an integrated approach employing currently available genetic and

Fig. 1. Diagrammatic representation of an integrative approach used for analysis
of complex disease-related traits.



genomic tools. In addition, the pace at which genetic discoveries can be
made using mouse genetic models can be greatly accelerated by the use of
recently developed computational tools. These will be described in this and
other chapters in this book. The results of this analysis can direct subsequent
biological experimentation, clinical research, and human genetic analysis.
This type of analysis will provide insight into the genes and pathways regu-
lating the complex disease-related traits in model organisms. The human
homologs of the identified gene, as well as other elements in the pathway,
can then be analyzed using human genetic analysis.

The conceptual basis for, and practical application of, genetic methods to
investigate human disease biology are described in this book. The reasons
for analyzing mouse models of human disease-related traits are presented in
this chapter, along with an overview of how integrative and computational
methods accelerate genetic analysis. A set of “rules” is discussed in the next
section. These “rules” should not be viewed as absolutes. Rather, they are
devices used to describe the rationale for the proposed methods for studying
disease biology. Following this, three examples are provided. Each indicates
how an integrated genetic and genomic approach enabled the genetic basis
for disease-related phenotypic differences in experimental mouse genetic
models to be identified. Lastly, an overview of how recently developed com-
putational methods can accelerate the process of genetic discovery is
provided. Subsequent chapters provide more detailed information on this
computational method and specific applications.

2. SOME “RULES” FOR UNDERSTANDING THE 
DISEASE BIOLOGY

1. Complex traits are not simple. As discussed in the Introduction, the
analysis of human cohorts using conventional linkage and positional
cloning has enabled genetic mutations responsible for a number of mono-
genic diseases and a subset of monogenic-like diseases to be identified.
The mutations identified by this method have a very large effect on sus-
ceptibility and exhibit a strong genotype–phenotype correlation. The
mutations were identified in clinical cohorts with unusual presentations
and account for an uncommon subset of individuals with a common dis-
ease. In contrast, positional cloning and linkage approaches have had only
limited success in identifying the genetic loci that underlie the most com-
mon traits and diseases in humans. Despite considerable effort, genetic
variants accounting for susceptibility to many common disorders in the
general population have not been identified. Because multiple genetic loci
are involved, and each individual locus makes a small contribution to
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overall disease susceptibility, it has been quite difficult to identify com-
mon disease-susceptibility loci by applying conventional linkage and
positional cloning methods to human populations. Furthermore, a genetic
alteration at a single locus that is responsible for a major phenotypic effect
in a small subset of the population may not bear any relationship to the
genetic changes underlying subtle (quantitative) differences in the general
population. Because of these factors, new tools and approaches must be
developed to identify genetic factors underlying common human diseases.
2. We have to better utilize gene expression information and improve our
understanding of the biological impact of alterations in gene expression
patterns. The importance of global gene expression patterns as a tool for
understanding genetic variation and genetic susceptibility to disease has
not been fully appreciated. Cataloging changes in gene expression pat-
terns and understanding its regulation are required and fundamental steps
for understanding complex biological processes. The fact that 5% of genes
in the genome are predicted to encode transcription factors (9) indicates
how important this process is to cellular biology. The pattern of gene
expression is precisely connected to the functioning of cells and tissues.
When correlated with phenotype, it provides a rich source of information
about the function of genes, cells, and tissues. Alterations in this pattern
can be used to understand disease processes and susceptibility points.
From a genetic perspective, the combinatorial effect of cis- and trans-
sequence polymorphisms on the level of expression of a single gene
allows for more possible phenotypic diversity than a quantitative estimate
of the amount of genotypic variation within a population would predict.
The expression level(s) of a given gene (or genes) within a pathway can
be very finely modulated. This provides a genetic control mechanism that
can be modulated in a much finer manner than could be achieved through
alterations in the coding sequence of a protein. Consistent with this, pro-
moter-specific transcription activators are quite abundant in the human
genome. One analysis suggested that the human genome may contain over
2000 promoter-specific transcription activators in the human genome (9).

Ribonucleic acid (RNA) splicing provides another mechanism for
directly modifying information contained in the genome and provides
another source for genetic regulation of complex traits. The biological
importance of RNA splicing is supported by a recent experimental obser-
vation that at least 74% of human multiexon genes are alternatively
spliced (10). Others have estimated that 40–60% of human genes produce
alternatively spliced gene products (11). Premessenger (m)RNA splicing
involves the removal of introns and joining exons to form mature mRNAs



with intact translation reading frames (for review see refs. 12 and 13). This
complex process is regulated by both intronic and exonic nucleotide
sequences (reviewed in ref. 14). In addition to the invariant GT and AG
intronic dinucleotide sequences at the 5′ (donor) and 3′ (acceptor) exon–
intron junctions, there are other less-conserved sequence motifs that regu-
late pre-mRNA splicing. Enhancer and silencer sequences that promote or
inhibit the splicing process have been identified in both exonic and
intronic sequences. Genetic variation in these sequences can produce a
complete absence of correctly spliced transcripts or the presence of aber-
rantly spliced transcripts. As demonstrated in yeast, a genetic change in
RNA-processing proteins can have a genome-wide effect on transcription
(15). Similarly, a genetic polymorphism in a pre-mRNA-splicing protein
could affect isoform-specific gene expression patterns, biological
processes, phenotype, or disease susceptibility (14,16). For example,
analysis of the regulation of CD44 cell surface glycoprotein isoform
expression demonstrates that an alteration in pre-mRNA splicing plays a
role in a disease process. Because it has 10 alternatively spliced exons, the
CD44 gene is transcribed into a variety of isoforms, which are expressed
in a developmental stage and tissue-specific pattern (17). In several human
malignancies, certain CD44 splice variants are predominantly expressed.
In a mouse model, changes in the relative level of CD44 isoform tran-
scripts were accompanied by a significant change in the expression of sev-
eral (SR family) splicing factors expressed during tumorigenesis in the
mammary gland (18). Mutations in a 5′ splice site in exon 10 of the micro-
tubule-associated protein tau gene, which regulate alternative splicing and
tau protein isoform expression, were associated with frontotemporal
dementia and Parkinsonism linked to chromosome 17 (19). Interestingly,
these mutations disrupted a stem-loop structure in tau RNA, and the sta-
bility of this secondary structure affected the ratio of tau isoform expres-
sion in vitro. A significant fraction (10–15%) of disease-causing mutations
in human genes affects pre-mRNA splicing (see Human Gene Mutation
Database, http://archive.uwcm.ac.uk and ref. 14).
3. Patterns of polymorphism within a chromosomal region—not an indi-
vidual single nucleotide polymorphism (SNP) or a restricted subset of
SNPs within the coding sequences of a single gene—is the unit for evalu-
ating the effect of genotypic changes on phenotype.

The central dogma of molecular biology indicated that individual genes
are transcribed into RNA, which is then translated into protein. Because
of the importance of the central dogma to scientific research, geneticists
have focused on sequence variation within a gene as the unit for studying
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Computational Biology 9

the consequences of genetic variation. Often, polymorphism scanning has
been confined to genomic sequences within or near exons (20). However,
genetic variation is not introduced into the genome by processes that
respect boundaries between genes, nor does it select for coding sequences.
Furthermore, the effect of a sequence change may not be confined to a sin-
gle gene. Therefore, it is likely to be more efficient and productive to eval-
uate sequence variation over a chromosomal region when assessing the
effect of genotype on phenotype.

Although SNPs at different sites within a chromosomal region can be
identified and characterized individually, alleles at different positions
along a chromosome can be associated. The presence or absence of an
allele at one site can provide information about alleles at other sites; this
association between alleles is called linkage disequilibrium. A haplotype
can be defined as the relationship between deoxyribonucleic acid (DNA)
sequence variants in the same gene, region, or chromosome. Analysis of
polymorphisms over large genomic segments of the human genome has
indicated that polymorphic variation at multiple sites within a chromoso-
mal region can be grouped into patterns (“haplotypes”) with high linkage
disequilibrium (20–23). Regions with low linkage disequilibrium separate
the haplotypic blocks. The size of the genomic sequence contained within
a haplotypic block can range from a few to over 100 kb. Analysis of
human chromosome 21 indicated that about half the haplotypic blocks
identified, each with an average size of 7.8 kb, could be defined by less
than three SNPs, and less than three different haplotypes within a block
encompassed most of the population (80%) (23). Unfortunately, the struc-
ture of the haplotypic blocks cannot be determined empirically. A large
amount of detailed sequence information must be available to identify the
haplotype-defining SNPs and the conserved blocks. It is also likely that
the size and structure of the haplotypic blocks will change as sequence
information from more individuals is obtained and analyzed. However,
analysis of the haplotypic patterns enables individuals within a population
to be segmented into a finite number of small groups sharing the same hap-
lotype for a particular chromosomal region. Identification of haplotypes to
segment the human population has great potential. This will decrease the
amount of genotyping required to characterize a genomic region, and the
haplotypic information will enable a human population to be segregated
into a finite number of different groups. The frequency of disease or
disease-associated traits can be compared among the groups with different
genetic haplotypes within a chromosomal region. It is hoped that this will
provide a more efficient method for identification of disease-susceptibility



regions in human populations. One of the first examples of linkage dis-
equilibrium mapping using haplotypes was the identification of a 250-kb
region of human chromosome 5q31 associated with Crohn’s disease
susceptibility (24). There were 11 SNPs with strong linkage disequilib-
rium in the 5q31 region associated with Crohn’s disease susceptibility, and
it was not possible to identify an individual disease-associated SNP. These
results are consistent with the possibility that a set of polymorphisms
within a chromosomal region, which may effect more than a single gene,
contribute to the disease susceptibility. 

Similarly, inbred mouse strains are particularly useful for genetic analy-
sis because the entire genome of an inbred strain is effective in linkage
disequilibrium. The parental origin of DNA segments in intercross prog-
eny over entire chromosomes can be inferred by analysis of only a few
polymorphic markers (25). Furthermore, there is extensive linkage dis-
equilibrium among polymorphisms in the genome of inbred strains.
Analogous to the human population, SNPs among the inbred strains can
be organized into haplotypic blocks (26). Analysis of regions linked to
susceptibility to complex disease-related traits in mouse models has also
indicated that genetic changes across chromosomal regions affecting
multiple genes, rather than within a particular gene, may contribute to
susceptibility. For example, a region on chromosome 1 that controls
autoantibody production in a mouse model of SLE was analyzed.
Polymorphisms within a set of co-linear interferon-inducible genes in this
region were responsible for differential autoantibody production in this
model (27). This result appears to be applicable to other mouse models of
human disease-related traits. Fine-mapping analysis often identifies
several distinct subloci within a linked chromosomal region that inde-
pendently contribute to the phenotypic trait. Additional analysis of a
linked chromosomal region regulating autoantibody production and
nephritis in the murine model of systemic lupus demonstrated that the
interval consisted of at least four distinct genetic loci (28). Similarly, the
ability of our “digital disease” computer program to identify chromo-
somal regions regulating complex traits in mice is likely to result from
recognition of patterns of genetic variation over large (10 cm) regions
within the mouse genome (29). Analysis of the patterns of variation over
larger regions is likely to be informative in situations when analysis of a
single SNP does not reveal genotype–phenotype correlation.
4. Integrative approaches must be utilized to efficiently analyze complex
biological processes. Only a limited amount of resolution can be achieved
with the use of any single approach for analyzing a complex biological
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system. However, two orthogonal approaches can be simultaneously
applied to investigate a complex biological problem. Although each
approach may have its own inherent limitations, the integrated use of data
arising from each of the two separate approaches can provide a more effi-
cient and precise analysis. The integrated use of gene expression data
obtained with high-density oligonucleotide microarrays in conjunction
with the SNP genotyping method has been shown to accelerate QTL
analysis (27,30,31). The identification of a genetic locus within a defined
genetic interval is accelerated by analysis of differentially expressed genes
within the region in selected tissues obtained from the parental strains. A
computational method for performing genetic analysis will be described
in this book. This computational method enables candidate chromosomal
regions and specific genes to be identified very quickly for phenotypes
that differ among inbred mouse strains. If so, databases with tissue-
specific gene expression and phenotypic information across mouse strains
could be used in conjunction with the murine SNP database to computa-
tionally identify candidate disease genes. In a hypothetical experiment,
the expression of roughly 25,000 murine genes in an affected tissue
obtained from different mouse strains can be profiled. In this hypothetical
example, assume that 2% of these genes will be differentially expressed
within tissues obtained from strains with a phenotypic difference. The
resulting list of 500 gene candidates could be computationally reduced by
99% to about five genes, by identifying genes that are encoded within a
15-cm chromosomal region that is linked to the trait. This approach pro-
vides a reasonable starting point for analysis of complex disease biology
and should reduce the frustrations and overcome the difficulties associ-
ated with QTL analysis in murine complex disease models. Complex trait
analysis will be greatly accelerated by the development of other methods
that can examine changes in all genes within an organism. Consistent with
this, it has recently been demonstrated that gene expression levels can be
analyzed as heritable traits in mice, plants, and humans (32). Producing a
catalog of gene expression differences among commonly used inbred
mouse strains would accelerate analysis of identified chromosomal regions
controlling genetic traits. Although proteomic technologies are quite prom-
ising, they currently lack the bandwidth needed for genome-wide analysis.
Hopefully, improved proteomic technologies will soon be developed,
which can be utilized for genetic analysis in the very near future.
5. The problem with experimental mouse or rat models of human disease is
not with the models themselves, but with the way they have been
inappropriately utilized and interpreted. As one example, the pathogenesis



of human immune-mediated diseases has been studied in many different
rodent models. An organ-specific inflammatory response is induced in
rodent experimental models by sensitization and subsequent re-exposure to
an experimental antigen. There are mouse and rat models of allergen-
induced experimental asthma (33,34), collagen-induced arthritis (35–37),
and experimental allergic encephalitis (38,39), in which antigen-triggered
inflammation is induced in the lungs, joints, and brain, respectively. The
organ-specific inflammation developing in these experimental models has
characteristics that resemble human asthma, rheumatoid arthritis, or multi-
ple sclerosis. The pharmaceutical industry has used these models for pre-
clinical testing of potential therapeutic agents. The effect of an exogenous
agent on the antigen-induced organ-specific inflammatory process in these
experimental models is characterized to assess whether a potential therapeu-
tic will have efficacy in a human disease. However, utilization of available
rodent experimental models for this purpose has been fraught with problems.
A tested compound can ameliorate inflammation in these models by inhibit-
ing the immune-mediated response to the inciting antigen. Unfortunately,
the clinical manifestations of a human immune-mediated disease often
appear years to decades after an individual has been sensitized to an antigen.
In contrast, the rodent models are analyzed within days to 1 mo after initial
antigen exposure. Although initiated by an immune response to antigen, the
human immune-mediated diseases become clinically apparent when the
underlying pathogenic processes no longer involve the initial response to
the disease-inciting antigen. Therefore, efficacy in human clinical cohorts is
likely to be unrelated to efficacy in the preclinical mouse models.

The differences observed in the innate and adaptive immune responses
of mouse and man have recently been reviewed (40). These differences
can affect different components of the immune response and can be the
basis for differences in the observed response to experimental interven-
tions. Because there are 65–75 million years of evolutionary distance
between mouse and man, it should not be a surprise that there are differ-
ences between these two species. However, overemphasizing the catalog
of differences between the immune response of murine and man can lead
to neglect of the key point. The vast majority of the fundamental mecha-
nisms and processes regulating the murine and human immune responses
are very similar. Therefore, the mechanisms underlying immune-mediated
phenotypic differences of biomedical importance are quite likely to be
shared by mouse and man. Although the exact site at which the genetic
change is introduced is quite likely to differ between the two species, the
controlling pathways are likely to be similar.

12 Peltz
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Although the murine models have limited utility for predicting the effi-
cacy of human therapeutics in clinical trials, they have been quite useful
for identifying genetic susceptibility elements for human disease. As in
the human population, inbred mouse strains are differentially susceptible
to developing organ-specific inflammation in response to experimental
antigen exposure protocols. Therefore, these experimental mouse models
of human inflammatory disease have been genetically analyzed to identify
genetic elements contributing to susceptibility or resistance to the disease-
related process. It is striking that different investigators have identified
similar genetic loci regulating susceptibility in different experimental
rodent models of human disease-related traits (38,41). Most importantly,
the genetic regions identified in some rodent experimental models are syn-
tenic to the regions identified by analysis of human cohorts with immune-
mediated diseases. Analysis of 21 previously published genome-wide
scans indicated that several clinically distinct human autoimmune
diseases—including asthma, rheumatoid arthritis, and multiple sclerosis—
may be controlled by a common set of susceptibility loci, and the loci
were syntenic to those found through analysis of experimental mouse
models (42). The similarities in genetic loci identified in human and
rodent models extend beyond inflammatory disease. Six chromosomal
regions regulating hypertension were identified in a murine genetic model.
There was a high degree of concordance between the chromosomal
regions identified in the mouse model and those found in human popula-
tions (four of six) and rat experimental models (five of six) (43). It is not
known how often the genetic loci regulating complex traits in murine
models will directly translate into human susceptibility elements.
However, it is very likely that the genes and pathways identified in the
experimental rodent models will provide key insight into how complex
disease-associated traits are genetically controlled in human populations.
Most human disease genes isolated by positional cloning have highly sim-
ilar homologs in rodents (44).
6. Understanding the biological impact of the genetic changes underlying
complex traits will require the development of new methods for biological
analysis. Most biological experimentation examines pathways that have
a major effect on cell and tissue function. This is similar to the rather
profound phenotypic changes associated with genetic changes underly-
ing Mendelian traits. In contrast, the biological impact of genetic
changes underlying complex traits will be much more subtle, more diffi-
cult to dissect in isolation, and will be sensitive to the overall genetic
background and the environment. It will not be possible to confirm the



identity of many complex trait loci by functional complementation or
with gene knockouts (2). This makes it much more difficult to identify
and understand the biological impact of genetic variation at complex
trait loci. It is likely that the criteria and methods currently used for bio-
logical analysis will have to be altered for complex traits. Phenotypic
effects in gene knockout mice or changes caused by exogenous gene
complementation are unlikely to be seen in these complex systems. The
supporting evidence for the biological effect of an individual genetic
alteration underlying a complex trait is likely to be indirect. A prepon-
derance of supporting evidence and the absence of negative evidence
will often be the determining criteria. Gene or protein expression differ-
ences, response to environmental factors, effects of other components in
the pathway, and the involvement of orthologs in other species will be
analyzed for subtle biological effects produced by genetic alterations
underlying complex traits. The plethora of information generated by
genetic analysis of complex traits will spur advances in cell biology and
organ physiology. It is likely that QTL affect cellular differentiation and
organ development. Therefore, more sensitive and efficient methods for
studying cellular differentiation process and tissue development will
have to be developed. Small molecules will be more extensively used to
analyze the biological pathways impacted by genetic variation. Small
molecules have provided key information about protein function in
several areas of biology. Tetrodotoxin was used to analyze the action
potential (45), whereas prostaglandin J2 and peroxisome proliferator-
activated receptor-γ (PPAR-γ) agonists enabled a pathway regulating
adipogenesis to be analyzed (46,47). However, a large amount of time
and cost is required to produce a highly specific chemical inhibitor for a
desired gene product. Therefore, small interfering RNAs (siRNAs),
which decrease the expression of a selected mRNA by gene silencing,
provide a powerful new tool for biological analysis (reviewed in ref. 48).
Although there are limitations that are because of the limited extent and
time of siRNA-mediated RNA knockdown, siRNAs can be used to
assess the biological importance of many different types of candidate
genes in vitro. Furthermore, the availability of siRNA libraries targeting
a large number of specific mouse and human genes (49) further
increases the utility of this tool. Once the current limitations resulting
from off-target and temporally limited effects are overcome, siRNAs
will be the first of a number of new tools that enable a more efficient
process of biological characterization of genetically identified gene
candidates.
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3. THREE EXAMPLES: INTEGRATIVE APPROACH 
TO COMPLEX TRAIT ANALYSIS IN MICE

Commonly used genetic mapping tools identify chromosomal regions
affecting complex traits in rodent models of human disease-related traits.
However, identification of the causative genetic factor within a linked chro-
mosomal region is essential for obtaining new information about a disease or
biological process. The process of identifying genetic loci within linked
chromosomal regions is difficult and often unproductive, which has been a
source of frustration for many (50). However, the following three examples
demonstrate how the combined use of whole genome gene expression profil-
ing and QTL analysis of mouse genetic models enables the efficient identifi-
cation of causative genetic variants within linked regions.

3.1. Murine Experimental Model of Asthma

An integrative approach was utilized to analyze a well-characterized murine
genetic model that mimics the pathophysiology of human allergic asthma (Fig.
2). In this model, allergen exposure results in airway hyperresponsiveness,

Fig. 2. Diagrammatic representation of an integrated genetic and genomic
approach for analyzing a murine experimental genetic model of allergic asthma.



increased airway epithelial mucus content, antigen-specific IgE in serum, and
pulmonary eosinophilia (51,52). Inbred mouse strains vary markedly in their
susceptibility to disease induction in this model. Two strains with markedly
different susceptibilities to experimental allergen-induced asthma were used:
the A/J strain is highly susceptible to allergen-induced airway hyperrespon-
siveness and the C3H/HeJ strain is highly resistant. Analysis of the inheritance
pattern of the asthmatic response in intercross progeny led to the identification
of regions on chromosomes 2 and 7 that regulated asthma susceptibility in this
experimental model. To identify gene candidates, pulmonary gene expression
was profiled using oligonucleotide microarrays. After phenotypical assess-
ment, lungs were harvested from parental (A/J, C3H/HeJ) and F1 mice and
from eight first-generation backcross progeny (BC1) that exhibited phenotypi-
cally extreme allergen-induced airway responsiveness. As indicated in Fig. 3,
2718 of the 7350 genes on the microarray were expressed in the lungs of the
parental strains. A total of 739 genes were differentially expressed in the lungs
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Fig. 3. Identification of a gene regulating susceptibility in an experimental
murine genetic model of allergic asthma. The number of differentially expressed
genes after comparison of gene expression profiles was determined after examining
the number of genes: on the oligonucleotide array (all); expressed in the lungs of the
two parental mouse strains (present); differentially expressed between the two
strains according to the criteria provided by the manufacturer (∆); computationally
determined to be over threefold different (3×) between the two strains; or differen-
tially expressed among the eight BC1 intercross progeny examined. The gene
expression profile of five pairs of phenotypically extreme BC1 progeny was com-
pared as described in the text. The number of differentially expressed genes when
three (3∆) or four (4∆) of the five comparisons indicated that the gene was differen-
tially expressed is shown.
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of A/J and C3H/HeJ mice (∆), and 227 genes exhibited a more than threefold
change in expression when these two parental strains were compared (>3x).

Differential gene expression was also assessed within groups of high-
responder (A/J and 4 BC1-high) and low-responder (C3H and 4 BC1-low)
mice. The expression data were filtered for differential expression using 
five intragroup pairwise comparisons. Only 77 genes were differentially
expressed if three of the five comparisons were different (3∆), and 21 genes
were differentially expressed when four of the five comparisons were differ-
ent (4∆). The initial expression data set was confirmed by expression profil-
ing additional high-responder and low-responder intercross progeny to yield
a total of 18 data points. This analysis revealed that only a single differen-
tially expressed gene was located within one of the identified QTL intervals.
Complement factor 5 (C5), located at 23.5 cm on chromosome 2, was the
only gene that met the differential expression criteria and was located in one
of the defined QTL intervals.

The level of C5 expression was significantly associated with genotype
and correlated closely with the magnitude of allergen-induced asthmatic
response (Fig. 4). This correlation was strengthened when genotyping of
the lone BC1-low responder mouse with an aberrantly low level of pulmonary

Fig. 4. Complement factor 5 (C5) gene expression and genotype correlates with
allergen-induced airway hyperresponsiveness. C5 transcript levels in whole lungs of
ovalbumin-sensitized A/J, C3H, and F1 (A/J × C3H) mice are indicated; six high-
responder BC1 and six low-responder BC1 mice are shown in comparison to their
dynamic airway hyperresponsiveness. BC1 mice with C5 deficiency are represented
by diamonds and BC1 mice that are C5 heterozygous are shown as circles.
(Reproduced with permission from ref. 30.)



C5 mRNA expression revealed that it was homozygous for the A/J allele at
the C5 locus. All of the other intercross progeny that were resistant to
experimental asthma induction had a C3H-derived C5 allele. Subsequent
analysis revealed that the presence of a deletion in the coding sequence of
C5 in susceptible mice leads to the absence of C5 protein and susceptibil-
ity to the asthmatic trait (30). The mechanism by which a genetic defi-
ciency in C5 could lead to susceptibility to an asthmatic trait could then be
characterized. Subsequent experimental analysis revealed that C5 defi-
ciency effected the production of cytokines regulating the asthmatic
response. IL-12 is a cytokine with potent effects on T-cell differentiation.
When produced in the airways, it can prevent or reverse allergic asthma.
Inhibition of C5-mediated signaling by blockade of the C5a receptor ren-
dered human monocytes unable to produce IL-12 in vitro. This provided a
plausible mechanism for the regulation of susceptibility to asthma by
alleles of C5 in mice.

3.2. Analysis of an Experimental Murine Genetic 
Model of Osteoporosis

Osteoporosis is one of the most common bone and mineral disorders in all
aging communities. It is characterized by low bone mass resulting in frac-
tures from relatively minor trauma. Although lifestyle and environmental
factors contribute to osteoporosis, genetic factors are also of great impor-
tance (53). Bone mineral density achieved in early adulthood (peak bone
mass) is a major determinant of osteoporotical fracture risk. Genetic segre-
gation analyses in inbred mouse strains have identified linkage between peak
bone mineral density and several chromosomal regions, but the identities of
the underlying genes remain unknown. To identify genes that might regulate
bone mineral density, we used a combined genetic and genomic approach. A
region on mouse chromosome 11 that was shown to strongly influence peak
bone mineral density in F2 (B6 × D2) intercross progeny was investigated
(29,54). A D2 background congenic mouse, with an 82-Mb region of chro-
mosome 11 replaced by the corresponding region of the B6 genome, was
used in these studies. Congenic mice had increased peak bone mineral den-
sity (whole body and femoral) and improved measures of femoral shaft
strength (failure load and stiffness) relative to heterozygous or D2 litter-
mates. Linkage analysis of intercross progeny generated using the chromo-
some 11 congenic mice further narrowed the interval regulating bone
mineral density to a 31-Mb region between 54.7 and 85.4 Mb on chromo-
some 11. Microarray analysis of kidney and cartilage tissue obtained from
parental and congenic mice indicated that Alox15 was the only differentially
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expressed gene within the identified region on chromosome 11. Alox15
expression in the kidney of D2 mice was nearly 20-fold greater than that
observed in B6 kidney. Analysis of genomic DNA identified 15 polymor-
phisms in the Alox15 gene that distinguished the D2 and B6 strains (31).

The identification of Alox15 as a candidate genetic locus regulating bone
mass was quite intriguing. It codes for a murine 12/15 lipoxygenase that con-
verts arachidonic and linoleic acids into endogenous ligands for PPAR-γ (55).
Activation of this pathway in marrow-derived mesenchymal progenitors
stimulates adipogenesis and inhibits osteoblastogenesis (56). Lipoxygenases
had been implicated in the pathogenesis of several diseases, including athero-
sclerosis, asthma, cancer, and glomerulonephritis. However, the biological
functions of murine or human Alox15 had not yet been determined with cer-
tainty. In fact, an Alox15 knockout mouse was reported not to have any
detectable difference from wild-type littermates (57).

An in vitro osteoblast differentiation system was used to demonstrate that
transient overexpression of Alox15 in murine bone marrow stromal cell cul-
tures restricted osteoblast differentiation (56). These in vitro observations
led to the hypothesis that genetically determined, constitutively high Alox15
expression limited peak bone mass attainment by suppressing osteogenesis
through activation of PPAR-γ-dependent pathways. The effect of Alox15 on
skeletal development in vivo was then investigated. The skeletal phenotype
of Alox15 knockout mice was compared to that of age-matched B6 progeni-
tors. Although body weight and whole-body bone mineral density were simi-
lar between the two strains, femoral bone mineral density and biomechanical
indices of femoral shaft strength were increased in Alox15 knockout mice.
To limit the possible effects of background strain, the effect of crossbreeding
D2 and Alox15 knockout mice on bone mass acquisition was examined.
Three hundred F2 offspring of this pairing with 0, 1, or 2 copies of the intact
Alox15 allele were characterized. F2 mice with no intact Alox15 alleles
exhibited significantly higher whole body bone mineral density and
increased femoral bone strength than mice that were homozygous for the
alleles mediating high-level Alox15 expression. These experiments demon-
strated that reduced expression of Alox15 rescued mice from a low bone
mass phenotype that was associated with high levels of Alox15 expression.
We also examined the skeletal effects of pharmacological inhibitors of 15-
lipoxygenase in two rodent models of osteoporosis. Mice with severely
reduced bone mass, owing to constitutive overexpression of an interleukin-4
(IL-4) transgene (58), were treated with an Alox15 inhibitor for 12 wk after
weaning. Because IL-4 was known to upregulate Alox15 expression in a
number of tissues, we hypothesized that increased Alox15 expression may



contribute to the defective skeletal phenotype in this model. Treatment with
the Alox15 inhibitor resulted in increased whole body bone mineral density,
femoral bone mineral density, and femoral shaft failure load. Treatment with
another Alox15 inhibitor also prevented bone loss in a rat model of estrogen
deficiency (postmenopausal) osteoporosis (56). These results indicated that
pharmacological inhibition of 12/15-lipoxygenase in vivo can improve bone
mass and strength during skeletal development, as well as offset the bone
loss that accompanies estrogen deficiency.

3.3. Identification of a Genetic Locus for Autoantibody Production
Using a Mouse Model

An integrated approach was also used to identify a genetic locus regulat-
ing autoantibody production in a murine model of a human autoimmune
disease (27). SLE affects a number of organ systems and is considered to be
a prototypic systemic autoimmune disease. The common denominator
among SLE patients is the production of autoantibodies reactive with multi-
ple self-proteins. The hallmark of this disease is elevated serum levels of
antinuclear antibodies. Hybrids of New Zealand black (NZB) and New
Zealand white (NZW) mice develop a severe immune complex-mediated
glomerulonephritis associated with high serum levels of IgG antinuclear
autoantibodies, and these mice are considered to be an excellent model of
human SLE (59). Genetic analyses have demonstrated that the major histo-
compatibility complex (MHC) and multiple non-MHC loci from both New
Zealand strains contribute to the lupus phenotype (60–63). The region on distal
chromosome 1, for which contributing genes from both NZB and NZW
parental strains have been localized, is among the most interesting
(27,41,59,64–66). One NZB-derived lupus-susceptibility locus on distal
chromosome 1 (named Nba2 for New Zealand black autoimmunity 2) was
identified in multiple different backcrosses and showed linkage as a QTL
with nearly all of the lupus autoantibodies studied (61). These findings sug-
gested that this locus might act as an immune response gene that influences
antigen-driven B-cell responses to self-antigens.

A congenic mouse was used to characterize the Nba2 lupus-susceptibility
locus. The B6.NZB-Nba2 (or B6.Nba2) congenic mouse has the Nba2-containing
distal chromosome 1 region (~79–109 cm) of NZB introgressed onto the
nonautoimmune C57BL/6 (B6) strain. This congenic mouse produced all of
the lupus-associated antibodies. To identify gene candidates within the Nba2
region, gene expression in spleen cells obtained from 4-mo-old (pre-
autoimmune) B6.Nba2 congenic and B6 parental mice were profiled using
oligonucleotide microarrays. Only two differentially expressed genes within
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the Nba2 interval, interferon-inducible genes Ifi202 and Ifi203, were identi-
fied by comparison of gene expression in congenic and parental NZB mice
(67). These two co-linear genes were differentially expressed when NZB and
NZW spleen cells were compared. Analysis of different cell types within the
spleen indicated that increased Ifi202 expression was localized to splenic B
cells and to non-T/non-B cells. The NZB-derived IFI202 allele was prefer-
entially expressed in F1 mice relative to the NZW allele. These results, along
with analyses of promoter region polymorphisms and differential IFI202
protein expression implicated Ifi202 as a candidate gene. B cells from NZB
and B6.Nba2 congenic mice were resistant to apoptosis induced by
crosslinking surface IgM, which coincided with high expression of IFI202 in
the apoptosis-resistant B cells. Increased expression of IFI202 has been
shown to inhibit apoptosis (68,69), and decreased expression led to increased
susceptibility to apoptosis under certain physiological conditions (70).
Inhibition of B-cell apoptosis provides a mechanism by which increased
IFI202 expression enhances lupus susceptibility. Apoptosis is critically
involved in the maintenance of B-cell tolerance, and inhibition of B-cell
apoptosis through mutations in another gene (Fas[lpr]) was shown to con-
tribute to a lupus-related phenotype in another mouse strain (71). The inte-
grated approach to analysis of the NZB/W murine genetic model identified a
novel genetic mechanism regulating autoantibody production.

4. NEW MOUSE STRAINS AND TOOLS 
TO ACCELERATE GENETIC ANALYSIS

The last two examples demonstrate the utility of congenic mice for identi-
fication of a genetic locus within a linked region. Congenic mouse strains
are constructed by repeated backcrossing of a donor strain onto a back-
ground strain, with selection at each generation for the presence of a desired
donor chromosomal region. Because this involves serial backcrossing and
selection among progeny, construction of congenic mice is a process that is
costly in both dollars and time. Therefore, the availability of a series of well-
characterized congenic mouse strains, with different chromosomal regions
from one strain placed onto the genetic background of a recipient strain, pro-
vides a valuable tool for genetic analysis. They will be useful for rapidly
assessing the impact of genotypic changes within a defined chromosomal
region on the phenotype and for identification of the genetic locus regulating
the phenotype.

As one example, a set of congenic mice were produced, with each strain
having a single A/J-derived chromosome placed on the C57BL/6 host back-
ground. Each of the 21 chromosome substitution strains had one of its



19 autosomes or one of two sex chromosomes derived from the A/J donor
strain. The rest of the chromosomes were from the C57BL/6 mice (72).
Recently, this congenic strain set was used to analyze 53 different traits, and
over 150 chromosomal regions regulating these traits were identified (73).
Two other groups have produced overlapping sets of congenic strains with
smaller chromosomal regions from the donor strain introgressed into the
genome of another recipient strain (74,75). These sets of congenic sub-
strains, in which a single identified segment of the genome of one mouse
strain is replaced by that of another strain, provide a useful tool for analysis
of the effect of genetic variation on phenotypic responses. Application of
well-characterized experimental strategies for genetic mapping (76) to the
genome-wide congenic strain sets will enable genetic regions regulating
complex traits in experimental mouse models to be rapidly identified. This
requires characterization of the phenotype in the parental strains and in each
congenic substrain. In one example, this approach was used to identify a
genetic locus for susceptibility to malaria using a set of A/J and C57BL/6
congenic strains (77).

Chemical mutagenesis was used to introduce new genetic mutations into
inbred mouse strains. There are several large efforts to dissect complex traits
in the mouse using chemical mutagenesis to produce artificial mutants,
which can be screened for phenotypes of interest (78–80). This resulted from
difficulties encountered by investigators using standard methods for QTL
analysis (reviewed in ref. 50). It was hoped that this approach would provide
a powerful alternative method for complex trait analysis. This method is
attractive because new mutations are introduced into the genetic background
of an inbred mouse strain, and all genes in the genome are susceptible to
mutagenesis. This approach has been, and will be, useful for identifying
highly penetrant genes, particularly those having a profound effect on
embryonic and organ development (81). A clever strategy has been devel-
oped to enable screening for recessive mutations, but it does require several
generations of intercrossing mutagenized mice (81). However, it is unlikely
that this approach will be generally useful for analysis of complex genetic
traits. Identification of genes with a large phenotypic effect may not reveal
how polygenic traits are regulated. Because most phenotypic screens per-
formed on mutagenized progeny are not for quantitative traits, it is unlikely
that genes of small effect will be identified. It is also statistically unlikely
that an individual progeny will have mutations in multiple different loci that
will produce quantitative trait variance. However, mutagenesis programs
may produce a very useful collection of genetic variation on a known back-
ground. DNA and sperm from mutagenized male mice can be archived, and

22 Peltz



Computational Biology 23

the archived DNA can be scanned for mutations in selected genes. The sperm
can be recovered from mice with mutations in genes of interest and used to
produce mice for phenotypic studies (82).

The application of an SNP-based genotyping method for analysis of
murine intercross progeny provides another tool that facilitates genetic
analysis. An improved strategy for SNP scoring with allele-specific oligonu-
cleotide primers and kinetic (real time) monitoring of polymerase chain reac-
tion (PCR) amplification (83) was utilized for mouse genotyping (65).
Allele-specific amplification results from the use of oligonucleotide primers
specific for one or the other SNP variant sequence. This approach provides
an efficient and low-cost method for SNP-allele genotyping. The genotyping
reaction is performed within a single microtiter well and does not require
any post-PCR analytic steps. Most importantly, this method can determine
allele frequencies in pooled DNA samples. A subset of phenotypically
extreme progeny can be selected, and their DNA can be aggregated into
pools. Allele frequency differences between the pooled samples can be used
to identify linkage regions, which exponentially reduce the amount of geno-
typing required for analysis of experimental intercrosses. A web-accessible
database, which enables computational selection of allele-specific primers
for genotyping experimental mouse intercrosses, was established. The
oligonucleotide primer sequences and conditions for performing over 750
allele-specific kinetic PCR genotyping assays (83) are provided in the mouse
SNP database (see http:\\mouseSNP.roche.com and ref. 65).

5. COMPUTATIONAL APPROACHES
TO COMPLEX DISEASE BIOLOGY

Genetic analysis of murine models requires generation, phenotypic screen-
ing, and genotyping of a large number of intercross progeny. Even with
improved genotyping tools, this laborious, expensive, and time-consuming
process has greatly limited the rate at which genetic loci can be identified in
experimental mouse or rat models. It usually requires at least 2 yr to gener-
ate and characterize the 200–1000 intercross progeny required for genetic
analysis. To accelerate this process, a computational method that can predict
linkage regions by analysis of phenotypic data generated from inbred mouse
strains was developed (65). The computational prediction method can be
used in conjunction with databases of gene expression and phenotypic
information to markedly accelerate complex trait analysis. Although it is at
an early stage, the computational approach can eliminate many months to
years of laboratory work and reduce the time required for QTL interval

http:\\mouseSNP.roche.com


identification to milliseconds. Five years ago, at least five scientists working
for a 5-yr period would be required to carry out the analysis of a complex
trait in an experimental mouse model. Using the computational method
described in this book, one scientist could complete the initial steps in analy-
sis of a complex trait in an experimental mouse model in 1 d.

Experimental murine genetic models can be analyzed using currently
available genetic and genomic tools. However, the rate can be exponentially
accelerated through application of recently developed computational tools.
Databases of gene expression information and DNA sequence polymor-
phisms among inbred mouse strains enable genetically controlled, disease-
related traits to be computationally analyzed. Although computational
methods may not generate a complete “solution to the riddle” posed by a
complex trait, they can identify candidate genes and pathways that serve as
starting points for subsequent biological and genetic analysis. If the data-
bases and methods are sufficiently developed, the computationally identified
gene candidates will have a reasonable probability of contributing to the
disease-related phenotype.

Almost all human complex diseases and disease-related phenotypes can
be experimentally modeled in rats and mice. Genetic and genomic tools that
enable computational analysis of complex traits in mice are currently avail-
able (Fig. 5). Web-accessible databases of DNA sequence polymorphisms
across 21 murine strains (see ref. 65 and http://mouseSNP.roche.com) and
phenotypic information (http://www.jax.org) across inbred mouse strains are
enabling tools for computational analysis of complex traits. Of course, an
investigator can also experimentally obtain phenotypic information among
inbred mouse strains for any trait of interest. One algorithm that utilizes
information within the mouse SNP database to computationally identify
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Fig. 5. Diagrammatic outline of the integrative approach used for computational
analysis of complex disease-related traits in mouse models.
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chromosomal regions regulating susceptibility or resistance to disease-
related traits was described (65). After entry of phenotypic information
obtained from inbred mouse strains, the phenotypic and genotypic informa-
tion is computationally analyzed by this method to predict the chromosomal
regions regulating the phenotypic trait. The computational predictions were
evaluated using 10 experimentally verified QTL intervals from seven pheno-
typic traits analyzed as true positives. There was a statistically highly signifi-
cant level of concordance between the predicted and experimentally verified
intervals (65). Several factors contributed to the quality of the computational
predictions. The use of inbred mouse strains housed under the same condi-
tions minimizes environmental variability, and timed experimental interven-
tion and multiple sampling limit the experimental error in phenotypic
assessment. The inbred strains are homozygous at all loci, which eliminates
confounding effects owing to heterozygosity found in human populations.
We do not yet fully understand the limitations of the computational predic-
tion method nor do we know the optimal inbred strains to use for generating
the phenotypic data. Clearly, the method may not provide the correct predic-
tions for all traits studied. However, it has the exciting potential of drasti-
cally reducing the time required for identifying chromosomal regions with
genetic loci regulating complex disease-associated traits.

Recently, we have produced another computational genetic mapping
method that utilizes a significantly different methodology (84). This new
method has increased statistical validity and makes predictions that are more
precise. As discussed in subsequent chapters, there is a large amount of link-
age disequilibrium among the polymorphisms found among the inbred
mouse strains (26). This linkage disequilibrium means that the pattern of
genetic variation across regions of the genome can be characterized by
knowing the alleles at a relatively few positions within each region. Among
the inbred Mus musculus strains, each discrete region contains a relatively
small number of distinct genetic patterns. This drastically reduces the num-
ber of comparisons required for computational genetic analysis. Instead of
comparing a phenotypic pattern with individual SNP alleles, we have devel-
oped a new method that compares the observed phenotypic data with differ-
ent haplotypes that extend across larger genomic regions. Once the
haplotypic structure of the mouse genome is understood, it facilitates com-
putational mapping of genetic traits. The haplotype-based method utilizes
the same principle of finding patterns of genetic variation that correlate with
phenotypic differences among the strains as was used by the digital disease
method. However, the haplotype-based computational mapping method is
radically different; it is based on a highly quantitative model. As described,



this method has been successfully utilized to map the genetic loci for previ-
ously known traits, as well as for discovering a novel functional genomic
element in mouse (84).

After the genetic regions controlling complex traits have been computation-
ally identified, candidate genes can then be computationally identified. This
requires the availability of a database of gene expression information gener-
ated from tissues obtained from a panel of inbred mice. The tissues related to
the disease-related phenotypes can be obtained from a panel of inbred mouse
strains and used for gene expression profiling using microarrays. The resulting
strain and tissue-specific gene expression information can be stored in a data-
base, which includes the chromosomal location for each gene. The database
can be interrogated to identify differentially expressed genes within a target
tissue for each disease-related phenotype that are contained within a predicted
region. The correlation of the expression profile, genetic variation, and pheno-
typic information among the phenotypically extreme strains can be evaluated
to assess the predicted candidates. Computational analysis of a mouse model
of experimental allergic asthma can be used as an illustrative example of this
process. A computational genome scan using phenotypic measurements for
allergen-induced airway hyperresponsiveness obtained from four inbred
strains was performed (65). The strongest peaks identified were intervals on
chromosomes 2, 7, 10, and 11. The next step in this analysis required the cre-
ation of a database containing the expression levels for 25,000 genes in the
lungs of the four strains under basal conditions and after allergen stimulation.
This database was computationally interrogated to identify differentially
expressed genes in the lungs when high- (A/J) and low-responder (C3H/HeJ)
strains were compared. Next, identifying those encoded within the computa-
tionally predicted chromosomal regions reduced the list of differentially
expressed genes. In this case, C5 would be among the differentially expressed
genes encoded within the computationally predicted region on mouse
chromosome 2. The mouse SNP database indicates that a 2-bp deletion is pres-
ent in the 5′ end of the C5 gene in the high-responder strain, and the low-
responder strain does not have this deletion. Therefore, analysis of the gene
expression, computational prediction, and SNP data identified C5 as a candi-
date gene. An investigator could then analyze the possible role of this compu-
tationally identified candidate gene in the pathogenesis of experimental
allergic asthma. A computationally derived list of gene candidates can be
produced for each complex disease-related trait analyzed in this manner.

Even in the absence of full genomic information, the power of the
approach outlined here for discovery of genetic susceptibility loci is evident.
With the full sequence of mouse, rat, and human genomes currently in sight,
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these methods should find broad usage in the search for genetic susceptibil-
ity loci underlying complex human diseases. The recent sequencing of the
human genome has generated a great deal of excitement. However, we do
not yet understand all of the information contained within this sequence nor
do we understand how sequence variation within the human population
affects human traits. It is rather ironic that analysis of rodent experimental
models, many developed decades earlier, will provide the key to interpreting
the information contained within the human genome.
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2
Statistical Theory in QTL Mapping

Benjamin Yakir, Anne Pisanté, and Ariel Darvasi

1. INTRODUCTION

Variability may be introduced in an observed phenotype by a range of ele-
ments. Inherited genetic factors, as well as environmental and behavioral con-
ditions, may affect the phenotype. The blend of all these interactions gives
rise to the unique being every living creature is. Experimental genetics has
traditionally been, and still is, a very powerful tool for dissecting the genetic
factors out of the blend that results in the observed phenotype complexity.

Unlike human genetics, a major advantage of experimental genetics is the
ability to control the genetic background through inbred strain crosses,
whereas nongenetic factors are kept relatively constant under controlled lab-
oratory conditions. In reality, the ideal experiment is almost never feasible,
and uncontrolled sources of variation and complex interactions may still
obscure the underlying genetic effect.

Even under the best conditions, mapping quantitative trait loci (QTL) is a
demanding endeavor. Any given QTL or genomic polymorphism contributes
only a limited fraction of the phenotypical variation. This complex inheri-
tance may involve partial penetrance, heterogeneity, the joint action of sev-
eral genes, environmental effects, and more. The genetic dissection of
complex traits is unavoidably based on a statistical approach. The aim in this
chapter is to describe our view of the fundamental principles on which the
statistical approach is based.

In a nutshell, the theory we will discuss involves the attempt to detect and
locate weak signals in a noisy environment. This calls for the usage of large
samples. Thereby, our probabilistical framework involves the distribution of
statistics computed from large samples in the context of what is known as
local alternatives. In statistical language, this theory is called large sample
theory. Modern technology puts at our disposal the ability to genotype these
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samples over a practically unlimited collection of molecular genetic mark-
ers. The statistical investigation should make full use of this data.
Stochastical processes are more appropriate as a model in this context than
the separate investigation of individual markers. The statistical tools that
were developed in the context of stochastical processes, in particular
scanning statistics, are applicable also in the context of QTL mapping.

One should realize that QTL mapping is a multistage process that pro-
ceeds through several steps. The first step typically involves detection of
chromosomes, or very large segments of chromosomes, which are likely to
contain a QTL. In the next steps an attempt is made to narrow down the
region containing the QTL. Finally, after a reduction to a small enough chro-
mosomal segment, the gene associated with the variability in the investigated
phenotype may be cloned, and its specific alleles may be identified. Several
factors determine which tool is most appropriate at which stage. By the word
tool we mainly mean here the selection of the cross and/or genetic resource.
Phenotyping and genotyping methods may also be included in this context.
A major factor, which determines to a large extent the advantages and disad-
vantages of a given tool for a given stage of the process, is the expected num-
ber of recombination events. This factor is directly determined by the
breeding protocol. Statistically, recombination is reflected in the correlation
among markers that reside on the same chromosome and between the mark-
ers and the QTL. In principle, an increase in the number of recombination
events reduces the correlation. Reduction in the correlation is usually a bless-
ing in the stages of fine-mapping but an obstacle in the first stage of detec-
tion. Another important factor is the strength of the statistic signal. The
strength is usually summarized in the form of a noncentrality parameter; it is
affected both by biological mechanisms by which the genetic variability is
reflected as a phenotypic variability and by the breeding protocol. Other fac-
tors to be considered include, of course, the availability of the different
resources and their respective costs.

Many attributes make the mouse an ideal mammalian model organism,
especially for genetic investigations for which a wealth of resources have
been established over the years. The relatively short generation time of the
mouse, their easy breeding, and well-documented biological properties have
led to the development of well-characterized, genetically designed specific
strains (13,14). These privileged circumstances have been exploited in both
gene-to-phenotype and phenotype-to-gene studies. With the advent of molec-
ular genetics, the use of DNA polymorphisms (11) has allowed for a refined
identification of interstrains genetic divergence (4). Correlation of the human
and mouse genetic maps (6,15), finally, makes the genetic analyses carried
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out in mice applicable to human diseases by means of comparative mapping
(15). Mouse inbred strains are invaluable models for many complex diseases
(for review see ref. 12). The use of more specialized genetic resources, such
as congenics, chromosome substitution strains, recombinant inbred (RI),
along with various statistical packages (12) has already led to a primary dis-
section of a few complex, multigenic traits. A detailed description of the
mouse strains and their use in genetics can be found in Lee Silver (see ref. 17
and http://www.princeton.edu/lsilver/book/MGcontents.html).

In the present chapter we examine the statistical aspects of QTL mapping,
with special emphasis on the relevant parameters, their impact on the genetic
design to be chosen, and reciprocally, their adjustment under the various
genetic models.

2. DESIGN OF GENETIC EXPERIMENTS IN MICE

A genetic mapping program in mice is typically initiated by the selection
of two pure inbred strains that exhibit a substantial difference in terms of the
observed phenotype. An inbred strain lacks genetic variation. All mice
within the strain carry two identical copies of each autosome and are thus
genetically identical for all practical purposes. Conversely, genetic variation
is present between strains, leading presumably to the between-strains aver-
age phenotypical difference. Crossing the two strains gives rise to offspring
that are a genetic combination of the two parental strains. The process of
recombination then blends the genomes further in subsequent crosses, gener-
ating mice with chromosomes that are a mosaic of segments from the two
parental genomes. Correlating the parental origin of the genetic material at
various loci with the measured level of the trait is the major statistical tool
for identifying the genetic factors associated with the phenotype.

Several experimental designs have been developed in the context of QTL
analysis. The most widely used designs are the backcross (BC), the intercross
(F2) designs, and to some extent RI strains (see Fig. 1). The statistical theory
we present here is given primarily in the context of those three designs.

3. THE STATISTICAL MODEL

Denote by Y the phenotype measurement for a random mouse. This mea-
surement may vary both within and between lines of pure inbred mice. Some
of this variability may be attributed to genetic and some to nongenetic factors.
For a given locus showing polymorphism between two given lines of inbred
strains, denote by A1 the allele originating from one strain and by A2 the allele
originating from the other. Intercrossing the two inbred strains may give rise
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Fig. 1. The three cross designs: (a) backcross (BC), (b) intercross (F2), and 
(c) recombinant inbred (RI). An outcross between two inbred lines (P1 and P2) pro-
duces the F1 generation, with all the mice heterozygous over the whole genome;
(a) the F1 can be crossed back to one of the parental strain (P1) to produce the BC;
(b) an intercross within the F1 will result in F2 offspring; (c) strict inbreeding
between F2 pairs, for many generations, and following a single pair of chromosomes,
will generate RI strains. All the individuals within a given RI strain carry the same
homozygous, recombinant genotype.

to three genotypes. If X represents the copy number of allele A2 in a genotype,
then the variable X can take the values 0, 1, or 2. The model potentially
assigns a different average level of Y for each genotype. At the same time, the
variance of Y, or other characteristics of its distribution, is assumed to be inde-
pendent of the genotype. The relation between the genotype and the pheno-
type is given in the regression formula:

Y = µ + α ⋅ X + δ ⋅ I{X = 1} + e, (1)
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where e is a zero mean random deviate and IA is the indicator function of an
event A. (Specifically, I{X=1} is equal to 1 if the mouse is heterozygous and 0
if it is homozygous.) The coefficient α represents the additive effect, the
coefficient δ represents the dominant effect, and the term µ is the intercept. 
µ is the expected level of Y for an (A1A1) homozygote. The expected level
for an (A2A2) homozygote is 2α, and the expected level for a heterozygote
is α + δ.

The deviate e incorporates all remaining factors that contribute to the vari-
ability. Such factors can include the genetic contribution from loci other than
the one investigated, as well as environmental factors. We assume that this
deviate is normally distributed and is uncorrelated with the genotype
variable X.

The chosen cross design between the two inbred strains (BC, F2, RI, etc.)
affects the distribution of the random variable X, as well as the distribution
of the deviate e. For example, if the BC is formed by crossing back the 
F1 mice to the (A1A1) inbred strain, then X may take either the value 1 or the
value 0, both with 0.5 probability. On the other hand, if the F1 mice are
crossed one with another in order to form the intercross (F2), then X may
take the values 0 or 2 with 0.25 probability and the value 1 with 0.5 proba-
bility. Finally, the RI mice are inbred strains, hence homozygous; X may take
the value 0 or 2 with 0.5 probability each.

The phenotypical variance, the variance of Y, is a combination of vari-
ances that arises from several sources. The genetic variance is the part of
the variance that is associated with the specific QTL. The source of the
genetic variance is the variability of X. For the BC design, X may take only
two values, the contribution of X to equation (1) simplifies to (α + δ ) ⋅ X.
The variance of this component is (α + δ )2/4, because the variance of X, a
binomial (1, 1/2) random variable, is 1/4. For the F2 design, the genetic
variance is the variance of α ⋅ X + δ ⋅ I{X = 1}. Because X and I{X= 1} are sta-
tistically uncorrelated, this variance is the sum of the variances of its com-
ponents. The variance of α ⋅ X is α2/2, because X has a binomial (2, 1/2)
distribution for the F2. The variance of δ ⋅ I{X = 1} is δ 2/4, because the vari-
ance of the indicator is 1/4. Overall, the genetic variance in the F2 is α2/2 +
δ 2/4. For the RI design, the relevant term is α ⋅ X because RI lines are by
definition homozygous. The variance here is α2, because X equals 0 or 2
with 0.5 probability each.

Which of these three terms for the genetic variances is larger depends
on the genetic model of the trait. For an additive model (δ = 0) the genetic
variance of an RI is twice as large as the genetic variance of the F2 and four
times larger than that of the BC. However, for a dominant model (α = δ) the



genetic variance of the RI is equal to the genetic variance of the BC. The
genetic variance of the intercross is 25% smaller.

The heritability coefficient (H 2) is a preliminary approach for assessing
the efficiency of a design. This coefficient is the ratio between the variance
of the genetic term—the term involving X—and the overall variability of Y.
It may take values between 0 and 1. The closer the coefficient is to 1, the
more informative the design is. In the opposite case, values of H2 closer to 0
make the statistical inference more difficult.

The H2 may give a rough idea regarding the statistical merits of a design.
A much better insight is provided when considering two additional
parameters—the parameter of noncentrality at the QTL and the between-
markers correlation coefficient. We devote the rest of this section to the
definition of these quantities and the computation of their values for the three
designs. In the subsequent sections we illustrate the role of these terms in the
assessment of the properties of various statistical inferential tools.

3.1. The Parameter of Noncentrality

Statistical inference is based on correlating the genetic information at given
polymorphical loci (genetic markers) with the phenotypical expression Y. A
given collection of mice can be subdivided according to their genotype at a
given locus (the levels of the variable X). This leads to the formation of up to
three subclasses. The statistical analysis proceeds by comparing the differ-
ences in the levels of phenotypical expression (Y) between the subclasses.

Consider the BC design, and let us assume initially that we know the
genetic configuration at the functional polymorphism that affects the quanti-
tative trait. The variable Xmay have here only two values. A natural sum-
mary statistic (Z) computes the difference between the average expression
levels in each group.* For convenience, this statistic is standardized to have a
standard deviation of 1. We define the parameter of noncentrality to be the
expected value of this Z:

(2)

where n is the number of BC mice that were genotyped and σ is the standard
deviation of the deviate e from the regression model (1). The (α + δ) arises
as the expectation of the difference between the average phenotypes of the
heterozygote and of the homozygote. The expectation in (2) is obtained by
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*A slightly better statistic is the standardized sample regression coefficient. However, the statistic
based on the difference of the averages is asymptotically equivalent and, in our view, is easier to interpret.
Consequently, we will analyze this statistic.
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dividing the expectation of the difference by its standard deviation, namely
* (As a matter of fact, one can justify using the statistic Z as an

approximate score statistic for testing the null hypothesis that the locus is not
associated with the trait, i.e., α + δ = 0. We will not follow this more formal
route. The interested reader is referred to ref. 5).

For the RI design also, X can take only two values. The standardized dif-
ference between the two types of homozygotes, which we call again Z, has
the noncentrality parameter**:

(3)

In the F2 design, all three subBclasses can be realized. This leaves more
flexibility in constructing statistics. For example, we shall use the statistic Zα
in order to make inference on the additive effect. Zα is based on estimating
the slope α in model (1). It essentially reflects the differences in phenotype
average levels between the two homozygote types (standardized to have a
standard deviation of 1). Likewise, we shall use the statistic Zδ (the differ-
ence in phenotypical average levels between the heterozygotes and homozy-
gotes) in order to investigate deviations from the additive model. The
expectations of these two types of statistics are***:

(4)

One can use a 2° of freedom χ2 statistic in order to simultaneously test
both the additive and dominance effects (5). This statistic has the form:

Although this is not reflected in the above formulae, the σ value depends on
the adopted breeding protocol and may vary between the BC, F2, and RI designs.

*About half the mice are heterozygotes. The variance of the phenotype across heterozygotes, as well
as across homozygotes, is σ2 (because X is given in each case). Therefore, the variance of the averages is
σ2/(n/2). The variance of the difference is the sum of the variances, which leads to the expression of the
standard deviation.

**About half the mice are homozygous for the alternative alleles. The expected difference between the
two types of homozygotes is 2α. The variance of the averages for each homozygote type is σ2/(n/2).
Hence, the expectation of Z is 

*** The expectation of the difference between the two homozygote types is 2α. The frequency of each
homozygote type is about n/4. This leads to a variance of the average difference of 8σ2/n, which gives the
expression of the expectation of Z is (2α).

The contribution of an (A1A1) homozygote to the expectation is µ. The contribution of an (A2A2)
homozygote to the expectation is µ + 2α. The relative frequency of (A1A1) among homozygotes is about
1/2. Consequently, the expectation of the average of the homozygotes is µ + α. The expectation among



3.2. The Correlation Coefficient

The second parameter of interest is the intermarkers correlation coefficient.
Given a pair of markers, consider the pair of computed Z statistics, one for
each marker. The intermarkers correlation coefficient is the statistical correla-
tion between these two statistics. This correlation is computed under the null
assumption of both markers not being linked to a QTL (α = δ = 0). The value
of this parameter is determined only by the recombination fraction between
the two loci. It is independent of the additive and dominant coefficients of the
trait (the parameters that determine the noncentrality parameter).

Consider a pair of markers on a random BC mouse, located at locus s and
locus t on the same autosome denoted by X(s) and by X(t), the genotypes at
both loci, respectively. Each may take either the value 0 or the value 1. Let θ
be the recombination fraction between these two loci. The probability of the
event {X(t) = 1}, given {X(s) = 1}, is 1–θ, because this event occurs if, and
only if, the gamete inherited from the F1 parent is not recombinant. One can
use the above conditional probability in order to show that the correlation
between X(t) and X(s) is equal to 1–2θ. The associated test statistics Z(t) and
Z(s) are (approximately) linear combinations, over a sample of mice, of the
X(t) and X(s) variables. Consequently, for a large sample size,

corr(Z(t), Z(s)) ≈ corr(X(t), X(s)) = 1–2θ. (5)

Consider next a random F2 mouse. Now, X(s) and X(t) may take three val-
ues each and two types of statistics are computed: Z and Z δ. The probability
transition matrix of going from X(s) to X(t) is given by:

(As an example, observe that  because in this case both gametes from the
F1 parents should not be recombinant. Similar considerations provide the
other entries in the above matrix.) Direct calculations give that here again
the correlation between X(t) and X(s) is equal to 1–2θ. Consequently,
because Zαis approximately a linear combination of X:

corr(Zα(t), Zα(s)) ≈ 1–2θ. (6)

In a similar way, the correlation coefficient between I{X(t) = 1} and I{X(s) = 1}
is equal to (1–2θ)2. Zδ is approximately a linear combination of I{X = 1}.
Hence,

corr(Zδ(t), Zδ(s)) ≈ (1–2θ)2. (7)

The Zα variables are not correlated with any of the Zδ variables.
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An RI mouse has two identical copies of each autosome. The parental ori-
gin at two loci is the same (X(t) = X(s)) if that chromosome is not recombi-
nant and vice versa. Denote by θRI the recombination fraction for a random
gamete in the RI sample. The classical result of Haldane and Waddington (8)
can be used in order to attain the approximation:

θRI ≈ 4θ/(1 + 6θ) (8)

(See ref. 9 for a general derivation of this and other results by a presentation
of the problem in terms of finite  population dynamics.) Considerations simi-
lar to those used for the BC give the following for the RI result:

corr(Z(t), Z(s)) ≈ 1–2θRI ≈ 1–8θ/(1 + 6θ). (9)

This completes the computation of the intermarkers correlations for the
three designs.

4. LARGE SAMPLE THEORY AND GAUSSIAN PROCESSES

The selection of inferential statistics should not be taken lightly. The
choice may substantially affect the efficiency of the statistical analysis. This
selection is typically guided by the prior assumption of the way genetic and
nongenetic factors interact with the measured phenotype. This prior assump-
tion is reflected in the statistical model that formulates the interaction. The
model presented in equation (1) is an example of such a statistical model.
This model is consistent with a prior assumption that a single major locus is
responsible for a substantial part of the phenotypical variation, with other
genetic factors, if any, adding only a small contribution each to that varia-
tion. Moreover, this model disables some forms of nonadditive epistasis and
some forms of gene/environmental interaction.

