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Preface

What is Immunosenescence?

The number of elderly people is steadily increasing in most countries. Concomi-
tantly, the number of age-related diseases is unfortunately also increasing. One of 
the leading causes of death in the very elderly is infection, with cardio-vascular 
diseases and cancer less prevalent than in younger elderly. All three major patholo-
gies are to some extent related to the immune system due to its well-known but still 
imperfectly investigated deregulation during aging.

Thus, the large amount of data accumulated during the last decade or more has 
allowed a better but still incomplete understanding of all the complex alterations 
affecting the immune system with aging. Although we do not know everything, we 
feel that it is important for the scientific community to become more acquainted 
with the corpus of knowledge recently generated in this domain, presented in a 
manner providing a critical evaluation of the current status of research. Many 
accepted ideas have changed during the last decade, such as the effect of aging on 
the innate immune system, antigen presentation, the cytokine imbalance and low 
grade inflammation. If not exactly a paradigm shift, the time seems ripe to present 
this critical evaluation and update of the state-of-the-art in these different areas. We 
perceive a great need to assemble this current knowledge in one volume by collect-
ing contributions from the most eminent researchers in the field from all around the 
world. In this way, we aim to facilitate a synthesis of the different aspects of the 
disparate disciplines in ageing research to focus on immunosenescence for the first 
time (basic and clinical, molecular, cellular, biochemical, genetics). We hope this 
multidisciplinary approach from the aging, immunity and inflammation community 
will also be important for future innovative research in this domain.

Thus, this book will have as its main themes Aging, Immunity and Inflammation, 
with an emphasis on studies in humans. However, as data are not always available 
in this species, work in experimental animals will be also treated as appropriate. A 
large number of colleagues responded enthusiastically to our proposal and contrib-
uted with very high quality chapters. We begin with a description of Methods and 
models for studying immunosenescence. We continue with Cellular immunosenes-
cence, treating most specifically T cells, B cells, neutrophils, antigen presenting cells 



and NK cells. We then proceed to mechanisms. In this context, receptor signaling, 
the role of mitochondrial activity, the proteasome, cytokine status and the neuro-
endocrine-immune netweork are treated. The important but very challenging area 
of the Clinical relevance of immunosenescence for disease states is covered next by 
the individual treatment of infections, autoimmunity, cancer, metabolic syndrome, 
neurodegeneration and frailty. Finally, and even more challengingly, the last part of 
the book is devoted to possibilities for eventual intervention and modulation. We 
particularly emphasise nutritional aspects, lipids and experimental interventions. In 
this way we feel that we cover the whole range of areas from models, through basic 
molecular mechanisms to the clinical relevance and finally eventual modulation.

One of the main objectives of this book is to present in a systematic way our 
current knowledge in the field of the immunology related to aging. So do we now 
know what immunosenescence is? It is still difficult at answer this question, but we 
hope even the most specialist investigator in the field will find concepts and ideas 
within the book which will help him or her to approach an answer to this important 
question more closely than before. We would therefore sincerely like to hope that 
we have created an authoritative, innovative and thought-provoking book dedicated 
for the first time to this topic alone. We also like to hope that this volume will help 
to attract a new generation of researchers to the field of immunosenescence as an 
expanding and vital research arena.

Tamas Fulop Quebec, Canada
Claudio Franceschi Bologna, Italy
Katsuiku Hirokawa Tokyo, Japan
Graham Pawelec Tübingen, Germany
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                                        Abstract:        The OCTO Immune Longitudinal Study is a population-based study 
of ageing in a sample of 102 Swedish octogenarians with the aim to explore age 
changes of the immune system using a sample selected for good health. Data collec-
tion was performed in 1989, 1990, 1991 and 1997. An Immune Risk Profile (IRP) 
associated with increased mortality was characterized by high CD8+, low CD4+ 
T-cell counts and a poor T-cell proliferative response, inversion of the CD4/CD8 
ratio and evidence of persistent cytomegalovirus infection was identified. The sub-
sequent NONA Immune Longitudinal Study of 138 Swedish nonagenarians was 
performed in 1999, 2001, 2003, and 2005, not excluding individuals due to compro-
mised health. The overall aim was to examine predictive factors for longevity and to 
further investigate in greater depth the immune risk profile identified in the OCTO 
Immune Study in the context of functional and disability parameters also examined 
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in the NONA. The immune panel included the analysis of T-cell subsets, inflamma-
tory markers, virus serology, cytokines, TCR clonotype mapping, and functional 
and phenotypic analysis of virus specific CD8+ cells by HLA/peptide multimers, in 
collaborations between participants of the EU funded T-CIA project.  

     The present chapter report findings from the longitudinal studies of Swedish 
octo-nonagenarians with focus on IRP and its associations with persistent virus 
infection, CD8+ T-cell differentiation, cytokines, cognitive functioning, inflamma-
tory activity, virus specific CD8+ cells, CD8+ T-cell clonal expansions and longev-
ity. It also reports on low grade inflammation processes of importance in predicting 
longevity in the very late life.  

         Keywords   :     Immune risk profiles    •     Immunosenescence    •     Longitudinal studies    • 
    T-cells    

         1 Introduction  

   The very old constitute the fastest growing age segment in developed countries. 
From a societal and population perspective, this demographic trend is also accom-
panied by an increase in the number of very old individuals with compromised 
health and significant requirements for service and health care. From a physiologi-
cal perspective, the robustness of the immune system is particularly important in 
this age segment, considering the fact that the incidence of death due to infection 
diseases seems to continue to increase although mortality related to cardiovascular 
disease and cancer may level off in many populations (Vasto et al. 2007).  

   Immune studies of elderly populations, however, so far have mainly been con-
ducted on individuals in their 60s and 70s. Few studies have focused on samples 
over 80 years and still fewer have employed longitudinal designs that allow stud-
ies of intra-individual change (Pawelec et al. 2005). In the Swedish OCTO and 
NONA Immune Longitudinal Studies (Wikby et al. 1994, 2002), we deliberately 
examined individuals in very late life because of the substantially elevated risk for 
compromised health, morbidity, and mortality. The overall aim was to provide bet-
ter understanding of processes and mechanisms related to intra-individual change 
in various parts of the immune system regulation in very late life. An aim was also 
to identify presumptive predictors for subsequent mortality and clinical parameters 
related to the substantial morbidity/comorbidity observed in late life. From a clini-
cal perspective detection of predictive markers may enable interventions that could 
assist in various improvements of quality of life for individuals in this rapidly grow-
ing age segment.  

   The OCTO Immune Longitudinal Study is a population-based study of ageing 
and the immune system in a sample of Swedish octogenarians (Wikby et al. 1994). 
It was started in 1989 in Jönköping, Sweden, as a collaboration between researchers 
at the Institute of Gerontology and the Department of Natural Science and Biomedi-
cine, School of Health Sciences, Jönköping University, the Department of Micro-
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biology, Hospital of Ryhov, Jönköping and the Department of Veterinary Science, 
Penn State University, USA and ended in 1997 when the vast majority participants 
were deceased. The subsequent NONA Immune Longitudinal Study of nonagenar-
ians was initiated in 1999 to extend and refine findings from the OCTO Immune 
Longitudinal Study identifying an Immune Risk Profile (IRP) associated with an 
elevated mortality rate (Wikby et al. 2002). The NONA immune also became part of 
the EU supported programs  Immunology and Ageing in    Europe   , ImAginE,  (Pawelec, 
Caruso 2003) and  T cell immunity and ageing, T-CIA,  (Koch et al. 2005) creating 
collaborations between the NONA immune researchers and several European labo-
ratories participating in these networks. The OCTO-NONA Immune Longitudinal 
Studies have investigated predictive factors for longevity with focus on immune risk 
profiles in a context of functional and disability health parameters of importance 
in late life. The present review summarizes some of the main findings and lessons 
learned from these studies.  

       2  Methodological Design and Sampling Considerations 
in Ageing Studies  

     2.1 Design Considerations  

   First we address the significant design and sampling considerations that directed our 
research. The two methods used in population-based studies of ageing are the cross-
sectional and longitudinal designs (Wikby et al. 2003). The most common design 
is the cross-sectional, in which two or more age groups are compared at a single 
occasion. Age changes are typically inferred from the observed age differences in 
mean values. This design provides a procedure that is logistically easy and fast and 
less expensive than the longitudinal design. However, great caution is necessary in 
the interpretation of cross-sectional data since age differences may be confounded 
by the fact that birth-cohorts have been exposed to various environmental exposures 
and socio-cultural influences (Wikby et al. 2003; Pawelec 2006). Another confound 
that become more of an issue with age is that of selective mortality (Wikby et al. 
2003). As a study population ages it becomes gradually more selected, since deaths 
do not occur at random. For example, if a high value in a variable is deleterious, 
death is likely to occur first in individuals with high values and last in individuals 
with low values. In a cross-sectional study an observed difference in mean values 
between age groups may be incorrectly interpreted as a real age change rather than 
as an effect of selective mortality. Many studies have characterized changes in the 
immune system with age, but a number of these have yielded conflicting results, 
partly due to the fact that the vast majority of these studies are cross-sectional 
(Wikby et al. 2003).  

   In a longitudinal design (Wikby et al. 2003) individuals are followed across time, 
usually with a number of years in between measurement occasions. This allows 
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the detection of intra-individual change and minimizes many of the confounding 
artefacts likely to emerge in the cross-sectional design. Although the longitudinal 
design represents the superior alternative for conducting ageing research, the use 
of this design has been very limited, particularly in studies of the immune system. 
The main reason is that such studies are expensive and require considerable effort, 
financial support, and commitment of personnel. In addition, longitudinal studies 
require careful coordination, standardised procedures, and control of studied panels 
to avoid dropouts. A main caution to note in the use of a longitudinal design is 
the involvement of a possible confounding between age and time of measurement 
effects. Time of measurement confounding includes numerous factors, such as the 
motivation and interest of the participating subjects, experimenter effects includ-
ing changes in personnel and their motivation, and in the methods, techniques and 
essays used across time. Many of these problems can be compensated for by includ-
ing a younger group for comparisons across measurement occasions. The immune 
system changes that occur across times of measurement will then be negligible in 
the healthy young people compared to the very old. Also, restricted time periods 
between the measurements and the use of identical methods will prevent time of 
measurement effects.  

       2.2 Sampling Considerations  

   Advancing age is typically accompanied by an increased prevalence of compro-
mised health and diseases (Jeune 2002). This is one of the primary problems in 
the selection and definition of a sample in population-based studies of ageing. 
To overcome this problem, most studies have used various selection schemes to 
exclude individuals with underlying diseases from participation in studies of the 
immune system. The stringent  SENIEUR  Protocol (Ligthart et al. 1984) represents 
an example of a widespread application of a set of exclusion criteria used to select 
individuals in good health, to be able to distinguish between age changes caused by 
 primary ageing  and  secondary ageing , i.e. by diseases. Noteworthy, the exclusion 
of  non-SENIEUR  individuals will, however, result in a study of less than 10% of a 
population among individuals aged over 80 years and older (Pawelec et al. 2001). 
Another way to diminish confounding between primary ageing effects and disease 
has been to employ exclusion criteria tailored to the experimental situation (Hall-
gren et al. 1988), i.e. in immune studies to exclude individuals that have immune 
related diseases or who use drugs that affect the immune system. Such a strategy 
was used in the OCTO Immune Longitudinal Study but will also generate a select 
sample. In our case, about 50% in a population aged over 80 years were excluded 
(Wikby et al. 1994).  

   A way to overcome some of the selection problems is to examine a popula-
tion-based sample, combined with careful continuous evaluation of individual 
health parameters (Nilsson et al. 2003). This was the approach taken in the NONA 
Immune Longitudinal Study. The clinical variables needed for the evaluation of 
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individual health and morbidity are then of considerable value in the comparison of 
findings from the application of various protocols and in the categorization of indi-
viduals into subgroups according to their health status (Nilsson et al. 2003). Thus, 
the significance of a change in health status is included rather than excluded as an 
important consideration in these aging studies.  

         3 The OCTO and NONA Immune Longitudinal Studies  

     3.1 The OCTO Immune Study  

   The OCTO Immune Longitudinal Study was an integrated part of the OCTO Longi-
tudinal Study of biobehavioral ageing, in Jönköping, Sweden. The municipality of 
Jönköping has 122 000 inhabitants and is situated in South-central part of Sweden. 
The aim of the OCTO immune was to explore age changes in the immune system 
in Swedish octogenarians relative to an array of medical, biobehavioral, and social 
variables (Wikby et al. 1994).  

   Census data was used to identify octogenarians living in Jönköping and born 
in 1897, 1899, 1901, and 1903. A non-proportional sample that composed of 100 
persons in each of the birth-cohorts was recruited. From these 400 individuals, 324 
were examined in the first wave in 1987/1988 of the OCTO study. The persons were 
then at the ages of 84, 86, 88, and 90 years old. At the second wave of the study, the 
OCTO Immune Longitudinal Study was initiated. Of the 324 examined at baseline 
of the OCTO, 96 were deceased before the start of the second wave of this study. 
Another 15 declined to participate, giving a total number of potential participants of 
213 for the OCTO immune.  

   Exclusion criteria were set to diminish confound between ageing, disease, and 
medications and to secure reliable psychosocial self-reports. Potential candidates 
were included if they:  

     •      Were noninstitutionalized  
      •      Had normal cognition according to neuropsychological tests (Johansson et al. 

1992)  
      •      Were not on a drug regimen that may influence the immune system.       

   These exclusion criteria were similar to those of Hallgren et al. (1988). Of the 
potential 213 individuals, 110 met inclusion criteria. Of these, 102 individuals par-
ticipated in the first wave. Sixty-nine individuals were available throughout the three 
waves in the longitudinal analysis and 23 participated in the longitudinal analysis 
over all four time-points, T1 (1989), T2 (1990), T3 (1991), and T4 (1997) (Table 1). 
Nonparticipation at the various measurement occasions was mainly due to mortal-
ity in the sample. Fourteen healthy middle-aged volunteers (39 years SD±5.8) of 
men and women working in the laboratories at Ryhov Hospital in Jönköping were 
included across the measurement occasions for comparative reasons.      
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     The very old individuals were examined in their place of residence. Blood sam-
ples were drawn in the morning between 8:00 and 10:00 (a.m.). The following 
immune system parameters were investigated:  

     •      Complete blood cell count  
      •      Differential WBC count  
      •      Antibody defined T and B cell surface molecules using three colour flow 

cytometry  
      •      Proliferative response of PBMC using a mitogen stimulation assay with ConA in 

cell culture  
      •      Interleukin 2 production  
      •      Cytomegalovirus (CMV) and Herpes simplex serology.       

       3.2 The NONA Immune Study  

   Findings from the OCTO Immune Longitudinal Study constituted the background 
for the subsequent ongoing NONA Immune Longitudinal Study of nonagenarian 
individuals also living in the municipality of Jönköping (Wikby et al. 2002). The 
NONA immune is an integrated part of the NONA Longitudinal Study initiated to 
examine the disablement process in late life. The overall aim in the NONA immune 
is to examine predictive factors for longevity in the very old and to further inves-
tigate in greater depth the immune risk profile identified in the OCTO immune. 
The aim is also to consider immune data in the context of functional and disability 
parameters examined in the overall NONA. The overall study includes measure-
ments of the following functional and disability domains:  

     •      Physical and mental health  
      •      Cognitive functioning  
      •      Personal control/coping  
      •      Social networks  
      •      Provision of service  
      •      Care and everyday functioning capacity.       

   The NONA immune examines a population-based random sample without 
excluding individuals due to compromised health, but to include a continuous eval-
uation of various individual health parameters (Nilsson et al. 2003). Individuals 

    Table 1         Characteristics of individuals included in the OCTO Immune Longitudinal Study      

   Occasion (Time)   
       

   Year      Number of individuals 
investigated   

   Age (years)   

   Mean      Range   

   1      1989      102      88      86–92    

   2      1990      83      89      87–93   

   3      1991      69      90      88–94   

   4      1997      23      95      94–100   
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were drawn from the population (census) register of Jönköping. A nonproportional 
random sampling procedure was employed, including all individuals permanently 
residing in the municipality, with the goal to have individuals aged 86, 90, and 94 
years old. The sampling frame was defined on the available census information in 
September 1999. As the number of available subjects in the oldest birth cohort was 
limited, a few subjects were also included from the birth cohorts of 1904 and 1906. 
Blood samples for the immune system analysis were drawn in 138 individuals, of 
whom 42 belonged to the oldest birth cohort, 47 were 90-years, and 49 86-years old. 
Data collections were made using two-year inter-occasion intervals in 1999, 2001, 
2003, and 2005.  

   The mean age of the sample at baseline was 89.8 years with a total proportion 
of women of 70%. While about 60% of them lived in an ordinary housing, 40% 
resided in a sheltered housing or in institution. A comparison between individu-
als who participated in the in-person testing part of the NONA study ( n =157), and 
those who accepted that blood was drawn ( n =138), indicated no significant differ-
ences for demographics or overall ratings of physical and mental health. In the sec-
ond wave, 61% of individuals participated, at the third 40%, and at the fourth only 
22%. Nonparticipation at the various measurement occasions was mainly due to 
mortality. A younger group of 22 healthy middle-aged men and women working at 
the Ryhov Hospital in Jönköping participated (mean age 44.7, SD=8.9 at baseline) 
across measurement occasions for the sake of comparison. Characteristics of the 
individuals participating in the NONA Immune Longitudinal Study are summarised 
in Table 2.      

     Health was defined based on medical records and from clinical chemistry data, 
supplemented with information gathered in a health interview that focused on diag-
nosed illness, current symptoms, and use of medications (Nilsson et al. 2003). The 
neuropsychological battery used to identify cognitive impairment included the 
Mini-Mental State Examination (MMSE) and the Memory-In-Reality (MIR) test 
(Folstein et al. 1975, Johansson 1988/1989). MMSE is a screening device used in 
epidemiological studies to identify cognitive impairment. The MIR test comprises 
of a naming condition for 10 common real-life objects, followed by showing a 
three-dimensional model of an apartment. The participants are then asked to place 
the objects in the different rooms according to personal preferences. Following a 
distraction, a recall test is administered, followed by a recognition task for items 
not recalled. In the NONA Immune Longitudinal Study we used the following three 

    Table 2      Characteristics of the subjects participating in the NONA Immune Longitudinal Study      

Occasion (year) No. of subjects Proportion of    Age (years)   
               investigated      women (%)   Mean     Range 

   1999      138      70      89.8      86–95    
   2001      84      69      91.6      88–97   
   2003      55      69      93.2      90–99   
   2005      31      81      94.7      92–101   
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cognitive status categories: 1) cognitive intact, 2) mild cognitive dysfunction or 
questionable cases (MCD, evidence of compromised memory/cognition, not fully 
meeting DMC-IV criteria for dementia, APA, 1994), and dementia (according to 
DMS-IV criteria, APA 1994). The two latter diagnostic categories were pooled 
under the category of “cognitive impairment” and compared with those rated as 
cognitively intact.  

   Subjects were examined in their place of residence by trained Registered Nurses 
with extensive experience of working with the elderly. The tests and interviews took 
about 3 hours, including breaks, for individuals who were able to participate in all 
parts. The blood samples were drawn in the morning between 09:00 and 10:00. 
The following immune and clinical components are studied in the NONA Immune 
Longitudinal Study:  

     •      Complete blood cell count  
      •      Differential WBC count  
      •      Proteins, albumin, transthyretin, C-Reactive Protein, orosomucoid, haptoglobulin,  
      •      IgG, IgM, IgA, urea, cystatinC, creatinine as indicators of malnutrition, inflam-

mation or kidney disease  
      •      Antibody defined T-cell surface molecules of T, NKT, NK cell populations, using 

three colour flow cytometry  
      •      Secretion of cytokines, IL-2, IL-6, IL-10, interferon-gamma  
      •      CMV, EBV and Herpes simplex serology  
      •      MHC/peptide tetramers to analyze the number of CMV and EBV specific CD8+ 

cells  
      •      TCR clonotype mapping with Denaturing Gradient Gel Electrophoresis (DGGE), 

including RNA extraction, cDNA synthesis and amplification by use of a primer 
panel amplifying the 24 BV region families covering a majority of TCR’s. The 
resulting DNA fragments are separated by DGGE and expanded clones are iden-
tified as distinct bands on a gel (thorStraten et al. 1998).       

         4 Results and Discussion  

     4.1 The OCTO Immune Study  

   In the OCTO Immune Longitudinal Study we were able to identify an immune risk 
profile by multiple comparisons of individuals grouped by homogeneity of certain 
combinations of adaptive immune system parameters (Ferguson et al. 1995). These 
cluster analysis use profile similarities to group individuals when the number and 
nature of the groups are not known in advance, ideal in the exploration of complex 
systems like the immune system. The analysis was employed to determine groups 
based on immune functioning and T-cell subpopulations using the mitogen response 
to Concanavalin A, and the percentages of CD3, CD4, CD8, and CD19 positive 
cells. The groups identified by cluster analysis were then compared with respect 
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to their impact on survival-non-survival by chi-square analysis. This analysis of 
immune data at baseline revealed an Immune Risk Profile (IRP) predictive of sub-
sequent 2-year mortality (Ferguson et al. 1995). An IRP cluster, designated cluster 
1, was characterized by immune parameters that consisted of high levels of CD8+ 
T-cells, low levels of CD4+ and CD19+ T-cells, and poor proliferative mitogen 
response to ConA (Table 3). No such association could be found using common 
methods for univariate analysis.      

     The result demonstrated that additional individuals developed the IRP by 
increases in the CD8+ cells as well as decreases in the CD4+ cells and CD4/CD8 
ratio between baseline and a 2-year follow-up (Wikby et al. 1998). At that time the 
IRP individuals again were found to have increased subsequent 2-year mortality. 
Interestingly, we found that the IRP could be defined by using only the inverted 
CD4/CD8 ratio, since this sole marker was strongly associated with the IRP defined 
by the cluster of parameters (Wikby et al. 1998).  

   The results also showed that 31% individuals out of the 102 participating either 
had at baseline (16%) or developed (15%) an Immune Risk Profile during the 8-
year longitudinal period of the study (Olsson et al. 2000). Noteworthy, individuals 
who belonged to the IRP category at baseline or moved into that category over the 8 
years never moved out from this elevated mortality risk group (Olsson et al. 2000).  

   Although the significance for changes leading to a skewed CD4/CD8 ratio in 
the IRP was not well understood at the time of our initial exploration, the relation-
ship observed between a reduced functional immune response and mortality had 
indeed been described in several previous studies. It was reported in humans that 
with age the lack of a response to three mitogens: the T-cell mitogens concanavalin 
A, phytohemagglutin, and the T-dependent B-cell mitogen, pokeweed, were associ-
ated with increased mortality (Murasko et al. 1987). In another study of individuals 
older than 80 years of age, it was found that anergic aged individuals had a 2-year 
mortality rate of 80% compared to 35% in those who were nonanergic (Roberts-
Thomson et al. 1974). A third study examined the relation between anergy and all 
cause mortality in healthy individuals above 60 years of age (Wayne et al. 1990). 
The study showed that anergy, defined as a decreased delayed type hypersensitivity 
(DTH) response in a skin test to four common recall antigens, was associated with 
nonsurvival.  

   Since our study at baseline did not analyse subsets of CD4 and CD8 T-cells 
on the basis of other phenotypic markers, the changes in the CD4/CD8 balance in 
IRP individuals was not well characterized. In 2000 various subsets of CD4 and 

    Table 3        Statistical description of variables used in the formation of a three cluster solution      

   Cluster (n)      Mitogen 
response/DPM   

   CD3+/%       CD4+/%      CD8+/%      CD19+/%   

   1 (14) a       11077 (8413) b       62.6 (14.8)      30.8 (4.3)      43.3 (8.9)       5.5 (2.6)   

   2 (36)       16915 (11491)      75.6 (7.6)      47.9 (12.1)      26.5 (5.9)      8.4 (4.1)   

   3 (39)       29681 (14427)      54.5 (12.3)      42.4 (9.8)       20.5 (6.9)      12.5 (7.1)   

     a    IRP cluster predicting non-survival
 b    Mean (SD)    
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CD8 were therefore included in the study (Olsson et al. 2000). The results indicated 
immune system changes that suggested a loss of T-cell homeostasis, as reflected 
by a substantial increase in the number of CD8 cells with parallel decrease in the 
number of CD4 cells in individuals with an inverted CD4/CD8 ratio. The changes 
were apparent in a number of T-cell subsets, with significant increases in the levels 
of CD8+CD28- cells, in particular, demonstrating that differentiated effector/mem-
ory CD8+ cells are disproportionately represented in this cell population. These 
cells has been shown by others have shortened telomers, suggesting an extensive 
history of replication (Effros 2007). Initially it was surprisingly found that these 
homeostatic T-cell changes associated with an inverted CD4/CD8 ratio was associ-
ated with persistent CMV infection, prevalent (90%) in the very old (Olsson et al. 
2000). Importantly, our studies showed no evidence of a relationship of these T-cell 
changes and other viruses, Herpes simplex and Epstein Barr viruses, indicating an 
unique impact of CMV on the immune system. This result was unexpected since 
the carriage of CMV had long been considered to be quite harmless to individuals 
with a functional immune system. The finding thus suggested that the changes in 
the T-cell balance among IRP subjects at least partly is produced by the generation 
of CD8+ effector/memory cells against persistent CMV infection and subsequent 
homeostatic decreases in the CD4+ and CD4/CD8 ratio. This conclusion was sup-
ported by tetramer technology demonstrating significant expansions of CD8+ T-
cells specific for the CMV 

NLV
  peptide in HLA-A2 individuals to be associated with 

both age and the IRP (Ouyang et al. 2004).  

       4.2 The NONA Immune Study  

   Results from the OCTO Immune Longitudinal Study provided the basis for the 
subsequent Swedish NONA Immune Longitudinal Study (Wikby et al. 2002) and 
potentials to further advance and refine our knowledge about various predictive fac-
tors for longevity but still with special focus on the Immune Risk Profiles (IRP’s). 
The NONA sample provided a broader set of functional and disability parame-
ters, including morbidity, cognitive impairment and chronic viral infection, to be 
examined in relation to longitudinal changes in inflammatory parameters, the CD8+ 
T-cell phenotype and differentiation, and CD8+ T-cell clonal expansion.  

     4.2.1 Immune Parameters and Morbidity  

   Studies of the immune system in very old individuals are most commonly per-
formed on highly selected samples by the use of selection protocols excluding indi-
viduals with conditions that influence the immune system (Nilsson et al. 2003). 
Among a great variety of protocols the SENIEUR protocol represent the most com-
monly used and accepted with a comprehensive set of health and laboratory cri-
teria for sample selection aiming at the distinguishing between ageing per se and 
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those associated with morbidity (Lighthart et al. 1984). Another selection protocol 
used in the studies of ageing and the immune system, used in the Swedish OCTO 
Immune Longitudinal Study, is that proposed by Hallgren et al (1988). This proto-
col excludes individuals with diseases and other conditions known to affect specifi-
cally the immune system to tailor the study to its particular purpose. In the NONA 
Immune Longitudinal Study a slightly modified SENIEUR and Hallgren protocol 
were used to characterize the sample according to health status (Nilsson et al. 2003). 
This permitted us to distinguish subgroups of very healthy, moderately healthy and 
frail individuals for various immune system parameter comparisons.  

   The modified SENIEUR protocol excluded 90.6% of the NONA immune sample 
at baseline, indicating that only 9.4% were rated as  very healthy . The use of the 
original protocol, suggesting additional laboratory analysis for exclusion, would 
probably have excluded even more individuals, demonstrating the need for using 
less stringent criteria in studies of the immune system in later life to avoid studies of 
only highly selected, nonrepresentative samples. Thirty-eight (27.5%) participants, 
selected from those being not very healthy and defined as  moderately healthy , met 
the criteria used in the previous OCTO Immune Longitudinal Study of not residing 
in an institution, not being demented, and not using medication known to affect the 
immune system. The remaining sample (63%) comprised  frail  individuals not meet-
ing the above health criteria (Nilsson et al. 2003).  

   Applying the five most common exclusion criteria, cardiac insufficiency, medi-
cation, laboratory data, urea and malignancy, the modified SENIEUR protocol 
excluded 87% of the original sample (Nilsson et al. 2003). When the OCTO Immune 
protocol was applied, medications was found to be the most common criterion, 
excluding 43%, institutionalisation the second, excluding 39%, and cognitive dys-
function the third, excluding 14%. Among various diseases conditions cardiac insuf-
ficiency (51%), malignancy (15%), dementia (14%), chronic obstructive pulmonary 
disease (12%), diabetes mellitus (11%), rheumatoid arthritis (9%), hypothyroidism 
(6%) and pernicious anaemia (6%) constituted the eight most prevalent diagnoses. 
These figures demonstrate the considerable prevalence of morbidity and comorbid-
ity in a representative sample of very old individuals (Nilsson et al. 2003).  

   A comparison of the number of T-cells across the subgroups of very healthy, 
moderately healthy and frail indicated no group differences for subsets characteris-
tic of the immune risk profile, previously identified in octogenarians (Nilsson et al. 
2003). Interestingly, the IRP might thus serve as a significant biomarker of ageing, 
independent of overall health status. This is further confirmed by results demon-
strating that clusters of immune markers can predict longevity in noninbred mice 
independently of health conditions (Miller 2001).  

       4.2.2 Immune Risk Profile, Cognitive Impairment and Mortality  

   Prevalence and incidence of cognitive impairment and dementia become substantial 
in very old people. Studies have shown that compromised cognition is significantly 
related to proximity of death by a twofold increased mortality risk among demented 
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octogenarians and nonagenarians (Johansson and Zarit 1997; Wilson et al. 2003). 
There is also considerable evidence suggesting interactions between the nervous 
and innate immune systems, in which cytokines have a central role as communica-
tors (Wilson et al. 2003). Studies have suggested that higher levels of interleukin 6 
(IL-6) are significantly associated with poorer cognitive function and predict future 
cognitive decline among the elderly (Marsland et al. 2006). In pathological condi-
tions such as ischemia and Alzheimer’s disease, microglia cells in the brain seem to 
respond to injury by producing increased levels of particularly the proinflammatory 
cytokines interleukin 1 (IL-1) and the multifunctional IL-6 (Tarkowski 2002).  

   Analysis of mortality in the very old NONA immune individuals ( n =138) 
confirmed our previous findings in the OCTO Immune Longitudinal Study of an 
approximately twofold mortality rate in the 22 (16%) individuals with an IRP, i.e. 
showing a significantly higher relative 4-year mortality (77%) than those who were 
non-IRP individuals (43%), a finding suggesting that the IRP concept could be gen-
eralized to the more broadly defined NONA sample (Wikby et al. 2005). The find-
ings was also in line with the Healthy Ageing Study in the Nottingham/Cambridge 
area in the UK in which it was found that an inverted CD4/CD8 ratio is predictive 
of nonsurvival in older adults (Huppert et al. 2003).  

   Our results also supported previous findings in samples of octogenarians and 
nonagenarians of a twofold elevated mortality risk in individuals with cognitive 
impairment (Wikby et al. 2005). Among the NONA Immune individuals ( n =138), 
those who were categorized as cognitively impaired (29%) also showed a signifi-
cantly higher 4-year mortality (75%) compared with cognitively intact individuals 
(39%). Moreover, the results showed that the two conditions of IRP and cognitive 
impairment independently predicted survival also when age, sex and various kinds 
of prevalent diseases and comorbidity were controlled for (Wikby et al. 2005).   This 
provided further support for the previous findings that IRP constitute a major pre-
dictor of nonsurvival in very late life independently of morbidity. Only 9% of the 
NONA Immune individuals conformed to the SENIEUR criteria for optimal health 
(Nilsson et al. 2003).  

       4.2.3 Allostatic Load  

   The concept of allostatic load was proposed by McEwen and Stellar as a measure of 
dysfunctions across multiple physiological systems, suggesting that the cumulative 
dysfunctions may have more than an additive impact on overall health and survival 
(McEwen and Stellar 1993). Allostatic load derives from the concept of allostasis 
which in turn is derived from homeostasis (McEwen 2003). Allostasis, however, 
focus more specifically on the challenges upon the specific regulatory nervous, 
immune and endocrine systems in order to adapt to maintain balance though changes 
in various psychosocial or physical situations, like stress, in life (Karlamangla et al. 
2002). Although such processes may be adaptive in the short term, they are likely 
to be damaging when becoming excessive in duration, frequency and magnitude 
(McEwen 2003). This line of thinking correspond to the growing interest to identify 
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more comprehensive measures that incorporates multiple risk factors that may pre-
dict subsequent health and survival (Karlamangla et al. 2006).  

   In the NONA Immune Longitudinal Study we identified a small sample ( n =8) 
with both IRP and compromised cognitive status at baseline (Wikby et al. 2005). 
A Kaplan-Meier survival analysis revealed that these individuals showed a signifi-
cantly higher annual mortality rate (42%/year) compared with those with one of the 
conditions (15%/year) as well as with those having none (8.5%/year), correspond-
ing to relative mortality rates of 5:2:2:1 (Fig. 1). These observed mortality effects 
indicates immune and central nervous system interactions, and were integrated 
into the general framework of allostatic load, since survival data suggested that the 
cumulative dysfunctions across the nervous and immune systems had more than an 
additive impact on survival (Wikby et al. 2005).      

     The allostatic load in IRP individuals with cognitive impairment was associ-
ated with changes in the levels of the cytokines IL-2 and IL-6 (Wikby et al. 2005). 
Cytokines in general are considered to have a central role in the mediations of 
allostasis by communications between the nervous, immune and endocrine systems 
(McEwen 2003). A suppression of the T-cellular function in IRP individuals is sup-
ported by our finding of poorer IL-2 responsiveness in those individuals compared 
with non-IRP’s (Wikby et al. 2005). A further decline of this responsiveness in 
IRP individuals with cognitive impairment support the existence of an interaction 
between the nervous and peripheral immune system dysfunctions with a further 
down-regulation of the T-cellular response in these persons. Excessive increases in 
the plasma levels of the proinflammatory cytokine IL-6 did also represent changes 
characteristic of an allostatic load in the individuals and might have contributed 
to the T-cellular suppression by acting as an immunosuppressant via the hypotha-
lamic-pituitary-adrenal axis (Wikby et al. 2005).  
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   Fig. 1      Kaplan Meier 
survival curves for NONA 
individuals in subgroups cre-
ated by IRP status combined 
with cognitive status.        The 
subgroups were: “IRP, CI” 
(IRP, cognitively impaired); 
“CI” (cognitively impaired, 
non-IRP); “IRP” (IRP, 
cognitively intact); “NONE” 
(non-IRP, cognitively intact). 
Test for equality of survival 
distribution for the subgroups 
showed,  p <0.001 
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       4.2.4 IRP, T-cell Differentiation and Persistent Viral Infection  

   Baseline results also confirmed findings from the OCTO immune study that showed 
an association between the IRP and the prevalence of persistent CMV infection 
(Wikby et al. 2002). As for the OCTO immune study, the NONA study demon-
strated a CD3+CD8+CD28-phenotype as markedly expanded for IRP and CMV-
positive individuals. This led us to examine the T-cell differentiation in more detail, 
using the CD45RA+, CCR7+, CD27+ and CD28+ markers in a sequential model, 
suggesting a positive expression for naive cells, gradual losses of the markers in 
the various memory stages and negative expression for lately differentiated effec-
tor/memory cells (Appay et al. 2002, Akbar, Fletcher 2005). A final differentiation 
step occurs by reversion of CD45RO+ to CD45RA+ to obtain CD27-CD28-CCR7-
CD45RA+ terminally differentiated cells of effector type (Wallace et al. 2004).  

   Our results suggested major decreases in the number of naive cells in the very 
old, changes that were even more pronounced in IRP individuals (Fig. 2). The results 
also showed significant increases in the number of CD8+CD27-CD28-CCR7-per-
forin+ effector/memory and effector cells in IRP individuals (Fig. 2) and since a 
majority of these cells also were CD45RA+, data confirmed that the IRP is strongly 
associated with increases in the number of terminally differentiated effector cells. 
Recent evidence suggests that increased proportions of terminally differentiated 
CD8+ cells possess characteristics of replicative senescence, including telomere 
shortening and apoptosis-resistance (Effros 2007). The inclusion of high propor-
tions of senescent T-cells in the IRP may for the first time provide clinical confir-
mation of the Hayflick Limit theory of human ageing (Effros 2004). The clinical 
relevance for the prevalence of large amounts of senescent CD8+ T-cells has also 
been demonstrated by three independent studies performed on different elderly pop-
ulations (Goronzy et al. 2001; Saurwein-Teissl et al. 2002; Trzonkowski et al. 2003. 
These studies showed consistently that a diminished antibody response to influenza 
vaccination is significantly associated with having high proportions of a population 
of CD8+ cells that lack expression of the costimulatory molecule CD28.        

   Evidence for a major impact of CMV in generating terminally differentiated 
CD8+ cells was demonstrated in the OCTO subjects by tetramer technology and was 
also confirmed in the NONA Immune Study (Reker-Hadrup et al. 2006). We found 
CMV 

NLV 
 specific expansions, mainly composed of terminally differentiated cells, in 

the range 1–20% of total CD8+ cells, similarly to findings in the OCTO Immune 
Study. Increases in the CMV 

NLV
  percentages were associated with decreases in the 

IFN-γ responsiveness, suggesting that the accumulation of CMV-specific T-cells is 
a result of compensatory mechanisms to control CMV to balance the compromised 
functionality that occur with increasing age (Reker-Hadrup et al. 2006). Recent 
findings have indicated a failure in this control by indicating that the aged immune 
system is unable to control CMV and EBV, supporting the view that the expansion 
of virus-specific CD8+ T-cells might be due to increased herpes virus reactivation 
and replication (Stowe et al. 2007).  

   The NONA immune results also support the suggestion that besides CMV 
infection, persistent EBV infection plays a role as bystander associated with the 



The Immune Risk Profile and Associated Parameters in Late Life 17

IRP (Wikby et al. 2005). IRP individuals were in all cases double sero-positive, 
suggesting that chronic viral load in the very old might contribute to the develop-
ment of an IRP. Increased numbers of lately differentiated CD8+ cells, character-
istic of the IRP, was also found particularly in double sero-positive individuals, 
to a less but significant extent in those being infected with CMV only, and to a 
low extent in individuals only infected with EBV (Wikby et al. 2005). In line with 
this we found significant expansions of EBV 

GLC
  specific CD8+ cells; although 

their frequency was tenfold lower than for the CMV-specific cells (Ouyang et al. 
2003).  

       4.2.5 TCR Clonotype Mapping  

   Clonal expansions have been detected in healthy old individuals and accumulat-
ing evidences suggest that that these expansions are associated with chronic anti-
gen stress induced by persistent viral infections (Khan et al. 2002). We analysed 
the CD8+ T-cell clonal composition in NONA immune (n=39) and middle-aged 
(n=9) individuals using TCR clonotype mapping (Reker-Hadrup et al. 2006). The 
method combines RT-PCR and denaturing gel electrophoresis (DGGE) for rapid 
detection and characterization of T-cell clonal expansions by use of specific prim-
ers covering a vast majority of TCRBV 1–24 variable regions (thor Straten et al. 
1998). With a polyclonal T-cell population a nondistinct smear in the denaturing 

   Fig. 2      Mean number of 
CD8+ T-cells (per μl) and 
subsets of CD8+ differen-
tiation in IRP and non-IRP 
NONA individuals     . Naïve 
cells were identified as 
CD8+CD45RA+CCR7+ 
cells, memory cells as 
CD8+CD28+CD27+ 
CD45RA-, CD8+CD28+ 
CD27-, CD8+CD28-CD27+ 
cells, and effector, effector/
memory cells as CD8+CD28-
CD27-CCR7- cells. The 
number of effector, effector/
memory cells was signifi-
cantly ( p <0.001) higher in 
IRP individuals compared 
with non-IRP individuals
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gradient gel is seen while, in contrast, a population of clonally expanded TCR is 
seen as a distinct band. The clonal expansion were quantified by staining with 
anti-TCR-BV mAbs showing that for an individual CMV 

NLV
  specific clone to be 

detected as expanded, the clone exceeds at least 1% of the CD8+ repertoire Reker-
Hadrup et al. 2006).  

   The mean number of expanded clones was significantly higher in nonagenar-
ians compared with the middle-aged (Fig. 3), suggesting a considerable impact of 
CD8+ clonal expansions in the very old (Reker-Hadrup et al. 2006). Importantly, 
these clonal expansions were also found to be stable across a two-year period of 
time. The results also showed a very strong association between the number of 
expansions and persistent CMV infection (Fig. 3), suggesting that a vast majority 
of CD8+ clonal expansions in the elderly are derived from CMV. Direct evidence 
for this was also demonstrated, since the sorting of CMV 

NLV
  specific cells and 

subsequent TCR clonal mapping revealed that this specific T-cell population was 
oligoclonal with a mean number of six CMV related clone types (Reker-Hadrup et 
al. 2006). These results are comparable with findings showing that when a broad 
range of CMV epitopes was studied by tetramer technology, the aggregated per-
centages of the specific cells were more than 10% and as high as 50% of the total 
number of CD8+ cells (Moss and Khan 2004). Such substantial accumulations 
of CMV specific cells in a limited number of clones may reduce the available 
space for T-cells with other specificity, which may be lost through competition 
and result in a reduced clonal diversity and immune protection capability, particu-
larly relevant for IRP’s (Akbar and Fletcher 2005). A demonstration that clonal 
expansions of specific T-cells can compromise the response to other antigens by a 
mechanism through competition was given in mice (Messaoudi et al. 2004). The 

   Fig. 3       The mean number of clonal expansions in the CD8+ repertoire determined by DGGE in 
subgroups of individuals     .   NONA individuals showed significantly ( p <0.01) higher mean number 
(19.4,  n =39) compared with middle-aged (10.1,  n =9). CMV positive NONA individuals showed 
significantly ( p <0.001) higher mean number (22.6,  n =31) compared with CMV negative NONA 
individuals (7.4,  n =8). CMV-positive NONA IRP individuals showed significantly ( p <0.05) lower 
mean number (15.0,  n =8) compared with non-IRP CMV+ individuals (25.2,  n =23) 
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observations that infection with CMV can reduce prevailing levels of immunity 
to EBV (Khan et al. 2004) also support this hypothesis. Similarly to the CD8+ 
T-cell expansions, it has been shown for the CD4+ T-cells that the CMV-specific 
response expands considerably with age altering the CD4+ repertoire (Pourghey-
sari et al. 2007), and that VZV-specific populations (Fletcher et al. 2005) are sig-
nificantly decreased when CMV-specific CD4+ cells expand.      

     Surprisingly, however, we found that among sero-positive individuals, the IRP 
individuals showed a significantly lower number of expanded clones than the non-
IRP’s (Reker-Hadrup et al. 2006, Fig. 3). We also found that a decrease in clone 
numbers among IRP individuals was associated with increases in the inflammatory 
activity by elevated plasma IL-6 as well as with shorter survival times.   This suggests 
that increased numbers of clonal expansions is beneficial to the individual, indicating 
an increased clonal expansion diversity and immune protection capability. It also 
support the hypothesis that when a critical point is reached, clonal exhaustion leads 
to shrinkage of the clonal expansion repertoire, detrimental to immune capabilities 
both for unrelated antigens and for CMV itself (Reker-Hadrup et al. 2006).  

       4.2.6 Low-Grade-Inflammation  

   There is considerable evidence of age-associated changes in immune capabilities 
resulting in increased morbidity and mortality due to altered function of the innate 
immune system (Krabbe et al. 2004). Low grade inflammation increases in the 
level of the inflammatory markers TNF-α, IL-6, and CRP and decreases in the 
levels of albumin in plasma have been shown to be significant predictors of mortal-
ity in population studies in the elderly (Evrin et al. 2005; Bruunsgaard et al. 2003; 
Reuben et al. 2002). Many studies have focused on the multi-factorial cytokine 
IL-6 and suggest that ageing independently of any particular disease is associated 
with two- to four-fold low grade increases in the plasma levels of this inflam-
matory mediator. Studies have shown that low-grade increases in IL-6 levels are 
related to increased amounts of fat tissue and loss of muscle mass, strength, func-
tional capability and weight that occur with normal ageing. CRP is considered as a 
surrogate marker of IL-6, because CRP is produced by IL-6 induction in the liver 
(Krabbe et al. 2004). Increases in IL-6 are also associated with many age-related 
diseases such as cardiovascular disease, arthritis, osteoporosis and Type-2 diabetes 
(Forsey et al. 2003), which represent major morbidity classes and causes of death 
in the very old.  

   Using data from the second and third waves of the NONA immune study, we 
were able to confirm results from other studies that have demonstrated that age-
ing is associated with low-grade inflammation and that inflammatory markers are 
significant predictors of mortality in the very old (Wikby et al. 2006, Table 4). 
Logistic regression analysis also revealed that the IRP and low-grade inflammatory 
activity, defined by the marker IL-6, were independently predictive of 4-year sur-
vival, an outcome that remained when CRP and albumin were entered as covariates 
(Wikby et al. 2006). The independent main effect predicted 57% of nonsurvival 
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and, impressively, 97% of survival, showing that IRP and IL-6 are better predic-
tors of survival than of subsequent mortality. These parameters are consequently 
strong candidates as significant markers of healthy ageing. IRP and IL-6 were 
predictive of mortality and not significantly affected by eight prevalent diseases, 
including Alzheimer’s, cardiovascular disease and Type-2 diabetes, controlling for 
age and gender (Wikby et al. 2006). These results are in agreement with findings 
demonstrating that low-grade inflammation (Krabbe et al. 2004) and IRP (Nils-
son et al. 2003) can predict mortality independently of disease and comorbidity.  

 While the IRP reflects changes in the adaptive T-cell system primarily associated 
with lifelong persistent CMV infection, the increases in IL-6 seem to reflect innate 
immune system changes, including a wide range of alterations associated with 
overall devitalisation and frailty. This is supported by our findings of changes in 
the plasma levels with decreases in albumin and increases in acute-phase proteins 
(Wikby et al. 2006).      

     The above results may at first seem contradictory to our baseline findings of 
elevated IL-6 plasma levels specifically associated with cognitive impairment and 
mortality. This association was not seen at second wave follow-up (Wikby et al. 
2006). However, cognitively impaired individuals who survived until the follow-up 
or who became incident cases were more likely to be in their early stages of the 
disease process compared with those who showed manifest cognitive impairment 
already at baseline with higher subsequent mortality rates. Thus, it is likely that 
sample composition variously reflect reasons for survival or selective mortality in 
late life (Pawelec et al. 2005).  

