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PREFACE 

This book is devoted to the study and optimization of spatiotempo- 
ral stochastic processes. These are processes that simultaneously de- 
velop in space and time under random influences. Such processes oc- 
cur almost everywhere when the global behavior of complex systems is 
studied, e.g., in physical and technical systems, population dynamics, 
neural networks, computer and telecommunication networks, complex 
production networks and flexible manufacturing systems, logistic net- 
works and transportation systems, environmental engineering, climate 
modeling and prediction, earth surface models, and so on. 

In the study of spatiotemporal stochastic processes the classical con- 
cepts of random fields (which are models for spatially distributed ran- 
dom phenomena) and of stochastic processes (hich are usually thought 
to describe the evolution over time of systems under random influences) 
converge. Over the last twenty years,many research monographs were 
written with emphasis on this unifying point of view, as were a huge 
number of articles and papers on this subject. 

In many models, the space carries an additional structure. Some im- 
portant cases are determined by geographical structures on some sphere, 
or by underlying regular lattices that determine an ordering of coordi- 
nate spaces in models of statistical physics, or by general graphs that 
determine network state spaces, say of the Internet. Random fields as 
models for spatially distributed systems provide us with a well estab- 
lished theory for all these specific variants of state spaces for a system 
under observation. The distribution of a random field contains the in- 
formation on the random fluctuations of the spatial systems for a fixed 
time point. A realization of such a random field is therefore a snapshot 
of some system at a fixed instant in time. The mathematical theory 
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and the statistics for random fields is an important branch of ongoing 
research. 

For all the state spaces considered in this book, we assume that there 
is an underlying graph structure that reflects the interaction of the coor- 
dinates, which are associated to the vertices of the graph. This interac- 
tion graph determines a local structure for the state space of the systems, 
the edges of the graph determine neighborhoods within the space. Such 
spatial neighborhood systems also have a long history in systems that 
carry a regular lattice structure as, for example, in the standard models 
of statistical physics (Ising model, spin glasses) or in systems over non- 
regular graphs in stochastic networks (ARPANET, queueing networks, 
migration networks). 

Important subclasses of random fields with structured state space are 
Gibbs fields (which were developed in physics as equilibrium states for 
models from statistical mechanics) and Markov random fields (which 
where developed in analogy to the structure of Markov processes in 
time), which means that the future depends on the past only through 
the present state. Astonishingly enough, it turned out that both no- 
tions, which elaborate on the nearest neighborhood concept, are essen- 
tially equivalent. The essence of both concepts can be summarized in 
view of our program: The statistical properties of any node depend on 
the global status of the system only through the local states within the 
neighborhood. 

The importance of this concept cannot be overestimated, especially 
with the emergence of really large networks that evolve in time. There 
it is usually completely impossible to gather information of the global 
system state for possible decision making at a local level. So, it is nec- 
essary to define and investigate mathematical models that enable us to 
reduce the complexity of decision making on the basis of global informa- 
tion to decision making in local structures. Clearly, this is not always 
possible when globally optimal decision rules are required and the sys- 
tem dynamics depend on the complete history of the system in space 
and time. 
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But it is the hope that such reduction of complexity is possible if the 
dynamics of the uncontrolled system exhibits a local structure from its 
very definition. Traditionally, a local structure of a process in time is the 
Markov property and a local structure in space is the Gibbs property, 
i.e., the Markov random field property. 

Our central topic is therefore to investigate systems that are Markov- 
ian in time and where the dynamics, determined by the transition opera- 
tors, show a structure that resembles the Markov field property in space. 
The aim is to show that in many cases, optimization of these systems 
can be done by considering only strategies that respect the neighbour- 
hood structure and the Markov property in time. This means that under 
specified conditions, we are able to exploit the locality of the systems' 
internal structure to find a set of rules we can use to establish a control 
regime that needs for decision making at a specific node (process coor- 
dinate) only information from the nearest neighbour nodes. We believe 
that this will help to reduce complexity of control schemes - although 
we sometimes pay by obtaining globally suboptimal policies that are only 
optimal in a set of local policies. 

Our framework is classical stochastic dynamic optimization and it is 
well known that in many cases, especially if the underlying dynamics of 
the uncontrolled system is Markov in time, it is provable that optimal 
strategies can be found in subclasses of the class of admissible policies, 
where the history of the system is irrelevant for decision making if the 
present state is known. Such policies are called Markovian, adequately 
in line with the denominations above. 

To summarize, the project undertaken in this book is to establish 
optimality or nearly optimality for Markovian policies in the control of 
spatiotemporal Markovian processes. We apply this general principle 
to different frameworks of h4arkovian systems and processes. Depend- 
ing on the structure of the systems and the surroundings of the model 
classes, we arrive at different levels of simplicity for the policy classes 
that encompass optimal or nearly optimal policies. We accompany these 
theoretical findings by a set of examples that will hopefully demonstrate 
that there are important application areas for these theorems. 
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Chapter 1 

INTRODUCTION 

With the emergence of highly structured complex network structures in 
various fields of sciences (for example in physical and technical systems, 
population dynamics, neural networks, computer and telecommunica- 
tion networks, climate modeling and prediction, earth surface models, 
environmental engineering, complex production networks and flexible 
manufacturing systems, logistic networks, and transportation systems) 
the research on spatiotemporal stochastic processes as models for such 
systems has found much interest in mathematics, econometrics, and com- 
puter science. 

Spatiotemporal stochastic processes 

Spat i~ tempo~al  stochastic processes are processes that simultaneously 
develop in space and time under random influences. In a first attempt, 
the term spatiotemporal stochastic process does not add really new in- 
formation and meaning to  the definition of a classical stochastic process 
that is a mathematical model for any system developing in time and 
the actual state of which is an element of its associated state space. As 
a typical example, the multidimensional Poisson processes or Brownian 
motion fit such a description. 

Nevertheless, during the last twenty years, many research mono- 
graphs were developed that put emphasis on the parallel evolution of 
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systems in space and time, as were a huge number of articles and papers 
on the subject. Usually in such studies the state space carries an addi- 
tional structure. Some important cases are determined by geographical 
structures on some sphere, or by an underlying regular lattice that deter- 
mines an ordering of coordinate spaces in models of statistical physics, 
or by nonregular graphs that determine network state spaces, say of the 
Internet. We may comment on this by saying that in the study of spa- 
tiotemporal stochastic processes, the classical concepts of random fields 
(which are models for spatially distributed random phenomena) and of 
stochastic processes (which are usually thought to  describe the evolution 
over time of systems under random influences) converge. 

Before proceeding with a general discussion, we describe some ex- 
amples that we consider to be prototypes of ~pat iotempo~al  stochastic 
processes. 

As a first example, we consider a network of locations (say, villages 
or towns for human beings, or colonies of animals of the same or some in- 
teracting species) that interact by migration of the inhabitants. Species 
usually attempt to migrate for a variety of individual or population rea- 
sons and there is an additional development of the population by birth- 
death occurrences. For a more in-depth discussion, see the introduction 
of Chapter 9, Spatial Populat ion Dynamics ,  in Renshaw's book MODEL- 
ING BIOLOGICAL POPULATIONS IN SPACE AND TIME [Ren93], and the 
examples that follow. 

A second example is provided by Christakos' book RANDOM FIELD 
MODELS IN EARTH SCIENCES [Chr92], where Chapter 5 is devoted to 
T h e  Spatiotemporal R a n d o m  Field Model. The author strongly advo- 
cates to incorporate into the classical random field models that describe 
the state of an earth science scenario at a fixed time point also the 
development of these scenarios over time (for example, to assess the spa- 
tiotemporal variability of the earth's surface temperature and to  predict 
extreme conditions). 

The difference between the state spaces in these classes of models is 
obviously that the population dynamics are connected with local states 
on a grid or lattice (which represents the locations) or a graph (which 



represents the locations and the paths between the locations) while the 
temperature is usually defined over a continuous area. (Unless we con- 
sider the measure points as a predefined grid for the describing process.) 

The importance of the general random field notion is that it provides 
us with models for spatially distributed systems. There is now a well 
established structure theory as well as a statistical theory for random 
fields, which is often summarized as in the title SPATIAL STATISTICS of 
Ripley's short book [Rip81], or in Cressie's STATISTICS FOR SPATIAL 
DATA [Cre99]. 

When considering dynamics associated with such distributed sys- 
tems, the probability law of a random field contains the information on 
the random fluctuations of the spatial system for a fixed time point. A 
realization of such a random field is therefore a snapshot of some system 
at a fixed instant of time. The mathematical theory and the statistics 
for random fields is an important branch of ongoing research. 

The state space of a random field is usually a product space X = E ~ ,  
where T is an index set that represents the sites or locations of the 
random field, while E can be considered as the attributes associated with 
the sites. A main distinction for random fields is according to whether 
T is discrete or continuous; see the remark following our first examples, 
above. Both subclasses have many important applications and a rich 
mathematical theory, and in both subclasses, there is much interest on 
so-called Markov random fields and Gibbs fields. 

Local structures in spatiotemporal processes 

In our investigations we always assume that there is some grid or graph 
that determines a discrete internal structure of the system's state space. 
A short introduction into migration processes that live on state spaces 
IVJ, where J is the number of colonies, is included in Chapters 2 and 6 
of [Ke179]. The title of Kelly's book: REVERSIBILITY AND STOCHASTIC 
NETWORKS, introduces another connection to spatiotemporal processes. 
Stochastic networks or queueing networks have developed over almost 
thirty years from early applications in production systems and computer 
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and telecommunications networks to a well established theory, which is 
still developing. For recent surveys, see [CYOl] or [Ser99]. In queueing 
networks, the routing of the items (customers) inside the network is usu- 
ally described by some Mxkovian routing mechanism that immediately 
leads to a neighborhood graph by considering the transition graph of the 
routing chain. Migration processes can be considered as special queue- 
ing networks; see [Ke179] and Whittle's book SYSTEMS IN STOCHASTIC 
EQUILIBRIUM [Whi86]. In their books, Whittle and Kelly discuss related 
processes, called Spatial Processes [Ke179, Chapter 91. We discuss these 
processes and related stochastic network processes in some detail in Sec- 
tion 5.2.1. An important property of the Markovian spatial processes 
is that their transition operator has a local structure, determined by 
a neighborhood graph and that under some additional conditions, the 
equilibrium distribution of the process is a Markovian random field with 
respect to this neighborhood graph. 

Markov random fields and related structures are another area that is 
of central interest in our investigations. These are special random fields 
where the distribution of the random field is connected with neighbor- 
hood structures and boundary structures of the underlying state space. 
In a first attempt, they can be considered as a spatial counterpart of the 
Markov property in time of standard stochastic processes. 

For the case of continuous index set T = Rn, say, the Markov prop- 
erty is defined with respect to a prescribed set of surfaces aD E 9, each 
of which partitions Rn into three disjoint sets D+ + D- + aD = Rn such 
that the attributes at sites in D+ and D are conditional independent 
given the attributes in (a small neighborhood of) aD. For more details 
in this direction, see [MY66, MY67, Yad80, Geo88, Roz811 (with English 
translation [Roz82]). 

Our focus in this book is on the class of random fields with discrete 
index set T ,  which is usually the set of vertices V of a graph F = (V, B).  
The edges in B then define the neighborhoods of the Markovian random 
field. If we denote by N(k) = { j :  {k, j )  E B )  the neighborhood of 
node k E V, then the Markov property is defined with respect to these 
neighborhoods such that the attributes at site k  and at sites in V- ( { k ) ~  



~ ( k ) )  are conditionally independent given the attributes at N ( k ) .  
For details in the ~ ~ n d o m  field context, see [Dob68, Dob71, Lig85, 

Lig99, Pre74, Geo881 and the collections [DKT78, DS781 (English trans- 
lation [DS80]). 

Although we emphasize the Markov property in space, it should be 
clear that there is a close connection to classical random fields from 
statistical physics where the formalism of Gibbs fields introduces local- 
ity into the model description. Gibbs fields are probability laws on a 
(regular) graph structured state space that describe the fluctuations of 
(large) particle systems in equilibrium [Dob68, Dob71, Geo881. From 
the assumption to be in equilibrium in the classical theory, the time 
development seems to play a minor role. 

These models of systems in equilibrium have been used in various 
other areas in the meantime, e.g., modeling information diffusion in spa- 
tially distributed populations, image representation and segmentation 
[Win95], and fluctuation of markets in equilibrium. 

But the restriction on time invariant probability laws as an assump- 
tion on the models becomes more and more questionable in these ar- 
eas of applications and there are now many investigations published on 
the time development and equilibrium behaviour of so-called interacting 
processes [DKT78, Lig85, Lig99, Pre741. Most of these investigations 
concentrate on Markovian interacting processes, where the term Markov 
refers firstly to the Markov property in time. It is an immediate ques- 
tion under which conditions a Markov interacting process possesses as 
(one dimensional in time marginal) limiting or equilibrium distribution 
a Gibbs or Markov random field. Indeed, the first approach was more 
in line with the question, which processes show the classical Gibbs en- 
sembles as stationary distribution; see [Lig85], where stochastic nearest 
neighborhood particle systems (Ising models and general spin systems) 
and their Markov processes are investigated, as well as contact processes 
and voter processes with nearest neighborhood structure. 

The recent book of Voit's puts (among others) these models under the 
title THE STATISTICAL MECHANICS OF FINANCIAL MARKETS [Voi03]. 
Most parts of the book are on random walks and scaling limits, so merely 
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on the macroscopic behavior of the market models. But there is also a 
chapter on Mzcroscopic Market Models that fit in the class of models we 
are working on. The author considers (discrete) populations of agents 
who buy and sell units of one stock and by observing the prices over time, 
they adjust their trading decisions and behavior. Depending on the as- 
sumptions, these agents behave Mxkovian in time, or act with a longer 
memory. With Markovian behavior for some examples, a behaviour oc- 
curs that resembles Ising models or spin glass models. We believe that 
this is a promising class of models in this area of applications, especially 
when the restriction on being close to the original models of statistical 
physics is relaxed. Then we are able to obtain more versatile models 
with more general state spaces in the flavor of Kelly's spatial processes 
or in the realm of general stochastic networks. If this is successful, then 
the question of optimization obviously enters the stage. 

Optimization and local structures 

Clearly, optimization of interacting systems is an important topic when- 
ever complex systems are driven by some control regime. So, our project 
is a continuation of many previous investigations. But what we have in 
the center of our investigations seems to be new: The strong emphasis 
on locality in the models and in the optimization procedures. 

We believe that the importance of locality and the subsequent struc- 
tural properties of the systems cannot be overestimated, especially with 
the emergence of really large networks that evolve in time. There it is 
usually completely impossible to gather information of the global system 
state for decision making at a local level. So it is necessary to define and 
investigate mathematical models that enable us to reduce the complexity 
of decision making on the basis of global information to decision making 
in local structures. Clearly, this is not always possible when globally 
optimal decision rules are required and the system dynamics depend on 
the complete history of the system in space and time. 

We will show that such reduction of complexity is possible if the 
dynamics of the uncontrolled system exhibit a local structure from its 



very definition. Traditionally, a local structure of a process in time is 
the Markov property and a local structure in space is the Gibbs property 
and their relatives, i.e., the Markov random field property. 

We undertake the planned investigations in several steps, which are 
concerned with different classes of systems - in parallel to the distinc- 
tion usually made by classifying stochastic processes: Discrete and con- 
tinuous time, discrete and continuous state space. Our starting point 
in every chapter is an uncontrolled Markov process (in Chapter 5.1, a 
semi-Markov process), that describes the interaction of sites or nodes 
with possibly node specific states in a way that the transition operator 
resembles Markovian random field structures. In the definition, we follow 
the construction of Vasilyev and others [Vas78]: 

Given some structure determining graph where the vertices are the in- 
teracting nodes of our system and the edges represent the nearest neigh- 
borhood connections, then the present state of the system determines the 
transition to the next state at any site only through the states of the sites 
in the nearest neighborhood (local transition probabilities). Given this 
information in discrete time systems, the individual transitions at the 
sites are conditionally independent and occur at the same time (synchro- 
nous transition probabilities). For continuous time processes, we assume 
that the embedded jump chains have local and synchronous transition 
probabilities. 

At this point, we are faced with a well known problem: Even if an er- 
godic Markov process possesses local and synchronous transition kernels 
with respect to a prescribed neighborhood structure, the limiting and 
stationary distribution is not necessarily a Markov field with respect 
to this neighborhood system. This means that although the one-step 
transitions are strictly local, the influences generated by some node may 
nevertheless diffuse to far away sites. It has been a field of intense re- 
search whether the steady state of a process with local and synchronous 
transition kernels is a Markov random (Gibbs) field with respect to the 
same neighborhood structure. We discuss some positive results for dis- 
crete time processes from the literature in Section 3.2 and for continuous 
time processes in Section 5.2.1. Fortunately enough, it turns out that 
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we can prove our main results without the assumption that the limiting 
distributions of the controlled systems are Markov fields in the classical 
sense. Nevertheless, such a closure property would be welcomed in sys- 
tem evaluation because it enhances performance evaluation and makes 
the structural behavior of the system more smooth. 

For Markovian (or semi-Markovian) processes with local and syn- 
chronous transition kernels, we define local and synchronous strategies 
(policies, plans) to control the behavior of the system such that the lo- 
cal space structure of the system is respected under control. We refer 
to these strategies often simply as local strategies. These local strategies 
are, in general, randomized strategies and depend on the whole history 
of the system. This enables a decision maker to include his former ex- 
perience with the system's reactions into decision making, i.e., to learn 
about the system's behavior. 

In the framework of classical stochastic dynamic optimization, it is 
well known that in many cases, especially if the underlying dynamics of 
the uncontrolled system is Markov in time, it is provable that optimal 
strategies can be found in subclasses of the class of admissible policies, 
where the history of the system is irrelevant for decision making if the 
present state is known. Such policies are called Markovian as well. Often 
it can even be proved that there are optimal Markovian policies that 
furthermore, are deterministic decisions. 

The Markov property here is with respect to time development, but 
in the classical optimization procedures with respect to  space, we usually 
need the complete information about the actual state for decision making 
via a Markovian strategy. In general, there seems to be no hope to find 
optimal local strategies in the class of all admissible (including global) 
strategies. 

But possibly this is not a really serious drawback in many situations. 
In large networks where decision makers have access to only a limited 
number of neighbored nodes, policies that depend on global information 
are not executable, so they cannot be admissible. The problem we are 
faced with is then: 



Suppose we consider only local policies - are there in this class 
optimal policies that are Markovian in time as well? 

Discussion of this problem in the different settings and proving the 
existence of optimal Mxkovian (in time) policies in the class of local poli- 
cies is our main business in all the chapters that follow. Our main result 
is throughout Chapters 3 and 5 to provide conditions that guarantee 
that in specified local classes of policies Markovian policies exist, maybe 
under some additional conditions, e.g., on smoothness of the transition 
operators. 

It should be obvious that such a procedure will not lead to prov- 
ing optimality of Markovian local strategies in the class of all admissi- 
ble (global) policies, but only to  suboptimal strategies. But under the 
observation that decision making on the basis of global information is 
impossible, our local search will usually be the best that we can do. 

Nevertheless, in special situations local optimization may be globally 
optimal. We discuss this in Sections 3.4.5 and 3.5.2. In both cases, we 
assume that the reward functions are separable, i.e., they are sums of 
locally defined reward functions, and these latter depend on the state of 
the nearest neighbors only. 

Stochastic games and their mathematical investigation are closely 
related to stochastic dynamic optimization. We apply our principles in 
Chapter 4 to  stochastic sequential multiperson games with an infinite 
horizon. The players are distributed on a graph and act locally. 

Chapter 6 is devoted to  some problems related to the spatiotempo- 
ral processes that we considered in earlier chapters: These problems are 
from different areas, e.g., information diffusion, image recognition and 
classification using Markov random field models, parameter estimation 
in random fields, and financial markets. These examples will illustrate 
the principles that guided us through the previous chapters, although 
there are in any case differences to  our modeling principles. 

We want to emphasize that the results obtained in our research, which 
are gathered here, cannot be a complete study of all problems connected 
to optimization of spatiotemporal processes that are Markovian in space 
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and time. We therefore tried to list in the Bibliography articles and 
books that we consider to be related to  the problems investigated in this 
book. 

Notation: 

We define sums with an empty index set to 0, and products with an 
empty index set to  1. 

o denotes the composition of functions: Let f : A + B and g :  B 7- C 
then f o g :  A 7- C is defined by f og(x)  = f (g(x)) ,  x E A. 

Throughout the book we always assume that a suitable underlying 
probability space ( R , 3 ,  Pr) is given where all random variables are de- 
fined. At some points we will modify (R, F, Pr), which will be indicated 
by a dedicated notation. 

For any set X ,  we denote by 2X the set of all subsets of X .  
For any nonempty set X and any subset £ C 2X, we denote by 

ax (E) = a(£) the sigma algebra over X generated by E. 
If (X,  X) is a measurable space and A E X, then the indicator function 

of A is 1 : (X,  X) + {0,1} with 

We occasionally use the indicator function as logical value by writing 

1, if the condition (event) A is in force, 
1 (A)  = 

0, otherwise. 



Chapter 2 

PREREQUISITES FROM T H E  
THEORY OF STOCHASTIC 
PROCESSES A N D  STOCHASTIC 
DYNAMIC OPTIMIZATION 

In this chapter we collect some fundamental notions for stochastic pro- 
cesses needed throughout the text and formalize the notions of a decision 
model in discrete and in continuous time. For the latter we follow closely 
the presentation in [Hin70] and [GS79]. 

2.1 STOCHASTIC PROCESSES 

D e f i n i t i o n  2.1 (Stochast ic  process). A family of random variables 
c = (tt : t E T ) ,  in more detail: 

with T # 0 is called a stochastic process. Here (R, F, Pr) is the underlying 
probability space and (X, X) is the state space o f  the process. 

I f  the state space X is discrete (countable), then we always assume 
x = 2 X .  0 
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The index set T has many relevant interpretations. If T C R, then T 
is often interpreted as time, which may be discrete, T = W, .Z or subsets 
thereof, or continuous T = R, [0, oo) or subsets thereof. The classical 
theory of stochastic processes is concerned with this setting, and the 
systems we are mostly interested in evolve on one of these time scales. 

If T is not linearly ordered, e.g., if T = .Z2 is a regular lattice, then T 
is often interpreted as space. Again, space may be continuous or discrete; 
in either case, c is then often called a random field. 

If T = V is the set of vertices of some graph r = (V, B) with edge 
set B ,  then the state space is structured by B and coordinates of the 
space, which are neighbors according to the edges of T', are thought to 
interact; for details we refer to the fundamental Definition 3.2, which 
lays the groundwork for interacting systems we are interested in. 

Such a random field describes the global state of a system at some 
fixed time point, and Cj, for j E V records the actual local state of the 
system at vertex (location) j E V = T. 

If such system with an interaction structure that is thought to be 
varying in space is given, we may then equip this with an additional 
time scale, say N, resulting in a stochastic process 

Such a process describes the evolution in space and time of a distributed 
system with interacting components. 

Remark 2.2. We usually separate in the general notion (2.1) the time 
variables from the space variables by writing 

such that It is a V-indexed random vector and we allow the local states at 
the different nodes t o  be different. 0 
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The most prominent class of stochastic processes we are interested 
in during the modeling process are Markov processes. 

Definition 2.3 (Markov processes). Let 

7  = ($  : ( R ,  F ,  Pr) + ( X ,  X ) ,  t  E T )  

be a stochastic process with parameter set T  C R and denote by 

the pre-t o-algebra of  q (the o-algebra of the past of q before t), and by 

the post-t o-algebra of q (the a-algebra of the future of q after t) .  
7  is a Markov process if the following holds: 
For all t E T  and all B E F;, we have Pr-almost surely 

We always assume that there exists a family of  regular transition probabilities 
for q,  i.e., a family P = ( P ( s , t ) :  s, t  E T ,  s  < t )  of kernels 

such that for all s  < t  and all x  E X  and C  E X holds 

P(s, t ;  x ,  C )  = Pr ($  E C  I yS = x ) .  

q is a (time) homogeneous Markov process if the kernels ( ~ ( s ,  t ) :  s ,  t  E 
T ,  s  5 t) depend on s  and t only via t - s. We then write ( P ( s , t )  = 

P(t - s ) :  s ,  t  E T ,  s  < t )  and have a family P = ( ~ ( t ) :  t  E T )  of kernels 
such that for all t E T  with s , t  E T and all C  E X 
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holds. I f  0 E T, we then have the usual relation 

We always assume that P(0) is the identity operator. 
We use the term Markov process t o  refer t o  homogeneous Markov 

processes. Exceptions will be explicitly noted. 0 

Throughout the text we assume that the state spaces are smooth 
enough to guarantee that in connection with conditional expectations, 
regular conditional probabilities exist and we shall use this without men- 
tioning it further. 

For more details on Markov jump processes, see Subsection 5.2.1. 

D e f i n i t i o n  2.4 ( M a r k o v  chains). A (homogeneous) Markov process 
on discrete time scale (usually T C Z) is called a (homogeneous) Markov 
chain. The probabilistic transition behavior of a Markov chain is determined 
by the onestep transition kernels P(1; x, C) .  We therefore introduce for 
homogeneous Markov chains with time scale N 

j = (tt : (R, F, Pr) + (X, X), t E W) 

throughout the notation 

for all x E X and C E X and similarly for other discrete time scales. 
I f  the state space X is discrete (countable), then the onestep transition 

kernels are determined by the stochastic matrices of the respective transi- 
t ion counting densities. We use the same symbols for the kernels and the 
associated stochastic matrices. 0 
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Definition 2.5. I f  for a Markov chain with discrete state space and 
transition matrix Q(y I x )  some probability i.r exists which fulfills 

then r is called an invariant or steady state distribution of [. 0 

Definition 2.6 (Markov processes with discrete state space). I f  

is a continuous time Markov process with discrete state space such that 

lim P( t )  = P(0)  
t.Lo 

holds, i.e., the family of transition kernels is standard, then the right deriv- 
ative 

1 
lim - ( ~ ( t )  - ~ ( 0 ) )  = Q 
t L 0  t 

is called the Q-matrix of P  = ( ~ ( t ) :  t 2 0 ) .  0 

To exclude pathological behavior we enforce the following assump- 
tion. 

Assumption 2.7. I f  the state space of a Markov process 7 is a topological 
space, then the paths o f  7 are assumed t o  be right continuous with left-hand 
limits (cadlag paths). 

For any homogeneous Markov process 7 with discrete state space (x, 2 X ) ,  
we assume throughout that its paths are right continuous with left-hand lim- 
its (cadlag paths), that its Q-matrix Q is conservative, which means 
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and that 7 is non explosive (having only a finite number of jumps in any 
finite time interval with probability one). 

Unless otherwise specified, we assume that q is irreducible on X .  

Corollary 2.8. Let 

7 = 7' : (0, F, Pr) + (x, 2 X ) ,  t E (0, m)) ( 
be a continuous time Markov process with discrete state space that fulfills 
the Assumption 2.7. Then q can be characterized uniquely by a sequence 
(E, T) = {(tn, T ~ ) ,  n = 0,1, .  . . ) ,  which describes the interjump times T~ 

and the successive states cn, which the process enters at the jump instants. 

The sequence o f  jump times of 7 is o = {on: n = 0 , 1 , .  . .), given by 
a0 = 0, and an = C7=l T ~ ,  n E W, and therefore for t E [an,an+'), we 
have rlt = tn, n E W. 

The sequence = {tn = n = 0,1, .  . . ) is a homogeneous Markov 
chain, called the embedded jump chain of 7. The one-step transition prob- 
ability of the embedded jump chain is the Markov kernel 

The definition of an embedded jump chain carries over to the case 
of general Markov jump processes; see the detailed description in Defin- 
ition 5.19. 

One of the possibly most important examples of processes with dis- 
crete state space is a birth-death process, for details see Theorem 5.23. 
Birth-death processes will serve as building blocks of the network pro- 
cesses and migration processes that we describe in Section 5.2.1. 
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Definition 2.9 (Birth-death processes). Let 

denote a Markov process with right continuous paths having left-hand limits 
(cadlag paths) and Q-Matrix fi = (q(m, n)  : m, n  E N )  given by 

i f  O < m , n = m + l ;  

i f  l < m , n = m - 1 ;  

i f  m=n=O;  

- ( A m )  + ( m ) ) ,  if m = n  > 0;  

otherwise. 

Then q is a (one dimensional) birth-death process with birth rates A(. )  and 
death rates p( . ) .  

Unless otherwise specified, we assume p(m) > 0, Y m > 1.  A(m) may 
be 0 for some m E W. 0 

A class of processes that is often amenable to explicit structural in- 
vestigation and computation of steady state distribution is the class of 
reversible Markov processes in continuous as well as in discrete time. 
For example, many of the processes that describe particle systems from 
statistical physics are reversible; see [Lig85]. 

Definition 2.10. A Markov chain c = (tt: t E Z) is called reversible (in 
time) if, for all t 2 0 and A, B E X, it holds 

Pr {tt E A, ct+' E B )  = Pr {tt E B, tt+l E A).  0 

Lemma 2.11. (a) A reversible Markov chain is stationary. 



Chapter 2. Prerequisites 

(b) A Markov chain c with discrete state space is reversible i f  it is 
stationary and a strict positive probability measure T on X exists such that 
for all x ,  y E X ,  we have 

i.r is then the stationary probability of [. 0 

Reversibility of a Markov chain means that the operator defined by 
the onestep transition kernel which generates this Markov chain is self- 
adjoint; see [Str05, Section 5.1.11. If this operator is symmetric or self- 
adjoint, in many cases it is easy to solve (2.2) for the steady state dis- 
tribution by solving (2.3) instead. There are many cases where Markov 
chains are reversible. But (2.3) is a rather strong condition on the tran- 
sition probabilities Q ( x  I y). 

The following criterion for reversibility of a Markov chain is of im- 
portance because it does not rely on having the stationary probability 
~ ( x )  explicitly given. 

Theorem 2.12. Let the Markov chain c be stationary. 

(a) Then c is reversible if and only i f  for all n > 1 and any sequence o f  
states 21,. . . , x, E X and xn+l = XI, we have 

(b) The stationary probability i.r is then obtained as follows: 
Fix some xo E X and let 

x0 = {xo), and for n > 0 
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and normalize finally. 0 

Definition 2.13. A Markov process q = ($: t E R) in continuous time 
with discrete state space is called reversible (in time) if for all n > 1 and 
for all t ime points tl < t2 < . . . < t, and for all states XI, 22,. . . , x, E X 
holds 

p r  {$% = xi: i = 1,. . . , n }  = Pr {?Is-ti = xi : i = 1,.  . . , n} .  0 

Lemma 2.14. (a) A reversible Markov process as given in Definition 2.13 
is stationary. 

(b) A Markov process with discrete state space is reversible if it is 

stationary and a strict positive probability measure i.r on X exists such that 
for all x, y E X we have 

7r is then the stationary probability of q. 0 

Corollary 2.15. A stationary birth-death process according t o  Defini- 
t ion 2.9 is a reversible Markov process. 

If the embedded jump chain of the birth-death process is stationary then 
i t  is reversible. 0 

2.2 DISCRETE TIME DECISION MODELS 

Optimization of systems under stochastic influences is a challenging 
problem and is known to be often a complex operation. Especially if the 
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real systems under investigation are large, a careful modelling process 
is needed. Therefore a precise definition of decision models is necessary. 
We start with decision making in discrete time systems, i.e., the system 
is observed only at  discrete subsequent time points and decision making 
is allowed at  these time points only. 

Definition 2.16. A general decision model in discrete time (see [Hin70]) 
consists of the following items: 

0 A nonempty state space X that is endowed with a a-algebra X. 
0 A nonempty action space A that is endowed with a a-algebra Z. 
0 A sequence (H t :  t E W) of  admissible histories, where H0 = X ,  

Ht+l = Ht x A x X for t > 0. Each Ht (containing 2t + 1 factor sets) is 
endowed with the respective product a-algebra st. 

0 A sequence A = (At: t E W) of  set valued functions, which deter- 
mines the admissible actions. At: Ht C Ht + 2A - {@), where the domain 
Ht is recursively defined as H0 := X ,  and Ht+l := {(h,  a ,  z) E Ht+': h E 
Ht, a E At(h), x E x). At(h) is the set of admissible actions at t ime t 
under history h. 

Ht is endowed with the trace-a-algebra fit := Ht n s t .  
We denote Kt := {(h,  a )  : h E Ht, a E At(h)) ,  and shall always assume 

that these sets contain the graph of a measurable mapping. K t  is endowed 
with the trace of the product-a-algebra At := Kt n st 8 (U. 

0 An initial probability measure q0 on (X,X) and a sequence Q = 

(Qt : t E N) of  transition kernels, where Qt : Kt x X + [O, 11 is the transition 
law of the system from time t t o  t + 1. 

0 A sequence r = ( r t :  t E W) of At-IB measurable reward functions 
r t :  Kt + R, where r t (h ,  a )  is the reward obtained in the time interval 
(t,  t + 11 if the history h E Ht is observed until t ime t and the decision then 
is a E At(h). 0 

The control of the decision model is performed by application of 
specified strategies to select under an observed history a decision vari- 
able that then triggers a new transition of the system's state. We will 
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define different types of strategies that enable us to cover a variety of 
abstract problem formulations and real applications. For simplicity of 
presentation we first introduce deterministic strategies. 

Definition 2.17. A deterministic admissible strategy (policy, control 
sequence, plan) is a sequence A = (A t :  t E W )  of measurable functions 
At: X + A with the following property: 

I f  we use the strategy A and if up t o  time t the sequence of states 
occurred is ( x O ,  x l ,  . . . , x t )  and the history observed is 

then we have 

A ( x O  x  . . , x  E At xO,  x l ,  . . . , x t ) ) .  

The functions At are called decision rules, decisions, or actions. We denote 
the set of all deterministic admissible strategies (policies, control sequences, 
plans) in a decision model by IIp. (Deterministic admissible strategies are 
often called pure strategies.) 0 

Definition 2.18. A randomized admissible strategy (control sequence, 
policy, plan) is a sequence T = ( d :  t E W )  of transition kernels 

from ( H t ,  f i t )  t o  ( A ,  Z), h  E H t ,  such that for all histories t E N 

;rt ( h ;  ~ ~ ( h ) )  = ;rt ( ~ ~ ( h )  I h )  = I 

holds. (We use the notations d ( h ;  B )  = r t ( B  I h )  as equivalent.) 
We denote the set o f  all randomized admissible strategies (policies, con- 

trol sequences, plans) in a decision model by II. The transition kernels i.rt 

are called decision rules, decisions, or actions. 
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A decision rule is called Markovian i f  for all t E N and all histories h = 

( xO ,  aO, x l ,  a', x 2 , .  . . , at-', x t ) ,  g = ( Y O ,  bO, Y ' ,  b l ,  . . . , bt- l ,  t ~ ~ )  E Ht 
with xt = yt we have ;rt(h; .) = ;rt(g; .). 

In such situation we call the strategy Markovian as well and consider 
a Markov strategy as a sequence ;r = ( ;r t :  t E N) of transition kernels 
;rt: X x (U --- [O, 11 from ( X ,  X) t o  ( A ,  (U). 

We denote the set of all Markov (admissible) strategies in a decision 
model by IIlcI. 

Note that whenever we deal with Markovian strategies, we can assume 
that At (h t )  depends on ht only through xt.  We denote this restricted de- 
pendence by At (h t )  =: At ( x t ) .  This will be done without further mention. 

A Markovian strategy is stationary i f  the transition kernels are time 
independent, i.e., ;rt = ;rs, s, t E N. 

We denote the set of all stationary (Markovian admissible) strategies in 
a decision model by I I s .  

The set of all deterministic (pure) Markovian (admissible) strategies in 
a decision model is denoted by I Iphr .  

The set of all deterministic stationary Markovian (admissible) strategies 
in a decision model is denoted by nD. 0 

Remark 2.19. Whenever we are dealing with deterministic strategies, we 
assume that all the involved a-algebras contain the one-point sets. Then 
deterministic plans can be considered as randomized plans as well. 

We then have 

~ D C ~ S C ~ M C ~  

and 

n~ c n,, c n, c n. 

Remark 2.20. We will later consider controlled processes in continuous 
time and use controls that are families ;r = (;rt : t > 0)  of suitable transition 
kernels as randomized controls, and pure strategies that are in the Markovian 
case then functions A = (At :  X --- A, t E [ O ,  00)). 
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Without further remarks we will use the same notation as in Remark 2.19. 
The same procedure will apply i f  we are concerned with controlled 

processes in continuous time where the control and decision making is only 
allowed at an embedded sequence of random or deterministic time points, 
as, e.g., in the case of semi-Markov processes (Section 5.1) or Markov jump 
processes (Section 5.2). 0 

If a decision model according to Definition 2.16 is given and a (mn- 
domized) admissible strategy according to Definition 2.18 is fixed then 
from the transition kernels (Qt: t E N) for the state transitions and 
(d: t E N) for the decisions a dynamics for the system is specified over 
any finite time horizon {O,l, .  . . , t ) .  We denote by 

the sequence of successive states and decisions and assume that this 
sequence is given for an infinite horizon. A consistent construction of a 
probability space (0, 3, Pr) where this stochastic process lives on can be 
done in the standard way by construction of the canonical process. 