In the sequel we will consider separately the statistical properties of inferen-
tial statistics for each of the three experimental designs. These statistics are
computed based on the phenotypical and genotypical data collected over a col-
lection of markers. Model (1) of a single major gene and dense genotyping is
consistent with the approach of computing an inferential statistic for each
marker at a time. (If the markers are not so densely spaced, interval mapping
may be preferred (11,5).) The inferential statistic will be of the form Z in the BC
and RI designs and of the form  in the F2 design. Other models may propose
the use of other types of test statistics. (i.e., in order to detect interacting genes,
one may consider inferential statistics, computed from the phenotypical and
genetic data for a pair of markers, for all such possible pairs; see ref. 10.)

The first step in the investigation of the properties of statistical procedures
involves the determination of the distribution of the inferential statistics.



Let us focus on a given autosome. Markers are genotyped at loci t1, t2, . . ., tm
(a total of m markers). For the BC and RI we denote the summary statistics
by Z(t1), Z(t2), …, Z(tm). For the F2 we denote them by Zα(t1), Zα(t2), . . .,
Zα(tm) and Zα(t1), Zδ (t2), …, Zδ(tm). According to the large sample theory, the
joint distribution of these statistics is approximately multinormal.
Multinormal distributions are fully determined by the means and variances
of the components and by the correlations between components. The compo-
nents were standardized to have a variance of 1. The correlations were com-
puted in (5) for the BC, in (6) and (7) for the F2, and in (9) for the RI. Thus,
we are left only with the task of determining the means of the components.

The key concept in the determination of the means of the components (and
a useful concept in general in statistics) is the concept of sufficiency. A statistic
is called sufficient if it contains all the relevant information for making statisti-
cal inference (i.e., more formally, if conditioning on the statistic eliminates the
dependency between parameters of the model and the distribution of the data).
Assume a QTL is present at locus s. Let us figure that this locus is also geno-
typed and that an appropriate test statistic is computed (where the test statistic
is Z(s) in the BC and RI cases or (Zα(s), Zδ (s)) in the F2 case). Because, by
assumption of model (1), the given QTL is the only genetic factor on the chro-
mosome that contributes to the phenotypic variability, the particulars of these
imaginary statistics, had we had them, would have been sufficient for deter-
mining the association with the trait. Therefore, the information at the other
loci is no longer relevant, whether it is available or not.

This sufficiency assumption forces a given relation between the mean of a
statistic computed at a marker (Z(t)) and the mean of the statistic (Z(s)) at the
QTL, namely:

(10)

The right-hand side of (10) is the outcome of the noncentrality parameter,
given in (2) for the BC, in (4) for the F2, and in (3) for the RI. The correla-
tion coefficient between loci is computed in (5), (6), (7), and (9) for the three
designs. In summary, the means of the components can be determined by
identifying the parameter of noncentrality at the QTL and the correlation
between the QTL and the various markers.

The Haldane model of crossovers is a popular model that leads to a simple
relation between the genetic distance and the recombination fraction.
Applying this function yields a correlation coefficient of the general form:
exp{–β|t – s|} with β varying between the BC and the F2 designs (the corre-
lation coefficient for the RI design does not have this form). Multinormal
vectors with such correlation structure are denoted Orenstein–Uhlenbeck
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processes. Yet, as we shall see in the following sections, the statistical prop-
erties of the inferential procedures based on the multinormal process do not
depend on the exact form of the correlation function but on a rather weaker
property.

5. DETECTING A QTL

Mapping a QTL is a multistage process. The first step, following the
phenotypical and genotypical data collection, is the determination of the
reflection in the collected data of the presence of a QTL. It should be noted
that even when a genetic influence on the trait is undisputable, its effect
may be too weak, and our data may not be sufficient, in order to distinguish
it from random fluctuations. Therefore, the first question to be addressed
is: Can we detect a strong enough signal for the presence of a QTL? If the
answer for this question is affirmative then we can proceed in the process
of mapping the QTL. If, however, the answer is negative, then we ought to
revise our strategy. Such a revision may include an increase in the sample
size within the framework of the current design, using a different cross
design, and so on.

The field in statistics theory that deals with the issue of determining the
presence of a signal in a noisy environment is called hypothesis testing.
According to this theory, one should select a test statistic with a distribution
that best reflects the presence of a signal, and base the conclusion on the
computed value of that statistic. In the case of QTL mapping we identified
such statistics—the statistics of the form Z in the BC and RI designs and the
statistics in the F2 design. Large values of the statistics in the latter
case or large absolute values of the statistics in the former cases are an indi-
cation of the presence of a QTL in the vicinity of the marker: a strong effect
of the QTL will be reflected by a nonzero noncentrality parameter of the
statistics, which will tend to deviate its value away from 0.

The simple theory of hypothesis testing, which is based on normal distri-
bution, would have been applicable had we looked at a single marker, and a
single marker only. However, in our case we examine a sequence of test sta-
tistics, one for each marker. An extreme value in any of the test statistics is
an indication of the presence of a QTL. Thus, in reality, our test statistic is
maxti | (ti)| in the case of the BC and RI designs and maxti [ (ti) + (ti)]
in the case of the F2 design, when the maximization is taken across all mark-
ers. It turns out that the distribution of these statistics is no longer normal,
even though each component has a normal distribution. The determination
of the threshold, which will assure a given significance level for the experiment,



is based on the distribution of the maximal test statistic in the absence of a
QTL. This distribution, as we shall see in equations (11) and (12), depends
on the form of the test statistics, the number of markers used for scanning,
and on the correlation between the inferential statistics. This correlation is a
function of the distance between markers and the design of the cross.

The probability of reaching the threshold is less than the product of the
number of markers examined by the probability of reaching the threshold
with a single marker. This last probability is easily computed using the nor-
mal distribution in the case of the BC and RI, or the χ2 distribution on 2° of
freedom in the case of the F2. This upper bound, also known as the
Bonferroni upper bound, is actually a reasonable approximation of the true
probability when the correlation between markers is not too high. However,
when the correlation between markers is high, a better approximation of the
probability takes the form:

(11)

when the basic test statistic is a single normal variable Z, and the form:

(12)

when the basic test statistic is a χ2 statistic. Here, the number of markers,
used for the Bonferroni upper bound, is replaced by the term in the square
brackets. The components that determine the value of these approximations
are the number of chromosomes scanned (C); the sum of lengths between
the first and the last marker in each chromosome, across all those
chromosomes (L, measured in cM); the threshold (z in the first formula and u
in the second); the probability of reaching the threshold with a single marker
( in the first formula and in the second); and the
components that reflect the correlation between markers. These components
are the average distance between consecutive markers (∆, measured in cM)
and the rate with which the correlation between two markers approaches 1 as
the markers get closer to each other (β). This last term is equal to 0.02 in the
BC design, 0.08 in the RI design, and it turns out to be (0.02 + 0.04)/2 = 0.03
in the F2 design.

The function υ(⋅) appearing in these formulae was originally developed in
the context of random walks and renewal theory. It appears in other fields of
statistics as well, including change-point detection and scanning statistics.
It takes the form:

(13)
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where Φ(⋅) is the cumulative probability function of the normal distribution.
It turns out that the function υ(⋅) approaches the value of 1 as y approaches 0.
The function can be approximated by for small values of y
(16). When markers become denser and denser, the distance between them, ∆,
becomes smaller. This makes the arguments of the function υ(⋅) in (11) and
(12) approach 0. In the asymptotic case, the formula represents the probabil-
ity of false detection with a continuum of markers. This formula is obtained
by removing the function υ(⋅) from the expressions in (11) and (12). At the
other extreme, the function can be approximated by 2/y for large values of y.
Substituting the function with this approximation reproduces the Bonferroni
upper bound, because ∆ = L / (m – C). Therefore, one can view the function
υ(⋅) as a correction term, which takes into account both the discreteness of
the markers and the correlation between them.

Computing the power is an essential requirement for designing the experi-
ment. The power is the probability of detecting the QTL, i.e., the probability
of reaching the given threshold when a QTL is present. This probability
depends on the expectations of the statistics computed at the markers. These
expectations are tilted to have a nonzero value on the chromosome carrying
the QTL. As we saw in (10), the expectations depend on the noncentrality
parameter and on the correlations between the markers and the QTL. A sim-
ple lower bound for the power can be obtained by considering the probabil-
ity of reaching the threshold in either of the two markers flanking the QTL.
A refined approximation will take into account the possibility of reaching the
threshold for markers that are further away from the QTL. We will not pres-
ent these approximations here. The interested reader is referred to ref. 5.

6. ESTIMATING MAP LOCATION

In the first stage of mapping a QTL the issue is to evaluate the reflection in
the data of the presence of a QTL. If the answer to this evaluation is affirma-
tive, then the continuation of the process of mapping involves narrowing
down the candidate region likely to contain a QTL as much as possible. In its
initial stage, this process involves the construction of a confidence interval
(CI) for the QTL based on the data used for detection.

One procedure for constructing confidence intervals is by examining tests
for the presence of a QTL at various loci. A QTL is assumed to exist some-
where along the chromosome. However, its exact location is unknown.
According to this procedure, a locus s is included in the confidence interval
if the hypothesis that s is the exact location of a QTL is not rejected. It fol-
lows that if the significance level for that test is 10%, then the confidence



level of the resulting CI is 90%. Likewise, if the significance level of the tests
is 5%, then the confidence level is 95%.

One approach for constructing such location tests makes the simplifying
assumption that the QTL is completely linked to one of the markers, or in
other words, the correlation coefficient between the QTL and one of the
markers is 1. Yet, the marker that is completely linked to the QTL remains
unknown. The problem of constructing a CI reduces, through this assump-
tion, to the problem of testing each of the markers for being completely
linked to the QTL. In the CI, all the markers that were not rejected by the test
are included. Naturally, this approach may produce better results when mark-
ers are densely spaced, in which case the simplification made does not intro-
duce much error. It may be less satisfactory when the number of markers is
limited. In the latter case one may try other approaches of constructing con-
fidence intervals. We will not refer to such approaches. The reader may find
an evaluation of several of these approaches in ref. (5).

The decision to exclude a marker s from the CI (reject the hypothesis that
s is the QTL) may be based on the relation:

(14)

when a single degree of freedom statistic is used (BC, RI) or on the relation:

(15)

when a 2° of freedom statistic is used (F2).
The selection of x to assure the desired confidence level may depend, how-

ever, on the unknown parameter of noncentrality, because the distribution of
the statistics in (14) and (15) depends on that parameter. Still, a remedy to this
problem may be provided by the notion of sufficiency. As was claimed before,
the statistic Z(s) in case (14) and the statistic (Zα(s), Zδ(s)) in case (15) are suf-
ficient statistics for the parameters of model (1), including the noncentrality
parameter. Consequently, the conditional probability of the events (14) or
(15), given the value of the sufficient statistic, is independent of that unknown
parameter. The threshold x can be selected based on this conditioned compu-
tation. The result is a confidence interval with the prescribed confidence level,
regardless of what the true value of the noncentrality parameter is.

It should be noted that technically the problem of constructing a confi-
dence interval for the QTL location is not like the problem of constructing a
confidence interval for the population expectation. In the latter case, one typ-
ically takes an interval of about two standard deviations in each direction of
the sample average in order to get a CI with a confidence level of 95%. This
construction relies on the fact that the distribution of the sample average is
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normal. The length of this interval decreases at a rate that is proportional
where n is the sample size (because the variance of the sample aver-

age is equal to the variance of a single observation, divided by the sample
size). In QTL mapping, on the other hand, the estimate of the location of the
QTL does not have a normal distribution, even when the sample size is large.
Therefore, taking two standard deviations about its value will not result in a
proper CI.

The difference between the normal case and QTL mapping is reflected
also in the expression for the expected length of the CI. An approximation
for this length for the case of a one degree of freedom statistic Z is provided
in (5):

(16)

Again, ∆ is the average distance between markers, β is the rate of conver-
gence to 1 of the covariance between markers as the distance between
decreases, and υ(y) is the function presented in (13). The term µ is the non-
centrality parameter. x is the threshold for the test. This threshold is essen-
tially independent of the sample size. The noncentrality parameter, on the
other hand, increases at a rate proportional to It turns out, since the
approximation is roughly proportional to 1/µ2, that the expected length of
the confidence interval decreases at a rate proportional to 1/n (compared to
the in the normal case).

7. FINE-MAPPING STRATEGIES

After detecting a QTL, a confidence interval for its location is computed.
This confidence interval tends to be quite wide, perhaps 20 or 30 cM wide.
Such wide intervals most likely contain dozens of genes that are good candi-
dates to be the QTL. However, direct techniques of cloning, which may be
used in order to verify that a given polymorphic sequence is the QTL, are
lengthy and expensive. Therefore, it is critical to narrow down the search
region, to below 1 cM, before the more direct measures can be applied. The
process of narrowing down the interval containing the QTL is often called
fine-mapping.

There is a major difference between fine-mapping of a Mendelian trait and
fine-mapping of a QTL. In the former case there is a 1:1 relation between the
presence or absence of the trait and the genetic composition at the functional
composition. Thereby, one can barricade the functional polymorphism pre-
cisely by the identification of recombinant chromosomes and relating them
to the phenotypical expression. In the latter case, on the other hand, there is



no such 1:1 relation, only statistical correlations between the genetic compo-
sition and the phenotypic expression. Consequently, one must revert to sta-
tistical procedures in order to carry out the task. These statistical procedures
may be based on hypothesis testing, parallel in spirit to the task of QTL
detection, or on the construction of a CI, similar to problem of estimating
map location. The main concern in fine-mapping, however, is that the result-
ing region will be narrow enough.

Examining (16) we see that the two main parameters that determine its
width are the parameter of noncentrality (µ) and the parameter that cap-
tures the rate of recombination in a close proximity to the QTL (β). The
larger these parameters are, the shorter the confidence interval is expected
to be. Fine-mapping is most efficiently conducted by selecting an experi-
mental design that maximizes these parameters. An example of such design
is to use an advanced intercross design, or Fi, as proposed in (3). Fi stands
for the ith generation of intercrossing. The rate of recombination (β)
increases approximately linearly in i. This leads to a reduction in the width
of the CI.

An alternative experimental design is the recombinant inbred segregation
test (RIST). According to this design, RI strains are selectively crossed with
their parental lines in such a way that ensures recombination in the investi-
gated region. The simple chromosomes identification, which is used in
Mendelian traits, is replaced by a statistical test to determine on which side
of the recombination point the QTL is located. Choosing the appropriate
RIST design, either the RIST-BC or the RIST-F2 design, will maximize the
noncentrality parameter and improve the performance of the procedure.
For a comprehensive review on fine-mapping strategies see ref. (2).

8. DISCUSSION

In this chapter we have presented the statistical framework for QTL analy-
sis in its various stages. Because any QTL will usually explain only a small
fraction of the phenotypical variation, large samples cannot be avoided. We
have emphasized on the two parameters that have the largest effect on this
theory. The first is the noncentrality parameter, which reflects the proportion
of variance explained by the QTL being studied, and the second is the extent
of correlation between the functional polymorphism and the genetic marker
tested and between pairs of markers. Different designs can be implemented
for QTL analysis, and in this chapter we have described how the relevant
parameters affect the use of each of the main experimental designs, namely,
F2, BC, and RI strains.
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QTL analysis consists of a number of steps as described throughout the
chapter. The general theory presented here can serve as a basis for the analy-
sis of any such stages. For example, although both the first and the second
stages, QTL detection and map location, are affected by the same two param-
eters, their effect might be of opposite direction: the detection stage requires
as little recombination as possible, whereas extensive recombination is
preferred for localization.

The difficulty in QTL analysis lies in the large samples required for detec-
tion and the limited breakdown of the correlation in adjacent chromosomal
regions. The sample sizes may reach unattainable numbers if the genetic
architecture of the trait consists of many genes with small effect each. This
has caused very few success stories in QTL analysis. Nevertheless, some
have indeed succeeded in taking a QTL project all the way to the identifica-
tion of the relevant genes. One such example is the Mom1 gene affecting
multiplicity and size of tumor induced by the ApcMin mutation in mice (1). In
tomato, the ORFX gene was found to have an effect on fruit weight (7). More
recently, a complex genetic architecture influencing high-temperature
growth could be resolved in yeast, using an elegant genetic approach (18).
With the advances of the postgenomic era other examples will undoubtedly
follow. Multidisciplinary approaches, including comparative genetics,
expression analysis, bioinformatics, proteomics, and so on, will undoubtedly
help in this difficult endeavor.
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3
Haplotype-Based Computational Genetic

Analysis In Mice

Jianmei Wang and Gary Peltz

1. INTRODUCTION

A number of significant discoveries have resulted from genetic analysis of
model experimental organisms. Improved methods for quantitative trait
analysis, a process referred to as quantitative trait locus (QTL) mapping,
have enabled investigators to make genetic discoveries. This mapping
method requires the experimental generation of intercross progeny derived
from two selected parental strains, chosen because they differ in a trait of
interest. Through correlative analysis of the measured phenotype and geno-
type at multiple positions in the genome for each intercross progeny, regions
of the genome responsible for the differences in the trait are identified. The
genomic regions that quantitatively contribute to the trait are referred to as
QTL. QTL analysis has been successfully used to map important traits in
crop plants, cattle, fruit flies, mice, and many other model organisms. The
statistical basis for QTL mapping has been thoroughly investigated
(reviewed in ref. 1). Based on this statistical underpinning, experimental
crosses using model organisms can be designed to reliably detect QTLs,
even when the involved regions make a relatively small contribution to the
trait being studied.

Many traits of biomedical importance are now routinely studied by
genetic analysis of mammalian experimental models, primarily using inbred
mouse or rat strains. However, there are significant liabilities associated with
QTL analysis, especially when applied to mammalian organisms. First, the
resolution of QTL mapping is limited. An implicated region identified by
QTL analysis typically ranges from 10 to 100 Mb in size.

Because of inherent limitations within QTL mapping methods, the resolu-
tion does not increase significantly as the density of the markers and the
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number of intercross progeny analyzed are increased (2). The 95% confi-
dence interval is often greater than half a chromosome for a genetic locus of
moderate effect, even when identified by analysis of 500 or more intercross
progeny (3). Second, a significant amount of time and cost is required for
generating and analyzing mouse or rat intercross progeny. The process of
generating, genotyping, and phenotyping 200–1000 mice or rats required for
analysis of a selected trait usually requires a 2-yr period. The genetic interval
can be further narrowed by analysis of an experimentally produced congenic
strain. The congenic mouse is produced by introgressing the involved seg-
ment of the genome from one strain onto the genetic background of the other
strain. Generation of congenic strains requires an additional 2 yr, adding
more time onto an already long process. Other independent methods of
analysis are then used to identify the genetic variant(s) within the QTL inter-
val causing the trait difference.

To overcome the cost, time, and resolution issues associated with QTL
analysis, we have developed a computational method for genetic mapping
that correlates phenotypic differences among a set of inbred mouse strains
with genotypic differences (4). Although this method was developed for
analysis of genetic traits in mice, it can be applied to any experimental organ-
ism. However, to use an organism other than the mouse, there must be well-
maintained inbred strains, a physical map of the genome, and a database
characterizing the pattern of genetic variation among the strains analyzed.
The set of genetic markers must be dense enough to cover all genes of inter-
est and should characterize all polymorphic patterns for all the inbred strains
selected for analysis. Most importantly, computational mapping by this
method does not require generation of intercross progeny. Phenotypic analy-
sis is performed on only a selected set of available parental strains. Although
establishing the genotypic database for the inbred strain panel is costly, the
cost is well justified, because it is amortized across all subsequently per-
formed experiments. The computational method maps traits at high resolu-
tion using a relatively small number of inbred strains, usually to an interval
that is below the size of a single gene. This increased precision is possible
because the density of genotypic markers is very high, and the computational
mapping method does not depend on recombinations occurring over two
generations, which are relatively rare events. Furthermore, homozygosity of
the genome of the inbred strains eliminates confounding effects because of
allelic heterogeneity at a locus, and modeling the effects of dominance and
additivity is not required. In addition to its low cost and precision, the com-
putational mapping method has one other significant advantage. Because
genetically identical and widely available inbred strains are analyzed, it
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enables the results to be repeated and widely replicated. The ability to ana-
lyze complex genetic traits remains an advantage for conventional QTL
mapping approaches at this time. The computational mapping methods have
relatively low power for analyzing genetic traits regulated by a large number
of different genetic loci, each of small effect size (Table 1). However, as the
number of strains that are genetically and phenotypically analyzed is
increased, the complexity of the genetic traits that can be analyzed by the
computational mapping method will increase. Although we are currently
analyzing 20 or fewer inbred strains, it is not unlikely that the number of
characterized inbred mouse strains will increase to nearly 100 within 3–5 yr.

Previously, a genome-wide computational mapping method was developed
and referred to as digital disease (5). This method utilized a relatively crude
calculation of the correlation coefficient between trait values measured among
inbred mouse strains and single nucleotide polymorphism (SNP) alleles within
chromosome regions. It correctly mapped selected traits to 30-cM chromosomal
regions. In this chapter, we outline a haplotype-based computational method for
genetic analysis of phenotypic traits using inbred mouse strains. The haplo-
type-based method utilizes the same principle of finding patterns of genetic
variation that correlate with phenotypic differences among the strains. However,
the haplotype-based computational mapping method is radically different; it
is based on a highly quantitative model. This method correctly identified known
genetic loci for previously characterized traits and was used to discover a
novel allele-specific enhancer element in the mouse genome (4).

Table 1 
Comparison: Quantitative Trait Locus (QTL) and Haplotype-Based
Computational Genetic Analysis

Haplotype-based 
Method QTL analysis computational analysis

Process Produce, genotype and Order and phenotype 
phenotype 200–1000 F2 10–20 strains
or BC1

Reproducibility Each F2 is unique Can reorder strains

Resolution 10–100 Mb Individual genes

Effort 3–5 scientists 3–10 yr 1 scientist < 1 d

Detection power Handles high complexity Handles limited complexity

BC, backcross.



The commonly used inbred mouse strains were developed from a limited
number of founder mice. The genome of each inbred mouse strain resembles
a patchwork of a small number of ancestral chromosomes (6). The observed
linkage disequilibrium among the inbred mouse strains is much greater than
that in the population of mice in the wild. This strong linkage disequilibrium
means that the pattern of genetic variation within a genomic region can
be characterized by knowing the alleles at a relatively few positions.
The genome of the inbred strains can be efficiently organized into semi-
independent regions, and each region contains a relatively small number of
distinct genetic patterns. This drastically reduces the number of comparisons
required for computational genetic analysis. Instead of comparing a pheno-
typic pattern with individual SNP alleles, the haplotype-based method com-
pares the phenotype with different haplotypes that extend across larger
genomic regions (4). We will describe how a map of the haplotypic structure
of the mouse genome was constructed and how this enabled computational
analysis of genetic traits to be performed. Following this, a quantitative
model for haplotype-based computational mapping method is presented.

2. A HAPLOTYPE MAP FOR INBRED MOUSE STRAINS

As previously noted in the human genome, SNP alleles in close physical
proximity in the genome of inbred mouse strains were often correlated,
resulting in the presence of “SNP haplotypes” appearing within block-like
structures (7). Each haplotype within a block apparently originated from a
common ancestral chromosome, whereas block size reflects other processes,
including recombination and mutation. In general, the block structure and
haplotype diversity depends on the genealogical history of the population
used to construct the block structure and the local mutation and recombina-
tion rate. An appropriate haplotype map for QTL mapping purpose should be
constructed using inbred strains with similar overall genetic background, yet
display sufficient phenotypic differences. Because linkage disequilibrium
decays as the distance between markers increase, it cannot be fully charac-
terized by any simple block structure. When methods that produce very large
blocks are used, the linkage disequilibrium among alleles within a large hap-
lotype block is relatively weak. In this case, finer structures within the block
are not identified, and distinct haplotypes within the block may be missed.
However, when methods that produce very short blocks are used, then strong
linkage disequilibrium between neighboring blocks will be missed. There
are many different ways to define the block structure. All of these methods
produce haplotype blocks that balance two desired proprieties. The size of
the block should be as large as possible, but all distinct haplotypes within the
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block should be identified. In other words, if a group of inbred strains share
alleles within a region, they should share a haplotype within the correspon-
ding block. For the human population, there is the additional requirement
that the number of “haplotype-tagging SNPs” (htSNPs) that must be geno-
typed to characterize the genetic pattern within a block should be as small as
possible (8).

Because there are differences in the way in which haplotype maps are
utilized for analysis of human populations and inbred mouse strains, dif-
ferent algorithms should be utilized for construction of murine and human
haplotype blocks. We developed a novel method, derived from the one pre-
viously used for human SNP analysis (7), to analyze murine genetic varia-
tion and to define the structure of haplotypic blocks in the mouse genome.
This new method was developed for construction of a haplotype map for
inbred mouse strains and is presented in Chapter 4. In this section, we pres-
ent the theory for this method and describe how it differs from other meth-
ods used for human haplotype map construction (7–10). The allelic data in
this mouse SNP database (see http://mouseSNP.roche.com) was used for
haplotype map construction. It contains more than 2 million alleles that
were assayed across 18 inbred mouse strains for the 134,500 SNPs. In the
end, allelic data from 16 closely related mouse strains were used to con-
struct the haplotype map.

To construct the mouse haplotype map, a set of all possible candidate
blocks was constructed for each chromosome. A candidate block consists of
two or more consecutive SNPs that are separated by less than 1 Mb, and at
least 80% of the strains have a haplotype shared by at least one other strain.
Each candidate block was then assigned a score, which was calculated as the
number of SNPs within the block divided by two to the power of the number
of haplotypes. The final block structure was constructed by selecting the
block with the highest score from among the set of candidate blocks. Any
blocks that overlapped the selected block were then discarded. This process
was repeated until all SNPs were analyzed. Any SNP that was not included
within the selected blocks was included as a single SNP block. The 80% cov-
erage condition guarantees that there is extensive haplotype sharing among
the strains within a haplotypic block. This condition also increases the com-
putational efficiency, because it restricts the candidate blocks to those with
three or fewer strains having a unique haplotype. When the coverage condi-
tion is changed to 70 or 90%, the block structures are relatively unchanged,
except for only a few blocks. This algorithm generated longer blocks with fewer
haplotypes. The block score definition implies that if a long block has a sub-
block within it, consisting of at least half of the SNPs and fewer haplotypes,

http://mouseSNP.roche.com


then the shorter block would be selected in the final block structure instead
of the longer one.

Although there are similarities between the methods for construction of
mouse and human haplotypes, our mouse algorithm produces a very differ-
ent type of haplotype map from the methods used for human haplotype con-
struction. The advantage of the new method for computational mapping in
inbred strains is illustrated by comparing the two algorithms. For human
populations, it has been suggested that htSNPs can be used to define the
structure of haplotype blocks (7). The htSNPs are selected allelic markers
that capture most of the variation within a selected region. They define the
existing patterns of genetic variation within a region for the population stud-
ied and require a minimal amount of genotyping to characterize that pattern.
A score function for a haplotype block generated by this method is the total
number of SNPs divided by the number of htSNPs, which is approximately
(#SNPs)/log2(#haplotypes). Because log2(#haplotypes)<< 2(#haplotypes), the
human algorithm strongly favors relatively longer blocks, and each block
contains an increased number of haplotypes. To accommodate the large
amount of genetic diversity in the human population, the selected htSNPs
must identify the within-block haplotype of only 80% of the individuals ana-
lyzed (7). The presence of up to 20% of other haplotypes within each block
further increases the extent of haplotype diversity. Although these compro-
mises are appropriate for extracting the pattern of genetic variation in a
genetically diverse human population, it is neither necessary nor appropriate
for haplotype analysis of the inbred strains. As the number of haplotypes
within a block increases, the extent of linkage disequilibrium within the
block decreases. Therefore, the block structure generated using our new
algorithm, which is described in Chapter 4, captures the strong linkage
groups within a murine block much better than the algorithms used for
human populations. Our method for generating haplotype maps in the mouse
is also more appropriate for high-resolution QTL mapping. When applied to
mouse SNP allelic data, only approximately three haplotypes were found in
most blocks among the 16 strains analyzed.

This algorithm uses an iterative method to identify blocks of SNPs. As a
first step, larger blocks with fewer haplotypes were identified. There is a high
degree of linkage disequilibrium among the SNPs within these blocks. The
remaining SNPs form very small or even single SNP blocks. It is possible
that very short blocks may be identified by chance rather than as a result of
sharing of an ancestral chromosomal segment. Of note, any combination of
two (or three) SNPs generates only four (or eight) different genotypic pat-
terns. Because of this limited number of possible genotypes, allele sharing
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among strains within short haplotype blocks (less than four SNPs) may result
from a random co-occurrence of the same genetic alteration. These blocks
may not result from true linkage disequilibrium among the strains, and other
sequence variation within these small blocks may not conform to the geno-
type of the flanking markers. For these small blocks, the trait values should
be compared with individual allelic markers. In contrast, a haplotypic block
constructed with four or more SNPs generated by this algorithm is highly
likely to reflect the presence of true linkage disequilibrium within the block.
Therefore, our computational mapping studies use haplotype blocks that
contain four or more SNPs.

3. A METHOD FOR HAPLOTYPE-BASED COMPUTATIONAL
GENETIC MAPPING

In traditional murine QTL mapping, genetic analysis is usually performed
by analysis of genotypic data obtained from 50 to 200 markers used to analyze
the genome of the intercross progeny. The chromosomal regions containing
the genetic loci are identified using interval mapping, which models the recom-
bination between the marker and the loci. On the other hand, computational
mapping using inbred strains takes advantage of a dense set of markers charac-
terizing all sequence variation in functional regions across the entire genome.
Even though most individual SNPs are binary, many regions of strong linkage
disequilibrium have more than two distinct alleles among the inbred strains.
Some multiallelic sequence variation within a locus can result in more than
two distinct phenotypes (see major histocompatibility complex [MHC] exam-
ple in ref. 4). The haplotypic blocks defined in Heading 2 represent natural
grouping of SNPs into such multiallelic regions. When haplotypic blocks are
used as markers instead of individual SNPs, the number of comparisons in
association study is reduced by roughly 100-fold.

This computational analysis is performed under the assumption that the
causative genetic locus has been analyzed and haplotypes for this locus that
distinguish among the inbred strains have been identified. Additionally, the
contribution of a single locus to the quantitative trait must be relatively large
in order for the genetic effect to be detectable. The minimum effect size
depends on the available number of strains. Although the assumptions and
requirements may seem stringent, many traits, even complex traits, can be
investigated. Mapping quantitative traits onto nonbinary markers requires
new analytical methodology. We will describe how phenotypic traits can be
computationally analyzed and specific candidate genetic loci can be identi-
fied. We will also provide quantitative statistical measures used to assess the
results of a computational mapping experiment.



3.1. A Linear Model for Haplotype-Based Computational 
Mapping of Genetic Traits

Genetic researchers have traditionally applied a linear model to analyze a
quantitative trait using the observed variance among a defined population.
For a model in which an observed difference is caused by a single genetic
locus, the total phenotypic variance is first partitioned into genetic and envi-
ronmental variances. Following this, the genetic variance is further divided
into a variance resulting from additive and dominance effects. The additive
effect is half the measured trait value difference between the two strains with
homozygous alleles. The dominance effect is quantified as the difference in
measured trait values between strains with heterozygous alleles and the aver-
age of those with homozygous alleles. Experimental intercross progeny can
be heterozygous at many genetic loci, but the parental inbred mouse strains
are homozygous at all genetic loci. Therefore, the dominant effect does not
contribute to genetic variance among the parental inbred strains. This greatly
simplifies the analysis of genetically controlled trait differences among
inbred strains, which provides a key advantage to our haplotype-based map-
ping method. Assuming that the genotypic differences within the gene con-
trolling the selected trait of interest have been characterized, the linear model
for the trait becomes

(1)
where yj is the trait value for the jth inbred strain, f (Gj) is the component of
the phenotypic trait that is determined by the genotype controlling the trait,
and εj is the residual variance in the jth strain that is independent of the
genetic effect at the given locus. Assume that genetic heterogeneity within
the gene is fully captured by known haplotypes with the haplotypic block
constructed using allelic markers within the gene. Following this, the geno-
type contribution Gj takes value in {H1, H2, ..., Hk}, corresponding to the k
distinct haplotypes within the gene found among the inbred strains analyzed.
k = 2 or 3 for most of the haplotype blocks. The trait value determined by the
genotype component is now:

For a trait whose value varies among the inbred strains, mapping the
genetic locus becomes a process of finding the haplotype block whose
genetic variance explains the largest amount of the total trait variance. In
other words, the residual variance var(ε) is minimized, where
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If the number of haplotypes within each haplotype block is fixed, the prob-
lem is further reduced to simple linear regression. Note that in general, the
number of haplotype k varies among blocks, and is the estimated
trait value determined by the genotype. Here nl is the number of strains with
haplotype Hl. Var(ε) is the “within-group sum of squares” divided by n − 1.
The within-group sum of squares 

is used as the criterion function for the k mean clustering algorithm (11). It is
the most commonly used measure of the clustering quality of the data set Y
that partitions with fixed number of clusters. Let SST be the total sum of
squares for the measured trait values. It is easy to see that SST for data set Y is:

, where is the between-group
sum of squares. Similarly, the total variance var(Y) consists of the genetic
variance and the residual variance. The normalized sum of squares

can be interpreted as the proportion of the total variance that is not explained
by the genotype of the gene in question.

The normalized within-group sum of squares provides an objective meas-
ure to compare the genetic effect only for blocks with fixed number of hap-
lotypes. It is not fair to compare the residual variance for different k,
because different numbers of parameters (µ1, µ2, ..., µk) were fit. In order to
appropriately compare the normalized within-group sum of squares for dif-
ferent k, it is necessary to use parametric statistics. We apply the analysis of
variance (ANOVA) design to analyze genetic effect. In (1), assume that the
residual term εj is independent and normally distributed with mean zero and
constant variance σ2. For each haplotype block, the F statistics are calcu-
lated as:

The F statistics can then be used to test the null hypothesis

For each block, a p value is calculated by comparing F with the theoreti-
cal F distribution of degree k−1 and n−k (Fig. 1). The correlation between
strain groupings within haplotypic blocks and phenotypic trait values is
assessed by this calculated p value. Note that the p value calculated from



F statistic analysis is an approximate p value. It cannot be interpreted as an
exact estimate of the probability of a false-positive result. When the distribu-
tion of the residual terms εj deviates from normality or the sample size is
small, the p value is not accurate. Furthermore, it is not corrected for
multiple comparisons.

When allelic information is missing, the correct haplotype may not be
available for all strains within a haplotypic block. For these blocks, the trait
values can be compared with genotype for only reduced set of strains. When
key strains are missing, the p values obtained after computational mapping
using a reduced set of strains may be much smaller than would be obtained
if the allelic data for all the strains were used. This does not indicate that the
block is better correlated with the trait data. In order to rank blocks more
appropriately, an adjustment factor is applied to the p values obtained using
blocks with missing haplotypes. For a block with k haplotypes and some
strain haplotype missing, let pmin be the minimum p value among all possi-
ble partitions of n strains into k haplotypes, and let p’min be the minimum
p value among all possible partitions of the subset of the strains into k hap-
lotypes. The multiplicative factor min{pmin/p’min, 1} is applied to the p
value score. This crudely defined factor ensures that the p value for a block
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Fig. 1. Graph demonstrating how a p value for a computationally predicted hap-
lotype block is calculated from the F statistic analysis. The calculated p value corre-
sponds to the shaded area under the curve for the F probability density function of
degree (k−1, n−k).
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with missing alleles is not better than the best p value if the missing alleles
were filled in.

Box 1: Number of Clusters

The problem of comparing the genetic effect of haplotype blocks with
different number of haplotypes is related to the classical number-of-
cluster problem, namely, what is the optimal number of clusters for a
given data set. To date, there is no satisfying statistical theory or single
best answer to this question. Milligan and Copper studied the problem by
comparing 30 published methods and ranked them based on their per-
formance on simulated data sets (12). The best method for doing this was
the Calinski and Harabasz index (13). By this method, the variance ratio
criterion (VRC) is calculated according to the following formula: VRC =
[SSB/(k−1)]/[SSW/(n−k)]. It has exactly the same form as the F statistics
used in our analysis. Instead of comparing how the p values correspond to
the F statistics, the F statistics with different degrees of freedom are
directly compared. Note that even though the VRC has the same form as
the F statistics, it is only an empirical measure, not a parametric statistic.
It is intended for multidimensional data without assumption on the distri-
bution. The justification of VRC is partly based on its properties. In the
special case of equal distance between all pairs of points, VRC = 1 for all
cases. Although this property is desirable for general spatial cluster analysis,
the quantitative phenotypic trait values are one dimensional. The case of
equal distance between pairs of points is not possible. Instead, the p value
of the F statistics gives a better measurement of the genetics effect for the
null hypothesis. Table 2 shows the critical F statistics corresponding to the
different significance level for n = 16 and k = 2, 3, and 4. The estimated
genetic effect, represented by η2 = SSB – (k – 1) × MSE/SSW + MSE is
also shown. For larger values of k, a greater genetic effect is needed to
achieve the same level of significance.

The p value calculated from the F statistics measures the extent of correla-
tion between the recorded trait values and haplotype blocks. These uncor-
rected p values provide a rough estimate of the significance of the association.
However, the true statistical significance of an association is difficult to deter-
mine for several reasons. First, the true distribution of the residuals (εj) is
unlikely to be normal. Second, strong linkage disequilibrium exists between
blocks in physical proximity. Because of this, there is no easy way to correct
for multiple comparisons without being too conservative. Third, it is difficult
to quantify the effect of missing data on a result. An appropriate approach to



estimate the significance threshold is by using a permutation test (13,14).
Assuming from the null hypothesis that there is no association between the
trait values and the genotypes of any haplotype blocks in the genome, we can
construct a distribution of the p-value scores that are generated by randomly
shuffling the trait values. Each time, the trait values are rearranged according
to a random permutation of 1, 2, ..., n. The best p-value score among all hap-
lotype blocks in the genome is recorded. After the experiment is repeated
n times, the recorded scores are ordered, and the 100(1–α)% critical value for
the best genome-wide score is obtained by taking the 100(1–α) percentile
value of the ordered scores. Empirically, 1000 shuffles are needed in order to
obtain a stable estimate of critical value for α = 0.05. The critical value gener-
ated through this permutation test automatically accounts for multiple com-
parison, linkage disequilibrium and missing-data effect.

3.2. Categorical Trait Analysis

For phenotypic traits that have values in unordered categories, such as
mouse coat color or the MHC phenotype (15), the procedures described in
Subheading 3.1. can be used to map genetic loci with a few modifications.
The categorical data are first transformed into multidimensional data points,
such that the distance between distinct categories is equal. The MHC-K phe-
notype in mice is a categorical phenotype represented by letters b, k, d, u, and
v (15). Each categorical phenotype was transformed into vectors (0,0,0,0,1),
(0,0,0,1,0), (0,0,1,0,0), (0,1,0,0,0), and (1,0,0,0,0) in five-dimensional space.
Using the standard Euclidean metric, the F statistics can be calculated.
Because the statistics are scale invariant, any such transformation into metric
space with equal distance between categories is equivalent. Because these
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Table 2 
Critical Threshold Fk − 1, n − k, α and Estimated Genetic Effect
Corresponding to the Critical Threshold as a Function of α for n = 16

k = 2 k = 3 k = 4

α Fcrit η2 Fcrit η2 Fcrit η2

0.1 3.10 0.18 2.76 0.30 2.61 0.39
0.01 8.86 0.39 6.70 0.51 5.95 0.60
1e-03 17.14 0.55 12.31 0.65 10.80 0.73
1e-04 28.75 0.67 20.31 0.76 17.90 0.82
1e-05 45.17 0.76 31.66 0.83 28.41 0.88
1e-06 67.06 0.83 48.43 0.88 44.70 0.92
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points are in multidimensional space, it does not make sense to calculate the
p values corresponding to the F statistics, which is based on the assumption
of normal distribution of residuals in one dimension. Instead, the F statistic
itself, or what is more appropriately called pseudo F statistics, can be used
directly to evaluate the association. In fact, this is the Calinski–Harabasz
index used in comparing clusters with different k (16) (Box 1).

3.3. Statistical Power for Computational Mapping

Given a set of measurements divided into k groups, ANOVA tests the null
hypothesis that the k means from the different groups are equal. The total
variance consists of within-group variance and between-group variance.

For a power analysis using one-way ANOVA, one standard way to define
the effect size is (17):

In our case, the groups are defined by haplotypes, and η2 is the genetic
effect of the haplotypes on the trait value. Let n be the total sample size and k
be the number of groups. When the group sizes are equal, the F statistics
for samples with effect size η2 follows the noncentral F distribution F(k – 1,
n – k, λ) with the noncentrality parameter 

Therefore, the power of the one-way ANOVA test with significance level α
is given by:

(2)
where Fcrit = F(1−α, k–1, n–k) is the (1−α) quantile of the F distribution with 
k – 1 and n – k degrees of freedom. Note that within a haplotype block, the
number of strains with each different haplotype is usually not the same.
Therefore, an equal group size cannot be obtained for this analysis. The
power for unequal group sizes is expected to be lower. Table 3 shows
the power as a function of effect size for α = 0.01, n = 13, 14, 15, 16, and 
k = 2, 3. When there are two different haplotypes within a locus, 80% power
can be achieved using 16 strains when effect size is greater than 0.49 or 
using 13 strains when the effect size is greater than 0.56.

With this background, we can now analyze the performance of this haplotype-
based computational mapping method. It correctly predicted the genetic



basis for strain-specific differences in several biologically important traits
(4). In one published example, haplotypic blocks associated with categorical
MHC phenotypes for the class Ia K, class III S, and the class Ib Qa2 loci
were correctly identified. The identified blocks were contained within
regions of 27, 51, and 100 kb, respectively, which contained the actual MHC
genes corresponding to the trait. The MHC phenotypes represent a diverse
class of categorical phenotypes. The 16 strains were grouped into five phe-
notypic categories for the class Ia K and class III S traits. There are two cate-
gories for the class Ib Qa2 phenotypes. Most importantly, there were no false
positives among top predictions for these traits. In another example, a binary
response phenotype—measuring the induction of cytochrome P450 enzymes
after treatment with aromatic hydrocarbons (AH) response—using data
obtained from 13 inbred mouse strains was computationally analyzed. The
phenotypic data was analyzed, and two adjacent haplotypic blocks within a
27-kb region, each containing three haplotypes, were computationally iden-
tified. The identified region contained the Ahr locus, a gene that contributes
to the AH response phenotype. The functional genetic element that con-
tributes to the phenotype was easily identified by analysis of the polymor-
phisms within the region. In one other example, the pattern of expression of
a differentially expressed gene within the lungs of 10 inbred mouse strains
was computationally analyzed to identify a novel cis-acting allele-specific
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Table 3 
The Power of the One-Way ANOVA as a Function of the Genetic Effect
Size for Different Total Sample Size (n) and Number of Groups (k)

n = 13 n = 14 n = 15 n = 16

η2 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

0.2 0.15 0.09 0.17 0.10 0.19 0.11 0.21 0.13
0.25 0.21 0.13 0.24 0.15 0.27 0.17 0.30 0.19
0.3 0.29 0.17 0.32 0.20 0.36 0.23 0.40 0.26
0.35 0.37 0.23 0.42 0.27 0.46 0.31 0.51 0.35
0.4 0.47 0.30 0.52 0.35 0.57 0.40 0.62 0.45
0.45 0.58 0.39 0.63 0.45 0.68 0.50 0.73 0.56
0.5 0.68 0.49 0.74 0.56 0.79 0.62 0.83 0.67
0.55 0.79 0.60 0.84 0.67 0.87 0.73 0.90 0.78
0.6 0.88 0.72 0.91 0.78 0.94 0.83 0.96 0.88
0.65 0.94 0.83 0.96 0.88 0.98 0.92 0.99 0.94
0.7 0.98 0.91 0.99 0.95 0.99 0.97 1.00 0.98
0.75 1.00 0.97 1.00 0.99 1.00 0.99 1.00 1.00
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enhancer element (4). For this analysis, the level of expression of the H2-Eα
gene in the lungs of 10 inbred strains was measured. A log transformation of
this gene expression data was computationally analyzed to identify a 1-kb
region within the first intron of the H2-Eα gene. This computational predic-
tion led to the discovery of a novel functional element regulating the H2-Eα
expression. Of note, only 10 strains were used in this computational map-
ping. When gene expression data from only eight or nine strains were used
for the computational analysis, the same region was predicted, and no false-
positive predictions were obtained. These examples demonstrate that the
computational mapping can be achieved using phenotypic data from a rela-
tively limited number of inbred strains.

To illustrate how haplotype-based computational mapping is performed,
we provide a detailed description of how H2-Eα gene expression data was
analyzed. For this analysis, the level of H2-Eα gene expression in female
lung was measured three times for each of the 10 inbred strains analyzed
(Table 4). An important assumption of haplotype-based analysis is that the
residuals are normally distributed and the standard deviation is the same for
groups of strains sharing haplotypes. However, the level of expression of this
gene was quite different among the strains analyzed, and the standard devia-
tion within each mouse strain was proportional to its level of expression.
Therefore, the log transform was used, and the error distribution was closer
to normal. The plot of the residual against the strain average (Fig. 2) shows
that the assumptions used for the linear model are approximately true for the
log-transformed data.

When replicate measurements are available, the data can be evaluated
prospectively to determine whether the computational analysis is likely to
correctly identify a genetic locus. The genetic influence of a single locus
should be larger than the threshold determined by the power analysis. Even
though it impossible to estimate the contribution of the primary locus based
on the raw data, it is possible to estimate the total genetic effect. This is

Table 4
H2-Eα Gene Expression in Female Lung: Three Independent
Measurements Were Obtained for Each Mouse Strain

129/ Balb/ C3H/ C57BL/ DBA/ MRL/
SvJ A/J A/HeJ AKR/J B10.D2 cJ He 6J 2J MpJ

8 46 29 56 1078 999 37 10 1017 30
3 34 14 37 1158 1013 30 6 1370 40
6 46 27 40 929 1177 43 8 1642 46



accomplished by comparing the within-strain differences with the between-
strain difference and check that the total effect exceeds the threshold. In this
case, assuming the 10 strains are grouped into k = 3 haplotypes, the critical
F statistics value with degree of freedom (k – 1, n − k) and significance level
α = 0.01 is Fcrit = 9.55. The power of the analysis, which is derived from
equation (2), is greater than 80% for effect size η2 > 75%. One-way
ANOVA of the log-transformed values asserts that means are different for
different strains (Table 5). Because the between-strain differences can be
completely attributed to genetic differences, the total genetics effect can be
estimated as:

The fact that gene expression data was available for only 10 strains was
compensated by the large genetic effect. Therefore, if most of the total
genetic effect comes from a single locus, the computational analysis is likely
to detect it.

Using the strain average of the log-transformed gene expression level as
the input phenotypic data, the computational analysis generated the results
shown in Table 6. One predicted region, located between 32 and 33 Mb on
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Fig. 2. Plot of residual of ln(expression) from the average level within the strain
against the strain average.
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chromosome 17, was most closely associated with the gene expression phe-
notype. The three haplotypes within this region corresponded to the three
different levels of log-transformed gene expression. Some predicted regions
appear to overlap with this region. This overlap occurred because this region
may consist of multiple blocks each having regions with the same strain
distribution pattern that were separated by regions with a different pattern.

Table 5
One-Way ANOVA for Comparing the Strain Means of the 
Log-Transformed Expression Dataa

Source DF Sum of squares Mean square F value Pr > F

Model 9 112.3975994 12.4886222 173.57 <.0001
Error 20 1.43899 0.0719495
Corrected total 29 113.8365894

aDF, degrees of freedom. See also Table 3.

Table 6
Computational Genetic Analysis of H2-Eα Gene Expression Dataa

129/ C57BL/ A/ C3H/ MRL/ Balb/ DBA/
SvJ 6J HeJ He MpJ A/J AKR/J B10.D2 cJ 2J
1.66 2.06 3.10 3.59 3.64 3.73 3.78 6.96 6.97 7.18

p-value Genetic Haplotype Chr Position (MB) #SNPs
effect

1.3e-7 0.98 17 32.57~33.26 244
8.4e-7 0.99 17 33.88 4
1.0e-6 0.98 17 32.91 15
1.3e-6 0.98 17 32.81 4
6.4e-5 0.85 17 32.91 4
7.9e-5 0.90 17 32.94 25
2.0e-4 0.98 13 20.72~20.73 10
5.8e-4 0.84 17 32.54~32.78 9

aThe mean of the log of H2-Eα expression in lung was calculated. In the table, each row is
a haplotypic block that may be a single single nucleotide polymorphism (SNP) or a composite
of multiple SNPs. Each square represents the haplotype of a different mouse strain, and the
strains are arranged in the same order as in the data table across the top. Each unique
haplotype within a block is represented by a different color square; and strains sharing
a haplotype are represented by a square of the same color. A blank square indicates that
haplotype data is missing for that strain.



4. FUTURE DIRECTIONS

A number of phenotypic traits of biomedical importance can be rapidly
characterized using commonly available inbred mouse strains. The genetic
basis for these trait differences can then be rapidly analyzed using this hap-
lotype-based computational analysis method. For example, a large amount
of gene expression data can be obtained using oligonucleotide microarrays.
This enables allele-specific functional genomic elements regulating strain-
specific differences in expression for many different genes to be identified.
As the number of genes analyzed and the number of strains for which allelic
data are available increases, many of the current limitations caused by a lack
of strain-specific genetic data will decrease. However, a remaining concern
is the relatively limited genetic complexity that can be analyzed by this com-
putational method. As shown in the analysis in Section 3, haplotype-based
mapping is most effective when the genetic contribution from a single locus
accounts for 50% or more of the total observed trait variance among the
inbred strains. For many quantitative traits of biomedical interest, multiple
genetic loci, each with a small effect, contribute to the overall trait value.
Three factors will significantly increase the ability of this computational
method to analyze genetic traits and its ability to correctly identify genetic
loci of small effect size. First, increasing the number of inbred strains that
have been genetically characterized in our SNP database will improve its
ability to identify genetic loci with a small effect. The statistical power of the
computational analysis increased as the number of strains analyzed was
increased (Table 3). Second, more sophisticated experimental dissection of a
phenotypic trait of interest will make complex biological differences more
amenable to this type of computational genetic analysis. Although we may
not be able to analyze a very complex trait directly, clever experimental
design can reduce the complexity of a selected phenotype. As one example,
we have been characterizing pharmacokinetic parameters for various drugs
after administration to different inbred mouse strains. This computational
genetic analysis was used to identify factors affecting the metabolisms of
commonly used prescription drugs. The rate of disappearance of the admin-
istered drug was measured as a function of time after dosing. Unfortunately,
the metabolic profiles were rather complicated for a number of the drugs
tested, and we could not identify the factors regulating the metabolism of
these drugs. However, we administered a radiolabeled form of one com-
pound and measured the rate of formation of 10 different intermediate
metabolites across 13 different inbred mouse strains. Computational analysis
of the rate of formation of selected intermediate metabolites enabled
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identification of a genetic factor regulating the metabolism of this test drug.
Therefore, creatively designed experimental protocols can reduce the com-
plexity of a number of traits, and this will widen the application of this com-
putational genetic analysis method. Lastly, our method for haplotype block
construction will also be improved. Currently, our method does not allow for
any mismatches within the blocks it identifies. Two strains share a haplotype
only if they have the same allele at every marker position within the region.
This method has worked reasonably well for constructing the current version
of our high-resolution haplotypic map for the inbred mouse strains.
However, allowing for the inclusion of an occasional allelic mismatch within
a larger block structure may improve the quality of the haplotypic map used
for computational mapping. This is especially true for model organisms in
which point mutations are likely to occur between strains that share a com-
mon ancestral chromosomal region.
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1. INTRODUCTION

Commonly available inbred mouse strains can be used to genetically
model traits that vary in the human population, including those associated
with disease susceptibility. In order to understand how genetic differences
regulate trait variation in humans, we must first develop a detailed under-
standing of how genetic variation in the mouse produces the phenotypic dif-
ferences among inbred mouse strains. The information obtained from
analysis of experimental murine genetic models can direct biological experi-
mentation, clinical research, and human genetic analysis. This “mouse to
man” approach will increase our knowledge of the genes and pathways regu-
lating important biological processes and disease susceptibility.

The availability of the complete sequence of the mouse genome (1)
enables the genetic differences among commonly studied inbred strains to
be characterized. This will facilitate identification of the genetic basis for
phenotypic trait differences among the inbred strains. To do this, we have
analyzed the pattern of genetic variation among 18 inbred mouse strains and
have produced a high-resolution haplotypic map of the inbred mouse
genome. This haplotypic map covers 75 Mb of the mouse genome. An addi-
tional 99 Mb of the mouse genome, which was not polymorphic among the
16 Mus musculus strains, was also analyzed. Analysis of the genetic distance
between inbred strains and of the haplotypic blocks generated using differ-
ent strains demonstrated that inclusion of only the 16 M. musculus strains
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produced balanced haplotypic block structures that reflected extensive allele
sharing among closely related inbred strains. Although haplotypic blocks in
the inbred mouse genome had similarities with those described in humans,
there are important differences that increase the likelihood that genetic vari-
ants underlying phenotypic trait differences can be successfully identified in
the mouse.

2. CHARACTERIZATION OF GENETIC VARIATION AMONG
INBRED STRAINS

Polymorphisms were identified by resequencing targeted genomic regions
in 1672 genes across 18 inbred mouse strains (2): 129/Sv, A/HeJ, A/J,
AKR/J, B10.D2-H2/oSnJ, BALB/cByJ, BALB/cJ, C3H/HeJ, C57BL/6J,
CAST/Ei, DBA/2J, LG/J, LP/J, MRL/MpJ, NZB/BinJ, NZW/LaC, and SM/J
SPRET/Ei. Identification of single nucleotide polymorphisms (SNPs) was
performed by targeted resequencing of genomic regions using methods that
have been described previously (2). For genes that were less than 5 kb in
size, the entire gene was analyzed for polymorphisms. For genes greater than
5 kb in size, a 1-kb region surrounding each exon, a 2-kb region at 5’ of the
transcriptional start site, and a 500-bp segment downstream of the 3’ end of
the transcript were analyzed. Both strands of a selected genomic region were
sequenced, and sequence waveforms were analyzed using Phred and Phrap
(3,4). Potential polymorphisms were identified, and sequence quality was
assessed in an automated fashion. Only SNPs with very high-quality
sequence were accepted: those with either single stranded sequence with
Phred scores equal to or above 30 or (more commonly) double stranded
DNA sequence with Phred scores equal to or above 20 for both strands. The
mouse SNP database (see http:\\mouseSNP.roche.com) used in this study
contained 105,064 unique SNPs, and a total of 1,440,349 alleles were char-
acterized for these 18 strains. The number of SNPs on each chromosome
ranged from a low value of 1083 SNPs on chromosome 18 to 16,615 SNPs
on chromosome 7 (Table 1).

The genetic distance between the inbred mouse strains was assessed
using this allelic information. To measure this, the percent allelic difference
was calculated as the ratio of the number of SNPs identified using only a
selected pair of strains to the total number of SNPs identified among all
18 inbred strains. The CAST/Ei and SPRET/Ei strains were derived from
wild mice of Asian and European origin, respectively. The 16 other M. musculus
strains were bred from a small group of mice at the beginning of the last
century (reviewed in ref. 5). Consistent with their independent origin, the
CAST/Ei and SPRET/Ei strains have more than 39 and 70%, respectively,
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allelic differences when compared with any one of the 16 other M. musculus
strains (Table 2). In contrast, the 16 other M. musculus strains were far more
genetically similar. The allelic differences among M. musculus strain pairs
ranged from 0.8% (A/HeJ:A/J) to 16.4% (NZW/LaC:Balb/cJ) (Table 2). The
genetic distance revealed by SNP allelic information is consistent with
published genealogies of mouse inbred strains (5).

3. THE STRUCTURE OF HAPLOTYPIC BLOCKS IN THE
MURINE GENOME

In order to analyze genetic variation among inbred murine strains, we
developed a novel method (see Chapter 3) to define the high-resolution
haplotypic block structure of the inbred mouse genome. Relative to the

Table 1
The Number of Genes Analyzed and SNPs Identified on Each
Chromosome

Chromosome SNP number Gene number

1 9171 125 (1504)
2 7495 105 (2058)
3 3666 90 (1237)
4 3671 72 (1499)
5 9078 82 (1478)
6 6160 66 (1282)
7 16,615 193 (2003)
8 5602 81 (1189)
9 5057 111 (1394)

10 3719 98 (1205)
11 5343 103 (1877)
12 2376 44 (852)
13 2084 62 (1012)
14 3363 60 (898)
15 3084 63 (953)
16 4250 50 (811)
17 5520 123 (1157)
18 1083 37 (628)
19 4066 49 (795)
X 3661 58 (1116)
Total 105,064 1672 (24,948)

The numbers within parenthesis indicate the total number of genes on each chromosome.
SNP, single nucleotide polymorphism.
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Table 2
Allelic Differences Between Inbred Strain Pairs

A/He A/J AKR B10 C57 B/B B/c C3H MRL LGJ SMJ 129 LPJ DBA NZB NZW CAS SPR

A/He 0.8 8.9 11.7 13.2 7.5 8.3 8.6 9.7 8.7 10.9 13.1 12.4 12.4 14.7 14.9 40.2 72.2
A/J 0.8 8.7 11.7 13.5 7.5 8.2 8.6 10.1 8.8 11.6 12.6 12.4 12.4 15 14.5 44.2 72.3
AKR 8.9 8.7 12.1 13.5 9.5 9.9 9.1 7.1 8.5 10 12.6 12.7 12.3 15 15.1 42.8 71.3
B10.D2 11.7 11.7 12.1 2.7 9.6 9.7 12.5 10 8.7 14.1 13.2 13.6 13.9 13.1 15.3 42 72.2
C57B6 13.2 13.5 13.5 2.7 11.6 11.3 12.5 10.6 9.4 13.5 13.5 14 15.9 12.7 15.8 43.2 72.5
BALB/B 7.5 7.5 9.5 9.6 11.6 1.5 10.1 7.5 7.6 13.1 12.6 11.3 12.5 13.3 15.1 42.3 72.5
BALB/c 8.3 8.2 9.9 9.7 11.3 1.5 9.4 7.1 6.8 11.8 13.4 11.9 12.8 13.1 16.4 43.3 72.5
C3H 8.6 8.6 9.1 12.5 12.5 10.1 9.4 8.3 9 10.1 12 13.2 12 13.5 15.6 44.6 72.1
MRL 9.7 10.1 7.1 10 10.6 7.5 7.1 8.3 3.8 10.7 12.9 13.5 13.1 12.4 14.6 42.8 72.3
LGJ 8.7 8.8 8.5 8.7 9.4 7.6 6.8 9 3.8 10.1 12.8 13 12.5 10.7 14.4 41.8 71.9
SMJ 10.9 11.6 10 14.1 13.5 13.1 11.8 10.1 10.7 10.1 15.1 14.9 14.2 12.7 16.1 40.3 71.6
129/Sv 13.1 12.6 12.6 13.2 13.5 12.6 13.4 12 12.9 12.8 15.1 4.9 13.5 13 13.1 43.8 71.6
LPJ 12.4 12.4 12.7 13.6 14 11.3 11.9 13.2 13.5 13 14.9 4.9 14.7 12.9 13.7 39.1 72.2
DBA/2 12.4 12.4 12.3 13.9 15.9 12.5 12.8 12 13.1 12.5 14.2 13.5 14.7 16.1 13.9 42.5 71.8
NZB 14.7 15 15 13.1 12.7 13.3 13.1 13.5 12.4 10.7 12.7 13 12.9 16.1 11.2 40.6 72.2
NZW 14.9 14.5 15.1 15.3 15.8 15.1 16.4 15.6 14.6 14.4 16.1 13.1 13.7 13.9 11.2 39.4 72.5
CAST 40.2 44.2 42.8 42 43.2 42.3 43.3 44.6 42.8 41.8 40.3 43.8 39.1 42.5 40.6 39.4 70.1
SPRET 72.2 72.3 71.3 72.2 72.5 72.5 72.5 72.1 72.3 71.9 71.6 71.6 72.2 71.8 72.2 72.5 70.1

The 18 strains used in this analysis are listed across the rows and columns. Within each cell is the percentage of single neucleotide polymor-
phisms (SNPs) for which each corresponding strain-pair has different alleles. The percentage of different alleles was calculated using all 105,064
SNPs for which allelic data was available for both strains being compared. See beginning of Section 2 for full names of the mouse strains.
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algorithms used for generating human haplotypic blocks (6,7), our algorithm
generated haplotypic blocks with stronger lethal dose. We present the haplo-
typic block structure constructed using 16 inbred strains, the most extensive
high-resolution haplotype analysis to date. The detailed view of the haplotypic
block structure can be found at http://mousesnp.roche.com. Note that the
haplotypic block map is not yet constructed for the whole genome.
Currently, it covers 75 Mb of the genomic region, containing selected genes
of interest. The coverage is increasing steadily as more genes are sequenced.

