
Lecture Notes in Computer Science 2169
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo

Michael Jaedicke

New Concepts for
ParallelObject-Relational
Query Processing

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Author

Michael Jaedicke
Donnersbergerstr. 34
80634 München
Germany
E-mail: mjaedicke@yahoo.com

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Jaedicke, Michael: New concepts for parallel object relational query processing /
Michael Jaedicke. - Berlin ; Heidelberg ; NewYork ; Barcelona ;
Hong Kong ; London ; Milan ; Paris ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2169)
Zugl.: Stuttgart, Univ., Diss., 1999
ISBN 3-540-42781-3

CR Subject ClassiÞcation (1998): E.2, H.2

ISSN 0302-9743
ISBN 3-540-42781-3 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, speciÞcally the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microÞlms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg NewYork
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Christian Grosche, Hamburg
Printed on acid-free paper SPIN: 10840389 06/3142 5 4 3 2 1 0

Preface

When I started this research, no commercial database system supported both object-
relational features and parallelism. In the meantime this situation has changed
dramatically. All major vendors now offer a parallel, object-relational DBMS as their
high-end product. However, there is still a lot to do. Firstly, object-relational (or
extensible) DBMS have yet to mature fully. Secondly, the integration of parallelism
and extensibility has not yet been completed. This work is my attempt to make a
contribution to both issues.

Some of the concepts and techniques developed have been implemented in a
prototypical parallel database system called MIDAS. This system is the result of a
team effort to which many people have contributed. My own contributions to the
system are the user-defined functions and user-defined table operators, the extension
of the system tables for those user-defined objects and for detailed statistics, and the
new query optimizer, for which I worked with Clara Nippl. She contributed especially
to the cost model, the physical operators, and implementation rules. Furthermore, I
provided support for the development of concepts for the query parallelizer, the query
execution control system, and the send/receive operators of the execution system.

Acknowledgments

I am very thankful to Professor Dr.-Ing. habil. Bernhard Mitschang, who gave me the
opportunity to carry out this research. His continuous support, encouragement, and
useful comments during many fruitful discussions and during the preparation of joint
publications are especially acknowledged.

I am very grateful to Prof. Dr.-Ing. Theo Härder who introduced me thoroughly to
database systems and taught me a lot about engineering. I am also grateful to him for
the analysis of my results and his valuable remarks.

I also acknowledge the help of my colleagues Giannis Bozas, Clara Nippl, Angelika
Reiser, and Stephan Zimmermann with whom I worked together on the MIDAS
project. Stephan provided software engineering support for the whole group and was
always helpful. His work centered on PVM communication, the process architecture,
buffer and transaction management, the parallelization of the execution system, the

VI Preface

scheduler and benchmarking, and performance. Clara worked on the parallelization of
the execution system, the scheduler, the parallelizer, and the optimizer. Giannis
focussed on the lock manager and the buffer management. I also thank Prof. Rudolf
Bayer, who led the project together with Prof. Mitschang, for his support.

I also enjoyed giving practical courses on RDBMS together with Angelika. I thank all
my colleagues in Munich and Stuttgart, especially Aiko Frank, Volker Markl, Jürgen
Sellentin, and Martin Zirkel for their help and comradeship during the last years. I am
grateful to my colleague Ralf Rantzau and to Prof. Härder for improving my English.

Special thanks also go to the students that I have supervised: Pascal Frantz, Stefan
Haas, Karl Hahn, Sebastian Heupel, Bernd Holzhey, Kay Krueger-Barvels, Sabine
Perathoner, Ralf Schumacher, Robert Seehafer, and Susanne Stamp. It was a pleasure
to work with them. Many of them made significant contributions to this work. I also
thank the many other students who worked on the MIDAS project.

I also gratefully acknowledge the valuable comments of the anonymous referees of
diverse papers, which have also improved this work. The feedback from C. Mohan,
G. Lohman, and M. Carey on the issue of interfaces for query execution plans and the
feedback from Harald Schöning on the parallel execution of user-defined functions is
much appreciated.

Finally, I would like to thank the Deutsche Forschungsgemeinschaft (DFG) for
funding the MIDAS project (SFB 342, B2). I also acknowledge the support of the
Studienstiftung des Deutschen Volkes during my university course.

Special thanks go to Springer-Verlag, especially to Alfred Hofmann, and the series
editors, for publishing my work in LNCS.

Last but not least I am grateful to my parents for their affection and continuous care.

July 2001 Michael Jaedicke

Table of Contents

CHAPTER 1 Introduction

1.1 ORDBMS: The Next Great Wave .. 1
1.2 Extensible DBMS ... 2
1.3 Overview ... 3

CHAPTER 2 Background on User-Defined Routines

2.1 User-Defined Routines ... 5
2.2 Definition, Implementation, and Execution of New UDR ... 6
2.2.1 User-Defined Scalar Functions ... 7
2.2.2 User-Defined Aggregate Functions .. 9
2.2.3 User-Defined Table Functions .. 10
2.2.4 User-Defined Functions and Large Objects .. 11
2.3 Comparison with Stored Procedures ... 12
2.4 Optimization of Queries with UDF .. 12

CHAPTER 3 Parallel Processing of User-Defined Functions

3.1 Introduction ... 14
3.2 Limits of Current ORDBMS ... 15
3.3 Parallel Processing of UDF ... 17
3.3.1 Two Step Parallel Aggregation of UDAF ... 17
3.3.2 Partitioning Classes and Partitionable Functions .. 18
3.3.3 Parallel Sorting as a Preprocessing Step for UDAF ... 21
3.3.4 Extended Syntax for Function Registration .. 22
3.4 Example Applications ... 24
3.4.1 The UDAF Most_Frequent ... 24
3.4.2 The UDSF Running_Average ... 25
3.4.3 The UDAF Median ... 25
3.4.4 Further Applications ... 26
3.5 Plausibility Considerations Regarding Performance .. 28
3.6 Related Work .. 30
3.7 Summary ... 31

CHAPTER 4 Intra-function Parallelism

4.1 Introduction ... 33
4.2 Compose/Decompose Operators for Intra-function Parallelism 34
4.2.1 Compose/Decompose Operators ... 34
4.2.2 Extensibility of Compose Operators by Combine Functions 36
4.2.3 Application of Intra-function Parallelism ... 37
4.2.4 Intra-function Parallelism for Function Pipelines ... 38
4.3 Experimental Performance Study ... 39
4.3.1 Experimental Scenario and Implementation ... 39
4.3.2 Performance Results ... 41
4.4 Related Work .. 43
4.5 Summary ... 44

X Table of Contents

CHAPTER 5 The Multi-operator Method

5.1 Introduction ... 45
5.2 Performance Problems with Complex UDF in Current ORDBMS 46
5.2.1 The PBSM Algorithm as a Sophisticated UDP Implementation 47
5.3 The Multi-operator Method as a New Technique to Implement Complex UDF 49
5.3.1 The Multi-operator Method and Its Benefits .. 49
5.3.2 A Multi-operator Implementation of the PBSM Algorithm ... 51
5.4 Supporting the Multi-operator Method ... 53
5.4.1 Executing Query Execution Plans .. 53
5.4.2 Example for a Textual Specification of Query Execution Plans 55
5.4.3 Parallel Evaluation .. 55
5.5 Performance Evaluation .. 56
5.5.1 Experimental Scenario .. 56
5.5.2 Performance Results ... 62
5.6 Related Work .. 64
5.7 Summary ... 65

CHAPTER 6 User-Defined Table Operators

6.1 Introduction ... 67
6.2 User-Defined Table Operators .. 68
6.2.1 A Generalization Relationship for Row Types ... 68
6.2.2 Defining and Implementing UDTO .. 69
6.2.3 The Different Usages of the UDTO Concept ... 74
6.2.4 Parallel Processing of Procedural UDTO ... 77
6.2.5 Extension to Multiple Output Tables .. 80
6.3 Example Applications for UDTO ... 81
6.3.1 Computing a Spatial Join .. 81
6.3.2 Different UDTO for the Same Predicate .. 85
6.3.3 Computing the Median: An Aggregation Operator .. 89
6.3.4 A UDTO for a Complex Aggregation .. 90
6.3.5 Association Rule Mining .. 94
6.4 Related Work .. 101
6.5 Summary and Conclusions ... 102

CHAPTER 7 Implementation of UDTO

7.1 Introduction ... 106
7.2 The MIDAS Prototype .. 106
7.2.1 Architectural Overview .. 107
7.2.2 Query Compilation and Execution ... 108
7.2.3 The MIDAS System Tables .. 111
7.2.4 UDSF in MIDAS .. 112
7.3 Implementation of SQL Macros ... 113
7.3.1 DDL Statements .. 113
7.3.2 SQL Macro Expansion in DML Statements ... 115
7.3.3 Expanding SQL Macros in Preprocessors and Middleware 116

Table of Contents XI

7.4 Implementation of Procedural UDTO .. 123
7.4.1 Extensions to the SQL Compiler .. 123
7.4.2 Extensions to the Optimizer and the Parallelizer .. 125
7.4.3 Extensions to the Scheduler .. 126
7.4.4 Extensions to the Execution Engine ... 126
7.4.5 Extensions to Transaction Management ... 128
7.4.6 Implementation of Input and Output Tables ... 131
7.5 Optimization Issues for UDTO ... 134
7.5.1 UDTO and Implied Predicates .. 134
7.5.2 Estimating Costs and Selectivity of UDTO .. 135
7.5.3 Application of Traditional Optimization Rules .. 137
7.6 Using UDTO to Generate Alternative Execution Plans for UDF 138
7.7 Evaluation of the Implementation ... 139
7.7.1 Evaluation of SQL Macros ... 140
7.7.2 Evaluation of Procedural UDTO .. 142
7.8 Summary ... 144

CHAPTER 8 Summary, Conclusions, and Future Work

8.1 Summary ... 145
8.2 Conclusions ... 146
8.3 Future Work .. 149

References

References .. 151

Appendix A

A.1 The Program sequential_invert .. 157
A.2 The Program parallel_invert ... 158
A.3 The Query Execution Plan for the Spatial Join with SQL Macro 159

Abstract

During the last few years parallel object-relational database management systems have
emerged as the leading data management technology on the market place. These
systems are extensible by user-defined data types and user-defined functionality for
the data. This work focuses on the efficient parallel execution of user-defined
functionality. The main contributions describe techniques to support data parallelism
for user-defined scalar and aggregate functions, to support intra-function parallelism
for the execution of a scalar function on a large object, and a new technology to
provide extensibility with regard to new set-oriented database operations that can
efficiently implement user-defined functionality in parallel object-relational database
management systems. Some of these techniques have been implemented in the
MIDAS prototype or on top of a commercial object-relational database management
system.

CHAPTER 1

Introduction

1.1 ORDBMS: The Next Great Wave

During the last few years, it became obvious that object-relational database manage-
ment systems (ORDBMS) are the next great wave in database technology ([15], [96],
[104]). ORDBMS have been proposed for all data intensive applications that need
both complex queries and complex data types [104]. Typical ORDBMS application
areas are e.g. multi-media [70] and image applications [77], especially for web data-
bases [58], geographic information systems ([89], [107]), and management of time
series [6] and documents [52]. Many of these applications pose high requirements
with respect to functionality and performance on ORDBMS. Since the data volumes
that come along with new data types like satellite images, videos, CAD objects, etc.
are gigantic and the queries are complex, parallel database technology is essential for
many of these applications. These observations have in recent years led to significant
development efforts for parallel ORDBMS (PORDBMS) of some database vendors
([19], [81], [83], [85]). Although first industrial implementations enter the market-
place and the SQL3 standard [69] is maturing, there are still many topics left for
research in this area ([13], [23], [24], [85], [98]).
One of the current goals for ORDBMS is to move towards a framework for con-
structing parallel ADT [13] and more sophisticated query optimization and execution
([13], [98]). User-defined functions (UDF) are completely opaque for query optimiz-
ers and thus allow only very restricted query optimization and execution techniques,
if no further optimization and execution information is provided. Additional infor-
mation enables more sophisticated query optimization and execution as the
ORDBMS knows and understands at least part of the semantics of the ADT. This
results in great performance improvements ([98], [104]). While there are different
approaches to reach this goal ([13], [98], [104]), most ORDBMS vendors currently
offer ADT developers only a few parameters to describe the semantics of user-
defined functions. This is by far not sufficient.
In this work, we make several contributions to query processing in PORDBMS.
First, we have proposed techniques to support parallel execution for a broad class of

M. Jaedicke: Parallel Object-Relational Query Processing, LNCS 2169, pp. 1-4, 2001.
© Springer-Verlag Berlin Heidelberg 2001

2 Introduction

user-defined functions. This includes not only techniques for the traditional parallel
execution based on data parallelism, but also methods that support intra-function
parallelism. The latter is useful, when a single, expensive function is evaluated on a
large object (LOB).

Second, we have proposed two approaches to enhance query execution plans with
user-defined functions by means of semantic information. One approach allows
developers to manipulate query execution plans directly. The other approach allows
developers to extend the query optimizer so that it has more alternatives for the
implementation of a user-defined function. This method can also be used to provide
a convenient invocation of complex operations in SQL statements, i.e., as a ‘macro’
concept for SQL.

Third, we have designed and implemented a method to extend the compiler and the
database engine by new application-specific database operators. The main concept is
here the invention of a generic database operator, whose functionality can be pro-
grammed by developers.

Before we start with the main topics, we briefly review some aspects of the historic
development of extensible DBMS in subsection 1.2 and present an overview over
this work in subsection 1.3.

1.2 Extensible DBMS

The idea to develop extensible DBMS has been around for a while now. During the
last fifteen years, the concept of extensible DBMS matured considerably. In the early
times of extensible DBMS, with prototypes like POSTGRES [108], STARBURST
[37] and EXODUS [14], two different directions evolved: on the one hand, the focus
was on constructing DBMS that could be easily extended by the DBMS vendors
themselves. The goal of this line of research was to construct specialized DBMS
with extensions for certain application domains. The other direction of extensibility
is best described as DBMS customizing and corresponds to the view of the current
commercial ORDBMS technology. In this view DBMS vendors build complete sys-
tems that have a generic or universal character. That is, the DBMS has a set of inter-
faces that allows to register external programs together with information on their
appropriate use within the DBMS. This allows third-party vendors like independent
software vendors (ISVs) to build packages that extend the DBMS functionality for
some application domain (there are package standardization efforts for some applica-
tion domains in SQL/MM [101]). Furthermore, it is possible to combine several of
these packages. This allows to support a broad range of applications with a single
system. DBMS vendors have different names for their packages like DataBlades,
Extenders, Cartridges, or Snap-Ins.

Overview 3

The core technology of current ORDBMS consists of a set of generic components.
These components can invoke external routines that have been registered before and
they can use information from the system tables. As a result, they are highly flexible
and can be used to customize the DBMS functionality. Examples of such compo-
nents are rule- and cost-based query optimizers, generic index structures, generic
storage structures (LOBs), and database operators that can invoke user-defined rou-
tines.

1.3 Overview

We give here an overview over the following chapters. The second chapter provides
the necessary background. We restrict ourselves to the concepts of direct relevance
for this work.
Chapter 3 considers the parallel execution of UDF. In this chapter, we develop tech-
niques that allow to process user-defined scalar and aggregate functions with data
parallelism. We describe the class of partitionable functions that can be processed in
parallel. We also propose an extension which allows to speed up processing of
another large class of functions by means of parallel sorting. Functions that can be
processed by means of our techniques are often used in decision support queries on
large data volumes, for example. Hence, a parallel execution is indispensable.
In Chapter 4 we propose an approach to intra-function parallelism, which has the
goal to support parallel processing of an expensive function on a single large object.
This kind of parallelism is important, because many object-relational extensions sup-
port expensive functions on large data objects. One important application of large
objects is the processing of digital images as for example generated by digital cam-
eras. Intra-function parallelism is orthogonal to data parallelism and to our knowl-
edge is not yet exploited in any PORDBMS. Our approach is to extend the execution
system of a PORDBMS by means of two new operators: decompose and compose.
The decompose operator breaks a large object into pieces and the compose operator
assembles a large object from these pieces. As we show, these operators can be
implemented efficiently by means of descriptors for large objects. We present an ini-
tial performance evaluation using an implementation on top of a PORDBMS that
demonstrates the effect of the new operators. As our measurements indicate, a good
speedup can be achieved.
Chapter 5 introduces the multi-operator method for the implementation of specific
algorithms for user-defined join predicates that take the predicate semantics into
account. There has been a long record of research for efficient join algorithms in
RDBMS, but user-defined join predicates in ORDBMS are typically evaluated using
a restriction after forming the complete Cartesian product. While there has been
some research on join algorithms for non-traditional data (e.g. spatial joins), today’s
ORDBMS offer developers no general mechanism that allows to implement user-

4 Introduction

defined join predicates in an efficient way. We propose the multi-operator method to
achieve this goal and show that it is suitable to implement joins with complex user-
defined predicates much more efficiently than today. Our approach fits well into the
architectural framework of current PORDBMS. A further significant benefit is that
the multi-operator method, in our view, can serve as an enabling technique for the
parallel execution of complex user-defined functions.
Chapter 6 introduces user-defined table operators. We view this concept as our main
contribution to object-relational query processing. A central enhancement of object-
relational database technology is the possibility to execute arbitrary user-defined
functions within SQL statements. We show the limits of this approach and propose
user-defined table operators as a new concept that allows the definition and imple-
mentation of arbitrary new N-ary database operators, which can be programmed
using SQL or embedded SQL (with some extensions). Our approach leads to a new
dimension of extensibility that allows to push more application code into the server
with full support for efficient and parallel processing. We present and discuss some
example applications of user-defined table operators that demonstrate their benefits.
Furthermore, user-defined table operators allow performance enhancements of
orders of magnitude for the evaluation of various classes of queries with complex
user-defined functions. While our approach fits well into the architectures of current
commercial object-relational database management systems, it affects nevertheless
many DBMS components.
Chapter 7 presents the implementation of user-defined table operators in the
PORDBMS prototype MIDAS. We show the necessary extensions of the SQL com-
piler, the optimizer, the parallelizer, the database engine and transaction manage-
ment and give a brief evaluation. We also discuss further optimization issues for the
execution of UDTO.
Chapter 8 contains a summary of this work, our conclusions, and our suggestions for
future work. Appendix A provides some additional material.

CHAPTER 2

Background on User-Defined Routines

We now briefly present the basic concepts and definitions that we use in this work.
We refer the reader to the literature for the general concepts of parallel relational
([4], [22], [29], [41], [73], [103], [110]) and object-relational query processing ([13],
[15], [17], [20], [40], [45], [47], [102], [104]).

2.1 User-Defined Routines

Every RDBMS comes with a fixed set of built-in functions. These functions can be
either scalar functions or aggregate functions. The latter are also called set or column
functions. A scalar function can be used in SQL queries wherever an expression can
be used. Typical scalar functions are arithmetic functions like + and * or concat
for string concatenation. Functions for type casting are special scalar functions, too.
A scalar function is applied to the values of a row of an input table.

By contrast, an aggregate function is applied to the values of a single column of
either a group of rows or of all rows of an input table. A group of rows occurs if a
GROUP-BY clause is used. Thus, aggregate functions can be used in the projection
part of SQL queries and in HAVING clauses. The aggregate functions of the SQL-92
standard are MAX, MIN, AVG, SUM and COUNT. Other statistical aggregate functions
like standard deviation and variance are provided by some RDBMS
implementations, e.g. [15].

In ORDBMS it is possible to use a user-defined function (UDF) at nearly all places
where a system-provided built-in function can appear in SQL-92. Thus, there are two
subsets of UDF: user-defined scalar functions (UDSF) and user-defined aggregate
functions (UDAF). A UDSF that returns a boolean value is also called user-defined
predicate (UDP). Finally, some ORDBMS (e.g. [50]) offer the possibility to write
user-defined table functions (UDTF), which return a table. UDTF can be referenced
exactly in the same way as views or tables in the FROM clause of SELECT state-
ments. We use the term user-defined routines (UDR) as a generic term for all user-

M. Jaedicke: Parallel Object-Relational Query Processing, LNCS 2169, pp. 5-13, 2001.
© Springer-Verlag Berlin Heidelberg 2001

6 Background on User-Defined Routines

defined procedural extensions of DBMS. With the term routines we denote both,
user-defined procedural extensions and built-in (or system-generated) functions.

ORDBMS need an extensible parser, an extensible optimizer, an extensible executor
(or engine), an extensible index and storage manager and extensible utilities to be
able to handle statements which contain UDR. All extensible components need
metadata to deal with UDR correctly. Often metadata is also useful to improve the
efficiency of the execution. This metadata is stored in the system tables as usual. For
UDR, important kinds of metadata are: the signature, the description of its imple-
mentation, auxiliary functions for cost and selectivity estimation, and options for
optimization or execution. This metadata is provided by developers when they create
new UDR. We will discuss the details in the next section.

2.2 Definition, Implementation, and Execution of New UDR

We now briefly describe how UDR are created in ORDBMS. The creation of a new
UDR consists of two steps: First, an implementation for the UDR must be provided.
Second, the UDR must be registered with the DBMS. During this registration the
needed metadata must be provided, too.

Developers can implement a UDR either as a so-called external UDR or reuse the
implementation of an already existing routine (sourced UDR). Sourced UDR are pri-
marily of interest in connection with user-defined distinct types (UDTs). UDTs are
created as a new type, but they share their representation with a built-in data type like
INTEGER. This built-in data type is called source type. They have been introduced
to support application-specific domains by means of strong typing. Sourced UDR
simply allow to transfer UDR of a source type to its UDTs. Because a sourced UDR
is directly derived from an existing routine, it is handled exactly as this routine dur-
ing the compilation, optimization and execution of queries. Hence, we do not deal
with sourced UDR in the remainder of this work and concentrate on external UDR.

An external UDR is implemented as a function in a third-generation programming
language (typically C, C++ and Java are supported as languages). This function is
compiled into a dynamic link library (DLL), which can be linked to a process at run-
time. The DBMS needs only access to the DLL to execute the function. Therefore,
developers do not have to ship the source code along with the package that contains
the UDR. This has the advantage that the implementation of the UDR is not dis-
closed, which is often a requirement of independent software vendors. On the other
hand, the implementation is opaque for the DBMS, i.e., the UDR is a black-box. For
this reason, the DBMS cannot reasonably try to analyze the implementation of a
UDR in order to obtain information for query optimization and execution.

Another important aspect of external functions is that they may be a threat for
DBMS reliability and security, because it is desirable to execute the UDR directly

Definition, Implementation, and Execution of New UDR 7

within the DBMS kernel process. In this case, the UDR is executed with all privi-
leges. That is, it can access and modify all data in the database as well as internal
data structures of the DBMS. Moreover, errors in the UDR can bring down the entire
DBMS. Hence, vendors have created the possibility to use sand-boxing techniques in
order to make the execution of UDR safe. One such technique is to execute a UDR in
a different less privileged process. Another technique is to code the UDR in Java and
to integrate a Java virtual machine directly into the DBMS kernel. Because Java
allows only restricted access to system resources this results in safe UDR. However,
all sand-boxing techniques can aggravate performance. For example, if an additional
process is used then the parameters of the UDR must be passed via inter-process
communication. Therefore, some vendors also offer quality control and certification
programs for independent software vendors that develop packages. Certified pack-
ages should be safe and are allowed to run directly within the DBMS kernel.

UDR are not limited with regard to the effect of their actions. UDR can perform
external actions, e.g. read from or write to a file, send an email to the database
administrator, start a program, etc. Moreover, the Informix Illustra ORDBMS sup-
ports UDF that consist of one or more SQL statements. However, these SQL state-
ments cannot be embedded into procedural code. We say that such a UDR performs
database actions. A UDR that performs external or database actions has an external
context.

So far the description holds for all kinds of UDR. In the following subsections, we
provide more details for the different kinds of UDR. We also describe the corre-
sponding metadata and its usage.

2.2.1 User-Defined Scalar Functions

Figure 1 provides an example of the syntax of the CREATE FUNCTION statement
that is used in DB2 UDB [15] to register a new UDSF with the DBMS. The scalar
function add returns the sum of its two arguments of the UDT dollar. It is created
as an external function in the example, but we could have derived it also from a cor-
responding function of the source type of dollar.
As can be seen from this example, some options provide metadata that describe the
characteristics of the registered function. We discuss these options briefly and refer
the reader to [15] for further details. First, the name of the UDSF and its signature
are specified. The clause EXTERNAL NAME provides the name of the DLL and the
name of the function within this library that serves as implementation. Then, the
developer has specified that the C programming language was used for the imple-
mentation. PARAMETER STYLE DB2SQL specifies the way in which the DBMS
passes the parameters to the UDSF. The option NOT VARIANT tells the DBMS that
the UDSF has a deterministic behavior. The UDSF can be executed directly within
the DBMS kernel process, because the option NOT FENCED is specified. Otherwise

8 Background on User-Defined Routines

the function is executed within a process that runs under a special user ID which is
determined by the database administrator. NOT NULL CALL specifies that the
result of the function is NULL, if one or more of its arguments are NULL. In this
case the function is not invoked. This option can be used to avoid the handling of
NULL values in the implementation, if this is not needed. This function does neither
perform database actions (NO SQL) nor external actions (NO EXTERNAL
ACTION). Database actions are currently not supported in DB2.

The last two options tell the DBMS that the UDSF does not use a so-called
SCRATCHPAD. A scratchpad area is a small piece of memory that is passed to a
UDSF with all calls and that is not deleted after the executed function returns the
control. This allows to preserve information from one function invocation to the
next. Thus, it is possible for a function to maintain a global context (or global state).
After the last call to the function within an SQL statement, the scratchpad is deallo-
cated by the system. However before this happens, there is an optional FINAL
CALL to the function that can be used to clean up resources that were allocated by
the function. For example, developers can allocate more memory than the rather
small scratchpad area by dynamically allocating a piece of memory and hooking it
up in the scratchpad. Often a scratchpad is used to store intermediate results that
have been computed from the arguments of former function calls. We say that such
UDSF have an input context. A simple example of a UDSF with a scratchpad is a
function sequence_no that returns the number of its invocations so far.

After the function has been registered with DB2, the developer should provide the
query optimizer some information about the expected execution costs of this UDSF.
ORDBMS have to provide a suitable interface for this. In general, a user-defined cost
estimation function could be provided. However, for UDSF the costs will typically
be estimated as a simple combination of several parameters. Therefore a simpler
interface is usually considered as sufficient. For example, DB2 UDB [15] allows to
specify the I/O and CPU costs that are expected for the first call to a function, for

CREATE FUNCTION add (dollar, dollar)

RETURNS dollar

EXTERNAL NAME ‘dollar!add’

LANGUAGE C

PARAMETER STYLE DB2SQL

NOT VARIANT

NOT FENCED

NOT NULL CALL

NO SQL

NO EXTERNAL ACTION

NO SCRATCHPAD

NO FINAL CALL;

Figure 1. Registration of a New UDSF add in DB2.

Definition, Implementation, and Execution of New UDR 9

each further call, and per argument byte that is read by the function. In addition to
this, the percentage of the argument’s storage size that is processed at the average
call to the UDF should be specified. The costs that are related to the size of argu-
ments are primarily of interest for UDSF which operate on LOB data, since the size
of the arguments (and therefore the cost of the function) can vary by several orders
of magnitude. Based on this information and the estimated number of invocations the
DBMS computes the estimated costs. If a UDSF returns a boolean value the devel-
oper should be able to specify a user-defined selectivity estimation function [104].
This is helpful for the case that the UDSF is used as a predicate in the WHERE or
HAVING clause. However, if the UDSF is used within an expression, it is necessary
to estimate the value distribution of the UDSF results. We are not aware of support
for this in current commercial ORDBMS or research prototypes. In general, provid-
ing these details for cost and selectivity estimation can be a time-consuming task.
Hence, easy to use graphical environments are offered for the development of UDF
([19], [55], [81]).

2.2.2 User-Defined Aggregate Functions

UDAF are applied to a set of values that corresponds to the values of an entire col-
umn of a table. The execution of UDAF is well integrated into the usual one-tuple-at-
a-time processing style of the engine. Hence, they are not called once with all values
of a column as an argument, but instead they are called once for each value of the
column. This results into two requirements: First, there must be an appropriate inter-
face for developers that is tailored to this style of processing and second, there is the
need to preserve the intermediate result from one invocation to the next.

Let us now see how the Informix Illustra ORDBMS [53] supports UDAF, for exam-
ple. The system computes aggregate functions one-tuple-at-a-time, i.e., there is one
function call for each element of the argument set. The user has to write the three fol-
lowing external functions to implement a new UDAF:
- Init():

The Init function is called only once and without arguments to initialize the
aggregate computation before the actual computation of the aggregate begins. It
returns a pointer to a memory area, which it has allocated to store intermediate
results during the aggregation.

- Iter(pointer, value):
The Iter function is called once for each element of the input set. One parameter
passes the value of the input element and the other passes the pointer to the
allocated memory area. It aggregates the next value into the current aggregate that
is stored using the pointer. It returns the pointer to the allocated memory area.

- aggregate value = Final(pointer):
The Final function is called once after the last element of the input set has been

10 Background on User-Defined Routines

processed by the Iter function. It computes and returns the resulting aggregate
using the pointer to the allocated memory area. In addition, it deallocates the
memory.

The control flow during the aggregate computation is presented in Figure 2. The
pointer, similar to the scratchpad area mentioned in subsection 2.2.1, allows to store
the input context of the computation. For example to compute the average of a set of
values, the Iter function would store both the sum of all values seen so far and their
number as intermediate results in the allocated memory area. The Final function
would divide the sum by the number and return the result. The reader should note
that all practical aggregate functions have an input context.

Obviously this design matches the usual Open-Next-Close protocol ([29], [73]) for
relational operators. After the three functions have been registered with the
ORDBMS (cf. Figure 1), the user can create the aggregate function (e.g. average)
using a CREATE AGGREGATE statement. This statement specifies the three func-
tions that implement the Init, Iter and Final functions for the new aggregate function.

2.2.3 User-Defined Table Functions

A UDTF is invoked with some scalar arguments and returns a table. In DB2 UDB, a
UDTF together with its arguments can only be referenced in the FROM clause of a
SELECT statement [50]. It can be referenced in exactly the same way as a table or
view. The purpose of a table function is typically to access external data that is not
stored in the database, convert it dynamically into a table and make it available
within a SELECT statement. Examples are the access to emails that are stored in a
file or the access to a collection of World Wide Web pages.

A difference to references of base tables or views is that one can also use correlated
table functions. In this case an argument of the UDTF is the attribute of a row. The
reference to the corresponding table T must be either in a higher-level of the hierar-
chy of subqueries or in the same FROM clause left to the reference of the UDTF.
Such a correlated UDTF is not evaluated once. Rather it is evaluated once for each
row r of the table T and produces result tables E(r). The result of a reference to the

pointer = Init()

Iter(pointer, value)

v a l ue =

Figure 2. Control Flow During the Computation of a UDAF.

Definition, Implementation, and Execution of New UDR 11

table T and the correlated UDTF is then the union of the Cartesian products between
a row of T and the corresponding result table E(r), i.e.:

∪ r ∈ T { {r} × E(r) }. (EQ 1)

There are roughly the same options for the registration of UDTF as for UDSF. How-
ever, one important exception holds. The optimizer has no way to estimate the cardi-
nality of the result table of the UDTF. Therefore it should be possible to provide a
user-defined cardinality estimation function. However, in practice, a constant value
that provides the expected average cardinality might be sufficient. For example, this
scheme is used in DB2 UDB.

In DB2 UDB, UDTF are implemented and executed similar to UDSF. Although a
table function delivers a table, the interface between the DBMS kernel and the
UDTF is one-tuple-at-a-time. To support the return of multiple rows, there are three
types of calls available: OPEN, FETCH and CLOSE. A special parameter indicates
the type of call to the UDTF. The first call to a UDTF is the OPEN call. For this call
all argument values are passed. This call serves to do all initializations (e.g. of a
scratchpad), but no result tuple should be returned. Then the DBMS makes as many
FETCH calls to the UDTF, until the table function returns the end-of-table condition
in the SQLSTATE parameter. With each FETCH call the same argument values as in
the OPEN call are passed. After the last tuple has been fetched, the DBMS makes a
final CLOSE call. No argument values are passed with this CLOSE call and no tuple
should be returned. It serves to release system resources acquired during the OPEN
and FETCH calls.

The reader may have already noticed that similar techniques are used for the execu-
tion of UDSF with a scratchpad, UDAF, and UDTF. In all cases, a set of rows is pro-
cessed as input to or output from a UDR. Hence, a technique to integrate the passing
of sets with the usual one-tuple-at-a-time processing has to be made available.

2.2.4 User-Defined Functions and Large Objects

In some ORDBMS descriptors (called locators) can be used to manipulate large
objects (LOBs) in an efficient way ([15], [63]). These locators can also be used as
parameters for UDF in order to avoid the passing of the complete LOB as a parame-
ter. A special LOB locator API allows the manipulation of LOBs by means of these
locators within the body of an external UDF. For example, there are functions like
length, substr, append, create_locator and free_locator in the
API of DB2 UDB [50]. Manipulations of LOBs by means of locators and these func-
tions are first done with the locators. The LOB data in the database is modified only
if this is necessary, e.g., if a modified LOB is inserted into a table.

12 Background on User-Defined Routines

2.3 Comparison with Stored Procedures

In [104] one can find some interesting remarks that give insight into the relationship
between UDF and stored procedures in relational systems that we want to cite here:

... Basically, a database procedure is a collection of SQL statements with other state-
ments interspersed in a vendor-proprietary programming language. Database proce-
dures were pioneered by Britton-Lee as a performance enhancement for transaction
processing applications and subsequently adopted by all major relational vendors.
Using traditional SQL, the TPC-C benchmark is five commands that result in 10 mes-
sages between client and server processes [31]. With a database procedure defined on
the server, the user merely executes it and only two messages are required.

Note that a database procedure is merely a user-defined function written in a propri-
etary language that accepts SQL-92 data types as arguments. Unfortunately, the only
operation available for database procedures is to execute them. In contrast to user-
defined functions they cannot appear in the middle of SQL commands. Thus, they
should be considered “brain-dead” user-defined functions. [citation: [104], pp. 33-34]

However, one problem with UDF is that current ORDBMS are still to a large extent
“brain-dead” with regard to the optimization and efficient execution of UDF. We
will briefly present this optimization problem in the next section. Later, we will
present our improvements to this situation.

2.4 Optimization of Queries with UDF

One of the most challenging areas in query processing is query optimization. It is the
goal of query optimization to find for a given query a query execution plan (QEP)
with very low (or even the lowest possible) costs. The search for a suitable plan is
usually constrained by time and space limits. The overall set of query execution
plans is determined by the abilities of the database engine. The search space for a
given query is the set of all semantically equivalent query execution plans (the
equivalence class of a certain query). The size of this equivalence class is determined
by the semantic knowledge of the optimizer. In modern rule- and cost-based optimiz-
ers ([30], [36], [67]) this semantic knowledge is typically expressed as a set of rules.
A cost model is used to estimate the costs of the QEPs. Of course, this cost model
and the set of rules contain semantic information.

Obviously, new UDF have also certain semantics that must be made known to the
optimizer. Otherwise, the resulting QEP might be incorrect, because certain rules are
no longer correct equivalence transformations, or no efficient plan can be found,
because the equivalence class of the query is too small. If the cost model is not
appropriate, errors in cost estimation might lead to the choice of an actually bad
QEP. We have already discussed that developers can influence the cost model by

Optimization of Queries with UDF 13

giving constant cost factors for UDF. These cost factors are used to calculate the esti-
mated costs during the optimization.
We remark here that traditional optimizers had to be extended to place predicates
with expensive UDF in the best possible way into QEPs [45]. The reason is that tra-
ditionally restrictions have been considered as cheap compared to joins. As a result,
they were pushed down as far as possible independent of their cost. This approach
had to be modified with the introduction of expensive predicates. Chaudhuri and
Shim proposed how the well-known optimization approach of System R can be
extended appropriately [17].
The central question is, how developers can influence the set of optimization rules. It
seems that current systems have only a limited possibility to do this. Obviously, it
would be desirable to be able to extend the rule set of the optimizer by arbitrary new
rules. This is immediately clear with respect to commutativity and associativity of
UDF, since the order of operations can have a huge impact on performance. For
example, consider that we want to invert a small part of a digital photo. We can
invert the photo and then clip the desired part from the result. However, if we change
the order of the operations, then we have to invert only the clipped part of the photo.
Naturally, the second execution strategy is by far better [98]. No commercial data-
base system supports extensibility of the optimizer by arbitrary new rules. However,
developers can influence the applicability of certain optimization rules by providing
appropriate metadata during the registration of UDF. Depending on the properties of
a given function some rules are applicable or not. For example, developers must
specify for a UDSF, whether this function is deterministic or not. If a function is not
deterministic, this function should not be computed several times during the query
execution, even if this is cheaper than the materialization of the function’s result.
The same holds for UDF with external actions, since these actions must normally be
executed exactly once.
So far, we have only considered the sequential execution of UDR. In the next chap-
ter, we propose new techniques to parallelize the execution of UDR. We provide the
necessary background on parallelism there.

CHAPTER 3

Parallel Processing of User-Defined Functions

3.1 Introduction

Our main contribution in this chapter is to show how a broad class of user-defined
functions can be processed in parallel. This class includes both, user-defined scalar
functions and user-defined aggregate functions. To this aim we propose a framework
covering both the necessary interfaces that allow the appropriate registration of user-
defined aggregate functions with the ORDBMS and their parallel processing. Paral-
lel computing of user-defined aggregate functions is especially useful for application
domains like decision support (e.g. based on a data warehouse that stores traditional
as well as non-traditional data, like spatial, text or image data), as decision support
queries often must compute complex aggregates. For example, in the TPC-D Bench-
mark 15 out of the 17 queries contain aggregate operations [99]. In addition, if scalar
functions with a global context are processed in parallel, caution is needed in order to
get semantically correct results. Our framework can help in this case, too. Further-
more, we show that some aggregate functions can easily be implemented, if their
input is sorted, and they can thus profit from parallel sorting.

We do not consider the parallel execution of table functions due to the following rea-
sons: First, data parallelism cannot be reasonably applied to table functions since a
table function is conceptually only invoked once and does not operate on a set. Sec-
ond, table functions are often used to access external data in practical applications
[21], i.e., they perform external actions like reading from a file. This kind of behav-
ior usually inhibits a parallel execution of the body.

The remainder of this chapter is as follows: In section 3.2, we show the limits of
user-defined functions with respect to parallel execution. Our framework for parallel
processing of user-defined functions is introduced in section 3.3. Section 3.4 pre-
sents some examples for the application of the proposed techniques and section 3.5
contains a brief performance analysis. After a discussion of related work in section
3.6, the closing section 3.7 contains a short summary.

M. Jaedicke: Parallel Object-Relational Query Processing, LNCS 2169, pp. 14-32, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Limits of Current ORDBMS 15

3.2 Limits of Current ORDBMS

We will now describe the limits of current ORDBMS with respect to the parallel
execution of UDF. To provide a concrete example, we refer to the user-defined
aggregate function MOST_FREQUENT, which computes the most frequently occur-
ring integer value in a column of type integer. We have omitted some details (for
example the registration parameters, cf. Figure 1) to make the presentation as simple
as possible.
We first have to create three UDSF INIT_MF, ITER_MF, FINAL_MF that provide
the implementation routines of the MOST_FREQUENT aggregate function. These
three routines are programmed as external functions, i.e., they are written e.g. in C
and can use the system-provided API for UDF to handle tasks like memory alloca-
tion, etc. Then they are registered using the CREATE FUNCTION statement:

CREATE FUNCTION INIT_MF()

RETURNS POINTER

EXTERNAL NAME ‘libfuncs!mf_init’

LANGUAGE C ...;

CREATE FUNCTION ITER_MF(POINTER, INTEGER)

RETURNS POINTER

EXTERNAL NAME ‘libfuncs!mf_iter’

LANGUAGE C ...;

CREATE FUNCTION FINAL_MF()

RETURNS INTEGER

EXTERNAL NAME ‘libfuncs!mf_final’

LANGUAGE C ...;

The function INIT_MF allocates and initializes memory to store the integer values
together with a count and returns a pointer to that memory. The function ITER_MF
stores its argument in the allocated memory, if it is an integer value not seen so far,
and increments the count for this value. Finally, the FINAL_MF function searches
for the value with the maximum count and returns this value. Next, we create the
UDAF with the CREATE AGGREGATE statement:

CREATE AGGREGATE MOST_FREQUENT

(

init = INIT_MF()

iter = ITER_MF(POINTER, INTEGER)

final = FINAL_MF(POINTER)

);

Now the MOST_FREQUENT function can be used as a new aggregate function in
queries. We will now explain, why this aggregate function cannot be processed in
parallel.

16 Parallel Processing of User-Defined Functions

UDSF without context can be executed in parallel using data parallelism. Instead of
executing a set of function invocations in a sequential order, one simply partitions
the data set (horizontal fragmentation) and processes the UDSF for each data parti-
tion in parallel. This parallel execution scheme is shown in Figure 3 for a selection.