Let R = ( X  x A)", 3 = (X 8 %IN, at and tt are the respective 
projections, and Pr is constructed with the help of the theorem of Ionescu 
Tulcea.The procedure is as follows. 

For a prescribed (randomized) strategy T according to Definition 2.18, 
an initial distribution q0 on (X, X) and sequence of transition kernels Qt, 
t E N (see Definition 2.16) we have for all t E N 
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with CS E X, BS E Z, s 5 t. This sequence of finite dimensional distribu- 
tions uniquely determines Pr  and the distribution of (I, a), which is the 
sequence of the respective projections on R. Therefore (2.4) determines 
Pr on the cylindrical sets of F = (X 8 ' u ) ~  by 

That Pr  exists and is uniquely determined on F = (X@ a)' is the result 
of Ionescu Tulcea. 

It should be noted that formally we have to extend the domain of 
the Qt from K t  x X to ( X  x A)t x X. The construction sketched here is 
the most general one and does not need the assumption of having Polish 
state and action spaces. Moreover, if the strategy is deterministic, it is 
possible to  construct an underlying probability space that governs the 
evolution of the decision model on some space with R = xN, F = XN; 
see [Hin70, page 801 or [GS79, Section 1.11. 

We are faced with the problem of howto compare the behavior of 
different decision models with fixed transition mechanisms Qt, t E W, 
but under different initial distributions q0 and different strategies T .  For 
easier reading, we will distinguish the different underlying probability 
measures by suitably selected indices in a form, say Pr:o, which in case 

that q0  is concentrated in the point xO will be abbreviated by Pr;,. Ex- 
pectations under Pr:o, will be written as EGO. 

In our discrete time models the evaluation of the decision model and 
of the sequence (<, a) = ( (tt, at) : t E W , i.e., the assessment of the 1 
strategy and of the time behavior of the decision model, will be according 
to the asymptotic expected time average reward/costs principles. We will 
consider mainly cost and reward functions that are stationary in time, 
i.e., r t  is independent of t and therefore a function 
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Therefore, if at time t E N the system is in state ct = xt and a 
decision for action cut = at  is made a (one-step) cost r (xt, at)  2 0 is 
incurred to the system. The average expected cost up to  time T when c 
is started with to = xO and strategy a is applied is 

where Ezo is expectation associated with the controlled process (c, a) 
under ;r if to = xO. 

The first problem is to  find a strategy ;r that minimizes the maximal 
asymptotic average expected costs. 

Definition 2.21. For the controlled process (t, a) under policy ;r and 
starting with to = xO the asymptotic maximal expected time average cost 
is 

.. T 
0 1 

p(x , T) = limsup E;o - 
T+oo T + 1  

r (tt, cut) 
t=O 

A strategy T* E II is optimal with respect t o  the (minimax) cost criterion 
(in the class of admissible randomized strategies) if 

0 
p(xO, T*) = inf p(x , a), 'd x0 E X. 0 

"En 

The dual problem is to  find a strategy ;r that maximizes the asymp- 
totic average expected reward. 

Definition 2.22. For the controlled process (I, cu) under policy T and 
starting with to = xO the asymptotic mainimal expected time average reward 
is 

< 
1 4 (xO, a) = lim inf EZ0 -- C r (tt, cut) . 

T-a2 T + 1  t=O 
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A strategy T* E II is optimal with respect t o  the (maximin) reward criterion 
(in the class of admissible randomized strategies) i f  

Whenever it is clear from the context whether we consider the (mini- 
max) reward criterion or the (maximin) reward criterion, we will use the 
phrase optimal policy. 

2.3 CONTINUOUS TIME DECISION 
MODELS 

In this section we consider stochastic processes with time scale [0, TI or 
[O,T) for T < GO. 

When studying controlled stochastic processes in continuous time, 
we often assume that the state spaces and the action spaces are Polish 
topological spaces that are endowed with Bore1 a-algebras. This will 
provide sufficient generality for all the applications we have in mind and 
encompass the most prominent classes of stochastic processes used in 
applications. Our description in this introduction follows closely the 
presentation in [GS79]. 

Let (X, X) and (A, 'U) be measurable spaces, with a-algebras X and 
'U. (X, X) is the state space of the basic stochastic process, and (A, 'U) 
is the action space for the control. 

We denote by x [ O I T ]  the space of all functions defined on [0, TI with 
values in X and by X [ O > ~ ]  the a-algebra generated by cylinder sets from 
x[OIT]. Further we define A [ O > ~ ]  and ' U I O I T ]  in the same way for the me, 
surable space (A, 'U) . 

Similarly, for 0 < s < t < T ,  we define ~ [ ~ l ~ ]  to be the a-algebra 
over x [ O I T ]  generated by cylinder sets with bases in [s ,  t], and ~ [ ~ l ~ )  the 
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o-algebra over x [ O I T ]  generated by cylinder sets with bases in [s, t). Fur- 
ther expressions for a-algebras with other time intervals are to be read 
analogously. 

Sometimes we abbreviate Xt = X [ O ~ ~ ]  and Xt-O = a (Us,, xs) = 

x [ O > ~ )  . Similarly, we determine L?l[Slt] , L?l[Slt), L?lt and L?ltpO. 

2.3.1 Continuous time decision models with 
step control 

In this subsection we consider processes with time scale [0, TI, where 
T < G o .  

We follow in the next part the procedure of Gihman and Skorohod 
and define in a formal analogy to the discrete time situation a controlled 
object and a control as families of probability measures that resemble 
the definition of the respective transition kernels in discrete time and 
which may serve as similar objects in the continuous time setting. 

Definition 2.23 (see [GS79]). A controlled object is a family of prob- 
ability measures C L ( ~  I a), defined for all events C  E ~ [ ~ 1 ~ ]  and histories 

a(.) E A[O>~ ] ,  which satisfies the following measurability condition: 
For all t E [O,T] and all events C  E X [ O ~ ~ ]  up t o  time t, the function 

p(C 1 a(.)) is a L?l[Olt)-measurable function of the second component a(.). 
A control is a family of probability measures V(B I x(.)) defined for 

all decision history events B E ( U [ O > ~ ]  and state space paths 2(.) E X [ O > ~ ] ,  

which satisfies the following measurability condition: 
For all t E [0, TI and all decision history events B E L?l[Olt] up t o  time 

t, the function V(B 1 x(.)) is a  measurable function o f  the second 
component x(.). 0 

Note that we use the term control for the measure v(. I .) as well 
as for the elements a = a(.) E A [ O ~ ~ ] .  The meaning will always be clear 
from the context. 
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In general, the construction of stochastic processes with given control 
and a controlled object is difficult. 

The construction of associated processes is simpler for the case of 
deterministic controls, i.e., controls that are determined by a family of 

~[Ol'l-measurable functionals {$(xi:(.)) : t t [o,T]}, such that for B t 

L?l[O~t], we have 

In this case for the controlled process ( ~ ( t ) ,  a:(t)) the equality 

holds with probability 1, and hence it is possible to determine the control, 
although the controlled object cannot be determined in this way. 

This is because to construct the basic process on [0, t], we need to 
know the control a: on [0, t ) ,  which in turn is only determined if the basic 
process is known on [0, t) .  In discrete time we have an iterative scheme 
to determine the process and the control step-by-step but, in continuous 
time, this is obviously not the case, for more details, see [GS79, page 801. 

These problems will not occur if the control is delayed with respect 
to the process, i.e., knowledge of the control up to time t allows us to 
determine the state process on some time interval [0, t + s], s > 0. 

Definition 2.24. Let F be some nonempty set. A function f  : [0, oo] 7- F 
is a step function if i t  is piecewise constant and the sequence of jump points 
0 = to < t1 < . . . < tn < . . . of the function is either finite or diverges, i.e., 
limn,, tn = GO. 

A function f :  I + F on a finite interval I is a step function i f  i t  is 
piecewise constant and the number o f  jumps of the function is finite. 

We denote by F[O>T] the set of all step functions f :  [0, TI 7- F. 
A control a( . )  E A [ O > ~ ]  is a step control i f  i t  is a step function on [0, TI, 

i.e., for some sequence 0 = to < t1 < . . . < tn < . . . holds 



2.3. Continuous time decision models 

Note that according to  our definition, a step function has only isolated 
jump points. 

Definition 2.25. A control u(. I .) is a step control i f  for all x(.) E x [ O > ~ ]  

the measure v(. I x(.)) is concentrated on the set o f  all step functions in 
A[O>TI, 0 

Let for x(.) E x [ O > ~ ]  a step control v(. I x(.)) be given. We describe 
next how to derive the details for the subsequent further process con- 
struction from this information. 

Sojourn time distributions and jump probabilities: 
Denote by a', a 2 , .  . . the random times at which the random control 

a(.)  changes its value. From the prescribed measure u(. I x(.)), we obtain 
the measure 

v({a(.) : a(0) t B O )  1 x(.)) =: u0 (BO 1 x(o)), 

which determines the distribution of the control at the initial time 0. 
The distribution of the sojourn time in the initial state for the control is 
determined as follows: For all t 

is a 2dolt]-measurable function. As a function of B0 this measure is 
absolute continuous with respect to the measure vO(BO I x(0)). This 
yields the existence of the density function 

such that 
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holds. A' (t I x(.), a(0)) determines the probability that o1 > t holds, 
i.e., the sojourn time distribution in the initial state of the control. 

Given the initial state a0 of the control a:(.)  and the time o1 = s1 of 
the first jump of the control, we further define 

v1 ( B ~  

the conditional probability that 
define the density functions 

a:(sl) E B1. Similarly, for all k ,  we 

, s  , . . .  ~ ~ ( t  1 z( . ) , aO, .  . . , a k 1  , sy (sl < . . . < sk-l < t)  

and vk(Bk I x(.) ,aO, . . . ,  a"' , s  ' , . . . ,  sk) ((s < . . .  < sk ) ,  

which are the conditional distributions of ok ,  respectively of a:(ok), under 
the condition that 

1 1 - sk-1 a = s  , . . . ,  - , (~spectively ak = sk) ,  
0 0 and a(a ) = a  , . . . , a (  a'-') =ak- ' .  

The functions Ak and vk are measurable in all arguments, and Ak(t I .) 
is measurable in x(.) with respect to Xt, and vk(. I .) is measurable with 

respect to X[O~S~]. 
Analogously, starting from the controlled object p,  we introduce the 

conditional measures pt ( C  1 x(.), a(.)) defined on a o-algebra mea- 
surable in z(.) and a(.) with respect to XIOlt] x %[O~T], and such that for 
any C1 E X [ O > ~ ]  we have for the given control a(.) 

So the measure pt ( C  I x(.), a(.)) determines the conditional distribution 
on [t, TI of the processes corresponding to the measure p(. I a(.)) (the 
controlled object), if its value on [0, t] and the control over [0, TI are 
known. 
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Construction of the process distribution: 
We now show how to determine for a given control and controlled ob- 

ject the distributions of the controlled process ( ( ~ ( t ) ,  a ( t ) )  : t E [0, TI) 

(which will be defined iteratively) by utilizing the functions X k ,  vk, and 
pt (. I (.), a ( . ) ) .  In doing this we construct a sequence of processes (re- 
spectively their distributions) 

as follows. 

n=O: Given ((O),  the conditional distribution for ao(0) is vO(BO I 
EO) ,  and for all t E [0, TI a. (t) = a. (0) holds. Define Eo (t) such that 

co(0) = ((0) and for all C c x [ O > ~ ]  holds 

n=l: We define o1 and a1 (0') such that 

Put 
ao(t) ,  if t < a l ;  

W(t) = 
al (a1), if t > a', 

and construct the process El (t) such that El (t) = co(t) holds for t < o l ,  
and for o1 5 t: 

n=k: Continuing this way, we define ((k ( t) ,  ak( t ) )  such that ak ( t )  
has exactly k jumps in [0, TI, say at jump times 0 < a' < . . . < ak, and 
ak ( t )  = akPl ( t )  for t < okP1, and &(t) = (kPl(t) for t < ok.  
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n=k+l: If we have constructed &(t) and ak ( t ) ,  then we first deter- 
mine the time instant a'+' and the value of a k + l  (ak+') such that 

Then we set ak+1(t) = ak( t )  for t < ak+l, and ak+'(t) = ak (ak+') for 
t 2 a'+'. If the process ak+'(t) is constructed, we determine the process 
&+'(t) by setting it to be equal to &(t) on [0, a'+'], and extending it 
to [a"', T] such that for all C E x [ ~ > ~ ]  and ok+' 5 t we have 

If owl 2 T ,  then the process ((&.+'(t), ~ k + ~ ( t ) )  : t E [0, T I )  is (for the 

path under construction) the required process ( ( ~ ( t ) ,  a ( t ) )  : t E [0, T I )  . 
(Note that the mnning index k is random.) 

We have shown how to construct the controlled process from the mea- 
sures p and v, where v is a step control, such that the controlled process 

((((t), a ( t ) )  : t t [O, T I )  has the required control and controlled object. 

We will need te following explicit definition of a general construction re- 
lated to that procedure. The definition recalls the previous construction 
starting from a given abstract process. We discuss this below on page 34 

Definition 2.26 (Representation of a controlled object). Let 

( R , 3 ,  Pr) be a probability space. We say that the family of random processes 
((t, w; a( . ) ) ,  t E [0, TI, w E R ,  a(.) E A [ O ~ ~ ] ,  is the representation of a con- 
trolled object p(. I .) i f  the following conditions hold: 
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1) for all C E XIOIT] 

2) if a l ( t )  = a 2 ( t )  for all t 5 a', then we have [ ( t ,  w ;  a ' ( . ) )  = 

~ ( t ,  w;  a 2 ( . ) )  for all t 5 ol;  

3) [(., w ;  a ( . ) )  is a measurable random function defined on with 

values in X [ O > ~ I ,  i.e., for all t E [0, TI and C E XIOIT] we have 

Denote by (p: t E [0, T I )  the natural filtration in F ,  generated by [, i.e., 

F' = o ( s ,  ., a ( . ) )  : s 5 t ,  a ( . )  E A[oJ'I}. { ( 
A generalized control is an arbitrary process a = ( a ( t ) :  t E [0, T I )  

with values in A for all t ,  which is measurable with respect t o  FtpO = 

4 Us<t F S ) .  0 

The first condition in Definition 2.26 is necessary for the process 
[ (., w;  a ( . ) )  to have for fixed a( . )  the same distributions as the controlled 
process with the controlled object p( .  I .) and the fixed control a( . ) .  The 
second condition is a consistence condition for the control and the basic 
process: To define the basic process on [ O , t ] ,  it is necessary to define 
the control on [0, t ] .  The third condition is necessary to replace a( . )  in 
c ( . ,  w ;  a ( . ) )  by the process a ( . ) .  

Remark 2.27. Under condition 3) from Definition 2.26, i t  follows that for 
any generalized control a ( . )  the process ( [ ( t ,  w ) ,  a ( . ) )  is a random process 
on ( R ,  F ,  Pr) .  We call i t  the controlled process under control a ( . ) .  

I f  instead of condition 3) of Definition 2.26 the following condition 3' 
holds: 

3') { ( w , a ( . ) ) :  ( ( . , w , o ( . ) )  E C} E .Ft x Q[O.tl. for all t E [O,T]. C E 

Xt ,  then the process ( ( t ,  w ,  a ( t ) )  is even p-measurable. 0 
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In the following we study representations of controlled objects that 
are of the structure given in Definition 2.26. We restrict ourself to step 
controls, and additionally assume that the controlled object has paths 
that are step functions, i.e., for all a(.) E A [ O > ~ ]  the probability mea- 
sure p(.  I a(.)) fulfills p ( x [ O I T ]  l a( .))  = l, where is a set of all 
step functions in x[OIT]. A step controlled object can be defined by the 
following set of conditional distributions: 

where P O ( ~ X O )  is the distribution of x(0), which is independent from 
a(.); A' (ds I xO; a(.)) is the conditional distribution of the first jump 
time of the process; p1 (dxl I xO, t l ;  a(.)) is the conditional distribution 
of the state of the process after the first jump, given the time t1 of the first 
jump and the initial state xO, and so on. We can choose these conditional 
distributions such that they satisfy the following conditions: 

The measures Ak(ds I xO,.  . . , x"' , t1 , . . . , tkpl; a(.)) and 
pk(dxk I xO, .  . . , xkpl , t , . . . , tk ;  a(.)) are measurable with respect to 

X" (NO, ~ 1 ) ' ~ '  x and X" ((Bo, TI)" respectively; 
For any Borel-measurable r c [t, t + h], the measure 

Ak(r I xO, .  . . , xk-l , t , . . . , tk-l; a(.)) depends for tk-l < t on a(.) only 
on a(s) ,  s E [0, t + h),  and pk(dxk I xO, . . . , xk-I , t1 , . . . , tk ;  a(.)) depends 
on a(.) only through its values on [0, tk)  . 

To construct a representation of the controlled object we need the 
following auxiliary results. 

Lemma 2.28 (see [GS79, Lemma 2.21). Let X be a complete separa- 
ble metric space with Borel a-algebra X, A be some topological space with 
Borel a-algebra %. Let {pa(.), a E A) be a set of measures over X such 
that p,(C) is %-measurable for all C E X. Then there exists a function 



2.3. Continuous time decision models 

f ((C, a)  from [ O , 1 ]  x A t o  X ,  measurable with respect t o  B[O, 11 x (U. which 
satisfies the following conditions: 

1) if pal = pa2, then f (P, a') = f ((C, a2) for any P; 
2 )  if m L  is the Lebesgue measure on [O; 11, then for all C E X and 

a E A 
0 

Lemma 2.29 (see [GS79, Lemma 2.31). Let (B,  '5) be a measurable 
space and p ( .  I b, a( .))  be a family o f  distributions on B[O, TI, where b E B 
and a E A [ O > ~ ] ,  which satisfies the following conditions: 

1) p(.  1 b, a(.)) is measurable with respect t o  '5 x z [ O ~ ~ ] ;  

2 )  if F E B[O, t] and al(s)  = a2(s) for s < t ,  then 

p (F I b, a' (.)) = p ( r  I b, a'(.)) for any b. 

Then there exists a real valued function p((, b, a ( . ) ) ,  defined on [0, TI x B x 
A [ O > ~ ] ,  measurable with respect t o  B[O, TI x 23 x ( U [ O > ~ I ,  which possesses the 
following properties: 

A) m i  ({(: p ( ~ ,  b,a(.)) E T}) = i'(T I b, a( .))  for all Borel sets 

T' E B[O, TI; 
B) I f  al(s)  = a2 (s) for s < t ,  then p(<, b, a' (.)) = p(<, b, a2  (.)) for 

all (, for which p((, b, a'(.)) < t holds. 0 

Utilizing the above lemmas, we now sketch the construction of a 
controlled object with step function paths governed by a step control 
with the conditional distributions P' and X~ from (2.8). By Lemmas 2.28 
and 2.29 we find functions 

pk ((c, xO, .  . . , x k l  , t ' , . . . , t"', a(.)) on [0,1] x xk x [0, TI"' x 

f ((C, xO, . . . , xk-' , t ' , . . . , tk ,  a( .))  on [o, 11 x X' x [0, TI' x 

with values in [0, TI and X respectively, measurable in all variables, such 
that the following holds: 
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1) if r' is a Bore1 set in [0, TI, then 

o 
- 1  , t  1 , . . . , t X p l ,  a ( . ) )  E T}) 

= x';(F 1 x O , .  . . , xPp l  , t  , . . . , t P p l ,  a ( . ) ) ;  

and if C E X, then 

2) if t 1  < . . . < tPp l  < t ,  a l ( s )  = a2( s )  for s  < t ,  then 

pk (c ,  xO,  . . . , xkpl  , t  , . . . , t k p l ,  a ' ( . ) )  
0 xk- l  1 

= p k ( C 7 x  , . . . ,  , t  , . . . , t k - l ,  a2 ( . ) )  

for all C ,  for which p k ( < ,  x O , .  . . , xk-I 7 t 1  7 . " )  t k - l ,  a ' ( . ) )  < t .  

Now let so, p l ,  s l ,  c2, s2,  . . . be a sequence of independent uniformly 
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From 1) and 2) we conclude: 
If a l ( s )  = a 2 ( s )  for all s  < t ,  then for all w  with e k ( w ,  a ' ( . ) )  < t we 

have 

e k ( w ,  a ' ( . ) )  = e k ( w ,  a ' ( . ) ) ,  and t k ( w ,  a ' ( . ) )  = t k ( w ,  a ' ( . ) ) .  

Now, the joint distribution of the so constructed random variables j O ( w ) ,  
6' (w ,  a ( . ) ) ,  . . . , ek (w ,  a ( . ) )  and Ck (w ,  a ( . ) )  coincides with the joint dis- 
tribution of the values co, o l ,  . . . , ok,  c (ok)  under the probability mea- 
sure p ( .  I a ( . ) ) .  

Therefore, with o0 = 0 the random function ( defined by 

~ ( t ,  w ,  a ( . ) )  = t k ( w ,  a ( . ) ) ,  for $1 t E [ek-l (w ,  a ( . ) ) ,  e k ( w ,  a ( . ) ) )  

is a representation of the controlled object we wanted to find. 

2.3.2 Markov jump processes with step control 

In this subsection we consider processes with time scale R+ and spe- 
cialize first the general definition of control and controlled object to the 
Markovian setting. We consider only Markov processes with Polish state 
space X  and compact action space A. X  and 'U are the respective Borel- 
o-algebras. 

Definition 2.30. A controlled Markov process with Polish state space 
( X ,  X )  of  the basic process and compact action space (A ,  'U) for the control 
is defined by a set of consistent transition probabilities ~ ( t ,  x, s ,  C; a ( . ) )  for 

0 < t < s  < oo, x  E X ,  C E X ,  a ( . )  E A [ O ~ ~ ) .  The transition probabilities 
are measurable for fixed t < s  and C with respect t o  X  x ~ [ ~ l ' ) .  From the 
(controlled) transition probabilities ~ ( t ,  x ,  s ,  C; a ( . ) )  we can derive a family 
p,(. I .) of Markov process distributions, which depend on the initial state 
o f  the basic process z as a parameter. For every a( . )  E A['@) the family 
of measures p,(. I a ( . ) )  corresponds t o  a Markov process with transition 
probability P ( . ,  ., .; a ( . ) ) .  0 
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Remark 2.31. I f  the controls a( . )  are step functions then for determining 
the process distributions, it is sufficient t o  know transition probabilities o f  
the form ~ ( t ,  x ,  s ,  C ;  a ( . ) )  = P(t, x ,  s ,  C ;  a ) ,  where the controls are constant 
functions a( . )  = a. From these transition functions we can construct the 
transition functions under general step control with the aid of the Markov 
property as follows: 

Assume that for a general step control a( . )  with jump times 0 = t 1  < 
t 2  < . . .  < tn < . . . we have a( t )  = ak for t" t  < tk+l then for t  < s  
with tj-' < t  < t j  < . . .  < tn  < s  < tn+l we have 

Our main interest is in the class of controlled Markov jump processes 
under step control. These processes are connected with step controls 
and controlled objects p( .  I a ( . ) ) ,  which are concentrated on the space 
of step functions and pose a Markov property for a given control. We 
further require that the inter-jump times ak+' -ak ,  k E W, have bounded 
densities. 

Definition 2.32. A controlled Markov jump process is specified by the 
following properties: 

Let the state and action space be as in Definition 2.30 and denote by 
D([o ,  GO), A )  the set of functions on [0, oo) with values in A being right 
continuous with left-hand limits. 

For the family of transition functions ~ ( t ,  z ,  s ,  C ;  a ( . ) )  from Defini- 
tion 2.30 for all 0 5 t  < s  < oo and x  E X ,  C  E X with a( . )  E 
A['>") n D ( [ o ,  oo), A )  (the space o f  right continuous step functions without 
discontinuities of the second kind) the right derivative 

1 
lim -- [ ~ ( t , x ,  s ,  C ;  a ( . ) )  - n c ( z ) ]  = n ( t ,  x , a ( . ) ,  C ) ,  
s l t  s  - t  
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exists, and the limit function II(t, x, a ,  C) is continuous in  t ,  jointly measur- 
able in  t ,  x, a ,  a-additive in  C ,  and the function 

is bounded. 0 

If the control of the Markov jump process is not a deterministic func- 
tion a(.) as suggested in the above definition, the construction of the 
controlled process needs some care. For a given randomized step con- 
trol v(. I x(.)), which governs the development of the process, we now 
sketch the time development of a controlled Markov jump process simi- 
larly to the construction on page 31. We define a sequence of processes 

{ (h (t) , a, (t) : t > 0) : n E w as follows: 1 
If ((0) = xO is the initial state of the basic process, then we define 

xo(t) = xO, 0 < t < oo, and to = xo. The control process ao(t)  is then 
governed by the distribution v(. I xo(.)). 

Let t l ( t )  be a jump process, for which tl(0) = xO, and the time of 
the first jump a1 has the conditional distribution 

1 0 Pr {a > t I a o  = a ) = exp 

We prescribe 

and if El (a1 + 0) = xl ,  we set then El(t) = El (a1 + 0) = x1 for t > a'. 
The associated control is the process a l ( . ) ,  which coincides with ao(.)  
until time a', and then develops such that the conditional distribution 
of a l ( . )  given xO, a', xl,  a l ( . )  coincides with that of v(. I t l( .)) .  
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Define the conditional distribution of the time 02 of the second jump 
conditioned on xO, a', xl ,  a' (.) by 

and give 6 (a2 + 0) the following conditional distribution: 

Continuing this way, we see that we have constructed a sequence of 

processes (((,(t), a,(t)) : t > 0 for n = 2, 3 , .  . ., with joint jump times 1 
a" which satisfy the following conditions: 

1) (,(t) is a right continuous step process, which has exactly n jumps, 
which are a', . . . , an; 

2) (,-~(t) = &(t) for t < on; 
3) a n - ~ ( t )  = an( t )  for t < on; 
4) let { c , t  > 0) be the natural filtration of the process a, = 

( a , ( t ) : t  > 0); F& = ~ ( u ~ ~ ~ - F ; " )  = a ( a ( t ) : t  > 0) and !7Xn = 

o((( t ) :  t > 0) the o-algebras generated by the processes a, and & 
respectively. Then 
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where Pr {. I F&, 2Rn} is the conditional probability with respect to a- 
algebra generated by Fz, 2Rn; in the second case, the conditioning a- 
algebra is generated by F;, 2Rn and an+'; 

5) let 9Tn be a a-algebra generated by the events of the following type: 

where Ct E q, D E Dln, t > 0; then for all sets B from L?l[tlOO] we have 

One can verify that (2.9)-(2.11) and the conditions 1, 2, 3 uniquely 
determine the joint distributions of the processes a, (t) and (, (t), if only 
co(0) = &(O) is given. Put c(t) = &(t),  a ( t )  = an( t ) ,  t E [on; an+'), 
where a0 = 0. Note that from the boundedness of the inter-jump time 
intensities we have Pr {on i m) = 1. Then the processes ((t) and a ( t )  
are defined on [O; GO). The pair of processes [ = ([(t): t 2 0) and 
a = (a ( t ) :  t > 0) constructed this way is a controlled Markov jump 
process with the given controlled object and control v. 

If v(. I .) is of the following form: 

For t > 0, B E A [ ~ > ~ ] ,  and x(.) given, we have "(B I x(.)) = 

1, (?(t, x)) , where q(t, x) is a deterministic function, then the construc- 
tion is much simpler. (We have a non-randomized Markov control.) From 
(2.9) and (2.10) it follows, that [(t) is a Markov jump process with tran- 
sition probability Pv(t, x, s ,  C) satisfying 
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2.4 TOPOLOGICAL FOUNDATIONS 

Before we present the details of our stochastic optimization problems, we 
recall some Definitions and Theorems from [Kur69] and [HV69]. These 
are definitions of multivalued functions (set valued functions) and theo- 
rems on the existence of smooth functions that select from the set valued 
image of such functions a single value. The theorems are therefore know 
as theorems on the existence of smooth selectors. 

Definition 2.33. Given nonempty sets X and A; a multivalued function 
(multifunction) F :  X + A is a function on X such that each value F(x )  
is a nonempty subset o f  A. 

I f  we denote by 2A the set of all subsets of A, then a multifunction is a 
function 

F :  X 4 2A - (01, 

i.e., a set valued function with domain X 
I f  B c A, then 

A function f :  X + A is a selector for the multifunction F i f  f (x) E 
F(x )  for all x E X. 0 

Typical examples of multifunctions (set valued functions) are the 
elements of the sequences A = (At : t E W) from Definition 2.16 that 
determine the admissible actions in a decision model. 

Definition 2.34. For topological spaces X and A with Borel a-algebras X 
and (U a map F :  X 4 2A-  {fl), and the associated multifunction F :  X + 

A are point-closed if for all x E X the subset F(x )  C A is closed. 
A point-closed map F is 

0 open-measurable, i f  for all open sets E C A we have F-'(E) E X, 
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0 closed-measurable, if for all closed sets E C A we have F-'(E) E X ,  
and 

0 Borel-measurable, i f  for all Borel sets E C A we have F p l  ( E )  E X .  

A point-closed map F is upper semicontinuous, if for all closed sets 
E c A the set F- ' (E)  is closed. 

A point-closed map F is lower semicontinuous, i f  for all open sets E C A 
the set F- ' (E)  is open. 

A mapping F is continuous if i t  is simultaneously upper and lower semi- 
continuous. 0 

Theorem 2.35 (Selection theorem; see [Kur69, p. 741, [KRN65, 
AL721). Let ( X ,  X )  be a measurable space, and let A be a complete sep- 
arable metric space. I f  a point-closed map is according t o  Definition 2.34 
closed-, open-, or Borel-measurable, then i t  has a Borel measurable se1ector.O 

Theorem 2.36 (Selection theorem for semicontinuous maps 
[Kur69, p. 741). Let ( X ,  X )  be a measurable space, and let A be a 
complete separable metric space. Then any semicontinuous map F :  X 7- 

2A - (0) has a selector belonging t o  Baire class 1. 0 

Corollary 2.37. Let ( X ,  X )  be a measurable space, and let A be a compact 
space with countable basis. Then any semicontinuous map F :  X 7- 2A - 
(0) has a selector belonging t o  Baire class 1. 0 





Chapter 3 

LOCAL CONTROL OF DISCRETE 
T I M E  INTERACTING MARKOV 
PROCESSES WITH GRAPH 
STRUCTURED STATE SPACE 

In this chapter we develop models for spatially distributed systems that 
are controlled by decision makers who act locally and have only informa- 
tion at hand about the system's state in the neighborhood around their 
position. To optimize such systems poses problems due to the restric- 
tions on the information gain that arise from only observing locally the 
system over time. Another source of difficulties may be a cost function 
that reacts on the global behavior of the system, although only local 
control is possible for the decision makers. 

We consider in this chapter only systems that are observed at equally 
spaced time instants; the time parameter of the underlying stochastic 
processes will be W. Discrete time systems, especially queueing models, 
have found increasing interest in recent years due to  the occurrence of 
models with a generic inherent discrete time scale. 

Such control problems with specific underlying neighborhood sys- 
tems occur, e.g., in modeling transmission systems, communication net- 
works, production systems, and distributed populations. For systems 
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with states that incorporate such a neighborhood structure, we con- 
struct system processes governed by controls that are compatible with 
these neighborhood structures, and study their evolution over time. The 
general class of local policies obtained in this way gives rise to problems 
and classifications analogously to those in the classical theory of stochas- 
tic dynamic optimization. An important question that arises is whether 
we may restrict our search for optimal policies from the very beginning 
to smaller classes of special local policies, say, e.g., stationary Markovian 
policies. This property is well known to hold in many situations where 
decisions are made on the basis of global information. 

The standard stochastic models for spatially distributed systems are 
random fields over some multidimensional lattice zd, or subsets thereof, 
or over some general graph r. Control of stochastically driven systems 
over time is part of the theory of stochastic processes. Therefore our 
generic model in this chapter is a spatially distributed process evolv- 
ing in time. The fundamental theory especially connected with the ori- 
gins of those models in statistical physics can be found in [Lig85]. The 
class of stochastic processes used there is that of Markovian processes in 
time, and for the spatial structure: Gibbs measures, which are essentially 
equivalent to Markov random jields. 

It is well known that in continuous time, Markov processes with local 
transition structure over some (nonregular) graph may not have Markov 
random fields with respect to that graph as one-dimensional marginals 
nor as limiting random fields; see [Ke179, Section 91. Similar prob- 
lems arise in our discrete time setting. We describe a class of processes 
throughout this chapter which, to a certain extent, resemble Kelly's Spa- 
tial Processes ([Ke179, Section 9, page 1891; see as well [Whi86]). But 
we do not impose his restriction that state changes are of strong local 
character, such that only one coordinate may change its state at a time 
instant. We allow several coordinates of a state may change simultane- 
ously, which is essential for discrete time systems, where simultaneous 
events usually occur. 
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3.1 RANDOM FIELDS WITH GRAPH 
STRUCTURED STATE SPACES OF 
PRODUCT FORM 

The mathematical theory of random fields that was developed over the 
last fifty years provides us with standard models for the investigation 
of high dimensional complex systems in the areas of technical, physical, 
biological, and economical research. 

From a mathematical point of view, the first problem was to describe 
consistently random field models. Many results obtained in statistical 
physics for Gibbs measures have been fruitfully generalized to other ar- 
eas. References to the field are, e.g., [Dob68, Dob71, BGM69, Lig85, 
Sin80, MM85, Rue69, Su175, Ave72, VK781. A comprehensive introduc- 
tion into the mathematics of random fields is [Geo88]. 

Gibbs states are models to describe structured interaction in systems 
with a large number of components in equilibrium. Assuming the system 
to be in equilibrium the random law of the state does not change with 
time. In this way we next define the random law of our systems at a 
fixed time instant as a random field over a graph. The graph describes 
the interaction structure of the systems. 

For systems with locally interacting coordinates, the interaction struc- 
ture is defined via an undirected finite neighborhood graph r = (V, B)  
without loops and double edges. The graph has set of vertices (nodes) V 
and set of edges B.  Denote by {k, j) the edge of the graph connect- 
ing vertices k and j .  The neighborhood of vertex k is the node set 
N(k) = { j :  {k, j) E B). The complete neighborhood of vertex k is 
f i (k)  = N(k) U {k); i.e., the neighborhood of the vertex k, and including 
k. For any K c V we define the neighborhood N ( K )  = U k E K  N(k) - K ,  

and the complete neighborhood N(K) = N ( K )  U K .  

Definition 3.1. A nonempty subset C c V of a graph r = (V, B)  is a 
clique or simplex in r if either ICI = 1 or all nodes of C are neighbors, i.e., 
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C is a complete subgraph of I?. The set of all cliques is C. C E C is a 
maximal clique if for all i E V - C holds C U {i) $! C. 0 

For every node i E V let (Xi, Xi), Xi # 0, be some Polish measurable 
space equipped with the Borel-a-algebra Xi. Xi, respectively (Xi, Xi) is 
called the local state space at node i .  We further equip X := x Xi 

i EV 

with the product a-algebra X = a generated by x Xi. X ,  
ieV 

respectively (X,  X), is the global state space of the system. For every 
subset of nodes K c V we denote the marginal vector of state x = 

(xi:  i €  V) by xK = (x*: k €  K )  € X K  = X Xi. 
iEh' 

We define for K C V the a-algebra XK = a = 8 Xi, 

generated by x Xi, so Xv = X. 
ieK 

Definition 3.2 (Random fields). (1) A random variable 

is called a random field over r = (V, B) (or simply a random field over V). 
For 0 # K c V ,  the marginal random variables with values in the space XK 
are denoted by cK. For K = {k) we write &. 

( 2 )  A random field ( on (V, B) is a Markov field i f  for all k E V the 
following holds: 

where Pr {& E Ck 1 ENjk) = x ~ ( k ) } ,  respectively Pr {ck E Ck I EGjk1 = 

xVPIk)) is the regular conditional probability on (Xk, Xk) given <N(k) = 

X N ( ~ ) ,  respectively cV-{k} = x ~ - { ~ } .  
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(3) (Canonical random field) We often assume that (R,3, Pr) in the 
definition part (1) is the canonical space. Then Eli and are the respective 
projections and we have ~ r t  = P r .  

(4) (Discrete states) I f  all the local state spaces are discrete then 
we usually identify the distribution of the random field and its counting 
density and write in case of having the canonical underlying probability space 
Pr(( = x)  = prc{x )  = Pr (x ) ,  x E X .  0 

Remark 3.3. Equation (3.1) reads as follows: 

Because the conditional probabilities on both sides of the equation are de- 
fined only ~ r ~ v - { " - a l m o s t  surely, the required equality is assumed t o  hold 
outside of some set with ~ ~ ~ ~ - { ~ - ~ r o b a b i l i t ~  0. 

For random fields with a discrete state space t o  be a Markov field, it is 
often required that the counting density is strictly positive [Ke179, p. 1861. 