The type of strains used to generate the haplotypic blocks had a very sig-
nificant effect on their structure. Analysis of the genetic variation present in
only four strains (129/SvJ, A/J, C57BL/6J, and CAST/Ei), identical to 
those used by Wade et al. (9), generated a skewed haplotypic block structure
(Fig. 1A). In this case, the minor allele haplotype consisted of only the sin-
gle CAST/Ei strain, the most distant lineage from the other three strains, in
33% of the haplotypic blocks. Our genetic distance estimates (Table 2) indi-
cated that the CAST/Ei and SPRET/Ei strains were significantly different
from the other 16 M. musculus strains. When genetic variation unique to the
CAST/Ei and SPRET/Ei strains was included in the haplotypic map, the nat-
ural block structure was disrupted by the SNPs introduced by inclusion of
CAST/Ei and SPRET/Ei, the haplotypic blocks were shortened, and the
extent of allele sharing among the M. musculus strains could not be delin-
eated. As one example, comparison of the haplotypic map for chromosome 7
generated using 16 M. musculus strains to that produced after replacing 2 of
the 16 M. musculus strains (129/Sv and A/HeJ) with the CAST/Ei and
SPRET/Ei strains revealed the important differences (Fig. 1C). Although
inclusion of SPRET/Ei and CAST/Ei strains increased the number of SNPs
analyzed from 21,255 to 62,939, CAST/Ei (SPRET/Ei) strain had a unique
haplotype in 27% (45%) of the blocks generated. In contrast, each of the
16 M. musculus strains had unique haplotype in only 1.1–7.6% of the blocks.

Because of this, the haplotypic analysis was confined to the 16 M. musculus
strains, and SNPs that were uniquely found in the CAST/Ei and SPRET/Ei
strains were excluded. Even then, the number of strains included in the
analysis significantly affected the results. As the number of strains analyzed
increased from 4 to 16, the general structure of the haplotypic blocks stabi-
lized (Table 3). Any effect caused by potential bias in the selection of inbred
strains was diminished by inclusion of this large number of strains. The num-
ber of unique haplotypes within a block increased by only 0.03 for each addi-
tional strain (Fig. 2). This indicates that each additional strain had a pattern
of polymorphism that fit within an existing haplotype for most of the blocks.
When only a few strains were used in haplotypic map construction, less
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Fig. 1. The inbred strains analyzed affect haplotypic block structure. Each row represents a single nucleotide polymorphism (SNP); the alleles are
colored blue or yellow, or left blank when data is missing. Within each block, the strains are ordered such that strains sharing the same haplotype are
next to each other. Strains with ambiguous haplotypes because of missing data are colored gray. (A) A representative haplotypic block on chromo-
some 7 (22.7 Mb) constructed using A/J, 129, C57BL/6 and CAST/Ei strains. (B) Comparison of haplotypic blocks constructed on chromosome 12
(29.6 Mb) using 3 (A/J, 129 and C57BL/6) or 16 Mus musculus strains. SNPs present at the boundary of blocks are joined by lines. Identical regions
are indicated by dots. The map on the left has fewer SNPs than the map on the right because fewer strains (3 vs 16) were used in its construction.



Fig. 1. (Continued) (C) Comparison of haplotypic blocks on chromosome 7 (22.1 Mb) generated using 13 M. musculus strains, or
when two strains are replaced by CAST/Ei and SPRET/Ei strains “+” signs on the left panel indicate new SNPs introduced by
inclusion of the strains CAST/Ei and SPRET/Ei.
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Table 3
Analysis of the Properties of Haplotypic Blocks Constructed Using
Allelic Information for 16 Mus musculus Strains 

%
Minimum Total # of Average # SNPs Haplotypes SNPs in

# Strains strain # SNPs # Blocks per blocka per blocka blocka

16 9 21,255 2796 16.42 2.62 88
15 9 20,156 2489 17.71 2.59 88
14 9 18,251 2152 18.42 2.56 89
13 9 15,879 1746 20.21 2.50 90
12 8 16,262 1790 20.31 2.49 90
11 8 14,781 1594 20.86 2.49 90
10 7 16,245 2036 19.67 2.45 88
9 6 14,871 1860 20.16 2.42 88
8 6 12,644 1696 18.97 2.37 87
7 5 12,410 1662 20.11 2.33 87
6 4 13,090 1810 19.99 2.29 86
5 4 10,577 1804 17.77 2.16 82
4 3 9,440 1590 19.48 2 82

aOnly blocks of 4 SNPs or more are included in the calculation. SNPs, single nucleotide
polymorphisms.

genetic diversity was present, and the true structure of the haplotypic blocks
could not be identified. An extreme case, in which the haplotypic block
structure generated using only three strains was compared with that from
16 strains, is illustrated in Fig. 1B.

To construct haplotype blocks that reflect the extensive allele sharing found
among closely related inbred strains, SNPs in which the minor allele was
unique to the CAST/Ei or SPRET/Ei strains were excluded. The resulting hap-
lotypic blocks were based on analysis of genetic variation among the 16 M.
musculus strains. Furthermore, only biallelic SNPs for which allelic informa-
tion was available for at least nine strains were used. Out of the 35,458 SNPs
identified among the 16 strains evaluated, 7385 SNPs involving a nucleotide
deletion were removed (because they could result from a sequence misalign-
ment). Also, 6651 other SNPs were removed because allelic information for
less than nine strains was available, and 167 other SNPs were removed
because they were not biallelic. The remaining 21,255 SNPs formed 2796 hap-
lotypic blocks. Of these, 1133 haplotypic blocks had four or more SNPs, and
88% of all SNPs analyzed were contained within blocks. Haplotypic blocks
with at least four SNPs had an average of 16 SNPs per block and 2.6
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Fig. 2. The number of inbred strains analyzed effects the haplotypic block struc-
ture. The percentage of single nucleotide polymorphisms (SNPs) included within a
block, and the number of haplotypes within a block is shown as a function of the
number of strains analyzed. Only blocks with four SNPs or more are counted. As the
number of strains analyzed is increased, the percent of SNPs included within a block
stabilizes around 88~90%. The number of haplotypes within a block increased by
0.03 haplotypes per strain added.

haplotypes per block and covered 47 Mb of the mouse genome. Haplotypic
blocks with two SNPs or more covered more than 75 Mb of genomic sequence
(Table 4). There was a large variation in block size ranging from 2 bases to 2
Mb. The average block length was 39 kb with a standard deviation of 155 kb.
Most blocks contained SNPs located within a single gene, but some blocks
contained multiple genes. For example, a block located on chromosome 7
(33.18–33.21 Mb) contains the Pold1, Nr1h2, and Kdap genes. More often, an
individual gene was separated into several different blocks. As an extreme
example, the 50-kb Capn2 gene contains 33 distinct blocks. The haplotypic
maps for each of the 20 chromosomes constructed using these 16 M. musculus
strains are available at http:\\mouseSNP.roche.com.

To evaluate the extent of linkage disequilibrium within the haplotypic
blocks, we applied our algorithm to a randomly reordered SNP map on chro-
mosome 1. The 2272 SNPs on chromosome 1 were used for construction of
the randomized haplotypic block structure. A random order for the 2272 SNPs
was generated by randomly drawing integers from the set (1, 2, …, 2272) one

http:\\mouseSNP.roche.com


at a time until all numbers were drawn. The structure of the randomized blocks
was generated by rearranging the SNP allele information in random order,
whereas retaining the original chromosome location. Neighboring SNPs in a
block were within 1 Mb apart. This randomization process was repeated
10 times. The properties of the resulting blocks were evaluated after each iter-
ation. Among the 10 haplotypic maps generated with the SNPs in random
order, the percent of SNPs in blocks containing a minimum of four SNPs
(23% ± 3%) and the average number of SNPs per block (5.7 ± 0.4) were
markedly decreased relative to that in haplotypic blocks generated using prop-
erly ordered SNPs. In addition, the average number of haplotypes per block
(3.8 ± 0.2) was also significantly increased. The strong contrast between the
properties of haplotypic blocks generated using sequential and randomly
ordered SNPs shows the extent of the linkage disequilibrium for SNPs within
the same linkage group. This high level of linkage disequilibrium is a result of
relatively simple genealogy of the commonly used laboratory mouse strains.

4. DISCUSSION

There are several methods for defining a haplotypic block, and the ideal
method depends on the anticipated application. For analyses of human
genetic variation, haplotype blocks have been generated with the goal of
minimizing the total number of SNPs required to characterize a significant
percentage of the haplotypic diversity present within each block (7). This
haplotypic block structure produced by these methods is useful for human
genetic studies, in which association studies require genotyping of a large
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Table 4
Strain Analysis Effects on Haplotypic Block Properties

SNPs Haplotypes Total block 
per block # Blocks kb per block per block % SNPs size (Mb)

>10 498 48 2.72 69 23.9
4–10 635 36 2.53 18 23.0
2–3 790 36 2.55 8 28.6
1 873 N/A 2 4 N/A
Total 2796 39.3 2.40 100 75.5

The number of strains analyzed affects haplotypic block properties. As the number of
strains analyzed is increased, the number of single nucleotide polymorphisms included within
a block and the number of haplotypic blocks increases; the number of haplotypes within a
block does not significantly increase. On average, the number of different haplotypes within a
block increased by only 0.03 per strain added.
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number of individuals. However, this approach does not produce an optimal
block structure for experimental murine genetics, which always involves
characterization of a much smaller number of inbred strains. Haplotype-
based association studies in mice can generate much more precise results
when blocks that are smaller in size, and which have a less diverse haplo-
typic composition, are examined.

Haplotype blocks in the genome of inbred mouse strains were also con-
structed by three other groups (8–10). In one analysis, three pair-wise com-
parisons of genomic sequence data from four inbred strains (129, C3H,
Balb/c, and C57/BL6) identified long segments with extremely high or
extremely low polymorphism rates (9). In another analysis, 3900 SNPs were
obtained from analysis of small genomic regions (<500 bp) within 2630
evenly spaced loci in six inbred strains (8). Genome-wide haplotype block
patterns were then constructed by pair-wise comparison of marker alleles
among the six inbred strains. Yalcin et al. analyzed the frequency of poly-
morphisms within a 4.8-Mb region among eight inbred strains (10). They
reported that sparse sampling of genomic sequence within a region may
falsely identify regions with a low frequency of polymorphism (SNP deserts).
They also found that the haplotype block structures produced by their method
were not robust. However, the lack of robustness in the blocks they produced
resulted from two factors. Their algorithm allowed for only two haplotypes
within each block, and all regions analyzed were organized into haplotype
blocks. Compared to these previous studies, our current analysis is based on
a much larger set of SNPs and alleles that were obtained from a larger set of
strains, and a different method for haplotype construction was used. In con-
trast to the pair-wise comparisons used in some of the previous studies, our
haplotypic block structure was produced by simultaneous comparison of
allelic data obtained from all strains. For the genes that we analyzed, 10 kb
per gene on average was resequenced across each of the 16 strains. To allow
for the possibility of multiallelic local sequence variation, our haplotypic
block construction algorithm allowed for more than two haplotypes within a
block. This produced a haplotype block map with much higher resolution and
a more stable structure that could be used for association studies.

The inbred M. musculus strains are much more closely genetically related
than are individuals in a human population. The mouse strains were bred
from a small group of “fancy” mice at the beginning of the last century
(reviewed in refs. 5 and 11). Consistent with their origin, the haplotype block
structure of the inbred mouse strains is far more ordered relative to that of
humans. The structure of the murine haplotypic blocks can be compared with
those described on human chromosome 21 (6). On one level, they appear to



have similar properties. The percentage of murine and human SNPs con-
tained within identified blocks and the average numbers of SNPs per haplo-
typic block were very similar. However, there are very significant differences
between the haplotypic blocks of human and inbred mouse. Human haplo-
typic blocks have significantly more haplotypes per block (3.5) than the
inbred mouse strains (2.6). In addition, the murine and human haplotypic
blocks were constructed under very different conditions. Human haplotypic
blocks were produced by counting only those haplotypes that were relatively
common in the population and by including only SNPs whose minor allele
frequency was above 0.1. In contrast, all SNPs and all haplotypes were used
for construction of inbred mouse haplotypic blocks. If the conditions used
for inbred mouse were applied to human, at least one, and possibly several,
additional haplotype(s) would be added to each human block, and the aver-
age size of a human block would decrease. If the same minimum cutoff of
four SNPs per block that was used in mouse haplotypic block generation was
applied to human haplotypic block generation, the average number of haplo-
types within a human haplotypic block would be further increased. The
inbred mouse haplotypic block structure was generated by analyzing 16 indi-
vidual strains, whereas 20 different human chromosomes were evaluated to
generate the human haplotypic blocks. Therefore, this comparison of haplo-
typic block structure of mouse and human is still valid, especially because
there was a very small increase in the number of haplotypes per block as the
number of different murine strains evaluated increased (Table 3, Fig. 2).

Relative to human genetic analysis, there are two significant advantages
that make it likely that many of the basic principles underlying the genetic
basis for phenotypic trait variation will be understood by genetic analysis of
inbred mouse strains. There is far less ambiguity in the haplotypic map of
the mouse genome, and higher quality phenotypic data can be easily
obtained using inbred strains of mice. First, inbred mice are homozygous at
all loci, making it relatively easy to generate haplotypic information that
has almost 100% accuracy. In humans, pedigree analysis or statistical meth-
ods, such as maximum likelihood or Bayesian analyses, must be used to
infer the haplotypes. Second, the higher level of linkage disequilibrium
among inbred mice results in clean and stable haplotypic block structure.
The lack of ambiguity in the haplotypic map increases its potential utility.
Phenotypic data can be more easily obtained under controlled experimental
conditions from mice than could possibly be obtained from humans. The
homozygosity of the inbred mouse strains eliminates the confounding effect
of allelic interactions at the same locus, and the lower genetic diversity of
the inbred strains reduces the number of genetic factors underlying the
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phenotypic differences. As shown here, haplotype-based association studies
can be performed using phenotypic data obtained from inbred mouse
strains. This high-resolution map of the haplotypic block structure of the
mouse genome will facilitate identification of genetic loci underlying
genetic traits. The power of this map will be further enhanced as additional
inbred strains are included and as it covers a larger fraction of the mouse
genome. Also, this map will enable the development of a new haplotype-
based computational method for genetic analysis of phenotypic traits vary-
ing among inbred mouse strains.
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5
SNP Discovery and Genotyping

Methods and Applications 

Jun Wang, Dee Aud, Soren Germer,
and Russell Higuchi

1. INTRODUCTION

The identification of genes affecting complex traits (i.e., biological traits
affected by several genetic and environmental factors) is a very difficult and
challenging task (1–3). For many complex traits, the observable variation
between individuals is quantitative; hence, loci affecting such traits are gen-
erally termed quantitative trait loci (QTLs). In contrast with monogenic
traits, it is impossible to identify all the genomic regions responsible for
complex trait variation without additional information on how these regions
segregate (1,4). A key development in complex trait analysis was the estab-
lishment of large collections of molecular/genetic markers. With the discov-
ery of a large amount of single nucleotide polymorphisms (SNPs) in human
and model organisms, correlating SNP markers with phenotype in a segre-
gating population has become a useful tool in QTL studies (5). In both link-
age and association mapping, the development of high-throughput methods
to discover and genotype polymorphism markers has enabled whole-genome
scanning to detect individual loci possible (2).

2. SNP DISCOVERY

SNPs are single base differences observed when sequences from different
genomes are compared. Among human genomes these changes occur at the
frequency of about 1 in every 1000 bases (6). This high density of SNP
markers facilitated the fine mapping of genes and prompted large-scale
efforts to identify and map new SNPs (for review see refs. 7 and 8).
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The discovery of new polymorphisms has been most rapid in the human
and mouse genomes. Although it is often still useful to perform de novo SNP
discovery, the constantly growing number of validated human SNPs deposited
in public databases makes a search of these databases an important first step
in any study of human SNPs.

Most human SNPs are deposited in a database (“dbSNP”) that is maintained
and curated by the National Center for Biotechnology Information (NCBI). In
its most recent build (build 110, January 2003), dbSNP contained more than
three million human SNPs. This database can be queried in a variety of ways
using the excellent NCBI search interfaces. Although most of the dbSNP poly-
morphisms derive from computational analysis of aligned sequence traces,
more than half a million of the SNPs have additionally been validated experi-
mentally. Many of the SNPs in dbSNP were identified by the SNP Consortium,
which itself maintains an excellent website with a search interface.

For alternative search tools (and to some extent informational content),
the Human Genome Variation Database can be used as it contains most of
the SNPs available through dbSNP. A number of more specific public data-
bases contain information and SNPs related to specific projects, and though
most of them also deposit their data in dbSNP, their own search interfaces
can sometimes be useful tools. These include the Human Gene Mutation
Database, which lists phenotypically related polymorphisms; the Japanese
SNP database, which contains SNPs mapped in Japanese populations; the
Cancer Genome Anatomy Project database; the National Institute of
Environmental Health Sciences (GenesSNPs); and several others. In addi-
tion, some companies (e.g., Sequenom, San Diego, CA; ABI, Foster City,
CA) maintain proprietary databases with comprehensive SNP information
related to the SNP genotyping technologies they sell. A database of mouse
SNPs, the Mouse SNP Database at http://mouseSNP.roche.com/, is described
in Heading 4.

Because of the variable quality of high-throughput sequence reads, unvali-
dated SNPs from purely in silico searches are frequently false. Although an
increasing number of SNPs are being validated, the density of validated SNPs
within a particular gene of interest is likely to be too low to enable thorough
association studies to be performed. Also, SNPs in the particular disease
group or ethnic group (or in our case, model organism) under investigation
are likely to be underrepresented or missing. For these and other reasons, SNP
discovery for particular research needs will remain an active area.

Our own SNP discovery efforts, predominantly in inbred mouse strains, have
been polymerase chain reaction (PCR)-based (as opposed to the recombinant
deoxyribonucleic acid [DNA] methods used to generate most whole-genome
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sequences). A nearly complete mouse genome sequence allowed the facile
design of PCR primers resulting in SNP discovery that was evenly distributed
along chromosomes. PCR amplicons can be assessed for SNPs in a number of
different ways, including denaturing high-performance liquid chromatography
(see ref. 9), single-stranded conformational polymorphism analysis (see ref. 10),
and denaturation gradient gel electrophoresis (see ref. 11). All these methods
detect heteroduplexes generated during the PCR reaction by the presence of an
SNP in the heterozygous state. These methods maximize sequencing efficiency
by targeting DNA sequences containing one or more polymorphism. However,
DNA sequencing itself, because of the development of reusable and high-speed
capillary gels and the automation of sample loading, has become rapid enough
that it is now usually possible to proceed directly to DNA sequencing.

Although it may seem obvious, it is worthwhile to note that when PCR
primers are designed to amplify a known gene, the resulting polymorphisms
identified will have all the information available for that gene, such as chro-
mosomal position, gene name, gene function, and any annotation that is
available for that gene. Also, the position of the polymorphism within the
gene itself will be available as well as information, such as coding vs non-
coding sequence, or promoter sequence vs 3′ untranslated region (UTR). In
some cases, a readily identified functional mutation may be discovered, such
as the introduction of a premature stop codon into the resulting messenger
ribonucleic acid (mRNA).

Historically, the sequencing of complementary DNA (cDNA) libraries had
the advantage of focusing on expressed sequences. The discovered SNPs
were located in the coding sequence or in the 3′ UTR. This area often con-
tains important regulatory elements for each gene (12,13). As whole-genome
sequences became available, PCR-directed sequencing became more useful
than cDNA libraries, requiring less work and allowing for detection of poly-
morphisms in genes that are expressed at levels too low for representation in
the libraries.

Recently, we used the PCR-based approach to assemble a murine SNP
database that includes annotation and mapping information for all the poly-
morphisms contained in the database (14). Currently, the database contains
more than 70,000 SNPs among 21 commonly used inbred mouse strains. The
sequencing is performed using an ABI-3700 capillary sequencer with an
autoloading attachment. Currently, two operators can sequence about 5000
PCR amplicons, each with 500 bp, in a week, and about half the sequenced
amplicons contain SNPs. PCR primers are designed automatically by com-
puter from batch-loaded, genome sequence files; the sequences are automati-
cally entered into an electronic file for ordering oligonucleotides which are



delivered as pairs in 96-well plates. Each PCR amplicon is sequenced with
the same primers used for PCR amplification. A Qiagen Robot 3000 is used
for primer dilution, PCR reaction setup, amplicon clean-up (using Qiaqick
PCR Purification kits), and sequence template preparation. The amplicons
are analyzed by gel electrophoresis to assess primer specificity. The major
costs for this project have been the capital investment in the sequencer and
robot and the ongoing expense of primers, thermostable polymerase, and
plastic disposables. Although perhaps more expensive than most small labs
could afford on their own, this approach is well within the means of most
“core” sequencing facilities that are now present at many academic and
industrial institutions. For human SNPs discovery, sequencing of 5000
amplicons per week from 50 individuals would identify about 50 new SNPs
per week.

3. GENOTYPING

In an influential article, Risch and Merikangas (15) argued that association
studies based on linkage disequilibrium, such as case-control studies, had
greater statistical power to detect genetic variants associated with common,
complex disorders than did linkage or positional cloning approaches
(1,5,15,16). However, even using the most optimistic estimates of average
linkage disequilibrium, genotyping of 100,000 or more SNPs would be
needed to cover the whole genome in order to detect the relatively weak asso-
ciations between genetic variants and disease; at least 1000 samples would
need to be genotyped (5,17,18). Thus, a whole-genome scan would require on
the order of 100 million genotypes. There are a few very large-scale genotyp-
ing facilities with the potential throughput to complete such a study within a
reasonable time. Yet, for most groups such genome-wide scans remain unaf-
fordable. Recently, an international research consortium was established to
identify the most common haplotypes across the whole genome with the
intent to reduce the number of SNPs needed to capture the genetic diversity in
many genomic regions (17,19–22).

Until now, mostly candidate genes and candidate chromosomal regions
identified in whole-genome linkage scans have been tested in association
studies. Most often, investigators have chosen SNPs in candidate genes
(23–26) that are known or thought to have functional consequences (27) (i.e.,
affect transcription, splicing, or coding of a gene). To more efficiently iden-
tify new candidate genes involved in disease, we and others have used model
organisms, such as mouse, in which facile breeding experiments and func-
tional tests can be done, including transgenic and gene-knockout experi-
ments and high-throughput expression analysis.
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Rather than typing a large number of SNPs one sample at a time, our strat-
egy has been to first construct pools for cases and controls of equal amounts
of DNA from each individual. The allele frequencies for each SNP are then
measured for each pool using an allele-specific, quantitative PCR method
(described under Heading 4). The initial screening of a very large number of
SNPs can then be followed up by genotyping for each individual a much
smaller subset of SNPs that show the largest estimated allele frequency dif-
ferences. The pooling approach was first suggested many years ago (28) and
has been successfully employed with restriction fragment length polymor-
phisms (RFLPs) and microsatellites (29–31). Pooling for SNP mapping has
gained popularity and sparked a large number of publications in the last few
years (32–44). The first studies reporting significant associations using pool-
ing for SNP allele frequency determination have appeared (14,45–47).

Most of the common methods used for genotyping have recently been
reviewed (8,48,49). An ideal genotyping system would (a) be able to per-
form with high-throughput capacity; (b) generate genotypes at a low cost;
and (c) provide robust and reliable data. In actual practice, trade-offs must
be made, depending mainly on the number of samples and the number of
SNPs that need to be genotyped. Some older methods (e.g., RFLP) are suit-
able for genotyping relatively few samples, are simple to use, and do not
require extensive instrument or reagent investments. However, for larger
studies or applications involving hundreds to thousands of samples and
SNPs, these methods are too slow and labor intensive. Some of the newer
methods (e.g., hybridization to microarrays) are particularly well suited for
typing large numbers of different SNPs. However, the high cost of such
microarrays can make analyzing a large number of samples prohibitively
expensive. Other methods (e.g., TaqMan) are more cost-effective for geno-
typing a large number of samples but are less useful for genotyping large
numbers of SNPs, because of the expense of generating new assays.

Although costs as low as $0.01 per genotype have been reported, this does
not always take into account all the costs associated with a genotyping proj-
ect. For example, the up-front instrument investments, the cost of all con-
sumables, the informatic costs associated with processing large amounts of
genotyping data, the labor costs or robotic system requirements, or the costs
associated with developing new genotyping assays are often not factored
into these low estimates. Note also that expensive reagents (e.g., probes and
primers) may not be completely consumed in real life situations and then
cannot be amortized over an ideal number of genotypes.

Though methods of genotyping vary, most of them have enzymatic ampli-
fication of DNA as a step in the process, and for this almost all use PCR. In



our research, we determine the genotypes and allele frequencies in the PCR
amplification itself (a “homogenous” PCR), thus eliminating the need for
post-PCR manipulation and processing (33,50). The minimal processing also
reduces the potential for sample cross-contamination. Our homogeneous
detection system uses an SYBR green dye in the PCR reactions: the dye
binds double-stranded DNA, and the fluorescence increases as the PCR
product increases; the increase in fluorescence can be monitored with a
number of commercially available, fluorescence-reading thermocyclers.
Including a fluorescent DNA binding dye in the reaction eliminates the need
for expensive labeled primer or probe systems.

The PCR reaction becomes allele-specific when primers are designed that
bind at the 3′ end to the SNP. For SNP with two alleles, three primers are
required for genotyping, one for each allele and a common primer. The com-
mon primer plus the primer specific for each allele will amplify in the pres-
ence of that allele. Theoretically, only the correct primer–allele combination
will produce a PCR product, but in actual practice, there is always some non-
specific amplification (51). To increase specificity we used a “hot-start,”
“Gold” version of the Stoffel fragment of Taq DNA polymerase (52–54) and
recently derived a new variant, CEA2, which also increased efficiency
(Elfstrom C and Higuchi R, unpublished data). We have developed hundreds
of genotyping assays for both murine and human SNPs using a single set of
amplification conditions, without the need to optimize each reaction (14).
Using only standard primers at low synthesis scale without purification
allows us to develop high-throughput, low-cost genotyping assays.

The genotyping method we developed accelerates the genotyping process
because it works on pooled samples. To generate the pools, equal aliquots of
DNA from each sample in the group are added to the pool. The pool is split
into two genotyping reactions, one for each allele-specific primer combina-
tion. The allele that is in the majority will amplify earlier (lower Ct value)
than the allele that is in the minority for that pool of samples (higher Ct value
for a later amplification). The difference between the Ct values between the
two reactions for that pool is proportional to the difference in frequency
between the two alleles in the pool (see refs. 33, 55, and 57 for further
details).

The SNP-based pooled DNA sample method of genotyping SNPs has
been used with great success for both human and murine samples in
genome-wide scans (mouse) and in candidate gene studies (mouse and
human) (14,46). It is an especially useful method when the number of sam-
ples is large enough that pooling saves a significant amount of labor and
material (mostly the PCR enzyme). However, for large pool sizes (about
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500 samples per pool), small allele frequency differences (0.05–0.1) may
become statistically significant, and the errors generated by constructing
pools and measuring the allele frequencies may make distinguishing these
small differences difficult. Pooling samples allows a huge reduction in the
number of genotyping reactions required for a large study, so the advantages
to pooling are still very significant. For example, a study using 2000 SNPs
for genotyping 500 cases and 500 controls would require 2 million individ-
ual genotyping reactions but only 32,000 reactions when pooling the sam-
ples and using four replicates for each allele frequency determination.

To genotype an individual DNA sample for a single SNP, the same proce-
dure used for allele frequency measurement can be performed—the delay in
amplification caused by primer mismatch is used simply to note the absence
of that allele. In addition, we have also developed a single-tube approach to
genotyping individual samples, which uses a GC-tail added to one of the
allele-specific primers; the genotype of the sample is detected by analyzing a
continuous dissociation curve (“melting curve”) subsequent to the PCR reac-
tion. Amplifications with the GC-tail will show a different dissociation
pattern than amplifications with the other allele-specific primer (50).

As technology advances, cheaper and easier genotyping methods may
emerge, but for now, SNP-based amplification of pooled samples provides a
low-cost method of large-scale genotyping. There are now several different
pooling methods that are reportedly quite accurate (34,57,58). For human
case-control studies, using a pooling approach also has the unappreciated
advantage in that it consumes only a small percentage of the amount of often
precious DNA; the DNA available is often so limited that individual geno-
typing over a large number of markers may be impossible.

4. GENOTYPING STUDIES IN THE MOUSE

Among all the model organisms, the mouse is unsurpassed as a tool for
analyzing mammalian biology and human disease (59,60). The unique advan-
tages of the mouse include a century of genetic studies, hundreds of sponta-
neous mutations, scores of inbred strains, practical techniques for random
mutagenesis, and the generation of transgenic and knockout/knockin mice
(61–63). Most importantly, high-quality genomic sequence information for
the mouse is currently available in the public domain (64). There is extensive
organizational and functional similarity between the mouse and human
genomes in addition to large regions of sequence similarity. More than 90%
of the mouse genome is partitioned into sections of homology or synteny with
the human genome, more than 40% of the human genome aligns to that of the
mouse at the nucleotide level, and 80% of the mouse genes have strict



orthologs in the human genome (64). Because the genes, biochemical path-
ways, and physiological and organ functions in mice are closely related to
those of humans, the mouse is a very important and useful experimental sys-
tem to study the genetics and biology of human disease (59).

A map of closely spaced genetic polymorphisms is a valuable tool to allow
mouse geneticists to fully exploit inherited trait models. Toward this end, we
have made a mouse SNP database (http://mouseSNP.roche.com) available to
the public. The mouse SNP database has grown from the originally published
2848 SNPs (65) to more than 70,000 unique SNPs and a total of nearly 800,000
alleles. For each SNP, allelic information is available for up to 21 commonly
used inbred mouse strains. More than 95% of the SNPs in the database have
been mapped to a specific chromosome and to a specific base pair on the
ENSMBL mouse version 3 scaffold (http://www.ensembl.org/). The mouse
SNP database is web accessible and allows real-time queries of SNP, mouse
strain, and allele information. The query results are provided through a graphi-
cal user interface. In addition, 740 SNP genotyping assays based on allele-specific
kinetic PCR have been developed. The oligonucleotide primer sequences and
conditions for performing the genotyping assays are also provided. This SNP
database allowed us to perform genome scans in mouse genetic models of
osteoporosis, emphysema, viral bronchitis, and breast cancer. Some of our work
on the osteoporosis model is outlined here as an example. 

We undertook a large genotyping study involving eight phenotypic traits
in collaboration with Robert Klein et al. of Oregon Health Sciences Univer-
sity (14). His group generated a C57BL/6 × DBA/2 cross, in which 994 F2
progeny were phenotyped at 16 wk of age for eight skeletal traits. These
skeletal traits included bone mineral density, moment of inertia, cortical
thickness, cortical area, marrow area, weight, and femur length. In addition,
the femoral cross-sectional area was analyzed separately in males and
females. The most extreme F2 progeny with the top and bottom 15% pheno-
typic values were selected for each trait. Equal amounts of DNA from each
phenotypically extreme sample were collected to construct two pools (high
and low) for each trait. For a total of 18 pools, differences in allele frequency
were determined between related pairs of pools for 140 SNPs across the
whole genome using the allele-specific kinetic PCR genotyping method. The
results from this genome scan identified a large number of QTLs related to
bone quality (see Fig.1 for results of scan using bone mineral density). We
identified candidate genes in many of these loci, some of which we validated
with in vivo and in vitro experiments (66). Using these methods, one person
was able to obtain the equivalent of 280,000 genotypes in 3 mo. This method
accelerated SNP analysis, improved traditional QTL detection, and made
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large-scale studies feasible. This method is easily performed using reagents
and equipment that are available and affordable to small-scale and academic
laboratories.

Conventional genotyping can be replaced altogether by an alternative QTL
mapping method. This is a computational method for predicting chromosomal
regions regulating phenotypic traits (14) based on the mouse SNP database and
phenotypic differences between the commonly used inbred mouse strains. The
computational method calculates genotypic distances between a pair of mouse
strains based on allelic differences. The genotypic distances are then compared
with phenotypic differences between the two mouse strains. This process is
repeated for all strain pairs with phenotypic information available, and a corre-
lation value is derived using linear regression on the phenotypic and genotypic
distances for each genome locus. This method has been demonstrated to suc-
cessfully predict several phenotypic traits (see details in ref. 14).

Fig. 1. Comparison of SNP-based genotyping of pooled DNA samples with
microsatellite genotyping of individual DNA samples. Phenotypically extreme F2
progeny from a B6D2 intercross with the highest and lowest bone mineral density
(BMD) were subjected to whole-genome scanning for association with BMD by
genotyping either individual DNA samples (from 299 mice) with 112 microsatellite
markers or two pooled DNA samples (150 mice per pool) with 109 SNP markers.
The significance of each allele frequency difference was calculated using the z-test
and plotted as a logarithm of the odds (lod) score for all chromosomes. Dashed line
indicates a lod score of 3.3, the threshold for genome-wide significance. (Reprinted
with permission from ref. 14)



To improve the precision of the computational method, a haplotype map
has been generated for 13 commonly used Mus musculus strains and is being
expanded to include 21 strains (67). The computational method has been
modified to correlate phenotypic data obtained from inbred mouse strains
with haplotypic blocks. This method evaluates how well the occurrence of
haplotype alleles within a block correlates with the phenotypic data.
A matching score is assigned to the haplotypic block, which is then adjusted
on the size and structure of the block. This process is repeated for all the hap-
lotypic blocks until the best matching blocks are generated. With this new
algorithm, our ability to effectively analyze complex traits in mouse genetic
models will be greatly improved.

5. FUNCTIONAL STUDIES: TYPING mRNA IN F1 CROSSES
TO STUDY GENE REGULATION

Polymorphisms that are transcribed into the coding region or 3′ UTR of a
gene can have profound effects on the production of a functional protein or
on regulation of the RNA or protein encoded by a gene (12). One such tran-
scribed polymorphism affected susceptibility to asthma in a mouse genetic
model, a deletion in the coding region of the  gene resulted in C5-deficiency
that correlated with susceptibility (68). In humans, a polymorphism in the
TCF7 gene, C883A, was associated with type 1 diabetes (69).

In addition to direct functional effects, a transcribed polymorphism can be
used to analyze transcriptional regulation of a gene. If two mouse strains differ
in the allele present in a transcribed gene, the F1 generation derived from a
cross of these strains can be used to study cis- vs trans-regulation (70) (Fig. 2).

In F1 mice, the transcription factors, polymerases, and other trans-acting
factors that will affect transcription of the RNA in question are derived
equally from each parental strain. If the mRNA level is regulated by trans-
acting factors, then the F1 mice should have equal levels of the two alleles
represented in the mRNA transcribed by this gene, (allele 1/allele 2) = 1. If
however, the mRNA expression is controlled in a cis manner, in other words,
if this gene controls its own expression, then the proportion of allele 1 to
allele 2 will not equal 1 (70).

The following example is from an animal model for T-helper cell differentia-
tion. The expression of TCF7 mRNA is about threefold higher in the B10.D2
mouse strain than Balb/c. An SNP was identified in the second exon of the TCF7
gene. After converting the mRNA to cDNA, the ratio of cDNA of one genotype
to the other was determined by quantitative, allele-specific PCR (Fig. 3).

In this case, the ratio of allele 1 to allele 2 was not equal to one, indicating
that the transcriptional control is caused by cis-acting factors.

94 Wang et al.



SNP Discovery and Genotyping 95

Cowles et al. (70) analyzed allele-specific transcription in F1 mice and in
different tissues for these mice. This allowed them to study cis-regulated
expression in conjunction with tissue-specific expression. Gene regulation
plays an important role in mammalian biology, so the interest in gene regula-
tion will continue to increase, and SNP-based assays allow easy analysis of
transcriptional regulation.

6. CONCLUSIONS

The number of human SNPs available in the public databases continues to
grow at a very rapid rate. More importantly, the quality of the information

Fig. 2. The messenger RNA (mRNA) level for TCF7 is controlled in a cis-acting
manner. (A) A depiction of breeding two inbred parents to generate a first filial (F1)
generation. The F1 mouse receives equal contribution from each parent. (B) The
level of two alleles (C/G) of the TCF7 single nucleotide polymorphisms in F1
mouse. The F1 mouse would have equal C or G allele from both parents that is tran-
scribed into mRNA. If the RNA level is controlled in a cis-dependent manner, the
levels would be different from 50/50 as seen in this figure.



available for each SNP is improving even faster. Between June and
November of 2003, the number of uniquely mapped human SNPs grew from
approx 4.1 to 5.8 million, whereas the number of experimentally validated
SNPs grew from approx half a million to an impressive 2.4 million. The
number of SNPs with a known allele frequency increased at a much slower
rate, but as data from the international haplotype map project becomes avail-
able in 2004, this should change dramatically. For the individual researcher,
additional human SNP discovery will only be conducted on limited regions
for which a higher SNP density may be required. For these purposes, exist-
ing SNP discovery technologies would be sufficient. For most model organ-
isms, however, the SNP coverage is still too low. Except for the commonly
used inbred mouse strains, only a handful to a few thousand SNPs have been
deposited in NCBI dbSNP for other organisms. For example, dbSNP build
118 only contains two reference SNPs for the chimpanzee Pan troglodytes.
As additional genomes from other organisms are sequenced, and in silico
computational biology takes off, generation of extensive polymorphism data
will become a priority.

Impressive progress has been made in the area of SNP genotyping in
recent years, yet, in terms of throughput and pricing, whole-genome scans
of sufficiently large numbers of cases and controls for association studies
continue to be beyond the reach of all but a few institutions. Although the
price per single genotype has decreased to close to $0.01 for some technolo-
gies, the comprehensive or actual price of genotyping in real life situations
including labor costs, consumables, and up-front instrumentation invest-
ments are more realistically in the range of $0.1–$1. In addition, such prices
are most often only achievable in sustained ultra-high-throughput opera-
tions processing 10–100 thousands of genotypes per day. At a comprehen-
sive price of $0.05 per genotype, generating 100 thousand genotypes per
day would entail yearly expense of roughly 1 million dollars. Similarly, a
100,000 SNP whole-genome scan of 500 cases and 500 controls would cost
$5 million. As with sequencing, progress in SNP genotyping prices and
throughput has been incremental rather than exponential in recent years.
Promising developments in the field of genome sequencing bear close mon-
itoring; if it does indeed become possible, as some have projected, to
sequence a whole mammalian genome for a few thousand dollars, these
developments may make targeted genotyping of select polymorphisms
unnecessary.

Finally, progress is being made in terms of understanding the functional
relevance of SNPs and other polymorphisms. New and improved experimen-
tal and in silico methods for determining and predicting the biological

96 Wang et al.



SNP Discovery and Genotyping 97

function of polymorphisms transcribed into RNA (as discussed here), as well
as intronic regulatory SNPs, are urgently needed.
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Genetic and Genomic Approaches to

Complex Lung Diseases Using Mouse Models

Michael J. Holtzman, Edy Y. Kim, and Jeffrey D. Morton

1. INTRODUCTION

Common lung diseases are likely to be multifactorial and multigenic. In
addition, the lung exhibits a limited set of biological and physiological
responses, so different lung diseases exhibit significant overlap in pheno-
type. This complexity in the development and manifestation of lung disease
poses significant challenges for developing complete and accurate models of
disease. Nonetheless, a layered strategy that includes in vitro and in vivo sys-
tems can offset these limitations. In vitro systems have evolved from simple
organ culture to intricate procedures for cell culture that exhibit high fidelity
to behavior in vivo. Similarly, in vivo systems have evolved from traditional
physiology-based models in large animals and rodents to genetic modifica-
tion of mice using targeted and conditional systems. Complex traits may be
studied in inbred, recombinant, or congenic strains of mice, and single gene
effects may be segregated naturally or experimentally. Ultimately, results
from these in vitro and in vivo models identify candidate genes for further
study in humans.

This chapter reviews the development and application of genetic and
genomic approaches to complex lung diseases, focusing on the use of mouse
model systems. Although the particular strength of the murine system has
been its applicability to studies conducted in vivo, suitable cell culture sys-
tems have now been established for comparative work in vitro as well.
Whenever possible, the extension and correlation of findings to human stud-
ies will also be noted. The chapter is organized by disease entity, using the
examples of cystic fibrosis (CF), emphysema, tuberculosis, and asthma as
illustrative of well-studied targets for multidisciplinary genetic and genomic

103

From: Computational Genetics and Genomics 
Edited by: G. Peltz © Humana Press Inc., Totowa, NJ



approaches. In addition, the distinct characteristics of these diseases have
shaped different approaches to defining underlying genetic mechanisms and
so illustrate the range of available methods that can be used in mouse models
of lung disease.

2. CYSTIC FIBROSIS

CF is the most common autosomal-recessive disorder in Caucasian popu-
lations, with an incidence of 1 in 2500 live births (1). Thus, the identification
of the CF transmembrane conductance regulator (CFTR) as the site of the
underlying genetic abnormality for this disease was a seminal example of the
positional cloning approach to identify and characterize a candidate gene in
humans (2–4). The CFTR gene has 27 exons that span 230 kb of the long arm
of human chromosome 7 (7q31.2) and encodes a transmembrane glycopro-
tein of 1480 amino acid residues (5). The gene product is a member of the
adenosine triphosphate-binding cassette family of transporters that have con-
served transmembrane and nucleotide-binding domains linked by a regula-
tory domain with phosphorylation sites for protein kinases A and C (2,6).

Before the identification of the CF TR gene, physiological studies
showed that CF epithelia have defective cyclic adenosine monophosphate
(cAMP)-mediated chloride ion transport (7–9). Subsequent studies indicated
that CFTR was the major cAMP-regulated chloride channel in the apical
membrane of epithelial cells (10,11) and so had a central role in transepithe-
lial salt transport, fluid flow, and ion concentrations in the intestine, pancreas,
sweat gland, and airway epithelia (12). CF results from defective CFTR
activity that disrupts transepithelial ion transport. In general, nonsense or
stop mutations in CFTR result in severe disease, whereas missense muta-
tions result in milder disease. More than 900 mutations have been identified
within human CFTR. The most frequent CF mutation includes 66% of
mutant CFTR alleles. This mutation deletes in-frame the phenylalanine at
position 508 (∆F508) (13). The ∆F508 CFTR allele produces a misfolded
protein that is trapped in the endoplasmic reticulum (14–16). In contrast,
another common mutation (G551D) results in a protein with normal process-
ing but decreased chloride channel activity (17).

2.1. Murine Models of CF

A number of mouse models of CF were developed based on targeted muta-
tions of the Cftr gene (Table 1). Initial strategies were based on knockout
technology that introduces a genomic construct into mouse embryonic stem
cells. Clones that have undergone genetic recombination are implanted into
pseudopregnant female mice. The resulting chimeric mice are crossed to
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produce mice that are homozygous for the targeted gene deficiency. The first
mouse model disrupted the CFTR gene by introducing a stop codon in exon
10 (strain CFTRm1UNC) (12,18,19). These CFTR-deficient mice are viable but
lack the lung inflammation found in human CF. Instead, these mice develop
severe bowel disease that was fatal by 40 d of age. A second gene knockout
model (CFTRm1HGV) used insertional mutagenesis rather than the strategy of
gene replacement used for the CFTRm1UNC strain. The CFTRm1HGV mouse
strain produces 10% of normal CFTR levels and has 90% long-term survival
with abnormalities of the colon and vas deferens (20). The CFTRm1UNC strain
has been complemented by human CFTR driven by the rat intestinal fatty
acid-binding protein promoter (21). However, like the CFTRm1UNC strain,
CFTRm1HGV mice exhibit normal lung histology.

Additional murine models duplicate human CF mutations. Two strains
(CFTR∆F508ROT and CFTR∆F508CAM) contain the ∆F508 CFTR mutation, and

Table 1
Mouse Models of Cystic Fibrosis Generated by Gene Targetinga

Genetic change Mouse name Molecular approach Reference

Cftr cftrtm1Unc In-frame stop 19
knockouts (exon 10)

cftrtm1Hgu Insertion 20
(exon 10)

cftrtm1Cam Insertion 25
(exon 10)

cftrtm1Bay Duplication 223
(exon 3)

cftrtm3Bay In-frame stop 224
(exon 2)

cftrtm1Hsc Insertion 26
(exon 1)

Cftr cftrtm1Kth Homologous 24
mutations recombination (∆F508)

cftrtm1Eur Homologous 23
recombination (∆F508)

cftrtm2Cam Homologous 22
recombination (∆F508)

cftrTgHm1G551D Homologous 17
recombination (G551D)

aModified with permission from ref. 47. CFTR, cystic fibrosis transmembrane con-
ductance regulator.



a third line contains the G551D mutation (17,22–24). These strains also
show moderate (G551D) to severe (∆F508) intestinal pathology, such as
goblet cell hyperplasia (GCH) and concretions in the crypts of Liberkuhn.
However, lung histology is again normal (18–20,23,25). Thus, these models
may be appropriate for the 10% of human newborns with CF and older
patients who suffer similar intestinal obstruction and mucus accumulation,
but they miss the major pulmonary pathology of the disease.

In each of these models, the severity of the intestinal pathology depends on
the strain’s genetic background. For example, one CFTR-null strain
(CFTRm1HSC) exhibits severe intestinal obstruction and only 30% survival, but
this phenotype is altered when the original line is crossed with other inbred
strains. This heterogeneity is a result of a separate locus on chromosome 7 that
influences the intestinal phenotype. At least one genetic locus unlinked to Cftr
can also modify the severity of CFTR-dependent lung disease in mice (26).
When the original CFTRm1UNC strain was extensively backcrossed (18 genera-
tions) into the C57BL/6 strain, this congenic strain develops spontaneous and
progressive lung disease at an early age (27). The lung pathology is character-
ized by ineffective mucociliary transport, overinflation of alveoli, inflamma-
tion, and interstitial fibrosis, which resembles human CF. Future studies will
need to identify genes besides Cftr that modulate the severity of CF. For exam-
ple, other epithelial ion channels (e.g., calcium-dependent chloride channels)
may minimize lung pathophysiology in Cftr-null mice. The strain-dependence
of CFTR-induced pathology may be further defined in the mouse model using
quantitative trait loci (QTL) to identify additional candidate genes.

CF mouse models also help to determine whether there is a heterozygote
advantage that can explain the maintenance of CF alleles in the human popu-
lation. For example, it has been proposed that the CF alleles mediate resist-
ance to the secretory diarrhea caused by cholera. In support of this concept,
the amount of chloride ion transport induced by cholera toxin correlates
directly with functional levels of CFTR (28). Similarly, Salmonella typhi
uses CFTR to enter intestinal epithelial cells so that a CF heterozygote with
decreased CFTR levels may have decreased susceptibility to typhoid fever
(29). These possibilities can now be tested in the mice with Cftr mutations.

2.2. Pseudomonas Infection

Although CFTR mutations are the principal genetic defect in CF patients,
the major cause of morbidity and mortality among CF patients is chronic res-
piratory infection, especially with Pseudomonas aeruginosa (30). An exag-
gerated, persistent, and predominantly neutrophilic inflammatory response
to P. aeruginosa infection is a hallmark of lung disease in CF patients (31).
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Other opportunistic pathogens, including Burkholderia cepacia, nontubercu-
lous mycobacteria, Aspergillus fumigatus, and Strenotrophomonas mal-
tophilia, can also be cultured from the airways of CF patients (32).
Hypotheses to explain the link between defective CFTR and increased lung
infection include the following: 

1. The hyperabsorption of water by CF epithelia leads to mucociliary
dysfunction and poor pathogen clearance from the airway (33).

2. High salt concentration in the CF airway leads to inactivation of antimi-
crobial defensins (34).

3. CFTR normally binds P. aeruginosa, so the loss of CFTR results in
aberrant bacterial clearance (35).

To date, however, none of these possibilities have yet provided an explana-
tion for the chronic lung infection with P. aeruginosa (and its relation to
CFTR expression or function). Mouse models exist for infection with
P. aeruginosa, and as expected, Cftr-mutant mice are more susceptible than
wild-type mice to infection (36–38). A model of chronic infection with P.
aeruginosa can be achieved by intratracheal instillation of agarose beads and
bacteria. This model has been used to identify susceptible (DBA/2; C57BL/6)
and resistant (Balb/c) mouse strains (39–42). T-helper type 1 (Th1) CD4+ T-
cells are protective, so this finding stands in contrast to the view that the
resistant Balb/c strain tends to skew toward a T-helper type 2 (Th2) response
(43–45). Recent data show that CD1d-restricted T-cells are required to clear
P. aeruginosa from infected lungs (46), but the acquired immune response to
P. aeruginosa still needs to be more fully defined. It is also possible that alter-
ations in airway mucins (e.g., increased sialylation) may occur in CF and so
increase the susceptibility of the host to infection (47). Each of these possibil-
ities can be addressed directly in the mouse model.

2.3. Gene Therapy

Mouse models of CF also provide a suitable system for the development
of gene therapy. Intratracheal (48) and intranasal (49) administrations of
liposomes have been used to deliver plasmids encoding the Cftr gene in vivo.
This strategy has allowed for at least partial correction of defects in cAMP-
mediated chloride secretion in treated mice. The use of adenoviral vectors
for gene expression has proven difficult because of low level and transient
expression and concomitant inflammation (50). Subsequent human trials of
adenoviral gene transfer have also been unsatisfactory because of similar
problems (51,52). Strategies under study include attempts to increase effi-
ciency of expression (e.g., by increasing the accessibility of the adenoviral



receptor) and to decrease airway inflammation (e.g., by eliminating further
elements of the adenoviral backbone or using other viral vectors).

3. EMPHYSEMA

Chronic obstructive pulmonary disease affects 2 million individuals and
contributes to more than 80,000 deaths per year in the United States (53). This
disease is defined as chronic airflow obstruction caused by chronic bronchitis
or emphysema. Most cases of emphysema develop after cigarette smoking,
but 2–5% of cases are familial and result from a deficiency in α-1-antitrypsin
(AAT) (53,54). In 1964, Eriksson et al. observed that even nonsmoking AAT-
deficient patients are more susceptible to emphysema than the general popu-
lation (55). Because AAT inhibits proteases, such as neutrophil elastase (56),
it appeared likely that AAT-deficient patients were susceptible to uncon-
trolled degradation of elastin and consequent emphysema. This possibility
has evolved into the more general concept that an imbalance between pro-
tease and antiprotease activity may lead to all forms of emphysema.
Candidates include other neutrophil proteases, such as proteinase 3, cathep-
sin G, and other matrix metalloproteases (MMPs), as well as macrophage
elastase (now known as MMP-12), and cysteine proteases. Recent data sug-
gest that degradation of other extracellular matrix components, particularly
collagen, may also contribute to emphysema (57). Taken together, it appears
likely that inflammatory stimuli, especially cigarette smoking, initiate a cas-
cade that alters the balance of protease activities in the lung. Proteases
released by activated macrophages and neutrophils mediate the degradation
of collagen and elastin in the extracellular matrix. Inflammatory cytokines
serve to recruit and activate additional immune cells and so further amplify
the damage. The destruction of extracellular matrix leads to cell death and
abnormal repair, and this whole process develops into permanent airspace
enlargement and bronchiolar collapse in susceptible individuals.

Animal models support such a scheme for excessive protease activity. In
one of the first animal models of emphysema, intratracheal delivery of a
plant protease caused airspace enlargement in rats that resembled the
pathology of emphysema in humans (58). Intratracheal administration of
neutrophil elastase, proteinase 3, pancreatic elastase, and vascular endothe-
lial growth factor inhibitor causes similar emphysema in animal models
(59–64). After intratracheal treatment with an elastase or protease, neu-
trophils and macrophages infiltrate the lung and initiate a process that leaves
the lung with a disorganized elastin matrix and permanent airway enlarge-
ment. However, a bolus of exogenous protease is of limited relevance to
human disease. Intratracheal treatment with lipopolysaccharide also
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enlarges airspaces under experimental conditions (63), but bacterial pneu-
monia does not cause emphysema in humans (65). Thus, models with greater
relevance and evidence of genetic susceptibility needed to be developed
(as outlined in Subheadings 3.1.–3.5.).

3.1. Genetics of AAT Deficiency

Severe AAT deficiency occurs in 1 in 3500 people, and adults with mild
deficiency (AAT levels less than 35% of normal) have a 20–50% higher risk
of emphysema. Severe deficiency (AAT levels less than 10% of normal) con-
fers at least 80% risk of developing emphysema (66). Polymorphisms in the
AAT gene are classified into three categories: M (with normal AAT levels),
S (mild AAT deficiency, e.g., Glu264 → Val), and Z (more severe AAT defi-
ciency, e.g., Glu342 → Lys). The significant mutations disrupt salt bridges
and cause AAT polymerization with consequently low levels of secretion and
impaired function (67). In rodents, injection of D-galactosamine inhibits AAT
(68,69). Treated animals do not spontaneously develop emphysema, but
these animals are more susceptible to lung damage from elastase treatment.
Mice with null mutations in the Aat gene or knockin mutations for human
M, S, and Z type alleles are currently under development and should provide
significant insight into AAT deficiencies (70). Experimental models are made
more difficult because humans have only one AAT gene and a pseudogene
on chromosome 14 (71,72), whereas mice have a cluster of four to five Aat
genes on chromosome 12 (73). In addition, alveolar macrophages in mice
(unlike humans) are normally AAT-deficient (74). Nonetheless, AAT defi-
ciency is an ideal target for gene therapy because it involves a single gene, a
blood-borne product, and a phenotype that is restored with only 35% of nor-
mal levels (65). Thus, the development of a mouse model for use in AAT
gene therapy remains a useful endpoint.

3.2. Genetic Models of Emphysema

In humans, serum AAT levels and lifestyle do not completely predict
emphysema (75). Genetic polymorphism may contribute to this heteroge-
neous response. Novel emphysema genes may be found in spontaneously
mutated mice, such as the beige, blotchy, tight-skin, and pallid strains (76).
Beige mice have airspace enlargement at all ages because of an autosomal-
recessive defect on chromosome 13 (77,78). Beige mice illustrate a typical
strategy for finding genes. Perou et al. selected the smallest yeast artificial
chromosome (YAC) contigs that can complement beige fibroblasts in vitro.
Positional cloning isolated the beige gene and its human homolog (79).
Blotchy mice have panlobular emphysema because of defective copper



metabolism that reduces lysyloxidase activity and causes abnormal collagen
crosslinks (80–82). Blotchy mice demonstrate fruitful feedback between
human and murine genetics. Human complementary deoxyribonucleic acid
(cDNA) probes identified the blotchy gene on chromosome 10 (83). This
mouse strain resembles a human disease that predisposes to emphysema
(cutis laxa–loose, inelastic skin). With a defect in Fibrillin-1, tight-skin mice
have abnormal airspace development and progressive emphysema (84,85).
Pallid mice develop mild airspace enlargement late in life (86). Pallid mice
have a nonsense mutation in a protein interacting with syntaxin-13 that regu-
lates vesicle trafficking (87). Inbred mouse strains also vary in their response
to cigarette smoke (65,73). For example, C57BL/6J and DBA/2 strains of
mice develop airspace enlargement, but the ICR strain of mice does not
exhibit any change after cigarette smoking (88). The susceptibility may
result from antielastase deficiency (C57BL/6J) or antioxidant deficiency
(DBA/2). These strains are candidates for QTL analysis and determination
of candidate genes. A particular challenge for each of these conditions will
be to find the relevance to human disease.

3.3. Transgenic Mouse Models

Mouse models can provide proof-of-principle for new hypotheses. For
example, previous research had focused on elastin degradation as the key
step in emphysema. However, overexpression of human collagenase-1
(MMP-1) in mice using a lung-specific promoter haptoglobin was found to
be sufficient to cause airspace enlargement (89,90). Whether the role of col-
lagenase is important only during lung development or can mediate disease
is now under study. Support of a pathogenic role for collagenase has come
with the finding of increased levels of collagenase messenger ribonucleic
acid (mRNA) in the lungs of emphysema subjects (91–93). These findings
stand in contrast to those using lung-specific overexpression of platelet-
derived growth factor-B (PDGF-B). These transgenic mice exhibit enlarged
airspaces with fibrosis (94), but there is no evidence for a similar role of
PDGF-B in human emphysema.

One of the problems with transgenic mouse models is that the level of
transgene expression depends on the site of transgene integration into the
genome. By testing several founder mice, investigators can therefore deter-
mine the dose-dependence of a target gene and the physiological conse-
quences of this effect. For example, in mice expressing the Mmp 1 transgene,
the founder lines with the earliest and highest gene expression show changes
in lung morphology by 5 d of age (90). However, other founder lines with
lower expression exhibit normal lung development and do not develop
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airspace enlargement until later, a time course that fits better with a model of
human emphysema. Similarly, mice with high levels of expression for a
transgene encoding TGF-α exhibit lung fibrosis with alveolar enlargement.
Mice with lower expression do not exhibit significant fibrosis and thereby
provide a phenotype that is closer to human emphysema (95). Thus, one can
take advantage of the dose-dependence of transgene expression to develop a
more suitable phenotype for modeling human disease.

3.4. Inducible and Conditional Expression Systems

Despite the utility of site-dependent expression in some transgenic mod-
els, it had remained difficult in other models to segregate transgene effects
on lung development from ones that occur in the adult animal. To solve this
problem, lung biologists have taken advantage of inducible promoter sys-
tems that can be activated at any time during or after development (96). For
example, the Clara cell 10-kDa protein (CC10) promoter can be used to drive
lung-specific expression of a reverse tetracycline transactivator (rtTA) (97).
In the absence of a tetracycline-type drug (e.g., doxycycline), rtTA cannot
bind to a tet-operator driving the target gene. However, when the animal is
treated with doxycycline, then rtTA activates transcription of the target gene.
If doxycycline treatment is provided in utero to adulthood, the phenotype
may mimic the one manifested using a nonconditional promoter system. For
example, continuous interleukin (IL)-11 expression causes alveolar enlarge-
ment and airway fibrosis (96,98). However, if doxycycline treatment is
stopped at birth, alveolar enlargement occurs without fibrosis, and if treat-
ment begins in adulthood, the lungs show fibrosis but no airspace enlarge-
ment. Thus, the inducible promoter system indicates that IL-11 production
may not be an appropriate mediator of emphysema in the adult. By contrast,
transgenic expression of IL-13 in the adult causes protease generation (e.g.,
MMP-9 and MMP-12) in concert with enlarged airspaces, mucous cell meta-
plasia, and airway inflammation (99). Induction of interferon (IFN)-γ in
adulthood causes a similar phenotype (100). By permitting normal lung
development, an inducible promoter system can be used to generate a model
of diseases that are acquired in the adult. These models demonstrate that
cytokine production is sufficient to develop the disease phenotype, but the
physiological relevance of high and continuous levels of these mediators
from an unusual cellular source (e.g., Clara cells) remains uncertain.

3.5. Knockout Mice

Mice with targeted null mutations have been used to determine whether
the expression of a specific target gene is necessary for the development of



experimental emphysema. Several of these mice exert their effects on devel-
opment rather than the adult lung. For example, a lack of alveolar develop-
ment leads to airspace enlargement in mice with null mutations of Pdgf-a,
fibulin-1, and fibroblast growth factor receptors 3 and 4 (101–103). Although
these models may represent the abnormal repair process that occurs in
emphysema, a more convincing model exhibits normal lungs that only
exhibit emphysema after chronic exposure to cigarette smoke. In this type of
model, it appears that MMP-12-null mice are protected from the usual devel-
opment of airspace enlargement (104). However, the relevance of this find-
ing for humans remains uncertain, especially because MMP-12 expression
may not change in the lungs of human subjects with emphysema (91–93).
More recently, investigators aiming to create a hypertension model by over-
expression of a sodium channel recognized that one line of these mice exhib-
ited progressive airway enlargement (105). The development of the
emphysema phenotype in this line was because of fortuitous disruption and
inactivation of the klotho gene, thereby implicating this gene as a previously
unsuspected candidate for emphysema. Crossing null-mutation mice with
transgenic mice can provide additional insights into emphysema pathogene-
sis. For example, IL-13 transgenic mice show less airspace enlargement after
they are crossed with MMP-9- or MMP-12-null mice (106). These types of
genetic models can better define the interaction between susceptibility genes
in vivo.

3.6. Genome-Wide Searches

Although genetically modified mice serve to test focused hypotheses, the
use of genome-wide scans can uncover new candidate genes for mediating the
emphysema phenotype. For example, a microarray-based screen provided ini-
tial evidence of increased levels of expression for the secreted frizzled-related
protein 1 (SFRP-1) in emphysema vs healthy control subjects (107,108).
Subsequently, it was found that SFRP-1 mRNA levels are increased in mouse
models of emphysema because of cigarette smoke or transgene expression,
and overexpression of SFRP-1 causes apoptosis in cultured lung epithelial
cells. Thus, studies of human subjects can lead to the development of better
murine models with a biologically relevant mechanism.

4. TUBERCULOSIS

Tuberculosis is caused by infection with pathogenic Mycobacterium and
affects one-third of the world population causing more than 2 million deaths
per year (109). Efforts at control are hampered by increasing multidrug
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resistance in certain populations (110). Worldwide, active tuberculosis is
fatal in 50% of patients (111). The predominant organism, Mycobacterium
tuberculosis is a Gram-positive bacterium with a peptidoglycan wall con-
taining complex lipidoglycans that help the microbe to resist desiccation
(112). The lung is the main entry point and the usual focus of disease.
Alveolar macrophages phagocytose inhaled bacteria and trigger a character-
istic inflammatory response. Mononuclear cells accumulate to form a granu-
loma, or tubercle, that has a central zone of infected macrophages
surrounded by giant cells, uninfected macrophages, and lymphocytes.
Infection with M. tuberculosis is latent and contained in the tubercle, so the
vast majority of infected individuals are asymptomatic and noninfectious
over the course of their lifetime. However, a weakened immune system (e.g.,
because of human immunodeficiency virus infection, glucocorticoid treat-
ment, or aging) renders the host more vulnerable to reactivation of tubercu-
losis from the latent state.