   A comparison of the inflammatory markers IL-6 and CRP at baseline, and 
two years later (wave 2) for IRP survivors and nonsurvivors four years after 
baseline, was performed in the NONA study. The result demonstrated only a 
minor inflammatory activity in the subgroups at baseline, indicating that the IRP 
is not associated with inflammation per se (Wikby et al. 2006). Increases in the 
inflammatory activity found between baseline and wave 2 among nonsurvivors, 
however, show that IRP individuals develop such an activity by increases in IL-
6 and CRP in a terminal decline stage (Wikby et al. 2006). The results suggest 
a linkage between adaptive T-cell and innate immune system changes for IRP 
individuals that begins with acquisition of CMV infection in earlier life and is 
followed by an expansion and accumulation of senescent CD3+CD8+CD28-T-
cells, the development of an IRP and finally an activation of the innate immune 
system in a terminal decline stage late in life (Wikby et al. 2006), including low-
grade inflammatory processes with the secretion of proinflammatory cytokines 
like IL-6 and TNF-α (Zanni et al. 2003).  

    Table 4        Inflammatory parameters in plasma at Time 2 in very old individuals that had survived 
(survivors) and not survived (non-survivors) at Time 3 of the NONA Immune Longitudinal Study      

   Parameter      Survivor      Non-survivor      p<   

   IL-6 (pg/ml)      4.9 (61) a       9.2 (21)      0.001   

   CRP (mg/ml)      1.4 (60) a       3.6 (22)      0.05   

      a    Median ( n )    
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       4.2.7 IRP Movement  

   In the NONA Immune Longitudinal study only 5 individuals (4%) moved into the 
category at risk by changes in the CD4/CD8 ratio, which was a significantly lower 
percentage as compared to the previous OCTO Immune Study (30%). Intriguingly 
and contrary to findings in the OCTO Immune Study, however, we have found that 
a few NONA individuals ( n =3) actually moved out of the IRP category (Wikby et al. 
2006). The changes found were associated with increases in IL-6, IL-10, neutrocy-
tosis and lymphopenia, suggesting that IL-6 may induce an antiinflammatory rather 
than a proinflammatory effect in association with enhanced IL-10, neutrocytosis 
and lymphopenia to limit the potential injurious effects of sustained inflammation 
in these particular and rare individuals (Steensberg et al. 2003).  

       4.2.8 Longitudinal Changes  

   To follow a population of very old individuals over time in a longitudinal study offers 
unique opportunities to examine intraindividual changes as well as to test various 
factors predictive of longevity. Throughout the 20th century a remarkable increase in 
lifespan has taken place in humans and the increased number of centenarians in recent 
decades is considered to mainly be due to a dramatic decline in the mortality rate 
among those above 80-years of age (Jeune 2002), that is individuals exclusive focused 
upon in our studies. There is evidence that infectious disease become more important 
in the very old and that the immune system thus may be considered decisive for suc-
cessful ageing and longevity in humans (Delarosa et al. 2006). In the NONA Immune 

   Fig. 4      Longitudinal 
data for the number of 
CD3+CD8+CD28- cells in 
subgroups of middle-aged 
and very old surviving 
through time 1 (1999), time 
2 (2001), time 3 (2003) and 
time 4 (2005)     . Multivariate 
analysis of variance indicated 
significant differences 
between the age groups 
( p <0.05) with greater number 
of CD3+CD8+CD28-cells 
for the 92 year group as 
compared with other age 
groups. The analysis showed 
no significant change across 
time or group by time inter-
action effects
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study, considering that the oldest cohort had become centenarians, commonly taken as 
a paradigm for “successful ageing” a question of significant interest was weather the 
“successfully aged” might be exceptional in their avoidance of the IRP.  

   Blood was drawn at baseline from 138 individuals with 42 belonging to the old-
est 94-year old cohort, 47 to the 90-year cohort and 49 to the 86-year cohort. After 6 
years, 99 individuals (72%) were deceased and another 8 declined to participate at this 
forth wave, giving a total number of 31 participants for the 6-year follow-up study. At 
baseline, 22 individuals resided in the IRP category and none of those had survived at 
6-year follow-up. During the 6 year longitudinal study, five individuals developed an 
IRP by increases in the number of CD8+ and decreases in the number of CD4+ cells. 
Of these 4 were deceased at the 6-year follow-up, leaving only one individual with an 
IRP at 6-year follow-up (Strindhall et al. 2007).  

   At the 6-year follow-up, significant cross-sectional differences were found in the 
various T-cell subsets as well as in the CD4/CD8 ratio between age groups, differ-
ences not seen at baseline (Strindhall et al. 2007). The results suggest age-related 
changes but longitudinal data, however, revealed no significant changes at all across 
the 6-year period in any of the T-cell subsets (Figs. 4 and 5). These findings support 
the interpretation that the observed differences in the 6-year cross-sectional mean val-
ues are an effect of selective mortality. Individuals surviving until the age of 100 years 
did not display any T-cell changes associated with the Immune Risk Profile, i.e. they 
retain low numbers of CD8+CD28-cells and high CD4/CD8 ratio (Figs. 4 and 5), also 
predominant when these “successfully aged” people were younger, while among ten 
cases close to the CD4/CD8 cut-off of 1.00 (range 0.8–1.6), nine (including the one 
single IRP individual) belonged to the youngest age group (92 years old), and one to 
the 96 year old group (Strindhall et al. 2007). An effect of selective mortality is also 

   Fig. 5      Longitudinal data 
for the CD4/CD8 ratio in 
subgroups of middle-aged 
and very old surviving 
through time 1 (1999), time 
2 (2001), time 3 (2003) and 
time 4 (2005)     .        Multivariate 
analysis of variance indicated 
significant differences 
between the age groups 
( p <0.05) with the 96 and 100 
year groups indicating higher 
ratio as compared with other 
age groups. The analysis 
showed no significant change 
across time or group by time 
interaction effects 
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supported by the fact that the prevalence of IRP decline from 16% at baseline to 3% 
at 6-year follow-up, when individuals in the NONA sample had become 95 years old 
on average.            

     The results also support the view that centenarians, although being “successfully 
survivors”, they are not healthy (Jeune 2002). In the NONA Immune sample three 
quarters of the individuals were in fact classified as frail and at most 5% conformed to 
the SENIEUR criteria for being quite healthy (Wikby et al. 2006). The IRP, however, 
was shown to be predictive of mortality independently of the health status of the very 
old (Nilsson et al. 2003) and the absence of an IRP in centenarians therefore indicate 
a well preserved adaptive immune system, that helps to account for their survival in 
spite of substantial morbidity and co-morbidity.  

           5 Conclusions and Future Direction  

     Immunosenscence  is the term used to describe the acquired dysfunctional immu-
nity in old people and is characterized by changes in the T-lymphocyte system in 
particular. The changes become manifest as increasing numbers of lately differenti-
ated T-cells that previously was exposed to antigens (memory and effector cells), 
and a decreasing number of cells being able to recognise and combat new anti-
gens (naïve cells) that invade the human body (Akbar and Fletcher 2005). In the 
OCTO and NONA studies we have identified and examined a T-cellular IRP show-
ing the above outlined characteristics of  immunosenscence , i.e. the accumulation 
of dysfunctional terminally differentiated CD8+ cells with a CD3+CD8+CD27-
CD28-CD45RA+CCR7-perforin+ phenotype and the depletion of the number 
of CD8+CCR7+CD45RA+ naïve cells (Wikby et al. 2005). Extensive analysis 
to search for associations between this IRP and various parameters including the 
psychosocial domains of physical and mental health, cognitive functioning, per-
sonal control/coping, social networks and everyday functioning capacity, clinical 
laboratory parameters, various diagnosed diseases and medication revealed that the 
IRP was associated only with evidence of persistent CMV infection (with EBV as 
a bystander). This result may indicate that CMV has a more insidious impact on 
the immune system than previously believed and also compared with other herpes 
viruses examined in these studies. The accumulation of large numbers of CMV-
specific CD8+ T-cells as well as the finding that a majority of clonal expansions in 
the very old are associated with CMV has given additional information supporting 
the hypothesis that CMV greatly contribute to the development of an IRP and thus 
contributes to the development of  immunosenscence  in the elderly. Characteristics 
of the IRP identified in the OCTO and NONA studies are summarised in Table 5.      

     In the NONA Immune Longitudinal Study the IRP was studied in the context 
of low-grade inflammation, previously identified as a predictor of mortality in the 
old (Wikby et al. 2006). The IRP and low-grade inflammation were independ-
ently found to be main predictors of survival. This outcome was not significantly 
affected by individuals’ health status, suggesting that the physiological ageing 
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processes of T-cell immunosenescence and low-grade inflammation are of crucial 
importance in late life survival (Wikby et al. 2006). The results also suggest a 
sequence of stages for IRP individuals (Fig. 6) that probably begins in early life 
with CMV infection, followed by the generation of large CD8+CD28-effector cell 
expansions to control lifelong persistent infection, homeostatic T-cell changes 
and a gradual change towards an IRP, that might be associated with a failure of 
the T-cell capability to control CMV. These individuals show decreased numbers 
of the CD8+ cell clonal expansions associated with increases in levels of plasma 
IL-6 and shorter survival, suggesting a stage in ageing where clonal exhaustion 
may lead to shrinkage of the clonal expansion repertoire detrimental to immune 
capabilities (Reker-Hadrup et al. 2006). It ends in a terminal decline stage with 
a low-grade inflammatory process that occurs in late life (Wikby et al. 2006, 

   Fig. 6    Processes in a 
sequence of stages in the 
human life span of impor-
tance for late life survival in 

IRP individuals    
  The sequence is based on 
findings in the OCTO and 
NONA immune longitudi-
nal studies and supports the 
inflamm-ageing hypothesis 
(Franceschi et al. 2000)   

CMV infection in earlier life
»

Expansion of CD3+CD8+CD28- cell clones
»

Homeostatic changes to keep constant CD3+ 
level, Increased CD8+, decreased CD4+, 

decreased CD4/CD8
»

Development of an IRP, CD4/CD8<1,
Characteristics of immunosenescence

»
Exhausted CD3+CD8+CD28- cells,

Chronic CMV reactivation
»

Shrinkage of clonal diversity,
Increased susceptibility to patogens

»
Development of low-grade inflammation

And frailty
in a terminal decline in late life

    Table 5        Characteristics of the Immune Risk Profile      

   Increased CD8+ and CD3+   
   Decreased CD4+ and CD19+   
   CD4/CD8 ratio < 1   
   Increased lately differentiated CD8+CD28-CD27- cells   
   Depletion of naïve CD8+CD45RA+CCR7+ cells   
   CMV-seropositivity   
   Clonal expansion of CD8+ cells carrying receptors for CMV   
   High proportion of dysfunctional cells among the CMV-specific CD8+ cells   
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Fig. 6). This supports the inflamm-ageing hypothesis in human ageing suggesting 
that age-associated chronic inflammation causes frailty and that immunosenes-
cence is driven by a chronic antigen load, associated with CMV infection, that 
induces a progressive expansion of compromised poorly functional CD8+CD28-
effector T-cells (Franceschi et al. 2000; Fulop et al. 2005). The CD8+CD28-cells 
are able to secrete pro-inflammatory cytokines like IL-6 and TNF-a that may com-
pensate for the defective T-cellular function, and/or amplify an ongoing inflam-
matory process (Zanni et al. 2003).      

   In future studies it will be important to investigate why only a certain fraction 
of CMV sero-positive individuals reside in or move into the category of risk. It 
is also urgent to further characterize those exceptional individuals that move out 
of the category of risk, allowing insight into clinical intervention approaches for 
those who remain in the IRP category until death. It is important to specifically 
study the phenomena of clonal expansion regarding frequencies and specificities of 
cells for various clones and to gain a better understanding of the nature of the link 
between CMV infection, phenotypic T-cell changes and changes in proinflamma-
tory cytokines associated with the IRP. We should also study the relevance of the 
IRP more comprehensively in relation to age and gender. Future research also need 
to be multidisciplinary and include more detailed medical and biobehavioral evalu-
ations of risk individuals to more fully understand the complex immune alterations 
that are associated with the major IRP marker.  
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                                                  Abstract   :    Several cell subsets participate to the immune response, and their close 
interplay is fundamental for the successful elimination of harmful pathogens. In 
addition, a tight regulation of the immune response has to occur in order to avoid 
excessive inflammation and potential autoreactivity towards self components. In 
the last years, the discovery and the characterization of new lymphocytes subsets, 
including regulatory T (Treg)-cells and Natural Killer T (NKT)-cells allowed a 
better understanding of how an effector immune response is induced and there-
fore down-modulated. During the ageing of the immune system, a process termed 
immunosenescence, these subsets undergo a profound remodelling, both in phe-
notype and function. In this chapter, we will describe the essential features of 
lymphocyte populations in centenarians and the differences that occur with unsuc-

cessfully aged people.          
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1 Introduction  

  The progressive lengthening of the mean life span and the consequent growth of 
the elderly population has focused the attention of the scientific community on 
human longevity. Aging is a complex process characterized by a general decline 
in physiological function with an increasing morbidity and mortality. The specific 
causes of aging are not known. Several studies suggest an association between 
changes in immune function and longevity, and indicate that the deterioration 
of the immune function, termed “immunosenescence”, could be the cause of the 
increased susceptibility to cancer, autoimmune and infectious diseases which char-
acterize elderly. However, a common bias in the studies on immunosenescence 
has been the confusion between ageing and age-related diseases and the difficulty 
to study the immunology of the physiological ageing and not the immunology of 
the age-associated diseases. Centenarians have been proposed as model to study 
immunosenescence in physiological conditions, being exceptional individuals who 
have reached the extreme limit of human life escaping the major age-related dis-
eases [ 1 ]. Many of them, the so called “healthy centenarians”, have resulted free 
of diseases typical of ageing, such as cancer, dementia, diabetes, cardiovascular 
diseases and osteoporosis.  

  One of the most important characteristics of successful ageing is the ability to 
fight efficiently infective agents. An efficient immune response requires the coordi-
nated action of several components, and is mainly due the presence of a consistent 
number of continuously renewed T- and B-cells that are equipped with a clonotypic 
receptor recognizing virtually every potential antigen. The immune system must 
have the ability to expand efficiently the adequate antigen-specific clone(s) and the 
ability of producing and maintaining memory cells that, during a following infec-
tion by a pathogen that has been recognized in the past, mount a more efficient 
response.  

  Immunosenescence is characterized not only by a simple deterioration of the 
functionality of the immune system, but also by a complex modification of several 
components. As a result, some immune parameters tend to diminish with ageing, 
while some others remain constant or even increase [ 1 ]. At the cellular level, fea-
tures of immunosenescence are the constant decline in the number of naïve T-cells, 
the reduction of new B-cell precursors, and the tendency to expansion of T- and B-
clones in the periphery, reflecting in a diminished capacity to recognize antigens 
[ 2 ,  3 ]. Indeed, at the molecular level, the expansion of antigen-specific clones is 
paralleled by a restriction of the T-cell repertoire, that defines the amplitude and 
diversity of the molecules that form the T-cell receptor (TCR) [ 4 ]. This is also 
accompanied by the restriction of the B-cell repertoire, and indeed the presence 
of clonal B-cell expansions that give origin to monoclonal gammopathies is rela-
tively common in aged individuals, accompanied by a decline in peripheral blood 
B-cell count [ 5 ,  6 ].  



    2      An Overview on the Immune System  

  In order to cope with all possible antigens that can be encountered in the course of 
human life, T-cells have the capacity to generate theoretically 10 15  different TCR, 
that form a really large T-cell repertoire. It has been estimated that, in a young 
healthy adult, about 10 8  different TCR are present in every moment [ 7 ]. T-cell com-
partment is generated and maintained by the production and output of new T-lym-
phocytes, naïve for their antigen, from the thymus. Such production tends to decline 
with age of about two orders of magnitude, and is considered the leading force of 
immunological ageing. Thymic activity is extremely efficient during childhood, but 
very low in the elderly. This is likely due to the fact that the immune system has to 
cope very early with an environment full of infectious agents, and thus has to be 
extremely strong and maximally functional in the first period of life,  i.e. , during 
childhood.  

  In parallel with the decline of thymic acticvity, an increase in the number of 
circulating memory T-cells exists during ageing because of the differentiation and 
maturation of naïve T-cells, and/or the expansion and maintenance of memory cells 
that continuously encounter the same (persistent or recurrent) antigen. The con-
tribution of these two components to the circulating T-cell pool changes with age. 
As thymic output declines (while the number of possible encounters with infective 
agents obviously increases with age), the relative importance of the reexpansion of 
“old” but experienced memory cells becomes more relevant than the differentia-
tion of naïve T-cells. This age-related accumulation of memory cells can represent 
a response to the reduced number of naïve T-cells, required to fill the so-called 
“immunological space”, or conversely a cumulative effect of the expansion of cells, 
likely due to persistent, subclinical infections [ 8 – 10 ]. It is not still clear which is the 
precise dynamics of the functional decline of the immune system, and at which age 
the generation of T-cells in the thymus is eventually exhausted. Some authors, based 
on the rate of reduction of the thymopoietic tissue, have estimated a complete loss 
of thymopoiesis at 105 years [ 11 ], but this estimation was clashed by the observa-
tion that active thymic tissue can be found even later [ 12 ]. Moreover, a recent study 
revealed the existence of a second organ that produces T-cells in mice, but this evi-
dence still lacks in humans [ 13 ].  

  The pool of naïve T-cells can be maintained throughout life by a mechanism 
called “homeostatic proliferation”, induced by cytokines such as interleukin (IL)-7 
and IL-15. Small amounts of these molecules can maintain a small rate of T-cell pro-
liferation, and thus keep the system alerted. After stimulation with these cytokines, 
naïve T-cells from elderly subjects can show a reduced capability to differentiate 
and proliferate. This seems to indicate that naïve T-cells that have undergone home-
ostatic proliferation are not fully functional, probably because an intrinsic reduc-
tion of their proliferative potential, and so a full immunological response cannot be 
generated [ 14 ].  
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  The role of another key population, that of “naturally occurring” CD4+ regulatory 
T-cells (Treg), is currently under analysis. This is a population of T-cells with sup-
pressor capacity, that regulate a wide variety of immune responses [ 15 – 18 ], including 
the activity of self-reactive T-cells that can potentially cause autoimmune disease. 
Treg exert their suppressive function in different manner, either by contact or pro-
duction of inhibitory molecules, and preferentially express high levels of CD25 (the 
low affinity chain of the IL-2 receptor), the winged-helix family transcription factor 
forkhead box P3 (FoxP3) [ 18 ], the ectoenzymes CD39 and CD73 [ 19 – 21 ], and lack 
the interleukin-7 receptor α-chain (CD127) [ 22 ,  23 ]. Controversial data exist on the 
role and amount of this cell subset with age, and it is unclear whether and how these 
cells are altered, or in some way related to the immune dysfunction in the elderly 
[ 24 ]. It has been reported that the thymic output of Tregs may decrease when there 
is a significant loss of its capacity to generate new T-cells, and thus the homeostasis 
of Tregs has to be sustained by alternative pathways,  i.e.  the generation of Tregs in 
the periphery [ 25 ,  26 ]. Scanty data actually exist on this aspect of immune regula-
tion, and further studies are needed.  

  The occurrence of modifications in the production and release of growth factors 
(such as G-CSF, SCF) or interleukins (such as IL-2, IL-7, IL-9, IL-13, IL-15) and 
chemokines (such as CXCL12, sCXCL10 and sCCL2) has been described either in 
the thymus or in the periphery, along with changes in the production of haematopoi-
etic cells and of other components, including cells forming the microenvironment 
where lymphocytes and monocytes are produced and activated. The cytokine net-
work undergoes profound modifications with age, and several authors have shown 
the relevance of such a phenomenon [ 27  –  32 ].  

  Centenarians provide the best example of successful ageing and are an excellent 
model to understand the complex modifications of the aforementioned processes. 
They are exceptional individuals who have reached the age of 100 years in a rela-
tively good state of health, from many points of view (cognitive, physical, endo-
crinological, biochemical and immunological) [ 33 – 35 ]. Studies on their immune 
system have revealed parameters that follow the degenerative trend often present 
in aged people (eg, reduction of B- and T-lymphocytes, reduction of proliferative 
capability), whereas other parameters are well preserved (natural killer cell activ-
ity, chemotaxis, phagocytosis) or even increased (production of proinflammatory 
cytokines) [ 33 ,  34 ]. In this chapter we will discuss the main features of lymphocyte 
subsets from centenarians in order to identify an “immunological signature” which 
is responsible for their difference with the entire elderly population.  

    3      B-cells in Centenarians  

  During ageing several changes in the B-cell compartment, in terms of new B-cell 
generation, homeostasis, repertoire and functionality, can occur. Peripheral B-cells 
and their progenitors can be classified in different subsets on the basis of phe-
notypic, anatomic and functional parameters. Most B-cells originate from bone 
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marrow, where common lymphoid precursors are committed to specific lineage 
commitment, with rearrangement of immunoglobulin (Ig) genes and subsequent 
expression of surface IgM (sIgM). After B lineage commitment, cells rearrange 
the Ig heavy chain genes in a stage defined “pro-B-cell”. Successful rearrangement 
initiates pre-B-cell stage, where cells express a pre-B-cell receptor (BCR) together 
with Igα and Igβ transmembrane signalling molecules. After a brief proliferation, 
the Ig light chain genes are rearranged, and cells express a complete surface recep-
tor, defined as the BCR, characteristic of immature B-cells.  

  Immature B-cells complete their differentiation in the periphery, in a series of 
stages collectively defined as “transitional stages”, classified as T1, T2 and T3 on 
the basis of surface expression markers. Cells that successfully complete differen-
tiation join to peripheral pools; the large majority becomes mature follicular B-cells 
(the so-called B2-cells), which include precursors of primary antibody forming 
cells as well as memory cells, and represent more than 80% of B-lymphocytes [ 36 ]. 
Others cells join the marginal zone pool of lymph nodes, where they play a major 
role in response to T-cell independent antigens, or in the very early phase of T-cell 
dependent response. Even if the exact mechanism driving the differentiation in fol-
licular or marginal zone B-cells is not fully clear, it is clear that BCR signal strength 
plays a crucial role in such a process [ 37 ,  38 ].  

  The last compartment of B-cells is formed by B1-cells (mostly CD5+), the first 
that appear during development, which is maintained by self renewal. B1-cells were 
originally identified as CD5+ B-cells participating in autoimmunity, and sharing 
similarities with those causing human chronic lymphocytic leukaemia [ 39 ,  40 ]. In 
humans, B1-cells are normally about 1–5% of the total B-cells, and are found in a 
variety of tissues including the spleen, peritoneal cavity, pleural cavity and intes-
tines. B1-cells can be further divided in B1a or B1b using surface markers CD19, 
CD45 (B220), and CD5. B1a-cells are CD19+, CD45+ and expresses high levels 
of CD5, while B1b are CD19+, CD45+ and express low to almost-absent levels of 
CD5 [ 41 ].  

  Concerning naïve and memory B-cell subpopulations, a series of studies have 
shown that human B-cell subpopulations can be distinguished on the basis of CD27 
expression and have striking characteristic features [ 42–  45 ]. In particular, it is pos-
sible to identify three main subsets: CD19+, IgD+, CD27- (naïve B-cells), CD19+, 
IgD+, CD27+ (memory cells that underwent somatic hypermutation, and express 
high affinity IgM), and CD19+, IgD-, CD27+ (memory cells that switched Ig class) 
[ 44 ,  45 ].  

  The expression of CD27 on B-cells increases gradually with age: cord blood B-
cells do not express CD27, whereas approximately 40% of adult peripheral blood 
B-cells are CD27+ [ 46 ,  47 ]. These two subpopulations are different: indeed, CD27+ 
B-cells are large cells with abundant cytoplasm, whereas CD27- B-cells are smaller 
and have a scanty cytoplasm [ 48 ].  

  Studies on the B-cell compartment in centenarians were not as accurate as those 
regarding T-cells. As in the case of T-cells, it is widely accepted that the maintenance 
and renewal of the B-cell pools are subjected to a complex network of homeostatic 
processes which undergoes to substantial modifications with ageing. During the 
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‘90s, several studies have shown a significant modification in the pattern of B-cells 
subpopulations (reviewed in [ 33 ,  34 ]). It was shown that the proportion of B-cells 
in the peripheral blood usually decreases in elderly persons, including centenarians 
[ 6 ]. Moreover, age-related increase of the serum level of immunoglobulin classes 
(IgG and IgA but not IgM) and IgG subclasses (IgG1, 2 and 3, but not IgG4) was 
detected [ 49 ].  

  Conversely, less attention was paid to modifications of the B-cell compartment 
during ageing, and only a few studies have analyzed B-cells subsets in centenar-
ians [ 50 – 52 ]. These studies have shown an age-dependent decrease in the absolute 
number of CD5+ and CD40+ B-cells, and a slight, even if not significant decrease 
of CD19+, CD27+ cells. The changes in absolute counts were mainly due to the 
decrease of the absolute number of B-cells. The percentage of CD19+, CD27+ 
B-cells increased significantly with age, reflecting increase in memory cells and 
decrease in naïve B-cells; centenarians did not escape from this trend. It was 
observed that the percentage of IgD+, CD27+ memory cells increases until 30–40 
years, and then declines, with a secondary deficiency in IgM production in elderly 
subjects. The shift observed towards memory cells, as in the case of T-cells, can mir-
ror the continuous exposure to foreign antigens throughout life [ 50 ,  51 ].  

  Similar results were obtained by other authors, who analyzed changes in B-
cells with ageing, in a population of healthy subjects 21-99 years old, and demon-
strated a rapid increase in the absolute number of memory B-cells (either IgD+ or 
IgD-) in the first three decades of life, and then a slight decrease of IgD-, CD27+ 
B-cells, and a marked decrease of IgD+, CD27+ elements. Concerning the per-
centage of these subset among B cells, CD27+ B cells increase during childhood 
and adulthood and then decline, the most marked decline regarding IgD+, CD27+ 
cells. The percentage of naïve B-cells increased with age. Again, extremely old 
people fit perfectly the trend observed in “normal” people [ 52 ]. Functional stud-
ies have shown that memory B-cells in the elderly have remarkable diminished 
production of Igs after stimulation, and that induction of plasma cell differentia-
tion was decreased in elderly persons compared with that in adults [ 52 ]. These 
observations are in complete agreement with the reduction of clonotypic response 
to new antigens, accompanied by the progressive expansion of monoclonal B-
lymphocytes observed in the elderly and the consequent increase in monoclonal 
immunoglobulin (MIg).  

  MIgs are known to appear with a high frequency during ageing and indeed about 
20% of elderly humans have serum MIg; there are direct evidences that, in the 
mouse model, cells producing MIg derive from expansion of single clones [ 53 ]. 
About 1% of elderly subjects transform these alterations into myeloma, and per-
haps chronic lymphocytic leukaemia, a lymphoid malignancy that appears with a 
relative frequency in advanced age [ 54 ]. The shift in the specificity of antibodies 
from foreign to autoantigens observed with ageing is mirrored by the specificities 
of serum MIg, according to data indicating that approximately 50% of MIg reacts 
with autoantigens [ 55 ]. Indirect evidence from studies performed in mice suggests 
that cells that secrete MIg derive from the CD5+ B-cell population, even if also 
CD5- monoclonal B-lymphocytes can be present in humans [ 56 ].  



  Such modifications of B-cell subsets with ageing, and in particular the progressive 
increase in memory B-cells and the reduced capability to cope with new antigens, as 
well as with recurrent encounters with the same antigen, is clearly reflected in deep 
changes in the production of antibodies. The concentration of natural and antigen-
induced antibodies specific for foreign antigens decline with age, as well as specific 
antibody responses to almost all vaccines [ 57 ]. Despite this defect in the antibody 
response to foreign antigens, the level of serum Ig does not decline during ageing 
[ 57 ], a paradox that can be explained by an age-dependent increased serum concen-
tration of autoantibodies [ 58 ]. Thus, ageing is associated with alterations in the B-
cell repertoire with respect to the ratio of antibodies specific for the nominal versus 
self antigen. The autoantibodies detected at increased concentrations in the serum 
of elderly people are specific for autoantigens such as DNA, immunoglobulins, thy-
roglobulin, and are found at high concentrations in patients with systemic lupus 
erythematosis, rheumatoid arthritis or hypothyroidism. However, it is interesting 
to note that centenarians are characterized by a striking absence of organ specific 
autoantibodies, whereas nonorgan specific autoantibodies increase in healthy aged 
donors, as well as in centenarians [ 6 ,  33 ,  34 ,  59 ].  

  The serum concentration of IgM, IgA and IgG also increases with age [ 60 ] 
although the concentration of IgD decreases in elderly people, including centenar-
ians [ 61 ]. The preferential loss during ageing of IgG and high affinity antibody, the 
most protective antibodies against bacterial and viral diseases, can be related to the 
increased susceptibility and severity of infections and a lower efficacy of vaccines 
in elderly people.  

    4      General Features of T-cells in Centenarians  

  The fine analysis of the phenotype of peripheral T-lymphocytes is crucial for a bet-
ter comprehension of the T-cell homeostasis during ageing. Not only this allows to 
determine T-cell dynamics, but also to deeply investigate the role of specific T-cell 
subsets. One of the most age-related changes within the T-cell population is the pro-
gressive accumulation of memory cells in spite of the naïve T-cell pool [ 62 – 65 ]. It 
is to note that in the past years several studies, including ours, have used the expres-
sion of CD45 isoforms, CD45RA and CD45R0, to define naïve/unprimed and mem-
ory/experienced T-cells, respectively [ 62 ]. As a consequence, it was reported that a 
well preserved number of naïve T-cells can be still present in people with advanced 
age, included centenarians [ 33 ,  62 ]. Few years later the publication of such studies 
it was shown that CD45RA+ cell population was quite heterogeneous, includes ter-
minally differentiated T-cells, and that several different memory subsets are present 
in the peripheral blood, which can be recognized by the simultaneous use of anti-
CD45RA, anti-CCR7 and anti-CD62L monoclonal antibodies [ 66 ]. Interestingly, a 
particular subset of memory cells, the so-called TEMRA ( T   e ffector  m emory  RA +) 
subset, more frequent in the CD8+ than in the CD4+ compartment, is formed by ter-
minally differentiated memory cells that are capable of reexpressing the CD45RA 
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isoform, but are incapable of recirculating in secondary lymphoid organs. These 
CD45RA+ revertant cells have been definitely demonstrated to behave as memory 
cells [ 67 ].  

  The advent of polychromatic flow cytometry (PFC) has increased the capacity to 
analyze several antigens in the same cell and, as a consequence, has allowed a bet-
ter definition of T-cell differentiation state. As evidenced in  Figs. 1  and  2 , multiple 
subsets can be identified in the peripheral blood by the simultaneous analysis of dif-
ferentiation ( i.e.  CD45RA, CCR7, CD95), activation ( i.e.  CD38) and survival ( i.e.  
CD127) markers. PFC led to demonstrate that the use of only one or two markers 
is not sufficient for the definition of naïve T-cell [ 68 ,  69 ]. PFC has been recently 
used by our group to analyze T-cell differentiation in centenarians, and we have 
found that in these subjects true naïve T-cells are extremely rare [ 70 ]. Indeed, a 
small proportion of CD4+ and CD8+ T-cells coexpress CD45RA and CCR7 [ 71 ], 
but further analysis of these “naïve” T-cells reveals that most of them also express 
CD95 (typically present on memory cells). Several questions still await an answer, 
such as where do these cells come from and where are they going (in terms of 
which lymphoid site is their final destination), do they represent an intermediate 
subset between naïve and memory cells, or are they terminal effector cells with the 
capability to recirculate to lymphnodes and spleen. It is to note that, in the elderly, 
the majority of CD45RA+ cells lack the costimulatory molecules CD27 and CD28 
[ 64 ,  72 ], express CD57 and KLRG1 [ 73 ,  74 ] and produces IFN-γ upon stimulation 
[ 64 ], suggesting that these cells are part of the memory pool.          

    Both repeated exposure to antigens for more than a century and reduced thy-
mopoiesis can account for the striking accumulation of memory T-cells in centenar-
ians. It has been estimated that thymopoiesis declines over 80% after the age of 60 
years and minimal or no thymic activity can be predicted after 100 years, due to the 
progressive loss of thymic epithelial space [ 75 ]. T-cell receptor rearrengement exci-
sion circles (TRECs), which are indicative of thymic activity [ 76 ], are practically 
undetectable in these subjects, although in our experience about 15% of centenar-
ians (4 out of 25) displayed detectable levels of TREC+ lymphocytes [ 71 ]. It is 
thus likely that external factors such as the activity of homeostatic cytokines could 
contribute to the maintanance of the few naïve T-cells in old age [ 75 ]. However, 
competition with memory cells for those factors could compromise naïve T-cell 
survival and maintenance (see below).  

  IL-7 and IL-15 have been widely described as important cytokines for the regula-
tion of T-cell homeostasis [ 77 ]. In particular, IL-7 plays a pivotal role in determin-

  Fig. 1    Polychromatic flow cytometric analysis of peripheral blood T-cells from a centenarian and 
a young donor (23 years old)      (a)  Lymphocytes were first gated on the basis of forward (FSC) and 
side (SSC) scatter, then T-cell subsets were selected by gating on CD3+, CD4+ or CD3+, CD8+ 
cells. Further analysis of the expression of CD45RA and CCR7 allowed the identification of naïve 
(TN: CD45RA+, CCR7+), central memory (TCM: CD45RA-,CCR7+), effector memory (TEM: 
CD45RA-,CCR7-) and CD45RA+ terminal effector (TEMRA: CD45RA+, CCR7-) cells      (b, c)  
Analysis of the expression of CD38 and CD95 in naïve and memory subsets of (b) CD4+ and (c) 
CD8+ T lymphocytes. Numbers indicate the percentages of the population identified by anti-CD38 
and anti-CD95 mAbs 
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ing the survival of naïve T-cells and their proliferation in lymphopenic conditions. 
For naïve cells, IL-15 seems to be less important, since IL-15 −/−  and IL-15Rα −/−  
mice display only slightly reduced levels of naïve CD8+ T-cells, which could be 
due to modest defects in thymic production, or to effects on the survival and/or pro-
liferation of naïve CD8+ T-cells [ 77 – 79 ]. It is noteworthy that CD4+ T-cells, which 
express higher levels of IL-7Rα than CD8+ T-cells, appear to be more dependent 
on survival signals mediated by IL-7 signals. IL-7 is also important for the mainte-
nance of memory CD4+ T-cells while memory CD8+ T-cells mainly rely on IL-15 
signals. Recently it has been reported that CD8+ T

EMRA
 cells from elderly subjects 

(>65 years old) display altered expression of CD127 and reduced responsiveness to 
IL-7 in vitro [ 80 ]. Differently, we recently demonstrated that centenarians do not 
undergo a remodeling of the IL-7/IL-7 receptor system, as it is in the elderly, sug-
gesting an active role for this cytokine in very old age [ 71 ]. We found that plasma 
IL-7 levels were unmodified throughout life, and the same was observed for CD127, 
both at the mRNA and protein level [ 71 ]. However, more detailed analysis of T-cell 
subsets by PFC revealed that slight modifications regarding CD127 expression can 
be found in certain subsets after analysis of T-cell flow cytometric profile by novel 
bioinformatic approaches (see below) [ 70 ].  

  IL-15 may also play a role in regulating T-cell homeostasis in centenarians. IL-
15 level is increased in these subjects [ 81 ] and may itself contribute to the accumu-
lation of memory cells. IL-15 has also a potent capacity to induce peripheral T-cell 
expansion and, together with IL-7, may compensate loss of thymic activity by driv-
ing homeostatic turnover. The idea that aged subjects are characterized by a higher 
T-cell turnover than young subjects is supported by several experimental evidences: 
i) old people have nearly twice Ki67+ T-cells in the periphery in comparison to 
young donors [ 82 ]; ii) studies using the deuterated glucose technique revealed an 
accelerated turnover of the CD8+,CD45RA+ subset in the elderly population [ 83 ]; 
these cells, that in old people are probably part of the so-called T 

EMRA
  subset, can 

  Fig. 2    Analysis of CD127 expression on naïve and memory subsets of CD4+ (upper panels) 
and CD8+ (lower panels) T-cells     In each panel, upper histogram indicates CD127 expression in a 
young donor (Y), while lower panels are referred to a centenarian (C) 
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be generated, at least in vitro, by the proliferation of central memory T (T 
CM

 ) cells 
in response to hoemostatic cytokines rather than by the direct expansion of T 

EMRA
  

cells themselves [ 84 ]; iii) TREC+ cells, which are not only influenced by thimic 
activity but also by the rate of immune activation and proliferation occurring in the 
periphery, are undetectable in most centenarians [ 71 ]. As a consequence, it is pos-
sible to speculate that the expanded memory pool, which is a predominant feature 
of centenarians, may compete with naïve T-cells for IL-7 and IL-15 availability, thus 
limiting naïve T-cell survival and proliferation.  

    5       T-cell Function in Centenarians  

  There is large agreement that T-cell function is in part compromised during ageing, 
and it affects both CD4+ and CD8+ T-cells at the level of antigen-specific immunity 
[ 85 ]. These alterations regard many aspects of cellular function such as prolifera-
tion, intracellular signalling, cytokine production and effector function.  

  CD4+ T-cells display age-related reduced helper capability. Studies in aged mice 
revealed that effector CD4+ T-cells generated from naïve CD4+ T-cells are char-
acterized by a reduced expression of differentiation and activation markers such 
as the CD40 ligand (CD154) and CD25 [ 86 ,  87 ]. As a consequence, reduced B-
cells response was observed due to a defective helper activity [ 87 ], which is mainly 
ascribed to reduced IL-2 production [ 86 ]. Decreased production of IL-2 and impaired 
response to this cytokine have been documented in aged humans as well. However, 
altered production and utilization of this cytokine can be potentiated by exposing 
cells from aged donors to low frequency-pulsed electromagnetic fields, suggesting 
that these altereations are reversible and can be positively modulated [ 88 ].  

  Age-related defects in naïve CD4+ T-cells are likely due to the chronologic age 
of the CD4+ T-cells rather than to the chronologic age of the individual [ 14 ]. In fact, 
newly generated naïve CD4+ T-cells in old mice exhibit normal effector function  ex 
vivo  and  in vivo . These data indicate that long-term maintenance of the naïve T-cell 
pool by homeostatic mechanisms may result in the alteration of T-cell activity. On 
the other side, restoring or boosting thymic activity may help in reducing immune 
defects in the elderly.  

  In addition to IL-2, alterations in the production of several cytokines have been 
detected such as decreased production of IL-4 by CD4+ T-cells from aged mice 
after stimulation with anti-CD3 antibody [ 89 ], or increased production of TNF-α 
from aged humans after stimulation with PMA/ionomycin [ 90 ]. By contrast, the 
production of TNF-α was not modified in centenarians [ 90 ]. Increased inflamma-
tion exerted by CD4+ T-cells could reflect the proinflammatory status which is 
often observed in the elderly but not in centenarians [ 10 ].  

  Reduced effector function has also been observed for CD8+ T-cells by analyzing 
antigen-specific immune responses. For example, CMV-specific CD8+ T-cells from 
>65 year old people are highly expanded in CMV carriers but they are impaired 
in IFN-γ and IL-10 production after CMV stimulation [ 91 ]. By contrast, secretion 
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of IFN-γ was observed after stimulation with mitogens. Surface receptor analysis 
revealed a highly differentiated effector-memory (CD45RA- CCR7-) or terminal 
effector (CD45RA+ CCR7-) phenotype and lack of CD28 and CD27 molecules 
but high levels of the KLRG-1 receptor, which is associated to end-stage differ-
entiation and apoptosis resistance [ 91 ]. The same authors reported that CMV-spe-
cific CD8+ T-cells from HLA-A2+ centenarians were not so highly expanded and 
displayed lower KLRG-1 expression, suggesting earlier differentiation and normal 
mechanisms of apoptosis [ 91 ]. However, other authors reported that CMV-specific 
CD8+ T-cells for a HLA-B7-restricted epitope can occur at very high frequency in 
centenarians as well [ 92 ]. Differently, EBV-specific CD8+ T-cells response remains 
constant with ageing but it is interesting to note that in CMV-seronegative donors, 
the response to EBV increases significantly with age [ 93 ].  

  Modifications in the proliferation of peripheral blood lymphocytes (PBLs) 
from centenarians have been detected but they were not unidirectional. In fact, 
full capability of PBL proliferation has been observed in response to anti-CD3 
antibody, pokewood mitogen and phorbol esters, while proliferation in response 
to PHA, IL-2, autologous and allogenic mixed lymphocyte reaction is reduced 
[ 94 ]. However, it is to be noted that, after PHA stimulation, PBLs from centenar-
ians showed a delayed peak of thymidine incorporation but the overall thymidine 
incorporation was comparable to that of young donors [ 95 ]. Analysis of telomeres 
revealed an inverse correlation between age and telomere length, indicating that 
centenarians do not escape the phenomenon of telomere erosion. Interestingly, in 
fibroblasts from centenarians telomere length is indistinguishable from those from 
young donors [ 96 ,  97 ]. Thus the general idea is that lymphocyte proliferation in 
centenarians is in part preserved. As defects in the production of and response to 
IL-2 have been proven in human ageing, by contrast lymphocytes from centenari-
ans are fully capable of binding IL-2 [ 33 ]. IL-2 could certainly sustain lymphocyte 
proliferation but it remains to be determined whether IL-2 production is critically 
modified in these subjects. Genetic analysis of the IL-2 promoter revealed that 
the IL-2 high-producer genotype is less frequent in centenarians than in young 
people [ 98 ]. These data contrast with what has been reported above but it is to be 
noted that an increase of IL-2 production characterizes the Alzheimer’s disease 
serum profile. Moreover, people carrying the IL-2 low-producer genotype have 
a lower CD8 cell count in comparison to those carrying the IL-2 high-producer 
genotype. These data together suggest that the genetic background could not be 
a bystander factor in determining the so-called “immune risk phenotype” (IRP). 
Longitudinal studies identified the IRP phenotype as a composition of param-
eters which includes CMV seropositivity, a CD4:CD8 T-cell ratio of <1 due to 
increased CD8+ T-cells, an expansion of CD8+ CD28- T-cells with features of 
terminally differentiated T-cells, the presence of CD8+ T-cell clonal expansions, 
and elevated levels of proinflammatory cytokines in serum [ 99 – 101 ]. It has been 
also demonstrated that the IRP strongly influences the survival of people above 
the age of 80 [ 99 ,  100 ].  

  CD8+ T-cell clonal expansion is very common in aged people and has been 
also reported in animals [ 102 ]. In humans, a strong correlation exists between 
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age and the incidence of CD8+ T-cell clonal expansions, with one-third of adults 
over the age of 65 years developing CD8+ clonal expansions [ 103 ]. However, the 
occurrence of such a high number of monoclonal CD8+ T-cells does not seem to 
be pathological since CD8+ T-cell lymphomas do not develop in these subjects, 
suggesting that CD8+ T-cell clonal expansion is still under homeostatic control. 
Antigen may play a predominant role in the occurrence and maintenance of this 
phenomenon. In particular, CMV infection seems to drive CD8+ T-cell clonal 
expansion. By using MHC tetramers bearing CMV antigen, authors found that a 
T-cell clone specific for a single CMV antigen can account for a high proportion 
of the entire CD8+ T-cell pool in the elderly population [ 93 ,  104 ]; however, at the 
moment, it is still unclear whether this occurs also in the centenarian cohort [ 91 , 
 92 ]. Persistent CMV infection is thought to actively contribute in the definition 
of the IRP; however, little is known on how CMV strongly influence subjects’ 
survival in advanced age and how clonal expansion of CMV-specific CD8+ T-
cells is driven, as these subjects did not display any reactivation of CMV infec-
tion [ 92 ]. Some authors hypothesized that such a high oligoclonal expansion of 
CMV-specific T-cells in the elderly population may shape the T-cell repertoire, fill 
the immunological space and compete for survival and growth factors [ 105 ]. For 
this reason, memory CD8+ T-cells specific for other antigens than CMV could 
be impaired [ 93 ] or lost through competition, resulting in the exposure of elderly 
people to otherwise silent infections.  

  Compared with a sample of very old, the prevalence of IRP and the associated 
increase of CMV specific T-cells might decline in a sample of centenarians by selec-
tive mortality, because survival in those aged 80–95 years occurs preferably in the 
non-IRP individuals [ 10 ].  

    6       Regulatory T-cells in Centenarians  

  It was supposed, since many years, that effector immune response should be tightly 
regulated in order to avoid excessive inflammation and, subsequently, tissue dam-
age. This hypothesis and further experimental evidences suggested the existence 
of a subset of cells involved in the suppression of the immune response. Extensive 
research in the past decades led to the identification of suppressor T-cells as sub-
sets of the CD4+ T-cell lineage. In particular, in 1995, Sakaguchi and colleagues 
reported that “activated” CD4+ CD25+ T-cells, now defined naturally-occurring 
regulatory T (Treg) cells, were able to maintain immunologic self-tolerance [ 106 ] 
while, in 1997, Roncarolo and colleagues identified an inducible subset of CD4+ 
T-cells capable of suppressor function [ 107 ]. These cells, therefore defined Type-1 
T-regulatory cells 1 (Tr1), differed from Treg cells because they were not naturally 
present in the circulation but could be induced by prolonged treatment with IL-10 
in vitro and responded after recognition of cognate antigen [ 107 ]. Further research 
confirmed that Treg cells originated from the thymus and constitute a different line-
age from Tr1 cells and conventional CD4+ T-cells [ 108 ]. Treg cells constitutively 
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express the forkhead box transcription factor FoxP3, which acts as a key control 
gene of their development and function [ 109 ]. Differently, Tr1-cells and other 
subsets of suppressor/regulatory T-cells later identified, such T-helper Type-3 (T 

H
 3) 

cells, are inducible and can develop from conventional CD4+ T-cells when exposed 
to specific stimulatory conditions such as the blockade of costimulatory signals, 
deactivating cytokines or different drugs [ 110 ].  

  Naturally occurring Treg cells constitute the 1-8% of total CD4+ cells in healthy 
adults. This large imprecision in the determination of their number could be due 
to the different criteria used for their identification (defined either CD4+, CD25 high  
or CD4+, CD25 high , FoxP3+) or to the limited number of subjects studied. In fact, 
the definition of Treg cells solely based on the expression of high levels of CD25 
(CD4+, CD25 high ) could overestimate their number, since the CD25 antigen is also 
upregulated in activated T-cells. This raises several doubts on the reliability of CD25 
as a unique marker of CD4+ Treg cells, expecially in the contest of chronic immune 
activation, such as HIV infection, autoimmune diseases and ageing itself, where an 
increased number of activated T-cells in the peripheral blood has been described 
[ 33 ]. Additional markers, possibly in combination and in the same cells, should be 
investigated for this purpose, such as FoxP3 [ 109 ], CD 127  [ 22 ,  23 ] or CD39 and 
CD71 [ 19–  21 ].  