We do not put this into the definition, following [KV80] and others. 0 

The following lemma ensures tha t  the definit ion o f  a Markov field 
used in [KV80, Defini t ion 71 coincides w i t h  our definition. Th is  is o f  
relevance for the Theorems 3.14 and 3.15. 

Lemma 3.4. A strictly positive random filed with discrete state space 
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is a Markov field if and only if for all nonempty K,  J C V such that N(K) C 
J holds 

Example 3.5. Suppose we are given a discrete state random field P ac- 
cording t o  Definition 3.2 over r = (V, B). 

(a) Assume that V E C is a simplex, i.e., T' is a complete graph with 

B =  {{ ' ,  2 j )  ' C V: i < j). Then for all j E V: N ( j )  = V - {j). So P is a 
Markov random field. 

(b) Assume that B = 0, i.e., r = (V, B) totally disconnected. Then 

for all j E V: N ( j )  = 0. So P is a Markov field i f  and only if i t  has 
independent coordinates: 

(c) I f  the coordinates of P are independent as in (b), then P is Markov 
field with any underlying graph r. 0 

An attempting way to construct random fields is to specify the local 
stochastic behavior at the nodes via the conditional distribution at this 
node given the states of the other nodes are prescribed (frozen). 

Definition 3.6 (Specification). Suppose we are given a discrete state 
random field F: (0, F, Pr) 7- (X, X) over T' = (V, B) according t o  Defini- 
t ion 3.2. 

(a) For x =  (xj :  j E V) E X  and jo E V define 
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i f  the denominator is greater than 0. 
I f  the denominator is 0, we set Pr (xjo I xV-~,)  = 0. 
This set of conditional distributions is called a specification. 

(b) For H, G C V ,  H, G # 0,  x = (xj : j E V) E X we set 

R e m a r k  3.7. Identification and construction o f  admissible specifications 
is not an easy task. The book o f  Georgii [Geo88] is an in-depth study o f  
this question and whether a specification defines uniquely a distribution of 
a random field. A more recent study concerning modeling problems related 
t o  this question is [KCOO]. 0 

A closely related class of distributions for random fields are well 
known in statistical physics where the most interesting questions arise 
with infinite graphs. We describe here the case of discrete state spaces 
and finite graphs along the lines of [KV80]. 

D e f i n i t i o n  3.8 (Potent ia l ) .  Let I' = (V, B) be an interaction graph and 
X := x Xi a discrete graph structured state space. 

iEV 

(a) A potential (or interaction potential) on (I', X) is a collection u = 

(uc: C c V) of functions uc: x Xi + R. 
i C C  

A potential u = (uc: C c V) is called Gibbs potential if uc vanishes 
(is constant zero) for all C C V that are not a clique. 

(b) For a given (Gibbs) potential u and any subgraph J E V ,  the energy 
U(x J )  of the (local) configuration x J E x Xi is 

i E  J  



Chapter 3. Local control in discrete t ime  

(c) For K c J, XJ E x Xi we define the "conditional energy as 
i t J  

difference o f  the respective energies 

We can define Gibbs fields by their specifications. 

Definition 3.9 (Gibbs field). Let r = (V, B) be an interaction graph 
and I :  ( R , F , P r )  + (X,X) a random field with graph structured state 
space X := x Xi and let u c :  x Xi + R be a Gibbs potential. Then c 

i t V  i t C  
is a Gibbs field on (T',X) with Gibbs potential u if for all K,  J C V, with 

N ( K )  c J ,  XJ E x Xi we have 
i E J  

Note that the interaction graph for the Gibbs field comes into the 
above definition via the clique structure of T', which is used in the defi- 
nition of the Gibbs potential. 

It has been proven that any strictly positive Markov random field in 
the sense of Definition 3.2 is a Gibbs field and vice versa; see [Ave72, 
Gri731. 

Random fields can be looked upon as stochastic processes with non- 
l inear t i m e  scale V. The lack of linearity of the time scale gave rise 
to intense research; see the references indicated above. There is a well 
developed theory now even for infinite regular underlying lattice graphs, 
say Zn,  with nearest neighborhood structures. An important problem 
is to define an analogy to the Markov property in time, which makes 
a random field to be a Markov random field. Several definitions were 
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suggested in the literature, and it turned out that the most important 
could be proven to be equivalent. 

3.2 INTERACTING MARKOV PROCESSES 
IN DISCRETE TIME 

In many applications in biology, in economics, or engineering research, 
random fields describe the state of a system for some fixed time 
instant. The evolution over time of such systems is then described by a 
stochastic process 7 with random fields as one-dimensional marginals 
in time. In this case we write c = (ct) to emphasize the time-dependence. 

We assume that t takes discrete values t = 0,1, . . . . The subscript k 
in ck refers to the vertex k, ,$ therefore denotes the marginal variable for 
time t and node k of some vector valued process [ = (tt : t = 0,1 , .  . . ) 
with state space (X, X). In this chapter we consider only Markov 
processes in discrete time. 

If a Markov process [ from its very construction is related to the 
neighborhood system { ~ ( k ) :  k E V) of (V, B), it is natural to assume 
that with respect to the evolution over time, the probability for the event 
{(L = xk) at the k-th vertex depends on the previous states of the whole 

system only through the values of the vertices in fi(k) (including k) at 
t - 1. To describe this, we introduce the notion of the Markov property 
in space and in time along the lines of Definition 3.2. 

Definition 3.10 (Local and synchronous transition probabili- 
ties). Let [ = {tt, t = 0,1 , .  . . ) ,  Et : (R, F, Pr) 4 (X, X), be a discrete 

t i m e  Markov process w i t h  state space (X, X) = 
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transition probabilities of ip are said t o  be local [Vas78, p. 1001 if 

O x O }  Pr {ipk+' E Ck I ipt = x t , .  . . ,[ = 

t = PI" {[k+' E 4 1 [&,) = 2 - } 
N ( k )  

for ~ E V ,  xO , . . . ,  x t c X ,  C ~ E X ~ ,  (3.3) 

holds ~r(t~' . . . 'cO)-almost surely; i.e., the transition probability at vertex k 
depends on the state of its complete neighborhood at the previous time 
instant only. 

The transition probabilities of ip are said t o  be synchronous [Vas78, 
p. 1001 i f  

holds Pdt-almost surely. 
If ( fulfills (3.3) and (3.4), it is called a Markov process with locally in- 

teracting synchronous components over (r ,  X ) ,  shortly, a (time dependent) 
Markov random field. 0 

Some comments on Markov processes with product stsate spaces and 
with local and synchronous transition probabilities may be in order here. 
Consider [ = (I;: (t, k )  E W x V) as a general random element: 

The first part of the definition ensures that the one-step transition 
behavior of the time dependent Markov random field in t-direction on 
some subgraph K of r given fixed values of the random element in the 
neighborhood N ( K )  in k-direction does not depend on the behavior of 
the field outside N ( K ) .  The second property guarantees conditional 
independence of the nodes of the graph evolving in the time direction 
given the spatial neighborhood in addition to the memoryless propertly 
of the nodes with respect to the past given the present local state. 
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From the very definition, the Markov process ( = {tt, t = 0,1 , .  . . ) 
has one-dimensional marginals that are random fields, but this notion 
does not impose any restrictions in space direction. The requirements of 
Definition 3.10 will have many appealing interpretations in the context 
of economics, physics, and biological phenomena. 

A typical situation is the following: Let the system consist of a fi- 
nite or infinite number of particles, the evolution of which is described 
by independent Markov chains. Then on the evolution of this system 
some possibly state dependent random or deterministic constraints are 
imposed. So the evolution of each particle is no longer Markovian, while 
the evolution of the whole system is Markovian but very complicated. 
If the imposed constraints are of local character, then Definition 3.10 
should apply, due to the original independence. 

Remark 3.11. Equations (3.4) and (3.3) localize and synchronize the 
behavior of the Markov process by requirements for the conditional proba- 
bilities that do exist from the assumption o f  having a Polish state space X 
and are almost surely valid. 

I f  we are given a transition kernel of the Markov process, then we al- 
ternatively can formulate the respective properties by requirements for the 
transition function. This will be a deterministic relation for that function. 
I f  no ambiguity emerges, we shall use both versions alternatively without 
further comments. 0 

If we are given a Markov chain with a transition kernel that is 
local and synchronous from Definition 3.10 with respect to  some graph 
r = (V, B), then in general, the one-dimensional distributions of that 
chain are not Markov random fields over T' = (V, B) .  The reason 
is that in general, dependencies are propagated with time evolution. 
Consequently, the stationary and limiting distributions (if they exist) 
are in general not a Markov field over T' = (V, B) .  We comment on 
this problem, providing some further details and theorems. We restrict 
ourselves to  the case of discrete state space X (finite or countably 



Chapter 3. Local control in discrete t ime  

infinite). 

Let c = {tt, t = 0,1, . . . ), tt : ( R , 3 ,  Pr) + (X, X), be a discrete 
time Markov process with discrete state space X := x Xi. Assume 

i EV 
that the transition probabilities of t are local and synchronous; see Def- 
inition 3.10. Then the transition kernel Q of t is 

We assume in the following that c is irreducible on X and denote the 
steady state distribution of c, if it exists, by T .  For example, T is the 
probability solution of 

We now define a class of transition kernels that resemble the definition 
of the specification of Gibbs fields in (3.2). The feasible potentials are 
'estricted as follows. 

Definition 3.12. A potential u on (I', X )  is a pairpotential i f  u is specified 
by a set o f  functions {uk : XI, + R; ukj : XI, x X j  + R, k E V, { k ,  j }  E B}, 
such that ukj(y,x) = ujk(x, y) for all {k, j )  E B, y E Xk,  x E Xj. 0 

In a pair potential beside of the local weight functions ur, there are 
only pairwise interaction forces determined via the ukj. 

Definition 3.13. The transition function Q of a Markov chain with local 
and synchronous transition kernel according t o  (3.5) is a Gibbs transition 
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function with pair potential u, if for all k E V, yk E Xk,  X N ( ~ )  E XN(k) 

holds. Here the denominator of the right-hand side gives the normalization 

zritxi Qk ( ~ k  1 xNik)) = 1. Note that (xNit)) . = x i  holds for all J' E 
II 

w4. 0 

We are prepared to formulate two theorems of Vasilyev and Kozlov 
[VK78]. These theorems give conditions for the kernel of a discrete time 
Markov chain (with countable state space) to be the kernel of a reversible 
Markov chain and to possess a stationary distribution that is Gibbsian. 
From the remarks after Definition 3.9 on the equivalence of Markov fields 
and Gibbs fields, it follows that these processes then have Markov ran- 
dom fields over the prescribed interaction graph as steady state, accord- 
ing to the theorems of Averintzev and Grimmett; see [Ave72, Gri731. 

We note that the theorems of Vasilyev and Kozlov [VK78] are con- 
cerned with infinite underlying graphs. We present the version for finite 
graphs only where the conclusions are more stringent. 

Theorem 3.14. Let c = {tt, t = 0,1, .  . . ), tt : (0, .F, Pr) 7- (X, X), 
be a discrete time Markov process with discrete state space X := x Xi 

iEV 
having local and synchronous transition probabilities with respect t o  the 
interaction graph r = (V, B). Assume c has a strictly positive Markov 
transition kernel Q = nkev Qk, i.e., Qk is strictly positive for all k E V. 
Then t is a reversible process if and only i f  i t  is stationary and Q is a Gibbs 
transition function from Definition 3.13 with some pair potential u according 
t o  Definition 3.12. 0 
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Theorem 3.15. Let t = {tt, t = 0,1 , .  . . ), tt : ( R , 3 ,  Pr) 7- (X, X), be 
a discrete time reversible Markov process with discrete state space X := 

x Xi having local and synchronous transition probabilities with respect 
i tV  
t o  the interaction graph T' = (V, B) .  I f  the transition kernel Q of c is a 
Gibbs transition function with pair potential u, then its invariant probability 
measure ;r is a Gibbs measure over (r, X ) .  0 

The importance of these theorems is that they provide us with struc- 
tural conditions that make the Markov property in space hereditary in 
the sense that from the local structure with respect to  T' (which resem- 
bles the Markov property in space) of the transition kernel, the local 
structure of the limiting and stationary distribution follows. 

This is in general not the case; see, e.g., Remark 3.34 on the situation 
in general queueing networks. The importance of reversibility in our class 
of models becomes clear now (especially since we have then (2.3)). But 
unfortunately enough, many of the models of practical interest are not 
reversible. This is in contrast to  many classes dealt with in statistical 
physics. 

3.3 LOCAL CONTROL OF INTERACTING 
MARKOV PROCESSES WITH GRAPH 
STRUCTURED STATE SPACE 

In this section we describe the structure of decision models with local 
and synchronous internal structure. We introduce classes of admissible 
local strategies (policies) to control the interacting coordinates of the 
stochastic processes under consideration. We therefore specify the gen- 
eral form of the strategies from Definition 2.17 and 2.18 in a way that it 
is adapted to the setting of the product state space of Section 3.1 and the 
interacting processes of Section 3.2. For simplicity of the presentation, 
we assume that some uncontrolled Markov random field c = (tt : t E N), 
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according to Definition 3.10, is given as our starting point. ( will be 
equipped in the sequel with a control structure that governs the jump 
transition kernel ( to be described in Definition 3.21 below. We mainly 
consider controls, which are local in the sense to be specified now. 

Definition 3.16 (Action spaces and local restrictions). The se- 
quence o f  decision instants (control instants) is the time scale N. 

(1) The action space (set o f  control values) usable at control instants 
is A = x Ai over r, where Ai is a set of possible actions (decisions) for 

ieV 
vertex i. We assume that Ai is a Polish space with Borel a-algebra ai. 
is the Borel product-a-algebra over A.  

(2) I f  for the decision maker at node i at time t with history ht E Ht  
the set of control actions is restricted t o  A: (h t )  c Ai,  we call A: (h t )  the 
set o f  locally admissible actions (decisions) at time t with history ht E Ht .  

(3) We assume that the so defined set valued maps 

A:: H~ 4 2Az - (01, h + A : ( h ) ,  i E V, 

depend on the local history only and are Borel measurable in the sense of 
Definition 2.34. 

Here for a given history ht = ( xO ,  a', x l ,  a l ,  x 2 , .  . . , xt-l, at-', x t )  E Ht 
the local history h: E H," at node i is defined t o  be 

H," is endowed with the trace 4: of  the product-a-algebra on the space 

(x-  x Ai x X f i ( i ) .  We also assume the sets K," = h:,ai) : h: t N ( i )  ) { ( 
H,", ai t A: (h t ) }  contain the graph o f  a measurable mapping and are Borel 

measurable in the trace of the product-a-algebra .R: := Kf n (4: x 24). 
Furthermore, the sets 
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are assumed t o  be Borel measurable sets of the product space X f i ( i j  x Ai - 
and K~ = x K: t o  be Borel measurable in the product space X x A ,  where 

i EV 

I f  the mappings A: do not depend on t ,  we write ~i := K:, t E W, and 
6 ::= d ,  t E W. 0 

Definition 3.17 (Synchronous strategies on product spaces). Let 
a: denote the action chosen by the decision maker at node i at time t, 
at .- .- (a:: i E V )  the joint decision vector at t ime t .  

(1) A randomized strategy (policy) 7r = (7rt : t E N) according t o  Defin- 
ition 2.18 t o  control the system with interacting components and with action 
space of product form is defined as vector of local policies 7r = (7ri,  i E V ) ,  
where for node i i'ri = {T:, . . . , T:, . . . ) is a sequence of transition proba- 
bilities i.rk = i.rk(. I xO,  a', . . . , xt-' , at-' , x t ) . S o ~ t i s a p r o b a b i l i t y m e a s u r e  

on (A i ,  24) for any ( xO ,  a', , . . . , xt-', at-', x t )  and measurably dependent 
on the history ht = ( xO ,  a', . . . , xt-' , at-' , x t )  of the system up t o  t- th 
transition. We therefore have for all Bi E 52li 

t - Pr { a i  E Bi I c0 = xO,  a0 = a', . . . , ct-' = xt-', at-' - at-',(t = x t )  

= 7r;(Bi I x O , a  O , . . . ,  x t , a t , x t ) .  (3.7) 

(2) In parallel t o  the synchronous transitions and the locality o f  the 
transition kernels, we always assume that the decision makers located at the 
nodes act conditionally independent given the history o f  the system. This 
leads t o  a control of the process governed by a synchronous control kernel 
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Definition 3.18 (Local strategies). (1) Assume that at transition 

times t = 0, 1,. . ., the admissible decision sets depend on the local his- 
tory only according t o  Definition 3.16 (3) and that the decision a: at 
node i is made according t o  the probability x! on basis of the local his- 

( o 
0 t-1 t-1 

tory h: = x ~ ( ~ ) ,  ai , . . . , ai , xX(~)) of  the states o f  the neighbor- 

hood N(i) of  i and the previous decisions at i only. I f  T:(A:(~:) hl) = 1. 

then T: is said t o  be locally admissible, and the sequence of transition prob- 
abilities (decisions) xi = {x:, t E N) is called admissible local strategy for 
vertex i .  

r = (ri, i E V) is called admissible local strategy for the decision model. 

( 2 )  An admissible local strategy T = (ri, i E V) is called admissible 
local Markov strategy if 

Note, that whenever we deal with local Markovian strategies, we can assume 
that A:(h:) depends on h: only through x&(~); this reduced dependence is 

expressed by A: (h:) =: A: (xt- ) . 
N(i) 

(3) An admissible local Markov strategy x = (xi, i E V) is called admis- 

sible local stationary (Markov) strategy i f  (. I x ~ ( ~ ) )  = xfi(. 1 ~fi(~)), 
i E V, for all t', t" and all x. 

(4) An admissible local stationary (Markov) strategy T = (ri, i E V) is 
called admissible local stationary deterministic (nonrandomized) strategy if 
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x i ( .  I ~ f i ~ ~ ) ) .  i E V ,  are one-point measures on A: x- , i E V, for all 

x E X. 
( w )  

The class of all admissible local strategies is denoted by LS; the subclass 
of admissible local Markov strategies by LSM.  By LSs we denote the class 
o f  admissible local stationary strategies. By LSp we denote the class of 
admissible local deterministic (= pure) strategies, by LSPICl the class of 
admissible local deterministic (= pure) Markov strategies (which need not 
be stationary), by LSD the class of admissible local stationary (Markov) 
deterministic strategies. 0 

Remark 3.19. We have 

Note that always LS(.) C II(.), see Definition 2.18 and Remark 2.19. (3 

Remark 3.20. We shall later consider controlled processes in continuous 
time and use controls that are families 7r = (d: t > 0) of suitable transition 
kernels as randomized controls, or pure strategies which are in the Markovian 
case then functions A = (At :  X + A, t E [0, GO)). 

Without further remarks we shall use the same notation as in Re- 
mark 3.19. 

The same procedure will apply if we are concerned with controlled 
processes in continuous time where the control and decision making is only 
allowed at an embedded sequence of random or deterministic time points, 
as, e.g., in the case of semi-Markov processes (Section 5.1) or Markov jump 
processes (Section 5.2). 0 

In our context, it is natural to assume that the control of the time 
dependent random field results in an evolution that is governed via 
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modified transition probabilities 

where Q(. I ., .) is a transition kernel from X x A to X .  Note that 
the assumption of a local control structure is natural in our setting for 
defining locally interacting controlled systems. The possibility of making 
decisions that depend on the whole local history according to (3.7) and 
(3.8) however is not dispensable, because, e.g., we want the decision 
maker being able to learn from the observed reactions of the system 
responding to  control actions. 

Our aim is to  arrive at a Markovian structure similar to  Defini- 
tion 3.10. The construction of the process will lead us to the assumption 
that the laws of motion for the system can be characterized by a time 
invariant set of transition probabilities. Namely, whenever the system 
is in state y and action a is taken, then, regardless of its history, the 
next state is selected according to a transition law, which depends only 

on (y, a). 
Using this, a strategy T will define a probability measure on the space 

of sequences (a0, a', . . . ) for every fixed initial state xO. The pair (1, T) 

will be called controlled version of ( using strategy T .  The controlled 
process in general will not be Markovian, because the functions T:, i E V, 
depend not only on states x&(~, ,  i E V, but on the previous (local) 

, , 

states 2% . . , xtz' as well. The Markov property is introduced in the 
( i )  N ( i )  

following definition, a discussion of the principles behind will follow. 

Definition 3.21 (Controlled Markov process with locally inter- 
acting synchronous components). A pair ([, T) is a controlled process 
with locally interacting synchronous components with respect t o  the finite 
interaction graph r = (V, B), if ( = (ct:  t E N) is a process with state 
space X = x Xi and T = ( T ~ :  i E V) is an admissible local strategy. 

i EV 

The pair ([, T) is called controlled Markov process with locally interact- 
ing synchronous components over (I', X ) ,  or shortly: A (time dependent) 
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controlled Markov random field, i f  the transitions of ( are determined as 
follows: 

For all t the ~ r ( ~ ~ ~ ~ ~ ~ . . . ~ E ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) - a l m o s t  surely defined conditional 
probabilities fulfill for all 

K L V . C ~ E X ~ .  j t ~ . y t ~ . ~ t ~ ~ ( y ~ ( ~ ) ) , ~ ~ =  X cj 
j t K  

If K = V we shall write Qv(Cv I y, a )  = Q ( C  I y, a ) .  
The Markov kernel Q  = njtv Qj  is said t o  be local and synchronous. 

0 

Note that with the pair ([, T) is associated a controlled 'andom se- 
quence (c, a )  as constructed in Section 2.2. This random sequence is 
in the present setting Markov in time. Some remarks on the modeling 
principle behind this definition may be in order: 

(1) We have assumed that the first expression is well defined. Then = 

is the assumption of a Markovian transition law; 
( 2 )  = expresses in terms of conditional probabilities that the coordi- 

nates act synchronously; 
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(3) 
0 = is due to the locality of the conditional probabilities; 
0 Assuming to have suitable transition kernels and independence of 

(4) time for the one-step transition probabilities then leads to the form = 

of the Markov kernel; 
(5) 

0 = again results from the coordinates acting synchronously and 
locally. 

3.4 LOCAL CONTROL OF INTERACTING 
MARKOV PROCESSES ON GRAPHS 
WITH FINITE STATE AND ACTION 
SPACES 

In this section we consider processes with state spaces and action spaces 
that are finite and product spaces (see [CDK05]). These have recently 
found many applications, e.g., in queueing network theory. A typical 
example is the following: 

Example 3.22 (Cyclic networks). We consider a simple linear trans- 
mission line of successive transition channels numbered 1 , 2 ,  . . . , J with fi- 
nite capacity. Messages arrive at channel 1 and after being transmitted 
there they proceed t o  channel 2, and so on, eventually leaving the line. The 
transmission protocol of the network is based on a common discrete time 
scale. 

To protect the network from overload, where the performance is de- 
graded due t o  strongly increasing protocol overhead, it is assumed that a 
window-flow control scheme is applied: I f  the line carries a certain amount 
o f  traffic no further messages are admitted, and for simplicity we assume 
that rejected messages are lost. So by applying such a control scheme, the 
overload is handled outside the critical path, which the line is considered t o  
be. 
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Considering the quality of service for such a transmission system, it 
is intuitively obvious, that, conditioned on being admitted for entrance, 
e.g., for such a message, the transmission time can be reduced effectively 
by applying an overall small admission rate. But  small admission rate is 
equivalent t o  a large loss rate, creating complementary degradation o f  the 
quality of service. Therefore, t o  find an optimal admission policy, we should 
balance carefully the costs due t o  lost arrivals against rewards from successful 
transmissions within prescribed due dates. 

Clearly, an optimal admission policy will incorporate the complete state 
description of the line at arrival instants in making the decision. But from a 
practical point of view such a procedure is impossible, especially in today's 
high speed networks. There admission decisions have t o  be made on the 
basis o f  the state information of the entrance node only, possibly with some 
information on the states of the nearest neighbor nodes. 0 

Steady state analysis of such a system with local admission control 
can be found in [PCS86]. From this, it becomes apparent that local 
control as investigated here often leads to models which at present are 
not analytically tractable; see the discussion in [DD02, Section 41. (This 
is in contrast to application of some globally defined admission control 
policy for transmission lines [Dad971 .) 

Before proceeding with our general description we mention a field 
of research where spatiotemporal models are essentially needed as well; 
for more details, see [DF93, DFD98, Kno961, and the references therein. 
More information on Example 3.23 is presented in Section 6.1. 

Example 3.23 (Diffusion of knowledge and technologies). As- 
pects of spatial localization that accompany competing innovations in the 
use of production techniques at present seem t o  be not well understood with 
respect t o  quantitative measures of such behavior. These aspects arise from 
influences described by classical location theory as well as from innovation 
diffusion between firms that are geographically neighbored, but produce on 
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different levels of production techniques. Using the classical lsing models for 
spin systems from statistical physics [Lig85, Chapter: Stochastic lsing Mod- 
els], which are random fields with pair potentials according t o  Definition 
3.12, a simple model, where effects of technologies which are established 
in some locally bounded enclaves may diffuse into contiguous districts, is 
described in [DFD98]. These models allow us t o  describe t o  a certain ex- 
tent the interaction of firms through shared knowledge and technologies. 
The firms are thought t o  be located at the nodes of a subset o f  2Z2 and 
their evolution over time shows something like the lsing model's equilibrium 
behavior. This behavior is investigated in a simulation study in [DFD98, 
Section 61. Although the simulations reproduce some o f  the aspects ob- 
served empirically, the authors point out that there is much need for more 
detailed models. Some problems mentioned are: Mimicking learning effects, 
which will lead t o  optimization o f  the firms' behavior, which is just the need 
for closed loop control of the system. This apparently should be modeled in 
a first step on a firm's local level, including the neighborhood information 
for that firm (localized learning effects, [DFD98, p. 231). Further prob- 
lems are: Feedback from the macro-state o f  the system, which, e.g., can 
be incorporated into the model by applying globally determined cost func- 
tions; allowing more than one site of the spatial lattice t o  change the state 
coordinate at the same time; and so on. 

Further details on lsing models and applications in the field of knowl- 
edge diffusion are presented Example 3.41, and Section 6.1, especially in 
Definition 6.1. 0 

The problems connected with these examples are motivating for our 
subsequent study. 

Another class of examples has a long tradition in the field of cyber- 
netics and related areas: Automata and synchronized automata networks 
- we consider here synchronized networks of stochastic automata. Syn- 
chronization means that we consider systems on a common discrete time 
scale for the interacting automata. 
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Example 3.24 (Cellular Automata). 

(a) We have a linearly ordered sequence of synchronized finite au- 
tomata. Time scale is N. The underlying finite undirected graph is 
r = (V, B ) ,  with V = {1,2 , .  . . , S} and B representing the natural neigh- 

borhoods: N ( j )  = {j - 1, j + I), j E (2,. . . , S - I), N(1) = {2), 
N ( S )  = {S-1). The possible states o f  automaton j (at position j E V) are 
X j ,  IXjl < oo, its input set (input alphabet) is I j ,  IIjl < oo, and output set 
is Oj,  10jl < 00. The evolution of the cellular systems incorporates inter- 
actions and correlations among the automata according the graph structure 
prescribed by F. The input processes (a; : t E N) with input alphabet I j ,  
j E V ,  are independent of another and independent of the history of the 
system. 

The state process o f  the system of automata is 

and the output process is 

I f  at t ime t the automaton j is in state ti = xj E X j ,  and at time t an 
input a: = y:, E I j  occurs at node j ,  then at t ime t + 1 the internal state of 

the automaton j is <I+' = Zip  and the output is at t ime $+' = oj E 0 j .  

with probability 

where 

is a transition counting density. (Q1, Qs are defined similarly.) 

Given the global state of the automaton at time t - 1 and the next 
inputs, we assume that the local (state/output)-values change conditionally 
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independent over the automata. This leads t o  a transition structure similar 
t o  that o f  Definition 3.21, where we do not have the additional output 
function. 

Prescribing an initial state ( ( y :  j E (1, . . . , S)) yields a uniquely defined 
stochastic behaviour of the cellular automaton. 

Figure 3.1: Cellular Automata 

(b) In many situations a countably infinite underlying regular graph 
.Zd, d > 1, will be adequate - or some finite subsets o f  .Zd. 

(c) Analogously we can model a cellular automaton, where the inter- 
action is due t o  the use of common databases. 

(d) I f  in Example (a) we have lIjl = 1, j E (1,. . . , S), then the input 
is only relevant for synchronization. This results in an autonomous cellular 
automaton. 

(e) I f  we have a cellular automaton without output function, then De- 
finition 3.21 is met precisely. 0 

Cellular automata as models for neural networks are an early example 
o f  models for large graph structured interacting systems. Introducing sto- 
chastic effects into the formalism of deterministic cellular automata was 
motivated by von Neumann [Neu56] as a feature that reflects aspects of 
unreliability in the local coordinates, i.e., the neurons. Such unreliability is 
fundamental for all organisms, and the aim o f  the research was t o  construct 
models that on the global level behave nearly completely reliable although 
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the fundamental blocks of the system were unreliable. 
Cellular automata nowadays provide a versatile class o f  models for com- 

plex interacting systems with and without control. Their range of applica- 
tions covers, e.g., artificial life simulations, crystal growth, self-organization 
o f  chemical reaction-diffusion systems, vehicular trafFic flow, pattern forma- 

tion, and natural ecology. For a detailed overview, see [lla02]. 0 

Connected with our optimization problems we consider the inputs 
to the automata as decisions of decision makers who guide the system's 
behavior by independent local perturbations. The reaction of the sys- 
tem is dependent on the neighborhood structure and the automaton's 
computations result in the output and possibly an additional reward 
function. 

3.4.1 Finite state Markov chains with locally 
interacting synchronous components and 
local control 

An immediate consequence of the fundamental Definition 3.10 is for finite 
state space a transition mechanism of the following structure for the 
transition densities: 

Corollary 3.25. For any time t E W we have 

for K c V, xt,xt+l E X. 0 

For a general discussion of such processes, see [DKT78], and espe- 
cially [Vas78], and the references therein. 
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It is well known that in the case of finite state spaces and finite ac- 
tion spaces, we can restrict our search for optimal policies to  the set of 
deterministic strategies according to Definition 2.17; see [Der70]. In Sub- 
section 3.4.3 we study in depth strategies in this class and present in the 
rest of this subsection the necessary adapted definitions from Sections 3.2 
and 3.3. 

Assumption 3.26. (1) The sets o f  admissible actions are time indepen- 
dent; i.e., the set valued functions At in Definition 2.16 do not depend on 
t and we have At(x)  = A ( x )  c A for all t E W. 

( 2 )  The admissible set of actions for vertex i E V under system config- 
uration (state) x E X is the set Ai (x ) ,  and A ( x )  = n i E v A i ( x ) .  0 

The product structure of state and action spaces implies trivially that 
the deterministic strategies show a product structure as well. 

Definition 3.27. The history dependent decisions at t ime t are 

We shall return to the more general setting in Section 3.4.5. The 
locality for the strategies of Definition 3.18 reads in the case of deter- 
ministic strategies as follows. 

Definition 3.28. (1) For a local pure (deterministic) strategy A at 
time t = 0,1, .  . . the decision A: for node i  is made on basis of the his- 

tory of the complete neighborhood N ( i )  of i  only, i.e., on the basis of 
0 2 -  t 
N ( i )  , . . . , xf i( i l .  
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We therefore can consider the history dependent decision sequences 

) as functions defined on the space a: (xO,  . . . , z') = 

x?' = X -  ~ . . x X f i ( ~ )  wi thvaluesinAi .  
N ( i )  , N(i) , 

(t+l)-t imes 

( 2 )  A local pure strategy A = (Ai: i E V) is therefore determined by 
functions Ai = {A:, t 2 01, and their values 

(3) This local pure strategy A = (Ai : i E V) is local Markov i f  for all 
' ) = a:(& ). i E V. i.e.. every zO, xl, . . . , x t  E X A: ( z ~ ( ~ ) ,  . . . , xfi(il 

N(i) 
local decision function A: depends on the whole history only through the 
present local states in the neighborhood of i. 

(4) The local Markov strategy A = (Ai: i E V) is stationary (local 

Markov) i f  A: ( I - ~ ( ~ ) )  = A:" ( z ~ ( ~ ) ) ,  i E V, for all t' and t" Consequently. 

a stationary deterministic (Markov) strategy A is completely determined by 
functions Ai with 

Note that from the very definition, a deterministic stationary strategy 
is Markovian. 

From this definition, it is natural to assume that the control of the 
time dependent random field < results in an evolution that is governed 
via modified transition probabilities 

which are of product form. 
We summarize the principles and modeling features to control a sys- 

tem with locally interacting components, which we have presented up 
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to now in the following definition for the case of finite state and action 
spaces. 

Definition 3.29. A pair ( [ , A )  is called a controlled process with locally 
interacting synchronous components with respect t o  the finite interaction 
graph F = (V, B ) ,  if 

0 t = ( j t :  t E N) is a stochastic process with state space X = x Xi, 
i t V  

0 A = (Ai: i E V )  is a local pure strategy, and 
0 the transition kernel of [ is determined as follows: If 

Atpl(tO, . . . , j t p l )  = a t ' ,  tt = y,  At (to, . . . , tt) = a } ,  

then 

Pr { j ~ '  = X I (  1 to = x O ,  A'((') = a', . . . 

. . . , [t-1 - - xt-l , At-1 ( . . . , ct--') = a"', tt = y,  a t ( [ 0 ,  . . . , tt) = a }  

where the Qj x j  I y f i ( i ) , a j )  are locally defined transition kernels that de- ( 
termine the time invariant laws of motion for the system. We shall write for 

K = V: Q ( x  I y , a )  = p r { j t + l  = x  I tt = y , A t  = a ) .  0 
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(1) Here = is due to the deterministic strategy; for a comment on the 
further structure for the transition mechanism we refer to (3.9) and the 
remarks thereafter. Obviously, CzEX Q ( x  I y, a )  = 1, y E X, a E A. 

Remark 3.30. I f  A in the setting of Definition 3.29 is a stationary 
(Markov) strategy, At = At' for all t ,  t' E N, with time invariant ad- 

missible decision sets and At(x) = A(x) = x Ai 
iFV 

[ is a homogeneous Markov chain, and (because A is local,) according t o  
Definition 3.10, a time dependent Markov random field. We call such pair 
([, A) (or the process [) a controlled Markov process with locally inter- 
acting synchronous components with respect t o  the finite interaction graph 
F = (V, B ) ,  or shortly, a time dependent controlled Markov random fie1d.O 

It remains to  specify the cost structure for the system. We consider 
here cost functions that are stationary in time according to (2.5), and 
only deterministic strategies A. Therefore, if at time t E N the system 
is in state ct = xt and a decision for action at = at is made a (one-step) 
cost r (xt ,  at)  > 0 is incurred to the system. We consider the (minimax) 
cost criterion (2.6). Due to the deterministic decision rules A the average 
expected cost up to time T when ( is started with (O = xO and strategy 
A is applied is 

1 
T  

p(xO, A) = lim sup E:~ - x r (tt , At) 
T i m  T + 1  t=O 

T  
(3.10) 

1 
:= l i m s u P ~ $  - x r ( ~ ~ , A ~ ( ( ~ , .  . . ,  

T+m T + 1  t=O 

where E to  is expectation associated with the controlled process ([, A) if 
(0 = xO. 

Note that we suppressed the dependency of At on ([O, . . . , ct), which 
we shall do similarly in the following as well. The problem is to find a 



3.4. Interacting processes with finite state and action spaces 75 

strategy A that minimizes the asymptotic average expected costs (3.10). 
We consider the problem of finding optimal strategies with respect to 
the (minimax) cost criterion from Definition 2.21 within LSp only. 

Definition 3.31. A strategy A* E LSp is called optimal within the class 
LSp of admissible deterministic (= pure) local strategies i f  

for all xO E X .  

3.4.2 Cyclic networks as random fields 

We describe in this subsection an important example from queueing net- 
work theory that has a transition mechanism which is obviously local 
and synchronous. However, it turns out that there arise difficulties with 
fitting the model into the definitions of the previous subsection. We will 
demonstrate how to overcome these difficulties. 

Example 3.32 (Cyclic network). (This is a continuation o f  Exam- 
ple 3.22.) Closed linear networks (cyclic networks) arise, e.g., i f  window- 
flow control is applied for congestion control in circuit switching networks. 
Such flow control protocols are applied as well in high speed transmission 
networks. Under the ATM protocol, these networks show an internal generic 
discrete time scale. 

As a model for these networks we consider a closed cycle of single server 
nodes numbered 1 , 2 , .  . . , J ,  J > 2. Each node has ample waiting room, and 
the service discipline is first-come-first-served (FCFS). K undistinguishable 
customers are cycling in the system, K > 1. A customer leaving node j 
immediately proceeds t o  node j + 1, j = 1 , .  . . , J ;  we set J + 1 := 1, 
1 - 1 := J. 
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The evolution over time of the system is described by a discrete time 
stochastic process [ = (ct : t E ( 0 ,  1 ,  . . . }) with state space 

c records the development of the joint queue length vector, i.e., ct = 

([E, . . . , [>) = ( x ~ , .  . . , Z J )  indicates that at t ime t there are zj customers 
present at node j ,  including the customer just in service, if any, j = 1 , .  . . , J .  
The following assumptions imply that [ is an ergodic Markov chain. 