4.1. Bacillus Calmette-Guerin Vaccination

The bacillus Calmette-Guerin (BCG) is an attenuated strain of
Mycobacterium bovis that has been used as a tuberculosis vaccine for the
past century. It is the world’s most commonly used vaccine and may reduce
disease morbidity and mortality, but it has had less than ideal efficacy in
recent trials (113,114). The United States does not administer BCG because
it converts the tuberculin skin test to positive and so voids its use for detect-
ing recent infection. The basis for poor efficacy of BCG includes the following:

1. Immune responses to environmental mycobacteria prior to immunization.
2. Genetic variability in the human population.
3. Differences in strains, doses, and vaccination schedules.
4. Administration to previously infected individuals (114). 

Reemergence of tuberculosis as a health problem has mandated a more
thorough understanding of both the host and microbial genetics that underlie
the disease.

4.2. Microbial Genetics

Research on tuberculosis has been advanced by the availability of the genome
sequence for M. tuberculosis. This microbial genome contains 4000 genes
encoding proteins and 50 genes coding for stable RNA (115), and at least in prin-
ciple, this data contains the sequence of all possible targets for antimycobacterial
agents. Regions of particular interest include sequences for novel proteins,
such as the PE (glycine–alanine-rich) and PPE (glycine–asparagine-rich)



families (116). Genome sequence also allows for comparative analysis that can
identify virulence factors common to virulent strains or absent in nonvirulent
strains (117,118). This information may also aid in choosing the proper
microbe strain for use in animal models. Similarly, the recent definition of the
mouse genome and the availability for genetic modification in this species
should allow for the development of appropriate mouse models of tubercu-
losis. As developed in Subheadings 4.3. and 4.4., clearance of infection is a
dynamic and complex multigenic process.

4.3. Host Genetics

Immunity to mycobacterial infection has been studied in several animal
models, including mouse (119,120). The advantage of the mouse model
relies on differential susceptibilities to infection across homogenous inbred
strains. Most studies aim to test several parameters of susceptibility with var-
ious M. tuberculosis isolates, doses, and routes of infection. Initial studies
linked Bcg, a locus on murine chromosome 1, to resistance to infection with
BCG (121). Resistance to other intracellular parasites were also linked to
loci on chromosome 1. For example, the locus Lsh is linked to resistance to
Leishmania donovani, and Ity is linked to resistance to lethal Salmonella
typhimurium. Macrophages from susceptible mouse strains showed an
impaired ability to restrict the growth of intracellular mycobacteria in vivo
(122). In the Bcg locus, Nramp1 (natural resistance-associated macrophage
protein) was identified as the BCG-resistance gene. Nramp1 is also termed
Slc11a1 (solute carrier family 11a member 1). The Nramp1 gene consists of
15 exons that span 11.5 kb of genomic DNA and encode a 90-100 kDa inte-
gral membrane protein (123,124). Targeted disruption of Nramp1 eliminated
resistance to BCG, L. donovani, and S. typhimurium. This result established
that Bcg, Lsh, and Ity loci are linked to the same gene (125). Biochemical
studies showed that Nramp1 is localized to the late endosomal compartment
of resting macrophages and is recruited to phagosomes and lysosomes (126).
To combat bacterial infection, Nramp1 may either provide iron that becomes
multivalent in the presence of reactive oxygen and nitrogen radicals or it may
block the availability of iron or manganese required for bacterial enzymes.
The gene for Nramp1 maps to human chromosome 2q35, and polymor-
phisms found in human populations may explain variable susceptibility to
tuberculosis (127,128). For example, NRAMP1 polymorphisms in intron 4
and the 3′ -untranslated region is strongly linked to increased susceptibility
in a West African human cohort (129). Thus, the Nramp1 paradigm illus-
trates how studies can move from phenotype to genotype in mice and then
be extended to human subjects.
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Despite this information, subsequent studies of Nramp1 have provided
evidence that additional genes may also confer susceptibility to tuberculosis.
In particular, development and comparison of a strain of mice that was resist-
ant to BCG infection (i.e., Bcgr in a DBA/2 background) to one that was sus-
ceptible (i.e., Bcgs in a Balb/c background) provided the unexpected finding
that the BCG-resistant strain was more susceptible to infection with
M. tuberculosis (130). In addition to new questions over the role of Nramp1,
these results also raise significant concern over the use of BCG infection as a
model for virulent mycobacterial infection in humans.

Subsequent studies have used QTL analysis to identify additional genes
that might mediate susceptibility to tuberculosis in mice. For example, this
type of analysis was applied to the F2 intercross of mouse strains that were
susceptible (DBA/2) and resistant (C57BL/6) to infection with M. tuberculosis.
In this case, three loci (Trl 1, Trl 2, and Trl 3) account for half of the pheno-
typic variation in the F2 hybrid strain. Several candidate genes of immuno-
logical relevance are localized to Trl 1 and Trl 2, and these now need to be
analyzed for function (131). In another study of QTL analysis, F1 hybrid and
F2 intercross progeny from susceptible (C3HeB/Fe) and resistant C57BL/6
strains were used to identify the sst1 (susceptibility to tuberculosis 1) locus.
This linkage site is distinct from Nramp1, which is located at a distance of
10–19 cM, but candidate genes have not yet been identified (132).

4.4. Immune Response

Both the innate and adaptive immune responses mediate resistance to
M. tuberculosis. For instance, the innate immune system is responsible for
generating nitric oxide that is needed to kill the microbial organism, and
mice deficient for inducible nitric oxide synthase are more susceptible to
tuberculosis than their wild-type counterparts (133). An influence of adap-
tive immunity in host defense against tuberculosis comes from the finding
that mice with the H-2k major histocompatibility complex (MHC) haplotype
are protected against infection compared to ones with H-2b (134,135).
Similar to mice, human susceptibility to tuberculosis is also linked to MHC
haplotypes (HLA-DR2 and HLA-DQB1) (136,137).

The cascade of events required for a successful immune response likely
begins with the MHC-dependent presentation of antigen and generation of
CD4+ T-cells specific for M. tuberculosis antigen. The consequent activation
of Th1 cells leads to the production of IFN-γ, which in turn activates infected
macrophages and causes nitric oxide production and death of the pathogen. In
strains of mice (e.g., Balb/c) that tend toward a Th2 response, the administra-
tion of IL-12 can act to increase the Th1 response and improve clearance of



infection (138). The class of CD8+ T-cells may also contribute to host
defense in this setting, because β

2
-microglobulin-deficient mice that lack

functional MHC class I and CD8+ T-cells are also more susceptible to infec-
tion with M. tuberculosis (139). The murine system therefore offers an
opportunity to check the influence of each of these steps using selective defi-
ciencies and complementation of the immune response.

Despite their utility, mouse models of tuberculosis do offer some limita-
tions for application to human immune responses. For example, mice uni-
formly lack group 1 CD1 molecules that can present M. tuberculosis antigen
to T-cells (140). Thus, mouse models of tuberculosis require attention to
idiosyncrasies of this species compared to the human model. Nonetheless,
insight into pathogenesis and treatment of tuberculosis will likely be greatly
advanced with studies of mouse, human, and microbial genomes, as well as
modifications of these genomes and specific deficiencies of the host immune
system.

5. ASTHMA

Asthma is characterized by reversible obstruction, hyperreactivity, and
inflammation of the pulmonary airways. The corresponding histopathology
includes overproduction of mucus and hyperplasia of mucous cells, hyper-
plasia and hypertrophy of airway smooth muscle, and subepithelial fibrosis
(53). In addition, airways of asthmatic subjects exhibit chronic and acute-on-
chronic inflammation that involves immune cells (e.g., eosinophils, mast
cells, and lymphocytes) and parenchymal cells (e.g., bronchial epithelial
cells) (141). Individual asthmatic subjects vary considerably in the type,
severity, and frequency of symptoms, although correlations between pheno-
type and histopathology are still under study. The cause of this pathology
remains uncertain. Traditional proposals are based on excessive Th2 produc-
tion of cytokines (especially IL-4, IL-5, IL-9, and IL-13) that serve to drive
the asthma phenotype, but this simplistic proposal has been challenged by
several lines of evidence in experimental models and humans (142). In addi-
tion, although there is no question of a genetic influence on the development
of asthma, there is still no agreement on even a single candidate gene for
mediating susceptibility to the disease. Thus, experimental models of asthma
must address each of these uncertainties over pathogenesis of asthma, as well
as its increasing incidence, in the populations of Western countries (143). To
date, a variety of experimental animal models have been used for asthma
pathogenesis and treatment (144–146). The use of mouse models is tempered
by the fact that mouse airways have increased Clara cells (147), decreased
mast cells, distinct eosinophil behavior, as well as decreased airway
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branching and neurogenic control compared to the human models (148,149).
Nonetheless, as noted under Headings 2–4, the well-developed database for
murine immunology and the capacity for genetic modification of the mouse
genome offer significant advantages over other species.

5.1. Mouse Models of Asthma

The endogenous Th2 response is often driven by allergen, so models of
asthma most commonly use allergen challenge as a stimulus to induce the
asthma phenotype. In the usual mouse model of allergic asthma, intraperi-
toneal delivery of allergen is used for sensitization and intranasal delivery or
aerosolization is used for subsequent allergen challenge. Commonly used
antigens include ovalbumin, Schistosoma mansoni egg, and A. fumigatus
(150). After allergen challenge, mice develop airway inflammation, airway
hyperreactivity (AHR), and mucous cell (i.e., GCH) hyperplasia. The inflam-
matory response includes increased numbers of neutrophils, macrophages,
lymphocytes, and eosinophils (151), but the response is highly influenced by
the choice of mouse strain and protocols for sensitization and challenge.
Because short-term antigen challenge may not accurately reflect the chronic
antigen exposure in humans, new models of chronic antigen challenge have
also been developed. These models subject mice to allergen challenge with
ovalbumin three times per week for 2 mo (152). In contrast to models with
short-term challenge, chronic delivery may also cause epithelial thickening
and subepithelial fibrosis similar to the case in asthmatic subjects (152).
Chronic allergen challenge can also eventually suppress some features of the
acute allergic response (e.g., increased serum levels of IgE and airway
eosinophilia). The effect of chronic challenge on airway reactivity is still
uncertain and may be influenced by the dose of allergen (153). In addition,
chronic allergen challenge may elicit AHR and GCH in some strains (e.g.,
BALB/c) but not others (e.g., C57BL/6 mice) (154).

An additional development in acute allergen challenge models involves
the role of the Th1 response. Traditional Th2-based proposals for asthma
pathogenesis implied that Th1 responses were decreased in this setting and
in asthma. This view was supported by evidence that Th1 cytokines, such as
IFN-γ and IL-12, may downregulate the allergic response (155). Similarly,
infection with murine cytomegalovirus (which typically increases Th1 over
Th2 responses) also decreases allergen-induced AHR and tissue eosinophilia
(156). However, additional work in the mouse system indicates that this view
of the Th1 response may also be too simplistic. For example, adoptive trans-
fer of Th1 cells in ovalbumin-sensitized mice causes an increase rather than
the expected decrease in airway inflammation (157). These findings have led



to a revision of the Th2 hypothesis to better account for a contribution of Th1
cells (142,158,159). It appears that Th1 cells are more capable of traffic to
the airways and so are required to assist Th2 cell recruitment in response to
allergen challenge (160,161). A similar mechanism may underlie the capac-
ity of viral infection, which normally triggers a Th1 response, to nonspecifi-
cally set the allergic response into motion (162).

In addition to allergen, an infection with certain types of respiratory
viruses can also trigger acute exacerbations of asthma, and respiratory infec-
tions in childhood can predispose individuals to developing the disease. In
particular, paramyxoviruses, such as respiratory syncytial virus (RSV), are
the predominant cause of serious respiratory illness in infants; infants hospi-
talized for RSV bronchiolitis later develop asthma at 10 times the rate of
control infants (163). In view of these findings, mouse models of asthma are
being developed that rely on respiratory infection as a stimulus. For exam-
ple, some studies indicate that BALB/c mice infected with RSV may acutely
develop airway eosinophilia and hyperreactivity, and infection with RSV
may increase the effect of allergen on these asthma traits (164). However,
this type of viral model causes only transient changes in airway behavior.
The subsequent development of a model that relies on Sendai virus infection
of C57BL/6 mice resembles human asthma because the mice exhibit a per-
manent switch to a complex asthma phenotype that includes AHR and GCH
(165). Moreover, these chronic asthma traits are closely associated in a sin-
gle susceptible genotype, so the model provides a basis for next segregating
these traits using mouse strains that are susceptible rather than resistant to
these chronic virus-inducible events (Fig. 1).

5.2. Measurement of Asthma Traits: Airway Reactivity

Assessment of airway reactivity requires monitoring airway caliber
before and after delivery of nonspecific stimuli (e.g., acetylcholine or
methacholine) that cause airway smooth muscle constriction. Measurements
of airway function in mice are limited by the small size of the animal, and
in some cases, the need for large numbers of assessments that must be deter-
mined in a chronic setting. Earlier work sometimes relied on measurement
of pulmonary resistance done ex vivo using excised lungs or determinations
of airway smooth muscle behavior performed in vitro using tracheal rings
(166,167). To preserve the critical controls over airway behavior that are
established in vivo, additional techniques were developed and later modi-
fied to measure pulmonary resistance in anesthetized and ventilated mice
(168). In an alternative method, the tracheal airway is occluded at the end
of inspiration, and the immediate decrease in pressure is a measure of
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airway resistance. In another variation, peak inspiratory pressures are deter-
mined over time, and the area under the pressure-time curve is expressed as
an airway pressure time index (APTI) that can correlate with airway resist-
ance (169). Each of these methods requires the use of general anesthesia
that can alter airway behavior and surgery that does not permit a chronic
preparation to obtain repeated experiments in the same animal. However,
this problem has been overcome by the use of other noninvasive means of
assessing airway caliber. In particular, barometric plethysmography allows
for measurements in unanesthetized animals that provide indirect assess-
ments of airway caliber. A commonly used method is based on a breath-by-
breath calculation of enhanced pause (Penh) that appears to correlate with

Fig. 1. Time course of quantitative events that occur during the development of
the asthma phenotype induced by experimental viral infection in a susceptible strain
of mice. Events begin with viral replication (that peaks at 3–5 d after inoculation)
that is later cleared from the lung (by 2 wk after inoculation). This initial infection is
followed by induction of epithelial immune-response gene expression (that peaks at
5 d after inoculation) and is followed by immune cell infiltration (that peaks at vari-
ous times depending on cell type, e.g., at 8–12 d for lymphocytes). Each of these
events is linked to the subsequent development of acute airway hyperreactivity that
depends on ICAM-1 gene expression and peaks on approx 21 d after inoculation.
After this time, there is progressive and chronic goblet cell hyperplasia and hyperre-
activity that persist for at least 1 yr after infection. Within a single susceptible geno-
type, these two chronic asthma phenotypes can be difficult to segregate based solely
on time course, so other approaches (e.g., definition of mouse strains with distinct
genetic susceptibilities) are needed. ICAM-1, intercellular adhesion molecule-1.
(Modified with permission from ref. 142.)



measurements of pulmonary resistance after methacholine challenge (170).
However, Penh can be influenced by factors other than airway resistance,
such as breathing pattern and nasal resistance (168).

5.3. Genetic Determinants of Airway Reactivity

Inbred mouse strains have been used to define genetic differences in base-
line airway reactivity to acetylcholine or serotonin, as well as increases in
reactivity (AHR), after exposure to ozone or diesel exhaust particles
(171–175). In an initial study to identify genetic determinants of airway reac-
tivity in mice, hyperreactive A/J mice were crossed with hyporeactive
C3H/HeJ mice to generate F1 offspring, and these were then used to create
an F2 intercross (F1 × F1) generation (169). A 1:3 ratio of normal to hyper-
reactive mice in the F2 generation suggested that reactivity may depend on a
single recessive locus, but no quantitative analysis was done to better define
this possibility. A similar strategy was applied to platelet-activating factor
induced AHR (176), as well as baseline breathing patterns (177). In the allergen-
challenge model, asthma traits (e.g., AHR, eosinophilia, and increased serum
immunoglobulin-E [IgE]). are also strain-dependent and can be segregated
using congenic mouse strains (178,179). Congenic mice that differ in a sin-
gle genomic region can simplify and extend comparisons of inbred mouse
strains by linking one allergen-induced trait (e.g., AHR), but not others (e.g.,
tissue eosinophilia and increased serum IgE), to a limited region of the
genome (180,181). To date, linkage data for AHR has been variable among
different studies of inbred strains, likely caused at least in part by differences
in experimental methods for phenotype assessment (169,171,172,175).

5.4. QTL Analysis of AHR

QTL analysis requires that phenotype be quantified and be variable in
magnitude over a continuous distribution (182). Thus, in a typical QTL
analysis, high- and low-responder strains are crossed, and this F1 hybrid
generation is either backcrossed to a parental strain or intercrossed to cre-
ate a population with a wide distribution of the quantitative phenotype. A
large number of progeny are needed to allow for frequent enough genetic
recombination events to permit informative genotyping. Progeny are
genotyped using simple sequence length polymorphisms or single
nucleotide polymorphisms (SNPs) that span the mouse genome and then
target regions of interest with more closely spaced genomic markers
(183,184). Genotype–phenotype linkages are determined by calculating
the probability that the data occurs by linkage rather than chance and are
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expressed as the negative log of the odds ratio or logarithm of the odds
(lod) score. QTL analysis procedures include interval mapping, regression
mapping, and marker regression (185,186). Additional methods find minor
QTL linkages that are overshadowed by the major QTL. For example, per-
mutation-based methods empirically estimate the threshold value for signifi-
cance (187,188). Computer programs for QTL analysis include QTL Café
and QTL/MAPMAKER (189,190). A lod score of 3 or greater indicates sta-
tistically significant linkage of the genotype with the phenotype, and a score
of 2–3 is suggestive of linkage but not significant. A locus is also evaluated
by its contribution to variance. For an F1 backcross to a parent strain, the
effect of the locus on phenotypic variation equals half of the difference in
phenotype between mice heterozygous for the locus (resembling F1 at that
locus) and mice homozygous for that locus (resembling the parent at that
locus). For loci with no effect on phenotype, the average heterozygous
mouse has the same phenotype as a homozygous mouse. Assuming inde-
pendent segregation, the effect of other loci will cancel out. For an F2 inter-
cross, each locus has two effects on phenotypic variation—an additive effect
and dominance deviation. The additive effect is half of the phenotypic dif-
ference between mice homozygous for one parental allele and mice
homozygous for the other allele. The dominance deviation is the difference
between the phenotype of heterozygous mice and the calculated average of
the parental phenotypes. In essence, heterozygous mice will be skewed
toward the phenotype of the parent with the dominant allele.

5.5. QTL Analysis of AHR in Naïve Mice

Perhaps the simplest approach to defining genetic determinants of air-
way reactivity is represented by QTL analysis of baseline reactivity in
inbred mouse strains that have not been experimentally altered by allergen
or toxin exposure. In studies by De Sanctis et al., airway reactivity was
quantified by determining the dose of methacholine that was required to
double the baseline level of pulmonary resistance in hyperreactive A/J and
hyporeactive C57BL/6 strains of mice (191–193). The F1 cross from these
strains was hyperreactive, but the F2 intercross and C57BL/6 backcross
generations had a normal distribution that was suitable for analysis of a
multigenic trait. Phenotypic extremes in the backcross progeny were geno-
typed with markers spaced 9 cM apart, and three genomic regions of inter-
est were examined in all backcross mice with markers at 1 cM apart (Table 2).
Two loci, Bhr1 and Bhr2, were identified by linkage to AHR, and a third
locus Bhr3 was suggestive of linkage and exhibited epistasis (genetic inter-
action) with the other two loci that might lower its independent lod score.
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Table 2
Identification of QTLs Linked to Airway Reactivity in Mice

Mouse strain Parameter Locus Chr Functional associations Reference

Baseline studies of naïve mice
A/J × TPP Bhr1 2 IL-1β 191
C57BL/6

Bhr2 15 IL-2R, IL-3R, PDGF-R
Bhr3a 17 TNFα, mast cell

proteases

A/J × APTI/EIO QTLa 6 IL-5R 194
C3H/HeJ

A/J × TPP QTLa 6 195
C3H/HeJ

QTLb 7 Kallikrein
QTLa 17

DBA/2 × Penh Tapr 11 Human 5q23–35 198
Balb/c

DBA/2J × APTI QTLb 13 Human 5q31–33 207
C57BL/6

Allergen challenge studies of sensitized mice
BP2 × Penh QTLb 10 IFNγ, Human 12q21.1– 189
Balb/c 12q24.22

QTLb 11 Eotaxin, iNOS,
Human 17q12–22

QTLa 9
QTLa 17

A/J × APTI Abhr1 2 Human 10p11-13, 2q12– 180
C3H/HeJ 14, 9q22–34

Abhr2 2 Human 9q33–34,
2q14–24

QTLa 7 Human 19q13

APTI, airway pressure time index; EIO, end-inspiratory occlusion; Penh, enhanced pause;
TPP, transpulmonary pressure; IL-2R, Interleukin-2 receptor; PDGF-R, platelet-derived
growth factor receptor, iNOS, inducible nitric oxide synthase; QTL, quantitative trait loci.

aQTL with possible but not significant linkage (lod score < 3).
bQTL with significant linkage (lod score > 2.95, p < 0.05).
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A similar strategy was also used to analyze AHR in hyperreactive A/J and
hyporeactive C3H/HeJ strains of mice. In this case, AHR was assessed by
acetylcholine responsiveness and measurements of APTI and total respiratory
resistance (Rrs) (194). For the F1, F2, and F1 backcross mice, the distribution of
APTI differed from the one for Rrs, perhaps because APTI reflects the behavior
of small airways, whereas Rrs reflects function in larger conducting airways.
Which of these parameters correlates best with the site of airway obstruction in
humans with asthma is also uncertain. The APTI data fit with a model that calls
for a major locus that is modified by a multigenic component, whereas the Rrs
data does not fit with any model of genetic inheritance. Analysis of the F1 back-
cross to A/J indicated that APTI and Rrs have a common QTL on chromosome
6, but there was no linkage between AHR and murine homologs of human
genes previously linked to asthma (e.g., on human 5q31–q33). A large region of
chromosome 6 lacks crossover events, perhaps because of chromosomal inver-
sions, and makes it difficult to perform higher resolution mapping of this region.

In a subsequent study of the same strains (i.e., A/J and C3H/HeJ), metha-
choline-induced AHR was quantified by changes in lung resistance (RL), and
male A/J × female C3H/HeJ F1 generation was significantly different from
male C3H/HeJ × female A/J F1 mice (195). This gender-dependence of AHR
occurred in several studies and underscores the complexity of asthma-like traits.
The QTL analysis of the F1 backcross to the C3H/HeJ parental strain indicated
linkage of AHR to loci on chromosomes 6, 7, and 17. The locus on chromo-
some 6 was the same as the one identified in earlier studies (194).

5.6. QTL Analysis in the Allergen Model

QTL analysis was first applied to the allergen challenge model in A/J ×
C3H/HeJ F1 mice that were backcrossed to the A/J parental strain. Mice
were phenotyped for AHR using APTI, and the allergic response was moni-
tored by levels of Bronchoalveolar lavage fluid eosinophils and serum IgE
(180). For AHR, two significant QTLs (Abhr1 and Abhr2) and one possible
QTL were found that appear distinct from ones found in naïve mice from the
same A/J0 × C3H/HeJ cross (194,196). This result suggests that different
mechanisms determine AHR in naïve mice and in mice with allergen chal-
lenge. To achieve greater genetic diversity, others have intercrossed five
strains with a high antibody response to ovalbumin, and high-responders
were further bred to increase the antibody response (197). Subsequently,
Zhang et al. studied one of these strains (BP2) with allergen-induced AHR
and eosinophilia (189). In the F2 mice derived from BP2 × Balb/c, AHR and
eosinophilia segregated separately, and genotyping with 180 microsatellite
markers indicated that AHR was linked to at least two significant loci. In this



case (and other complex traits), not every allele from the high-responder
strain will increase the strength of the phenotype. For example, when one
locus was examined in isolation, the allele from the high responder BP2
strain decreased AHR. The locus on chromosome 17 had no additive effect,
so mice homozygous for the Bp2 allele showed the same phenotype as the
Balb/c allele. However, the locus on chromosome 17 has a large dominance
deviance. The heterozygotes have AHR values closer to the low responder
strain (Balb/c). These data suggest that chromosome 17 may contain two
closely spaced loci. For both parental strains, these two loci oppose each
other’s effect on AHR, so their net additive effect is zero. However, both
these loci have a dominance deviation that results in decreased AHR. For
example, the locus that reduces AHR is dominant for both parental strains.

Congenic strains are useful to limit the QTL analysis to a small genomic
region and to isolate one locus from the epistatic effects of other loci. For
example, McIntire et al. backcrossed hyporeactive DBA/2 mice to hyperreac-
tive Balb/c for multiple generations so that, except for a small region of
DBA/2, the progeny were genetically identical to Balb/c (198). Following
immunization, these congenic strains were screened for decreased IL-4 levels,
and one strain (HBA) exhibited decreased AHR and lower levels of Th2
cytokines. A genome-wide scan indicated that HBA had a segment of chro-
mosome 11 from DBA/2. This recessive locus was designated Tapr (T-cell
and airway phenotype regulator) and was used to define linkage to Tim genes.

5.7. Identifying Candidate Genes

After linkage is established for a genetic locus, candidate genes for AHR
must be identified. Positional cloning often requires linkage to a region of
approx 1 cM (equivalent to 1000 kb or 300 meiotic events) (199). Linked
markers can be used to screen a library of large genomic inserts (e.g., those
contained on YACs). The ends of the first positive clones are used as probes
for the second round of screening, so that by walking down the chromosome,
one creates a physical map of the genetic region of interest. A multigenic trait
makes positional cloning difficult because any one gene may exert a small
effect on the overall phenotype.

An alternative approach uses radiation hybrid (RH) maps to locate a QTL
in the genome. In this case, a murine RH map uses a panel of cell lines that
have random fragments of mouse (donor) genome fused to hamster (recipi-
ent) genome. The random fragments are generated by irradiation of genomic
DNA instead of relying on crossover events. Cell lines are genotyped to estab-
lish physical relationships between DNA markers and genomic fragments
(200). The RH map and the physical map of the mouse genome were used to
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identify candidate genes in the Tapr QTL (201). A cluster of expressed
sequence tags exhibited polymorphisms in the parent strains, and in the F1
backcross, the (T-cell, immunoglobulin domain, mucin domain) Tim1 and
Tim3 polymorphisms co-segregated with the QTL Tapr. Further work will be
needed to determine the function of Tim genes and to follow-up on the rele-
vance of Tim homology with human hHAVcr1 (Hepatitis A virus receptor).

In addition to positional cloning approaches, some have selected a candi-
date gene based on physiological or biological rationales and then sought evi-
dence of localization to established QTLs. For example, the QTL Abhr1
contained the C5 gene and so suggested that the complement factor 5 receptor
(C5r1) gene may be a candidate. In fact, C5r1 genomic sequence contains sev-
eral polymorphisms between hyperreactive A/J and hyporeactive C3H/HeJ
strains (202). The F1 × A/J backcross mice were genotyped, and C5r1 was
localized to a QTL that was previously linked to AHR on chromosome 7 (180).

A useful strategy to limit the number of candidate genes in a QTL is based
on the corresponding levels of gene expression. Levels of gene expression
can be quantified by mRNA levels from oligonucleotide microarray or multi-
plex kinetic polymerase chain reaction (PCR) assays (203). For example, A/J ×
C3H/HeJ mice were used to identify a QTL linked to allergen-induced AHR,
and following this microarrays were applied to the F1 backcross to A/J mice
to identify genes with the QTL that exhibited altered expression between high
and low responders (204). The C5 gene was the only candidate that was both
localized to a QTL and differentially expressed in microarrays comparing
high to low responders to allergen. Subsequent PCR analysis indicated that
expression levels of C5 were correlated with genotype and were inversely
correlated with phenotype (AHR). In hyperreactive A/J mice, a deletion in C5
caused a deficiency in C5 protein, and 2/3 of the high-responder mice were
homozygous for the A/J allele. This significant but incomplete correlation
reflects the multigenic nature of AHR. Nonetheless, the results suggested that
C5 deficiency causes an imbalance of Th2 over Th1 responses in this system,
although the functional pathway for this possibility still needs to be defined.
In using expression levels to screen for candidates, it is critical to recognize
that altered expression may be directly responsible for genetic susceptibility
or may simply reflect a genetic abnormality that is upstream of gene expres-
sion. Nonetheless, expression screening compensates for two drawbacks of
QTL analysis—the inability to identify specific genes and changes in gene
function. Thus, combining expression screening with the QTL analysis
provides for a more informative genetic approach.

Studies of AHR-linked candidate genes should be considered incomplete
without studies of function, and this deficiency has been illustrated in several



instances. For example, IL-9 affects mast cells and IgE release and has been
linked to asthma in humans (205,206). In addition, Nicolaides et al. identi-
fied IL-9 as a candidate gene using a model of atracurium-induced AHR
(207). Lung levels of IL-9 were increased in hyperreactive DBA/2J com-
pared to hyporeactive C57BL/6J mice and were found at an intermediate
level in F1 mice with intermediate levels of AHR. However, IL-9-null mice
exhibit no change in allergen-induced increases in airway reactivity (208).
Taken together, the results suggest that IL-9 expression may be associated
with AHR but may not be necessary in the pathway that leads to AHR.

5.8. High-Throughput QTL Analysis

New approaches to increase the efficiency of linkage analysis have been
developed and can be applied to asthma traits. For example, genotyping with
SNPs may be faster than using simple-sequence length polymorphisms or
microsatellite markers, and SNPs are just as informative in crosses aimed to
differentiate two alleles. To achieve finer mapping, new SNPs are being
developed at a high rate based on massive sequencing efforts, and DNA
microarrays with possible polymorphisms allow for large-scale screening of
candidate SNPs (209). For genotyping in QTL analysis, traditional methods
include gel-based restriction fragment length polymorphism and allele-
specific oligonucleotide hybridization (210). More recently, microarrays and
kinetic PCR, with primers specific for each SNP allele, have been used to
increase efficiency by multiplexing many reactions in parallel (204,209).
Single-base extension (SBE) forms the basis for other high-throughput meth-
ods. In SBE, a primer at the SNP incorporates a single fluorescently labeled
dideoxynucleotide that is complementary to the polymorphic nucleotide.
Several methods use microarrays or labeled microspheres to perform
multiple SBE reactions in parallel (211–214).

Additional methodologies have been developed to help decrease the
investment in animals and time that is needed to generate intercrosses for
QTL analysis. A computer database with genotypes for 15 inbred mouse
strains at more than 500 SNPs has been developed and may be useful for
mapping some traits to specific genomic regions (215). In this approach,
phenotypes of inbred strains are quantified, and following this, they are used
in pairwise comparisons of phenotype and genotype. Linear regression tests
the correlation of a phenotype with genotype across all the strains. This
method was used to correctly identify the loci linked to AHR in two previous
studies that used QTL analysis (180,189). At its current average resolution of
38 cM, in silico mapping cannot replace intercrosses and QTL analysis, but
the panel of inbred strains can significantly accelerate the investigation.

126 Holtzman et al.



Genetic and Genomic Approaches to Complex Lung Diseases 127

In addition, it appears that SNPs tend to cosegregate based on a limited num-
ber of haplotypes in humans (216). If a similar pattern is found in mice, it
may be possible to generate highly informative maps with a smaller but well-
positioned number of SNPs in interstrain comparisons.

5.9. Interspecies Methods

Comparisons between species may use conserved genomic elements to
identify regulatory elements. In a study of human, dog, and murine genomes,
two-thirds of regulatory elements were conserved across species (217).
Human chromosome 5q31 contains genes for several Th2 cytokines (IL-4,
IL-5, and IL-13) and has been linked to asthma, so Loots et al. searched for
sequences that were conserved between human 5q31 and the murine ortholog
on chromosome 11 (218). A conserved noncoding sequence (CNS-1) located
between the IL-4 and IL-13 genes was identified as a candidate regulatory
element. This possibility was developed in transgenic mice that were made
to express a large (450 kb) segment of human 5q31 using a YAC clone. The
Th2 cells from these transgenic mice produced human IL-4 and IL-13, and
this capacity was lost in transgenic mice with a CNS-1 deletion, suggesting
that CNS-1 is a necessary regulatory element for Th2 cytokine production. A
panel of YAC transgenic mice containing human 5q31 was screened for ele-
vated serum IgE after allergen challenge (219,220), suggesting that YAC
transgenic mice can be a general tool to screen human genomic loci for
mediating asthma-like traits. In a simpler interspecies comparison, a specific
human gene sequence can be used to search for a mouse homolog, and this
approach was used to identify the murine Muc5b gene that encodes for a
mucus glycoprotein that is inducible by allergen challenge (221).

5.10. Functional Assessments Using Transgenic Mice

The final step in assessments of genetic elements is one of the most difficult,
i.e., assessment of function in vivo. Frequently, validation is approached by
genetic modification of the mouse genome and subsequent assessment of phe-
notype. In the asthma model, this approach has offered significant insight but
has also been marked by inherent contradictions. For example, IL-9 transgenic
mouse exhibited increases in baseline airway reactivity, suggesting that IL-9 is
a candidate gene for mediating AHR. However, IL-9-deficient mice exhibit the
usual increase in reactivity after allergen challenge (208,222). As noted in
Subheading 3.4., it is difficult to ascertain the physiological significance of
transgenic expression using gene promoter elements that may not reflect the
nature of endogenous gene expression. Nonetheless, a variety of transgenic
and targeted mice have been generated, focusing mostly on the candidates that



control the Th2 pathway, and these provide significant insight into gene func-
tion in the allergic asthma model (as summarized in Table 3). A particular chal-
lenge of future studies will be to segregate complex asthma traits (e.g., AHR,
GCH, and subepithelial fibrosis) in order to define individual genetic controls.

6. SUMMARY

The genetic basis for common lung diseases has been difficult to deter-
mine in studies of human subjects, at least in part because of the complexity
of disease phenotypes and the phenotypic overlap among common diseases.
In that context, investigators have turned to mouse models of lung disease to
more precisely define a disease trait and to take advantage of homogenous
inbred strains that might allow for segregating complex traits and for defin-
ing the genetic basis of individual traits. The field is continuing to develop
high-fidelity mouse models of disease and beginning to subject these model
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Table 3
Phenotypes of Genetic Modification in Mouse Models of Asthma

Target AHR GCH EOS IgE References

IFN-γ NN I I I 165,225–227
IL-4 C C C C 228–231
IL-5 NN C C C 230,232–234
IL-6 I ND I ND 235,236
IL-8 C ND NN I 237
IL-9 NC NC NC NC 208,222
IL-10 C NN C I 238
IL-11 C ND ND ND 98
IL-12 I ND I ND 239
IL-13 NC NC ND NN 240,241
IL-18 I I I ND 242
GATA-3 C C C C 243,244
Tbet I ND ND ND 245
STAT-6 C C C C 246,247
IgE NN ND NN N 248
ICAM-1 C NN C I 249
C3a C ND NN ND 250
CD40/CD40L NN ND NN C 230
B-cell C NN NN N 170,251,252
Mast cell NN ND NN NN 253

AHR, airway hyperreactivity; EOS, eosinophils; GCH, goblet cell hyperplasia; IgE, serum
immunoglobulin E; C, contributes; I, inhibits; NC, not certain; ND, not determined; NN, not
necessary; IL, interleukin; IFN, interferon; ICAM, intercellular adhesion molecule.
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systems to linkage (QTL) analysis and genetic modification. These
approaches are evolving to take better advantage of the sequence for the
human and mouse genomes, as well as the capacity for whole-genome scan-
ning, using informative markers (especially SNPs), improved techniques for
analyzing gene expression (especially oligonucleotide microarray), and new
methods for conditional and more specific gene expression and targeting. By
integrating results from these different methodologies, it is now possible to
devise a rationale scheme for progressing from the identification of a human
disease trait through analysis in a mouse genetic model of this trait and then
return to verification of the findings in a human subject (Fig. 2). This

Fig. 2. Schematic approach to defining the genetic basis of complex lung dis-
eases. This scheme begins with (1) characterizing disease traits in human subjects
(uppermost box) and proceeds clockwise through; (2) developing a mouse model
that exhibits the same disease trait; (3) defining parental strains that do or do not
exhibit the trait but are otherwise well-matched for other traits; (4) generating
genetic hybrid strains that exhibit a broad distribution of the same phenotypic trait,
e.g., an F2 intercross; (5) performing a whole-genome scan, e.g., using allele-
specific single nucleotide polymorphism markers, on phenotypic extremes to iden-
tify loci that are linked to the trait; (6) identifying specific candidate genes at the
locus either by finer mapping and sequencing or screening for altered gene expres-
sion by oligonucleotide microarray; (7) defining the function of the new candidate
gene using a mouse model that exhibits expression of the corresponding trait in vivo
and if possible in vitro to better establish molecular mechanism; and (8) returning to
human subjects to check for altered expression and/or function of the candidate gene
to the extent that is possible in research on humans, especially in relationship to the
trait under study (1).



integration is critical to bridge the gap between genetic mapping and biolog-
ical function. Further progress will depend on the development of additional
mouse models that accurately reflect human disease phenotypes and the
coordinated assessment of mouse and human genetic and biological data.
Significant progress has already been made in defining the genetic basis for
lung diseases, such as CF, but new genetic and genomic methods are likely
to next be successful in defining more complex lung diseases, such as asthma
and emphysema. These studies should aim to define diseases in molecular,
as well as clinical terms, and so provide more specific targets for diagnosis
and treatment of lung diseases.
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7
Murine Models of Osteoporosis

Robert F. Klein

1. INTRODUCTION

Osteoporosis is a disease characterized by an inadequate amount and/or
faulty structure of bone, which increases the susceptibility to fracture with
minimal trauma. Osteoporotic fractures are most commonly observed among
the elderly. Yet, the pathogenesis of osteoporosis starts early in life, leading
some researchers to view osteoporosis as a pediatric disease (1). Considerable
past research has centered on the influence of reproductive, nutritional, and/or
life-style factors on the development of osteoporosis. With the advent of new
molecular genetic approaches, the focus of research has recently shifted
toward genetic factors. Genetic epidemiological studies provide convincing
descriptive data including population and ethnic differences, studies of famil-
ial aggregation, familial transmission patterns, and comparisons of twin con-
cordance rates that tell a significant part of how the vulnerability to developing
osteoporosis is inherited (2,3). Almost certainly, the development of osteo-
porosis will be found to involve a complex interplay between both genetic and
environmental factors that are difficult to control in complex populations.

Susceptibility to osteoporosis appears to involve the interaction of multi-
ple environmental and genetic factors (4). It has been argued that fracture is
the most relevant trait for a genetic analysis of osteoporosis (5). However,
any fracture event is the result of a number of elements including the amount
and quality of bone, as well as nonskeletal factors, such as muscle mass and
neurological coordination (6–8). Consequently, most investigators have
adopted alternative strategies employing surrogate phenotypes for genetic
studies of osteoporosis. Studies that resolve the global phenotype of fragility
fracture into relevant intermediate traits, such as density and geometry, are
likely to yield more mechanistic insights not only into the regulation of
skeletal strength but also into the overall processes of skeletal development.
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The load-bearing capacity of a skeletal element is determined by both its
intrinsic material properties (density) and the total amount (size) and spatial
distribution (shape) of the bone tissue. Low bone mineral density (BMD),
independent of other factors, such as falls and aging, is the strongest known
determinant of osteoporotic fracture risk (6,7,9). However, osteoporotic frac-
tures are also more likely in subjects with smaller bone size (10–12). Studies
of stress fractures in young, healthy adults indicate that diaphyseal dimen-
sions (even after correction for body weight) are significantly smaller in frac-
ture cases (13–15). Bone morphology is strongly driven by gender, physical
activity, and dietary and genetic factors (16,17). Skeletal structural pheno-
types behave as quantitative (polygenic) traits with continuous variation. The
continuous variation is the consequence of the additive effects of genes (alle-
les) at multiple genetic loci that influence skeletal development. Discrete
skeletal phenotypes are not generally discernible by studying the frequency
distributions. Polygenic inheritance for skeletal traits makes sense, because
bone development is known to be influenced by multiple biochemical,
mechanical, and physiological systems, each of which may have its own ge-
netic inputs. The challenge is to characterize these multiple genetic inputs (5).
Quantitative traits pose new problems for gene cloning experiments. The
deoxyribonucleic acid (DNA) sequence variants that are responsible for
them are unlikely to be immediately recognizable. In contrast to many quali-
tative traits, in which a discrete phenotypic difference is often the conse-
quence of an inactivating mutation, the allelic variation responsible for
quantitative traits probably has a subtler basis.

There are two general approaches to the genetic basis of individuality in
complex traits: candidate gene analysis and quantitative trait locus (QTL)
analysis. Candidate gene analysis seeks to test the association between a par-
ticular genetic variant (i.e., allele) and a specific trait. If the variant is more
frequent in subjects with the trait than those without it, one can infer that
either there is a causal relationship between the genetic variant and the trait
or the variant is in linkage disequilibrium with a responsible gene residing
near the locus in question. Although a straightforward enterprise, osteoporo-
sis researchers employing candidate gene analysis face a dilemma. Given
the complexity of skeletal physiology, there are likely to be an incredibly
large number of candidate genes responsible for the acquisition and mainte-
nance of bone mass. Analysis of each one of these candidates, in isolation of
the others, is likely to be prohibitive and difficult to interpret statistically and
biologically (18,19). In contrast, QTL analysis involves a true search for
genes at different chromosomal locations without any assumptions about the
candidacy of particular genes or genomic regions. A QTL is defined as a site
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on a chromosome whose alleles influence a quantitative trait. The overall
genetic control of a quantitative trait generally results from the collective
influence of many genes, each of which may contribute only a small amount
to the genotypic variance, making their identification difficult. This previ-
ously daunting task has been made feasible through the implementation of
technologies to identify genetic variation (polymorphisms) at landmark spots
along the human genome (marker loci) and the development of statistical
methods to detect and genetically map the chromosomal locations of QTLs
(18,20–24). QTL analyses typically involve gathering a large number of
related subjects thought to be segregating for genes that influence a given
trait and then following the transmission of allelic variants of marker loci
from one relative to another. If polymorphisms at a particular marker locus
segregate with genes apparently influencing the presence of the trait in ques-
tion, then one can infer that a gene actually influencing the trait resides near,
or is linked to, the marker locus. QTL mapping can be a powerful strategy
for the study of inherited diseases in humans: genes are localized by linkage
analysis and then cloned based on chromosomal position (25). The approach
has proved successful for a variety of human diseases having simple
Mendelian inheritance (26,27). However, the approach is more problematic
for human diseases with complex inheritance patterns (28). Most human
QTL analyses have, thus far, failed to detect genes with small to moderate
effects and rarely, if ever, are designed to simultaneously assess multiple
gene and environmental effects (29–32). Moreover, analyses designed to
refine the chromosomal position of QTLs may require finding a large num-
ber of families each with individuals possessing the disease of interest. This
is likely to be extremely costly and may also create other problems. Families
with different environmental exposures and genetic and ethnic backgrounds
may enter into the sample, creating heterogeneity and thereby increasing the
amount of noise obscuring the signal of a given QTL effect (33).

To overcome problems plaguing genome-wide searches for complex dis-
ease, it is necessary to reduce the impact of other factors surrounding the
effect of individual genes. Workers investigating determinants of bone mass
in humans have limited ability to intervene in the genetics, personal environ-
ment, or skeletal biology of their subjects. In a complex disorder, such as
osteoporosis, experimental approaches that can either manipulate or hold
constant biological variables that determine BMD provide a crucial opportu-
nity to systematically examine the pathophysiological processes that con-
tribute to osteoporosis vulnerability. Animal research can help to elucidate
possible roles of genetic and environmental constituents in the regulation of
bone mass that might be otherwise difficult to untangle. Although the genetic



basis for some extreme phenotypes might be because of the deletion of
a gene or to an inactivating mutation, it is much more likely that extremes
of BMD are caused by subtle changes in gene expression, perhaps develop-
mental genes early in life or possibly arising from allelic differences in
untranslated regions of the genome that contain sequences controlling gene
expression. Consequently, it will be very hard to devise a way of proving that
a candidate gene really does underlie the phenotype. There may be no dis-
cernible sequence or expression difference to identify the gene, and even if
there is, its presence does not prove etiological significance. Although asso-
ciation studies can go some way to implicating a particular genetic locus,
they can never be proof of a causal relation. For this, a functional assay is
needed: a way to alter the genetic sequence and see whether this modifica-
tion results in a different phenotype. Such experiments are possible only in
animals and may be the sole way to understand how genetic differences
result in individual variation in bone mass (34). This chapter deals with pre-
clinical research and entirely with genetic animal models. The intent is to
indicate strategies that have been productive in recent years, and highlight
future applications in the area.

2. GENETIC ANIMAL MODELS OF OSTEOPOROSIS

Animal models are clearly limited in their ability to precisely mimic all
aspects of the human condition. However, such studies do provide the exper-
imental control of genetic and physiological manipulations essential to thor-
oughly explore the mechanisms that contribute to vulnerability. Animal
studies can thus serve to define the limits of possible genetic contributions to
human osteoporosis. A number of in vivo animal models have been shown to
emulate many of the most important clinical features of the developing and
aging human skeleton.

An ideal model that can be used for all studies in bone research does not
exist. Whether or not an animal model is useful depends largely on the spe-
cific objectives of the study and frequently involves tradeoffs between such
factors as realism, reproducibility of results, and feasibility (35). Birds, mice,
rats, rabbits, dogs, sheeps, pigs, and nonhuman primates have all been the
subject of experimental osteoporosis research (36–38). Each of these animal
systems has its own advantages and disadvantages in regard to a variety of
parameters including the similarity of skeletal metabolism and experimental
bone disease to human processes, the time needed for breeding and for skele-
tal development, the cost of acquiring and maintaining the animals, and the
ability to take advantage of both classical genetic techniques and the more
recently developed molecular genetic techniques to introduce or eliminate
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specific genes. The obvious requirement for a reasonably detailed knowl-
edge of basic genomic structure currently limits the choice for genetic
animal models of osteoporosis to mice, rats, and nonhuman primates.

Mice and rats are by far the most commonly used animals in bone
research. Both mice and rats reach peak bone mass early in their lifespan and
then undergo bone loss with aging (39–43). Following ovariectomy, a reduc-
tion in bone mass and strength occurs, which can be prevented by estrogen
replacement (44–49). The SAMP6 (senescence-accelerated mouse/prone)
mouse has low peak bone mass and develops fractures in middle and old age
(50–57). It is the only experimental animal model with documented fragility
fractures of aging. Histomorphometric studies of primates and humans yield
very similar values (58). The nonhuman primate has both growing and adult
skeletal phases. Peak bone mass occurs around age 9 yr in cynomologus
macaques (59) and around 10–11 yr in rhesus monkeys (60,61). Nonhuman
primates experience decreased bone mass after ovariectomy (62–64), but the
response to estrogen replacement has not been well characterized. Non-
human primates experience bone loss with age (65,66), but older animals
also develop osteoarthritis with spinal osteophyte formation (67–69) that can
obscure the accurate radiographic assessment of spinal bone mass (70). The
extreme requirements for housing and care of nonhuman primates limit their
use to a relatively small number of facilities.

Of the three currently available options, the mouse is arguably the model
of choice because of the following:

1. Mice are much cheaper to house and easier to handle.
2. Mouse genetic resources are quite extensive.
3. Once candidate genes are identified, the ability to manipulate them in

mice and to unambiguously deduce their role in disease is unparalleled
(71,72). 

Moreover, gene targeting has reached new heights in mice but is barely on
the horizon in other animals. With gene targeting, perhaps, as the ultimate
arbiter for establishing cause-and-effect relationships between a candidate
gene and osteoporosis susceptibility, the mouse is apt to remain the primary
experimental model system for the foreseeable future (72). However, nonhu-
man primates maintained in controlled environments are excellent subjects
for extended family pedigree analysis (73,74), the most powerful method of
establishing genetic linkage to phenotypic traits (18). Combining mouse and
nonhuman primate studies to dissect the genetic regulation of bone mass
may offer the most expeditious way of identifying relevant hypotheses that
are likely to prove fruitful for future exploration in humans.



3. CURRENT RESEARCH

3.1. Inbred Strains

A strain of a species is inbred when virtually every genetic locus is
homozygous. What this means is that all individuals within an inbred strain
share a set of characteristics that uniquely define them compared to other
strains. Typically, inbred strains are derived from 20 or more consecutive
generations that have been brother-sister mated; the strain can then be main-
tained with this same pattern of propagation. Individual animals within an
inbred strain are as identical as monozygotic twins. There are several quali-
ties of inbred strains that make them especially valuable for research. The
first is their long-term relative genetic stability. This is important because it
allows researchers to build on previous investigations. Genetic change can
occur only as a result of mutation within an inbred strain. A second impor-
tant quality of inbred animals is their homozygosity, because inbred strains
will breed true. Once the characteristics of a strain are known, they can be
reproduced repeatedly, allowing for replicate experimentation, as well as for
studies by other investigators. The influence of genotype on a particular
characteristic can be investigated by placing mice from several inbred strains
in a common environment. Observed differences must then be, within limits,
the consequence of genetic factors. By reversing this strategy, and placing
mice from a single inbred strain in a variety of environments, it is possible to
estimate the importance of environmental influences on a parameter of inter-
est. Thus, inbred animals can be used to determine whether genetic variation
in the expression of a characteristic exists, as well as the environmental mal-
leability of the characteristic. Experiments with inbred strains also have
some limitations. Although strain differences are easily demonstrated, it is
often very difficult to attach much meaning to these differences, because the
genes and gene products involved are usually unknown. Because compar-
isons of mice from two or more strains do not usually provide any informa-
tion about the nature of the genetic differences, crosses between genotypes
must be used to analyze patterns of genetic influence. Additionally, when
using an inbred strain to investigate any type of phenomenon, it is important
to be aware that the observations may be relevant only to that strain. Because
an inbred strain differs from all others, there will be characteristics unique to
it. It is therefore important to use more than one strain to confirm that any
observation obtained pertains to the species and not just to the strain studied.

Inbred mice of different strains exhibit marked differences in parameters
of skeletal integrity. Kaye and Kusy (75) examined bone tissue from five
inbred mouse strains (A/J, BALB/CByJ, C57BL/6J, DBA/2J, and PL/J).
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Although body weight was similar in all five strains, tibial bone mass, com-
position, and biomechanical strength varied considerably. Using peripheral
quantitative computed tomography, Beamer et al. (76) surveyed female mice
from 11 inbred strains. This seminal study found that phenotypically normal
inbred strains of mice possess remarkable differences in total femoral BMD
that were detectable as early as 2 mo of age. Although these genetically dis-
tinct strains of mice were raised in the same controlled environment, the
observed differences are, in all likelihood, the result of genetic variation. As
mentioned earlier, bone strength is a complex phenotype that includes bone
density, size, and shape, as well as other anthropomorphic variables. A sub-
sequent analysis of three of those inbred strains (C57BL/6J, DBA/2J, and
C3H/HeJ) found additional evidence for genetic regulation of long bone size
and shape, as well as BMD (77). In a study of 10 inbred strains of mice, Li
et al. (78) found heritability estimates for humeral breaking strength to be
moderately high at 0.68 and multiregression analysis showed that forearm
BMD, forelimb grip strength, and forearm bone size were the three major
determinants of bone strength-explaining 61% of the variation in bone
breaking strength. A recent detailed examination of two inbred strains of
mice with very different femoral peak bone densities (C57BL/6J and
C3H/HeJ) suggested that bone strength in an inbred strain can differ consid-
erably by site (79). C3H/HeJ mice possessed thicker femoral and vertebral
cortices compared with C57BL/6J mice. However, C3H/HeJ mice had fewer
trabeculae in the vertebral bodies, and vertebral bone strength was reduced
in the C3H/HeJ compared to the C57BL/6J, suggesting the presence of dis-
tinct genetic determinants that regulate the trabecular vs cortical compart-
ments of bone. These preliminary investigations clearly indicate substantial
genetic regulation of skeletal traits in mice. Modern genetic methods, such
as selective breeding and QTL analysis, can exploit these heritable strain dif-
ferences to find and more directly evaluate the genetic linkage of osteoporo-
sis-related traits (see Subheading 3.4). Furthermore, modern computational
methods are now being developed that can scan a murine single nucleotide
polymorphism (SNP) database and, only on the basis of known inbred strain
phenotypes and genotypes, rapidly identify the chromosomal regions that
most likely contribute to a given complex trait (80).

3.2. Single Gene Mutations

As described in Subheading 3.1., the study of inbred strains usually
provides very little information about specific mechanisms of gene action.
The analysis of single mutant vs normal genes is often a more effective
approach. Comparisons between homozygous mutant mice and their “normal”



homozygous wild-type and heterozygous litter mates may provide consider-
able information on cellular mechanisms critical for discrete aspects of bone
biology (81,82). Mouse enthusiasts have been breeding mice for centuries,
thus maintaining spontaneous mutations. More than 140 spontaneous muta-
tions affecting mouse bone morphology have been summarized by Green
(83). For example, the short ear (se/se) mutation (the result of a disruption of
the bone morphogenetic protein-5) is associated with a number of skeletal
defects, including reductions in long bone length and width and the size of
several vertebral processes, the absence of several small sesamoid bones and
a pair of ribs, and impaired fracture healing (84–87). There is also an
expanding list of induced mutations in mice that cause recognizable skeletal
pathology. Several lines of mice with mutations in type 1 collagen genes
develop a phenotype of skeletal fragility with extensive fractures of long
bones and ribs (88–91), and mice that are deficient in certain extracellular
noncollagenous matrix components, such as biglycan and osteopontin, have
been shown to have decreased bone mass after birth (92,93). Mutations of a
number of genes necessary for normal osteoclast development and/or func-
tion have been shown to result in abnormal skeletal development in mice
(94–98). Such studies of both naturally occurring and engineered (trans-
genic) mutant mice have clearly extended our current knowledge of skeletal
development (99). It can be anticipated that future work with such models
will not only further expand our understanding of the role of known regula-
tors on skeletal development but also may identify new genes with unex-
pected roles in skeletal biology.

3.3. Recombinant Inbred Strains

Independently inbred strains of mice frequently exhibit numerous pheno-
typic differences reflecting the substantial allelic variability that can exist
between laboratory strains. These differences have been accentuated further
by the introduction of recombinant inbred (RI) strains, which are derived by
systematic inbreeding starting from a cross between two inbred strains
known to differ at some characteristic of interest (Fig. 1). They are called RI
strains because the parental chromosomes are recombined several times per
chromosome during their development, resulting in a unique pattern of
recombinations of the two initial parental genomes in each RI strain. The
starting points are two inbred genotypes that are used to produce a group of
F1 hybrids. Brother–sister pairs of F1 hybrids are mated to create an F2 gen-
eration, in which all genes now segregate independently. Following the pro-
duction of an F2 generation from this interstrain cross, 20 or more different
brother–sister pairs of F2 individuals are mated. In each subsequent
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generation, only a single male and female from each pair are mated. After
20 generations, one has many inbred lines that differ from each other because
of random differences in gene segregation, a process begun with the F2. All
the RI lines contain only those genes that were present in one or another of

Fig. 1. Generation of recombinant inbred strains. Only four of the 19 autosome
pairs from parental inbred strains “A” and “B” and the assortment of chromosomes
in the subsequent crosses derived from these strains, are shown. F1 hybrids are
genetically identical to each other but individuals in the subsequent F2 generation
are not because of recombination events. Recombinant inbred strains also harbor
recombinations but are homozygous at all loci as a result of the extensive inbreeding
involved in their production.



the parental strains. RI lines have been very useful in genetic mapping of
traits that differ between inbred strains.

The RI strains were originally developed as a tool for detecting and map-
ping major gene loci (100). Over the years, the RI strains have been charac-
terized in respect to many genetic markers with known locations on different
chromosomes. The influence of a single major gene on a given trait can be
inferred when RI strain means for the trait are found to fall in a bimodal dis-
tribution (i.e., all the RI strains with one allele are in one phenotypic group,
and all those with the other allele are in the other group). Comparison of the
strain distribution pattern (SDP) for that trait can be made with the SDPs for
known marker loci previously mapped to a particular chromosome region.
A close match in SDPs between the unknown locus and a marker locus
would thus allow provisional mapping to a chromosome region of the latter
(100,101). Recent advances in statistics have succeeded in tailoring this
experimental approach to a broader range of phenotypes, including continu-
ously distributed traits without apparent major gene effects (102–104).

The first panel of RI strains to be used for exploration of skeletal traits was
the BXD panel, derived from a cross between C57BL/6J and DBA/2J pro-
genitors (105,106). Peak whole-body areal BMD values differed by approx
20% among individual RI strains—indicating the presence of strong genetic
influences. When the pattern of differences in peak whole body BMD in the
BXD (C57BL/6 × DBA/2) strains was integrated with a large database of
genetic markers previously defined in the RI BXD strains, chromosome map
sites (QTLs) for BMD were generated. Interestingly, separate analyses of
male and female RI strain sets provisionally identified two chromosomal loci
associated with peak BMD that were shared between genders, pointing out
that in some cases common genetic mechanisms influence skeletal develop-
ment. However, the majority of the provisional loci were associated with
peak BMD in one, but not both genders, suggesting the presence of gender-
specific determinants of BMD. Using a similar approach, Shimizu et al.
recently examined cortical thickness index in adult male mice from the
AKR/J strain and the 13 senescence-accelerated mouse (SAM) strains,
which are considered to be a series of RI strains derived from the AKR/J
strain and other unspecified strains (107). These investigators found substan-
tial variation in cortical thickness index (50%) among the SAM RI strain set
and found evidence for polygenic inheritance of this skeletal trait. As an ini-
tial exploration of the genetic determinants of bone strength, Turner et al.
examined female mice from 12 BXH RI strains of mice derived from
C57BL/6J and C3H/HeJ progenitor strains (108). Biomechanical properties
measured across the BXH RI panel showed greater variability than either B6
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or C3H progenitors, indicating that combinations of genes play an important
role in determining bone strength. Furthermore, vertebral strength was not
correlated consistently with femoral strength among the BXH RI strains,
suggesting that genetic regulation of bone strength may be site-specific.

An especially important feature of the RI method is the fixed nature of the
genotypes of each of the RI strains. This means that any new hypothesis
about a physiological mechanism underlying a trait can be assessed by mak-
ing only observations on the new variable and relating the outcome to the
database already established (109). For example, epidemiological studies
have clearly demonstrated that body weight is a very strong predictor of
BMD (110–113). However, the mechanism underlying the strong association
of weight with BMD is poorly understood. The coincidence of increased
body weight with increased BMD could stem from environmental factors,
such as complementary nutritional effects on body composition and skeletal
mass, or the association could largely be the result of mechanical loading
(114). In addition to environmental causes, body weight and BMD may be
modulated by linked genes or perhaps even the same genes. In the previously
described BXD RI experiment (105), four genetic loci for body weight were
identified. All of these loci had been previously identified by Keightley et al.
(115) in a prior analysis of mouse lines divergently selected for body weight
from a base population derived from C57BL/6J and DBA/2J parental strains.
Interestingly, one locus that was linked to body weight was also strongly
linked to inherited variation in BMD. These findings raised the intriguing
possibility that body weight and peak BMD may be influenced by linked
genes or perhaps by common genes with pleiotropic effects. Furthermore,
they demonstrate the increasing value of an RI series as data, both about phe-
notypes and genotypes, are gathered from all of the laboratories utilizing
them.

There are two additional aspects of the RI approach that deserve comment.
First, only a few inbred strains are represented in the existing RI sets (e.g.,
the BXD RI set is the largest, and it currently is composed of only 36 sepa-
rate strains), and it is not easy to construct new sets. Inasmuch as the strain
means are the units of analysis, the statistical power of the RI method is
directly related to the number of RI strains within a given set. Thus, genetic
associations only above a certain impact size will be discernible with this
experimental method. For osteoporosis research purposes, this limitation is a
modest one because the current objective is simply to identify any relevant
genetic associations in either animal models or humans. A second, perhaps
more serious, disadvantage of the RI method is that some genetic correla-
tions of marker and phenotype are likely to be fortuitous. Because of the



large number of statistical tests performed (e.g., more than 1500 informative
genetic markers have been genotyped in the BXD RI strains), the type 1 error
rate relative to a single correlation similarly increases. One way to reduce
the chance of such errors is to increase the required significance level and
consider only those correlations that are significant at a very high probability
(116). However, in choosing this level of stringency, one risks not consider-
ing QTLs that may be important (i.e., type 2 error). A useful compromise is
to use a moderately stringent α level and regard correlational analysis in RI
strains as a preliminary screen for genetic associations to be confirmed using
other techniques, such as verification in an F2 population (117).