Obviously aggregate functions cannot use this approach without modification as they
have an input context and deliver only a single result for a set of input tuples. Parallel
aggregation operations in RDBMS use an execution scheme consisting of two steps
[29] as shown in Figure 4. After the data has been partitioned, it is first aggregated
locally for each partition and then, in a second step, the locally computed sub-aggre-
gates are combined in a global aggregation (merging step in Figure 4). For the aggre-
gate function COUNT the local aggregation counts while the global aggregation
computes the sum of the local counts. Generally speaking, the local and global
aggregation functions needed for parallel execution are different from the aggregate
function that is used for sequential execution. For built-in aggregate functions local
and global aggregation functions are system-provided. Thus, the DBMS can use
these functions for parallel execution. For UDAF there is currently no possibility to
register additional local and global aggregation functions. This is the reason, why a
UDAF like the MOST_FREQUENT function cannot be executed with the usual two
step parallel aggregation scheme.

Another problem is that current ORDBMS do not allow the developer to define a
special partitioning function for a UDAF. However, unfortunately not all UDAF can
be processed in parallel on all kinds of partitions as we will show later. The latter is
also valid with respect to scalar functions that have an input context. In some cases,
the result will be semantically incorrect if the data partitioning does not take the
semantics of the function into consideration.

Data

SELECT SELECTSELECT

Partitioning

Figure 3. Parallel Selection in RDBMS.

Figure 4. Parallel Aggregation in RDBMS.

Local Agg. Local Agg.Local Agg.

Global Aggregation

Partitioning
Data

Merging

Parallel Processing of UDF 17

We can summarize the discussion as follows: UDSF with an input context and all
practical UDAF cannot be processed in parallel without special support by the
DBMS. This situation will result in a performance bottleneck in parallel ORDBMS
query processing. In shared-nothing and shared-disk parallel architectures the input
data is often distributed over various nodes and must be shipped to a single node to
process a UDF with input context correctly, i.e., sequentially, and afterwards the data
possibly has to be redistributed for further parallel processing. This results in addi-
tional communication costs and hence even worse performance.

3.3 Parallel Processing of UDF

In this section, we describe several orthogonal approaches to enhance the parallel
processing of UDF with an input context. In subsection 3.3.1 we introduce local and
global aggregation functions for UDAF as a generalization of the relational process-
ing scheme. In subsection 3.3.2 we introduce partitioning classes and define the class
of partitionable functions that can be processed with data parallelism. In subsection
3.3.3 we propose sorting as a preprocessing step to enhance the parallel execution for
non-partitionable UDAF. Subsection 3.3.4 contains corresponding syntactic exten-
sions to the DDL statements for the registration of UDF.

3.3.1 Two Step Parallel Aggregation of UDAF

In this subsection we will show how aggregates can be processed in two steps using
local and global aggregate functions.
To simplify the presentation below, we will omit constant input parameters to UDF.
Given a set S, we will use shorthand notations like f(S) for the resulting aggregate
value of an aggregate function f applied to S. We will also use the notation f(S) to
denote the result of repeatedly invoking a scalar function f for all elements of S. We
want to emphasize that in this case f(S) denotes a multi-set of values (a new column).
Next, we define the class of aggregate functions that can be processed in parallel
using local and global aggregation functions. An aggregate function f is partition-
able iff two aggregate functions fl and fg exist, such that for any multi-set S and some
partition Si of S, 1 ≤ i ≤ k, the following equation holds:

f(S) = fg(∪ 1 ≤ i ≤ k { fl(Si)}) (EQ 2)

The notation fl indicates that the function is applied locally (for each partition),
whereas fg is applied globally. In addition the result size of the local function fl must
be either bound by a constant or it must be a small fraction of the input size. This
requirement is important, since otherwise one could use the identity as local function
and the sequential aggregation function as the global function. Clearly, this is not
desirable, since it would not improve processing. In general, the smaller the size of

18 Parallel Processing of User-Defined Functions

the local results, the better the speedup that can be expected, as there is less data to
be exchanged and less input for the global aggregation. Obviously, if an aggregate
function is partitionable, the local aggregate function can be executed for all parti-
tions Si in parallel, while the global aggregation must be processed sequentially.
If an aggregate function is used in combination with grouping, the optimizer can also
decide to process several groups in parallel. In this case grouping can be done with
the algorithms described in [99]. The algorithms discussed there can be applied
orthogonally to our approach. Of course, if enough parallelism is possible by pro-
cessing different groups in parallel, the optimizer might decide that no further paral-
lel processing of the aggregate function is needed.
One disadvantage of this two step approach to parallel aggregation is that we are not
always able to apply one aggregate function to both sequential and parallel process-
ing. Therefore the developer might have to implement and register six additional
functions (Init, Iter, and Final functions for local aggregation and the same for global
aggregation) to enable parallel as well as sequential processing of a UDAF. How-
ever, if one does not need maximum efficiency for sequential evaluation, one can
simply use the local and global functions for sequential execution, too. This, how-
ever, will incur at least the overhead for the invocation of an additional function. On
the other hand, the additional work for the developer will pay off with all applica-
tions that profit from the increased potential for parallelism. Besides that, there
seems to be no solution that results in less work for the developer.

3.3.2 Partitioning Classes and Partitionable Functions

One prerequisite for data parallelism is that one has to find a suitable partitioning of
the data. This means that the partitioning must allow a semantically correct parallel
processing of the function. In order to ease the specification of all partitionings that
are correct for the parallel processing of a UDF, we describe a taxonomy of the func-
tions that can be used for data partitioning.
All partitioning functions take a multi-set as input and return a partition of the input
multi-set, i.e., a set of multi-sets such that any element of the input multi-set is con-
tained exactly in one resulting multi-set. Actually in some cases we will allow func-
tions returning subsets that are not disjoint, i.e., functions that replicate some of the
elements of the input set. We define the following increasingly more special classes
of partitioning functions:
- ANY: the class of all partitioning functions. Round-robin and random partitioning

functions are examples that belong to no other class. All partitioning functions that
are not based on attribute values belong only to this class.

- EQUAL (column name): the class of partitioning functions that map all rows of
the input multi-set with equal values in the selected column into the same multi-set
of the result. Examples of EQUAL functions are partitioning functions that use
hashing.

Parallel Processing of UDF 19

- RANGE (column name [, N]): the class of partitioning functions that map rows,
whose values of the specified column belong to a certain range, into the same
multi-set of the result. Obviously there must exist a total order on the data type of
the column. The range of all values of the data type is split into some sub-ranges
that define which elements are mapped into the same multi-set of the resulting
partition. Based on the total order of the data type the optional parameter N allows
to specify that the largest N elements of the input set which are smaller than the
values of a certain range have to be replicated into the resulting multi-set of this
range. Replicated elements must be processed in a special way and are needed only
to establish a “window” on a sorted list as a kind of global context for the function.
The number of elements that belong to a certain range should be much greater than
the value N. This class of partitioning functions is especially useful for scalar
functions that require a sorted input, for example scalar functions that compute
moving averages or running sums (see subsection 3.4.4). An example for range
partitioning with replication of two elements (N=2) is shown in Figure 5. It is used
to compute the running sum of the three most recently seen elements of the input
set. In the example there are three partitions and replicated elements are shown
inside rectangles in the second and third partition.

Please note that the following inclusion property holds: RANGE ⊂ EQUAL ⊂ ANY.
This taxonomy is useful to classify UDF according to their processing requirements
as we will see below. The database system can automatically provide at least a parti-
tioning function of class ANY for all user-defined data types (e.g. round-robin). We
define that a class C partition of a multi-set is a partition that is generated using a
partitioning function of class C (C denotes either ANY, EQUAL or RANGE).
Based on these definitions we can now define the classes of partitionable aggregate
and scalar functions. These classes describe the set of UDF that can be processed in
parallel with the usual execution schemes for data parallelism (cf. Figure 3 and Fig-
ure 4) and a particular class of partitioning functions.
A scalar function f is partitionable for class C iff a function fl exists, such that for
any multi-set S and any class C partition Si of S, 1 ≤ i ≤ k, the following equation
holds:

f(S) = ∪ 1 ≤ i ≤ k fl(Si) (EQ 3)

1 5 7 2 4 6 9 1 4 3 3 6 7 8 2

RANGE, 2

running_sum_3

1 5 7 2 4 2 4 6 9 1 4 3 4 3 3 6 7 8 2

- - 13 14 13 12 19 16 14 8 10 12 16 21 17

Figure 5. An Example for Range Partitioning: Computing Running Sums over 3 Elements.

20 Parallel Processing of User-Defined Functions

An aggregate function f is partitionable for class C iff two functions fl and fg exist,
such that for any multi-set S and any class C partition Si of S, 1 ≤ i ≤ k, the following
equation holds:

f(S) = fg(∪ 1 ≤ i ≤ k { fl(Si)}) (EQ 4)

The schemes in Figure 6 and Figure 7 show how partitionable functions can be pro-
cessed in parallel. All k partitions can be processed in parallel. The actual degree of
parallelism (i.e., mainly the parameter k) has to be chosen by the optimizer as usual.
Please note that for the scheme in Figure 6, there is not always a need to combine the
local results. Hence, the optional combination step (computing f(S) = ∪ 1 ≤ i ≤ k
fl(Si)) is left out. In order to enable the DBMS to process a UDF in parallel the devel-
oper must specify the allowed partitioning class when the function is registered (cf.
subsection 3.3.4).
We have introduced some extensibility to the traditional parallel execution schemes
by parameterizing the partitioning step by means of the partitioning function. In
addition, we have defined classes of partitions to allow the optimizer more flexibility
w.r.t. to the choice of the partitioning function. The query optimizer can try to avoid
data repartitioning, when multiple UDF are processed, if the developer specifies only
the class of the partitioning functions. For example, if two UDSF f and g must be
processed, f is registered with ANY and g with EQUAL, then both functions can be
parallelized with a partitioning function of class EQUAL. In general, the optimizer
has to find a partitioning function in the intersection of the partitioning classes of all
functions that occur in a given query. Computing the intersection is easy due to the
inclusion property between the classes (However, one must also consider the col-
umns that are used for partitioning). This can reduce processing costs dramatically,
especially for shared-disk and shared-nothing architectures. If the developer speci-
fies a single partitioning function for each UDF, in almost all cases a repartitioning
step will be needed to process several UDF in parallel. Vice versa, if a single parti-
tioning function satisfies all of the partitioning classes of a given set of UDF, then
repartitioning can be avoided.
Because UDF can have arbitrary semantics, we believe that it is not possible to
define a fixed set of partitioning functions that allows to apply data parallelism to all
UDF. If a given UDF is partitionable using some partitioning function p, but none of

Figure 6. Parallel Processing Scheme for Partitionable Scalar Functions.

A scalar function f that is partitionable for class C using the associated function
fl can be evaluated in parallel using the following scheme, given a multi-set S
and a partitioning function p of class C:
1. Partition S in k subsets Si, 1 ≤ i ≤ k, using p.

Distribute the partitions to some nodes in the system.
2. Compute fl(Si) for 1 ≤ i ≤ k for all Si in parallel.

Parallel Processing of UDF 21

the partitioning classes defined above, the developer should be enabled to specify
that this function p must be used. We call this function p user-defined partitioning
function. However, using a special partitioning function should be avoided in gen-
eral, since all data has to be repartitioned before such a UDF can be processed.

We want to remark here that implementing RANGE partitioning is a bit complicated,
since a user-defined sort order and partial replication have to be supported. One diffi-
culty is for example to find equally populated ranges for a given user-defined sort
order. We believe that range partitioning with partial replication can be best sup-
ported by an appropriate extension of the built-in sort operator of the ORDBMS.
This operator has to support user-defined sort orders anyway. The definition of
ranges and partial replication can be supported, if information about the data is col-
lected during the sorting process.

In addition to that extension, the operator that invokes UDSF has to be extended. The
UDSF that needs the range partitioning is evaluated immediately after the partition-
ing. Replicated data elements (that have to be marked) are processed by the UDSF in
a special mode that has to be indicated by turning on a special switch. In this mode
only the global context of the UDSF is initialized and no results are produced. For
example, when the moving average over five values is computed, the first four val-
ues of a partition will be replicated ones and are stored in the global context of the
function. Then, the fifth invocation produces the first result. Though this extension is
conceptually simple, it may be difficult to add it to an existing engine.

3.3.3 Parallel Sorting as a Preprocessing Step for UDAF

Some user-defined aggregate functions can be easily implemented, if their input is
sorted according to a specified order. In this case the sort operation can be executed
in parallel. Of course, this is especially interesting for UDAF that are not partition-
able.

An aggregate function f that is partitionable for class C using the two associated
functions fl and fg can be evaluated in parallel using the following scheme,
given an input multi-set S and a partitioning function p of class C:
1. Partition S in k subsets Si, 1 ≤ i ≤ k, using p.

Distribute the partitions to some nodes in the system.
2. Compute Ii := fl(Si) for 1 ≤ i ≤ k for all Si in parallel.

Send all intermediate results Ii to a single node for processing of step 3.
3. Compute f(S) := fg(∪ 1 ≤ i ≤ k { Ii}) ;

fg can be applied to the intermediate results Ii in arbitrary order.

Figure 7. Parallel Processing Scheme for Partitionable Aggregate Functions.

22 Parallel Processing of User-Defined Functions

Sorting as a preprocessing step for UDAF can be introduced by using an additional
parameter in the CREATE FUNCTION statement (see subsection 3.3.4 for details of
the syntax we propose). Of course the developer must have the possibility to specify
a user-defined order by providing a specific sort function for the argument data types
of the UDF which are often user-defined data types. In most cases such functions
will be needed anyway, to support sorted query results, to build indexes (like gener-
alized B-Trees ([102], [104]) or GiSTs [46]) or for sort merge joins to efficiently
evaluate predicates on user-defined data types, to quote some examples.

One interesting point to observe is that many aggregate functions, which operate on a
sorted input, do not need to read the complete input set to compute the aggregate.
Thus, it might be well worth to provide the aggregate function with the option to ter-
minate the evaluation as early as possible and return the result. We call this feature
early termination. The parallel processing scheme for aggregate functions with
sorted input is shown in Figure 8.

The optional sort requirements can be integrated into rule-based query optimization
(see e.g. [30], [36], [67], [73]) simply by specifying the sort order as a required phys-
ical property for the operator executing the UDF. Then a sort enforcer rule ([30],
[38]) can guarantee this order requirement by putting a sort operation into the execu-
tion plan, if necessary. Informix Illustra [53] already supports optional sorting of
inputs for UDF that have two arguments and return a boolean value. The developer
can specify a user-defined order for the left and right input of such a function. Obvi-
ously this allows to implement a user-defined join predicate using a sort-merge join
instead of a Cartesian product followed by a selection. Thus, our proposal can be
seen as an extension of this approach w.r.t. to a broader class of supported UDF and
their parallel execution.

3.3.4 Extended Syntax for Function Registration

In this subsection, we present the syntax extensions for the statements that allow the
registration of UDF with support for the features introduced in the previous subsec-
tions.

An aggregate function f that requires a sorted input can be evaluated using the
following scheme given input multi-set S:
1. Sort the input S. This can be done in parallel.
2. Compute f(S) without parallelism (use early termination, if possible).

Figure 8. Parallel Processing Scheme for Aggregate Functions with Sorted Input.

Parallel Processing of UDF 23

Figure 9 shows the extensions for the CREATE FUNCTION statement. We have
marked our extensions by boldface. The ORDER BY clause can be used to specify a
sort order that is required for the input table, on which the function is executed. The
input table can be sorted on multiple columns applying user-defined sort functions to
define the sort order. Furthermore, the developer must specify if early termination is
used. To enable parallel evaluation, the partitioning class has to be specified. In addi-
tion to ANY, EQUAL and RANGE partitioning, the developer can register a special
(user-defined) partitioning function for a UDF.

Figure 10 shows the extensions for the CREATE AGGREGATE statement. It now
includes the local and global function options that are needed to register the aggre-
gate functions that have to be used for the parallel evaluation of the new aggregate
function. Of course the various Init, Iter, and Final functions that are registered must
be consistent w.r.t. their argument types. For example the sequential and the global
Final functions must have the same return types (but often will have different argu-
ment types)

As we mentioned already in chapter 2 additional information about these functions
should be supplied by the developer. In addition to the usual cost parameters, infor-
mation about the size of the results of the local aggregation function (perhaps
depending on the cardinality of the input set, if the function returns a collection type
or LOB) would be desirable.

CREATE FUNCTION <function-name> (<argument type list>)

RETURNS <data type name>

EXTERNAL NAME <external function name>

[ORDER BY {<argument name> [USING <sort function name>] [ASC | DESC] }

[EARLY TERMINATION]]

[ALLOW PARALLEL WITH PARTITIONING CLASS (

 ANY

| EQUAL (<argument name list>)

| RANGE {<argument name> [, <number>]

[USING <sort function name>] [ASC | DESC]}

| <partitioning function name>)]

LANGUAGE <language name>

...

Figure 9. Extensions to the DDL Statement for UDSF Registration.

CREATE AGGREGATE <function-name> (

<Init, Iter, and Final function definition>

[local <Init, Iter, and Final function definition>]

[global <Init, Iter, and Final function definition>]

)

Figure 10. Extensions to the DDL Statement for UDAF Registration.

24 Parallel Processing of User-Defined Functions

3.4 Example Applications

In this subsection, we present some example applications to illustrate the benefits of
the introduced techniques.

3.4.1 The UDAF Most_Frequent

First, we will demonstrate how parallel execution can be enabled for the aggregate
function Most_Frequent. How can we use the two step processing scheme to pro-
cess the function Most_Frequent in parallel? A straightforward approach could be
to compute the most frequent value for each partition in parallel using the local
aggregate function. This implies that the local aggregate function returns the most
frequent value together with the number of its occurrences (i.e., the return type of the
local function contains two values). Then the overall most frequent value is com-
puted by the global function. Obviously this scheme is only correct if EQUAL is
specified as the partitioning class for the local aggregation function. If ANY would
be used as a partitioning class, the local aggregate function would have to return all
distinct values together with the number of their occurrences for each partition. Thus,
the local aggregation step would not be useful.

One difficulty of this approach is to implement the local aggregation function, since
it must temporarily store all distinct values together with a counter. It is difficult to
implement this efficiently in a user-defined function, since the function must be able
to store an arbitrarily large data set. By contrast, the local aggregation can be done
much easier if the developer uses sorting as a preprocessing step. The function must
then only store two values and two counters: one for the most frequent value seen so
far and one for the last value seen. This approach is much more practical. Based on
the syntax from subsection 3.3.4 we show the registration of the Iter function for the
local aggregation (‘$i’ denotes the argument at position i in the parameter list of the
function).

CREATE FUNCTION

ITER_MF_LOCAL(POINTER, INTEGER)

RETURNS POINTER

EXTERNAL NAME ‘libfuncs!mf_iter_local’

ORDER BY $2 ASC

ALLOW PARALLEL WITH PARTITIONING CLASS EQUAL $2

LANGUAGE C ...;

With EQUAL as partitioning class in case of a parallel execution the data is first par-
titioned and then only the partitions are sorted as specified in the ORDER BY clause.

Example Applications 25

3.4.2 The UDSF Running_Average

As an example of a UDSF with input context, we discuss the function
Running_Average. This function computes for each input value the average of the
N values seen last. This means that the input context of the function is a ‘window’ of
size N. Thus, the function Running_Average is partitionable of class RANGE with
parameter N. Obviously the function Running_Average computes many aggre-
gates with a single scan over the input table. This is a typical example of a UDSF
with an input context. Other functions of that kind are for example available in Red
Brick Systems’ Intelligent SQL [94].

3.4.3 The UDAF Median

As an example of a function that seems to be non-partitionable consider the Median
function that computes the  (N+1)/2 largest element of a set with N elements (that
element could be informally called the ‘halfway’ element). A query that finds the
median of a set is not very intuitively expressible in SQL-92. For example, the sim-
ple query to select the median of the ages of certain persons could be expressed as
shown in Figure 11. Of course one would prefer a query using a UDAF Median as
shown in Figure 12.

The object-relational query is not only easy to write, but will also run more effi-
ciently, because the function Median can be implemented with lower complexity
than the complex query in Figure 11 as we will show in the following. The function
Median is called with two parameters (cf. Figure 12): the first parameter is an ele-
ment of the already sorted input set, the second parameter is constant and gives the
cardinality of the input set1. When the function is called the first time, it computes

1. Some systems do not support nesting of aggregate functions. In this case one could e.g. use a sub-
query in the FROM clause to compute the cardinality.

SELECT MIN(Age)

FROM Persons AS P

WHERE (SELECT Ceiling((COUNT(*) + 1) / 2) FROM Persons)

<=

(SELECT COUNT(*) FROM Persons AS R WHERE R.Age <= P.Age)

Figure 11. Computing the Median in Relational SQL.

SELECT Median(P.Age, COUNT(*))

FROM Persons AS P

Figure 12. Computing the Median in Object-Relational SQL.

26 Parallel Processing of User-Defined Functions

the median position and stores this position in the global context. In addition the
function maintains a counter for the number of invocations. During each call the
function checks whether the median position is reached. In this case, the function
stores the input value in the global context. Because the input is sorted, this value is
actually the median of the input set. Finally, the function returns the median. Figure
13 demonstrates this algorithm for a set of integers. Obviously this function is easy
to implement, because essentially it has to scan its input until the right position has
been reached. This implementation has an asymptotic complexity of O(N*log(N))
due to sorting, while the computation with the SQL query from Figure 11 has one of
O(N2). In case of the function Median using the early termination option would
save roughly half of the calls to the function.

3.4.4 Further Applications

In this section, we apply the concept to some additional UDF shown in Table 1. The
table contains also the three examples that we have discussed in detail in the previ-
ous subsections. The first five aggregate functions of the SQL-92 standard have well
known semantics and need not to be explained. However, we want to emphasize that
in an ORDBMS a function like the SUM function can be defined for any data type
available. For example some RDBMS support time durations as a data type, but no
sum function that allows to sum up durations easily. Using our framework such a
sum function can be defined and executed in parallel.

The other functions that are shown in Table 1 may need some explanations. GCD
denotes the greatest common divisor (gcd). The gcd is the intersection of the prime
factors of a set of integers. Hence, we can compute the function GCD in parallel, by
computing this intersection first locally and then globally for the local results. The
Variance function computes the square of the statistical variance of a set S of
sample values vj given the arithmetic mean m of these values as a constant parame-
ter. The partial sums si given here are computed as ∑j(vj - m)2; vj ∈ Si (with Si ⊂ S).
The Nth_largest function selects the Nth largest element of a sorted set. N is a

3 4 1 5 2

1 2 3 4 5

1 2 3 4 5

sort

scan

3 result

Figure 13. Finding the Median by Means of Sorting.

Example Applications 27

parameter of the function. Please note that the local functions have to return the sub-
set consisting of the N largest elements, while the global function just returns the Nth
largest element and is the same as the sequential implementation. The Shape_sum
function is an aggregate function that returns the geometric union of shapes like
polygons or rectangles (e.g. bounding boxes). The Closest function computes one
of the nearest neighbors in a set of geometric objects in a common coordinate system
for a given point in this coordinate system. The function N_Tile computes the num-
ber of the interval (also called tile) to which a given value belongs. The values of the
input column are first grouped into N intervals that have roughly the same cardinal-
ity. Then the interval to which the given input value belongs is computed and the
rank of this interval is returned. For example, if we compute the N_Tile for N = 10
and if the value belongs to the highest 10 percent of all values or is higher, then the
result is 1. If the given value is lower than all values in the column, the result is 11.
We can parallelize this function with a partitioning of class ANY and compute the
number of higher values hi as well as the number of all values ci locally within each
partition. Based on these local counts and the value N, we can compute to which
interval the given value belongs using the formula that is given for the global imple-
mentation in Table 1.

Table 1. Characteristics of Some User-Defined Functions

UDF Scalar
Function

Sorted
Input

Partitioning
Class

Sequential
Implementation

Local
Implementation

Global
Implementation

MAX N N ANY max max max

MIN N N ANY min min min

SUM N N ANY sum sum sum

COUNT N N ANY count count ci sum{ci}

AVG N N ANY average sum si; count ci sum{si} / sum{ci}

GCD N N ANY gcd gcd gcd

Variance N N ANY variance sum si; count ci sum{si} / sum{ci}

Nth_largest N N ANY Nth largest N largest (set) Nth largest

Shape_sum N N ANY shape sum shape sum shape sum

Closest N N ANY closest closest closest

N_Tile(N) N N ANY N_tile count higher values
hi; count ci

 (sum{hi} / sum{ci})
*N + 1

Most_Frequent N Y EQUAL most frequent most frequent most frequent

Median N Y - scan position - -

Rank N Y EQUAL rank local rank global rank

Cumulative Y Ya - cumulative - -b

Running_Sum(N) Y Ya RANGE (N) running sum running sum -b

Running_Avg(N) Y Ya RANGE (N) running avg. running avg. -b

a.A sorted input (possibly with a user-defined sort order) is needed due to the semantics of this function.
b.Global functions are not applicable to UDSF.

28 Parallel Processing of User-Defined Functions

The functions Most_Frequent and Median have been discussed already. The
function Rank computes the rank of a given value within the N values of a column. If
the value is higher than all values in the column, its rank is 1; if it is lower than all
values, its rank is N+1. If we use a partitioning of class EQUAL and sort the input
set, we can first compute the local ranks of the given value for each partition. We can
then compute the global rank as the sum of the L local ranks minus (L-1). Hence, we
can compute the rank completely in parallel.
The last three functions in Table 1 are scalar functions with a scratchpad that need a
sorted input due to their semantics. The function Cumulative computes the running
sum over all values seen so far, whereas the function Running_Sum(N) computes
the running sum of the N most recently seen values. The function Running_Avg(N)
was already discussed. All three functions operate on a sorted list. This is necessary,
since their result depends on the order in which the input values are seen. There
seems to be no possibility to compute the function Cumulative in parallel, because
the input context of this function consists of all values seen so far. On the other hand,
the functions Running_Sum(N) and Running_Avg(N) are partitionable with a par-
titioning function of class RANGE (N) including replication of N values. We want to
emphasize that these functions must not return a value (not even NULL) for repli-
cated input values to guarantee the same number of result tuples as in sequential pro-
cessing.
In summary, these examples show that the parallel evaluation of many UDF can be
supported using the introduced techniques, because they are actually partitionable.
All example functions are partitionable or use a sorted input. Therefore they can
either be executed completely in parallel or they can use parallel sorting.

3.5 Plausibility Considerations Regarding Performance

We will now discuss the possible performance benefits for processing partitionable
UDAF in our framework. Basically we provide a first assessment of the obtainable
performance of parallel UDF processing that should make the efficiency of our
framework more plausible. Note that these considerations are straightforward for
partitionable UDSF. We use the obtainable speedup of the parallel execution of a
UDAF to estimate the efficiency of our approach. It has to be emphasized that we
compare the sequential and parallel execution of the aggregation function only, i.e.,
we do not try to estimate the speedup for the evaluation of complete queries.
For our analysis we use a simple analytic cost model that takes only CPU costs into
consideration. This seems to be roughly appropriate to us as the aggregated size of
main memories tends to increase on a parallel system compared to a uniprocessor
system. Thus, the necessary I/O will almost always be less in the parallel case. CPU
costs for communication can be quite significant for parallel evaluation, but will vary
to a great extent depending on the architecture used. For example in shared-every-

Plausibility Considerations Regarding Performance 29

thing systems the costs for exchanging intermediate results between processors are
negligible, if shared memory is used properly. We do not expect that communication
bandwidth will be a problem given the rapid progress in networking technology
(consider e.g. a switched gigabit network or an ATM-based network). Therefore we
will also ignore bandwidth problems for the moment. The costs of computing the
UDAF f sequentially may be different from the costs when using fg and fl for
sequential evaluation, but in order to keep our model simple we assume that these
costs are nearly equal (i.e., cost (fl) + cost (fg) ≈ cost (f)). Thus, our cost model has
the following three components:

1. F:
CPU cost for evaluating the UDAF. F = cost (fl) + cost (fg) ≈ cost (f)

2. P(d):
CPU cost for data partitioning depending on the degree of parallelism d, i.e., the
number of different nodes that process a partition.

3. I(d):
CPU cost for exchange of intermediate results depending on the degree of
parallelism d.

The cost for the sequential execution of the UDAF is simply F. The cost for the par-
allel execution is F + P(d) + I(d). When using parallel execution the input streams
will often be already partitioned on different nodes, and without the possibility to
evaluate the UDAF in parallel all the data has to be shipped to a single node. There-
fore the cost P(d) will be low in most cases when compared to a sequential evalua-
tion of the UDAF. I(d) depends on the size of the sub-aggregates and hence on the
implementation of the specific UDAF at hand. If the size of the intermediate results
is low compared to the size of the input set, the relative costs I(d) are quite low.
Thus, the obtainable speedup SP (depending on the degree of parallelism d) can be
approximated roughly as follows:

SP(d) = = F/[(F + P(d) + I(d))/d] ≈ d*F/F = d

This approximation is especially useful, if the UDAF is expensive, i.e., if F >> P(d)
+ I(d).

In summary, we have seen that a near-linear speedup can be expected in many cases.
Thus, our framework for parallel processing can be advantageous for the overall
query processing time. Whether or not parallelism for UDAF should be used for a
given query is a cost-based decision the optimizer has to make. The same is true for
partitionable scalar functions, too.

sequential execution time
parallel execution time

30 Parallel Processing of User-Defined Functions

3.6 Related Work

User-Defined Functions (UDF) have attracted increasing interest of researchers as
well as industry in recent years (see e.g. [3], [17], [45], [47], [68], [70], [83], [89],
[98], [102], [104]). Despite this, most of the work discusses only the non-parallel
execution of UDF. We see our contribution as a generalization and extension of the
existing work on the execution of user-defined functions using data parallelism.
Recently, IBM added the optional clause ALLOW PARALLEL or DISALLOW
PARALLEL to the create function statement for UDSF in DB2 UDB [50]. We view
this as a first step of support for parallel execution of UDSF that is consistent with
our more comprehensive framework. To the best of our knowledge there is no work
on parallel processing of scalar user-defined functions with an input context.
In [29] and [99] parallel processing of aggregate functions in RDBMS has been stud-
ied. The proposed concepts are applicable to built-in aggregation functions and con-
sider also aggregation in combination with GROUP-BY operations and duplicate
elimination. The proposed algorithms in [99] may be combined with our framework,
if user-defined aggregate functions are used with GROUP-BY. It has been observed
in [29] that different local and global functions are needed for parallel aggregation
operations in RDBMS. In [89] the concept to process user-defined aggregate func-
tions in parallel using two steps is proposed as a general technique, but neither are
details nor more sophisticated processing techniques (like sorting as a preprocessing
step, early termination or partitioning classes) presented. Recently, Informix added a
two-step scheme for parallel aggregation to their Universal Data Option [95]. Their
design is similar to ours, however they need only 4 functions (only one init and final
function, whereas we use two: one for the local and one for the global function). In
[76], RDBMS are extended by ordered domains, but neither is an object-relational
approach taken nor are functions considered.
It is interesting to compare our classification of aggregate functions in partitionable
and non-partitionable aggregate functions with other classifications. In [33], a classi-
fication of aggregate functions into three categories is developed primarily with the
goal to be able to determine, if super-aggregates in data cubes can be computed
based on sub-aggregates for a given aggregate function. It is pointed out that this
classification is also useful for the parallel computation of user-defined aggregate
functions. In the classification that is proposed in [33] an aggregate function f with a
given input multi-set S and an arbitrary partition Si of S is:
- distributive iff there is a function g such that

f(S) = g(∪ 1 ≤ i ≤ k f(Si)). (EQ 5)

- algebraic iff there is an M-tuple valued function g and a function h such that

f(S) = h(∪ 1 ≤ i ≤ k g(Si)). (EQ 6)

It is pointed out that the main characteristic of algebraic functions is that a result of
fixed size (an M-tuple) can summarize sub-aggregates.

Summary 31

- holistic iff there is no constant bound on the size of the storage needed to represent
a sub-aggregate.

Clearly, distributive and algebraic functions are both partitionable aggregate func-
tions for the partitioning class ANY. Note that our definition of partitionable aggre-
gate functions is less restrictive with regard to the size of the sub-aggregates.
Aggregate functions that are easy to implement using a sorted input are typically
holistic. Aggregate functions that are partitionable with a less general partitioning
class than ANY, e.g. the function MOST_FREQUENT, are holistic in this scheme, but
can be evaluated in parallel by our framework. Other holistic functions like e.g. the
function Median can be efficiently evaluated in our approach, by using parallel
sorting as a preprocessing step and early termination. Note that the application sce-
nario in [33] is different to ours with regard to partitioning and parallel evaluation,
because the sub-aggregates in data cubes must be computed for fixed partitions that
are determined by semantically defined sub-cubes and not by the application of some
partitioning function. The classification of Gray et al. was designed with the goal to
compute data cubes efficiently. However, the rationale behind our work was to find a
classification of functions that is useful for parallel evaluation.
In [111] the class of decomposable aggregate functions is introduced to characterize
the aggregate functions that allow early and late aggregation as a query optimization
technique. This class of aggregate functions is identical to partitionable aggregate
functions of partitioning class ANY except that no size restriction for sub-aggregates
is required in [111]. Thus, for these partitionable functions also certain rewrite opti-
mizations are possible that provide orthogonal measures to improve the perfor-
mance. In [16] the class of group queries is identified for relational queries. This
class is directly related to data partitioning. Our framework provides support for the
concept of group queries in object-relational processing as well.

3.7 Summary

In this chapter we have proposed a framework that allows parallel processing of a
broad class of user-defined functions with input context in ORDBMS. This is an
important step in removing a performance bottleneck in parallel object-relational
query processing.
Since it was clear that a straightforward application of data parallelism is not possi-
ble, we had to devise more sophisticated parallelization techniques. The three key
techniques that we have proposed here are the following: First, we have generalized
the parallel execution scheme for aggregation in relational systems by means of local
and global aggregations to allow its application to user-defined aggregations. Sec-
ond, we have introduced some extensibility to the parallel execution schemes for
scalar and aggregate functions by means of user-defined partitioning functions. We
have defined classes of partitioning functions to make the specification of all allowed

32 Parallel Processing of User-Defined Functions

partitioning functions easier and to enable the optimizer to avoid data repartitioning
as much as possible. Third, we have introduced parallel sorting as a preprocessing
step for user-defined aggregate functions. This enables an easier implementation of
UDF and the use of parallelism in the preprocessing phase. Furthermore, we have
defined new interfaces that allow developers to use these techniques by providing the
needed information to the DBMS.
As a summary Table 2 shows the different kinds of contexts that can occur for UDF
and the implications for parallel execution with respect to data parallelism. As can be
seen from Table 2, our techniques support data parallelism with respect to many, but
not all UDF with input context. Additional techniques might emerge in the future.
Please note that a general solution for UDF with external context is beyond the scope
of this work.

An important remaining question with respect to the parallel execution of UDF is the
following: How can we execute a UDF that operates on a single LOB in parallel?
The next chapter is dedicated to the solution of this problem.

Table 2. UDF with Different Contexts and their Parallel Execution

scalar functions aggregate functions
no context partitionable for class ANY (not reasonable)
input context partitionable for some class partitionable for some class

with local and global aggregation
parallel sorting
(& early termination)

not partitionable
external context not treated here

CHAPTER 4

Intra-function Parallelism

4.1 Introduction

In this chapter we focus on intra-function parallelism for expensive functions that
operate on large objects (LOBs). Intra-function parallelism means that the invocation
of a scalar function which operates on a single LOB is computed in parallel. Intra-
function parallelism is orthogonal to data parallelism and hence this kind of parallel-
ism can still be exploited, if data parallelism is not applicable. In this chapter we
present an approach to enable intra-function parallelism in PORDBMS. Since LOBs
can be used to implement collection data types like arrays and sets that are proposed
for future SQL standards, our technique to enable intra-function parallelism might be
useful for parallel processing of collection types as well.
As pointed out in [85] intra-function and inter-function parallelism are important,
because many object-relational extensions support expensive functions on large data
objects. The reason is that LOBs are used to implement a rich variety of new data
types, for example in applications which deal with multimedia, financial or spatio-
temporal data. Some of these data types like digital photos, satellite images and
video data have a really huge size. For example, currently a single high resolution
digital photo has a size of 18 MB. Note that in current commercial systems (see for
example [50], [54], [86]) large data types ranging to tera byte sizes are supported.
Moreover, one can expect that computationally expensive scalar functions are used
to extract knowledge from such LOBs or to transform these LOBs. Hence, process-
ing a single large object like a satellite image or a video film already consumes sig-
nificant resources. Unfortunately neither data parallelism nor pipeline parallelism
can be employed for the processing of a single large object. In the rest of this chap-
ter, we discuss how intra-function parallelism can be used to overcome this limit of
current PORDBMS and to speed up query processing further.
This chapter is organized as follows. Section 4.2 presents our approach to intra-func-
tion parallelism and section 4.3 contains a performance study that shows the viability
and the benefits of our approach. Section 4.4 covers the related work and section 4.5
summarizes the chapter.

M. Jaedicke: Parallel Object-Relational Query Processing, LNCS 2169, pp. 33-44, 2001.
© Springer-Verlag Berlin Heidelberg 2001

34 Intra-function Parallelism

4.2 Compose/Decompose Operators for Intra-function

Parallelism

In this section we describe our approach to intra-function parallelism for expensive
user-defined scalar functions on LOBs. The rationale of our design is the following:
first, a necessary requirement is that the application of intra-function parallelism
remains completely transparent for users of UDSF in SQL statements. Second, the
design should provide developers of UDSF with a model of intra-function parallel-
ism that combines ease of use with the highest possible degree of flexibility.

4.2.1 Compose/Decompose Operators

The basic idea of our approach is shown in Figure 14. The left side of Figure 14
shows the state of the art. A UDSF F is processed sequentially on a LOB (the white
box) and returns another LOB (the hatched box). We propose to enable intra-func-
tion parallelism by means of two new database operators: a decompose and a com-
pose operator. This is depicted on the right side of Figure 14. First the decompose
operator is applied to the LOB which results in a set of pieces of this LOB (the small
white boxes in Figure 14). Then the UDSF F is invoked for each of these pieces.
Some or all of these invocations can be done in parallel (indicated by the two opera-
tor instances for the evaluation of the UDSF F in Figure 14). The result is a set of
modified LOB pieces (the small hatched boxes in Figure 14). Finally the compose
operator assembles the LOB from the pieces. Hence, in general a UDSF can be com-
puted in parallel by adding a pair of decompose/compose operators that encloses the
evaluation of the function.
One might expect that the use of decompose and compose operators incurs a high
overhead. But in fact this is not the case if LOB locators (cf. subsection 2.2.4) are
used properly. If the size of the LOB is significantly larger than the size of the loca-
tor, then the overhead for the decompose and compose operations is relatively low as
we show in the following. Because in most applications the size of the LOB will usu-
ally be some orders of magnitude larger than the size of the LOB locator (which is
for example less than 312 Bytes in DB2 UDB [50]), the overhead is usually accept-
able.
Typically a developer will code the UDSF in such a way that not the LOB itself is
passed as a parameter, but the LOB locator. In this case the LOB locator can be used
to access some or all LOB data using positioned access. Similarly the UDSF will
return a locator that refers to the result LOB and not the result LOB itself. The
decompose operator can work in the same way: instead of reading the entire LOB
and returning a set of LOB pieces, it is sufficient to work with LOB locators. This
means that we pass a LOB locator to the decompose operator. The decompose oper-
ator simply makes N copies of the LOB locator and attaches to each copy the number

Compose/Decompose Operators for Intra-function Parallelism 35

N and a unique number K between 1 and N as access information. The numbers N
and K describe the piece of the LOB on which the UDSF should work. Hence, the
result of the decompose operator is a collection of rows. This corresponds exactly to
the functionality of a correlated table function (cf. subsection 2.2.3 and [50]). The
compose operator uses the values of N and K to determine how to construct the
result of the LOB. Please note that the number of pieces (N) is a parameter for the
decompose operator that is provided by the optimizer (cf. subsection 4.2.3 below).
In this approach, a copy of the LOB locator and the corresponding access informa-
tion are passed as parameters to the UDSF. The UDSF can infer from the value of K
on which of the N pieces it should operate. Therefore, the developer has to explicitly
consider that the UDSF might operate only on a part of a LOB and that access infor-
mation is passed to the UDSF as two additional, internal parameters (these parame-
ters are not visible in SQL statements and, if no decomposition is done, i.e., if no
intra-function parallelism is used, then these parameters have NULL values). Then,
the UDSF normally accesses only the part of the LOB that is described by the access
information. This is usually easy to integrate into the code of the UDSF. The reason
is that the UDSF will typically use the locator to fetch only a small portion of the
LOB at the same time into main memory. This kind of processing is necessary to
limit main memory requirements. Please note that providing a copy of the locator for
the complete LOB as a parameter to the UDSF has the following benefit: if the par-
tial result of the UDSF cannot be computed by looking only at the specific piece of
the LOB then the UDSF can read further LOB data as needed. Therefore our
approach supports intra-function parallelism for a broad range of UDSF. The com-
pose operator can exploit LOB locators in a similar way. The use of copies of com-
plete LOB locators is important to support a maximum of flexibility for developers
of UDSF as discussed in the next section.