  Whether the amount of Treg cells in peripheral blood is dependent on age is 
still a matter of debate. Many independent groups studied large cohort of subjects 
and positive correlations between age and the number of Treg cells were reported 
or not [ 24 ]. However, people with advanced age (>80 years) were considered only 
in a few studies and none of them were centenarians. Thus, up to now, no data are 
present on the number and function of Treg cells and other regulatory T-cell subsets 
in centenarians. Adding to this, controversial data are available on the influence of 
the ageing process on the function of Treg cells. A study reported the decline in the 
suppressive function of Treg cells by almost 90% with age over 50 years [ 111 ], but 
others reported equivalent function of Treg cells between young and old donors 
[ 112 ,  113 ].  

  Animal studies suggest that phenotipic and functional modifications can occur 
in this subset with ageing. In aged mice, high accumulation of CD4+, CD25+, 
FoxP3+ Treg cells has been observed in the spleen [ 114 ,  115 ] and lymph nodes 
[ 114 ], and these cells retained suppressive capability [ 114 ,  115 ]. Removing these 
cells by anti-CD25 monoclonal antibodies restored effector CTL response and anti-
tumour immunity [ 114 ]. However, major suppressor activity was found in a sub-
set of CD4+, CD25- cells [ 116 ], which have been later demonstrated to harbour 
intracellular FoxP3 [ 115 ]. Thus, it is possible that other subsets rather than only 
CD4+, CD25 high  cells are able to regulate effector responses. It remains to be deter-
mined whether these CD25- suppressor cells were CD25 high  Treg cells in origin, or 
have been generated from conventional CD4+ T-cells under particular conditions 
of stimulation. In any case, further experiments, including the analysis of multiple 
Treg markers together with functional studies, are required to clarify the role of the 
ageing process on this CD4+ lineage.  
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    7       γδ T-cells in Centenarians  

  In addition to conventional αβ T-cells in blood and in peripheral tissues, a second 
subset of T-cells bearing a different T-cell receptor, composed of γ and δ chains, can 
be identified. These γδ T-cells represent only 5% of total T-cells in peripheral blood 
but are enriched in many organs containing epithelia such as skin, lung, intestine, 
and genitourinary tract [ 117 ]. Since multiple γ and δ genes are available, different 
combinations of γ and δ chains are possible, thus generating different families of 
γδ T-cells. Intriguingly, γδ T-cells in different epithelial tissues use distinct Vγ/Vδ 
chains; for example, in the intestinal epithelium and lamina propria, γδ T-cells, 
which represent 30% and 5% of total T-cells, respectively, are mostly Vγ8/Vδ1, 
while in the peripheral blood Vγ9/Vδ2 are found [ 117 ]. These data suggest that dif-
ferent subsets of γδ T-cells may recognize specific antigens and may play different 
roles during the immune response.  

  Despite a strong similarity with conventional αβ T-cells dictated by the presence 
of a TCR and αβ surface markers, γδ T-cells exibit cytolitic activity by a major his-
tocompatibility complex (MHC) antigen-unrestricted mechanism [ 118 ]. Thus, γδ T-
cells are not activated by peptides presented by antigen-presenting cells (APC) but 
by nonpeptidic compounds of low molecular weight and cell-cell contact is needed 
for γδ T-cell activation to occur [ 117 ,  119 ,  120 ]. So far, their most potent activa-
tor is (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), an intermedi-
ate of the microbial nonmevalonate pathway of isopentenyl pyrophosphate (IPP) 
biosynthesis [ 121 ,  122 ]. Other ligands than phosphoantigens can be recognized by 
γδ T-cells, including MHC-class I like molecules, such as T10 and T22 in mice 
and MICA and MICB in humans, and an ATP synthase F1-apolipoprotein A-I (AS-
ApoA-I) complex [ 123 ]. The role of these cells in immunity is still to be clarified 
but γδ T-cell response is nowadays considered foundamental in tumor surveillance 
and in infectious diseases.  

  In several microbial infections in humans, such as tularemia, salmonellosis, 
brucellosis and ehrlichiosis, γδ T-cells are expanded up to 48-97% of total T-cells 
[ 124 ]. Increased levels of circulating γδ T-cells have been also described in infec-
tions with protozoal parasites (malaria, toxoplasmosis, leishmaniasis) and myco-
bacteria ( M. avium  and  M. tuberculosis ) [ 124 ]. Recent studies in nonhuman primate 
models concerning the major subset of γδ T-cells,  i.e.,  that expressing the Vγ9/Vδ2 
TCR, revealed that γδ T-cells may play an active role during the early phases of the 
immune response [ 125 ]. In macaques, the expansion of γδ T-cells was detected 2–3 
weeks after inoculation of  M. Bovis  BCG, and was observed in the lung and intes-
tine, but not in lymphoid organs [ 125 ]. Accumulation of γδ T-cells at infection sites 
but not in lymph nodes has been also described in murine infections. Moreover, γδ 
T-cells specific for the murine MHC class Ib molecule T22 harboured Vγ4 and Vγ1 
in the spleen and Vγ7 in the gut epithelium [ 126 ]. These data together suggest that 
this lymphocyte population acts locally in a tissue-specific, and not antigen-spe-
cific, manner and is excluded from secondary lymphoid organs.  
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  However, contrasting data have been reported. CCR7 and CD62L receptors, which 
are able to mediate the homing to secondary lymphoid tissues, are not expressed on 
the majority of Vγ9/Vδ2 T-cells. The phenotype of these cells resembles that of 
conventional effector T-cells,  i.e.  CD45RA-, CD45R0+, CD27-, CD11a bright  [ 127 ], 
which are preferentially localized to nonlymphoid tissues [ 128 ]. However, upon 
activation with cognate ligand, γδ T-cells can acquire an APC phenotype, by induc-
ing the expression of HLA-DR, CD80 and CD86 costimulatory molecules together 
with CCR7. These cells are able to present antigens to conventional αβ T-cells, 
thereby activating the adaptive immune response [ 117 ,  129 ].  

  Due to the difficulty to obtain specimens from different anatomic sites, the major-
ity of studies conducted in humans concerns peripheral blood γδ T-cells. Recent data 
reported a prominent role of these lymphocytes in regulating intestinal homeostasis 
[ 120 ], and thus it would be interesting to check whether this sort of protection is 
maintained in the elderly or, if altered, could be responsible for immune pathologies 
of the gastro-intestinal tract.  

  Different subsets of γδ T-cells are affected by age in a different way. In fact, while 
the absolute number and percentage of Vδ2 T-cells progressively diminishes with 
age, that of Vδ1 remains rather constant throughout life [ 130 ,  131 ]. This obviously 
leads to a subversion in the Vδ2/ Vδ1  ratio , that is more prominent in centenarians 
than in old donors, despite the total γδ T-cell count does not differ between the two 
groups [ 130 ]. Ageing did not change the proportion of γδ T-cells as regards to αβ 
CD3+ T-cells, suggesting common mechanisms of depletion [ 130 ]. It is thus pos-
sible that thymic involution and peripheral expansion may play a role in regulating 
the homeostatis of γδ T-cells. However, these aspects need further elucidation.  

  Interestingly, γδ T-cells were not impaired in their cytolitic potential in old age, 
despite an age-dependent decrease in proliferative capability in response to isopen-
tenyl diphosphate (IPP), which was completely ascribed to the Vδ2 subset [ 130 ]. 
Increased production of TNF-α, but not IFN-γ, by γδ T-cells has been observed in 
centenarians in comparison to young donors [ 130 ]; moreover, γδ T-cells from cente-
narians displayed higher tendency to undergo apoptosis after treatment with TNF-α 
and anti-CD95 monoclonal antibody [ 131 ]. Higher percentage of CD95+ γδ T-cells 
in centenarians may reflect the accumulation of effector memory-like T-cells, which 
are known to be highly sensitive to activation-induced cell death mediated by sig-
nals passing through CD95/Fas. Milder alterations in the γδ T-cell population have 
also been described in old people [ 130 ,  131 ]. This suggests that a progressive loss 
of γδ T-cell activity is observed with age and, as for αβ T-cells, centenarians do not 
escape this phenomenon.  

  Whether γδ T-cells play a role during immune responses in old age is still a mat-
ter of debate. Many papers confirmed a continued, protective role of this subset in 
adult animals [ 132 ,  133 ], including humans [ 134 – 136 ] but recent studies in mice 
revealed a largely redundant role in the presence of a fully mature and expanded αβ 
T-cell compartment [ 137 ].  

  Sex-dependent phenotypic and functional differences have been described in 
γδ T-cells. In particular, the number of V 9/V 2 cells and their effector capacity 
remain constant with age in females, while drop in males [ 138 ]. It would be inter-
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esting to confirm these data in old people and centenarians in order to determine 
whether this cell subtype could influence the female predominance in the centenar-
ian population.  

    8      NK-cells in Centenarians  

  NK-cells are lymphocytes that can recognize and kill virus-infected as well tumor 
cells without antigen-presentation or MHC-restriction. NK and T-cells share a com-
mon precursor, that expresses FcγRIII, but can develop independently of the pres-
ence of the thymus, as shown in athymic mice [ 139 ]. NK-cells do not rearrange 
immunoglobulin (Ig) or T-cell receptor (TCR) genes and therefore neither Ig nor the 
TCR/CD3 complex is expressed at the cell surface, except for the ζ chain [ 140 ]. In 
humans, these cells are characterized by the expression of CD56, an isoform of the 
neural cell adhesion molecule (N-CAM), CD16, the low-affinity IgG Fc receptor 
(FcgRIII-A), CD57, an oligosaccharide antigenic determinant, and CD2, an adhe-
sion molecule that appears to be correlated with the acquisition of Fas ligand-medi-
ated cytotoxicity [ 141 ]. They also express inhibitory receptors that interact with 
MHC class I molecules and prevent unwanted destruction of the target cells. Thus 
the function of NK-cells results from a balance between activating and inhibitory 
signals delivered by specific membrane receptors and NK cell activation requires 
the interaction of activating NK receptors with their ligands on the targets and also 
the lack of inhibitory signals initiated by the interaction of NK inhibitory receptors 
with target MHC class I molecules.  

  They can kill target cells by the secretion of specialized lysosomes, containing 
pore-forming protein perforins [ 142 ], or by the induction of programmed cell-death 
pathways [ 143 ]. Some cytokines (such as IL-2, IL-12, IL-15, IL-18 and IFN-α/β) 
can induce NK cell proliferation and activation, migration and production of IFN-γ, 
TNF-α and GM-CSF (for review see [ 144 ]). NK-cells can produce also cytokines 
and chemokines that directly participate in the elimination of pathogens or activate 
other cellular components of immunity.  

  Several alterations have been described in NK cell function with ageing both 
in animals and humans. In humans, the different selection criteria of the elderly 
populations have produced contrasting data. Some authors reported a decrease in 
cytotoxic function of the circulating NK-cells of elderly subjects [ 145 ] which is 
associated with an increased incidence of infectious diseases [ 146 ,  147 ]. Indeed, 
there is an increase of mortality risk of 3 times in people more than 85 years with 
low numbers of NK-cells respect those with high NK cell numbers [ 148 ]. Several 
pathologies usually associated with ageing are associated with low NK cell activity 
in the elderly, such as atherosclerosis [ 149 ]. On the contrary, high NK cytotoxicity is 
associated with lower incidence of infections of the respiratory tract and with a bet-
ter development of protective antibody in response to influenza vaccination [ 150 ].  

  Indeed, in centenarians, NK cell number, as revealed by analysis of CD56 
expression on PBMCs, and functionality are not modified in comparison to young 
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donors while a partial loss of NK cell cytotoxic activity can be found in middle-age 
subjects, despite the CD57+ and CD16+ populations, which are capable of rapid 
cytotoxic activity, increased as in centenarians [ 151 ]. Further studies revealed a 
preferential expansion of the terminally differentiated CD56 dim CD16+ subset while 
minor modifications were found in the CD56 bright CD16- subset [ 152 ].  

  Whereas NK cell activation mediated by CD16 is not affected by aging [ 144 ,  148 , 
 149 ,  153 ], poor data exist on the function of other NK receptors and probably other 
NK activating or inhibitory receptors are defective in the elderly. It was reported that 
the expression of HLA-specific killer receptors is not significantly affected in NK-
cells from elderly [ 154 ], but more recent studies have shown that NK-cells display an 
age-related increase in KIR expression and a reciprocal decrease in CD94/ NKG2A 
expression, although the CD94/NKG2A inhibitory signaling pathway is intact [ 153 ].  

  The killing activity mediated by perforins is not modified in people with advanced 
age and no significant decrement of these molecules has been observed in NK-cells 
from young and old donors [ 155 ]. Interestingly, a greater decline of perforin expres-
sion is present in elderly men if compared to elderly women [ 156 ]. This could be 
a further element to understand the typically higher percentage of females among 
centenarians [ 157 ].  

  NK-cell activity and phenotype can be affected by the differential presence of 
cytokines between the young and the old population, as well as centenarians. In 
fact, a reduced production of cytokines involved in NK-cell activation, i.e, IL-
2, IL-12, IFN-α and IFN-γ, is observed with increased age [ 158 ]. Accordingly, 
IFN-γ secretion by NK-cells in response to IL-2 [ 159 ] and chemokine secretion in 
response to IL-12 or IL- 2  decrease in elderly [160]. In aged mice and humans the 
response of NK-cells to IFN-α/β is decreased and could be related to the delay in 
virus clearance observed in aged mice [ 159 ]. The decrease of NK-cell secretion 
could lead to an impaired adaptive immune response that could contribute to age-
related diseases.  

  The functionality of the immune system is strongly influenced by the presence 
of certain hormones in a circuit that is called “neuroendocrine immune system” 
[ 161 ], which undergoes profound remodelling with increasing age [ 162 ]. NK-cells, 
as other immune cells, express some hormone receptors on their surface. As a con-
sequence, certain hormones of the hypothalamic–pituitary–gonadal axis as well 
as thyroid hormones, dehydroepiandrosterone (DHEA), insulin-like growth factor 
(IGF)-1, melatonin or insulin regulate their function. Moccheggiani  et al.  showed 
that hormonal treatments with T3, T4, melatonin, GH or IGF-1 in old mice can 
restore NK-cell cytotoxicity and IL-2 and IFN-γ production [ 163 ,  164 ]. In healthy 
nonagenarians and centenarians, NK cell number and/or cytolytic activity was posi-
tively associated with serum levels of vitamin D, while T3 and i-PTH hormones 
were associated only with NK-cell number, suggesting a positive role of these mol-
ecules in regulating NK-cell homeostasis [ 165 ]. Preserved NK-cell functionality in 
these subjects,  i.e.,  NK-cell cytotoxicity and IFN-γ production, was also associated 
with good zinc ion bioavailability which, by contrast, is reduced in old animals and 
humans, but not in centenarians [ 165 – 167 ].  
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    9      NKT-cells in Centenarians  

  The term “NKT” includes more than one subset of T-lymphocytes that have differ-
ent phenotype, functional capacities and tissue distribution and that express NK-
associated receptors (NKR) [ 168 ], historically CD161 in humans [ 169 ] and NK1.1 
in mice [ 170 ].  

  The large number of studies regards the so-called “classical” or “invariant” NKT-
cells (iNKT) expressing a semi-invariant T-cell receptors (TCR), characterized in 
most cases by Vα14/Vβ8.2 in mice [ 171 ] and by Vα24/Vβ11 in humans [ 172 ,  173 ]. 
iNKT-cells TCR can recognize CD1d (a monomorphic class Ib molecole) [ 174 ] and 
bind endogenous glycosphingolipids and α-glycuronosylceramide (present on the 
microbial cell wall), suggesting a role in the protection from bacteria that are not 
detected by classical pattern recognition receptors [ 175 – 178 ].  

  iNKT-cells can be divided at least in three subset on the basis of the expression of 
CD4 or CD8 coreceptor and on their cytokine production. iNKT-cells that express 
CD4+ produce Th1 and Th2 cytokines, while CD4- NKT-cells primarily produce 
Th1 cytokines. CD4- NKT-cells can be further divided into CD4-CD8- (double neg-
ative; DN) and CD8+ NKT-cells, which predominantly express the CD8αα dimer 
instead of the CD8αβ form present on conventional cytotoxic T lymphocytes [ 179–
  181 ]. Indeed, it has been shown that iNKT-cells express CD45RO but lack CD62L. 
It was hypothesized that this effector memory phenotype probably derives from the 
endogenous self ligands recognition [ 182 ]. A minority of iNKT-cells are classified 
as central memory (CCR7+CD45RO+), while most Vα24CD4+ and CD4- NKT-
cells could be defined as effector memory cells (CCR7-CD45RO+)[ 183 ].  

  There is evidence that CD1-restricted NKT-cells represents a thymus-dependent 
population. They are absent in nude mice, do not develop in thymectomized mice 
and first appear in the thymus slightly later than most other T-cell subsets. There is 
also convincing evidence that NKT-cells segregate from conventional T-cells at the 
stage of double positive (CD4+CD8+, DP) thymocyte in the thymic cortex [ 184 ]. 
Indeed, it seems that they acquire a relative resistance to activation-induced apopto-
sis in the late stage of intrathymic development [ 185 ].  

  iNKT-cells play an important role in host defense and immunoregulation, 
including the prevention of tumor development and metastasis, suppression of 
allergic responses and protection against viruses, parasites, bacteria and their prod-
ucts [ 171 ,  173 ,  186 ]. The most striking property of NKT-cells is their capacity to 
secrete large amounts of cytokines (IFN-γ, IL-4, IL-2, IL-5, IL-10, IL-13, GM-CSF 
and TNF-α) within minutes after TCR stimulation. Activation of NKT-cells also 
leads to upregulation of CD40L, resulting in IL-12 production by dendritic cells 
upon CD40 triggering [ 187 ]. Upon TCR engagement, NKT-cells have cytotoxic 
activities through the release of perforins and granzymes and by the expression of 
membrane-bound members of the TNF family (such as FasL) [ 188 ]. Activation of 
NKT-cells leads to subsequent activation of other cells, such as NK-cells, B cells, 
DC, macrophages, and conventional T-cells in mice as well as humans [ 189 ,  190 ]. 
Thus, they can affect the acquired immune system by activating pathogen-specific 
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CD4 Th1 cells as well as CD8 T-cells, suggesting an important role in conferring 
protection against microbial pathogens, like malaria. Moreover, they have been 
shown to play a crucial role in interfering with the initiation, growth and metastatic 
spread of tumours. NKT-cell-derived Th2 cytokines, such as IL-4, can downregu-
late immune responses and have been shown to contribute to protection against the 
development of autoimmune diseases (reviewed in [ 191 ]). Consequently, NKT-cell 
activation results in a cascade of immune reactions, providing a possible explana-
tion for their regulatory effects.  

  Human iNKT-cells can be identified either by their invariant TCR formed by 
Vα24 and Vβ11 gene segments, or by CD1d-tetramers loaded with α-galactosylce-
ramide (α-GalCer), a marine sponge-derived glycolipid able to selectively activate 
iNKT-cells in a CD1d-dependent manner [ 171 ,  192 ]. In human peripheral blood, 
however, classical CD1d-restricted NKT-cells are typically less than 0.1%.  

  Besides iNKT-cells, a different subset of conventional CD1d-independent α/β T-
cell, called “NKT-like” or “nonclassical NKT”-cells, can express several NKR, such 
as CD16, CD56, CD57, CD161, CD94, NKG2A. The majority of NKT-like-cells 
likely belongs to nonclassical subpopulation and are mostly CD8+. The nonclas-
sical NKT-cells can account for 5-20% of total T-cells in human peripheral blood 
[ 193 ,  194 ].  

  A limited number of studies investigated the role of peripheral blood NKT-cells 
in aged people. Studies on iNKT frequency in peripheral blood of centenarians from 
Okinawa were performed by Miyaji  et al.  who analyzed the so-called “extrathymic 
T-cells”, characterized by the expression of CD3 and CD56 or CD57. They found a 
higher frequency of these cells compared to middle-aged subjects but no differences 
were detected between males and females [ 194 ]. Thus, these authors confirmed that 
the proportion and the absolute number of NKT-cells (CD56+ or CD57+ T-cells 
expressing Vα24+) were highly increased in the blood of centenarians, along with 
the proportion of IFNγ-producing cells among NKT-cells [ 166 ].  

  Other studies showed an effect of age on the homeostasis and function of cir-
culating NKT-cells but elderly subjects rather than centenarians were considered. 
DelaRosa et al. found a decreased percentage of Vα24+ T-cells in elderly when 
compared with young controls and, within Vα24+ T-cells, a significant increase 
in the percentage of Vα24+CD4−CD8+ T-cells, while the percentage of Vα24+ 
within CD3+CD28+ was similar [ 195 ]. In accordance with that study, an age-
related decrease in the percentage and absolute count of Vα24+Vβ11+ iNKT-cells 
has been shown in healthy individuals, although their functional capacity to respond 
to α-GalCer was not altered [ 196 ]. Indeed, a decline of 3.4% per year was evalu-
ated in Vα24+Vβ11+ iNKT-cells with age [ 197 ], which involved both their abso-
lute levels and their proportion as to the total T-cell compartment. In addition, they 
found a gender-related difference in the frequency of circulating iNKT-cells, that 
was lower in males than in females, and decreased faster with age in the formers 
than in the latters [ 197 ]. Similar results were obtained by Peralbo et al. who also 
reported a decreased proliferative potential of Vα24+Vβ11+ iNKT-cells in reponse 
to α-GalCer in healthy elderly compared to young subjects [ 198 ]. A decrease in the 
frequency of iNKT-cells in the elderly has been also reported by Jing et al. which 
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was also associated with an alteration in the iNKT-cell subset compositions, that is 
an increase in the proportion of the CD4(+) subset and a decrease in the proportion 
of the CD4/CD8 DN subset [ 199 ]. In addition, iNKT-cells from aged people pro-
duced predominantly Th2 rather than Th1 cytokines [ 199 ].  

  Whereas iNKT-cells are characterized by the expression of a semi-invariant TCR 
that interact with CD1d loaded with glycolipids, ‘‘NKT-like’’ T-cells are NKR-
expressing conventional T-lymphocytes which display an oligoclonal TCR reper-
toire able to recognize classical MHC molecules loaded with peptides [ 200 ]. Most 
of NKT-like cells have an effector memory phenotype and contain high levels of 
perforin and granzymes [ 201 ]. NKR-expressing T-cells expand with aging and cen-
tenarians do not escape this phenomenon, as revealed by the increased expression 
of CD56 on T-cells [ 151 ].  

  Little is known about the function of NKT-like cells but the general belief is that 
their accumulation is primarily driven by a chronic inflammatory environment, as 
it is in the elderly population as well as in patients with persistent viral infections, 
rheumatic diseases and autoimmune diseases, in which a chronic stimulation of the 
immune system occurs [ 201 ]. In particular, the expansion of NKT-like cells accom-
panies the loss of CD28 expression on T-cells after antigenic stimulation in vitro 
and is associated with the accumation of CD28 null  T-cells  in vivo  [ 202 ].  

  In summary, several studies have demonstrated age-related effects on iNKT-
cells, a diminished proliferative functionality, a shift from Th1 to Th2 response and 
a modification in the iNKT subset ratio. However, only one study investigated the 
frequency of these cells in centenarians.  

  All these findings may contribute to highlight the role of NKT in the general 
deterioration of the immune response in the elderly. Considering the importance 
of these cells in the recognition and elimination of Gram-negative bacteria [ 178 ], 
these defects could be involved in the increased morbidity and mortality due to 
bacterial infection associated to ageing. The age-dependent alterations in NKT-cells 
might also reflect the thymic involution, as conventional T-lymphocytes [ 203–  205 ]. 
Molling  et al . suggested that iNKT-cells decrease could affect an efficient tumor 
immunosurveillance in aged donors, representing a risk factor for tumour develop-
ment [ 197 ]. Furthermore age-dependent alterations in iNKT cytokine production 
might contribute to the dysregulation of the cytokine network shown in the aged 
people [ 206 ,  207 ].  

    10      Bioinformatics Tools for the Analysis of Cellular Dynamics 
in Centenarians  

  As described above, a huge number of lymphocytes subsets exists in human periph-
eral blood. The fine analysis of these subtypes is of extreme importance for a bet-
ter understanding of the cellular dynamics during physiological processes such as 
the ageing of the immune system. So far, the simultaneous analysis of multiple 
parameters at the level of single cell can only be performed by polychromatic flow 
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cytometry [ 208 ,  209 ]. A huge amount of data can be generated by such a technology 
which is, however, difficult to manage. In fact, several functional different popula-
tions can be identified by combining the positive and negative expression of each 
antigen (typically 2 n , where  n  is the number of parameters analyzed). Thus, using 8 
fluorochromes coupled to 8 different monoclonal antibodies, it is thus possible to 
identify 256 lymphocyte subpopulations in 100 μL of blood.  

  T-cells from centenarians were recently studied by 8-colour flow cytometry in 
our laboratory. By combining the expression of CD45RA, CCR7, CD127 (IL-7rα), 
CD95 and CD38 (whose expression can be further distinguished between  dim  and 
 bright ), we were able to identify up to 48 subpopulations both for CD4+ and CD8+ 
T-cells ( Fig. 1 ). In order to uncover subtle differences among the three groups of 
subjects under investigation (20 years old donors, middle aged and centenarians) 
that otherwise could be missed by classical approaches, we used global approaches 
based on the Cluster Analysis (CA) and on the Principal Component Analysis (PCA), 
which are often used for microarray experiments [ 70 ]. In particular, the former is 
able to generate groups or “clusters” of variables on the basis of their similarities and 
differences, while the latter allows the dimensionality of a multidimensional data-
set to be reduced, in order to obtain a new system of coordinates,  i.e.  the principal 
components. In this ideal space, subjects are plotted by considering all the variables, 
 i.e.  the T-cell subsets generated by boolean combination. These analyzes revealed 
that, in centenarians, CD4+ T-cells can be highly heterogeneous since it was not pos-
sible to cluster centenarians on the basis of the CD4+ T-cell flow cytometric profile. 
PCA of CD4+ T-cell subsets revealed the expansion of either CD95+ central memory 
or effector memory cells where the expression of CD127 could be retained or not. 
A different behavior was observed for CD8+ T-cells, where a striking expression 
of terminally differentiated effector (CD45RA+, CCR7-) T-cells with a preferential 
CD95+, CD127-, CD38- phenotype was detected. More detailed analysis by using 
different approaches for data pretreatment, such as data scaling, revealed that, for 
instance, that the same memory subset from young donors and centenarians differ-
entially express CD127. These data thus suggest that, while the production of IL-7 
remains constant throughout life [ 71 ], T-cells subsets from centenarians could be 
differentially regulated in terms of peripheral homeostasis [ 14 ,  80 ,  105,   210 ].  

  These approaches are very useful to identify cellular dynamics during the ageing 
process and to identify minimal difference among different ages or clinical condi-
tions. More detailed analysis, in particular in larger cohorts, will reasonably lead to 
the identification of specific subsets with a possible protective role towards diseases 
of various origins.  

    11       Concluding Remarks and Future Directions  

  We have described some crucial modifications occurring in different lymphocyte 
subsets with ageing, and underlined that centenarians display some special features 
that are not shared by the entire elderly populations. Whether these components, 
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rather than genetic or environmental determinants, are responsible for reaching such 
an advanced age still remains to be determined. It is however general opinion that all 
of the aforementioned factors act in synergy. Until now, many studies investigated 
whether the function of a specific subset is maintained or modified in these individ-
uals, but data are lacking on the interplay among different lymphocyte populations.  

  An efficient immune response is the result of the tight cooperation of many cell 
types, and the disfunction of one of them can lead to the persistence of the antigen 
(or the pathogen), and to the onset of a chronic inflammatory enviroment. Thus, it 
is needed to uncover specific interactions among cell types by using more global 
approaches such as systems biology, genome-wide analysis and bioinformatics. A 
complete and detailed picture of the immune system of centenarians can reveal 
potential targets for therapy and vaccination in the elderly.  
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                                        Abstract   :     Age-related changes in the immune system result in deterioration in 
the ability of elderly human beings to develop immunity after vaccination and to 
respond to infections. Thereby the quality of longer lifespan enjoyed by modern 
man is significantly compromised. Furthermore, higher mortality in the elderly from 
infections, autoimmune disease and cancer is associated with decline in the immune 
function. The use of rodent models has yielded critical knowledge of mechanisms 
by which immune cells develop and function. In this chapter, we focus on several 
mouse models that have provided significant data on the changes in immune system 
with advancing age. A greater understanding of many of the age-related changes in 
immune function, recently defined as immunosenescence, may provide important 
insight into the development of clinical strategies and interventions for the mainte-
nance of adequate immune system as human beings age.  

         Keywords   :     Immune system    •    Thymic involution    •    Immune aging    •    Mouse 
models    •    Immunosenescence    

         1      Introduction  

   In mammals, adaptive immunity complements the more primitive innate immunity 
resulting in a more comprehensive protection from infection and neoplasms. Cells of 
the adaptive immune system, T-cells and B-cells are activated by the antigenic stim-
ulation provided by the pathogen in combination with various growth factors and 
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immunomodulatory molecules of the innate immune system (e.g., cytokines). The 
mammalian immune system undergoes significant changes throughout the animal’s 
lifespan. Aging has been associated with immunological changes (immunosenes-
cence) including thymic involution, lower number of naive T-cells, decrease in sev-
eral cell immune functions and increase in others, and poor vaccination response 
to new antigens. At each stage of immune development over a lifespan, complex 
changes have been observed involving multiple cell types and molecular events, 
making it unlikely that we will be able attribute the age-related changes to a single 
gene or signalling pathway. Therefore, it has become imperative to understand not 
only the development and function of individual cell types that participate in normal 
immune responses and age-associated immunosenescence but also the interactions 
between various cells and signalling mediators and growth factors.  

   Many of the early efforts to examine age-associated immune dysfunction have 
centered on possible loss or alterations in the number of circulating lymphocytes, 
more specifically T-cells (Taub and Longo  2005 ). The focus on T-cells makes sense 
given the fact that T-cells are produced by the thymus, which is known to involute 
with advancing age resulting in a significant loss in its capability to generate new 
T-cells for export into the peripheral T-cell pool. Interestingly, this age-associated 
loss in thymic output does not result in any significant change in the total periph-
eral number of T-cells. It is believed that peripheral T-cell numbers with aging are 
maintained by a homeostatic compensatory process involving the peripheral thy-
mus-independent expansion of mature T-cells. Given that T-cells have a limited rep-
licative lifespan, the continued proliferation of T-cells with age is believed to lead to 
an accumulation of replicative-senescent T-cells possessing a diminished capacity 
to respond to new or recall antigens and activation stimuli. This homeostatic expan-
sion of peripheral T-cells results in a significantly limited T-cell receptor (TCR) 
repertoire with age (Taub and Longo  2005 ). Moreover, while a number of additional 
age-associated alterations including effects on TCR and growth factor signaling, 
loss of bone marrow and thymic activity and output, alterations in cytokine and 
hormone expression and deficits in accessory cell function have been reported, the 
literature contains a number of contradictory findings describing age-related altera-
tions in immune function suggesting significant variability in the immune aging 
process. Such variability hinders the identification of a central factor(s) responsi-
ble for the loss of immune function. Therefore, with the involvement of so many 
distinct processes within the aging immune system, the development of potential 
therapeutic interventions and strategies to reverse the aging process and rejuvenate 
the immune system has been hindered. Given that the loss in thymic function is 
one of the earliest and most consistent steps in the progression to immune dysfunc-
tion, strategies that target the involuting thymus are the focus of many interventions 
with the specific goal to reverse thymic atrophy and restore thymopoiesis and T-cell 
export. Increases in the numbers of new and functional T-cells in the circulating 
pool may extend and expand the peripheral T-cell repertoire as well as the individu-
al’s ability to mount a response to new or recall antigens.  

   In addition to the age-associated decline in T-cell function, the number of 
B-cells generated also decline with age resulting in a paucity of naive B-cells. 
Diminished immune responses to novel antigens in the elderly are the cumulative 



effect of fewer newly generated naïve T- and B-cells and a decline in B-cell 
function and proliferative capacity. This decline in B-cell generation results from 
the deterioration of the hematopoietic stem cells (HSC) as well as the inability of 
the older bone marrow environment to support lymphopoiesis. This has lead to 
increasing interest in the study of HSCs and the local lymphoid environment and 
their ability to survive, expand and mature during the aging process. Moreover, apart 
from age-associated defects observed in the adaptive immune system, a number of 
immunological defects have also been observed in cells of the innate immune sys-
tem including dendritic cells (DCs), natural killer (NK) cells, monocytes and macro-
phages, neutrophils, eosinophil, basophil and mast cells. The innate immune system 
forms the first line of defence in a host with phagocytes (macrophage, DC, granu-
locytes) engulfing microbes and particulate antigens, killing microbes and tumor 
cells and presenting processed antigens to T-cells. Defects in many of the estab-
lished functions of innate immune cells have been reported (Taub and Longo  2005 ). 
Thus, it would appear that aging has an impact on many of the immune cell subsets 
and together may impact our ability to respond to antigens, microbial challenges 
and tumors with advancing age. Thus, increasing our understanding of the potential 
mechanisms believed responsible for age-related immunosenescence should yield 
valuable insight into the development and optimization of interventional strategies 
aimed at restoring thymic and bone marrow function and boosting the responsive-
ness of adaptive and innate cell subsets.  

   Animal models are commonly utilized in aging research to obtain data on specific 
tissue and organ systems that are difficult to obtain directly from humans. In addition, 
given the significantly shorter life span of animals and ethical issues with performing 
certain treatments in human volunteers or patients, it is much easier to examine the 
impact of genetic, hormonal, nutritional and physiological changes in these models 
than in humans. For example, one can easily examine the impact of caloric restriction 
in mice and rats over their 2–3 year life span compared to similar studies in human, 
which would be nearly impossible to perform from birth to death. Moreover, in mice, 
various genes can be manipulated and modified to generate gene hyper-expressing or 
deficient animals to examine the influence of a single gene pathway on life span or 
various physiological functions. A number of animal model systems have been estab-
lished examining the age-associated defects in immune function and specific path-
ways that have been shown to be altered, accelerated and/or influenced by normal or 
pathological aging. These immunosenescence models include mice with alterations in 
telomerase activity, tumor suppressor function, oxidative stress, hormone expression 
and various other molecules associated with immune development and differentiation 
as well as longevity. A number of unique findings have been made in these models 
regarding basic immune function and the relationship between various pathways asso-
ciated with longevity and immune function. Many of these models can be divided into 
several categories including those mouse models demonstrating a shorter life span, 
an extended lifespan and little to no significant differences in life expectancy. In this 
chapter, we have reviewed and consolidated the available data on many of these estab-
lished mouse model systems that have been utilized to study alterations in innate and 
adaptive immune function and their relationship to age-related immunosenescence 
and clonal exhaustion.  
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     2      Mouse Models Demonstrating a Shorter Life Span  

   A.  Klotho Mice.  Klotho gene is the first gene to be documented that accelerates 
aging and shortens life span upon disruption and extends life span when overex-
pressed (Kuro-o et al.  1997 ; Kurosu et al.  2005 ). The Klotho protein is a 130kD sin-
gle-pass transmembrane protein, but the extracellular fraction of the protein is shed 
and secreted into the blood and body fluids and thus it is now believed to function 
as a hormone or cytokine. The Klotho protein inhibits intracellular insulin and IGF-
1 signalling, which is a major mechanism for Klotho’s effect on preventing aging 
(Kurosu et al.  2005 ). Klotho mice, which bear an insertional mutation of Klotho 
gene, have demonstrated various disorders resembling human aging as well as a 
significantly shortened life span (Kuro-o et al.  1997 ). Klotho mice have dramati-
cally accelerated age-related thymic atrophy (Kuro-o et al.  1997 ) and significantly 
accelerated age-related decline in B-lymphopoiesis (Okada et al.  2000 ). The defec-
tive B-lymphopoiesis is not cell autonomous and thus Klotho may exert its effect by 
influencing hematopoietic microenvironment, which includes IL-7 gene expression 
by bone marrow stromal cells (Okada et al.  2000 ).  

   B.  Senescence-accelerated Mouse (SAM) . The SAM series were generated in 
1980s from the breeding of AKR/J mice when the researchers found that certain 
litters of mice had an accelerated senescence in an inherited manner. To date, the 
SAM series includes nine SAMP strains with accelerated aging and three SAMR 
strains with normal aging, and each SAMP mouse shows various strain-specific 
and age-associated phenotypes (Higuchi,  1997 ; Hosono et al.,  1997 ; Takeda et al., 
1991; Takeda et al.,  1981 ). The genetic changes in SAMP mice await extensive 
investigations, although alterations in the expression of apolipoprotein A-II (Apo 
A-II) has been identified in these strains (Higuchi  1997 ). SAMP mice demon-
strate age-associated early decline in various immune functions, including decline 
of antibody production to T-independent antigens and NK cell activity; decline in 
antibody response to T-dependent antigens as a result of impaired T helper cell 
activity for antibody response and early onset of autoantibody production (Haruna 
et al.  1995 ; Hosokawa et al.  1987a ; Hosokawa et al.  1987b ; Hosono et al.  1997 ; 
Yoshioka et al.  1993 ).  

   C.  Terc Deficient Mice.  Telomerase is the protein complex that synthesizes 
telomeres and thus preventing telomere shortening during cell division and the 
consequent chromosomal instability and cell cycle arrest or apoptosis. Telomer-
ase consists of two basic components, telomerase reverse transcriptase (Tert) and 
telomerase RNA component (Terc), which provides the RNA template for the 
telomeric DNA repeats (Collins  2000 ; Nugent and Lundblad  1998 ). Mice that are 
deficient for Terc are initially normal, but after 5–6 generations both females and 
males are sterile and demonstrate certain premature aging phenotypes and shorter 
life spans (Blasco et al.  1997 ; Lee et al.  1998 ). These mice also exhibit an impaired 
ability to regenerate hematopoietic cells after ablation of these cells by 5-FU, 
decreased antibody responses and germinal center formation to a T-dependent 
antigen and reduced T and B-cell proliferation after activation in vitro. These 
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results confirm that telomere shortening can influence immunoresponsiveness, 
although the precise mechanisms by which this occurs remains unknown (Herrera 
et al.,  2000 ; Lee et al.,  1998 ).  

   D.  Tumor Suppressor Mouse Models.  A number of genes that are involved in 
tumor suppression, DNA repair and cell cycle checkpoint also regulate aging and 
life span. The direct studies on effect of tumor suppressor P53 have been hampered 
by the early onset of tumor in p53 -/-  mice and failure of embryonic development in 
mice overexpressing p53 (Donehower et al.  1992 ; Tyner et al.  2002 ). However, mice 
expressing two types of truncated forms of p53, p24 and p44 (that bestow enhanced 
activity to endogenous full-length p53), show early onset of aging, a range of aging 
phenotypes and significantly decreased life span (Maier et al.  2004 ; Tyner et al. 
 2002 ). Disruption of Wip1, Brca1, Atm, Ku86, K70 or XPD all lead to shortened 
life span by modulating p53 activity (Barlow et al.  1996 ; Cao et al.  2003 ; Choi et 
al.  2002 ; de Boer et al. 2002; Li et al.  2007 ; Vogel et al.  1999 ). In p53 -/-  mice, apart 
from the development of thymic lymphoma, peripheral CD4+ T-cells demonstrate 
traits of immune senescence such as accumulation of memory type cells and defec-
tive proliferative response upon activation (Clarke et al.  1993 ; Donehower et al. 
 1992 ; Lowe et al.  1993 ; Ohkusu-Tsukada et al.  1999 ). In mice deficient for Wip1, 
a serine/threonine phosphatase that inhibits p53 activity, T-cell and B-cell prolif-
eration response to mitogen stimulation is reduced and the immune system also 
manifest some other changes indicating of immune senescence (Choi et al.  2002 ). 
In Ku86 -/- , K70 -/-  and Atm -/-  mice, development of T- and/or B-cells are severely 
impaired due to the critical requirement of these genes for recombination of anti-
gen receptor genes and the incidence of lymphoma development is dramatically 
increased, both of which prevent a thorough study of the effect of these genes on 
immune aging (Gu et al.  1997 ; Li et al.  1998 ; Li et al.  2007 ; Matei et al.  2007 ; Matei 
et al.  2006 ; Nussenzweig et al.  1996 ; Zhu et al.  1996 ). The development and aging 
of the immune system in other interesting aging models, p53 +/m  mice, p44-Tg mice 
and TTD (XPD -/- ) mice remains to be thoroughly investigated.  

   E.  Reactive Oxygen Models.  Reactive oxygen species (ROS) are involved in 
pathology of aging and cancer and therefore molecules that provide defences 
against oxidative stress and ROS are important in preventing aging. Peroxiredoxin 
is a family of small antioxidant proteins that scavenge peroxide and play a role in 
the cellular response to ROS. Peroxiredoxin-1 -/-  mice have a shorter life span due 
to hemolytic anemia and develop several types of cancer including T- and B-cell 
lymphomas (Neumann et al.  2003 ). The mice have impaired innate immune sys-
tems with decreased number of NK-cells that express activation receptor Ly49D 
and decreased NK-cell cytolytic activity as well as reduced NK-enhancing activity 
in RBCs. The impaired NK-cell activity may be one of the factors responsible for 
increased tumor development in these mice (Neumann et al.  2003 ).  

   F.  Hormonal Models.  Growth hormone/insulin-like growth factor 1 (GH/IGF-1) 
signalling pathway has long been associated with the aging process and has been 
demonstrated to negatively affect life span, primarily by decreasing cellular anti-
oxidative capacity and increasing cell apoptosis (Bartke  2005 ; Everitt  2003 ; Quar-
rie and Riabowol  2004 ). Transgenic mice expressing GH demonstrate various 
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premature aging phenotypes and have drastically decreased life span (Bartke 
 2003 ; McGrane et al.  1988 ; Palmiter et al.  1992 ; Selden et al.  1989 ). The develop-
ment and aging of the immune system in these mice remain poorly studied and 
await more detailed examination.  

             3      Mouse Models Demonstrating an Extended Life Span  

   A.  Caloric Restriction Models.  Caloric restriction (CR) (limiting food intake 
without causing nutritional deficiencies) has been the most potent environmental 
factor that results in consistent extension of life span. The mechanisms respon-
sible for the effect of CR include reducing oxidative damage, lowering GH/IGF 
level and triggering an innate beneficial response to low-level stressors (Masoro 
 1996 ; Merry  2000 ; Quarrie and Riabowol  2004 ; Sohal and Weindruch  1996 ; 
Weindruch and Walford  1982 ). CR is also the most extensively studied factor that 
leads to potent and consistent delay or prevention of immune senescence proc-
esses. CR results in delay or reversal of age-related reduction in naïve T-cells, 
decline of T-cell proliferative response to mitogens and decline in anti-viral 
immune response, increase in occurrence of tumor and autoimmune diseases and 
increase in production of inflammatory cytokines (Chen et al.  1998 ; Effros et al. 
 1991 ; Hobbs et al.  1993 ; Hursting et al.  2003 ; Spaulding et al.  1997a ; Spauld-
ing et al.  1997b ; Walford et al.  1973 ; Weindruch and Walford  1982 ). Together, 
these data suggest that overall the immune system benefits from CR. However, 
in vivo immune responses to pathogens have not been studied to determine if 
infected CR mice fare better than age-matched mice on ad libitum diets. These 
studies will provide critical support to the hypothesis that CR benefits immune 
function.  

   B.  Hormonal Models.  A large group of mouse models that have extended life 
span involve reduced pituitary GH/IGF-1 function (Quarrie and Riabowol  2004 ). 
Among these models, the Ames dwarf and Snell dwarf mice have mutate Prop1 
gene and Pit1 gene, respectively, both of which result in lowered GH/IGF-1 levels 
that account for both an extended life span and dwarfism (Bartke et al.  2001 ; Brown-
Borg et al.  1996 ; Flurkey et al.  2001 ). Little mice have mutation in Ghrhr gene that 
encodes GH-releasing hormone receptor and the Laron mice have targeted mutation 
in growth hormone receptor (GHR) and GH binding protein. The p66shc -/-  mice lack 
the downstream effector of GH/IGF-1 signaling and the IGF-1R -/-  mice lack the 
receptor for IGF-1 (Coschigano et al.  2000 ; Flurkey et al.  2001 ; Holzenberger et al. 
 2003 ; Lupu et al.  2001 ; Migliaccio et al.  1999 ; Zhou et al.  1997 ). All of these mice 
have demonstrated extended life spans presumably due to their defective GH/IGF-1 
axis. The studies on immune function in these animals are much less extensive 
than that done with CR mice and many results remain controversial. Among them, 
the immune senescence of Snell dwarf mice has been the more thoroughly investi-
gated and results show that multiple immune senescence processes are delayed or 
reversed in these mice (Flurkey et al.  2001 ; Taub and Longo  2005 ). These include 
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an age-related increase in memory T-cells and a decrease in IL-2 production and 
generation of cytotoxic CD8+ T-effector-cells (Flurkey et al.  2001 ).           

         4      Mouse Models Demonstrating a Normal or Undocumented 
Life Spans  

   A.  Wnt- β -catenin-TCF signaling models.  Wnt-β-catenin-T Cell Factor (TCF) 
signalling pathway has been shown to regulate thymic involution. TCF-1 -/-  mice 
have decreased thymocyte cellularity as early as during embryonic development, 
resulting from impairment at early stages of thymocyte development (Verbeek et al. 
 1995 ). In these mice, thymic involution becomes increasingly severe with age such 
that by 6 months of T-cells are essentially depleted (Schilham et al.  1998 ). Mice 
expressing stabilized form of β-catenin, a partner of TCF-1 for activating target 
gene transcription, also show enhanced thymic involution with decreased number 
of all thymocyte subpopulations (Xu and Sen  2003 ). Thus, increased Wnt signal-
ling, as seen in transgenic mice expressing β-catenin, or decreased Wnt signalling 
documented in TCF-1-deficienct mice both promote thymic involution. While the 
precise molecular mechanisms involved in these processes remains under investiga-
tion, a balanced Wnt-β-catenin-TCF signalling pathway appears to be essential to 
maintain thymic function.  

   B.  Ghrelin Infusion and Knockout Mouse Models.  Recent studies have demon-
strated important roles of Ghrelin in promoting thymopoiesis during aging (Dixit et 
al.  2007 ). Ghrelin is a peptide hormone mainly produced by enteroendocrine cells in 
the stomach in response to negative energy balance. Ghrelin binds to the GH secre-
tagogue receptor (GHS-R) and stimulates growth hormone (GH) secretion from the 
pituitary. Both ghrelin and GHS-R are expressed by resting and activated human T-
cells and exert anti-inflammatory effects on immune cells and systemically in mice 
(Dixit et al.  2004 ; Dixit and Taub  2005 ). Ghrelin and GHS-R expression declines 
within the thymus with age (Dixit et al.  2007 ). Mice deficient for ghrelin or GHS-R 
demonstrate enhanced age-associated thymic involution and decreased numbers of 
lymphoid progenitor cells in the bone marrow and thymus. Conversely, infusion of 
ghrelin into old mice significantly improves age-associated changes in thymic cel-
lularity, the number of ETP, CLP, LSK and RTE and improves the TCR diversity of 
peripheral T-cells (Dixit et al.  2007 ). Thus, ghrelin emerges as an important factor 
to promote thymopoiesis during aging.  