Another genetic tool, similar to the RI method, is a panel of recombinant
congenic strains. These strains differ from RI strains because two additional
backcrosses are made to a recipient strain to achieve progeny that carry
12.5% of genes from the donor strain (rather than the 50% present in RI
strains). The intent of this strategy is to isolate small assemblages of genes in
individual inbred strains. Using a set of 24 HcB/Dem recombinant congenic
strains (derived from donor C57BL/10ScSnA and recipient C3H/DiSnA
strains), Yershov et al. (118) have identified seven different QTLs that influ-
ence bone strength and/or various parameters of skeletal geometry.

3.4. QTL Analysis

For a number of reasons, the laboratory mouse has proven to be an espe-
cially powerful tool for the identification and mapping of QTLs affecting
complex polygenic traits (119). First, there is a wide range of phenotypic
variation in genetically characterized animals (120), which is a prerequisite
for QTL analysis. Second, factors, such as short generation interval, ability
to make designed matings and raise very large populations relatively inex-
pensively, and capacity to control or experimentally alter environmental fac-
tors, enable QTL experiments in mice to have increased power, precision,
and flexibility. Third, the mouse has an extensively developed and well-
organized molecular marker map, consisting of more than 6500 easily typed
polymerase chain reaction (PCR) based microsatellite markers (121) that
exhibit allelic variation between lines. And fourth, the mouse is an anchor
species in comparative genome maps representing homology among mam-
malian species (122). Once a chromosomal region harboring a murine QTL
is identified, candidate chromosomal regions in humans, in which homolo-
gous QTLs may reside, will be immediately apparent. Based on these attrib-
utes, research groups have successfully used mice in QTL detection studies
for a number of quantitative traits, including obesity (123), body weight
(115), and drug-seeking behavior (124).
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Fig. 2. Steps in quantitative trait locus mapping. To perform quantitative trait
locus (QTL) analysis, two different inbred strains are first crossed to produce geneti-
cally heterogeneous F2 progeny. All of the progeny undergo phenotype assessment,
and following this, DNA samples are obtained to allow genotyping of each individ-
ual at multiple marker loci distributed throughout the genome. Statistical associa-
tions of markers and phenotypes are then performed to identify putative QTLs
underlying the trait(s) of interest. BMD, bone mineral density.

Osteoporosis researchers are just now embarking on QTL analyses in
large populations of mice in the hopes of obtaining a more complete pic-
ture of the polygenic control of bone mass and an improved understanding
of the complex interactions and physiological mechanisms involved. The
basic strategy of such QTL mapping experiments is outlined in Fig. 2.



The procedure, as applied to the detection of BMD QTLs, involves cross-
ing one inbred mouse strain that has low BMD with another mouse strain
that has high BMD. The resulting F1 offspring usually exhibit BMD val-
ues between those of the parental strains. The next step is to intercross the
F1 mice with one another to create a second filial generation (F2). Because
of recombination between the parental alleles and segregation of these alle-
les in the offspring, the variation in BMD within the population of F2 mice
can exceed that of the parental strains. By genotyping the F2 generation of
mice and correlating genotype with phenotype, it is possible to identify
regions of the genome (QTL) that segregate with BMD and hence show
evidence of linkage to BMD. The most recent QTL mapping efforts have
primarily utilized microsatellite markers, also known as simple sequence
length polymorphisms, which are highly polymorphic, naturally occurring
variations in the number of repetitive base pair sequences (19,23,24).
These are readily genotyped by PCR amplification using oligonucleotide
primer pairs specific to each markers followed by resolution of PCR prod-
ucts (alleles) on standard agarose or denaturing polyacrylamide genes
(23,24). This development has greatly facilitated the genotyping of large
numbers of individuals in a genetically heterogeneous F2 population to
determine which alleles each animal possesses at many marker loci. In the
mouse, there are presently more than 15,000 PCR-based microsatellite
markers available, each with known chromosomal location that can be
used in a genome-wide search (27).

Several recent studies have illustrated that QTL analysis can be success-
fully applied to skeletal phenotypes, and importantly, some QTLs have been
independently confirmed. Results from these complementary studies should
begin to define the landscape of the genetic regulation of BMD and help par-
tition this quantitative trait into separate genetic components amenable for
more detailed evaluation. Table 1 summarizes data from several sets of
genetically heterogeneous F2 populations including: C57BL/6J vs
Castaneus/EiJ (125), C57BL/6J vs C3H/HeJ (126), C57BL/6J vs DBA/2J
(106,117,127), SAMP6 vs SAMP2 (128), SAMR1 vs SAMP6 (129), and
AKR/J vs SAMP6 (129). It is apparent that QTL analyses of diverse skeletal
phenotypes (whole-body BMD, femoral cortical thickness, and vertebral and
total femoral BMD) in genetically heterogeneous murine populations
derived from disparate inbred strains have succeeded in identifying common
chromosomal regions that strongly influence bone mass. Although the most
parsimonious explanation for the concordance of findings between the vari-
ous murine models is the presence of a single important gene at the same
chromosomal site (129), much higher resolution fine-mapping will be
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needed to exclude the possibility of multiple strain-specific, closely linked
loci within a given common QTL region.

Genotyping intercross progeny for an average-sized QTL mapping experi-
ment has traditionally required many months and thousands of individual
genotyping reactions. An alternative source of naturally occurring variations
is SNPs. Current databases contain allele information across many common

Table 1
Bone Mineral Density QTLs Identified in Various 
Laboratory Mouse Populations

Chromosome Position Skeletal site F2 cross References

1 Distal S, F, WB B6XD2, B6XCast, 
B6XC3H 117,125,126

2 Proximal S AKRXSAMP6, 
SAMR1XSAMP6 129

2 Mid WB B6XD2 117
2 Distal F B6XD2 127
3 Proximal F B6XD2 127
4 Mid S, F, WB B6XD2, B6XC3H 117,126
5 Mid F B6XCast 125
6 Mid F B6XC3H, B6XD2 126,127
7 Proximal S, F, WB B6XD2,

SAMR1XSAMP6 106,129
7 Distal S B6XC3H 126
9 Mid S B6XC3H 126

11 Mid S, F, WB B6XD2, B6XC3H,
SAMP6XSAMP2,
AKRXSAMP6 117,126,128,129

12 Proximal F B6XC3H 126
13 Proximal S, F, WB B6XD2, B6XCast,

B6XC3H, 
SAMP6XSAMP2, 80,125,126,
AKRXSAMP6 128,129

13 Mid S, F B6XC3H 126
14 Mid S, F B6XC3H 126
15 Proximal F B6XD2, B6XCast 125,127
15 Distal F B6XD2 127
16 Proximal S, F B6XC3H, 

SAMR1XSAMP6 126,129
18 Proximal S, F B6XC3H 126

S, spinal; F, femoral; WB, whole body.



inbred strains for thousands of SNPs at defined locations in the mouse
genome. Recently, the genome of pooled DNA samples obtained from inter-
cross progeny was analyzed by two different genotyping methods (80). The
traditional method of genotyping individual DNA samples with a panel of
microsatellite markers was directly compared to a streamlined approach in
which allele frequencies of a panel of SNPs were determined by allele-
specific kinetic PCR in pooled DNA samples. Both methods identified the
exact same linkage regions, but SNP-based genotyping of pooled samples
required about 20-fold fewer PCR reactions and was performed much more
quickly than the traditional method. Such strategies promise to reduce the
frustrations and overcome some of the difficulties (e.g., cost) associated with
QTL analysis in murine complex disease models.

4. FUTURE DIRECTIONS

The primary objective of QTL analysis is the identification of the chromo-
somal position of genes influencing osteoporosis-related traits. However, the
ultimate goals of complex trait analysis—to identify coding sequences and
to understand their biological roles at a molecular level—remain the major
challenge. Cloning the gene underlying a QTL requires refining the position
of the QTL at much higher resolution than does initial detection of the QTL.
As an example, for positional cloning to be feasible, the size of the candidate
region must be reduced to less than approx 1 Mb (~0.5 cM), which on aver-
age is expected to contain about 10–15 genes in the mouse (130). Interval
analysis of F2 mapping data has generally resulted in fairly large chromoso-
mal assignments for each of the BMD-related QTLs (10–30 cM or 100–500
possible genes). This is because the phenotypes of individual animals are
easily swayed by the influence of unlinked or environmental noise (72).
Positional cloning of human disease genes has demonstrated that even when
the position of a gene has been defined within 1 or 2 million bp and all the
DNA sequences within that region have been isolated, identification of the
relevant gene can still be a formidable task. Fortunately, new experimental
strategies for fine QTL mapping, development of transgenic technologies,
and more traditional approaches employing congenic strains, promise to
eventually bridge the gap between cloning and disease.

QTL fine-mapping involves careful analysis of recombinants within an
interval previously found to contain the gene, a concept termed genetic chro-
mosome dissection. Although genetic chromosome dissection was first intro-
duced by Drosophila geneticists (131), this experimental approach has been
successfully adapted to animal models (132–134). For a compilation of the
various experimental designs currently available, the reader is referred to
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an excellent recent review by Darvasi in which several options for attaining
1-cM map resolution in the mouse are described (135). One of these
approaches, termed RI segregation testing, takes advantage of the fixed
recombination between parental alleles that exist in RI strains (100). This
strategy employs a RI strain that possesses a crossover (recombination point)
within the QTL of interest to generate two F2 populations—one with each
parental strain. By using linkage analysis to determine within which of the
two genetically heterogeneous populations phenotype segregates with geno-
type, the QTL can be mapped either above or below the recombination point,
and successive iterations of this strategy can be used to narrow the QTL to a
smaller chromosomal region (Fig. 3). Once the QTL has been resolved to
such a narrow region, an examination of candidate genes within that region
can take place. This approach has recently been successfully employed to
substantially narrow two BMD-related chromosomal regions and, in the
process, eliminated a number of candidate genes (117).

Fig. 3. The recombinant inbred (RI) segregation test strategy. A RI strain that pos-
sesses a recombination or crossover point in the region of a quantitative trait locus
(QTL) is used to generate two F2 populations-one with each parental strain. Analysis
of the two populations will detect the population on which the QTL is segregating
and accordingly locate the QTL above or below the recombination point.



Transgenic technology creates a very effective tool for analyzing the phys-
iological roles of specific genes. A transgenic animal contains a segment of
exogenous genetic material stably incorporated into its genome, resulting in
a new trait that can be transmitted to further generations. Two widely used
methods introduce exogenous genetic material into the genome: 

1. Microinjection of one-cell fertilized embryos.
2. Genetic manipulation of embryonic stem (ES) cells. 

In contrast to traditional “gain-of-function” mutations, typically created
by microinjection of the gene of interest into the one-celled zygote, gene tar-
geting via homologous recombination in pluripotential ES cells allows one
to precisely modify the gene of interest (136). Employing ES methodology,
investigators have generated site-specific deletions (“knockouts”), insertions
(“knockins”), gene duplications, gene rearrangements, and point mutations.
In addition to facilitating the study of known candidate genes, molecular
complementation (transfer of specific genes) of selected phenotypes is a
potentially important tool for gene identification. The recent success of
transgenic technologies employing yeast artificial chromosomes (YAC trans-
genics) holds great promise for studying QTLs that influence a developmen-
tally restricted phenotype which requires the transfer of both the locus and
the long-range regulatory element(s) responsible for normal temporal or
regional expression of the gene (137). Traditionally, the mouse has been con-
sidered the optimal animal model for conducting transgenic and gene-
targeting experiments. Although investigators have succeeded in creating
transgenic rats (138), the considerable time and expense involved limit the
feasibility of widespread use of this animal model. Furthermore, gene-
targeting technology to “knockout” endogenous genes is currently feasible
only in the mouse.

Classical transmission genetics can also be used to transfer a gene of inter-
est from a donor strain or mutant onto the genetic background of an inbred
strain. Using this approach, one is able to transfer regions containing risk or
protective QTLs, or even multiple QTLs, onto appropriate background
strains. Such congenic strains are produced by repeated backcrossing to the
background inbred strain and genotypic selection of the desired allele at a
marker or markers at each backcross generation (100,139,140). After seven
backcross generations, the congenic and background strains can be expected
to be about 98% genetically identical except for the transferred (intro-
gressed) chromosomal region (140). The primary advantage of the congen-
ics is that the influence of an individual QTL on any trait can be tested using
the congenic vs background strain comparison at any level from the molecular

164 Klein 



Murine Models of Osteoporosis 165

to the physiological. Any differences found would strongly implicate a QTL
in the introgressed chromosomal region as the cause of the differences.
When there are several congenic strains for a given QTL, their differing sites
of recombination can aid in attaining higher resolution mapping of the QTL
with respect to neighboring markers. The near elimination of “genetic noise”
because of unlinked loci greatly aids the search for candidate genes associ-
ated with each QTL and for studies of differential gene expression (141).
Ultimately, congenic strains will provide an invaluable resource for further
defining specific aspects of genetic architecture (e.g., mode of inheritance,
gene order, and gene–gene and gene–environment interactions, and so on)
and for in-depth studies of the mechanisms by which they affect skeletal
development.

A number of groups have now reported the generation and initial charac-
terization of congenic strains bearing BMD-relevant QTLs. Shimizu et al.
constructed a congenic strain P6.P2-Pbd2b, which carried a single genomic
interval from chromosome 13 of SAMP2 on a SAMP6-derived osteoporotic
background (142). This congenic strain had a higher bone density (~10%)
than the background strain. Orwoll et al. are currently developing a congenic
strain for a BMD QTL on chromosome 2 and have found that mice carrying
the C57BL/6 allele on a DBA/2 background exhibit reduced BMD (~5%)
compared to the background strain (106). Moreover, the effect of the QTL
on BMD was observed only in female mice, just as had been predicted from
previous F2 studies (106). Congenics can also offer insight into the mecha-
nisms involved in peak bone mass acquisition. Bouxsein et al. recently con-
structed congenic mice carrying a genomic interval from chromosome 6 of
C3H/HeJ on a C57BL/6J-derived background (143). The chromosome
6 region contained a QTL known to strongly influence serum insulin-like
growth factor-I (IGF-I) levels. As expected, congenic mice had 11–21%
lower serum IGF-I levels at 16 wk of age compared with B6, but importantly,
these mice also exhibited reduced femoral and vertebral BMD, implicating a
role of IGF-I variation in normal skeletal development. Finally, it may be
possible to combine the mapping data present in congenic strains with
expression analysis (e.g., complementary DNA microarray analysis) to iden-
tify, without bias about potential roles, putative target genes underlying a
given QTL. Gu et al. (144) generated a congenic strain, B6.CAST-1T, in
which the chromosomal fragment containing a femoral BMD QTL had been
transferred from the Castaneus  to the C57BL/6 (B6) background. The con-
genic mice had significantly higher bone density than the B6 mice.
Preliminary complementary DNA microarray analysis demonstrated approx
60% of 8734 gene accessions on murine GEM I chips (Incyte Genomics,



Palo Alto, CA) were expressed in the femur of B6 mice. Interestingly,
expression levels of genes related to bone formation were lower in congenic
than in B6 mice, and expression levels of genes that might have negative reg-
ulatory action on bone resorption were higher in congenic than in B6 mice.
Together, these findings suggest that the congenic mice might have a lower
bone turnover rate than B6 mice and raise the possibility that the high bone
density in the congenic mice could be caused by reduced bone resorption
rather than increased bone formation.

5. CONCLUSIONS

Peak bone mass is a major determinant of risk of osteoporotic fracture.
However, BMD is a complex trait whose expression is complicated by envi-
ronmental influences and polygenic inheritance. The number, locations, and
effects of the individual genes contributing to natural variation in this trait
are all unknown. Experimental animal models furnish a means to largely cir-
cumvent confounding environmental factors, and the availability of dense
genetic maps based on molecular markers now provides the opportunity to
resolve quantitative genetic variation in individual regions of the genome
(QTLs) influencing a given trait. Animals are easily bred to provide the sam-
ple sizes needed. Inbred strains are homozygous at all loci. Therefore, all
members of any inbred strain are genetically identical, eliminating the prob-
lem of genetic heterogeneity. Phenotypes can be carefully measured and
laboratory conditions held uniform to reduce phenotypic variation.

The systematic analysis of inbred strain databases is beginning to reveal
important aspects of the genetic regulation of bone mass acquisition and
maintenance. The recent advances in genetic analysis of complex traits, such
as QTL mapping of genetically heterogeneous intercross populations, are
especially promising. A major strength of this approach is that it enables the
provisional identification of candidate genes in the absence of any prior
hypothesis about the mechanism by which the phenotype is expressed. The
identification of those chromosomal regions, in which marker allelic and
trait variation significantly covary, is now a straightforward (although large-
scale) enterprise. QTL mapping offers an attractive interface between for-
ward and reverse genetics. Molecular cloning has shown that almost all
genes in mice have homologs in humans and vice-versa (145). Thus, identi-
fication and mapping of genes in the mouse offers immediate hope for
extrapolation to the human genome. For the future, more molecularly based
techniques are likely to be on the leading edge of progress. As candidate
genes are identified as having important skeletal functions, the tools
of molecular biology will allow the genetic diversity underlying their
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expression and function to be more fully examined. Discoveries made with
animal models can often set the stage for skeletal research in human subjects
to augment the results from animals and confirm their relevance to our own
species. Perhaps the most versatile aspect of animal model systems is in their
use as a proving ground for hypotheses regarding the genetic, as well as the
epigenetic, basis of osteoporosis. Old ideas regarding disease mechanisms
can now be rigorously tested in vivo, and what is more important, provoca-
tive new concepts can emerge.
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Murine Models of Substance and 

Alcohol Dependence 

Unraveling Genetic Complexities

Kim Cronise and John C. Crabbe

1. GENETICS AND COMPLEX DISEASE

Most behavioral traits operate on a phenotypic and genetic continuum,
i.e., the phenotypic output is quantitative based on the genetic input. No
one gene is either necessary or sufficient to account for the observed phe-
notype; rather, a collection of genes is responsible. This phenotypic and
genetic complexity is particularly evident in psychological disorders. For
instance, first-degree relatives of schizophrenics have a 9% risk for a diag-
nosis, whereas the risk drops to 2% for a third-degree relative (1). These
findings suggest that many genes contribute, and as the proportion of
shared genes increases among relatives, so does the likelihood of shared
diagnosis. Regardless of commonalities among genotypes, phenotypic
expression may vary significantly in the frequency and severity of symp-
toms. This further supports the contention that several genes contribute to
the trait, each with small effects.

This chapter has three objectives. First, we will discuss briefly the
phenotypic and genetic complexities of disease. Second, we will discuss
some of the methods used to address disease risk and pathophysiology
with genetic animal models. Finally, we will discuss some specific
examples of genetic influence on complex traits and include consideration
of the subtleties of interpreting data from animal models, suggesting
how their use may be improved in the future. We have chosen substance
dependence and alcoholism as an example of complex disease because
there is a rich history of genetic animal model research addressing these
disorders.

177

From: Computational Genetics and Genomics 
Edited by: G. Peltz © Humana Press Inc., Totowa, NJ



2. COMPLEXITIES ASSOCIATED WITH 
SUBSTANCE DEPENDENCE

The general criteria for a diagnosis of substance dependence are broadly
similar across sources. The American Psychological Association Diagnostic
and Statistical Manual IV, Text Revision (DSM-IV TR) defines substance
dependence as comprising three key diagnostic features: tolerance (i.e.,
requiring higher drug doses to achieve the same drug effect), withdrawal
(i.e., the experience of physical and psychological symptoms when the drug
is discontinued, thought to reflect a state of physical dependence), and com-
pulsive drug taking (2). The website for the National Institute of Health
National Institute on Alcohol Abuse and Alcoholism (www.niaaa.nih.gov)
identifies four key diagnostic features by further differentiating compulsive
drug taking into craving for the drug vs persistence of self-administration in
the face of adverse medical consequences and loss of control over drug tak-
ing. Loss of control can be inferred from the intrusion of drug-related behav-
ior into work and personal relationships. Similarly, tolerance and withdrawal
are also further differentiated by some clinicians and researchers. Both fea-
tures are actually syndromes of symptoms rather than discrete indicators. For
example, withdrawal is indicated by any number of symptoms including, but
not limited to nausea, sleeplessness, anxiety, depression, or seizures. Thus,
the diagnosis of drug or alcohol dependence constitutes a complex behav-
ioral phenotype. Each individual displays a unique collection of traits, and
the genotypes that underlie risk for each individual symptom may or may
not be similar. This behavioral and genetic diversity makes assessment of
dependence and its etiology a complicated task.

Comorbidity is the co-occurrence of two or more disease processes that
may or may not be biologically related. For substance dependence, the rates
of comorbidity are high, and this further complicates the task of behavioral
and genetic assessment. For instance, in a British sample, rates of other
comorbid psychiatric diagnoses were 22% for nicotine dependence, 30% for
alcohol dependence, and 45% for other drug dependence (3). Specifically,
the incidence of major depression in alcoholics is as high as 42.2% (4). Such
diagnostic complexities also exist for most other psychiatric disorders, so
comorbidity makes diagnosis and isolation of genetic etiologies for each
disorder even more difficult (5).

The nature of the relationship between two disorders may provide insight
into the genetic contributions to each condition. If each disease process is a
risk factor for the other, the genes involved in one may affect risk for the other
disorder as well. Pleiotropism is defined as the influence of a gene on multiple
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phenotypes and is presumed to underlie shared genetic risk. Although co-
occurrence of multiple phenotypes may aid identification of common genetic
origins, it should be noted that the two disorders might be transmitted sepa-
rately and independently. For instance, although substance dependence and
depression are both hereditary and often comorbid, alcoholics are not more
likely to beget depressed individuals unless there is a family history of depres-
sion as well (6–8). This suggests that some genes may affect risk for both
diagnoses, whereas others separately increase risk for one or the other. These
distinctions may be difficult to tease apart genetically.

3. ANIMAL MODELS FOR SUBSTANCE-DEPENDENCE
DISORDERS

Many variables may influence the assessment of a disorder in humans.
A partial list includes age, race, sex, nutrition, family background, socioeco-
nomic status, and other environmental variables. Human populations cannot
be assigned to experimental treatment groups, so genetic risk factors must be
teased out of the complex, interactive contribution of environmental variables.
Modeling disease in animals is a particularly attractive alternative for genetic
studies as animals with known genotypes can be studied under relatively con-
trolled environmental conditions. However, certain caveats for and limitations
to interpretation of data from animal models should be recognized. In order to
be useful, an animal model must meet the criteria of both face and construct
validity. Face validity requires the animal model to be as nearly identical as
possible both behaviorally and physiologically to the human phenotype,
whereas construct validity requires that the phenotype the model claims to rep-
resent is, in fact, what it represents. For instance, rodent models have been
developed for most of the key features of substance abuse and alcoholism
described earlier. However, it is not as easy to model some features as it is to
model others. Although drug tolerance can be modeled straightforwardly using
a variety of behavioral drug responses, the squandering of emotional or work-
related rewards that accompanies loss of control over drug taking is less easy
to visualize in a mouse’s behavior. Therefore, it is difficult to claim that any
single animal model is sufficient to represent a complex human phenotype.

In attempts to address these complexities, partial animal models have been
targeted to individual components of the larger disease phenotypes. Each par-
tial model creates a more simplified model system. Partial models often focus
on particular phenotypes that suggest vulnerability to a disorder or on those
that are the most robust phenotypes for a disorder. This is variously called the
candidate symptom or endophenotype approach. It has been noted that one 



of the scales used to assess novelty seeking, the sensation-seeking scale, is
considered a very good indicator of concomitant substance abuse (9).
Additionally, patients with a history of substance abuse have been shown to
demonstrate higher levels of impulsivity (10), and Cloninger (10) cites nov-
elty seeking and impulsivity as two associated traits in characterizing one sub-
type (type 2) of alcoholics. Furthermore, in schizophrenic patients, sensation
seeking may be a factor that prompts drug abuse (12). Therefore, sensation
seeking or impulsivity may be an endophenotype worthy of investigation in
an animal model of substance abuse. Mice can be trained to withhold
responding to a tone that signals a food reward, and inability to wait has been
used as a model of impulsivity (13). Before considering some specific pheno-
types relevant for substance abuse that have been modeled in rodents, we first
describe three basic methods applied to genetic animal model research.

3.1. Inbred Strains

Rodent matings are easily arranged in a laboratory setting. Mating parent
and offspring, or sibling pairs, for approx 20 generations creates an inbred
strain. Inbreeding eliminates all variability in genotypes and produces ani-
mals that are homozygous at every gene. These animals are virtually identi-
cal, like monozygotic twins, barring any relevant spontaneous mutations.
The use of inbred strains is an excellent means to detect genetically influ-
enced differences. If animals from several strains are all tested under nearly
identical environmental conditions, any differences among strains derive
principally from genetic sources, whereas individual differences among
members of a single strain must be nongenetic in origin.

To date, there are approx 100 inbred mouse strains available for use in assess-
ing the range of genetic influences on a particular phenotype. Because of one
famous early use of inbreds in psychopharmacology (14), hundreds of studies
have used inbred strains to demonstrate genetic influences on alcohol and drug
self-administration, sensitivity and tolerance to various effects of alcohol and
drugs, and drug withdrawal (for review, see refs. 15–17). Inbred strains are
genetically stable across laboratories and time, which has allowed researchers
to accumulate much knowledge about drug responses in a few common inbred
strains of mice. If the pattern of strain differences for two different traits is very
similar, it may be inferred that some genes exert important pleiotropic effects
on both traits, i.e., that the traits are genetically correlated.

3.2. Selected Lines

Selective breeding can be applied to any phenotype that is genetically
influenced. Typically, a phenotype of interest is identified, and animals that are
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high and low responders for that trait are bred. As generations of artificial
selection are applied in the laboratory, the oppositely selected lines differ more
and more in the trait, and the populations can achieve very extreme behavioral
differences. Response to selection occurs because the genes influencing high
response become more and more common in the population selected for high
response and more rare in the low response line. Because it can take years to
create a fully selected line, it is important to define the phenotype of interest
very carefully. Selected lines have an advantage over inbred strains because
primarily, the genes relevant for a particular trait are selected and fixed,
whereas animals otherwise remain genetically unique, like individual (non-
twinned) humans. When selected lines are found to differ on traits other than
that used for their creation, there is a strong inference that the selected genes
affected these correlated responses through pleiotropic influences.

3.3. Targeted Mutations

Both inbred strains and selectively bred lines are based on naturally occur-
ring polymorphisms at many genes. As such, they differ at many genes,
probably thousands, and which genes are responsible for the behavioral dif-
ferences is unknown. They can, however, be used to search for the source of
the genetic differences, as we shall see in Subheadings 4.1. and 4.2. (and see
also Chapter 9). The third basic way to create animal models for studying
complex disease differs fundamentally in that the individual genes are cho-
sen for study a priori based on knowledge of the biological underpinnings of
the phenotype. The entry-level manipulation of this sort is to create a null
mutant, or “knockout,” mouse in which a particular gene is altered in the
germ line of the mouse (alternatively, an overexpression mutation can be
introduced). The use of targeted mutations (which include knockin, trans-
genic overexpression, and many other variants) can be a good tool for the
investigation of the genetic etiology of disease. However, findings from
these studies should be interpreted with caution. The cautions are familiar to
neurobiologists who have used any other sort of lesion to disrupt a pathway
implicated in a response. Even if negative results are seen in a targeted muta-
genesis study, this does not necessarily mean that the gene of interest is not
involved in the phenotype. Because the mutations are present (and the gene’s
product absent) throughout development, compensatory responses in
unknown biological systems may have masked any contribution of the
mutant gene. However, new techniques are being enlisted that utilize second-
generation mutagenesis technology, such as inducible knockouts and
knockins, expressed in restricted tissue types, and other innovations in gene
targeting. Although these have not yet been extensively used for studies of



substance abuse, their greater precision will help link specific genes to spe-
cific phenotypes.

Random mutagenesis is a related, hybrid technique. Point mutations are
created at random throughout the germ cell line by exposing mice to X-rays
or a chemical mutagen, and the resulting offsprings are screened to identify
phenotypic outliers. Such outliers can then be subjected to gene mapping
efforts to identify which gene has been mutated. These techniques have not
yet been reported to produce mutants with differential drug responses, but
several large-scale efforts are underway to find them.

4. CONTRIBUTIONS OF ANIMAL MODELS TO
UNDERSTANDING SUBSTANCE DEPENDENCE

In the field of alcohol dependence, precisely defined phenotypes have
enabled investigation of each trait in isolation and have resulted in remark-
able success in relating phenotypes to genotypes. Several traits, including
drug sensitivity, tolerance, self-administration, and withdrawal, have been
assessed using inbred strains, selected lines and knockout/in mice. Together,
the murine models have contributed significantly to defining the genetic and
neurobiological basis of phenotypes associated with alcoholism. A few of
the specific contributions will be discussed in Subheadings 4.1.– 4.3.

4.1. Alcohol Preference Drinking

The identification of substantial strain differences in drinking may be
useful in identifying the genetic components of high and low alcohol abuse
risk in humans. In 1959, McClearn and Rodgers investigated the possibil-
ity that genetic differences may underlie alcohol preference in mice in
inbred strains. Specifically, it was demonstrated that the C57BL/6 (B6)
strain preferred to drink an alcohol solution rather than water only, whereas
the DBA/2 (D2) strain preferred water to the alcohol solution. Since that
time, differences in alcohol preference have been demonstrated in more
than 15 inbred strains of mice (18,19). Although mice of a particular inbred
strain are genetically identical, each strain is considered to be a single
genotype. Therefore, the similarities in avoidance or preference seen
among sublines of the B6 and D2 strains and across variables suggest that
this phenotype may have strong genetic determinants. It is interesting to
note that preference or avoidance of alcohol is not an all or none phenome-
non. Variables, such as alcohol concentration and the addition of a sweet-
ener, affect the onset of an avoidance response in some strains, whereas
other strains continue to drink even at the highest concentrations and with-
out any masking of the taste of alcohol (19).
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Investigations are currently underway to identify the specific genes con-
tributing to alcohol drinking. Most studies to date have begun by using the
B6 and D2 strains or others derived from them. Such genetic mapping stud-
ies initially identify the rough location in the genome of a gene influencing
the trait, termed a quantitative trait locus (QTL). Many provisional QTLs
have been reported for alcohol preference, located on mouse chromosomes
1–4, 9–11, and 15. Belknap and Atkins performed a meta-analysis of the cur-
rent available literature and demonstrated that the most robust QTLs are
found on chromosomes 2–4, and 9 (20). Although not quite as strong in their
influence on drinking, QTLs on chromosomes 1 and 11 are also potential
candidates.

Although these investigations typically start by using inbred strains, fur-
ther proof of mapping and the crucial steps of reducing the confidence inter-
vals surrounding a QTL have also employed other genetic models. For
drinking, further evidence was derived by selectively breeding mice for
high or low preference drinking from the F2 cross of B6 × D2 (21) and fol-
lowing parallel changes in marker allele frequencies as drinking responses
diverged. For even finer QTL localization, investigators turned to congenic
strains that possessed very small segments of B6 DNA surrounding a QTL
that were introduced into the D2 background strain, and vice versa (22; see
Chapter 9).

The identification of these QTLs has spurred the investigation of several
interesting candidate genes, including the dopamine D2, serotonin 5-HT1B,
and the µ-opioid receptor genes. Several potential neurobiological mecha-
nisms may contribute to the alcohol drinking differences seen among strains,
including receptivity to odor and taste, sensitivity to the intoxicating effects
of alcohol, rate of metabolic elimination of alcohol, rate of tolerance acquisi-
tion, and sensitivity to the presumptive rewarding effects of alcohol. Alcohol
stimulates the mesolimbic dopaminergic system that is considered to partici-
pate in the reward circuitry of the brain. Alcohol directly stimulates
dopaminergic neurons in vitro and elicits dopamine release in the nucleus
accumbens as measured with microdialysis in rats (23,24). Animals will
respond to increase dopamine levels in particular areas of this system,
showing that it is reinforcing (for review see ref. 25). In this context, it has
been suggested that alterations in the D2 receptor gene on chromosome 9
may be at the basis of the QTL affecting alcohol consumption mapped to that
region (26). D2 receptor gene-null mutant mice demonstrated considerably
less voluntary alcohol consumption than did their wild-type littermates (27).
Although not proving the case, this finding is consistent with some role for
the D2 receptor in this phenotype.



In humans, the opiate antagonist, naltrexone, has been somewhat success-
ful in the treatment of alcoholism (28). It is thought that by blocking opioid
action, the reinforcing effects of alcohol are reduced, thereby decreasing sub-
sequent alcohol consumption. A link between opiates and dopamine for the
reinforcing effects of alcohol has been demonstrated in rats. The administra-
tion of opiate antagonists has been shown to reduce dopamine release in the
nucleus accumbens of the mesolimbic dopaminergic system and subse-
quently reduce alcohol reward (29). Consistent with these contentions, Hall
et al. demonstrated a reduction in voluntary alcohol consumption and a
reduction in the reward properties of alcohol in µ-opioid receptor knockout
mice (30). Ethanol drinking has a large effect on brain-regional messenger
ribonucleic acid (mRNA) levels for µ and δ opioid receptors in both B6 and
D2 mice, although the strains do not differ (31). However, proenkephalin
and proopiomelanocortin mRNA levels were higher in B6 than in D2 mice
in several brain regions (32). Using both animal models and human subjects,
Gianoulakis and her group have documented substantial differences in opi-
oid peptide levels and activity between genetically susceptible groups. For
example, Dai et al. recently reported that subjects with a family history posi-
tive for alcoholism had higher baseline levels of β-endorphin than those with
a negative family history, and that stress elevated β-endorphin levels more in
the low-risk subjects (33).

Both alcoholic and depressed patients show reduced serotonin levels
(34,35). Whereas the D2 and µ-opioid receptors may be involved in initiat-
ing alcohol consumption, the 5-HT1B receptor may be involved in inhibiting
consumption. Crabbe et al. (36) demonstrated that mice lacking 5-HT1B
receptors showed elevated alcohol consumption levels, although subsequent
studies have been less consistent and offer a good object lesson in the diffi-
culties surrounding interpretation of knockout experiments (37). Collec-
tively, these results suggest a role for the D2, µ-opioid, and the 5-HT1B
receptor genes in alcohol-seeking behavior and demonstrate the usefulness
of targeted mutagenesis in furthering our understanding of how genes affect
phenotypic expression.

Beginning in the late 1940s, several selective breeding projects in rats
have provided genetic animal models very fruitful in generating information
about the neurobiology underlying preference drinking (for review, see 
ref. 17 ). Grahame et al. began selectively breeding mice for alcohol prefer-
ence and avoidance, resulting in the high alcohol preference (HAP) and low
alcohol preference (LAP) lines of mice that differ markedly in alcohol con-
sumption (38). Subsequent studies have shown that HAP mice may develop
greater sensitization to the locomotor stimulant effects of ethanol than LAP
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mice, and that the lines did not differ in development of acute functional tol-
erance to ethanol (39,40). Interestingly, the lines did not differ markedly in
sensitivity to develop an alcohol-conditioned place preference, another
measure of ethanol reinforcement (41). It will be very useful to compare the
genomes of HAP and LAP mice. For example, one would predict that they
will differ in the frequencies of some genes located within the QTL regions
previously mapped for ethanol preference.

4.2. Alcohol Withdrawal

The development of drug dependence produces functional changes in the
brain such that the subsequent removal of the drug results in a rebound dis-
play of symptoms, one of the key features of substance dependence.
Handling induced convulsions during withdrawal are a quantifiable trait in
mice. After acute or chronic exposure to alcohol, animals are lifted by the
tail and scored based on the severity of the observed convulsion. In 1973,
Goldstein demonstrated via selective breeding that chronic withdrawal
severity is a heritable trait (42). Since that time a number of studies with
inbred strains and selected lines have been conducted and more than 
20 inbred strains have been assessed for differences in withdrawal suscepti-
bility following chronic alcohol exposure. Among these strains, the B6 and
D2 strains show notable differences in withdrawal severity, with the D2
strain demonstrating severe alcohol withdrawal convulsions (43,44,45). An
important note is that genetic differences in withdrawal severity can also be
seen during acute withdrawal following a single, highdose administration of
alcohol (46,47).

In the early 1980s, a large-scale selection study was initiated (48).
Withdrawal Seizure-Prone (WSP) and Withdrawal Seizure-Resistant (WSR)
mice differed markedly in the severity of alcohol withdrawal-induced con-
vulsions. These lines have been shown to differ in withdrawal susceptibility
to other central nervous system depressant drugs, such as barbiturates and
benzodiazepines (49,50), which suggests that some genes influencing
ethanol withdrawal convulsion severity have pleiotropic effects on with-
drawal from similar classes of drugs. Furthermore, they underscore the
genetic complexity of drug withdrawal, because genes influencing ethanol
withdrawal convulsions do not have pleiotropic effects on certain traits mod-
eling other features of alcoholism, such as tolerance and initial sensitivity.

Although comparisons of behavioral differences between selectively bred
lines can identify patterns of genetically correlated and uncorrelated traits,
they are unable to identify the responsible genes. However, in other studies,
candidate genes have been explored. Because γ-amino butyric acid (GABA)



is the most ubiquitous inhibitory neurotransmitter and is known to play a role
in epilepsy and the inhibition of seizure activity, investigation of the role of
GABA in alcohol withdrawal convulsions seemed a plausible choice. Studies
have demonstrated that there are substantial differences between the two
selected lines in mRNA expression for genes encoding certain subunits of
the GABAA receptor. Decreases in the expression of α1, α3, and α6 subunits,
and increases in the γ2 subunit, are seen in the WSP but not the WSR line in
response to either acute or chronic alcohol administration (51,52).

Focusing on specific GABA receptor subunit genes offers evidence of the
convergence of information from gene expression and QTL analyses. A num-
ber of QTLs have been mapped for acute withdrawal to alcohol. Buck et al.
examined acute withdrawal in three populations derived from B6 and D2
inbred strains-BXD-recombinant inbred strains, a B6D2F2 intercross, and
lines of mice selectively bred from the B6D2F2 population for high and low
alcohol withdrawal (53). Their analysis initially indicated five possible QTLs
(on chromosomes 1, 2, 4, and 11) that appeared to influence withdrawal lia-
bility. The QTL on chromosome 11 encompasses a region of DNA that
includes genes that encode the γ2, α1, α2, and α6 subunits (as well as many
other genes). Furthermore, inbred strains that differ significantly in with-
drawal severities show significant allelic variation in the α6 receptor subunit
gene (54), and when chronically treated with ethanol, the D2 strain showed
greater increases in β2 subunit expression in cerebellum than the B6 strain,
in which regulation by ethanol was more complex (55). These data are con-
sistent with, but are insufficient to prove, the fact that the basis for the chro-
mosome 11 QTL effect on withdrawal is a polymorphism in one or more of
the GABAA receptor subunit genes. Several studies with mice bearing null
mutations for GABAA receptor subunits are reviewed by Dowling et al (see
Chapter 9). The chromosome 11 QTL was also mapped in similar studies of
acute pentobarbital withdrawal (56). Evidence for the involvement of
GABAA receptor genes in both alcohol and pentobarbital withdrawal has
been reviewed (57).

An interesting outcome of studies of ethanol withdrawal has been that the
genetic contributions to acute and chronic withdrawal are not entirely over-
lapping. Acute withdrawal is monitored 4 to 10 h after a single high-dose
alcohol injection, whereas chronic withdrawal is monitored after exposure to
alcohol vapor continuously for several days, or feeding animals a liquid diet
containing alcohol for many days. QTLs for chronic withdrawal after vapor
inhalation have also been mapped in BXD recombinant inbred mice (58).
Significant associations were found on chromosomes 1 and 19 and provi-
sional associations on chromosomes 1, 4, and 13 (59). Thus, QTL regions
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were mapped for both acute and chronic withdrawal on chromosomes 1 and
4, but new QTLs, unique to chronic withdrawal, were seen on chromosomes
13 and 19, and the strong associations with the GABA gene-rich area of chro-
mosome 11 seen for acute withdrawal were absent for chronic withdrawal.
For the QTL regions on 1 and 4 that overlap between acute and chronic with-
drawal, it may be the case that a single gene accounts for both, but this is not
yet proven. Finally, when chronic ethanol withdrawal severity was mapped
in genotypes extending beyond the B6- and D2-derived populations, addi-
tional findings emerged. Bergeson et al. used a large F2 cross between inbred
strains derived from the WSP and WSR selected lines, as well as the cross of
another pair of similarly selected lines in a genome-wide search for QTLs
(60). They found significant QTLs, on chromosomes 1, 4, 8, 11, and 14.
Thus, in this cross, the chromosome 11 QTL appeared also to influence
chronic ethanol withdrawal. Furthermore, tests for interactions among QTLs
showed that the chromosome 13 QTL also emerged but only when certain
genotypes were present at the chromosome 11 QTL.

As noted in preceding paragraphs of this Subheading, both inbred strains
and selected lines have demonstrated some correspondence of genetic con-
tribution to withdrawal from alcohol, pentobarbital, and diazepam.
Progress toward the identification of the gene or genes responsible for a
particular QTL involves narrowing the interval on a chromosome contain-
ing the effective DNA (see Chapter 9). For both acute and chronic alcohol
and acute pentobarbital withdrawal, the same QTL region on chromosome
4 was identified (53,56,58,60). Recently, this locus was narrowed from 200
possible candidate genes to fewer than 15 (61). Evidence from specialized
congenic strains derived from B6 and D2 crosses, as well as comparisons
of standard inbred strains, has provided compelling evidence that the
responsible gene may be a multiple PDZ–domain zinc finger protein gene
called Mpdz.

Subsequent analyses comparing other chromosome 4 congenics with
their background revealed that an interval of only 1.8 Mb contained the
QTL. Within this interval, there were only three known and three novel
(predicted) genes. Five could be confirmed, but of these five, only Mpdz
showed genotype-dependent differences in coding sequence and differen-
tial expression between B6 and D2. Furthermore, Mpdz was differentially
expressed between congenic and background strains, and lower expression
of Mpdz was correlated with higher withdrawal severity from ethanol and
pentobarbital across five inbred strains (62). In summary, no data currently
available can exclude Mpdz as the gene responsible for the chromosome
4 QTL effect on withdrawal.



Finally, expression-profiling studies with B6 and D2 mice have compared
expression of 7634 genes in B6 and D2 mouse hippocampi during acute and
chronic alcohol withdrawal (63). Twice the number of genes (2% vs 1%)
were affected by chronic withdrawal in D2 mice than in B6 mice. Clusters of
genes differentially expressed identified the Janus kinase/signal transducer
and activator of transcription and mitogen-activated protein kinase cellular
signaling pathways as potential mediators of differential cellular neuroadap-
tation during alcohol withdrawal. The Mpdz gene was also differentially
regulated in these arrays.

4.3. Preference and Withdrawal—Are There Common 
Genetic Influences?

Studies reviewed in the previous Subheadings 4.1. and 4.2. show that
genetic animal models have provided substantial evidence for genetic con-
tributions to both alcohol dependence and the voluntary self-administration
of alcohol. For each trait, advances in genomics have allowed recent
progress toward identifying the specific genes responsible. Are these related
traits or are the responsible genes entirely different? Evidence from the two
most often studied strains, B6 and D2, are suggestive of a genetic relation-
ship. B6 mice prefer alcohol in comparison to the D2 (and most other)
strains, and the D2 strain consistently demonstrates more severe withdrawal
than the B6 strain. This apparent negative genetic relationship could be
caused by the pleiotropic influence of some genes that act both to enhance
withdrawal severity and to limit alcohol self-administration (or vice-versa).
However, an important caveat is that the “correlation” is built entirely from
two genetic data points. If a third strain were included, it might show both
high consumption and high withdrawal, which would undermine the evi-
dence for pleiotropism.

In 1998, Metten et al. took the available literature on genetic differences
in preference and withdrawal and conducted a meta-analysis to determine
whether genotypes that show higher preference for alcohol do, in fact, con-
sistently demonstrate lower withdrawal scores than strains that do not prefer
alcohol (64). Across the 20-odd recombinant inbred strains from B6 and D2,
the negative correlation held. It also held in the High-Alcohol Withdrawal
and Low-Alcohol Withdrawal lines selectively bred from B6D2F2 for acute
withdrawal (Low-Alcohol Withdrawal mice showed higher preference) and
in the high and low ethanol preference lines also bred from the B6D2F2
(high ethanol preference lines showed lower withdrawal; 64 ). The negative
correlation also held for individual B6D2F2 mice tested for both traits (65).
Even when the analysis was extended to include genotypes that have alleles
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other than those derived from B6 and D2 inbreds, the negative genetic rela-
tionship endures. Fifteen standard inbred mouse strains differ widely in
withdrawal severity (45) and preference (19), and these two traits were nega-
tively genetically correlated (64, 66). Earlier studies with the WSP and WSR
mice had shown that WSR (the low withdrawal lines) drank more than
WSP (67).

This pattern of results clearly shows that there is a negative genetic rela-
tionship between the severity of withdrawal convulsions following ethanol
and the propensity to drink alcohol solutions. Yet, one issue that has not been
addressed is the physiological relationship between these two behaviors. It is
possible that a set of genes influences both behavioral tendencies but through
independent mechanisms. A more intriguing possibility is that postinges-
tional consequences affect alcohol preference. This hypothesis ventures that
animals who self-administer large amounts of alcohol do so because they do
not suffer adverse physiological symptoms during withdrawal. The phenom-
enon of conditioned taste aversion shows clearly that animals intoxicated
with a large alcohol injection will show a subsequent aversion for a flavored
solution that was paired with the alcohol injection (66). For this to “explain”
the current pattern of strain differences in withdrawal, however, it is neces-
sary to suppose that over evolutionary time, access to alcohol and experi-
ence with withdrawal symptoms following self-administration of large
quantities has led high withdrawal genotypes to avoid alcohol. There is cur-
rently no evidence for or against this hypothesis. In all the studies to date
(with the exception of the B6D2F2 mice), naive animals were studied for a
single trait-withdrawal or preference drinking. The B6D2F2 mice were
tested for both traits, but with an interval between, precluding the possibility
of drinking to ameliorate withdrawal.

An interesting finding has been that inbred strains that show High-
Alcohol Withdrawal and Low-Alcohol Preference also show high sensitiv-
ity to alcohol-conditioned taste aversion (66). This is consistent with the
mechanistic relationship just postulated between drinking and withdrawal.
Similarly, strains lower in ability to inhibit rewarded responding had high-
alcohol preference (13). Such attempts to piece back together more com-
plex phenotypes from essentially pairwise genetic relationships represent a
first step toward reassembling more complex genetic animal models.
Along these lines, our group has begun to explore multivariate analyses of
data from inbred mouse strains. Mice from 15 standard inbred strains were
tested for locomotor and thermal responses to multiple doses of ethanol,
pentobarbital, diazepam, or morphine. In other studies already mentioned,
voluntary oral self-administration and severity of withdrawal were



assessed. Multidimensional scaling analyses, which force a two-factor
solution to such complex data sets, revealed three major clusters of geneti-
cally correlated responses. Sensitivity to the thermal and locomotor effects
of ethanol, pentobarbital, and diazepam, and consumption of pentobarbital
and diazepam, formed one cluster. Sensitivity to all effects of morphine,
including morphine drinking, formed a second cluster, which included
alcohol drinking. The third cluster represented withdrawal severity from
alcohol, pentobarbital, and diazepam. Consistent with the negative genetic
correlations between alcohol withdrawal and drinking, as well as the pos-
tulated role of endogenous opioid peptides in alcohol dependence liability
discussed in Subheading 4.1., the latter two clusters were negatively corre-
lated in the analysis (68, 68a).

5. FUTURE DIRECTIONS

The use of inbred strains, selected lines, and genetically engineered mice
has contributed significantly to identifying the genetic and neurobiological
bases of alcoholism and addiction. Substantial progress is being made
toward the identification of individual genes that influence particular traits.
Thus far, such progress has necessarily depended on the application of
reductionism, i.e., employing partial genetic models that capture only part
of the complex human traits. As the example of withdrawal, drinking,
response inhibition, and endogenous opioids suggests, we are beginning to
move toward the ability to synthesize information about genetic influences.
More traits relevant for the addictions need to be modeled, particularly in
mice, in which the power of the genetic analyses is greatest.

However, the relationships between genes and behaviors are not one to
one. In addition to contributions of genes considered individually, there are
interactions among genes as well. Gene action is said to be epistatic when
the effect of one gene masks or potentiates the effect of another gene. An
excellent example of an epistatic interaction has been reported for pentobar-
bital withdrawal. Hood et al. demonstrated that the presence of particular
alleles at a QTL on chromosome 11 were effective in elevating withdrawal
but only if the mice also had specific alleles at a second QTL on chromosome
1 (69). Similarly, Bergeson et al. found that the effect of a QTL on chromo-
some 13 depended on genotype at the chromosome 11 QTL (60). They also
found significant epistatic interactions between QTLs on chromosomes 4
and 8 and 8 and 14. It is likely that epistasis occurs for all complex psycho-
logical disorders and that the importance of epistatic interactions increase
with the addition of comorbid disorders. The interaction of the chromosome
11 and 13 QTLs is especially interesting, as the most highly associated
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marker for chromosome 13 is in fact a candidate gene, which synthesizes
steroid 5-α reductase 1 (Srd5a1). This steroid enzyme is important in the
synthesis of neurosteroids (e.g., allopregnanolone), a class of endogenous
compounds that modulate GABAA receptors. When administered allopreg-
nanolone, WSP mice are more sensitive than WSR mice to the anticonvul-
sant effects (70), and they also show greater acute withdrawal from an acute
dose of allopregnanolone (71). Thus, the emergence of a significant interac-
tion between the chromosome 11 and 13 QTLs may reflect the physiological
interaction of these candidate gene products. As more candidate genes are
identified, the ability to study their independent and epistatic effects in ani-
mal models will increase, along with the difficulties attendant to the
increased statistical power needed to detect such interactions.

Discussions of genetic influence are only meaningful in the context of the
environment in which they are measured. An obvious environmental factor
is development-genes expressed at early developmental stages are not the
same as those expressed during adulthood. For the more permanent genetic
animal models (standard inbred strains, selected lines), there is a paucity of
information about the role of environmental milieu in affecting genetic dif-
ferences. Cabib et al. recently altered the environment of B6 and D2 mice
with a brief period of food shortage (72). This manipulation blocked an
amphetamine-conditioned place preference in D2, but not B6, mice, show-
ing that the gene–behavior link can be moderated by experience. The gener-
ality of such a finding across multiple mouse strains is, of course, open to
question as the results were derived from only two genotypes. In fact, the
environmental conditions that can affect strain-specific behavior may not
even be identifiable. In a study including eight strains, all environmental and
procedural conditions that could easily be rendered identical in three labora-
tories were controlled, and the strains were tested for several simple behav-
iors. Some behaviors (e.g., alcohol preference drinking) yielded strain
patterns that were nearly invariant across laboratories, but for other
behaviors (e.g., exploration of an elevated plus maze), different laboratories
found rather different patterns of strain differences. It is unknown what the
environmental mediators of these effects were, but it is clear that a given
genotype’s behavior may be quite different in various environmental circum-
stances (73). These issues are not without consequence for human studies.
Rose et al. report that urban vs rural living settings modulates the influence
of genetic risk on alcohol use in Finnish adolescents (74).

The refinement of phenotypes in various animal models will be extremely
important as well. There is a natural tendency for investigators to anthropo-
morphize the responses of animals in behavioral assays. Indeed, the ability



to do this is central to the validity of any such assay. Nonetheless, the per-
spectives of mouse and man differ, and different assays that seem to be
assessing quite similar functions to the experimenter may be tapping differ-
ent mouse dimensions. A recent study with inbred strains used a common
measure of alcohol intoxication, the rotarod. When strain sensitivities to
alcohol were compared between the accelerating and fixed-speed variants of
this test, they were found to be completely unrelated under some conditions
of testing, even though the apparatus was identical (75). The only reasonable
solution for such environmental sensitivity of genetic influences is to employ
a broad range of assessment tools before drawing conclusions about a geno-
type’s characteristic responses.

In summary, recent advances in the use of animal models are making it
possible to address some of the complexities associated with substance abuse
disorders. However, it is important to remember that there are limitations to
these studies, some of which were discussed here. It is also important to
remember that identification of the genetic basis in the animal model is not
the final endpoint—the ultimate goal is to use the genetic animal models to
in turn identify the underlying genetics of the human condition. What is rele-
vant in the animal model may or may not be relevant in the clinical realm.
Nonetheless, as the sophistication of genetic animal model experiments
increases, the potential for application to pharmacogenetic analyses to
develop novel therapeutics will come closer to being realized.
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Murine Models of Alcoholism 

From QTL to Gene

Chris Downing, Beth Bennett, and Thomas E. Johnson

1. INTRODUCTION

Most behavioral responses to alcohol are known to be influenced by
genetic factors. Human twin and adoption studies consistently show that sus-
ceptibility to alcohol abuse is heritable (1). The mode of inheritance is
unknown, but is certainly polygenic and multifactorial, with a substantial
environmental effect (1,2). Despite much research, the genes and causal
pathways determining susceptibility to alcohol abuse and dependence
remain relatively unknown. Identifying genes that mediate alcoholism will
improve strategies for diagnosis, treatment, and ultimately prevention.

Although the Diagnostic and Statistical Manual of Mental Disorders does
not define alcoholism per se, it identifies a number of behaviors that consti-
tute substance abuse and dependence (3). A brief summary of these criteria
is presented in Table 1. Because of ethical concerns, and because it is a com-
plex and heterogeneous disorder, the genetic basis of alcoholism is difficult
to study in humans. Murine models offer many advantages for elucidating
the genetic architecture underlying alcohol susceptibility. In addition to the
high degree of synteny and functional homology between mouse and human
genomes, transgenic and knockout technologies in mice allow functional
analysis of single genes that are not possible in most other organisms. The
use of a well-characterized animal system allows simplification of complex
behaviors by producing models that are relevant to the human condition.

Several behavioral phenotypes in mice have been used to model human
alcoholism, including alcohol consumption or preference, sedative–hypnotic
sensitivity, physical dependence and withdrawal, psychomotor activation,
ataxia, hypothermia, and conditioned place preference (CPP). Each of these
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phenotypes (Table 2; refs. 4–12) is believed to be clinically relevant and may
play a role in susceptibility to alcoholism. Our own work has focused on the
sedative–hypnotic properties of alcohol, which reflect one form of initial
sensitivity. Schuckit and colleagues have shown that, in humans, initial sen-
sitivity to alcohol is a reliable predictor of alcohol-related problems (13,14).
Sons of alcoholics had less intense reactions to alcohol as measured by sub-
jective self-reports, body sway indices, changes in level of several hormones,
and electrophysiological changes. Follow-up evaluations 10 yr later showed
that a low level of response to alcohol was associated with a fourfold greater
likelihood of future alcoholism (13–15). Although initial sensitivity has been
shown to be an important factor in susceptibility to abuse alcohol, the
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Table 1
DSM-IV Criteria for Substance Abuse and Dependence

Substance abuse
A maladaptive pattern of substance use leading to clinically significant impairment,
as manifested by one or more of the following, occurring within a—12-mo period:

a. Recurrent substance use resulting in a failure of major obligations-home, work, and
so on.

b. Recurrent substance use in situations in which it is physically hazardous.
c. Recurrent legal problems related to the substance.
d. Continued use despite having persistent social or interpersonal problems related

to the substance.

Substance dependence
A maladaptive pattern of substance use, leading to clinically significant impairment,
as manifested by three or more of the following, occurring at any time in a 12-mo
period:

a. Tolerance, either a need for increased amounts of the substance to achieve
intoxication, or a diminished effect with continued use of the same amount of
the substance.

b. Withdrawal—each substance has a characteristic withdrawal syndrome.
c. The substance is taken in larger amounts over a longer period than was

intended.
d. Persistent, unsuccessful attempts to cut down or control the substance use.
e. Much time spent in activities necessary to obtain the substance.
f. Social, occupational, or recreational activities are given up or reduced because

of substance abuse.
g. Substance use is continued despite knowledge of having a persistent physical or

psychological problems caused by the substance.

DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, 4th ed.
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Table 2 
Behavioral Responses to Alcohol Investigated in Mice

Phenotype Description

Loss of righting Measured by injecting a mouse with a high (3.3–5.1 g/kg) 
reflex dose of alcohol. The mouse is placed on its back in a 

V-shaped trough. When the mouse can right itself three
times within 60 s, it has regained the righting reflex.a

Alternatively, mice are placed in cylindric restrainer,
which is rotated every 2–3 s. Mice lose the righting 
reflex if they cannot right themselves from a supine 
position within 5 s.b

Consumption Reflects the rewarding or reinforcing properties 
or preference of drugs (alcohol). Mice are typically given a choice

between bottles containing water or alcohol (6–10%).
Consumption is reported as gram/kilogram alcohol 
consumed, whereas preference is a ratio of 
alcohol to total fluid consumed.c In some 
paradigms, mice are first forced to drink ethanol for 
2–3 d, and then given a choice between water and 
ethanol.d

Dependence and Dependence is usually achieved by maintaining mice on 
withdrawal ethanol vapor for a number of days in an inhalation

chamber. Withdrawal is measured as handling-induced
convulsions.e

Psychomotor Believed to be a measure of the rewarding or 
activation reinforcing properties of alcohol. Animals are 

injected with a low dose of alcohol (1.5–2 g/kg) and
activity is assessed, usually in automated activity 
monitors .f

Ataxia An index of motor coordination. Mice are injected with
alcohol, then placed on a rotarod or wooden dowel,g or
placed in a chamber with a metal grid floor (grid test).h

These tests have been commonly used to assess 
tolerance.

Hypothermia Measured as a temperature change following alcohol
injection using a rectal probe.a



phenomena of tolerance (decreased sensitivity to a drug that develops with
repeated exposure) and sensitization (an increase in drug sensitivity as a
result of repeated exposure) also contribute to alcohol abuse and depen-
dence. Determining the roles that each of these (initial sensitivity, tolerance,
and sensitization) play, and how they interact to produce alcohol abuse and
dependence, will be critical for formulating rational therapies in humans.

In this chapter, we outline a method for identifying genes mediating com-
plex traits in mice (Fig. 1) and describe its use in mapping genes mediating
alcohol-related behavioral responses. The first step is demonstrating genetic
variation in the phenotype of interest, usually by detecting inbred strain dif-
ferences or selective breeding. Next, quantitative trait locus (QTL) mapping
is used to identify chromosomal regions influencing the phenotype. In
murine research, initial mapping is often done in recombinant inbred strains
(RI), with verification in the second filial (F2) or backcross (BC) popula-
tions or by creating congenic strains. The QTL region is then narrowed by
using a variety of breeding schemes, including interval-specific congenic
recombinant (ISCR) strains. These strategies can reduce the QTL interval to
a point where candidate gene evaluation is feasible, ideally less than a centi-
morgan (cM). Bioinformatics are then used to investigate the deoxyribo-
nucleic acid (DNA) sequence within this narrowed region and identify
candidate genes. Strategies for demonstrating that a candidate gene underlies
the QTL of interest include detecting DNA sequence variation, demonstrating
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Table 2 (continued)

Phenotype Description

Conditioned place Reflects rewarding or reinforcing properties. CPP is 
preference (CPP) induced by first repeatedly pairing ethanol and saline

injections with distinctive floors within a chamber. On
the test day, mice are given access to both floors within
the chamber. CPP is measured as the amount of time a
mouse spends on the floor paired with ethanol.i

aAdapted from ref. 4.
bAdapted from ref. 5.
cAdapted from ref. 6.
dAdapted from ref. 7.
eAdapted from ref. 8.
fAdapted from ref. 9.
gAdapted from ref. 10.
hAdapted from ref. 11.
iAdapted from ref. 12.
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differential gene expression, and functionally evaluating the effects of indi-
vidual genes using transgenic (knockout and knockin) mice. We report here
results from our laboratory and others, which have sought to identify genes
that mediate alcohol-related behavioral traits. Although our research has
focused on the sedative–hypnotic properties of alcohol, our discussion will
include many different alcohol-mediated behaviors.

2. IDENTIFYING GENETIC INFLUENCES

2.1. Inbred Strains

Inbred strains are created by 20 or more generations of brother–sister
mating, in which homozygosity is achieved at more than 99% of all loci (16).

Identify relevant strains:

Inbred strains, selected lines

Initial QTL mapping:

RIs, F2, BC

QTL verification:

F2, BC, congenics, short-term selection

Narrow QTL interval:

Congenics, ISCS, ISCR, AIL, GHS

Evaluate candidate genes

in narrowed interval

Detect sequence differences
Detect differential gene expression:

RT-PCR, microarrays

Create transgenic mice:

knockouts, knockins

RNA interference
Genetic Complementation

Fig. 1. A general strategy for quantitative trait locus mapping and gene identifi-
cation using a murine model. QTL, quantitative trait locus; RIs, recombinant
inbreds; F2, second filial; BC, backcross; ISCS, interval-specific congenic strains;
ISCR, interval-specific congenic recombinant; AIL, advanced intercross lines;
GHS, genetically heterogeneous stock; RT-PCR, reverse transcription polymerase
chain reaction.



Thus, all mice within a given inbred strain are essentially genetically identical
(isogenic). When such strains are reared and assessed under uniform condi-
tions, phenotypic differences among strains demonstrate a genetic influence;
phenotypic variation within an inbred strain is, by definition, the result of
environmental effects. One of the primary strengths of inbred strains is the
accumulated database of phenotypic and genotypic observations across time
and in different laboratories. Recently, it has been proposed that such inbred
strain phenotypic differences, in conjunction with a single nucleotide poly-
morphism (SNP) database, can be used to identify QTLs (17). Traditionally,
however, inbred strains have been used to demonstrate genetic variation, to
estimate genetic correlations among phenotypes (which implies shared
genetic control), and to identify strains for potential crosses that would
maximize successful QTL detection.