Figure 14. Application of a Compose and a Decompose Operator to Parallelize the UDSF F.

UDSF F

compose

UDSF F

decompose

UDSF F

...

...

...

36 Intra-function Parallelism

Finally, we want to point out that the decompose/compose operators work with the
usual tuple streams that allow to pass data from one operator to the next. The LOB
locators and the values N and K are fields of the tuples and can be handled as usual.
The LOBs themselves are accessed only from within the body of the UDSF and are
therefore not themselves included into tuple streams. Hence, the handling of interme-
diate results is not affected by decompose and compose operators.

4.2.2 Extensibility of Compose Operators by Combine Functions

In this subsection, we explain how compose operators can be made extensible. The
compose operator should be extensible itself with respect to the way in which LOBs
are assembled. This is necessary to allow developers to deal with the semantic differ-
ences of various data types and functions.

Such a kind of extensibility can be achieved by providing a user-defined combine
function to the compose operator. This is shown in Figure 15. The combine function
tells the compose operator how the LOB can be assembled from the pieces. The sys-
tem has to provide default combine functions that work on the different kinds of
LOBs (BLOBs, CLOBs, DBCLOBs) without taking data semantics into account.
Sometimes a single combine function might suffice for all UDSF that operate on a
LOB data type, but in general there can be a specific combine function for each
UDSF that operates on a LOB data type. Please note that in the latter case the com-
bine function is tailored to the specific UDSF and can be used to complete the com-
putation of the UDSF during the combination. This can be necessary, if the UDSF
cannot be computed completely by invoking it only for each piece of the LOB. In
this case the UDSF is computed in two steps: first, the UDSF is invoked for each
piece and second, the combine function is executed during the compose operation.
This approach is similar to the divide-and-conquer strategy that can be used to com-
pute (user-defined) aggregates in parallel (cf. chapter 3).

In the example of Figure 14 we have assumed that the UDSF returns a LOB. This
assumption is not necessary. In fact, with user-defined combine functions the decom-
pose/compose-approach can be used for all UDSF that operate on LOBs because the
combine function can compute the correct return value.

We provide now a very simple example of a UDSF that needs a combine function to
support intra-function parallelism. Consider the UDSF:

compose

combine

Figure 15. Extending Compose Operators by Combine

Compose/Decompose Operators for Intra-function Parallelism 37

CREATE FUNCTION count_char(CLOB text, CHAR(1) c)

RETURNS INTEGER ...

that counts how often the character c occurs in a given text. We can implement
intra-function parallelism in the following three steps:
1. Decompose the CLOB into N pieces. This step is done by the decompose

operator.
2. For each piece in parallel: count how often the character c occurs. This step is

implemented by the UDSF count_char.
3. Add the counts for all pieces and return the sum. This is the functionality of the

combine function that is invoked by the compose operator.
In order to implement this approach, developers must be enabled to create combine
functions that can be applied to the instances of a certain LOB data type. Because
combine functions are user-defined functions, too, no special support for this is
needed (that is, the combine function can be registered as a UDSF). However, it is
necessary to register a new UDSF with parameters that allow the developer to spec-
ify which combine function has to be used to enable intra-function parallelism for
this UDSF. For example an optional clause like “DECOMPOSABLE [USING
<combine function name>]” could be added to the CREATE FUNCTION statement
for the registration of UDSF. If no specific combine function is specified, the system
can use the default combine functions for BLOBs, CLOBs, or DBCLOBs.
Please note that in our approach a similar extensibility for the decompose operator is
not needed. The reason is that the decompose operator simply makes copies of the
locator for the complete LOB. Therefore the UDSF can decide itself, which portion
of the LOB should be accessed for the processing of a given piece. This kind of vir-
tual decomposition allows a maximum flexibility.

4.2.3 Application of Intra-function Parallelism

In our view intra-function parallelism is best applied by a rule-based optimizer (for
example [30], [36]). Such an optimizer has to be extended my means of a rule that
inserts appropriate pairs of compose/decompose operators. Obviously, the compose/
decompose operator pair should be only inserted by the optimizer, if it estimates that
the application of intra-function parallelism reduces the response time.
Intra-function parallelism can reduce the response time, if data parallelism is not suf-
ficient to speed up processing. This is the case, if the number of LOBs that have to be
processed with a UDSF is less than the number of available CPUs. For example, if
we have a multi-processor but only a single LOB. The question is how to determine
the number of pieces (i.e., the parameter N) into which a LOB should be decom-
posed. If the cost of the function is significantly higher than the overhead for intra-
function parallelism (that is, if either the function evaluation is expensive or the

38 Intra-function Parallelism

LOBs are huge), then the number of pieces can be set roughly to the number of avail-
able CPUs (the exact value might be system-dependent). In general, as our measure-
ments in the following section 4.3 show, a number of pieces that is much higher than
the number of CPUs does not result in a significant overhead. In general a thorough
cost-based decision should be needed only, if the UDSF is cheap to compute or if an
expensive user-defined combine function has to be used. In both of these cases, intra-
function parallelism might not be useful at all.

Of course, if a UDSF operates only on a small part of the LOB data, then intra-func-
tion parallelism should not be used. In this case the developer should not register the
UDSF as decomposable.

4.2.4 Intra-function Parallelism for Function Pipelines

In this subsection, we will consider the case that we have a pipeline of functions that
can be processed with intra-function parallelism. This applies for example, if two
UDSF A and B are nested in an expression like A(B(...)). As it is shown in Figure 16
one can now insert a pair of decompose/compose operators around each function.
This allows intra-function parallelism for both functions.

In some cases it is possible to optimize this scenario further by an elimination of the
compose and decompose operators between the UDSF A and B. However, this is not
possible in general and requires additional support. The reason is that the combine
and decompose operator are needed to generate copies of the LOB locator for the
complete result LOB of UDSF A which is the expected input for the evaluation of
UDSF B.

Figure 16. Insertion of Compose/Decompose Operators in a Function Pipeline.

expression A(B(...))

input

result
decompose

compose

input

result

compose

UDSF A

UDSF B

decompose

Experimental Performance Study 39

4.3 Experimental Performance Study

We have evaluated our approach by implementing the functionality of decompose
and compose operators on top of IBM’s DB2 Universal Data Base, Version 5, run-
ning on SUN Solaris V2.5 for a simple UDSF that operates on a CLOB (cf. [40]).
The goal of these measurements was to show the feasibility of this approach. That is,
we wanted to show that performance gains can be achieved in some scenarios. A real
implementation within a core parallel data base system would have been too expen-
sive in relationship to the additional insight into this topic that could have been
gained. One reason for this is that a sophisticated, high performance implementation
of LOBs with locators in a PORDBMS is needed. Such implementations are already
available in commercial products [63], but for example they are not available in our
PORDBMS prototype MIDAS [9]. Without a suitable implementation of LOBs with
locators, the overhead of the decompose/compose approach would be unrealistically
high. The disadvantage of an implementation on top of a commercial system is that
the overhead for communication between client and server is significant and limits
the speedup. Hence, this implementation cannot show the full benefit of compose/
decompose operators.
All measurements have been made on a SUN SPARC 20 symmetric multi-processor
machine (SMP) with four SPARC processors with 100 MHz each, 128 MB main
memory and a disk array with four 4.2 GB hard disks. We have used a SMP for our
measurements, because we see that commodity SMPs become available and that the
scalability of SMPs improves. Therefore, we believe that intra-function parallelism
will be used primarily on SMPs. In a hybrid shared-nothing architecture (in which
the nodes are SMPs) data parallelism can be used for processing on different nodes
and intra-function parallelism can be used for parallel processing on a single SMP
node. This is possible due to the orthogonality of the parallelization concepts.

4.3.1 Experimental Scenario and Implementation

For our performance study we have considered a UDSF on a CLOB because this
seemed to be favorable to development. As UDSF we have implemented a function
invert that inverts the characters within the CLOB (that is A is changed into Z, B
into Y, etc.). To be able to increase the cost of this simple function we have added an
empty for-loop that is executed once for each character and increments the loop vari-
able 100 times. We have then generated random character strings and stored them as
CLOBs in a table clobtable with two columns: a column id that contains a pri-
mary key and a column text that contains the CLOB.

We have implemented two programs that perform essentially the following task: one
or more CLOBs are selected from the clobtable and then the function invert is
applied to these CLOBs. The result is then inserted into a persistent table in the data-
base.

40 Intra-function Parallelism

The first program without decompose/compose operators performs essentially the
following insert statement (see appendix A.1 for the complete program):

INSERT INTO result (id, text)
SELECT id, invert(text,1,1)
FROM clobtable
WHERE id < param;

The value of param is constant and used only to select a specified number of CLOBs
from the clobtable. For example, if param has the value 4 then the number of
selected tuples - each containing a CLOB - is 4. In the following, we call this pro-
gram sequential_in-vert.
The function invert was registered with the DBMS as follows:

CREATE FUNCTION invert (CLOB(150M) AS LOCATOR text, INTEGER piece,
INTEGER num_pieces)

RETURNS CLOB(150M) AS LOCATOR ...;

This function accepts three parameters: first the locator of the CLOB that should be
inverted. The second parameter corresponds to the number of the LOB piece (cf. the
variable K in subsection 4.2.1). The third parameter contains the number of pieces
into which a LOB is decomposed (cf. the variable N in subsection 4.2.1). Since we
cannot use intra-function parallelism in the program sequential_invert, the val-
ues for the parameters are always N = K = 1. Please note that the parameters N and K
would not be visible for users in SQL statements. However, in our case of an on-top
implementation this was unavoidable.
The second program implements the operation in a way that comes close in effect to
the decompose/compose operator approach. Our first approach to implement the
decompose operation was to use a UDTF that generates the necessary number of
copies of the CLOB locator. Unfortunately, we found no way to execute the resulting
statement with the UDTF in parallel. Therefore we have simply used a join with
another persistent table (named join-table) that contains exactly N rows for each
LOB. Each of these N rows consists of two integer values: the first value (id1) corre-
sponds to the id of the CLOB, the second (id2) contains a unique number in the range
1, 2, ... , N and is used to give each piece a unique identifier (that is, it serves as value
for the parameter K). The latter value is used as a parameter for the function invert.
The following statement shows the decompose operation and the application of the
function invert (for N = 4):

SELECT a.id + 0 AS id1, b.id2 + 0 AS id2, invert(a.text,b.id2,4) AS text
FROM clobtable AS a, jointable AS b
WHERE a.id = b.id1
ORDER BY id1, id2;

We have to explain here, why we have used an ORDER BY clause and the two addi-
tions in the SELECT clause. The compose operation could have been easily written

Experimental Performance Study 41

as a user-defined aggregate operation. But DB2 UDB V5 does not support this fea-
ture. Therefore, we used a cursor to fetch locators of the pieces and assembled the
result using the system-provided concatenation operator (‘||’). For this approach, it
was most efficient to sort the pieces by their number. This ensures that all pieces of
one LOB arrive in order. Hence, only one LOB is assembled at a time. However,
since id is the primary key of the table clobtable the optimizer decided to use an
index scan for an ordered access to the base table. While this avoided the sort opera-
tion, it also forced sequential execution. Therefore, we introduced the additions to
prevent the optimizer from using the index access. Appendix A.2 shows the com-
plete program parallel_invert.

4.3.2 Performance Results

We have conducted a series of performance measurements to show the effect of
decompose/compose operations.

Experiment 1: Speedup with Decompose/Compose Operators

In the first experiment, we have studied the effect of the number of LOB pieces and
the degree of parallelism for the processing of a single CLOB of size 10*106 Byte
(i.e., ten million characters). This LOB size is moderate and we have used a version
of the function invert with higher cost to increase the overall costs: for each char-
acter in the CLOB, the function inverts the character as mentioned above and incre-
ments a counter 100 times.

Figure 17a shows the response time (in seconds), if we use the value 4 as a default
degree of parallelism for the programs. In this case the DBMS tries to execute all
statements with this degree of parallelism, that is, it employs 4 processes to execute
the function invert. This is only possible for the select query that is executed in the
program parallel_invert. The parallelism is actually only useful, if more than
a single piece is generated for processing.

As one can see in Figure 17b, the best speedup that can be achieved is about 2.7. This
is less than the optimum speedup value 4. However, we can expect this, as not all 4
processors can be used exclusively to process the test program because of the operat-
ing system and DBMS overhead. An even more important limit for the speedup is
however that we use a program on-top of the DBMS for the implementation. All
work on the client side and the client/server communication represent thus a part of
the program that cannot be executed in parallel. This limits the overall speedup sig-
nificantly according to Amdahl’s law [2] and is an important reason for the less than
optimal speedup. Therefore when the decompose/compose operators are integrated
into the execution engine a better speedup can be achieved.

Furthermore, as Figure 17 shows, the response time depends in some rather unfore-
seeable way on the number of pieces into which the CLOB is decomposed. We have

42 Intra-function Parallelism

not been able to determine the reason for the changes in the system behavior. How-
ever, while the response time is influenced by the number of pieces, the overhead
from copying the LOB locators for an increasing number of pieces has not a dra-
matic effect on the overall performance. This is clearly demonstrated by the results
in Table 3. Here we show the response times for 1 CLOB with 4, 8, 16, and 40
pieces, respectively. In all of these cases, the DBMS used all 4 CPUs for parallel
query execution. Ideally the response time should be roughly the same in all cases.
Differences should result only from the overhead for creating a higher number of
copies of LOB locators. However, as the measurements show, the response time is
not determined by this overhead. In our view, it seems that the handling of LOBs
within the data base engine does not yet fully support the requirements for intra-
function parallelism. This again demonstrates that an integration of decompose/com-
pose operators into the database engine would be even more beneficial. In general,
the results show that decompose/compose operators can support intra-function paral-
lelism appropriately.

Experiment 2: Trade-Off between Intra-function Parallelism and Data
Parallelism

In another experiment, we have considered the execution of the UDSF for several
CLOBs at a time to study the trade-off between intra-function parallelism and data
parallelism. All CLOBs had the same size (1*106 Bytes) and they were all processed

Table 3. Response Times in Seconds for a Varying Number of Pieces

number of pieces 4 8 16 40

response time 80 44 61 48

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8
S

pe
ed

up
Number of Pieces

1 CLOB, 4 CPUs: Speedup

Speedup

Figure 17. Results for 1 CLOB with 10*106 Bytes on an SMP with 4 CPUs and Varying Number of Pieces.

a) Response Time in Seconds. b) Speedup.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

R
es

po
ns

e
T

im
e

Number of Pieces

1 CLOB, 4 CPUs: Response Time

with D/C
without D/C

Related Work 43

with the same function. Figure 18 shows response times and speedups for the pro-
cessing of a varying number of CLOBs in the programs. Figure 18a shows that intra-
function parallelism with decompose/compose operations can provide an additional
speedup, if data parallelism alone cannot fully utilize system resources. This is the
case for the processing of up to 3 CLOBs. Figure 18b shows that the actual speedup
is lower than the optimal speedup. This is due to the same reasons as in the first
experiment. For 4 CLOBs, when data parallelism alone can achieve a degree of par-
allelism of 4, additional intra-function parallelism results in a small overhead. How-
ever, if the size of the CLOBs varies considerably, intra-function parallelism might
be desirable even for 4 or more CLOBs. The reason is that the decomposition
reduces the skew for data parallelism that results from LOBs with different sizes.

In general these results show that intra-function parallelism can be beneficial, if the
number of LOBs is lower than the number of available CPUs. In this case intra-func-
tion parallelism can supplement data parallelism as demonstrated by the second
experiment. We want to emphasize again that an implementation of the decompose/
compose approach within the database engine would show a much better perfor-
mance than indicated by our on-top implementation.

4.4 Related Work

In [85] intra- and inter-function parallelism were proposed for expensive function
evaluations on LOBs, but no implementation concepts were described. As an exam-
ple of a UDSF for which intra-function parallelism is useful, a function that scales
large images up or down is discussed. It is pointed out that this function can be pro-
cessed in parallel because the result pixels are all independent of each other. Our

Figure 18. Results for Different Numbers of CLOBs (Each with 1*106Bytes) on an SMP with 4 CPUs.

a) Response Time in Seconds. b) Speedup.

0

5

10

15

20

25

0 1 2 3 4

R
es

po
ns

e
T

im
e

in
 s

ec
.s

Number of CLOBs

1-4 CLOBs, 4 CPUs: Response Time

with D/C
without D/C

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4

S
pe

ed
up

Number of CLOBs

1-4 CLOBs, 4 CPUs: Speedup

actual speedup
optimal speedup

44 Intra-function Parallelism

decompose/compose operator method can support even functions for which this is
not the case. If the UDSF needs to access overlapping parts of a LOB when different
pieces are processed, this is possible, since all instances of the UDSF get the locator
for the complete LOB as input. Moreover, if the different parts of the result are not
completely independent then the combine function can be used to achieve an appro-
priate composition of the pieces.

In [28] parallel processing of operations on complex data structures (for example
with sets of references) is discussed. This is done in the framework of the PRIMA
DBMS which has a proprietary data model. UDSF are not considered.

4.5 Summary

In this chapter, we have proposed decompose/compose operators as an approach to
support intra-function parallelism for user-defined scalar functions that operate on
large objects. This approach was designed to be orthogonal to data parallelism. Ini-
tial measurements have shown that our concept looks promising and can lead to a
good speedup. For example, the results showed significantly improved response
times, if the number of LOBs is lower than the number of available CPUs and if the
UDSF is expensive.

Our system design and evaluation as presented in this chapter clearly shows two
important results: First, our approach based on decompose/compose operators fits
into current database engines. However, to achieve maximum benefit, it should be
integrated into the DBMS engine. Second, our implementation shows that this paral-
lelization concept is applicable right now as a solution on top of commercial
PORDBMS.

With respect to future work, we believe that the applicability of decompose/compose
operators for the case of collection data types that are internally implemented by
means of LOBs deserves some further study because this would enable data parallel-
ism for operations on collection data types.

In chapters 3 and 4 we have introduced new techniques for the parallel execution of
UDF. While these measures can speed up response times considerably, we have not
changed the concept of UDF and their implementation in a fundamental way. In the
next chapters we present new approaches to extensible query processing that try to
use the semantics of UDF to speed up set-oriented operations during query process-
ing. One important goal is to avoid Cartesian products, if UDPs are available as join
predicates. In this case user-defined join algorithms can improve the response times
by orders of magnitude as we will demonstrate. Because set-oriented operations are
the core of query execution, this issue is in our view very important.

CHAPTER 5

The Multi-operator Method

5.1 Introduction

Though the move to PORDBMS emphasizes the demand for high performance in
object-relational query-processing, some techniques for efficient query processing
that have been very successful in relational query processing are still missing. One
obvious example is the support for join algorithms. There has been a lot of research
on joins in RDBMS (see e.g. [29], [72] for a survey), but this topic has not been cov-
ered in depth for ORDBMS. The state of the art is essentially that user-defined join
predicates in ORDBMS are evaluated by performing a nested-loops join that evalu-
ates the user-defined predicate on the Cartesian product. A similar approach in
RDBMS would make all queries with equi-joins awfully slow. In ORDBMS the per-
formance is deteriorated even further, since user-defined predicates are often
extremely expensive to evaluate. Thus, an evaluation of these predicates on the full
Cartesian product (even if not materialized) results in unacceptable performance.

In the context of special application areas, there has been some research on efficient
join algorithms for data types like spatial or temporal data (see e.g. [11], [87], [88],
[112]). Unfortunately, some of these techniques cannot be integrated well into cur-
rent ORDBMS. The reason is that the current implementation model for user-defined
functions is too simple to allow for sophisticated implementations.

Our main contribution in this chapter is to propose the multi-operator method as an
implementation technique to solve these fundamental problems. The multi-operator
method allows to integrate complex implementations of user-defined functions and
predicates in ORDBMS with the best possible support for parallel evaluation. The
basic idea of the multi-operator method is to use multiple operators instead of a sin-
gle one. This results into a simple, yet powerful technique. We believe that it offers
the potential for immense performance gains for many object-relational applications.
Performance measurements that we present later will demonstrate this.

Our approach fits well into the overall architectural framework of current parallel
ORDBMS. In fact to enable the use of this method, ORDBMS have to support only

M. Jaedicke: Parallel Object-Relational Query Processing, LNCS 2169, pp. 45-66, 2001.
© Springer-Verlag Berlin Heidelberg 2001

46 The Multi-operator Method

an interface that allows the execution of a query execution plan that is specified by
the developer. Thus, we are convinced that this method is easy to use for developers
and can be supported in ORDBMS without major difficulties. In fact, as we will dis-
cuss later, there are other reasons for database vendors to support this kind of inter-
face.

The remainder of this chapter is organized as follows. We give an introduction to the
problem in section 5.2. The multi-operator method is presented in section 5.3 and we
discuss a spatial join algorithm as an example application. Section 5.4 considers the
interface that is necessary to make the multi-operator method available in ORDBMS.
In section 5.5 we report on performance measurements for our spatial join example
which indicate significant performance gains. We cover the related work in section
5.6 and conclude the chapter with a summary in section 5.7.

5.2 Performance Problems with Complex UDF in Current

ORDBMS

We claim that there is currently not enough support for the efficient implementation
of complex UDF in ORDBMS. We will demonstrate this in the following using a
spatial join as an example of a complex UDP. Our example is the following spatial
query, which selects all pairs of polygons from a single table that overlap with each
other:

select *
from Polygon_Table a, Polygon_Table b
where overlaps(a.p_geometry, b.p_geometry)

How is this query evaluated in a current commercial ORDBMS? Let us assume that
no spatial indexes can be used to evaluate the join predicate overlaps. Because
this is not a traditional join (like an equi-join), no system will use a hash or a merge
join. Hence, all ORDBMS will use a nested-loops join for evaluation, i.e., the UDP
overlaps has to be evaluated on the full Cartesian product. Please note that in this
scenario data parallelism can be applied to the nested-loops join by partitioning the
outer input stream and replicating the inner input stream (at least, if the system sup-
ports data parallelism for UDF). In general the developer must be able to disallow
such a parallel evaluation, since the function that implements the UDP might have a
global state or side effects, as we have discussed in chapter 3. In fact, most sophisti-
cated algorithms have such a global state or side effects, since it is often necessary to
hold temporary data.

Despite of the parallel evaluation the performance of this straightforward approach is
poor. It is known that a much better performance can be achieved, if a filter-and-
refine approach ([11], [87], [88], [112]) is taken. This approach uses two phases: the

Performance Problems with Complex UDF in Current ORDBMS 47

filter phase finds pairs of candidates for the result using a relatively inexpensive test.
This test is only a rough filter in the sense that some false candidates can pass the
test. All candidate pairs are therefore tested with the original join predicate (the over-
laps predicate) in the refinement phase. It has been observed in the literature that this
approach results in a much better performance, as the filtering reduces the input for
the refinement phase significantly and the latter is the most expensive one. Typically
the test in the filter phase is not evaluated using the exact geometries. Rather a sim-
ple approximation like the bounding box is used for the test. This reduces the CPU
costs for the test and also reduces the storage requirements considerably. We will
provide more details in the following subsection.

5.2.1 The PBSM Algorithm as a Sophisticated UDP Implementation

We will now use the Partition Based Spatial-Merge Join algorithm (PBSM) pro-
posed in [88] for a detailed example. We want to emphasize again that we are not
aware of a practical way for developers of DBMS class libraries [13] to implement
such a sophisticated algorithm in any ORDBMS. It is the goal of the multi-operator
method to make this possible with full support for parallel evaluation.

The PBSM algorithm is based on a two-phase filter-and-refine-scheme and is pro-
cessed sequentially, though the authors of [88] believe that it can be parallelized effi-
ciently. We will first give an outline of the algorithm (cf. Figure 19). The input of the
PBSM are two sets of spatial object geometries (like polygons). It is assumed that
each spatial object can be identified via an OID. We will assume that the spatial join
predicate is the overlaps function. We will number the steps of the algorithm
using numbers in brackets like [1.1]. The first number denotes the phase, the second
one the step within this phase.

The first phase is the filtering phase. It begins with creating key-pointer elements
(step [1.1]), i.e., (MBR, OID) pairs, where MBR denotes the minimum bounding
rectangle. These key-pointer elements are then written to temporary tables on disk
(step [1.2]). Next a decision is made (step [1.3]): if the temporary relations fit into
main memory, the algorithm proceeds with step [1.4], otherwise with step [1.5]. In
step [1.4] the candidate pairs are computed using the MBRs and a filter algorithm.
The filter algorithm is based on plane-sweeping techniques from computational
geometry and is viewed as a kind of spatial-merge join in [88]. This set of candidate
pairs forms the input for the refinement phase. In step [1.5] the data for the filter step
is first partitioned. This begins with an estimation of the spatial universe (the MBR
of all spatial input objects) using data from the system catalog. Step [1.6] decom-
poses this universe into P subparts. Given this partitioning of the space, the corre-
sponding spatial data partitioning function is applied to the temporary tables that
contain the key-pointer elements (step [1.7]). Finally, partitions with the same index

48 The Multi-operator Method

are processed with the filter algorithm (step [1.8]). This produces the set of candidate
OID pairs for the refinement step.

The second phase, refinement, proceeds as follows. First, duplicates in the set of can-
didate pairs are removed (step [2.1]). Such duplicates can occur, since the key-
pointer elements are partially replicated during the partitioning to deal with spatial
objects overlapping several partitions as shown in Figure 20. In step [2.2] the OID
pairs are sorted on the OID of the first input (this will avoid random I/O). While
there are still candidate pairs that have to be processed (step [2.3]), the algorithm
performs steps [2.4]-[2.8] as follows: a subset of the base data of the first input is
fetched that fits into main memory (step [2.4]) and the corresponding OIDs are swiz-
zled to main memory (step [2.5]). Next the corresponding OIDs of the other input are
sorted (step [2.6]). The tuples corresponding to these OIDs are then read sequentially
from disk (step [2.7]). Finally, a tuple is appended to the output, if the exact join
predicate (i.e., overlaps) holds for the candidate pair (step [2.8]).

Please note that the PBSM algorithm must manage intermediate results, retrieve
objects based on their OID and partition data using a special partitioning scheme.

1. Filtering Phase
1.1 Create key-pointer elements, i.e., (MBR, OID) pairs;

1.2 Write key-pointer elements to temporary tables on disk;

1.3 IF (temporary tables fit into main memory)

1.4 { Compute candidate pairs using the MBRs and a filter algorithm }

ELSE

1.5 { Estimate the spatial universe;

1.6 Decompose this universe into P subparts;

1.7 Apply the resulting spatial data partitioning function to the

temporary tables that contain the key-pointer elements;

1.8 Apply the filter algorithm to partitions with the same index

};

2. Refinement Phase
2.1 Remove duplicates in the set of candidate pairs;

2.2 Sort the OID pairs on the OID of the first input;

2.3 WHILE (not all candidate pairs have been processed)

2.4 { Fetch a subset of the base data of the first input

that fits into main memory;

2.5 Swizzle the corresponding OIDs to main memory;

2.6 Sort the corresponding OIDs of the other input;

2.7 Read the tuples corresponding to these OIDs

sequentially from disk;

2.8 IF (exact join predicate holds) append tuple to output

}

Figure 19. Outline of the PBSM Algorithm.

The Multi-operator Method as a New Technique to Implement Complex UDF 49

Currently there exists no technique that allows developers to integrate an algorithm
with such features into an ORDBMS in a way that enables a completely parallel exe-
cution. Note that the complexity of the PBSM algorithm is by no means an excep-
tion. As pointed out in [89] for the geo-spatial application domain, complex UDF
often consist of multiple steps.

5.3 The Multi-operator Method as a New Technique to

Implement Complex UDF

Next we will describe our approach to overcome the performance problems dis-
cussed in the previous section. We introduce the multi-operator method in subsection
5.3.1 and discuss its principal benefits. Subsection 5.3.2 illustrates the method by
studying a multi-operator implementation of the PBSM algorithm as an example.

5.3.1 The Multi-operator Method and Its Benefits

The basic idea of the multi-operator method is quite simple. Current ORDBMS
allow the implementation of a UDF only by means of a function that is (repeatedly)
invoked within the execution of a single operator (e.g. a restriction, projection or a
nested-loops join) of a query execution plan. By contrast, we will allow an imple-
mentation by means of several functions that are invoked by multiple operators (i.e.,
by an operator graph, where the operators may invoke several other UDF).
This method can be viewed as an extension and generalization of the well-known
implementation scheme used in relational engines for sort-merge joins. Here, instead
of a single operator typically three operators are used to implement this join algo-
rithm: one sort operator for each of the inputs and an operator for the merge join.
There are at least three good reasons for this design. The first reason is that a sort
operation is needed for other purposes (like producing a sorted output), too. Thus,

A
B

D

C

❶ ❷

❸ ❹

D

C
C

B
B A

❶ ❷

❸

❹

Figure 20. Spatial Partitioning of Bounding Boxes with Partial Replication.

50 The Multi-operator Method

this operator can simply be reused. The second reason is that sometimes an input
stream may already arrive sorted from previous operations - in this case no sort is
needed and the superfluous sort operation can be eliminated. In general, optimiza-
tions of the query execution plan are enabled. The third reason is that using three
operators instead of one allows to use more parallelism. For example, the two inputs
can be sorted in parallel by means of the highly optimized system-provided parallel
sort operation. All of these arguments - reuse, optimizability, and parallelism - are in
our view applicable to multi-operator implementations of UDF in general. This is not
so much surprising, given that the operator concept is one of the basic abstractions
and building blocks used in query execution. Therefore replacing a single complex
operator by a set of simple ones offers the possibility for improved query execution
plans due to the finer granularity that is introduced.

As we will show below in detail, a multi-operator implementation supports all kinds
of parallel execution, i.e., intra-operator parallelism, pipelining, independent paral-
lelism, and intra-function parallelism. If a traditional implementation by means of a
single function is used, it is often impossible to execute the operator containing this
function with data parallelism due to the complexity of the UDF implementation
(e.g. side effects, storage of temporary data). A multi-operator implementation
allows the developer to code the UDF in a set of operators, where each operator can
possibly be executed in parallel and where the DBMS knows the dataflow between
the operators. We believe that the multi-operator method provides the developer with
the right method to offer the DBMS an implementation that can be executed in paral-
lel, since operators are a natural granule for parallel execution in relational database
systems ([22], [29]).

The multi-operator method can achieve especially high performance gains when it is
applied to UDPs that can serve as join predicates as described in section 5.2. In this
case, a multi-operator implementation will allow to replace the standard execution
plan consisting of a Cartesian product and a restriction with the UDP by a multi-
operator implementation of that UDP that is a user-defined join algorithm that
exploits multiple operators and several UDF. It is easy to see that this will enhance
the performance of many object-relational queries, when one considers the impor-
tance of joins in relational systems: without the various highly optimized join algo-
rithms that avoid Cartesian products for the most commonly used join predicates like
e.g. equality predicates, relational systems would have been hardly successful in the
marketplace.

Figure 21 shows a schematic view of a multi-operator implementation for a UDP.
Without special support a UDP is evaluated by means of a nested-loops join on the
complete Cartesian product as shown on the left side of Figure 21. A complex UDF
often executes a number of steps, here N. The multi-operator implementation allows
to perform a number of processing steps (K steps in Figure 21) before the two input
relations are actually joined. Thus, a part of the UDP can be pushed down. Please

The Multi-operator Method as a New Technique to Implement Complex UDF 51

note that now the Cartesian product can be avoided. Instead, a specialized join algo-
rithm (Step K + 1 in Figure 21) can be used. After the join some postprocessing is
done. In general, the preprocessing steps will have often the goal to map user-defined
data types to approximations (sometimes also called features) that are represented by
built-in data types. These approximations can then be processed with the traditional
built-in operators to perform a filter step. The postprocessing steps then do the
refinement based on the results of the filter step.

Note that the number of steps in the single-operator (N) and the multi-operator
implementation (M) may differ as already mentioned before. In general the design of
both implementations may vary significantly. If the developer does a careful design,
parallelism can be exploited to a full extent in the multi-operator implementation.

5.3.2 A Multi-operator Implementation of the PBSM Algorithm

To provide a detailed example application of the multi-operator method, we will now
discuss, how the PBSM algorithm from subsection 5.2.1 can be redesigned and
mapped to a multi-operator implementation (no details concerning the integration of
PBSM into Paradise [89] are given in [88], but it seems to be implemented by a new
database operator). Of course, one goal of such a redesign should be to allow as
much parallelism as possible for the multi-operator implementation. Figure 22 shows
a multi-operator implementation of a simplified version of the PBSM algorithm. In
the first step, the key-pointer elements are generated for both inputs. These key-
pointer elements are then partitioned. It is necessary to have a common spatial parti-
tioning for both input streams to be able to compute the join by joining only corre-
sponding partitions. The next operator joins the partitions and generates the
candidate pairs. This corresponds to step [1.8] of the PBSM algorithm. The second
phase, refinement, starts with the duplicate elimination. Then the next two operators
fetch the exact geometries from disk using the OIDs. Finally, the spatial join predi-
cate is evaluated on the exact geometries for each candidate pair.

Figure 21. Multi-operator Implementation of a UDP with Implicit Join.

STEP K+2

JOIN (STEP K+1)

STEP M

...NESTED-LOOPS JOIN

STEP K

STEP 1

STEP K

STEP 1

......

UDP

STEP 2

STEP 1

...
STEP N

WITH USER-DEFINED PREDICATE
➾

➾
➾

52 The Multi-operator Method

Several remarks w.r.t. the multi-operator implementation are in order. Our redesign
did really simplify the PBSM algorithm: there is no decision on the processing strat-
egy based on the amount of temporary data (cf. step [1.3] above). In a parallel pro-
cessing scenario this is desirable, since it avoids a blocking of the evaluation, until
the decision is made. Furthermore, the refinement step was simplified substantially,
as there are no efforts to avoid random I/O. Though this will lead to higher resource
requirements for disk I/O, we believe it is much harder to avoid random I/O, if paral-
lel evaluation is used. There are also two major advantages of the overall design.
First, pipelining parallelism can be applied between all operators. Second, data paral-
lelism can be used for all operators. Especially, the join and the very expensive pred-
icate in the refinement phase can be evaluated in parallel (see Figure 22).

When one compares this implementation with the original PBSM as described
above, it is obvious that all control structures (like conditional statements and loops,
cf. steps [1.3] and [2.3] in subsection 5.2.1) have been eliminated. As a direct bene-
fit, query parallelization as known from traditional relational DBMS is enabled and
in addition the processing model of relational execution engines is matched per-
fectly.

Figure 22. Multi-operator Implementation of a Complex Spatial Join
Algorithm that Supports Pipelining and Intra-operator Parallelism.

result

input A input B

 predicate on exact geometries

fetch B.OID

generate candidate pairs

spatial

fetch A.OID

generate

duplicate elimination

input A

key-pointer
elements

partitioning
spatial

generate

input B

key-pointer
elements

partitioning

result

restriction using exact (simplified) PBSM join
1. Filter step:
- compute key-pointer elements
- partition inputs spatially
- process corresponding partitions

with filter algorithm
2. Refine step:
- eliminate duplicate candidate pairs
- fetch tuples via OID
- process exact geometries

data parallelism possible pipelining parallelism possible

Supporting the Multi-operator Method 53

This example clearly shows that a multi-operator implementation increases the
potential for parallelism in query execution plans. Thus, it allows to implement effi-
cient join algorithms for UDPs that can be evaluated in parallel by existing object-
relational execution engines.

5.4 Supporting the Multi-operator Method

The multi-operator method fits well into current system architectures. We want to
point out here that its implementation in a commercial ORDBMS requires no
changes in the core data base system. It is only necessary to add a new interface to
the current APIs (like embedded SQL, ODBC and JDBC) that allows the execution
of a query execution plan that is specified by the developer.
In the following we will first argue why we believe that such an interface is useful
for current DBMS anyway. In subsection 5.4.2 we describe then the interface that we
have used.

5.4.1 Executing Query Execution Plans

We believe that there are several reasons why an interface that allows the specifica-
tion and execution of query execution plans is needed. We want to emphasize that
such an interface will only be used in addition to SQL, not as a replacement. In our
opinion this interface will typically be used by sophisticated developers of third
party software vendors that produce packaged applications like enterprise resource
planning software, geographic information systems, CAD software, etc.
The first reason is that very often developers have the problem that they know an
execution plan that is better than the plan that is generated by the optimizer. There
are many reasons for this situation like, for example, erroneous selectivity estima-
tion. Currently there is only the possibility to view the plan that the optimizer has
generated. If this plan is not the desired one, one must then try to manually transform
the corresponding SQL statement until one reaches a more satisfying result. This
process needs some exercise and can be both time-consuming and disappointing.
There is a further shortcoming of this approach in practice. When vendors upgrade
their DBMS they often improve their optimizer somehow. While such improvements
may be beneficial for most queries they can degrade the performance of some others
- maybe just the important ones. Therefore developers face the problem that the opti-
mizer might change the plan of the ‘tuned’ SQL query in the next release. Moreover
the choice of the concrete execution plan might also depend on database statistics
and the settings of the various tuning knobs of the DBMS both of which may vary
from customer to customer. This makes it pretty hard to guarantee a good perfor-
mance for a specific query and to provide customer support. Obviously all these
problems can be avoided if the execution plans are specified by the developer. On

54 The Multi-operator Method

the other hand all these particular situations could be taken care of by a comprehen-
sive and sophisticated optimizer. However, such an optimization technology is not
(yet) available. Hence, it can be seen as a conceivable strategy by some vendors to
add support for this feature.

The second reason for supporting query specification at the plan level is that the full
power of the query execution system cannot be exploited by SQL. For example, it is
well-known that in SQL sorting can only be used in the outermost query block. This
is too restrictive in specific situations (cf. subsection 3.3.3). When developers can
specify query execution plans directly they can go beyond these limits.

We believe that these issues themselves justify the extension of the current APIs.
The multi-operator method adds just another reason, why such an interface is highly
desirable. However, there is also a drawback of this approach, if we add no further
enhancements: without any query optimization, i.e., when the query execution plans
are executed exactly as specified by the developer, the plan is not automatically
adapted to changes of the database like a drastically increased table size or changing
value distributions. An improvement of this situation is to allow the DBMS the opti-
mization of some, but not all properties of a manually specified execution plan. For
example, one can allow the optimizer to remove superfluous sort operators, or to
optimize the join order, or to optimize the implementation methods of the plan (e.g.
switch from merge join to hash join), or to choose a different access path (using a
table scan instead of an index scan). In a rule-based optimizer like Cascades [30] this
can be supported by grouping the rule set into subsets. Then only some subsets of the
whole rule set (for example only the rules that eliminate superfluous sort operators)
are activated when a manually crafted plan is optimized. In this case, the developer
must be enabled to specify which properties of the plan can be optimized. Such spec-
ifications can be viewed as optimizer hints (cf. [3], [53], [86]).

One could object that it is difficult for a developer to come up with a plan for a com-
plex query which involves many tables, many predicates and subqueries. However,
the developer can always use a query execution plan that is generated by the opti-
mizer as a starting point. This plan can then be modified by the developer. For exam-
ple, this allows to start with a join order that the optimizer considers as good for a
given database.

There are different ways how query execution plans can be specified. One possibility
is to store plans in tables (query explain tools of some vendors do this already [50])
and then allow developers to update these plans and execute the modified ones. In
the following, we describe a different interface that is based on a textual description
of operator trees.

Supporting the Multi-operator Method 55

5.4.2 Example for a Textual Specification of Query Execution Plans

In MIDAS [9], our prototype of a parallel object-relational DBMS, execution plans
can be specified in a text notation for internal test and debugging purposes. Parenthe-
ses form the boundary of the textual description of each node of the operator graph.
Each node has a unique label and contains the name of its operation and additional
parameters. The sons of a node are nested within the description of the node itself.
One can refer to the attributes of the input tuple of another node by using the label of
this node.

Figure 23 shows the textual description of a query execution plan together with the
corresponding operator graph as an example. The sel node represents the top opera-
tor of SELECT queries. The group operator does grouping and aggregation and the
times operator builds a Cartesian product. The restr operator performs a restric-
tion, the rel operator does a relation scan. The eq node specifies an equality predi-
cate, the const node generates a constant value and the attr node fetches an
attribute value. Finally, the func node allows to evaluate a (user-defined) function.
Of course syntactic and semantic checks have to be done when an execution plan is
parsed and transformed into the internal representation of the DBMS. In MIDAS a
part of the routines that perform the semantic checks for SQL statements are simply
reused for this task, too.

5.4.3 Parallel Evaluation

Since our parallelization approach is operator-based, we can introduce various forms
of parallelism by integrating specific send and receive operators that manage data

TOP

AGGREGATION: COUNT *

RESTRICTION WITH PREDICATE
EXACT_OVERLAPS(POLY1,POLY2) = 1

SCAN ON PG1 SCAN ON PG1

CARTESIAN PRODUCT

(N1:sel { no_update }
 (N2:group { count[*] }
 (N3:restr
 (N4:times
 (N5:rel { pg1 })
 (N6:rel { pg1 })
)
 (N7:eq
 (N8:func { integer }
 (N9:const { ‘exact_overlaps’ })
 (N10:attr { N3[2] })
 (N11:attr { N3[4] })
)
 (N12:const { 1 tinyint })
)
)
)
)

Figure 23. Textual and Graphical Representations of a Query Execution Plan.