   C.  Cytokine Models.  Cytokines, particularly IL-7, have been found to be asso-
ciated with preventing age related thymic involution. IL-7, produced mainly by 
thymic and bone marrow stromal cells, is a critical trophic factor for both T- and 
B-cell progenitors, and deficiency of IL-7, its receptors (IL-7Rα and γ 

c
 ) and its 

downstream signalling molecule Jak3 all lead to severe defects in early T- and 
B-cell development and thus thymic involution and lymphopenia. IL-7 mRNA 
levels in the thymus decreases 15-fold by 22 months of age (Alves et al.  1995 ; 
Andrew and Aspinall  2002 ; Ortman et al.  2002 ). Effect of IL-7 administration on 
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thymopoiesis and thymic output has been controversial because some reports did 
not demonstrate significant effects (Fry and Mackall  2002 ), while others showed 
that IL-7 increases recent thymic emigrants in periphery without enhanced thymic 
function and restores immunity in athymic T-cell-depleted hosts (Chu et al.  2004 ; 
Fry et al.  2001 ; Mackall et al.  2001 ). IL-12, produced mainly by dendritic cells, is 
another factor that’s required for preventing thymic involution during aging process. 
Aged IL-12β -/-  mice, but not young IL-12β -/-  mice, demonstrate accelerated thymic 
involution compared to age-matched wild type mice. IL-12 enhances the prolifera-
tion of thymocytes from aged IL-12β -/-  and wild type mice in response to IL-2 and 
IL-7. Thus, IL-12 enhances IL-7 and IL-2 signalling in thymocytes from aged mice 
and thus may compensate for the age-associated reduction in IL-7 and IL-2 expres-
sion and signal, and thereby inhibiting thymic involution in older mice (Hsu et al. 
 2005 ). Thus, cytokines can enhance T-cell generation as well as regulate thymic 
function and peripheral T-cell activity. Additional work is required to define chal-
lenges in administrating cytokines to therapeutically enhance T-cell output in older 
humans.  

           5      Conclusions  

   The selection of an animal model for aging or immunosenescence research is depend-
ent on the specific cells, pathways and interventions being considered or studies 
by an investigator and how such models may physiologically relate to normative 
aging and immune function. The loss or gain of immune function in a transgenic, 
knockout or mutant mouse does not necessarily reflect the physiological role of the 
manipulated molecules within a normal immune response. However, such manipu-
lation does permit one to examine the impact of a pathway or system on life span, 
aging, immunity and immune development and interactions between various organ 
systems. Information from these animals can then lead to further examination under 
physiological conditions and eventually to the development of strategies to manipu-
late these same systems for possible therapeutic benefit. To date, only a few systems 
have been examined in the context of aging and much more work is needed. Many of 
the model systems discussed in this chapter have provided valuable new information 
on both aging and age-associated immunosenescence, which have lead investiga-
tors to initiate more detailed studies on specific molecules and signalling systems 
as well as the development of additional mouse models to further examine the inter-
relationships and interactions between these various ligand and signalling pathways. 
Moreover, some of these studies have even lead to the development of clinical trials 
in human subjects, such as in several hormonal administration trials. With the com-
pletion of the human genome project, we can expect the development of many addi-
tional mouse models and our need to understand the role of these molecules in the 
context of aging, age-related pathologies and immunosenescence will be required.  
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                 Abstract   :    For the past few decades invertebrates have been used extensively as 
models for understanding the general process of senescence (see reviews by Par-
tridge and Gems  2002 ; Grotewiel et al.  2005 ; Keller and Jemielity  2006 ; Houthoofd 
and Vanfleteren  2007 ) and since the 1920’s as models for understanding the genes, 
signaling pathways and cellular processes involved in innate immunity (Brey  1998 ). 
These two fields of study have begun to merge as invertebrate models, chiefly ter-
restrial insects, are increasingly being used to understand both the causes and con-
sequences of age-related changes in immunocompetence. Invertebrates are ideally 
suited for such studies as they generally have short generation times, short life spans 
and can be raised in large numbers which improves statistical power for detect-
ing the effects of genetic and environmental influences on functional measures of 
the immune response. In addition, recently completed genome sequences of inver-
tebrates (e.g.,  Caenorhabditis elegans : C. elegans Sequencing Consortium  1998 ; 
 Drosophila melanogaster:  Adams et al.  2000 ;  Anopheles gambiae : Holt et al.  2002 : 
 Bombyx mori:  Xia et al.  2004 ) reveal that many of the genes regulating the innate 
immune response have homologous genes in vertebrates. Molecular genetic studies 
have also revealed extensive homology between invertebrates and vertebrates in the 
signaling pathways that are activated to fight infection (Hoffmann and Reichhart 
 2002 ). Thus, the use of invertebrate models is likely to contribute a great deal to our 

Insect Models of Immunosenescence
Jeff Leips

Contents

1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2 Invertebrate Immunity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.1 Immune Response Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.2 Cellular Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.3 Humoral Response  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 Invertebrates as Models of Immunosenescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.1 Implications for Social Influences on Immunosenescence. . . . . . . . . . . . . . . . . . . . . 94
3.2 Genetic Basis for Immunosenescence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.3 Understanding Natural Genetic Variation Underlying Immunosenescence  . . . . . . . . 97

4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

J. Leips ( )
Department of Biological Sciences
1000 Hilltop Circle
University of Maryland Baltimore County
Baltimore, Maryland, 21250
Fax: 410-455-3875
Tel: 410-455-2238
E-mail: leips@umbc.edu

T. Fulop et al. (eds.), Handbook on Immunosenescence,
DOI 10.1007/978-1-4020-9062-2_4, © Springer Science+Business Media B.V. 2009



88 J. Leips

understanding of the genetic influences on immunosenescence in a wide range of 
organisms, including humans.  

      Keywords:        Immune response    •     survival    •     bacterial clearance    •     Toll    •     IMD    •  
 JNK    •     phenoloxidase    •     phagocytosis    •     encapsulation    •     hemocyte    •     aging   

     1      Introduction  

  One complication in translating what we learn about immunosenescence in inverte-
brates to vertebrate organisms is that invertebrates rely solely on an innate immune 
response and lack the components of the adaptive immune system found in vertebrates. 
While there is some evidence to suggest that invertebrates have immunological memory 
(Sadd and Schmid-Hempel  2006 ; Pham et al.  2007 ), this ability is not well understood. 
Our current understanding suggests that immunological memory in invertebrates results 
from remodulation of existing cells to enhance their ability to phagocytize previously 
encountered pathogens. As such, this is fundamentally different from immunological 
memory that stems from the use of the B- and T-cells of the adaptive component of the 
immune response. Looked at in another way however, the lack of the adaptive com-
ponent of the immune response can be considered an advantage because it allows us 
to examine the effect of age on the innate immune response without the complications 
of interactions between the adaptive and innate immune systems. Given the similarity 
among organisms in the many components of the innate immune response, studies of 
immunosenescence in invertebrates are likely to provide insight into the effect of aging 
in the innate immune system in all metazoans, including humans.  

  This chapter begins with a brief review of the immune system of invertebrates, 
drawn largely from information on the invertebrate with the most extensively stud-
ied immune response,  Drosophila melanogaster.  Those wishing to explore this topic 
further should consult the many excellent reviews on this topic (e.g., Hoffmann et al. 
 1996 ; Tzou et al.  2002 ; Hultmark  2003 ; Kurz and Ewbank  2003 ; Brennan and Ander-
son  2004 ; Cerenius and Söderhäll  2004 ; Christophides et al.  2004 ; Loker et al.  2004 ; 
Gravato-Nobre and Hodgkin  2005 ; Kim and Ausubel  2005 ; Mylonakis and Abal-
lay  2005 ; Schmid-Hempel  2005 ; Evans et al.  2006 ; Lemaitre and Hoffmann  2007 ; 
Royet and Dziarski  2007 ; Uvell and Engström  2007 ). The next section summarizes 
what we have learned about age related changes in the immune system in inverte-
brates and includes a discussion of the various techniques used to study this phenom-
enon. The final section outlines some future directions for the use of invertebrates 
as models of immunosenescence, highlighting both the challenges and the promise 
that these organisms provide for a more complete understanding of the causes and 
consequences of age-related deterioration of the innate immune function.  
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    2      Invertebrate Immunity  

  There are three general components of the innate immune system shared by most inver-
tebrates: i) a wound response which involves proteolytic cascades and melanization to 
limit the spread of infection and kill pathogens, ii) cellular responses which involve 
phagocytosis and/or encapsulation of the invading organism, and iii) local and systemic 
synthesis and secretion of antimicrobial proteins. Age-related deterioration in any of 
these components is likely to reduce the effectiveness of the immune system.  

   2.1      Immune Response Activation  

The   immune response is typically induced following recognition of nonself by the 
host. In most invertebrates pathogen recognition is accomplished by pattern recogni-
tion receptors circulating in the hemolymph or embedded in the cell membranes of 
hemocytes (Khush and Lemaitre  2000 ; Hoffmann and Reichhart  2002  Hultmark  2003 ; 
Leulier et al.  2003 ; Royet and Dziarski  2007 ). These receptors recognize and bind 
evolutionarily conserved molecular structures that are unique to the surfaces of differ-
ent types of microorganisms such as the peptidoglycan components of gram-positive 
and gram-negative bacteria, β-1,3 glycan in fungi, and phosphoglycan of parasites 
(Kimbrell and Beutler  2001 ; Janeway and Medzhitov  2002 ; Hultmark  2003 ). Inverte-
brates produce several classes of these pattern recognition receptors such as peptidog-
lycan receptor proteins (Royet and Dziarski  2007 ) and C-type lectins (Nicholas et al. 
 2004 ; Ao et al.  2007 ; O’Rourke et al.  2007 ), many of which have shared homology 
with vertebrate receptors (Kang et al.  1998 ; Khush and Lemaitre  2000 ; Chaput and 
Boneca  2007 ; Griffiths et al.  2007 ). This shared homology suggests that the general 
strategies for pathogen recognition are evolutionarily conserved.  

  In most invertebrates studied to date, the binding of recognition receptors to path-
ogens initiates a series of proteolytic cascades that result in coagulation of blood and 
in many species the localized production of melanin (Hoffmann and Reichhart  2002 ; 
Cerenius and Söderhäll  2004 ; Theopold et al.  2004 ). Interestingly,  C. elegans  is an 
exception in this case as genes regulating the proteolytic pathway leading to melani-
zation in other invertebrates do not appear to have homologues in the worm genome 
(Ewbank  2002 ). Binding of these receptors also initiates signaling pathways to pro-
duce antimicrobial peptides (discussed below). The melanization reaction requires 
the activation of phenoloxidase by prophenoloxidase enzymes which typically reside 
within particular cell types (the names of these cells vary depending on the organ-
ism, Lavine and Strand  2002 ) and are released following cell disruption. Release 
of prophenoloxidase enzymes initiates a series of reactions leading to production 
of melanin (Cerenius and Söderhäll  2004 ). Deposition of melanin at wound sites 
contributes to wound healing and the toxic reactive compounds produced during 
melanin formation are thought to act as disinfectants (Bogdan et al.  2000 ; Nappi and 
Ottaviani  2000 ; Nappi et al.  2000 ; Cerenius and Söderhäll  2004 ).  
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    2.2      Cellular Response  

  The cellular immune responses consist of phagocytosis (engulfment of small patho-
gens by single cells), nodulation (binding of multiple cells to bacterial aggregations), 
encapsulation (binding of cells to form a capsule surrounding foreign bodies too large 
to be phagocytized), and participation in clot formation at wound sites (Lavine and 
Strand 2002). While phagocytic cells appear to be present in most invertebrates, hemo-
cytes of  C. elegans  do not appear to have phagocytic capabilities (Ewbank  2002 ). In 
 Drosophila , three blood cell types are recognized that participate in various aspects of 
the immune response: plasmatocytes, crystal cells and lamellocytes (Meister  2004 ). 
Plasmatocytes are the phagocytic cells, comprising the largest fraction of the hemo-
cytes in larvae (> 95%, Williams  2007 ) and are the only blood cell type in adults. 
Crystal cells are smaller cells containing enzymes for initiation of the phenoloxi-
dase cascade. Encapsulation and nodulation of particles too large to be phagocytized 
appears to be a unique feature of invertebrates and cell types most often involved in 
these cell aggregates are plasmatocytes and granulocytes (Jiravanichpaisal et al.  2006 ). 
In  Drosophila  encapsulation is carried out only in larvae by lamellocytes which are 
produced by the differentiation of larval plasmatocytes (Evans et al.  2003 ).  

  Phagocytosis involves a complex set of cellular changes involving binding of 
the pathogen, reorganization of the plasma membrane, induction of cytoskeletal 
changes and processing of the ingested organism by the phagosome. The use of 
model genetic organisms, primarily  Drosophila , combined with large scale genomic 
studies are beginning to reveal the genes that regulate this process (e.g., Wu et al. 
2001, Brennan et al. 2007). Several families of receptor proteins have been impli-
cated as important for the first step in this process, the binding of plasmatocytes to 
microorganisms. Known receptor families include the  Drosophila  homologue of the 
mammalian CD36 family of scavenger proteins (Philips et al.  2005 ), genes in the 
scavenger receptor class C Type-1 family (Rämet et al.  2001 ), peptidoglycan recep-
tor proteins (Rämet et al.  2002 ), proteins with EGF-like repeats ( Eater : Kocks et al. 
 2005 ;  Nimrod : Kurucz et al.  2007 ), integrins (Moita et al.  2006 ) and  Dscam , a protein 
with an immunoglobulin domain (Watson et al.  2005 ; Dong et al.  2006 ).  Dscam  is 
of particular interest as this gene has four alternatively spliced exons, different com-
binations of which can result in the production of over 18,000 different transcripts 
in  Drosophila  (Watson et al.  2005 ) and over 30,000 transcripts in  Anopheles  (Dong 
et al.  2006 ). This potentially allows recognition and discrimination of a wide diver-
sity of pathogens and may even provide a mechanism for immunological memory 
in invertebrates. Hundreds of genes appear to be required for internalization and 
processing of microorganisms as has been revealed by genome wide RNAi analysis 
(Rämet et al.  2002 ; Philips et al.  2005 ; Agaisse et al. 2005; Stroschein-Stevenson  
et al. 2006 ) and combined proteomic and RNAi analyses (Stuart et al.  2007 ). A great 
deal of research remains to be done to understand how this complex genetic network 
is organized to regulate phagocytosis.  

  Invertebrates also produce complement type proteins that act as opsonins to 
enhance phagocytosis. In the mosquito  Anopheles gambiae,  a circulating thiol-ester 
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protein (aTEP-1) binds to gram-positive and gram-negative bacteria and stimu-
lates phagocytosis by blood cells (Levashina et al.  2001 ). The  Drosophila  genome 
encodes at least four TEP-like genes, three of which are up-regulated after immune-
challenge, and one of which seems to be up-regulated by the JAK/STAT signaling 
pathway (Lagueux et al.  2000 ; De Gregorio et al.  2001 ; Agaisse and Perrimon  2004 ). 
Proteins encoded by the TEP genes have significant similarity with vertebrate com-
plement proteins of the C3/  α

2
 -macroglobulin superfamily (Levashina et al.  2001 , 

Nonaka and Yoshizaki  2004 ). This lends support to the idea that the general function 
of these proteins to promote phagocytosis has been conserved during evolution.  

    2.3      Humoral Response  

  The third component of the immune response is the humoral response which results 
in the local and systemic production of antimicrobial peptides (AMPs). In  Dro-
sophila , the systemic response of AMPs primarily results from two signaling path-
ways that regulate NF-κB transcription factors in the cells of insect fat bodies (the 
functional equivalent of the mammalian liver). Comparative genomic studies have 
shown these pathways to be generally conserved in most insects (Christophides 
et al. 2002; Evans et al.  2006 ; Luna et al.  2006 ; Cheng et al.  2007 ). In addition, 
functional genetic studies and genomic sequence comparisons indicate that the 
genes regulating the intracellular steps in these pathways are remarkably similar to 
those regulating the innate immune response in mammals (Hoffmann and Reichhart 
 2002 ; Minakhina and Steward  2006 ).  

  In  Drosophila , two pathways regulate the production of up to 20 different AMPs, 
the  Toll  pathway and the immune deficiency (IMD) pathway (Lemaitre and Hoff-
mann  2007 ). The  Toll  pathway, which is similar to the mammalian toll-like receptor 
(TL-R) signaling pathway, is activated through the binding of the growth factor-
like cytokine Spätzle to the  Toll  receptor.  Toll  is a transmembrane receptor first 
identified as a necessary component for dorsal-ventral patterning (Wu and Ander-
son  1997 ). Signaling through this pathway results in the translocation of the tran-
scription factors DIF and Dorsal to the nucleus and upregulation of AMPs such as 
drosomycin and defensin which act directly on fungi and gram-positive bacteria 
respectively. The IMD pathway, which exhibits similarity to the mammalian tumor 
necrosis factor receptor (TNF-R) pathway, is thought to be regulated by the binding 
of a transmembrane peptidoglycan receptor protein (PGRP-LC) to gram-negative 
bacteria (Gottar et al.  2002 ; Choe et al.  2005 ; Tanji and Ip  2005 ). Signaling through 
this pathway results in the translocation of the NF-κB transcription factor Relish to 
the nucleus and subsequent expression of a number of AMPs generally targeting 
gram-negative bacteria, although some downstream targets of both pathways are 
effective against gram-negative and gram-positive bacteria. Recent evidence also 
suggests that signaling through the IMD pathway also activates the Jun N-terminal 
kinase (JNK) pathway which contributes to the production of AMPs by the fat body 
(Delaney et al.  2006 ). Although the  Toll  pathway is triggered primarily by infec-
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tion from fungi and gram-positive bacteria (Ligoxygakis et al.  2002 ; Lemaitre et 
al.  1996 ) and the IMD pathway primarily triggered by gram-negative bacteria, it 
has been known for quite some time that there is cross talk between these pathways 
and this provides some level of redundancy in the immune response to infection 
by these organisms (Lemaitre et al.  1997 ). A recent model developed by Delaney 
et al. ( 2006 ) proposes that this cross talk results in part from the activation of the 
JNK pathway whereby the downstream transcription factors of the JNK pathway 
upregulate AMPs normally targeted by the transcription factors of the  Toll  and IMD 
pathways.  Toll  and IMD have also been shown to act synergistically, jointly contrib-
uting to the upregulation of representative target genes of both of these pathways. 
This synergism appears to result from the fact that the transcription factors of each 
pathway can bind to different domains of the promotor regions of these target genes 
leading to higher levels of expression than expected by the additive effect of each 
pathway when considered alone (Tanji et al.  2007 ).  

  While the fat body of most insects is the primary tissue involved in the systemic 
response to infection, epithelial surfaces of the epidermis, gut, reproductive system 
and respiratory tract are also responsible for the constitutive and inducible produc-
tion of antimicrobial agents to limit microbial growth (Brey et al.  1993 ; Tzou et al. 
 2000 ; Ha et al.  2005 ; Pinheiro and Ellar  2006 , Shapira et al.  2006 ). Interestingly, 
production of AMPs at wound or infection sites does not rely solely on the activa-
tion of NF-κB pathways, but instead on tissue specific transcription factors and 
local production of reactive oxygen species (Ferrandon et al.  1998 ; Ryu et al.  2004 ; 
Han et al.  2004 ; Ryu et al.  2006 ).  

  Much of the work in invertebrates has focused on understanding the immune 
response to bacterial and fungal pathogens; however there is a great deal of recent 
interest in understanding the immune response to viruses. A major mechanism 
thought to regulate the response to viral infection is by RNA interference (RNAi), 
an evolutionarily conserved mechanism for silencing the translation of RNA 
(Meister and Tuschl  2004 ). Functional genetic analysis in both  Drosophila  and  C. 
elegans  indicates that this is also a conserved and effective way to fight viral infec-
tion (Schott et al.  2005 ; Wilkins et al.  2005 ; Cherry and Silverman  2005 ; Fritz et al. 
 2006 ; van Rij et al.  2006 ). In addition, expression studies of  Drosophila  artificially 
infected with the Drosophila X Virus suggest that the  Toll  and JAK/STAT pathways 
are also involved in mediating an immune response to viral infection (Dostert et al. 
 2005 ; Zambon et al.  2005 ).  

     3      Invertebrates as Models of Immunosenescence  

  Many different aspects of immunosenescence have been measured in invertebrates 
including assessment of the age-specific ability to clear and survive infection and 
measurements of functional changes in the components of the immune response. 
Age-specific survival measurements have been obtained either by pricking indi-
viduals with a septic needle (Burger et al.  2007 ), microinjecting individuals with a 
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standard concentration of bacteria (Adamo et al. 2001; Hillyer et al.  2005 ), or expos-
ing individuals of different ages to a pathogen (Laws et al.  2004 ). Typically a large 
number of individuals of each age group are infected and the subsequent number 
of deaths scored daily to identify differences in mortality rates following infection. 
Age-specific abilities to clear bacterial infections are carried out by either pricking 
or microinjecting individuals of different ages with a standard concentration of bac-
teria, allowing 24–48 hrs for individuals to clear the infection, and then homogeniz-
ing or perfusing individuals and plating aliquots of the solution on agar plates (Kim 
et al. 2001; Hillyer et al.  2005 ; Lesser et al.  2006 ). The resulting number of colony 
forming units on the plate is an estimate of the ability of that individual to clear the 
infection. Both age-specific survival and clearance assays provide no functional 
information on the causes of age-specific changes in the immune response. Func-
tional changes in age-specific components of the immune system that have been 
measured include age-related changes in expression of immune response genes fol-
lowing infection (Hillyer et al.  2005 ; Zerofsky et al.  2005 ), age-specific changes in 
hemocyte counts (Adamo et al. 2001; Doums et al.  2002 ; Amdam et al.  2004 , 2005; 
Hillyer et al.  2005 ), age-specific phagocytic ability of hemocytes (Hillyer et al. 
 2005 ), age-specific phenoloxidase activity (Adamo et al. 2001), age-specific encap-
sulation and melanization ability (Doums et al.  2002 ) and even age-specific changes 
in the quantity of fat (used as an indicator of the size of the fat body, the major site of 
lipid storage and the tissue most responsible for secretion of antimicrobial peptides, 
Doums et al.  2002 ).  

  While it is clear from these studies that the ability to survive and clear a bacte-
rial infection declines with age, the data so far indicate that the underlying causes 
of immunosenescence differs among species. Adamo et al. (2001) studied various 
indicators of immunosenescence using a population of crickets,  Gryllus texensis , 
that had been collected in the wild but maintained for several generations in the lab-
oratory. They measured sex-specific changes in phenoloxidase (PO) activity (based 
on an in-vitro enzyme assay with cricket hemolymph that measures the rate of con-
version of L-dopa to quinone), counts of hemocyte numbers and survival following 
injection of  Serratia marcescens  at four ages spanning prereproductive maturity to 
4 weeks of age .  Males and females were similar in the various immune response 
indicators up to the age at which males began to display sexual behavior. Sexu-
ally mature males had lower phenoloxidase activity and higher mortality following 
infection compared with younger males and same aged females. This was inter-
preted by the authors as males trading off immunity for reproduction although the 
functional connection between PO activity and mating behavior is unclear. The rela-
tionship between PO activity and survival following infection was weak however, 
as 2 week old females had higher PO activity compared to earlier and later ages, 
but exhibited higher mortality following infection compared with prereproductive 
ages. The authors speculate allocation of energy toward reproduction offsets the 
increased protection that would have resulted from higher PO activity, producing 
a trade-off between reproduction and survival following infection. This hypothesis 
could potentially be tested with age-matched virgins to minimize the survival cost 
of reproduction. Unlike PO activity, there was no age-specific change in hemocyte 
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number and no correlation between hemocyte number and the ability individuals to 
survive infection at any age. Both males and females had a reduced ability to survive 
infection with increasing age but were also more likely to die from a sham injection 
of saline with age. This increase in mortality following sham injection suggests that 
older individuals may have a reduced ability to withstand the stress imposed by the 
injection and also possibly a reduced ability to repair a wound site.  

  An interesting contrast is provided by the work of Hillyer et al. ( 2005 ) on the 
mosquito,  Aedes aegypti . This study examined age-associated changes in a number 
of traits including changes in hemocyte numbers, the phagocytic ability of cells, 
the production of antimicrobial peptides, the ability to clear infection and mortality 
during the first five days following eclosion. They observed age-related reductions 
in hemocyte number, a reduction in the ability to clear an artificial injection of bac-
teria, and an increase in mortality rates following infection. They found no change 
in the production of antimicrobial proteins following infection at different ages and 
no decline in the phagocytic ability of hemocytes with age. In this case, age-specific 
decline in clearance ability and the age-specific increase in mortality rates following 
infection may be largely explained by a decline in hemocyte number with age. As 
mosquitoes, like most insects, are not known to produce new hemocytes as adults 
(either by hematopoiesis or by mitosis, Hillyer et al.  2005 ) the rate of change in 
immunocompetence with age may largely depend on the total number of blood 
cells produced during the larval and pupal periods and the age-specific rate of loss 
of hemocytes as adults. These conclusions are of course based on observation of 
correlated changes with age and the causal relationship between hemocyte number 
and age-specific immunocompetence needs to be further tested. One caveat with 
this study is that the age-associated changes observed may not reflect senescence 
per se, as this species can live between 2 weeks to over a month in the laboratory. 
Further assessment of immune function at later ages, perhaps concurrently with 
other indicators of senescence such as age specific mortality rates will determine if 
the interrelationship between immunocompetence and hemocyte number is consist-
ent as the organism ages.  

   3.1      Implications for Social Influences on Immunosenescence  

  Comparisons of different species of social insects reveal the potential for age-spe-
cific hormonal control of immunosenescence. Doums et al. ( 2002 ) implanted work-
ers of two different species of bumblebees ( Bombus terrestris  and  Bombus lucorum ) 
with nylon filaments at two different ages to measure the age-specific ability to 
encapsulate and melanize a foreign object. Encapsulation and melanization ability 
declined in both species with age. In an effort to provide a physiological explana-
tion they measured age-specific changes in the size of the fat body and the number 
of circulating hemocytes in one species,  Bombus terrestris,  and found only a slight 
reduction in the size of the fat body and no change in hemocyte number with age. 
Their conclusion was that the age-related decline in encapsulation and melanization 
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ability could not be attributed to changes in hemocyte number and the size of the 
fat body. Of course, this leaves open a number of possibilities yet to be explored to 
explain their results including age-related changes in the phagocytic ability of the 
hemocytes. Using a different species of hymenoptera, the honey bee  Apis mellifera , 
Amdam et al. ( 2004 ) found that immunosenescence is cued by a change in social 
status as hive workers shift to foragers when they reach 18–28 days old (Winston 
 1987 ). This change in social status from hive bee to forager leads to higher levels of 
juvenile hormone (JH), a reduction in vitellogenin production, a decrease in hemo-
cyte numbers and an increase in the number of pycnotic hemocytes which are not 
phagocytic. As vitellogenin is an important carrier of zinc the increased pycnosis 
in hemocytes probably results from low zinc availability. Phagocytic ability of the 
nonpycnotic cells did not change with age. Interestingly, when foragers are forced 
to revert to hive duties, juvenile hormone titers are reduced leading to an increase in 
vitellogenin, increased hemocyte numbers and a reduced number of pycnotic cells 
(Amdam et al. 2005). The source of these new hemocytes is unclear but may result 
from hematopoiesis, cell division or mobilization of previously sessile cells. Thus, 
immunosenescence in this aspect of the cellular component of the immune response 
in honeybees appears to be under social control and so is reversible, at least tem-
porarily. The fact that  Bombus  do not exhibit age-specific changes in hemocyte 
number while  Apis  does, may reflect the different social biology of these organisms. 
 Apis  have a very defined schedule of changing tasks and social status as they age, 
while  Bombus  are much less regimented, performing both hive and foraging duties 
for their entire life. As such, JH titres in  Bombus  adults may not change in the man-
ner seen in  Apis  and so the resultant change in hemocyte number is not seen in this 
organism. A comparative study using these species, and indeed other social inverte-
brates, in which similar immune response traits are examined with age (combined 
with changes in survival and clearance ability following infection) would elucidate 
the general importance of social behavior and hormonal influences in regulating 
immunosenescence.  

    3.2      Genetic Basis for Immunosenescence  

  While the studies discussed above are aimed at understanding the cellular and 
physiological causes of immunosenescence another set of studies has aimed at 
understanding the potential genetic contributions to age-related changes in immu-
nocompetence. Kim et al. 2001 were the first to document the existence of an 
age-related decline in the immune response in an invertebrate system. They used 
 Drosophila melanogaster  to test the effect of age on the ability to clear an infec-
tion of  E. coli.  They used a wild type strain and a strain containing a mutation 
in  xanthine dehydrogenase  ( XDH ), a gene that influences the production of uric 
acid, a scavenger of reactive oxygen species and so is a candidate gene for aging. 
Reactive oxygen species and nitric oxide levels were substantially higher in the 
mutants and mutants had a significantly higher rate of mortality compared to wild 
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type flies. Interestingly, in the wild type strain they found a dramatic reduction 
in their ability to clear bacterial infection as the flies aged, with approximately 
60% reduction in this ability from 2–80 days of age. Flies with the mutation 
were extremely limited in their ability to clear infection and did not show any 
age-related decline. This is may be due to the fact that the immune response of 
mutant flies had very little scope for an age-specific decline in immune-response 
as infection levels were over 25 times higher in mutants than in wild type flies at 
all ages. Their results suggest that generation of high levels of reactive oxygen is 
deleterious to all physiological systems, including the immune response. It does 
not imply that  XDH  directly plays a role in regulating the immune-response or 
immunosenescence in  Drosophila.   

  As the term immunosenescence itself implies age-specific changes in immune 
function, studies of age-related changes in gene expression are more likely to be 
useful for understanding genetic influences on immunosenescence than studies 
using mutants. Microarray studies of flies and mammals have identified a number of 
age-related changes in the expression of immune response genes a consequence of 
general aging. In fact, genes known to be involved in the immune-response exhibit 
some of the most dramatic changes in gene expression with age compared to genes 
involved in other processes such as metabolism, and growth regulation (Pletcher 
et al.  2002 ; Seroude et al.  2002 ; Landis et al.  2004 ). Of interest is that immune 
response genes are typically upregulated with increasing age. This likely reflects a 
higher pathogen load in older individuals (as demonstrated in  Drosophila  by Ren 
et al.  2007 ) and not the age-related deterioration in the control of transcription in 
general. Another possibility is that older individuals are hyperresponsive to patho-
gens, and as a consequence show higher levels of transcription following infection 
compared with younger individuals. This last hypothesis was tested in the experi-
ment described below.  

  Zerofsky et al. 2005 used changes in transcript levels of the antimicrobial peptide 
diptericin following artificial infection at different ages as an indicator of age-spe-
cific immune function. In their study virgin females of different ages were infected 
by pricking the cuticle with a needle containing a mixture of bacteria ( E. coli  and 
 Micrococcus luteus ) that were either live or killed. They found that older females 
had higher background levels of diptericin than younger females before the artifi-
cial infection, reflecting the findings of microarray studies on aging flies. They also 
found that when flies are infected with live bacteria older females had a higher and 
more sustained level of diptericin transcription than younger flies. The authors inter-
preted this as an indication that older flies were less able to clear the infection and 
so continually maintained production of high levels of diptericin. Unfortunately the 
bacterial load was not measured in old and young flies and so this conclusion awaits 
confirmation. When infected with killed bacteria, younger females had higher and 
more sustained production of diptericin than older flies. Older flies upregulated 
diptericin production during the first six hours following infection, matching the 
production of the young flies, but then diptericin transcripts gradually declined. 
These results suggest that older individuals are not hyperresponsive to infection. 
Combining the results of this study with observation of higher transcript levels of 
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immune response genes in older flies implies that older flies carry higher pathogen 
loads and so have elevated transcription of immune response genes.  

  The nematode  Caenorhabditis elegans  is an emerging invertebrate model for 
studying evolutionarily conserved responses to infection (Kurz and Ewbank  2003 ) 
and recent work has begun to identify some interrelationship between immuno-
competence and longevity. The utility of  C. elegans  for understanding the cellular 
and physiological processes of immunosenescence may be limited by the fact that 
many components of the innate immune system common in other invertebrates are 
missing in this species. As discussed above however, there may be a limited number 
of such features that are generally responsible for immunosenescence across taxa, 
even within species. However, given the genetic utility of this species, understanding 
the genetic basis of immunosenescence in this organism may provide key insights 
not provided by other insect models. It is clear that  C. elegans  experience higher 
age-specific mortality when exposed to pathogens (Kurz et al.  2003 ; Laws et al. 
 2004 ). While there is some indication of a connection between genes regulating the 
immune response and longevity in  C. elegans  (Kurz and Tan  2004 ; Troemel et al. 
 2006 ) additional research is necessary to determine if these same genes act to influ-
ence immunosenescence.  

    3.3      Understanding Natural Genetic Variation Underlying 
Immunosenescence  

  In a seminal paper Lazzaro et al. ( 2004 ) found that natural populations harbor exten-
sive genetically based variation in the ability to clear infection and indentified sin-
gle nucleotide polymorphisms in candidate genes associated with this variation. 
This study has opened up an exciting new direction to identify genes that regulate 
age-specific changes in immunocompetence. Lesser et al. ( 2006 ) used a modified 
assay developed by McKean and Nunney ( 2001 ) to demonstrate a genetic basis for 
age-related changes in immunocompetence. Using twenty five genetically distinct 
lines derived from a natural population of  Drosophila  they found that only five lines 
exhibited an age-related decline in clearance ability (measured at 1 and 4 weeks of 
age) while eleven lines showed an improved ability to clear an infection with age. 
The clearance ability of the remaining nine were unaffected by age. They also found 
no genetic correlation in the ability clear the infection between the two ages. This 
lack of a genetic correlation in immunocompetence across ages suggests that differ-
ent genes are responsible for producing the phenotypic variation in clearance ability 
at different ages. Identification of the genes controlling these age-related changes in 
the ability to clear infection is an important priority.  
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     4      Future Directions  

  As highlighted above, many of the age-related changes in the components of innate 
immunity appear to be species-specific. This undoubtedly reflects the evolutionary 
divergence in the innate immune system among lineages, the different nature of infec-
tive agents faced by these organisms in their particular ecological setting, and also dif-
ferences among species in the strength of selection to maintain immune function with 
age. As invertebrates have only recently been used as models to explore the causes 
and consequences of immunosenescence, perhaps more generalities will be revealed 
as more species are examined. Much could be gained by a systematic study of age-
related changes in key components of the immune response in closely related taxa to 
establish the extent to which changes in particular components of the immune system 
(e.g., hemocyte count, phagocytic ability) are unique to particular lineages and which 
might be generally conserved across taxa. Shared features of the innate immune 
response that show age-specific decline in function among invertebrates are those 
most likely to be shared across broader taxonomic groups including vertebrates.  

  An exciting future goal is to use a combination of techniques for assessing age-
specific changes in the immune response in invertebrates to gain a more wholistic 
view of the mechanisms that underlie immunosenescence. These should include 
assessing the concentration and identity of pathogen recognition proteins, the levels 
and killing ability of antimicrobial peptides, measurements of hemocyte numbers 
and age-specific phagocytic ability. Combining these measurements with age-spe-
cific abilities to survive and clear infection will provide the key to understanding 
which components of the immune response change with age and which have func-
tional consequences for the survival and fitness of the organism.  

  Shirasu-Hiza and Schneider ( 2007 ) have also suggested that we pay more atten-
tion to physiological changes in other aspects of the host following infection to 
identify the causes of mortality when it occurs. As they point out, when humans get 
sick we measure many physiological indicators that reflect their health and which 
ultimately contribute to the ability of the individual to survive the infection. They 
rightly suggest that we expand our understanding of the pathology of infection to 
monitor changes in aspects of organisms that are not necessarily part of the immune 
response when experiments are done on model organisms. Additional traits that 
may be influential include changes in feeding or reproductive behaviors, changes in 
energy allocation to storage or reproduction, and changes in basic metabolic proc-
esses like respiration and the rate and quality of waste produced. As these behavio-
ral, life history and metabolic processes normally change with age, understanding 
the interrelationship between these physiological characteristics and immunocom-
petence in the aging organism will provide a more complete understanding of age-
related changes in the pathology of infections.  

  Finally, technological advances are likely to greatly facilitate our understanding 
of the genetic contribution to age related changes in immunosenescence. Whole 
genome microarray and proteomic studies are likely to reveal a number of genes 
that exhibit age-related transcriptional changes prior to and following infection. 
The key to interpreting these data and identification of important genes will be 
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to directly test the effect of changes in transcript and/or protein expression with 
functional tests of immunocompetence. This is perhaps where the real advantage of 
using invertebrate model systems like  Drosophila  lies. During the past decade there 
have been a number of tools developed to control the expression of candidate genes 
in an age—and tissue—and even cell type specific manner in both  Drosophila  and 
 C. elegans  (e.g., Roman et al.  2001 ; McGuire et al.  2004 ; Johnson et al.  2005 ; Dietzl 
et al.  2007 ; Qadota et al.  2007 ). Controlled up- and down-regulation of candidate 
genes at different ages prior to and following infection, combined with measure-
ments of survival, bacterial clearance efficiency, or the efficacy of particular compo-
nents of the immune response (e.g., phagocytic ability) will allow direct tests of the 
importance of candidate gene expression on age-specific immune function.  

  Genetic mapping techniques such as quantitative trait loci (QTL) mapping have 
proven useful for identifying genomic regions that contribute to natural variation in 
age-specific phenotypes (e.g., Leips et al.  2006 ) and continued development of these 
techniques should allow us to rapidly identify the actual genes that contribute to age-
specific changes in immune response (Lai et al.  2007 ). In addition, as age-specific 
transcriptional controls are likely to contribute to age-specific immunocompetence, the 
continued use and improvement of expression QTL mapping methods (e.g., Alberts et 
al.  2007 ; Jia and Zu  2007 ) holds great promise for identifying the genes that regulate 
age-specific expression of those genes that directly contribute to immunosenescence.  
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                       Abstract:       Studying human T-cell senescence is mostly limited to investigations 
on peripheral blood ex vivo or on cultured cells in vitro. In both cases, single cell 
analysis is challenging and many age-associated alterations described are the result 
of changes in the proportions of the ever-increasing numbers of different T-cell sub-
sets rather than changes to the cells per se. One model avoiding this problem utilises 
monoclonal populations cultured long-term in vitro. Such T-cell clones (TCC) can 
be maintained without oncogenic transformation by intermittent antigen restimula-
tion in the presence of growth factors. However, TCC possess finite lifespans (which 
vary greatly from clone to clone). This TCC model can be used to investigate many 
aspects of the processes of clonal expansion and contraction essential for adaptive 
immunity, including biomarker discovery at the genomic, proteomic and functional 
levels, and to test interventions of possible clinical utility. This chapter describes 
techniques for the production and maintenance of human TCC in vitro, the impact 
of culture conditions and oxygen levels on lifespan, and the application of genomic 
and proteomic analyses in this model.  
   
   Keywords:        Chronic antigenic stress    •    Immunosenescence    •    In vitro culture 
model    •    Physiological oxygen level    •    T-cell clones   

Clonal Culture Models of T-cell Senescence
Graham Pawelec, Jürgen Kempf and Anis Larbi

  Contents

1 Introduction    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2 T-cell Cloning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
  3  Changes in Behavior over the TCC Life Cycle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.1 Changes of Surface Phenotype and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
  4 Genomic and Proteomic Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
  5 Interventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.  1 Culture Conditions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
  5.2 Physiological Oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.  3 Telomerase Induction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.  4 Autoantigen-specific T-cell Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

  6 Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114   
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

G. Pawelec ( ) · J. Kempf · A. Larbi
Center for Medical Research (ZMF)
University of Tübingen Medical School, Waldhörnlestr. 22
D-72072 Tübingen, Germany
Fax: ++49 7071 8884679
Tel.: ++49 7071 253211
E-mail: graham.pawelec@uni-tuebingen.de



108 G. Pawelec et al.

     1      Introduction  

  Long-term propagation of human T-cells became possible after the discovery 
of “T-cell growth factor”, enabling single T-cells to be isolated and cultured for 
extended (Gillis et al. 1978) but not indefinite periods (Effros and Pawelec 1997). 
All TCC culture systems relied on the presence of “feeder cells” to facilitate T-cell 
growth via ill-defined mechanisms of cell contact and cytokine secretion. Nowa-
days, T-cells can be cultured with defined factors such as the common γ-chain 
cytokines IL 2, IL 7 and IL 15, together with nanoparticles presenting antibod-
ies to stimulatory surface molecules, commonly the T-cell receptor (TCR) CD3 
component and the costimulatory receptor CD28, or together with TCR-cognate 
antigen and antigen presenting cells (APC) or particles. Notwithstanding all these 
variations, the basic principles remain the same: to propagate T-cells in vitro it 
is necessary to provide them not only with exogenous growth factors but also to 
stimulate them intermittently via their cell surface receptors, most usually the 
TCR. TCC cultured in this way provide a model for reactivity against antigens 
which cannot be eliminated by the immune system, i.e. certain parasites, viruses 
and commonly cancer. When confronted with acute infection, adaptive immu-
nity develops effector responses to clear the antigen; thereafter, excess effector 
cells are purged from the system and memory cells retained for any future chal-
lenges. However, antigens from persistent viruses, notably Herpes viruses, as well 
as immunogenic cancers, are not cleared, but continuously stimulate specific T-
cells. The number of different, mostly CMV-specific, T-cell clonal expansions 
quantified in vivo first increases and then decreases with age; in the very elderly, 
the number of remaining clones correlates closely with residual survival time 
(Hadrup et al. 2006). Thus, chronic antigenic stress (mostly CMV antigens in 
this case) causes clonal exhaustion and attrition, with clinical consequences. We 
hypothesize that similar phenomena can occur in younger people harbouring dif-
ferent sources of chronic antigen, especially cancer (Pawelec et al. 2006). The 
process of T-cell clonal expansion and eventual attrition can be modelled in vitro 
in tissue culture. We can hope to learn how to modulate this process in vivo by 
improving and studying the model in vitro.  

    2      T-cell Cloning  

  As with fibroblasts, early data on T-cells suggested that clonal lifespan in cul-
ture was influenced by age of the donor from whom the starting population was 
obtained. Thus, clones derived from neonates averaged a larger number of popula-
tion doublings (PD), than those from adults, especially the elderly (McCarron et 
al. 1987). Our own more extensive results, collected over many years from multi-
ple cloning experiments, do not support this finding. Individual TCC do have very 
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varied lifespans, but the overall patterns for T-cells of quite different origins and 
donors of different ages are remarkably similar, as we have previously reported 
(Pawelec et al. 2002); thus, clonable T-cells from a centenarian or from a young 
adult behave similarly, implying that the former have not been functionally com-
promised. This is consistent with the main age-associated alteration in human T-
cells being the changed distribution of T-cell subsets, reflected most prominently 
in the decreased proportion of naïve cells and the increased proportion of memory 
cells of different subtypes.  

       The process of clonal attrition is striking in this in vitro model (Table 1). 
After 20 PD, representing a clone size of 10 6  cells, about half of the clones origi-
nally obtained in each experiment have already been lost. By 30 PD, another half 
of these is lost, so that only one quarter of the originally clonable cells is still 
present. By 40 PD (which now represents a very large clone size of 10 12  cells, 
at least theoretically if no daughter cells ever die at each cell division), although 
more clones have been lost, 15% of the original starting clonal population does 
still remain. These results reflect a steady attrition of T-cell diversity at the clonal 
level, but with retention of something like 5% of the original CD4 repertoire up 
to 40 PD and with retention of very rare clones for much longer (some at least to 
70 PD). Although difficult to establish, similar clonal attrition probably occurs 
in vivo as well, at least in infectious mononucleosis, perhaps with quite similar 
distributions of clonal longevities (Maini et al. 1999). Similar considerations con-
cerning cells from other sources predict that any T-cell, if clonable under these 
conditions, will behave in a very similar way to any other. This is borne out by the 
finding that T-cells generated in situ from CD34 +  hematopoietic progenitors and 
those from cancer patients do not manifest greater or lesser average and maximum 
longevities, respectively (Table 1).  

   Table 1      Longevities of human T-cell clones under standard culture conditions    

   Origin      %CE     Clones/
 Expts   

     Percentage of clones reaching:      Max. 
  longevity      20 PD      30 PD      40 PD   

  CD3 (young)    47    1355/15    47    24    15    70  

  CD3 (old)    52    298/7    48    26    16    77  

  CD3 (cent)    38    52/3    41    23    17    80  

  CD3 (CML)    49    35/1    60    35    14    51  

  CD34 (periph)    55    533/6    31    17    6    60  

  CD34 (cord)    43    94/2    29    15    5    57  

   CE, cloning efficiency (calculated from percentage of wells positive in cloning plates). Longevity 
is expressed as a percentage of established clones (ie. those counted as positive in calculating the 
CE) which survive to 20, 30 or 40 PD. Origins: CD34+, positively-selected hematopoietic stem 
cells from peripheral or cord blood; CD3+, normal peripheral T cells; young, apparently healthy 
donors under 30 yr.; old, healthy donors over 85 yr.; cent, centenarians; CML, a middle-aged donor 
with chronic myelogenous leukemia in chronic phase treated with interferon.   
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    3      Changes in Behavior over the TCC Life Cycle  

  The 15–35% of TCC surviving for prolonged periods can be followed longitudi-
nally over their finite lifespans regarding surface molecule expression, activation, 
signal transduction, cytokine secretion, cytotoxicity, and many other parameters. A 
typical growth curve of such a clone is shown in Fig. 1 (in this case, a CD4+ clone 
derived from an octogenarian donor). Growth is well-maintained until 40–50 PD, 
after which it slows, and the clone is lost at around 55 PD. This slow-down and 
demise is caused by increasing susceptibility to CD4+ TCC to apoptosis caused by 
activation-induced cell death, rather than changes to cell division rate. Age-associ-
ated alterations discovered in this way over the lifespan of the TCC can be used to 
screen for similar changes ex vivo in order to validate biomarkers of immune age-
ing, and they can also be used to test interventions in vitro aimed at preventing or 
reversing deleterious changes.  