Inbred strain differences have been reported for a number of alcohol-
related behavioral measures, including sedative–hypnotic sensitivity, con-
sumption or preference, dependence and withdrawal, locomotor activation,
ataxia, hypothermia, and CPP (Table 3; refs. 11,18–23). Table 3 is not meant
to be all inclusive (see ref. 6) but to show the range of genetic variation
observed among the more commonly used inbred strains. It is important to
note that widely varying results have been reported for many alcohol pheno-
types in inbred mice. These discrepancies are most likely owing to differ-
ences in dose of ethanol, route of administration, and paradigm used, along
with environmental influences. The most consistent results have been
reported for the C57BL/6J (B6) and DBA/2J (D2) strains, the two most com-
monly used inbred strains of mice in alcohol research. These strains are
highly polymorphic (www.jax.org) and differ significantly in a number of
alcohol-related behavioral responses (Table 3). In general, B6 mice are high
consumers, have less severe withdrawal reactions, show little ethanol-
induced locomotor activation, and display marked ethanol-induced ataxia. In
contrast, D2 mice are low consumers, have more severe withdrawal reac-
tions, show high activation, and are less impaired in tests of ataxia. These
two strains have been crossed to create RI lines and segregating populations,
in which QTL mapping can be performed.

2.2. Selected Lines

In selective breeding, animals displaying extreme scores (high and low)
for a given phenotype are chosen to propagate the next generation. In princi-
ple, selective breeding will identify all alleles in a population that increase
a phenotype, and will increase the frequency of those alleles at all relevant
loci in the high line; a parallel process occurs in the low line (24). Selection
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Table 3 
Inbred Strain Differences in Several Alcohol-Related Behavioral
Phenotypes

Hypnotic Consumption/ Dependence/ Locomotor 
Strain sensitivitya Preferenceb Withdrawalc activationd Ataxiae

C57BL/6 Inconsistent High Mild Low Severely
results: low, consumers withdrawal activation impaired 
moderate, (68%) convulsions (3000 cm) (2.22)
or high (11.20)
sensitivity 
(96.2 min)

DBA/2 Inconsistent Low Severe High Mildly
results: consumers withdrawal activation impaired 
moderate or (20%) convulsions (3700 cm) (1.29)
high sensitivity (36.75)
(72.2 min)

129 High  Low to Severe Low Moderately
sensitivity moderate withdrawal activation impaired
(140.4 min) consumers convulsions (2460 cm) (1.97)

(25%)

BALB Moderate Moderate Mild High Moderately 
sensitivity consumers withdrawal activation impaired
(64.4 min) (29%) convulsions (6500 cm) (1.48)

(5.70) 
C3H Inconsistent Moderate Severe Moderate Moderately

results: consumers withdrawal to high impaired 
very low (29%) convulsions activation (1.84)
or very high (32.21) (3600 cm)
sensitivity 
(34.4 min)

aData are adapted from ref. 11, expressed as duration of loss of righting reflex following a
4 g/kg dose of ethanol.

bData are adapted from ref. 18, expressed as the percent of total fluid intake from the
ethanol-containing bottle in a two-bottle choice test.

cData are adapted from ref. 19, expressed as area under the curve for handling-induced
convulsions, following chronic ethanol exposure.

dData are adapted from ref. 20, expressed as the total distance traveled in 30 min (cm) fol-
lowing injection of 2 g/kg ethanol.

eData are adapted from ref. 11, expressed as mean number of errors made in a 3-min grid
test following injection of 2 g/kg ethanol.



pressure is not imposed on nonrelevant loci, so these loci will continue to
segregate, unless they are fixed because of linkage to genes that are selected.
Mouse selection studies begin with an outbred population or genetically het-
erogeneous stock (GHS) of mice, in order to ensure genetic variability on
which selection pressure can act. Selected lines are important for two rea-
sons: (a) they provide conclusive evidence for a genetic influence on a given
phenotype, i.e., there is additive genetic variance and the trait is heritable;
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Table 4 
Selected Lines of Mice and Rats Used in Alcohol Research

Selected line Phenotype References

Long-sleep and Duration of loss of the righting reflex 4
Short-sleep mice following a 4.1 g/kg dose of ethanol

HOT and COLD mice Temperature decrease following a 3 g/kg 24
dose of ethanol

Withdrawal Handling induced seizures following 3 d of 26
Seizure-Prone forced ethanol inhalation
and-Resistant mice

FAST and SLOW mice Locomotor activation following a 1.5 or 9
2 g/kg dose of ethanol

High- and low-alcohol Two bottle choice—consumption (g/kg) of 27
preference mice 10% ethanol over 30 d

High- and Low-Acute Difference in blood ethanol level at regain 28
Functional Tolerance of ability to remain on a dowel following 
mice a g/kg dose of ethanol

Severe or mild ethanol Multimeasure index of withdrawal after 29
withdrawal mice liquid ethanol diet

Preferring and Preference for drinking 10% ethanol 30
Nonpreferring rats

High- and low-alcohol Preference for drinking 10% ethanol 31
drinking rats

Sardinian Preferring and Preference for drinking 10% ethanol 32
Nonpreferring rats

High- and low-alcohol Duration of loss of the righting reflex 33
sensitive rats
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and (b) they allow the detection of correlated characteristics. Selected lines
of mice and rats have been developed for a number of alcohol-related behav-
ioral phenotypes, including hypnotic sensitivity, withdrawal, consumption,
locomotor activation, hypothermia, and acute functional tolerance (Table 4;
refs. 4,9,25–33).

3. QTL DETECTION

3.1. RI Strains

It is common in murine research to use RI strains in the first stage of QTL
mapping. RI strains are generated by crossing two inbred strains, and
intercrossing these offspring to create an F2 population, where genetic seg-
regation occurs. Subsequent inbreeding leads to, and fixes, unique recombi-
nations of parental alleles in each RI strain. RI strains were originally created
to test for single gene effects; if the RIs phenotypically resembled one
parental strain or the other, with no intermediate phenotypes, the influence
of a single gene could be inferred. RI strains can also be used to identify and
position genes that have a smaller effect on the phenotype of interest.
Creation of RIs results in a fourfold expansion of the genetic map (34),
further facilitating the mapping of QTLs. This is valuable because most
behavioral phenotypes, including alcohol-susceptibility phenotypes, are
complex, quantitative traits with a continuous distribution, and are likely
influenced by multiple genes (QTLs), each with a small effect. In alcohol
research, no RI strains have been used as extensively as the BXD RIs,
derived from a cross between B6 and D2 mice.

One major advantage of using RIs for QTL mapping is that each data-
point is a strain mean (and variance), derived by assessing several animals
for a given phenotype. Multiple phenotypic assessments of the same geno-
type effectively reduces environmental variance, which raises heritability
and allows for a more accurate measurement of the genetic effect (35,36).
Another advantage of using RIs for QTL mapping is that, unlike segregating
populations, RI strains need only be genotyped once for each marker. The
subsequent strain distribution pattern is stable; other investigators simply
assess the RIs for a given phenotype and correlate the phenotypic data with
the existing strain distribution pattern.

There are also some drawbacks to using RIs for QTL mapping. First, if
one wants new strains, there is a considerable amount of time and expense
necessary to generate them (at least 22 generations). Second, only a few RI
strains are currently available, which limits the power to detect and map
QTLs. However, this may be changing, as the Williams laboratory is assaying



thousands of markers in several RI strains that share B6 as a parental strain
(35). This collected RI set, termed BXN, consists of more than 100 strains,
which will improve the utility and power of QTL mapping. The power of
RIs for QTL mapping can also be significantly increased by using RI inter-
cross or RI BC designs (RIX and RIB, respectively; ref. 35). Third, RI
analysis can only detect the additive component of QTLs, as there are no
heterozygotes in which to observe dominance. Epistasis (gene–gene inter-
actions) evaluation is limited to that detected in homozygotes (i.e., addi-
tive by additive).

The principles behind QTL mapping with RIs are relatively straight-
forward; mapping involves correlating genotype with phenotype.
Animals from a number of RIs are scored or measured for the phenotype
of interest and assayed for a number of genetic markers throughout the
genome. Significant correlations between a marker and a phenotype indi-
cate the presence of a linked QTL. Although early studies in mice used
restriction fragment length polymorphisms (37) and other, less than ideal,
markers, the polymerase chain reaction (PCR) and other recent DNA
technologies have allowed repetitive sequences (microsatellites) to be
used as markers for mapping. Microsatellite markers (also known as sim-
ple sequence repeats) are quite abundant and highly polymorphic in the
mouse (38), with the dinucleotide repeats of the monoidotyrosine series a
common choice in murine mapping. The detection and use of SNPs as
genetic markers will provide a much denser genetic map than is currently
available.

In our laboratory, we have used a multistage mapping strategy for identi-
fying and localizing QTLs mediating hypnotic sensitivity to ethanol. In the
first stage, RI strains were derived from a cross between long-sleep and
short-sleep mice (LS and SS, respectively). LS and SS mice were selec-
tively bred for sensitivity and resistance to the sedative–hypnotic effects of
ethanol. Starting from a GHS of mice, animals were selected for differences
in loss of righting reflex due to ethanol (LORE) following a 3.3–4.1 g/kg
dose of ethanol (for a description of the selection procedure, see ref. 39).
After 15 generations of selection, SS mice had a mean LORE duration of
10 min, whereas LS mice had a mean LORE duration of more than 2 h
(40). Because differences in ethanol metabolism between LS and SS mice
are small, their differential response to ethanol is believed to be mediated
primarily by the central nervous system (40–43). Heritability estimates for
LORE range from 0.18 to 0.42, with seven to nine QTLs mediating the dif-
ference between LS and SS, or inbred LS (ILS) and inbred SS (ISS) mice
(4,44–46). LORE has been characterized as a relatively simple additive
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genetic system, with little evidence for significant dominance or maternal
effects, some suggestion of epistasis, and sex effects of small magnitude
(44–46). These observations suggested that mapping QTLs for LORE
duration in populations derived from LS and SS mice should be successful.

RI strains were created at the Institute for Behavioral Genetics (IBG) by
reciprocally crossing LS and SS mice. Six males and females from the first
filial (F1) generation were brother–sister mated, and the F2 generation ran-
domly brother–sister mated to create 40 LS × SS RI lines (45). Initial QTL
analysis in the 27 extant RI strains involved both single-point and interval
mapping for LORE duration and blood ethanol concentration following a 4.1
g/kg dose of ethanol (47,48). In single-point analysis, markers are correlated
individually with phenotypic data. For each marker, one-way analyses of
variance (ANOVA) were carried out with LORE or blood ethanol concentra-
tion as the dependent variable, and RI strains were grouped by allele type
(LS-like or SS-like). A significant F test (a significant difference in LORE
duration between the two marker classes at the α = 0.05 level) was taken as
evidence for a QTL linked to the marker. Eleven provisional QTLs for LORE
duration were identified by point analysis, using 124 markers distributed
throughout the mouse genome; these putative QTLs were located on chro-
mosomes 1(3 QTLs), 2(2), 4(2), 9(2), 16, and 18 (47,48). The strongest asso-
ciation for LORE was found at marker D2Mit21, which is located 80 cM
from the centromere on chromosome 2. This QTL explained about 40% of
the genotypic variance in LORE.

Although single-point analysis can detect putative QTLs, there are several
drawbacks to this approach (37): (a) if the QTL does not lie at the marker
locus, its phenotypic effect may be underestimated, depending on the recom-
bination fraction between the marker and the QTL; (b) if the QTL does not
lie at the marker locus, substantially more progeny may be required for QTL
detection; and (c) single-point analysis does not define the position of the
QTL; it cannot distinguish between tight linkage to a small-effect QTL and
loose linkage to a large-effect QTL.

Lander and Botstein (37) described an improved QTL mapping strategy,
interval mapping, which overcomes some of the problems associated with
single-point analysis. Interval mapping tests the hypothesis that a QTL
affecting the trait lies between a pair of flanking markers. This procedure
involves fitting a model (additive, dominant, recessive, or unconstrained) at
a series of positions throughout the interval between two flanking markers;
maximum-likelihood methods or linear regression can be used to estimate
QTL position and effect size (37,49). Compared with single-point analysis,
interval mapping gives better estimates of phenotypic effects and QTL



positions. Lander and Botstein (37) derived formulas for interval mapping
that are applicable to both F2 and BC populations.

Fulker et al. (50) derived an algorithm for interval mapping in RIs based
on linear regression. Using this approach, 12 provisional QTLs were
detected which influenced LORE (48). Table 5 shows a comparison of pro-
visional QTLs identified by single-point analysis and interval mapping. Both
single-point and interval mapping strongly support a QTL mediating LORE
at 80 cM on chromosome 2 (48). This QTL accounted for a 20-min differ-
ence in LORE between LS and SS lines. Using multiple regression, 62% of
the genetic variance in LORE was explained by the three most significant
QTLs on chromosomes 1 (45 cM), 2 (80 cM), and 6 (46 cM). In contrast,
only 44% of the genetic variance in LORE duration was explained by these
three QTLs using single-point analysis, illustrating one strength of interval
mapping over single-point QTL analysis. A second major advantage is the
more precise QTL localization.
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Table 5 
Detection of QTLs for Ethanol Sensitivity by Single-Point and Interval
Mapping

Single-point method Interval method

Genetic Genetic 
variance variance 

Marker explained Chromosome explained 
(cM) F p value (%) (cM position) ta p value (%)

D1Mit20 (24) 4.22 0.025 14.4 1 (45) 3.14 0.00022 25.4
D1Mit46 (42) 2.75 0.042 18.6 1 (99) 1.98 0.0297 10.4
D1Mit45 (58) 7.96 0.005 21.1 2 (80) 4.04 0.0002 37.1
D2Mit7 (26) 5.65 0.005 32.0 3 (74) 2.01 0.0300 13.8
D2Mit21 (80) 16.33 0.001 39.5 4 (56) 1.92 0.0337 9.3
D4Mit11 (55) 3.25 0.042 11.5 4 (74) 2.00 0.0282 10.4
D4Mit42 (75) 3.97 0.024 13.7 5 (72) 1.89 0.0395 9.3
D9Mit42 (5) 5.30 0.021 30.6 6 (46) 2.33 0.0164 19.7
D9Mit12 (50) 7.90 0.002 39.7 12 (43) 2.18 0.0195 12.6
D16Mit5 (32) 4.6 0.021 15.5 13 (25) 2.23 0.0187 15.9
D18Mit3 (16) 4.22 0.025 14.4 16 (41) 2.26 0.0165 13.6

18 (16) 2.06 0.0253 11.0

aPosition of maximal t value. Data are from reference 48.



Murine Models of Alcoholism 211

3.2. Segregating Populations

Although RIs are often employed in the preliminary stages of QTL map-
ping, they are generally not efficient at detecting QTLs because of the low
power associated with the limited number of strains available. Consequently,
most groups have opted to accept a higher number of false positives in map-
ping with RI strains. This means that these QTLs should be viewed as provi-
sional and need to be verified, typically using segregating populations, such
as an F2 intercross or BC. When two inbred strains are crossed, their off-
spring are known as the first filial, or F1, generation. Although offspring will
be heterozygous at all loci for which the parental strains are polymorphic,
every mouse in the F1 generation is genetically identical. Mice from the F1
generation can be intercrossed to create the second filial, or F2, generation.
Alternatively, F1 mice can be mated back to either or both parental strains,
in a design known as a BC. In both F2 and BC populations, genetic segrega-
tion takes place, thus allowing QTL mapping. The main advantage that seg-
regating generations have over RI strains for QTL mapping is that sample
size is not a limitation; therefore, the power to detect and localize QTLs, and
estimate their effect size, is usually greater. In general, the F2 design is more
powerful than the BC, except in the case where dominance is observed,
where one of the BC matings (to the strain carrying the recessive allele) will
yield more informative progeny.

Typically, inbred strains that differ for a trait of interest are crossed to
produce segregating generations for QTL mapping. Alternatively, F2 and
BC mice can be produced by crossing lines that were selectively bred for
differences in the relevant phenotype. Or, one can inbreed mice that were
selectively bred, and then cross these lines to create mapping populations.
This latter situation creates an ideal QTL mapping population. Selective
breeding and subsequent inbreeding creates parental strains that are fixed for
alternate alleles at both QTL and marker loci, and all alleles should be in
association (all alleles that increase a trait are fixed homozygous in one line,
whereas all alleles that decrease a trait are fixed in the other line; ref. 16). In
contrast, whereas mice within a given inbred strain are homozygous at virtu-
ally all loci, fixation at any given locus is a chance occurrence; thus, inbred
strains, although differing for the trait of interest, will likely have some al-
leles that increase the phenotype and some alleles that decrease the pheno-
type. The drawback to selective breeding and subsequent inbreeding is the
many years necessary to create the mapping population.

In our laboratory, F2 mice were generated by crossing the ILS and ISS
lines, which had been produced by inbreeding the LS and SS lines. At generation



30 of inbreeding, ILS females were crossed with ISS males (L/S), with the
reciprocal crosses also made (S/L), to create an F1 population (51). All four
possible F1 crosses were made (L/S × L/S, L/S × S/L, S/L × L/S, and S/L ×
S/L) to produce F2-generation mice. Mice from the F2 generation (n = 1072)
were then assessed for LORE duration following a 4.1 g/kg dose of ethanol.
Mice were tested twice, on day one, and again 7–10 d later, with QTL map-
ping performed on the average of the two LORE measures. Selective genotyp-
ing was employed, with 92 of the longest- and 92 of the shortest-sleeping F2
mice assayed for the twelve provisional QTLs (flanking markers) identified in
the RI study. Selective genotyping reduces the cost of QTL analysis by mea-
suring a large number of mice for a given phenotype but only genotyping the
phenotypic extremes. The logic behind selective genotyping, as discussed by
Lander and Botstein (37), is that some progeny contribute more linkage infor-
mation than others, with the most informative progeny found in the phenotypic
extremes. For example, progeny with phenotypic values greater than 1 stan-
dard deviation (SD) from the mean comprise only 33% of the distribution
(population) but capture about 80% of the genetic variance.

We performed QTL mapping of the selectively genotyped extremes using
the programs Mapmaker/EXP and Mapmaker/QTL. Mapmaker/EXP cre-
ates a genetic linkage map, whereas Mapmaker/QTL uses maximum likeli-
hood methods for QTL detection (37). Other QTL mapping programs exist,
such as Mapmanager/QT and QTL Cartographer (52,53), with the various
programs differing in their methods of QTL detection and other options
available. When selective genotyping is performed, linear regression meth-
ods cannot be used because phenotypic effects would be greatly overesti-
mated because of biased selection of progeny. Maximum likelihood
methods can be used when all progeny have been phenotyped, with geno-
types from the nonextremes recorded as missing data (37). A logarithm of
the odds (lod) score is calculated as the test statistic. A lod score is the loga-
rithm of the odds of linkage to a QTL divided by the odds of no linkage,
given a particular dataset. This test statistic can be calculated at various
points throughout the genome. The lod score follows a chi-square distribu-
tion, and can be converted into a chi-square statistic by multiplying by
2(loge10) ≈ 4.6 (54). Similarly, with the regression approach, a likelihood
ratio statistic can be calculated using mean squareregression/mean squareresidual,
at any point throughout the genome (49). Although beyond the scope of this
chapter, several excellent papers have discussed (and argued) criteria to be
used for declaring statistical significance of a linked QTL (37,55–57).

Using a whole-genome scan, the Mapmaker programs, and selective geno-
typing, only two out of twelve provisional QTLs previously identified in the
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LS × SS RI strains were confirmed in the F2 mice, those on chromosomes 1
and 2 (51). These confirmed QTLs had maximum lod scores of 5.4 at 54 cM
on chromosome 1, and 6.6 at 85 cM on chromosome 2. Another QTL on
chromosome 18 was confirmed but at a lower level of certainty (lod = 1.8).
Three new QTLs with lod scores of 3.4 or higher were also detected on chro-
mosomes 8 (59 cM), 11 (49 cM), and 15 (46 cM). In addition, using the
entire F2 population, a weak QTL influencing LORE was identified, closely
linked to the Tyr locus on chromosome 7 (58). Thus, from the initial RI
analysis and subsequent F2 mapping, seven QTLs mediating LORE were
identified, and have been named Lore1–Lore7, for LORE (51). These seven
QTLs accounted for 59% of the genetic variance in LORE.

4. QTL VERIFICATION

4.1. Short-Term Selection

One strategy for conforming a provisional QTL is short-term selection.
Belknap et al. outlined the use of an F2 population derived from a cross
between inbred strains (B6 and D2) that differed in alcohol preference as the
foundation population for selective breeding (59). The presence of only two
alleles at each locus greatly facilitates marker genotyping and QTL analysis.
Because the two possible parental alleles are at an initial frequency of 0.50
(p = q = 0.50), changes in allele frequency as a result of selection can easily
be monitored. Furthermore, the response to selection is at or near maximal at
intermediate allele frequencies (16), which greatly increases the probability
of producing extremely divergent high and low lines in only a few genera-
tions. This design was used to verify a QTL mediating alcohol preference on
chromosome 3 (59).

4.2. Segregating Congenics

Another method for quick confirmation of a QTL is what we have called
“segregating congenics” (60,61). This method is similar to short-term selec-
tion as described in Subheading 4.1. In our laboratory, segregating congenics
were created for the five Lore QTLs with the largest effects (explaining >5%
of the genetic variance), Lore1–Lore5. Segregating congenics (60,61) are
homozygous for the QTL of interest but unfixed at other relevant loci. They
are created by screening an intercross population for relevant markers flank-
ing a QTL, which allows a single QTL to be made homozygous on an other-
wise segregating genetic background. Thus, the segregating congenics are
fixed for one QTL but will still segregate new combinations of unfixed
QTLs. The increased genetic variance owing to the segregating loci will
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make the phenotype almost as variable as in an F2 population. We began by
creating an F2 population from a cross between ILS and ISS mice; F2 animals
were genotyped until at least one male and female homozygous and nonre-
combinant for markers flanking each of the five QTLs were identified (61).
These animals were then intercrossed to create F3 generation mice, which
were tested for LORE duration following a 4.1 g/kg dose of ethanol. Results
confirmed four of the five Lore QTLs: lines homozygous for the ILS allele for
Lore1, Lore2, and Lore5 showed an approx 30-min-longer sleep time than
lines homozygous for the ISS allele, whereas for Lore4, the ILS line had a 20-
min-longer sleep time. The Lore3 QTL was not confirmed. Thus, in one gener-
ation of marker-assisted selection, lines homozygous for the five major Lore
QTLs were constructed, with four of the five Lore QTLs being confirmed. The
use segregating congenics is a quick way to verify QTLs with large effects.

4.3. Congenics

One of the most common strategies for confirming a QTL is the use of
congenics, in which a QTL is introgressed onto a uniform genetic back-
ground. Congenics are also a good tool for fine-mapping, as described in
Subheadings 5.1. and 5.3. In murine research, several strategies for creating
congenics have been proposed. Classically (62), congenic strains have been
constructed by crossing two inbred strains of mice that differ for a given phe-
notype, with the goal of transferring a QTL from strain A (the donor strain)
onto the background of strain B (the recipient strain). This is illustrated in
Fig. 2 for our Lore1 congenics. The two strains are crossed, and the resulting
F1 mice are then backcrossed to the inbred recipient strain. Offspring dis-
playing the phenotype of interest are again backcrossed to the recipient
strain. With each BC generation, approximately one-half of the donor
genome is lost, except in the region linked to the chromosomal segment
(containing the QTL) being selected for. Donor strain genomic material
linked to this differential locus will be eliminated much more slowly. After
10 generations of backcrossing, the recipient strain will contribute approx
99.8% of the unlinked genome, but the size of the region flanking the QTL
of interest will still be quite large, approx 20 cM (38,62). At this point, mice
heterozygous for the donor region are intercrossed to produce mice homozy-
gous for the differential locus; these animals are termed “congenics.”

To avoid the problem of multiple QTLs being introgressed onto the recipi-
ent background and to speed up the process, one can use genetic markers to
introgress one QTL at a time onto the recipient background. By selecting
genetic markers flanking a QTL from the donor strain, coupled with selection
for recipient genome in unlinked regions (in a process known as “speed
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Fig. 2. Construction of a Lore congenic strain. Reciprocal F1 mice are backcrossed
to both parental inbred short-sleep (ISS) and inbred long-sleep (ILS) strains, creating
the N2 generation. Through generation N10, heterozygotes nonrecombinant in the Lore
interval are backcrossed to the inbred parent by assessing flanking markers (see ref.
39). The box represents the quantitative trait locus (QTL), and the vertical lines define
the right and left markers flank that QTL. LL is the left marker from the ILS, LS from
ISS; RL is the right flanking marker from ILS, RS from ISS. The wide bar represents the
ILS chromosome and the dark box the ILS QTL. After 10 generations of backcrossing,
heterozygotes are intercrossed; mice homozygous for the donor region are mated to
produce the congenic strain. LORE, loss of righting reflex owing to ethanol.



congenics,” refs. 63–65), one can introgress a single QTL onto the recipient
background and drastically reduce the number of BC generations needed to
create the congenic mice.

4.4. QTL-Marker-Assisted Counter Selection

We also created congenic lines for Lore1–Lore5 using a strategy we term
“QTL-Marker-Assisted Counter Selection” (66). This approach is an alterna-
tive to speed congenics that takes advantage of prior knowledge of map posi-
tions of major QTLs. In QTL-marker-assisted counter selection, one selects for
donor genetic markers flanking a single QTL, whereas selecting against donor
genetic markers at the other QTLs. In our laboratory, F1 mice produced from
reciprocal crosses between ILS and ISS were backcrossed to both parental
strains to produce the N2 generation. “N” refers to the generation of backcrossing;
for example, N2 refers to the second generation of backcrossing. Three hundred
and eight N2 mice were genotyped at pairs of markers flanking each of the five
Lore regions, with markers (based on Mouse Genome Database cM positions)
chosen to enclose the 1-lod support interval for each Lore QTL (Fig. 3).
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Fig. 3. Maximum likelihood positions for the Lore quantitative trait loci. The
boxes indicate the 1-logarithm of the odds (lod) support intervals, whereas the bold
vertical lines show the 2-lod support intervals. Markers and cM positions are shown
to the left of each region. Data are adapted from ref. 44.
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Mice heterozygous and nonrecombinant over a given interval for a single
Lore, while homozygous ISS or ILS at the other four Lore intervals were
chosen as parents for the N3 generation and were backcrossed to ISS or ILS.

Congenics were constructed differently, depending on the recipient back-
ground. For mice with an ILS QTL on an ISS background (ISS.ILS), power
analysis showed that it would take approx 30 mice to detect a heterozygote
effect on an ISS background (39). Therefore, we incorporated a phenotyping
regimen into the ISS BC, beginning at the N4 generation, in order to monitor
retention of the phenotype (39,66). In contrast, power analysis showed that
200–300 mice would need to be tested in order to detect an effect of an ISS
QTL on an ILS background (ILS.ISS). Consequently, no phenotyping was
done on the ILS background until congenics were produced. At this time, we
also conducted a dose–response analysis in order to determine the appropri-
ate dosage so as to yield a measure of LORE with a standard deviation simi-
lar to ISS at 4.1 g/kg. A 2.5 g/kg dose gave the closest variance measure, and
power analysis indicated it would be possible to detect the effect of an ISS
allele on an ILS background by testing approx 30 mice. Subsequently, all
ILS recipient congenics were tested at the 2.5 g/kg dose.

Both congenics, ILS.ISS and ISS.ILS, were backcrossed for 10 genera-
tions to create full congenics. As can be seen in Fig. 4, ISS QTL significantly
decreased LORE by 20–30 min relative to ILS controls (2.5 g/kg), with the
exception of lines 2C and 5D, in which only a few mice were tested. The
expected values for each LORE congenic strain were derived from applica-
tion of the MapMaker to the 1072 F2 mice in which the QTLs were identi-
fied (47). An effect of Lore3 could not be detected in any generation and
those lines were discarded. Similarly, on the ISS background, the ILS QTL
increased LORE. Comparing the congenic mice with heterozygotes and 
ISS homozygotes (Fig. 4) showed that Lore2, Lore4, and Lore5 congenic
strains exhibited the expected additive mode of inheritance, whereas the
Lore1 congenics showed a dominant pattern.

Fig. 4. (A) Mean length of sedation after intraperitoneal injection of 2.5 g/kg
ethanol in inbred long-sleep/inbred short-sleep (ILS.ISS) congenics. Individual Lore
(number) and subline (letter) are on the horizontal axis. Sample size is given at the
top of the bar. The bar at the far right shows the phenotypic value for the ILS con-
trol. p values at the top of the panel indicate a one-tailed p for significance for the
difference between that congenic subline and ILS (*p < 0.05, ** p < 0.01, *** p <
0.001). Observed values are represented in the black bars, whereas expected values,
taken from MapMaker, are in gray. (B) Mean length of sedation after intraperitoneal
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Fig. 4. (Continued) injection of 4.1 g/kg ethanol in  ISS.ILS congenics. The first
three bars (with standard errors) show loss of righting reflex due to ethanol (LORE)
for congenic mice, mice heterozygous with ISS, and ISS homozygotes. The last two
bars (no standard errors) show the expected LORE for ILS homozygotes and
ISS.ILS congenic heterozygotes. The upper bracket shows the significance of the
difference between the congenic strain and their ISS controls; lower brackets show
the significance of the difference between congenics and heterozygotes (*p < 0.05,
**p < 0.01, ***p < 0.001). Data are adapted from ref. 39.
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4.5. Additional Alcohol-Related QTLs

The use of RI strains, segregating populations, and congenics has identi-
fied and confirmed QTLs mediating many alcohol-related behavioral pheno-
types. These QTLs have been summarized in Fig. 5 (7,51,67–88). We will
briefly review some of the more relevant findings. The most studied alcohol
phenotype has been ethanol consumption or preference. Several QTLs have
been identified which influence alcohol preference in mice; most have used
mapping populations derived from B6 and D2 mice. These include two
QTLs identified by Melo et al. (68), on chromosomes 2 (male-specific;
Alcp1) and 11 (female-specific; Alcp2). Peirce et al. (69) also identified two
sex-specific QTLs mediating alcohol preference on chromosomes 3 (male-
specific; Alcp3) and 1 (female-specific; Alcp4). Six QTLs were detected by
Tarantino et al. (70)—three significant QTLs on chromosomes 1, 4, and 9,
and three suggestive QTLs on chromosomes 2, 3, and 10, Ap1q– Ap6q.
Congenic mice have been used to confirm the QTL on chromosome 2, and
identify a new QTL on chromosome 1, Alcp5 (7). A recent meta-analysis
(73) of these and other alcohol-preference QTL studies has reported the
strongest support for QTLs on chromosomes 1 (distal), 2 (proximal to mid),
3 (mid to distal), 4 (distal), 9 (proximal to mid), and 11 (mid). A QTL for
alcohol consumption was also identified on chromosome 15, Aaq1 (74).

Detected and verified QTLs influencing alcohol-related behaviors
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Fig. 5. Quantitative trait loci detected and verified for alcohol-related behaviors:
Alcp1–Alcp2 (alcohol preference; see ref. 68). Alcp3–Alcp4, (see ref. 69). Alcp5, (see
ref. 7). Ap1q–Ap6q (alcohol preference; see ref. 70). Aaq1 (alcohol acceptance; see ref.
74). Lore1, 2, 4, 5 (loss of righting reflex owing to alcohol; see ref. 51). Alcw1–Alcw3
(acute alcohol withdrawal; see ref. 81). Actre1–Actre4 (activity response to alcohol;
see ref. 78). Ctaa1 (alcohol-conditioned taste aversion; see refs. 85,86).
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The Hitzemann laboratory has used several strains of mice in various
crosses to identify several QTLs mediating ethanol-induced locomotor acti-
vation (75–78). The strongest support is for QTLs on chromosomes 1 and 2.
The QTL on chromosome 1 has been named Actre1q, whereas three QTLs
on chromosome 2 have been named Actre2q–Actre4q. The Actre2q QTL was
localized to a region from 47 to 49.2 cM, whereas Actre3q and Actre4q have
been localized to regions from 64 to 64.2 cM and 67.3 to 67.9 cM, respec-
tively. Two-lod support intervals were 1–2 cM. They also found good evi-
dence for a QTL on chromosome 6. A QTL has been identified for
ethanol-conditioned taste aversion (Ctaa1; see refs. 85,86), and three for
acute alcohol withdrawal (Alcw1–Alcw3; see ref. 81). Several QTLs 
for ethanol-induced hypothermia, ataxia, CPP, and chronic alcohol with-
drawal have also been reported, but have not been confirmed (82–84,87).

4.6. Epistasis

Although analysis of single gene effects on complex traits is useful,
gene–gene interactions may also play crucial roles in determining a given
phenotype. Epistasis, or the interaction of genes, is one issue that has yet to
be adequately addressed by the QTL mapping community. Epistasis has been
difficult to detect in both classical biometrical genetic and QTL studies. As
discussed by Cheverud (89), the variance in a phenotype accounted for by
epistatic interactions is usually subsumed under additive and dominance
genetic variances. Most tests for epistasis rely on epistatic variance alone,
ignoring the contribution of epistasis to additive and dominance variances,
which makes detecting interactions difficult.

In QTL studies, epistasis is often investigated using ANOVA. Any two
QTLs (or markers) can be used as the independent variables, with the quan-
titative trait as the dependent variable, in a two-way ANOVA; the interaction
term will be an estimate of the interaction between QTLs in determining the
phenotype (90). In principle, all possible two-way, three-way, and n-way
interactions can be measured in this manner. However, Tanksley (90)
describes several drawbacks using ANOVA to detect epistatic interactions:
(a) segregating populations are usually too small for accurate estimates of
epistasis; (b) the number of potential multilocus interactions is quite large,
requiring many statistical tests, some of which, by chance, will reach signifi-
cance; and (c) the effects of gene–gene interactions will be underestimated
because of recombination between QTL and marker. Although some of
the gene mapping programs have limited ability to search for QTL–QTL
interactions, only one program—Epistat (91)—is designed to search for
QTLs which have an epistatic effect but no detectable additive effect. Such a
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search involves testing all possible pairwise combinations of markers, which
is very time consuming. It seems likely that, given the potential importance
of epistatic interactions in dissecting complex traits, improved multivariate
statistical methods and new mapping programs with improved algorithms
for epistasis detection will soon appear. We are aware of only one QTL study
which has identified epistatic interactions for an alcohol-related behavior. In
this study, multiple regression identified epistatic interactions for previously
identified alcohol preference QTLs (92). Two comparisons reached statisti-
cal significance, between markers on chromosomes 2 and 3, accounting for
7–8% of the variance in alcohol preference.

Breeding strategies can also be used to investigate epistasis in mice. For
example, knockout mice can be examined on a number of different genetic
backgrounds, which we discuss further in Subheading 6.3. Another strategy
is to create congenic strains of mice in which two or more QTLs are intro-
gressed onto a uniform genetic background, allowing examination of their
interaction. We are currently using this strategy to introgress multiple Lore
QTLs onto an ILS background. Nadeau has advocated the use of a panel of
chromosome substitution strains (CSS) as a means for speeding up QTL
mapping and fine-mapping, and studying epistatic interactions (93). CSS
(formerly known as “consomics”) are essentially a set of congenic strains in
which an entire chromosome from the donor strain has been introgressed
onto the recipient background strain. Analysis of panels of complementary
CSS (i.e., A.B-Chr[i] and B.A-Chr[i]) will be a powerful tool for examining
epistatic interactions (93).

5. FINE-RESOLUTION MAPPING

RI strains and segregating populations permit QTLs to be mapped to a
10–20 cM region. These regions are still too large to make candidate gene
evaluation feasible. Several strategies have been proposed for fine-resolution
mapping of QTLs. These include the use of advanced intercross lines (AIL),
a RI segregation test (RIST), interval-specific congenic strains (ISCS), GHS
mice, and ISCR strains. We briefly discuss these strategies in the following
subheading.

5.1. AIL, RIST, and ISCS

Ariel Darvasi has outlined several strategies for fine-resolution QTL map-
ping, including the creation of AIL, in which two strains are crossed and ran-
domly mated for a number of generations (94,95). With each generation of
random mating, recombination occurs, which expands the genetic map,
allowing reduction of the QTL interval. Another strategy outlined by Darvasi
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(95) is the use of a RIST, which takes advantage of the fourfold expansion in
the genetic map found in RI lines. In this strategy, RI strains are selected with
recombination events in the QTL region of interest; these RI strains are
mated to both parental lines to create two F2 or BC populations. Because the
QTL has been previously mapped to this region it will segregate in one of the
F2 or BC populations but not the other. Comparison of the two populations
will locate the QTL above or below the recombination point; using multiple
RI strains will further reduce the interval. Although theoretically possible,
use of AIL and the RIST have not been widely reported in murine research;
no studies have used these strategies to fine-map QTLs influencing alcohol-
related phenotypes.

Darvasi (95) has also outlined the use of ISCS and recombinant progeny
testing for QTL fine-mapping. ISCS are produced by first crossing two
inbred strains which differ for the trait of interest, with subsequent inter-
crossing to create an F2 population. Mice from the F2 population are
genotyped for pairs of markers flanking QTLs; individuals with a recombi-
nation event detected in one or more QTL intervals are retained. Such ani-
mals are then backcrossed to the recipient parental strain, to create
interval-specific congenics. Kari Bucks’ laboratory at the Oregon Health
Sciences University has successfully used this strategy to narrow a QTL
region on mouse chromosome 4 for alcohol withdrawal severity (96). We
have developed a variant of this approach, which we discuss in Subheading
5.3. with regard to our own work.

5.2. Genetically Heterogeneous Stock Mice

GHS mice can also be used for QTL fine-mapping (97,98). These stocks of
mice are similar to an outbred stock and are typically created by making all
possible crosses among eight inbred strains, with subsequent random breed-
ing to maintain segregation. Similar to AIL, with each generation of random
breeding, recombination occurs, with a resulting expansion in the genetic
map. Depending on the number of generations of mating, the resolution in
map position for any identified QTLs will be much greater. For example,
Talbot et al. (98) mapped a QTL mediating open-field activity using GHS
mice in their 58th generation. This resulted in at least a 30-fold increase in res-
olution compared with mapping with a BC or F2 population, and the QTL
was mapped to a 0.8 cM interval on chromosome 1. Only one study has
reported QTL mapping for an alcohol-related trait using GHS mice. Demarest
et al. (78) used GHS mice in their 32nd–35th generations of random breeding
to map three QTLs influencing ethanol-induced locomotor activation to
regions on chromosome 2, with two-lod support intervals of 1.5–2 cM.
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5.3. Interval-Specific Congenic Recombinants

Our strategy (99) for narrowing the Lore intervals involved the use of
ISCR mice, a variant of the ISCS strategy. Our method differs from that of
Darvasi in that we created congenics first and then identified recombi-
nants; Darvasi advocates finding recombinants in F2 mice with subsequent
congenic construction. ISCR mice were derived from the congenics during
backcrossing by identifying mice with a crossover between the two mark-
ers flanking a given Lore region. ISS.ILS congenics with a recombination
event in a given QTL region were backcrossed to ISS to generate lines seg-
regating unique recombination events (Fig. 6). There are two genotypic
classes of offspring (excluding new recombination events which are rare):
mice carrying the recombinant chromosome (heterozygous for some
portion of the QTL interval) and mice homozygous for the BC parental

1.  Recombinants identified between flanking, markers, QTL location is indicated by arrow.

ILS ILS  ILS  ISS  ILS ISS   ISS ILS

2. Recombinants are backcrossed to ISS.

3. Progeny testing is used to rule out ILS intervals with ISS LORR, and accept intervals with 
longer LORR.

LORR = ISS + ISS ISS

Fig. 6. Use of interval-specific congenic recombinant lines to narrow a quantita-
tive trait locus (QTL) interval by progeny testing (see ref. 99). Donor inbred long-
sleep (ILS) (dark) and recipient inbred short-sleep (ISS) (white) genotypes are
indicated. (1) Congenics are constructed with an ILS QTL introgressed onto an ISS
background (ISS.ILS). The arrow indicates the position of the hypothetical QTL. 
(2) Mice with recombination events in the region of interest are identified by
genotyping. (3) Recombinant mice are backcrossed to the recipient ISS strain.
Offspring are phenotyped; mice with a recombinant chromosome are compared to
congenic control mice. If mice with the recombinant chromosome have a phenotype
consistent with the effect from the donor strain (ISS + α, the additive effect of an
ILS allele), the QTL is mapped to that smaller recombinant region. LORR, loss of
righting reflex.
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genotype over the entire interval (99). The phenotypic effect of the reduced
donor interval can be assessed by comparing mice carrying the recombi-
nant chromosome with littermates that are homozygous for the recipient
strain. If the two classes are significantly different, the new, smaller region
contains the QTL. By making pairwise comparisons between ISCR lines
carrying different crossovers, further refinement of the QTL interval is
possible.

Numerous recombinant chromosomes were characterized for each of our
Lore QTLs; ISCR lines carrying representative recombination events are
shown in Fig. 7. Phenotypic results are given below the genetic marker
panel for each QTL. A longer LORE for heterozygotes indicates that the
reduced ILS interval carries the ILS QTL. For Lore1, the minimum inter-
val is defined by lines 6 and 10.9, and extends from D1Mit380 (36.9 cM)
through D1Mit46 (43.1 cM). Line 9 also has the ILS phenotype but carries
the same minimum region in larger, overlapping ILS regions. The crossover
could occur anywhere between the minimum region and the next (ISS)
marker; this maximum region for the QTL extends from D1Mit214 (32.1 cM)
through D1Mit215 (47 cM). For Lore2, the lower boundary for the mini-
mum is somewhere at or between D2Mit194 (81.4 cM) and D2Mit280
(81.7 cM). The upper boundary for the minimum interval is at D2Mit256
(79.3 cM), though as there are no markers nearby to localize the break-
point, the region could extend to D2Mit258 (78 cM). In the case of Lore4,
more genotyping is necessary to determine even minimal QTL interval, as
very few recombinants were obtained in this region. The distal region was
ruled out by lines 1 and 2, whereas line 5 supports the proximal region as
carrying the ILS QTL. This is further supported by line 12, which puts the
lower boundary to the minimum interval at D11Mit5 (37 cM), although this
could extend to D11Mit30 (39.8 cM). For Lore5, lines 5, 1.9, and 10 all
have the ILS phenotype. There is a clear region of overlap between lines
1.9 and 10; however, the only shared region of overlap with line 5, where
the crossover site is unknown, is between markers D15Mit185 (40.9 cM)
and D15Mit93 (43.7 cM).

Fig. 7. Progeny testing using interval-specific congenic recombinant (ISCR) lines
for the four loss of righting reflex owing to ethanol (LORE) regions (A–D). Markers
genotyped in these lines are on the vertical axis at their approximate cM positions;
arrowed markers were used to define the quantitative trait locus (QTL) intervals
for QTL-marker-assisted counter selection. Each box shows the marker genotype
(inbred long-sleep [ILS] is black, inbred short-sleep [ISS] is white) of the recombinant
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Fig. 7. (Continued) chromosome in the line indicated above. Results of progeny test-
ing are shown in the histogram below each line; p values are shown in the legend. A
significant difference between mice with the recombinant chromosome (ISS/ILS)
and their homozygous littermates (ISS/ISS) indicates the ILS QTL was retained. The
minimum interval containing the QTL is shown by the horizontal bold lines. The
extent of the introgressed ILS region and the associated phenotype for the congenic
strains are shown in the first line of each Lore. Bold lines show a significant pheno-
typic difference; underlined lines are being maintained but not tested, whereas itali-
cized lines are still being tested. LORE, loss of righting reflex due to ethanol.
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6. STRATEGIES FOR EVALUATING CANDIDATE GENES

Once mapping has identified and confirmed a QTL and fine-mapping has
reduced the interval, identifying the relevant gene(s) or DNA sequence vari-
ants is still a daunting task. Historically, in the search for mouse QTLs, once
fine-mapping has reduced a given region, the next step has been to evaluate
candidate genes using bioinformatics, looking for obvious biological signifi-
cance. However, whereas one may prioritize candidate genes based on a
priori hypotheses or biological significance, often no candidate genes or too
many candidate genes are immediately apparent. In addition, screening for
polymorphisms in coding regions of candidate genes and demonstrating dif-
ferential expression have been used to assess candidate gene likelihoods.
Once candidate genes have been identified by showing DNA polymorphisms
or differential expression, functional tests are still needed.

Few functional tests are available to the mouse geneticist for confirming a
candidate gene as being the QTL of interest. The gold standard is to move
the allele from one strain to another and show that the phenotype changes
with the genotype. However, in mouse this is time-consuming, and is cur-
rently limited to the 129 and B6 embryonic stem cell lines. A more common
approach in murine research has been the use of transgenic animals, in which
a gene is overexpressed, or rendered nonfunctional (knockouts [KOs]).
However, creating KOs, and interpreting results of KOs, can be problematic,
as discussed in Subheading 6.3. Within the last couple of years, a new tech-
nique called RNA interference (RNAi) has been shown to be feasible in vivo
in mice. Use of RNAi to functionally test candidate genes can overcome
many of the problems associated with KOs.

6.1. Identifying DNA Sequence Differences

A necessity for a candidate gene being the QTL of interest is the existence
of DNA sequence differences between the two parental strains from which the
QTL mapping population was derived. DNA sequence differences in coding
regions of a candidate gene may lead to amino acid changes and subsequent
protein (functional) differences, whereas sequence differences in noncoding
regions may lead to differential gene expression (see Subheading 6.2.). Thus,
when one detects DNA polymorphisms in candidate genes, functional tests are
necessary to determine the effect, if any, of the polymorphism.

Two general approaches for DNA sequencing are used: sequencing of
complementary DNA or genomic DNA. When one is interested in sequenc-
ing coding regions of a candidate gene, typically RNA is extracted and
reverse-transcribed into complementary DNA, which contains only coding
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regions (exons) and untranslated regions (UTRs). Alternatively, if one has
found a candidate gene to be differentially expressed, and identification of
the DNA polymorphism is desired, sequencing of nontranscribed, genomic
DNA is necessary. Sequencing regulatory regions is not a trivial undertak-
ing, depending on how large the candidate gene is. The genomic location
and structure of eukaryotic regulatory regions is complex and not com-
pletely understood. Multiple transcription factors are required for gene
expression. In mice, core promoter regions are usually located within 2 kb
upstream of the transcription initiation site (100). However, in addition to
these core promoter elements, an increasing number of mammalian regula-
tory sequences have been identified in introns, exons, and 5′ and 3′
UTRs (101). Furthermore, relevant regulatory regions (enhancer elements)
may lie tens of thousands of basepairs from the transcription initiation site
and are often difficult to identify. Thus, in order to detect a DNA polymor-
phism in a regulatory region, one may have to sequence approx 2 kb
upstream of the transcription initiation site, introns, an exon or two, and
enhancer elements, which may or may not have been identified for the can-
didate gene. With this much sequence, one is like to identify several SNPs;
functional analysis of each individual SNP is expensive and time-consuming.

Few studies looking for coding region polymorphisms have been published for
alcohol-related traits in mice. The Buck laboratory has identified a polymorphism
between B6 and D2 mice in the γ-aminobutyric acid A (GABAA)-γ2 subunit gene
(Gabrg2; a candidate gene for the Alcw3 QTL), and correlated this polymorphism
with alcohol-withdrawal severity (102). This alteration involved a SNP at amino
acid residue 11; an ACT codon in the D2 strain codes for a threonine residue,
whereas a GCT codon in the B6 strain codes for an alanine residue. Their results
indicated that the B6 allele is associated with greater withdrawal severity. In a
follow-up study using mice from the BXD RI series, the polymorphism in the
Gabrg2 gene was also correlated with sensitivity to ethanol-conditioned taste
aversion, ethanol-induced motor incoordination, and ethanol-induced hypother-
mia (103). The Buck laboratory has also identified allelic variants in the Mpdz
gene, a candidate gene for the Alcw2 QTL, and correlated the variants with
alcohol-withdrawal severity (96). More recently, Xu et al. identified a SNP
between B6 and D2 in the open reading frame of the Cas1 gene, a candidate gene
for ethanol-induced locomotor activation (104). However, although some evi-
dence supports the role of brain catalase in ethanol-induced locomotor activation,
other evidence suggests that this polymorphism between B6 and D2 is not the
previously identified QTL on mouse chromosome 2 (104).

In relation to our own work, the Sikela laboratory (105,106) has detected
coding region variants in a number of candidate genes throughout the four
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Lore intervals. DNA sequence polymorphisms leading to predicted amino
acid differences between ILS and ISS were found for several candidate
genes. However, most of these genes have been ruled out as underlying the
QTLs with the exception of two: Znfl142 and Ptprn. No functional assays of
these genes have been conducted.

Detection of a coding sequence variant does not prove identification of the
gene underlying the QTL. Such a variant may have nothing to do with the
phenotype. As discussed by Rikke and Johnson (107), in human studies, one
approach to this problem is to show that allelic variation is concordant with a
particular phenotype. For murine studies, however, such concordance is not
as reliable a criterion for establishing QTL identification, because the com-
monly used inbred strains represent a very limited, and much replicated, set
of haplotypes. Thus, strains sharing an allele at one locus are likely to share
alleles at neighboring loci; perfect concordance in the mouse could be the
result of variation in a neighboring gene. Therefore, although DNA sequence
variation is necessary, it is not sufficient to show that a QTL has been cloned.

6.2. Differential Gene (Messenger RNA) Expression

The approach discussed in Subheading 5.1, sequencing coding regions of
candidate genes, does not exclude the possibility that alterations in regula-
tory regions could be responsible for the phenotypic differences observed.
This can be tested by examining expression levels of candidate genes.
Although several methods to detect gene expression differences exist, accu-
rate measurement and quantification of messenger (m)RNA level is not a
simple task. Methods like Northern blotting and in situ hybridization, nucle-
ase protection assays, and quantitative reverse transcription polymerase
chain reaction can be used to quantify mRNA levels. However, these meth-
ods typically examine only one gene at a time. Other methods, such as sub-
tractive hybridization, mRNA differential display, and serial analysis of gene
expression, are able to interrogate the entire genome, but are not trivial
undertaking and are not suited for high-throughput analyses.

Recently developed, high-throughput methods, such as DNA microarray
expression analysis, are well-suited for quantifying mRNA differences.
Microarray technology has made possible the simultaneous study of
expression level for thousands of genes or expressed sequence tags. Thus,
in addition to identifying genes that are differentially expressed in a QTL
region of interest, array studies provide a nonbiased method for detection
of patterns of gene expression changes, allowing insight into functional
consequences, biochemical pathways, and mechanisms of action at the
molecular level.
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There have been a number of studies published that have used these methods
to quantify differential mRNA or protein levels for genes thought to play a role
in several alchohol-related behaviors. A comprehensive review of these studies
is beyond the scope of this chapter; we include here some of the more interest-
ing findings. As discussed in Subheading 6.1., the Buck laboratory has identi-
fied a polymorphism in the Gabrg2, which is associated with alcohol-withdrawal
severity. Several other genes which encode GABAAreceptor subunits also map
to this region of mouse chromosome 11; however, there have been no SNPs
identified between B6 and D2 in these other genes, which include the α1, α6,
and β2 subunits. Reilly and Buck (108), using the ribonuclease protection assay,
have shown that the gene encoding the β2 subunit is differentially expressed in
B6 and D2 mice following ethanol administration. D2 mice are more sensitive
to ethanol-induced increase in β2 subunit mRNA content in the cerebellum,
exhibiting significant increases at lower blood ethanol concentrations than B6
mice. In B6 mice, decreases in the β2 subunit mRNA were observed at lower
blood ethanol concentrations, and increases at higher concentrations.They con-
clude that differences in ethanol-withdrawal severity between B6 and D2 mice
may be related to differential sensitivity to ethanol regulation of β2 subunit
expression. This agrees well with a previous study which reported greater
expression of mRNA encoding the β2 subunit in cerebellum of withdrawal
seizure-resistant mice compared with withdrawal seizure-prone mice (109).

Another area of active investigation is the differential expression of imme-
diate early genes (IEGs), such as c-fos and c-jun, following ethanol adminis-
tration, and their relationship to several alcohol-related behaviors. IEGs are
transcription factors, and induction of IEG expression is believed to be a
marker of neuronal and synaptic activity. One advantage of examining IEG
expression as a measure of brain activity is the degree of cellular resolution
and the ability to separate changes in neuronal cell bodies as opposed to
synaptic effects. Alcohol administration seems to both induce and suppress
IEG expression depending on the dose of ethanol, the paradigm being used,
and the area of the brain being examined. In one set of experiments, the
Hitzemann laboratory investigated IEG expression and ethanol-induced loco-
motor activation. In their original report (110), immunohistochemistry was
used to look for differences between B6 and D2 mice in the number of Fos-
like immunoreactive neurons in various brain regions, following a number of
doses of ethanol. Results showed a complex interaction between dose, strain,
and brain region. The only clear ethanol effects in the relevant dose range of
0.5–2 g/kg were a significant increase in Fos-like immunoreactive neurons in
the B6 strain compared with the D2 strain in the substantia nigra zona com-
pacta (0.5–2 g/kg), and an increase in the D2 strain compared with the B6
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strain in the ventral tegmental area (2 g/kg) and the central nucleus of the
amygdala (0.5–2 g/kg). Follow-up studies using mice bred for increased and
reduced sensitivity to ethanol-induced stimulation, (referred to as FAST and
SLOW mice, respectively) and phenotypic extremes from a B6D2 F2 inter-
cross, have confirmed that increased Fos expression in the central nucleus of
the amygdala is highly correlated with ethanol-induced locomotor activation
(111,112). More recently, it has been shown that altered (both increased and
reduced) IEG expression in certain brain regions is associated with both vol-
untary and involuntary alcohol consumption (113–115).

Only a few studies have appeared in the literature which have used murine
models and microarray technology to search for differentially expressed
genes associated with alcohol-related behaviors in mice (116–121). Of these
studies, the Tabakoff et al. study (120) is particularly intriguing. Tabakoff
and colleagues used the Affymetrix microarray system to examine differen-
tial gene expression in whole brain of high-acute functional tolerance and
low-acute functional tolerance mice, which were selectively bred for sensi-
tivity and resistance to acute functional tolerance to alcohol-induced ataxia.
Results from the microarray analysis, coupled with previously identified
QTL for acute functional tolerance, identified several candidate genes in
QTL regions that were differentially expressed between the two lines of
mice. The authors identified a signal transduction pathway including the
glutamate receptor δ2 protein, the Ephrin B3 ligand, and the N-methyl-D-
aspartate receptor, in mediating the ataxic effects of ethanol.

6.3. Genetically Engineered Mice

Although DNA sequence or expression differences are necessary, ulti-
mately, functional tests of candidate genes will be needed. Ideally, this will
be accomplished by transferring the candidate gene from the low-scoring
parental strain to the high-scoring parental strain, and vice-versa. Animals in
which one allele is replaced with another are known as “knockins”; such
technology is currently possible but difficult to implement in mice. Other
transgenic technologies include creation of animals which overexpress a
gene, or animals in which a gene has been rendered nonfunctional (KOs).
Although a few alcohol-related traits have been studied using mice which
overexpress a gene (122–124), the transgenic of choice in alcohol research
has been the KO mouse; we will therefore focus our discussion on KO mice
with effects on alcohol-related phenotypes.

KOs are usually created by homologous recombination (for excellent
reviews see refs. 38,125,126) Table 6 (124,127–158) shows a partial list of
KO mice used to study the behavioral effects of ethanol. Most of these mice
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Table 6
Knockout Mice Used to Study the Behavioral Effects of Ethanol

Gene knocked out Phenotype References

Serotonin 1B receptor Elevated ethanol consumption; no 127–130
difference in ethanol consumption

Serotonin transporter Reduced ethanol consumption 131

Neuropeptide Y (NPY) Increased ethanol consumption; increased 124,132
or NPY receptor locomotor activation and resistance to 

sedation, or no differences in ethanol 
consumption, locomotor activation, or 
sedation, depending on genetic background

GABAA receptor, α6 No difference in hypnotic sensitivity to 133,134
subunit ethanol (loss of righting reflex [LORR]); 

no difference in ethanol-induced acute 
functional tolerance, protracted tolerance, 
or withdrawal hyperexcitability

GABAA receptor, δ Reduced ethanol consumption, attenuated 135
subunit withdrawal from chronic ethanol exposure, 

reduced anticonvulsant effects of ethanol

GABAA receptor, β3 No effect on ethanol-induced LORR 136
subunit

GABAA receptor, γ2 No differences in ethanol-induced LORR, 137
subunit, long-splice acute functional tolerance, chronic 
variant withdrawal hyperexcitability, locomotor  

activation, or anxiolysis (elevated plus maze)

GABAA receptor, α1 Decreased ethanol-induced LORR in males, 138–140
subunit no effect in females. Decreased ethanol 

consumption, increased aversion to ethanol, 
increased ethanol-induced locomotor 
activation. No effect on the anxiolytic, 
anticon vulsant, ataxic, hypnotic effects of 
ethanol; increased ethanol-induced 
locomotor activation

GABAA receptor, β2 Decreased ethanol-induced LORR in males, 138,139
subunit no effect in females

Dopamine D1 receptor Reduced ethanol consumption and 
preference 141
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Table 6 (continued)

Gene knocked out Phenotype References

Dopamine D2 receptor Reduced ethanol conditioned place 142–144
preference (CPP). Decreased ethanol 
consumption and preference, reduced 
sensitivity to ethanol-induced locomotor 
activation. Increase in ethanol-induced 
locomotor activation (background dependent)

Dopamine D3 receptor No effect on ethanol CPP, ethanol 145
consumption or preference

Dopamine D4 receptor Increased ethanol-induced locomotor 146
activation

Protein Kinase C, γ Reduced ethanol-induced LORR; lack of 147–150
isoform tolerance to ethanol-induced LORR and 

hypothermia, but depended on genetic 
background; increased ethanol consumption; 
less sensitive to the anxiolytic effects 
of ethanol

Protein Kinase A Increased ethanol consumption, reduced 151
sensitivity to sedation (LORR)

m-neu1 (homolog of Increased sensitivity to ethanol-induced 152
Drosophila neuralized) ataxia (rotarod)

β-endorphin Increased ethanol consumption 153

µ-opiate receptor Decreased ethanol consumption and CPP 154

β-hydroxylase Reduced ethanol preference, delay in 155
(synthesizes extinguishing ethanol-conditioned taste 
norepinephrine) aversion, increased sedation and 

hypothermia

Monoamine oxidase A No increase in ethanol consumption or 156
preference, increased ethanol-induced 
LORR, reduced hypothermia

Angiotensin II Decreased ethanol consumption and 157
preference

DARPP-32 No difference in ethanol-conditioned 158
taste aversion, greater locomotor activation, 
failure to acquire CPP
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Table 6 (continued)

Gene knocked out Phenotype References

Homer2 Blunted ethanol reward (no ethanol CPP), 159
reduced ehtnol consumption, increased 
ethanol-induced LORR, reduced sensitization 
to ethanol-induced locomotor activation

Fyn-kinase No effect on ethanol consumption, ethanol- 160–162
induced LORR. Increased ethanol-induced 
LORR, impaired acute tolerance to motor 
incoordinating effects of ethanol (stationary 
dowel), increased sensitivity to anxiolytic effects 
of ethanol (plus maze); males showed decreased 
preference for ethanol; no effects on ethanol-
induced hypothermia, no effects on ethanol 
metabolism. Increased ethanol-induced LORR, 
no effect on ethanol consumption or ethanol CPP

Cannabinoid receptor Reduced ethanol consumption. Absence of 163–165
ethanol withdrawal symptoms (handling-induced
convulsions), no differences in ethanol-induced 
ataxia (rotarod), no differences in acute sensitivity 
or tolerance to ethanol-induced hypothermia, no 
effect of foot-shock stress on alcohol preference 
(dramatic increase in wild-type). Decreased ethanol
consumption and preference, increased sensitivity 
to sedative and hypothermic effects of ethanol, 
reduced sensitivity to locomotor activating effects 
of ethanol, increased sensitivity to alcohol-induced 
withdrawal

G protein-coupled Marked reduction of antinociceptive effects 166,167
inwardly rectifying of ethanol (hot plate test). Reduced ethanol-
potassium channel 2 induced CPP and conditioned taste aversion

Guanine nucleotide Increased sensitivity to sedative effects of 168
binding protein-α, ethanol, lack of within-session tolerance to 
stimulating ethanol-induced hypothermia

Dopamine transporter Increased ethanol consumption in males, 169
increased ethanol preference in females

Vesicular monoamine Increased ethanol consumption in males 169
transporter
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have had particular neurotransmitter, receptor, or receptor subunit genes ren-
dered nonfunctional. We will briefly review serotonin (5HT), GABA, and
dopamine receptor KO mice, as these three neurotransmitter systems have
all been implicated in the behavioral effects of alcohol.

Several mammalian 5HT-receptor types and subtypes have been identified.
One subtype (5HT1B in mice, 5HT1Dβ in humans) has received considerable
attention in the alcohol field. Studies have reported the presence of a QTL
influencing alcohol preference on mouse chromosome 9 near the 5HT1B gene
(73). When given the choice of ethanol or tap water, 5HT1B KO mice con-
sumed twice as much alcohol compared to wild-type (WT) 129/Sv-ter mice
(127). These mice were also less sensitive to ethanol-induced ataxia and
showed no ethanol-CPP (127,130). However, these results have been difficult
to verify. Other studies have reported no increased ethanol consumption in
5HT1B KOs, although the genetic background on which the mutation is main-
tained is uncertain (128,129,170). These differences are difficult to reconcile,
but suggest that both genetic background and environmental factors play a
significant role in determining ethanol intake in these KO mice.