56 The Multi-operator Method

partitioning (cf. [80] and subsections 5.5.1 and 7.2.2). The parallelization can be
done by the parallelizer of the DBMS itself or the developer can specify this directly
within the execution plan. In any case the UDF used in the multi-operator implemen-
tation have to be registered with metadata that describes how they can be parallelized
(cf. subsection 3.3.4).

5.5 Performance Evaluation

In this section, we will present initial performance measurements that indicate a sig-
nificant performance increase for the evaluation of complex UDF according to the
multi-operator method. Our example is a query with a spatial join, similar to the one
in section 5.2.

For our measurements we have used the following environment:
- Hardware:

We have performed our experiments using a SUN Ultra-2 workstation (model
2200) with 2 Ultra SPARC-1 processors (200 MHz each), 1MB external cache,
512 MB main memory, and 2 SUN 4 GB hard disks.

- Software:
We have conducted our initial performance measurements using our parallel
ORDBMS prototype MIDAS. MIDAS supports full intra-query parallelism on
symmetric multi-processors and workstation clusters. Please refer to section 7.2
for details.
To implement the different query execution plans for the spatial join we have used
the interface described in subsection 5.4.2 and in addition defined and
implemented some UDF (using an interface similar to that of commercial
ORDBMS).

5.5.1 Experimental Scenario

We demonstrate the performance of the multi-operator method for the example
query of section 5.2 that selects all pairs of overlapping polygons from a table with
polygon geometries. We have generated random data for our experiments due to two
reasons. First, this eased control over our experimental setting and second, we only
wanted to demonstrate the benefits of the multi-operator method. Especially, we
have not focussed on designing or evaluating special algorithms for spatial joins.
Thus, using real application data seemed not to be critical to our experiments.

We have used 3 tables PG1, PG2, and PG3 that contained 1 000, 10 000 and 100 000
regular N-corners as polygons. The polygons were generated with 3 random parame-
ters: N (the number of corner points of the polygon), the radius (distance of the cor-
ners to the center) and the location of the center in the 2 dimensional plane. The

Performance Evaluation 57

polygons of table PG2 were placed in a rectangle (our spatial universe) bounded by
the points (0, 0) and (100 000, 100 000). For the table PG1 we have reduced the area
of the spatial universe by a factor of 10, for table PG3 we have enlarged the area by a
factor 10. Therefore, in the average the number of polygons in an area of constant
size is about the same for all tables. This results in a linear growth in the number of
overlapping polygon pairs in the three tables. The number of points per polygon was
randomly chosen between 3 and 98 with an average of about 50. The radius was cho-
sen as 20 + N +  r * N; the value r is a random number between 0 and 1. This means
that the more points a polygon had, the larger was its area. Table 4 contains some
statistics about the three tables. As one can see, the number of polygon pairs that
actually do overlap roughly increases linearly with the cardinality of the table.
We have stored the polygon data as a list of points in a VARCHAR data type and
have defined the 3 tables PG1, PG2, and PG3 that contain the polygons together with
an integer value as primary key as follows:

CREATE TABLE PG1(INTEGER id PRIMARY KEY, VARCHAR p_geometry)

The tables were stored on a single disk. We have then implemented the UDF over-
laps (polygon1, polygon2) performing a test, whether the two argument
polygons overlap. The function returns an integer value of 1, if the two polygons
overlap geometrically and 0 otherwise1. We have used the C++-library LEDA [75]
for a rapid implementation of the geometric functionality.

To avoid including the time to display the result into the measurements, we simply
counted the number of result tuples. Given these explanations, our test query was
simply the following, with Polygon_Table being PG1, PG2, or PG3:

Test Query:

SELECT COUNT(*)
FROM Polygon_Table AS a, Polygon_Table AS b
WHERE overlaps(a.p_geometry, b.p_geometry) = 1

1. Boolean return type would be more appropriate, but MIDAS currently does not support this.

Table 4. Statistics of the Test Data Tables

property table PG1 table PG2 table PG3

cardinality of table 1 000 10 000 100 000

disk space (KB) [clustered in B-tree] 736 6 464 71 584

avg(# corner points / polygon): 48.35 49.97 50.01

avg(area(polygon)) 31 276.7 32 689.8 32 754.3

overlapping bounding boxes 1 188 12 144 121 460

overlapping polygons 1 140 11 550 115 336

58 The Multi-operator Method

The first implementation of the UDF overlaps is straightforward: simply test
whether the polygons overlap using the exact geometry (the implementation uses a
(slightly modified) plane-sweeping algorithm from computational geometry pro-
vided by the library LEDA). In the following we will call this function
exact_overlaps. Now we will explain how we have tried to speed up the evalu-
ation of the overlaps predicate with the multi-operator method. This is done in
several steps that are increasingly sophisticated. The first step was to use a simple fil-
ter-and-refine scheme to improve the efficiency of the implementation. The filtering
step uses bounding boxes as approximations of the polygons. Bounding boxes were
represented by their lower left and upper right corner coordinates and were also
stored as strings. We have implemented this in the following function:
- filter_overlaps(polygon1, polygon2):

Generate and overlap bounding boxes for the input polygons first, then overlap
their exact geometries, if necessary.

While filter_overlaps improves the performance of a single-operator imple-
mentation, it does not represent a sophisticated multi-operator implementation based
on the PBSM algorithm as described in subsection 5.3.2. Thus, we implemented
three additional UDF to provide suitable building blocks for the multi-operator
method:
- bbox(polygon):

Create a bounding box for a given polygon.
- bbox_overlaps(bbox1, bbox2):

Test whether two bounding boxes overlap.
- bbox_partition(bbox):

Compute all buckets to which a given bounding box has to be copied.

The UDF bbox_overlaps does a relatively simple geometric test and is very
inexpensive compared to the exact_overlaps function for polygons. The parti-
tioning function bbox_partition divides the spatial universe in B equally sized
rectangular regions that we call buckets. The function then computes all buckets,
which a given bounding box overlaps. Since we divided both dimensions T times,
actually B is equal to (T+1)2. The actual implementation has additional parameters
not shown above that define the partitioning (e.g. the value T). In Figure 20, T is 1
and B is 4.

Now we are ready to describe the four implementations of the UDP overlaps that
we have evaluated (the implementation of the spatial join is marked in the operator
graphs by the grey area)1:

1. We want to remark here that our prototype currently does not support real nested-loops joins, but is
 only able to perform a restriction after forming the Cartesian product. But since the execution is
 demand-driven and tuple-at-a-time, the intermediate Cartesian product is not materialized. In addi-
 tion, MIDAS does not support OIDs. For our tests, we replaced OIDs simply by the primary key id.

Performance Evaluation 59

- Plan A (naive single-operator implementation; cf. Figure 24 and Figure 23):
Evaluate the UDF exact_overlaps on the Cartesian product .

- Plan B (single-operator implementation of filter-and-refine strategy; cf. Figure
25):
Evaluate the UDF filter_overlaps on the Cartesian product .

- Plan C (simple multi-operator implementation; cf. Figure 26):
Generate the bounding boxes with the UDF bbox for both relations a and b and
store the bounding boxes of the inner relation b temporarily together with the
primary key column (in Figure 26 denoted by PK). Then build the Cartesian
product of the result. Evaluate the UDF bbox_overlaps next. For all candidate
pairs - described by their primary keys (PK, PK) - retrieve the polygon data (via a
B-tree) using a join on the id value and finally evaluate the UDF
exact_overlaps. Altogether plan C employs four UDF: bbox (2x),
bbox_overlaps, and exact_overlaps.

- Plan D (multi-operator implementation with spatial partitioning and merge join; cf.
Figure 27):
Plan D extends plan C by spatial partitioning for the bounding boxes. This is done
by applying the user-defined partitioning function bbox_partition to the lower

TOP

AGGREGATION: COUNT *

RESTRICTION WITH PREDICATE
EXACT_OVERLAPS(POLY1,POLY2)

SCAN ON PG1 SCAN ON PG1

CARTESIAN PRODUCT

Figure 24. Query Execution Plan of Plan A.

a b×()

TOP

AGGREGATION: COUNT *

RESTRICTION WITH PREDICATE
FILTER_OVERLAPS(POLY1, POLY2)

SCAN ON PG1 SCAN ON PG1

CARTESIAN PRODUCT

Figure 25. Query Execution Plan of Plan B.

a b×()

60 The Multi-operator Method

send operators in Figure 27. We give some more details on the send and
receive operators here. A send operator splits its input data stream and writes it
into one or more partitions. A receive operator reads one or more data partitions
and merges them into a single data stream. Usually, send and receive operators
are executed by different processes. However, the send operator can optionally be
executed in the same process as one of his father receive operators. Hence, if the
send operator writes only into one partition then both operators can be executed
by the same process, i.e., in a sequential manner. Please note that the
implementation of data partitioning with user-defined partitioning functions in
MIDAS also allows a partial replication. That is, if the partitioning function
computes b buckets for a given tuple then this tuple is replicated b times. The
effect of applying the partitioning function bbox_partition is exactly the same
as that of joining a correlated table function that returns the numbers of the buckets
to which a given tuple belongs. Hence, a correlated table function could be used
instead of the user-defined partitioning function bbox_partition. However,
correlated table functions are not available in MIDAS.
Consequently, the spatial partitioning is only a logical partitioning that is achieved
by labeling the tuples with a bucket number. This means that the number of
physical data partitions into which the send operator writes its output is not
determined by the partitioning function. A split of the data stream into several
physical data partitions is only needed for parallel execution. In this case, the
topmost send and receive operator pair is needed to combine results of different
partitions. As a consequence, the plan shown in Figure 27 can be executed either

σ : BBOX_OVERLAPS(...)

SCAN ON PG1 SCAN ON PG1

CARTESIAN PRODUCT

π : GEOMETRY

INDEX SCAN (PK) ON PG1

INDEX SCAN (PK) ON PG1

π : GEOMETRY

FETCH

FETCH

π : PK, BBOX π : PK, BBOX

σ : EXACT_OVERLAPS

INDEX-NL-JOIN

INDEX-NL-JOIN

π : PK, PK

TOP

AGGREGATION: COUNT *

Figure 26. Query Execution Plan of Plan C.

Performance Evaluation 61

sequentially or in parallel. The degree of parallelism is directly determined by the
number of physical data partitions generated by the lower send operators which
do the spatial partitioning. The number of these partitions is determined by a
separate parameter of the send operator. This parameter is typically set by the
parallelizer [80].
As a result of this spatial partitioning step, the bucket number is appended to each
temporary tuple. This allows to join the tuples that belong to corresponding
buckets using a merge join on the bucket number. Thus, the function
bbox_overlaps is evaluated only on the set of all pairs of bounding boxes with
the same bucket number (and not on the complete Cartesian product like in plan
C). Next the elimination of duplicate candidate pairs is done and finally the UDP
exact_overlaps is evaluated on the exact geometries. Altogether plan D
employs six UDF: bbox (2x), bbox_partition (2x), bbox_overlaps, and
exact_overlaps.

Please note that plans A and B are still traditional single-operator implementations,
whereas plans C and D are multi-operator implementations. Furthermore, the quality
of the UDP implementation steadily increases from the straightforward solution of
plan A to the sophisticated solution of plan D, which is very similar to the redesigned
PBSM algorithm (cf. subsection 5.3.2).

σ : BBOX_OVERLAPS(...)

MERGE-JOIN ON BUCKETNO

SCAN ON PG1

σ : EXACT_OVERLAPS

INDEX-NL-JOIN

RECEIVE

INDEX-NL-JOIN
π: GEOMETRY

FETCH

INDEX SCAN (PK) ON PG1

π : GEOMETRY

FETCH

INDEX SCAN (PK) ON PG1
SORT

π : PK, BBOX

SEND: BBOX_PARTITION

RECEIVE

SORT

DUPLICATE ELIMINATION

SEND

RECEIVE

DUPLICATE ELIMINATION

TOP

AGGREGATION: COUNT (*)

SCAN ON PG1

π : PK, BBOX

SEND: BBOX_PARTITION

Figure 27. Query Execution Plan of Plan D.

62 The Multi-operator Method

5.5.2 Performance Results

We present now some initial performance results. With respect to the absolute exe-
cution times, please note that we used our prototype database system and did not fine
tune our UDF implementations. But the relative performance measures should give a
first impression of the possible performance gains.

In Table 5, we present the sequential execution times in seconds for all plans. The
last row shows the time that is needed to do the exact geometry processing for the
candidate pairs (refinement). Some execution times are not available, since we did
not evaluate plans with execution times higher than 100 000 seconds (nearly 28
hours). Several conclusions can be drawn from Table 5: First, there are significant
performance increases for plans B, C, and D. Processing queries with expensive
UDF on large tables in acceptable times obviously requires sophisticated implemen-
tations. Second, the multi-operator method (plans C and D) allows to reduce the exe-
cution time drastically. Especially, it allows to reduce the complexity of the join
operation from quadratic complexity to O(N*log(N)), as can be seen for plan D. In
plan D nearly all execution time is needed for the processing of the exact geometries.
Given the times for exact geometry processing, we can see that the overall execution
times for plans B and C still grow quadratically (i.e., they grow by a factor 100, as
we move to a table that is larger by a factor of 10), if the overall execution time is
dominated by the join costs. Since plan D uses spatial partitioning, the asymptotic
complexity of the plan is determined by the merge join and has only a complexity of
O(N *log(N)). Thus, the increase in the execution times is much slower. Since the
total execution time of plan D for the test tables is dominated by the time for refine-
ment, the overall increase of the execution time is roughly linear.

Table 6 demonstrates directly that the spatial partitioning allows to reduce the com-
plexity of the join operation from quadratic to near linear complexity. It shows the
effect of different numbers of buckets for the spatial partitioning on the number of
replicated polygons and the execution time for plan D. In addition we computed the

Table 5. Performance Results of Different Sequential Plans of the Test Query (Time in Seconds)

sequential execution of plan table PG1 table PG2 table PG3

A 13582.6 not avail. not avail.

B 430.9 41663.1 not avail.

C 50.8 3388.8 not avail.

Da

a. Please note that for plan D the results shown in Table 5 are for the spatial partitioning that yielded the lowest
 execution time from Table 6.

17.6 189.6 1908.6

D (time without refinement) 0.6 6.5 96.2

D (time for refinement only) 17.0 183.1 1812.4

Performance Evaluation 63

execution time minus the time for refinement. As can be seen, the execution time
decreases until the number of buckets approaches the number of polygons in the
table. The execution time of plan D without refinement is reduced roughly linearly
with an increasing number of buckets, until the number of polygons per bucket is
small. This is what we expected, as corresponding buckets are joined with a nested-
loops join. Therefore, if the number of buckets is increased by a factor K, the time to
join two buckets is reduced by K2, since the number of tuples in a bucket is reduced
by a factor of about K. If more buckets than polygons are used, the number of repli-
cated polygons grows and the overall execution time goes up slightly. This is not sur-
prising, since most of the time is needed for the exact geometry processing in these
cases.

In Table 7, we present the effect of parallelism on the execution time. We executed
plans B, C, and D with a degree of parallelism of 2 for the nested-loops/merge join
and the restriction by exact_overlaps. Parallelization could be achieved as
usual (cf. subsections 5.4.3 and 5.5.1, especially the description of plan D), i.e., for
the nested-loops join by splitting one input into 2 partitions and by replicating the
other input and for the merge join by splitting both inputs into 2 partitions using hash
partitioning on the join attribute (i.e., the bucket number). Then the restriction with
exact_overlaps was evaluated on both resulting partitions. Since the execution
is always CPU-bound and we used all processors of our machine, the maximum
obtainable speedup is slightly less than two, because the operating system uses some
CPU resources. For sequential execution this operating system overhead can be han-
dled by the CPU that is not used for query processing. As one can see from the
speedup (shown in the shaded rows), all plans were able to profit from parallel exe-
cution, as we expected, since the execution is CPU bound. The speedup is decreasing

Table 6. Impact of the Number of Buckets and Replication on the Performance of Plan D
(Time in Seconds)

buckets

PG1:
number of
replicated
polygons

PG1:
exec.

time for
plan D

PG1:
exec. time
for plan D

without
refinement

PG 2:
number

of
replicated
polygons

PG 2:
exec.

time for
plan D

PG 2:
exec. time
for plan D

without
refinement

PG 3:
number of
replicated
polygons

PG3:
execution
time for
plan D

PG3:
exec. time
for plan D

without
refinement

1 0 53.9 36.9 0 3 696.8 3 513.7 0 not avail. not avail.

4 11 26.5 9.5 38 1 073.5 890.4 143 90 172.8 88 360.4

16 37 19.6 2.6 125 412.9 229.8 423 24 078.4 22 266.0

64 100 17.9 0.9 310 245.2 60.6 973 7 402.7 5 590.3

256 221 17.6 0.6 678 202.7 19.6 2 107 3 317.2 1 504.8

1 024 489 17.6 0.6 1 445 192.1 9.0 4 419 2 311.1 498.7

4 096 1 132 17.6 0.6 3 080 189.6 6.5 9 100 2 037.1 224.7

16 384 2 628 17.9 0.9 6 652 189.7 6.6 18 904 1 962.0 149.6

65 536 7 155 18.7 2.7 15 308 191.8 8.7 39 975 1 908.6 96.2

262 144 21 666 21.0 4.0 38 249 192.5 9.4 87 068 1 996.0 183.6

64 The Multi-operator Method

from plan B to D, since the execution becomes less CPU-bound and I/O parallelism
was not fully exploited during these tests. We did not evaluate plan A in parallel, as
this plan is not usable anyway.
These initial performance results show clearly the impressive performance gains that
are possible with the multi-operator method (plan D compared to the single-operator
implementation plan B). In addition, the results show that parallelism can be applied
to the multi-operator implementations in the usual way to speed up processing fur-
ther, i.e., by means of data parallelism and pipelining.

5.6 Related Work

User-Defined Functions (UDF) have attracted increasing interest of researchers as
well as the industry in recent years (see e.g. [13], [17], [45], [47], [68], [70], [83],
[89], [98], [104]). However, most of the work discusses only the non-parallel execu-
tion of UDF, special implementation techniques like caching, or it is directed
towards query optimization for UDF. Patel et al. discuss in [89] support for the paral-
lel implementation of ADT and UDF in the area of geo-spatial applications. They
report that in this area complex multi-step operations are commonplace. Also special
new join techniques [88] and other special implementation techniques have been
proposed. However, to the best of our knowledge, there is no approach that allows
the execution of such special techniques in current ORDBMS.
In [98] E-ADT (enhanced ADT) are proposed as a new approach for the architecture
of ORDBMS. An ORDBMS is envisioned as a collection of E-ADT. These E-ADT
encapsulate the complete functionality and implementation of the ADT. Especially
all knowledge about the query language, its optimization and the execution engine
are encapsulated in an E-ADT. All E-ADT implementations are linked via common
interfaces. Furthermore, the implementation of new E-ADT can use a common

Table 7. Performance Results for Parallel Processing of Plans B, C, and D (Time in Seconds)

plan degree of parallelism table PG1 table PG 2 table PG3

B 1 430.9 41 663.1 not avail.

B 2 218.6 22 129.4 not avail.

speedup - 1.97 1.88 not avail.

C 1 50.8 3 388.8 not avail.

C 2 28.0 1 848.4 not avail.

speedup - 1.81 1.83 not avail.

D 1 17.6 189.6 2 037.1

D 2 11.2 111.1 1 094.3

speedup - 1.57 1.70 1.86

Summary 65

library with base services, e.g. for storage management. We believe that this is an
interesting approach that is in general more ambitious than the multi-operator
method discussed here, but parallel execution is not examined for E-ADT. Basically
it should be possible to use multi-operator implementations also within the E-ADT
approach. While the multi-operator method might be useful for the E-ADT approach,
in addition it fits very well to the architectures of current commercial ORDBMS.
This is in contrast to the E-ADT approach. Therefore, the effort for ORDBMS ven-
dors to support the multi-operator method is not too big, but its benefits are immense
as reported in this chapter.
In chapter 3, we have presented techniques for the parallel execution of user-defined
scalar and aggregate functions in PORDBMS. While these techniques provide some
support for the parallel execution of user-defined functions that have an input context
(like aggregation), the multi-operator method supports the efficient and parallel exe-
cution for much more user-defined functions. Therefore the multi-operator method
should be seen as a further generalization and important supplementation of the pre-
vious techniques: The possibility to use several operators allows the developer to
separate different parts of the implementation. This will often allow to use data par-
allelism for the individual parts, though a data parallel execution might not be possi-
ble for a complex single-operator implementation with external effects or a global
state.

5.7 Summary

In this chapter, we proposed the multi-operator method as a new technique for the
implementation of user-defined functions. The goal of this method is to provide a
general implementation method that enables developers to implement efficient algo-
rithms for complex UDPs and execute them in ORDBMS. The main advantage of
the multi-operator method is that a new database operation can be implemented eas-
ily. It is only necessary to write a few UDF and place them in a database operator
graph. The alternative for developers would be to write a new specialized database
operator, but this is not possible in current ORDBMS. Hence, the multi-operator
method is in our view a feasible and practical method that can be used without
changes of the current ORDBMS core systems. The multi-operator method offers
some important further advantages: the finer granularity of the implementation struc-
ture enhances reuse, optimization, and especially parallelization. The multi-operator
method provides developers with a method for the implementation of complex UDPs
that enables all kinds of parallelism. This support for parallel execution is a signifi-
cant advantage of the multi-operator method.
An important application of the multi-operator method are user-defined join algo-
rithms that allow highly efficient implementations of UDPs as our performance mea-
surements have demonstrated.

66 The Multi-operator Method

In the next chapter we present a new approach to user-defined database operators and
user-defined implementation rules for query optimization that in our view supersedes
the multi-operator method. However, it may require a major implementation effort
by ORDBMS vendors.

CHAPTER 6

User-Defined Table Operators

6.1 Introduction

Parallel database technology makes it possible to handle ever-increasing data vol-
umes. However, this is not sufficient to process complex queries on large databases
fastly. For queries that must apply complex algorithms to the data and especially for
those that correlate data from several tables, it is essential to enable an efficient and
completely parallel evaluation of these algorithms within the DBMS. For example,
as we have shown in chapter 5, new tailored join algorithms can increase the perfor-
mance for certain operations like spatial joins, etc. by orders of magnitude. But, as
we have already pointed out there, it is not yet possible for third-party developers to
implement efficient user-defined join algorithms in current commercial ORDBMS.
In fact, one cannot implement any new database operators. UDF cannot be used to
implement new operators, as they are invoked by built-in database operators. The
limitation of UDTF is obvious: although they can produce an entire output table,
they can only have scalar arguments. Hence, UDTF are helpful in accessing external
data sources [21] etc., but cannot be used to implement new database operators like
new join algorithms.
Our main contribution in this chapter is to propose a new approach to user-defined
database operators [61]. To the best of our knowledge this is the first approach that
allows third-party developers to add a new database operator to a running DBMS.
The main goals of our design were to provide extensibility with respect to new data-
base operators and to ensure that the design fits well to the existing technology.
Especially, it should be possible to integrate the technology into current commercial
ORDBMS without a major change of the system architecture. Furthermore, we con-
sidered full support for parallel execution and ease of use for developers of new
operators as crucial requirements. We believe that we have met these goals.
The central new concept of our approach is to allow tables as arguments for user-
defined routines and to allow the manipulation of these input tables by SQL DML
commands in the body of these routines. Moreover, these routines are internally used
as new database operators. One could at first expect that such an extension would

M. Jaedicke: Parallel Object-Relational Query Processing, LNCS 2169, pp. 67-105, 2001.
© Springer-Verlag Berlin Heidelberg 2001

68 User-Defined Table Operators

lead to an increased complexity with respect to the development of such routines.
But this is not the case, since the body of these new routines can be implemented
similar to embedded SQL programs - a widely used programming concept.
The remainder of this chapter is organized as follows. Section 6.2 introduces and dis-
cusses user-defined table operators as our approach to make database systems exten-
sible by new operators. We discuss several examples of new operators in detail in
section 6.3. Finally, we discuss the related work in section 6.4 and provide our con-
clusions in section 6.5.

6.2 User-Defined Table Operators

If we review the current concepts for UDR from a more abstract point of view, we
can observe the following: there are routines that operate on a tuple and produce a
tuple (UDSF), there are routines that are invoked for each tuple of a set of tuples and
produce an aggregate value (UDAF) and finally there are routines that operate on a
tuple and return a table (UDTF). So obviously there is something missing: namely
routines that operate on one or more tables and maybe some additional scalar param-
eters and can return a tuple or a table. We want to point out that the argument tables
(input tables) for this kind of routines can be intermediate results of a query, that is,
they are not restricted to be base tables. We call these routines user-defined table
operators (UDTO), since they can be used to define and implement new N-ary data-
base operators. This classification is expressed in Table 8. As one can observe,
UDTO improve the orthogonality of SQL.

In the following, we will explain, how UDTO can be defined and implemented and
how their processing can be integrated into parallel (object-)relational execution
engines. However, we will first define a generalization relationship among row
types. This will allow the application of a given UDTO to a broad range of tables, as
we will see later.

6.2.1 A Generalization Relationship for Row Types

A row type R = (R1, R2, ... , RN) is a structured type that consists of N attributes.
Each of these attributes has a data type Ri. Now we can define that a row type S =

Table 8. A Classification of User-Defined Routines Based on their Parameter Types

output parameter types

scalar table

input parameter types
scalar UDSF UDTF (UDTO)

table(s) UDAF (UDTO) UDTO

User-Defined Table Operators 69

(S1, S2, ... , SK) is a subtype of R, if N ≤ K and {R1, R2, ... , RN} ⊆ {S1, S2, ... , SK}.
In other words, for each attribute with data type Ri of R there is some attribute with
the same data type Sj = Ri in S, but S may contain additional attributes with arbitrary
data types. The order of the attributes in R and S is not important. We call R also
supertype of S. Please note that each table has an associated row type.

We want to point out that this generalization relationship between subtypes is differ-
ent from the supertable/subtable concept which describes a collection hierarchy and
is already available in some ORDBMS [53]. As we describe in the next subsection,
UDTO can be defined in such a way that they are applicable to all tables whose row
type is a subtype of the row type of the formal input tables of the UDTO. Because the
row type of a subtable is a subtype of the row type of the corresponding supertable, a
UDTO can be applied to all subtables of a given supertable, if it is applicable to the
supertable.

6.2.2 Defining and Implementing UDTO

In this subsection, we describe how UDTO can be defined and implemented based
on SQL. The basic idea of this approach is easy to understand: the effect of all oper-
ators can be viewed as a mapping from a set of tables to a new table or a single tuple.
This is very similar to the effect of an algebraic operator. One fundamental differ-
ence is that a user-defined operator usually does not need to have base tables as
input, but tables that represent intermediate results. It also produces an intermediate
result table that can be processed further. Based on these observations, we propose to
implement new UDTO by means of an extended version of embedded SQL. To
enable this we propose the following extensions to user-defined procedures: the def-
inition of N input tables and a single output table for a user-defined procedure is per-
mitted and SQL DML commands in the body of this procedure are allowed to refer
to these tables. Please note that these input tables can represent intermediate results
as well as base tables, table expressions, or views.

Generally speaking, a new UDTO can be executed sequentially as follows: All input
tables are first materialized. That means they can furtheron be accessed in a similar
way as permanently stored base tables. Then the UDTO is executed using these input
tables. The UDTO produces and materializes the output table that represents the
result of the UDTO and that can be processed further. Of course, the input tables
cannot be manipulated and the only SQL command that is permitted for the manipu-
lation of the output table is the INSERT command. In chapter 7 we will describe
optimizations of this basic execution scheme that will allow a much more efficient
execution in many cases. Moreover, we will describe how UDTO can be processed
in parallel in subsection 6.2.4.

Obviously, ORDBMS must provide a statement to create UDTO. We describe the
CREATE TABLE_OPERATOR statement in the syntax diagram shown in Figure 28

70 User-Defined Table Operators

(we use | to denote beginning and end of a definition; terms in small ovals are
described in additional syntax diagrams or in the text). After the name of the table
operator the argument list and the return type are described. The parallel execution
option allows to specify how the function can be executed in parallel (we will
describe the corresponding syntax diagram in subsection 6.2.4). Finally, the body of
the function follows. Please note that we have not shown other options in the syntax
diagram, which are useful for other purposes like query optimization. We propose
such options in the next chapter when we discuss the implementation of the UDTO
concept within a DBMS.
The syntax diagram in Figure 29 presents the type description including input and
output tables. Each table is described by specifying the name and data type for each
column. In this syntax diagram the term ‘datatype’ should denote all allowed data
types for columns, including user-defined types. We will explain the notation
table-name.+ later.

We do not provide a syntax diagram for the description of the body, because we
allow here embedded SQL program code or a single INSERT statement - with some
extensions of SQL. We try to use SQL/PSM as a procedural language in our exam-
ples, but our concept is not limited to a specific procedural language. That means
that all procedural languages like C, C++, Java, or COBOL can be used. In addition,
proprietary APIs or other techniques could be used instead of embedded SQL.
We distinguish two kinds of UDTO that differ in the implementation of their body:
procedural UDTO and SQL macros. A procedural UDTO is a UDTO whose body
contains procedural statements with embedded SQL statements. As for UDSF one
can implement the body of a procedural UDTO in a programming language (with

type-description

CREATE TABLE_OPERATOR operator-name ()
,

RETURNS ()AS

type-description

parallel-exec

body-description

Figure 28. Syntax of the Statement CREATE TABLE_OPERATOR .

TABLE
,

datatype

datatype

()

column-name

variable-name

table-name

table-name . +

Figure 29. Syntax of the Type Description Including Input and Output Tables.

User-Defined Table Operators 71

embedded SQL), compile it, put it into a library and register it with the DBMS. On
the other hand, if the body of a UDTO consists of a single INSERT statement we call
this UDTO an SQL macro. This kind of UDTO has some similarity to views, but an
SQL macro can refer to the formal input tables of the UDTO and is not limited to ref-
erences to base tables or views.

In the following, we present some definitions of UDTO. These examples are
extremely simple and they are not intended to demonstrate the usefulness of the
UDTO approach (cf. section 6.3 for applications). They only serve to illustrate the
concept and the syntax and to introduce further details of the concept. We will refer
to these examples also later in subsection 6.2.3 when we discuss the application of
UDTO.

Example 1: The UDTO minimum

In the first example, we create a UDTO that computes the minimum for a table with
an integer column:

CREATE TABLE_OPERATOR minimum (TABLE Input (number INTEGER))
RETURNS INTEGER
AS
{
RETURN(SELECT MIN(value) FROM Input)
};

This example demonstrates how a new aggregation operator can be defined. In case
of aggregations, there is usually no output table, but only an aggregate value. Of
course there are many aggregate functions that should be implemented as a UDAF,
since this allows to compute multiple aggregates in a single pass over an input table.
Hence, an implementation as a UDAF will often outperform an implementation as a
UDTO in many cases.

Before we present further examples, we introduce the following extensions for the
usage of SQL within the body of UDTO: First, all SQL DML statements can read the
input tables in the same manner as base tables. Especially, an input table can be read
by several different SQL statements. Second, tuples can be appended to the output
table by INSERT commands. With these extensions, we can define our next exam-
ple.

Example 2: The UDTO has_job

This UDTO performs a restriction of the input table and does some decoding. Let us
assume that a table employees(emp_no, job) has been defined with an integer
column job that is used to code the job of the employees. We assume that the names
of the jobs and their code are stored in a table jobcodes(code, jobname). The
UDTO has_job reads the name for a given code from the table jobcodes and
selects all jobs from the input table with this code. This UDTO is created as follows:

72 User-Defined Table Operators

CREATE TABLE_OPERATOR has_job
(TABLE Input (job INTEGER), jname VARCHAR)

RETURNS TABLE Output (job INTEGER)
AS
{
INSERT INTO Output

SELECT I.job
FROM Input AS I, jobcodes AS C
WHERE I.job = C.code and C.jobname = jname

};

Please note that the database can be fully accessed from within the body of the
UDTO. In our example the table jobcodes is accessed. This supports information
hiding, since the accessed objects are not visible to the user of the UDTO. All side
effects of a UDTO evaluation belong to the associated transaction. That is, the
UDTO is executed within the same transaction as the statement that invokes it.

So far, UDTO can be applied reasonably only to tables that match the row types of
the corresponding formal parameter tables exactly. For example, the UDTO
has_job can be applied to a table with a single integer column. Of course, it is
desirable to allow the application of a UDTO to a more general class of tables. Our
goal is to allow all tables as input tables whose row types are subtypes (cf. subsection
6.2.1) of the row types of the formal UDTO input table. The UDTO operates only on
columns that appear within the formal input table. All additional columns which may
be present in the actual input tables are neglected or can be propagated to the output
table, if this is desired (attribute propagation).

To support attribute propagation, developers of UDTO must be able to determine
that the additional columns of an actual input table have to be appended to the output
table. We denote these additional columns by the expression table_name.+ (the
‘+’ denotes only the values of the additional columns. By contrast, all columns are
usua l ly denoted by the ‘*’ in SQL) . That means, an express ion l ike
table_name.+ has to be replaced by the values of all additional columns of the
corresponding input table table_name, which are present in the actual argument
table, but not in the formal argument table of the UDTO. For example, if the actual
argument table that is bound to the input table input1 has one additional column,
then input1.+ represents exactly the value of this column. We permit also a table
variable instead of a table name in combination with ‘+’. Normally all additional col-
umns of the input tables will be appended to the output table. That is, the row type of
the formal output table is a supertype of the row type of the actual output table. As
we will see below, these additional columns have to appear in the definition of the
output table.

Now, we can redefine the UDTO has_job with attribute propagation as follows
(changes are in bold face):

User-Defined Table Operators 73

CREATE TABLE_OPERATOR has_job
(TABLE Input (job INTEGER), jname VARCHAR)

RETURNS TABLE Output (job INTEGER, Input.+)
AS
{
INSERT INTO Output

SELECT I.job, I.+
FROM Input AS I, jobcodes AS C
WHERE I.job = C.code and C.jobname = jname

};

As the example shows, we have to define the columns of each input table, but only
those columns that are needed within the function’s body should be defined. The
expression I.+ appends all additional columns to the output. This allows the appli-
cation of the UDTO has_job as a restriction operator, because a subset of the rows
of the input table is returned. The specification of the output table contains the term
Input.+ to enable type checking.

Example 3: The UDTO equal
Finally, we present an equi-join as new operator equal:

CREATE TABLE_OPERATOR equal(TABLE Input1(value1 INTEGER),
TABLE Input2(value2 INTEGER))

RETURNS TABLE Output (value1 INTEGER, Input1.+, value2 INTEGER,
Input2.+)
AS
{

INSERT INTO Output
SELECT value1, Input1.+, value2, Input2.+
FROM Input1, Input2
WHERE Input1.value1 = Input2.value2

};

The UDTO equal can now be applied to join all tables with a column of type integer.
This UDTO, same as the other examples, is an SQL macro.

Row Identification

Finally, we want to propose an extension that allows to implement UDTO more effi-
ciently. Within the body of a UDTO it can be necessary to have access to a unique
identifier for each row of an input table (cf. subsection 6.3.1 for an example). To
support this, we introduce the special column data type ID for the type description of
table columns that are UDTO arguments. The special type ID means that the column
contains a unique identifier for each row of an input table. Note that an ID can be
either a primary key or an internal identifier like a row identifier or a reference type
as proposed in SQL3. Such an ID can always be generated automatically by the
DBMS (this can be viewed as a kind of type promotion for row types). An ID col-
umn could also be created explicitly in the body of the UDTO by the developer, but,
if it is defined as a column of an input table, the DBMS can use an already existing
identifier as an optimization. In general, it is not useful to append a column value of

74 User-Defined Table Operators

type ID explicitly to the output table. In case the primary key is used internally to
represent the ID, the system does this automatically, if the ‘+’ option has been speci-
fied in the projection list of the subquery of the INSERT statement.

6.2.3 The Different Usages of the UDTO Concept

In this subsection, we will describe two ways in which UDTO can be applied: first
they can be used explicitly by programmers within SQL commands. This allows to
extend the functionality of SQL in arbitrary ways and it allows to use UDTO to
enhance the performance in special situations (that the query optimizer might not be
able to detect and optimize appropriately). Second, UDTO can additionally be used
as new implementation methods for query execution plans. In this case, the query
optimizer employs the UDTO during the plan generation whenever the use of this
UDTO leads to a cheaper query execution plan. This is especially useful to provide
more efficient implementations of UDF. We discuss these two applications now in
more detail.
Augmentation of SQL through the Explicit Usage of UDTO

UDTO can be used explicitly in SQL statements by programmers. This allows to
extend the functionality of SQL by arbitrary new set operations or to say it in other
words: UDTO make object-relational query processing universal in the sense that the
set of database operations becomes extensible. For example, over time a lot of spe-
cial join operations were proposed: cross join, inner join, anti-join, left, right, and
full outer join, union join, etc. Moreover, other operations like recursion or more
application-specific ones (for data mining, etc.) have been introduced. UDTO allow
developers to define a parallelizable implementation for such operators. These oper-
ators can then be invoked in SQL commands by application programmers, as we
explain in the following.
A UDTO that returns a table can be used in all places within SQL commands where
a table expression is allowed. Moreover, UDTO with two input tables can be written
in infix notation to allow an easy integration into the current SQL command syntax.
For example, one could define a UDTO named ANTI_JOIN. Then one can write the
following expression in the FROM clause: Table1 ANTI_JOIN Table2. Seen from a
conceptual point of view, in this case the Cartesian product of the output table of the
UDTO and of all other tables, views, and table expressions in the FROM clause is
computed. In addition, UDTO can also be written in infix notation between two
SELECT blocks like the usual set operations (UNION, INTERSECT, EXCEPT).
To allow the application of UDTO to base tables and views whose row type is a sub-
type of the row type of the formal input table, we propose the following syntax to
bind columns of the actual input table to columns of the formal input table. The pro-
grammer can specify an ordered list of columns from a given table (or view) that is
bound to the corresponding columns in the parameter list of the UDTO. For exam-

User-Defined Table Operators 75

ple, the expression TO1 (T1 USING (C1, C2, ..., CN)) describes that the columns
named C1, C2, ..., CN of table T1 are bound to the N columns of the formal input
table parameter of the UDTO TO1. The keyword USING is optional and can be
skipped. This notation can also be used, if binary UDTO are written in infix notation
(it can be seen as a generalization of the ON clause for traditional join expressions).
If input tables are given as table expressions then the columns of the resulting table
are bound to the columns of the formal input table in exactly the order in which these
columns appear in the SELECT clause of the table expression.

The following statements illustrate this syntax. They invoke the UDTO has_job
explicitly with a base table and a table expression:

SELECT *
FROM has_job(employees USING (job), ‘manager’)

SELECT *
FROM has_job((SELECT job, emp_no FROM employees), ‘manager’)

UDTO as an Augmentation of the Implementation of UDF

Next, we describe how UDTO can be used to improve the performance for queries
with UDF. A very important usage of UDTO is to provide more efficient operators
that can be used by the query optimizer during the plan generation. While there
might be many relational queries that can be enhanced by UDTO, the move to
object-relational query processing with UDF creates a need for UDTO as we have
already outlined in section 5.2. The reason is that UDTO allow to implement data-
base operations that involve UDF sometimes more efficiently than in current
ORDBMS, where a built-in database operator invokes the UDF.

UDTO provide a different implementation technique for operations involving UDF
compared to the traditional approach for UDF implementation. For example, a
UDSF can be used as a UDP in a join, i.e., in a restriction involving attributes from
different tables on top of a Cartesian product. In this case, a UDTO will often allow a
more efficient implementation. The reason is that in current ORDBMS, the UDP is
evaluated by a nested-loops join operator which has quadratic complexity. By con-
trast, there might exist implementation methods with much lower complexity. There-
fore joins are an important application of UDTO, where performance enhancements
of orders of magnitude are possible (often because nested-loops joins can be replaced
by hash- or sort-merge-based join algorithms; cf. subsection 6.3.1).

Furthermore, UDTO might sometimes be useful as aggregation, restriction, or pro-
jection operators. For example, in case of UDAF it can be useful to provide an
implementation by means of a UDTO, since this allows access to the whole input
column for the aggregation (cf. subsection 6.3.3 for an example).