   3.1      Changes of Surface Phenotype and Function  

  Bearing in mind the constraints of the cloning procedure, “early passage” TCC 
will have already undergone at least 22 or 23 PD before sufficient cells are avail-
able for analysis and further propagation of the clone, but as mentioned above, at 
this point there is still a good representation of the original repertoire. TCC can be 

  Fig. 1    Growth characteristics of TCC 433-21, showing days in culture plotted against the number 
of cells per culture well and giving the CPD estimated at each subculture   
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analyzed by flow cytometry for changes to expression of an ever-increasing number 
of monoclonal antibody-defined cell surface molecules, many with important known 
functions for T-cell responses. A common but not universal age-associated reduction 
in the level of expression of the costimulatory receptor CD28 has been documented 
(Pawelec et al. 1997), whereas the level of TCR remains more stable (Fig. 2). This 
suggests that these cells retain the ability to recognise and respond to antigen but 
may lack full costimulation, which may contribute to the changes observed in the 
patterns of cytokines secreted, commonly resulting in decreased levels of IL 2 and 
increased levels of IL 10 (Pawelec et al. 1997). When comparing the growth curve 
and the surface marker expression of the same clone, there was a correlation between 
CD28 expression and the capacity of the clone to grow. CD28 expression is decreas-
ing from 27 to 35 PD and is then re-expressed and finally lost at the end-stage of the 
clone’s lifespan (Fig. 2). This perfectly correlated with the number of cells obtained 
at each PD (Fig. 1). Nonetheless, other factors certainly play a role in the varied age-
associated changes seen in different individual clones. Because T-cell functions are 
triggered by intracellular signaling via a multitude of surface receptors in addition 
to the TCR and CD28, any alterations impinging on the membrane (early events) 
through the cytoplasm (intermediate events) to the nucleus (late events) will influ-
ence the final outcome of each encounter with APC for each individual T-cell. This 
suggests that stochastic events may drive heterogeneity within clonally expanding 
T-cell populations, a hypothesis for which some evidence does exist.  

     4      Genomic and Proteomic Analysis  

  We recently undertook a first global gene expression analysis of early and late pas-
sage TCC derived from an octogenarian donor, one of which is shown in Fig. 1. This 
screening approach allows the hypothesis-free identification of potentially impor-

  Fig. 2    Surface marker expression of TCC 433-21 giving the CPD estimated at each subculture   
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tant age-associated changes which can be usefully followed up at the protein and 
functional levels. Array analysis has thus revealed a wide range of differentially 
expressed genes, including those encoding proteins involved in signal transduction, 
inflammation, apoptosis, and other processes implicated in senescence (Mazzatti 
et al. 2007b). Of particular note may be the age–associated upregulation of genes 
encoding various proinflammatory molecules, considered an important factor in 
physiological ageing and development of frailty. A similar approach applied at the 
proteome level may also assist in the discovery of biomarkers of relevance in vivo. 
Thus, using SELDI-Tof-MS protein profiling, we have identified several protein/
peptide peaks which could be associated with T-cell senescence (Mazzatti et al. 
2007a). One protein identified through this analysis, profilin-1, hitherto unsuspected 
in the context of senescence, has important roles in cellular survival, cell division, 
cytoskeleton remodeling and motility, and may contribute to immunosenescence or 
possibly cellular senescence in general.  

    5      Interventions  

   5.1      Culture Conditions  

  Interventions that we have tested in the in vitro longitudinal T-cell ageing system 
described here include culturing TCC in different cytokine cocktails, supplementing 
with factors such as zinc, attempting to block apoptosis in various ways, and culturing 
in lower levels of oxygen. The basic culture conditions have remained the same: use 
of an excess of feeder cells usually consisting of irradiated PBMC pooled from many 
different healthy donors, culture medium containing human serum or more recently 
serum free (X-Vivo 15, Lonza, Basel, Switzerland), and a source of growth factors. 
Briefly, of the many different variants that we have tested, relatively few have had 
much impact on the growth characteristics and longevities of the TCC. One of these, 
neutralisation with antibodies of the TNF-α secreted into the culture medium by essen-
tially all TCC, resulted in an increased cumulative PD (CPD) of 10-15 PD (Pawelec 
et al. 2006). This can translate to a very large number of cells at later passages, and 
could be used in vivo, since agents that neutralise TNF are licensed for use in humans 
in diseases such as rheumatoid arthritis. The only other manipulation which has had 
an impact on TCC longevity, also increasing CPD by 5-15 PD, is to culture the cells 
in a more physiological level of oxygen, as described in the next section.  

    5.2      Physiological Oxygen  

  All of the above-mentioned studies, and indeed most cell culture experiments in 
any context, are performed at 37°C in humidified incubators gassed with 5% CO 

2
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but otherwise containing air. This equates to a hyperoxic environment with 20% O 
2
 , 

not applicable in vivo. We are therefore embarking on experiments in which TCC 
are cultured in lower oxygen environments. Earlier experiments using 4 different 
TCC suggested that oxidative DNA damage measured in TCC by a modified Comet 
assay increased with increasing PD in culture in air. Reducing the oxygen level to 
5% led to a marked reduction in accumulated oxidative DNA damage, but contrary 
to expectations did not lead to an increased longevity of the TCC (Duggan et al. 
2004). However, more recent experiments reducing the level of oxygen further to 
2% suggest that while some TCC do not show increased longevity under 2% com-
pared to 20% oxygen, the majority does (Fig. 3). Changes in expression of inducible 
heat shock proteins and other parameters parallel the growth and signal transduction 
modulations observed in TCC cultured in what we believe approximates a more 
“physiological” oxygen tension than air. Thus, the interpretation of data derived 
from the usual type of in vitro culture in air must be treated with caution, and ide-
ally experiments repeated at lower oxygen levels not only in the context of TCC but 
essentially all other culture-based systems.  

         5.3      Telomerase Induction  

  Expanded TCC loss of CD28 expression is associated with reduced telomerase 
activity and thus telomere length. Transferring the human telomerase reverse tran-

  Fig. 3    Longevity of TCC cultured in air or at 2% oxygen. CPD are given for each of 9 individual TCC   
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scriptase (TERT) gene into T-lymphocytes can increase their lifespan (Rufer et al. 
2001). T-cell clones with high levels of telomerase maintained or increased their 
telomere lengths for extended periods of time. Thus, enforced telomerase expres-
sion can increase T-cell longevity.  

    5.4      Autoantigen-specific T-cell Cloning  

  The cloning of autoreactive T-cells is more difficult. On early attempts to do so, 
we concluded that factors other than cytokines including IL 2, IL 4 and IL 7 were 
required for the expansion of these cells. Mannering et al., recently used CFSE-
stained cells, a known cell tracker dye used to assess proliferative capacity of cells, 
to pre-select responding clones. After stimulation with the auto-antigen acid decar-
boxylase-65 for 7 days, propidium iodide-negative CD4+CFSE dim  cells could be 
cloned. The cytokine cocktail included IL 2, IL 4 and IL 7 but also IL 15 (5 ng/ml). 
This resulted in a cloning efficiency averaging from 10 to 15%. IL 15 may therefore 
be the crucial factor (Mannering et al. 2005).  

     6      Conclusions  

  Human T-cell clones can be maintained for extended but finite periods without trans-
formation in tissue culture but eventually cease proliferating at time points up to the 
Hayflick limit. This remains the case even when known inhibitory factors such as 
TNF-α are neutralized and when more physiological oxygen tensions are applied, 
which can increase lifespan but not indefinitely. Only enforced expression of tel-
omerase may greatly extend the lifespan, but this probably also fails to immortalize 
the cells. The changes which can be investigated longitudinally over the lifespan of 
the TCC and which reflect in vivo alterations make this a good model for studying 
human T-cell immunosenescence.  
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                     Abstract   :      Influenza is an enveloped, segmented negative sense RNA virus capable 
of infecting epithelial cells lining the human respiratory tract. Influenza A and B are 
important causes of disease in humans. Transmitted via aerosol, the virus possesses 
two major surface, hemagglutinin (HA) and neuraminidase (NA). HA has binding 
specificity for sialic acid, and allows viral attachment and entry into the cell. NA 
cleaves sialic acid residues off glycoproteins or mucoproteins, which aids new pro-
genitor virions in eluting from the cell. The primary method of reducing influenza 
disease burden has been through vaccination.  
   
   Keywords:       Influenza    •     murine    •     pulmonary titers   

     1      Introduction  

  Many different animal models of influenza infection have been used throughout 
the years, including ferret, mouse, rabbit and swine. However, the mouse is the pre-
ferred model for infection because of its ease of breeding, handling and relative low-
cost. Importantly the mouse model can be a good predictor of the human response to 
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infection and vaccination. Mouse models have been useful in developing and testing 
vaccine formulations and pharmacological treatments, as well understanding the 
pathogenesis of the virus and the dynamics of the host antiviral response. Recent 
studies have sought to delineate the changes in response to influenza infection 
or vaccination with age. Studying vaccine efficacy and immune responses in this 
population is especially important given that the elderly typically show decreased 
immune response and vaccine efficacy.  

  This chapter will cover the most widely used mouse strains, discuss gene knock-
out models, host response to infection and practical aspects of experiments involv-
ing mice to provide a starting point for new investigators interested in utilizing 
mouse models for studying influenza.  

    2      Inbred Mouse Strains  

  Investigators requiring mice for research can choose subjects from a large number 
of inbred and random-bred lines. As part of selecting the ideal murine strain for an 
experiment, the investigator must choose the genetic state that makes the model a 
valid representation of the target population. This may include, but is not limited 
to: selection of histocompatiblity antigens (H2 haplotype), T-helper 1 or 2 skewing 
of the immune response, or predilections for particular disease states (Table- 1 ). An 
inbred line consists of a population of great genetic homogeneity, and experiments 
performed within such a population can test the treatment variability, which in the 
haphazardly bred mouse might be confounded with genetic variability.     

    The development of inbred lines of mice in biological research is equivalent 
to the development of measurement standards and the preparation of reagent and 

   Table 1    Common Mouse Strains used in Influenza Studies    

  Strain    Source    H2 Haplotype    Comments  

  BALB/c    221 (BALB/cJ); 235 
(BALB/cByJ) inbred 
generations   

  d    Th 
2
  Skewed; nonaggressive strain; 

very large reticuloendothelial 
system  

  C57BL/6    226 inbred generations    b    Th 
1
  skewed; High mammary tumor 

incidence; high mortality in 
chloroform exposure; low eryth-
rocyte & leukocyte counts; poor 
LPS response; aggressive strain  

  Nude ( nu )    BALB/c- nu /+  97 inbred 
generations  

  d    T-cell deficient, intact B-cell 
immune system  

  Nude ( nu )    C57BL/ lac-nu + (B6.
Cg- Foxn1   nu  /J)  51 
congenic generations  

  b    As above  

  Swiss Webster    -    outbred    -  

   Adapted from: Altman PI, Katz DD (1979). Inbred and Genetically Defined Strains of Labora-
tory Mice; Part 1: Mouse and Rat. Federation of American Societies for Experimental Biology. 
[ 1 ] Source data from Jackson Laboratories Website [ 22 ].   
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analytical grade chemicals and serological reagents. The “reagent grade” animal, 
the result of carefully controlled inbreeding, permits design and repetition of experi-
ments requiring fine discrimination within an animal species. The inbred mouse 
line is a population of animals that has attained homozygosis at nearly every locus 
through the use of a mating system that reduces the number of genetically dissimilar 
ancestors [ 44 ]. Traditionally, the most common practice is rigid brother-sister mat-
ing over many generations.  

  The history of the inbred laboratory mammal is actually the history of the use of 
the mouse in cancer studies. In order to attain repeatable and controlled systems for 
studying factors affecting tumor transplantation and for providing insight into why 
cancer develops, Little and Tyzzer [ 36 ] began to breed mice to obtain the necessary 
genetic homogeneity. Many of the early inbred strains of mice originated from a 
small number of stocks [ 12 ]. This relatively restricted gene pool accounts for the 
similarities and differences in the classic inbred lines. The history of each inbred 
mouse line is included in the listing of  Standardized Nomenclature of Inbred Strains 
of Mice  [ 54 ] published regularly. We strongly recommend that the most recent pub-
lication of the list of inbred strains be consulted.  

  The  inbreeding coefficient , F, is a useful theoretical measurement of the progress 
of inbreeding, which has retained its usefulness with the experimental use of trans-
genic animals. It is defined as the probability that both alleles at a locus are identical 
by descent. It therefore indicates the proportionate decrease of heterozygous loci 
in the inbred individual relative to those in a representative individual of the start-
ing population. F increases at different rates, depending on the amount of ancestry 
shared by the mated individuals. F should be used with caution, it is a theoretical 
value calculated from a pedigree, and not only does it ignore mutational effects, it 
also ignores effects of selection favoring heterozygotes [ 12 ,  53 ]. Once inbred lines 
are established, they can be genetically manipulated to establish yet other strains 
with special attributes for genetic analysis and control. Namely, these are: the  con-
genic  lines, the  coisogenic  lines, and the  recombinant-inbred  line. A  congenic  line 
is an inbred line genetically identical to an already established inbred strain except 
for a short chromosomal segment that bears a distinctive gene of interest. The 
congenic line is created by crossing the established inbred strain with an individual 
mouse bearing the distinctive gene of interest; a gene introduced either by breeding 
or molecular biological techniques. By repeatedly crossing selected carriers of the 
distinctive gene back to the established inbred strain, in time all introduced genes 
except the distinctive gene and closely linked genes will have been purged [ 53 ]. 
The locus at which the distinctive gene resides is known as the  differential  locus, 
the linked genes carried along on the introduced segment are called  passenger  
genes, and the original established inbred strain is termed the  partner  or  back-
ground  strain. Congenic lines are used (i) to compare effects of genes without the 
interference of genes in the background, (ii) to easily identify, by the congenic line 
in which they are carried, individual genes that have similar phenotypic effects, 
such as histocompatablity genes, and (iii) to assist in linkage studies. In contrast, 
to the congenic line, a  coisogenic  line is one that differs from its partner strain at 
a single locus, as a result of a mutation, random or introduced, in an established 
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inbred line. A  recombinant-inbred  (RI) strain is derived from a cross of two already 
established highly inbred strains (the progenitor strains), followed by systematic 
inbreeding as for any other inbred strain. This procedure, with no conscious selec-
tion pressure applied, allows the reassortment and fixation of genes from the two 
progenitor lines [ 12 ,  53 ].  

  Inbred mice lack the genetic and phenotypic variation seen in outbred mouse 
populations. The H2 allele is the region that codes for the major histocompatibility 
complex (MHC), the proteins responsible for processing and presenting processed 
antigen peptides to T-cells for immune system activation. There are several H2 alle-
les in circulation in mouse populations, but inbred mice only possess one of these 
alleles ( e. g., BALB/c has the H2 d  allele). These alleles may vary in the number of 
different MHC proteins that can be expressed by an organism, or by variation in 
the protein sequence of amino acids in the cleft that binds and presents processed 
peptide. However, studies in inbred mice strains infected with  Rickettsia  [ 2 ] and 
murine cytomegalovirus (MCMV) [ 38 ] failed to establish a clear role for H2 hap-
lotype in determining susceptibility or resistance to these pathogens. It is likely 
that several alleles persisted in the population because having the ability to bind a 
greater number of antigens or having the ability to bind certain antigens conferred 
some evolutionary advantage to the mouse and allowed persistence of these genes. 
Therefore, the use of inbred mice homozygous at this locus may skew the results 
of experiments in an unanticipated manner by artificially restricting the number or 
type of antigens that can be processed and/or presented by the organism’s immune 
system. Conversely, experimental results may be better than seen in a genetically 
diverse population. One must be careful in interpreting results and extending gener-
alizations to genetically diverse populations.  

    3      Specific Inbred Strains  

   BALB/c  is the most common inbred mouse strain used in influenza vaccine stud-
ies, developed by HJ Bagg in 1913 ( B agg  alb ino). Many substrains of the original 
BALB/c mouse are now in general use (e.g., BALB/cJ and BALB/cByJ). The 
substrains share a high degree of genetic identity, but do differ at least one locus 
[ 46 ] and have behavioral and breeding dissimilarities [ 21 ]. BALB/c mice have a 
skewed Th2 immune response; characterized by CD4+ cell expression of IL-4, IL-
5, IL-6 and IL-10, cytokines that correspond to activation of the humoral response 
to infection. IFN-γ and IL-2 correspond to the cell-mediated response. Several 
studies have demonstrated the BALB/c mouse’s skewed Th2 immune response to 
infection with various pathogens or vaccination [ 18 ,  20 ,  38 ]. With respect to influ-
enza infection and vaccination, primary infection or primary immunization with 
different vaccines [ 20 ,  16 ] causes a Th1 immune response in this mouse model, 
whereas a secondary response to vaccine [ 16 ,  55 ] induces a Th2 type immune 
response.  
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  The  C57BL/6  mouse is opposite of its BALB/c cousin. This mouse is much more 
aggressive than the comparatively docile BALB/c. The immune response is skewed 
toward a Th1 response, which explains the phenotype of resistance to pathogens 
such as HSV-1, Sendai virus,  Leishmania  and  Rickettsia  [ 2 ,  6 ,  18 ,  45 ]. Though this 
strain has been used to study influenza infection and vaccination, it is usually used 
experimentally in conjunction with BALB/c mice as a comparison [ 3 ].  

   Nude mice  are substrains of BALB/c and C57BL/6 mice homozygous for the  nu  
allele carried on chromosome 11, which contains a nucleotide deletion in the  Foxn1 
 gene. This results in an athymic and hairless animal [ 19 ]. The  Foxn1  gene encodes 
a transcription factor ( F orkhead B ox ) controlling development of the thymic epi-
thelium, important for providing the correct environment for T-cell education 
[ 11 ]. The advantage of an athymic animal model is the ability to study immune 
responses that require T-cell participation. Sullivan et al. [ 54 ] studied infection 
with A/PR/8/34 (H1N1) found that nude mice had a lower rate of sero-conversion 
and lower geometric mean titers to virus challenge, indicating that to mount an 
effective humoral immune response, an intact T-cell immune system is required. 
However, the mean time to death for nude mice was increased versus BALB/c 
mice, suggesting that the immunopathology seen in animal models is due in part to 
Type-1 cell-mediated immunity.  

    4      Outbred mice  

  The advantage of using outbred mice for experiments involving infection or vaccine 
testing is, outbred mice are genetically and phenotypically dissimilar, and therefore 
a more heterogeneous population. Theoretically, experimental results from studies 
in such a population may better represent actual results of similar studies in humans. 
Studies directly comparing influenza infection in outbred models to inbred models 
are lacking, but studies performed with other pathogens provide data to elucidate 
differences and similarities of immune responses. Outbred mice have been used for 
the biological characterization of flavivirus  Alfuy  infection [ 39 ],  Coxsackievirus B4 
E2  viral spread post-infection [ 23 ], Sendai virus infection [ 45 ],  Neospora caninum  
infection [ 49 ] anthrax vaccine studies [ 14 ], and a DNA-based FMDV (foot and 
mouth disease virus) vaccine [ 4 ]. In another case [ 5 ], outbred mice failed to mount 
an immune response to vaccination with a plasmid expressing F1 antigen from  Yers-
inia,  while BALB/c mice demonstrated a robust antibody response. The arsenal 
of outbred mouse strains to choose from is extensive, however, the Swiss-Webster 
mouse, its derivative the ICR mouse, are the most used for influenza infection and 
vaccine studies, though CD-1 and NIH/S mice have been used as well.  

  Typically, differences between inbred and outbred models were seen in suscepti-
bility or resistance to infection or in response to vaccination, indicating that genetic 
heterogeneity, likely at multiple loci, is an important consideration for these types of 
studies. Therefore, based on all studies mentioned in this section, knowledge of the 
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model chosen for study is essential, and extrapolation of experimental results must 
be done with extreme caution, and may not be possible in all cases.  

    5      Transgenic Animals  

  A transgenic animal is one that carries a foreign gene that has been deliberately inserted 
into its genome. The foreign gene is constructed using recombinant DNA methodol-
ogy. In addition to a structural gene, the DNA usually includes other sequences to 
enable it to be incorporated into the DNA of the host and to be expressed correctly 
by the cells of the host. Transgenic mice have provided the tools for exploring many 
biological questions. Two methods of producing transgenic mice are widely used: 

    1.       The Embryonic Stem Cell Method (Method “1”):   Embryonic stem cells (ES 
cells) are harvested from the inner cell mass (ICM) of mouse blastocysts. They 
can be grown in culture and retain their full potential to produce all the cells of 
the mature animal, including its gametes.  

     2.       The Pronucleus Method (Method “2”):   Harvest freshly fertilized eggs before 
the sperm head has become a pronucleus, then inject the male pronucleus with 
your DNA. When the pronuclei have fused to form the diploid zygote nucleus, 
allow the zygote to divide by mitosis to form a 2-cell embryo. These embryos 
are then implanted in a pseudopregnant foster. Every cell in the offspring will 
contain the gene of interest.      

   5.1      Random vs. Targeted Gene Insertion  

  The early vectors used for gene insertion could, and did, place the gene (from one to 
200 copies of it) anywhere in the genome. However, if you know some of the DNA 
sequence flanking a particular gene, it is possible to design vectors that replace that 
gene. The replacement gene can be one that restores function in a mutant animal or 
knocks out the function of a particular locus.  

  If the replacement gene is nonfunctional (a “null” allele), mating of the hetero-
zygous transgenic mice will produce a strain of “knockout mice” homozygous for the 
nonfunctional gene (both copies of the gene at that locus have been “knocked out”).  

  Knockout mice are valuable tools for discovering the function(s) of genes for 
which mutant strains were not previously available. Two generalizations have 
emerged from examining knockout mice: 

    1.      Knockout mice are often surprisingly unaffected by their deficiency. Many genes 
turn out not to be indispensable. The mouse genome appears to have sufficient 
redundancy to compensate for a single missing pair of alleles.  

     2.      Most genes are pleiotropic. They are expressed in different tissues in different 
ways and at different times in development.      



Mouse Models of Influenza  123

     6      Experimentally Infecting Mice with Influenza Virus  

   6.1      Viral Adaptation to Growth in a Mouse  

  Investigators utilizing murine models to study influenza virus must select or adapt 
an influenza viral strain suitable to address the experimental question. That is to 
say, does the murine model system and the infection induced accurately mimic real 
world phenomenon? In designing such experiments the investigator must address 
two questions: 1) Does the selected viral strain infect the mouse in a manner that is 
similar to a human infection in penetrance, viral replication, and replication kinet-
ics? 2) Is the immunity engendered by an experimental vaccine or pharmacologic 
activity of a drug in the mouse mimic that in the human model? Investigators should 
be aware that the various immunogenic components of the influenza virus induce 
very different types of immunity easily reflected in a mouse model system. A more 
detailed discussion of the immune response to influenza virus can be found in refer-
ence [ 31 ]. Briefly, antibodies to HA neutralize viral infectivity [ 26 ]; antibody to the 
viral NA [ 26 ] and M2 [ 37 ] proteins are infection-permissive across a broad range of 
antibody levels (ie, no reduction in the number of infected subjects) but result in the 
reduction of pulmonary virus titers below a pathogenic threshold. Antibodies to M1 
and NP can be found in the sera of animals immunized with whole virus vaccines, 
purified protein preparations and after infection. These studies failed to demonstrate 
a significant role for these antibodies in the amelioration of disease [ 25 ]. Despite 
evidence that live and inactivated influenza vaccines induce cross-reactive T-cells 
in humans [ 34 ] and mice [ 41 ], reinfection with homologous or heterotypic virus 
occurs. The level of anti-influenza CTLs correlates with the rate of viral clearance 
but not alter susceptibility to infection or subsequent infection [ 41 ].  

  Adaptation of influenza virus by serial passage in new host invariably results 
in the selection of mutants better equipped to replicate and spread within the new 
host. Most influenza virus strains grow readily in the mouse lung or murine tissue 
culture; thus influenza viruses, which are inherently cytolytic, adapt or become 
more damaging to the animal host not by changes in capacity to infect (which 
they already must possess) but by mutational changes that permit attainment of 
higher titers in the host. A common feature of adaptation of both influenza A and 
B viruses to the mouse has been the emergence of virus characterized by a more 
rapid growth rate [ 56 ,  35 ] and the capacity to reach higher concentrations in the 
lung [ 50 ]. Adaptation has been studied in the laboratory for many years. Changes 
in viral phenotype have been noted concomitant with sequential passage of virus 
in mice [ 8 ,  9 ,  40 ]. Serial passage of influenza A viruses in the mouse lung has 
been associated with antigenic changes [ 15 ], increased resistance to mucopro-
tein inhibitor, and changed sensitivity of viral HA to thermal inactivation [ 31 ]. 
Co-variation of these phenotypic changes with attainment of mouse lung viru-
lence has not been unequivocally established. Whether adaptation comprises a 
complex series of mutational events or primarily entails selection of preexisting 
viral variants is not clear. Mouse-adapted virus is characterized by both a faster 
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growth rate and the capacity to attain higher titers in the lung [ 13 ]; indicating that 
both selection of preexisting mouse lung replication mutants and their subsequent 
mutation occur.  

  There have been several studies examining the specific mutations and in which 
viral genes that confer a mouse-adapted phenotype. Adaptation of human influenza 
virus to mice by serial passage results in the selection of highly virulent variants that 
have acquired mutations in multiple genes [ 8 ,  9 ,  40 ]. Analyses of the genetic basis 
for virulence by using reassortants that possess mixtures of genes from virulent and 
avirulent strains have identified various groupings of genes, which in aggregate 
implicate all eight genome segments [ 9 ]. Brown et al. [ 9 ] demonstrated in H3N2 
virus that a group of 11 mutations convert an avirulent virus to a virulent variant. 
Thirteen of the 14 amino acid substitutions (93%) detected among clonal isolates 
were likely instrumental in adaptation because of their positive selection, location 
in functional regions, and or independent occurrence in other virulent influenza 
viruses. Mutations in virulent variants repeatedly involved nuclear localization sig-
nals and sites of protein and RNA interaction, implicating them as novel modulators 
of virulence. Mouse-adapted variants with the same HA mutations possessed differ-
ent pH optima of fusion, indicating that other viral genes can modulate HA fusion 
activity. Experimental adaptation resulted in the selection of three mutations that 
were in common with the virulent human H5N1 isolate A/HK/156/97 [ 9 ]. Similarly, 
adaptation of the A/FM/1/47 H1N1 strain to mice resulted in selection of a variant 
with increased virulence. Complete sequence analysis identified mutations in the 
PB1, PB2, HA, NA, and M1 genes; all five mutations were shown to control viru-
lence but also the replicative capacity in the mouse. The HA, NA and M1 mutations 
increased yield in all three hosts whereas in combination the PB1 and PB2 muta-
tions were host restrictive changing the virus to a mouse specific strain. However, 
the HA mutation increased virulence largely independent of increased growth indi-
cating a change in pathological properties [ 8 ]. Serial passage of an initially avirulent 
influenza B virus, B/Memphis/12/97, resulted in the selection of a variant that was 
lethal in mice. Sequencing data suggested one change in the C-terminal domain of 
the M1 protein, an asparagine to a serine at position 221, was responsible for acqui-
sition of virulence and lethality [ 40 ].  

    6.2      Practical Experimental Points  

  Viral strains suitable for adaptation to the mouse can be derived from wild-type [ 50 –
 52 ], classic reassortant virus [ 24 ,  28 – 30 ] or products of reverse genetics [ 57 ]. Use of 
each method has distinct advantages and disadvantages. Use of wild-type strains can 
be a quick, simple and allows for opportunities to mimic wild-type antigenic exposures 
from both the internal and surface antigens. However, adapting the strain to mouse 
may prove laborious, difficult to standardize and low-yield growth in embryonated 
chick eggs may limit experimental choices. Whereas, use of the classic reassortant and 
reverse genetic techniques offers the advantage of placing the surface glycoproteins, 
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HA and NA of a wild-type strain onto a background of internal proteins derived from 
A/PR/8/34 (H1N1) virus, as done annually, in the production of conventional inacti-
vated influenza vaccine. A/PR/8/34 has an optimal growth temperature of 39°C -the 
average body temperature of a BALB/c mouse [ 1 ], is permissive to growth in a variety 
of experimentally useful tissue culture cell-lines including Madin-Darby Canine Kid-
ney (MDCK) [ 31 ] and there are many commercially available serologic and immu-
nologic reagents compatible with this system. The disadvantage of reassortants and 
reverse genetics is the need to expand the virus in embryonated chicken eggs to obtain 
sufficient virus to do the experiment. Passage in chicken eggs leads to deadaptation 
to the mouse [ 24 ,  28 –  30 ]. A reverse genetics plasmid kit containing genes encoding 
influenza internal proteins from a mouse adapted strain is not available; therefore viral 
products of reverse genetics will require adaptation passages.  

  Traditionally, influenza virus has been adapted to increased penetrance or viral 
growth by sequential passage of virus in mouse lungs [ 9 ,  31 ,  50 ], with limited pas-
sage for expansion in embryonated chicken eggs, which may select for virus less 
adapted to growth in the mouse lung [ 24 ,  50 – 52 ]. Passage in MDCK selects for and 
preserves mouse-adapted characteristics. However, the total amount of virus pro-
duced in tissue culture is less than in eggs. Both methods require purification of 
virions from the growth medium; simple centrifugation and sucrose gradient cen-
trifugation can produce usable high yields of infectious virus [ 48 ]. There are com-
mercially available affinity chromatographic methods. Irrespective of the selection 
method chosen for passing the virus close attention must be paid to dilution (con-
centration) of virus used in passage studies. Successful adaptation to the mouse lung 
can be achieved with a wide range of varying viral concentrations and multiplicity 
of infections ( moi ). Too low of a  moi  may be insufficient for productive infection, 
to high of a concentration may result in multiplicity interference. Often prior to an 
experiment the optimal range of viral dilutions is unknown therefore titration of the 
virus in mice using several dilutions is warranted. In both reassortment and selection 
of viral strains, one must be cognizant of the enormous mutation rate of influenza 
(and other RNA viruses) and their apparent requirement for high  moi  for maintain-
ing fitness in a given host system [ 33 ,  43 ]. In other words, either the introduction 
of populations limited in genetic diversity or the attempt to clone high titer virus by 
limiting dilution may lead to the establishment of a less fit virus. If such a virus is 
then maintained by high dilution passage, it will never regain adapted vigor. This 
phenomenon is known as a genetic “bottleneck” or “Muller’s ratchet” [ 10 ]. In our 
laboratory, we have observed the loss of rapid growth and viral titer in mice if passed 
too early at high dilution. The practical lessons are: pass at sequential low dilutions 
early; then after sufficient dilutions and passages to escape unwanted nonadapted 
genes, passage should be maintained at a dilution sufficient to assure a reasonable 
gene pool. If using A/PR/8/34 reassortants this is in the range of 10- 4  to 10- 5  egg infec-
tious dose (EID 

50
 ). In general, following infection with influenza virus in the mouse 

peak viral replication is at 3–4 days post inoculation and peak pulmonary lesions are 
seen on day 7 postinoculation [ 28 – 31 ,  51 ,  52 ,  57 ]. Although, there are viral strains 
that can peak earlier, it is our opinion that any mortality among the mice prior to day 
3 should be examined by assaying the lungs in a tissue culture based plaque assay.  
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    6.3      Experimental Techniques for Infecting Mice 
with Influenza Virus  

  Influenza virus has been used to infect mice via several routes of entry including 
intracerebral inoculation [ 42 ,  47 ], discussion will be limited to the most common 
techniques: intranasal instillation and aerosol exposure.  

   Intranasal  instillation: Mice should be lightly anesthetized with Metofane 
anesthesia (Mallinckrodt Veterinarian) or another non-ether, non-chloroform based 
anesthetic agent. Light anesthesia should induce a state where the animal is not in 
distress and is mildly hyperpneic. The animal should be firmly held behind its neck 
and in one hand between the thumb and forefinger, the tail can be held by the inves-
tigator’s fifth digit. With the animal held supine, 50 μl of live virus or phosphate-
buffered saline can be instilled intranasally by pipette or syringe [ 17 ,  24 ,  51 ,  52 ]. A 
range of viral dilutions is recommended.  

   Aerosol  exposure: Shulman and Kilbourne described a technique [ 24 ,  50 – 52 ] 
utilizing a retired autoclave. By the use of air pumps the interior of the autoclave 
could be maintained at a steady negative pressure relative to the room. Dilutions of 
virus could be aerosolized under positive pressure via an air pump. The aerosolizing 
devices are delicate, fragile and expensive, which in part contributes to the popular-
ity of intranasal instillation. No mouse-to-mouse transmission has been observed 
[ 24 ,  51 ,  52 ].  

    6.4      Measurement of Endpoints of Infection  

  When initiating an experimental protocol decisions regarding how endpoint of 
infection will be measured should be made  a priori.  The options are: measure virus 
pulmonary titers in plaque assay [ 32 ] or by PCR [ 57 ] at specific time points; calcu-
lation of mouse infectious dose 50 (MID 

50
 ), monitor mortality/lethality to calculate 

a lethal dose 50 (LD 
50

 ) [ 9 ,  50 ]; measure weight loss and recovery [ 27 ]. Serologic 
studies (e.g., antibody titers to HA, NA or other viral antigens) and cellular immu-
nologic studies (e.g., B-cell, T-helper and CTL assays) can be easily included 
[ 28 – 30 ]. Briefly, these assays are: 

    1.       Mouse Infectious dose (MID)  is a measure of the amount of infectious virus 
in a given sample, not the number of virions but a functional assay of infec-
tious capacity. MID 

50
   is the calculated dilution of a viral preparation that is 

expected to infect 50% of the mice inoculated. Usually stated as units of MID 
50

   
i.e., 1 MID 

50
 ; 100 MID 

50
 . For example if a 10 -5  dilution infected 50% of the mice 

exposed then the MID 
50

   is 10 5 ; 100 MID 
50

   would be a 10 -3  dilution. The same 
concept is true for EID 

50 
  and TCID 

50
 .  

     2.       Mortality-lethality   is a measure of how many and when animals die post expo-
sure. A   Lethal dose   (LD) is often used, as with MID, a lethal dose 50 (LD 

50
 ), 
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a dilution of virus inducing an infection lethal to 50% of the animals exposed 
can be calculated. Relative risk (RR) and odds ratios (OR) can be extracted from 
these data.  

     3.       Mean pulmonary titer (mPVT)   can be directly measured in hemagglutination 
assay of lung preparation, or to increase sensitivity, HA assay can performed 
after lung preparations are inoculated into chicken eggs. Tissue culture assays 
allow calculation of   viral plaque forming units (PFU) . In monolayer cell cul-
tures maintained under agar, it can be shown that influenza-virus induced plaques 
usually are initiated by single virions [31]. Therefore, counting the number of 
plaques in a given dilution of lung preparation provides an estimation of the 
pulmonary viral load [ 7 ].  

     4.       Pulmonary lesion/plaques   lungs can be removed from infected animals on day 
7 post exposure and the distinct plum colored pulmonary lesions induced by 
influenza cytopathology can be measured and counted.  

     5.       Weight gain/loss   is a sensitive measure of illness in the murine model for influ-
enza. Infected animals become less active, eat and drink less in the context of 
increased metabolic demands of an acute illness. Daily weighing accurately 
detects weight loss and recovery. Weight loss and lack of recovery are good pre-
dictors of mortality [ 27 ].      

     7      Conclusion  

  The murine model for the study of influenza is well established. Although the mouse 
is not an exact mimic of avian, equine or human influenza knowledge of the systems 
experimental strengths and flaws can produce valid and reliable data.  
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                              Abstract:       Immunosenescence or dysregulation of the immune system may accel-
erate the aging process and shorten the lifespan in animals. Calorie restriction, a 
well-known nutritional intervention for longevity in laboratory animals, retards 
immunosenescence and modulates the immunosystem. These effects of CR could 
contribute partly to extending the lifespan. A transgenic (Tg) dwarf rat strain, in 
which the growth hormone (GH) axis is selectively suppressed, lived longer and 
exhibited several phenotypes similar to those in CR rats, suggesting an important 
role for the GH axis in the effect of CR. Here, we describe the longevity, pathology, 
thymic and splenic lymphocyte subpopulations and response to endotoxin in Tg rats 
in comparison with CR rats. The findings support the importance of the GH axis 
in the effect of CR on the immune system and, in particular, longevity. The Tg rats 
could be a useful tool to better understand the molecular mechanisms underlying 
the antiaging effect of CR.  

A Transgenic Dwarf Rat Strain as a Tool for 
the Study of Immunosenescence in Aging Rats 
and the Effect of Calorie Restriction
Isao Shimokawa, Masanori Utsuyama, Toshimitsu Komatsu, 
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        1      Introduction  

  Innate and acquired immunity is important for animals not only to protect against 
infection of microorganisms but also to inhibit a number of diseases including cancers, 
which are prevalent in aged animals. The immune system is, however, a ‘double-edged 
sword’ as the inflammatory hypothesis of aging presumes [1]. Aging-related dysregu-
lation of the immune system could accelerate the aging process and shorten the lifespan 
of animals by activating proinflammatory processes that lead to excess generation of 
reactive oxygen and nitrogen species that potentially injure cellular components.  

  Restriction of food intake with supplying essential nutrients for survival in labo-
ratory animals, referred to as calorie restriction (CR), reduces morbidity and mor-
tality [2]. This effect has been called ‘anti-aging’ because many laboratories also 
confirmed retardation or inhibition of the pathophysiological aging processes by 
CR, an effect first reported by McCay et al [3]. Although proper modulation of the 
immune system could be one of the main mechanisms by which CR affects aging 
and longevity in animals, our knowledge is incomplete.  

  Another line of studies in the biomedical gerontology have found that a single 
gene, if spontaneously mutated or genetically engineered, could prolong the lifespan 
of organisms. Although this evidence was initially limited to invertebrates, over 10 
genes are now reported in laboratory rodents (Fig. 1). Many of these longevity genes 
are clustered into the signaling pathway of GH and subsequently insulin-like growth 
factor (IGF)-1 or insulin. Attenuation of these signaling pathways favors longevity. 
The GH-IGF-1/insulin pathway is important for understanding the mechanism under-
lying the effect of CR, because CR is also known to reduce plasma levels of IGF-1 and 
insulin in laboratory animals [4, 5]. Because GH and IGF-1 are known to modulate the 
immune system [6], we may hypothesize that CR exhibits the antiaging effect through 
suppression of the GH-IGF-1/insulin axis and thus modulating immune system.  

  In this study, we describe some traits of the transgenic dwarf (Tg) rat strain 
that we established as an aging research model [7, 8], in comparison with CR rats. 
Published data have indicated that Tg rats fed ad libitum had phenotypes similar 
to wild-type CR rats for body weight, food intake, fat content, glucose tolerance, 
insulin sensitivity, and adiopokines such as adiponectin and leptin [8-10]. Although, 
at present, the immunological findings of Tg rats are limited, this rat model could 
provide knowledge on the relevance of immunosenecence to aging and longevity. 
Similarily, data on immunosenescence in other longevity models are limited and, 
thus, future analyses of the immune system in these models are needed to explore 
the role for each gene or gene product in immunosenescence and aging.  

    2      Animal Husbandry and General Data  

   2.1      Transgenic Dwarf Rats and Husbandy  

  The Tg rats, with a genetic background of Jcl:Wistar (Japan Clea, Inc., Tokyo, 
Japan), were produced from founders created by introducing fusion genes into rat 
embryos [11]. The transgene consisted of four copies of thyroid hormone response 
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elements, rat GH promoter, and antisense cDNA sequence for rat GH. The rat GH 
antisense gene was expressed in the pituitary gland of Tg rats as early as 3 weeks 
of age. Reverse transcription PCR analyses in Tg rats at 6 months of age confirmed 
that antisense GH-mRNA was expressed in the pituitary gland, spleen, and thymus, 
but not in the lungs, liver, heart, kidneys, and testis [7].  

  F1 hybrid rats were also generated at our laboratory animal center by mating 
female W rats with male Tg rats to moderate the reduced level of suppression of 
the GH-IGF-1 axis; the animals were referred to as tg/tg, tg/–, and –/– regarding the 
presence of the transgene.  

  At 4 weeks of age, weanling male rats were transferred to a barrier facil-
ity, housed separately, and maintained under specific-pathogen-free condi-
tions. The animal husbandry is reported in detail elsewhere [7, 8]. Briefly, rats 
were provided a standard diet and tap water throughout the experiment (the 
AL group). The CR regimen in each rat group was initiated at 6 weeks of age. 
Rats in the CR group were provided 30% less food of the AL group by feeding 
them with two portions of food every other day 30 min before the lights were 
turned off.  

Fig. 1 Longevity genes in rodents. Genes that extend the lifespan of mice or rats, if spontane-
ously mutated or genetically engineered, are listed. The genes can be classified into three catego-
ries; genes that are associated with the GH-IGF-1/ insulin signaling pathway, redox regulation 
and other genes, although these categories are not mutually exclusive.  Prop-1  (spontaneously 
mutated mice for paired like homeodomain factor 1 gene; [15]):  Pit-1  (spontaneously mutated 
mice for POU domain, class 1, transcription factor 1 gene; [32]:  p66Shc  (knockout mice of 
src homology 2 domain-containing transforming protein C1 gene; [22]:  Ghrhr  (spontaneously 
mutated mice for growth hormone releasing hormone receptor gene; [32]:  GHR  (knockout mice 
for growth hormone (GH) receptor gene; [16]:  GH  (over-expression rats for antisense GH gene; 
[7]:  igf1r  (knockdown mice for insulin-like growth factor I receptor gene: [23]:  Insr  (mice for 
adipocyte-specific disruption of the insulin receptor gene; [33]):  Txn  (Overexpression mice for 
human thioredoxin gene: [34]):  Cat  (Mitochondria-specific overexpression mice for human cata-
lase gene; [35]):  Plau  (brain-specific over-expression mice for urokinase type of plasminogen 
activator: [36]):  Npy  (overexpression rats for neuropeptide Y gene; [37]):  Cebpb  (knock-in mice 
for CCAAT/enhancer binding protein (C/EBP) beta gene; [38]):  Kl  (overexpression mice for 
klotho gene; [39]): Irs2 (whole body or brain-specific knockout mice for insulin receptor substrate 
2 gene; [40]):  Surf1  (knockout mice for surfeit gene 1; [41]) 
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     2.2      Characteristics of Tg and CR Rats at 6-Months of Age  

  The body weight and food intake in the AL condition decreased comparatively in 
tg/– and tg/tg rats, gene-dose dependently (Table 1). Following the 30% CR regi-
men for each AL group, the CR group showed 30~40% reduction in the body weight 
compared with the respective AL group. It should be noted that both the body weight 
and food intake in (tg/–)-AL rats were similar to those in (–/–)-CR rats for the first 
24 months in the lifespan study [8].  

  Blood glucose levels under non-fasting conditions were slightly reduced in 
(tg/–)-AL and (tg/tg)-AL rats, while not significantly different between (tg/–)-AL 
and (tg/tg)-AL rats. CR also reduced the blood glucose level. The serum insulin 
level was significantly lower in (tg/–)-AL and (tg/tg)-AL. CR in (–/–) rats led to a 
significant reduction in the insulin level; there was no additional decrease by CR in 
(tg/–) and (tg/tg) rats.  

  The plasma IGF-1 concentration, an index for the degree of suppression of GH-
IGF-1 signaling, decreased by 40% in (tg/–)-AL rats and by 75% in (tg/tg)-AL rats 
compared with (–/–)-AL rats. CR in each rat group further decreased the IGF-1 level; 
the level in (–/–)-CR rats was reduced to 80% of the level of (–/–)-AL rats. Thus the 
level was slightly lower in (tg/–)-AL rats than (–/–)-CR rats. The pituitary GH-mRNA 
level was also reduced by 20 and 66% in (–/–)-CR and (tg/–)-AL rats, respectively.  

   2.3      Longevity and Pathology  

  The lifespan at the 25th percentile point was increased by 10 and 11% in (tg/–)-AL 
and (–/–)-CR rats, as compared to (–/–)-AL rats (Figure 2); however, it was reduced 

(-/-) (tg/-) (tg/tg)
AL CR AL CR AL CR

Body weight (g) 478.9 
(34.1)

342.0 
(16.9)*

316.6 
(32.1)#

226.2 
(15.4)*/#

199.1 
(8.9)#

124.4 
(10.5)*/#

Food intake (g/day) 21.6 (3.5) 15.9 17.0 (2.2)# 11.7 11.2 (1.3)# 7.9
Blood glucose 

(mg/dl)
126 (34) 112 (12) 106 (18) 90 (16) 106 (17) n/a

Serum insulin 
(ng/ml)

102 (49) 15 (10)* 22 (18)# 20 (26) 21 (19)# n/a

Plasma IGF-1 
(ng/ml)

1094 (119) 864 (79) * 627 (90) # 346 (40)*/# 266 (23)# 170 (11)*/#

Plasma GH (ng/ml) 157.3 (55.0) 178.3 (26.7) 172.1 (44.1) 129.6 (35.9) 142.8 
(33.9)

126.0 
(46.0)

Pituitary 
GH-mRNA

1.00 (0.25) 0.81 (0.15) 0.34 (0.10)# n/a n/a n/a

Table 1 Characteristics of Tg and CR rats at 6 months of age

Values represent the mean (standard deviation) of 3–6 rats. (–/–); wild type rats. (tg/–); transgenic 
hemizygotic rats. (tg/tg); transgenic homozygotic rats. AL; ad libitum feeding rats. CR; 30% calo-
rie-restricted rats. * p < 0.05 versus (vs) group AL in each rat group. #, p < 0.05 vs (–/–) of each 
diet group.
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by 9% in (tg/tg)-AL rats. Postmortem examination indicated that 50% of (tg/tg)-AL 
rats died of leukemia (Table 2); in contrast, only a few (tg/–) and (–/–) rats suffered 
from the disease. Furthermore, pituitary adenoma was less frequently in the cause 
of death in (tg/tg) rats. Our previous analysis indicated that moderate suppression 
of GH increased lifespan mostly due to the delay or inhibition of non-neoplastic 
causes; the effect on neoplastic causes was minor [7, 12].  

  Most of the rats that were considered to die of leukemia showed hepatosplenom-
egaly. Microscopic analysis and immunohistochemistry with an antibody for NK 
cells indicated that most of the cases were mononuclear large cell leukemia, which 
is frequently observed in inbread F344/N rats [13, 14]. Because this type of leuke-
mia is not commonly observed in outbread Wistar rats and that the tg/tg rats were 
expanded from a pair of founder Tg rats, it is likely that this specific type of leuke-
mia become tangible during the inbreeding process in (tg/tg) rats. Conditional sur-
vival analysis was performed to determine if the leukemic death was eliminated 
(Figure 2). However, the survival did not exceed that in (–/–)-AL rats.  

Fig. 2 Lifespan of transgenic dwarf rats: the effect of calorie restriction. Each bar represents the 
age (weeks) of 25th percentile survival point of lifespan (+ standard error). –/–, wild type rats. 
tg/–, hemizygotes for the transgene. tg/tg, homozygotes for the transgene. AL, a group of rats fed 
ad libitum. CR, 30% calorie-restricted rats. N = 30 for each group at the start of the study, with 
the exception of the (tg/tg)-AL group (N = 55) and (tg/tg)-CR group (N = 35). Survival data is 
described in more detail elsewhere [7, 8], except for the (tg/tg)-CR group. * Conditional survival 
if leukemia was excluded from the causes of death, i.e., leukemic death was considered to be the 
same censorship as random sacrifice of rats. The details of the procedure for the conditional sur-
vival are described elsewhere [42]
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*

(–/–) (tg/–) (tg/tg)
AL CR AL CR AL CR

Total 30 26 30 30 39 17
Neoplastic (subtotal) 15 18 22 14 37* 11
Leukemia/lymphoma 0 1 2 3 21# 8
Pituitary adenoma 5 8 11 2# 1 0
Others 10 9 9 9 15 3
Non-neoplastic (subtotal) 15 8 8 16 2 6

Table 2 Probable causes of death in Tg and CR rats

Data represent the number of rats. The proportion of each category or disease was analyzed by χ2 
test or Fisher’s exact test. * p < 0.05 versus (–/–)-AL rats. # p < 0.05 versus (tg/–)-AL rats.