GABA is the major inhibitory neurotransmitter in the mammalian brain.
Many acute and chronic ethanol effects are thought to be mediated at the
GABAA receptor complex (171,172). As discussed in Subheadings 6.1. and
6.2., highly significant linkage for a QTL(s) influencing alcohol withdrawal
was found on chromosome 11, near several GABAA subunit genes. Mice in
which the α6 subunit gene had been knocked out showed no differences
(compared to wild-type) in ethanol-induced LORR, acute functional toler-
ance, or withdrawal severity (133,134). Similarly, mice in which the γ2L sub-
unit gene has been rendered nonfunctional show no differences in many
alcohol phenotypes, including withdrawal severity (137). This suggests that
these genes are not the alcohol withdrawal QTL. More recent studies that
have used mice in which the α1 subunit has been deleted have reported
decreased ethanol-induced LORR (males only), decreased ethanol consump-
tion, and increased ethanol-induced locomotor activation (138–140).

Dopamine systems have also been implicated in the actions of most
drugs of abuse, including alcohol. Dopamine receptors fall into two
classes: D1-like (D1 and D5) and D2-like (D2, D3, and D4). Rendering the
D1 or D2 receptor genes nonfunctional reduces ethanol consumption/
preference and ethanol-CPP, whereas knocking out the D4 receptor gene
increases ethanol-induced locomotor activation (141–143,146). More
recently a complex relationship between genetic background and ethanol-
induced locomotor activation and sensitization has been demonstrated in
D2 KO mice (144).
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Several caveats must be kept in mind when using KO mice. First, the
mutated gene is not expressed throughout development. Thus, any behav-
ioral abnormalities may be the result of the missing gene product in general,
or during key developmental processes throughout ontogeny. One way to
deal with this situation is to use inducible KOs, in which a gene can be ren-
dered nonfunctional in specific cell and tissue types at specific points in
time. Although such technology exists (173,174), no studies have yet
reported the use of inducible KOs to study alcohol-related behaviors.
Second, compensatory mechanisms may be activated when a gene is
knocked out. More research on the redundancy of genes of interest will
therefore be needed before one can rule out compensatory mechanisms in
the expression of null mutant phenotypes.

A third consideration when using KO mice is the genetic background of
the strain the mutation is maintained on. Although it has been shown for
several alcohol-related phenotypes that genetic background influences the
effects of a null mutation (132,147,170), most studies have reported main-
taining a mutant gene on a single genetic background, typically a mixed
129/B6 background. In order to fully elucidate the effects of a missing gene,
one should examine the mutation on at least two different genetically
defined backgrounds. A related problem occurs when backcrossing KO
mice onto different backgrounds. In addition to the mutated gene, a small
region of DNA surrounding the gene is also transferred in the BC. For his-
torical and practical reasons, most KO mice have been created using embry-
onic stem cells derived from inbred 129 strains of mice, and are implanted
into blastocysts of B6 females. Because 129 strains are often poor breeders,
it is common to BC mice carrying the null mutation to a B6 background.
When this is done, even after 10 or more generations of backcrossing, a seg-
ment (average of 20 cM after 10 generations) of 129 DNA surrounding the
targeted allele will still remain. The possibility exists that any effects attrib-
uted to the null mutation may indeed be caused by other 129 alleles in the
flanking region. Breeding strategies have been proposed to determine if the
effects of a null mutation are resulting from that gene or flanking genes
(175,176).

6.4. Genetic Complementation

We have outlined a strategy that tests whether a mutant mouse gene corre-
sponds to a QTL (107), based on a strategy proposed by Long et al. using
Drosophila (177). An example of how this test might be applied to a gene
KO derived from a 129-inbred strain is shown in Fig. 8. Heterozygous KOs
are crossed with congenic donor and recipient strains. The phenotypic effect



Murine Models of Alcoholism 237

of the KO mutation is quantified among the progeny of both crosses. If the
KO gene is not the same as the QTL gene and does not interact with the QTL
gene, then within each cross, the offspring heterozygous for QTL would not
be expected to affect the phenotypic difference between KO and WT off-
spring (Fig. 8). Similarly, if the KO mutation affects the phenotype in the
same way in both classes of progeny, it would mean that the KO gene and
the QTL gene were acting independently, implying that they were not the
same gene. However, if the effect of the KO gene is not the same in both
progeny classes, it would mean that the KO mutation not only affects the
phenotype but also interacts with the QTL. This latter situation would
provide additional evidence that the KO gene is the same as the QTL gene.
This test would not work for a completely recessive phenotype. 

Fig. 8. A congenic test for genetic complementation (see ref. 107). Heterozy-
gous knockout (KO) mice are crossed with reciprocal congenics in which the
quantitative trait locus (QTL) of interest lies within the differential chromosomal
segment. Within each cross, offspring with or without the KO mutation are com-
pared. If the QTL has been knocked out, the expectation is that the difference
between the mutant and wild-type (WT) alleles opposite the A allele will not match
the difference between the mutant and WT alleles opposite the B allele. The alterna-
tive possibility (that the KO is not the gene responsible for the QTL) predicts that
there will be only one phenotypic class of progeny from each of the crosses.
Although not ideal, this test can provide additional support for the mutated gene
being the QTL.

X
KOQTLA KOXQTLB

congenic donor
allele A 

recipient strain
allele B 

129/null129/null

B/129 B/nullA/129 A/null
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7. OTHER STRATEGIES

7.1. Genome-Wide Mutagenesis

Another approach has been the use of genome-wide mutagenesis, as
opposed to targeted mutagenesis of a single gene. Using this strategy, a
chemical mutagen (typically ethylnitrosourea) is injected into male mice
that produces hundreds of single base pair germline mutations (178). Male
mice are then mated to wild-type females, and all offspring are screened for
the phenotype of interest. These mutations are then mapped using methods
similar to QTL analysis. One advantage of using genome-wide mutagenesis
is that one can screen the entire genome for genes influencing a trait of
interest (including monomorphic genes), as opposed to the more limited set
of genes that are polymorphic between the two parental strains. However,
there are several disadvantages to using genome-wide mutagenesis for iden-
tifying genes mediating complex traits. As discussed by Belknap et al.
(179): (a) for some traits, it may be very difficult to identify which animals
have a mutation of interest; (b) identifying and mapping mutations is only a
start towards an understanding of the phenotype of interest; (c) there are
strong biases favoring mutation detection in some genes over others; (d)
mutagenesis screens are designed to detect only mutations with large
effects; and (e) most monomorphic genes may be so for a reason; inducing
mutations in these genes often results in reduced fitness or lethality. Some
of these criticisms have also been made with regard to QTL mapping (180).
It would seem prudent, therefore, to use genome-wide mutagenesis in con-
junction with QTL analysis and targeted mutagenesis, as opposed to re-
placing QTL methods (179,180). No studies yet exist which have used
genome-wide mutagenesis to examine alcohol-related behaviors in mice.

7.2. RNA Interference

Given the inherent difficulties creating KO mice or conducting random
mutagenesis studies, and the caveats one must consider in interpreting results
from such studies, improved methods for manipulating genes are desired.
One recent technology, RNAi, holds much promise for altering mRNA lev-
els for a gene of interest without the confounds involved with the use of tra-
ditional KOs. RNAi involves introduction of short (21–23 nucleotides) RNA
sequences complementary to the RNA of interest into an organism. This
reduces or suppresses expression of the RNA by either RNA degradation or
translational suppression (181).

Although originally discovered in the nematode, RNAi has been ob-
served in many organisms, including mammals. A recent study illustrates the
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potential of this new genetic tool in mice. Dileone et al. (182) constructed a
short hairpin RNA complementary to a segment of the tyrosine hydroxylase
(TH) gene and put the short hairpin RNA into an adeno-associated virus.
Stereotaxic injections were used to deliver the adeno-associated virus to
either the substantia nigra or ventral tegmental area. They observed a sub-
stantial decrease in TH levels in these brain regions approx 6 d later, with
lower levels persisting for at least 50 d. The authors then correlated this
reduction of TH with both an attenuated response to amphetamine and
altered performance on the rotarod, a phenotype similar to neurotoxin-
induced mouse models of Parkinson’s disease. Thus, they demonstrated
in vivo the ability to knock down the level of a gene of interest in spe-
cific brain regions for extended periods of time and documented resulting
behavioral deficits. This technique takes less time than creating KO mice and
eliminates issues such as spatial and temporal specificity, and genetic back-
ground effects. Although not yet perfected in vivo in mice, this technique has
been heralded as perhaps the most important advance in biology in decades
(181). It seems likely that this technique will be used to test candidate genes
in mice for alcohol-related phenotypes in the near future. This technique also
holds great promise for gene therapy in humans (183).

8. SUMMARY

Mice offer many advantages over humans in the genetic dissection of
complex traits. Traditional mouse model systems, such as inbred strains,
selected lines, RIs, and congenics, have laid the groundwork for investigat-
ing the genetic architecture of polygenic traits. Data obtained from these
model systems, combined with advances in bioinformatics, and powerful
new molecular tools, such as DNA microarrays and transgenic animals, have
made possible expression and functional studies of candidate genes.
Alcoholism is one such complex genetic disease, and various alcohol pheno-
types have been modeled in mice. Genetic mapping has narrowed a few
alcohol-QTL regions to the point where candidate gene evaluation is feasi-
ble, but many regions have yet to be fine-mapped and are quite large. Even
when obvious candidate genes are known in these regions, it seems prudent
to narrow the region as much as possible before exerting a great deal of time
and effort evaluating candidate genes.

In mice, the gold standard for proving that a candidate gene is indeed
one’s QTL of interest is an allele-swapping or functional complementation
test, where the allele of interest is moved from one strain to the other, show-
ing that phenotype changes with genotype. To the best of our knowledge this
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has not been demonstrated for an alcohol-related QTL in mice. Short of this,
it is likely that several lines of evidence will be necessary to demonstrate that
a candidate gene is a QTL, including DNA sequence differences in coding
regions, differential gene expression (which implies DNA sequence differ-
ences in regulatory regions or differential phosphorylation or methylation),
use of transgenic mice to show that overexpression or deletion of a candidate
gene affects the phenotype of interest, or a genetic complementation test
where KOs are made heterozygous with the candidate allele and the pheno-
type subsequently assessed for complementation.

For candidate gene studies for alcohol-related behaviors in mice, only a
few have identified DNA sequence variation in coding regions; even fewer
have followed up with functional assays. Although several studies have
shown differential expression of candidate genes in QTL regions, no study
has shown the underlying molecular mechanism, i.e., DNA sequence differ-
ences in regulatory regions or differential phosphorylation or methylation.
Although several studies have tested transgenic mice in which a candidate
gene has been overexpressed or deleted, few of these have identified the
underlying DNA sequence variant. Thus, with one possible exception, no
candidate gene underlying an alcohol-related behavioral phenotype in mice
has been conclusively demonstrated. The exception has been the work of the
Buck laboratory, where, using several mouse models and behavioral tests,
QTL mapping and fine-mapping, positional cloning, and sequence and
expression analyses, has provided good evidence for the Mpdz gene as being
a quantitative trait gene for physiological dependence and withdrawal from
alcohol (184). Given the improved QTL mapping programs now available
and the recent advances in molecular genetics, it seems likely that good evi-
dence for several other candidate genes for alcohol-related QTLs will be
appearing shortly. The next step will be evaluating these candidate genes in
human populations.
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HLA Polymorphism and Disease

Susceptibility

Henry A. Erlich

1. INTRODUCTION

The human leukocyte antigen (HLA) region, on chromosome 6p21.3, con-
tains more than 200 genes within this 3 Mb segment, many of which are
involved in the function of the immune system (1). The HLA class I (HLA-
A, B, and C) and class II (DRB1, DQB1, DPB1, and DQA1) loci encode cell
surface heterodimeric proteins that bind antigenic peptides and are the most
polymorphic genes in the human genome (see Fig. 1 for HLA region map).
Moreover, most of this extensive allelic sequence diversity (i.e., >500 alleles
at the HLA-B locus and >300 at the DRB1 locus) is functional and affects
peptide binding and recognition of the HLA-peptide complex by the T-cell
receptor. Statistical analysis of HLA class I and class II sequences has indi-
cated, based on the ratio of nonsynonymous to synonymous substitutions in
the polymorphic sequences encoding the peptide binding cleft of all class I
and class II loci, that these polymorphic sequences have been subjected to
balancing selection (2,3). Analyses of allele frequency distributions (4) in
various human populations have also supported the action of balancing
selection for all HLA loci, with the exception of DPB1 (5). However, the
Ewens–Watterson test (4), examining allele frequency distributions, is a rel-
atively insensitive test for balancing selection, and the ratio of nonsynony-
mous to synonymous substitutions for DPB1 is consistent with balancing
selection (6). Therefore, the DPB1 polymorphism is probably not neutral,
but the selective pressures operating on DPB1 do appear to be different from
those shaping the allele frequency distributions of the other HLA loci.

In the search for disease susceptibility genes, the high degree of functional
polymorphism within the HLA loci makes them the ultimate “candidate
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genes.” There are, in fact, more than 100 different diseases that have been
associated with specific alleles of the HLA loci (7). A selected subset of these
HLA-associated diseases is shown in Table 1. As noted above, a variety of
diseases, including autoimmune disorders, infectious diseases, cancer,
adverse drug responses, and diseases of unknown etiology, like narcolepsy,
have been associated with specific HLA alleles.

2. LINKAGE DISEQUILIBRIUM AND THE SEARCH FOR
DISEASE-RELATED ASSOCIATIONS

In principle, the association with disease of specific HLA alleles could simply
reflect linkage disequilibrium with alleles at nearby loci. This is clearly the case
for the well-known association of HLA-A3 with hereditary hemochromatosis.
The linkage disequilibrium between the HLA-A3 allele and the Cys282 Tyr
mutation of the recently identified HFE locus, about 1 Mb telomeric of the
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Fig. 1. Polymorphic human leukocyte antigen (HLA) and non-HLA genes in the
human major histocompatibility complex (HLA Region) HLA loci are represented
as teal boxes. Non-HLA loci are represented as orange boxes. Kilobase distances
between loci are shown above the colored boxes. For class II HLA loci, α (A) and β
(B) chain descriptors are show below the colored boxes. The number of alleles at
each HLA locus is shown in bold below the α and β chain descriptors, and the num-
ber of serotypes at each locus is shown in italics.
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HLA-A locus, accounts for the observed disease association (8). In general, link-
age disequilibrium is strong throughout the HLA region making the attribution
of an observed disease association to a specific allele at a given locus difficult.
However, given the remarkable extent of immunologically significant polymor-
phism at the HLA class I and class II loci, many, if not the vast majority, of the
disease associations with alleles at these loci may well reflect functional disease
determinants. The allelic products may affect differential peptide binding or dif-
ferential recognition by the T-cell receptor. Additional potential mechanisms
include differential activation of the T-helper cell 1 or T-helper cell 2 pathway
following antigen presentation or, conceivably, differential activation of natural
killer (NK) cells whose receptors (both activating and inhibitory killer
immunoglobulin-like receptors) recognize HLA class I epitopes.

Table 1
HLA Disease Associations (Selected Examples)

Autoimmunity/Inflammation
IDDM (type 1 diabetes)
Mysenthia gravis
Inflammatory bowel disease
(UC and CD)
RA, juvenile RA
Pemphigus vulgaris
Multiple sclerosis
Ankylosing spondylitis
Psoriasis

Unknown
Narcolepsy

Cancer
Cervical carcinoma
NP carcinoma
Hodgkins disease

Infectious disease
Malaria
Tuberculosis
Leprosy
HCV
HIV

UC, ulcerative colitis; CD, Crohn’s disease; HCV, hepatitis C virus; HIV, human
immunodeficiency virus; NP, nasopharyngeal; IDDM, insulin-dependent diabetes mellitus;
RA, rheumatoid arthritis; HLA, human leukocyte antigen.



Arguably, the most convincing evidence that the observed disease associa-
tions reflect functional properties of specific HLA molecules comes from
recent studies on celiac disease (CD). This is an inflammatory disorder involv-
ing an autoimmune attack on the intestinal mucosa that is elicited by ingestion
of wheat gluten (gliadin). The strongest association with CD is with the HLA-
DQ (DQ) heterodimer encoded by the DQA1*0501 and DQB1 *0201 alleles.
This heterodimer is encoded in cis by the DR3 haplotype and in trans in DR5
(DQA1*0501)/DR7 (DQB1*0201) genotypes (9). These genetic data argue
for a direct effect of the DQ molecule rather than an association caused by
linkage disequilibrium. Moreover, the peptide-binding motif for the DQ mole-
cule encoded by DQA1*0501 and DQB1*0201 has been determined (10).
Native gliadin does not contain this peptide motif, which contains glutamic
acid. However, the action of an intestinal enzyme, transglutaminase, can con-
vert a glutamine to glutamic acid, which creates a gliadin-derived peptide
capable of being bound and presented to the T-cell by the disease-associated
DQ molecule. Thus, the genetics of CD can be best explained by preferential
binding and presentation of a modified gliadin peptide by the DQ molecule
encoded by the disease-associated alleles, DQA1*0501 and DQB1*0201 (in
cis or in trans). The DQA1*03-DQB1*0302 haplotype also shows a weaker
association with celiac disease. Other genes, both within and outside the HLA
region, as well as environmental factors, are likely to be involved in CD, as in
other HLA-associated diseases.

Another instructive example of an HLA-disease association is that of
HLA-DPB1*0201 with beryllium disease (11). These DPB1 associations,
like the celiac disease example discussed in the previous paragraph, are
consistent with the notion that the product of the disease-associated DPB1
alleles binds the disease-relevant epitope and initiates a specific disease-
related immune response. HLA-associated beryllium disease represents
an example of HLA “ecogenetics,” i.e., a genetically determined interac-
tion with an environmental factor, such as exposure to beryllium. HLA
“pharmacogenetics,” i.e., genetically determined responses to drugs, can be
illustrated by the adverse hypersensitive response (experienced by around
5% of patients) to the human immunodeficiency virus antiretroviral drug,
abacavir. A recent report demonstrated that this hypersensitive response to
abacavir was strongly associated with the haplotype HLA-B*5701 and
DRB1*0701-DQB1*-0303 (12). Another example of a genetically deter-
mined adverse response to a specific drug is D-penicillamine-induced
myesthenia gravis, which is also associated with specific HLA alleles. In this
case, treatment of rheumatoid arthritis with D-penicillamine can induce a
muscle weakness, particularly in individuals with HLA-DR1 (13).
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3. LINKAGE DISEQUILIBRIUM AND 
EXTENDED HAPLOTYPES

The strong linkage disequilibrium that characterizes the HLA region is
reflected in the observation that “extended haplotypes” exist. These are 
specific combinations of alleles at HLA class I and class II loci that span several
Mb and are found much more frequently than expected in specific populations.
For example, in Chinese and some other Asian populations, the haplotype
A* 3303-B* 5801-C*0302-DRB1* 0301-DQA1* 0501-DQB1* 0201-
DPB1*0401 is present at relatively high frequencies reflecting strong linkage
disequilibrium among these many alleles (14). All alleles on this haplotype are
associated with nasopharyngeal carcinoma (14); consequently, it is difficult
(but not impossible) to sort out which allele, or combination of alleles on this
haplotype is responsible for the observed disease association. For diseases, like
type 1 diabetes (T1D), in which the major genetic determinants within the
HLA region have been identified (DRB1, DQA1, and DQB1), other loci within
the HLA region have been reported to be associated. In this case, it is critical to
evaluate whether the observed associations at these loci may simply be caused
by linkage disequilibrium with susceptible DRB1-DQA1-DQB1 haplotypes.
In some cases, such as the association of specific DPB1 alleles (15,16,17),
HLA-A alleles (18), or specific microsatellite markers (19), the association
with T1D does not appear to be caused simply by linkage disequilibrium with
the high-risk DR-DQ haplotypes, implying that there are loci other than the
DR and DQ loci within the HLA region that contribute to T1D risk.

4. HLA HAPLOTYPES AND DISEASE ASSOCIATIONS

As noted under Heading 3, the extensive linkage disequilibrium character-
istic of the HLA loci makes it difficult, when a specific haplotype is associ-
ated with a given disease, to identify which allele or combination of alleles
on that haplotype is responsible for the observed disease association.
Examining disease associations in different populations, particularly those
with different patterns of linkage disequilibrium, can be very instructive. For
example, the DR-DQ haplotype DRB1*1501-DQB1*0602 is strongly asso-
ciated with multiple sclerosis  (20) and with narcolepsy (21). Among people
of European descent, these two alleles are in very strong linkage disequilib-
rium, and each allele is almost never observed without the other. People of
African descent, however, in addition to DRB1*1501-DQB1*0602, also
have haplotypes containing DRB1*1501 with other DQB1 alleles and haplo-
types containing DQB1*0602 with another DRB1 allele. In the case of nar-
colepsy, association studies among African-American patients indicated that



the DQB1*0602 allele rather than the DRB1*1501 allele was most strongly
associated with disease (21). In studies of multiple sclerosis among African-
American patients, it was the DRB1*1501 allele that was associated with
disease rather than the DQB1*0602 allele (20).

In diseases like T1D, the association with DR-DQ haplotypes cannot be
attributed to only one locus. The T1D association with the serological type
DR4 has been known for many years. There are many different DR4 DRB1-
DQB1 haplotypes, and the pattern of association for some selected haplo-
types is shown in Table 2. For T1D, specific combinations of alleles at both
DRB1 and DQB1 determine the extent of disease risk. A similar inference
can be made from the analyses of DR-DQ haplotypes associated with inflam-
matory bowel disease. For both Crohn’s disease and ulcerative colitis, the
two clinical autoimmune disorders that comprise inflammatory bowel dis-
ease, the DRB1 allele *0103 was associated with the disease (22). Typically,
the DRB1*0103 allele is linked to the DQB1*0501 allele; the odds ratio for
this haplotype was around 3. The disease risk was higher, however, if the
DRB1*0103 allele was linked to the DQB1*0301 allele, a very rare haplo-
type with an odds ratio of around 8 (22).

The notion that specific combinations of DRB1 and DQB1 alleles influ-
ence disease risk is consistent with a recent report of T1D associations
among Filipinos (23). DRB1*0405 is associated with T1D in many different
populations. In several different studies, the haplotype DRB1*1401-
DQB1*0503 has been associated with protection (24). An unusual DR4 DR-
DQ haplotype, DRB1*0405- -DQB1*0503, unique to Filipinos that carries
a susceptible DRB1 and a protective DQB1 allele, was observed to have a
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Table 2
Combination of HLA-DQB1 and DRB1 Alleles Confer 
IDDM Susceptibility

IDDM risk

DRB1*0401-DQA1*0301-DQB1*0302 +
DRB1*0401-DQA1*0301-DQB1*0301 −
DRB1*0405-DQA1*0301-DQB1*0302 +
DRB1*0402-DQA1*0301-DQB1*0302 +
DRB1*0403-DQA1*0301-DQB1*0302 −
DRB1*0405-DQA1*0301-DQB1*0302 +
(Japan) DRB1*0405-DQA1*0301-DQB1*0402 +
(Africa) DRB1*0405-DQA1*0301-DQB1*0201 +

IDDM, insulin-dependent diabetes mellitus; HLA, human leukocyte antigen.
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neutral disease risk (odds ratio of 0.9) in this population (23). This observa-
tion suggests that the susceptible DRB1*0405 allele and the protective
DQB1*0503 allele may have “cancelled each other out” in terms of deter-
mining the extent of disease risk. These examples illustrate the issue of allele
combinations determining disease risk for the closely linked DRB1 and
DQB1 loci; there are also examples of class I (A*2402) and class II gene
(DRB1(0301-DQB1(0201) combinations affecting T1D risk (23).

5. HLA AND RISK ESTIMATES

For many HLA-associated diseases, e.g., T1D, there are multiple alleles at
a given locus that confer susceptibility (allelic heterogeneity). Other alleles at
this same locus can be negatively associated and confer protection from
developing the disease, and the rest of the alleles are “neutral” in terms of dis-
ease risk. The immunological mechanisms underlying susceptibility and pro-
tection are not known. However, from a genetic perspective, protection
appears to be “dominant” in the sense that individuals with a susceptible allele
or haplotype (i.e., DRB1*0401-DQB1*0302) and a protective allele or hap-
lotype (i.e., DRB1*1501-DQB1*0602) have an odds ratio significantly less
than 1.0. There is a hierarchy of haplotypes and genotypes in terms of T1D
risk (25); the DRB1*0301-DQB1*0201-DRB1*0401-DQB1*0302 geno-
type has an odds ratio of around 30 in Caucasian populations.

6. ESTIMATING THE CONTRIBUTION OF THE 
HLA REGION TO DISEASE RISK

For some HLA-associated diseases, such as T1D, several lines of evidence
suggest that the HLA region is responsible for more than 50% of the total
genetic risk (25). A useful measure of familial clustering, and thus, an esti-
mate of genetic risk, is provided by the sibling risk ratio (λs) (26). This is the
ratio of the risk to a sibling of an affected individual relative to the popula-
tion risk (prevalence). For T1D, this ratio, for Caucasian populations, is
around 15. A λs value can be estimated for specific loci by linkage analysis
in multiplex families. This estimate is obtained by comparing the observed
proportion of affected sibling pairs that share zero haplotypes identical by
descent to the proportion expected (25%) under the null hypothesis of no
linkage. For a well-characterized collection of Caucasian multiplex T1D
families (the Human Biological Data Interchange families), this value for the
HLA region was estimated to be 4.46 (25). Assuming a multiplicative model
(one in which the overall genetic risk is equal to the product of the risk con-
ferred by a specific locus, i.e., HLA and the risk attributed to the rest of the



genome), the risk conferred by the HLA region can be estimated to be around
55% of the total genetic risk (see Table 3).

Comparing the concordance of monozygotic twins (30–60%) to that of
HLA-identical siblings (10–20%) is consistent with the idea that a signifi-
cant proportion of the genetic risk can be attributed to the HLA region. (The
variation in concordance rates reflects the HLA genotype effect; the concor-
dance rate for DR3/4 monozygotic twins or sibs is higher that that for other
HLA types.)

6.1. HLA Typing and the Problem of Multiple Testing

Disease association studies involving loci with multiple alleles are com-
plicated by the familiar statistical problem of comparing frequencies in cases
and controls for many alleles. Typically, the unadjusted p value for the indi-
vidual allele comparison is presented, as well as a p value adjusted or
“corrected” for multiple testing. Because the frequencies of the alleles are
not independent, the conventional Bonferonni correction (multiplying the
unadjusted p value by the number of comparisons) is not appropriate and is
overly conservative. Nonetheless, this is the statistical approach that is often
used in HLA disease association studies. Another approach is to compare the
overall allele frequency distributions among cases and among controls (the
G-test for heterogeneity) (27) rather than calculate p values for the frequency
differences for individual alleles. HLA deoxyribonucleic acid (DNA) typing
has revealed many more alleles than serological typing. Consequently, as
HLA DNA typing has become more discriminating, the problem of multiple
testing has become greater.
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Table 3
What is Relative Contribution of a Locus to Overall Genetic Risk?

HLA, human leukocyte antigen.
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6.2. HLA DNA Typing

Most polymerase chain reaction (PCR)-based HLA typing methods
involve the design of primer pairs that are capable of amplifying all alleles at
the target locus with the polymorphic sequence motifs localized between the
primer sites. The sequences between the primers are subsequently character-
ized by a variety of approaches, including hybridization probes, restriction
enzymes, and chain-termination sequencing reactions; they can also be
inferred from the conformation-based mobility of the PCR products using
gel electrophoresis. The other main approach to HLA typing uses the PCR
itself as a method of distinguishing polymorphisms by exploiting the speci-
ficity of oligonucleotide primer extension and places the 3′ end of the primer
at the polymorphic site.

The first PCR-based approaches to HLA typing utilized labeled sequence-
specific oligonucleotide (SSO) probes to hybridize to PCR products ampli-
fied from the sample and immobilized on a nylon or nitrocellulose filter, the
“dot blot” method (28). Using a panel of probes specific for informative
sequence motifs, the HLA alleles in the sample, linkage disequilibrium could
be inferred from the pattern of probe reactivity. The initial methods utilized
P-32 labeled probes for typing of the HLA-DQA1 locus but shortly there-
after, nonradioactively labeled probes were introduced (29) and are now
commonly used. HLA typing by SSO probes has been simplified signifi-
cantly by applying the reverse hybridization approach (30), i.e., by labeling
the PCR product during amplification with biotinylated primers and
hybridizing it to an immobilized array of SSO probes. Immobilized probe
typing for HLA-A is illustrated in Figure 2.

Currently, computer programs are routinely used to infer the genotype
from the probe-reactivity pattern. The genotype interpretation programs have
to be updated periodically to incorporate newly identified alleles. In some
cases, these new alleles will require the addition of probes to the typing
system. In most cases, however, the new allele represents a new combination
of known polymorphic sequence motifs and thus does not create the need for
additional probes. In this case, however, the incorporation of the new allele
into the typing system and software may create additional ambiguities. Such
ambiguities arise when a given probe-reactivity pattern is consistent with
more than one genotype. Given enough primers and probes, the PCR/SSO
method is, in principle, capable of distinguishing all the alleles at a given
HLA locus. To achieve allele level typing, however, it is sometimes neces-
sary to amplify separately the alleles of a heterozygote and analyze the
probe-reactivity pattern for each individual allele.



Another PCR-based approach, based on the specificity of primer exten-
sion rather than that of probe hybridization, has also been applied to HLA
typing. This method is known variously as allele-specific amplification (31),
sequence-specific priming (32), and the amplification refractory mutation
system (33). Here, a specific primer pair is designed for each polymorphic
sequence motif or pair of motifs, and the presence of the targeted polymor-
phic sequence in a sample is detected as a positive PCR, typically identified
as a band on a gel.

In general, the pattern of allelic sequence diversity at all the polymor-
phic HLA loci is a patchwork of discrete sequence motifs. This patchwork
pattern of polymorphism is thought to reflect the operation of gene con-
version-like events that have generated the extensive sequence diversity
observed in human populations by recombining these short sequence
motifs. One consequence of this pattern is that, in PCR-based HLA
typing, a large number of different alleles can be distinguished by using a
relatively modest number of oligonucleotide primers or probes that
recognize these sequence motifs. On the other hand, sometimes a given
pattern of sequence motifs, detected either with probes or primers or by
sequencing, may be consistent with more that a single genotype, because
the observed sequence motifs can be combined into more than a unique
pair of alleles. This issue of “ambiguity” in DNA-based typing is discussed
in Subheading 6.3.
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Fig. 2. Probe reactivity patterns for various HLA-A-typed cell lines are shown.
The exon 2 and exon 3 control probes hybridize to all HLA-A alleles.
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6.3. The Problems of New Alleles and Ambiguity

As more and more PCR-based HLA typing is being carried out in more
and more populations, new (previously unreported) alleles at both class I and
class II loci are being detected, leading to a slow but steady increase in the
number of alleles at both class I and class II loci. The vast majority of these
involve new combinations of previously known sequence motifs, and thus,
they can be identified without adding additional probes. Nonetheless, they
can create problems for typing strategies. The identif cation of new alleles
requires frequent updating of the files in the genotyping software that relate
sequence motifs to alleles. The addition of these new alleles can lead to
increased ambiguities in the genotype interpretation of the primary typing
data, such as the SSO probe-reactivity or sequence-specific priming patterns.
An additional consequence of these newly discovered alleles is to modify
the interpretation of typing results obtained prior to their discovery. For
example, a pattern of reactive SSO probes that was consistent with a given
genotype, at one time, might, following the identification of the new allele,
be consistent with additional genotypes.

Most HLA typing systems, with the exception of sequencing separated
alleles, can occasionally generate an ambiguous result; here, ambiguity is
defined as HLA typing data (e.g., a probe-reactivity pattern) consistent with
more than one pair of alleles. In some cases, if a given probe-reactivity pat-
tern (or other typing data) is consistent with either genotype X or Y, consider-
ation of the genotype frequencies in the relevant populations and the
likelihood that the sample is X or Y may be appropriate in interpreting the
typing data. As noted in the previous paragraph allele level resolution often
requires the separate amplification of the two alleles in a heterozygote. This is
most commonly carried out by performing a preliminary typing (e.g.,
DRB1*04/DRB1*08) and then using group-specific primers for the
DRB1(04 group and the DRB1*08 group, based on the sequence variation in
codons 9–12 of DRB1 to amplify the alleles separately.

7. CONCLUSIONS

The HLA loci are extraordinarily polymorphic; this polymorphism affects
peptide binding and presentation to T-cells and thus, influences the pattern of
immune responsiveness to specific antigens and susceptibility to a wide 
variety of diseases. PCR-based HLA typing methods have been developed and
have been applied to population genetics studies, as well as disease association
studies. Many different diseases have been shown to be associated with 
specific alleles of the HLA class I and/or class II loci. Linkage analyses for



many diseases, notably T1D, have identified the HLA region as the major
disease locus. For some diseases, it appears that specific combinations of
alleles determine the extent of disease risk. HLA disease associations promise
to play an increasingly important clinical role in identifying individuals
predisposed to specific disorders or adverse response to specific drugs or
environmental agents.
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11
Asthma Genetics

A Case Study

William Cookson

1. INTRODUCTION

Asthma is the most common chronic disease of childhood, affecting an
estimated 155 million individuals in the world. The cost of treating the dis-
ease in the United States is approx $6 billion dollars per annum (1). More
than half of this expense is spent on hospital care and 80% is attributable to
the 20% of patients who require the most treatment (1). The market to the
pharmaceutical industry for asthma medication is $5.5 billion per annum (2).

The diseases of asthma, eczema, and hay fever are typified by immuno-
globulin E (IgE)-mediated reactions to common allergens. These allergic
(atopic) diseases are increasing in prevalence and are now a major source of
disability throughout the developed world. They are the result of complex
interactions between genetic and environmental mechanisms.

Asthma is an inflammatory disease of the airways of the lungs. Narrowing
occurs because of inflammation and mucous hypersecretion and is exacerbated
as the smooth musculature in the walls of the small airways (bronchioles)
becomes hyperresponsive to nonspecific stimuli. Intermittent airway constric-
tion gives rise to the asthmatic symptoms of wheezing, coughing, chest tight-
ness, and shortness of breath. Over time, the bronchioles may become fibrosed
or scarred, and the airflow limitation may become permanent.

Eczema (atopic dermatitis [AD]) is as common as asthma, affecting
between 10 and 20% of children in western populations (3,4). The two dis-
eases are strongly associated, so that 60% of children attending a clinic for
eczema may also have asthma (5). AD is typified by itchy, inflamed skin.
The disease usually begins in infancy and early childhood, and infants with
AD are prone to weeping inflammatory patches and crusted areas on the
face, neck, extensor surfaces, and groin. Children and young adults tend to
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have dermatitis of flexural skin, particularly in the antecubital and popliteal
fossae (5).

Atopic mechanisms dominate current understanding of the pathogenesis
of asthma (6) and AD (7). However, approx 10% of children with either dis-
ease do not show positive skin tests to common allergens or elevations of the
total serum IgE. This indicates the importance of nonatopic mechanisms in
disease pathogenesis.

Both diseases show a high heritability (h2) (>60%) (4,8,9). Identification
of the genes underlying these disorders will lead to new insights into their
pathogenesis and new methods of treatment. This may be accomplished by
the study of candidate genes, which is unlikely to lead to new and unex-
pected mechanisms for disease. Novel mechanisms are more likely to be dis-
covered through the systematic process of positional cloning.

The basic principles behind the positional cloning of single gene disorders
are applicable to the cloning of genes underlying complex disorders. These
principles include the demonstration of segregation within families, the use
of recombination to localize disease genes to particular chromosomal seg-
ments, and the identification of the causal genes from within these segments.
Each of these steps are beset by considerable uncertainties.

2. PHENOTYPE

The choice of phenotype may be critical for the success of positional
cloning programs. Asthma is recognized by symptoms of intermittent wheez-
ing, coughing, and attacks of shortness of breath. It may be accompanied by
indicators of allergy, such as the total serum IgE concentration, the blood
eosinophil count, and the presence of specific IgE against common allergens,
detected by prick skin tests or serology. Bronchial hyperresponsiveness
(BHR) to inhaled spasmogens, such as methacholine is a measure of nonspe-
cific airway lability that accompanies asthma (10). BHR is typically quanti-
fied by measuring the decline in forced expired volume in 1 s that follows
increasing doses or concentrations of nebulized (inhaled) histamine or
methacholine. End points may be the dose or concentration that produces a
fall of 20% in forced expired volume in 1 s or the slope of the dose–response
curve (11).

2.1. Power

The high frequency of asthma in the population has adverse effects on the
power to detect linkage. The ability to detect linkage to a particular pheno-
type depends on a statistic known as λs. λs is defined as the risk of disease in
the siblings of an affected proband divided by the risk of the disease in the
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population. In general, the higher the value of λs the easier it is to detect
linkage. For type 1 diabetes λs is 15, for schizophrenia λs is 8.6, but for
asthma, λs is less than 2. This means that even 500 affected sibling pairs will
give less than 50% power to detect linkage to a given marker (12). To
achieve 90% power more than 1000 sibling pairs would be required. Genetic
linkage in these circumstances becomes problematic and capricious.

Quantitative intermediate phenotypes have more power to detect linkage
than complex diagnostic categories, such as asthma, because they do not
present difficulties with marginal cases, and because they may be more heri-
table than diagnostic categories. In addition, by selecting families with sib-
ling at the extremes of trait distributions gives greatly enhanced power to
detect linkage, so that the number of sibling pairs required to detect linkage
with more than 90% power may drop below 100 (13).

2.2. Segregation

Segregation analysis describes the study of the pattern of inheritance of
disease in families. It may be used to quantify the genetic predisposition to a
particular disease and its relationship to intermediate phenotypes and envi-
ronmental factors. As well as a means of exploring the interrelationship
between phenotypic variables, segregation analyses may also be used to
measure the h2 of various traits, with the expectation that genes underlying
traits that are highly heritable may be identified more easily than those
underlying weakly heritable traits. We have therefore used complex segrega-
tion analyses to explore phenotypes for subsequent linkage and association
studies.

2.3. Asthma

Although it is possible to generate a brisk argument among any group of
physicians about an ideal definition of asthma, most doctors in industrialized
societies easily recognize the clinical presentation of an asthmatic patient. It
is easier to recognize asthma in children and young adults. In older individu-
als, it is more difficult to distinguish asthmatic symptoms from the conse-
quences of cigarette smoking.

Physician-diagnosed asthma reproducibly identifies disease in epidemio-
logical surveys (14) and shows a high h2 of 60–70% (8). For our genetic
studies, we have always defined asthma by physician diagnosis in the
response to a standard (American Thoracic Society) questionnaire.

Other studies have used complex definitions of asthma (15–17), usually
involving the presence of absence of BHR in addition to symptoms of
wheezing. Although BHR provides quantification of airway lability, it is



not a completely reliable indicator of airway status. It varies with time and
with treatment, and approx 5% of asymptomatic individuals will have air-
way hyperresponsiveness and 20–40% of asthmatics will have BHR in the
normal range (18,19). Clinical studies show that pronounced hyperrespon-
siveness does not associate well with asthma severity (20). Evidence is
lacking that the presence of BHR defines a more heritable trait or even a
particular subtype of asthma. (This is in contrast to experimental airways
hyperreactivity that is induced in murine models of asthma).

2.4. Atopy

Initially, Dr. Julian Hopkin and I observed that children within atopic fam-
ilies varied in the disease manifestations. Within a single family, some chil-
dren might have elevated total serum IgE; whereas other children might have
positive skin tests or elevated specific IgE titers against common allergens,
despite having normal serum IgE concentrations. As clinicians, we felt that
atopy would be recognized if any one of these traits was present. We there-
fore proposed a compound definition of atopy, which included one or more
of positive skin tests, positive serum IgE titers against allergens, or eleva-
tions of the total serum IgE 21. Using this definition of atopy, most individu-
als could be classified as affected or unaffected, and borderline cases could
be classified as indeterminate. Even though we were naïve to consider this
trait to behave as a simple autosomal dominant (21), it appears to be highly
penetrant, and we have continued to use it in linkage studies (22).

2.5. Quantitative Traits

We have investigated the genetic and environmental components of vari-
ance of serum total and specific IgE levels and BHR in an Australian
population-based sample of 232 Caucasian nuclear families. The inter-
relationships of the genetic determinants of these traits were also investi-
gated. Loge total serum IgE levels had a h2 of 47%. Specific serum IgE levels
against house dust mite and timothy grass (added together as a radioaller-
gosorbent test [RAST] Index), had a h2 of 34%. BHR, quantified by the loge
dose-response slope (DRS) to methacholine, had a h2 of 30%. We demon-
strated an approx 70% overlap in the genetic determinants of total and
specific serum IgE levels. However, the genetic determinants of serum IgE
levels and DRS exhibited less than 30% sharing (23). These data indicate
that the loge is the single most heritable intermediate trait associated with
asthma and suggest that DRS and BHR are less heritable and are genetically
distinct from atopy.
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2.6. Genetic Linkage

Genetic linkage in humans may be assessed by parametric statistics, such
as the logarithm of the odds (lod) score, or by non- or semiparametric statis-
tics, usually based on measures of sibling pair sharing of traits and alleles. In
early studies, we attempted to use lod scores (24), discarding individuals
with ambiguous phenotypes, but soon realized that generational effects and
the decline in the prevalence of atopy and asthma symptoms with age made
phenotype definition problematic in parents. Since then, we have used sib-
ling pair methods to test for linkage to categorical phenotypes of physician-
diagnosed asthma and atopy and quantitative traits of total serum IgE, skin
test index, and BHR (measured as DRS).

2.7. Genotypic Ambiguity and Error

Errors in genotyping can substantially influence the power to detect
linkage using affected sibling pairs. These errors may have less effect in
single marker linkage analysis than in multipoint analysis, when genotyp-
ing errors can easily result in false exclusion of the true location of a
disease-predisposing gene (25). Simulations have shown that for loci of
modest effect 5% genotyping error may eliminate all supporting evidence
for linkage to a true susceptibility locus in affected pairs (26). Although
quantitative trait loci (QTL) association analyses of common alleles are
more robust to genotyping error, power can still be affected dramatically
with errors in the genotyping of rare alleles (26).

Exhaustive detection of genotyping errors is therefore essential for effec-
tive linkage studies. Errors may be prevented by careful quality controls, but
any large-scale pedigree collection and genotyping exercise will still result
in some mistakes. Examination and correction of the genotype data should
therefore precede definitive linkage or association analyses.

Standard programs, such as PedCheck, identify Mendelian errors, but
these are only part of the error content of a given data set. In a large panel of
families, errors may arise from misplaced samples or incorrectly classified
relationships, such as half-siblings, full siblings, and identical twins. We
have developed a graphical tool (GRR) for verifying assumed relationships
between individuals in genetic studies (27). It examines the mean and vari-
ance of the allele sharing between sibling, parent, and parent-child pairs and
identifies pairs that show unexpected patterns of sharing. Its use is particu-
larly valuable in the initial analyses of genome screen data, when errors in
pedigree classification may be common (27). GRR is effective with informa-
tion from as few as 50 markers.



Genotyping error may also be detected by the presence of improbable
recombination events, typically apparent double recombinants in a small
genetic interval. The computer program MERLIN (28) identifies all such
events within dense genetic maps. This information is output to a file. The
genotypes may then be checked and corrected. As the throughput of single
nucleotide polymorphism (SNP) genotyping becomes higher and more auto-
mated, it is increasingly difficult to return and regenotype individual SNPs.
As an alternative, the MERLIN utility PEDWIPE may be used to produce a
pedigree file, in which improbable genotypes have been scored as missing.

2.8. Parent-of-Origin Effects

The risk of transmission of atopic disease from an affected mother is
approx 4 times higher than from an affected father (29). Similar parent-of-
origin effects have been noted in other immunological diseases, including
type 1 diabetes (30,31), rheumatoid arthritis (32), psoriasis (33), inflam-
matory bowel disease (IBD) (34), and selective immunoglobulin-A (IgA)
deficiency (35).

Parent-of-origin effects seem therefore to be part of a general phenome-
non affecting several immune-related loci and several diseases, and it may
be assumed that this process is in some way adaptive.

Most linkage studies of asthma and related phenotypes have not explored
for maternal effects. This may well be because many of the most commonly
used linkage programs do not routinely give results for parents-of-origin. We
have used the computer program GAS (http://users.ox.ac.uk/~ayoung/
gas.html), which gives nonparametric single and multipoint linkage statis-
tics, together with the actual allele counts from which statistics are derived.
Maternal and paternal transmission equilibrium test (TDT) tests are also
given by GAS, and association to quantitative traits may be investigated with
quantitative trait TDT (QTDT) (36).

The mechanisms for these parent-of-origin effects are unknown. They
may result from immune interactions between the fetus and the mother,
which are recognized to take place through the placenta, as well as through
breast milk (6). Alternatively, the maternal effect may be the result of
genomic imprinting. Genomic imprinting is a process in which the genes
from one parent are differentially expressed to the allele derived from the
other parent (37,38).

Several known genes show parent-of-origin effects on allergic disease.
These genes include the FcεRI-β locus on chromosome 11q13 (5,39), the
LEKTI/SPINK5 gene from chromosome 5q34 (40) and as yet undiscovered
genes at loci on chromosomes 4 and 16 (22). Parent-of-origin effects must
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have a physical basis, which is tractable to investigation. A first step in this
might be to examine epigenetic markers of imprinting, such as the variable
presence of methylation on CpG residues (38), with knowledge of parental
atopic status and genotype.

2.9. Genome Screens

Eleven full-genome screens have been reported for asthma and its associ-
ated phenotypes (22,41–50) and others have been carried out in industry.
Several of these screens have been performed in distinct European popula-
tions, which are German (43), French (46), Finnish (47), Icelandic (48),
Dutch (49), and Danish (50).

Happily, there is considerable consensus about regions of genetic linkage
that are relevant to asthma. Primary linkages that have been replicated in
more than one screen are to 6p24-21 (the major histocompatibility complex
[MHC]) in six screens (22,41,43,44,49,50), 11q13-21 (near the β chain of
the high-affinity receptor for IgE [FcεRI-β]) in four screens (22,41,46,50),
1p31-36 in three screens (41,46,50), 4q13 in two screens (22,47), 5q23-31 in
two screens (near the interleukin [IL]-4 cytokine cluster) (49,50), 7p14 in
two screens (22,47), 12q21-24 in two screens (43,46), 13q12-14 in two
screens (22,49), and 16q21-23 in two screens (22,50).

Four groups have shown linkage to the long arm of chromosome 2, but
these are spread over some distance between 2q14 (near the IL-1 cluster)
(22), 2q21-23 (44), 2q24-34 (49), and 2q32 (43). It is not yet clear whether
these correspond to different genetic loci.

Three groups have found regions of linkage, which, although unreplicated,
are statistically significant: these are on 3q21-22 in Danish families (50),
14q24 in Icelandic families (48), and 17q12-21 in French families (46).
A fourth group has reported a single linkage on chromosome 20p12, which
was part of the results of an industrial genome screen (17).

Finally, three regions of linkage have been established by studying impor-
tant candidate loci: these include chromosome 14q11 and the T cell receptor
(TCR) -α/δ genes (51), chromosome 5q23 and the cytokine cluster (52), and
chromosome 12q12-14 and interferon (IFN) -γ (53).

2.10. Nonreplication

Thus, 10 loci have been replicated in more than one screen, but four
groups have found regions of highly significant (p < 0.001) but unreplicated
linkage: these are on 3q21-22 (50), 11p13 (46), 14q24 (48), 17q12-21 (46),
and 20p12 (17).



A number of reasons may explain why linkages to these loci have not
been replicated in the other studies. First, they might represent false posi-
tives. It is always difficult to judge the true meanings of the probabilities
that are generated from multiple variations of phenotype and hundreds of
different markers. It is therefore desirable to apply empirical statistical
methods to generate global p values from the phenotype and marker combi-
nations used in an individual study. These methods use simulations in which
the genotypes from a study are randomly combined with the phenotypes,
and the number of p values below various thresholds is counted. The simu-
lations are repeated thousands of times, building up an accurate picture of
the real probability of a particular p threshold in the data set under study
(22,47,54).

Second, the results may reflect population-specific differences in genetic
predisposition to asthma. Differences in allele frequencies for the human
leukocyte antigen (HLA) loci and other immune genes (55) show clear gra-
dients between European countries, and the screens that have been per-
formed in Danish (50), Icelandic (48), and French (46) families may quite
plausibly be detecting regional differences in polymorphism in other
immune genes.

Third, there may be methodological differences between studies. The most
important of these will be differences in age distribution or disease severity.

A fourth and common reason for outlying linkage results is that replica-
tion of linkage findings in complex diseases is a priori expected to require a
substantially larger data set than that in which the original findings were
made (56). This is because practicable sample sizes always represent a frac-
tion of the ideal, and some random selection of families with linkage in a
particular region is likely (56).

3. INDIVIDUAL LOCI AND CANDIDATE GENES

Several of the loci found by genome screens contain important candidate
genes, and three loci have been the subject of positional cloning exercises.
The relevant findings for these loci are summarized under the following
subheadings.

3.1. The MHC

The MHC shows the strongest evidence for linkage in most studies. It is
well-known that HLA-DR alleles restrict the IgE response to particular aller-
gens, usually with a relative risk less than 2 (57–60). Small antigens, such as
aspirin and acid anhydrides, show much stronger effects (61,62). The ability
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to react to particular allergens has also been linked to the TCR-α/δ locus
(but not TCR-β) 51, and HLA-DR and TCR-α/δ alleles interact in the suscep-
tibility to house dust mite allergens (63).

The functionally important tumor necrosis factor (TNF) -308 promoter
allele shows robust associations with asthma independently of association to
particular allergens (64–70). The relative risk of TNF-308*2 is approx 2.

These HLA-DR and TNF polymorphisms are not sufficient to account for
the strength of linkage to the MHC, and further investigation of this complex
region is necessary.

3.2. FcεRI-β (Chromosome 11q13)

Chromosome 11q13 was originally linked to atopy (24) and was subse-
quently shown to contain the β chain of the high affinity receptor for IgE (71).
Polymorphisms in FcεRI-β are associated with asthma (72), allergy (73),
BHR (74), and AD (5). These variations seem to be associated with severe
atopic disease. FcεRI-β acts as an approximately sevenfold amplifying ele-
ment of the high-affinity IgE receptor response to activation (75) and stabilizes
the expression of the receptor on the mast cell surface (76). FcεRI-β is there-
fore in an ideal position to modify nonspecifically the strength of the response
to allergens. Coding polymorphism has been identified within the gene but do
not appear to alter its function (77). The actions of other polymorphisms within
regulatory elements of the gene are currently under investigation.

3.3. Chromosome 13q13

Chromosome 13q13 contains the first locus genetically linked to total
serum IgE levels (78). This region also shows genetic linkage to the serum
concentration of other immunoglobulins, particularly IgA (79). Fine-
mapping of the locus has reduced its localization to a 100 kb interval (80):
this interval contains the most common minimum breakpoint region for
chronic B-cell lymphatic leukemia (81–83). We have recently found a regu-
latory gene complex that modifies immunoglobulin secretion, possibly
through clonal expansion of B-cells.

3.4. The IL-4 Cytokine Cluster (Chromosome 5q34)

The cytokine cluster on chromosome 5q34 contains many candidates, includ-
ing IL-4, IL-13, granulocyte-macrophage colony-stimulating factor and IL-9.
Polymorphisms in IL-4 may be weakly associated with asthma (84), but a far
stronger association has been established between IL-13 polymorphisms and
increased serum IgE levels (85), atopy, and asthma (86–89). The coding poly-
morphism Arg130 seems to show a stronger effect than Gln (85).



Two rare autosomal syndromes show linkage to this chromosomal region.
Familial eosinophilia is an autosomal-dominant disorder characterized by
peripheral hypereosinophilia of unidentifiable cause with or without other
organ involvement (90). Its gene has not yet been identified. Netherton’s dis-
ease is a rare, recessive disorder characterized by generalized erythroderma,
symptoms of atopic disease, and very high levels of IgE (91). The gene for
Netherton’s disease has been identified (SPINK5) and encodes a 15-domain
serine protease inhibitor called LEKTI, which is expressed in epithelial and
mucosal surfaces and in the thymus (92,93). Polymorphisms in this gene are
associated with AD, asthma, and elevated serum IgE levels (94).

3.5. IL-4R Polymorphism (Chromosome 16p12)

Several groups have examined polymorphisms in the IL-4 receptor gene
and have consistently identified effects on asthma and atopy (95–97). Two
common coding polymorphisms S503P and Q576R are in close linkage dise-
quilibrium (LD), and their haplotype has been shown to influence signal
transduction (95). Subsequently, a I75V polymorphism has been identified,
and coincidence of the V75 and R576 on the same haplotype has been shown
to be necessary for enhanced IL-4R function (98). Although this association
is robust, it does not account for the linkage to the long arm of chromosome
16 (16q21-23) seen in two genome screens (22,50).

3.6. Chromosome 20p

The positional cloning of a putative asthma gene from the short arm of
chromosome 20 has been reported recently. Linkage to asthma in a genome
screen was followed by positive tests of association that center on a
membrane-anchored zinc-dependent metalloproteinase ADAM33 17.
Significant linkage to this region was not observed in any of the previous
genome screens, although weak linkage of asthma was observed in one study
(16) and weak linkage to BHR in another (43). The evidence for linkage was
claimed to be strongest in asthmatics who had BHR and weaker in those who
had elevations of the total serum IgE (17). The results have required some
polishing for the effects to be discovered: association was only tested for if
linkage to was also present and several thousand pairwise comparisons have
been carried out uncorrected. The ADAM33 gene is expressed ubiquitously
in muscle of every type. ADAM proteins have been implicated in many
processes, including proteolysis of the extracellular matrix and extracellular
communication and signalling (99,100). ADAM17 is TNF-α-converting
enzyme. The function of ADAM33 remains mysterious. Perhaps its expres-
sion in muscle would suggest that it alters bronchial contractility.
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4. LINKAGE OF ASTHMA TO CHROMOSOMAL REGIONS
IMPLICATED IN OTHER IMMUNE DISEASES

It has been observed that many immune diseases with a genetic basis share
linkages to a limited number of chromosomal segments (in addition to the
MHC) (101). In the case of asthma, 1p31-36 overlaps with linkage to ankylos-
ing spondylitis (102) and type 1 diabetes (103,104). Polymorphism in the IL-1
cluster near the asthma locus on chromosome 2q14 has shown linkage to
rheumatoid arthritis (105): this locus may influence the severity of rheumatoid
arthritis (106) and IBD (107). The chromosome 7p13-14 locus may also be
linked to ankylosing spondylitis (102), and 12q21 may be linked to IBD
(108,109) and multiple sclerosis (110). 14q11-12 has been linked to IBD (111)
and type 1 diabetes (103), and 16q23 has also been linked to the same two dis-
eases (102,103,112). These findings emphasize that important genes or gene
families may be common to several inflammatory and immune disorders.

5. GENOME SCREENS FOR AD

Two genome screens for childhood AD have been carried out (40,113).
Both screens were of modest size and were of comparable power, and both
used sophisticated statistics to generate empirical p values to show that they
had identified regions of real genetic linkage. The first screen, carried out in
families of German and Scandinavian children with AD, found linkage to a
region on chromosome 3q21 (113). The second screen, of British families
recruited through children with AD attending a hospital of tertiary referral,
found three regions of linkage to AD or to AD and asthma combined, on
chromosomes 1q21, 17q25, and 20p (40).

The first study also found linkage of the total serum IgE to the 3q21 locus
(113), and the second study found linkage of this trait to chromosomes 5q31
and 16qtel (40). In each case the evidence for linkage to the serum IgE was
weaker than the evidence for linkage to AD.

A third genome screen has been reported, in which the subjects were
Swedish adults with AD who were identified at hospital outpatient clinics
(114). In general, the results were less conclusive than the screens of chil-
dren with AD. Suggestive evidence was found for linkage of AD to chromo-
some 3p24-22. The authors also used a severity score of AD and found
suggestive linkage to chromosomes 3q14, 13q14, 15q14-15, and 17q21. It is
possible that the 3q14 locus and the 17q21 loci may correspond to the
AD loci identified in children. Chromosome 13q14 has been previously
linked to children with AD (115), as well as to atopy and asthma (80). The
other loci may be considered to be novel.



Two observations can be made from the genome screens of children with
AD: first, they show strongest linkage to regions of the genome that are not
associated with asthma susceptibility, and second, they show linkage to regions
of the genome associated with other skin diseases, most notably psoriasis.

5.1. AD and Common Loci With Psoriasis

Psoriasis is a chronic inflammatory skin disease that affects 1–2% of the
population with a mean age of onset at about 30 yr. The characteristic lesions
are chronic, sharply demarcated, and dull red scaly plaques, which are typi-
cally found on the extensor prominences and the scalp (116).

The putative chromosome 1q21, 17q25, and 20p loci identified in the UK
genome screen for AD are closely coincident with regions known to contain
psoriasis susceptibility genes (117–119). The conservative probability of this
overlap occurring by chance is less than 3 in 100,000 (40). This coincidence
becomes more remarkable when it is observed that the German AD genome
screen locus on chromosome 3q21 (113) also closely overlaps another
psoriasis locus (120).

Although AD is clinically and pathologically quite distinct from psoriasis,
some features are shared by both diseases, including dry, scaly skin and dis-
turbed epidermal differentiation. The concordance rates in monozygotic and
dizygotic twins with psoriasis are similar to those for AD (121,122), suggest-
ing a similar strength of genetic influences.

These findings suggest that the shared regions of linkage between AD and
psoriasis contain polymorphic genes with general effects on dermal inflam-
mation and immunity. The polymorphism may be contained in clusters of
genes influencing the skin, or may be the result of allelic variation in single
genes.

6. MOUSE MODELS

Murine models make powerful tools for the genetic dissection of complex
disorders and are discussed more fully elsewhere in this volume. Given their
utility, it is surprising that only a limited number of genome screens have
been carried out with murine models of asthma-related phenotypes.
Nevertheless, the results may add considerably to the identification of human
disease loci.

De Sanctis et al. identified three loci linked to spontaneous airway hyperre-
sponsiveness (SHR) in an A/J and C57BL/6J cross, on murine chromosomes 2,
15, and 17 (123). These respectively correspond to human chromosome 2q14
(containing the important IL-1 complex), chromosome 22, and the MHC on
chromosome 6p.
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Ewart et al. identified linkage of the same SHR phenotype in an A/J and
C3H/HeJ cross to murine chromosome 6, corresponding to the human IL-4
cytokine complex. This region has been identified by several human linkage
studies (52,124–126) and may contain more than one locus influencing
asthma.

Our group carried out a genome screen in a BP2 and Balb/c cross, using
QTLs derived from a model of ovalbumin (OVA) induced asthma (127). This
identified five potential loci, two on chromosome 9, and one each on chro-
mosomes 10, 11, and 17.

The chromosome 10 QTL to induced bronchial responsiveness (IBR)
showed syntenic homology with human chromosome 12q21.1-12q24.22,
which has previously been shown to be linked to human asthma-associated
traits (53,128,129). The region linkage of IBR to mouse chromosome 11
contains loci which contributed to survival after ozone-induced pulmonary
inflammation in a AJ × C57BL/6J cross (130) and to ozone-induced pul-
monary neutrophil infiltration in a C57BL/6J × C3H/HeJ cross (131). This
region shows syntenic homology to human chromosome 17, which has been
implicated in previous linkage studies of asthma 17q12-21 (46,129) and
contains numerous chemokine genes.

The suggestive linkage of IBR to mouse chromosome 17 supported the
previously reported linkage to SHR (123). Both the original and our studies
suggest that the locus may contain more than one gene influencing airway
hyperresponsiveness (AHR) (123,127). This region contains the MHC and
TNF genes, which may have diverse effects on antigen recognition and the
promotion of airway inflammation. The MHC and TNF genes have also been
implicated in gold-salt-induced IgE nephropathy in a brown Norway (BN) ×
Lewis (LEW) rat cross (132). In human families, class II HLA genes are
known to restrict the ability to react to particular allergens (57–60), and poly-
morphism with TNF genes has been associated with asthma independently
of class II effects (64). The suggestion that two (or more) loci are acting
within this QTL in our murine model is therefore consistent with the
observations in humans.

The mouse chromosome 11 QTL influencing eosinophil infiltration into
the bronchial epithelium has complex human syntenic homologies, which
include the distal IL-4/IL-5 cytokine cluster on human chromosome 5. It has
also been implicated by a BN × LEW cross that had been used to investigate
IgE nephropathy (132).

A recent comprehensive study (133) examined the strain distribution pat-
terns for the asthma-related phenotypes AHR, lung eosinophils, and OVA
specific serum IgE induced by allergen exposure protocols in A/J, AKR/J,



BALB/cJ, C3H/HeJ, and C57BL/6J inbred strains and in (C3H/HeJ × A/J)
F1 mice. Expression of AHR differed between strains and was sometimes
discordant with lung eosinophils or serum IgE. The study identified two dis-
tinct QTL for susceptibility to allergen-induced AHR, Abhr1 (allergen-
induced BHR) (lod = 4.2), and Abhr2 (lod = 3.7), on chromosome 2 in
backcross progeny from A/J and C3H/HeJ mice. In addition, a QTL on chro-
mosome 7 was suggestive of linkage to this trait.