The query optimizer must decide when a UDTO should be used. In a rule-based
query optimizer ([30], [36], [67]) this means the following: there must be a rule that

76 User-Defined Table Operators

generates a plan with the UDTO as an alternative implementation. Such a rule has to
be specified by the developer. This is not difficult in this scenario, because the
UDTO is always associated with a specific UDF for which it implements a specific
database operator (for example, a join that has exactly this UDF as join predicate).
Hence, the developer must tell the query optimizer only that the UDTO can be used
to evaluate the UDF. For this purpose, the CREATE FUNCTION statement used to
register UDF with the DBMS can be extended. The statement should include the
option to specify that a UDTO can be used as an implementation for a specific oper-
ation such as a join. For example, one could extend the CREATE FUNCTION state-
ment as follows:

ALLOW <UDTO-name> AS
(JOIN | RESTRICTION | PROJECTION | AGGREGATION) OPERATOR

The relationship between the UDF and the UDTO is stored in the system tables and
can be used by the query optimizer. The query optimizer has to be extended by gen-
eral rules that can perform these transformations for arbitrary UDF. The optimizer
uses information from the system tables to decide whether the transformation is pos-
sible for a given UDF. Please note that for some functions like a UDAF, the UDTO
might be the only implementation. In this case, the UDF must be executed by means
of the UDTO.

Let us assume that we want to create two UDPs has_job and equal for the
UDTO that we have introduced in subsection 6.2.2. Then one can register the UDP
has_job with the UDTO has_job as restriction operator and the UDP equal
with the UDTO equal as join operator:

CREATE FUNCTION has_job (INTEGER, VARCHAR) RETURNS BOOLEAN
ALLOW has_job AS RESTRICTION OPERATOR ...

CREATE FUNCTION equal (INTEGER, INTEGER) RETURNS BOOLEAN
ALLOW equal AS JOIN OPERATOR ...

Then the query optimizer considers the UDTO has_job as an implementation for
the restriction with the UDP has_job in the following query:

SELECT *
FROM employees AS E
WHERE has_job(E.job, ‘manager’)

The same holds with respect to equal in the query:

SELECT *
FROM projects AS P, employees AS E
WHERE equal(E.emp_no, P.mgr_no)

If the application of the UDTO equal is properly optimized, the latter statement
will have exactly the same query execution plan as the query:

User-Defined Table Operators 77

SELECT *
FROM projects AS P, employees AS E
WHERE E.emp_no = P.mgr_no

Figure 30 illustrates how a traditional database operator that invokes a UDF is
replaced by a UDTO. First the operator has to be identified in the original query exe-
cution plan (QEP). Then the optimizer replaces this operator either by a procedural
UDTO or by an SQL macro. Because the body of an SQL macro consists essentially
of a QEP we can simply replace the operator by this QEP (SQL macro expansion).
However the QEP of the SQL macro has to be modified so that it fits to the compris-
ing QEP. For example, proper attribute propagation has to be considered. The result
of this SQL macro expansion is a traditional QEP, which can be further optimized
and evaluated as usual. Especially, no materialization of input and output tables is
necessary.
We close this subsection with the remark that the application of procedural UDTO to
UPDATE and DELETE commands is permitted only, if proper identification of out-
put tuples to input tuples is given. This is necessary in the case that tuples of the out-
put table are used to identify tuples that must be modified.

6.2.4 Parallel Processing of Procedural UDTO

Nowadays new operators would not be a concept of great use, if these operators
could not be executed in parallel. That is why we will discuss the parallel execution
of new UDTO in this subsection. Please note that all SQL DML commands within

procedural UDTO

QEP of a

optimize this
 operator

input tables

output table

original QEP

QEP with

Figure 30. Application of a Procedural UDTO and an SQL Macro During Query Optimization.

SQL macro
 expanded
SQL macro

QEP with
procedural
UDTO

78 User-Defined Table Operators

the body of UDTO of the implementation are parallelizable as usual. If the UDTO is
an SQL macro that is a single SQL statement, the complete UDTO can be parallel-
ized automatically by the DBMS. In the more general case of a UDTO that is imple-
mented by embedded SQL, the developer must specify how a parallel execution can
be done, if it is possible at all.

We provide a method that allows to specify, if an operator can be executed with data
parallelism and, should the occasion arise, how the operator can be processed.
Applying data parallelism means that one or more of the input tables of an operator
are split horizontally in several partitions by means of a suitable partitioning func-
tion. We demand that all input tables that have to be partitioned are split into the
same number of partitions. If one or more, but not all input tables can be partitioned,
the other input tables are replicated. Then the operator is executed once for each par-
tition with the following input tables: if the argument table is partitionable, the
respective partition of this table is used. If the argument table is not partitionable,
then the complete replicated table is used as an argument. As a consequence, if one
or more input tables are split into N partitions, then N instances of the operator are
executed in parallel. Hence, the degree of parallelism is N. In this case, the final
result is computed by combining the N intermediate output tables by means of a
union (without elimination of duplicates). If no input table is partitioned the operator
is executed without data parallelism - that is sequentially. There can be several
options for the parallelization of an operator, depending on which input tables are
partitioned and depending on how this partitioning is done.

Hence, we must describe the set of all combinations of partitioning functions that can
be used to partition the input tables of a given UDTO. We permit different partition-
ing functions for different tables, but all partitioned input tables must have the same
number of partitions. Therefore the partitioning functions must have a parameter that
allows to specify the number of generated partitions. This parameter enables the
optimizer to set the degree of parallelism for a given UDTO. In some cases, it may
be also necessary to specify that exactly the same partitioning function has to be used
for some or all input tables. For example, this is needed for equi-joins in relational
processing.

In chapter 3 we have already proposed the following classes of partitioning func-
tions: ANY, EQUAL and RANGE. In addition to these three partitioning classes we
have proposed that a special user-defined partitioning function can be specified, too.
Based on these considerations we have developed the parallel execution option in the
CREATE TABLE_OPERATOR statement that allows to specify all parallel execu-
tion schemes which are possible for a new operator. For operators having multiple
input tables many options are conceivable. But since we doubt that there will be
many complex operators with more than two input tables in practice, we have not
tried to optimize the description for this special case. Figure 31 shows the syntax dia-
gram for this option.

User-Defined Table Operators 79

If the partitioning class is not ANY, we have to specify the columns to which the par-
titioning function should be applied. The same is necessary, if a specific partitioning
function must be used. We have left out these details in the syntax diagram. If no
partitioning is possible for a given input table, this is denoted by ‘-’ (in case of paral-
lel processing, this input table is replicated).

In the following, we will describe some examples of parallel execution schemes for
familiar (relational) operations: a restriction, a nested-loops join, a hash join and a
merge join. To simplify the examples, we have left out the column specifications of
the input and the output tables and the bodies of the operators.

CREATE TABLE_OPERATOR restriction(TABLE Input1(..))
RETURNS TABLE Output1(...)
ALLOW PARALLEL ((ANY))
AS { ... };

Because the class ANY is specified in the ALLOW PARALLEL option of the UDTO
restriction all partitioning functions can be used to partition the input table for
the restriction operator which is defined in this example.

CREATE TABLE_OPERATOR nested_loops(TABLE Input1(...), TABLE Input2(...))
RETURNS TABLE Output1(...)
ALLOW PARALLEL ((ANY,-), (-,ANY))
AS { ... };

CREATE TABLE_OPERATOR hash_join(TABLE Input1(...), TABLE Input2(...))
RETURNS TABLE Output1(...)
ALLOW PARALLEL ((EQUAL pf1(Column_List), EQUAL pf1(Column_List)),

(ANY,-), (-,ANY))
AS { ... };

ANY

,

ALLOW PARALLEL ()()

function-spec

equal-specEQUAL

RANGE

,

-

range-spec

Figure 31. Syntax of the ALLOW PARALLEL Option.

80 User-Defined Table Operators

CREATE TABLE_OPERATOR merge_join(TABLE Input1(...), TABLE Input2(...))
RETURNS TABLE Output1(...)
ALLOW PARALLEL ((EQUAL pf1(Column_List), EQUAL pf1(Column_List)),

(ANY,-), (-,ANY))
AS { ... };

The options for the three join algorithms specify that if one table is replicated, the
other table can be partitioned with any partitioning function. Figure 32 illustrates
data partitioning and parallel execution for the UDTO nested_loops with degree of
parallelism 2. In addition, the hash join can be parallelized with the partitioning
scheme (EQUAL pf1(Column_List), EQUAL pf1(Column_List))
that means both input tables are partitioned with the same partitioning function pf1.
The same holds for the merge join, if we restrict it to the computation of equi-joins.
If we want to use the merge join for more general join predicates - for example an
interval join (to execute a predicate like ‘x <= y + k or x >= y - k’ more efficiently) -
then we need a partitioning with a function of class RANGE(k), that is, the option
should be ALLOW PARALLEL (RANGE(k) pf1(Column_List),
RANGE(k) pf1(Column_List)). The parameter k could be an argument of
this join operator (the corresponding UDP would be used as fol lows:
interval_join (table1.x, table2.y, k)).

6.2.5 Extension to Multiple Output Tables

We can provide even more extensibility, if we allow multiple output tables for
UDTO: one application could be to return a set of tables perhaps holding complex
objects that are linked via OIDs. This is something like pushing Starburst’s XNF

UDTO

replication partitioning

union

Figure 32. Parallel Execution of the UDTO nested_loops with Degree of Parallelism 2.

UDTO

Example Applications for UDTO 81

([74], [93]) into the middle of SQL commands. Using such a UDTO at the top of a
query would allow for composite objects as a result. Internally, the top operator of
queries has to be extended to allow the direct output of several tables as a result of a
query. Another use of multiple output tables could be to support a nesting of com-
plex UDTO. The output tables of one UDTO can then serve as input tables for other
UDTO.

UDTO with multiple output tables can be used within the FROM clause of queries
but not in the WHERE clause, since they do not return a table expression. The
renaming of the result tables and their columns should be allowed. UDTO with mul-
tiple output tables can be evaluated in the same manner as UDTO with a single out-
put table, but they produce multiple output tables. These output tables can be
processed further. The result tables in case of a parallel evaluation are obtained by a
union of all corresponding partial result tables.

6.3 Example Applications for UDTO

In this section, we will describe several examples of UDTO in order to demonstrate
the broad applicability with regard to the implementation of complex operations in
different processing scenarios. We present joins and restrictions for spatial data,
complex aggregations and data transformations and association rule mining as exam-
ples. Some examples contain additional material or show further benefits of the
UDTO concept.

6.3.1 Computing a Spatial Join

In our first example we use the UDTO concept to define a spatial join based on the
partition-based spatial-merge join (PBSM) algorithm [88]. Thus, we show that the
UDTO concept allows among other things a much more elegant implementation than
the multi-operator method, which we have demonstrated using the same example
scenario in chapter 5. Let us briefly recall this scenario. We consider the following
polygon intersection query (that searches for all gold deposits intersecting lakes) as a
concrete example of a spatial join:

SELECT *
FROM Lakes as L, Gold_Deposits as G
WHERE overlaps(L.poly_geometry, G.poly_geometry)

The predicate overlaps (polygon, polygon) returns TRUE, if the two
polygons overlap geometrically and FALSE otherwise. In order to define a UDTO
for overlaps based on the PBSM algorithm we create some UDF introduced in
subsection 5.5.1 for the multi-operator implementation:

82 User-Defined Table Operators

• bbox(polygon):
This UDSF creates and returns the minimum bounding rectangle for a given polygon.

• bbox_overlaps(bbox1, bbox2):
This UDP returns true, if the two bounding boxes overlap.

• exact_overlaps(polygon1, polygon2):
This UDP returns true, if the exact geometries of the input polygons overlap.

• bucket_no(bbox):
This UDTF divides the spatial universe into B equally sized rectangular regions called
buckets. Then it computes and returns all buckets, which the input bounding box intersects.
Please note that this is a table function, that is, it returns a table with a single column of
type integer.

With these UDF we are prepared to create the UDTO overlaps. This operator
uses three techniques to improve the efficiency of the join algorithm. First, it uses a
simple filter-and-refine scheme [87]. The filtering step uses bounding boxes as
approximations of the polygons. This means that we test whether the bounding boxes
overlap, before we check whether the exact geometries overlap. Second, spatial par-
titioning is used. This allows to join only the corresponding buckets. Third, the exact
geometry is eliminated to reduce the data volumes of the input tables of the join. For
the refinement the exact geometry is retrieved. This results in the following imple-
mentation of the overlaps predicate by means of a new join operator:

CREATE TABLE_OPERATOR overlaps(TABLE Input1(id1 ID, poly1 POLYGON),
TABLE Input2(id2 ID, poly2 POLYGON))

RETURNS TABLE Output1(poly1 POLYGON, Input1.+, poly2 POLYGON,
Input2.+)
AS
{
INSERT INTO Output1
WITH Temp1(id, bbox, bucket) AS

(SELECT id1, bbox(poly1), bucket
 FROM Input1, TABLE (bucket_no(bbox(poly1))) AS B(bucket)),
Temp2(id, bbox, bucket) AS
(SELECT id2, bbox(poly2), bucket
 FROM Input2, TABLE (bucket_no(bbox(poly2))) AS B(bucket))

SELECT poly1, Input1.+, poly2, Input2.+

FROM (SELECT DISTINCT Temp1.id AS id1, Temp2.id AS id2
 FROM Temp1,Temp2
 WHERE Temp1.bucket = Temp2.bucket AND
 bbox_overlaps(Temp1.bbox, Temp2.bbox)) AS Temp3,
Input1, Input2

WHERE Temp3.id1 = Input1.id1 AND
Temp3.id2 = Input2.id2 AND
exact_overlaps(Input1.poly1, Input2.poly2)

};

Example Applications for UDTO 83

CREATE FUNCTION overlaps (POLYGON, POLYGON) RETURNS BOOLEAN
ALLOW overlaps AS JOIN OPERATOR ...

As one can observe, this SQL macro allows a very readable representation of the
algorithm (at least if one is experienced with SQL). The subqueries in the WITH
clause generate two temporary tables with the bounding boxes and the bucket num-
bers for spatial partitioning. Since the UDTF bucket_no is used in the FROM
clause with a correlated tuple variable, the Cartesian product with the corresponding
tuple is generated. That is, we replicate the tuple for each intersecting bucket and
append the bucket number (a single polygon can intersect several buckets [88]). This
allows later on to join the temporary tables on the bucket number (Temp1.bucket
= Temp2.bucket in the innermost SELECT query). Hence, the function
bbox_overlaps is only evaluated on the Cartesian product of all polygons within
the same bucket. Next, duplicate candidate pairs, which might have been introduced
by the spatial partitioning, are eliminated. Finally, in the outermost SELECT state-
ment, the UDF exact_overlaps is processed on the exact polygon geometries
that are fetched from the input tables using an equi-join on the unique values of the
ID columns.

We want to add some remarks concerning this example. The UDTO overlaps is
an SQL macro and can be parallelized automatically. Thus, there is no need to spec-
ify an option for parallel execution. In order to process the join with data parallelism
the bucket number would be selected as a partitioning column due to the equi-join on
the bucket number. Therefore no specific user-defined partitioning function is
needed for parallel processing, as the usual partitioning functions can be applied to
the bucket number, which is an integer value. Please note that if the join on the
bucket number is done via a hash join with linear complexity, the overall complexity
of the UDTO is still linear. This is much better than the quadratic complexity of the
Cartesian product that has to be used, if no UDTO is provided. In subsection 5.5.2
we have evaluated an implementation of a spatial join with a similar execution plan
(plan D). Our measurements have demonstrated that this approach leads to perfor-
mance gains of orders of magnitude compared to current technology and makes par-
allel processing of the join possible. We present a brief evaluation of the
implementation with an SQL macro later in subsection 7.7.1.

A final, but important point concerns the function bucket_no which computes a
spatial partitioning. Actually this function is too simple for applications. The reason
is that it is crucial for the performance of the algorithm to find a suitable partitioning
of the spatial universe as our measurements in subsection 5.5.2 have demonstrated.
The spatial universe is the area which contains all polygons from both relations. The
task is to find a suitable partitioning of the spatial universe into buckets such that
each bucket contains roughly the same number of polygons (or at least the number of
polygons per bucket should not vary extremely). This task is difficult, because it
should ideally take the following parameters into account: the number of polygons in

84 User-Defined Table Operators

each input table, their spatial location, their area, the number of points per polygon
and their spatial distribution. For traditional relational queries the optimizer tries to
use more or less sophisticated statistics that are stored in the system tables to esti-
mate value distributions, etc. In the same manner one could now use such metadata
from (user-defined) system tables to compute parameters for the spatial partitioning.
However, the fundamental problem with this approach is that the input tables do not
correspond to base relations and may have therefore different value distributions
(furthermore, the statistics might not be up to date). A more sophisticated approach
would be to analyze the polygons in the input tables by extracting statistics about the
bounding boxes and to use these statistics to derive an appropriate spatial partition-
ing. UDTO provide full support for this method as we will show below. Therefore
UDTO support run-time optimization taking the actual contents of the input tables
into account.

A More Sophisticated Spatial Partitioning Step

In the following, we propose a more sophisticated version of the spatial join with an
enhanced user-defined data partitioning. We assume here that the polygons are
roughly uniformly distributed in the spatial universe and therefore partition the space
into rectangular buckets of the same size. If a polygon overlaps several buckets, the
function bucket_no returns the numbers of all these buckets. We analyze the input
data in the following way: We first compute the coordinates of the (rectangular) spa-
tial universe using functions like x_lower that extract the lower x-coordinate from
a bounding box and the overall number of polygons and pass these values as param-
eters to the UDF bucket_no. This function divides the spatial universe into buck-
ets in such a way that each bucket holds roughly 10 polygons. The value 10 - being a
constant in the function bucket_no - is chosen as a heuristic (cf. subsection 5.5.2)
that will not always yield the highest performance. However, it should lead to a good
performance in many situations. An improved version of the UDTO overlaps that
demonstrates this method is shown below:

CREATE TABLE_OPERATOR overlaps(TABLE Input1(id1 ID, poly1 POLYGON),
TABLE Input2(id2 ID, poly2 POLYGON))

RETURNS TABLE Output1(poly1 POLYGON, Input1.+, poly2 POLYGON, Input2.+)
AS
{
INSERT INTO Output1
WITH NEW1 (ID, bbox) AS

(SELECT ID1, bbox(poly1) FROM Input1)
NEW2 (ID, bbox) AS
(SELECT ID2, bbox(poly2) FROM Input2)
NEW3 (XMIN, YMIN, XMAX, YMAX, CARD) AS
(SELECT MIN(xmin1), MIN(ymin1), MAX(xmax1), MAX(ymax1), SUM(card1)
 FROM (SELECT MIN(x_lower(bbox)) AS xmin1,

MIN(y_lower(bbox)) AS ymin1,
 MAX (x_upper(bbox)) AS xmax1,

 MAX (y_upper(bbox)) AS ymax1,
COUNT(*) AS card1

Example Applications for UDTO 85

 FROM NEW1
UNION
 SELECT MIN(x_lower(bbox)) AS xmin1,

MIN(y_lower(bbox)) AS ymin1,
MAX (x_upper(bbox)) AS xmax1,
MAX (y_upper(bbox)) AS ymax1,
COUNT(*) AS card1

 FROM NEW2)),
Temp1(ID, bbox, bucket) AS
(SELECT ID, bbox, bucket
 FROM NEW1, NEW3, TABLE (bucket_no(bbox, XMIN, XMAX, YMIN,

YMAX, CARD)) AS B(bucket)),
Temp2(ID, bbox, bucket) AS
(SELECT ID, bbox, bucket
 FROM NEW2, NEW3, TABLE (bucket_no(bbox, XMIN, XMAX, YMIN,

YMAX, CARD)) AS B(bucket))

SELECT poly1, Input1.+, poly2, Input2.+

FROM (SELECT DISTINCT Temp1.id AS id1, Temp2.id AS id2
 FROM Temp1, Temp2
 WHERE Temp1.bucket = Temp2.bucket AND
 bbox_overlaps(Temp1.bbox, Temp2.bbox)) AS Temp3,
Input1, Input2

WHERE Temp3.id1 = Input1.id1 AND
Temp3.id2 = Input2.id2 AND
exact_overlaps(Input1.poly1, Input2.poly2)

};

In addition to the previous algorithm this one computes the table NEW3 that contains
the statistics for the data in the input tables. Then these statistics are used to derive
the tables Temp1 and Temp2. The remainder of the algorithm is the same as in the
previous algorithm.

6.3.2 Different UDTO for the Same Predicate

In this subsection, we would like to discuss the spatial predicate distance_less_than
that checks whether the distance between two points is less than a given maximum
distance. We define a UDT POINT for points in a 2-dimensional plane with appro-
priate UDF like x() and y() that return the coordinates of a point. For example, in the
following query we would like to find all IT businesses located within 50 km of a
university. In our example, columns with the name location have always the data
type POINT:

Statement 1:

SELECT U.name, B.name

FROM universities U, businesses B

WHERE B.type = ‘IT’

AND distance_less_than(U.location,B.location,50)

86 User-Defined Table Operators

In this query the predicate distance_less_than is used as a join predicate like the
overlaps predicate in the previous subsection. However, the predicate could also be
used as a restriction as in the following example where we want to find only IT busi-
nesses near the given location (10, 40) that may represent a specific university:

Statement 2:

SELECT B.name

FROM businesses B

WHERE B.type = ‘IT’ AND distance_less_than(B.location, point(10,40), 50)

In general, the different operations in which a UDP can be evaluated depend on its
actual use within the QEP of a given SQL statement. In the following we will discuss
these different operations and demonstrate how we can employ UDTO as more effi-
cient implementations. Because we will define UDTO only as SQL macros, we can
view this approach also as a way to write new rules for an extensible query opti-
mizer. However, no new rules are created. We create only new instances of generic
optimization rules for UDPs. We will discuss query optimization in the next chapter
in more detail.

Obviously we can distinguish between different operations based on the type of the
parameters of the corresponding UDP distance_less_than. The first and the second
parameter can be constant values or they can be attribute values from a tuple. More-
over, the tuples can come from a single table or from two tables. Hence, we can
define the following UDTO that have a different signature and are discussed below
in detail:

CREATE TABLE_OPERATOR distance_restriction_1
(TABLE Input (p1 POINT), p2 POINT, maxdist DOUBLE)
RETURNS
TABLE Output (p1 POINT, Input.+)
AS
INSERT INTO Output
SELECT p1, I.+
FROM Input AS I
WHERE internal_distance_less_than(p1, p2, maxdist)

AND contains(buffer(p2, maxdist), p1)

CREATE TABLE_OPERATOR distance_restriction_2
(p1 POINT, TABLE Input (p2 POINT), maxdist DOUBLE)
RETURNS
TABLE Output (p2 POINT, Input.+)
AS
INSERT INTO Output
SELECT p2, I.+
FROM Input AS I
WHERE internal_distance_less_than(p1, p2, maxdist)

AND contains(buffer(p1, maxdist), p2)

Example Applications for UDTO 87

CREATE TABLE_OPERATOR distance_restriction_3
(TABLE Input (p1 POINT, p2 POINT), maxdist DOUBLE)
RETURNS
TABLE Output (p1 POINT, p2 POINT, Input.+)
AS
INSERT INTO Output
SELECT p1, p2, I.+
FROM Input AS I
WHERE internal_distance_less_than(p1, p2, maxdist)

CREATE TABLE_OPERATOR distance_join_1
(TABLE Input1 (p1 POINT), TABLE Input2 (p2 POINT), maxdist DOUBLE)
RETURNS
TABLE Output (p1 POINT, Input1.+, p2 POINT, Input2.+)
AS
INSERT INTO Output
SELECT p1, I1.+, p2, I2.+
FROM Input1 AS I1, Input2 AS I2
WHERE internal_distance_less_than(p1, p2, maxdist)

AND contains(buffer(p2, maxdist), p1)

CREATE TABLE_OPERATOR distance_join_2
(TABLE Input1 (p1 POINT), TABLE Input2 (p2 POINT), maxdist DOUBLE)
RETURNS
TABLE Output (p1 POINT, Input1.+, p2 POINT, Input2.+)
AS
INSERT INTO Output
SELECT p1, I1.+, p2, I2.+
FROM Input1 AS I1, Input2 AS I2
WHERE internal_distance_less_than(p1, p2, maxdist)

AND contains(buffer(p1, maxdist), p2)

CREATE FUNCTION distance_less_than (POINT, POINT, DOUBLE)
RETURNS BOOLEAN
ALLOW distance_join_1, distance_join_2 AS JOIN OPERATOR
ALLOW distance_restriction_1, distance_restriction_2,

distance_restriction_3 AS RESTRICTION OPERATOR

Let us now discuss the different UDTO. The first three UDTO are used for restric-
tion operations. The UDTO, distance_restriction_1 and distance_restriction_2,
have symmetric definitions. In their body we have used two UDSF: contains and
buffer. The function buffer (point, distance) generates a box with the point as
center and sides with length 2*distance. Then the function contains(box,point) is
used to test if the point is contained within the box. In general, a restriction with such
an additional predicate is more expensive than the evaluation of the original UDP
(that has the same implementation as the function internal_distance_less_than).
However, if there is a spatial index on the input table that can be used to evaluate the
predicate contains, a performance enhancement of orders of magnitude can be
achieved because a full table scan is replaced by an index access which typically
selects only a tiny fraction of the table. It is the task of a cost-based optimizer to
decide which of the two implementations, a restriction with the original UDP or the
UDTO, is more efficient for a given query. The registration of a UDTO as a restric-

88 User-Defined Table Operators

tion operation simply tells the query optimizer that a second implementation method
is available.
Finally, there is the case that both points are contained in the same table. This can
happen, if a restriction on a base table is specified, or if several join predicates exist
between two tables. In the latter case only one join predicate can be evaluated by a
join operator and the others have to be evaluated on the result. The UDTO
distance_restriction_3 is trivial, since it seems to be difficult to enhance such
operations. The only technique that we can imagine, is predicate caching [47]. In
practice one would not define a UDTO for this kind of restriction operation. Please
note that in this example the optimizer has to select one of the three UDTO for the
restriction based on their signature. In addition, different implementations with the
same signature may exist, as we will discuss below.
The last UDTO, distance_join_1 and distance_join_2, may be applied as an alter-
native implementation for a join between two tables when distance_less_than is
used as a join predicate. Of course, other implementation methods are possible and
we could register several UDTO as alternative join methods (for example methods
that use spatial partitioning similar to the UDTO for the predicate overlaps in the
previous subsection). These two UDTO are useful, if there is a spatial index on the
points of an input table that can be used to evaluate the contains predicate. In this
case, an index-nested-loops join can be used instead of a nested-loops join. The opti-
mizer will then generate alternative execution plans using both UDTO, if appropri-
ate. Because these alternatives have an additional predicate, they will be only
selected if the contains predicate can be evaluated using an index nested-loops join.
This is cheaper than the evaluation of the predicate distance_less_than by a nested-
loops join.
One could add the following pseudo UDTO that describes the case that no table is
involved:

CREATE TABLE_OPERATOR distance_scalar_function
(p1 POINT, p2 POINT, maxdist DOUBLE)
RETURNS BOOLEAN
AS
RETURN(internal_distance_less_than(p1,p2,maxdist))

Of course this is not a correct UDTO, because we have no input table. However, this
pseudo UDTO represents the case that is always reasonably implemented as a
UDSF. Since no input table is involved, it is not possible to improve the efficiency
by a UDTO.
This example shows clearly two points: first, it is beneficial to study the different
operations in which a UDP can be evaluated. UDTO allow to describe these different
scenarios in an adequate syntax. Second, it can be beneficial to provide one or more
UDTO as alternative high-performance implementations for these different opera-
tions. This allows to make use of indexes as well as special algorithms and data
structures.

Example Applications for UDTO 89

6.3.3 Computing the Median: An Aggregation Operator

In this section, we will reconsider the aggregate function median (cf. subsection
3.4.3) as a complex aggregation operation and show that it can be implemented in a
clean and efficient way as a procedural UDTO.

As in subsection 3.4.3 let us assume that we want to select the median of the ages of
certain persons. The corresponding query with the UDAF Median is shown in Fig-
ure 33. In contrast to the query in subsection 3.4.3 (Figure 12) we do not need to pass
the count of the input table explicitly to the median operator and hence do not need
to nest aggregation operations. The reason is that we can implement the counting
step within the body of the UDTO. In the UDTO the position of the median is first
determined by counting the input table. Then the input table is sorted and the median
is computed by fetching values from the sorted table, until the correct position is
reached. Here are the statements to create the UDTO median and the corresponding
UDAF:

CREATE TABLE_OPERATOR median (TABLE Input1(value INTEGER))
RETURNS INTEGER
AS
{

DECLARE count, cardinality, median_pos, result INTEGER;
SET count = 1;
SELECT COUNT(*) FROM Input1 INTO cardinality;
SET median_pos = ceiling ((cardinality + 1) / 2);

F1: FOR result AS SELECT * FROM Input1 ORDER BY value ASC
DO

IF (count = median_pos) THEN
LEAVE F1;

SET count = count + 1;
END FOR;
RETURN result;

};

CREATE AGGREGATE Median (INTEGER) RETURNS INTEGER
ALLOW median AS AGGREGATION OPERATOR ...

This example demonstrates how SQL DML statements and procedural statements
can be mixed in the body of a UDTO. While this implementation does not use the
most efficient algorithm known to compute the median, the algorithm is easy to
implement based on SQL and allows a computation for arbitrary large data sets, as it
does not rely on explicit intermediate data storage in main memory. Moreover, both
embedded SQL queries can be evaluated in parallel as usual. That means that the
optimizer can automatically decide to perform the sort operation for the ORDER BY

SELECT Median(P.Age)
FROM Persons AS P

Figure 33. Computing the Median by Means of a UDTO.

90 User-Defined Table Operators

clause in parallel. Moreover, if the input table has already the required sort order, the
sort operation can be omitted by the optimizer. This example shows again, how our
technique can enable a parallel execution of complex user-defined operators. This is
a significant progress compared to other approaches. Implementing the median as an
aggregate function based on the usual iterator paradigm for UDAF is much more dif-
ficult as we have already pointed out in chapter 3.

6.3.4 A UDTO for a Complex Aggregation

In this subsection we will describe the application of a UDTO to implement a new
feature for an existing document management system called ODS [18]. We first
describe ODS and the profiling service as a new feature that must be implemented in
ODS. Then we show how UDTO can be applied to enable the processing of all pro-
files in a single SQL statement (cf. [79] for an alternative implementation method
that is applicable only by a DBMS vendor).
ODS provides a boolean retrieval model that answers queries on the existence of
word patterns, words, phrases, and boolean expressions of them in documents. Syn-
tax and semantics of the query language can be informally described as follows:

<word> Exact match of <word>

% Wild card character usable in a <word>, allowing to specify
simple pattern matching

. Distance operator, used to combine terms to phrases

& Boolean AND of phrases

| Boolean OR of phrases.

A term is defined as a word or a word pattern. Terms connected by distance opera-
tors form phrases. This simple language defines the basis of the retrieval service, as
for example, the phrase “deduct% . database” asks for all documents in which there
is an occurrence of a word starting with the string ‘deduct’ together with a word
‘database’ and having at most one other arbitrary word in between as indicated by
the distance operator.
The document retrieval model of ODS is based on full-text indexing that, in the case
of ODS, refers to plain relational tables, which are organized in such a way that doc-
ument retrieval can be done efficiently. There are two important tables, a table
Words (Word, Word-ID), which maps each word which appears in at least one
document to a numeric key Word-ID, and a table Documents (Word-ID, Doc-
ID, Pos), which maps word keys to numeric document keys Doc-ID and position
numbers Pos depending on where the word appears in the documents; primary keys
of the tables are underlined. A query that is specified as a boolean retrieval expres-
sion is mapped to an SQL query that uses the full-text index tables to search for all

Example Applications for UDTO 91

document keys that match the given expression. These queries can be quite complex.
In practical applications, the full-text tables are more complex and optimized but
these details are not of interest here.

We will now present our new application, the profiling service as described in [64].
Basically, a profile represents the user’s reading interests and can be expressed as a
single full-text retrieval query in ODS. The profiling service is the (batch) execution
of a large set of profiles, which can be launched at fixed time intervals, for example
once per night. A sample profile, also used in the following, may look like this:

(‘deduct% . database | multimedia database’)

Please observe that profiles are usually evaluated in batch mode, which provides
opportunities for multi-query optimization, i.e., to process a set of queries in an inte-
grated, tightly coupled and optimized fashion. Obviously, it is a great advantage if
one evaluates common subexpressions that occur in different profiles only once.
Common subexpressions can be identified by searching for identical terms. This
analysis can be done off-line and the result can be stored in three tables shown in
Figure 34 for an example with two profiles. Each term that occurs in a profile, i.e.,
each word or word pattern, is assigned a term identifier (Term-ID) and stored in the
Terms table. Terms connected by distance operators and boolean AND operators
form subprofiles. In our example, there are 3 subprofiles. As the number of terms in
a subprofile is variable, we have chosen to describe a subprofile in the Subpro-
files table in the following way: for each term of a subprofile a corresponding
tuple is inserted; the last column, ProfilePos, holds the position of the term within
its subprofile; the Distance column expresses the number of words between the
actual term and the next term in the subprofile as is defined by the distance operator
used in that subprofile. The special value -1 of the Distance column expresses that
this term is the last term of a phrase, and the special value -2 describes that this is the
last term in the subprofile (the ProfilePos of this term gives the total number of
terms in this subprofile). Finally, the Profiles table represents the profiles in dis-
junctive normal form over subprofiles. The tables store the description of the profiles
and have to be updated if the set of profiles changes. Please note that common search
terms occur only once in the Terms table. This reduces the costs of searching consid-
erably.

Given these tables, how can we evaluate the profiles? Clearly, writing a single SQL
query that does the complete work would be desirable. Unfortunately, finding the
documents which match a subprofile is not possible in traditional SQL, i.e., without
a UDTO. This is due to the fact that subprofiles define patterns consisting of a vary-
ing number of terms. In addition the terms have to occur in a certain order and within
certain distances in a document. Even grouping with a UDAF in the HAVING clause
cannot be used, because the UDAF would need to operate on several columns. To
the best of our knowledge, this is currently not supported in commercial systems

92 User-Defined Table Operators

([50], [53], [95]). On the other hand, a UDTO can provide the needed functionality.
Let us call such a UDTO Match_SubProfile. This UDTO returns for each sub-
profile all matching documents. The following query retrieves the Doc-ID of match-
ing documents for all profiles using the full-text index tables Words and Documents
and the UDTO Match_SubProfile:

SELECT DISTINCT Profile-ID, Doc-ID

FROM Profiles AS P,

(SELECT SubPro-ID, Doc-ID

FROM Match_SubProfile(

SELECT SubPro-ID, Doc-ID, Pos, ProfilePos, Distance

FROM Terms, Subprofiles, Words, Documents

WHERE Words.Word LIKE Terms.Term AND

Words.Word-ID = Documents.Word-ID AND

Subprofile.Term-ID = Terms.Term-ID)

) AS S

WHERE P.SubPro-ID = S.SubPro-ID;

In this query the UDTO Match_SubProfile operates on a table expression (the
corresponding input table is called Subprofile_Infos below) that contains for
each subprofile the set of all positions in all documents that contain a word matching
a term of a this subprofile. As a result of the application of the function
Match_SubProfile, the table expression S returns a tuple containing a Subpro-
ID and a Doc-ID for each document and subprofile pair, if the document matches
the expression of the subprofile. Finally, in the outer query block all matches found
are joined with the Profiles table. This results in a list of profiles and the matching
Doc-IDs. The operator Match_SubProfile can be defined as follows:

 Table Terms

Term Term-ID

architect% 6

data% 4

database 2

deduct% 1

multimedia 3

system 5

 Table Subprofiles

SubPro-ID Term-ID Distance ProfilePos

1 1 1 1

1 2 -2 2

2 3 0 1

2 2 -2 2

3 4 -1 1

3 5 0 2

3 6 -2 3

 Table Profiles

Profile-
ID

SubPro-
ID

1 1

1 2

2 2

2 3

Figure 34. Profile Representation for Two Sample Profiles
(primary keys are underlined, common expressions are shaded):

Profile 1: ‘deduct% . database | multimedia database’
 Profile 2: ‘multimedia database | data% & system architect%‘.

Example Applications for UDTO 93

CREATE TABLE_OPERATOR Match_SubProfile
(TABLE Subprofile_Infos (SubPro-ID INTEGER, Doc-ID INTEGER, Pos INTEGER,
ProfilePos INTEGER, Distance INTEGER)

RETURNS
TABLE Subprofile_Docs (SubPro-ID INTEGER, Doc-ID INTEGER)
ALLOW PARALLEL (EQUAL (SubPro-ID, Doc-ID))
AS
{

// declaration of local variables
...

// for each subprofile and for each document:
// scan found term positions in order
FOR input_tuple AS

SELECT SubPro-ID, Doc-ID, ProfilePos, Pos, Distance
FROM Subprofile_Infos
ORDER BY SubPro-ID, Doc-ID, ProfilePos, Pos

DO
// use the input tuples for a single document and subprofile
// to check whether all needed terms occur and
// whether they occur in the correct order and with correct distances
...

IF (/* document matches subprofile */) THEN
// insert subprofile-ID and Document-ID into output table
INSERT INTO Subprofile_Docs
VALUES (input_tuple.SubPro-ID, input_tuple.Doc-ID);

END FOR;
}

For each subprofile and for each document the UDTO Match_SubProfile scans
all tuples that describe the positions where terms of the subprofile occur in the docu-
ment. These input tuples are then used to check whether all phrases of the subprofile
occur in the document as specified in the definition of the subprofile. Because an
efficient algorithm for this subprofile matching is rather complex (a special string
matching algorithm is needed) and not relevant for our examination we have skipped
it in the definition of Match_SubProfile. However, we want to remark that this
subprofile matching can be done without additional SQL DML statements.
Please observe that all profiles are now evaluated with a single query that can be pro-
cessed completely in parallel including the UDTO Match_SubProfile. To sup-
port this, we have specified the option ALLOW PARALLEL (EQUAL(SubPro-ID,
Doc-ID)) for the UDTO. This is the most fine-grained data partitioning that is pos-
sible. The optimizer can choose any data partitioning that is compliant with this par-
titioning. A compliant partitioning can be obtained by the union of none, some, or all
partitions. Hence, the optimizer could also choose the partitioning EQUAL(SubPro-
ID) for the UDTO Match_SubProfile.
Without the possibility to use a UDTO, the profile evaluation must be done with
embedded SQL. This results in much less parallelism as only a part of the profile
evaluation can be processed by the following SQL query:

94 User-Defined Table Operators

SELECT SubPro-ID, Doc-ID, Pos, ProfilePos, Distance
FROM Terms, Subprofiles, Words, Documents
WHERE Words.Word LIKE Terms.Term AND

Words.Word-ID = Documents.Word-ID AND
Subprofile.Term-ID = Terms.Term-ID

ORDER BY SubPro-ID, Doc-ID, Pos

Such a traditional ESQL approach results in a poor response time because expensive
parts of the evaluation have to be done in the application. Furthermore, this evalua-
t i on i s on ly don e i n a s equ en t i a l m ann e r . I n su m m ary , t he U D T O
Match_SubProfile shows that the evaluation of application logic can be inte-
grated into the database system.

6.3.5 Association Rule Mining

In this subsection we want to apply UDTO to the problem of association rule mining.
We will first explain the problem and then we will show how UDTO can be applied
to solve this problem. We present our ideas directly based on [97], where the integra-
tion of association rule mining with ORDBMS by means of UDF is presented. Espe-
cially, we do not propose any new algorithms here. The sole purpose is to show how
UDTO allow to integrate algorithms for new applications into ORDBMS.

We begin with a brief introduction to the problem of association rule mining. The
input for association rule mining consists of a single table with two columns of type
integer: the first column contains a so-called Transaction-ID (TID) that identifies a
specific business transaction like the buying of a set of products. The second column
contains the identifiers of items (e.g. products) that are associated with a transaction.
Each row contains exactly one TID and one item, i.e., the table is in first normal
form.

The output of the association rule mining algorithm is a set of association rules. For
two itemsets S and T the association rule S -> T has the intuitive meaning that trans-
actions that contain the items in S tend to also contain the items in T. The set S is the
premise, the set T the consequence of the rule. For example, this may mean that
some set of products is often bought together with a set of other products. Each rule
has two associated measures: support and confidence. The confidence of a rule
expresses the percentage of those transactions containing the itemset S that also con-
tain the itemset T. The support of a rule is the percentage of all transactions that con-
tain both itemsets S and T. The problem of mining association rules is to find all
rules that satisfy a user-specified minimum support and minimum confidence.

In practical applications, rules contain always only a small subset of the set of all
items. Therefore the number of items per rule is limited in advance to a fixed number
N of items. Hence, the resulting set of rules can be stored within a table where each
row corresponds to one rule. The table has N columns to store items and a column
that contains the actual number of items in this rule. This allows to represent rules

Example Applications for UDTO 95

with less than N items. Furthermore, another column contains the cardinality of the
itemset in the premise of the rule, i.e. |S|. This allows to determine the items that
appear in the premise of the rule, because these items are stored in the first attributes
of a row. An additional column contains the support of this rule. An example for this
rule table for N = 4 is Table 9.