136 I. Shimokawa et al.

  Thus, our data in dwarf rats suggest that moderate (but not severe) suppression of 
GH contributes to lifespan extension. This finding contrasts with those in long-lived 
mice whose GH signaling is almost deficient [15, 16].  

  CR increased the lifespan in all rat groups. Although CR decreased the plasma 
IGF-1 level in each rat group compared with the corresponding AL group, the 
reduced IGF-1 level alone is unlikely to contribute to the extended lifespan. As 
described above, the lifespan in (tg/tg)-AL rats was shorter than that in (tg/–)-CR 
rats, even if leukemic death was eliminated, while the plasma IGF-1 level was 
similar between the groups. Therefore, CR could have a GH-IGF-1 independent 
mechanism(s) for lifespan extension.  

     3      Subpopulation of Thymic and Splenic Lymphocytes  

   3.1      Thymic Lymphocyte Subpopulation  

  The weight of the thymus at 6 months of age did not differ significantly between 
rats or between diet groups, when normalized for body weight (Table 3). Flow cyto-
metric analysis of thymocytes prepared from the 6-month-old rats illustrated that 
only double negative (DN; CD4– & CD8–) cells tended to increase in (tg/–) and 
(tg/tg) rats, particularly in (tg/–)-CR rats. However, there was no significant differ-
ence in double positive (DP; CD4+ & CD8+), CD4-single positive (SP4), or CD8-
single positive (SP8) subpopulations among rats or between diet groups. Thus, the 
present data suggest that the suppression of GH or CR does not significantly affect 
the composition of thymocytes at least in the 6-month-old male rats.  

  The present data in Tg rats are in accord with the dwarf mice models in which 
pituitary GH, PRL, TSH are deficient or IGF-1-null mice, or hypophysectomized 
mice demonstrating no statistical difference in thymocyte subsets between the 
hormone-deficient mice and their normal littermates [6]. Neither GH nor IGF-1 
is required for primary lymphopoiesis. However, possible aging-related changes 
in thymic cell subpopulations and functions in Tg rats need to be analyzed in 
future studies.  

    3.2      Splenic Lymphocyte Subpopulation and Mitogenic Response  

  The weights of the spleen did not differ between the rat groups when normalized 
for body weight (Table 4); the normalized weight was reduced by 4–9% by CR. The 
proportion of T-cells (CD3+/CD45R–) did not differ among rat groups, while it was 
slightly increased by CR, particularly in (–/–) rats. The B cell population (CD3–/
CD45R+) was lower in (tg/tg) rats; CR significantly decreased the B cell popula-
tion. Subsequently, the T/B cell ratio did not differ among rat groups, although it 
was increased in the CR group, particularly in (–/–) and (tg/tg) rats. The NK cell 
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(CD3–/NKR+) population and activity were decreased in (tg/tg)-AL rats compared 
with (–/–)-AL rats. The proportion of NK cell but not the activity of NK cells was 
increased in the CR group.  

  The naive T-cell (CD4+, OX22+) population was greatest in the following order; 
(tg/tg), (tg/–), and (–/–) rats. Memory T-cell (CD4+, OX22–) population was slightly 
reduced in (tg/tg) rats. CR also increased the proportion of naive T-cells, particu-
larly in the (–/–) rats.  

  The mitogenic response of splenic cells, examined by the response to phytohe-
magglutinin (PHA), concanavalin (CON) A, and anti-CD3 antibodies did not dif-
fer significantly among groups (Table 5); responses to PHA and ConA tended to 
increase in CR groups.  

  Thus, it can be summarized as follows: 1) that reduction of GH does not affect 
the T and B lymphocyte populations except NK cells, 2) severe suppression of GH 
decreases the cell number and activity of NK cells, 3) CR increases the T-cell frac-
tion and decreases B cells in splenic cells, 4) CR restores the NK cell function 
that was reduced by severe suppression of GH, 5) reduction of GH does not affect 
the proliferative response of splenic lymphocytes to stimulants, while CR tends to 
enhance this response.  

  Although our analysis is limited to 6-month-old rats, our results suggest that CR 
and suppression of GH affect the development of secondary lymphoid organs. The 
aged immune system is characterized by a decrease in T-cell function caused by 
an increase in the fraction of memory T-cells that are less capable of responding to 
mitogens or novel antigen stimulation [17, 18]; in contrast, the number or propor-
tion of naive T-cells declines. Thus, we can speculate that the increased proportion 
of naive T-cells in the CR group and (tg/–)-AL rats is attributable in part to the 
prolonged lifespan. The restored NK cell activity and/or increased T-cell fraction by 
CR in (tg/tg) rats might also contribute to the extended lifespan in short-lived (tg/tg) 
rats, because these innate immune functions have important roles for the prevention 
of cancers [19].  

  Our analysis suggests that CR and moderate GH suppression exert similar ben-
eficial effects on immune function, while severe suppression of GH may produce 
some adverse effects.  

(–/–) (tg/–) (tg/tg)
AL CR AL CR AL CR 2-f ANOVA

Thymus 40.4 (4.4) 47.0 (4.8) 51.5 (6.6) 39.0 (6.6) 43.0 (3.2) 33.3 (1.4)
DN 2.8 (0.4) 3.0 (0.6) 3.2 (0.7) 6.1 

(0.6)*/#
4.5 (1.1) 4.4 (0.6) Genotype effect, 

p = 0.0508 
DP 73.6 (1.5) 75.7 (2.4) 76.4 (2.0) 72.9 (2.4) 76.5 (3.8) 75.2 (1.0)
SP4 20.3 (3.0) 18.1 (1.4) 17.7 (1.5) 18.0 (2.0) 16.2 (2.4) 17.4 (1.3)
SP8 3.3 (0.3) 3.2 (0.5) 2.7 (0.3) 3.0 (0.3) 2.8 (0.5) 3.1 (2.3)

Table 3  Subpopulation of thymocytes in the transgenic and calorie-restricted rats at 6 months 
of age

Values represent the means (standard error) of 5 or 6 rats. Thymus (mg/100g body weight); DN, 
DP, SP4, SP8 (% of total thymocytes). (–/–); wild type rats. (tg/–); transgenic hemizygotic rats. 
(tg/tg); transgenic homozygotic rats. AL; ad libitum feeding rats. CR; 30% calorie-restricted rats. 
* p < 0.05 versus (vs) the AL group in each genotype. # p < 0.05 vs (–/–) in each diet group.
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     4      Response to LPS-induced Inflammatory Challenge  

  CR protects laboratory rodents against a variety of stressors including inflamma-
tory and toxic agents [20]. Many stressors damage cellular components through 
an increase in reactive oxygen and nitrogen species, i.e., oxidative stress, which 
are thought to cause or accelerate aging and diseases. Thus, resistance to stres-
sors could be one of the essential mechanisms underlying the retardation of aging 
and prolonging the lifespan of organisms. Indeed, embryonic or skin fibroblasts 
prepared from long-lived mouse models have been shown to resist oxidative 
stress induced by UV light, hydrogen peroxide, paraquat, or heavy metals [21]. 
Some of the mice models also exhibit higher survival rates after paraquat 
administration [22, 23].  

  We analyzed the acute phase response of 6-month-old Tg and CR rats to lipopol-
ysaccharide (LPS), a component of Gram-negative bacteria that elicits inflamma-
tory processes. LPS initiates a cascade of cytokine mediators, i.e., successive waves 
of increments of the plasma concentrations of tumor necrosis factor (TNF)-α, inter-
leukin (IL)-1, and IL-6 [24]. The initial step of activation of cytokines subsequently 
augments secretion and synthesis of interferon (IFN)-γ, an incremental increase in 
nitric oxide (NO) by induction of iNOS and platelet-activating factor in the plasma, 
and increased synthesis of acute phase reactants. In the activation cascade, mono-
cytes and macrophages are functionally enhanced to eliminate invading bacteria; 
however, these processes also result in endothelial cell injuries, which, in turn 
triggers the coagulation process, and finally lead to hypoperfusion and ischemic 
injuries in peripheral tissues.  

  The procedure of LPS-induced inflammatory challenge was described in 
more detail elsewhere [25]. Briefly, a low dose of LPS (1.6 mg/kg body weight) 
administered intraperitoneally significantly increased the blood AST (aspar-
tate aminotransferase) level, an indicator of tissue injury, at 4 and 8 h in control 

(–/–) (tg/–) (tg/tg)
AL CR AL CR AL CR 2-f ANOVA

PHA 2.69 (0.81) 4.87 (1.62) 4.57 (0.99) 6.11 (1.41) 2.96 (0.71) 6.43 (1.97) CR effect, p = 
0.0285

ConA7.12 (0.4) 8.88 (1.49) 7.01 (0.78) 9.58 (1.15) 6.97 (0.69) 11.02. 
(2.68)

CR effect, p = 
0.0276 

aCD34.63 (0.62) 4.41 (0.72) 5.34 (0.95) 6.21 (0.95) 4.16 (0.66) 6.27 (1.51)
LPS 5.09 (0.45) 5.12 (0.42) 3.88 (0.53) 6.01 (0.83)* 4.40 (0.34) 5.13 (1.26)

Table 5 Proliferative response of splenic cells

Values represent the means (standard error) of 5 or 6 rats. Proliferative response (stimulation 
index) of splenic cells to PHA, ConA, antibody to CD3 (aCD3), and lipopolysaccharide (LPS) 
was evaluated as previously reported {Utsuyama, 1997 #103}.  (–/–); wild type rats. (tg/–); trans-
genic hemizygotic rats. (tg/tg); transgenic homozygotic rats. AL; ad libitum feeding rats. CR; 30% 
calorie-restricted rats. * p < 0.05 versus (vs) the AL group in each genotype.
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(–/–)-AL rats (Fig 3a). CR delayed the incremental increase in blood AST. In (tg/–)-
AL and (tg/tg) rats, there was no significant increase. These findings indicate that 
either moderate or severe suppression of GH diminishes tissue injuries due to LPS 

Fig. 3 (a-e) Response to LPS-induced inflammatory stress in CR and transgenic dwarf rats at 6 
months of age. Values represent means + SE of 3–8 rats. * p < 0.05 versus 0 h in each rat group; 
# p < 0.05 versus (–/–)-AL rats at each time point. Blood or plasma samples were prepared for 
the following enzyme, cytokines, and nitric oxide assays (refer to Tsuchiya T et al [23] for further 
details) a) Blood levels of aspartate aminotransferase (AST), an index of tissue injuries after LPS 
administration. b) Tumor necrosis factor (TNF)-α, c) Interleukin (IL)-6, d) Interferon (IFN)-γ e) 
Nitric oxide (NO)
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challenge. This effect seems to be stronger than that of CR. Since the degree of sup-
pression of the GH-IGF-1 axis, indicated by the plasma concentration of IGF-1, was 
greater in (tg/–)-AL rats than in (–/–)-CR rats, the levels of AST correlated with the 
GH-IGF-1 levels.  

  The blood TNF-α did not differ between (–/–)-AL and (–/–)-CR rats at 1 h (Fig 
3b); however, the TNF-α level at 1 h was low in (tg/–)-AL and (tg/tg)-AL rats. IL-6 
was significantly increased at 4 h and reduced at 8 h (Fig 3c). This level was lower 
in the following order; (tg/tg)-AL, (tg/–)-AL, (–/–)-CR, and (–/–)-AL rats. The peak 
values of plasma INF-γ at 4 h was lower in the following order; (tg/–)-AL, (–/–)-CR, 
and (–/–)-AL rats (data for (tg/tg)-AL rats are not available), the finding was compa-
rable to those of AST and IL-6. The level of NO was gradually increased between 0 
and 8 h (Fig 3d). The level at 8 h was highest in (–/–)-CR rats and similar between 
(–/–)-AL and (tg/–)-AL rats, although the level was lowest in (tg/tg)-AL rats. These 
findings suggest that the suppression of GH attenuates the LPS-induced cytokine 
activating cascade and minimizes tissue injuries, and that CR also diminishes tis-
sue injuries probably, in part, through the same mechanism, because CR modestly 
suppressed the GH-IGF-1 axis. The difference in severity of tissue injuries between 
the rat groups seemed to correlate with the degree of suppression of GH-IGF-1 
axis. CR, however, could affect the LPS-initiated inflammatory cascade and related 
tissue injuries differently, because the NO level at 8 h was significantly higher in 
(–/–)-CR rats than in (–/–)-AL and (tg/–)-AL rats.  

  Previous studies indicate that GH primes phagocytes for an increased production 
of reactive oxygen intermediates [26, 27]. GH potentiates the biological activities 
of entotoxin, i.e., lethality, in the rat [28]. However, IGF-1 did not induce this effect, 
indicating that the enhancement of endotoxin effects by GH is via an IGF-1-inde-
pendent pathway [29]. Priming rats by GH induced a further increased response to 
serum IFN-γ but not TNF-α to subsequent entotoxin challenge, suggesting that INF-
γ rather than TNF-α is likely to be involved in this process [29]. In other words, the 
suppression of GH diminishes the propagation of the inflammatory cascade down-
stream of TNF-α and minimizes tissue injuries. In this context, we can conclude 
that lower levels of GH favors longevity in animals via minimization of activation 
of monocytes and macrophages that are provoked by inflammation at the molecular 
levels during the aging process.  

  The diminution of inflammatory cascade could sometimes be harmful in organ-
isms particularly regarding the elimination of invading bacteria. GH-treated animals 
release more superoxide and TNF-α in response to the appropriate trigger stimuli 
and ingest Listeria monocytogenes better than macrophages from untreated animals 
[30, 31]. GH has also been shown to protect hypopituitary animals from lethal 
Salmonella typhimurium infections [31]. In nature, infectious challenges by micro-
organisms are frequent and, thus, enhanced innate immunity could be beneficial 
to increase survival, even if the enhanced immunity also damages host tissues and 
cells. Therefore, there could be optimal levels of the strength of innate immunity in 
animals to protect infectious agents but minimize host–tissue damage, depending 
on their living conditions.  
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    5      Conclusion  

  If the GH levels in commercially available rats are set as control values, moderate 
suppression of GH favors longevity and exhibits few demerits in the immune sys-
tem. Severe suppression of GH may have some adverse effects on innate immunity, 
e.g., the diminished NK cell activity and the attenuated cytokine activation cascade 
that may decrease survival probability under usual living conditions where animals 
are often exposed to a variety of infection agents. In other words, there could be 
optimal levels for GH to maximize survival of organisms, depending on living con-
ditions. Under SPF conditions in the laboratory, the demerits of severe suppression 
of GH are masked and only the merit, minimization of host-tissue injuries caused 
by the self-defense system, is emphasized.  

  Tg and CR rats exhibited similar trends regarding the selected immune func-
tions, suggesting that the GH signaling could mediate the effect of CR in part. In 
this sense, the Tg rat is an intriguing animal model to better understand the roles 
of the GH axis in the aging process and the anti-aging effect of CR. Because our 
analysis on the immune system in Tg rats is limited, future studies are required to 
further understand the role of immunosenescene in the aging process and the anti-
aging effect of CR.  
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                         Abstract   :    Mathematical modeling of immunosenescence is the new area of 
research emerging at the interface of the immunology, gerontology, and mathemat-
ics. In this paper we outline basic variables important for modeling aging immunity. 
We discuss the role of evolution in shaping pattern of aging in the immune system 
of modern humans. We investigate mathematical models of postnatal changes in the 
population of peripheral T-cells, effects of the antigenic load during development 
on the body growth, and contribution of immunosenescence to the old age increase 
in the risk of death from respiratory infections.  

      Keywords:       Antigenic load    •    aging immunity    •    mortality from infections    •    body 
growth    •    population of T-cells   

     1     Introduction  

  There are two types of mathematical models applied to the life science problems. 
The objectives and methodology used in these models differ substantially. The first 
type of models deals with the problems of analysis and interpretation of the results 
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of a certain experimental study, or a series of such studies. The main objective of 
such modeling is the quantification of sensitivity of the phenomenon to changes in 
various factors. The results of modeling contribute to better understanding the roles 
of factors and mechanisms in the processes under study. The focus of the second 
type of models is systematization of knowledge and data in order to develop sys-
temic view, obtain integral description of the results of heterogeneous experimental 
studies, and check consistency of such description with existing theories. The mod-
els of the second type deal with the description of the phenomenon: they assimilate 
results of different experiments, test their mutual compatibility, and correspondence 
to existing theories. Such models are an effective means of testing accumulated 
knowledge and can be used to predict effects of exposure to external factors on 
functioning of living systems, or changes in characteristics of the organism itself.  

2         Modeling Immunosenescence  

  In this study we will investigate properties of the first type models of aging immu-
nity. Such modeling is a relatively new area of research, emerging at the interface of 
immunology, gerontology, and mathematics. It studies regularities of aging related 
decline in functioning of the components of the immune system, as well as dynamic 
interaction among them during the aging process. To describe such nonlinear multi-
dimensional aging related changes in the immune defense mechanism the dynamic 
mathematical and computer modeling of these phenomena is needed. An important 
step in such modeling is the selection of variables or “units” of the immunose-
nescence. These units suppose to reflect the basic features and processes of aging 
immunity. These variables include: 

    −     The characteristics of the lymphocytes’ aging (telomere length, the ability to 
respond to the antigenic and cytokine signals, intercellular cooperation;  

    −     Population-wide characteristics of lymphocytes and other immune system cells 
(proportion of naïve and memory cells, the proportion of the various lymphocyte 
subpopulations, antigenic repertoire of lymphocytes);  

    −     The characteristics of activity of the immune system (rate of lymphocyte forma-
tion in thymus and the bone marrow, the amount of active parenchyma in the 
lymphoid organs, the rate of lymphoid proliferation processes);  

    −     The characteristics of the state of the organism (frequency and severity of infec-
tious disease, activity of inflammatory process, probability of death and/or 
decrease of reproduction due to the deficiency of immune protection).     

2   .1      The Immune Life Histories  

  Thus, the units of immunosenescence should relate lymphocytes’ characteristics to 
the processes developing in the aging body. These include infection, inflammation, 
tissue and organ aging, fertility and life span. These variables should relate the 
dynamics of lymphocyte populations and characteristics of individual fitness. The 
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age trajectories of these interrelated variables comprise the immune life history 
(McDade 2003). We will consider age-related changes in the: naïve cells concentra-
tion; memory cells concentration; replicative potential of lymphocyte subpopula-
tions; antigen repertoire of lymphocytes; rate of the influx of immune cells from 
the thymus and bone marrow; incidence of infectious and, maybe, cardiovascular 
diseases; individual inflammatory status; antigenic load. All values, except the latter 
are characteristics of the immune system. The antigenic load is a measure of pressure 
of external and internal conditions at the immune system.  

2.1.1    Antigenic Load  

  We define the antigenic load as the rate of the inflow of the alien, or modified anti-
gens into the lymphoid tissue. The activity of the immune system and its rate of 
aging depend significantly on the level of antigenic load, because it affects the rate 
of division of the lymphocytes and their mortality risk. The antigenic load consists 
of the two components: alien antigens and modified self-antigens. Alien antigens 
may arrive from the external environment and reproducing in the host. They may 
also be located in the host and reproducing in certain circumstances.  

  The rate of inflow of infectious and noninfectious antigens from the environment 
must be proportional to the consumption of nutrients and the oxygen. Because such 
consumption is directly connected to the metabolic rate, it is reasonable to hypoth-
esize that the level of external antigenic load is proportional to the metabolic rate.  

  A large proportion of modified self-antigens are formed due to action of free radi-
cals; the rate of their formation is proportional to the metabolic rate as well. So we will 
assume that the rate of generation of self-antigens is proportional to the metabolic rate. 
Therefore, the total antigenic load largely depends on the intensity of metabolism.  

  The level of infectious component of the antigenic load is strongly influenced 
by the two factors, weakly dependent on the metabolic rate: the density of infec-
tious microorganisms in the environment and the effectiveness of the immunity. 
Obviously, the high density of microorganisms in the environment increases the 
frequency of infections and, hence, the antigenic load also increases. On the other 
hand, in the presence of many memory cells, the infectious antigenic load will 
loosely depend on the microbial density or metabolic rate.  

2.1.2          Antigenic Load and Immunosenescence  

  The intensity of metabolism declines with age. The effectiveness of the immune 
protection also varies with age: the frequency of infectious diseases is highest in 
the childhood, lowest in the intermediate age and increases in the old ages. Specific 
characteristics of the antigenic load affect the development of the immune system, 
its aging rate, and, hence, individual fitness. Consequently, many properties of the 
aging immunity, observed in modern humans, are formed by evolution during many 
thousands of years in the past. The principal objectives of the immune system are to 
ensure survival to reproductive age and provide maximum protection against infec-
tions during the reproductive period.  
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  An important mechanism for ensuring effective protection involves adaptive immu-
nity based on production of the immune memory cells. The more memory cell is 
formed after the primary immune response, and the longer they live; the more protected 
is the body from secondary infections of this type. Since the resources of the immune 
system are limited, there is a competition between the naïve cells and memory cells. 
The memory cells provide effective protection from a few known pathogens in current 
and future situations. The naïve cells are supposed to provide future protection from all 
possible pathogens. If the life expectancy is large and emergence of the new diseases is 
a likely scenario, it is beneficial to maintain more naïve cells and have active thymus, 
with less effective protection against endemic pathogens. In case of short life and low 
rate of emergence of the new diseases it is more profitable for an organism to produce 
less naïve lymphocytes and make higher investment to the memory cells. Thus, the 
fundamental property of the immunosenescence is its evolutionary coadaptation with 
antigenic load and other life history characteristics of the aging human organisms.  

  Figure 1 shows a hypothetical dynamics of antigenic load during life of primitive 
and modern man. It is important to understand how the immune system, evolution-
ary adjusted to the living conditions of primitive man, adapts to current environmen-
tal and living conditions. The main difference between the curves 1 and 2 involves 
significant reduction of the infectious burden, especially at the beginning of life and 
an increase of life expectancy in modern humans 1.        

2.2           Scenarios of Immunosenescence  

  The differences in the current and prehistoric antigenic loads affect process of 
immunosenescence. The age related changes in the immune system of a primitive human 
were formed by high infectious load in the first years of life, where the immunity learn-
ing period is included in the child’s growth interval. Short life and the relative isolation 

1 When creating the Fig. 1 we have assumed that the antigenic load of the modern humans is 
approximately equal to load by their self-modified antigens, and the antigenic load of the primitive 
humans was about an order of magnitude larger than of the modern ones.  

Fig. 1 Hypothetical 
scheme of life-long antigenic 
load dynamics for primitive 
( —), and contemporary man 
(— —), AL—antigenic load 
(in arbitrary units)
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from the new pathogens defined the replacement rate of the naïve cells by the memory 
cells, the rate of reduction of the naive lymphocytes production, the rate of reduction of 
replicative capacity of the memory cells with age. An exposure to the antigens during 
the growth period ensured training of the immunity for survivors, efficient use of the 
body resources and protection against antigens during the reproductive period.  

  Note that the high infant mortality rate observed in the past may indicate substan-
tial variability in the antigenic load among survivors. Such scenario of developing 
immunity can be called  forced immunomaturation . The essence of this scenario 
is the accelerated maturation and learning of the immune system. Reducing the 
antigenic load at this scenario improves the immunity condition in middle age. In 
modern conditions external antigenic load has much less impact on the aging immu-
nity. The age decline of immunity is determined by the changes in the stem cell 
properties, lack of naive cells, a narrow repertoire of the memory cells, and reduced 
replicative ability of the memory cells. Thus, in modern conditions immunosenes-
cence is largely defined by traits selected during the evolution of immunity (early 
decline of naive cell production, reduction of their replicative ability, etc.) as well as 
by traits depending on general properties of aging body (the aging of stem cell pool, 
increase of the self-modified antigen generation rate, etc.). Such scenario of age 
related changes in immunity can be called  inertial immunosenescence.  An impor-
tant feature of this aging scenario is that the decline in the antigenic load, or slowing 
down of thymus involution has little impact on immunity in the older ages.  

  In this case in order to improve the immune function a combined influence on the 
immune system such as the rejuvenation of stem cells, thymus function enhancement, 
accelerated elimination of the old memory and naive cells, and accelerated immu-
nity learning through vaccination is required. This procedure will be accompanied 
by a temporary decrease in the immune protection. Therefore, this process can not be 
conducted on the background of a strong decline in immunity, the optimal age is the 
border between medium and older age.In fact this is a repetition of immunity devel-
opment and learning period in its reduced form. It can be assumed that in some indi-
viduals such events can occur as a result of natural events (starvation, severe stress, 
etc.).Hypothetical version of immune life history with such periodic recovering of the 
immune system can be called the  reciprocating immunorejuvenation  scenario.  

2.3          Constraints of Adaptation  

  The adaptation responses develop in the presence of explicit or implicit limita-
tions on the rate and the magnitude of physiological processes involved in such 
adaptations. For example, the total number of immune system cells should not 
change significantly during the adulthood. This restriction results in diminishing 
the memory cell life time, when the production rate of the naive cells by the thymus 
increases. An example of implicit limitation of the immune system adaptation is the 
need to coordinate the growth of the body size, growth of the immune system mass, 
and the rate of the immunity learning. If the new antigens presentation will delay an 
increase in the body mass the homeostatic proliferation of lymphocytes may lead to 
undesirable distortions in the immune cells’ repertoire.  
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  Mathematical modeling is a convenient method for studying such problems. 
Below we will consider examples of the use of mathematical models to study aging 
related changes in the immune system. They include postnatal changes in the popu-
lation of peripheral T-cells, effects of the antigenic load during development on the 
body growth, and contribution of immunosenescence to the old age increase in the 
risk of death from respiratory infections.  

  First we investigate how the basic immunosenescence processes such as thymus 
decay, shortening of telomeres in the newly forming naive T-lymphocytes and shrink-
ing of the peripheral lymphoid tissues interact depending on the antigenic load.  

  For description of these processes, we propose a mathematical model (1). It 
describes the balance of influx and usage of T-cells and their replicative potential. 
The model equations are based on two main assumptions:  

  •  the T-lymphocyte concentration in the peripheral lymphoid tissue must be main-
tained constant;  

  •  the naive cells are superior to the memory cells in the competition for free space 
in the lymphoid tissue.  

  Based on these assumptions, we construct a model describing the age dynamics 
of the following variables:  

   N   *   (t),  rate of naive T-cells influx in IPLT at the age t (cell/day);  
   V(t) , volume of IPLT at the age t, (ml);  
   P   *   (t) , length of telomere repeats in naive T-cells produced at the age t, (bp/cell);  
   N(t),  concentration of nai’ve T-cells in IPLT at the age t, (cell/ml);  
   M(t) , concentration of memory T-cells in IPLT at the age of t (cell/ml);  
   P  N  (t) , average length of telomere repeats in naive T-cell at the age t (bp/cell);  
   P  M  (t) , average length of telomere repeats in memory T-cell at thew age t (bp/cell);  
  Function  L(t)  describes total antigenic load at the age t (g/day).  

  The mathematical model of age-related changes in peripheral T-cell population 
is represented by the system of the following seven ordinary differential equations:  
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          For simplicity, we assume that the antigenic load remains constant throughout 
life, but the production rate of naive T-lymphocytes and the volume of peripheral 
lymphoid tissues decrease with constant relative rate. However, developed model is 
flexible enough to investigate more complicated scenarios.  

  Numerical experiments with this model revealed some interesting dependencies: 
the lengthy production of naive T-lymphocytes strengthens the immune protec-
tion in advanced ages, but relatively weakens immunity in middle age because it 
reduces maintenance resources and duration of immune memory. The calculations 
also showed that an important factor in ensuring the immune protection in advanced 
ages is slowing of the stem cell aging.  

  These results allowed for addressing the question on how the body growth proc-
esses affect the aging of immunity.  

3       Modeling Postnatal Changes in the Population 
of Peripheral T-cells  

  The most apparent changes in the population of peripheral T-cells in humans 
occur in childhood (Rufer et al. 1999; Zeichner et al. 1999), when the relative 
rate of body growth and the infection morbidity are maximal. These changes are 
accompanied by the early onset of thymus atrophy—a primary lymphoid organ, 
in which the development of bone marrow-derived progenitors into mature T-cells 
takes place (Steinmann et al. 1985) (Fig. 2). Such atrophy substantially restricts 
the ability of adults to produce naive T-cells, which, in turn, affects the strength 
and efficiency of adaptive immune response. An expansion of intact peripheral 
lymphoid tissue (IPLT) at early age by memory cells affects the immune sys-
tem learning capacity at later ages. Therefore, when studying the immune system 
aging, it is important to take the conditions and regularities of the development of 
this system early in life into account.  

Fig. 2 Involution of thymus (Steinmann et al. 1985). After the age of 1, the volume of thymus 
remains relatively constant. The division of thymic precursor T-cells takes place primarily in corti-
cal tissue
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  3    .1     The Extended Model  

  We address these issues using the extended mathematical model of age-related 
changes in population of peripheral T-cells suggested by Romanyukha and Yashin 
(2003). The extended model adds one equation on age-related changes in body mass 
to the system of equations specified in (Romanyukha and Yashin 2003), and exploits 
the new fundamental assumption that the value of antigenic load is proportional to 
the intensity of basal metabolism. The resulting model allows for describing devel-
opment of adaptive immunity during all postnatal life, including childhood. The 
dependence of basal metabolism on body mass is described using the Kleiber’s 3/4 
power scaling law (Kleiber 1932; West, Brown 2005).  

  Taking into account the above considerations, the mathematical model of age-
related changes in population of peripheral T-cells can be written in the form:  

  

dN
dt

k N

dN
dt

N
V

L
V

N N dV
dt

N
V

dM
dt

L
V

N L
V

M

T

N

*
*

*

,

,

=−

= − − −

= +

α μ

ρ α ρ α

1

1 1 2 2 ++ − − −

=− +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

μM

P
P

N

C N M dV
dt

M
V

dP
dt

k
m

dm
dt

k P

dP
dt

( ) ,

,

*

*
*

== −

= − − − +

=

( ) ,

( ) ( ) ,

*
*

P P N
NV

dP
dt

P P L
V

N
M

L
V

dV
dt

N

M
N M N Mρ α λ ρ α λ

α

1 1 2 21

33

4
3 4

L
V

dm
dt

k V

dm
dt

m k m

V

m

−

= −

,

./α
 (2)

        Here the variable  t  corresponds to individual’s age;  N  *  (t)  is the rate of naive T-cells 
influx from thymus into IPLT;  N ( t ) is the concentration of naive T-cells in the IPLT; 
 M ( t ) is the concentration of the memory T-cells in the IPLT;  P  *  (t)  is the length of telom-
eres in naive T-cells leaving thymus at the age  t ;  P  

N
   (t)  is the length of telomeres in the 

naive T-cells;  P  
M
   (t)  is the length of telomeres in the memory T cells,  V ( t ) is the volume 

of the IPLT;  m ( t ) is the body mass. Rapid telomere shortening in the stem cells during 
the first years of life entails similar changes in telomeres’ length of the newly pro-
duced naive T-cells in the thymus (Rufer et al. 1999). We assume that the correspond-
ing rate is proportional to the relative increase in the body mass. So, the rate parameter 
in the equation for  P  *  can be written as a function of age: k t k dm dt m kP P P( ) ( / ) /= +
where  k  

P
  is taken from the original model of Romanyukha and Yashin (2003). We 

assume also that the rate of the early IPLT expansion is proportional to specific anti-
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genic load ( L / V ) and the rate of body mass change. Initial conditions correspond to 
the age of birth:  
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        The sequence of model parameters adjustment is shown in Fig. 3 Using this 
scheme, we constructed initial estimates of model parameters (Table 1).  

Fig. 3 The sequence of the model parameters 
adjustment

V

P* PN

N

PM

M

m

N*

Parameter Physical meaning Dimension Value

α
1

Rate constant of naive T-cells stimulation ml/g 1.5×104

α
2

Rate constant of memory T-cells stimulation ml/g 1.5×104

α
3

Rate constant of the intact peripheral lymphoid tissue (IPLT) 
growth

ml2×day/g 3×107

α
4

Rate constant of body mass growth g1/4/day 2.5×10−2

α
5

Parameter which relates antigen load and basal metabolic rate g1/4/day 2.8×10−10

μ
N

Rate constant of natural death rate for naive T-cells 1/day 1.3×10−4

μ
M

Rate constant of competitive death (or homeostatic prolifera-
tion) for memory T-cells

1/day 0.07

α
1

Number of memory T-cells produced by one naïve cell — 100
α

2
Number of memory T-cells produced by one memory cell — 1.1

λ
N

Length of telomere repeats lost during transformation of naïve 
T-cells to memory cell

base pairs 
(bp)

1400

λ
M

Length of telomere repeats lost during self-replication of 
memory cells

bp 500

C* Low limit for normal concentration of memory T-cells in intact 
lymphoid tissue

cell/ml 2.5×109

k
T

Rate of diminishing of naïve T-cells production with age 1/day 1.1×10−4

k
V

Relative rate of reduction of the IPLT volume with age 1/day 2.7×10−5

kp Relative rate of the telomere repeats reduction in the progenitor 
of naïve cells

bp/day 1×10−5

k
P

Relative rate of accelerated telomere shortening in the  progeni-
tor of naïve T-cells in early childhood

bp/day 0.07

k
m

Rate parameter in the equation for body mass 1/day 1.5×10−3

N*
0

Rate of naive T-cells release from thymus at birth cell/day 8×108

N 0 Concentration of naïve T-cells in the IPLT at birth cell/ml 2.5×109

M 0 Concentration of memory T-cells in the IPLT at birth cell/ml 2.5×107

P*
0

Average length of telomeres in naive T-cells leaving thymus at 
birth

bp 10370

P 0
N

Average length of telomeres in naive T-cells in the IPLT at birth bp 10370
P 0

M
Average length of telomeres in memory T-cells at birth bp 8970

V
0

Volume of intact lymphoid tissue at birth ml 150
m

0
 Body mass at birth  g  3500 

   Table 1      Initial parameters’ estimates and initial conditions for simulation of age related changes 
in population of peripheral T-cells    



154 A. A. Romanyukha et al.

  3.2          Parameters’ Estimation  

  The level of agreement between the model and data was characterized by the value 
of the least-squares function for the log-transformed data and model solutions.  
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        Here, α is the vector of model parameters, x i (t 
j
 ,α) is the value of the  i  th com-

ponent of model solution at age  t  j , and   Xj
i   is the corresponding data. The solution 

of the constrained minimization problem of the function  F (α) obtained on a subset 
of model parameters is shown as dotted lines on Fig. 4. It was obtained using dif-
ferential evolution (DE) algorithm (Storn, Price 1997). The refined parameters are 
shown in Table 2. One can see from Fig. 4 that the model satisfactorily describes 
the data on age-related changes in T-cell populations at the entire interval of aging 
except for the initial age interval.  

      During the first 6 months of life, the immune defense is provided mainly by 
maternal antibodies though it was shown recently that the mature T-cell immune 
response against viral and macroparasitic infections may occur even in the prenatal 
conditions (King et al. 2002; Marchant et al. 2003; Hazenberg et al. 2004). Along 
with an increase in the volume of thymus, the total number of peripheral T-cells and 
the volume of the IPLT grow rapidly. Between ages of 0.5 and 6 years the number 
of lymphocytes in the body remains relatively stable and then increases, approach-
ing a maximum at the age of 20 years (Valentin 2002). At the initial age interval a 
rapid decline in the length of telomeres of the newly produced T-cells in the thymus 
takes place (Rufer et al. 1999). These data were not fit well by the model (Fig. 4). In 
order to investigate the dynamics of relative antigen load and also of naïve T-cells 
division, we considered a refined model using explicit log-linear functions for  N* , 
 P   *   and  V  at the corresponding initial age intervals.  

Table 2 The results of sequential parameters’ estimation for modeling age related changes in 
population of peripheral T-cells. Permissible boundaries for the model parameters are shown as 
XVmin and XVmax. The values of the residual function F are shown in the last row

Parameter XVmin XVmax Initial estimate Refined estimate

1 2 3

N*
0

4×108 109 8×108 8.34×108   
k

T
8×10−5 2×10−4 1.1×10−4 1.06×10−4   

α
4

0.01 0.04 0.025  0.023  
k

P
5×10−5 2×10−5 10−5  1.3×10−5  

k
P

0.01 0.1 0.07  0.06  
α

3
107 5×107 3×107  2.8×107  

α
1

5×103 5×104 1.5×104   105

μ
N

10−4 10−2 1.3×10−4   5×10−5

ρ
1

10 1000 100   2000
ρ

2
1 100 1.1   324

μ
M

0.001 0.1 0.07   8.7
F    0.32 0.28 0.26 0.25 
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  The solution of the refined model is shown in Fig. 4 as solid lines. Because of 
the absence of parameters in the equation for  P  

N
 , it is interesting to see that the good 

agreement between  P   *   and the data turned out to be insufficient for the precise 
description of the telomeres’ length in the naïve T-cells ( P  

N
 ) early in life. One pos-

sible explanation involves the effect of the naive T-cells’  homeostatic proliferation  
(Unutmaz et al. 1994). Such proliferation results in increased telomere shortening 
in the naive T-cells as compared with the rate induced by telomere shortage in the 
stem and/or precursor T-cells, and, hence, can be accounted for in the equation 
for P 

N
 . One can see from the Fig. 4 that the rate of homeostatic proliferation of 

the naive T-cells is comparable with the rate of their production in thymus. Simi-
lar results were obtained in Hazenberg et al. (2000, 2004); Ye, Kirschner (2002); 
Dutilh, DeBoer (2003) when modeling data on the T-cell receptor excision circles 
(TREC) kinetics.  

  Figure 5 shows the dynamics of specific antigenic load  L / V  for the refined and 
initial models. The refined model is characterized by significantly smaller values 
of  L / V  at early ages. This can be interpreted as an initial “reserve” of the immune 
system owing to fast initial increase in the volume of the IPLT.  

  An important part of the antigenic load  L  is represented by the infection load, 
related to the impact of  multiplying  antigens. At present, it is difficult to obtain quan-
titative estimates of the relative contribution of the infection load to the total antigenic 

Fig. 4 Solution to the refined model system (solid lines). Dotted lines represent the solution to 
the initial model. Along the x-axis is age (years). The data are shown as open circles
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load. However, the evidence is accumulating that this contribution can be significant. 
The results of simulation of the impact of the HIV infection on the rate of T-cell popu-
lation aging suggest 2 to 8-fold increase in the fraction of divided naive T-cells, and, 
hence, of the total antigenic load (Hazenberg et al. 2000; Sannikova et al. 2004).  

       The magnitude of infectious pathogens growth in human body in case of acute 
infections vary from 10 5 –10 6  for bacterial pneumonia (Romanyukha, Rudnev 2001) 
to 10 10 –10 11  for viral infections, such as influenza A, or hepatitis B (Marchuk et al. 
1991; Bocharov, Romanyukha 1994).  

  We assume here that the total antigenic load  L  depends linearly from basal 
metabolic rate. The high rate of infection diseases in the childhood imply a sig-
nificant excess of the value of  L  at this age compared to the value determined by 
the basal metabolic rate. One can assume that this “initial reserve” of the immune 
system is, in fact, “consumed” by the infection load. As a result, the specific 
antigenic load,  L / V , can be significantly  higher  than the values suggested by the 
refined model (continuous line on Fig. 5). The comparison of graphs in Fig. 5 
suggests that the initial reserve of the immune system early in life allows for 
2–4-fold increase in the total antigenic load above the values permitted by the 
basal metabolic rate.  

4           Immune System Development and Body Growth  

  The increasing body of evidence from animal and human studies supports the idea 
on the existence of trade-off between immune defense and organism’s growth. For 
example, the data from gnotobiological studies show that the infection of germ-free 
chicken impairs body growth by 15–30% (Lochmiller, Deerenberg 2000). Primary 
immunodeficiencies in humans can also lead to growth impairment and even growth 
failure (Bjorkander et al. 1984). This holds true for the HIV infection, depending on 

Fig. 5 Specific antigen 
load L /  V as a function of 
age for refined (solid line) 
and initial models (dotted 
line)
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the extent of the viral load (Arpadi et al. 2000) which, presumably, reflects a rising 
energy deficit caused by the gradual increase in the antigenic load.  

  The suggested model allows for evaluation of possible consequences of such 
a trade-off. For this, we assumed a linear dependence of the body growth from 
the antigenic load: α 

4
  =  a  –  b α 

5
 , where α 

4
  is the rate constant of the body growth, 

and α 
5
  is the parameter, which relates antigenic load and basal metabolic rate. The 

parameter  a  in this formula characterizes a maximal rate of body growth attained 
in the absence of antigenic load, and  b  describes the detrimental effect of antigenic 
load on the body growth.  

  For illustrative purposes, based on the results of modeling the effects of HIV infec-
tion on the rate of immune system aging (Hazenberg et al. 2004; Sannikova et al. 
2004), we assumed that the arrest of the body growth takes place when the value of 
antigenic load is 10-fold greater than normal. From this assumption, the values of  a  
and  b  were determined. The results of calculations suggest the presence of stabilizing 
effect of the body growth on the immune system development: the antigenic load up 
to 1.5 times higher than normal insignificantly affects the dynamics of model vari-
ables except for the rate of body mass change and the stationary level of the body 
mass in the adulthood (changes from 73 kg to 60 kg). Further increase in the antigenic 
load results in a more pronounced effect on the immune system development with 
the remarkable effect on the volume of the IPLT at the adult age. Counter-intuitively, 
both an increase and decrease in the antigenic load result in the detrimental effect on 
the “adult” values of the volume of the IPLT with mild unidirectional effect on the 
dynamics of the naïve and memory cells and in the opposite effect on the telomeres’ 
lengths. A decrease in the antigenic load results in the increased level of the adult body 
mass with a maximum of 115 kg in the absence of the antigenic load (Fig. 6).  

  The results presented in Fig. 7 show an increasing effect of antigenic load on 
body mass with age.  

Fig. 6 The influence of antigenic load on body mass at age 20 (left panel), and on the relative 
mass of the IPLT (right panel)
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      5      Model of Age-related  Risk of Death from Respiratory 
Infections  

  Preliminary analysis revealed that mortality rates from pneumonia and other res-
piratory infections follow certain regularity pattern in different human populations 
(Sannikova 2007). The principal traits of the pattern are relatively high mortality 
level during infancy and early childhood, very low during the reproductive period, 
exponential (or faster) increase after age 50. Since such an increase takes place 
despite the presence of the modern health care systems we suppose that the aging 
of the T-cell immunity is responsible for the steep growth of pneumonia mortality 
curve at advanced ages.  

  We develop a mathematical model establishing the relationship between age-
related changes in the peripheral T-cells population and mortality caused by 
respiratory infections (Fig. 8).  

Fig. 7 The influence of 
2-fold increase in antigen 
load at the age intervals 
(a) [0, 5 years], (b) [5, 10 
years], (c) [10, 15 years] and 
(d) [15, 20 years] respec-
tively, on the dynamics of 
body mass. The normal age-
related changes of body mass 
are shown as dotted line
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Fig. 8 The relationship between age-related changes in the peripheral T-cells population and 
increasing risk of death from infectious disease. The proliferative capacity of the T-cells decreases 
with age, which results in deceleration of lymphocyte proliferation during the immune response. 
So, the severity of the disease increases with increasing age. The higher the disease severity, the 
higher the risk of the lethal outcome
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  The model of age-related risk of death from respiratory infections consists 
of three component models: a model ofage-related changes in peripheral T-cells 
population (1), a model of infectious disease (Marchuk 1997) and a relationship 
between disease severity and risk of death. Numerical solution of the system (1) 
yields the sets of immune characteristics (such as the concentration of naive and 
memory T-cells and their replicative capacity) for each age. These characteristics 
are used in the second model, the model of infectious disease, to determine the 
value of the lymphocyte concentration at the beginning of disease and the rate of 
immune response. This model makes it possible to simulate the course of unified 
infectious disease for each set of immune characteristics or, in other words, for 
each age. Disease severity is defined as a maximum of target tissue damage in the 
course of the disease.  

  The third model is a function of the distribution of the resistance to infections in 
the population. Infection resistance is defined as a probability of recovery at a cer-
tain value of target tissue damage (disease severity). As an output of the model we 
have risk assessment of lethal outcome in the course of the disease. To estimate the 
probability of death from certain diseases during a time interval (e.g., during 1 year) 
we multiply the risk of lethal outcome in the course of the disease by the probability 
of becoming infected during the age interval under consideration.  

5   .1      Relationship Between Disease Severity and the Risk of Death  

  We define the infection resistance  Res  as a probability of recovery from the dis-
ease having the severity value  S . Then, the probability of the lethal outcome is 
 p  

L
 = 1− Res . Further, we assume that this characteristic is normally distributed in the 

population. Hence, the probability of the lethal outcome  p  
L
  at the severity value  S 

 could be represented as the corresponding distribution function  
    The values of the parameter were estimated based on the clinical observations. 

Thus, by means of the model of infectious disease and expression (3), a relationship 
between age-related changes in the T-cells population and the risk of death could 
be established.  

    
p S S e dtL

S t a
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−

−
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2

2

σ π
σ

  (3)

5  .2 Results of Simulation  

  The WHO data on pneumonia mortality in Austria, Italy, Portugal, the United King-
dom, the USA, and Japan in 1999 are represented by symbols in Fig. 9. The prob-
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ability of death from pneumonia in the age group 80–84 in the UK is 27 times 
higher than in Japan and 10 times higher than in Italy.  

  We assume that these populations experience different antigenic load through-
out adult life. This can be related to differences in climatic and ecological condi-
tions, modes of living, and national cuisines. We fit the model of age-related risk 
of death from respiratory infections to the data. The results of the simulations 
are represented by the solid and dashed lines in Fig. 9. There is good agreement 
between the model and the data sets for medium and large values of the death 
rate. For small values (age group 35–39), the estimated risk of death is higher 
than observed.  

       To provide a good fit, two parameters of the model were estimated for every pop-
ulation: the value of the antigenic load and the frequency of pneumonia (Fig. 10). 
The differences in age-specific mortality between countries are mainly described 
by variations in the frequency of pneumonia. Males in Japan and in the US have 
higher estimate of the antigenic load than in other countries under consideration. 
The higher rate of immunosenescence in the male populations of these countries 

Fig. 9 Pneumonia mortality (probability of death from pneumonia per year) in Austria, Italy, Por-
tugal, United Kingdom, USA, and Japan in 1999. WHO data are represented by symbols, results 
of simulation by lines
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may also be related to the dynamic and stressful mode of living (Epel et al. 2004; 
Segerstrom, Miller 2004).  