The murine chromosome 2 locus identified in this study overlaps the SHR
linkage identified by De Sanctis et al. (123) and the human IL-1 cluster. The
murine chromosome 7 locus has syntenic homology to human chromo-
some 19 which may contain an asthma locus (134).

The NC/Nga mouse is an inbred strain established from Japanese fancy
mice that spontaneously develop AD-like skin lesions and elevations of the
total serum IgE concentration. These lesions are characterized by massive
infiltration of CD4+ T-cells which produce IL-4 and IL-5, and the degranula-
tion of eosinophils and mast cells (135). This mouse may also serve as a
model for asthma (136). A genetic study in these mice showed linkage to
chromosome 9 (137). This region is the syntenic homolog of human chro-
mosome 11q23, which linked in some human studies to eosinophil counts
and specific IgE responses 22 (138).

The NOA (Naruto Research Institute Otsuka Atrichia) mouse is another
model of AD. Linkage of this trait has been established to the middle of
mouse chromosome 14 (139), in the homologous region to the recognized
human atopy locus on chromosome 13q14 (80).

7. LD MAPPING

Genetic linkage studies in humans and in mice have therefore generated a
substantial amount of high-quality data that has led to consensus on the
number and nature of several major loci influencing asthma and its associ-
ated phenotypes. Several of these loci have been further dissected by the
study of important candidate genes. For regions that do not contain candi-
date genes, the challenge is now to move from genetic linkage to gene
identification.

LD describes the nonrandom association of deoxyribonucleic acid (DNA)
variants on contiguous regions of DNA. New polymorphisms first appear on
an individual chromosome and are initially coinherited with every other poly-
morphism on that chromosome. Polymorphisms may increase in frequency in
a population either through selection or through genetic drift. Genetic recom-
bination causes progressive dissociation between the new polymorphism and
distant SNPs, until after many generations only physically close SNPs are
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coinherited. LD may be detected by population associations between mark-
ers or between a disease phenotype (representing a functional polymor-
phism) and a marker or markers.

The detection of disease-marker associations by LD mapping can pre-
cisely locate genes of small effect and could be used to identify common dis-
ease genes in genome-wide scans or to reduce the number of candidate genes
in a region in which linkage has been established (140–143). In the presence
of common disease alleles, or when the frequency of rare alleles is increased
through selection, the sample sizes required for LD studies are much smaller
than for equivalently powered linkage studies (140).

7.1. The Nature of LD

Simulations have suggested that LD may extend for less than 5 kb, even
in relatively isolated populations, so that more than 1,000,000 equally spaced
markers might be required for genome-wide LD scans (144). However,
reviews of published data provide examples of LD at distances greater than
100 kb (145,146), and there is evidence that LD patterns vary between popu-
lations (147,148). LD is detectable at 500 kb in the adenomatous polyposis
coli (APC) gene region on chromosome 5 (149), and significant LD between
microsatellite loci has been shown to extend to 4 cM in some chromosomal
regions (146). Other studies have shown that the distribution of LD is irregu-
lar in a number of chromosomal regions (150–153).

We have examined the patterns of LD for dense SNP maps in three
genomic regions in a sample of 575 chromosomes from two Caucasian pop-
ulations of British ancestry (154). We used the D’ statistic as a measure of
LD because it has a simple interpretation, its scale (between 0 and 1) is inde-
pendent of allele frequency and it is applicable to both SNP and microsatel-
lite data (155,156).

We found that the fine structure of LD was highly irregular. Forty-five
percent of the variation in disequilibrium measures could be explained 
by physical distance. Additional factors, such as allele frequency, type of
polymorphism, and genomic location, explained less than 5% of the
variation (154).

The mean D’ was less than 1 even for closely linked markers, and SNPs a
few base pairs apart on occasion showed no LD. The results therefore indi-
cate that care is required when interpreting allelic association as evidence of
precise localization.

The limit of detection of LD between a disease and a marker is approxi-
mately defined by a D’ of 0.33 (144,154) and by the size of the sample stud-
ied (157). We found that on average D’ declined below 0.33 for distances



greater than approx 35 bp (154). The detection of association between a
marker and disease therefore limits the location of the disease gene to within
an average of 35 kb in either direction. Local differences in the extent of LD
may modify this figure, which may be approximated to 100 kb (±50 kb).

7.2. Detection of Association

The key decision in moving from genetic linkage (typically 10–30 Mb) to
genetic association (100 kb) is the number and density of markers to type
within the limits for localization of the disease gene. This interval is typi-
cally defined by the 1 lod support unit (the region covered by the linkage
curve extending 1 lod less than the maximum peak), which corresponds
approximately to a 90% confidence interval. If LD were to be evenly distrib-
uted, then 30 Mb could be covered comprehensively by as few as 300 SNPs
(or microsatellites or other polymorphisms). However, the universal obser-
vation is that LD is irregular. Therefore, much has been made of the pres-
ence of “haplotype blocks,” which have been defined as “sizeable regions
over which there is little evidence for historical recombination and within
which only a few common haplotypes are observed” (158,159).

It has been suggested that such blocks may be typified by a limited num-
ber of SNPs, and that these SNPs may serve to capture all relevant haplo-
types and disease associations. In our data we do not find evidence of such
blocks: even within regions of quite high LD, LD still declines with distance,
and some markers may be out of LD with their immediate neighbors.

An empirical method of moving from linkage to association may be to type
waves of markers of progressive density until association between disease and
a marker is identified. The density of the first wave depends on the resources
available for genotyping (budget, subjects, equipment, and workers).

The power of LD mapping depends strongly on matching marker and dis-
ease allele frequencies (157,160,161). This means that SNPs with a range of
gene frequencies should be tested. Microsatellites reflect LD from multiple
alleles simultaneously, and as LD may extend for longer distances around
microsatellites (154), they may be more informative than SNPs for low den-
sity scans or when searching for mutations of recent origin. Dense panels of
microsatellite markers are already in use for genetic linkage studies (162),
and there are 12,000 microsatellites in the public domain, so that these mark-
ers also merit consideration in LD mapping.

Association between disease and a marker may be examined in cases or con-
trols or in families. Cases and controls may be cheaper to collect, but hidden
admixture is always a possibility, particularly in country such as the United
States. In the absence of admixture, the power of analysis of association in
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families may be increased by the inclusion of all family members, correcting
for familial correlations in phenotype and genotype. Statistical methods for
this type of analysis include regressive models (163), as implemented in
SAGE, and variance components models, as implemented in QTDT (36) for
quantitative traits, and haplotype relative risks (164) for categorical data.

7.3. Association Mapping

Assuming that an association has been established between a marker and
disease, the next step in localization of an assumed disease gene involves
defining the limits of association and the comprehensive identification of poly-
morphism within those limits. Although the public SNP map is becoming more
reliable and comprehensive, it is not so at the time of writing, and the identifi-
cation of all SNPs in a region will still depend on systematic resequencing.

The nature of the genetic variation underlying complex traits is likely to
consist of common alleles that are evolutionarily old (165,166). In addition,
rare alleles may require prohibitively large sample sizes to detect associa-
tions with complex traits.

Our sequencing strategy has therefore been directed at the identification
of alleles with a minimum frequency of 0.15. It has been shown that
sequencing 20 haploid genomes gives an approx 99.9% probability of detect-
ing alleles with a minimal allele frequency of 0.2 and an approx 99% proba-
bility of detecting alleles with a minimum frequency of 0.1 (167). We
therefore have initially sequenced 10 diploid genomes (5 unrelated atopic
subjects and 5 unrelated controls) together with a pool of DNA from 32 unre-
lated individuals. Dilution experiments with known alleles indicated that
we were able to detect allele frequencies more than 0.15 with this pool.
Repetitive DNA segments are very difficult to resequence, and may be screened
out using REPEATMASKER (Smit, AF and Green P, http://repeatmasker.
genome.washington.edu).

Once a positional candidate has been identified, we have sequenced multi-
ple clones all exons in complementary DNA (cDNA) from 22 unrelated indi-
viduals, 12 of which were atopic and 7 of which were asthmatic. This data
would have 99.9% probability of identifying SNPs greater than 0.1 frequency
and 95% probability of identifying SNPs greater than 0.01 frequency (167).

In general, successful LD mapping will require a systematic understand-
ing of local patterns of LD and haplotype evolution, as exemplified by the
mapping of polymorphisms in the angiotensin-converting enxyme (ACE)
gene which control circulating ACE levels (168). Haplotype-based tests may
be more powerful in the presence of multiple disease alleles (169), but the
relationship between haplotype variation and the power of haplotype-based

http://repeatmasker.genome.washington.edu
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tests has not yet been well described. We have routinely carried out haplo-
type generation in simple pedigrees by the MERLIN computer program (28)
and more complex pedigrees by SIMWALK2 (170). LD between markers
may be assessed by estimation of D’ from the parental haplotypes (154) and
depicted by the GOLD program (171).

8. GENE IDENTIFICATION

Once an LD and association map has been completed, then the putative
gene needs to be identified from the refined genetic region. With luck, only a
handful of genes will be implicated by genetic association. Gene identifica-
tion depends on the examination of sequence for potential genes, the identi-
fication of expressed sequences with the expressed sequence tag (EST)
databases, the pattern of expression of the genes within different tissues, and
the inference of gene function from homology searches and examination of
domain structure. These steps are considerably facilitated by the near-
completion of the human genetic sequence.

8.1. Sequence Analyses

In our studies we have analyzed genomic sequence using a modification
of HPREP (G. Micklem, unpublished). We have looked for matches to
human, rodent, EST, sequence tagged sites, and other DNA databases, using
the SWISSPROT, TREMBL, and TREMBLNEW peptide databases. We
have identified CpG islands using CPG (172), transcription factor elements
and putative promoter regions using PROMOTERSCAN (173), and exon
predictions using GRAIL (174), GENSCAN (175), GENEPARSER (176),
and MZEF (177).

8.2. EST Databases

We have obtained IMAGE clones mapping to regions of interest from
Research Genetics. We have aligned consensus sequences for each IMAGE
clone by the Genetics Computer Group program. ESTs are by intent fragmen-
tary, and even consensus sequences from multiple ESTs are likely to be incom-
plete. Sequences may most easily be completed by polymerase chain reaction
(PCR) of cDNA RACE libraries to extend 5’ and 3’ cDNA ends of the IMAGE
clones. Alternatively, libraries may be screened for full-length cDNAs.

The data from all these sources needs to be integrated into a full map of
the region. We have collated these annotations using ACeDB (http://www.
acedb.org/) and identified known genes using BLASTN178 against the
EMBL DNA database.
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8.3. Domain and Homology Analyses to Infer Function

We have searched the peptide databases SWISSPROT, TREMBL, and
TREMBLNEW using BLASTX (178) for homologs to transcripts of
unknown function. We have examined putative roles for recognized protein
domains within transcripts using PSI-BLAST (178) and SMART (179).

8.4. Expression: Northerns, Multiple Tissue cDNA Panels, and
Positional Arrays

The general pattern of expression of the positional candidate genes may be
examined by northern blots, such as the human Multiple Tissue Northern
(MTNTM) Blots and Human Immune System MTN blots that may be obtained
from CLONTECH. We have also found very helpful the examination of
cDNA panels from multiple tissues by PCR. The use of PCR allows the exam-
ination of splice variants that may not be delineated by Northern blots.

The inclusion of all human genes on commercially available DNA
microarrays adds a new dimension to this process. These arrays may be
interrogated with a variety of tissues from normal and diseased individuals
and information on the expression levels integrated with positional informa-
tion from linkage and association studies.

8.5. The Effects of Polymorphism: Multiple Variant Alleles and
Splice Variation

All of this information may be used to judge if the assumed gene has been
identified. The decision is easiest if clear mutations are found in the gene, as
in the case of the NOD2 gene and Crohn’s disease (180,181). However, it
may often be the case that the effects of polymorphism on gene function are
more subtle, affecting levels of expression or splice variation. In these cir-
cumstances a definitive understanding of the mechanics of disease may take
some time. Systematic examination of polymorphisms for transcription fac-
tor binding by electrophoretic mobility shift assay of footprinting experi-
ments would seem to be a helpful first step.

8.6. Gene Function

Given that positional cloning is capable of finding new and unexpected
mechanisms for disease, it is quite possible that at the end of the positional
cloning process there will still be some uncertainty regarding the function of
the assumed disease gene in the disease process. The downstream examina-
tion of the function of genes is likely to be highly individual and difficult to
organize with high throughput. The abilities to express proteins in a variety
of vectors and systems, to raise antibodies, to localize proteins within cells,



to identify ligands, and to knockout in mice or knockdown in cells by ribonu-
cleic acid interface may all be required.

9. CONCLUSIONS

The positional cloning of genes underlying asthma has proven to be highly
complex and demanding of considerable resources. However, several groups
now have sufficient clinical collections of families and cases and controls to
be able to map disease genes with robust and replicated results. The public
availability of the human and murine genome sequence and improved meth-
ods of high-throughput genotyping are hugely valuable tools in disease gene
identification.

A striking feature of genetic studies of asthma has been the recognition of
the considerable overlap between linkage regions from human and murine
studies. This overlap extends beyond asthma to many diseases of immune
and autoimmune origins. It is likely to represent the common effects of evo-
lution on polymorphism in the same key immune genes in humans and in
rodents. It strongly indicates the importance of murine studies in disease
gene identification and suggests that an integrated approach to mapping
encompassing both species will be the best way forward.

Despite all the difficulties, real progress has already been made and the
eventual complete understanding of the genetic basis of asthma and atopic
disease is now assured.

REFERENCES

1. Smith DH, Malone DC, Lawson KA, Okamoto LJ, Battista C, Saunders WB.
A national estimate of the economic costs of asthma. Am J Respir Crit Care
Med 1997;156:787–793.

2. Stuart M. Start-Up 1999;12–20.
3. Sampson HA. Pathogenesis of eczema. Clin Exp Allergy 1990;20:459–467.
4. Schultz Larsen F. Atopic dermatitis: a genetic-epidemiologic study in a 

population-based twin sample. J Am Acad Dermatol 1993;28:719–723.
5. Cox HE, Moffatt MF, Faux JA, et al. Association of atopic dermatitis to the

beta subunit of the high affinity immunoglobulin E receptor. Br J Dermatol
1998;138:182–187.

6. Holt PG, Macaubas C, Stumbles PA, Sly PD. The role of allergy in the devel-
opment of asthma. Nature 1999;402 (6760 Suppl):B12–B17.

7. Bos J. Immunology of atopic dermatitis. Oxford: Blackwell Science, 2000.
8. Duffy DL, Martin NG, Battistutta D, Hopper JL, Mathews JD. Genetics of asthma

and hay fever in Australian twins. Am Rev Respir Dis 1990;142:1351–1358.
9. Larsen FS, Holm NV, Henningsen K. Atopic dermatitis. A genetic-epidemiologic

study in a population-based twin sample. J Am Acad Dermatol 1986;15:487–494.

288 Cookson



Asthma Genetics 289

10. Boushey HA, Holtzman MJ, Sheller JR, Nadel JA. Bronchial hyperreactivity.
Am Rev Respir Dis 1980;121:389–413.

11. O’Connor G, Sparrow D, Taylor D, Segal M, Weiss S. Analysis of dose-
response curves to methacholine. An approach suitable for population studies.
Am Rev Respir Dis 1987;136:1412–1417.

12. Cookson W, Palmer L. Investigating the asthma phenotype. Clin Exp Allergy
1998;28 (Suppl 1) :88–89; discussion 108–110.

13. Risch N, Zhang H. Extreme discordant sib pairs for mapping quantitative trait
loci in humans. Science 1995;268:1584–1589.

14. O’Connor GT, Weiss ST. Clinical and symptom measures. Am J Respir Crit
Care Med 1994;149:S21–S28.

15. Postma DS, Bleecker ER, Amelung PJ, et al. Genetic susceptibility to asthma-
bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl
J Med 1995;333:894–900.

16. Ober C, Cox NJ, Abney M, et al. Genome-wide search for asthma susceptibil-
ity loci in a founder population. The collaborative study on the genetics of
asthma. Hum Mol Genet 1998;7:1393–1398.

17. Van Eerdewegh P, Little RD, Dupuis J, et al. Association of the ADAM33
gene with asthma and bronchial hyperresponsiveness. Nature 2002;418:
426–430.

18. Peat JK, Salome CM, Bauman A, Toelle BG, Wachinger SL, Woolcock AJ.
Repeatability of histamine bronchial challenge and comparability with metha-
choline bronchial challenge in a population of Australian school children. Am
Rev Respir Dis 1991;144:338–343.

19. Sears MR, Burrows B, Flannery EM, Herbison GP, Hewitt CJ, Holdaway
MD. Relation between airway responsiveness and serum IgE in children with
asthma and in apparently normal children. N Engl J Med 1991;325:
1067– 1071.

20. Plaschke P, Bake B. Pronounced bronchial hyper-responsiveness and asthma
severity. Clin Physiol 1994;14:197–203.

21. Cookson WO, Hopkin JM. Dominant inheritance of atopic immunoglobulin-E
responsiveness. Lancet 1988;1:86–88.

22. Daniels SE, Bhattacharrya S, James A, et al. A genome-wide search for quanti-
tative trait loci underlying asthma. Nature 1996;383:247–250.

23. Palmer LJ, Burton PR, Faux JA, James AL, Musk AW, Cookson WO.
Independent inheritance of serum immunoglobulin E concentrations and air-
way responsiveness. Am J Respir Crit Care Med 2000;161:1836–1843.

24. Cookson WO, Sharp PA, Faux JA, Hopkin JM. Linkage between immunoglob-
ulin E responses underlying asthma and rhinitis and chromosome 11q. Lancet
1989;1:1292–1295.

25. Goring HH, Terwilliger JD. Linkage analysis in the presence of errors II:
marker-locus genotyping errors modeled with hypercomplex recombination
fractions. Am J Hum Genet 2000;66:1107–1118.

26. Abecasis GR, Cherny SS, Cardon LR. The impact of genotyping error on
family-based analysis of quantitative traits. Eur J Hum Genet 2001;9:130–134.



27. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. GRR: graphical repre-
sentation of relationship errors. Bioinformatics 2001;17:742–743.

28. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin-rapid analysis of
dense genetic maps using sparse gene flow trees. Nat Genet 2002;30:97–101.

29. Moffatt M, Cookson W. The genetics of asthma. Maternal effects in atopic dis-
ease. Clin Exp Allergy 1998;28(Suppl 1):56–61; discussion 65, 66.

30. Bennett S, Todd J. Human type 1 diabetes and the insulin gene: principles of
mapping polygenes. Annu Rev Genet 1996;30:343–370.

31. Warram JH, Krolewski AS, Gottlieb MS, Kahn CR. Differences in risk of
insulin-dependent diabetes in offspring of diabetic mothers and diabetic
fathers. N Engl J Med 1984;311:149–152.

32. Koumantaki Y, Giziaki E, Linos A, et al. Family history as a risk factor for
rheumatoid arthritis: a case-control study. J Rheumatol 1997;24:1522–1526.

33. Burden A, Javed S, Bailey M, Hodgins M, Connor M, Tillman D. Genetics of
psoriasis: paternal inheritance and a locus on chromosome 6p [see comments].
J Invest Dermatol 1998;110:958–960.

34. Akolkar PN, Gulwani-Akolkar B, Heresbach D, et al. Differences in risk of
Crohn’s disease in offspring of mothers and fathers with inflammatory bowel
disease. Am J Gastroenterol 1997;92:2241–2244.

35. Vorechovsky I, Webster AD, Plebani A, Hammarstrom L. Genetic linkage of
IgA deficiency to the major histocompatibility complex: evidence for allele
segregation distortion, parent-of-origin penetrance differences, and the role of
anti-IgA antibodies in disease predisposition. Am J Hum Genet 1999;64:
1096–1109.

36. Abecasis GR, Cardon LR, Cookson WO. A general test of association for
quantitative traits in nuclear families. Am J Hum Genet 2000;66:279–292.

37. Hall JG. Genomic imprinting. Arch Dis Child 1990;65:1013–1016.
38. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat

Rev Genet 2001;2:21–32.
39. Cookson WO, Young RP, Sandford AJ, et al. Maternal inheritance of atopic

IgE responsiveness on chromosome 11q. Lancet 1992;340:381–384.
40. Cookson WO, Ubhi B, Lawrence R, et al. Genetic linkage of childhood atopic

dermatitis to psoriasis susceptibility loci. Nat Genet 2001;27:372–373.
41. Xu J, Meyers DA, Ober C, et al. Genomewide screen and identification of gene-

gene interactions for asthma-susceptibility loci in three U.S. populations: collab-
orative study on the genetics of asthma. Am J Hum Genet 2001;68:1437–1446.

42. Ober C, Tsalenko A, Parry R, Cox NJ. A second-generation genomewide
screen for asthma-susceptibility alleles in a founder population. Am J Hum
Genet 2000;67:1154–1162.

43. Wjst M, Fischer G, Immervoll T, et al. A genome-wide search for linkage to
asthma. German Asthma Genetics Group. Genomics 1999;58:1–8.

44. Hizawa N, Freidhoff L, Chiu Y, et al. Genetic regulation of Dermatophagoides
pteronyssinus-specific IgE responsiveness: a genome-wide multipoint linkage
analysis in families recruited through 2 asthmatic sibs. Collaborative study on
the genetics of asthma (CSGA). J Allergy Clin Immunol 1998;102:436–442.

290 Cookson



Asthma Genetics 291

45. Mathias RA, Freidhoff LR, Blumenthal MN, et al. Genome-wide linkage
analyses of total serum IgE using variance components analysis in asthmatic
families. Genet Epidemiol 2001;20:340–355.

46. Dizier MH, Besse-Schmittler C, Guilloud-Bataille M, et al. Genome screen for
asthma and related phenotypes in the French EGEA study. Am J Respir Crit
Care Med 2000;162:1812–1818.

47. Laitinen T, Daly MJ, Rioux JD, et al. A susceptibility locus for asthma-related
traits on chromosome 7 revealed by genome-wide scan in a founder popula-
tion. Nat Genet 2001;28:87–91.

48. Hakonarson H, Bjornsdottir US, Halapi E, et al. A major susceptibility gene
for asthma maps to chromosome 14q24. Am J Hum Genet 2002;71:483–491.

49. Koppelman GH, Stine OC, Xu J, et al. Genome-wide search for atopy suscep-
tibility genes in Dutch families with asthma. J Allergy Clin Immunol 2002;
109:498–506.

50. Haagerup A, Bjerke T, Schiotz PO, Binderup HG, Dahl R, Kruse TA. Asthma and
atopy-a total genome scan for susceptibility genes. Allergy 2002;57:680–686.

51. Moffatt MF, Hill MR, Cornelis F, et al. Genetic linkage of T cell receptor a/d
complex to specific IgE responses. Lancet 1994;343:1597–1600.

52. Marsh DG, Neely JD, Breazeale DR, et al. Linkage analysis of IL4 and other
chromosome 5q31.1 markers and total serum immunoglobulin E concentra-
tions. Science 1994;264:1152–1156.

53. Barnes KC, Neely JD, Duffy DL, et al. Linkage of asthma and total serum IgE
concentration to markers on chromosome 12q: evidence from Afro-Caribbean
and Caucasian populations. Genomics 1996;37:41–50.

54. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for
interpreting and reporting linkage results. Nat Genet 1995;11:241–247.

55. Libert F, Cochaux P, Beckman G, et al. The deltaccr5 mutation conferring pro-
tection against HIV-1 in Caucasian populations has a single and recent origin
in Northeastern Europe. Hum Mol Genet 1998;7:399–406.

56. Suarez BK, Hampe CL, Van Eerdewegh P. Problems of replicating linkage
claims in psychiatry. In: Gershorn ES, Cloninger CR, eds. Genetic approaches
to mental disorders. Washington, DC: American Psychiatric, 1994:23–46.

57. Levine BB, Stember RH, Fontino M. Ragweed hayfever: genetic control and
linkage to HLA haplotyes. Science 1972;178:1201–1203.

58. Marsh DG, Meyers DA, Bias WB. The epidemiology and genetics of atopic
allergy. N Engl J Med 1981;305:1551–1559.

59. Young RP, Dekker JW, Wordsworth BP, Cookson WO. HLA-DR and HLA-DP
genotypes and immunoglobulin E responses to common major allergens. Clin
Exp Allergy 1994;24:431–439.

60. Moffatt MF, Schou C, Faux JA, et al. Association between quantitative traits
underlying asthma and the HLA- DRB1 locus in a family-based population
sample. Eur J Hum Genet 2001;9:341–346.

61. Dekker JW, Nizankowska E, Schmitz-Schumann M, et al. Aspirin-induced
asthma and HLA-DRB1 and HLA-DPB1 genotypes. Clin Exp Allergy 1997;
27:574–577.



62. Young RP, Barker RD, Pile KD, Cookson WO, Taylor AJ. The association of
HLA-DR3 with specific IgE to inhaled acid anhydrides. Am J Respir Crit Care
Med 1995;151:219–221.

63. Moffatt MF, Schou C, Faux JA, Cookson WO. Germline TCR-A restriction
of immunoglobulin E responses to allergen. Immunogenetics 1997;46:
226–230.

64. Moffatt MF, Cookson WO. Tumour necrosis factor haplotypes and asthma.
Hum Mol Genet 1997;6:551–554.

65. Albuquerque RV, Hayden CM, Palmer LJ, et al. Association of polymorphisms
within the tumour necrosis factor (TNF) genes and childhood asthma. Clin Exp
Allergy 1998;28:578–584.

66. Chagani T, Pare PD, Zhu S, et al. Prevalence of tumor necrosis factor-alpha
and angiotensin converting enzyme polymorphisms in mild/moderate and
fatal/near-fatal asthma. Am J Respir Crit Care Med 1999;160:278–282.

67. Li Kam Wa TC, Mansur AH, Britton J, et al. Association between-308 tumour
necrosis factor promoter polymorphism and bronchial hyperreactivity in
asthma. Clin Exp Allergy 1999;29:1204–1208.

68. Noguchi E, Yokouchi Y, Shibasaki M, et al. Association between TNFA poly-
morphism and the development of asthma in the Japanese population. Am J
Respir Crit Care Med 2002;166:43–46.

69. Witte JS, Palmer LJ, O’Connor RD, Hopkins PJ, Hall JM. Relation between
tumour necrosis factor polymorphism TNFalpha-308 and risk of asthma. Eur J
Hum Genet 2002;10:82–85.

70. Winchester EC, Millwood IY, Rand L, Penny MA, Kessling AM. Association
of the TNF-alpha-308 (G→A) polymorphism with self-reported history of
childhood asthma. Hum Genet 2000;107:591–596.

71. Sandford AJ, Shirakawa T, Moffatt MF, et al. Localisation of atopy and beta
subunit of high-affinity IgE receptor (Fc epsilon RI) on chromosome 11q.
Lancet 1993;341:332–334.

72. Shirakawa T, Mao XQ, Sasaki S, et al. Association between atopic asthma and
a coding variant of Fc epsilon RI beta in a Japanese population. Hum Mol
Genet 1996;5:1129, 1130.

73. Hill MR, James AL, Faux JA, et al. Fc epsilon RI-beta polymorphism and risk
of atopy in a general population sample. Br Med J 1995;311:776–779.

74. van Herwerden L, Harrap SB, Wong ZY, et al. Linkage of high-affinity IgE
receptor gene with bronchial hyperreactivity, even in absence of atopy. Lancet
1995;346:1262–1265.

75. Lin S, Cicala C, Scharenberg A, Kinet J. The Fc(epsilon)RIbeta subunit func-
tions as an amplifier of Fc(epsilon)RIgamma-mediated cell activation signals.
Cell 1996;85:985–995.

76. Turner H, Kinet JP. Signalling through the high-affinity IgE receptor Fc
epsilonRI. Nature 1999;402(6760 Suppl):B24–B30.

77. Donnadieu E, Cookson WO, Jouvin MH, Kinet JP. Allergy-associated poly-
morphisms of the FcεRIβ subunit do not impact its two amplification func-
tions. J Immunol 2000;165:3917–3922.

292 Cookson



Asthma Genetics 293

78. Eiberg H, Lind P, Mohr J, Nielsen LS. Linkage relationship between the
human immunoglobulin E polymorphism and marker systems. Cytogenet Cell
Genet 1985;40:622.

79. Wiltshire S, Bhattacharyya S, Faux JA, et al. A genome scan for loci influenc-
ing total serum immunoglobulin levels: possible linkage of IgA to the chromo-
some 13 atopy locus. Hum Mol Genet 1998;7:27–31.

80. Anderson GG, Leaves NI, Bhattacharyya S, et al. Positive association to IgE
levels and a physical map of the 13q14 atopy locus. Eur J Hum Genet
2002;10:266–270.

81. Oscier DG. Cytogenetic and molecular abnormalities in chronic lymphocytic
leukaemia. Blood Rev 1994;8:88–97.

82. Kalachikov S, Migliazza A, Cayanis E, et al. Cloning and gene mapping of the
chromosome 13q14 region deleted in chronic lymphocytic leukemia.
Genomics 1997;42:369–377.

83. Mabuchi H, Fujii H, Calin G, et al. Cloning and characterization of CLLD6,
CLLD7, and CLLD8, novel candidate genes for leukemogenesis at chromo-
some 13q14, a region commonly deleted in B-cell chronic lymphocytic
leukemia. Cancer Res 2001;61:2870–2877.

84. Rosenwasser L, Klemm D, Dresback J, et al. Promoter polymorphisms in the
chromosome 5 gene cluster in asthma and atopy. Clin Exp Allergy 1995;25
(Suppl 2): 74–78; discussion 95, 96.

85. Graves PE, Kabesch M, Halonen M, et al. A cluster of seven tightly linked poly-
morphisms in the IL-13 gene is associated with total serum IgE levels in three
populations of white children. J Allergy Clin Immunol 2000;105:506–513.

86. Leung T, Tang N, Chan I, Li A, Ha G, Lam C. A polymorphism in the coding
region of interleukin-13 gene is associated with atopy but not asthma in
Chinese children. Clin Exp Allergy 2001;31:1515–1521.

87. Noguchi E, Nukaga-Nishio Y, Jian Z, et al. Haplotypes of the 5% region of
the IL-4 gene and SNPs in the intergene sequence between the IL-4 and 
IL-13 genes are associated with atopic asthma. Hum Immunol 2001;62:
1251–1257.

88. Howard T, Whittaker P, Zaiman A, et al. Identification and association of poly-
morphisms in the interleukin-13 gene with asthma and atopy in a Dutch popu-
lation. Am J Respir Cell Mol Biol 2001;25:377–384.

89. van der Pouw Kraan TC, van Veen A, Boeije LC, et al. An IL-13 promoter
polymorphism associated with increased risk of allergic asthma. Genes Immun
1999;1:61–65.

90. Rioux J, Stone V, Daly M, et al. Familial eosinophilia maps to the cytokine
gene cluster on human chromosomal region 5q31-q33. Am J Hum Genet
1998;63:1086–1094.

91. Chavanas S, Garner C, Bodemer C, et al. Localization of the Netherton syn-
drome gene to chromosome 5q32, by linkage analysis and homozygosity map-
ping. Am J Hum Genet 2000;66:914–921.

92. Chavanas S, Bodemer C, Rochat A, et al. Mutations in SPINK5, encoding a ser-
ine protease inhibitor, cause Netherton syndrome. Nat Genet 2000;25:141–142.



93. Mägert HJ, Standker L, Kreutzmann P, et al. LEKTI, a novel 15-domain type
of human serine proteinase inhibitor. J Biol Chem 1999;274:21,499–21,502.

94. Walley AJ, Chavanas S, Moffatt MF, et al. Gene polymorphism in Netherton
and common atopic disease. Nat Genet 2001;29:175–178.

95. Kruse S, Japha T, Tedner M, et al. The polymorphisms S503P and Q576R in
the interleukin-4 receptor alpha gene are associated with atopy and influence
the signal transduction. Immunology 1999;96:365–371.

96. Ober C, Leavitt SA, Tsalenko A, et al. Variation in the interleukin 4-receptor
alpha gene confers susceptibility to asthma and atopy in ethnically diverse
populations. Am J Hum Genet 2000;66:517–526.

97. Kauppi P, Lindblad-Toh K, Sevon P, et al. A second-generation association
study of the 5q31 cytokine gene cluster and the interleukin-4 receptor in
asthma. Genomics 2001;77:35–42.

98. Risma KA, Wang N, Andrews RP, et al. V75R576 IL-4 receptor alpha is asso-
ciated with allergic asthma and enhanced IL-4 receptor function. J Immunol
2002;169:1604–1610.

99. Weskamp G, Kratzschmar J, Reid MS, Blobel CP. MDC9, a widely expressed
cellular disintegrin containing cytoplasmic SH3 ligand domains. J Cell Biol
1996;132:717–726.

100. Millichip MI, Dallas DJ, Wu E, Dale S, McKie N. The metallo-disintegrin
ADAM10 (MADM) from bovine kidney has type IV collagenase activity in
vitro. Biochem Biophys Res Commun 1998;245:594–598.

101. Becker K, Simon R, Bailey-Wilson J, et al. Clustering of non-major histocom-
patibility complex susceptibility candidate loci in human autoimmune dis-
eases. Proc Natl Acad Sci USA 1998;95:9979–9984.

102. Laval SH, Timms A, Edwards S, et al. Whole-genome screening in ankylosing
spondylitis: evidence of non-MHC genetic-susceptibility loci. Am J Hum
Genet 2001;68:918–926.

103. Mein CA, Esposito L, Dunn MG, et al. A search for type 1 diabetes suscepti-
bility genes in families from the United Kingdom. Nat Genet 1998;19:
297–300.

104. Lindgren CM, Widen E, Tuomi T, et al. Contribution of known and unknown
susceptibility genes to early-onset diabetes in scandinavia: evidence for het-
erogeneity. Diabetes 2002;51:1609–1617.

105. Hardwick L, Walsh S, Butcher S, et al. Genetic mapping of susceptibility loci
in the genes involved in rheumatoid arthritis. J Rheumatol 1997;24:197–198.

106. Cox A, Camp NJ, Cannings C, et al. Combined sib-TDT and TDT provide evi-
dence for linkage of the interleukin-1 gene cluster to erosive rheumatoid arthri-
tis. Hum Mol Genet 1999;8:1707–1713.

107. Mansfield J, Holden H, Tarlow J, et al. Novel genetic association between
ulcerative colitis and the anti-inflammatory cytokine interleukin-1 receptor
antagonist. Gastroenterol 1994;106:637–642.

108. Satsangi J, Parkes M, Louis E, et al. Two stage genome-wide search in inflam-
matory bowel disease provides evidence for susceptibility loci on chromosomes
3, 7 and 12. Nat Genet 1996;14:199–202.

294 Cookson



Asthma Genetics 295

109. Duerr RH, Barmada MM, Zhang L, et al. Linkage and association between
inflammatory bowel disease and a locus on chromosome 12. Am J Hum Genet
1998;63:95–100.

110. Haines JL, Bradford Y, Garcia ME, et al. Multiple susceptibility loci for multi-
ple sclerosis. Hum Mol Genet 2002;11:2251–2256.

111. Duerr RH, Barmada MM, Zhang L, Pfutzer R, Weeks DE. High-density
genome scan in Crohn disease shows confirmed linkage to chromosome
14q11-12. Am J Hum Genet 2000;66:1857–1862.

112. Cox NJ, Wapelhorst B, Morrison VA, et al. Seven regions of the genome show
evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex
families. Am J Hum Genet 2001;69:820–830.

113. Lee YA, Wahn U, Kehrt R, et al. A major susceptibility locus for atopic der-
matitis maps to chromosome 3q21. Nat Genet 2000;26:470–473.

114. Bradley M, Soderhall C, Luthman H, Wahlgren CF, Kockum I, Nordenskjold M.
Susceptibility loci for atopic dermatitis on chromosomes 3, 13, 15, 17 and 18
in a Swedish population. Hum Mol Genet 2002;11:1539–1548.

115. Beyer K WU, Freidhoff L, Nickel R, et al. Evidence for linkage of chromo-
some 5q31-q33 and 13q12-q14 markers to atopic dermatitis. J Allergy Clin
Immunol 1998;101:152.

116. Camp R. Psoriasis. In: Champion R, Burton J, Burns D, Breathnach S, eds.
Textbook of dermatology. Oxford: Blackwell Science, 1998:1589–1649.

117. Capon F, Novelli G, Semprini S, et al. Searching for psoriasis susceptibility
genes in Italy: genome scan and evidence for a new locus on chromosome 1. J
Invest Dermatol 1999;112:32–35.

118. Tomfohrde J, Silverman A, Barnes R, et al. Gene for familial psoriasis suscep-
tibility mapped to the distal end of human chromosome 17q. Science
1994;264:1141–1145.

119. Trembath R, Clough R, Rosbotham J, et al. Identification of a major susceptibil-
ity locus on chromosome 6p and evidence for further disease loci revealed by a
two stage genome-wide search in psoriasis. Hum Mol Genet 1997;6:813–820.

120. Enlund F, Samuelsson L, Enerback C, et al. Psoriasis susceptibility locus in
chromosome region 3q21 identified in patients from southwest Sweden. Eur J
Hum Genet 1999;7:783–790.

121. Farber E, Nall M, Watson W. Natural history of psoriasis in 61 twin pairs. Arch
Dermatol 1974;109:207–211.

122. Brandrup F, Hauge M, Henningsen K, Eriksen B. Psoriasis in an unselected
series of twins. Arch Dermatol 1978;114:874–878.

123. De Sanctis GT, Merchant M, Beier DR, et al. Quantitative locus analysis of
airway hyperresponsiveness in A/J and C57BL/6J mice. Nat Genet 1995;11:
150–154.

124. Meyers DA, Postma DS, Panhuysen CI, et al. Evidence for a locus regulating
total serum IgE levels mapping to chromosome 5. Genomics 1994;23:464–470.

125. Doull IJ, Lawrence S, Watson M, et al. Allelic association of gene markers on
chromosomes 5q and 11q with atopy and bronchial hyperresponsiveness. Am J
Respir Crit Care Med 1996;153:1280–1284.



126. Walley AJ, Wiltshire S, Ellis CM, Cookson WO. Linkage and allelic associa-
tion of chromosome 5 cytokine cluster genetic markers with atopy and asthma
associated traits. Genomics 2001;72:15–20.

127. Zhang Y, Lefort J, Kearsey V, Lapa e Silva JR, Cookson WO, Vargaftig BB. A
genome-wide screen for asthma-associated quantitative trait loci in a mouse
model of allergic asthma. Hum Mol Genet 1999;8:601–605.

128. Nickel R, Wahn U, Hizawa N, et al. Evidence for linkage of chromosome
12q15-q24.1 markers to high total serum IgE concentrations in children of the
German multicenter allergy study. Genomics 1997;46:159–162.

129. A genome-wide search for asthma susceptibility loci in ethnically diverse pop-
ulations. The collaborative study on the genetics of asthma (CSGA). Nat Genet
1997;15:p389–p392.

130. Prows DR, Shertzer HG, Daly MJ, Sidman CL, Leikauf GD. Genetic analysis
of ozone-induced acute lung injury in sensitive and resistant strains of mice.
Nat Genet 1997;17:471–474.

131. Kleeberger SR, Levitt RC, Zhang LY, et al. Linkage analysis of susceptibility
to ozone-induced lung inflammation in inbred mice. Nat Genet 1997;17:
475–478.

132. Kermarrec N, Dubay C, De Gouyon B, et al. Serum IgE concentration and
other immune manifestations of treatment with gold salts are linked to the
MHC and IL4 regions in the rat. Genomics 1996;31:111–114.

133. Ewart SL, Kuperman D, Schadt E, et al. Quantitative trait loci controlling
allergen-induced airway hyperresponsiveness in inbred mice. Am J Respir Cell
Mol Biol 2000;23:537–545.

134. Laitinen T, Ollikainen V, Lazaro C, et al. Association study of the chromoso-
mal region containing the FCER2 gene suggests it has a regulatory role in
atopic disorders. Am J Respir Crit Care Med 2000;161:700–706.

135. Matsuda H, Watanabe N, Geba GP, et al. Development of atopic dermatitis-
like skin lesion with IgE hyperproduction in NC/Nga mice. Int Immunol 1997;
9:461–466.

136. Iwasaki T, Tanaka A, Itakura A, et al. Atopic NC/Nga mice as a model for aller-
gic asthma: severe allergic responses by single intranasal challenge with pro-
tein antigen. J Vet Med Sci 2001;63:413–419.

137. Kohara Y, Tanabe K, Matsuoka K, et al. A major determinant quantitative-trait
locus responsible for atopic dermatitis-like skin lesions in NC/Nga mice is
located on chromosome 9. Immunogenetics 2001;53:15–21.

138. Kurz T, Strauch K, Heinzmann A, et al. A European study on the genetics of
mite sensitization. J Allergy Clin Immunol 2000;106:925–932.

139. Natori K, Tamari M, Watanabe O, et al. Mapping of a gene responsible for der-
matitis in NOA (Naruto Research Institute Otsuka Atrichia) mice, an animal
model of allergic dermatitis. J Hum Genet 1999;44:372–376.

140. Risch N, Merikangas K. The future of genetic studies of complex human dis-
eases. Science 1996;273(5281):1516, 1517.

141. Lander ES. The new genomics: global views of biology [see comments].
Science 1996;274:536–539.

296 Cookson



Asthma Genetics 297

142. Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging
human DNA sequence variation. Science 1997;278(5343):1580, 1581.

143. Lai E, Riley J, Purvis I, Roses A. A 4-Mb high-density single nucleotide
polymorphism-based map around human APOE. Genomics 1998;54:31–38.

144. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of
common disease genes. Nat Genet 1999;22:139–144.

145. Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide
polymorphisms. Proc Natl Acad Sci USA 1999;96:15,173–15,177.

146. Huttley GA, Smith MW, Carrington M, O’Brien SJ. A scan for linkage
disequilibrium across the human genome. Genetics 1999;152:1711–1722.

147. Kidd JR, Pakstis AJ, Zhao H, et al. Haplotypes and linkage disequilibrium at
the phenylalanine hydroxylase locus, PAH, in a global representation of popu-
lations. Am J Hum Genet 2000;66:1882–1899.

148. Goddard KA, Hopkins PJ, Hall JM, Witte JS. Linkage disequilibrium and
allele-frequency distributions for 114 single-nucleotide polymorphisms in five
populations. Am J Hum Genet 2000;66:216–234.

149. Jorde LB, Watkins WS, Carlson M, et al. Linkage disequilibrium predicts
physical distance in the adenomatous polyposis coli region [see comments].
Am J Hum Genet 1994;54:884–898.

150. Clark AG, Weiss KM, Nickerson DA, et al. Haplotype structure and popula-
tion genetic inferences from nucleotide- sequence variation in human lipopro-
tein lipase. Am J Hum Genet 1998;63:595–612.

151. Rieder MJ, Taylor SL, Clark AG, Nickerson DA. Sequence variation in the
human angiotensin converting enzyme. Nat Genet 1999;22:59–62.

152. Moffatt MF, Traherne JA, Abecasis GR, Cookson WO. Single nucleotide poly-
morphism and linkage disequilibrium within the TCR alpha/delta locus. Hum
Mol Genet 2000;9:1011–1019.

153. Templeton AR, Clark AG, Weiss KM, Nickerson DA, Boerwinkle E, Sing CF.
Recombinational and mutational hotspots within the human lipoprotein lipase
gene. Am J Hum Genet 2000;66:69–83.

154. Abecasis GR, Noguchi E, Heinzmann A, et al. Extent and Distribution of Linkage
disequilibrium in three genomic regions. Am J Hum Genet 2001;68: 191–197.

155. Hedrick PW. Gametic disequilibrium measures: proceed with caution.
Genetics 1987;117:331–341.

156. Devlin B, Risch N. A comparison of linkage disequilibrium measures for fine-
scale mapping. Genomics 1995;29:311–322.

157. Abecasis GR, Cookson WO, Cardon LR. The power to detect linkage disequi-
librium with quantitative traits in selected samples. Am J Hum Genet
2001;68:1463–1474.

158. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution
haplotype structure in the human genome. Nat Genet 2001;29: 229–232.

159. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks
in the human genome. Science 2002;296:2225–2229.

160. Muller-Myhsok B, Abel L. Genetic analysis of complex diseases [letter; com-
ment]. Science 1997;275:1328, 1329; discussion 1329, 1330.



161. Tu IP, Whittemore AS. Power of association and linkage tests when the disease
alleles are unobserved. Am J Hum Genet 1999;64:641–649.

162. Weissenbach J, Gypay G, Dib C, et al. A second generation linkage map of the
human genome. Nature 1992;359:794–801.

163. George VT, Elston RC. Testing the association between polymorphic markers
and quantitative traits in pedigrees. Genet Epidemiol 1987;4:193–201.

164. Terwilliger JD, Ott J. A haplotype-based ‘haplotype relative risk’ approach to
detecting allelic associations. Hum Hered 1992;42:337–346.

165. Chakravarti A. Population genetics-making sense out of sequence. Nat Genet
1999;21(1 Suppl):56–60.

166. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet
2001;17:502–510.

167. Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet 2001;
27:234–246.

168. Farrall M, Keavney B, McKenzie C, Delepine M, Matsuda F, Lathrop GM.
Fine-mapping of an ancestral recombination breakpoint in DCP1 [Letter]. Nat
Genet 1999;23:270, 271.

169. Morris RW, Kaplan NL. On the advantage of haplotype analysis in the pres-
ence of multiple disease susceptibility alleles. Genet Epidemiol 2002;23:
221–233.

170. Sobel E, Lange K. Descent graphs in pedigree analysis: applications to haplo-
typing location scores, and marker-sharing statistics. Am J Hum Genet 1996;
58:1323–1337.

171. Abecasis GR, Cookson WO. GOLD-graphical overview of linkage disequilib-
rium. Bioinformatics 2000;16(2):182, 183.

172. Larsen F, Gundersen G, Lopez R, Prydz H. CpG islands as gene markers in the
human genome. Genomics 1992;13:1095–1107.

173. Prestridge DS. Predicting Pol II promoter sequences using transcription factor
binding sites. J Mol Biol 1995;249:923–932.

174. Xu Y, Mural RJ, Uberbacher EC. Constructing gene models from accurately
predicted exons: an application of dynamic programming. Comput Appl Biosci
1994;10:613–623.

175. Burge C, Karlin S. Prediction of complete gene structures in human genomic
DNA. J Mol Biol 1997;268:78–94.

176. Snyder EE, Stormo GD. Identification of coding regions in genomic DNA
sequences: an application of dynamic programming and neural networks.
Nucleic Acids Res 1993;21:607–613.

177. Zhang MQ. Identification of protein coding regions in the human genome by
quadratic discriminant analysis. Proc Natl Acad Sci USA 1997;94: 565–568.

178. Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs. Nucleic Acids Res
1997;25:3389–3402.

179. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P. SMART: a web-based
tool for the study of genetically mobile domains. Nucleic Acids Res 2000;
28:231–234.

298 Cookson



Asthma Genetics 299

180. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich
repeat variants with susceptibility to Crohn’s disease. Nature 2001;411:
599–603.

181. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associ-
ated with susceptibility to Crohn’s disease. Nature 2001;411:603–606.





Index 301

INDEX

301

A

Advanced intercross lines (AIL),
fine-mapping of quantitative
trait loci, 221, 222

Airway hyperreactivity, see
Asthma

Alcoholism, see Substance depen-
dence

Alox15, susceptibility gene identifi-
cation in murine osteoporosis
model, 18–20

α1-Antitrypsin deficiency, see
Emphysema

Asthma,
candidate loci in humans,

chromosomal regions in other
immune diseases, 279

chromosome 13q13, 277
chromosome 20p, 278
FcεRI-β, 277
human leukocyte antigens,

276, 277
interleukin-4,

cytokine cluster, 277, 278
receptor polymorphisms, 278

economic impact, 269
eczema association, 269, 270
epidemiology, 269
heritability, 270
interspecies comparison of

candidate genes, 127
pathophysiology, 116, 117
phenotype selection for

positional cloning,
bronchial

hyperresponsiveness,
270–272

eczema, 272

genetic linkage, 273
genome screens, 275
genotypic ambiguity and

error, 273, 274
nonreplicated linkage, 275, 276
parent-of-origin effects, 274, 275
power to detect linkage, 270, 271
quantitative traits, 272
segregation analysis, 271

prospects for study, 288
rodent models,

airway hyperreactivity
(measurement), 118–120

genetic determinants, 120
mouse allergen challenge

models, 117, 118
overview, 12
quantitative trait loci analysis,

120–124
susceptibility gene identification

in murine models,
association mapping, 284–286
expressed sequence tag

databases, 286
expression analysis, 287
functional analysis,

genetic modification of
mice, 287, 288

homology searching, 287
linkage disequilibrium

mapping, 282–284
overview, 15–18, 26, 280–282
polymorphism analysis, 287
sequencing, 286
transgenic mice for functional

studies, 127, 128
Atopic dermatitis, see Eczema



302 Index

B

Bacillus Calmette-Guerin (BCG)
vaccine, efficacy, 113

BCG vaccine, see Bacillus
Calmette–Guerin vaccine

Beryllium disease, linkage disequi-
librium analysis, 258

Bone mineral density, see
Osteoporosis

Bronchial hyperresponsiveness, see
Asthma

C

C5, susceptibility gene identifica-
tion in murine asthma model,
17, 18, 26

C5r1, susceptibility gene
identification in murine
asthma model, 125

Candidate gene analysis, overview, 148
Cas1, candidate gene for ethanol-in-

duced locomotor activation, 228
CD44, splice variants, 8
Celiac disease, linkage disequilib-

rium analysis, 258
CF, see Cystic fibrosis
Chromosome 13q13, asthma locus, 277
Chromosome 20p, asthma locus, 278
Chronic obstructive pulmonary

disease, see Emphysema
Complex diseases, see also specific

diseases,
computational approaches,

overview, 23–27
integrative approach for

analysis, 5, 6, 10, 11, 24, 25
lung disease approaches for

study, 128–130
overview, 4
rules for understanding, 6–14

Crohn’s disease, linkage disequilib-
rium studies, 10

Cystic fibrosis (CF),
epidemiology, 4, 104

gene structure and mutations, 104
mouse models,

Cftr knockouts, 104, 105
Cftr mutations, 105, 106
gene therapy testing, 107, 108
Pseudomonas aeruginosa

opportunistic infection,
106, 107

strain dependence of effects, 106
pathophysiology, 104

D

Diabetes, type 1
human leukocyte antigen

haplotypes,
disease association, 259-261
risk estimates, 261

linkage disequilibrium and
extended haplotypes, 259

DNA microarray,
alcohol dependence genes, 229–231
candidate gene identification, 26

Dopamine receptors,
D2 receptor as candidate gene

in alcohol preference
drinking, 183

knockout mouse studies of
alcoholism, 232, 233, 235

E

Eczema,
asthma association, 269, 270
clinical features, 269, 270
genome screening for suscepti-

bility loci, 279, 280
heritability, 270
psoriasis common loci, 280

Emphysema,
animal models using protease

bolus, 108, 109
α1-antitrypsin deficiency

genetics, 109
epidemiology, 108, 109
mouse models,



Index 303

conditional expression
systems, 111

genetic models, 109, 110
genome-wide scans, 112
knockouts, 111, 112
transgenic models, 110, 111

pathophysiology, 108
Epistasis, investigation with

quantitative trait loci
mapping, 220, 221

F

FcεRI-β, asthma locus, 277

G

GABAA,
candidate genes in alcohol

withdrawal, 186, 187, 228, 230
knockout mouse studies

 of alcoholism, 232, 235
Genetically heterogeneous stock

mice, fine-mapping
of quantitative trait loci, 222

H

Haplotype,
computational genetic mapping,

assumptions, 57
categorical trait analysis, 62, 63
F statistics, 59, 60
H2-Eα gene expression data, 65
haplotype blocks, 57
haplotype-defining polymor-

phisms, 9, 10, 53, 54
linear model, 58–62
number of clusters, 61
overview, 25, 26, 52, 53
prospects, 68, 69
p value, 60–62
quantitative trait locus map-

ping comparison, 53, 57
residual variance minimiza-

tion, 58
statistical power, 63–67

total genetics effect
estimation, 66

definition, 9
human leukocyte antigen

disease association, 259–261
human vs mouse comparison,

81–83
linkage disequilibrium and

extended haplotypes, 259
maps for inbred mouse strains,

54-57, 71, 72
mouse genome analysis,

applications, 83
genetic variation characteriza-

tion among inbred
strains, 72, 73

haplotype block structure, 73,
75, 78–81

number of genes and single
nucleotide polymor-
phisms by chromosome,
72, 73

overview, 71, 72
similarity of inbred mouse

strains, 81, 82
Hereditary hemochromatosis, link-

age disequilibrium analysis,
256, 257

HLA, see Human leukocyte antigen
Human leukocyte antigen (HLA),

alleles and disease, 256, 257, 265, 266
asthma loci, 276, 277
balancing selection for loci, 255
classes, 255, 256
disease risk estimates, 261, 262
genes, 255
haplotypes and disease associa-

tion, 259–261
linkage disequilibrium analysis,

associated diseases, 256–258
extended haplotypes, 259

twin studies of genotype in
disease risk, 262

typing,
multiple test problem, 262



304 Index

new alleles and ambiguity, 265
polymerase chain reaction,

263, 264

I

IEGs, see Immediate early genes
Ifi202, susceptibility gene identifica-

tion in systemic lupus erythe-
matosus murine model, 21

IL-4, see Interleukin-4
IL-9, see Interleukin-9
Immediate early genes (IEGs),

alcohol effects on expression,
230, 231

Interleukin-4 (IL-4), asthma loci,
cytokine cluster, 277, 278
receptor polymorphisms, 278

Interleukin-9 (IL-9),
knockout mouse studies, 127
susceptibility gene identification

in murine asthma model, 126
Interval-specific congenic recombi-

nants (ISCR), fine-mapping of
quantitative trait loci, 223, 224

Interval-specific congenic strain
(ISCS), fine-mapping of
quantitative trait loci, 222

ISCR, see Interval-specific congenic
recombinants

ISCS, see Interval-specific congenic
strain

K

Knockout (KO) mice,
alcoholism candidate genes,

231–236
caveats in candidate gene identi-

fication, 236
Cftr cystic fibrosis models, 104, 105
emphysema models, 111, 112
genetic complementation, 236, 237
interleukin-9, 127

KO mice, see Knockout mice

L

Linkage disequilibrium,
association mapping, 284–286
asthma mouse marker mapping,

282–284
Linkage disequilibrium,

Crohn’s disease, 10, 258
definition, 9
human leukocyte antigens,

associated diseases, 256–258
extended haplotype analysis, 259

M

Mouse models, see also specific
diseases,

advantages, 34, 35
chemical mutagenesis, 22, 23, 238
gene knockout, see Knockout mice
limitations, 11–13
polymorphism databases, 24, 25
strain development, 21, 22

Mpdz, candidate gene in alcohol
withdrawal, 187, 188

Mycobacterium tuberculosis, see
Tuberculosis

N

Naltrexone, alcoholism treatment,
184

M

µ-Opioid receptor, candidate gene
in alcohol preference
drinking, 183, 184

Osteoporosis,
bone mineral density,

genetics, 149, 150
prospects for study, 166, 167
quantitative trait loci analysis,

158–163
risk determinant, 148–150, 166

fracture risks, 147, 148
mouse models,



Index 305

advantages, 150, 151
congenic strain studies, 164–166
inbred strains, 152, 153
recombinant inbred strains,

154–158
single gene mutations, 153, 154
susceptibility gene identifica-

tion, 18–20
transgenic mouse study

prospects, 164
pathogenesis, 147

P

PCR, see Polymerase chain reaction
Polymerase chain reaction (PCR),

human leukocyte antigen
typing, 263, 264

single nucleotide polymorphism
typing, 86–88

Polymorphisms, chromosomal
region versus single nucle-
otide polymorphisms, 8, 9

Psoriasis, common loci with
eczema, 280

p value,
computational genetic mapping,

60–62
HLA typing and multiple test

problem, 262

Q

QTL, see Quantitative trait loci
Quantitative trait loci (QTL),

airway hyperreactivity analysis
in mice,

allergen model, 123, 124
candidate gene identification,

124–126
high-throughput analysis,

126, 127
naïve mice, 121, 123
overview, 120, 121
table of loci, 122

alcohol dependence analysis in mice,

activity response to alcohol,
219, 220

alcohol acceptance, 219
alcohol preference, 183, 219
alcohol withdrawal, 186, 187, 220
epistasis investigation, 220, 221
fine-resolution mapping,

advanced intercross lines,
221, 222

genetically heterogeneous
stock mice, 222

interval-specific congenic
recombinants, 223, 224

interval-specific congenic
strains, 222

recombinant inbred
segregation test, 222

loss of righting reflex due to
ethanol, 208–217

narrowing of map, 202, 203
prospects for study, 190–192
recombinant inbred strains,

207–210
segregating populations, 211–213
verification,

congenic strains, 214–216
marker-assisted counter

selection, 216, 217
segregating congenics, 213, 214
short-term selection, 213

bone mineral density analysis,
158–163

complex trait analysis, 11
definition, 4
mapping,

challenges, 33, 49
computational mapping

using single nucleotide
polymorphism database, 93

computing power, 45
estimating map location, 45–47
experimental design in mice, 35
fine-mapping strategies, 47, 48,

162, 163



306 Index

limitations, 51, 52, 149
overview, 51, 148, 149
statistical theory,

Bonferroni upper bound, 44
confidence interval, 45–47
correlation coefficient, 40, 41
genetic variance, 37
genotype–phenotype

relationship, 35–37
heritability coefficient, 38
hypothesis testing, 43, 44
large sample theory and

Gaussian processes,
41–43

loci detection, 43–45
overview, 33–35
parameter of noncentrality,

38, 39
phenotypical variance, 37

steps, 34, 43

R

Radiation hybrid (RH) mapping,
airway hyperreactivity candi-
date gene identification in
mice, 124, 125

Recombinant inbred segregation
test (RIST),

fine-mapping of quantitative
trait loci, 222

quantitative trait loci mapping, 48
RH mapping, see Radiation hybrid

mapping
Rheumatoid arthritis,

economic impact, 4
epidemiology, 4

RIST, see Recombinant inbred
segregation test

RNA silencing, see Small interfering
RNA

RNA splicing, regulation of
complex traits, 7, 8

S

Serotonin receptor,
candidate gene in alcohol prefer-

ence drinking, 183, 184
knockout mouse studies of

alcoholism, 232, 235
Single nucleotide polymorphism

(SNP), see also Haplotype,
definition, 85
haplotype-defining polymor-

phisms, 9, 10, 53, 54
high-throughput analysis, 126, 127
humans,

databases and searching, 86
discovery, 88, 95, 96
frequency in genome, 85

mice,
computational quantitative

trait locus mapping, 93
databases, 24, 25, 92
discovery,

applications, 91, 92
costs, 96
polymerase chain reaction-

based approach, 86–88
single nucleotide

polymorphism-based
amplification of
pooled samples, 89–92

genotyping advances, 23, 88–91,
96

messenger RNA typing in F1
crosses to study gene
regulation, 94, 95

siRNA, see Small interfering RNA
SLE, see Systemic lupus erythema-

tosus
Small interfering RNA (siRNA),

advantages of experimental
gene silencing, 14, 238, 239

tyrosine hydroxylase, 239
SNP, see Single nucleotide

polymorphism
Substance dependence,



Index 307

assessment difficulties, 179, 180
comorbid conditions, 178
complexities, 178, 179
diagnostic criteria, 178, 199, 200
heritability of alcoholism, 199
initial sensitivity in alcohol

abuse, 200, 202
mouse models,

alcohol preference drinking
studies, 182–184

alcohol withdrawal studies,
185–188

behavioral responses to alco-
hol, 199–202

candidate gene evaluation,
DNA microarray, 229–231
genetic complementation,

236, 237
knockout mice, 231–236
sequencing, 227–229

common genetics in prefer-
ence and withdrawal,
188–190

inbred strains, 180, 203–205
prospects for study, 190, 191,

239, 240
rationale, 179, 180, 239
selected lines, 180, 181, 204,

206, 207
targeted mutations, 181, 182

quantitative trait loci of alcohol
dependence in mice,

activity response to alcohol,
219, 220

alcohol acceptance, 219
alcohol preference, 183, 219
alcohol withdrawal, 186, 187, 220
epistasis investigation, 220, 221
fine-resolution mapping,

advanced intercross lines,
221, 222

genetically heterogeneous
stock mice, 222

interval-specific congenic
recombinants, 223, 224

interval-specific congenic
strains, 222

recombinant inbred segre-
gation test, 222

loss of righting reflex due to
ethanol, 208–217

narrowing of map, 202, 203
prospects for study, 190–192
recombinant inbred strains,

207–210
segregating populations, 211–213
verification,

congenic strains, 214–216
marker-assisted counter

selection, 216, 217
segregating congenics, 213, 214
short-term selection, 213

Systemic lupus erythematosus
(SLE), susceptibility gene
identification in murine
model, 20, 21

T

TCF7, messenger RNA typing in F1
crosses to study gene regula-
tion, 94, 95

TH, see Tyrosine hydroxylase
Tuberculosis,

bacillus Calmette-Guerin
vaccine, 113

epidemiology, 112, 113
host genetics, 114, 115
immune response in mice, 115,

116
Mycobacterium tuberculosis

genetics, 113, 114
Tyrosine hydroxylase (TH), RNA

silencing, 239