The nodes operate as independent Bernoulli servers under FCFS: i f  at 
t ime t E W at node j  a customer is in service and i f  there are h  - 1  > 0  
other customers waiting, then in this time segment her service ends with 
probability p j ( h )  E ( 0 , l ) .  She then leaves node j  at time (t  + 1) -  and 
arrives at node j + 1  just before time (t  + 1 ) .  With probability q j (h )  := 

1 - p j ( h )  this customer will stay at node j ,  requesting for at least one further 
quantum of service time there. Given the actual local queue length at some 
node, the decision of a customer whether t o  stay there or t o  leave is made 
independently of anything else. A customer leaving node j  at time (t  + 1) -  
will at t ime t + 1  either join the queue of node j  + 1  or enter service 
immediately - if node j  + 1  was idle during [t, t + 1 )  or at t ime (t  + 1) -  
the only customer present at node j + 1  has left this node. 

I f  at some node at the same time point a departure and an arrival occur, 
we always assume that the departure event takes place first and both events 
happen just before the clock counts.(For information on the Departure before 
Arrival-rule (D/A), see [GH92], and for information on the late arrival rule, 
see [Hun83]). 

We consider for the system the interaction graph F = (V, B )  with V = 

{ 1 , 2 , .  . . , J ) ,  B = { { j ,  j  + 1 ) :  j = 1 , .  . . , J }  (where J  + 1  := I ) ,  which 
implies that for any node j ,  we have N ( j )  = { j  - 1,  j  + 1 ) .  With  respect 
t o  this graph, [ fulfills part of the properties of a time dependent Markov 
random field according t o  Definition 3.10. The transition probabilities of ( 
obviously fulfill the locality condition (3.3) but they are not synchronous 
according t o  (3.4). 0 
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We have the following theorem (see [Dad97, Theorem 11) 

Theorem 3.33 (Steady state). The joint queue length process ( is 
ergodic on S(K ,  J) and its unique limiting and stationary distribution is 
r K I J  = (rKIJ(x): x C:E S ( K ,  J)) given by 

( x i , .  . . , XJ)  C:E S(K ,  J), (3.11) 

where G(K,  J )  is the norming constant. 0 

Remark 3.34. The steady state distribution (3.11) is said t o  be of product 
form. Note that r K I J  is not a Markov random field with respect t o  F. This 
observation points out that in general, the one-dimensional marginals in time 
of a time dependent Markov random field according t o  Definition 3.10 are 
not Markov random fields according t o  Definition 3.2. Note that this holds 
in Example 3.32, although ;rK>J is a conditional distribution o f  a vector with 
independent coordinates. 0 

Although the network process of Example 3.32 acts in an obvious 
sense locally with respect to the natural neighborhood structure, the 
transition probabilities of the embedded jump chain are not locally de- 
termined and synchronized in the sense of Definition 3.10. This is a result 
of the fact that the evolution of the network is determined by jumps of 
customers in which two nodes are always concerned with in a strongly 
dependent way. 

So in contrast to Example 3.24 where the standard description of the 
cellular automaton makes it obvious that (3.3) and (3.4) hold for the 
transition kernel, the standard Markovian description for the queueing 
networks yields transition kernels that do not show these properties. 
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This is seemingly contrary to our intuition, but a simple matter of the 
underlying state description. 

On the other hand, the network obviously acts synchronized in a 
general sense and locally with respect to the given graph. We therefore 
describe in Example 3.35 a supplementary variable technique using an 
extended state space, which makes the time development of the system 
in a formal sense fulfilling the properties of a Markov jump random field. 

The main idea is to include for each node (service station) j into the 
local state description the local queue length xj there, and a decision 
value sj whether at the next jump instant of the system the ongoing 
service expires (= 1) or is continued for at least one further period (= 0). 

Example 3.35 (Supplemented cyclic network). We continue the 
discussion of the cyclic network of Example 3.32. The main difference t o  
the description on page 75 is that we introduce a new state space and new 
state variables. 

The evolution over time of the system is described by a discrete time 
stochastic process 

with state space 

The $ values record the development of the queue length at node j ,  while 
the supplementary variable 9 indicates whether at the next time instant of 
the system the ongoing service, if any, expires ($ = 1) or is continued for 
at least one further period (65 = 0). 

The time evolution of the network is as follows: I f  at t ime t E N the 
supplemented system state is 
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then the system stays in this state for one time unit. When this time unit 
expires, then at each node j in a first step the queue length is updated 
according t o  the values 

This yields (with 1 - 1 =: J )  

with probability one. 
Given the local states of the neighborhood of j  according t o  (3.12), i t  is 

then decided independent of other details of the network's history whether 
an ongoing service (if any, i.e., if tt+l > 0) at the next but one time step 
will be (successfully) finished. We have with probability 

and 

dt+l = o 1 ( v j ,  $1 = ( x i ,  s i)  : i E f i ( j ) )  

= qi ( ( x j  - t j )+  + tipl . n (xj-1 > 0 ) )  

= 1 - (  t i ) +  +t+l.  n(xi-1 > o) ) ,  

and the respective decisions are conditionally independent given the states 
in the neighborhood. 0 

Corollary 3.36. The Markov chain of the supplemented cyclic network 
process t from Example 3.35 fulfills the locality property (3.3) and the 
synchronization property (3.4) from Definition 3.10, and so it is a Markov 
jump random field as defined there. 0 
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ProoE Updating of the queue length according to  the values { (vj, 19:) = 

(xi, si) : i E fi(j)) is purely deterministic at each node, interfering only 

with neighboring nodes. This is due to  the selected state space, and 
from the structure of the underlying graph conditioned ct,  this updating 
is independent. So given Ft we have conditional independence of the v:+' 
and obviously the required locality. The transition decisions for the 65 

are independent of the network's history given { vt J dt i) = ( Xi,  s i ) :  i E 

fi(j)} and conditionally on this independent of another. This yields the 

required conditional independence of the synchronization property. The 
other properties are obvious. 0 

There is an appealing further interpretation connected with the sup- 
plemented cyclic network process from Example 3.35, which is of special 
interest with respect to our optimization project for time dependent 
Markov fields. 

Example 3.37 (Controlled supplemented cyclic network). We 
continue the discussion of Example 3.35, recall the state space ST(K,  J )  
defined there and the supplemented Markov chain 

F = (F t  = (vt, gt) = (v:, d ? ; .  . . ; v;, g;) : t € {O, 1,.  . . 0 
We now introduce at every station (node) a controller who decides whether 
an ongoing service ( i f  any, i.e., i f  ct+' > 0 )  at the next but one time step 
will be (successfully) finished or not. The respective decision variables a: 
are drawn according t o  some admissible local stationary Markov strategy ;r 
(see Definition 3.18 (3)) with the probabilities 
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and 

and the respective decisions are conditionally independent given the states 
in the neighborhood. 

Then the so defined controlled Markov process (c, T) has one step transi- 
t ion kernel o f  the form (3.9) from Definition 3.21 because given (tt, c u t ) ,  the 
value tt+' is completely defined (deterministic). The locality is obvious. O 

We summarize the description in Example 3.37. 

Corollary 3.38. The controlled process (I, T )  with admissible local sta- 
tionary Markov strategy T and controlled supplemented cyclic network 
process [ from Example 3.37 is a controlled Markov process with locally 
interacting synchronous components according t o  Definition 3.21; i.e., the 
controlled one-step transition kernel fulfills (3.9). 0 

3.4.3 Optimality of deterministic Markovian 
strategies in the class of local strategies 

Similar to the case of Markov chains with finite state space and con- 
trols (see [VS64] or [Der70]), it is possible to prove that there exists an 
optimal strategy in the class of stationary local Markov strategies, which 
are deterministic. 
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Theorem 3.39. Consider a controlled processes (t, A) with locally in- 
teracting synchronous components with respect t o  an interaction graph 
r = (V, B) according t o  Definition 3.10 with finite state space X of t ,  
and finite control space A. Let the sets of admissible actions At(.) be in- 
dependent o f  t. Then in the class LSp of admissible deterministic local 
strategies, there exists an optimal strategy in the sense of Definition 3.31, 
that is in the class LSD of stationary Markovian deterministic policies. (3 

Proof: Our proof follows the lines of the proof of the similar theorem 
for standard controlled Markov chains in [VS64] or [Der70, Chapter 31. 

We first evaluate the process and the associated costs under the total 
expected discounted costs criterion (I). By compactness arguments 
we ensure the existence of optimal strategies (a). From construction 
of sequences of suitable near optimal policies we obtain via a diago- 
nalization argument an optimal Markovian policy (b). Invoking the 
optimality equation we show that in the class of Markovian policies even 
a stationary optimal policy exists (c). Applying Abelian theorems we 
finally transform this result to  the case of long time average expected 
cost criterion (11). 

(I) Discounted costs: For every strategy A E LSp we define for 
discount factor /3 E (0 , l )  the total expected discounted costs under A 
when starting in y by 

and by sy (/3) = inf sf(/?) the infimum over all admissible local pure 
acLsp  

policies. 
(a) Existence: Because X and A are finite, similar to the pro- 

cedure in [VS64] (see [Der70, Chapter 3, Corollary 1 and the preced- 
ing lemmas], as well), it may be shown that for any E (0 , l )  the 
functional 8:(/3) attains its minimal value on LSp, i.e., there exists 



3.4. Interacting processes with finite state and action spaces 83 

where d : (~)  (xk (i), . . . , xt- , such that for all I, E X 
N(4 

The proof utilizes the compactness of the space of admissible policies 
(from finiteness of the action spaces and Tikhonov's theorem) and the 
continuity of the cost functional (under the discrete topology). 

(Note that we wrote BY(/?) for 8F("(:i). If from the context 
there is no ambiguity, we shall treat similar expressions in the same way.) 

Now we show that for fixed /? and every strategy A*(P), which is 
optimal under the total expected discounted cost criterion 8 f ( Q ) ,  there 

exists some stationary Markov strategy a = a(p) ,  which yields the 
same total discounted expected cost as A*(P), when applied to  control 
the system: 

(We consider K(P)  therefore to  be equivalent to A* 
generating the same total discounted expected cost.) 

(b) Markov property: The strategy A*(/3) is cl 
following property: 

(/I) in the sense of 

haracterized by the 
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Using conditional expectations we obtain for any p > 0 

We apply Bellman's principle and will show: If xO , .  . . , xp are the first 
p+ 1 observations of the process ([,  ax(^)), then for any strategy A(P) E 

LSP 

holds almost surely with respect to the process measure of (c, A*(P)). 
Indeed, let Ep denote the sigma-field generated by (to, . . . , [p). Sup- 

pose, there exists a strategy a € LSp and some set DlP = {to = 

xO, .  . . , c P  = XP) E Ep, with positive ~r$-measure of the process 
([, A* (P)) , such that 

and the inequality (3.14) holds on the complementary set %IP of DlP. 

We then can construct a new strategy z(/3) = {&(P), i E V}, 
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&(B) = {@(p), t > 01, by (for simplicity of presentation we omit 
the dependence on P) 

and for j > I 

Thus, for the strategy X(P), which is from its very construction in LSp,  
we have 
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i.e., %:o (/3) < %'$ (P), which contradicts inequality (3.13). Therefore we 
henceforth assume that (3.14) is fulfilled for the optimal strategy A*(P) 
for any realization (xO, . . . , xp) with nonzero probability under ~ r $  (be- 
cause X is finite such realizations exist). Setting 

similar to [VS64, Lemma 21, we shall prove that the function 
@p (xo, . . . , xp) depends on the whole history only through xp; i.e., 
for all xm, ym, m = 0,1, . . . , p - 1, we have an* (xo, . . . , xp-l, xp) = 

@a* (?JO, . . . , ? J p l ,  xp) . 
We fix time m and consider all finite time realizations (xO, . . . , xm-I, 

xm) of [ until time m, which at time m attain the prescribed value 
xm, and @** (xO,.  . . , zmpl , xm) according to (3.15). Because X is fi- 
nite, we find only a finite number of such realizations and therefore 
@A* (xO, . . . , xmpl , xm) attains in, say, (:j.O, . . . , :j.m-l, xm) := (2O (xm>, 
. . . , 2m-1 (xm), xm) ,  its minimum on the set of all such realizations, and 
this sequence occurs with positive prt0*-measure. 

So for any other realization (yo, . . . , ym-I , xm) that occurs with pos- 
itive ~r$-measure, we have 
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We show that in (3.16), equality holds. Assume we have strict inequality 

for some realization (YO, . . . , ym-l, xm) of the process. Then we construct 
a new admissible st,rategy A*", which acts as A* until time m,, and which 
after time m acts on any sequence (xO, . . . , xm-l, xm, xmtl, . . . , xm+k) of 
states in the same way as A* would do when (zO,. . . , itmp1, xm) would 
have happened up to time m: 

For the strategy A** we therefore obtain 

which contradicts (3.14), and thus we have proved that an* (xO, . . . , xm) 
depends on the whole history only through xm. 

For any realization (xO,. . . , xmpl, xm, xm+l , . . . ,  xm+',...) of 
(with our fixed xm at time m) we therefore apply from time m on the 
control decisions 

m k ( O ,  . . . , imp1 , xm, xm+l, . . . , xm+') instead of 

im+* (xO , " ' ,  x m l ,  xm, xm+', . . . , xm+'), k 2 1. 

As we have shown, this does not change the value an* (zO,. . . , xm). 
Therefore the strategy A(m), defined to be equal to A* until time m, 
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and then defined by 

yields the same conditional expectation as the optimal control A*: 

Note, that by definition is a local strategy because of the locality 
of A* and that 

holds. Therefore is admissible according to Definition 3.18 (1). 
Having observed the independence property of aA* (zo, . . . , xmpl, 

xm) from (xO, . . . , xm-l), for any fixed m, we now construct a sequence 
of policies 

such that for fixed m, a similar independence holds. For m = 1 we start 
with 

According to the c~nst~ruction performed above, we can find a control 
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which yields the same conditional expectation 

(1) 
as the optimal control A*. We further have a0 (xO) = Lo (xO). 

Continuing in the same way for m = 2, we apply the same procedure 
* 

to strategy A(1) and obtain a new strategy 

(2) (1) (2) (1) 
and observe A O (xO) = A (xO), a l (xl) = A (xl). 

* 
We continue similarly and construct a sequence of strategies A(,), 

n E W, which is the starting point for the last step of our construction. 
Following [VS64, p. 781, and using Weierstrass' diagonalization 

00 00 

method we can construct a Markov strategy A(P) = {A~(P), i E V} 
such that 

A,,, (xO, xl, . . . , xm, . . . ) 

(0) (A.  
holds and additionally A J (xj) = AJ (xj), V j E N. 

The construction further shows that the total expected discounted 
* 

costs for all strategies A(,), n E N, are the same and equal that of the 
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optimal strategy: 

%tin)  (p) = 8:; (p) , t x. 

00 

(see [VS64, p. 781) and because i t LSh1 we have 

( c )  Stationarity: We will show that it is possible to  construct this 
Markov strategy (satisfying (3.17)) in the class LSD of stationary Markov 
strategies. Bellman's equation for 8,(/3) is 

00 

Because for the strategy i ( P )  equality (3.17) holds, determining de- 
00 

cision (xO) is reduced to solving equation (3.18) in which A(x') C A. 
00 00 

Suppose now that the decisions (xO), . . . , ~ f ( x p ) ,  i t V, are found 
and they depend on the respective observations xO,. . . , XP only. From 
inequality (3.14) the continuation 

00 

of strategy i ( P )  is such that 
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for each continuation 

of the Markov strategy A(P). From the Markov property of strategy 

z(/3) and (3.17) it follows that 

00 

Further, the optimal decisions A:, i E V, for the strategy A(P) for every 
fixed xP can be found as a solution of the equation 

which coincides with Equation (3.18) because neither the decision space 
A(xP) nor the probabilities Q(y I xp, up) and costs r(xp, up) depend on 
time. Thus, we have proved that - in the class of Markov strategies there 
exists some stationary strategy A(P) for which 

- 
s f 0  (P) = min sto (PI. 

A€LSp 

(11) Long time average costs: It is possible to find an infinite 
sequence of discount factors /I, + 1 as a + cc such that for all of - - 
them the optimal strategies A(&) coincide: A(&) = A*, A* = {A: = 

L i ( Z ) ,  i € v}. 
The existence of such sequence Pa --- 1 as a + oo can be seen as 

follows. Take any sequence Pa, --- 1, a' + oo with associated strategies 
( I ) .  All these strategies ~ ( P , I )  = { & ( ~ t ) ,  " V} - are by con- 

struction determined through the functions & ( P ~ I )  = (A:(/~,I): t E N) ,  
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i t V, where (L:(/?,i) : t E w), are defined on finite sets Xfi(i), i t V, 
attaining therefore only a finite number of values. 

So there exists an infinite subsequence Pa, -+ 1 of /la i 1 which have 
the same associated strategy. 

Let us consider this strategy A*. The process ( associated with A* is a 
homogeneous Markov chain (in fact, a time dependent controlled Markov 
random field according to Remark 3.30) with transition probabilities 

For this fixed strategy A* we consider 

1 
lim sup - 

T i m  T +  1 t=O 

Denoting r(x)  := r (x, A*(x)) we obtain 

where 
9 T 

Recalling the ergodic theorem for finite state Markov chains we obtain 
Cesaro convergence ( P ~ , ~ ( X )  to a limiting probability 

which implies (similar to [VS64, p. 811) for the fixed strategy A* the 
existence of the limit 

T 

1 
lim - 

T-im T + 1 
t=O x t x  
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Applying Abelian theorems this limit is obtained as well by the respective 
discounted costs for Pa 4 1 [VS64, pp. 81, 821. So the optimality of the 
stationary Markov strategy A* in the class LSp of all local admissible 
strategies is proved. 0 

Remark 3.40. We restricted our considerations t o  the study of nonran- 
domized strategies. Using Bellman's optimality equation and standard tech- 
niques (see, e.g., [Der70, Chapter 3, Theorem I ] ) ,  i t  can be shown that 
due t o  the finiteness of the decision space A for proving optimality consid- 
erations, i t  is not necessary t o  consider randomized strategies because some 
extremum will always be attained in the class of nonrandomized strategies.O 

From Theorem 3.39 we conclude that determining an optimal strat- 
egy can be done using linear programming techniques; see [Der64] or 
[HOWGO] for details. 

Example 3.41 (Diffusion of knowledge and technologies). (Con- 
tinuation of Example 3.23.) We sketch an example from the area of eco- 
nomical decision making; for details, see [DF93]. Let F = (V, B)  be a finite 
undirected graph without loops. The vertices represent organizations (or 
companies) and the edges indicate interactions between the organizations. 
Let Xi = (28,. . . , 23%) be the set o f  possible states for organization i, 
where the state xi in Xi indicates the usage of a specific standard of tech- 
nology by this organization. The global states of the group of organizations 
are X = x Xi. 

ieV 
According t o  [DF93] diffusion o f  knowledge and technologies can ad- 

equately be described by Markov random fields. This implies that local 
interactions are central t o  the description of the stochastic behavior of the 
systems over time as well. 

Using the graph strcture underlying the spatial distribution of the firms, 
N ( k )  is the subgroup of organizations interacting with the k- th company 
and k itself. The locality property included in Definition 3.29 implies that 
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decisions of organization k at time t depend only on the states and decisions 
o f  organizations interacting with the organization k and o f  those of k itself 
up t o  time t. Restricting decisions in a way that only local information is 
used is a natural assumption put on the behavior of many real systems. 

In case that a company can only choose between two technologies at any 
time instant, we may describe this situation by a variant o f  the stochastic 
k ing  model from statistical physics [Sin80, Rue691. Transition probabilities 
for this model without controls are o f  the form [Kno96] 

where yk and xj attain values f 1 and we have P > 0. 
Selection of the transition probability 3.19 is based on the experience that 

such modeling assumptions have been proven adequat in the area o f  some 
classes of locally interacting processes. is in the models that originate from 
physics proportional t o  the inverse tem perature. In the economic setting 
here i t  can be considered as a parametrization of the transition probabilities, 
which strengthens or weakens the tendency t o  change the actual state of 
the system. 

In the spirit of our general models we want t o  determine an optimal 
strategy (under some of the possible cost functions) for subgroup S c V 
of  companies that is based on the previous behavior o f  companies in their 
neighborhood only. Then the set o f  admissible strategies when being in 
state x describes among others reaction on, say, investment decision, ad- 
vertising, and organizational revisions, and possible additional restrictions 

on the admissible decisions by using A(x) = x Ai x~~~~ , i.e., local in- 
iES ( ) 

formation only. The expected average costs per time unit is a generally 
accepted criterion for evaluating production standards. From the results 
derived above, we conclude that there would exist an optimal stationary 
Markov nonrandomized strategy in the class of local strategies. 
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I f  we want t o  compute an optimal strategy (according t o  any optimal- 
ity criterion) by solving a linear program (see Section 3.4.6), we usually 
explicitly need t o  know the stationary probabilities o f  the system. For the 
classical uncontrolled k ing  model, the stationary probabilities may be found 
in [Lig85]. 

A first attempt t o  control the system's behavior is t o  consider constant 
controls A = where /? < PC, the critical temperature. But prescribing 
an "optimal" global A yields only an open loop control that has no local 
structure. The most natural local control for the transition kernel (3.19) 
would be t o  introduce in the spirit o f  our development locally controlled 
temperature functions Pk(xfilk)) for nodes h: t V. Then the model fits into 

the framework described above. 0 

3.4.4 Computational example: Cyclic queues 

We reconsider the cyclic network of queues described in Example 3.32 
and assume that the local decision makers at the nodes may adapt the 
service probabilities at their nodes according to the load of their own 
node and of the neighbored nodes. So their strategies are of local nature. 
According to Remark 3.40, optimal behavior of the local decision makers 
can be achieved already by using deterministic policies only. 

The local decision spaces Ai = {a1, a2 , .  . . ,ant) ,  i = 1 , .  . . , J, are 
finite and do not depend on t .  Then globally observed joint actions of 
the decision makers are from A = x Ai. 

i=1, ..., J 

From Theorem 3.39 we know that an optimal local strategy A*, 
(with respect to asymptotic average expected costs (3.10)) can be found 
in the class LSD of deterministic stationary Markovian policies, i.e., 

A* = A; x -  : i = 1,2, . . .  ( ( Nil)  , J )  . We therefore consider in the fol- 

lowing at time instant t for vertex j decision A; x -  according to ( Nli)) 
Definition 3.18 (2), which depends on states of its neighborhood only. It 
follows that at the end of a time slot at node j ,  (if there are h customers 
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present) a customer's service ends with probability p j ( h ,  u) E (0 , l )  and 
with probability qj(h, u) := 1 - pj(h, u) that customer will stay there 
for at least one further time slot, h > 1, u E Aj. Consequently, we 
obtain a local Markov strategy A = (Ai: i = 1 , 2 , .  . . , J) according to 
Definition 3.18 (2) and a controlled process (t, A) ,  which is according 
to Definition 3.29 a controlled time dependent random field. 

For any strategy A E LSD that results in service probabilities 
p j  (h, u) E (0 , l )  at the nodes, the controlled process (I, A) is ergodic on 
state space S(K,  J) with some stationary distribution nKIJ'a =: na = 

( & (  : x E S(K,  J)) . But note that in general, (3.11) of Theorem 3.33 
does not apply. The one-step costs occurring at time t E W when being 
in state ct = xt and applying action ut are r (x t ,  ut) > 0. To determine 
an optimal strategy, we shall use the strategy improvement procedure 
[Der70, Section 61: 

Select some strategy A, and consider for some (unknown) function 
v = (v(x): x E S(K,  J)) the equations [Der7O, p. 56, 661: 

and 

Solving for { (v(x), R:) : x, y E S(K,  J) } yields the costs R:, when 

using A, which turns out to be independent of initial state y. The policy 
improvement algorithm is [Der70, p. 701: 

For each y E S(K,  J), define AY to be the set of actions a in state y 
for which 
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or, if no actions satisfy the inequality, the set that satisfies 

and 

Starting with the prescribed strategy A we define some local strategy 
A' E LSD, which takes some action a E AY in at least one state y for 
which AY is nonempty; otherwise, the action taken is the one dictated 
by A. 

Theorem 3.42 (see [Der7O, p. 70, 711). (a) I f  A' # A. then Rf' 5 
R ~ , Y  E S(K7.I). 

(b) The strategy improvement procedure leads t o  an optimal strategy 
within a finite number o f  iterations. I f  A' is the actual strategy and if AY is 
empty for all y, then the actual policy is optimal: A' =: A* and 

R,a" = p(x,A*) = inf p(x,A). 0 
atLsp 

To demonstrate the application of the procedure, we specialize now 
the data. 

Example 3.43. Consider the cyclic network of queues described in Ex- 
ample 3.32 with node set {1,2,3}, and K = 2 customers. Selecting 
service probabilities is according t o  binary alternatives with Aj = {0,1) 
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ii j E { 1 , 2 , 3 ) ,  where aj E Aj indicates a decision for a specific service 
capacity. W e  assume p j ( h ,  a )  and r ( x ,  a )  as 

( I . )  (2.3) 

( ) ( ) (3.24) 

( I ."  (1.3) , 4 ?  3 ' " 1  2'  4 

and 

where c = ( 1 , 2 , 3 ) ,  b = ( 3 , 1 , 2 ) ,  i .e., bj is a cost associated t o  using 
addit ional service capacity for node j .  W e  abbreviate t h e  states o f  S ( 3 , 2 )  

by  

x1 = (0 ,  0 , 2 ) ,  x2 = (0 ,1 ,  I ) ,  x3 = (0 ,2 ,  O ) ,  

x3 = ( I , o ,  I ) ,  x5 = ( I , I ,  o ) ,  2 = (2 ,0 ,  o ) ,  
and t h e  decision vectors 

a1 = (0 ,0 ,  O ) ,  a2 = ( O , O ,  I ) ,  a3 = (0 ,  I ,  o ) ,  a4 = (0 ,1 ,1 ) ,  

a5 = (1 ,0 ,0 ) ,  a6 = ( l , O ,  I ) ,  a7 = ( l , l ,  O ) ,  a8 = (1 ,  1, 1) .  

Then  t h e  t ransi t ion kernels Q ( x  I y, a )  are given by 

(0 ,  171) 

a'i?)q3(1, a3) 

q2(l ,  a2)q:3(l, a3) 
0  

pa(1, aa)ps( l ,  as)  

qa(l ,  aa)ps( l ,  as)  
0  
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We start with strategy A ( x )  = a' = (0,0,0). From (3.24)-(3.25) we 
have for this A :  ~ j ( x ~ )  = pj (xj, A(x j ) )  and r ( x )  = r ( x ,  A (x ) )  as follows: 

For the prescribed A, Theorem 3.33 applies and we obtain the ergodic 
distribution ;ra = (;ra(x): x E S(K ,  J ) )  of and costs R ~ :  

and 

Applying (3.20)-(3.21) we have va(x): 
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We determine the sets AY, y E S ( K ,  J )  at this stage of the algorithm. 
Equation (3.22) is satisfied for each y E S ( K ,  J ) .  From (3.23) we have that 
A"' 3 a2 ,  A"' 3 a2 ,  Ax3 3 a3,  Az4 3 a2,  Ax5 = 0, Az6 = 0. 

Thus, we may define a new strategy A' as 

or shortly, A 1 ( x )  = (0 ,x2  div  2 , s ignx3 ) ,  where a div b is the integral part 
obtained from dividing a by b,  signa is the sign of number a (s igna E 
{ - I ;  0 ;  1 ) ) .  

For the new strategy A1(z) (3.24)-(3.25) yield p i ( z j )  = pj ( x i ,  A1(z j ) )  
and r l ( z )  = r ( z ,  A(z))  : 

Theorem 3.33 yields the ergodic distribution ?rat = (?rA'(x) : x E S ( K ,  J ) )  
and costs R ~ ' :  

and 
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Solving (3.20)-(3.21) for va'(x) we have: 

uA' (zl)  I u"' (z2) I v"' (z3) ) u" (z4) 1 v (z5) 1 v"' (z6) 

Equation (3.22) is now satisfied for all y E S(K,  J). From (3.23) we 
conclude that AY = 0 for all y E S(K, J). So the strategy A* = (At(x) = 

(0,zz div 2, sign z3), 1: E S(K,  J)) is optimal and R"* = g. 0 

3.4.5 Separable cost functions and global 
optimality of local strategies 

Up to now we were mainly concerned with finding optimal strategies in 
classes of local strategies. Clearly this is an essential problem if (as is 
often the case) local strategies are the only possible policies that can be 
applied because of practical limitations. 

But there is a related problem that deals with the question whether 
local strategies can be globally optimal. We find in this section conditions 
that imply that locally defined policy classes contain strategies that are 
optimal even in the class of all admissible policies. 

For now we consider cost functions r ( z ,  u) that are separable (addi- 
tive) functions with respect to the neighborhood graph as follows. 

Definition 3.44. A cost function 

is separable with respect t o  the neighborhood structure r = (V, B )  i f  it is 
of the form 

i.e., if it is a sum of locally defined measurable bounded reward functions 

ri (xg , , U i )  . 0 



Chapter 3. Local control in discrete t ime  

In this section we assume that according to Definition 2.16, the con- 
trol sets are of product form and may be globally dependent on states 
but are independent of time. 

Assumption 3.45. For any system configuration (state) xt and any ver- 
tex i E V, let Ai(x t )  be the set of admissible actions (admissible de- 
cision values) for decisions at node i at time t i f  It = xt.  We denote 

Remark 3.46. A (randomized) strategy ;r is admissible according t o  De- 
finition 2.17 if for every t t W 

A strategy r = (ri:  i E V )  is Markovian if for all xO,x l , .  . . , xt E 
X the local decision rules depend only on the present global state xt:  
+(xO, .  . . , x t )  = ;r:(xt), i E V. 0 

Theorem 3.47. Suppose there exist a constant g and a Borel function 
v ( x )  on X such that for the transition function Q (Definition 3.29) of the 
controlled process with locally interacting synchronous components holds 

Then 

Moreover, i f  for a strategy A* E LSD holds 



3.4. Interacting processes with finite state and action spaces 103 

then A* is optimal and for all x E X 

p(x,  A*) - g. 

Proof: It is obvious that for any strategy T E LS we have 

From the definition and from the Markov property follows 

Therefore 
'P 

and consequently 

Because X is finite and therefore v(x) is bounded, from (3.27) we obtain 
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The second part of the theorem follows from the fact that for strategy 
A* in (3.26) and (3.27), equality holds. 0 

In general, local strategies cannot be expected to be globally optimal. 
But under mild technical assumptions, we can prove such a statement. 
We assume henceforth in this section the following. 

Assumption 3.48. There exist non-negative measures pi on  Xi such t h a t  

Y i E V we have pi(Xi) > 0 and such t h a t  for  all i E V: 

Let S ( X )  denote the Banach space of (bounded) functions v(x) = 
EiEV ui(xi) on X = xitV Xi, with norm (lu(l = EiEV maxXitxi I v ~ ( x ~ )  1 .  
Denote the operator U on S ( X )  by: 

where 

Q'(Y I x, 4 = Q(9 I - n,i,,i,. 
i EV 

Denote the set of minimizers for Uv(x) 



3.4. Interacting processes with finite state and action spaces 105 

Theorem 3.49. Under Assumption 3.48, in class LSD a globally optimal 
strategy exists. 0 

Proof: Using standard arguments from [GS72b], it follows that the 
operator U is a contraction on S ( X ) .  By Banach's fixed point theorem 
in S ( X )  exists a fixed point v* such that 

Uv*(x) = v*, 

which is 

Using the structure of the operator U we have 

Because the Ai are finite, there exists measurable functions A: = 

A: ( x ~ ( ~ ) )  such that 

Therefore there exists a function A* = 

that 

and 
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where 

Therefore the conditions of the Theorem 3.47 are satisfied and strategy 
A* E LSD is optimal. 0 

3.4.6 Computing optimal strategies with linear 
programs 

In this subsection we consider a controlled process (E, a) with finite state 
and action space. We reduce the problem of finding the optimal control 
to the problem of solving a linear program. For more details on the 
general principle, see [Der64, Der701. 

As before, we assume that for K c V, y E X ,  a E A(y) holds 

If K = V, then Q(x I y, a )  = Pr {Et+' = x I It = y, at = a ) ,  with 

E z E x Q ( x  I Y , ~ )  = 1  f o r y ~ x .  
We further assume that the strategies T that are applied are station- 

ary Markov, but not necessarily local, i.e., 7r E IIs. We have (Defini- 
tion 2.18) for all t E W, y E X, a E A, 
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It follows that ( is for any fixed policy 7r a time homogeneous Markov 
chain with transition probability 

We further assume that for any strategy T ,  the transition kernel pT(y; x )  
of the resulting Markov chain ( is ergodic with the same unique positive 
recurrent class X. Then under any strategy T there is a unique limiting 
and stationary distribution p" = ( p T ( x )  : x  E X )  for c, which may depend 
on T .  

The cost function is assumed to be separable according to  Defini- 
tion 3.44 with respect to the underlying neighborhood structure. 

The expected time averaged costs under policy 7r with initial state 
y E X up to time T are 

From ergodicity of c for fixed 7r it follows 

independent of the initial state y  E X. Therefore the asymptotic ex- 
pected average costs under 7r with initial state y E X are 

1 
T 

p(y, T )  = lim sup E" - 
T+w YT+1 

E1.(ct, at) 
t=O 

= C C T ( Z ,  a)pli(x) . T ( x ;  a ) .  

Abbreviating 
2" (2 ,  a )  = p" ( x )  .7r(x; a )  
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our problem is now (independent of the initial state y E X )  to solve the 

min C C r ( x , a ) z T ( x , a ) .  
TEns 

XEX UEA 

We therefore consider the following linear program: 
Find 

min x x ~ ( x ,  a)z(x,  a )  
(z(x ,a) :  x t X , a t A )  

x t X  a t A  

subject to the constraints 

Any solut'ion of this problem has the property [Der63, p. 211 

x z(y, a)  > 0 for all y t X,  
a t  A  

and setting 

yields an optimal policy T* t IIs. 

A further step of the solution procedure is to  find an optimal de- 
terministic (stationary) policy. This can be done simply by solving the 
linear program with the simplex algorithm. This leads to a solution that 
is an extremal point of the convex polyeder of the admissible solutions, 
which is known to represent a deterministic policy. From Theorem 3.49 
we know that due to the assumption of having a separable cost function, 
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there exists a local stationary deterministic policy that is optimal in the 
class of all stationary Markov policies. 

The obtained deterministic policy, which is not necessarily local, can 
be used to then find an optimal or nearly optimal local policy. But at 
present, there seems to be no general algorithm known to perform this 
procedure. 

3.5 LOCAL CONTROL OF INTERACTING 
MARKOV PROCESSES ON GRAPHS 
WITH COMPACT STATE AND ACTION 
SPACES 

In this section we search for optimal policies with respect to the (max- 
imin) reward criterion of Definition 2.22, which maximizes the mini- 
mal reward 4(y, T) for given policy T and starting in y. Compactness 
and continuity conditions as imposed here on state space and action 
space are standard assumptions for many investigations in the litera- 
ture on stochastic dynamic optimization or dynamic programming; see 
[Sch75, Ba1891 and the references there. Our new point of view is the 
local structure imposed on these spaces. 

3.5.1 Existence of optimal Markov strategies 
in the class of local strategies 

In this subsection we prove statements on the existence of best policies 
in subsets of the class of all policies for a given problem setting extending 
[DKCOI]). Following our general path of investigations, the statements 
of the theorems are concerned with the case of local policies for systems 
driven by local and synchronous kernels (see Definition 3.21, but we 
point out that the proofs work for general classes as well). So our first 
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statements are without reference to locally determined processes. Clearly 
optimal policies in a subclass of all policies may be globally suboptimal, 
although the local optimum is attained within the prescribed class as 
will be shown. 

Throughout this subsection the following assumption is in force. 

Assumption 3.50. The admissible control sets are independent of the 
time of decision: 

The following preparatory result was given for the Markov framework 
in [GS72a] without proof. 

Theorem 3.51. I f  there exist bounded Borel functions g(x )  and v ( x )  on 

X such that for all t E R and admissible control sets A ( x )  := x Ai 
i EV 

then 

If  additionally for a strategy T* E LS 

s(:r) + ~ ( x )  = I . (x ,  T*(x) )  + J V M Q ( ~ ~  I X ,  T* (x ) ) ,  x  E X ,  

holds, then $(x ,  T*) = g ( x ) ,  and T* is optimal in LS (locally optimal). (3 
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Proof: For any strategy 7r E LS 

From (3.9) and (3.29) we have 

0 0 -  0 E* { u ( t t )  1 to = r , a - a , . . . , tt-l = rt-l, at-' = at-'} 

Inserting (3.32) into (3.3l), we obtain 

and, consequently, 
T 
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Inserting (3.35) in (3.33), we obtain from the boundedness of g(x) and 
v(x) inequality (3.30). 