The association rule mining problem can be decomposed into two subproblems:
1. Find all combinations of items, called frequent itemsets, whose support is greater

than minimum support.
2. Use the frequent itemsets to generate the desired rules.
The second step is not crucial for overall performance [97]. Therefore we restrict our
discussion mainly to the first step. However we remark that one can define a UDTO
Generate_Rules that operates on a table that contains the frequent itemsets and
delivers all rules that match the specifications with respect to support and confidence
in the output table.
The first step, generating the frequent itemsets, can be done using the Apriori algo-
rithm [1] which makes multiple passes over the data. In the kth pass it finds all item-
sets having k items, called k-itemsets. Each pass consists of two phases. Let Fk
represent the set of frequent k-itemsets, and Ck the set of candidate k-itemsets
(potentially frequent k-itemsets). During the first phase, candidate generation, we
generate Ck using Fk-1, the set of (k-1)-itemsets found in pass k-1. Ck is a superset of
Fk. In the second phase, support counting, the frequent itemsets in Ck are deter-
mined. This is done as follows: for each transaction all itemsets in Ck are examined.
If an itemset is contained in the transaction then its support count is incremented. At
the end all itemsets with greater than minimum support are inserted into Fk. The
algorithm terminates when either Fk or Ck+1 becomes empty. The set of frequent 1-
itemsets, F1, serves as the starting point of the algorithm. It can be computed directly
by means of the following SQL statement:

SELECT item, Count(*)
FROM Transactions
GROUP BY item
HAVING Count(*) >= msupport);

In this statement the table Transactions contains the set of transactions that form
the input of the algorithm and msupport denotes the number of transactions in
which an item must occur in order to fullfil the requirement with respect to the mini-
mum support. F1 is then used to generate the first needed set of candidate k-itemsets,
i.e., C2.

Table 9. An Example Table with Association Rules for N = 4

item1 item2 item3 item4 num_items len_premise support
s1 s2 t1 NULL 3 2 0.10
s1 t1 NULL NULL 2 1 0.07
...

96 User-Defined Table Operators

In the following we will create UDTO to support both phases, candidate generation
and support counting. We want to remark that support counting is more expensive
than candidate generation. Please note that all UDTO presented in the following are
directly based on the algorithms or SQL commands given in [97].
Candidate Generation

Firs t , we cons ider candidate generat ion. We def ine a c lass of UDTO
Candidate_Gen_K for this task. Please note that we need a different UDTO for
each pass, i.e., for each value of k between 2 and N. The reason is the lack of flexibil-
ity of UDTO with respect to different row types of the input tables. Attribute propa-
gation cannot help in cases like this. With these UDTO, we can generate Ck in pass k
as follows:

INSERT INTO CK
SELECT * FROM Candidate_Gen_K (Fk-1)

We assume here that Ck and Fk are tables to hold the candidate k-itemsets and the
frequent k-itemsets, respectively. Please note that the table Ck must not be material-
ized before the support counting phase. With UDTO we can directly pipe Ck into the
support counting phase and nevertheless yield compact code that is easy to under-
stand.
We can create the UDTO Candidate_Gen_K as follows:

CREATE TABLE_OPERATOR Candidate_Gen_K
(TABLE Fk-1 (item1 INTEGER, item2 INTEGER, ... , itemk-1 INTEGER))
RETURNS
TABLE Ck (item1 INTEGER, item2 INTEGER, ... , itemk INTEGER)
AS
INSERT INTO Ck
SELECT I1.item1, I1.item2, ... , I1.itemk-1, I2.itemk-1
FROM Fk-1 I1, Fk-1 I2, ... , Fk-1 Ik
WHERE // first define a new k-itemset using the (k-1)-itemset of I1

// and the (k-1)th item of I2, if this is smaller than
// the (k-1)th item of I1
I1.item1 = I2.item1 AND
I1.item2 = I2.item2 AND
...
I1.itemk-2 = I2.itemk-2 AND
I1.itemk-1 < I2.itemk-1

AND
// test whether all (k-1)-itemsets of new k-itemset
// are frequent, i.e., are elements of Fk-1
// use an equi-join with Fk-1 to test this membership
// do this for the k-2 (k-1)-itemsets obtained
// by omitting one of the first k-2 items from I1

// omit I1.item1
I1.item2 = I3.item1 AND
I1.item3 = I3.item2 AND
...
I1.itemk-1 = I3.itemk-2 AND

Example Applications for UDTO 97

I2.itemk-1 = I3.itemk-1
AND

// omit I1.item2
I1.item1 = I4.item1 AND
I1.item3 = I4.item2 AND
...
I1.itemk-1 = I4.itemk-2 AND
I2.itemk-1 = I4.itemk-1

AND
...
AND

// omit I1.itemk-2
I1.item1 = Ik.item1 AND
I1.item2 = Ik.item2 AND
...
I1.itemk-3 = Ik.itemk-3 AND
I1.itemk-1 = Ik.itemk-2 AND
I2.itemk-1 = Ik.itemk-1

The idea behind this algorithm is that all (k-1) subsets of frequent k-itemsets are fre-
quent (k-1)-itemsets. Therefore we can generate Ck as follows: first, we join Fk-1
with itself using an equi-join on the first (k-2) columns and a restriction with ‘<‘ on
the (k-1)th column. This generates pairs of frequent (k-1)-itemsets that differ only in
the (k-1)th item. We then add the (k-1)th item of one itemset to the other frequent (k-
1)-itemset. Next, we have to test whether all k (k-1)-itemsubsets of this new k-item-
set are elements of Fk-1. This test can be expressed through additional k-2 joins with
Fk-1 because we know already that the two (k-1)-itemsets that were used to construct
the new k-itemset are frequent. Hence, only the k-2 other (k-1)-itemsubsets must be
checked.
Clearly, it is a benefit if an operation of this complexity can be defined once and then
be shared by all applications. We want to point out that the row type of the table
which contains the input data set will probably always be the same. Otherwise (e.g. if
the items are coded as strings instead of integers), it can be transformed by another
UDTO into a table wi th the sui table row type. Therefore the UDTO
Candidate_Gen_K can in principle be applied to all association rule mining prob-
lems.
Instead of defining different SQL macros for different values of K, we could define a
single SQL macro Candidate_Gen that operates on an input table for N-itemsets. If
K < N, the input table would contain NULL values for many items, similar to the
table for the storage of the association rules (cf. Table 9). This would increase the
table size. However, the most important drawback of such an approach is that the
SQL statements in the body of the SQL macro must be formulated for the case K =
N, which is very inefficient for the case K < N.
Since the algorithm for candidate generation is now encapsulated in the UDTO, we
can exchange the implementation to improve performance without the need to
rewrite all applications. For example, in [1] a special hash-tree in-memory data struc-
ture to store the input table Fk-1 was proposed.

98 User-Defined Table Operators

Support Counting

Support counting can be supported by UDTO as well. For the kth phase we define
the UDTO Support_Count_K. [97] proposes six methods for support counting in
ORDBMS. We consider here the three algorithms GatherJoin, GatherCount and
Vertical that performed best for different cardinalities of Ck. Please note that this car-
dinality is known before the support counting begins if Ck is materialized. Hence, we
can choose the best algorithm for support counting depending on the cardinality of
Ck. This hybrid method was proposed in [97] as the best solution for an integration
into an ORDBMS.

To provide an example, we will implement as a UDTO the algorithm GatherJoin_K,
computing the frequent k-itemsets Fk for a given set of candidate k-itemsets Ck:

CREATE TABLE_OPERATOR Gather_Join_K
(TABLE Transactions (TID INTEGER, item INTEGER),
TABLE Ck (item1 INTEGER, item2 INTEGER, ... , itemk INTEGER),
msupport INTEGER)

RETURNS
TABLE Fk (item1 INTEGER, item2 INTEGER, ... , itemk INTEGER,

count INTEGER)
AS
INSERT INTO Fk
SELECT Ck.item1, Ck.item2, ... , Ck.itemk, Count(*)
FROM Ck,

Subsets_K (Transactions) AS S (item1, item2, ... ,itemk)
WHERE Ck.item1 = S.item1 AND

Ck.item2 = S.item2 AND
...
Ck.itemk = S.itemk

GROUP BY Ck.item1, Ck.item2, ... , Ck.itemk
HAVING Count(*) > msupport

First, this UDTO generates the set of all k-itemsets for each transaction by invoking
the UDTO Subsets_K, that we will describe below. Please note that one k-itemset
can occur in many transactions, i.e., there are duplicates in the output table of
Subsets_K. Then all subsets that do not occur in the candidate set Ck are removed
(remember that Ck is a superset of Fk). This is achieved by an equi-join with Ck.
Finally, the number of duplicates of each k-itemset is computed. It corresponds to
the number of transactions in which the k-itemset occurs. If this number is greater
than the required minimum support msupport, the k-itemset and its count are
inserted into the output table Fk.

The UDTO Subsets_K can be implemented as a procedural UDTO, but we omit it
here for the sake of brevity. This UDTO fetches for each transaction all rows with
items from this transaction from the input table. Then for each transaction, all k-
itemsets are generated and inserted into the output table. If the itemset of a transac-
tion has a size smaller than k, no itemsets are generated for this transaction. An upper
bound for the asymptotic complexity of the UDTO Subsets_K can be derived as

Example Applications for UDTO 99

follows: Let us assume that the number of rows in the input table is i, that the number
of transactions is t, and that the largest itemset of a transaction has cardinality a.
First, the input table must be sorted by the transaction ID. An upper bound for this is
O(). Furthermore, there are at most k-itemsubsets for a transaction and at
most k-itemsubsets for all transactions. Consequently, an upper bound
for the overall complexity is O(+).

Finally, we present an implementation of the UDTO Support_Count_K that
chooses between the three algorithms for support counting at run-time using cost-
estimates that can be computed using analytic formulas as given in [97]. Please note
that all three algorithms GatherJoin, GatherCount and Vertical can be implemented
as UDTO. Here is the definition of Support_Count_K:

CREATE TABLE_OPERATOR Support_Count_K
(TABLE Transactions (TID INTEGER, item INTEGER),
TABLE Ck (item1 INTEGER, item2 INTEGER, ... , itemk INTEGER),
minsupport INTEGER)

RETURNS
TABLE Fk (item1 INTEGER, item2 INTEGER, ... , itemk INTEGER,

count INTEGER)
AS
{
FLOAT cost1, cost2, cost3;
INTEGER cardinality;

// estimate costs
SELECT Count(*) FROM Ck INTO cardinality;
set cost1 = GatherJoinCost(cardinality);
set cost2 = GatherCountCost(cardinality);
set cost3 = VerticalCost(cardinality);

// use estimated costs to choose algorithm
IF (cost1 < cost2 AND cost1 < cost3)

INSERT INTO Fk
SELECT * FROM Gather_Join_K(Transactions, Ck, minsupport)

ELSEIF (cost2 < cost1 AND cost2 < cost3))
INSERT INTO Fk
SELECT * FROM Gather_Count_K(Transactions, Ck, minsupport)

ELSE
INSERT INTO Fk
SELECT * FROM Vertical_K(Transactions, Ck, minsupport)

}

As for candidate generation we can exchange the implementation of the UDTO to
improve the performance.

We can now define a procedural UDTO Association_Rules that does the com-
plete association rule mining. Its input is the table with the transactions, the mini-
mum confidence, and the minimum support and its output is the table with the rules.
The following is a simple definition of this UDTO:

i i()log⋅ a
k 

 

t a
k 

  t 2a⋅<⋅

i i()log⋅ t 2a⋅

100 User-Defined Table Operators

CREATE TABLE_OPERATOR Association_Rules
(TABLE Transactions (TID INTEGER, item INTEGER),
minsupport FLOAT, minconfidence FLOAT)

RETURNS
TABLE Rules (item1 INTEGER, item2 INTEGER, ... , itemN INTEGER,

number INTEGER, length INTEGER, support INTEGER)
AS
{
INTEGER i, k, card, msupport;

// compute number of transactions that correspond to the minimum support
SELECT Count(*) FROM Transactions GROUP BY TID INTO card;
SET msupport = Ceiling(card*minsupport);

// derive set of frequent 1-itemsets, F1
CREATE TABLE F1 (item1 INTEGER, count INTEGER);
INSERT INTO F1
SELECT item, Count(*)
FROM Transactions
GROUP BY item
HAVING Count(*) >= msupport);

SET k = 1;

// derive sets of frequent k-itemsets, Fk, for 2 <= k <= N
WHILE (card > 0 AND k < N)

SET k = k + 1;
ALTER TABLE Fk-1 ADD PRIMARY KEY (item1, item2, ... , itemk-1);
CREATE TABLE Fk (item1 INTEGER, ... ,itemk INTEGER, count INTEGER);
INSERT INTO Fk

SELECT * FROM
Support_Count_K (Transactions, Candidate_Gen_K(Fk-1), msupport);

SELECT Count(*) FROM Fk INTO card;
END WHILE;

// generate rules using the derived sets of frequent k-itemsets
INSERT INTO RULES
SELECT *
FROM Generate_Rules_K(
(SELECT item1,item2,NULL, ... , NULL, count,2 FROM F2 UNION
SELECT item1,item2,item3, NULL, ... , NULL, count,3 FROM F3 UNION
...
SELECT item1,..., itemk-1, NULL,..., NULL, count, k-1 FROM Fk-1 UNION
SELECT item1, ... , itemk, NULL,..., NULL, count, k FROM Fk),
minconfidence);

// clean up
FOR (i=1; i<=k; i++)

DROP TABLE Fi;
}

In the body of this UDTO, the UDTO Candidate_Gen_K for candidate generation
is nested within the UDTO Support_Count_K. As an advantage of this nested
invocation, we do not need to store the candidate k-itemsets explicitly in a table.
Please note that the parameter k is incremented within the while loop. Since we have
to invoke different UDTO depending on the value k, all SQL statements in the body

Related Work 101

of the UDTO Association_Rules must be generated at run-time, i.e., they have to
be dynamic SQL. For the same reason the tables Fk are created at run-time. More-
over, the table names ‘Fk’ must be different for each instance of the UDTO to avoid
name conflicts when several instances are executed at the same time. Of course,
dynamic SQL is allowed within the body of procedural UDTO. We have simplified
these aspects only to ease the presentation.
We want to point out that the most time-consuming parts of the presented association
rule mining algorithm, candidate generation and support counting, can be executed
in parallel. Moreover, this can be done completely automatically by the ORDBMS,
since the UDTO Gather_Join_K and Candidate_Gen_K are SQL macros.
Finally, we demonstrate the flexibility that is introduced UDTO usage for associa-
tion rule mining. Since the output of the rule mining process is a table, we can query
the result immediately, as the following three queries show (in the examples the min-
imum support is always 2% and the minimum confidence is 30%):
1. Find all rules with more than ten items:

SELECT *
FROM Association_Rules((Transactions),0.02,0.3) AS R
WHERE R.length > 10

2. Find all rules in transactions that contain a certain item (denoted by my_item):

SELECT *
FROM Association_Rules((Transactions),0.02,0.3) AS R
WHERE R.item1 = my_item OR

R.item2 = my_item OR
...
R.itemN = my_item

3. Find all rules and sort them by their support:

SELECT *
FROM Association_Rules((Transactions),0.02,0.3) AS R
ORDER BY R.support

6.4 Related Work

While UDF have received much attention during the last years, extensibility at the
level of database operators was not a focus of database research. An approach that
offered extensibility by means of new database operators and that is superior in func-
tionality to our approach is that of the EXODUS project [14]. In EXODUS new
operators could be programmed with the E programming language. However, the
EXODUS approach differs from our approach fundamentally, since the goal of
EXODUS was not to provide extensibility for a complete, ready-to-run DBMS.
Rather the goal was to enable the semi-automatic construction of an application-spe-

102 User-Defined Table Operators

cific DBMS. Thus, EXODUS was a database software engineering project providing
software tools for DBMS construction by vendors. By contrast, our approach allows
to extend a complete ORDBMS by third parties like independent software vendors.
We believe that our approach to program new operators with embedded SQL state-
ments provides more support for parallel execution and fits well into current system
architectures. In addition, developers can use a familiar technique to program
UDTO. Hence, they are the ideal concept to support database extensions for class
libraries by third parties as well as application-specific extensions. See [35] for a for-
mal approach to specify database operations.
In [98] E-ADT are proposed as a new approach to the software architecture of
ORDBMS. An ORDBMS is envisioned as a collection of E-ADT (enhanced ADT).
These E-ADT encapsulate the complete functionality and implementation of ADT.
We believe that this is an interesting approach that is in general more ambitious than
UDTO. In contrast to the E-ADT approach, UDTO fit very well into the architec-
tures of current commercial ORDBMS. Thus, UDTO leverage existing technology.
Moreover, UDTO are designed to support parallel execution.
We have already mentioned that SQL macros can be viewed as a generalization of
views [105]. The difference is that views can only refer to existing base tables and
other views, but not to the results of subqueries or table expressions and that views
cannot have parameters.
In chapter 3, we have proposed a framework for parallel processing of user-defined
scalar and aggregate functions in ORDBMS. We introduced the concept of partition-
ing classes there to support the parallel execution of user-defined scalar and aggre-
gate functions. In this chapter we have generalized this work to enable data
parallelism for N-ary user-defined table operators. In chapter 5 we proposed the
multi-operator method to allow the implementation of complex UDF like parallel
join algorithms for UDPs. However, we view UDTO in the form of SQL macros as
the more appropriate implementation technique. Moreover, procedural UDTO are a
much more powerful concept than the multi-operator method.

6.5 Summary and Conclusions

In this chapter we have proposed UDTO as a novel approach to extensibility with
regard to the execution engine and the query optimizer of ORDBMS. While current
user-defined functions are used within the traditional database operators, our
approach allows to develop new N-ary database operators. This technology provides
a new dimension of extensibility with respect to query optimization and execution in
ORDBMS.

Summary and Conclusions 103

We have presented the following core issues of UDTO:
- the possibility to define M input and N output tables for a user-defined routine
- the access to and the manipulation of these tables by means of SQL commands that

are embedded into procedural code (procedural UDTO) or by means of a single
SQL statement (SQL macro)

- attribute propagation to allow the application of UDTO to a broad range of input
tables based on a generalization relationship between row types

- a method to specify parallel execution schemes for UDTO and the general
algorithm for their parallel processing

- the explicit application of UDTO within SQL and their use as high performance
implementations for operations involving UDF.

The discussion of applications has clearly demonstrated that UDTO have the follow-
ing advantages:
- Interoperability:

Input and output of UDTO are tables. Therefore we can combine UDTO with each
other and integrate them into queries.

- Usage flexibility:
UDTO can be used flexibly in ad-hoc queries.

- Information hiding:
Algorithms and data structures can be hidden from the user and exchanged, if
necessary.

- Centralized definition and maintenance of functional extensions:
A UDTO is defined once and can then be generally used. This is a tremendous
benefit from a software engineering point of view.

- Enhanced readability and understandability of complex SQL statements
Hiding of complex operations can reduce the length and textual complexity of
SQL statements considerably. This support for hierarchical design has been
successful in many areas.

- Parallelization:
UDTO provide an excellent support for parallelization. They can either be
parallelized automatically or the developer can specify data partitioning schemes
explicitly.

- Implementation flexibility:
Developers can use DBMS capabilities like indexing, query processing, and space
management whenever this is appropriate. On the other hand, they can implement
specific, sophisticated algorithms and data structures (hash tables, etc.) whenever
this is beneficial.

- Run-time optimization:
UDTO allow to make flexible use of different implementation methods at run
time. The corresponding control flow can be implemented in procedural UDTO.

104 User-Defined Table Operators

This was demonstrated for association rule mining in subsection 6.3.5. Please note
that run-time optimization is especially of interest for complex applications which
require computationally expensive operations on very large data sets.

We believe that the possibility to define new operators is very promising, especially
since the SQL-based implementation technique is in our view elegant and easy to
understand for developers. In addition, sophisticated optimization technology can be
used to produce high-quality plans that are automatically fine tuned to the estimated
data volumes.

With regard to SQL macros the UDTO approach is similar to pushing views into the
middle of SQL statements. SQL macros allow to push code into a new operator,
where it is defined once (e.g. in a DBMS class library) and where it is available for
general use in SQL. Hence, only a single definition has to be maintained. This eases
the task of the application programmer, makes it less error-prone, improves the
declarative character of SQL DML commands and enhances the readability. More-
over, SQL macros can always be completely integrated into the query execution
plans of SQL statements by macro expansion. As a consequence, the usual parallel-
ization techniques can be used.

The concept of procedural UDTO is much more powerful, because one can execute
queries on the input tables and in addition one can use a procedural language like
SQL PSM to implement complex algorithms. This is especially of interest in combi-
nation with an API that is provided for the development of DBMS class libraries by
some ORDBMS ([50], [53], [54]). UDTO offer the possibility to implement new
algorithms like join algorithms, for example. Moreover, our approach supports data
parallelism for these new database operators. Besides being able to define parallel
processing schemes by specifying allowed partitioning functions, the possibility to
use SQL goes a long way towards enabling as much parallelism as possible, since all
embedded SQL statements can be processed automatically in parallel. An additional
advantage of our SQL-based approach to the implementation of UDTO is that query
optimization can be fully exploited.

UDTO extend the extensibility of current commercial PORDBMS significantly.
However, they offer less flexibility with regard to the implementation of new data-
base operators than database software engineering frameworks like EXODUS. The
reason is that EXODUS supports the implementation of new operators that could
handle arbitrary row types. On the other hand, UDTO are always limited to a sub-
class of rowtypes. One could try to extend the UDTO concept to generic input and
output tables that are dynamically described. However, in case of efficient imple-
mentations for UDF and in case of operations on application-specific schemata the
flexibility of UDTO is already sufficient. The reason is that there are in both cases
specific row types for the input tables because UDF have a fixed signature. There-
fore a lot of practical problems can be solved by this technology.

Summary and Conclusions 105

While the limitation of UDTO to a subclass of rowtypes is sometimes not acceptable,
it is also an immense benefit: It makes the implementation of new database operators
much easier because there is no need to handle arbitrary row types. This allows the
use of SQL to access input and output tables. As a result the programming is much
more easy and large parts of existing technology can be leveraged.
A prototypical implementation of the UDTO concept in a PORDBMS has been
accomplished and we will report on this effort in the next chapter.

CHAPTER 7

Implementation of UDTO

7.1 Introduction

In this chapter we present the concept of an implementation of SQL macros and pro-
cedural UDTO in ORDBMS. We do this based on the prototypical implementation
in the PORDBMS prototype MIDAS which is under development at the Technische
Universität München and the University of Stuttgart. While we focus on the discus-
sion of the actual implementation within MIDAS, we also propose possible optimi-
zations of this implementation.
We introduce MIDAS in section 7.2. Then we discuss the implementation of SQL
macros (section 7.3) and procedural UDTO (section 7.4). Section 7.5 presents some
further query optimization issues for UDTO. While we initially consider only the
explicit invocation of UDTO, in section 7.6, we outline the generation of alternative
execution plans for UDF during query optimization. Section 7.7 evaluates our imple-
mentation.

7.2 The MIDAS Prototype

In this section we introduce the PORDBMS prototype MIDAS. MIDAS is based on
the source code of the sequential RDBMS TransBase [109] which is the commercial
version of the DBMS Merkur [25] - a research prototype developed at the Tech-
nische Universität München during the 80s. MIDAS has been developed within the
long-term research project SFB 314, project B2, which started in 1990 [100] and is
funded by the German National Science Foundation (DFG). One of the early goals of
the project was the construction of a prototypical parallel scalable RDBMS. Recently
extensibility was added as a line of research.
In the following we restrict ourselves to a high-level description of MIDAS. We
present only some details that are needed to provide the necessary background infor-
mation. Additional details follow later, when we describe the implementation of
UDTO. More information on the MIDAS prototype is contained for example in ([7],
[9], [18], [78], [79], [80], [113]).

M. Jaedicke: Parallel Object-Relational Query Processing, LNCS 2169, pp. 106-144, 2001.
© Springer-Verlag Berlin Heidelberg 2001

The MIDAS Prototype 107

7.2.1 Architectural Overview

Figure 35 shows the architecture of the MIDAS prototype. MIDAS was developed as
a shared-disk database system. However, MIDAS was not built on top of special
shared-disk hardware, but rather relies on NFS as a software solution for data shar-
ing. MIDAS can either run on a shared-memory computer (or SMP for symmetric
multi-processing) or on a farm of workstations and servers (which can be SMPs
themselves) with locally attached hard disks. In the latter case, several computers
communicate via a high-speed interconnection (like switched fast ethernet or gigabit
ethernet). The communication in MIDAS is based on the message passing library
Parallel Virtual Machines (PVM) [27].

MIDAS has a client/server architecture (cf. Figure 35). A database application (cli-
ent) connects to the MIDAS server via the administration server. There is only one
administration server process for a MIDAS DBMS instance. It is started when a
database is booted by the database administrator. The administration server assigns
each client exclusively to one application server. If there is no available application
server process for a new client, then the administration server creates one. The client
sends all his requests directly to the corresponding application server. Applications
can use either embedded SQL or the proprietary call-level interface of MIDAS
(called TBX for TransBase eXecute) to execute database commands. The main com-
ponents of the application server are the SQL compiler, the scheduler and the catalog

Inter-Inter-
preter
Inter-

Disk Access

Internal PVM Communication

Internal RPC Communication

External RPC Communication

preterpreter

Slave Slave Slave

Server
Segment Segment

Server Server
Segment

Server

MIDAS Server

DB

Server

DB-Cache DB-CacheDB-Cache

Node A Node B Node C

DB-Application

Administration Application Query

System

Engine

Figure 35. Architecture of the PORDBMS Prototype MIDAS.

108 Implementation of UDTO

manager that manages the system tables. DDL statements are directly processed by
the application server. DML commands are translated into query execution plans
(QEPs).

In MIDAS, a QEP is an operator tree. The QEP is sent by the scheduler to one or
more interpreter processes. An interpreter executes (a subtree of) a given QEP. This
includes the evaluation of all operators in a QEP. Every interpreter has full access to
the database buffer (called DB-Cache in Figure 35) and can also perform I/O opera-
tions. This inclusion of buffer and storage management functionality has been done
due to performance reasons [8]. The main reason is that PVM is not thread-safe and
hence MIDAS cannot use threads to lower the inter-process communication costs.
Each computer (node) of the MIDAS server system has exactly one segment server
process (cf. Figure 35). The segment server does the lock, buffer and storage man-
agement, i.e., it serves as a cache and lock server process. Because MIDAS is a
shared-disk DBMS, the database buffer offers location-transparent page access. The
segment server handles all requests for buffer pages that come from other nodes. It
takes care of cache coherency and concurrency control [65]. All requests that involve
time-consuming operations and that can lead to blocking (like I/O operations) are
delegated to a segment slave process. For each node the segment server dynamically
manages a pool of segment slave and interpreter processes.

7.2.2 Query Compilation and Execution

In this subsection we describe query compilation and execution in more detail. We
start with the compiler. As we have already mentioned, the application server con-
tains the SQL compiler and manages the system tables.

DML statements are internally represented as operator trees. There are item opera-
tors and bulk operators. Bulk operators are operators that represent set-oriented
operations like the restriction, projection, union, and Cartesian product operations of
the relational algebra. Please note that these bulk operators are physical operators in
MIDAS, i.e., they perform a specific algorithm like a nested-loops join, a hash join
or a sort-merge join. Item operators implement operations on scalar values like arith-
metic or boolean operations. The item operators can be combined to a tree that serves
as argument of some bulk operator. For example, a restriction operator has an item
operator tree as argument that describes the restriction predicate. An operator tree is
internally represented as a C-structure. However, it is possible to transform operator
trees in a text format called gentree (cf. subsection 5.4.2). Such a gentree can also be
used as an input for the compiler via a special interface. It is also possible for an
application to directly execute a gentree via the TBX-interface.

Figure 36 shows the components of the application server. All commands are first
processed by the scanner and the parser. DDL statements are parsed and then exe-
cuted directly by the application server. This is reasonable, since DDL commands

The MIDAS Prototype 109

modify the system tables and the catalog manager is a component of the application
server. For DML statements the parser works in two passes. In the first pass, the syn-
tactic and semantic correctness of the statement is checked and an operator tree is
built. During the second pass, additional semantic checks are performed and the
schema of the intermediate results that are produced by the operators is computed.
The result is an initial QEP. However, this QEP is by no means optimized. It is a
direct translation of the SQL statement into an operator tree.

This initial QEP is then preoptimized using some passes of the TransBase optimizer.
This optimizer applies heuristic transformations in several passes to an operator tree.
While this component did the complete optimization in TransBase, it is now largely
replaced by a new optimizer called Model_M (M for MIDAS) ([5], [48], [62]). Some
passes of the TransBase optimizer are still used as a kind of preoptimization step for
Model_M. These passes transform the operator tree into a normalized format, they
transform IN and EXISTS subqueries into joins, and push down restrictions and pro-
jections as far as possible, for example.

The new query optimizer Model_M is still under construction. It is based on the Cas-
cades Optimizer Framework, which has been originally developed by Goetz Graefe
at the Oregon Graduate Institute [30]. This work is now continued by Len Shapiro
and his group at the Portland State University [5]. Cascades supports rule- and cost-
based query optimization. The core of Cascades is the search engine which applies
rules to transform a given QEP and manages the set of generated variants of the
QEP. For each variant, it computes estimated execution costs based on database sta-

Figure 36. Components of the Application Server.

scanner and parser

TransBase preoptimizer

 optimizer

parallelizer

scheduler

engine

scheduled partial QEPs

optimized QEP

parallelized QEP

preoptimized QEP

initial QEP

SQL statement or gentree

based on
Cascades

application server
DDL execution

catalog
manager

110 Implementation of UDTO

tistics and the cost model of the MIDAS engine. When the search is completed, the
plan with the lowest costs is selected.

The parallelizer, called TOPAZ, uses Cascades as a search engine, too ([26], [80]).
Parallelization is done in multiple phases to reduce the search space. The different
phases support different kinds of parallelism, like inter-operator parallelism, intra-
operator parallelism, and pipelining. An important goal of the parallelization is to
keep the overhead for parallel execution low. This overhead results from costs for
communication, data distribution and a higher number of involved processes. The
output of the parallelization is a parallel QEP. Parallelism is expressed by means of
send and receive operators that transfer data streams between producer and con-
sumer processes.

The parallel QEP has certain cost annotations that are used by the scheduler [91].
The scheduler has the task to balance the load in the system. For this purpose the seg-
ment servers exchange information about the current load of the nodes in the system.
The scheduler uses this information about the system state and the cost annotations
of the QEP to assign the different parts of the parallel QEP to the nodes in such a
way that the load is evenly distributed among the different nodes.

The compilation of gentrees differs somewhat. There is a special first pass of the
parser that converts the gentree to the internal representation of the operator tree. The
second pass is the same as for DML statements. Typically, a gentree is then executed
directly by the scheduler without prior optimization and parallelization. However, it
is possible to invoke these phases manually for gentrees.

As we have mentioned above, the engine of MIDAS consists of segment servers,
segment slaves and interpreters. We add some details on the functioning of the inter-
preters in the following. Each interpreter evaluates an operator (sub-)tree. This eval-
uation follows the traditional open-next-close approach. The dataflow within an
interpreter is control-driven, i.e. top-down and one-tuple-at-a-time.

As we have already described, send and receive operators transfer intermediate
results between different interpreters to realize data parallelism and pipelining. The
send operator acts as writer, the receive operator as reader for a communication seg-
ment which is a special implementation of temporary tables [10]. In contrast to the
dataflow within an interpreter, the dataflow between interpreters via communication
segments is data-driven, i.e. bottom-up, and pages are used as the unit of transfer.
Communication segments have many parameters that serve to optimize flow control
and storage management for a given pair of send/receive operators. There exist also
named communication segments that allow the transfer of an intermediate result
between different statements. They can be viewed as an implementation of named
temporary tables that are valid during a single transaction.

The MIDAS Prototype 111

7.2.3 The MIDAS System Tables

In this subsection we briefly introduce the reader to the system tables of MIDAS and
their management. Users can read the system tables by usual SELECT statements.
However, there is a special internal interface to the catalog manager that allows
retrieval and modification of the system tables by other components of the applica-
tion server, like the parser, optimizer and the executor for DDL statements. This is
necessary because the system tables cannot be treated as user-defined base tables.
For efficiency reasons, the results of queries to the system tables are cached in spe-
cial data structures. This allows to avoid the repeated evaluation of such queries.
When the system tables are updated, information in the cache must be invalidated.
Of course, another reason for the special treatment of the system tables is that the
information from the system tables is needed during query compilation.

The TransBase system tables have been adopted unchanged to MIDAS and contain
information on tables, views, and columns, the dependencies for views, users and
their authorizations, and the defined indexes [109]. Some system tables were added
to MIDAS that store database statistics and metadata for user-defined functions [90].
In the following we describe those parts of the system tables to which we refer later
on.

The table systable stores the following information about all persistent tables or
views: the name of the table, the number of its columns, the type of the table (view,
system table or base table), the creator of the table, the date of the creation and the
segment number of the table. The segment number is a unique integer value. Positive
values are used for system and base tables to identify the file in which the table is
stored. Views have a negative segment number.

The table syscolumn contains rows for each defined column with the following
fields: the column name, the segment number of the corresponding table, the data
type of the column, and the position of the column in the table. Other fields contain
information on constraints that are defined on this column.

Metadata on views is stored in the table sysview. The columns contain the segment
number of the view, the text of the CREATE VIEW statement as string, information
on the updatability of the view and the viewtree. The latter is the operator tree of the
SELECT statement that defines the view. This operator tree is stored as a gentree,
i.e. as a string.

Several system tables have been added in [90]. Some of these tables contain statistics
on the data in the base tables. These statistics are generated by a utility (cf. [91]) that
must be executed by the database administrator. There are coarse-grained statistics
on the tables and indexes (like cardinality and number of occupied pages) and fine-
grained statistics on the value distributions within the columns (like equi-depth his-
tograms).

112 Implementation of UDTO

Other tables contain metadata on UDTs and UDSF. These two concepts have been
recently implemented in MIDAS (cf. [39], subsection 7.2.4). The table sys-
datatypes stores information about the built-in data types and the defined UDTs.
The table sysfunctions contains a row for each defined UDSF. It stores the func-
tion name, an internal identifier, the data type of the return value and the number of
parameters. Further parameters describe properties of the function that have been
discussed in section 2.2. For example, whether the function uses a scratchpad,
whether it is deterministic, whether it has side-effects, etc. Moreover, the implemen-
tation of the function is described. The type of the function (sourced function or
external function) is stored. For external functions the name of the DLL that contains
the executable code and the entry point for this DLL are stored.

The table sysfuncparams stores one row for each parameter of a function and one
row for its return value. Each row contains the name of the function, the type of the
row (parameter or return value description), the position of the parameter in the sig-
nature of the function and the description of the data type.

The table sysfuncstat contains the parameters that are used for the estimation of
the execution costs of a UDSF. These parameters are for example the average num-
ber of I/O operations and CPU instructions for each invocation of the function (cf.
subsection 2.2.1). Finally, information about the allowed partitioning strategies for
parallel execution of a UDSF (cf. subsection 3.3.4) is stored in the table sysfun-
cimp. In the next section we will describe how the metadata for UDTO is stored, but
first we describe the implementation of UDSF in MIDAS.

7.2.4 UDSF in MIDAS

Currently, UDSF can be used in SQL statements at all places where expressions are
allowed. However, DDL statements to create and drop UDSF have not yet been
implemented, i.e., one has to update the system tables manually to register a func-
tion. A new item operator, called func, has been implemented that represents a
UDSF in a QEP. This node contains the path and the name of the DLL that contains
the executable code and the corresponding entry point. There is only a single copy of
the DLL in the file system that can be accessed from all nodes via NFS.

The func operator is evaluated once for each invocation of the UDSF within an SQL
statement. During the first execution of the func operator for a given UDSF, the
dynamic linker is invoked to bind the DLL dynamically to the interpreter process, if
this is necessary. Another call translates the symbolic entry point to the DLL into the
main memory address of the executable function. Because the scheduler does not
assign the func operator for a given UDSF always to the same interpreter process, it
can be necessary to load and link the DLL multiple times. However, this occurs only
once per node, since the DLL is a shared object that is used by all interpreters on a
node. Since a DLL typically contains many UDSF - for example all functions in a

Implementation of SQL Macros 113

package - dynamic linking only occurs rarely in a running system and the overhead
is negligible. Because it is sometimes a problem to use an existing library due to
name conflicts we also added the possibility to link libraries statically to interpreter
processes. However, this feature is only available for the developers of the MIDAS
prototype and hence can be used only for internal purposes.
The sons of the func operator contain the arguments of the UDSF. Since UDSF
have different signatures, the number of sons is variable, which is not the case for
almost all other operators. Since the data types of the arguments are also variable, a
generic interface is needed that can be used to call all UDSF in the same way, i.e.,
independent of their signature. This interface is similar to the interface to the
main() routine of C programs: The function is called with 3 arguments. The first
argument is a pointer to the result value, the second argument contains the number of
the arguments of the UDSF and the third argument contains a pointer to an array
with the argument values. All argument values and the return value are internally
casted to a common data type. This data type is defined as the union type of all built-
in data types. The internal return value of the function call is always an integer value
that indicates if the function call was successful or not. In the latter case it contains
an error code. All external UDSF must use this interface to handle their parameters.

7.3 Implementation of SQL Macros

Now, we are ready to describe the implementation of UDTO in MIDAS. We start
with SQL macros in this section, because their implementation is less complex than
that of procedural UDTO. In the first subsection we show how SQL macros are
defined and registered and discuss the corresponding entries in the system tables. In
subsection 7.3.2 we explain how SQL macros can be used in DML statements and
how the macro expansion has been implemented. The last subsection, 7.3.3, presents
a concept for the implementation of SQL macros in middleware. This implementa-
tion is based on automatic rewriting of SQL statements into other SQL statements,
i.e., it works on a textual query representation.

7.3.1 DDL Statements

As we have described in subsection 6.2.2, UDTO are created by means of the state-
ment CREATE TABLE_OPERATOR (or CREATE UDTO for short, cf. Figure 28
and Figure 29 for the syntax). As we will explain in the following the signature of the
SQL macro and its body (the INSERT statement) are stored in the system tables. The
way in which the system tables are used may not always be very clean, but typically
users access only views on the system tables. These views usually hide information
that is only of interest for internal purposes and provide a conceptually clean view on
the metadata.

114 Implementation of UDTO

For our discussion we use the following statement that creates the UDTO my_macro
as an example:

CREATE UDTO my_macro

(TABLE my_input (my_id INTEGER, my_text CHAR(*)), my_string CHAR(*))

RETURNS TABLE my_output (my_id INTEGER, my_text CHAR(*), my_input.+)

AS

INSERT INTO my_output

SELECT a.my_id, a.my_text, a.+

FROM my_input a

WHERE a.text LIKE my_string

This SQL macro selects all rows of the input table, whose attribute my_text
matches the scalar parameter my_string of the SQL macro. The keyword AS sepa-
rates the signature of the SQL macro from its body, the INSERT statement.
The signature of the SQL macro is processed as follows: a row in the table sys-
functions stores its name (my_macro), the number of its parameters (3), and its
type (SQL macro). Other types are UDSF or procedural UDTO. The parameters are
seen as the sequence of the columns of the input tables and the scalar parameters.
Hence, we have three parameters for the SQL macro my_macro: my_id, my_text,
and my_char. For each parameter a description is stored in the table sysfunc-
params. This table contains also a description of each column of the output table
(my_id, my_text and, my_input.+). Columns of the output table that represent
additional input columns of a table (like my_input.+), are stored with the name of
the input table (my_input) as column name and a special data type (for the ‘+’).
Moreover, metadata for input and output tables (my_input and my_output), is
always stored in the tables systable and syscolumn. The entries are similar to
those for base tables. However, like views all input and output tables get negative
segment numbers to distinguish them from base tables. Creating these entries has the
benefit that the parsing of the INSERT statement in the body of the SQL macro
referring to these tables is easier to implement, because the system tables can be used
in the same way as for base tables or views. Finally, for each input or output table an
entry in a new system table sysfuncimp stores to which SQL macro this table
belongs.
After all information about the signature is stored, the body of the SQL macro is pro-
cessed. The INSERT statement is parsed and translated into an operator tree. Then an
entry for the output table is created in the table sysview. Similar to the metadata for a
view, this entry is used to store the text of the INSERT statement and its operator tree
as a gentree. The parser for the INSERT statement had to be extended slightly to
handle references to additional columns of input tables and to the scalar parameters
of the SQL macro in a correct way.
The following statement DROP UDTO deletes all entries in the system tables for the
UDTO my_macro:

DROP UDTO my_macro

Implementation of SQL Macros 115

7.3.2 SQL Macro Expansion in DML Statements

Once an SQL macro is defined it can be used in DML statements. However the usage
in MIDAS is currently limited to the use within the FROM clause of queries. The
following semantically equivalent queries show how the SQL macro my_macro
defined in the last subsection can be used. The queries select information about all
tables whose name begins with ‘sys’ from the system table systable:

SELECT * FROM my_macro (systable (segno, tname), ‘sys%’) a (id, name)

SELECT * FROM my_macro ((SELECT segno, tname FROM systable), ‘sys%’) a (id,

name)

As these examples show, one can either use a base table with a binding for the col-
umns or a table expression as an argument for the SQL macro. In the current imple-
mentation one must define a correlation name (a) and column names (id, name) for
the output table of the SQL macro. One could also take the names that are used in the
definition of the UDTO as default names of output columns (for additional input col-
umns which appear in the output table one can use the column name of the input
tables, unless there is a name conflict).
The macro expansion is done in the first pass of the parser. If the name of an SQL
macro is parsed in the FROM clause then the signature of this SQL macro is
retrieved from the system tables. This metadata is used to check the syntactic and
semantic correctness of the UDTO invocation. For example, it is checked whether
the arguments are tables and scalar values as defined in the signature and whether the
schemata of the input tables are correct. For all arguments of the SQL macro, a rou-
tine of the parser is invoked transforming the argument to an operator tree. If a base
table with a column binding is used as argument an operator tree for the access to
this table is created and the columns are permuted according to the binding. This
assures that the first columns of the resulting table of the operator tree match the col-
umns of the corresponding input table in the UDTO definition. However this permu-
tation is not really done during the execution, because a special pass of the
TransBase optimizer eliminates unnecessary projections. For scalar arguments an
operator delivering a constant value is generated (correlated references to attribute
values are currently not allowed as scalar arguments).
After the operator trees for the arguments (called argument trees) have been created,
the gentree of the INSERT statement of the body of the SQL macro is retrieved from
the table sysview. This gentree is then converted into an operator tree that we call
macro tree. This macro tree is then integrated into the tree of the active DML state-
ment as follows: the top operator of the macro tree is removed. This top operator
inserts rows into the target table. The remainder of the tree produces the rows to be
inserted. In this subtree all references to the input tables are replaced by the appropri-
ate argument trees. Because there can be multiple references to an input table in the
body of an SQL macro, multiple copies of an argument tree can occur in the result

116 Implementation of UDTO

tree. The result tree represents the output table of the UDTO and is returned to the
parser. The parser handles this tree in the same way as the trees that represent the
access to another base table or view in the FROM clause, respectively.