         6     Conclusion  

  The proposed model describes the relation between immunosenescence and demo-
graphic aging. The initial values of variables in the model (1) correspond to the 
population average. In the case of availability of the clinical measurements, the pro-
posed model can be transformed into the individualized risk model, which makes 
it possible to predict consequences of individual interventions. There is growing 
body of evidence that modification of the immune state by vaccination, antiviral 
and hormonal therapies, stem cell transplantation, and, possibly, by regulation of 
telomerase activity (Bodnar 1998), could slow down processes associated with 
immunosenescence. Mathematical modeling is a convenient tool for testing such 
intervention strategies.  
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                                                1      Introduction  

   A fundamental feature of mammalian adaptive immunity is the highly diverse pool 
of antigen receptors found on lymphocytes. The T-cell receptor and the surface 
immunoglobulin on B cells facilitate the recognition of foreign structures found on 
tumors and pathogens that have overwhelmed the defenses of the innate immune 
system. Because pathogen encounters and neoplasic transformations are inherently 
unpredictable, an immense lymphocyte receptor repertoire is required to meet all of 
the possible challenges an organism will face. In young humans, the daily produc-
tion of naïve B cells from the bone marrow and T cells from the thymus steadily 
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injects the lymphocyte pool with new antigen receptors. Unfortunately, as humans 
age functional thymic tissue gradually involutes and is replaced by fat. In parallel, 
the daily production of new naïve T cells declines such that no meaningful thymic 
T-cell production occurs after the age of fifty. Thus, the T-cell repertoire of an adult 
human must be maintained for decades in the absence of a replenishing source. 
Although homeostatic mechanisms are remarkably successful at maintaining the 
T-cell repertoire for many years, obvious changes begin to emerge with advanced 
age. Most strikingly, the naïve CD4 T cells that remain after the age of 65 undergo 
a sudden and dramatic collapse of T-cell receptor diversity. Naïve CD8 T cells may 
experience an earlier and more gradual diversity loss, although direct evidence for 
this is not yet available. A steadily expanding memory population maintains total 
T-cell numbers despite the decline in naïve T cells. Among these memory cells, 
an increasing percentage acquires a terminally differentiated phenotype character-
ized by abnormal expression of regulatory receptors and resistance to apoptosis. 
Oligoclonal populations accumulate after a lifetime of repeated challenges such as 
chronic infections, leading to a contracted memory repertoire. Although the con-
sequences of repertoire contraction are not yet known, this phenomenon may have 
important implications for the health of the ever growing elderly population.  

   This review will first delineate the developmental steps that lead to a diverse 
naïve T-cell repertoire followed by a discussion of the homeostatic mechanisms 
required to maintain T cells in the periphery after thymic involution. Some of the 
techniques employed to monitor thymic decline, peripheral homeostasis, and reper-
toire integrity will be highlighted throughout. Finally, the impact of aging on main-
taining a diverse repertoire with stable representation of functional T-cell subsets 
will be discussed.  

       2      T-cell Generation  

     2.1      T-cell Progenitors  

   Being highly dynamic and in constant turnover, the T-cell system is dependent on 
the generation of new T cells. T cells derive from self-renewing, pluripotent hemat-
opoietic stem cells (HSC), the ancestors of all blood cells. Early lineage commit-
ments occur in the bone marrow, but final T-cell differentiation and generation of 
T-cell diversity is entirely dependent on a functional thymus. HSC first develop 
into multipotent progenitors capable of becoming both myeloid and lymphoid cells. 
Additional differentiation leads to the common lymphoid progenitor cells which 
can become T cells, B cells, and NK cells. Little is known about the exact T-cell 
progenitor that exits the bone marrow and is destined to enter the thymus [1]. CD34, 
a marker of HSC in the bone marrow, is expressed on circulating cells with strong 
in vitro T-cell potential [2]. Intrathymic multipotent precursors also initially express 
CD34 suggesting that T-cell precursors come from the circulating CD34 +  popula-
tion [3]. Within the thymus, committed T-cell precursors are thought to differentiate 
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from CD34 +  cells that have acquired CD1a expression [4]. Additionally, expression 
of the Notch1 receptor and signaling apparatus, which are required for T- versus B-
cell lineage commitment, are likely characteristics of intrathymic T-cell precursors 
[5]. Whatever the true characteristics of circulating and intrathymic T-cell progeni-
tors are, T-cell generation is dependent on a continual supply of potential thymo-
cytes entering the thymus for further maturation.  

       2.2      Generation of T-cell Receptor Diversity  

   The effectiveness of the human adaptive immune system requires a diverse array 
of antigen receptors on lymphocytes. In both B and T cells, this diversity arises 
from the somatic rearrangement of gene segments encoding each subunit of the 
antigen receptor and the combination of these uniquely encoded subunits to make 
a complete receptor. For the T cell, this process occurs in the thymus and results 
in the expression of a single T-cell receptor (TCR) consisting of two rearranged 
receptor subunits. The vast majority of T-cells express receptor chains encoded by 
the TCRA and TCRB loci and are called  α  β  T-cells. The remaining T-cells (2–14% 
of peripheral T-cells [6]) are called  γ  δ  T cells and have TCR encoded by the TCRG 
and TCRD loci. This discussion will focus only on  α  β  T cells.  

   To appreciate what T-cell diversity generation entails, the remainder of this sec-
tion will detail the intrathymic events that transform genetically homogeneous and 
undifferentiated thymocytes into mature naïve CD4 and CD8 T cells displaying 
genetically and structurally diverse TCR. The mature TCR is a heterodimer com-
posed of two Type-I membrane-spanning subunits called the  α - and  β -chains [7]. 
Each chain has two Ig-like domains and a short transmembrane region. The mem-
brane-proximal Ig-like domains are called constant domains because they are nearly 
identical on all  α  β  T cells. The membrane-distal Ig-like domains differ from T cell 
to T cell and are called variable domains. They are responsible for antigen recog-
nition and are the basis for the immense diversity necessary to respond to the full 
array of potential pathogens encountered by naïve T cells.  

   A schematic representation of TCR genes is depicted in Fig. 1. Early thymocytes 
do not express any TCR, and both alleles of each TCR gene are fully intact. These 
CD34 + CD1a +  thymocytes also lack the TCR coreceptors CD4 and CD8 and are 
thus known as double negative thymocytes. In humans, unlike in mice, before TCR 
rearrangement begins, thymocytes will express CD4 alone or both CD4 and CD8 in 
some cases [8]. The first step towards expression of a functional TCR is expression 
of RAG1 and RAG2 by thymocytes [9]. These proteins are essential for somatic 
recombination, and once they are expressed, the TCRB locus begins to rearrange. 
The diversity (D  β  ) and joining (J  β  ) gene segments are the first to be combined, fol-
lowed by joining of a variable (V  β  ) segment to the D  β  -J  β   junction. The particular 
segments included are stochastically chosen and the order of segment joining is 
dictated by recombination signal sequences flanking the gene segments (reviewed 
in [10]). During recombination, the enzyme terminal deoxyribonucleotidyl trans-
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ferase (TdT) facilitates the random addition and subtraction of a variable number 
of nucleotides at segment junctions [11]. This imprecise joining, termed junctional 
diversity, is an important source of variable domain sequence diversity for both 
TCR chains. As depicted in Fig. 1, the TCRB locus has two C  β   gene segments. A 
failed attempt to rearrange the locus using the C  β 1  gene segment can be followed by 
an attempt to use the C  β 2  locus on the same chromosome. When the TCRB locus 
is successfully rearranged, the resulting protein will be expressed at the surface in 
complex with the pre-T α -chain, an invariant surrogate required for β  -chain expres-
sion [12]. Expression of this pre-TCR signals completion of  β -chain rearrangement. 
At this time, RAG1/2 expression ceases, preventing further rearrangement of the 
second TCRB allele and ensuring that all T cells express a single  β -chain [4].  

   Fig. 1       Rearrangement of TCR Loci in  α  β  T-cells     

Fig. 1 Rearrangement of TCR Loci in αβ T cells Schematic representations of TCR gene rear-
rangement and mRNA processing to yield mature TCR chains (gene segments are not to scale). 
(a) The TCRB locus on chromosome 7 rearranges first. (b) The TCRA locus on chromosome 14 
rearranges after successful β-chain rearrangement and expression. The TCRD locus lies within 
the TCRA locus and is deleted when TCRA rearrangement occurs. * indicates sites of terminal 
deoxyribonucleotidyl transferase-mediated generation of junctional diversity
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  An additional consequence of successful TCRB rearrangement and pre-TCR 
expression is a massive proliferation of  β -chain +  thymocytes before TCRA rear-
rangement. By expanding at this stage, each unique successful  β -chain rearrange-
ment can be combined with many different  α -chains, thereby dramatically enhancing 
the total TCR repertoire. It is estimated that roughly 10 divisions occur between 
 β -chain expression and TCRA rearrangement, resulting in ~1000 thymocytes with 
the same  β -chain [13]. This number is much higher than the number of distinct 
 α -chains paired with a single  β -chain in mature peripheral T cells because only 
10% percent of  β -chain +  thymocytes will successfully rearrange the TCRA locus 
and survive positive and negative selection. After expansion,  β -chain +  thymocytes 
reexpress the RAG proteins and TCRA gene rearrangement begins [9]. TCRB and 
TCRA gene rearrangements proceed by the same mechanism with a few distinc-
tions. Whereas the  β -chain variable domains are comprised of V, D, and J segments, 
the TCRA locus only has V and J segments. Unlike  β -chain rearrangement, a cell 
without a successful  α -chain rearrangement can continue rearranging by joining 
upstream V  α   segments to downstream J  α   segments until a competent chain is formed 
[14]. Additionally, surface expression of a rearranged  α -chain, in complex with the 
 β -chain, does not silence RAG1/2 expression. Instead, RAG1/2 expression ceases 
after positive selection (discussed below), which signals completion of TCR gene 
rearrangement [15]. A consequence of prolonged RAG1/2 expression during TCRA 
rearrangement is the possible coexpression of more than one  α -chain on each T-
cell [14]. It is likely, however, that only TCR containing the positively selected 
 α -chain allele will interact with MHC-peptide complexes in the periphery during 
an immune response.  

       2.3      Positive Selection and Negative Selection  

   Thymocytes with successfully rearranged TCR will only emerge from the thymus 
as CD4 or CD8 naïve T cells if they survive positive and negative selection. These 
selection processes require interactions between the TCR on thymocytes and the 
MHC class I and II molecules on bone marrow-derived cells and specialized epithe-
lial cells within the thymus. Because a functional T-cell response requires recogni-
tion of pathogenic peptides presented in complex with MHC molecules, only TCR 
capable of making stable contacts with MHC are useful additions to the T-cell rep-
ertoire. Thymocytes must receive signals through the TCR to avoid death by neglect 
(positive selection), which is the fate of about 90% of all TCR +  thymocytes [16]. 
The requirement for positive selection ensures the elimination of TCR least likely to 
contribute to an immune response. Additionally, an excessively high affinity inter-
action will lead to the death of the T cell and removal of that cell’s TCR from the 
repertoire (negative selection). Because only self-peptides are presented on MHC 
molecules in the thymus, negative selection removes T cells with potentially auto-
reactive TCR. About half of the remaining 10% of TCR +  thymocytes are removed 
by negative selection [16]. Survivors of both positive and negative selection exit 
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the thymus as mature T cells expressing a TCR that may recognize an epitope from 
potential pathogens.  

   In addition to ensuring that a T cell expresses a fully functional yet self-tolerant 
TCR, intrathymic TCR:MHC interactions dictate a key determinant of each thymo-
cyte’s future function: the choice of CD4 versus CD8 coreceptor expression [16]. 
A mature T cell whose TCR interacts with MHC class I molecules during positive 
selection will express CD8. Alternatively, if positive selection occurs against MHC 
class II molecules, the resulting mature T cell will express CD4.  

       2.4      How Diverse is the Human T-cell Repertoire?  

   As stated above, all receptor diversity in the T-cell pool is generated by somatic 
gene rearrangement during thymocyte maturation. By examining the key sources of 
this diversity, a theoretical upper limit of distinct  α  β  TCR has been estimated [7]. 
Three main factors contribute to the diversity of the TCR repertoire: the inclusion 
of a single V, D, and J gene segment (V and J only for the  α -chain) in the variable 
domain of each TCR chain, the random addition and subtraction of nucleotides at the 
junction of combined gene segments (junctional diversity), and the pairing of one 
rearranged  α -chain with one rearranged  β -chain to yield a complete TCR. There are 
~70 V  α   and 61 J  α   gene segments which when combined would yield 4,270 different 
 α -chains if all combinations are productive. The 52 V  β  , 2 D  β  , and 13 J  β   gene segments 
could potentially combine to form 1,352 different  β -chains. Without accounting for 
junctional diversity, 5.8 million different TCR could be generated by combining one 
 α -chain with one  β -chain. Estimates suggest that junctional diversity may increase 
TCR diversity by a factor of 2×10 11  to a total of 10 18  potential unique TCR. This 
estimate is an overstatement of the true repertoire potential because many V  α  -J  α   and 
V  β  -D  β  -J  β   combinations result in nonsense frame shifts and not all  α - β -chain com-
binations can be expressed. Even with a more modest estimate, it is clear that the 
receptor repertoire of any individual, whose total T-cell compartment contains only 
~3 × 10 11  cells, represents only a minute fraction of the potential diversity.  

   A variety of techniques used to measure diversity (discussed below) estimate 
that the T-cell repertoire consists of about 10 8  different TCR in young humans. If 
TCR were all equally represented, the clonal size of T cells bearing the same recep-
tor would be about 1,000. In reality, certain clones are more abundant than others, 
and the receptor repertoire differs among the different functional T-cell subsets. 
Naïve cells, which represent about 50% of total CD4 and CD8 T cells [17–19] in 
young humans, harbor the majority of total TCR diversity. An assessment of TCR 
repertoire within CD4 T cells in young donors revealed that memory cells have only 
5–10% of the  β -chain diversity of naïve cells [19]. As, each  β -chain in the memory 
population is generally paired with a single  α -chain, this translates to only 1% of 
the total naïve  α  β  TCR diversity.  

   Because an organism cannot predict which pathogens will be encountered by the 
immune system, it is beneficial that naïve lymphocyte antigen receptors are highly 
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diverse. Naturally, the receptor repertoire in the memory compartment can only 
be, and is only required to be, as diverse as the epitopes against which a primary 
response has already been raised. However, in addition to receptor diversity, mem-
ory T cells comprise several different functional populations. The paradigm of the 
memory T-cell life-cycle dictates that the cells remaining after the contraction phase 
of a primary immune response will be either central memory or effector memory 
cells [20]. Central memory cells, defined as CD45RA -  and CCR7 + , reside in lym-
phoid tissues such as the spleen and lymph nodes. Effector memory cells, defined as 
CD45RA -  and CCR7 - , are found in peripheral sites where antigen exposure is most 
likely, such as the skin, lungs, and GI tract.  

   In addition to distinct homing patterns, central and effector memory T cells 
respond differently upon antigen reexposure [21]. While both memory subsets 
are much more sensitive to TCR stimulation than naïve T cells, effector memory 
cells have an even lower activation threshold. Consistent with their localization at 
the frontlines of antigen exposure, effector memory cells are quickly and potently 
triggered to produce effector cytokines such as IFN- γ , a key molecule in a strong 
immune response. Conversely, central memory cells likely reencounter antigen only 
after it has been delivered to lymphoid tissue and presented on antigen-presenting 
cells. After stimulation, these cells produce high amounts of IL-2 which promote 
expansion of activated T cells. Several studies in mice suggest that central memory 
cells differentiate into effector memory cells, thereby enhancing the current immune 
response and seeding the periphery for future exposures [22, 23]. A third memory 
subset, the terminally differentiated effector cell (known as CD45RA effector cells), 
is defined by reversion of effector memory cells to CD45RA positivity while still 
lacking CCR7 [24]. These cells are much more common in the CD8 compartment 
and are characterized by potent cytotoxicity, resistance to apoptosis, and weak pro-
liferative potential. As we will discuss later, CD45RA effector cells accumulate with 
age and may result in altered functionality of memory responses in the elderly.  

       2.5      Techniques for Assessing Diversity  

   Before discussing the mechanism of diversity maintenance and the TCR repertoire 
changes that occur with age, we will discuss the techniques used to estimate human 
TCR diversity. The staggering array of unique TCR gene rearrangements in periph-
eral T cells makes direct measurement of diversity a challenge. Only gross changes 
in repertoire, such as large clonal expansions or the loss of entire V  β   families, can 
be detected using the following low sensitivity methods. Flow cytometry allows 
detection of differences in V  β   family usage among various T-cell compartments or 
age ranges [25]. However, even a severe loss of repertoire diversity that affected the 
different V β  families similarly would be missed by this method. TCR clonotyping, 
which utilizes V  β  -C  β   or V α -C α  specific PCR and denaturing gradient gel electro-
phoresis, relies on the existence of clonal expansions large enough to dominate the 
PCR products of entire V β  families [26]. Similarly, the “immunoscope” method (see 
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below) uses PCR to detect large expansions within V  β   families [27]. While this tech-
nique is only slightly more sensitive than clonotyping, immunoscoping is a useful 
tool to estimate total T-cell diversity when combined with sequencing [28].  

   More direct assessments of TCR repertoire all use a common approach: iso-
late and characterize a small subset of sequences and extrapolate their frequencies, 
based on parameters such as V  β   frequency and possible  α  β  combinations, to the 
whole T-cell pool. Wagner et al. examined repertoire diversity using TCR-specific 
probes and limiting dilution of CD4 T cells [29]. Using primers specific for two 
V  β  -J  β   combinations (V  β  8-J  β  1S4 and V  β  18-J  β  2S5), representative samples of  β -chain 
gene sequences from CD4 T cells of several donors were obtained. Specific bioti-
nylated probes complementary to the TCR N-D-N region (this region is highly vari-
able and includes the junctional nucleotides that flank the D gene segment) were 
then generated. In a subsequent step, a second sample of CD4 T cells from the same 
donor was screened for the presence of these sequences in a limiting dilution sys-
tem. cDNA was isolated from replicates of serially diluted T cells ranging from 10 5  
to 5×10 6  cells, amplified by PCR with the appropriate V  β  -J  β   primer set and hybrid-
ized with the labeled probes specific for the isolated TCR sequences. This method 
determines the frequency of each specific  β -chain sequence in the entire T-cell pool 
and allows for an estimate of the total diversity. Studies using this method [19, 29] 
have estimated that a given  β -chain obtained from naïve CD4 T cells is present 
with a median frequency of <1 in 2×10 7  T cells in healthy young and middle-aged 
adult humans, i.e., the human naïve CD4 T-cell compartment encompasses around 
20 million different TCR  β -chains. Because the sensitivity of the limiting dilution 
system is less than 100%, this estimate represents the upper range.  

   The “immunoscope” technique, mentioned above as a method to detect T-cell 
clonal expansions [27], has been exploited to estimate human  α  β  TCR diversity. As 
with the limiting dilution assay of Wagner, et al. [29], this technique requires PCR 
amplification across the  β -chain N-D-N region followed by sequencing. Previously, 
it was observed that the lengths of rearranged TCRB transcripts between constant 
sequences flanking the N-D-N region follow a Gaussian distribution. The span of 
sizes results from the stochastic addition and subtraction of nucleotides during the 
joining of gene segments [11]. Electrophoretic separation of PCR products ampli-
fied from a heterogeneous T-cell cDNA pool reveals a laddering of discrete bands 
separated by a gel distance corresponding to 3 nucleotides/1 codon. A graphical 
depiction of intensities of these bands reveals 6–8 peaks, with the most intense 
central peak corresponding to an N-D-N region length of 8–10 amino acids. A non-
Gaussian spectrum results when one or a few TCR clones are overrepresented.  

   It has been shown that, when normally distributed, the intensity of each peak 
is proportional to the diversity of specific TCR sequences present in the peak. To 
estimate total human  β -chain diversity, Arstila, et al. isolated a single band from the 
separation of V  β  18-J  β  1.4 PCR products and identified all TCR variants by sequenc-
ing [28]. The total number of V  β  18–J  β  1.4 sequences was extrapolated based on the 
intensity of the sequenced band and total  β -chain diversity was extrapolated from 
the frequency of V  β  18 and J  β  1.4 positive T cells in the individuals used for the 
study. After repeating this procedure for several donors and other V  β  -J  β   segments, 
the authors arrived at a minimal estimate of 1.3×10 6  different TCR  β -chains.  
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       2.6      Thymic Decline with Age  

   The anatomy of the thymus is expressly suited to allow for the maturation of new 
T cells with a staggering array of unique TCR. The thymus is the sole organ where 
naïve T cells are produced and diversity can be generated or refreshed. Conse-
quently, thymic integrity plays a key role in T-cell repertoire maintenance over the 
many decades of a human life. In the following section, we will discuss how aging 
affects the thymus and its ability to provide a steady supply of new naïve T cells 
and, therefore, new TCR clonotypes.  

   The thymic architecture consists of the thymic epithelial space and the perivas-
cular space (reviewed in [30]). Thymopoiesis occurs entirely within the thymic epi-
thelial space which includes the cortical and medullary epithelial cells and bone 
marrow-derived antigen-presenting cells required for positive and negative selec-
tion. The perivascular space is located within the thymic capsule and is separated 
from the thymic epithelial space by a basement membrane. The cellular compo-
nent of the perivascular space consists of fibroblasts, lymphoid cells, and a few 
adipocytes and is notable for the absence of thymocytes. The classical description 
of thymic anatomy, consisting mostly of thymic epithelial space with only a small 
contribution from perivascular space, applies only to very young human thymi. As 
early as age 2, the thymic epithelial space begins to decline with a compensatory 
enlargement of the perivascular space by adipocytosis. Although total thymic mass 
remains constant, the loss of thymic epithelial space results in a steady decrease of 
new T-cell production after adolescence.  

   Numerous studies have observed decreased thymopoiesis with age. The most 
common techniques for evaluating thymic output involve quantifying the number of 
recent thymic emigrants in the peripheral blood. In the absence of a reliable surface 
marker for recent thymic emigrants, many groups have resorted to the detection of 
TCR excision circles (TREC) which are DNA remnants of TCR gene rearrange-
ments. During thymocyte maturation, chromosomal DNA within the TCR loci is 
broken and religated to join V or D gene segments with J gene segments and V 
segments with D-J gene segments. In each case, the DNA sequence between the 
joined gene segments is excised from the chromosome and the cleaved ends of the 
deleted sequence are ligated together resulting in a TREC. The correlation of TREC 
with thymic output follows from the fact that, with each cell division, chromosomal 
DNA is replicated while TREC DNA is not [31]. After excision of a TREC during 
TCR gene rearrangement, subsequent mitotic events will dilute the TREC/cell ratio 
because only a single descendent of the original thymocyte, regardless of the number 
of future divisions, will retain the TREC. The stability of TREC in the absence of 
division has been debated, and the persisting TREC with aging may therefore derive 
from nondividing cells rather than from recent thymic emigrants.  

   Each TREC represents a single gene rearrangement event, and each step in the 
TCR rearrangement process can lead to the formation of a different TREC. TREC 
resulting from the V, D, and J segment-joining events are unique to the particular 
segments joined and are, therefore, rare in the total population and not useful for 
a global assessment of recent thymic emigrants. A fortuitous requirement for the 
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successful rearrangement of the TCRA locus is the deletion of the TCRD locus 
which is found between the TCRA V and J segments (see Fig. 1b). TCRD deletion 
requires the joining of two genetic elements flanking the delta locus,  δ Rec and  ψ J α  
[32]. The resulting TREC (sjTREC) contains a  δ Rec- ψ J α  signal joint that is identi-
cal for all TCRD deletion events. When the TCRA gene is subsequently rearranged, 
the  δ Rec- ψ J α  coding joint will be included in the resulting TREC (cjTREC) regard-
less of which TCRA segments are joined (diagrammed in [33]). Although either 
of these TREC can be used for estimating  α  β  T-cell production, the sjTREC is 
the more common choice because the  δ Rec- ψ J α  coding joint can still remain on 
the incompletely rearranged chromosome in 5% of  α  β  T cells [33]. An additional 
advantage of TCRD TREC, which are produced late in TCR rearrangement, is that 
only 3–4 divisions occur between TCRD deletion and full TCR rearrangement [34]. 
Thus,  δ Rec- ψ J α  TREC are minimally diluted in newly matured  α  β  T cells.  

   Regardless of which TREC is used to assess recent thymic emigrants, thymic 
function comparisons can be made among donors of various ages. Multiple stud-
ies suggest that thymic production steadily declines with age [34–36]. This decline 
occurs at the rate of about 3% per year, which is the same rate estimated for the 
loss of thymic epithelial space with age [37, 38]. TCR rearrangement in thymocytes 
occurs normally regardless of age, generating a diverse V  β   repertoire [39]. Addi-
tionally, newly generated T cells in individuals up to at least age 50 perform as well 
as young T cells in in vitro assays. Therefore, it is thought that while total thymic 
epithelial space and consequently new naïve T-cell production declines with age, 
T-cell production in the remaining tissue is qualitatively intact [30]. Quantitatively, 
however, the thymus is unable to provide a meaningful supply of new naïve T cells 
after middle age as evidenced by the small numbers of peripheral TREC. Addition-
ally, the ability to reconstitute the T-cell compartment following ablative bone mar-
row transplantation decreases steadily with age. In fact, patients in their fifties fail 
to return to pretreatment cell numbers even 2 years after transplant [40].  

   TREC levels in T cells are used as an indirect surrogate of thymic T-cell output 
and many papers treat TREC +  naïve T cells as recent thymic emigrants. However, it 
has been noted that the interpretation of TREC measurements is more complicated 
[33]. Indeed, decreased thymic output results in dilution of the TREC/cell ratio over 
time; so does homeostatic proliferation or death of existing TREC +  T cells. For this 
reason, TREC measurements tend to overestimate thymic output and interpretations 
should take into account the kinetics of T-cell turnover. Recently, one group has 
proposed a new marker for recent thymic emigrants that may help resolve the poten-
tial ambiguity of TREC dilution. Kimmig et al. reported that CD31 positivity on 
CD45RA + RO -  naïve T cells correlated strongly with the presence of sjTREC [41]. 
Conversely, CD45RA + RO - CD31 -  T cells, although functionally and phenotypically 
naïve, have almost no TREC. The authors suggest that recent thymic emigrants lose 
CD31 expression upon antigen-induced or homeostatic proliferation, an idea that is 
supported by the loss of CD31 by in vitro culture. An examination of the percentage 
of CD4 T cells with a CD45RA + CD45RO - CD31 +  phenotype with age revealed a 
steady decline similar to that seen when TREC are examined. It remains to be seen 
whether CD31 will become a widely used marker for recent thymic emigrants, but 
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the results of Kimmig and colleagues lend credence to the TREC-based findings 
that thymic production of new naïve T cells declines with age.  

         3      Maintenance of Diversity  

   In the absence of foreign antigen, all peripheral T-cell pools experience a steady-
state turnover characterized by cell loss (to attrition, death, or phenotypic shift) 
and compensatory proliferation. In order to maintain the original diversity of recent 
thymic emigrants, death and replacement of naïve T cells must be completely ran-
dom so as not to preferentially deplete or replace T cells of certain specificities. 
An additional requirement for maintaining diversity is that each clonal population 
expressing a given TCR is of an adequate size to ensure that normal cell death will 
not eliminate a TCR from the repertoire. The latter requirement is met by prolif-
eration of thymocytes bearing a functionally rearranged TCR before and shortly 
after mature naïve T cells exit the thymus. Fully random steady-state turnover of 
peripheral T cells is much more difficult to achieve. In the context of thymic export 
of new naïve T cells, this problem is not likely to result in a compromised reper-
toire. However, the severe and early decline of thymic production of T cells seen in 
humans suggests that peripheral homeostatic mechanisms are crucial for life-long 
TCR diversity.  

   Maintenance of the TCR repertoire is a balance between factors that introduce 
or preserve diversity and those that pose a threat (see Fig. 5). Naïve and memory 
T cells share some of these factors. For both cell types, the thymus is the ultimate 
source of new diversity; however, the proximal source of diversity in the memory 
compartment is activation and differentiation of naïve cells in response to anti-
gen. Therefore, establishment of the memory repertoire depends both on the ini-
tial naïve repertoire and the history of antigen exposure. T-cell activation against 
a novel antigen, while seeding the memory compartment after contraction of the 
primary response, represents an important threat to naïve T-cell diversity. Normal 
daily turnover leads to loss of T cells, and potentially TCR, from all compartments. 
Assuming an adequate initial clonal size, homeostatic proliferation of remaining 
T cells will replace lost cells and maintain normal compartment sizes. While total 
T-cell numbers can easily be maintained by replacement proliferation, it is unlikely 
that all TCR clones are lost and replaced with equal kinetics. Consequently, over 
many years of homeostatic maintenance, the TCR representation, for both memory 
and naïve cells, is at risk of skewing and contraction.  

     3.1      Assessment of T-cell Turnover  

   A crucial component to T-cell homeostasis, and therefore maintenance of T-cell 
heterogeneity, is cell turnover. The persistence of a T-cell clone with a given TCR 
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depends on proliferation of existing cells in the face decreased thymic output and 
daily cell loss. It is important to understand the power and the limitations of the 
techniques used to examine T-cell kinetics and turnover in humans before reviewing 
the available data.  

     3.1.1      Ki67 Staining  

   One easy method for assessing the fraction of proliferating cells within a lymphocyte 
population is by intracellular staining for Ki67. Ki67 is a nuclear antigen expressed 
in the G 1 , S, G 2 , and M phases of proliferating cells. Its absence in resting G 0  cells 
makes it a good marker of cycling cells [42]. Using standard flow cytometric identi-
fication of intracellular antigens [43], a panel of antibodies can be designed to assess 
the proportion of proliferating cells within T-cell subsets at a given time. This method 
has been used to estimate the T-cell turnover rates in several contexts, including HIV 
and aging [19, 44, 45]. The accuracy of Ki67 staining has been confirmed by more 
advanced metabolic labeling techniques (see below) that simultaneously assess pro-
liferation and loss from a population. While these newer techniques provide a more 
complete picture of T-cell kinetics, Ki67 staining remains a useful method for imme-
diate ex vivo assessment of proliferation within peripheral blood subsets.  

       3.1.2      Deuterated Glucose or Water Incorporation  

   To obtain direct in vivo measures of human T-cell kinetics, several studies have 
utilized deuterated glucose or water [46–49]. Each of these methods allows for the 
labeling and monitoring of dividing cells because glucose and water contribute mol-
ecules to the biosynthesis of DNA. Consequently, in the presence of these deuter-
ated substances, a certain percentage of molecules in newly synthesized DNA will 
be labeled with deuterium,  2 H [47, 48]. After a defined administration period, the  
2H source is discontinued and blood samples are taken at several time points to 
determine the  2 H content in the DNA of cell types of interest. Measurements made 
before and soon after delivery of labeled glucose or water are used to determine the 
percentage of cells that proliferate during the administration period. Further meas-
urements made at multiple later time points allow for calculation of the loss rates 
and half-lives of the isolated cell subsets.  

   Because deuterated glucose and water are neither radioactive nor a mutagenic 
threat, they are useful tools for in vivo studies of human T-cell kinetics. The use of 
 2 H 2 O is the more recent of the two labeling methods and, as described by Neese, et 
al. [48], has financial, feasibility, and experimental advantages over deuterated glu-
cose. For example, deuterated water can simply be added to normal drinking water 
whereas glucose must be administered intravenously. Without the need for expen-
sive supervised infusion, deuterated water can be delivered over a longer period 
of time which is beneficial for examining low turnover cell types such as naïve
T cells.  
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         3.2      T-cell Homeostatic Mechanisms  

   In light of the well-documented steady decline in thymic production of new naïve 
T cells with age, the kinetics and mechanisms of T-cell survival and turnover are 
vital for maintenance of a diverse and functional adaptive immune system. Using 
techniques described above, direct estimates of replacement rates and half-lives of 
human T-cell subsets have been made in vivo. Examination of T-cell kinetics in 
young adult humans by deuterated glucose [46] revealed that about 0.59 and 0.45% 
of naïve (CD45RA + ) CD4 and CD8 T cells, respectively, proliferate each day. These 
figures translate to a replacement time of 118 and 145 days, respectively. CD45RO +  
memory T cells divide much more frequently than naïve cells. 2.65% of CD4 and 
5.09% of CD8 memory T cells proliferate each day, which corresponds to replace-
ment times of 26 and 14 days, respectively. Additional studies by the same group 
[49, 50] and Ki67 staining of CD4 T-cell subsets by our group [19, 29] confirmed 
these estimates. Extrapolations from these data suggest that a total of 4×10 9  T cells 
are produced by peripheral expansion each day [46]. As total T-cell numbers remain 
stable over time, a comparable loss of T cells also must occur each day. Without 
a constant supply of new naïve T cells from the thymus, and keeping in mind the 
requirement of fully random replacement of T cells to maintain a complete TCR 
repertoire, this extensive daily turnover poses a potential threat to TCR diversity in 
adults.  

     3.2.1      Naïve T-cell Homeostasis  

   In a young, healthy human, the normal daily turnover of naïve T cells is replaced 
with new T-cell production by the thymus and by proliferation of existing naïve 
T cells. Our examination of neonatal T-cell kinetics showed that about 10% of daily 
naïve T-cell production in infants comes from the thymus [45]. Other estimates 
based on modeling suggest that, at the age of twenty-five, about 20% of the periph-
eral naïve T-cell pool is populated directly from the thymus [51]. Therefore, even 
in individuals with an intact thymus, peripheral expansion is the major source of 
circulating naïve cells. As long as the thymus continues injecting new TCR into the 
naïve pool, extensive homeostatic proliferation does not threaten receptor diversity. 
However, as thymic involution proceeds, the burden of maintaining the naïve pool 
increasingly lies with homeostatic mechanisms. In fact, by age 55, the thymus con-
tributes, at maximum, 5% of the peripheral naïve T cells [51] and probably much 
less.  

   Mounting evidence suggests that survival and proliferative maintenance of human 
T cells in the periphery depend on both TCR- and cytokine-delivered signals. In the 
absence of exogenous antigen, TCR:MHC interactions in the periphery are analo-
gous to those that mediate positive selection in the thymus; namely, a self-peptide 
conjugated with the appropriate MHC allele acts as a ligand to provide a survival sig-
nal to T cells with a TCR that binds with sufficient affinity. Studies in mice do indeed 
suggest that peripheral naïve T cells are lost in mice lacking MHC molecules. CD4 
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T cells are vastly reduced in animals lacking MHC class II [52, 53] and similarly, 
adoptively transferred CD8 T cells will only persist in mice that express MHC class 
I [54, 55]. For CD8 T cells, it has been shown that the peripheral MHC requirement 
extends to the exact class I allele against which the T cell was positively selected in 
the thymus [54]. Additional studies show that peripheral T cells rely on TCR-gener-
ated signals not only for survival but for homeostatic expansion [56, 57].  

   The role and requirement for a TCR-generated signal to maintain T-cell homeos-
tasis has implications regarding the long-term integrity of the TCR repertoire in the 
context of dwindling thymic output. If homeostatic responses depend on the strength 
of the TCR:MHC interaction, it is necessarily the case that some TCR will more read-
ily receive survival or expansion signals. An obvious consequence of this scenario is 
nonrandom TCR maintenance and/or proliferation and, therefore, repertoire skew-
ing. Because a given TCR’s affinity for a self-peptide:MHC complex is unlikely to 
predict a strong response to a pathogen peptide:MHC complex, the skewed repertoire 
generated by self-antigen-driven homeostatic proliferation would not only deplete T-
cell clonal diversity but would do so without promoting enhanced protection.  

   Fortunately, antigen-independent stimuli delivered by cytokines also play an 
important role in peripheral T-cell maintenance. Extensive work in the mouse, and 
more recently in the human, has established that cytokines signaling via the com-
mon  γ -chain (which include IL-2, IL-4, IL-7, IL-15, and IL-21) play a key role in 
peripheral T-cell maintenance and expansion [58]. While the cytokine requirements 
for homeostasis differ among the various T-cell subsets and with regard to the par-
ticular function examined, IL-7 and IL-15 seem to be the most important. In mice, 
naïve T cells, in addition to TCR:MHC interactions, require IL-7 for steady-state 
survival in vivo. Although other molecules are likely involved, studies in mice [59] 
and humans point to upregulation of the antiapoptotic protein Bcl-2 as a mechanism 
for cytokine-mediated T-cell survival [60].  

   Homeostatic expansion of peripheral T cells is controlled by the same general 
mechanisms that mediate survival. Steady-state naïve T-cell turnover, as discussed 
above, is quite low compared to memory T cells. This implies that memory cells 
have a stronger proliferative response to the required signals. While this may be 
true, naïve T cells are capable of a robust expansion in lymphopenic situations [61]. 
From these studies it can be argued that, while naïve T-cell survival and proliferation 
require the same TCR- and cytokine-mediated signals, space in the compartment 
is also necessary for homeostatic expansion. In the steady state, the characteristic 
naïve and memory T-cell replacement rates [46] may be a direct response to fill 
compartmental space made available by attrition or cell death.  

           4      Aging and the Loss of T-cell Heterogeneity  

   Given that thymic production is the only source of new naïve T cells, and that very 
little meaningful thymic output remains after early adulthood, one may expect dra-
matic changes in the peripheral T-cell pool with age. In fact, some obvious changes 
occur while other features remain intact. Total T-cell numbers decrease only slightly 
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with age, exhibiting a steady but shallow decline throughout adulthood [17]. 
Although the maintenance of T-cell numbers is remarkable considering negligible 
thymic output, the composition of peripheral T cells in the elderly becomes increas-
ingly distinct from young individuals. A consistent and striking finding is the sig-
nificant loss of naïve cells with age (depicted in Fig. 2). About 50% of young adult 
T cells are naïve compared to about 35% in 70-year-olds [17]. Remarkably, this 
naïve loss is much more pronounced for CD8 T cells than for CD4 T cells. In fact, 
by the age of 70, the percentage of naïve CD8 T cells is consistently around 10%. 
In contrast, naïve CD4 T cells still make up about 40% of total CD4 T cells [17, 
19, 62]. At ages beyond 70, naïve CD4 T cells continue to decline at a steady rate 

Fig. 2 Naive T-cell Production and Maintenance with Age (a) Schematic representation of loss 
of thymic production of naive T cells with age. (b) Schematic representation of loss of peripheral 
naive T cells with age

Fig. 3 Changes in Memory T-cell Subsets with Age (a) Schematic representation of changes 
within CD4 memory T-cell subsets with age. (b) Schematic representation of changes within CD8 
memory T-cell subsets with age. CM, central memory; EM, effector memory; Effector, CD45RA+

effector memory
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whereas naïve CD8 T cells drop to single digit percentages and are virtually gone in 
individuals who reach 100 [17].  

     Naturally, with declining naïve T-cell numbers in the context of only slightly 
reduced total T-cell numbers, the percentage of memory T cells increases with age. 
In addition, it is clear that memory populations are also qualitatively different in 
the elderly (depicted in Fig. 3). As appears to be the case for most features of T-cell 
aging, the CD8 memory T-cell pool experiences a more striking transformation than 
does the CD4 memory T-cell pool. In young adults, about half of the CD8 memory 
T-cells have an effector memory phenotype [18, 63]. The remaining half is split 
equally between central memory and CD45RA effector cells. Throughout adult-
hood, these proportions shift in favor of CD45RA effector cells which, by the mid-
seventies, represent over 50% of all memory CD8 T cells [63]. Because the memory 
pool as a whole is increased, this translates into more than a 4-fold increase in the 
absolute numbers of circulating CD8 +  CD45RA effector cells. Even central and 
effector CD8 memory T-cell subsets in the elderly, while comprising a decreased 
percentage of total CD8 memory T cells, are increased in absolute numbers rela-
tive to young adults. Within the CD4 memory T-cell population, aging does not 
have a significant effect on subset distribution [63]. However, as total memory cells 
are increased, the absolute numbers of each subset within the CD4 memory T-cell 
population does increase with age.  

     A well-established feature of memory T-cell aging is the loss of the costimula-
tory molecule CD28 [64]. Additional molecules have been identified whose patterns 
of expression changes with age. Interestingly, many of these molecules, like CD28, 
are immunoregulatory receptors that might alter the ability of T cells to respond to 
antigen. Similar to the effects of age on memory T-cell subset distribution, CD8 
T cells more readily exhibit these changes than do CD4 T cells. For example, up to 
70% of CD8 T cells have lost CD28 by age 80, compared to a maximum of 25% 
of CD4 cells [63]. Similarly, CD85j, an inhibitory receptor for most classical and 
nonclassical MHC class I molecules [65], is dramatically increased on memory 
CD8 T cells in the elderly [63]. This acquisition, which in CD8 T cells is as robust 
as the loss of CD28, occurs on only a very small subset of CD4 T cells. The distinct 
behaviors of aging CD4 and CD8 T cells, which are also seen in nonhuman primates 
[66], extends to more artificial human settings as well; long-term in vitro culture 
of T cells, which mimics aging in many molecular respects, induces characteristic 
changes much more readily in CD8 T cells [63].  

     4.1      TCR Repertoire Loss with Age  

   In light of thymic decline and the steady decrease in naïve T cells with age, it is 
important to know whether the naïve TCR repertoire undergoes a similar contrac-
tion. Our lab developed a technique (described above) to estimate TCR  β -chain 
frequency in an individual. Two studies of naïve CD4 T cells [19, 29] using this 
method revealed that, in young individuals, the median frequency of T cells bearing 



Age, T-cell Homeostasis, and T-cell Diversity in Humans 183

a given  β -chain is <1 in 20 million. This predicts a total  β -chain repertoire of 20 
million in naïve CD4 T cells. This value is an upper estimate due to the suboptimal 
sensitivity of the limiting dilution system used. Arstila, et al. used the immunoscope 
technique, which should underestimate true diversity, to arrive at a figure of 1–2 
million different  β -chains in naïve CD4 T cells in the young [28]. The actual value 
is probably in between this and our estimate.  

   How does the naïve CD4 TCR repertoire change with age? Remarkably, in spite 
of little to no thymic output,  β -chain sequences from individuals up to the age of 
65 are present in frequencies similar to those of 20-year-olds. Not only do the most 
infrequent  β -chains represent over 60% of the tested sequences, resulting in the same 
median frequency of <1 in 20 million, the 60- to 65-year-old donors do not have 
an increase in overrepresented  β -chain sequences; only 20% of tested sequences in 
both age groups are more frequent than 1 in 1 million. These findings indicate that 
homeostatic mechanisms effectively maintain the naïve repertoire through age 65 
even without significant input of new T cells from the thymus.  

   When individuals in their late seventies are examined, a dramatic change in 
naïve CD4 T-cell repertoire maintenance is revealed. Whereas in younger individu-
als, about 60–70% of  β -chain sequences examined are less frequent than 1 in 5 
million, nearly 100% of  β -chain sequences from 75- to 80-year-old individuals are 
more frequent than 1 in 1 million. In fact, the majority of sequences are present at 
a frequency greater than 1 in 200,000. Thus, in a single decade, 99% of the  β -chain 
repertoire is lost. A similarly dramatic repertoire collapse is seen in the memory 
compartment of CD4 T cells in the elderly (depicted in Fig. 4). This may reflect a 
generalized break down in T-cell homeostatic mechanisms at advanced age.  

     While a similar examination of the naïve CD8 T-cell repertoire in the elderly 
has not been done, indirect evidence suggests that diversity loss occurs earlier and 
more steadily in CD8 T cells. As discussed above, the loss of naïve CD8 T cells 
is more severe than for CD4 T cells (see Fig. 2). The corresponding homeostatic 
pressure to counteract this loss may proceed without preservation of the TCR rep-
ertoire. Indeed, CD8 T-cell clonal expansions emerge early in life and continue to 
accumulate with age [67]. As depicted in Fig. 4b, clonal expansions are much less 
common and occur later in life with the CD4 T-cell compartment [68]. While many 

Fig. 4  Changes in T-cell Heterogeneity and Turnover with Age (a) Schematic representa-
tion of CD4 TCR repertoire collapse after age 65. (b) Schematic representation of accumu-
lation of CD4 and CD8 T-cell clonal expansions with age. (c) Schematic representation of 
increased peripheral T-cell turnover late in life
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expanded clones come from the memory compartment, naïve TCR clones may each 
respond differently to increased homeostatic stimuli, and unbalanced proliferation 
may compromise the diversity of the dwindling naïve compartment. Future studies 
that directly assess naïve CD8 T-cell diversity are needed to more fully appreciate 
the consequences of age on the naïve T-cell pool.  

   In the absence of new thymic T-cell production, naïve CD4 TCR diversity is 
maintained until the seventh decade of life. Similarly, the naïve CD8 T-cell popula-
tion, while experiencing a steadier decline in numbers and probably diversity, is 
remarkably stable for many years after thymic involution. Why, after years of suc-
cessful repertoire preservation, does this maintenance begin to fail? One possibility 
is that, with a minimal influx of new T cells from the thymus, peripheral homeo-
static mechanisms are capable of maintaining a diverse repertoire [69]. In this case, 
the collapse of naïve diversity after age [65] may follow the  absolute  end of thymic 
production, thereby overwhelming homeostatic mechanisms.  

   Alternatively, evidence from humans and nonhuman primates points to a fail-
ure of homeostasis late in life. For both human naïve CD4 T cells [19] and rhesus 
macaque naïve CD4 and CD8 T cells [70], T-cell turnover significantly increased 
in old individuals (depicted for humans in Fig. 4c). In macaques, the increases 
proliferation seems to be a reaction to increased cell loss. In fact, animals with the 
smallest naïve compartments experience the most dramatic cell turnover. As the 
authors suggest [70], declining naïve T-cell numbers trigger a compensatory, yet 
inadequate, proliferation to refill the compartment. This stimulus exacerbates the 
problem by shifting naïve cells to a memory phenotype, thereby further depleting 
naïve numbers. Thus, the very mechanism for preserving the naïve population may 
contribute to its ultimate demise by creating a feedback loop that overwhelms the 
homeostatic capacity of elderly individuals. The factors leading to declining T-cell 
diversity in the elderly are depicted in Fig. 5.  

                   5      Implications of Diversity Loss  

   A wide array of unique TCR within the naïve T-cell compartment is necessary to 
protect against an unpredictable and diverse antigen pool. Without a naïve response, 
many ubiquitous and benign infections would be deadly. Emerging neoplastic cells, 
whose presence would normally be detected by naïve T cells, could survive for the 
time required to accumulate the additional mutations needed for malignancy. Effec-
tive vaccinations require the long-lived memory cells that remain following activa-
tion and expansion of naïve T cells specific for the target antigen. Additionally, 
existing T-cell memory, from past infections or vaccines, must persist to prevent 
reactivation of chronic infections or reinfection by a familiar pathogen. It seems 
clear that the elderly, who face a steady decline in naïve T-cells and a dramatic col-
lapse of naïve and memory T-cell repertoire diversity late in life, should respond 
poorly to challenges requiring full T-cell function. Although infections, cancer, and 
poor vaccine responses disproportionately affect the very old, it is difficult to assess 
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how much of this is due to a loss of TCR diversity. Several examples of decreased 
T-cell repertoire in mice and humans hint at the importance of a diverse response.  