To prove of the second part of the theorem, we note that for the 
strategy T* E LS as described the inequalities (3.32)-(3.35) are equali- 
ties. 0 

Corollary 3.52. I f  (3.28) and (3.29) hold and a strategy T* E LSs c LS 
fulfills 

then there exist admissible deterministic local policies that are optimal in 
LS (locally optimal). 0 

From Theorem 3.51 we directly obtain the following criterion. 

Theorem 3.53. Assume there exist a constant g and a bounded Borel 
function v(x) on X such that 

9 + ~(1:) = sup { ~ ( x ,  a )  + 1 V ( Y ) Q ( ~ Y  1 x, a ) ) ,  x E X .  (3.36) 
a t A ( x )  

Then 

Moreover, i f  for a strategy T* E LS 

then $(x, T*) - g and T* is optimal in LS 
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Remark 3.54. Corollary 3.52 applies here again. 0 

The following regularity assumptions on the transition kernels pro- 
vide conditions for proving optimality properties of local strategies. Re- 
call the definition 

i? = {(x, a )  E X x A with a E A(x)) 

and Assumption 3.50: 

Assumption 3.55. Q = njtv Qj is according t o  Definition 3.10 a local 
and synchronous Markov kernel for (c, T ) .  

There exists a non-negative measure p on (X, X) with p ( X )  > 0 such 
that: 

p(C)  < Q ( C  I x , a ) ,  C E X, (x ,a )  E R. 0 

Assumption 3.56. Q = njEv Qj is according t o  Definition 3.10 a local 
and synchronous Markov kernel for ( E ,  T). 

There exists a non-negative measure 7 on (X,  X) with q(X)  < 2 such 
that: 

q(C) > Q ( C  I x ,  a ) ,  C E X, (x ,a )  E R. 0 

Let M ( X )  be the Banach space of bounded Bore1 measurable func- 
tions on X with norm IIuI = supxEx Iu(x) 1 .  We define operators U' and 
U" on u E M ( X )  by: 

U'u(x) = sup {r(x, a )  + 
a ~ A ( x )  
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where 

Q ' ( c  I .,a) = Q ( C  I x ,  a )  - p(C) ,  

Q"(c I x ,  a )  = T ( C )  - Q(C 1 2, a) .  

For every function u E M ( X )  we denote 

AL(x)  = { a :  a E A(x) ,  U f u ( x )  = r ( x , a )  + / u ( g ) ~ ' ( d g  1 x , a ) } ,  

AE(x) = { a :  a E A ( x ) ,  -U"u(x) = r ( x , a )  + / u ( y ) ~ " ( d y  1 x , a ) } .  

Using these definitions, we define maps 

and 

Theorem 3.57. Let Assumption 3.55 (Assumption 3.56) hold and assume 
further: 

1) The operator U' (operator U") transforms some metric subspace 

S ( X )  c M ( X )  (with metric p induced by the norm of M ( X ) )  into itself; 
2) The map A; (map A;) is measurable (Definition 2.34) for every 

function u E S ( X ) .  

Then there exists a strategy in LSs that is optimal in LS  (locally opti- 

mal). 0 

The proof is similar to [GS72b, Theorems 2 and 2'1 and therefore we 
only sketch the main ideas: 

The operator U' (operator U") is a contraction on S ( X )  M ( X ) ,  so 
the equation U'u = u (UUu = u )  has a unique solution u*(x) in S ( X ) .  



3.5. Processes with compact state and action spaces 

Explicitly this is 

respectively 

(3.37) ((3.38), respectively) are the Optimality Equation (3.36) with 
v = u* (v = -u*) and g = J u*(x) p(dx) (g = J u*(x) ~(dx)). Therefore 
there exists a* E A;, (x) (a** E A;, (2)) such that 

From measurability by the Theorem of Choice, the map A; (map A;) 
has a Bore1 measurable selector T* : X 4 A (T** : X + A) such that 
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We assumed T*(x) = E LS, where T: 

A ( x i )  Therefore, because the values of the selector are deter- 

ministic, we have proved T*(x) € LSs. Similarly, T**(x) € LSs. 

The next lemmata can be found in [GS72b]. 

Lemma 3.58. I f  A is a compact metric space, A: X 7- 2A - (0) is 
lower semicontinuous, and the function u(x, a)  is bounded and continuous 
on E, then the function u*(x) :=  sup,,=^(^) U(X, a)  is lower semicontinuous 
on X .  0 

Lemma 3.59. I f  A is a compact metric space, A: X 7- 2A - (0) is 
upper semicontinuous, and the function u(x, a )  is bounded and upper semi- 
continuous on 6 ,  then the function u*(x) := SUP,E~(z) U(X,  a )  is upper 
semicontinuous. 0 

Theorem 3.60. Let A be a compact metric space, assume that A: X 7- 

2A - (0) is continuous, and Assumption 3.55 or 3.56 holds. Assume further 
that 

1) The function r (x ,  a ) ,  (x, a)  E i? is continuous; 
2) The transition kernel Q ( .  I x, a ) ,  (x, a)  E 6 is weakly continuous. 

Then an optimal strategy T* exists in LSs. The function T*: X + A 
can be selected as being in Baire class 1. 0 

Proof: Our proof of the theorem borrows arguments from Theorem 3 
in [GS72b]: 

Conditions 1, 2 and Lemmas 3.58, 3.59 imply that the operator U' 
(operator U") transforms the Banach space C ( X )  c M ( X )  of bounded 
continuous functions on X into itself. We have to show that the map A:, 
is upper semicontinuous for every function u E C(X)  (semicontinuity of 
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A: will be proved similarly). For this purpose, it suffices to check ac- 
cording to  [Kur69, p. 611 that for every function u E C ( X )  the following 
holds: If (xn, an)  + (x, a )  as n 7- cc and an E Ak(xn) (n  = 1 , 2 , .  . .), 
then a E AL(x). (That the sets Ak(x) (At(x)) are nonempty and closed 
is obvious.) From upper semicontinuity of the map A, it follows that 
a E A(x). From an E Ak(xn) we have 

Both the left - and the right - hand side of this equality are continuous 
functions. Passing to the limit for n + cc we obtain 

i.e., a E Ak(x). 
From Theorem 3.57 an optimal strategy exists and according to the 

Theorem of Choice for semicontinuous maps, a function T* : X 7- A can 
be selected from Baire class 1. We assumed 

where T: ( z ~ ( ~ ) )  E Ai ( z ~ ( ~ ) ) ,  and the measurable selector is a deter- 

ministic function. 
Therefore, T*(x) E LSs. 0 

3.5.2 Separable reward functions and global 
optimality of local policies 

In this section we consider the control problem for Markov processes 
with locally interacting synchronous components over r = (V, B) when 
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the reward function r(x,  a )  is separable in the sense of the following 
definition: 

Definition 3.61. A reward function r :  i? = { ( z ,  a ) :  z  E X ,  a E A ( z ) )  c 
X x A  + R is separable (with respect t o  T' = (V, B ) )  i f  

i.e., i f  it is a sum of locally defined measurable bounded reward functions 

0 

In this section we assume that the control sets are of product struc- 
ture (see Definition 2.16) but not necessarily require that they are locally 
determined. Because we assumed time independent decision set it fol- 
lows: 

At ( x )  = A(x) = x Ai(x) for all t ,  i.e., Ai(x) may depend on the 
i tV 

complete state z  and is independent of time. We recall the accordingly 
defined nonlocal subclasses of general policies. 

Definition 3.62. (1) For any vertex i E V and any system configuration 
(state) Et = x, let Ai(z) be the time invariant set of admissible actions at 
node i. 

( 2 )  A randomized strategy 7r is called admissible if 7r: (. I xO, a', . . . 
. . . , at-l , zt)  is a probability measure on ( A ~  ( z t ) ,  !21i zt and mea- ( 1) 
sura bly dependent on the history h: = (zO,  a', . . . , zt-', at-', z t )  for every 
t  E N. 

The class of all admissible strategies is denoted by II; the subclass of 
admissible Markov strategies by IIlcI. 

(3) By IID we denote the class of admissible stationary Markov de- 
terministic strategies with time invariant restriction sets: 7rt = 7rt' for all 

t ,  t' E N on A(x) = x Ai ( x )  . 0 
i E V  
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We first state an analogy to  Theorem 3.51, the proof of which is 
similar to the one presented there. 

Theorem 3.63. Let there exist a constant g and a bounded Borel function 
v (x )  on X such that 

Then 

Moreover, if for a strategy T* E II 

then 4(x,  T*) = g,  and T* is optimal. 0 

Corollary 3.64. I f  (3.39) holds and a strategy T* E LSD C II fulfills 

g + u(x)  = +,T*(x)) + J v ( y ) ~ ( d y  I x , ~ * ( x ) ) ,  x E X, 

then there exist admissible deterministic local policies that are optimal in S.O 

In the present context, Assumption 3.55 takes the following form: 

Assumption 3.65. Q = njEv Qj is according t o  Definition 3.10 a local 
and synchronous Markov kernel for ( E ,  T) and the admissible control sets are 
independent of time. 

There exist non-negative measures pi on (Xi, Xi) with pi(Xi) > 0, 
Y i E V, such that: 
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Let S(X) C M(X) denote the metric space of real valued separable 
functions v(x)  = Ciev ui(xi) according to Definition 3.61 with norm - 
IIvI = CiEV supZi Ivi(xi) 1 .  Define the operator U' on S(X): 

and for measurable v i  : Xi 7- R 

Theorem 3.66. Let the decision set A be a compact metric space with 
countable basis and assume that A :  X + 2A is continuous. Assume that 
Assumption 3.65 holds and additionally 

1) The functions ~i ( x ~ ( ~ ) ,  ai) are continuous on r;i 

2) The transition probabilities Q Bi I ~fi!~), a i  are weakly continuous 
on ~ i .  

( 
Then an optimal strategy in class LSD exists. 0 
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- 
Proof: The operator U1 is monotone increasing: 

and from 

- 
= U1v(x)  + cuc 

- 
U1 fulfills: For any nonnegative constant c is 

- 
As a < 1, these properties guarantee that U1 is a contraction. Indeed, 
applying the operator 2 on both sides of the inequality 

we have 

-1 1 U v  ( x )  < 2 ( u 2 ( x )  + p(u' ,v")  

-1 2 = U v  (2)  + ap(v1 ,v2) .  

Therefore 
-1 1 -1 2 U v  (2)  - U v  (2)  < cup(v1,v2). 

Interchanging v1 and v2 ,  we have 

-1 2 
2 v 1  (2)  - u v (2 )  1 < ap (v l ,  v 2 )  , 2 E X ,  
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and 2 is a contraction. Banach's fixed point theorem implies that in 
S ( X )  exists a function v*(x )  such that 

The definition of 2 and the separability of r ( . ,  .) yield 

&*(x) = C sup utv; ( x f i ( i ) ,  a i l .  
~ E , T  a i ~ A i ( x )  

From condition 1) and 2) of the theorem it follows that there exist 

measurable functions at  = at 

{ ( ,(i))} E LSS such that Therefore there exists a function T* = T: x - 

where 
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Therefore, the conditions of Theorem 3.63 are satisfied and strategy T* E 
LSs is optimal. 0 





Chapter 4 

SEQUENTIAL STOCHASTIC 
GAMES WITH DISTRIBUTED 
PLAYERS O N  GRAPHS 

In this chapter we develop the concept of locally acting distributed play- 
ers in sequential stochastic games with general compact state and action 
spaces extending [CDK04]). The state transition function for the system 
is Markov in time and of local structure, which results in Markov prop- 
erties in space and time for the describing processes. We prove that we 
can reduce optimality problems for local strategies to only considering 
Markov strategies. We further prove the existence of optimal strategies 
and the existence of a value for the game with respect to the asymptotic 
average reward criterion. 

Stochastic games will be understood in the following as multiperson 
stochastic sequential games with an infinite horizon. The description 
of the behavior of such systems is therefore by construction of suitable 
stochastic processes with discrete time scale. 

There is a wide area of applications for the games we have in mind. 
Many phenomena of management science and economics, biology and 
psychology, and especially military affairs are modeled by using stochas- 
tic sequential games with very different frameworks. A short introduc- 
tion with many specific examples can be found in [HS84, Chapter 91. 
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There is recent new interest in many-player stochastic games as an 
essential ingredient of the control procedures for large networks of inter- 
connected stations, especially in network nodes of computer and commu- 
nications networks that share common resources. The most prominent 
example is the Internet. Classical control of queueing systems is mod- 
eled and performed either by using stochastic dynamic optimization or 
by using two-person games, where one of the players represents the na- 
ture that perturbs the functioning of the system: An introduction into 
the field is [FV96], which summarizes those techniques as Competitive 
Markov Decision Processes. For applications of game theoretical meth- 
ods to queueing systems and small networks, see [Alt96, Alt99, AH951, 
and the references therein. 

However, in case of the large networks that we have in mind, typically 
a large number of players (nodes of the networks) interact and compete 
for the network's resources. These players can act cooperatively or non- 
cooperatively. In the first case this leads to building coalitions, which 
usually have partly antagonistic criteria for the performance measures 
of the network. The introduction to  multiperson games in [HS84, Chap- 
ter 91 is centered around noncooperative multiperson games. General 
schemes for cooperation under incomplete information with bargaining 
are described from an abstract point of view in [Mye84]. A monography 
on classical topics of stochastic games is [MS96]. A more recent survey 
including problems of multiperson games is [NS99]. A classical paper 
on the general subject with strong connections to stochastic dynamic 
optimization is [Fed78]. In [RF91], algorithms for stochastic games with 
finite state and action spaces and finite time horizon are described. 

More recent work on stochastic network control as a multiperson 
game are [KL95] and [Yao95]. In [KL95], the situation of players in a 
network in equilibrium is investigated and it is proved that individual 
conditional best reply strategies given the strategies of the other cus- 
tomers yield a global Nash equilibrium for the network. Due to  the equi- 
librium assumption, this problem can be solved by means of static game 
theory. The noteworthy observation is: There is no centralized decision 
maker who controls the network's resources, and/or admits customers to 



the network on the basis of a global admission regime. In [Yao95], a cer- 
tain dynamical viewpoint is introduced in that algorithms are described 
that can be applied by the players over successive time steps in a way 
that the joint strategy of the players approach an equilibrium strategy. 
The network is then considered to  be in equilibrium. 

The standard models of multiperson systems that compete and/or 
cooperate for common resources allow the players to make their deci- 
sions on the basis of either the whole history of the system, or (as can 
be proved to be almost similarly effective) on the basis of the knowledge 
of the complete actual state of the system only. However, for large net- 
works this seems to be an optimistic or unrealistic assumption because 
any player in real large networks will be able to take into considera- 
tion for his decision making only what is known about the state of his 
(suitably defined) neighborhood. It follows that in a natural way there 
emerges a neighborhood structure in the set of decision makers (play- 
ers), and therefore in the set of nodes, where the players reside. Such 
neighborhoods are usually determined by a neighborhood graph, which 
in our case will be undirected, but this restriction can be removed easily. 

Models from economics where neighborhood systems emerge and are 
developed as structural property to determine equilibrium behavior of 
the system and to construct efficient control mechanisms for optimiz- 
ing the system are described in Example 3.11. Neighborhood systems 
are well known structures in stochastic process theory and their appli- 
cations: They determine which coordinates interact in the interacting 
processes. We are faced here with similar problems with locality and 
synchronization, when trying to control the space-time behavior of in- 
teracting players in networks in a game theoretical interaction. 

With respect to  control of large networks, it is pointed out in [Alt96] 
and [KL95] that there is a strong need and "growing interest in situations 
of several controllers and several objectives, which gives rise to noncoop- 
erative models". Introducing coalitions into the game structure here can 
therefore be seen as continuing the study of [Alt96] (and similar papers) 
where the interplay of, say, an admission controller to a queue, and a 
service controller of that queue is considered. Here we would interpret 
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one coalition as the set of admission controllers to a data transmission 
and communication network and the other to be the set of service con- 
trollers in that network. While usually the first coalition is interested in 
small transmission delay, the second coalition has as main objective high 
throughputs. 

Note that for such control problems, it is again natural to assume that 
the controllers use only information available in their neighborhood. In 
high-speed networks it is almost necessary to restrict oneself to use only 
policies depending on neighborhood states, because too much informa- 

mime. tion incorporated would diminish the performance of the control re,' 
This is applied, e.g., in the definition of the Dynamic Alternative Rout- 
ing algorithm (see [GKK95]), and further developed in the suggested 
Balanced Dynamic Alternative Routing algorithm, see [AKU02]. 

Starting from these observations and similarly from other network 
structures with locality properties where interacting players occur, our 
aim in this chapter is to develop a general model for describing the 
interaction of players and coalitions that live on graph structured net- 
works and have to optimize their behavior in sequential stochastic games. 
This leads immediately to the main questions of the existence of opti- 
mal strategies and a value of the games, and to the question of whether 
these optimal strategies can be chosen from easy to  handle subclasses of 
strategies. The main point is that we shall consider only local strategies 
as being suitable for the situations described above. Within this class 
we shall prove the required existence theorems and structural properties, 
allowing for the technical framework rather general assumptions. 

Summarizing: In this chapter we introduce the concept of locality 
into general stochastic games. This can also be quoted as another con- 
cept of incomplete information, different from that usually dealt with; 
see, e.g., [Mye84], where each player has complete knowledge about his 
own type (which summarizes his properties of relevance to the develop- 
ment of the system), and has only a (probabilistic) guess about the type 
of the other players. 



4.1. Distributed players that act locally 

4.1 DISTRIBUTED PLAYERS THAT ACT 
LOCALLY 

For systems with locally interacting coordinates, the interaction struc- 
ture is defined via an undirected finite neighborhood graph. For the 
relevant definitions and general notations, recall Section 3.1 for prod- 
uct spaces and Section 3.2 for the fundamentals of interacting processes. 
We always assume that the processes that occur are locally structured 
and synchronized with respect to transitions of the coordinates (Defini- 
tion 3.10) and the sequential decision making. 

4.1.1 Distributed players and local policies for 
coalit ions 

We next describe IVI-person (players) stochastic games. The players are 
located at the vertices of the interaction graph r; the edges represent the 
connections between the players. Our aim is to model the behavior of two 
fixed coalitions of the players in a way that the stochastic process model 
for the interaction of players resembles Markovian neighborhood systems, 
and that the development of the game over time is a Markov process with 
a transition mechanism similar to that described in Definition 3.10. 

This will result in the notion of a controlled Markov process with 
locally interacting synchronous components, shortly: A controlled time 
dependent Markov random field. For easier understanding of the model- 
ing procedure,, we can think that some time dependent Markov random 
field [ = {tt: t E W) according to Definition 3.10 is given as our start- 
ing point, which describes the behavior of the IVI persons that interact 
locally and synchronously but do not have the possibility of making de- 
cisions. [ will be equipped in the sequel with a control structure that 
governs the transition kernel of (. As usual in multiperson games, the 
control and decision mechanism is synchronized and will be localized ac- 
cording to the definitions below, which resemble (3.3) and therefore will 
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result in a Markov random field behavior in space for a fixed time instant. 
Over time we construct as usual a (Markovian) interaction process. 

Our players are located at the edges of the finite graph F = (V, B) ,  so 
the coalitions that the players build can be described by a decomposition 
of the node set V = Vl U V2, Vl, V2 # 0, Vl n V2 = 0. Vl is the set of 
vertices where players of coalition K1 reside; V2 is a set of vertices for 
players of coalition K2. 

For a shorthand notation, we shall often identify a vertex and the 
player who resides there. For the general notation of control actions, 
recall Definition 3.16. 

Similar to  Definition 3.17 we denote by a: the action chosen by the 
player (decision maker) at node i at time t ,  at := (a:: i E V) the joint 
decision vector of all players at time t E N. 

Definition 4.1. (1) A randomized strategy (or policy) 7r for coalition K1 
with interacting components is defined as a vector o f  coordinate policies 
7r = (xi, i E K),  where for node i 7ri = {$, . . . , 7r:, . . . ) is a sequence of 
transition probabilities i.rk = i.r: (. I xO, a', . . . , xt-' 7 at-' 7 xt ) .  

Similarly a strategy (or policy) y for coalition K2 is y = (yj, j E 
V2) where for node j :rj = {$, . . . ,$, . . . ) is a sequence of transition 

0 0 xt-l .t-1 probabilities yj = yj  (. 1 x , a , . . . , , , xt).  
SO for any history ht = (xO, a', . . . , xt-', at-', xt) of the system up 

t o  time t i.r: is a probability measure on (Ai,Ui) and $ is a probability 
measure on (Aj, (Uj), which are measurably dependent on the history ht = 

0 0 xt-l .t-1 
(X , a  , . . . ,  , , xt) up t o  time t .  

We therefore have 
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(2) We assume that the decisions o f  the players and the coalitions are 
synchronized according t o  the following scheme. 

The definition above prescribes according to the saying in (3.4) and 
(3.8) a synchronous control kernel. Note however, that this form of 
synchronization is a standard assumption for decision making in discrete 
time sequential games. Even games with perfect information may be 
considered as allowing at each decision instant for one of the customers 
only one "decision"; see [Fed78, Section 51, which formally results in the 
general synchronization. 

We now introduce various forms of structured strategies. We shall 
give the definition only for coalition K1. Strategies for coalition K2 are 
defined similarly. We first fix the following assumption for this subsec- 
tion: 

Assumption 4.2. The admissible control sets are independent o f  the time 
of decision: 
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D e f i n i t i o n  4.3. (1) For any player (vertex) i an admissible local strategy 
i.ri = {i.rk,t E W) is defined according t o  Def in i t ion 3.18 (1).  T = (i.ri: i E 
Vl) is said t o  be locally admissible for coali t ion K 1  if all ;ri are locally 
admissible, i E Vl. 

( 2 )  A n  admissible local strategy ;r = (;ri, i E Vl) is called admissible 
local Markov strategy for  coali t ion K1 if 

(3) A n  admissible local Markov strategy T = (i.ri, i E Vl) is called 

admissible stationary local strategy for coali t ion K1 if i.rk/ (. I ~ f i ( i ) )  = 

T:' (. 1 x ~ ( ~ ) ) ,  i t Vl, for all t' and t" and all x .  

(4) A n  admissible stationary local strategy ;r = (;ri, i E Vl) is called 
admissible determinist ic (nonrandomized) stationary local strategy for  K1 

if i.r;(. 1 x ~ ( ~ ) ) ,  i t V, are one-point measures on  A: 
each x E X .  

T h e  class o f  all admissible local strategies is denoted by L S ;  t h e  subclass 
o f  admissible local Markov strategies by L S M .  B y  LSs c LSlcI, we denote 
t h e  class o f  admissible stationary local strategies, and by LSD c L S s ,  t h e  
set o f  admissible determinist ic stationary local strategies. 

If it is clear f rom t h e  context ,  we shall henceforth o m i t  t h e  "admissible" 
i n  t h e  descript ion o f  t h e  strategies under consideration. 0 

Similar to (3.3) and (3.8) we construct our process in a way that the 
Markov property holds: The law of motion of the system is characterized 
by a set of time invariant transition probabilities. Whenever the state of 
the system is I t  = xt and decision at = at is taken, then the transition 
probability is Pr {It+' E C I I t  = xt ,  at  = a t )  =: Q(c I xt ,  a t ) ,  and 
therefore independent of the past given the present (generalized) state. 
We further assume that this transition probability is independent of t ,  
and that the motion is homogeneous in time. 
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Applying a game theoretic control policy from two coalitions to a 
time dependent Markov ~ ~ n d o m  field from Definition 3.10, we shall call 
the triple (t, T, y) a controlled version of c using strategies T and y. The 
controlled process [ = (tt) in general is not Markovian because at first 
the sequence (a t )  of decisions depends not only on the actual local states 
xt- i E V, but on the previous local states 2% 

t-1 , . . . , x - as well. 
N (i) ' N(4 

An immediate consequence of the Definition 4.3 will be that if Markov 
strategies i.r and y are applied to control the time dependent Markov 
random field, then we obtain a Markov process [ from ([, T, y). 

Definition 4.4. A triple (c, T, y) is called a controlled stochastic process 
with locally interacting synchronous components with respect t o  the finite 
interaction graph r = (V, B) with coalitions K1 (located at Vl) and K2 
(located at V2), V = Vl U E, Vl n V2 = 0, if [ = (ct:  t E W) is a 
stochastic process with state space X = x Xi, T = (Ti: i E Vl) and 

i tV  
y = (yj : j E V2) are admissible local strategies, and the transitions o f  [ are 
determined as given below in (4.1). I f  the strategies (T, y) of both coalitions 
are stationary local Markov, then the triple ([, T, y) is called a controlled 
Markov process with locally interacting synchronous components and has a 
time invariant transition law. 

The rationale behind the construction of this transition law is along the 
following lines. 
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I f  K = V, we shall write Qv(Cv I y, a)  =: Q(C I y, a ) .  
The Markov kernel Q = njEv Qj is said t o  be local and synchronous. 

will then shortly be called a controlled time dependent random field. (3 

Some remarks on the modeling principle behind this definition are 
given after Definition 3.21 for the case of standard interacting processes 
and apply here as well. 

At every time instant t E N the players from both coalitions make 
decisions on the basis of the complete information about the state history 
of their full neighborhoods and of all their own preceding decisions. It is 
possible that only players of one's own coalition or players of both coali- 
tions belong to  a player's neighborhood. After the joint decision of all 
players, the i-th player (at the i-th vertex) receives from the j-th player 
a (positive or negative) payment (reward) Tij(xi, X j ,  ai, a j ) ,  xi E Xi, 
x j  E Xj,  ai E Ai, a j  E Aj, i E V, j E N(i) ,  where we assume rij = -rji. 
Thereafter the state of the system changes according to the transition 
law Q in (4.1). 

The overall profits of coalitions K1 and K2 at each time in- 
stant are r l (x ,  a)  = xjEN(i) rij(xi, xj ,  ai, aj)  and r2(x,  a )  = 

C 3Ev2 . C .  z ~ N ( 3 )  . T 3 .i(xj, xi, a j ,  ai). We have a zero-sum game: r1 (x, a )  = 
-r2(x, a ) ,  and the sum of payments inside each coalition equals zero. 
Therefore, we write r (x ,  a)  = r l  (x, a)  = -r2(x, a). 

We assume that the reward function r and the transition probabilities 
Q are Bore1 measurable, and that furthermore 

I r ( x , a )  < L <  oo, x t X,  a t  A. 

The tuple (X, A, Q, Vl, V2, r) defines the stochastic game on neighbor- 
hood graph T'. 
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The asymptotic average mean reward for initial state cb = xO of t, 
and when policies T, y are applied is 

1 
4(x0, n, y) = lim inf -- EE> C r (t', a'), 

n-w n + 1 
k=O 

where E::~ is the expectation associated with the controlled process 
(t, n,  y) under to = xO. 

Definition 4.5. T h e  strategy T* E LS is called opt imal  i n  t h e  class LS o f  
admissible local strategies for  coali t ion K1 if for  all admissible local strategies 

o f  coali t ion K2 and all in i t ia l  states x E X o f  t h e  system 

T h e  strategy y* E LS is called opt imal  in t h e  class LS o f  admissible 
local strategies for coali t ion K2 if for all admissible local strategies T' o f  
coali t ion K1 and all in i t ia l  states x E X o f  t h e  system 

T h e  stochastic game has a value if 

inf sup 4(x, T, y) = SUP inf 4(x, T, Y) ,  x E X. 0 
~ E L S  T E L S  T E L S ~ E L S  

4.1.2 Relation to stochastic dynamic 
optimization: Reduction to Markov 
strategies 

To study a stochastic game on a graph, we will introduce a reduced model 
(R-model) similarly to the case of stochastic two-person games [Sha53, 
MP70, Gub721. The idea behind this procedure is in the two-person case, 
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to fix the strategy of one of the players, say, player 2, and incorporate 
the then known stochastic effects of his decision into the transition kernel 
for the state transition mechanism. Then theorems, methods, and algo- 
rithms of standard stochastic dynamic optimization can be applied to 
optimize the decisions of player 1 to find at least a conditioned optimal 
behavior. 

In the situation of our n-person games with two coalitions we mimic 
this by fixing the strategies for one coalition and then will end in the 
framework of control and optimization of Markov interacting processes, 
or time dependent random fields. 

If A is a compact metric space, we denote by PA the space of all 
probability measures on the Borel sets of A. It is well known that PA, 
endowed with the weak topology, is a compact metric space. Throughout 
the chapter, the space of probability measures on the Borel subsets of a 
compact metric space is endowed with the weak topology. 

Let A& = x Ak, i = 1,2, and recall a = (avl, av2) and put 
k€Vi 

Let g be the fixed local stationary Markov strategy of coalition K2, - - 
i.e., g :  XV2 + PAVL , where Xs = x Xfi(i). 

i€S 
The R-model can be looked upon as a controlled Markov random 

field with discrete time scale and with compact phase space X and with 
compact action space Avl as defined in Section 3.5 .  The 'eward function 
r1 and the transition probability Q1 have to be defined as follows: 
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and the actions on nodes of K2 are formally "Do nothing!" If with 
this assumption T' is a strategy (similar to Definition 4.3 with Vl = V, 
or according to the definitions from Section 3.5 in the R-model), the 
asymptotic average mean reward for initial state = x of I, and when 
policy d is applied, is 

1 
q5'(x, T') = lim inf - E$ T' (IP, ah), 

n+a n+ 1 
k=O 

where Ezl is the expectation associated with the controlled process (I, T'); 

see (2.7). 
The following lemma follows immediately from the definition of the 

R-model, where a decision selects a point in the space of probability 
measures on Av, . 

Lemma 4.6. Assume a local stationary Markov strategy g of coalition K2 
is fixed. I f  T is a stationary local Markov strategy of coalition K1 in the 
stochastic game then ;r is a deterministic stationary local strategy in the 
R-model and #(x, T) = 4(x, T, g), x E X. 

Conversely, i f  ;r is a deterministic stationary local strategy in the R- 
model then T is a stationary local Markov strategy of coalition K1 in the 
stochastic game and 4(x, ~ , g )  = q5'(x, T) ,  x E X. 0 

4.2 OPTIMAL STRATEGIES FOR 
LOCALLY ACTING PLAYERS 

4.2.1 Stationary local Markov strategies 

We are now ready to prove that at least for any coalition and for any 
local strategy of this coalition there exists (conditioned on the other 
coalition playing a fixed Markov strategy) a Markovian local policy that 
reproduces the long time average reward for the game. 
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Lemma 4.7. Assume that coalition K2 applies the fixed local stationary 
Markov strategy g. I f  T is any admissible local strategy of coalition K1 in the 
stochastic game, then there exists a local Markov strategy T* of coalition 
K1 such that 4(x, T*, g) = 4(x, ?r, g),  x E X .  0 

Proof: The proof will use arguments borrowed from the proofs in the 
framework of standard controlled processes (see, e.g., Theorem 4.1 in 
[Str66]) and standard stochastic games (see, e.g., Lemma 3.2 in [MP70]). 

Let e,(. I xO) be the conditional distribution of the entire history 
h = (xO, a', xl ,  a', . . . ) of the system, given the initial state x0 E X ,  
where coalition K1 uses T and coalition K2 uses g. For each n > 0 the 
conditional distribution under ex(. 1 zO) of a? E Ai, given zn,  is denoted 

* * 
Let ?r* = ( ? r O , ~ l , .  . . ) .  Then T* is the required Markov strategy 

for coalition K1. To see this, denote the conditional distribution of the 
entire history h = (zO, a', zl, a l ,  . . . ) of the system by e,* (. 1 zO), given 
the initial state is zO, when coalition K1 uses ?r* and coalition K2 uses 
g. First, we will prove that for every bounded measurable function p on 
X x A, and every n > 0 

1 p (zn, an) de, (an I zO) = 1 p (zn, an) de,* (an I zO) (4.2) 

for every xO E X. 
The proof proceeds by induction. For n = 0, note that ?rO = go. 

Consequently, 
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This proves that (4.2) holds for n = 0. 
Suppose now that (4.2) holds for all n < N and for all bounded Bore1 

functions on X x A. Below, all conditional expectations are relative to 
e, (. 1 2'). We have 

Thus, 
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= JJJJ p(xN, aN) d~ (af: I zf:) x 

Thus, (4.2) has been verified for n = N. By (4.2) we have 

1 
$(x, T ,  g) = liminf - L ,  C r ( t k ?  an) 

nim n+ 1 k=O 

1 
= lim inf - 

n-m n + 1 L - , ~  C r (5 4 
k=O 

= $(x, T*, g), x E X. 

The proof is completed. 0 

Remark 4.8. A similar statement as for coalition K1 in Lemma 4.7 holds 

for policies of coalition K2. 0 

The next two theorems will, under some technical conditions, provide 
us with the existence of values for games and with optimal stationary 
local Markov strategies. These conditions will enable us to later prove 
general existence theorems under mild conditions on the data of the 
systems. 
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Theorem 4.9. Assume that for the stochastic game there exist admissi- 
ble local stationary (Markov) strategies f and g for coalitions K1 and K2 
respectively, a constant c and a bounded measurable function v(x) on X 
such that 

for all x E X .  Then the stochastic game has a value that is identically equal 
t o  c and strategies f and g are optimal in L S  for coalitions K1 and K2,  
respectively. 0 

Proof: Because we restrict our computations to the set of local ad- 
missible strategies LS, so any sup1, inf ,, etc., is to be read with this 
restriction. Let coalition K2 be allowed to use only strategy g. Then the 
optimality equation (3.36) in Theorem 3.53 implies that for any strat- 
egy d in the R-model $'(x, d) I c holds, for all x E X .  From this 
and using Lemma 4.7, we then obtain for any strategy i.r of coalition K1 
$ ( x , ~ , g )  I c, x E X ,  in the stochastic game under consideration, i.e., 

and, consequently, 

Similarly, fixing the strategy f for the coalition K1 and considering 
an appropriate R-model, we obtain 



Chapter 4. Stochastic games with distributed players 

and, consequently, 

supinf $(x, T, y) > c, x E X. 
" Y  

From (4.6), (4.8), and inequality 

we have 
inf supg5(x, T, y) - supinf 4(x, T ,  y) r c. 
Y "  " Y 

We will prove optimality of strategy f for coalition K1. (4.3) and 
(4.4) imply that 

We argue now as in the proof of Theorem 3.51 and obtain from (4.9) 
4(x, f , g )  = c. From this we see that in (4.5) and (4.7), equality holds. 
Therefore, for any strategy E LS of coalition K2 

= C 

= inf sup4(x, T ,  y),  x E X. 
Y "  

Optimality of strategy g for coalition K2 is proved similarly. 0 

For every function u(x) in Banach space M ( X )  of bounded measur- 
able functions on X we denote for all x E X, ( E PAVl, X E PAV, 
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Theorem 4.10. Let there exist a constant c and a function v E M ( X )  
such that 

c + v(x) = sup inf ( x  , A) ,  x E X,  (4.10) 
C ~ P A ~ ~  X ~ P A , +  

and assume further that the map F,, defined by 

is well defined, i.e., Fv(x) # 8 and closed in PA, x PA,, for all x E X ,  and 
Borel measurable in the sense of Definition 2.34. 

Then the stochastic game has a value that is constant c and both coali- 
tions K1 and K2 have optimal stationary local strategies. 0 

Proof: Borel measurability of Fv by the Theorem of Choice (Selection 
Theorem 2.35) guarantees the existence of Borel functions f : Xr/, + - 
PA,, and g : Xv, + PA,, for which 

From this we obtain 

sup inf K ( x )  > inf K, 
C ~ P A , ~  X~PA,, X~PA,, 

> inf sup K,(x,(,A), x E X .  
X~PA,, C~PA,, 

(4.11) 

Because 

inf sup K,(x, (, A) > sup inf K x  A ) ,  x E X ,  
X~PA,, C~PA,, C ~ P A , ~  X~PA,, 
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all inequalities in (4.11) are replaced by equalities. Taking into ac- 
count (4.10), we obtain (4.3) and (4.4), and by Theorem 4.9, the proof 
is completed. 

R e m a r k  4.11. I t  is easy t o  see that for countable phase space X, the 
Borel measurability of the map F, can be replaced by the condition that for 
all x E X the sets F,(x) are nonempty. 0 

The proofs of the following lemmas are borrowed from the proofs of 
Lemmas 2.1 and 3.1 in [MP70] for the case of two-person games. They 
will enable us to prove and apply smoothness properties in our general 
setting. 