However, there is an additional difficulty during the merge step. The macro tree is
the direct translation of the INSERT statement. Hence, if additional attributes of an
input table must be considered, the schema descriptions of the result tables of the
plan operators have to be adjusted to this situation. Especially, one must take care of
references to attributes (that internally refer to attribute positions and not to attribute
names) and projection operations. This is done by the modification of projection
operations and the insertion of additional projection operations permuting additional
attributes to the end of the row. Thus, attribute references to the first attributes that
occur in the formal input tables of the SQL macro can remain unchanged in the
macro tree. Later the TransBase optimizer eliminates all projection operations not
needed and modifies the attribute references accordingly.

Recursion is not allowed for SQL macros, i.e., one cannot refer in the body of an
SQL macro to the SQL macro itself. However, it is possible to refer to other SQL
macros or procedural UDTO. Other SQL macros are immediately expanded during
the parsing of the INSERT statement in the body of a UDTO. Procedural UDTO are
integrated into the operator tree of an SQL macro as usual. In both cases the resulting
gentree is stored in the system table sysview. One can also nest UDTO, i.e., one can
use the output table of a UDTO directly as the input table for the same or another
UDTO. This case can be handled as usual, too: the operator tree for the output table
of the inner UDTO is constructed and serves as an argument tree (input table) for the
outer UDTO.

7.3.3 Expanding SQL Macros in Preprocessors and Middleware

SQL macros have the additional benefit to enable the use of query rewriting tech-
niques at the textual level of SQL statements to expand them. Hence, a preprocessor
can be applied to expand SQL macros in SQL statements. This might be an imple-
mentation alternative, if the SQL compiler of the DBMS cannot be extended. Such a
technique could also be useful in middleware products like IBM’s Data Joiner that
allow to query several different (O)RDBMS with a single SQL query. Parts of such a
query are pushed down to the DBMS where the data is stored to enable local pro-
cessing, if this reduces the evaluation costs. If the local DBMS does not support an
SQL macro then the macro can be expanded in the middleware layer and all or parts
of it can be pushed down. In the following, we show that this macro expansion is
always possible. However, it might not always lead to more efficient query execution
plans. Hence, the query optimizer in the middleware must be able to estimate the
execution costs in a local DBMS. Modern middleware optimizers have this capabil-
ity [38].

Implementation of SQL Macros 117

An SQL macro consists of an INSERT statement with a subquery Q (SQL macros
inserting a constant table into the output table can be viewed as UDTF, because their
output does not depend on the input). We denote the comprising command contain-
ing the SQL macro by C. First, we will assume that the command C is a SELECT
statement. Later we generalize the rewriting technique to INSERT, UPDATE, and
DELETE.

Please note that the rewriting is trivial for SQL macros explicitly applied. The reason
is that these SQL macros are invoked explicitly with tables or table expressions as
arguments. Thus, they can be merged directly into C by replacing references to the
formal parameter tables and scalar parameters in Q by references to the actual argu-
ments. In addition, the ‘+’ notation has to be replaced by the additional attributes.
Then the SQL macro can be replaced by the table expression Q. Hence, in the fol-
lowing we deal only with SQL macros that are used by the optimizer to implement a
UDF efficiently.

There are four possible usages of UDF that can be implemented by means of SQL
macros (cf. subsection 6.2.3): A UDSF can be used to compute a value in an expres-
sion (projection), a UDAF can be used in an expression in the PROJECT and HAV-
ING clause (aggregation), and a UDP can be used as a predicate in a restriction or in
a join. We will now describe transformations (rewrite rules) for each of these cases
that allow to expand the SQL macro.

Expanding SQL Macros that Serve as Projection

First, we consider the use of an SQL macro to compute a UDSF in a projection oper-
ation. For such an SQL macro, the output table has the same number of rows as the
input table, but an additional column that represents the value that is computed by
the UDSF. Hence, Q must have the following syntax:

SELECT ME1, input.*
FROM input, MF1
WHERE MW1
GROUP BY MG1(input.*)
HAVING MH1

Here ME1 (the ‘M’ refers to macro) denotes the expression that computes the return
value of the UDSF, input.* denotes all columns of the table input, MF1 denotes
the remainder of the FROM clause, MW1 denotes the predicate of the WHERE clause,
MG1 denotes the grouping columns, and MH1 denotes the predicate of the HAVING
clause. Please note that Q might consist of several SELECT blocks of this kind that
are linked by set operations (UNION, EXCEPT, INTERSECT). We have simplified
this aspect to ease the presentation. It is straightforward to extend this algorithm to
SQL macros with set operations at the outermost level of Q. If the SQL macro con-
tains a GROUP BY clause at the top level, all columns of the input table (including
additional columns) must be used as grouping attributes. This is indicated by the

118 Implementation of UDTO

expression MG1(input.*). Otherwise the SQL macro is not an implementation of a
projection as not all columns of the input table are preserved in the output.
The statement C can use a UDSF either in the SELECT or in the WHERE clause. In
the latter case, C looks as follows:

SELECT S1
FROM F1
WHERE W1(U(E1, E2, ..., EN))
GROUP BY G1
HAVING H1

The variables S1, F1, W1, G1, and H1 represent the text of the corresponding clause.
Moreover, the expression W1(U(E1, E2, ..., EN)) indicates that the UDSF U is
evaluated in the WHERE clause with the expressions E1, E2, ..., EN as argu-
ments. Obviously, we can transform C into the following equivalent statement:

SELECT S1’
FROM (SELECT U(E1, E2, ..., EN) AS RESULT, F1.* FROM F1) AS F
WHERE W1’(F.RESULT)
GROUP BY G1’
HAVING H1’

In this statement the UDSF U is first evaluated in the table expression F in which it
occurs in the SELECT clause and the return value is stored in a column RESULT. The
attribute references in S1, W1, G1, and H1 have to be updated to the new column
names of F and the reference to the UDSF U must be replaced by the reference to the
column RESULT. Because the UDSF does now occur in the SELECT clause, we need
to solve the macro expansion only for this case. We emphasize that these rewrite
transformations themselves are not done for efficiency reasons. They only serve to
enable the macro expansion. In contrast, it is the task of the query optimizer (of the
middleware or of the (local) DBMS) to find the cheapest plan.
A statement C that uses the UDSF U in the SELECT clause, in general looks as fol-
lows:

SELECT S1(U(E1, E2, ..., EN))
FROM F1
WHERE W1
GROUP BY G1
HAVING H1

Now we will expand the SQL macro that implements the UDSF U in a projection
operation. This can be eased by a first step that is similar to the last transformation
for UDSF in WHERE clauses:

SELECT S1’(RESULT)
FROM (SELECT U(E1, E2, ..., EN) AS RESULT, F1.* FROM F1) AS F
WHERE W1’
GROUP BY G1’
HAVING H1’

Implementation of SQL Macros 119

Now the UDSF occurs in a table expression that has only the tasks to compute the
UDSF U and to append the result as a new column to the output table). This is
exactly the purpose of the SQL macro for U. Hence, we can rewrite the table expres-
sion:

SELECT U(E1, E2, ..., EN) AS RESULT, F1.* FROM F1

into:

SELECT ME1’(E1, E2, ..., EN), F1.*
FROM F1, MF1’
WHERE MW1’
GROUP BY MG1’(F1.*)
HAVING MH1’

This table expression is generated from Q as follows: the references to the input table
are replaced by references to F1 and ME1, MF1, MW1, MG1, MH1 are modified by
replacing references to columns of the input table and to scalar parameters by the
expressions E1, E2, ..., EN. We indicate this kind of modifications by a ‘’’. In
summary, we have shown that we can replace a reference to a UDSF in a SELECT or
WHERE clause by the expanded SQL macro.
Expanding SQL Macros that Serve as Aggregation

Second, we consider the case that an SQL macro is used to implement a UDAF more
efficiently. In this case the SQL macro produces only a single scalar value - namely
the aggregate. Hence, the SQL macro must have the following general form (as in
the first case, we do not consider set operations):

SELECT ME1
FROM input, MF1
WHERE MW1

A UDAF, denoted by A, can occur either in the SELECT or the HAVING clause of
C. In the latter case, the general form of C is:

SELECT S1
FROM F1
WHERE W1
GROUP BY G1(GA)
HAVING H1 (A(E1, E2, ..., EN), A1, ..., AK)

The grouping attributes are denoted by GA (which might be an empty set of
attributes) and A1, ..., AK denotes all other aggregate functions that occur in the
HAVING clause. We can transform such a statement C into the following statement
where the UDAF A occurs in the SELECT clause:

SELECT F.S
FROM (SELECT S1 AS S,GA, A(E1, E2, ..., EN) AS AGGR, A1, ..., AK

FROM F1

120 Implementation of UDTO

WHERE W1
GROUP BY G1(GA)) AS F

WHERE H1’(F.AGGR, F.A1, ..., F.AK)

Here the inner table expression does the grouping and computes all needed aggregate
values for each group. The outer SELECT block then evaluates the predicate of the
HAVING clause.

Now we show how we can expand an SQL macro for a UDAF A that occurs in a
SELECT clause. Such a statement has the following general form:

SELECT S1, A(E1, E2, ..., EN)
FROM F1
WHERE W1
GROUP BY G1(GA)
HAVING H1 (A1, ... , AK)

The grouping attributes are denoted by GA (which might be an empty set of
attributes) and all aggregates in the HAVING clause are denoted by A1, ... , AK.
It is possible to transform this statement into the following:

SELECT T1.S1, T2.AGGR
FROM (SELECT S1, GA, A1, ... , AK

FROM F1
WHERE W1
GROUP BY G1(GA)) AS T1,

(SELECT ME1’(E1, E2, ..., EN) AS AGGR, GA
FROM F1, MF1
WHERE MW1’ AND W1
GROUP BY G1(GA)) AS T2

WHERE H1’(T1.A1, ... , T1.AK) AND T1.GA = T2.GA

In this statement the grouping occurs twice: once to compute the SQL macro and
once to compute all other aggregates. This seems to lead to additional work, how-
ever, in the query execution plan we can optimize this. For example, it is sufficient to
sort the intermediate table F1 only once for both group-by operations.

Expanding SQL Macros that Serve as Restriction

Third, a UDP can be used as a restriction in the WHERE clause of a statement. In
this case the output table of the corresponding SQL macro contains a subset of the
rows of its input table. The general form of such an SQL macro is the following:

SELECT input.*
FROM input, MF1
WHERE MW1
GROUP BY MG1(input.*)
HAVING MH1

Implementation of SQL Macros 121

If a GROUP BY clause is used then all columns of the input table must be grouping
attributes. A UDP P can occur in the WHERE clause of a statement C. The general
form of C is:

SELECT S1
FROM F1
WHERE W1 OR (W2 AND P)
GROUP BY G1
HAVING H1

Please note that one can transform the WHERE clause always into disjunctive nor-
mal form as shown in C above. We can then transform C as follows to expand the
SQL macro:

SELECT S1
FROM F1
WHERE W1
GROUP BY G1
HAVING H1

UNION

SELECT S1’
FROM (SELECT F1.* FROM F1, MF1 WHERE MW1’

GROUP BY MG1’(F1.*) HAVING MH1’) AS F
WHERE W2’
GROUP BY G1’
HAVING H1’

In summary, we have demonstrated that all statements C that use a UDP as a restric-
tion in their WHERE clause can be transformed in a way that allows the macro
expansion.
Expanding SQL Macros that Serve as Join

Finally, an SQL macro can be used to implement a UDP that is used as a join predi-
cate. In this case the output table of the corresponding SQL macro contains a subset
of the rows of the Cartesian product of its input tables. The general form of such an
SQL macro is the following:

SELECT input1.*, input2.*
FROM input1, input2, MF1
WHERE MW1
GROUP BY MG1(input1.*, input2.*)
HAVING MH1

Since the statement C has the same form as for UDPs that serve as a restriction, the
transformation can be done in the same way.
Expanding SQL Macros in Data Modification Commands

So far we have assumed that the command C is a query. Now we consider the case
that C is a data modification command. All UDF in subqueries of data modification

122 Implementation of UDTO

commands can be treated with the same rewriting algorithm. This is sufficient for all
INSERT commands. Thus, only the cases are left that a UDF is used in the WHERE
clause of an UPDATE or DELETE statement or in the SET clause of an UPDATE
statement (but not within a subquery). Rewriting can be used in these cases, too,
since UPDATE and DELETE statements can be transformed into a representation
where UDTO occur only in subqueries. We describe the three rewriting rules using
SQL with the extension that we denote primary key attributes by PK. We denote a
table by T, an attribute by A, an expression by E and a predicate by P. The first rule
allows to transform DELETE statements of the following form:

DELETE FROM T
WHERE P(... UDF ...)

This command can be rewritten into the following equivalent command:

DELETE FROM T AS T1
WHERE T1.PK IN (SELECT T2.PK FROM T AS T2 WHERE P(... UDF ...))

UPDATE commands can be rewritten in a similar way. The following command:

UPDATE T
SET A = E
WHERE P(... UDF ...)

can be transformed into this equivalent statement:

UPDATE T AS T1
SET A = E
WHERE T1.PK IN (SELECT T2.PK FROM T AS T2 WHERE P(... UDF ...))

In the third case, a UDF is used within an expression in the SET clause of an
UPDATE statement. The following command:

UPDATE T
SET A = E(... UDF ...)
WHERE P

can be transformed into the equivalent statement:

UPDATE T AS T1
SET A = (SELECT E(... UDF ...)

FROM T AS T2
WHERE T2. PK = T1.PK)

WHERE P

Altogether we have shown that it is always possible to expand SQL macros in SQL
DML statements at the textual level by means of equivalence transformations.
Hence, a preprocessor can be used to expand SQL macros. Then the modified state-
ment is passed on to the DBMS. As we have already pointed out, SQL macros
should not always be used because the traditional implementation by means of an

Implementation of Procedural UDTO 123

external function might have the better performance in some cases. A preprocessor
or an optimizer in the middleware must be aware of this situation and must make a
cost-based decision.

7.4 Implementation of Procedural UDTO

In this section, we present the implementation of procedural UDTO. We refer to the
implementation within MIDAS that is to a large extent described in [49]. Not all fea-
tures have been implemented yet: for example, the integration of UDTO into the par-
allelizer and the new optimizer, Model_M, is still missing. Nevertheless, it is already
possible to execute procedural UDTO in parallel (cf. subsection 7.4.4). There are
also some restrictions with respect to the body of procedural UDTO: SQL com-
mands referring to input and output tables cannot be used yet. However, one can exe-
cute manually crafted gentrees referring to the input and output tables (cf. subsection
7.4.6). While input tables can be referenced multiple times, it is not yet possible to
execute more than one insert statement that writes into the output table (cf. subsec-
tion 7.4.6). More details on the existing implementation can be found in [49].

In the following subsections, we discuss the extensions that have been made to the
different system components to implement procedural UDTO. We begin with the
components of the application server and continue with the engine.

7.4.1 Extensions to the SQL Compiler

The CREATE statements for procedural UDTO differ only in their body from those
for SQL macros: instead of an INSERT statement the body consists of the keyword
EXTERN, the path of a DLL, and the corresponding symbolic entry point. The
DROP statement is identical for SQL macros and procedural UDTO. The following
is an example for the registration of a procedural UDTO my_udto to MIDAS that
has the same functionality as the SQL macro my_macro defined in subsection 7.3.1:

CREATE UDTO my_udto

(TABLE my_input (my_id INTEGER, my_text CHAR(*)), my_char CHAR(*))

RETURNS TABLE my_output (my_id INTEGER, my_text CHAR(*), my_input.+)

AS

EXTERN ‘/path/udtolib’#‘my_input_entry’

The signature for procedural UDTO is stored in the system tables in exactly the same
way as for SQL macros. However, no gentree for the body is stored in the table sys-
view. Moreover, the entry type for the UDTO in the table sysfunctions is set to
procedural UDTO and the description of the DLL and the entry point are stored there
in the same way as for UDSF.

124 Implementation of UDTO

Another difference to SQL macros is that procedural UDTO, same as UDF, cannot
be parallelized automatically. Hence, we have defined the ALLOW PARALLEL
clause in subsection 6.2.4. The information provided in this clause has to be stored as
metadata for parallelization, i.e., we have to store the set of allowed partitioning
schemes for the input tables. This information is stored in the table sysfuncimp.
Because a procedural UDTO is in a way a black box for the query optimizer, devel-
opers should provide hints for the optimizer about the execution costs and the selec-
tivity of a procedural UDTO. In contrast to UDSF it is not sufficient to provide some
constant values as parameters for a fixed formula that does the cost computation.
Since procedural UDTO are database operators, one can solve both problems as fol-
lows (see subsection 7.5.2 for details): the developer provides two functions: one for
cost estimation and one for selectivity estimation. Both of these functions are
invoked by the optimizer with all statistics that are available for the input tables and
the values of the scalar parameters. The use of these statistics makes sense, because
UDTO are bulk operators operating on tables.
As the following example statement demonstrates, procedural UDTO may be used
exactly in the same way as SQL macros:

SELECT * FROM my_udto (systable (segno, tname), ‘sys%’) a (id, name)

In the following, we describe how a procedural UDTO is represented in operator
trees of queries and DML statements. A new database operator called udto has been
built into the compiler and the execution system of MIDAS. This operator contains -
similar to the func node for UDSF - the path and name of the DLL and the entry
point for the procedure that implements the body of the procedural UDTO. The udto
operator has a variable number of sons, because the number of input tables and scalar
parameters varies for different UDTO. Each udto operator has a receive operator
as father and send operators as sons. The receive operator reads the output table of
the UDTO, the send operators write the input tables. This kind of embedding of
udto operators is shown in Figure 37 for a UDTO with two arguments. The reasons
for this embedding are: first, the body of the UDTO is always executed by different
processes than the surrounding subtrees. Second, the input tables must be material-
ized if there is more than one reference to them in the body of the UDTO.
Normally send operators have a receive operator as father and vice versa, i.e.,
they occur always together as a pair in operator trees. In case of udto operators, the
complimentary send and receive operators do not occur explicitly in the operator
tree. Rather they are implicitly contained within the udto operator. Hence, the udto
operator also stores the needed parameters for the send operator writing to the out-
put tables and for the receive operators reading from the input tables. The udto
operator also stores cost informations for the scheduler. However, these costs are not
yet computed in MIDAS.
When a DML statement with a procedural UDTO is parsed, the same syntactic and
semantic checks are performed as for SQL macros. However, instead of the macro

Implementation of Procedural UDTO 125

expansion step (cf. subsection 7.3.2) a udto operator is generated with the needed
send and receive operators for its embedding. Then the argument trees represent-
ing the input tables are placed as inputs for the send operators below the udto opera-
tor. The resulting tree with the receive operator as top node is returned to the calling
parsing routine.

7.4.2 Extensions to the Optimizer and the Parallelizer

In this subsection, we discuss the necessary extensions for UDTO to Model_M and
the parallelizer. Because these extensions have not yet been implemented (exten-
sions for UDSF are also missing for Model_M; see section 2.4 for optimization tech-
niques for them), we present only the concept.

First, the udto operator must be integrated into Model_M as a logical and physical
operator. Second, the routines that convert MIDAS operator trees into logical opera-
tor trees as input for Model_M and that convert the optimized physical Model_M
tree back into a MIDAS operator tree have to be adjusted. Third, the cost model must
be extended to UDTO. This includes the invocation of functions for cost and selec-
tivity estimation. Since these functions are provided by developers and are specific
for a given UDTO, their description must be retrieved from the system tables.
Finally, the rules must be adjusted to take new UDTO into account during transfor-
mations. We discuss special optimization rules for UDTO as well as the generation
of query execution plans with UDTO as efficient implementations of UDF later in
section 7.6.

The extensions to the parallelizer are similar to those for Model_M due to the same
underlying technology in both components. For example, a new operator must be
defined, the conversion routines and the cost model of the parallelizer must be
adapted. Moreover, the rules of the parallelizer manipulating the send and receive
operators must take procedural UDTO into consideration. Especially, the allowed
partitioning strategies as defined in the ALLOW PARALLEL clause of the CRE-
ATE UDTO statement must be considered.

receive

...

send

...

send

...

Figure 37. Embedding of udto Operators into MIDAS Operator Trees.

udto

126 Implementation of UDTO

7.4.3 Extensions to the Scheduler

The scheduler breaks an operator tree into subtrees and assigns the subtrees to pro-
cessing nodes of the parallel machine with the goal to balance the load among the
different nodes of the system. The operator tree is normally cut between a receive
and a send operator. Since UDTO embody implicitly the functionality of the send
operator for the output table and the functionality of the receive operators for the
input tables, this mechanism has to be adapted: the tree must be cut between the
receive operator and the udto and between the udto and its sons, the send opera-
tors. Thus, a subtree that contains a UDTO with N sons is decomposed into N + 2
subtrees: one subtree containing the receive operator as leaf, one subtree contain-
ing only the udto operator and N subtrees having the sons of the udto operator as
root. This is demonstrated in Figure 38. Other modifications of the scheduling rou-
tines were necessary. For example, the internal identifier of a communication seg-
ment (cf. subsection 7.2.2) is normally set by the scheduler when it handles the send
operator writing to this communication segment. Since there is no send operator for
the output table the corresponding routine had to be changed. Another case not
occurred before is that the tree is cut immediately below of an operator (the udto)
having several sons, because a receive operator has only a single send operator as
a son. This results into the situation that one cut creates more than one new subtree.
Modifications of the present implementation in order to take care of this special case
were necessary, too.

7.4.4 Extensions to the Execution Engine

Now we present an overview of the execution of UDTO. To simplify the presenta-
tion we initially consider only the sequential execution of a QEP with a single udto
operator.

receive

...

send

...

send

...

Figure 38. The Scheduler Cuts a Tree with a udto Operator into Subtrees.

udto

receive

...

send

...

send

...

udto

Implementation of Procedural UDTO 127

Figure 39 shows the involved processes of the engine and their interaction during the
execution. Application server A processes an SQL statement of an application with a
procedural UDTO and translates this statement into a QEP. Then the application
server requests a UDTO_start process from the segment server (step 1 in Figure 39).
Each UDTO_start process has the task to evaluate an instance of a udto operator as
we will describe below. Each segment server manages a pool of UDTO_start pro-
cesses on its node. If no free UDTO_start process is available in the pool, the seg-
ment server creates a new process, otherwise an existing process is reused (step 2 in
Figure 39). The segment server then returns the task ID (that is used for communica-
tion by PVM) of the assigned UDTO_start process to the application server A (step 3
in Figure 39).

The application server schedules the QEP as described in subsection 7.4.3. The
scheduler assigns the udto operator to interpreter A and passes the task ID of the
corresponding UDTO_start process to this interpreter (step 4 in Figure 39). The other
subtrees of the QEP are assigned to different interpreters not shown in Figure 39.
The interpreter passes the udto operator to the UDTO_start process (step 5 in Figure

Application Server A Segment Server

Interpreter A UDTO_start process

Interpreter B1

Application Server B

Interpreter B2

Figure 39. Process Interaction During the Evaluation of an SQL Statement.

❶

❷

❸

❹

➐ ➐

➏

❾

❺

❽

request UDTO_start process

start or
reuse process

return after
processing
of UDTO

pass udto
operator and
task ID of
UDTO_start
process

ship database
requests

evaluate SQL
statement

return task ID of UDTO_start process

pass udto operator for evaluation

return control

evaluate SQL
statement

SQL statement
with procedural
UDTO

128 Implementation of UDTO

39). The UDTO_start process connects via the administration server to a second
application server B. It executes the code of the UDTO, i.e., it calls the dynamic
linker to link the corresponding DLL to the process and executes the function imple-
menting the body of the UDTO. The UDTO_start process sends all database requests
(TBX-commands) that occur within the UDTO body to application server B (step 6
in Figure 39). All of these requests are executed within the same transaction as the
QEP that contains the udto operator. This is achieved by means of special exten-
sions to transaction management described below. Complex SQL statements com-
piled by application server B can be parallelized and executed by several interpreters
as usual (this is indicated by the interpreters B1 and B2 for step 7 in Figure 39).
When the evaluation of the UDTO body is finished, the UDTO_start process returns
the control to interpreter A (step 8 in Figure 39) and notifies the segment server that
it is available to service other requests (step 9 in Figure 39).
In case of a parallel execution of a procedural UDTO, the input tables are partitioned
or replicated according to a scheme that the developer has specified (cf. subsection
6.2.4). Copies of the processes interpreter A, UDTO_start process, application server
B and the necessary interpreters Bi are needed for each instance of a procedural
UDTO. During the parallel execution each instance operates on its partition or copy
of an input table and writes to its partition of the output table. Hence, there is no need
to synchronize the execution of the different instances with each other. As a result of
this architecture, we can now execute a procedural UDTO in parallel by creating sev-
eral instances and we can also execute the SQL statements within the body of each
UDTO instance in parallel.
In the following two subsections, we provide more details on the needed extensions
to transaction management and on the implementation of input and output tables.

7.4.5 Extensions to Transaction Management

In this subsection we explain the extensions to transaction management [34] neces-
sary to support our implementation concept for procedural UDTO. As we have
already mentioned above, the goal of these extensions was to execute the SQL state-
ments of the UDTO body within the transaction of the QEP which contains this
UDTO.
The current transaction concept of MIDAS supports essentially flat ACID transac-
tions (extensions that are beyond the scope of this work can be found in [113]). Nor-
mally, there is only one application server that handles all requests of a transaction.
This application server is also responsible for transaction management. It generates a
unique identifier, the transaction ID, for the transaction and updates data structures
for transaction management in the shared memory. This transaction ID is used to link
read and write operations with the transaction that caused them. Based on this infor-
mation, the basic idea for the execution of procedural UDTO is to pass the transac-

Implementation of Procedural UDTO 129

tion ID from application server A to application server B (cf. Figure 39) and to use it
also to mark all actions that are done by application server B during the execution of
the UDTO body. In other words, application server B does not start a new transac-
tion to execute the database commands, but appends its actions to the running trans-
action of application server A.

Figure 40 shows how this functions in detail. It provides a more detailed view on
step 6 of Figure 39. The UDTO_start process gets the transaction ID and the name of
the database from application server A through interpreter A. It connects to the data-
base via the administration server and gets the task ID of application server B. Then
it passes on to application server B the transaction ID and demands to link all follow-
ing actions to this transaction. This is done with the new command JOIN TRANS-
ACTION. By contrast, to start a new transaction the command BEGIN
TRANSACTION must be used. When all SQL statements are executed, the new
command LEAVE TRANSACTION tells application server B to disconnect from
the running transaction. This command does not commit the transaction. It is used to
reset internal data structures of application server B. Finally, the UDTO_start pro-
cess disconnects from the database and application server B is free to service other
clients.

This concept solves all problems for UDTO related to traditional flat transaction
management. However, now multiple DML statements can be executed in parallel
within a single transaction. This leads to problems that are similar to those that result
from inter-query parallelism within the same transaction (inter-query parallelism is
not supported in MIDAS): we have to guarantee that there is no conflict between
read and write operations. In case of procedural UDTO the problem is that the state-
ment containing a UDTO is executed in parallel to the statements within the body of
the UDTO. The same situation results when procedural UDTO are nested. Moreover,
if a statement contains several procedural UDTO then the statements in their bodies
are processed in parallel, too.

Figure 40. Interaction between UDTO_start Process, Administration Server and
Application Server B During the Execution of a Procedural UDTO.

UDTO_start process

Application Server B

connect
to DB

Administration Server

PVM task
ID of
application

JOIN
TA

LEAVE
TA

SQL
statements

disconnect
from DB

transaction
ID

130 Implementation of UDTO

To handle these problems one can employ intra-transaction synchronization. The
task of intra-transaction synchronization is to prevent conflicts between the different
statements. We define that a conflict occurs, if the read sets and the write sets of
statements that might be executed in parallel overlap. Conflicts must be avoided to
guarantee a correct semantics for the statement. Especially, a statement should not
see data modified by another statement that might run in parallel. To make this prob-
lem more clear, we use a special nested transaction model (cf. [42] and [43] for
nested transactions) as a refinement of the ACID-transaction paradigm for the fol-
lowing description. Subtransactions are only used to detect conflicts with respect to
intra-transaction synchronization. If a conflict occurs, the statement must be rolled
back (statement atomicity), i.e., in contrast to traditional locking protocols, a sub-
transaction does never wait for a lock.
We demonstrate this problem for a simple example. Figure 41 shows the execution
of a statement s1.1 within a transaction T. We assume that s1.1 invokes two proce-
dural UDTO u1 and u2. The body of u1 contains the statements s1.1.1, s1.1.2, ... ,
s1.1.K, the body of u2 contains the statements s1.2.1, s1.2.2, ... , s1.2.L. Moreover,
we assume that the statement s1.2.i invokes a third procedural UDTO u3, which con-
tains the statements s1.2.i.1, s1.2.i.2, ... , s1.2.i.N. The numbers of the statements
describe their nesting within the statement s1.1 of transaction T. As shown in Figure
41 JOIN TA and LEAVE TA commands embrace all statements in the bodies of u1,
u2, and u3 and integrate them into transaction T. We can now assign the execution of
statement s1.1 and of the 3 procedural UDTO to 4 subtransactions: ST1 for statement
s1.1, ST1.1 for u1, ST1.2 for u2, ST1.2.i for u3. The numbers of the subtransactions
correspond to the prefix of the statement numbers within these subtransactions.
All statements within two different subtransactions can be executed in parallel. We
emphasize that this includes parallelism between parent and child subtransactions
(for example ST1 and ST1.1) as well as between sibling subtransactions (for exam-

s1.2.i.1 s1.2.i.2 s1.2.i.N

Figure 41. Intra- and Inter-query Parallelism During the Execution of a Query with Nested
Procedural UDTO.

s1.2.1

s1.1.1

s1.2.2 s1.2.i s1.2.L

s1.1.2 s1.1.K

s1.1

T

...

......

...

u1

u2

u3

JOIN TA

LEAVE TA

ST1

ST1.1

ST1.2

ST1.2.i

Implementation of Procedural UDTO 131

ple ST1.1 and ST1.2). Hence, in this example four statements can be executed in par-
allel as demonstrated in Figure 41. We have to prevent that a subtransaction reads
data modified by another subtransaction. However, all statements within the same
subtransaction are executed one after the other. Hence, there can be no conflicts
within a subtransaction. Please note that the scenario in Figure 41 covers only the
sequential execution of the procedural UDTO. In case of a parallel execution there
are multiple parallel subtransactions for the execution of each UDTO and there can
be also conflicts between them. However, a UDTO should only be executed in paral-
lel if such conflicts do not occur.

How can this kind of intra-transaction synchronization be supported? Traditional
concurrency control (or inter-transaction synchronization) is implemented by a hier-
archical locking protocol optimized for a high degree of concurrent transactions. By
contrast, the most important requirement for intra-transaction synchronization is to
operate with low costs. This goal can be achieved by the choice of tables as granule
for intra-transaction locks, for example. In this case, if a table has been read by a
statement, it cannot be modified by a statement within another subtransaction and
vice versa. In addition, if the top-level statement modifies a table, this table must not
be updated on the fly and subtransactions have read-only access to it.

We want to point out that intra-transaction synchronization is only needed, if one
allows arbitrary data modification statements within the body of procedural UDTO.
Of course, INSERT statements that insert into output tables do not cause any con-
flicts. The same holds for statements that manipulate temporary tables that are cre-
ated and dropped within each instance of a UDTO. Because in our current view the
modification of arbitrary base tables is hardly needed in practical applications, we
suggest to allow only data manipulation commands for temporary and output tables
(or to leave the responsibility for the correctness to the developer of a UDTO, i.e.,
the system does not perform any intra-transaction synchronization). In this case, no
intra-transaction synchronization is needed. This simplifies the implementation con-
siderably (intra-transaction synchronization is not implemented in MIDAS). We
want to remark here that modifications of base tables were not needed in any of the
example applications discussed in section 6.3.

7.4.6 Implementation of Input and Output Tables

Now we will describe how input and output tables for procedural UDTO are imple-
mented in MIDAS and how the access to these tables is implemented within the
body of procedural UDTO.

Basically, the input tables can be seen as temporary tables that are created and writ-
ten once and that can be read multiple times. The output table is also a temporary
table created once, but there can be several INSERT statements that append tuples to
this table. On the other hand, the output table is usually read only once. Only in the

132 Implementation of UDTO

case that the output table must be replicated for parallel execution, it is read several
times. Both kinds of tables can be created when the evaluation of the UDTO begins
and they must exist until this evaluation is finished. The current implementation sup-
ports these general requirements. However, optimizations are possible for special
cases described later.
The current implementation of both kinds of tables is based on the already existing
named communication segments [78]. These communication segments have been
introduced to store tables temporarily and remain valid until the end of the transac-
tion. They have a name, which allows to refer to them in other statements. They can
be used in operator trees by means of a special implementation of the send and
receive operators that get the name of the communication segment as an argument.
A send operator may write to a named communication segment and a receive
operator may read its input from a named communication segment. The send and the
receive operator referring to the same named communication segment may occur in
different statements within the same transaction (obviously the send must be exe-
cuted before the corresponding receive).
Figure 42 shows the use of send and receive operators with names to implement a
procedural UDTO with two input tables. The send operators that are the sons of a
udto operator and the receive operator on top of a udto work both with named
communication segments. Within the body of a UDTO a reference to an input table
within an SQL statement is implemented by means of a receive operator that reads
from a named communication segment. Conversely, an insertion into the output table
is translated into a send operator that writes to the communication segment that is
read by the receive on top of the udto. The names that are given to communica-
tion segments must be unique within a transaction because they serve as identifiers.
Hence, the names that are used for input and output tables are generated by the com-
piler and are unique for each instance of a udto. Please note that this mechanism is
used to transfer both, input tables and scalar UDTO arguments.

send ‘input1’

udto

Figure 42. Implementation of Input and Output Tables by Means of Named Communication Segments.

send ‘input2’

receive ‘output’

udto

send ‘output’

receive ‘input1’ receive ‘input2’

Implementation of Procedural UDTO 133

As we have remarked earlier, the implementation is not yet complete. Currently,
SQL statements referring to input and output tables cannot be used within the body
of UDTO. The reason is that the compiler is not yet extended appropriately. How-
ever, it is instead possible to execute a gentree via the TBX interface. Gentrees can
refer to input and output tables by using reserved names for the communication seg-
ments (‘UDTO_input_N’ and ‘UDTO_output’; N is the number of the input table)
that are translated into the correct names for the given udto instance by the com-
piler.

Moreover, in the current prototype only a single INSERT statement can be executed
on the output table. The reason is that communication segments can currently be
written only by a single writer, i.e., a single receive operator instance. Possible
solutions for this are either to extend the implementation of communication seg-
ments appropriately or to modify the compiler as follows1: instead of translating dif-
ferent INSERT statements into operator trees with different send operators as root,
one may reuse the top send operator that writes into the output table. In this case, the
send operator is initialized only once, when the evaluation of the UDTO begins. The
operator trees of the different INSERT statements are then appended as subtree to
this send operator. If one INSERT has been executed, the subtree is exchanged with
that of the next INSERT. We leave it to future work to implement one of these alter-
natives.

The implementation described above can be enhanced by several measures. We out-
line these issues here, but they have not been implemented yet. First, the passing of
scalar parameters to UDTO can be improved. Currently, scalar parameters are passed
on like input tables via a named communication segment. This is a high overhead.
Obviously, we can directly pass scalar values on to the UDTO, since their value is
known at compile time of the DML statement.

Second, we can optimize the handling of the input tables. If an input table expression
with a corresponding QEP q is used only as the input for the UDTO (it could also be
a common table expression referenced several times within a query; however this
feature is not available in MDAS), then there is a trade-off between the materializa-
tion of the input table and its repeated computation, if this is possible. Instead of
passing the table to the UDTO, we can also pass the QEP q to the application server
that evaluates the embedded SQL statements within the body of the UDTO. Then the
application server replaces references to the input table by the QEP, i.e., the input
table is derived by the QEP. Since there may be multiple references to this input
table within the body of the UDTO, the QEP might be executed several times. In the
latter case, it might be better to compute the input table once and materialize it by
means of a named communication segment which can then be read several times.

1. Proposed by Stephan Zimmermann (private communication).

134 Implementation of UDTO

Third, if an input table is materialized, it may be beneficial to use a communication
segment with a B-tree as index. The use of an index is favourable if the input table is
accessed multiple times and the index can support these accesses. The difficulty in
determining whether materialization and indexing pay off is that the SQL statements
are embedded in procedural code, with may include loops and similar constructs. As
a result, it is in general impossible to determine how often an embedded SQL state-
ment will be executed. Hence, we cannot automatically predict how often an input
table is accessed. A practical work-around for this difficulty might be to allow devel-
opers to specify hints for the handling of the input tables (such as materialize or
index).
Fourth, the case of a single insertion into the output table can be optimized. Here,
one can use pipelining for the communication segment. The pages of the communi-
cation segment can then be discarded immediately after they have been read and do
not have to be materialized (this is not possible, if the output table must be replicated
for parallel execution). This can be implemented in MIDAS by using a usual
unnamed instead of a named communication segment.
A final issue concerns the optimization of the implementation of communication
segments. Due to the rising importance of symmetric multiprocessors with a shared-
memory architecture (the low-end systems with 4 processors are commodity systems
now and commodity servers with 8 to 16 processors are expected in the near future),
the implementation of communication segments should be optimized for this hard-
ware architecture. This can reduce the costs for communication significantly. The
implementation of these five techniques is left to future work. This closes the
description of the implementation of procedural UDTO in MIDAS.

7.5 Optimization Issues for UDTO

In this section we want to discuss several technical issues that come along for query
optimization with the integration of SQL macros and procedural UDTO into
PORDBMS.

7.5.1 UDTO and Implied Predicates

First, we want to discuss an issue that is relevant for query optimization with UDTO.
Often, a UDTO that implements a specific UDP A contains one or more additional
predicates that are implied by A. Each implied predicate B is always true, if A is true
(but usually not vice versa), i.e., A → B. The reason for the use of implied predicates
is that they can be added to implement a cheap filter step. For example, in the SQL
macro distance_restriction_1 (cf. subsection 6.3.2) the predicate contains
is implied by the predicate internal_distance_less_than. Now the problem
with implied predicates is that after the macro expansion they appear in the operator

Optimization Issues for UDTO 135

trees together with the original predicate. In this situation a state-of-the-art query
optimizer will fail to predict the cardinality of the query result correctly. The reason
is that the selectivity of the predicate A AND B is computed as the product of the
selectivities of both predicates:

sel (A AND B) = sel(A) * sel(B),

where sel() denotes the selectivity factor of an expression. However, since A → B
holds, the correct selectivity is the same as the selectivity of A alone, i.e.:

sel(A AND B) = sel(A).

Similarly, the selectivity of A OR B is the same as the selectivity of B alone, i.e.:

sel(A OR B) = sel(B).

To the best of our knowledge, there exists no general concept for the treatment of
implied predicates during query optimization. This would require interfaces that
allow the description of implications between predicates as well as extensions in the
optimizer that take implied predicates into account when selectivities are estimated.
In the case of UDTO a first, rough solution for the case A AND B would be to assign
A the selectivity sel(A)/sel(B). This is correct, since if the restriction with B is
done first, then the overall selectivity is computed as sel(B)*(sel(A)/sel(B))
= sel(A). However, to the best of our knowledge, current systems do not support
selectivity specifications as metadata for UDF. Hence, we must provide these selec-
tivity specifications for UDTO that implement restrictions for A and B, respectively.
We deal with this issue in the following subsection.

7.5.2 Estimating Costs and Selectivity of UDTO

In this subsection we consider the problem of estimating the selectivity and the exe-
cution costs of a UDTO. These values cannot be computed exactly in advance, as
there are only estimated statistical descriptions of the input tables and the scalar
input parameters of a UDTO. In some cases nothing is known about the input tables
and the other parameters. In other cases, for example if an input table is a complete
base table, the optimizer can use statistical information from the system catalog
tables as a starting point for the cost estimation.
As we have already mentioned before, our general approach to solve the estimation
problem is to provide adequate interfaces that allow a developer to register a UDSF
for the estimation. In the following, we call this UDSF estimator. For each input
table or scalar input parameter of the UDTO this estimator needs an input parameter
that contains statistical metadata about this UDTO parameter. The statistics are pro-
vided by the query optimizer which invokes the estimator. The estimator uses this
metadata to compute the cost of the UDTO (which might be actually a cost vector

136 Implementation of UDTO

with several components for CPU cost, I/O cost, etc.). This computed cost is then
returned to the optimizer as an input for cost-based optimization.
In order to make this feasible, the DBMS must provide data structures with a fixed
format to store statistics and cost information. These data structures must then be
used to exchange information between the query optimizer and the estimator. Their
exact design will depend on the kind of statistics and cost information used by a spe-
cific ORDBMS.
This approach is more complicated for developers than the approach for cost compu-
tation of UDSF (cf. subsection 2.2.1). However, there is also the advantage that the
developer can provide an estimator for the costs that can depend on the value distri-
butions of the input tables. For UDSF one can typically specify only constant costs
per UDSF invocation. This cost represents average costs which might be far from
accurate for a given query. Especially, if the UDSF is invoked for a large number of
rows, the difference between actual costs and average costs can be significant for the
overall query processing costs. An obvious example for this is when a UDSF regis-
tered with the option NOT NULL call (cf. subsection 2.2.1) is executed on a table
with a column containing many NULL values. In this case the UDSF is actually not
invoked for all NULL values, but the cost of these invocations is added to the esti-
mated costs of the QEP.
If we want to fully support cost-based query optimization, we have to derive esti-
mated statistics for the output table. These statistics might contain estimates only for
the cardinality of the output table (i.e., for the selectivity of the UDTO) or also esti-
mates for the value distributions within its columns. The task to derive estimated sta-
tistics for the output table can be solved in the same way as the estimation of the cost
of the UDTO: by means of a function that returns the estimated statistics.
This solution should be compared to the state of the art with regard to UDSF. Cur-
rently developers of UDSF have no means to control the selectivity estimation for
predicates which contain UDSF. There is also no possibility to estimate the value
distribution that results from the application of a UDSF. Hence, one should demand
that developers get the possibility to register estimation functions for UDSF, too.
We want to add here a remark that concerns the use of UDSF within comparisions.
Often a UDF is used within a comparison that compares the UDF result with another
expression. An example for this is the predicate distance(p1, p2) > 50. This
predicate uses the greater-than operator. It is difficult to handle the optimization of
such predicates involving user-defined functions because all combinations of com-
parison operators and UDF must be considered. This task becomes significantly eas-
ier, if we rewrite such predicates internally to specialized UDPs that combine the
evaluation of a UDF and a comparison, e.g. distance_greater_than (p1, p2,
50) . The comparison operator is transformed into a suffix of the UDP
(greater_than) and the expression is passed on as the last argument to the UDP.
This technique provides users with the traditional interface, where comparisons are

Optimization Issues for UDTO 137

expressed by the usual comparison operators. On the other hand, the optimizer can
invoke estimation routines that perform the selectivity and cost estimation for a spe-
cialized UDP.

7.5.3 Application of Traditional Optimization Rules

Rules for pushing-down restrictions and projections were among the first optimiza-
tion rules for relational query processing. These rules are still very important. Hence,
the question arises whether we can also apply them for queries with UDTO.

Our first observation is that these and all other optimization rules may be applied to
SQL macros. Since the input tables of an SQL macro may be arbitrary table expres-
sions this can be a significant benefit. The reason is that if a restriction is pushed
down through the SQL macro then it may be pushed down further into the QEP of an
input table. Hence, it is possible to significantly reduce the cardinality of the input
table. Projections can be pushed down in the same manner.

For procedural UDTO the application of push-down optimization rules is in general
restricted to the INSERT statements that append tuples to the output table. It is not
possible in general to push down restrictions or projections to the input tables, since
the effect of the procedural code is not known. However, if a procedural UDTO is
used as a high-performance implementation for a UDF operation, we can do better.
The reason is that the optimizer knows the effect of the UDTO. For example, if the
UDTO serves as an implementation method for a restriction with a UDP then we
know that the UDTO is a restriction with some predicate, i.e., its result is a subset of
the input tuples. Since the semantics of restrictions is known in advance, we can
push-down selections as if the UDTO would be the usual restriction operator that
invokes the corresponding UDP. In other words: because the UDTO is simply one
implementation alternative, we can perform all optimizations as it would be possible
with the traditional implementation by means of an external function. As a conclu-
sion, we see that procedural UDTO as implementation methods should be applied
after push-down rules. In this case, all optimizations for restrictions and projections
are already accomplished, when the UDTO is considered as an implementation
method.

A final optimization is possible that is already used in DB2 UDB for UDTF [50]: if
some columns of the output table of a UDTF are not needed for further processing of
a statement then one can avoid their production within the body of the UDTF. Since
UDTF are always implemented by means of an external function, the optimizer
passes to the UDTF a description of the columns actually needed. In case of UDTO
the optimizer can automatically add projection operators to the INSERT statements
that insert into the output table.

138 Implementation of UDTO

7.6 Using UDTO to Generate Alternative Execution Plans for

UDF

This subsection presents an implementation concept for the application of UDTO as
high-performance implementations for operations involving UDF. This application
was proposed in subsection 6.2.3. The main idea is to extend the rule- and cost-based
optimizer of MIDAS (i.e., Model_M) by means of generic optimization rules that
insert UDTO instead of a traditional operator subtree for UDF into a QEP.

Figure 43 shows an example of such a transformation rule. In this example a UDP
serving as a join predicate is evaluated as a restriction on top of a Cartesian product
(left side of Figure 43). The transformation rule replaces this subtree by a UDTO that
implements a user-defined join algorithm for this predicate (right side of Figure 43).
In case of a procedural UDTO a new plan with the udto operator and the necessary
send and receive operators is generated. In case of an SQL macro a new plan with
an expanded macro is generated. The new operator tree can then be transformed by
further rule applications.

Please note that currently the search engine of Model_M also enumerates Cartesian
products. Hence, an operator tree with the subtree shown on the left side of Figure 43
is always generated. If we introduce pruning and do not enumerate all plans that are
possible with Cartesian products, the premise of a transformation rule that uses the
UDTO might never become true, i.e., the rule is never applied. In this case, the rules
of the optimizer must be able to directly introduce a UDTO as a special kind of join,
when the join order is changed. This discussion shows that the generic rules generat-
ing UDTO as high-performance implementations must fit to the other rules in the
rule set. Otherwise, the generic rules for UDTO implementations might not be appli-
cable during the optimization.

Next, we explain how generic transformation rules work. In contrast to other rules,
they need information from the system tables to work. Of course, it is not necessary
to look up this information each time the rule fires. It is sufficient to read the infor-

restriction

Cartesian product

UDP

Figure 43. Generic Optimization Rule Replacing a Cartesian Product and a UDP by a Procedural UDTO.

udto

send

receive

send

Evaluation of the Implementation 139

mation when the system is initialized and to notify the optimizer about modifications
of the system tables. These generic rules are used to transform operator trees that
contain operators with user-defined functionality. In MIDAS these are the func and
the udto operator. If one of these operators occurs in the premise of the rule then it
will need to check the metadata from the system tables to decide if the rule is actu-
ally applicable.

As we have discussed in section 6.3 there can be several UDTO that implement a
UDP. In this case, several alternative plans are possible. All these alternatives can be
generated by a single rule application, because the Cascades search engine supports
rules that have several consequences.

For some generic rules, the subtree representing the consequence of the rule is gener-
ated based on information from the system tables. In case of procedural UDTO, only
the parameters of the udto operator must be set correctly. However, for SQL macros
the macro expansion must be done when the alternative plan is inserted into the
memo structure that manages the set of generated operator trees during the optimiza-
tion. This step is difficult to implement in the MIDAS prototype and will probably
also require changes to the search engine. One difficulty is for example that the
generic transformation rules work with operator trees that contain logical Cascades
operators, while the macro trees are stored as gentrees in the system tables, i.e., as
physical MIDAS operator trees. Therefore this extension will need some program-
ming effort.

During the optimization the search engine has to invoke the user-defined estimator
functions for costs, selectivity, and value distributions. This is another difference that
is caused by the introduction of operators with user-defined functionality: the estima-
tion of the logical and physical properties can be influenced by developers, i.e., parts
of the cost model become user-defined.

7.7 Evaluation of the Implementation

The prototypical integration of procedural UDTO into the execution engine of
MIDAS has required considerable extensions and some modifications of the existing
system. This has been achieved in such a way that changes of existing code were
avoided whenever possible. The reason was that we did not want to compromise the
stability of the existing system by our implementation.

One drawback of our implementation is the use of several additional processes. To
reduce this overhead, one approach could be to integrate procedural UDTO more
tightly into the execution system. However, this would increase the complexity of
the implementation considerably. Especially, the logic of the application server
would become more complex, if only one application server is used. Then the appli-
cation server must be enabled to execute nested SQL statements, i.e., during the

140 Implementation of UDTO

evaluation of a given SQL statement other SQL statements must be parsed and exe-
cuted. Since procedural UDTO can be nested arbitrarily, the application server must
be extended to manage a nested set of SQL statements. For these reasons, we believe
that it is better to improve the performance of the system by using threads instead of
processes. This approach will reduce the overhead and nevertheless keep the code
simple.

Some of the implementation concepts might be reused for commercial ORDBMS,
but this largely depends on the existing architecture of commercial systems. Since
commercial ORDBMS differ considerably in their architectures from the MIDAS
prototype, it is difficult to predict the effort needed to implement UDTO in a given
commercial system. However, we believe that this is always possible without major
changes of the architecture. The reason is that current commercial PORDBMS
should have the key features that were needed to implement UDTO: temporary
tables, the use of transaction IDs for transaction management and extensibility of the
compiler, the optimizer, and the system tables.

In the following we present some measurements that demonstrate the benefits of
SQL macros and procedural UDTO in MIDAS for two applications already
described in section 6.3.

7.7.1 Evaluation of SQL Macros

In this section we discuss again the spatial join with the predicate overlaps already
introduced in subsections 5.5.1 and 6.3.1. We compare the performance of the fol-
lowing two queries on the table pg2 (cf. subsection 5.5.1):

Query 1:
SELECT COUNT(*) FROM pg2 a, pg2 b
WHERE filter_overlaps(a.poly, b.poly) = 1 AND a.id < Num AND b.id < Num

Query 2:
SELECT COUNT(*) FROM
overlaps_d((SELECT id,poly FROM pg2 WHERE id < Num),

(SELECT id,poly FROM pg2 WHERE id < Num))
 a (id1,poly1,id2,poly2)

Both queries have the parameter Num (number of tuples) that serves to restrict the
query to a subset of the table pg2 . The first query invokes the function
filter_overlaps that is the sophisticated implementation of the UDP overlaps
as a UDSF. The resulting query execution plan is exactly the plan B that was
described in subsection 5.5.1. The second query explicitly invokes the SQL macro
overlaps_d that is similar to the SQL macro proposed in subsection 6.3.1. How-
ever, we had to implement the partitioning step differently, because MIDAS does
currently not support correlated UDTF. Instead of the UDTF bucket_no we simply
used a procedural UDTO. Appendix A.3 shows a visualization of the QEP and the

Evaluation of the Implementation 141

DDL statements that were used to create the SQL macro and the procedural UDTO.
We want to remark here that the SQL macro was optimized by the TransBase opti-
mizer after the expansion. Hence, the resulting plan was slightly different from our
manually crafted plan D (cf. subsection 5.5.1). This demonstrates that SQL macro
expansion and optimization can seamlessly work together.

Figure 44 shows the response times for the sequential evaluation of the two queries
for a varying number of tuples between 100 and 10 000 tuples. The measurements
were performed on a 4-processor (each with 100 MHz) SUN SPARC SMP with 128
MB main memory. Obviously, the SQL macro enhances the performance by orders
of magnitude: the response time for 10 000 tuples with the SQL macro is 397.4 sec-
onds versus 94 839.2 seconds without the SQL macro. The reason is - as we have
already discussed in subsection 5.5.2 - that the asymptotic complexity of the query is
O(N*logN) (the selectivity factor of the join predicate is very low), whereas the
complexity of the query without the SQL macro is determined by the Cartesian prod-
uct, i.e., it is O(N2). These complexities can be directly observed in Figure 44 (please
note the log scaling on both axes).

Furthermore, the query containing the SQL macro can be processed in parallel. Actu-
ally, the query is already processed in parallel, because the procedural UDTO cut the
operator tree into several subtrees by means of send/receive operators. These sub-
trees are evaluated in parallel. However, the restriction with the exact geometry that
accounts for most of the work (cf. subsection 5.5.2) is not processed in parallel.
Since the parallelizer has not yet been extended for procedural UDTO, we have par-
allelized the plan manually in a such way that the restriction is processed by four

1

10

100

1000

10000

100000

100 1000 10000

R
es

po
ns

e
T

im
e

in
 S

ec
on

ds
 (

lo
g

sc
al

in
g)

Number of Tuples (log scaling)

Computing a Spatial Join with and without an SQL macro

with SQL macro
without SQL macro

Figure 44. Performance of a Spatial Join Query with and without an SQL Macro.

142 Implementation of UDTO

processes. The response times for the sequential and the parallel execution as well as
the speedup are shown in Figure 45. The speedup is well below of the theoretic opti-
mum 4. Several factors contribute to this result: first, as we have already pointed out,
the sequential execution already uses some parallelism. Second, the implementation
of procedural UDTO (and also of other parts of the execution system) is not fully
optimized. Third, we did not use parallel I/O and finally, there was no spare proces-
sor to handle the operating system overhead. We would have preferred to conduct
the ‘sequential’ execution on a uniprocessor machine. However, we had no appropri-
ate uniprocessor machine with comparable hardware characteristics for such mea-
surements.

7.7.2 Evaluation of Procedural UDTO

In this subsection we demonstrate the benefit of procedural UDTO by means of per-
formance measurements. We have implemented the UDTO median described in sub-
section 6.3.3 as an example of a procedural UDTO.

Performance measurements were made to compare the performance of the proce-
dural UDTO with the performance of an SQL query without a UDTO that can also
be used to compute the median. The query should find the median of the size col-
umn in the table parts of the TPC-D benchmark [31]. We have evaluated both que-
ries for a different number of tuples, ranging from 1 000 to 20 000. The
measurements were conducted on a 4-processor SUN SPARC SMP with 100 MHz
per processor and 128 MB main memory.

The first query with the UDTO median is as follows:

SELECT *
FROM median((SELECT p_size FROM part

 WHERE p_partkey <= Num)) m (median)

Figure 45. Execution of a Spatial Join: Sequential vs. Parallel
Execution with Degree of Parallelism (DOP) 4.

1

10

100

100 1000 10000

R
es

po
ns

e
T

im
e

in
 S

ec
on

ds
 (

lo
g

sc
al

in
g)

Number of Tuples (log scaling)

Sequential and Parallel Evaluation of a Spatial Join with an SQL macro

DOP = 1
DOP = 4

1

1.5

2

2.5

3

3.5

4

4.5

5

100 1000 10000

S
pe

ed
up

Number of Tuples (log scaling)

Speedup of the Spatial Join with an SQL macro

a) Response Times. b) Speedup.

Evaluation of the Implementation 143

The parameter Num restricts the input table part to the desired number of tuples.
This holds also for the second query that computes the median via a correlated sub-
query as was discussed in subsection 3.4.3.

SELECT MIN(p_size)
FROM part l1
WHERE (p_partkey <= Num) AND

((SELECT (COUNT(*)+1)/2 FROM part WHERE p_partkey <= Num)
<=
(SELECT COUNT(*) FROM part l2 WHERE (p_partkey <= Num) AND

(l2.p_size <= l1.p_size)))

The response times are shown in Figure 46. Please note that both axes have a log
scaling. We have doubled the number of tuples per query starting with 1 000 until we
reached 16 000 and did a final measurement with 20 000 tuples. For the UDTO the
execution time rose from 0.38 seconds for 1 000 tuples to 2.3 seconds for 20 000
tuples. This is a very moderate, sublinear increase. The asymptotic complexity of the
query is O(N*logN) due to sorting. However, the initial overhead for disk I/O and
inter-process communication during the UDTO evaluation is relatively high. For this
reason, the response time increases slower for small numbers of tuples.
The response time for the query without the UDTO increases from 14.4 seconds to
5865.0 seconds (roughly 1.6 hours). This steep increase is not surprising since the
asymptotic complexity of the query execution plan is O(N2) because of the corre-
lated subquery that is evaluated for each tuple of the outer SELECT block.
As Figure 46 clearly shows, the procedural UDTO enhances the performance by
orders of magnitudes. Such dramatic performance gains are always possible when a

Figure 46. Response Times for Computing the Median with and without a Procedural UDTO.

0.1

1

10

100

1000

10000

1000 10000

R
es

po
ns

e
T

im
e

in
 S

ec
on

ds
 (

lo
g

sc
al

in
g)

Number of Tuples (log scaling)

Computing the Median with and without a UDTO

with UDTO
without UDTO

144 Implementation of UDTO

procedural UDTO lowers the complexity of a query significantly. Because the
response times for the query with the procedural UDTO were already small and the
overhead for a parallelization is significant in the current implementation, we did not
consider parallel execution plans. However, at least for large tables (say a million
tuples or more) parallel execution should be an advantage.

7.8 Summary

The goal of the current prototypical implementation was to prove that UDTO can be
integrated into a parallel DBMS without a major change of the existing architecture.
As the development method was rapid prototyping rather than careful engineering,
some reworking and tuning of the implementation still needs to be done. Moreover,
some features have yet to be implemented. However, we have reached our goal since
the general feasibility was clearly shown. Especially, the implementation of SQL
macros could be achieved without major difficulties and should be the first step of an
implementation in a commercial DBMS.
An open question is whether the modification of data in base tables should be possi-
ble within the body of procedural UDTO. In this case support for intra-transaction
synchronization would be needed. However, our exploration of example applications
in section 6.3 suggests that there is hardly a need in practical applications.

CHAPTER 8

Summary, Conclusions, and Future Work

In this final chapter we briefly summarize our contributions, draw some general con-
clusions concerning the design of object-relational (or extensible or generic) DBMS
and finish with some remarks on future work.

8.1 Summary

In this work we have made the following main contributions: first, we have proposed
new techniques to support data parallelism for UDSF and especially UDAF. For this
purpose we have defined extensible execution schemes for UDF and introduced
user-defined data partitioning together with a classification of partitioning functions.
Second, we have proposed the decompose/compose operator approach to support
intra-function parallelism. We have used a pilot implementation on top of a commer-
cial PORDBMS to validate the concept and to show its benefits. Third, the multi-
operator paradigm shows that it is possible to implement complex set-oriented oper-
ations based on the built-in database operators. Moreover, it demonstrates that appli-
cations can sometimes profit from a direct access to the engine via user-defined
QEPs. However, the main point is in our view that the multi-operator paradigm was
a first step towards UDTO.

Our final and perhaps most important contribution is the design and implementation
of UDTO, since this provides extensibility at the level of database operators. Given
the fact that set-oriented operations are a core feature of relational database systems,
this kind of extensibility is clearly essential. Another view of this is that UDTO push
views (SQL macros) and stored procedures (procedural UDTO) into the middle of
SQL statements. This enhances the performance of data intensive applications and
increases the independence of application code from the implementation of opera-
tions on tables. The implementation in the MIDAS prototype proved that UDTO can
be integrated into an existing PORDBMS without fundamental changes of the exist-
ing architecture.

M. Jaedicke: Parallel Object-Relational Query Processing, LNCS 2169, pp. 145-150, 2001.
© Springer-Verlag Berlin Heidelberg 2001

146 Summary, Conclusions, and Future Work

8.2 Conclusions

The evolution from closed relational database systems to object-relational systems
that are open for extensions by third parties is a fundamental change of the field: it is
a migration from the fixed relational data model to a fixed object-relational meta (!)
data model. However, this development does not end the discussions on ‘the best’
data model, since the extensibility of the meta data model is limited. Furthermore, it
is not clear what the ‘best’ meta data model is.

Hence, a fundamental question for the design of extensible DBMS was and still is:
how powerful should the extensibility of the system be? In our view the experiences
of the last years have taught the following guideline:

Do not strive to make the DBMS completely extensible. Instead design algo-
rithms, data structures, and components together with the right set of interfaces
in such a way that they are generic, i.e., that third party developers can easily cre-
ate a number of useful instances.

The creation of new instances should be possible by ‘simple’ programming and the
specification of metadata, i.e., without doing ‘hard’ work with complex, system-spe-
cific interfaces and complex dependencies to internal structures. If something is
extremely complex to implement for a third party developer, it is probably best to
leave this to database vendors. In the following, we support our conclusion by briefly
reviewing some examples of ORDBMS techniques:

• Example 1: Generic methods for data items (UDF)
The basic idea of UDF is to provide the possibility to invoke user-defined code at specific
points during query evaluation to allow user-defined computations with attribute values.
This allows to extend the DBMS with respect to the operations that are available for data
items. The implementation of these functions is not fundamentally different from the
implementation of a function in a C or C++ library, for example. However, depending on
the DBMS architecture special interfaces for resource allocation and other tasks must be
used for the implementation. In addition, metadata is needed to integrate the function fully
into query optimization. While UDF offer theoretically unlimited functionality (Turing
completeness), they are not suited for all tasks. For example, we have clearly shown that
they cannot provide extensibility at the level of database operators.

• Example 2: Generic data containers (LOBs)
Obviously, extensible DBMS must offer the possibility to store arbitrary new data types. In
current ORDBMS, LOBs [63] provide a generic storage facility for data types of nearly
unlimited length. LOBs serve as a container to store new data types, but they do not sup-
port specific structures for their content. Rather they offer a raw bit string with efficient
scan and random access operations. This model is simple, but less generic than the possi-
bility to define structured data types together with optimized storage and access structures.
It seems that a simple container model with a simple programming interface and with a
highly optimized implementation is a good design.

Conclusions 147

• Example 3: Generic rule- and cost-based query optimization
Extensible optimizer technology started with the idea to provide a tool for optimizer gener-
ation that allows vendors to quickly construct specialized optimizers. Currently, the state of
the art is that vendors implement a single, very complex and sophisticated rule- and cost-
based query optimizer with generic optimization rules. These generic rules access the sys-
tem tables to get information about user-defined extensions. This mechanism offers third
party developers a possibility to influence query optimization. We have introduced UDTO
to provide the query optimizer with additional strategies for the implementation of opera-
tions that involve UDF. This allows to exploit more semantic knowledge about UDF when
they are executed within queries.

• Example 4: Generic access operators (Virtual Table Interface and Virtual Index Interface)
Informix’ Virtual Table Interface ([57], [106]) and Virtual Index Interface ([6], [56]) can be
seen as interfaces to generic primary and secondary table access operators, respectively. A
primary access operator offers the possibility to scan a table and to modify rows. A second-
ary access operator or index offers a content-based access to rows of a table. Both of these
interfaces are complex and their usage requires some expertise due to the inherent depen-
dencies to transaction management services. Nevertheless, the extensibility that these inter-
faces offer is limited.

• Example 5: Generic search trees (generalized B-trees and Generalized Search Trees)
Generalized B-trees [102] make B-trees extensible with respect to the data types that can
be indexed. This is done by user-defined compare functions that impose an order on
instances of a new data type. Generalized Search Trees (GiSTs) [46] are more general in
that they allow to implement a specialized search tree, if a hierarchical partitioning of the
data set to be indexed exists. However, both are generic tree structures that are limited
because they do not allow to implement all kinds of index structures. For example, they
cannot implement bit lists or indexes with more than a single indexable data item per
attribute or row like traditional full text index structures that index several words per docu-
ment.

• Example 6: Generic database operators (procedural UDTO and SQL macros)
We have shown that extensibility with respect to set-oriented operations can be supported
by procedural UDTO. They serve as a single generic database operator, whose functional-
ity can be programmed. However, to keep the programming interface simple, the applica-
tion of procedural UDTO was limited to a subset of row types. SQL macros can be seen as
a more convenient way to program new operations, however their expressive power is
much more limited.

All these examples do not provide full extensibility in the sense that a DBMS vendor
has still more powerful implementation possibilities than a third party developer like
an independent software vendor. However, the degree of freedom increases signifi-
cantly with the introduction of these new techniques. This leads to a more flexible
allocation of duties between DBMS vendors and independent software vendors.

As a summary, Figure 47 presents a schematic view of the architecture of
PORDBMS as proposed in [13]. As one can observe, all DBMS components (and
also the utilities) must be made extensible. Table 10 shows the main components of
PORDBMS together with the key techniques that provide extensibility. Due to the

148 Summary, Conclusions, and Future Work

current performance requirements in high-end data management, a competitive
ORDBMS must support parallelism for every feature. This includes the features that
support extensibility, too.

Table 10. Extensibility for Different DBMS Components by Means of
Generic Data Structures and Algorithms

PORDBMS component generic data structures and algorithms
parser driven by system tables
optimizer rule- and cost-based, generic rules that are driven by system tables (control

of rule application, cost and selectivity estimation, SQL macros)
engine UDF (generic item operations), UDTO (generic database operations)
index manager Generalized B-Trees, Generalized Search Trees, Virtual Index Interface
storage manager LOBs with locators, Virtual Table Interface

Figure 47. Architecture of Parallel Object-Relational Database Management Systems.

User-defined
Meta Data

Extensibility Support

Extensible Type M
anager

Query Parsing &
 Semantic Checking

Query
Optimization

Storage & Access
Method Interfaces

Query Execution

Extensible Framework Interfaces

Transaction, Space & Recovery
Management Services

Storage & Access
Methods

Storage & Access
Method Extensions

Built-in

Future Work 149

8.3 Future Work

There is a still a number of open questions in the area of PORDBMS. We want to
mention here only some important issues that are directly related to our work. We
have grouped these issues around the topics query optimization, user-defined func-
tions and predicates, and user-defined table operators.

Query Optimization

• What pruning strategies are useful for a real-life optimizer based on Cascades?
Currently, the optimizer (and the parallelizer [80]) of MIDAS use exhaustive search (with
respect to the available rule set) in the search engine, which leads to an unacceptable time
and space demand for complex queries [62]. Especially the interaction of optimization
rules (both transformation and implementation rules) seems to contribute to this problem.
These problems deserve careful study. A new version of Cascades, Columbia, with inte-
grated pruning strategies is currently under development at the Portland State University.
These new techniques should be explored in the MIDAS optimizer. Moreover, the func-
tionality of the MIDAS optimizer must be completed.

User-Defined Functions and Predicates

• Do we need further optimization rules for UDF?
As we have mentioned, current PORDBMS support already some generic optimization
rules for queries with UDF. Obviously, one question is whether or not further interesting
optimization rules exist for UDF.

• How can UDPs be treated as join predicates during join enumeration in optimizers based
on System R technology?
In this work, we have focused on query optimization based on the Cascades optimizer
framework. However, many commercial PORDBMS use the optimization technology that
was invented for System R. Hence, one should investigate how our techniques can be
implemented in this framework.

• How can we support data parallelism for collection data types?
In chapter 4 we have proposed decompose/compose operators to implement intra-function
parallelism. Because collection types can be implemented with LOBs it is promising to
explore whether our technique is also useful to parallelize operations on collection data
types.

• Are join indexes for UDPs a good idea?
We have proposed new techniques to define efficient join algorithms for user-defined join
predicates. However, some of these predicates are very complex and their evaluation dom-
inates the overall processing time. A possible solution for this problem are join indexes that
allow - similar to indexes on UDF - to avoid the evaluation of these expensive predicates
during query execution.

150 Summary, Conclusions, and Future Work

User-Defined Table Operators

• What are additional important applications of UDTO?

We have studied some applications of UDTO. However, we expect that UDTO have a
broad applicability. Additional case studies and performance measurements should help to
further improve the concept and the implementation.

• Do we need further optimization rules for procedural UDTO?

We have proposed some optimization rules for projections and restrictions in combination
with procedural UDTO. However, there might be other interesting optimization rules.

• Which techniques are useful to optimize the implementation of procedural UDTO further?

Especially, we can imagine that the management of temporary tables and the access to
these tables can be significantly enhanced by indexes. Moreover, special buffer manage-
ment strategies can be used for their storage.

• Is it useful to generalize UDTO to generic database operators that operate on input tables
with arbitrary row types?

As we have already mentioned such a generalization would increase the flexibility of
UDTO further. On the other hand, the implementation of new UDTO becomes more com-
plex.

• Are there other practical approaches to user-defined database operators and especially
user-defined joins?

While we believe that UDTO are a good approach, there might be alternative designs. For
example, one could also try to make the existing join operators more generic.

• Do we need run-time optimization for SQL macros?

Today, most complex queries are compiled at run-time. One advantage of this situation is
that the values of parameters are already known when the query is optimized. Hence, it is
an interesting question whether dynamic SQL macros should be supported. Dynamic SQL
macros would contain several alternative implementations from which they choose at run-
time the best one. This decision should be based on the actual statistics for the input tables
and the values of the scalar parameters.

• Should the next generation of DBMS engines be built with a different kind of operators?

The optimization of complex object-relational queries is difficult due to the large number
of parameters that can be only estimated at compile time. As a result, it might be desirable
to compute aggregates and statistics during the execution of an operator and to pass this
information to the next operator. The next operator could then use this up-to-date informa-
tion to choose the best available algorithm for its execution. One could also dynamically
change the execution order of the operators, i.e., the structure of the operator tree. The dis-
advantage of this execution model is that it does not support pipelining. Hence, the delivery
of the first tuple might be delayed significantly.

Appendix A

A.1 The Program sequential_invert

The following is a simplified version of the program sequential_invert that was
used in section 4.3.

EXEC SQL INCLUDE SQLCA;

void main()

{

// declare host variables

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS CLOB_LOCATOR clob;

 ...

EXEC SQL END DECLARE SECTION;

EXEC SQL WHENEVER SQLERROR GO TO badnews;

EXEC SQL CONNECT TO test;

// declare a cursor for the query

EXEC SQL DECLARE c2 CURSOR FOR

select id, invert(text,1,1) from clobtable;

// open cursor

EXEC SQL OPEN c2;

EXEC SQL WHENEVER NOT FOUND GOTO exit;

// fetch all tuples and insert them into table result

while(1)

{

EXEC SQL FETCH c2 INTO :no, :clob;

EXEC SQL INSERT INTO result values (:no , :clob);

}

exit:

EXEC SQL ROLLBACK;

M. Jaedicke: Parallel Object-Relational Query Processing, LNCS 2169, pp. 157-161, 2001.
© Springer-Verlag Berlin Heidelberg 2001

158 Appendix A

EXEC SQL CONNECT RESET;

return;

badnews:

// error handling ...

}

A.2 The Program parallel_invert

The fol lowing program l is ting is a s implif ied version of the program
parallel_invert that was used in section 4.3. The query that is associated with
cursor c2 is executed in parallel by DB2. Please note that in DB2 UDB the default
degree of parallelism of SQL statements can be set to a specific value by assigning
this value to the parameter DEGREE, when the program is bound to the database. DB2
tries to use this default degree of parallelism, whenever possible. Otherwise DB2
chooses a smaller degree of parallelism. For example, the INSERT statements in the
following program can be executed only with a degree of parallelism one, i.e., in a
sequential manner, because only one row is inserted.

EXEC SQL INCLUDE SQLCA;

void main()

{

// declare host variables

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS CLOB_LOCATOR clob;

SQL TYPE IS CLOB_LOCATOR clob2;

long no;

long tmpno;

long part;

EXEC SQL END DECLARE SECTION;

EXEC SQL WHENEVER SQLERROR GO TO badnews;

EXEC SQL CONNECT TO test;

// declare a cursor for the query

// join with jointable serves to copy LOB locators (DECOMPOSE step)

// the value of N is the constant 4, the value of K is given by b.id2

EXEC SQL DECLARE c2 CURSOR FOR

Select a.id + 0 as id1, b.id2 + 0 as id2, invert(a.text, b.id2, 4) as text

from clobtable as a, jointable as b where a.id=b.id1 order by id1, id2;

// open cursor

EXEC SQL OPEN c2;

The Query Execution Plan for the Spatial Join with SQL Macro 159

EXEC SQL WHENEVER NOT FOUND GOTO exit;

tmpno = 0;

while(1)

{

// fetch next result pieces

EXEC SQL FETCH c2 INTO :no, :part, :clob;

if(tmpno==0) tmpno = no;

if(tmpno != no)

{ // first piece of a different CLOB is fetched:

// insert composed CLOB into table result

// and free its locator

 EXEC SQL INSERT INTO result values (:tmpno , :clob2);

 EXEC SQL FREE LOCATOR :clob2;

 tmpno = no;

}

// COMPOSE step

if(part == 1) //first piece of a CLOB

EXEC SQL VALUES :clob INTO :clob2;

else // second and further pieces

EXEC SQL VALUES :clob2 || :clob INTO :clob2;

}

exit:

// insert last composed CLOB into table result and free its locator

EXEC SQL INSERT INTO result values (:tmpno, :clob2);

EXEC SQL FREE LOCATOR :clob2;

EXEC SQL ROLLBACK;

EXEC SQL CONNECT RESET;

return;

badnews:

// error handling ...

})

A.3 The Query Execution Plan for the Spatial Join with SQL

Macro

The figure on the following page shows a visualization of the gentree for the spatial
join described in subsection 7.7.1. The query execution plan was produced for the
following query with the SQL macro overlaps_d:

160 Appendix A

SELECT COUNT(*) FROM
overlaps_d((SELECT id,poly FROM pg2 WHERE id < 100),

(SELECT id,poly FROM pg2 WHERE id < 100))
 a (id1,poly1,id2,poly2)

The SQL macro overlaps_d was defined as follows:

CREATE UDTO overlaps_d
(TABLE ovl_dinput1(id1 INTEGER, poly1 CHAR(*)),
TABLE ovl_dinput2(id2 INTEGER, poly2 CHAR(*)))

RETURNS TABLE ovl_doutput1(id1 INTEGER, poly1 CHAR(*), ovl_dinput1.+,
id2 integer, poly2 CHAR(*), ovl_dinput2.+)

AS
INSERT INTO ovl_doutput1
SELECT c.id1, d.poly1, ovl_dinput1.+, c.id2, e.poly2, ovl_dinput2.+
FROM (SELECT DISTINCT a.id, b.id

FROM bucket_no ((SELECT s.id1, pg_bbox(s.poly1)
FROM ovl_dinput1 s)) a (id, bbox, bno),

bucket_no ((SELECT t.id2, pg_bbox(t.poly2)
FROM ovl_dinput2 t)) b (id, bbox, bno)

WHERE a.bno = b.bno AND
bbox_overlaps(a.bbox, b.bbox) = 1)

c (id1, id2), ovl_dinput1 d, ovl_dinput2 e
WHERE c.id1 = d.id1 AND c.id2 = e.id2 AND

pg_overlaps(d.poly1, e.poly2) = 1

The procedural UDTO bucket_no was registered with MIDAS by means of the
statement:

CREATE UDTO bucket_no (TABLE bucket_no_in(id INTEGER,poly CHAR(*)))
RETURNS TABLE bucket_no_out (id INTEGER,bbox CHAR(*), bucketno INTEGER)
AS
EXTERN
‘/nfs/sunbayer63/home/wiss/jaedicke/mylibs/libudto.so’#’bucket_no’

The Query Execution Plan for the Spatial Join with SQL Macro 161

G
entree for a spatial join w

ith the SQ
L

 m
acro

overlaps_d

	front-matter
	Title
	Preface
	Contents
	Abstract

	Chapter 1 Introduction
	1.1 ORDBMS: The Next Great Wave
	1.2 Extensible DBMS
	1.3 Overview

	Chapter 2 Background on User-Defined Routines
	2.1 User-Defined Routines
	2.2 Definition, Implementation, and Execution of New UDR
	2.2.1 User-Defined Functions
	2.2.2 User-Defined Aggregate Functions
	2.2.3 User-Defined Table Functions
	2.2.4 User-Defined Functions and Large Objects

	2.3 Comparison with Stored Procedures
	2.4 Optimization of Queries with UDF

	Chapter 3 Parallel Processing of User-Defined Functions
	3.1 Introduction
	3.2 Limits of Current ORDBMS
	3.3 Parallel Processing of UDF
	3.3.1 Two Step Parallel Aggregation of UDAF
	3.3.2 Partitioning Classes and Partitionable Functions
	3.3.3 Parallel Sorting as a Preprocessing Step for UDAF
	3.3.4 Extended Syntax for Function Registration

	3.4 Example Applications
	3.4.1 The UDAF Most_Frequent
	3.4.2 The UDSF Running_Average
	3.4.3 The UDAF Median
	3.4.4 Further Applications

	3.5 Plausibility Considerations Regarding Performance
	3.6 Related Work
	3.7 Summary

	Chapter 4 Intra-function Parallelism
	4.1 Introduction
	4.2 Compose/Decompose Operators for Intra-function Parallelism
	4.2.1 Compose/Decompose Operators
	4.2.2 Extensibility of Compose Operators by Combine Functions
	4.2.3 Application of Intra-function Parallelism
	4.2.4 Intra-function Parallelism for Function Pipelines

	4.3 Experimental Performance Study
	4.3.1 Experimental Scenario and Implementation
	4.3.2 Performance Results

	4.4 Related Work
	4.5 Summary

	Chapter 5 The Multi-operator Method
	5.1 Introduction
	5.2 Performance Problems with Complex UDF in Current ORDBMS
	5.2.1 The PRSM Algorithm as a Sophisticated UDP Implementation

	5.3 The Multi-operator Method as a New Technique to Implement Complex UDF
	5.3.1 The Multi-operator Method and Its Benefits
	5.3.2 A Multi-operator Implementation of the PRSM Algorithm

	5.4 Supporting the Multi-operator Method
	5.4.1 Executing Query Execution Plans
	5.4.2 Example for a Textual Specificatin of Query Plans
	5.4.3 Parallel Evaluation

	5.5 Performance Evaluation
	5.5.1 Experimental Results
	5.5.2 Performance Results

	5.6 Related Work
	5.7 Summary

	Chapter 6 User-Defined Table Operators
	6.1 Introduction
	6.2 User-Defined Table Operators
	6.2.1 A Generalization Relationship for Row Types
	6.2.2 Defining and Implementing UDTO
	6.2.3 The Different Usages of the UDTO Concept
	6.2.4 Parallel Processing of Procedural UDTO
	6.2.5 Extension to Multiple Output Tables

	6.3 Example Applications for UDTO
	6.3.1 Computing a Spatial Join
	6.3.2 Different UDTO for the Same Predicate
	6.3.3 Computing the Median: An Aggregation Operator
	6.3.4 A UDTO for a Complex Aggregation
	6.3.5 Association Rule Mining

	6.4 Related Work
	6.5 Summary and Conclusions

	Chapter 7 Implementation of UDTO
	7.1 Introduction
	7.2 The MIDAS Prototype
	7.2.1 Architectural Overview
	7.2.2 Query Compilation and Execution
	7.2.3 The MIDAS System Table
	7.2.4 UDSF in MIDAS

	7.3 Implementation of SQL Macros
	7.3.1 DDL Statements
	7.3.2 SQL Macro Expansion in DML Statements
	7.3.3 Expanding SQL Macros in Preprocessors and Middleware

	7.4 Implementation of Procedural UDTO
	7.4.1 Extensions to the SQL Compiler
	7.4.2 Extensions to the Optimizer and the Parallelizer
	7.4.3 Extensions to the Scheduler
	7.4.4 Extensions to the Execution Engine
	7.4.5 Extensions to Transaction Management
	7.4.6 Implementation of Input and Output Tables

	7.5 Optimization Issues for UDTO
	7.5.1 UDTO and Implied Predicates
	7.5.2 Estimating Costs and Selectivity of UDTO
	7.5.3 Application of Traditional Optimization Rules

	7.6 Using UDTO to Generate Alternative Execution Plans for UDF
	7.7 Evaluation of the Implementation
	7.7.1 Evaluation of SQL Macros
	7.7.2 Evaluation of Procedural UDTO

	7.8 Summary

	Chapter 8 Summary, Conclusion, and Future Work
	8.1 Summary
	8.2 Conclusions
	8.3 Future Work

	Chapter Appendix A
	A.1 The Program sequential_invert
	A.2 The Program parallel_invert
	A.3 The Query Execution Plan for the Spatial Join with SQL Macro