L e m m a  4.12. Let p(x, a) be a continuous real-valued function on X x A, 
where X and A are compact spaces. Then for all x E X, ( E PAV,, 
X E PA, the function p(x, C; A) := JJp(x, a) $<(a\;) dX(av2) is continuous 
on X x PA,, x PA,, . 0 

P r o o f :  Let xn i xO in X, cn i PO in PAvl and An + X0 in  PA,^; and 
let t > 0. We have 
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As X x A is a compact space p(x, a )  is uniformly continuous. Hence, there 

exists Nl such that whenever n > N1 we have p xn, a) -p(xO, a) I < e/2 I ( 
for all a E A. Consequently, the first term on the right-hand side of 
(4.12) is at most €12 for all n > Nl. Next, the product measures Cn x An 
on A converge weakly to  (O x A'. To see this, use the following facts: 
(a) every real-valued continuous function f on A can be approximated 
uniformly by a sequence of function of the form ~ f = ~  figi, where fi are 
continuous, real-valued functions on Avl and gi are continuous, real- 
valued functions on Av, (Stone-Weierstrass theorem); (b) if f ,  g are 
continuous real-valued functions on Avl , Av, , respectively, then 

Since p(xO, .) is a continuous function on A henceforth there exists N2, 
such that wherever n > N2 the second term on the right-hand side of 
(4.12) is at most €12. Since E is arbitrary this proves that p(xn, Cn, An) + 

p(xO, Po, AO). 0 

Lemma 4.13. Assume X, PA,,, PA,, are compact spaces, and let 

u be a bounded, continuous function on X x PA,, x PA,, Then 

the functions u,(x) = m a x ~ ~ p  minAEpAh u(x, C,  A) and u*(x) = 

minAEp,,, m a x ~ ~ p ~ , ~  u(x, (, A) are continuous. 0 

Proof: At first, we shall prove that function ur(x, A) = max u(x, C, A) 
C ~ P A ~ ,  

is continuous. Let (xn, An) i (xO, A') in X x PA, . Since {u'(xn, A n ) ,  
n > 1)  is a bounded sequence of ~ a l  numbers, it has a conver- 
gent subsequence. We will prove that every convergent subsequence of 

{u'(xn, An) ,  n > 1) goes to u' (xO, A'). Assume then that 
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is a convergent subsequence. Then there exists cn' E Pay such that 

u'(zni, An') = u(zn', en', Ant). As Pnvl is compact, there exists subse- 

quence {<"") of {en') such that cnii + co (say). It follows from the con- 

tinuity of u that u(xnii, (nii, An") + u(xO, (', A'). Moreover, if ( E Pay , 
u (xn" , (, An") < u (xn", An") and so u (xO, (, A') < u (xO, (', A'), 
i.e., u' (xO, A') = u (xO, (', A'). Hence, U' (xnii , An") + U' (xO, A') and 

so u' (zni, An') + u' (zO, A'). This proves that uf(lm, An) i u' (zO, A'). 
Similarly, the function u"(x, () = minhtpAV2 u(x, 5, A) is continuous 

and, therefore, the functions u,(x) = m a x ~ ~ p  minAEpAv2 u(x, (, A) and 
Avl 

u*(x) = millAEp maxcEpAh u(x, (, A) are continuous. 

4.2.2 Existence of optimal Markovian policies 
and values of the game 

We have now prepared the ground to  state and prove our main theorems. 
We need the following standard regularity assumptions for the transition 
kernels, which will provide conditions to prove optimality properties of 
local strategies. The proofs of the theorems utilize ideas from the proofs 
of Theorems 3 and 4 in [Gub72]. Foundations for the development in 
that paper and technical details can be found in [GS72b]. 

Assumption 4.14. Q = n j E v Q j  is a local and synchronous Markov 
kernel according t o  Definition 4.4 for ([,T, y) and the admissible control 
sets are independent of time: 

There exists a non-negative measure p on (X, X) with p(X)  > 0 such that:  
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Assumption 4.15. Q = njtv Qj is a local and synchronous Markov 
kernel according t o  Definition 4.4 for (<,T, y) and the admissible control 
sets are independent of time: 

There exists a non-negative measure q on (X, X) with y(X) < 2 such that:  

Theorem 4.16. Assume that X ,  A are compact spaces, r (x ,  a )  is continu- 
ous on X x A, and the transition probability Q(. I x, a )  is weakly continuous 
as a function on X x A. I f  Assumption 4.14 or 4.15 holds, then the sto- 
chastic game has a value which is constant and coalitions K1 and K2 have 
optimal stationary local (Markovian) strategies. 0 

Proof: Let Assumption 4.14 be fulfilled. Define an operator U on the 
Banach space C ( X )  of continuous bounded functions on X by 

Lemmas 4.12 and 4.13 imply that the functions Ku(x, C, A) on X x PA,, x 

PA", 7 

and supctpAw inf htPA, Ku (x, C,  A) on X are continuous for every 

function u E C(X) and, cdnseyuently, sup and inf can be   placed by 
max and min respectively, (PA,, and PA,, are compact). Using Assump- 
tion 4.14 as in Theorem 3.57, it is easy to check that the operator U is 
a contraction with contraction factor 1 - p(X)  (0 < 1 - p(X)  < 1). 
From Banach's Fixed Point Theorem, there exists in C ( X )  a function 
u*(x) such that Uu* = u*. From (4.13), we obtain relation (4.10) with 
V ( X )  = u*(x) and c = Ju*(y) dp(y). 
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PAvl defined by (4.10) We shall show that the map F,+ : X i (2),,t 
is upper semicontinuous and, therefore, measurable. For all x E X the 
function K,* (x, C, A) on PA,, x PA,, satisfies all conditions of Minimax 
Theorem (see Theorem 1 of [Ky53]) and, consequently, 

max min K,* (x, (, A) = min max Ku* (x, (, A). (4.14) 
C ~ P A " ~  X ~ P A " ~  X~PA,, C ~ P A , ~  

Equation (4.14), together with the continuity of the functions 

max(EpAvl Ku+ (x, C, A) and minAEpA K,+ (x, C,  A) (see the proof of 
v2 

Lemma 4.13), imply that the sets F,+ (x) c PAvl x PAV, are nonempty 
and closed in the product topology of PA,, x PA,, . To prove semiconti- 
nuity of the map F,* it is enough to show that 

From (4.15) we have 

max K,* (xn, (, An) = min Ku* (xn, Cn,  A) . (4.17) 
C ~ P A " ~  X ~ P A V ,  

Passing to the limit as n i oo from continuity of both sides of (4.17), 
we obtain 

max Ku* (x, C, A') = min Ku* (x, C', A ) ,  
Wav1 %Pav2 

which is equivalent to (4.16). 
Theorem 4.10 implies that the stochastic game has a constant value 

and coalitions K1 and K2 have optimal stationary local strategies. 
When Assumption 4.15 is fulfilled instead of Assumption 4.14, the 

proof will be carried out similarly using an operator U' operating in 

C(X> by 

U'U(X) = - max min K, (x, C, A) - 
C e ' I V l  XePAV2 
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The proof is completed. 0 

Note that the resulting (in general random) strategies of the Theo- 
rem 4.16 can be chosen as smooth versions: 

By the Theorem of Choice for semicontinuous maps the functions f 
and g in Theorem 4.10 here can be chosen from Baire class 1 of PA",- - 
valued functions on XK. 

If the state space X is countable, we write q (y I x, a )  = Q ({y) I x, a ) ,  
x, y E X ,  a E A. We have the following theorem. 

Theorem 4.17. Assume X is a countable space and A is com pact. Assume 
further that the functions r (x ,  a )  and q(y I x, a )  are continuous on A for 
every fixed x, y E X ,  and that Assumption 4.15 holds. 

Then the stochastic game has a constant value and both coalitions K1 
and K2 have optimal stationary local strategies. 0 

Proof: The existence of the constant c and the bounded function v(x) 
satisfying (4.10) is proved by applying a fixed-point theorem as in The- 
orem 4.16, replacing space C(X)  by the space of bounded sequences. 

Assumption 4.15 implies that series C v(y)q(y I x, a)  converges uni- 
Y E X  

formly in x, a (Weierstrass criterion). Therefore, in every fixed x E X 
function 

K&, a )  = ~ ( x , a )  + C q(y I x , a )  
Y EX 

is continuous on A and by Lemma 4.12, the function 

is continuous on PAV, x PAV,. AS in Theorem 4.16, this implies nonempti- 
ness (and closeness) of the sets F,(x) for every x E X. By Theorem 4.10 
and Remark 4.11, the proof is completed. 0 
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Remark 4.18. The results formulated in this section remain valid for 
stochastic games on graphs where the reward function r for each coalition 
may depend on the local states of all vertices. 0 



Chapter 5 

LOCAL CONTROL OF 
CONTINUOUS T I M E  
INTERACTING MARKOV AND 
SEMI-MARKOV PROCESSES 
WITH GRAPH STRUCTURED 
STATE SPACE 

In this chapter we develop models for spatially distributed systems that 
evolve in continuous time and that are controlled by decision makers who 
act locally and only have information at hand about the system's state in 
the neighborhood around their position. As in Chapter 3 for the discrete 
time networks, we are especially interested in Markovian systems. 

This is in line with the main directions of research in the literature: 
Optimal (sequential) control of stochastic systems is in most cases de- 
scribed by Markov process models. But there is a rich literature on 
the control of processes that do not show the memoryless property of 
the holding times in Markovian systems. Introducing nonexponential or 
n~ngeomet~ical sojourn times of the processes leads to considering semi- 
Markov processes and Markov renewal processes. The first section of 
this chapter is dedicated to optimization problems in this framework. 
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5.1 LOCAL CONTROL OF INTERACTING 
SEMI-MARKOV PROCESSES WITH 
COMPACT STATE AND ACTION 
SPACE 

Early papers on stochastic dynamic optimization for semi-Markov processes 
(sometimes called renewal reward processes) are [Jew63a, Jew63b, How641. 
For further references to early works, see [Hin70]. More recent work 
on semi-Markov decision processes can be found, e.g., in [Kit87, VA93, 
Wak87, LVRA94, Can841, and the references given therein. The gen- 
eral construction of semi-regenerative control processes and semi-Markov 
control processes with application to queueing systems can be found in 
the recent book of Kitaev and Rykov [KR95]. 

There has been a revival of semi-Markov decision processes and re- 
newal reward processes in the area of performability, where performance 
analysis and reliability of complex systems are investigated in a unified 
setting over the last twenty years. One of the often applied techniques in 
the field is to formulate the systems as a Markov or semi-Markov model 
with a reward structure and then to numerically evaluate and optimize 
the parameters that are subject to possible control. For an overview and 
a review of recent results, see [HMRTOl]. 

Introductory definitions of semi-Markov processes and Markov re- 
newal processes as we shall consider in this paper and fundamental in- 
vestigations on the subject may be found in [ ~ i n 7 5 ,  DK871, and with a 
special emphasis on optimization in [KR95]. 

In this section we consider stochastic processes in continuous time 
with compact state spaces that are structured by an underlying graph 
as defined in Section 3.1. At any node of the graph there is a local state 
space, such that the global state space of the process is the product (in- 
dexed by the graph) of the local state spaces. The graph then defines a 
neighborhood structure for the states of the systems. These neighbor- 
hoods determine the local interactions of the spatial process coordinates. 
Then for a fixed time instant the random state of the system, respec- 
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tively of the describing stochastic process, is a random field with respect 
to the neighborhood graph. 

We assume that the process has the semi-Markov property in time 
and that the transition kernels for the jumps of the process have a spatial 
Markov property with respect to the underlying graph. 

We consider only step controls as defined in Subsection 2.3.1, page 29. 
Our aim is to find optimal strategies to control the system when the deci- 
sion makers located at the nodes of the network can use in decision mak- 
ing only information gathered in their respective neighborhoods. We find 
conditions under which in the class of local strategies there exist optimal 
stationary deterministic policies. Our results extend those of [GS72c] 
and [GS72a] on controlled semi-Markov processes in the direction of in- 
teracting semi-Markov processes. 

The necessary definitions on semi-Markov processes that evolve in 
space and time are recalled in Section 5.1.1. We assume time to  be 
continuous but allow decisions only at jump instants of the process (for 
more details, see [YF79, Yus80, Yus83, Can841). The random policies 
show as usual a conditional independence structure. We assume that a 
similar structure can be found in the transition kernels of the jump chains 
(synchronized kernels). In Subsection 5.1.3 we first provide abstract 
conditions for the existence of stationary deterministic strategies in the 
class of local structures and then show that under some weak smoothness 
assumptions, these conditions are fulfilled. 

5.1.1 Semi-Markov processes with locally 
interacting components 

For systems with locally interacting coordinates we introduced in Sec- 
tion 3.1 a formal definition of an the interaction structure and a state 
space that is spatially structured by the so defined interaction graph. We 
assume here that the local state spaces Xi are compact metric spaces with 
countable basis, endowed with Borel-a-algebra Xi .  Then X := x Xi is 

i EV 
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the 

Xv 
global state space of the system, endowed with the product-a-algebra 
= a{ x Xi) =: X. 

i EV 
The evolution over time of our system that has state space (X, X) = 

is described by a stochastic process q = ($) with 

random fields as one-dimensional marginals in time. 
We assume that time is continuous, t E R+ = [O, +m). The sub- 

script k in rk refers to  the vertex k, rlk therefore denotes the mar- 
ginal distribution for time t and node k of some vector valued process 
q = (rt: t > 0). Such processes that vary in space and time, with 
the space variable being structured by some graph, were investigated in 
Chapter 3, using Markov chain techniques. It is our aim here to remove 
the assumption that in time, the holding times of the processes are mem- 
oryless (exponentially or geometrically distributed); i.e., we investigate 
semi-Markov processes and Markov renewal processes. 

Definition 5.1 (Markov renewal process, semi-Markov process). 
Consider a stochastic jump process 7 = ($: t > 0) with state space X and 
paths that are right continuous and have left-hand limits (cadlag paths) 
defined by a sequence (1 ,~ )  = { ( < n , ~ n ) , n  = 0,1 , . .  . ) .  The R+-valued 
random variables ,rn are the interjump times and the sequence {cn,n = 

0,1, .  . .} is the sequence of states of the process entered just after the jump 
instants. To be more precise: 

Let a = {an:  n = 0,1, .  . . } be given as a0 = 0, and an = T', 

n > 0, the increasing sequence of jump times. Then i f  t E [on,an+'), we 
have $ = In, n E W. 

~f (for any n) pr(Ek,k=O,l , . . . ,n- l ,~00~k,k=0;1, . . . ,n-2  1 -almost surely de- 

fined conditional distributions of (c, T )  = {(tn, ,rn), n = 0 ,1 , .  . . ) fulfill 
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Pr(~\ , lc=~, l  ,..., n-l,a0,.r",lc=~,l ,... ln-2)-almost surely, and are independent of n,  

then (1, T) is called a homogeneous Markov renewal process. 
We assume that the right side of (5.1) is determined by a transition 

kernel 
Q ( c , s  2 ) :  X X X X B +  + [ O ; l ] ,  

where we write 
Q(C, s 1 x )  := Q(C x [0, s] 1 x)  

The process q = (qt : 0 < t < CEO ri) is called homogeneous semi- 
Markov process. The transition function 

is called the semi-Markov kernel of both, the Markov renewal process and 
the semi-Markov process. We shall henceforth assume that 

00 

Q(C, 0 I z) = l c (z )  z, C, and xr" =m 
i=O 

holds and that the sequence a = {an: n = 0,1, .  . . ) has no finite accumu- 
lation points. From (5.1) i t  follows that c = (tn: n t N) is a homogeneous 
Markov chain. The transition probability o f  this embedded Markov chain is 

Q(C 1 x) = Q(C, m 1 x) = PI.{("+' t C, rn < oo 1 en = x) 

x x  C E X .  

We assume a further transition kernel being given that determines the 
conditional sojourn times o f  the process given the present and the next state 
of the system. This we denote by 

where on the right side the conditional sojourn time distribution of the 
sojourn time rn given the process is in state x and will be next in y when 
rn has expired is only ~ r ~ " ~ ~ " + ~ - a l m o s t  surely defined. 0 
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5.1.2 Controlled semi-Markov processes with 
local and synchronous transition 
mechanisms 

The aim of this section is to introduce a controlled semi-Markov process 
with locally interacting synchronous components similar to that con- 
structed in the pure Markovian framework in Chapter 3 as controlled 
Markov random field. 

If a semi-Markov process 7 and its associated Markov renewal process 
(c, 7) from their very construction are related to the neighborhood sys- 
tem { ~ ( k ) :  k E V) of (V, B), it is natural to assume that with respect 
to the evolution over time, the value cr = qk(an) = xr, of the k-th ver- 
tex depends on the previous states of the whole system only through 
the values of the vertices in f i (k)  (including k )  after transition moment 
an-l . To describe this, we introduce the Markov property in space for 

the kernel of the embedded jump chain for a semi-Markov process along 
the lines of Definition 3.10. Because we concentrate on the local behavior 
of the embedded jump chain, we arrive at just the definition of synchro- 
nous and local kernels as given there. It follows that we can express 
the required properties directly in terms of the transition kernel of the 
embedded Markov chain Q. For the reader's convenience, we recall the 
relevant definitions. 

Definition 5.2 (Synchronized and local transition kernels). Let 
q = (qt:  t > 0) with state space X be a semi-Markov process with associ- 
ated Markov renewal process (E, T) = {(En, T ~ ) ,  n = 0,1 , .  . . ). The jump 
transition probabilities of q and c are said t o  be local [Vas78, p. 1001 if for 
all k E V, xO, . . . ,  xn+' E X ,  Ck E Xk 

holds, i.e., the state of vertex k just after the jump depends on the state 
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of its complete neighborhood at the previous transition instant only. The 
transition probabilities of X are said t o  be synchronous [Vas78, p. 1001 i f  

where CK = x Ck E XK. 
k t K  

If 7, c, or (c, T) ,  fulfill (5.3) and (5.4), then 7 is called a semi-Markov 
process with locally interacting synchronous components over (r, X) , 
shortly, a semi-Markov random field. Similarly we call (t, T) a Markov re- 
newal process with locally interacting synchronous components over (r, X), 
shortly, a Markov renewal field. 0 

We introduce classes of admissible policies to control the interacting 
coordinates of the stochastic processes under consideration. For simplic- 
ity of the presentation we assume that some (uncontrolled) semi-Markov 
random field q = ($: t > 0 )  or (E, T) = {(En, T ~ )  : n E W) according to 
Definition 5.1 is given as our starting point. 7 will be equipped in the 
sequel with a control structure that governs the jump transition kernel 
and the sojourn time distributions of (t, T). We mainly consider con- 
trols, which are local in the sense to be specified now. The definition is 
in parallel to Definition 3.16. 

D e f i n i t i o n  5.3 ( A c t i o n  spaces and l o c a l  res t r i c t i ons ) .  The se- 
quence o f  decision instants (control instants) is a = {an, n = 0,1,. . .}. 

(1) The set of actions (control values) usable at control instants is 
A = x Ai over I?, where Ai is a set of possible actions (decisions) for 

icV 
vertex i. We assume that Ai is a compact metric space with countable 
basis and with Borel-a-algebra 'Ui. 'U is the Borel-a-algebra over A. 

( 2 )  I f  for the decision maker at node i at time an under state En = x the 
set of control actions is restricted t o  Ay(x)  c Ai, we call A$(x) the set of 
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admissible actions (decisions) at t ime on in state x .  We always assume that 
the restriction sets are time invariant and therefore depend on the actual 
state o f  the system only. We denote Ai(x) := A?(x) c Ai, for all decision 
instants an. 

(3) We assume that the so defined set valued maps 

depend on x E X only through X G ( ~ )  E XG(~) and are Borel measurable in 

the sense of Definition 2.34. Thus the Ai determine admissibility as a local 

property We therefore write Ai(x) =: Ai ( x ~ ( ~ ) ) .  We also assume the sets 

t o  be Borel measurable sets of the product space XGli) x Ai and 6 = x u;i 

- - ieV 
t o  be Borel measurable in the product space x x A. x = x Xfi(i) and 

iEV 

Remark 5.4. We sometimes refer t o  decisions without specifying a local 
structure. Then we have a global mapping 

and we define 

E := {(x,a)  E X x A :  a E A(x)).  

Remark 5.5. Cantaluppi [Can84, Theorem 151 proved that in case o f  
infinite time horizon, there always exist optimal policies that use as feasible 
decision instants the sequence o = {on, n = 0 ,1 , .  . .). 0 
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Due to the random holding times in semi-Markovian decision proces- 
ses, we have to include the past sojourn time durations into the system's 
history. We allow actions of the decision makers only after the transition 
instants of the process when the state has just changed. Then the deci- 
sions will in general open the possibility to control the jump probabilities 
into the next state as well as the duration of the next sojourn time. This 
implies that we have to adapt the notion of strategies to  the setting of 
semi-Markov processes as well. 

Definition 5.6 (Histories for semi-Markov processes). A sequence 
( H n :  n E W )  of histories for a semi-Markov decision model where decisions 
are only allowed just after jump instants is given by H0 = X ,  Hn+l = 

Hn x A  x R+ x X  for n > 0.  (The real valued coordinates o f  the histories 
describe the inter-jump times.) Each H n ,  which contains 3n+  1 factor sets, 
is endowed with the respective product a-algebra Sn. 

The sequence A = ( A n :  n E N) of set valued functions determines 
the admissible actions An:  Hn C Hn 4 2A - (01, and the domain Hn is 
recursively defined as H0 := X ,  and Hn+' := { ( h ,  a,  t ,  x )  E Hn+l : h  E 
Hn,  a E An(h) ,  t E R+, x E x) .  An(h)  is the set of admissible actions at 
t ime n under history h. 

H n ,  is endowed with the trace-a-algebra Sn := Hn n Sn. 
We denote K n  := { ( h , ~ ) :  h E Hn,  a  E A n ( h ) ) ,  and shall always 

assume that these sets contain the graph of a measurable mapping. K n  is 

endowed with the trace of the product-o-algebra An := K n  n Sn x (U. O 

Definition 5.7 (Strategies). (1) Let a$ denote the action chosen by the 
.- ( a $ :  i E decision maker at node i at the n- th transition instant on, a n  .- 

V )  the joint decision vector at time an,n E W .  

( 2 )  A strategy (policy) i.r t o  control the system with interacting com- 
ponents is defined as vector of coordinate policies ;r = ( ; r i ,  i E V), where 
for node i 7ri = (70,. . . , 7r?, . . . ) is a sequence of transition probabilities 
;r; = x$(. I xO,  aO, t o , .  . . , xnpl ,  anpl , tnpl  , x n ) .  So; r? i sap robab i l i t y  
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measure on (Ai ,  (Ui)  for any ( xO ,  a', t o , .  . . , xnp l ,  an-' , tnpl , xn)  and mea- 
sura bly dependent on the history hn = ( xO ,  a', to, . . . , xn-l, an-' 7 tn-l , x n )  
of  the system up t o  n- th transition. We therefore have for all Bi E 52li 

(3) In parallel t o  the synchronous transitions and the locality o f  the 
transition kernels, we always assume that the decision makers located at the 
nodes act conditionally independent given the history o f  the system. This 
leads t o  control of the process governed by a synchronous control kernel 

Definition 5.8 (Local strategies). Recall that we always assume that 
for actions the restriction sets are time invariant and depend on neighbor- 
hoods only: 

An(x )  = A ( x )  = x Ai ( x -  N ( i ) )  for all n. 
i tV 

(1) If  at transition times an,  n = 0 ,1 , .  . ., the decision a$ at node i 
is made according t o  the probability T? on basis of the local history h$ = 
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0 0 n-1 ai , t  , . . . , X G ( ~ ) ,  0;- 

only. and if i.r? ( A ~  (x : (~) )  

' ,  tnp l ,  x? ) o f  t h e  neighborhood E ( i )  o f  i 
Nil 

t Xf i ( i ) .  a: t 

tS E R+, then is said t o  be admissible local, and t h e  sequence o f  t ran- 
sit ion probabilities (decisions) 7ri = {T;, n E N) is called admissible local 
strategy for  vertex i.  

(2) A n  admissible local strategy 7r = (7ri,  i E V) is called admissible 
local Markov strategy if 

(3) A n  admissible local Markov strategy i.r = (ri, i  t V) is called admis- 

sible local stationary (Markov) strategy if (. 1 xg(,,) = 7ry (. 1 x ~ ( ~ ) ) ,  
i E V, for  all n', n" and all x .  

(4) A n  admissible local stationary strategy i.r = ( r i , i  E V) is called 

admissible local stationary determinist ic (nonrandomized) strategy if Ti ( .  1 
xg ( , ) ) ,  i E V, are one-point measures o n  A1 x -  . i E V, accordingly 

for all x  E X .  
( N i l )  

T h e  class o f  all admissible local strategies (w i th  t i m e  invariant restr ict ion 
sets) is denoted by L S ;  t h e  subclass o f  admissible local Markov strategies 
by  LShf. B y  LSs c LSlcf, we denote t h e  class o f  admissible local stationary 
strategies. B y  LSp ,  we denote t h e  class o f  all admissible local determinist ic 
(= pure) strategies (w i th  t i m e  invariant restr ict ion sets), and by  LSD,  t h e  

subclass o f  admissible local stationary determinist ic strategies. 0 

We now incorporate into our semi-Markov process framework syn- 
chronization and locality of the transition kernel (similar to (5.3) and 
(5.4)) and of the decision rules, and then the decision dependent tran- 
sition mechanism and the decision dependent sojourn time behavior of 
the system. 

The law of motion of the system is characterized by a set of time 
invariant transition probabilities. Whenever the system enters state 
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cn = xn and decision an = an is made, the transition probability is 
Pr  {En+' E C I En = xn, an = an )  =: Q(C I xn, an),  which is assumed to 
be independent of the past given the present generalized state, which 
includes the present actions made. Then, given {En = xn, an = an)  
the next state cn+l = xn+l of the system is sampled according to 
Q(. I xn, an) ,  and thereafter the sojourn time in xn, given xn, an, xn+l, 
is sampled according to some distribution function T(. I xn, an, xn+l),  
which is Bore1 measurable on ii x X. 

We further assume that this transition probability and the sojourn 
time distributions are independent of n ,  and that the motion is homoge- 
neous in time. 

Applying a control policy T to a semi-Markov process with interacting 
components 7 (semi-Markov random field), respectively to the associated 
Markov renewal process (0 T), as defined in Definition 5.2, we shall call 
the pair (7, T), respectively the triple (E, T, T) a controlled version of 7, 
respectively (c, T), using strategy T .  

It should be noted that for such a controlled process, in general, even 
the embedded jump chain is not Markovian because the sequence (an) 
of decisions according to T;  depends not only on states x? i E V, 

N(i1' 
\ ,  

but on the previous (local) states x i ( , ) ,  . . . , x y l  as well. An immediate 
N(4 

consequence of the definition will be that if a Markov strategy T is applied 
as control strategy for the semi-Markov random field, then we obtain an 
embedded Markov jump chain E from (q, T), respectively (E, T, T). 

Definition 5.9 ([DKC03]). A pair (q, T) ,  respectively a triple (E, T, T),  is 
called a controlled stochastic jump process with locally interacting synchro- 
nous components with respect t o  the finite interaction graph r = (V, B), if 
the following holds: 

0 E = (En : n E W) is a stochastic process with state space X = x Xi, 
iEV 

T = ( r n :  n E W) is stochastic process with state space R+; 
0 q = ($: t 2 0) is a stochastic process with state space X = x Xi, 

iEV 
and these processes are connected pathwise as follows: 
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The R+-valued random variables 'rn are the interjump times and the 

sequence { I n ,  n  = 0 ,1 ,  . . . }, is the sequence of states of the process entered 
just after the jump instants. 

n-1 ' 

0 a = { a n :  n =  0 ,1 ,  . . .  } with a0 = 0 ,  and an  = 7%' n  > 0 is 

the increasing sequence o f  jump times. Then, if t E [on, on+'), we have 
lit = I n ,  n  E W. 

We assume that the conditional distribution function of 'rn given 
= sn+', En = sn, an = a n }  is T(. 1 sn, an, sn+l) defined as 

Borel measurable function on 6 x X .  7r = ( x i :  i E V )  is an admissi- 

ble local strategy, and the transitions of are determined as follows. The 
~ r ( t ~ ~ ~ ~ ~ . . . ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ) - a l m o s t  surely defined conditional probabilities of 

the semi-Markov process fulfill 

Here 

is a transition kernel, and similarly are defined the Qi Cj 1 ~ f i ( ~ ] ,  a j ) .  ( 
I f  li = V we shall write Qv(Cv I y , a )  = Q ( C  I y , a )  In analogy t o  

Definition 5.2 the Markov kernel Q = njEv Qj is said t o  be local and 
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synchronous. Combining then the distributions o f  the interjump times and 
the jump probabilities with their specific structure, this construction results 
in a semi-Markov kernel for the controlled process 

Q ( c , ~  i x , a )  = ~ r { ( " + l t  C , r n < s  ( n = x n , a n = a n } .  

We shall denote 

q, respectively ((, T) will then be called shortly a controlled time dependent 
semi-Markov random field, or a controlled time dependent Markov renewal 
field. 0 

Comments on (5.5) are mainly similar to those in the case of stan- 
dard interaction processes and can be found after Definition 3.21. The 
additional remark to be added here is that the interjump times are de- 
termined globally, so the locally determined jumps are strongly coupled 
in time. 

5.1.3 Criteria for optimality 

Consider a time dependent semi-Markov random field 7. If the k-th state 
of the system is x%nd the joint decision ak is made and if the duration 
of the sojourn time in xk is tk ,  then a random  ward r ( tk ,xk ,  ak)  is 
earned. The function r(s ,  x, a )  is assumed to  be Bore1 measurable on 
[O, +n) x 6. 

We shall evaluate the quality, or optimality, of an applied strategy i.r 
with respect to  the following long time average reward measure: 

k k 

Q(x',T) = liminf 
E;o C;=o T- (7 , t , ak) 

, 
n i o o  E;o C:=o rk 

where Ez0 is expectation associated with the controlled process (7, T), or 
(E, 7, T), if to = xO. The aim of our investigation is to find conditions for 
the existence of optimal Markovian policies. 
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Definition 5.10. A strategy T* E LS is called optimal with respect t o  
the maximin reward criterion in the class LS of admissible randomized local 
strategies i f  

$(x, T*) = sup $(x, T), 'd x E X .  
7rtLS 

Such a T* will shortly be said t o  be locally optimal. 0 

The quality criterion (5.6) was invented by Ross [Ros7O] and used 
in [GS72c] as well. In [Ros70] only stationary policies are allowed and 
decisions are made on the basis of the present state only. In this case the 
value of (5.6) depends only on the transition kernels Q(. I x, a) ,  T(. I x) 
and the conditional expectations 

Then one is in a position to restrict proofs to special forms of sojourn 
time distributions, say one point distributions, given by their distribu- 
tion functions, or the one-point reward function with respect to  the first 
component of the arguments: 

Because we allow general policies, such a property does not hold for 
the asymptotic average reward in general. 
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5.1.4 Existence of optimal Markov strategies 
in the class of local strategies 

We shall need in the following some technical assumptions, which we 
collect here. Recall that 

and 
R =  {(x,a)  E X  x A: a E A ( x ) }  

Assumption 5.11. -r(x,a) > m > 0, (x, a )  E ii; 0 

Assumption 5.12. ~ ( x ,  a)  5 M < oo, (x, a )  E ii; 0 

Assumption 5.13. there exists a non-negative measure p on (X, X) such 
that: 

a) p(C) I Q(C 1 q a ) ,  (x ,a)  E R,  C E X; 
b) ~ ( 4  > 0. 0 

Let us denote by Hn a random history of the system up to time an .  
So Hn takes values of the form hn = (xO, a', to, . . . , xnpl, an-', tnpl, xn). 
Recall that the restriction sets for the local strategies are time indepen- 
dent. 

We define the conditional sojourn time expectations 

r(x"ak)  = E: {r" H" hh",ak = ak} 
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and the conditional reward expectations 

Using this notation, it follows 

and 
n n 

Theorem 5.14. I f  Assumption 5.11 holds and i f  there exist a constant q 
and a bounded function v(x) on X such that 

Then 

I f  thus 

and for some strategy T* E LSD 

holds, then T* is locally optimal and 
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Proof: For any strategy T ,  we have 

From (5.5) and (5 .8) ,  we have 

Substituting (5.12) in (5.11),  we obtain 

From boundedness of v ( x ) ,  Assumption 5.11, and (5 .7) ,  we obtain 

so inequality (5.9) is proved. 
To prove the second part of the theorem, we notice that for the 

strategy T* in relations (5.12)-(5.14), equality holds. 0 

Remark 5.15. The proof of Theorem 5.14 is similar t o  the proof of The- 

orem 2 in [Ros70], which deals with the class of stationary strategies only. 

Further, our Assumption 5.11 is weaker than that used there. 0 
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Let M(X)  be Banach space of bounded Borel measurable functions 
on X with sup-norm llull = supztx Iu(x)l. Denote by p the metric on 
M(X)  induced by that norm. We define an operator U on M(X)  by 

W x )  = SUP { 4 x ,  a)  + 1 ~ ( Y ) Q ' ( ~ Y  I x, a)}, (5.15) 
a t A ( x )  

Theorem 5.16. Let Assumptions 5.11-5.13 hold and assume further that 

1) the operator U maps some metric subspace S(X)  C M ( X )  (with 
metric p induced by norm of M ( X ) )  into itself; 

2) for every function u E S(X)  the map A,: X + 2A - 
determines for every x E X the set 

- (01, which 

is Borel measurable. 

Then there exists a strategy in LSD that is (locally) optimal in LS. O 

Proof: We will show that the operator U has the following proper- 
ties: 

a) Uisisotone, i.e., iful(x) > u2(x), x E X, thenUul(x) > Uuz(x),x E 

x; 
b) For any non-negative constant c 

m 
U(,u(x) + c) 5 Uu(x) + ac, x E X, with a = 1 - -p(X). 

M 
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Indeed, property a) follows directly from Assumption 5.13 a),  and 
property b) is seen as follows: 

= sup {r(x, a )  + J u(y)Q1(drr I X, a )  + ~ ' i d y  I r ,  a ) )  
aeA, 

= Uu(x) + ac. 

Properties a) and b) guarantee that U is a contraction operator with 
contraction coefficient a = 1 - z p ( X )  E [0, I), because p is substochastic 
and m I M. Indeed, apply U to both sides of the inequality ul(x) 5 
u2(x) + p(ul, u2). From a),  b) we have 

Consequently, 
Uu1(x) - Uu2(x) I ap(u1, ~ 2 ) .  

Exchanging ul and uz we have 

i.e., 
p(Uu1, Uu2) I ap(u1, u2). 

Banach's fixed point theorem then implies that in S ( X )  there exists a 
function u*(x) such that 
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From (5.17) and (5.16) we obtain the Optimality Equation (5.8) with 
u(x) = u*(x) and q = $ Ju*(y)p(dy). 

Assumption 2) guarantees that the map A,+ is Borel measurable. 
This, by Definition 2.34, especially yields A,*(x) # 8 for all x E X, 
and, from the definition, A,*(x) C A(x) holds. So, the set A,*(x) of 
maximizers of Uu*(x) contains only local policies. 

Now, by the Theorem of Choice, there exists a Borel measurable 
A(x)-valued selector T*; i.e., we have 

which means 

i.e., for the strategy T* E LSD (5.10) is fulfilled and therefore, by Theo- 
rem 5.14, T* is a locally optimal strategy. 0 

Remark 5.17. Under the conditions and assumptions of Theorem 5.16, 
we now conclude that in the set o f  optimal strategies, there is at least one 
deterministic strategy, which makes decisions on the basis of the actual state 
only. The optimal value $(x, T*) under this strategy depends according t o  
the observation o f  Ross [Ros70] only on the transition kernels Q(. I x, a)  and 
xn(., x) and on mean conditional sojourn times r (x ,  a) and mean conditional 
rewards r(x,  a ) .  Thus 4(x, T*) is insensitive against variations of the shape 
of the conditional sojourn times distribution and the conditional rewards 
distribution as long as their conditional means remain invariant. Therefore 
we can restrict the computation of $(x, T*) without loss o f  generality t o  
processes with deterministic sojourn times and special reward functions as 
given at the end of Section 5.1.3. 0 

Our next theorem provides easy to check smoothness conditions for 
the data of the semi-Markov models such that the condition 1) and 2) 
of Theorem 5.16 are fulfilled. 
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Theorem 5.18. Consider a semi-Markov random field according t o  Defi- 
nition 5.9. Recall that the local state spaces Xi and local decision spaces 
Ai, and therefore the global state space X and the global decision space A 
as well, are compact metric spaces with countable basis. Let the map A, 
which associates with any state x the time invariant restriction set A(x),  
I.e., 

A : X + 2 " - { 0 ) ,  x i A ( x ) = n A i ( x ) ,  
iEV 

be continuous and let Assumptions 5.11, 5.12, and 5.13 hold. Assume 
further that 

1) the mean value functions r (x ,  a )  and ~ ( x ,  a )  are continuous in 

(x, a )  E E; 
2) the transition probability Q ( .  I x, a )  is weakly continuous in (x, a )  E 

E. 

Then there exists an optimal strategy T* in LSD and the function T*: X + 

A can be selected from Baire class 1. 0 

Proof: The proof uses ideas from Theorem 3 in [GS72b] to apply our 
Theorem 5.16. To do this, we need the following property, which com- 
bines [GS72b, Lemma 1, 21: 

Let A be compact and the mapping A:  X + 2A - (0) continuous. 
Let u :  i? C X x A 4 R be bounded and continuous. Then the function 
U* (x) = SUP,t~(z) U(X,  a )  is continuous. 

Applying the conditions 1) and 2) and this property to  the maximiza- 
tion operator U in (5.15) yields that U maps the space B ( X )  C M ( X )  
of real valued bounded continuous functions on X into itself. So condi- 
tion 1) of Theorem 5.16 is fulfilled. For condition 2) of Theorem 5.16 it 
suffices to show that for any u E C ( X )  the function A, : X 4 2A - {0), 
x 4 A,(x) is upper semicontinuous. According to [Kur69, p. 611 it is 
sufficient to prove that for fixed u E C ( X )  the following holds: 

If for n + 00 we have (xn, an) 4 (x, a )  with xn E X and an E A,(xn), 
then it follows a E A, (x) . 
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By definition an E Au(xn) means 

Now the left side of the equation is a continuous function in (x, a) ,  while 
the right side is a continuous functions in x. Letting n i oo we have 

i.e., a E Au(x). From Theorem 5.16 we conclude the existence of an 
optimal local stationary deterministic strategy T* E LSD. 

5.2 LOCAL CONTROL OF INTERACTING 
MARKOV JUMP PROCESSES IN 
CONTINUOUS TIME 

In this section we consider Markov jump processes. For the case of 
denumerable state space and an action space that is a Borel space, recent 
results for continuously controlled processes are proved in [GHL03]; for 
further literature, see the references there. 

Our focus will be on system properties that are consequences of the 
graph-structured state and action spaces. In case of state and action 
spaces that are compact metric spaces with countable basis, the results 
on semi-Markov processes from Section 5.1 apply if the holding times of 
the process are memoryless. 
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5.2.1 Markov jump processes with locally 
interacting components 

For systems with locally interacting coordinates, we introduced in Sec- 
tion 3.1 a formal definition of an interaction structure and a state space 
that is spatially structured by an interaction graph. As in Section 5.1 
we assume now that the local state spaces Xi are compact metric space 
with countable basis, endowed with Borel-a-algebra Xi. The evolution 
over time of our system with 

(X, X) = 

global state space 

is described by a stochastic process 7 = ( r l t :  t E [0, +m)) with random 
fields as one-dimensional marginals in time. So $ = (qL : k E V) where 
the subscript k in 7; refers to the vertex k ,  and 7; therefore denotes 
the marginal state at time t and node k of the vector valued process 
q =  (75 t 2 0 ) .  

The Markov processes we start from are jump processes and there- 
fore special semi-Markov processes in continuous time as described in 
Section 5.1.1. The important special feature of Markov processes is that 
the holding times in the respective states of the processes are memo- 
ryless, i.e., are exponentially distributed with parameters depending on 
the actual state. We have in Equation (5.2) 

Definition 5.19 (Markov jump process). A homogeneous Markov 
jump process in continuous time is a semi-Markov process 7 = ( r t :  t > 0) 
with state space (X, X) and paths that are right continuous and have left- 
hand limits (cadlag paths) defined by a sequence ((, T) = {(cn, rn), n = 



5.2. Interacting Markov  jump  processes 

0,1,. . . ). We assume that the process y = (yt : t > 0) has stationary 
transition probabilities P: 

P(t; x, C) := Pr {yt+s E C I yS = x) Y s E R+ = [O; oo), x E X, C E X. 

Note that the right side is independent of s. The X-valued sequence 
{In, n = 0,1, . . .} is the sequence o f  states the process entered just after the 
jump instants. The R+-valued random variables {rn, n = 1,2,. . .) are the 
interjump times. I f  {tn = x,, n = 0,1,. . .) is given, then {rn, n = 1,2,. . .) 
is a sequence of independent exponentially distributed variables with para- 
meters X(xn). To be more precise with the construction: 

0 The sequence o f j u m p  times of 7 is a = {an: n = 0,1, . . . } ,  given 
by o0 = 0, and an = C:=l ri, n E N. Then for t E [an,an+') we have 
$ = I n ,  n~ W. 

0 The one-step transition probability of the embedded jump chain is 
the Markov kernel (Q(C I x): C E X , x  E X) of the sequence {cn = 

f n , n = 0 , l  , . . .  ). 
0 The intensity function A: X 7- R+ is a bounded measurable function 

of x with A(x) < A < cc for all x E X. 

The transition probabilities P of the homogeneous Markov jump process 
q = ($: t 2 0) fulfill for z $ C 

and for x E C 

I t  follows from (5.18)-(5.19) 
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A continuous time homogeneous Markov jump process q = (qt : t E R+) 
can be defined as Markov process, for which the weak infinitesimal operator 
is given by 

on his domain, i.e., a subset of M(X) ,  the set o f  measurable bounded 
functions on X .  0 

In the uncontrolled case, our interest focusses on interacting jump 
processes, which in the Markov setting are similarly defined as in the 
case of general semi-Markov processes via the embedded jump chains. 
The following definition merely recalls Definition 5.2 in the Markovian 
framework. 

Definition 5.20 (Synchronized and local transition kernels). A 
continuous time Markov jump process q = (qt : t > 0) with associated 
process (E, T) = {(En, T ~ ) ,  n = 0,1 , .  . . ) and with state space (X, X) = 

(i:vXi, IT{~:X)) is local if (5.3) holds and is synchronous if (5.4) 

holds. q is then called a continuous time Markov jump process with locally 
interacting synchronous components over (I', X )  , shortly, a Markov jump 
random field. 0 

Markov jump processes with discrete state space are of special inter- 
est to many of the applications we described in the introduction, e.g., the 
population dynamics of our very first example fits into this class [Ren93], 
and the stochastic network processes that encompass the population mi- 
gration processes as well [Ke179]. In the following we therefore describe 
examples from queueing theory and from the theory of multidimensional 
birth-death processes where local control is applied. For more details on 
network theory and generalized birth-death and migration processes, see 
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[Ke179, DadOl]. I t  will be seen that queueing network processes, although 
showing a stringent local behavior with respect to  a natural underlying 
graph structure will not fully meet our property (5.4) and the subse- 
quent (5.24). But the generalized birth death processes completely meat 
(5.24). We always assume that the describing Markov processes have 
right continuous paths with left-hand limits (cadlag paths) and that the 
dynamics of the process are completely specified by the respective Q- 
Matrices L2 = (q(m, n )  : m, n E N). We start with the description of a 
service station in isolation, which will determine the local node struc- 
ture of the networks and of the multidimensional birth-death processes 
as well. 

Definition 5.21 (State dependent single server queue). We con- 
sider a single server of M / M / l / o o  type where indistinguishable customers 
arrive one by one. Customers finding the server free enter service immedi- 
ately, while customers finding the server busy enter the waiting room, which 
has an infinite number o f  waiting places. Unless otherwise specified, the 
waiting room is organized according t o  the First-Come-First-Served regime 
(FCFS): I f  a service expires the served customer immediately leaves the sys- 
tem and the customer at the head o f  the queue, if any, enters service and 
other customers in line are shifted one step ahead. We always assume that 
these shifts take zero time. 

I f  there are n customers in the system, then time until the next arrival 
passes with intensity X(n), and (if n > 0) the customer in service is served 
with intensity p(n) .  Given the number of customers in the system, which 
we henceforth call the queue length, the actual residual service and residual 
interarrival times are independent of the past and independent of another. 

We denote by 7  = ( r t :  t > 0) the random queue length process of the 
system. 0 

Remark 5.22. From the description i t  follows that t o  describe the evo- 
lution of the state dependent single server queue by a Markov process, i t  
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suffices t o  record the queue length, i.e., 7 defined on a suitable probability 
space (R, F, Pr) with state space W is a strong Markov process. 

We conclude: The holding time in state n is exponentially distributed 
with parameter X(n)+p(n) and the subsequent jump decision is independent 

o f  the holding time, and with probability A($e(n) the next jump is caused 

by an arrival t o  n +  1, with probability A(n)+p(n) ( )  thenext jumpiscausedby 

a service expiring (departure event) t o  n - 1. 0 

It turns out that the class of models described in Definition 5.21 
coincides with the class of (state dependent) birth-death processes from 
Definition 2.9. 

Theorem 5.23. The queue length process q of the state dependent single 
server queue is a birth-death process. 7 is ergodic i f  and only i f  

I f  7 is ergodic, then its unique steady state and limiting distribution is n = 

( ~ ( n )  : n E W) with 

where G < oo is the norming constant. 0 

We first discuss the structure of classical queueing networks in the 
light of the requirements for the local and synchronized behavior of 
Markov interacting random processes and Markov random fields. 

Definition 5.24 (Gordon-Newel1 network). A Gordon-Newell net- 
work is a network of service stations (nodes) numbered {1,2,. . . , J )  := V. 
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Station j is a state dependent single server system with infinite waiting 
room under FCFS regime (see Definition 5.21 for details of the servicing 
mechanism). There are I > 0 customers cycling according t o  an irreducible 
Markov matrix R = ( r ( i ,  j ) :  i ,  j  = 1 , .  . . , J ) .  

A customer on leaving node i selects with probability r ( i ,  j )  > 0 t o  visit 
node j next, and then enters node j immediately, commencing service i f  he 
finds the server free; otherwise, he joins the tail of the queue of node j .  

Given the departure node i ,  the customer's routing decision is made 
independently o f  the network's history. Customers arriving at node j request 
for an amount of work (service time) there which is exponentially distributed 
with mean 1. All requested service times constitute an independent family 
o f  random variables. 

Let q$ denote the number of customers present at node j  at time t > 0 ,  
either waiting or in service (local queue length at node j ) .  Then rlt := 

(rlt:  j = 1 , .  . . , J )  is the joint queue length vector of the network at t ime 
3 

t. We denote by 7 = ( $ :  t > 0 )  the joint queue length process of the 
Gordon-Newell network. 0 

Theorem 5.25 (see [ G N 6 7 ,  Jac631). We denote by 

the state space o f  the joint queue length process 

for the Gordon-Newell network defined above. 

Then 7 is a Markov process with Q-matrix U = ( q ( y ,  x )  : y ,  x  E S ( I ,  J ) )  
given by: 
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For i ,  j E V, and x = ( n l , .  . . , n J )  E S ( I ,  J )  

q(x, y) = 0 otherwise. 

'I is irreducible, conservative, nonexplosive, and ergodic. 
Let q  = ( y l , .  . . , q J )  denote the unique probability solution of the traffic 

equation 
'I = 'IR. 

The unique stationary and limiting distribution T = ~ ( 1 ,  J )  of 'I on 
S ( I ,  J )  is 

where G ( I ,  J )  is the norming constant. 0 

Remark 5.26. The definition o f  the Gordon-Newell network refers only 
t o  the set of nodes that represent the nodes of the underlying graph. For 
the structure graph F = (V, B)  the edges 

{ i ,  j )  E B [r( i ,  j )  > 0 V r ( j ,  i )  > 01. (5.21) 

are defined via the routing matrix R  of the customers. 0 

Although the network processes act in an obvious sense locally with 
respect to this neighborhood structure, the transition probabilities of the 
embedded jump chain are not locally determined and synchronized in the 
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sense of Definition 5.40 and Definition 5.2. This is a result of the rather 
simple evolution of the network that only allows one service to end at a 
time instant. But it is direct to generalize the transition behavior in a 
direction that makes it more in line with the synchronization property 
we are looking for. 

Definition 5.27 (Generalized Gordon-Newel1 network). A gene- 
ralized Gordon-Newell network is a network of nodes {1 ,2 ,  . . . , J) := V with 
state dependent single servers from Definition 5.21. I > 0 customers cycle 
according t o  an irreducible Markov matrix R = ( r ( i ,  j )  : i ,  j  = 1 , .  . . , J). 
(See Definition 5.24.) 

Let qj denote the number of customers present at node j  at time t > 0, 
either waiting or in service (local queue length at node j ) .  Then rlt := 

(6: j  = 1 , .  . . , J) is the joint queue length vector of the network at t ime 

t. We denote by 7 = ( $ :  t > 0 )  the joint queue length process of the 
generalized Gordon-Newell network. 

The time evolution o f  the network is as follows: 
I f  rlt = ( r l t :  j = 1 , .  . . , J )  = (n l ,  . . . , n J ) ,  then the system stays 

3 
in this state for a time that is exponentially distributed with parameter 
X(nl, . . . , n J )  > 0. I f  this holding time expires, then at each node there is a 
decision (for each node, independent o f  the network's history) whether the 
ongoing service ( i f  any, i.e., if ni > 0) is finished (with probability y ( i )  > 0) 
or continues (with probability 1  - y ( i )  > 0). I f  the service at station i  
expires, then the served customer on leaving node i selects with probabil- 
ity r ( i ,  j )  > 0 t o  visit node j  next, and then enters node j immediately, 
commencing service i f  he finds the server free; otherwise, he joins the tail 
o f  the queue of node j .  Given the departure node i ,  the customer's routing 
decision is independent of the network's history. 0 

Remark 5.28. I t  follows directly that q is irreducible, conservative, nonex- 
plosive, and ergodic, so a unique stationary and limiting distribution exists. 

In a manufacturing context we can interpret the decisions whether service 
is finished or continued (made at the end o f  the holding times) t o  be the 
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activities of the local controllers which reside at the nodes. ajn is the decision 
of the controller at node j at the n- th  jump instant of the process and 
indicates whether the manufacturing process was successful (with probability 
y(i) > 0) or not (with probability 1 - y(i) > 0). 

The transition probability of the embedded jump chain is now local, and 
from the construction the jump decisions at the nodes are made always at 
the same time instant in parallel, but i t  is easily seen that in general the 
synchronization property which includes conditional independence of the 
transitions are not completely fulfilled because in the transition probabilities 
of the jump chain occur the holding time parameters X(x), see (5.4) and 
(5.24). 0 

From the last remark we conclude that we cannot directly apply the 
result of Corollary 5.41 although to a certain extend the generalized 
Gordon-Newel1 network looks like a Markov jump random field from 
Definition 5.20 with (5.3) and (5.4). 

We therefore describe now a supplementary variable technique using 
an extended state space which makes the time development of the system 
in a formal sense fulfilling the properties of a Markov jump random 
field. The main idea is to  include for each node (sewice station) j into 
the local state description the local queue length nj there, the decision 
value whether at the next jump instant of the system the ongoing service 
expires (= 1) or is continued for at least one further period (= O),  and 
the direction of the routing (if any) which might occur after a possible 
departure from j at the next jump instant. 

D e f i n i t i o n  5.29 ( S u p p l e m e n t e d  Gordon -Newe l1  n e t w o r k ) .  A ge- 
neralized supplemented Gordon-Newell network is a network of state depen- 
dent single servers from Definition 5.21 and with nodes {1,2, .  . . , J }  := V. 
I > 0 customers cycle according t o  an irreducible Markov matrix R = 

( ~ ( i ,  j) : i ,  j = 1, . . . , J ) .  (See Definition 5.24.) The underlying routing 
graph is given in (5.21). 
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Let for time t > 0 denote by q$ = ($, 6;;  4) the number $ of cus- 
tomers present at node j at either waiting or in service (local queue length 
at node j), the decision 6; whether at the next jump instant the customer 
in service (if any) will depart from j ,  and the direction Q; E V where this 

moving customer will arrive t h e n  Then IIt := ((v: ,  6; ,  @:) : j = 1 , .  . . , J )  
is the joint supplemented queue length vector of the network at t ime t .  We 
denote by 7 = ( r t :  t > 0 )  the joint supplemented queue length process of 
the supplemented generalized Gordon-Newell network. 

The time evolution o f  the network is as follows: I f  

then the system stays in this state for a time that is exponentially distributed 
with parameter ~ ( n l ,  . . . , ni, . . . , nj, . . . , n ~ )  > 0. During this holding time, 
the decision makers at the nodes determine the values a; E ( 0 ,  I ) ,  k E V .  

Independent o f  the network's history i t  is decided whether the ongoing 
service ( i f  any, i.e., i f  ni > 0 )  will be finished (with probability Pr (a: = 

1) = y ( i )  > 0) or not (with probability P r ( 4  = 0) = 1 - y ( i )  > 0) for all 
i E V. 

I f  this holding time expires, then at each node j in a first step, the queue 

length is updated according t o  the values {(q:,  8:, Q:) = ( x i ,  ti, T ~ )  : i E 

N ( j ) ) .  This yields vj'l. 

Then for each node j the value 6; is updated t o  $:+I = a;. 
And finally the value ej is reset t o  Q?' = k with probability r ( j ,  k )  2 0. 

where given the departure node j the customer's routing decision is made 
independently o f  the network's history. 0 

Corollary 5.30. The embedded jump chain o f  the supplemented gen- 
eralized Gordon-Newell network process q from Definition 5.29 fulfills the 
locality property (5.3) and the synchronization property (5.4) from Defi ni- 
t ion 5.20 and so i t  is a Markov jump random field as defined there. 
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In addition the jump chain of the controlled network process (7, a )  ful- 

fills (5.24) from Definition 5.40 and so (q , a )  is a controlled Markov jump 

random field. 0 

Proof: Updating of the queue length according to the values 

is purely deterministic at each node, interfering only with neighboring 
nodes. This is due to the selected state space and the structure of the 
underlying graph, and the conditioning on rlt. So given rlt, we have con- 
ditional independence of the 4+'. The decisions for the a: and therefore 
the 19; are independent of the network's history and independent of an- 
other, and the routing decisions are made independent of another as well. 
This yields the required conditional independence of the synchronization 
property. 0 

We start our discussion of multidimensional birth-death processes 
with a general description of multidimensional Markov processes with 
state space lVJ. 

Definition 5.31 (Net migration processes). Consider a Markov process 

with X = lVJ and X = 2 X ,  which fulfills the Assumption 2.7. For x, y E X 
with q(x, y) > 0 let (yj - xj)+ = bj and (xj - yj)+ = dj denote the net 

increment and decrement, of this transition in the j- th coordinate. We call 

b = (bl,. . . , bJ) the net increment vector and d = (dl , .  . . ,dJ )  the net 

decrement vector. Let F c lVJ x lVJ denote the set of feasible pairs of 

joint increment and decrement vectors, i.e., the net transition pairs for q. 
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Then the transition rates o f  7 ,  i.e., the entries of the associated Q-matrix 
U = (q(x, y ) :  2, y E x), are o f  the form 

d x ,  Y) = q x ,  b, 4, 
for y = x - d + b, x, y E X, with q(x, y) > 0, (5.22) 

and we have F = {(b,d): A(x, b, d) > 0 for some x E X) for the set of 
feasible net movements o f  q. 0 

Note that defining U from a prescribed function A on the set of 
feasible transition pairs (x, y) E x2 is not a restriction because x and y 
determine the net increment and net decrement vector uniquely. 

Introducing Description (5.22) for the transition rates is often useful 
to clarify the movements of customers in networks or the migration of 
individuals between compartments. Much research effort has been dedi- 
cated to finding specific functions A, which are well suited for describing 
real problems and which admit to compute performance measures of the 
system. The most important singular performance quantity is in almost 
all cases the steady state distribution; see the result for Gordon-Newel1 
networks above. The existence of a steady state for the describing process 
guarantees that the system stabilizes over time. 

Note that this general class of net migration processes in Defini- 
tion 5.31 encompasses the network processes described above. We now 
direct our considerations into another field of processes. 

Definition 5.32 (Migration and birth-death process). Let q have 
transition rates (5.22). Then 7 is called a generalized migration process. 

Let q have transition rates 

4(x, Y) (5.23) 

A(x, b, 0) = P(x,  b), i f  x, y = x + b E X for some b E B; 

0, d) = S(x, d), i f  x, y = x - d E X for some d E D;  

otherwise, 
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where 0 is the IVl-dimensional vector with all entries 0, and B, D C IVJ 
are the sets o f  birth vectors, death vectors, respectively, for individuals, and 
F = (B x (0)) U ((0) x D). P( . )  are the birth rates, S ( . )  the death rates. 
In such processes, births do not occur simultaneously with deaths and vice 
versa, but births in several coordinates may occur simultaneously, and deaths 
as well. 

A Markov process q with transition rates (5.23) is called generalized 
birth-death process. 0 

Remark 5.33. Serfozo [Ser92] reserves the term compound migration and 
com pound birth-death process for reversible Markov processes with transi- 
tion rates (5.22), (5.23). We do not use this convention here because 
migration processes usually are not reversible in time - see [Ke179], Chap- 
ters 2 and 6. I t  follows that every Markov process with multidimensional 

state space ( X  X )  = (icvX, n { i : X i } )  that fulfills the requirements 

of Assumption 2.7 is a generalized migration process. 0 

We are now in a position to define multidimensional birth-death 
processes which fulfill the requirements of (5.4) and (5.24). 

Proposition 5.34. Let T' = (V, B) denote an undirected finite graph 
without loops and double edges and let 

be a Markov process with Q-matrix Q = (q(x, y) : x ,  y E x) .  Assume that 
q is a multidimensional birth-death process with Q given in the definition 
via net increments and decrements in (5.23) from Definition 5.32 as follows: 

The set of possible net births and deaths vectors are of product structure 
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and for all x E X and all j E V there exist probability measures 

and a bounded function A: X 7- (0, oo) such that 

I A(X, b, 0) = P(X, b) = n pj (x,,j,; bj) . w, 
j€V 

if x, y = x + b E X for some b = (bj : j E V) E B; 
= A(x, 0, d) = 6(x, d) = n 4 (xfi(jl; dj) . A(x), 

jtV 

I if x, y = x - d E X for some d = (dj: j E V) E D; 
0, otherwise. 

Then the embedded jump chain o f  the multidimensional birth-death process 
q fulfills the locality and synchronization properties (5.3) and (5.4) from 
Definition 5.20 and so it is a Markov jump random field as defined there. (3 

In Section 3.2 we discussed the reversibility of discrete time Markov 
chains in connection with theorems that provided conditions that guar- 
antee that local and synchronous processes have Markov fields as one- 
dimensional marginals in time; see Theorems 3.14 and 3.15. The same 
question naturally arises in the context of generalized migration processes 
and subclasses thereof. We describe an interesting result from [Ke179, 
Section 9.21, which we present in the notation of multidimensional birth- 
death processes as in Proposition 5.34. 

Definition 5.35 (Spatial process). Let F = (V, B) denote an undi- 
rected finite graph without loops and double edges and let 
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be a Markov process with Q-matrix U = (q(x ,  y) : x ,  y E x ) .  Assume that 
7 is a multidimensional birth-death process with U given in the definition 
via net increments and decrements in (5.23) from Definition 5.32 as follows: 

The set of possible net births and deaths vectors are o f  product structure 

and for all x  E X  and all j  E V  there exist probability measures 

and a bounded function A :  X + (0 ,  oo) such that 

i f  x ,  y = x  + b E X  for some b = (bi : i E V )  E B ,  

with bi = 0, 'd i # j ;  

A(x ,  0 ,  d)  = 6(x ,  d )  = 6j 

i f  x , y = x - d E X  forsome d = ( d i :  i E V )  E D ,  

with di = 0, 'd i # j ;  

0,  otherwise. 

We assume further that any change o f  the state in one coordinate, say j ,  
can be realized by transitions that do not alter the local states at nodes 
other than j .  Then q is a spatial process. 0 

Remark 5.36. A spatial process is not,in general, a Markov jump random 
field according t o  Definition 5.20. 0 

Theorem 5.37 (see [Ke179, Theorem 9.31). The equilibrium distrib- 
ution of a reversible spatial process is a Markov field. 0 
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5.2.2 Markov jump processes with local and 
synchronous transition mechanisms and 
control at jump instants 

In this section we introduce a controlled Markov process with locally in- 
teracting synchronous components under step control. See Section 2.3.1 
for the case of unstructured state space, or [GS69] and the more re- 
cent [GHL03]. Note that the step control mechanism described in Sec- 
tion 2.3.1 allows new decisions only at the jump times (on:  n E N) of 
the controlled process. 

If a continuous time Markov jump process 7 and its associated process 
(1, T )  (Definition 5.19) from their very construction are related to the 
neighborhood system { ~ ( k ) :  k E V) of (V, B), it is natural to assume 
that with respect to the admissible control, a similar restriction of avail- 
ability of information is in force. To formalize this, we introduce the 
Markov property in space for the jump kernel of the continuous time 
Markov process along the lines of Definition 3.10 and for the decision 
making as well; see Definition 3.18 for locality of strategies. We start 
from the general semi-Markov process setting and consider controls that 
are step controls as described in Section 2.3 and action spaces with local 
restrictions, which are described in Definition 5.3. Recall the following 
notation. 

Definition 5.38 (Action spaces and local restrictions). The se- 
quence o f  decision instants is a = ( a n , n  = 0,1, .  . . ) ,  the jump times of 
7 = (rlt: t > 0).  (See Remark 5.5 for a comment on prescribing this set of 
feasible decision instants.) 

(1) The set of actions (control values) usable at control instants is a 

measurable space (A,%) = ( x Ai, @ ai) over F. where Ai is a set of 
i t V  ~ E V  

possible actions (decisions) for vertex i. We assume that Ai is a compact 
metric space with countable basis. 
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(2) If for the decision maker at node i at time an under state cn = x the 
set of control actions is restricted t o  Ay(x) c Ai, we call Ay(x) the set of 
admissible actions (decisions) at t ime on in state x.  We always assume that 
the restriction sets are time invariant and therefore depend on the actual 
state o f  the system only. We denote Ai(x) := A?(x) c Ai, for all decision 
instants an. 0 

Definition 5.39 (Local strategies). Let a: denote the action chosen 
by the decision maker at node i at the instant t, at := (a:: i E V) the 
joint decision vector at t ime t, t E R+. We assume that the strategies 
are prescribed according t o  Definition 5.7 (2) with probability measures 
T?(. I ., . . . , .) and that the decision makers act conditionally independent 
of another as described in Definition 5.7 (3). 

The class of all these admissible local (randomized) strategies is denoted 
by LS. For the further classification of local strategies, see Definition 5.8,  
which applies here as well. 0 

The law of motion of the system is characterized by a set of time 
invariant transition kernels. Whenever the state of the system is $ = xt 
and decision at = at is made, the transition kernel is ~ r { ~ ~ + ~  E C I rt = 

xt,  at = a t )  =: p(xt,  s ,  C ;  a t ) ,  which is homogeneous in time. Then, 
given {$ = xt, at = a t )  the state of the system rlt+s = xt+S in time s is 
sampled according to P (xt, s ,  .; a t ) .  

When applying a control policy T to  a continuous time Markov jump 
process with interacting components q = (t, T )  (Markov jump random 
field), we call the pair (7, T) a controlled version of 7, using strategy T. If 
we allow only Markovian strategies in our control, the controlled process 
will be Markovian as well. The following definition summarizes the dis- 
cussion and recalls merely the Definition 5.9, with suitable adaption to 
the present framework. 
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Definition 5.40. A pair ( q , ~ ) ,  respectively a triple (c ,  T , T ) ,  is called a 
controlled Markov jump process with locally interacting synchronous com po- 
nents with respect t o  the finite interaction graph r = (V, B) ,  i f  the following 
holds: 

= ( E n :  n E W )  is a stochastic process with state space X = x X i ,  
i E V  

T = ( T ~ :  n E W )  is stochastic process with state space R+; 

0 q = (qt : t > 0 )  is a stochastic process with state space X = x X i ,  
icv  - 

and these processes are connected pathwise as follows: 

The R+-valued random variables T~ are the interjump times distributed 
exponential with parameter X(x, a ) ,  which measurably depends on ( x ,  a ) ,  
i.e., on the system state lit = x E X at jump instant t i f  decision at = a 
is in force, and the sequence {tn, n = 0 ,1 , .  . . ) is the sequence of states of 
the process entered just after the jump instants. 

0 o = {on: n = O , l ,  . . . )  with o0 = 0 ,  and on = C:=2=l~i ,  n E N ,  
is the increasing sequence of jump times. Then if t E [an,on+') we have 
qt = tn, n E N .  

0 X(x, a )  is a non-negative and bounded: 0 < X < X(x, a )  < A < cc 
for all x E X , a  E A. 

We assume that i.r = (i.ri: i E V )  is an admissible local pure Markov strategy, 
and that the conditional distribution function of qt is P(x, s ,  .; a ) ,  which is 
Borel measurable on X x R+, and that the transition probabilities of E fulfill 

= K C  1 x a ) ,  K C V ,  y t X ,  aj t Aj xfiGi . (5.24) ( 1 
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The transition probabilities QK(CV I x, a )  are the local jump probabilities 
(which are not, in general, Markov). I f  K = V, we shall write Qv(Cv I 
2, a )  = Q(C I 2, a ) .  

The Markov kernel Q = niSV Qj is said t o  be local and synchronous. 
For comments on the equations In (5.24), see the comments in the general 
semi-Markov setting on page 164 and on the standard Markov chain setting 
for interacting processes after Definition 3.21. 0 

Applying now the results of Section 5.1.4 to the Markovian setting, 
we obtain under the average reward optimality criterion from Defini- 
tion 5.10: 

Corollary 5.41. I f  the smoothness conditions of Theorem 5.18 hold, then 
in the class LS of local strategies there exist a stationary deterministic 
optimal local policy. 0 

5.2.3 Markov jump processes with local and 
synchronous transition mechanisms and 
deterministic control 

In this section we restart from a Markov jump process 7 = (7, T )  with 
synchronized and localized transition kernels (Definition 5.19, 5.20) and 
introduce a different control mechanism. While in Section 5.2.2 the ap- 
plied controls could only changed at jump instants of the process, we 
now prescribe a (then fixed) deterministic sequence of time points when 
the control is renewed. With respect to selecting the control points we 
work with an open-loop control principle, while the selection of the de- 
cision is according to closed-loop principles. These controls are easier to 
implement and therefore are of special interest. We follow in the main 
presentation the ideas that are developed in [Mi1681 for the case of finite 
state space without a localized graph structured space. 
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Let a time homogeneous Markov jump process 7  = ( r t :  t > 0) be 
given as in Definition 5.19 with state space 

We assume that the Xi and so X are compact metric spaces with count- 
able basis. We further assume that the process is local, i.e., (5.3) holds 
and synchronous, i.e., (5.4) holds. So q is from its very definition a con- 
tinuous time Markov jump process with locally interacting synchronous 
components over (r, X ) ,  shortly, a Markov jump random field. 

In this section we consider only finite action spaces and controls us- 
ing action spaces with local restrictions, which are described in Defini- 
tion 5.3. Recall the following notation. 

Definition 5.42 (Action spaces and local restrictions). Decision 
instants are times t E [0, 00). 

(1) The set of actions (control values) usable at control instants is 

a measurable space (A,%) = ( x Ai, @ %i) over T, where Ai is a 
iEV ieV 

set of possible actions (decisions) for vertex i .  We assume that Ai = 

{ai,l, a i , ~ ,  . . . ,ai,,i) is finite and 'Ui = 2At. 

( 2 )  I f  for the decision maker at node i at time t under state qt = x the 
set of control actions is restricted t o  A:(x) c Ai, we call A:(x) the set of 
admissible actions (decisions) at t ime t in state x. We always assume that 
the restriction sets are time invariant and therefore depend on the actual 
state of the system only. We denote Ai(x) := A:(x) c Ai, for all decision 
instants t .  0 

The strategies under consideration are completely deterministic (pure 
strategies). 
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Definition 5.43 (Local pure strategies). Let a: denote the action 
selected by the decision maker at node i at the instant t, cut := (a:: i E V) 
the joint decision vector at t ime t, t E R+. We assume that strategies are 
prescribed by: 

( l a )  A strictly increasing sequence 0 = to < t1 < t2 < . . . o f  global 
decision instants, which may be finite or infinite, and i f  0 = to < t1 < t2 < 
. . < tS is a finite sequence, then tS = cc is allowed, and 

( l b )  a sequence of (deterministic) measurable functions R1, R2, . . . , 
where Rn : X 4 A. 

(2) An admissible local pure Markov strategy i.r = ( i . r t :  t > 0 )  is a 

family of functions {(at: X + A): t 2 0) such that a: (R+ x X,B+ 8 

X) + (A, Z) is measurable. The coordinate functions of the control {at = 

(at: 7 E v): t 2 0) determine the local decisions at the vertices i E V. 
We assume that the/ local decisions at i are made on the basis of the full - 
neighborhood N(i) only. So we have i.rk(x) = T; x- . ( w) 

These policies constitute in the present framework the class LSPhI; see 
Remarks 3.19 and 3.20. 

(3) We denote the class of such admissible local pure Markov strategies 
with deterministic decision times by L S $ ~ ~ .  

Strategies in a E LS;, are encoded as follows. The local policy ai at 
node i is determined by a sequence 

where 0 = to < t1 < t2 < . . . is the prescribed sequence o f  decision instants 
and Ry is the deterministic measurable function on X with values in Ai that 
yield the decision value that is in force during the time interval [tn-l,tn) 
(for the decision maker at node i i f  the state of the system is x). 

We have then at(x) := Ry(x) = R; XN(~) i f  t E [tnpl, tn). ( ) 
The global decision values are sequences T = (R1, tl; R2, t2; . . . ) with 

Rn = (RY: i E v). 
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(4) We use the following concatenation rule for strategies. I f  

T = (R1, t l ;  R2, t 2 ; .  . . )  

is a given strategy, then 

-1 1 - 
T I  = ( R  , t  ; R2, t 2 ; .  . . ; Ej ,  t j;  T )  

is the strategy that applies for t  < tJ 
- 

;rl(t) = Rn, i f  t  E [tnpl, tn) ,  for n E {I, .  . . , j }  

and f o r t  > tj 
7r1(t) = 7r(t - t j ) .  

( 5 )  We denote by LS; the class of admissible local stationary pure 
(Markov) strategies. 

(6) An admissible pure stationary policy from LS; is encoded as (R1, t l )  
= (R,  G o ) .  

We therefore identify such strategy with the function R: X + A. O 

We obtain a controlled Markov jump process (7, T )  with interacting 
coordinates from 7 by incorporating the control 7r E L S $ ~  into the time 
development of the process. It turns out, that due to the fixed times 
when the control changes, the resulting process is Markovian but no 
longer time homogeneous. 

If the strategy applied is from LS;, determined by the function 
R: X + A, we obtain a homogeneous Markov jump process with lo- 
cally interacting coordinates for which weak infinitesimal operator on 
the space M(X)  is given by 

If T = (R1, t l ;  R2, t 2 ; .  . . )  we obtain on any time interval [tnpl,  tn)  by 
the standard construction a time homogeneous Markov jump process 
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with jump kernel 

and intensity function ~ ( x ,  R n ( x ) ) ,  which are substituted into (5.20) and 
(5.25) to obtain the stepwise the infinitesimal generators with domain 
M ( X )  on successive time intervals: 

We can always select a version of the (qn, rn) process with cadlag 
paths on [tnpl, tn ) .  Note that each of these processes has overall bounded 
intensity functions. 

These processes have to be pasted together in a final construction 
step. See [Mi1681 and [Dyn63, Vol. 1, p. 291 for details on the existence 
and the construction. 

5.2.4 Criteria for optimality 

Consider a time dependent controlled Markov jump random field (q ,  a )  
as defined in Section 5.2.2 with random step control ;r E LS or in Sec- 
tion 5.2.3 with deterministic control r E LS;,. If q during [t, t + At) is 
in state x E X and the joint decision a E A is in force at that time then 
a reward r ( x ,  a)& is obtained. r ( x ,  a )  is assumed to be a measurable 
function of ( x ,  a )  and we assume for all x E X ,  a E A 

We denote by Pr;, the probability measure that governs the con- 
trolled process if strategy i.r is applied and the process y is started with 
r10 = xO. With Ez, we denote expectations under Pr;,. 

We consider the following measures to assess the applied strate- 
gies: 
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1. Discounted total reward: 

where e-Pt is the discount factor, 0 < /I < oo. 
This criterion is sometimes called $-criterion. 

2. Average reward (Maximin criterion, see (2.7)) 

1 
$h(xO, T) = lim inf - EzO LT r (ll(t), 7rt (q(t)))dt. 

T-oo T 

This criterion is sometimes called $-criterion. 

Another interpretation of the discount factor e d t  is as follows: 
The process terminates at a random time that is exponentially dis- 

tributed with parameter /I and independent of the process and the con- 
trol. 

In the next section we investigate controlled Markov jump processes 
under completely deterministic Markov control in L S ~ ! , ~  and search for 
optimal policies in this class. Therefore we formulate the following cri- 
teria for policies in LS~!,,,. For other classes, the criteria read similarly. 

Definition 5.44. (1) For a given discount factor P E (0, oo) a strategy 
T* E LS~!,,, is optimal in the class LS~!,,, of  admissible local pure Markov 
strategies with respect t o  the discounted total reward criterion if 

( x O * ) =  sup $ ( x O )  Y x O E X  
T E L S ; ~  

Such a T* is called optimal with respect t o  the discounted total reward 
criterion (under p) or $-optimal. 

( 2 )  A strategy T* E LS~!,,, is called optimal in the class LS~!,,, of 
admissible local pure Markov strategies with respect t o  the average reward 
criterion i f  

$h(xO,,*)= sup $(xO,,), Y x O E X .  
TELS$ ,  
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Such a T* is called optimal with respect t o  the average reward criterion or 
&optimal. 0 

In the following, we shall in the context of discounted reward prob- 
lems refer simply to discounted total reward optimality or 4-optimality 
if the selected is given from the context and fixed. 

5.2.5 Existence of discounted-optimal Markov 
strategies in the class of local 
deterministic strategies 

We fix in the sequel a discount factor P E (0, oo) that is in force unless 
otherwise stated. Optimality or the term $-optimality refers to that P. 

Let {Tt (R), t 2 0) be a semigroup of operators on M (X), the space 
of real valued measurable bounded functions on (X, X) corresponding to 
the homogeneous Markov jump process controlled by strategy R E LS;: 

[ ~ " R l f  (91 (4 = E: f ( d t ) ) ,  f E W X ) .  

Applying Fubini's theorem, the functional $,(R; x) can be written as 

gD(x, R) = Lrn e-" [[T(R)T(., R(.))] (x) dt. 

We introduce an operator L(R; t)  operating on the space M(X)  by 

= e-@' [T" (R)T (., R(.))] (x) ds  + e-" [Tt ((R) f (.)I (2). (5.26) 

Recall the concatenation rule for strategies from Definition 5.43 (4). 
Then for R E LS$, T E LS;,, and t > 0 we have 



5.2. Interacting Markov jump processes 199 

and for nf = (El, t l ;  E2, t 2 ; .  . ; En, tn) E L S ~ ! , ~ ~  with tn < cc and n E 
L S $ ~  we have 

= LL (R', t l )  L ( R ~ ,  t2  - t l )  . L ( R ~ ,  tn - t " ~ l ) $ ~  (n; ) ]  (x). 

The operators L(R,t)  are monotone, i.e., if f l (x )  > f2(x)  for all 
x E X, then [L(R, t)  f '(.)I (x) > [L(R, t)  f 2(.)] (x). This follows from the 
monotonicity of the operators T ~ ( R ) ,  t > 0. 

The proofs of the following theorems are similar to the proofs in 
Theorems 1 and 2 in [Mi1681 for standard controlled Markov chains with 
finite state and action space. 

Theorem 5.45. I f  for n E L S ~ ! , ~  

$pb ,  4 2 $D (x, (R, t ,  7 4 )  

for all x E X, R E LS$, and t > 0, then the strategy n E L S ~ ! , ~ ~  is 
$-optimal. 0 

Theorem 5.46. I f  for strategies R E LS;, and i.r E LS~!,~,  and some 

t E ( 0 , ~ )  
$p (x, (R, t ,  4) L $Ax, 4 

holds for all x E X, then 

Theorem 5.47. Let 
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Proof: From equality (5.26) we have 

= e-"' [T'(R) D; (.)I ( x )  . 

From this and from the relation [L(R, O)$a(., T ) ]  ( x )  = $ p ( x ,  T )  follows 
the assertion of the theorem. 0 

Let R E L S ~ .  Denote 

where 

Construct on G ( R )  a function a( . )  with values in A in the following way: 
a ( x )  is the element from A(z)  with the least index such that 

I t  is easy to see that the set G ( R )  is measurable and the function a( . )  is 
measurable mapping of G ( R )  into A ( x ) .  

Recall that the function a( . )  in general depends on /3. 



5.2. Interacting Markov jump processes 201 

Theorem 5.48. Let R E L S ~ .  I f  G(R) is empty, then strategy R is 
$-optimal. I f  G(R) is not empty, then strategy 

is better strategy R in such a way that 

Proof: Let G(R) be empty. Then for every x E X and every strategy 
R' E LS; 

D;, (x) 1 0 

holds, and from Theorem 5.47 we have that strategy R is $-optimal. 
Let G(R) # 8. Then it is easy to see that on set X \ G(R) 

OE1 (x) = 0 

holds, and on G(R) 
@I (2) > 0 

holds. From this, due to Theorems 5.47 and 5.46, we finally obtain 

Corollary 5.49. I f  for strategy R holds 

then R is $-optimal in LS;, (for this P) .  
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Corollary 5.49 reduces an optimization problem in the class of local 
step strategies with predetermined deterministic decision instants and, 
therefore, of nonhomogeneous controlled Markov processes to an opti- 
mization problem in the class of stationary strategies with predetermined 
deterministic decision instants and, therefore, of homogeneous controlled 
Markov processes. In the following we shall use the below lemma. 

Lemma 5.50. The functional $p(x, R) is a continuous function of R E 
LS;, i.e., i f  Rn i R converge pointwise, then 

converge in every point x E X .  0 

Proof: From boundedness of the operator U(R) on M ( X )  we have (see 
[Sko9O] ) 

tk T'(R) = etQiR) = C - Q ~ ( R ) .  

k=O 
k ! 

From r(y, a)  < I < oo, 'd (y, a ) ,  we have by dominated convergence 
for any x 

From this we obtain for any x E X, t > 0. 

[etUiRn)r (., R"(.))] (z) + [etaiR)r (., R(.))] (x), n i GO. 

Computing gP (x, needs another application of dominated conver- 
gence. 0 

Theorem 5.51. For every fixed > 0 there exists in class L S ~  a $- 
optimal strategy Rp. 0 



5.2. Interacting Markov  jump  processes 

Proof: According to Corollary 5.49 it suffices to prove the existence of 
a strategy Rp E LS; such that 

Let R be an arbitrary strategy from LS$. If G(R) = 8, then R is $- 
optimal (Theorem 5.48) and the statement in this case is proved. If 
G(R) # 8, then we can construct a strategy R' such that 

Note that the strategy R1 can be constructed such that 

- - sup D;!(X), x E X. 
RI t LS;~,, 

These relations show that the strategy R' is a locally maximal improve- 
ment of the strategy R in case if R is not optimal. 

We apply similar arguments to strategy R1 and continue iteratively. 
Thus, we either find during a finite number of steps an optimal strategy 
or construct a sequence (R, R1, R2, . . . , Rn, . . . ) (with Rn E LS;) of 
strategies (which depend on P ) ,  each of which is better than the previous 
one. Since L S ~ ,  is compact in topology of pointwise convergence, we can - 

select from the sequence {Rn} a subsequence {Rn*) converging to some 
strategy Rp E LS$. 

We prove that the strategy Rp can not be improved to some other 
stationary strategy, and assume the contrary: Then G(Rp) # 8 holds, 
and, consequently, we find a point xO E X ,  for which the set G ( R ~ ,  xO) 
(see proof of Theorem 5.47) is nonempty. Select some element a0 E 
G ( R ~ ,  xO). We have 
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Due to  Lemma 5.50 and Lebesgue's dominated convergence theorem, we 
conclude that for every e > 0 we find K = K (xO, a', e) E W such that 
for k > K 

= a ( x O ,  aO) + cnk , where Icnk < E. (5.27) 

We now construct a new strategy by setting 

Then equality (5.27) can be rewritten as 

k 
0 0 D~~~ (x) = ~ ( x  , n ) + en*, 

R:o 

and we have 
k 

D (x) < D ( x )  x E X. 
R:o 

Because the sequence gp x, Rn is monotone and bounded, 0 1) 

Recall (Definition 5.40) that the transition probability P(x, s, C; R) of 
the homogenous Markov process under control strategy R has holding 
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time intensities that are bounded by A. Then 

Because E > 0 is arbitrary, we have a contradiction. The proof is com- 
plete. 0 

Remark 5.52. If Rp is $-optimal, then the optimal reward $ p ( x ,  R p )  
satisfies for all x E X the equation 

and vice versa; any strategy R E LS; that maximizes for all x E X the 
expression in the curved brackets in Equation (5.28) is $-optimal. 

On the other hand, if for some strategy ;r E L S $ ~ ~  the value function 
$ p ( x 7 ~ )  satisfies equation (5.28) for all x E X ,  then for every stationary 
strategy R E LS$ 

D k ( x )  < 0, x E X, 

and due t o  Theorems 5.47 and 5.45, the strategy ;r is then $-optimal. O 
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5.2.6 Existence of average-optimal Markov 
strategies in the class of local 
deterministic strategies 

In this section we find conditions that guarantee that there exists a $- 
optimal strategy in LS;. 

Theorem 5.53. Assume that there exist a constant g and a measurable 
bounded function v(x) on X such that 

Then a strategy R* E L S ~  that maximizes the expression in the waved 
brackets in Equation (5.29) for every x E X is $-optimal, and 

Proof: Let T = (R', tl, R2, t2,. . . ) be an arbitrary admissible local 
pure Markov strategy in LS$. Consider the following functional of the 
controlled process (I, T): 

where ~ ( 0 )  = x, and t E [tn; tn+l) . 
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Assume that interchanging differentiation with respect to t and ex- 
pectation in expression (5.30) is justified. Then, according to (5.29), 

Integrating the last relation with respect to t from 0 to T we obtain 

But @ g ( O )  = v(x) (which is by assumption a bounded function) and, 
consequently, 

1 
$(x, ; r )= lim - @ ; ( T ) I g ,  x E X .  

T-oo T 

On the other hand, 

d R* -az (t) = g 
dt 

and, consequently, 

$(x, R*) = g. 

Thus the strategy R* is $-optimal. 

We finally have to prove that interchanging differentiation and expec- 
tation in expression (5.30) is justified. Denote the expression in brackets 
in (5.30) by UT(t). It is sufficient to prove that for sufficiently small 
At > 0 such that t + At E [tn-l, tn)  holds 
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We have (recall 0 5 r(x, a )  5 I < oo) 
1 
- I uT (t + a t )  - uT (t) I 
a t  

Here I is the identity operator; recall that for given R E LS$ the oper- 
ator Q(R) is a bounded. The proof is complete. 0 

Thus Theorem 5.53 offers sufficient conditions for a stationary strat- 
egy R* to be $-optimal and provides in principle a method to find an 
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optimal strategy. But these sufficient conditions are given as existence 
conditions for bounded solutions of nonlinear equations of Bellman type. 
We therefore describe a further sufficient condition that guarantees the 
existence of a bounded solutions of Equation (5.29). 

For discount parameter /3 > 0 let Rp be a stationary +optimal strat- 
egy and xO be some fixed state in X. We introduce following abbrevia- 
tions: 

Then Equation (5.28) can be rewritten as 

which is (because of O(a)$p(x, Rp)] (x) = 0), I 

Theorem 5.54. Assume that for some sequence pn 7- 0 holds the in- 
equality 

( x ) <  x t X .  

Then there exist a constant g and a measurable bounded function v(x) such 
that relation (5.29) holds. 0 

Proof: Due to Tikhonov's theorem on products of compact sets, the 
set of measurable functions on a measurable space with values in some 
compact space is compact in the topology of pointwise convergence. It 
follows that from the sequence {UPn (x))  we can select a convergent sub- 

sequence {up", (x)} that converges to  some measurable bounded func- 

tion U(x) pointwise on X. Because lgpl < I holds, we find that the asso- 
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ciated sequence converges to  some limit g. Using the Lebesgue's 

integration theorem, from (5.31) we have (5.29). 0 

There is a connection between $-optimal stationary strategies Rp 
for given Band $-optimal strategy R* E LS;, which is formulated in the 
following theorem. 

Theorem 5.55. Let the assumption of Theorem 5.54 hold, especially pn + 

0. Then the limit of every convergent sequence {Rpn1} c {Rp )  is a 4- 
optimal strategy. The existence of a convergent sequence is guaranteed by 
Tikhonov's theorem. 0 

We finally formulate in probabilistic terms sufficient conditions that 
imply that the basic assumptions of Theorem 5.54 are fulfilled. 

Corollary 5.56. The assumptions of Theorem 5.54 are fulfilled if the 
following holds. 

1) For every strategy R E L S ~  the transition probability P(t; x, C; R) 
of  the homogeneous Markov process controlled by strategy R has a density 
p(t; x, y; R) with respect t o  some finite measure p on ( X ,  X), i.e., 

2) The Markov process controlled by strategy R has an ergodic distri- 
bution P(C; R) with density p(y; R) with respect t o  p, i.e., 

lim P(t; x, C; R) = P(C; R) = 
t i 0 0  

3) Doeblin's condition (see [Doo53, p. 2561) holds, i.e., the conver- 

gence p(x, t, y; R) + p(y; R) for t + 0 is exponential. 0 
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Remark 5.57. I f  the existence of $-optimal stationary strategy was proved 
for finite action space A and bounded reward function r(x, a ) ,  then in gen- 
eral, t o  prove the existence of a $-optimal stationary strategy, we have t o  
assume some strong ergodicity of the controlled Markov process [BSLSO] .O 





Chapter 6 

CONNECTIONS WITH  
OPTIMIZATION OF RANDOM 
FIELD IN  DIFFERENT AREAS 

In this chapter we describe selected examples from different fields of ap- 
plications where classical Markov fields or Gibbs fields are successfully 
applied to modeling and optimization of large systems with graph struc- 
tured state space. 

These models are related to the models that we summarized under 
the heading of t i m e  dependent Markov o r  semi-Markov random fields in 
the previous chapters. We believe that these examples will enlighten the 
principles that guided us through the previous chapters although - as 
will be seen soon - there are, in any case, differences to our modeling 
principles. We discuss these differences in any case and so further clarify 
the ways to deal with the large systems we have in mind. 

In Section 6.1 we reconsider the model for diffusion of knowledge and 
technologies that we already presented in previous chapters; see Exam- 
ple 3.41. In contrast to our approach in the literature, there is usually 
optimization on the basis of the overall state description prevalent, but 
usually no time parameter is considered. 

In Section 6.2 we discuss by very limited examples the connection to 
image recognition, image segmentation, and restoration. Here we do not 
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go into any technical details, but use the proposed problems to  clarify 
the necessity for parameter estimation for random fields that serve as 
models for image generation. 

An estimation procedure that uses an iterative stochastic approxi- 
mation is described in Section 6.3. Although there is no generic time 
development in the problem setting, nevertheless in this iteration pro- 
cedure, a stochastic process with one-dimensional marginals that are 
random fields emerges. 

In Section 6.4 we describe an approach developed by Belyaev [Be1001 
for the classification and recognition of colored pictures. The classifica- 
tion mechanism is not specified in detail there, but he considered the 
probabilities for successful classification and for misclassification of the 
final decision to be known. Assuming locality properties similar to those 
we used to investigate throughout this text, he arrives at limit theo- 
rems for the classification procedures. Again, there is no generic time 
development in the problem setting but due to the steps 

observation and estimation, 
classification and assessment of the procedure, 

there occurs an iteration where a localized kernel plays the central role. 
So again, an iteration with one-dimensional marginals that are random 
fields emerges. 

In Section 6.5 the microscopic behavior of financial markets is dis- 
cussed along the lines of [Voi03, Chapter 81. Discrete populations of 
agents buy and sell units of one stock and by observing the prices over 
time, they interact by incorporating the observed behavior of other 
agents into their decision process. If this decisions depend on observ- 
ing the agents in their neighborhood only, we can describe the sequential 
trading decisions by local and synchronous processes. But in general this 
is not the case because the price process usually depends on the global 
behavior of all agents and is incorporated into the decisions usually. We 
discuss the relations of different models to our modeling principles. 
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6.1 DIFFUSION OF KNOWLEDGE AND 
TECHNOLOGIES 

In Example 3.41 we discussed the problem of competing technologies 
used by different companies and pointed out the relation to models of 
classical statistical physics. The relevant model for the case of only two 
different technology levels is the stochastic Ising model. We describe 
some details here and discuss further model specifications. 

Definition 6.1. Consider an undirected graph r = (V, B) and local state 
spaces Xi = {+I, -1) for all nodes i E V. The global states x = x v  E 

X = {+I, are called configurations, and considered as functions on 
r with values f 1. A function 

determines the energy of configuration xv .  A physical system with phase 
space X = {+I, -ljV, which consists of all configurations x v  and an 
energy function Uv(xv) for the configurations defined by (6.1), is called an 
king model (on a finite graph). 0 

Under stationary conditions the probability of configuration x v  is 

where Zv = CZvEx exp { - Uv (xv)) is the partition function (normal- 
izing constant). The distribution (6.2) is a Gibbs distribution for the 
corresponding Ising model. 

Consider a random field I: (R, F, Pr) + (X, X) with distribution 
given in (6.2). (Here X = 2 X . )  

For all K C V the expectations (under the distribution from (6.2)) 
E nktK Ek are called the correlation functions or moments of the distri- 
bution (6.2). 
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For every K = {kl, .  . . , k,) c V the joint distribution 

where {xk,, . . . , xk,) E {+I, -l)li is an arbitrary configuration on K ,  
can be computed via the correlation functions. It can be shown [MM85]: 

where k is the number of values xi = -1, i E K .  
If En:=, Clc is not known, then we need a statistical estimate of the 

respective moments such that we can then compute an estimate for the 
joint distribution of (Ik, k E K ) .  

In statistical physics, the graphs under consideration are finite regular 
sublattices of Zn for some n. The thermodynamic limit is then obtained 
by letting the sublattice grow to Zn. This limit is used as approximation 
for large graph structured systems. The problem that arises is that 
of existence and uniqueness of the limiting distribution. As a simple 
example, consider in the conditional probabilities in Equation (3.6) with 
the following specification 

where yk and x j  take values f 1, and /3 > 0. 
Under this condition there exists some P* such that over the infinite 

lattice Zn, a unique invariant and ergodic distribution exists if 0 < /3 5 
p *  [Lig85]. But even in this case, to determine equilibria in explicit form 
is not an easy task. For a special result see 0. N. Stavskaya [Sta71] 
where the conditional probabilities qk (yk I x ~ ( ~ ) )  are equal for all k and 
the states at different vertices in any moment change independently of 
each other. 
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Example 6.2. We reconsider Example 3.41 concerning the optimal policy 
of a company when there are several firms with competing technologies. 
Assume that the i - th  company chooses between only two different levels of 
technology, denoted f 1, and assume that there is no control. I f  ri(j) is the 
reward from selling during one time period products that are produced on 
level j by the i-f irm and i f  fi(j) is the steady state probability that the i - th  
firm will produce on level j with i = 1 , .  . . , n, and j = f 1, then the mean 
reward of firm i in one period is 

The form o f  the transition probabilities (3.6) in this example with finite 
interaction graph implies positive recurrence o f  the Markov chain and there- 
fore (6.3) is the long-run time average as well. The fi(j) depend on the 
neighborhood structure of the graph and additionally on (the temperature) 
p. For a fixed reward function we therefore can optimize the stationary re- 
ward per time unit in p over some prescribed interval. This would be subject 
of classical global optimization. 

Local optimization in the sense developed in the previous chapters would 
require a different approach. We have t o  open the opportunity t o  the firms 
t o  control some additional parameter that has t o  be introduced into the 
system and would give rise t o  (local) costs for, e.g., using new machines, 
applying more expensive control and maintenance, and so on. 

A way t o  introduce local controls was sketched in Example 3.41, referring 
t o  local temperatures at different nodes. 0 

In this and similar ways, we can apply the results of Section 3 to 
Ising-like systems. 

An interesting related model of evolutionary driven industrial dy- 
namics where firms use different technologies and may get knowledge of 
up to then hidden technological routines of other firms is described in 
[KK92]. The model is used as a basis of simulating the market develop- 
ment under these sort of information diffusion. The authors do not rely 
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on neighborhood structures but seemingly, this is a promising topic to 
be included explicitly into the picture. 

Another simulation study of innovation in complex technology spaces 
that is closer to our neighborhood concept is performed by [SV02]. Their 
mathematical model relies on the concept of percolation processes, which 
are graph structured models developing in discrete time in their setting. 
For further related research. see the list of references there. 

6.2 IMAGE RECOGNITION 

There are many approaches to the problem of images recognition and 
identification for digital images. One approach is based on the choice 
of (different) probability models for the representation of the images. 
Assuming we have some a priori information about the true image, this 
should have strong influence on the model selection process. And the 
choice of the model mainly determines the solution method for the prob- 
lem. The approach we have in mind is to use random field models as 
representations of the images. There is much literature dealing with 
these methods and we will not directl contribute herey. Our intention 
is to give the reader an introduction as to what the directions are, and 
where the random fields apply. For more details, see especially the book 
of Winkler [Win951 and the many references given there. We determine 
then adequate parameters of the random field's distribution such that 
varying the parameters yields a versatile class of random fields and their 
distributions to fit an observed image. 

A standard assumption that is justified in many areas of image recog- 
nition or segmentation is that the random fields underlying the obser- 
vation are Gibbs fields over some graph r = (V, B), where V is usually 
some finite subset of z2 with B often the natural neighborhood graph. 
Then natural parameters are the potential or the energy of the distri- 
bution; see Definition 3.8. While the potential may be a complicated 
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high dimensional parameter, the energy is a function of the configura- 
tion only, and so is easier to access. Often the energy is defined in a way 
that it still depends on an additional single parameter, usually called 
temperature, such that with the notation of Definition 3.8 for a given 
(Gibbs) potential u and any subgraph J E V, the energy U(xJ) of the 
(local) configuration X J  E x Xi under given temperature T E JR is 

i E  J  

If the potential u is not specified, we are faced with nonparametric esti- 
mation, while assuming that the potential u is prescribed we can perform 
parametric estimation, e.g., apply Maximum Likelihood methods. 

Problems of image recognition and classification in the setting de- 
scribed above then are as follows. 

Assume an ideal or s tandard  image exists, the distribution of which 
is known to us, and we have made observations (pictures). We have to 
decide whether the observations are realization of the standard image. 
This can be done by comparing the estimated potential or energy with 
that of the standard image. So we have to estimate either the potential 
or the energy or often, the temperature only. It turns out that in many 
cases, the problems can be converted into a question on maximizing or 
minimizing the energy or the temperature. There are many methods to 
perform this by using stochastic optimization algorithms. 

In practice there are many variants of this problem: 

0 There are several s tandard  images and we have to decide to  which 
our observation fits best. 

0 We do not have prescribed s tandard  images but have to extract 
by statistical methods form a first set of data the parameters of inter- 
est. And then proceed as above. This occurs often in connection with 
machine learning. 

0 The standard image may be perturbated by noise (with either 
known or unknown distribution). 
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6.3 PARAMETER ESTIMATION 

In this section we sketch a simple example of how to estimate the para- 
meters of random fields in connection with the image recognition prob- 
lems described in the previous subsection. In our description we follow 
[GimSO, GZ89, Za1911. For a short introduction into the basic principles 
of maximum likelihood estimation in the context of random fields, see 
[Win95, Sections 131; for more information on spacial maximum likeli- 
hood estimation, see Section 14 there. 

We consider a random field 

over F = (V, B) which is a Gibbs field with distribution 

where the set u = (uc: C C V) of functions uc: x Xi + R is a Gibbs 
ieC 

potential, i.e., u c  vanishes for all C c V that are not a clique. Z is the 
partition function (normalization constant). 

The potential +uc(.) in this example is therefore parameterized by 
the (generalized) temperature T, or by X = +, and so are the energy U(.) 
and the distribution PT. Note that due to the finite underlying graph 
for our random field, the notion of a critical temperature does not occur, 
so from the strict positivity it follows that the conditional distributions 
(specifications, see Definition 3.6) uniquely determine the Gibbs field. 
Our problem is in principle a standard one: 



6.3. Parameter estimation 

For an observation x E X find 

i.e., find the maximum likelihood estimator for the temperature parame- 
ter T for an observed configuration of the field I. 

We need the following result. 

Theorem 6.3 (see [GimgO, GZ89, Za1911). Consider the class of 
Gibbs fields with prescribed Gibbs potential from (6.4). Then for every 
configuration x E X the function 

has a unique maximizer Tmax(x) = argmaxT PT(x) and i t  holds: 

where U is the energy function, ETmax(z) is expectation under PTmax(z), i.e., 
integral under the Gibbs distribution with potential u(.) and with tempera- 

ture Tmax(x). 0 

From Theorem 6.3 there exists a unique solution to (6.5), which we 
compute by stochastic programming. It follows further from this theorem 
that for estimating the unknown parameter T of an image (i.e., a Gibbs 
field), we must compute the expectation of the energy function U(.) 
under the true distribution with parameter T,,,(x). This is often a 
hard computational problem because of the size of the configuration 
space. Therefore approximation of this expectation is needed, and then 
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using this in the solution of the optimization problem. The problem 
arises to  prove convergence of the procedure. 

For simplicity we set X = and solve (6.5) for A: 

Amax (x) = arg max PA (x) . 
T 

The convergence of our solution procedure follows from Theorem 6.4 
below, which deals with the following approximation scheme. 

Let (0, F, Pr) be a probability space and E = [a, b] with 0 5 a < b 5 
m. Let the function 

F : E x R + J R  

be F-measurable for each fixed x E E. We consider the maximization 
problem for the function (x) = E F (x ,  w), x E E. We define the random 
sequence 

where 

Ek = tk(w), k E N, is a sequence of random variables (stochastic 
gradients), which satisfies E [tk 1 xO, x l , .  . . , xk ]  = -&a(,:') for all xk E 
E, k E N, 

proj=(.) is the projection operator , which is the identity on E and 
maps all y < a on a ,  and all y > b on b, 

pk, k E N, is a sequence of non-negative numbers, 
0 xO is some initial value in E. 

Theorem 6.4 (see [Erm76]). Assume that the function @(x) is concave 
and differentiable on E and the following conditions are satisfied: 

I)  E [ ( ' 1  I xO, xl,  . . . , xk] < C,  for some c < m; 

2) C E O p k = m  C E 0 p ~ < ~ .  
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Then 
x k - x * = o ) = I ,  

where x* E E is a maximizers of @(x). I f  @(x) is strictly concave, then x* 
is uniquely determined. 0 

We apply Theorem 6.4 to compute the required maximum likelihood 
estimator. First we compute for fixed configuration (observation) x E X 
the derivative with respect to X of Px(x): 

where Ex is expectation with respect to PA. 
If for a fixed observation x E X condition (6.6) of Theorem 6.3 is 

satisfied, then it is easy to see that the maximum of Px(x) is attained at 
X = 0. If on the other hand, condition (6.7) of Theorem 6.3 is satisfied, 
then the point X for which Ex U(.) = U(x,) holds is stationary for P(.)(x) 
according to (6.9). This is immediate from strict positivity of the random 
field's counting density. So the problem to find maxx Px(x) is equivalent 
to computation of the root of the function R(X) = Ex U(.) - U(x). 

We apply the iterative procedure (6.8) to compute the optimal X = 

X,,,(x) for observation x E X, which is explicitly 

The random variables ck are computed as follows: 

where ( ~ ( x ) ) ~  is an estimator for E X k  U(.): 
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where vZ, i = 1, . . . , N ,  is a sequence of random fields with distribution 
Pxk. These ~ ~ n d o m  fields are simulated in course of the iterations at 
step X: and ( ~ ( x ) ) , ,  is therefore an estimator for EXk U(.). It is proved 
in [Za191] that (U ( x ) ) ~  is indeed a consistent estimator for EXk U(.). 

From Theorem 6.4, it follows that 

Using classical results of stochastic approximation, it can be proved 
that under some additional technical assumptions for the sequence 

a central limit theorem holds [NH73, p. 1511, [KKN80]. 

6.4 CLASSIFICATION AND RECOGNITION 
PROBLEMS 

In this section we describe a method developed by Belyaev [Be1001 to 
identify and classify colored pictures. We assume a fixed colored picture 
is given but the observation of the picture is perturbed by noise. The 
picture is defined pixel by pixel on a finite regular graph V = {(i, j) : 1 5 
i 5 n, 1 5 j 5 m) C z2. The edges of the graph are given by the 
natural nearest neighborhoods N(i ,  j) = {(i, j+l), ( i+ l ,  j), (i, j- 1), (i- 
1, j ) )  for interior points of V and the restricted similar neighborhoods 
for boundary points. So the picture is a function 

where K is the set of admissible colors, IKI = ko. But instead of the 
deterministic field. we observe a random field of colors 

(: (62, F, Pr) + (X, X) = ( K ~ ,  av) 
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where A = 2K. 
Belyaev does not make assumptions on the structure of the noise, so 

we have applicability of his results to general observations. He assumes 
that a certain classification procedure is applied to recover the original 
picture, i.e., based on the noisy observation x = c(w) E X to associate 
to each pixel either a color from the set K ,  or the symbol q5 f K ,  which 
indicates that assignment of a color is not possible. We denote by KO = 

K U (4) and refer to q5 as a (generalized) color as well. The classification 
procedure can be a randomized algorithm. The main assumption for us 
to assess the quality of the classification is on the probability to  correctly 
assign the colors, or on the error probabilities. Belyaev prescribes that 
the interplay of noise and (randomized) classification procedure results in 
a structure of the classification probabilities that strongly resembles our 
properties of synchronization and localization that occurred throughout 
the previous chapters; see, e.g., Definition 3.10. 

Assumption 6.5 (Conditional independence and local structure 
of classification). The result of the classification based on the observation 
is a random field 

such that for any pair of pixels {(&, jh ) :  h = 1,2)  holds: 
Given x E X and colors { lh  E KO, kh E K :  h = 1,2, ) 

i.e., these transition probabilities are local and pairwise synchronized. (3 

Assumption 6.6. The probabilities for classification 
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k E K ,  I E KO are known functions of the observations x ~ ( ~ , ~ ) .  

The matrix 

which consists of the probabilities of all possible classifications, has ko 
rows and (ko + 1) columns. We fix the last column to refer to 4. Consider 

the transposed (ko + 1 x ko) matrix PT (x~(~,~)). 
For each h E KO, delete the h-th row of the transposed matrix to 

obtain the (ko x ko) matrix Ph . SO IP4(.) is obtained by deleting ( 1 
the last row for each local observation x~(i,j). 

Assumption 6.7. Under any observation xN(i,j) the classification proba- 

bility matrices Ph , h E KO, are of rank ko. 

We define the respective inverse matrices by 

for each h E KO. 0 

Let us denote the realization of the randomized classification proce- 
dure 

C* : (0, F, Pr) + (Xo, XO) = (K:, fir) 

which yields for each pixel ( i ,  j )  E V some classification cm(i, j )  E K:. 
Assessing the goodness of fit for a classification would need in princi- 

ple comparison with the underlying fixed picture (the colors of the pixels 
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c(i, j)) with the approximated classifications cm(i, j), obtained from the 
observation x(i, j) . 

Recall the use of indicator functions; see page 10. Let 

So for k # 1 we see that with increasing nLl the goodness of the clas- 
sification of pixel (i, j) decreases. But the values nEl are unobservable. 
Therefore we have to find some unbiased estimator for the nLl and to 
study the asymptotic properties of the estimators. 

Starting from the observation that under Assumptions 6.5 and 6.6 

Belyaev [Be1001 derived the following unbiased estimators for the true 
color of pixel (i, j) :  

In general, we may use weighted unbiased estimators of the following 
form [Be1001 : 

where wk = { w ~ , ~ :  h E KO), and for all k E K wk,h 2 0,  h 

C h E l i o  W M  = 1. 
Now let N;, be the random number of pixels for which 

holds in the (unobservable) underlying picture and Cm(i,  j) 
approximate random classification. Similarly to (6.10) we have 

E KO, and 

c(i, j) = k 
= 1 in the 
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For this number we obtain similarly the unbiased estimator N;l 

The following asymptotic properties are proved in [Beloo]. 
Let N = xkEK,lEKo N k I  be the total number of pixels and define the 

rescaled deviations 

where 

For fixed observation xN(i J )  from Assumptions 6.5, 6.6, and 6.7 the 

random variables are independent and have mean 

zero. The brlow theorem then follows. 

Theorem 6.8 (see [Beloo, Theorem 11). Assume that Assumptions 6.5- 
6.7 hold and consider the unbiased estimators o f  the indicators l ( c ( i ,  j )  = 

k )  from (6 .11) .  
Then for the variances &(N) of the deviations D k l ( N )  and for the 

covariances ck1,ll;k2,l2 ( N )  of the pairs ( D k l , l l  ( N ) ,  D k 2 , 1 2 ( N ) )  of deviations, 
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we have unbiased estimators of  the following form. 

G l  ( N )  
1 

and 

for k ,  k1, k2 E K ,  I ,  11,12 E KO. 0 

Belyaev proved [Be1001 that for N 7- oo, the joint distributions of the 
matrix of deviations ( ~ ~ 1  ( N )  } k E K , l E K o  converges weakly to a family of 

ko x (ko+ 1)-th dimensional normal distributions. Here weak convergence 
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is generalization of weak convergence; see [Be197, BSdL97, BSdLOO]. 

In the spirit of the previous chapters, we can now introduce cost 
functions depending on incorrect classification and then introduce con- 
trols for the functions Co(i, j), respectively co(i, j ) .  Thus we may define 
iterative procedures to enhance the classification using methods similar 
to those developed in Chapter 3. 

6.5 STATISTICAL MECHANICS OF 
FINANCIAL MARKETS 

Mathematical models for the microscopic behavior of financial markets 
are collected from the literature and described in [Voi03, Chapter 81. 
Discrete populations of agents buy and sell units of one stock and by 
observing the prices over time, they adjust their trading decisions and 
behavior. Depending on the assumptions, these agents behave Markov- 
ian in time, or act with a longer memory. With Markovian assumptions 
in some examples occurs a behavior that resembles the equilibrium be- 
havior of Ising models or spin glass models, which are prototypes of 
Gibbsian distributed systems. 

We describe in the following some details of the market models that 
are related to our optimization procedures in the models of the previous 
chapters. 

There are N agents located at the vertices of some graph r = (V, B)  
with IVI = N. The wealth of the agent at node i (we shall call her i 
from now on) is at time t E N 

Wi (t) = Bi (t) + @i (t) . s ( t )  (6.12) 

where Bi(t) is the cash, a i ( t )  the number of shares (of one stock) owned 
by her. S( t)  is the spot prize of the stock. Trading is synchronous 
according to the following rules. 
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0 Agent i decides to change her a i ( t )  by an amount (positive or 
negative, buy or sell) of 

where yi, ri are randomly chosen but then fixed for agent i, Xi(t) = 

fi ( ~ ( t ) ,  S ( t  - I ) ,  S ( t  - 2), . . . , S( t  - T)) is determined individually by 
a utility function f i  from the price history, usually as moving averages 
(with window size T) over different functionals of the prices with some 
additional weighting. 

0 In a next step, all demands and all offers are pooled to  a total de- 
mand D(t)  and a total offer O(t) ,  and then the individual offers rescaled 
according to  a simple mechanism which yields some value 

that is transformed to agent i as the market's reaction according to her 
market orderloffer Qi (t) . 

0 This finally results in her new wealth at time t + 1 according to 

a i ( t  + 1) = a i ( t )  + Aai( t ) ,  

Bi (t  + 1) = B~ (t) (1 + ci (t)) - @i (t) . S( t )  (1 + 7r ) .  

q ( t )  is a very small independent perturbation, ;r represent transaction 
costs. 

0 Then the new price is fixed to 

In this model the interaction of the agents is a globally determined 
interaction, because in computing (6.14), all the offers and demands 
are used. Further in (6.13), the price S( t )  is incorporated and the 
latter is determined by the behavior of all agents. We conclude that 
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W = W(t) = (Wi(t): i E V) : t > 0 is a spatiotemporal process that ( 1 
has synchronized transitions but the transitions are by no means local. 

This model is transformed into a simulation model, and the outcomes 
are discussed and compared with results from simulating other models 
[VoiO3, p. 219-2251. 

Closer to  our models are the next market models that Voit describes. 
While in the previous model the interaction of the agents is only via an 
individual reaction on the series of spot prices, which means no individual 
neighborhoods exist, such individual neighborhoods defined by the edge 
set B now come into the play. 

We consider the wealth process from (6.12). Trading is synchronous 
according to the following extended rules. 

0 It is additionally assumed that at one time instant, at most one 
stock can be bought or sold by an agent, 

0 The decision is according to some individual thresholds t:(t) 

+1, if K( t )  > ~ + ( t ) ;  

0, if Y,(t) 5 t+( t) ;  

- 1, if t i  (t) < K (t) < t i  (t) , 
and Y,(t) can be thought to be a trading signal. 

0 For agent i K(t) is computed as follows: 

where a ,  b E R, u(., .) is a Gibbsian interaction potential (see the Defini- 
tion 3.8), vi(.) represents idiosyncratic noise of the traders, and ~ ( t )  is a 
common noise field. 

Taking in the Definition 3.8 for the potential u({i)) = avi(t) + be(t), 
then Y,(t) can be considered to be a (time dependent) energy of a "Gibb- 
sian process" with a nearest neighborhood pair potential. For more de- 
tails, see [Voi03, p. 2361. 
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Although this development is up to now in accordance with our syn- 
chronous and local transition operators, it turns out that the wealth 
process (6.12) itself does not share the locality property. This is due to 
the fact that the new prices are generated by a mechanism that incor- 
porates global trading information in a way that resembles (6.15). 

Summarizing: The market models share to a certain extent the 
Markov property with restricted memory in space and time for our time 
dependent Markov random fields, but there is - at least in the models 
described here - common global information required that violates the 
standard definitions of Markov random fields. This would even continue 
to hold if we enlarge the state space in a way to  include the T-past of the 
moving averages into the actual state of the systems by the supplemented 
variable technique. 
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