   Many natural and experimentally manipulated genetic backgrounds in mice 
result in contracted T-cell repertoires. These settings have been used to assess how 
reduced TCR availability affects immune responses. NZW mice and strains with the 
 tcr      α     haplotype (e.g. C57L) lack certain elements of the TCRB locus [NZW: deletion 
of C  β 1 , D  β 2 , and all J  β 2  segments (71);  tcr      α    : deletion of five V  β   segments and altered 
V  β  10 sequence (72)] resulting in a 50–60% reduction in potential TCR. T cells 

Fig. 5 Determinants of Naive T-cell Diversity (a) Young adult human. 1- A steady supply of new 
naive T cells continually adds to TCR repertoire. 2- Existing naive T cells proliferate in response 
to daily cell loss. 3- Exposure to antigen shifts naive clones to the memory compartment. 4- Naive 
T cells are lost to cell death or attrition. (b) Elderly adult human. 1- Thymus no longer contributes 
new naive T cells. 2- Declining naive T-cell numbers result in severe homeostatic pressure to 
proliferate. 3- In addition to antigen exposure, naive T cells shift to memory phenotype because 
of excessive homeostatic expansion. 4- Naive T-cell death is accelerated due to exhaustion from 
strong proliferative pressures. Black arrows—promotes diversity of naive TCR repertoire; Black-
outlined arrows—depletes naive TCR repertoire; gray arrows—can have neutral and/or detrimen-
tal effects on naive TCR repertoire
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from these mice exhibit reduced ex vivo responsiveness after immunization against 
some, but not all, tested antigens. TdT-deficient mice are unable to diversify D-J, 
V-J, and V-DJ junctions during TCR gene rearrangement resulting in a ~90% rep-
ertoire contraction. Interestingly, these mice are fully protected from lymphocytic 
choriomeningitis virus and Sendai virus infections [73]. Although other challenges 
have not been examined, it is clear that a limited repertoire is capable of enough 
cross-reactivity to control certain pathogens.  

   Gene targeting of TCR loci reduces TCR diversity even more dramatically than 
deletion of the TdT enzyme. For example, all T cells from the TCR OT-1 β  trans-
genic mouse express the same TCR  β -chain (specific for an OVA peptide when 
expressed with the OT-1 α -chain) and, therefore, all TCR diversity results from 
TCRA gene rearrangement. In the context of this dramatic repertoire contraction 
(>98%), these mice are unable to reject allogeneic bone marrow [74]. Other experi-
ments using a different TCR  β -chain transgenic strain have shown that some anti-
gen-specific responses are not absent, merely different [75]. After immunization 
with the bacteriophage protein cl, splenic T cells from both TCR  β  chain transgenic 
mice and wild-type littermates responded ex vivo to the cl protein. When challenged 
with peptides derived from cl, wild-type splenocytes responded most strongly to 
the peptide known to be immunodominant. In contrast, transgenic mice responded 
more strongly to a different peptide that yielded no response in wild-type spleno-
cytes. Interestingly, both strains of mice were equally capable of a strong response 
to both peptides when the peptide, rather than whole cl protein, was the immunizing 
antigen. Therefore, it seems the severe repertoire contraction in these TCR  β -chain 
transgenic mice created a shift of immunodominance without creating a “hole” in 
the repertoire. That is to say, T cells from these mice  can  respond well to the classi-
cal immunodominant peptide but, when faced with the full protein antigen, expand 
more readily against a different peptide.  

   From the above examples, it is clear that the requirement for TCR diversity in 
the mouse is context dependent. This is most likely true for humans too, although 
direct examination of repertoire contraction in humans is more difficult. A single 
patient with a partial X-linked severe combined immunodeficiency (Xid) rever-
sion has provided a rare glimpse at the in vivo consequences of TCR contraction 
in humans. Although family and clinical history and gene sequencing suggested 
the patient had Xid, a disease caused by the genetic lack of a functional cytokine 
common  γ -chain [76], he had a nearly full-sized T-cell compartment [77]. The Xid 
mutation usually blocks T-cell development by preventing IL-2 signaling. In this 
patient, a compensating somatic mutation in the common  γ -chain gene occurred in 
a single T-cell precursor allowing descendants of this cell to undergo normal thymic 
development. Immunoscope analysis at age 3 revealed that extensive post-thymic 
expansion of an estimated 25,000 distinct TCR clones managed to fill the T-cell 
compartment [78]. In vitro challenge of T cells with a variety of antigens revealed 
blunted responsiveness. While some in vivo T-cell functions, such as a skin test for 
the BCG vaccine, were intact, it is unclear if these responses would be protective in 
the face of a pathogen challenge [78]. Subsequent follow-up has not been reported, 
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and it remains to be seen if this patient will be at increased risk of immune defi-
ciency in the future.  

   An in vivo Hepatitis C virus study in chimpanzees revealed a setting where the 
antigen-specific CD8 T-cell repertoire predicted the outcome of infection [79]. A 
cohort of animals were all inoculated with an identical strain of virus and followed. 
Some animals exhibited a diverse array of TCR antigen-binding domains within 
virus-specific T cells while other responses were more homogeneous. Those ani-
mals with a narrow repertoire among responding T cells were more likely to carry 
viral escape mutants and to never clear the infection. This homogeneity preceded 
viral escape and persisted after a response was mounted to the new mutants. Pre-
sumably, animals with more diverse responses were able to respond to viral muta-
tions as they arose, thus preventing expansion of novel epitopes. These findings 
highlight the contribution of TCR diversity to a flexible immune response capable 
of adapting to pathogens that evolve during an infection.  

       Indirect evidence from studies of human aging suggests that age-related reper-
toire collapse may indeed have detrimental effects on survival. A longitudinal exam-
ination of octogenarians in Sweden revealed an “immune risk phenotype” (IRP) that 
predicted 2-year mortality. Individuals with the IRP, which was originally defined 
as inversion of the CD4:CD8 ratio (normal is >1; IRP is <1) and decreased in vitro 
T-cell proliferation, were more likely to die within the 2-year follow-up period com-
pared to non-IRP individuals [80]. Additionally, the prevalence of the IRP doubled 
from 16 to 32% over the 2 years. A subsequent study showed that a decreased CD4:
CD8 ratio alone is an adequate marker of the IRP and its accompanying increased 
mortality risk [81]. Importantly, as the proportion of CD8 cells increases, the con-
tribution to total CD8 T cells comes from fewer and fewer clonotypes [26]. Thus, in 
this elderly population, the individuals with the least diverse CD8 populations were 
more likely to die during the 2-year study period. While the direct cause of increased 
mortality is unknown, this correlation is consistent with other studies linking CD8 
clonal expansions to decreased EBV [82] and influenza responses [83, 84].  

   Interestingly, a more recent report following the nonagenarians found that those 
individuals who reach the age of 100 are free from the IRP and have T cells more 
similar to middle-aged individuals than even the younger-elderly [85]). For exam-
ple, the CD4:CD8 ratios of centenarians are not only >1 but are consistently more 
CD4-heavy than even individuals in their early nineties. Additionally, centenarians 
had fewer CD8 + CD28 -  T cells, by absolute numbers and as percent of total CD8 
T cells, than younger-elderly. As the authors suggest, the collective characteristics 
of the centenarian population obviously excludes those individuals who have died 
and, therefore, may represent features of “successful aging.” For this reason, a lon-
gitudinal examination of T-cell repertoires in the very old may contribute to our 
understanding of the requirement of TCR diversity for longevity. Can TCR diversity 
within various T-cell compartments predict mortality as successfully as the IRP? Do 
the successfully-aged exhibit the dramatic collapse of the naïve CD4 repertoire that 
we have found in individuals after age 75? Answers to questions like these will help 
clarify the true in vivo importance of declining TCR diversity with age.  
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       1 Introduction   

T-regulatory cells have come to dominate immunology over the last decade [1]. The 
ability of cellular components of the immune system to suppress immune function 
was noticed more than 20 years ago and was recognized by a number of highly 
cited publications [2]. However, the lack of a specific phenotype for these cells, 
and an inability to document precise physiological mechanisms for their action, 
limited their investigation by detailed experimental study. The pioneering work of 
Sakaguchi and colleagues reestablished regulatory cells and has generated a field 
of research that extends into all areas of clinical immunology, including immune 
senescence [3].           

At first sight, the concept that the immune system must require some form of cel-
lular control of immune activation is surely no surprise. There are very few physi-
ological systems that can proceed without any form of feedback mechanism and it 
is now appreciated that there are many different subsets of regulatory cells involved 
in immune haemostasis. By far the most widely recognized is a CD4+ T-cell popu-
lation that expresses high levels of CD25. The CD4+CD25+ subset has become the 
prototypic “T-regulatory” cell in both murine and human studies and has provided 
the basis for many thousands of publications. However, the fact that CD25 is also 
expressed on all activated effector T-cells has lead to the quest for a “third marker” 
that will provide a more definitive and unique phenotype for the regulatory popula-
tion. Several of these molecules have been suggested over recent years, including 
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GITR and low expression of CD127. However, it is the transcription factor FOXP3 
that has emerged as the most reliable marker for this functional subset [4, 5] (Fig. 1). 
FOXP3 is a member of an important family of transcription factors that are involved 
in processes such as language development and which seem to have a central role in 
development of developmental functions. This is supported by observations in mice 
deficient in FOXP3 gene function, which develop an autoimmune condition second-
ary to unregulated immune responses. Even more compelling are the findings in 
rare human individuals that were born without FOXP3 function and suffer from an 
unusual syndrome of autoimmune disease dominated by inflammation of endocrine 
organs. Although there is some evidence that FOXP3 may be up-regulated on 
activation of effector T-cells in humans, most authors now agree that this marker is 
a valid and reliable marker of functional regulatory phenotype across both species. 
Unfortunately, one concern with the use of FOXP3 is that its detection requires the 
permeabilisation of cells and therefore renders cells unviable for further downstream 
analysis. For this reason, a surface membrane phenotype which would allow for the 
cloning and isolation of regulatory cells would provide a significant boost to this area 
of research. In 2006 low level expression of CD127 emerged as a good marker of 
FoxP3 expression in regulatory CD4+ T-cells [6, 7]. CD39 is the most recently evalu-
ated phenotypic marker and is positively associated with FoxP3 expression [8].  

  The mechanism of action of T-regulatory cells remains the subject of active 
investigation and it is perhaps fair to say that no consensus has emerged on this 
topic. Some regulatory populations appear to secrete immunosuppressive cytokines 
such as IL10 or TGFβ but these properties are not documented in all subsets. Cyto-
toxic activity has also being observed in some experiments. The target cells for T-
regulatory function are also uncertain, as it appears that regulatory cells can act both 
at the level of antigen presenting cells, and therefore modulate induction of immune 
responses, as well as act directly on effector cells.  
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a. The characteristic phenotype is of CD4+FoxP3+ cells. b. FoxP3 expression correlates with 
high expression of CD25.
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    2      The Origin of T-regulatory Cells: Thymically-derived 
or Generated in the Periphery?  

  Much has been made of the concept that most regulatory cells are derived by a dis-
crete developmental pathway within the thymus which leads to a committed popu-
lation of “natural” regulatory cells which never have the capacity to act as typical 
effector populations. Whilst much of this work has, necessarily, been performed in 
murine models, it has been much more difficult to determine that this is the case 
within human individuals. Interestingly, studies from both young and aged mice 
have shown that CD4+ FoxP3+ T-cells are found in both cohorts with some evidence 
of increased production during ageing. This raises the question as to whether CD4+ 
FoxP3+ T-cells continue to be produced by the human thymus throughout life. At 
first sight this might be considered unlikely given the well documented process of 
thymic involution that occurs during healthy human ageing, although it should be 
appreciated that the deterioration in naïve T-cell output is much more marked for the 
CD8+ population in comparison to CD4+ subsets. The reason for this last observa-
tion has never been entirely explained and could conceivably be partly explained by 
some contribution of ongoing CD4+ regulatory production.  

  However, it is also now clear that T-regulatory cells can be induced within the 
peripheral immune system by derivation from naïve or effector CD25- T-cell popu-
lations [9] (Fig. 2). The conditions that give rise to the generation of regulatory 

Fig. 2 Model for generation of T regulatory cells
Regulatory cells might arise from (a) a discrete pathway of differentiation through the thymus or 
(b) be induced from naïve T cell populations during T cell priming.
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cells have not been entirely resolved, but are likely to involve microenvironmental 
signals including the presence of immunosuppressive molecules such as TGFβ and 
Il-10 at the time of dendritic cell priming of T-cell effector molecules [10]. When 
present during the first 3 days of T-cell priming the presence of TGFβ can induce 
FoxP3 expression in up to 90% of responding T-cells and this expression can be 
sustained for long periods of time in at least a subset of this population [11]. This 
mechanism of T-regulatory cell production is likely to become increasingly impor-
tant during ageing of human populations. Given the longevity of humans and the 
well characterized involution of thymic function that occurs, it would appear highly 
unlikely that a discrete pathway of thymic maturation could provide the only source 
of T-regulatory cell production in adult life. Moreover, recent evidence has emerged 
to suggest that the turnover of T-regulatory cells is actually surprisingly short and 
that these cells are a highly proliferative population with short telomeres and great 
susceptibility to apoptosis [12]. Taken together, this evidence does strongly suggest 
that the peripheral production of T-regulatory cells within the immune system is a 
powerful factor in their generation. The site of origin of regulatory cell induction is 
also likely to be important in the functional properties of the mature cell as evidence 
is accumulating that extrathymic maturation is associated with impaired prolifera-
tive potential [13].  

  The number of CD4+ regulatory cells within the human immune system is vari-
able depending both on the precise definition of such cells, the age of the individual 
and any underlying disease processes. Typically, between 2 and 5% CD4+ T-cells 
will express a CD25+ or FoxP3+ phenotype and further studies are required to show 
whether these numbers are influenced by any genetic or environmental factors.  

    3      T-regulatory Cell Populations During Healthy Ageing  

  An important question in relation to immune senescence is how the number and 
function of T-regulatory cells is influenced by physiological ageing, both in humans 
and in murine models. T-regulatory function certainly appears to be required 
throughout life and depletion of FoxP3+ T-cells in mice leads to a breakdown of 
self-tolerance at all ages [14]. Within murine systems, a number of investigators 
have shown an apparent increase in the number of CD4+ FoxP3+ T-cells in aged 
mice. CD4+FoxP3+ T-cell numbers can increase early in murine development with 
the BDC2.5NOD mouse showing an increase between the age of 6 and 18 weeks. 
However a 4 month old mouse is not aged in terms of the natural murine lifespan 
so this observation has limited relevance to studies of immune senescence. Zhao 
et al. studied Balb/c mice that were over 20 months of age and therefore repre-
sented a physiologically aged cohort [15]. In a comprehensive study they showed 
that the number of CD4+CD25+FoxP3+ T-cells increased with age in virtually all 
lymphoid compartments. However, the regulatory function of these cells did show 
some deficiencies in comparison to cells from young mice. In particular there was 
reduced inhibition of cytokine production by effector cells despite comparable sup-
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pression of proliferation. It is interesting that the proportion of natural T-regula-
tory cells within the thymus can also increase during ageing suggesting that this 
mechanism may continue to make a contribution to peripheral accumulation [16]. 
Thymic-regulatory cells from elderly mice were able to suppress effector T-cells 
from young animals with similar efficiency to regulatory cells from younger mice. 
However, their ability to suppress effector cells from elderly mice was impaired 
indicating some functional differences between cells from young and older animals.  

  Sakaguchi’s group has also addressed accumulation of T-regulatory cells during 
murine ageing and identified only a marginal increase in natural CD4+CD25+FoxP3+ 
T-cells. In contrast, increased levels of FoxP3 expression were seen in the 
CD4+CD25- population and identified a population with hyporesponsive function 
[17]. Their interpretation was that decreased immune function during ageing was 
primarily a reflection of a decrease in effector cell function rather than regulatory 
cell accumulation [18]. Comparable findings have been demonstrated in human 
subjects.  

  A number of studies are now addressing the number and function of T-regu-
latory cells in adult human populations. Our own data published in 2005 used 
CD4+CD25 high +CD45RO+ membrane phenotype as a marker of regulatory cell 
function [19]. Somewhat to our surprise at that time, we observed a significant 
increase in the regulatory T-cell population during ageing. In addition, we showed 
that the functional activity of these populations was also maintained during the age-
ing process with equivalent suppressor activity to that seen in young patients on a 
cell for cell basis. There are a number of methods by which T-regulatory function 
may be assessed, but suppression of interferon-γ cytokine production by effector 
T-cells in coculture experiments is one of the most reliable and sensitive methods. 
Suppression of proliferation of effector cells in antigenic stimulation or allogenic 
mixed lymphocyte cultures can also be a valuable test.  

  Other investigators have also addressed the question of T-regulatory cell num-
bers in human ageing [20, 21] and have demonstrated that CD4+ FoxP3+ T-cells 
are seen to increase during ageing [22]. This is reassuring as it indicates that the 
more contemporary phenotype of regulatory cells, namely FoxP3 expression, can 
also be used to corroborate the increase in regulatory cells with ageing. Despite this, 
some evidence continues to suggest that functional activity is not equivalent in older 
subjects [23].  

  An important question that needs to be addressed in T-regulatory cell biology 
is the degree of coexpression of FoxP3 and CD25 on CD4 regulatory populations. 
In particular, CD25- T-cells expressing FoxP3 are observed in a number of clinical 
settings and may be related to the use of immune-suppression, ongoing chronic acti-
vation, or potentially immune senescence. There have been few studies to address 
this within humans although within murine systems an increase in CD25- FoxP3+ 
regulatory cells with ageing has been observed. In general, the evidence seems to 
suggest that FoxP3 is the more reliable marker of functional regulatory activity and 
the expression of CD25 therefore becomes less significant. CD25 is the high affin-
ity receptor for interleukin 2 and its physiological role in T-regulatory functions has 
never been completely explained. Some authors have suggested that CD4+ CD25+ 
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T-cells act as a “sink” for cytokine production and thereby act to limit cellular pro-
liferation within the microenvironment but this proposal has not yet received sub-
stantial and confirmatory support.  

  The accumulation of regulatory cells with ageing does suggest that there may 
be increased generation of regulatory cells within the peripheral immune system in 
association with ageing. The mechanisms that may underlie this are unknown but 
differences have been reported between signalling processes in dendritic cells from 
young and old donors [24]. Reduced phosphorylation of AKT within DC in response 
to cell stimulation may be one reflection of differential signalling responses in these 
cells from elderly donors.  

  As with effector populations, T-regulatory cells can be divided into naïve and 
memory subsets based on their expression of CD45 isoforms. Naive regulatory 
populations characterized by CD45RA expression are predominant in infants but 
are still detectable in adult subjects [25]. The extent to which these remain in elderly 
donors with immune senescence has yet to be studied.  

    4      Regulatory T-cell Populations within the CD8+ 
T-cell Repertoire  

  In contrast to the extensive investigation of CD4+ regulatory T-cells there has been 
much less study of regulatory populations on cells within the CD8+ population. 
Suppressor T-cells have been described for many years and their phenotype appears 
to be dominated by lack of expression of the CD28 costimulatory molecule whereas 
expression of FoxP3 on CD8 has been poorly characterized. Naive CD8+ T-cell 
numbers decline dramatically with age to be replaced by accumulation of effector 
populations and this homeostatic instability may contribute to the differential struc-
ture of CD4 and CD8 T-cell pools [26].  

  A complexity is that FoxP3 may be expressed transiently after T-cell activation of 
effector T-cells although this induction does not lead to acquisition of complete reg-
ulatory function [27]. CD8+ populations that do express FoxP3 have been reported 
in a number of clinical scenarios [28, 29] but their functional role, and relevance to 
ageing, has not yet been addressed.  

    5      The Potential Contribution of T-regulatory Cells to Immune 
Senescence  

  One area in which there has been disappointing progress in T-regulatory biology 
has been confirmation of the antigenic specificity of these populations. Great debate 
continues to address the issue as to whether effector CD4+ T-cells and CD4+ regu-
latory cells recognize the same population of antigenic determinants or display spe-
cificity against discrete epitopes which may themselves play a role in determining 
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the physiological direction of T-cell differentiation [30]. T-regulatory cells do appear 
to have specificity for self-epitopes and in this regard overlap at least partially with 
a population of potentially self reactive effector cells [31]. The former hypothesis 
gains considerable import from use of T-cell receptor transgenic models in which 
alteration of environmental conditions can lead to the generation of T-regulatory 
or T-effector cells with the same T-cell receptor expression. It had been believed 
that T-regulatory cells may represent a population with uniquely high affinity for 
self-antigen but such experiments suggest that critical determinants during T-cell 
priming maybe more important in determining the nature of T-cell differentiation 
after antigen priming.  

  Despite this, it has been widely reported that, although T-regulatory cells may 
require antigenic stimulation for activity, their activity, once triggered, is non-
specific in nature and therefore can act to suppress bystander populations. In this 
regard, it is entirely possible that individuals who accumulate large populations of 
T-regulatory cells can be subject to some form of generalized immune suppression 
which may impact on their ability to mount effective immune responses against 
infectious agents or, potentially, tumour cells. There is great interest in studying 
the number and function of T-regulatory cells in patients with active malignant dis-
ease and a number of trials and animal models, either targeting CD25 or CTLA4, 
are now addressing how suppressional manipulation of T-regulatory cell function 
may serve to increase antigen-specific T-cell immune responses against transformed 
tissue [32, 33]. Some of these studies are already providing encouraging clinical 
responses but, perhaps not surprisingly, such treatments can often unleash powerful 
autoimmune phenomena with unusual antigenic specificities, including hypophysi-
tis or hepatitis [34].  

  The question therefore needs to be addressed as to whether the increase in T-reg-
ulatory cells that is observed during healthy ageing contributes directly to immune 
senescence in this population [35]. In contrast, despite an increase in absolute num-
bers the suggestion that regulatory cell function may be impaired in ageing might 
also be relevant to the increase in autoimmune disease with age. To date there has 
been little experimentation which has allowed any detailed interpretation of this 
concept. However, Trzonkowski et al. have shown that the accumulation of regula-
tory cells that is observed with ageing is directly associated with impaired activity 
of CD8+ and NK-cells [21]. When effector cells were purified away from regulatory 
populations they regained their natural level of activity whereas add-back of regu-
latory populations led to reestablishment of impaired function. Within the murine 
system it should be possible to deplete these populations and assess T-cell immu-
nity in mice of different ages and these experiments are eagerly awaited. Sharma et 
al. have shown that the accumulation of regulatory T-cells in aged Balb/c mice is 
directly responsible for the inability of older animals to reject tumour tissue [36]. 
Encouragingly, depletion of regulatory T-cells with an anti-CD25 antibody was able 
to reverse this deficiency.  

  Within the human system, such experiments are clearly much more difficult to 
devise but there is surely enough evidence now to make this an important clinical 
aim. Useful information is likely to be gleaned from the increasing number of early 
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phase trials of T-regulatory modulation in both malignant and infectious disease 
which will reveal something regarding contribution of T-regulatory cells to immune 
senescence. Therapeutic manipulation of T-reg numbers will prove a difficult 
challenge but the use of agents such as interleukin-7 may modulate the nature of 
thymic output [37]. Granulocyte colony stimulating factor (G-CSF) administration 
leads to increased recruitment of regulatory cells through activation of tolerogenic 
plasmacytoid dendritic cells [38] and this cytokine axis might therefore offer scope 
for intervention. Adrenergic innervation of the thymus has been postulated to play a 
role in thymic involution and pharmacological blockade leads to increased T-regula-
tory cell production [39]. One interesting question will be the relative serum level 
and tissue availability of TGFβ during ageing as this may play an important role in 
the peripheral accumulation of regulatory cells.  

    6      Conclusion  

  In conclusion, T-regulatory cells are emerging as the most intensively studied popu-
lation of cells within the human immune system at the current time. As such, it is 
not surprising that they are now being addressed in relation to immune senescence, 
itself one of the most important areas of clinical immunology. Initial data suggests 
that regulatory cell numbers are indeed increased in healthy elderly individuals, 
and that the functional properties of these cells are also maintained. Although more 
needs to be discovered regarding the antigenic specificity and functional activity of 
these cells, it is likely that manipulation of T-regulatory cell function could represent 
a novel form of immunotherapeutic intervention in elderly individuals. Whether or 
not it will be possible to limit regulatory cell function without an associated increase 
in autoimmunity is currently unknown. Such clinical intervention is likely only to 
be possible when much greater understanding is made of the natural physiological 
role of these cells in immune responses.  
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                          Abstract   :    Peripheral blood mononuclear cells were obtained from healthy Japa-
nese individuals ranging in age from 20 to 90 years old and analyzed by using three 
color flow cytometer with regards to the number and percentage of various lym-
phocytes. In addition, we assessed the proliferative capacity of T-cells in the pres-
ence of an anti-CD3 monoclonal antibody and the amount of cytokines produced in 
the supernatant.    

  The results showed that an age-related decline was observed in the numbers of 
CD3 +  T-cells, CD8 +  T-cells, naive T-cells, CD8 + CD28 +  T-cells, and B-cells and in 
the proliferative capacity of T-cells. The rate of decline in these immunological 
parameters except for the number of CD8 +  T-cells was steeper in males than in 
females ( p <0.05). An age-related increase was observed in the number of CD4 + 
T-cells, memory T-cells, and NK-cells and in the CD4/CD8 ratio The rate of increase 
of these immunological parameters was steeper in females than in males ( p <0.05). 
The T-cell proliferation index (TCPI), which was calculated based on T-cell prolif-
erative activity and the number of T-cells, showed an age-related decline. The rate 
of decline in the TCPI was again steeper in males than in females ( p <0.05). The 
score of immunological vigor calculated using 5 T-cells parameters also declined 
with age, and the rate of decline was steeper in males than in females ( p <0.05). The 
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present study has confirmed the age-related changes in immunological parameters 
reported in literature. In addition, we found that a statistically significant difference 
was observed between males and females in some immunological parameters such 
as the number of T-cells and TCPI. The slower rate of decline in the immunological 
parameters studied in females than in males may be consistent with the fact that 
women survive for longer period of time than men.     

     1 Introduction  

  Immunological functions are known to decline with age in many animal models 
and humans (Linton and Dorshkind  2004 ; Utsuyama et al.  1992 ; Hirokawa et al. 
 2006 ). Understanding the level of immunological functions at an individual level 
is clinically important, since the immunological decline is accompanied by various 
diseases such as infections, cancer and vascular diseases.  

  Accumulating evidences mainly obtained from animal models have shown that 
age-related immunological decline mainly occurs in T-cell dependent immune func-
tions, and is mainly caused by thymic involution that begins in the early phase of 
life (Hirokawa et al.  2006 ).  

  In humans, data regarding immunological functions are mainly obtained from 
blood serum and blood cells. Serum contains immunoglobulins, complements and 
cytokines. The levels of IgG and IgA in serum show a trend of increase with age 
(Suzuki et al. 1984). The level of complements does not change remarkably with 
age. The level of cytokines in healthy people is generally low. In contrast, the level 
of white blood cells (WBC) changes remarkably during disease and also with aging. 
WBC comprises granulocytes, lymphocytes and monocytes. There are various sub-
populations of lymphocytes with different functions. Data regarding the age-related 
changes in lymphocytes and their functions are not sufficiently available as yet.  

  The purpose of this study is to provide immunological data on peripheral blood 
lymphocytes obtained from 162 male and 194 female healthy volunteers, ranging in 
age from 20 to 90 years. Our study discusses the age-related changes in subpopula-
tions of peripheral blood lymphocytes from both immunological and gerontological 
viewpoints.  

    2      Materials and Methods  

   Blood specimens:  Two milliliters of blood was taken in a tube containing ethylen-
ediaminetetraacetic acid (EDTA-2K) for hematological analysis performed using a 
PENTRA80 analyzer (Horiba, Kyoto, Japan). Eight milliliters of blood was taken 
in a cell preparation tube (vacutainer, 362761, Becton Dickinson (BD), NJ) for col-
lecting mononuclear cells and was used for immunological analyses.  

   Subjects:  Healthy volunteers were selected based on clinical records and lab-
oratory examinations. None of the blood donors were suffering from neoplastic 
or autoimmune disease; further, none were receiving any medications that could 
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influence immune functions. Routine laboratory examinations of the serum were 
performed to examine the liver and kidney functions. A total of 162 males and 194 
females were examined in the present study. Table  1  shows the number of male and 
female subjects and their ages.        

   Flow cytometry:  Mononuclear cells that were obtained from the peripheral 
blood, as described above, were stained with a combination of 2 or 3 monoclonal 
antibodies (mAbs) conjugated with 2 or 3 chromophores. A fluorescence-activated 
cell sorting flow cytometer (FACScan BD) was employed in the present study.  

   Monoclonal antibodies:  The antibodies used were fluorescein isothiocyanate 
(FITC) conjugated anti-CD4, FITC-conjugated anti-CD20 and FITC-conjugated 
anti-CD16; phycoerythrin (RD1) conjugated anti-CD3, RD1-conjugated anti-CD8 
and RD1-conjugated anti-CD25; phycoerythrin-Texas Red (ECD) conjugated anti-
CD45RA and ECD-conjugated anti-CD3; phycoerythrin-cyanin 5.1 (PC5) conju-
gated anti-CD28: phycoerythrin (PE) conjugated anti-CD56. Those mAbs were 
purchased from Beckman Coulter. The following combinations of mAbs were used: 
CD3-RD1/CD20-FITC, CD4-FITC/CD8-RD1/CD45RA-ECD, CD4-FITC/CD8-
RD1/CD28-PC5, CD56-PE/CD16-FITC, CD3-ECD/CD4-FITC/CD25-RD1.  

   Proliferative response of T  -  cells : The proliferative response of T-cells to anti-
CD3 mAb (ORTHOCLONE OKT3, ORTHO BIOTEC, NJ) was assessed accord-
ing to MTS method (Cell Titer 96 Aqueous One Solution Cell Proliferation Assay 
(Promega Co., WI)).  

  Assays were performed in microplates (3860-096, Asahi Glass Co. Japan). The 
cells (1×10 5 ) in 0.2 ml of RPMI 1640 medium supplemented with 5% fetal bovine 
serum (FBS) were stimulated with immobilized anti-CD3 mAb (Orthoclone OKT3, 
Ortho Biotec, NJ). The plates were then placed in a 5% CO

2
 incubator for 72 hrs. 

After incubation for 68 hrs, 40 μl of MTS solution (Cell Titer 96 Aqueous One 
Solution Cell Proliferation Assay (Promega Co., WI)) was added into each well 
and absorbance at 490nm was recorded with a spectrophotometric plate reader; this 
value was used for determining the relative magnitude of T-cell proliferation.  

   T-cells proliferation index (TCPI) and immunological age (IA) : TCPI was calcu-
lated by the following equation.  

  TCPI = T-cell proliferative activity × (T-cell number/1000)  

  In this equation, T-cell proliferative activity was obtained as optical density 
(OD 

490
 ) ranging between 0.95 and 2.0 by the abovementioned MTS method. The 

TCPI and age showed a statistically significant correlation: TCPI = −0.0174 x 
(Age)+ 2.5348 ( Fig. 5c  and  5d ). Using this equation, it is possible to calculate age 
by assigning a value to TCPI. The age calculated by this equation was referred to as 
immunological age (IA).  

        Scoring and grading of immunological functions : The values of immune param-
eters were standardized by assigning scores of 3 (high level), 2 (moderate level) and 1 

Table 1 Number of male and female subjects

Age 20 – 29 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79 80 – Total

Male 13 23 35 37 29 22 3 162
Female 44 32 36 34 18 26 4 194
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(low level) according to the data base obtained from 300 healthy people. After stand-
ardization, the scores of different types of immune parameters were summed and the 
numerical value obtained for each individual was termed the score of immunological 
vigor (SIV). These scores were then classified into 5 grades, as shown in Table  2 .        

SIV-7 comprises 7 parameters that are number of T cells, TCPI, CD4/CD8 ratio, 
number of naïve T cells, naïve/memory ratio, number of B cells and number of 
NK cells. SIV-5 comprise 5 T cell-related parameters that T cells, TCPI, CD4/CD8 
ratio, number of naïve T cells and naïve/memory T cells ratio.

   Assessment of cytokine production:      Assays were performed in microplates (3860-
024, Asahi Glass Co. Japan). Cells (1×10 6 ) in 1.5 ml of RPMI 1640 supplemented 
with 10% FBS were stimulated with immobilized anti-CD3 mAb (Orthoclone 
OKT3, Ortho Biotec, NJ). Culture supernatant were collected at 48 hrs and stored 
at -80°C until use. A flow cytomix kit (BMS810FF, Bender MedSystems, Austria) 
was employed for the evaluation of cytokines (Interleukin (IL)-1β, IL2, IL-4, IL5, 
IL-6, IL-8, IL-10, IL-12/p70, interferon (IFN) γ, tumor necrosis factor (TNF) α, 
TNFβ and the assessment was performed using a FACScan analyzer.  

Statistical Analysis: All statistical analyses were performed using StatView soft-
ware. Statistical significance was defined as p < 0.05. Gender difference was exam-
ined by SMA analysis.

    3   Results  

3.1     Number of Whole WBCs, Red Blood Cells 
and Lymphocytes in the Blood   

  The number of red blood cells (RBC) showed a significant age-related decrease 
( p  < 0.001) in males and a declining trend with age in females ( p =0.9535) ( Fig. 1a  
and  1b ) (Table  3 ). The difference between males and females with regard to the 
age-related decline in the number of RBC was statistically significant ( p  < 0.001). 
Although an age-related decline was observed in males, but not in females, the 
absolute level of RBC was higher in males than in females regardless of age.            

  The number of WBCs including granulocytes, lymphocytes and monocytes 
showed a declining trend with age in both males ( p =0.0824) and females ( p =0.2588); 
no statistically significant difference was observed between males and females in 
this regard ( Fig. 1c  and  1d ) (Table  3 ).  

Table 2 Scoring and grading of immunological vigor

Scoring  

SIV-7 7 parameters SIV-5 5 parameters Grading

21 15 Grade  V  Sufficiently high

20 ~ 18 14 ~ 13 Grade IV Safety zone

17 ~ 14 12 ~ 10 Grade III Observation zone 

13 ~ 10 9 ~ 7 Grade  II  Warning zone 

9 ~ 7 6 ~ 5 Grade  I    Critical zone
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Fig. 1 Age related changes in the number of red blood cells (RBC) in males (a) and females (b), 
white blood cells (WBCs) in males (c) and females (d), neutrophils in males (e) and females (f), 
and lymphocytes in males (g) and females (h)
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  The number of neutrophils showed a decreasing trend with age in both males 
( p =0.2178) and females (p=0.1063); no significant difference was observed between 
males and females ( Fig. 1e  and  1f  ) (Table  3 ).  

  The number of lymphocytes showed a decreasing trend with age in males 
( p =0.0593) and an increasing trend with age in females ( p =0.1249); statistically 
significant difference was observed in the age-related change between males and 
females ( p =0.015) ( Fig. 1g  and  1h ) (Table  3 ).  

3.2    Flow Cytometric Analysis   

  (a) CD3 +  T-cells.  
  The number of CD3 +  T-cells showed a statistically significant decrease with age in 
males ( p  =0.0186), and a decreasing trend with age in females ( p  =0.1249). The dif-
ference in the age-related change in the number of CD3 + T-cells between males and 
females was statistically significant ( p =0.049) ( Fig. 2a  and  2b ) (Table  3 ).      

  (b) CD4 +  T-cells.  
  The number of CD4 +  T-cells showed an increasing trend with age in both males 

( p =0.9897) and females ( p =0.1075). This trend was greater in females than in males, 
and the difference between males and females with regard to this trend was statisti-
cally significant ( p =0.005) ( Fig. 2c  and  2d ) (Table  3 ).  

  (c) CD8 + T-cells.  
  The number of CD8 + T-cells showed an age-related decrease in both males 

( p  < 0.0002) and females ( p  < 0.0001), but no difference was observed between 
males and females with regard to this decrease ( Fig. 2e  and  2f ) (Table  3 ).  

  (d) The ratio of CD4 +  T-cells to CD8 +  T-cells (CD4/CD8 ratio).  
  The CD4/CD8 ratio increased with age in both males ( p  <0.0001) and females 

( p  < 0.0001), and this increase was significantly greater in females than in males 
( p  < 0.003) ( Fig.2g  and  2h ) (Table  3 ).  

  (e) CD8 + CD28 +  T-cells.  
  The number of CD8 + CD28 +  T-cells showed an age-related decrease in both 

males ( p  <0.0001) and females ( p  <0.0001) ( Fig. 3a  and  3b ), and the rate of this 
decline was more pronounced in males (-6.089) and in females (-4.136) ( p  < 0.003) 
(Table  3 ).      

  (f) CD4 + CD45RA +  naïve T-cells.  
  The number of CD4 + CD45RA +  naïve T-cells showed a decreasing trend with age 

in both males ( p =0.2615) and females ( p =0.4470) ( Fig.3c  and  3d ). This decreasing 
trend was greater in males than in females, and the difference between males and 
females was statistically significant ( p =0.004).  

  (g) CD4 + CD45RO +  memory T-cells.  
  The number of CD4 + CD45RO +  memory T-cells showed an increasing trend 

with age in males     ( p =0.1531), and an age-related increase in females ( p =0.0001) 
( p  < 0.0001) ( Fig. 3e  and  3f ). In this case, there is no significant gender difference 
(Table  3 ).  
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Fig. 2  Age related changes in the number of T-cells in males (a) and females (b), CD4+ T-cells 
in males (c) and females (d), CD8+ T-cells in males (e) and females (f), and the CD4/CD8 ratio in 
males (g) and females (h)
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Fig. 3 Age related changes in the number of CD8+CD28+ T-cells in males (a) and females (b), 
naive T-cells in males (c) and females (d), memory T-cells in males (e) and females (f), and native 
to memory T-cells (N/M) ratio in males (g) and females (h)
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  (h) Ratio of naïve to memory T-cells.  
  The naïve to memory T-cells (N/M) ratio showed an age-related decrease in both 

males ( p  <0.0001) and females ( p  <0.0003), and this decrease was statistically sig-
nificant ( Fig. 3g  and  3h ). However, no significant gender difference was observed 
(Table  3 ).  

  (i) CD4 + CD25 +  T-cells.  
  The number of CD4 + CD25 +  T-cells showed an increasing trend with age in both 

males (0.7502) and females (0.1818) ( Fig. 4a  and  4b ), but this increase was statisti-
cally not significant. Further, no gender difference was observed (Table  3 ).      

  (j) CD20 +  B-cells.  
  The number of CD20 +  B-cells showed a decrease with age in males ( p  < 0.05) 

and showed a decreasing trend with age in females ( p  =0.15) ( Fig. 4c  and  4d ); no 
statistically significant difference was observed between males and females with 
regard to this decrease ( p  < 0.001) (Table  3 ).  

  (k) CD56 + CD16 +  NK-cells.  
  The number of CD56 + CD16 +  NK-cells showed an age-related increase in females 

( p  <0.0002) and an increasing trend with age in males ( p =0.19) ( Fig. 4e  and  4f ). A 
statistically significant gender difference was observed ( p  <0.001) (Table  3 ).  

3.3    Proliferative Response of T-cells   

  (a) Proliferative response of T-cells by anti-CD3 monoclonal antibody 
(MTS-OD

490
).  

  The proliferative response of T-cells was measured by MTS method and was 
expressed as OD

490
. It showed an age-related decrease in both males ( p <0.0001) and 

females ( p <0.002) ( Fig. 5a  and  5b ), but no gender difference was observed.  
  (b) T-cell proliferation index (TCPI).  
  The TCPI showed an age-related decrease in both males ( p  < 0.0002) and females 

( p  <0.008) ( Fig. 5c and 5d ). The decrease was more pronounced in males than in 
females ( p  < 0.01) (Table  3 ).  

  (c) Correlation between CD8 + CD28 +  T-cells and T-cell proliferative response 
(MTS-OD 

490
 ).  

  The number of CD8 + CD28 +  T-cells and MTS-OD 
490

  showed an age-related 
decease in both males and females; this decrease was statistically significant. It 
is interesting to note that a good correlation was observed between the number of 
CD8 + CD28 +  T-cells and MTS-OD 

490
  ( Fig. 4g  and  4h ).  

   3.4 Scoring of Immunological Vigor (SIV)   

  (a) SIV-7.  
  SIV-7 was calculated based on 7 parameters: T-cells number, TCPI, CD4/CD8 
ratio, naïve T-cell number, naive/memory T-cells ratio, B-cell number and NK-cell 
number.  
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  SIV-7 showed an age-related decrease in both males ( p  < 0.0005) and females
( p  < 0.0002) ( Fig. 5e  and  5f ). No gender difference was observed (Table  3 ).  

  (b) SIV-5.  

Fig. 4  Age related changes in the number of regulatory T-cells in males (a) and females (b), 
B-cells (WBC) in males (c) and females (d), NK-cells in males (e) and females (f), and the cor-
relation between the number of CD8+CD28+ T-cells and the T-cell proliferative response (MTS-
OD490) in males (g) and females (h)
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Fig. 5  Age-related change in the T-cells proliferative response (MTS-OD490) in males (a) and 
females (b), T-cell proliferation index (TCPI) in males (c) and females (d), score of immunologi-
cal vigor (SIV)-7 in males (e) and females (f), and SIV-5 (T-cell immune score) in males (g) and 
females (h)
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  SIV-5 was calculated by using 5 parameters: T-cells number, TCPI, CD4/CD8 
ratio, naïve T-cell number, and naive/memory T-cells ratio; SIV-5 is sometimes 
termed as T-cell immune score.  

  The T-cell immune score showed an age-related decrease in both males ( p  < 
0.001) and females ( p  < 0.0001) ( Fig. 5g  and  5h ). A more pronounced decrease was 
observed in males than in female ( p  <0.02) (Table  3 ).  

3.5     Cytokine Production   

  In the present study, lymphocytes were cultured in vitro in the presence of immobi-
lized anti-CD3 mAb and the cytokines produced in the supernatant were assessed 
as described previously. The subjects for cytokine production comprised 64 males 
and 49 females; this sample size was not adequate for statistical analysis. This pre-
liminary examination has revealed that an age related decrease in the levels of IFNγ, 
IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, TNFα and TNFβ in both male and female sub-
jects. In contrast, an age-related increase was observed in IL-8 (Table  4 ).      

     3.6 Difference in Gender   

  Table  3  lists the regression curves calculated for the data described above, and the 
significance of gender difference was examined by standardized major axis test 
(SMA) analysis.  

  The rate of decrease in the number of T-cells, naïve T-cells, and CD8 + CD28 +  
cells; T-cell proliferation index (TCPI), SIV-5 parameters was slower in females than 
in males. Further, this difference was statistically significant ( p  <0.05 – 0.003). The 

Table 4  Regression analysis on cytokine productions and age in males and females

 Males (N=64) Females (N=49) SAM#

 Regression curve R* p value Regression curve R* p value analysis
IFNγ -10.29x + 0.227 2951 0.0707 -5.95x + 2823 0.123 0.3969 NS
IL-1β -20.72x + 0.276 2553 0.0272 -17.27x + 2857 0.170 0.2419 NS
IL-2 -2.498x + 0.129 307 0.3477 -4.188x +  360 0.243 0.1077 NS
IL-4 -0.021x + 0.020 18.8 0.8853 +0.063x + 11.1 0.083 0.6010 NS
IL-5 +0.694x + 0.099 50.9 0.4468 +0.068x + 53.0 0.022 0.8880 NS
IL-6 -72.72x + 0.248 7713 0.0482 -36.90x + 9470 0.076 0.6054 p=0.010
IL-8 + 4.94x + 0.133 2291 0.2939 + 5.34x + 2073 0.150 0.3025 NS
IL-10 - 9.05x + 0.175 1282 0.1655 - 1.78x + 742 0.063 0.6656 p=0.004
TNFα -144.5x + 0.192 24500 0.1411 -185.5x + 28125 0.251 0.1003 NS
TNFβ -10.02x + 0.378 974 0.0017 - 3.48x + 596 0.222 0.1284 p=0.012

 *R: Correlation coefficient. # SMA: Standardized Major Axis Test. NS: Not significant.
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rate of increase in the number of CD4 +  T-cells was greater in females than in males 
and a statistically significant difference was observed between males and females ( p  
< 0.005). In other words, the slower rate of decline or the greater rate of increase in 
these parameters may indicate that the immunological functions are relatively well 
preserved in elderly females than in elderly males; this finding may be consistent 
with the fact that women survive for longer periods than men. Table  5  shows the val-
ues of these immunological parameters in elderly males and females over 60 years 
of age. All parameters show higher values in elderly females than in males; however, 
the difference is statistically not significant because of the small sample size.        

    4    Discussion  

  In 1992, we reported age-related change in subpopulations of lymphocytes in 
healthy subjects ranging in age from 6 to 102 years (Utsuyama et al.  1992 ). In the 
present study, we confirmed most of the results presented in our previous report; 
i.e., an age-related decrease in CD3 +  T-cells, more pronounced decrease in CD8 +  
T-cells than in CD4 +  T-cells, an age-related increase in CD4/CD8 ratio, a decrease 
in the number of naïve T-cells with a concomitant increase in memory T-cells, a 
decrease in B-cells and an increase in NK-cells.  

  In the present study, we examined the proliferative activity of T-cells and con-
firmed that it gradually declines with advancing age. In addition, we developed a 
new parameter, T-cell proliferation index (TCPI), which is calculated by using the 
proliferative activity and the number of T-cells. TCPI was also observed to signifi-
cantly decrease with age.  

  It is interesting to note that the rate of decline in the studied parameters differed 
with gender. The rate of decline in the number of T-cells calculated by the regres-
sion curve was -6.150 in males and -2.390 in females. The rate of decline in TCPI 
was -0.016 in males and -0.008 in females. This gender difference in the T-cells and 
TCPI vales was statistically significant (Table  3 ). A relatively gradual decrease in 
the studied parameters in females than in males may be consistent with the fact that 
women survive for longer period than men in Japan.  

  A low number of CD8 + CD28-   T-cells and high CD4/CD8 ratio are associated 
with populations that survive until the age of 100 years (Strindhall et al. 2007). 
Susceptibility to influenza infection in older adults is associated with an increased 
population of CD8 + CD28-   T-cells (Xie, McElhaney 2007). In this respect, we con-
firmed that the number of CD8 + CD28 +  cells decreased with age and this decrease 

Table 5 Gender difference in people over 60 years old

 Male over 60 years N=54 Female over 60 years N=48
T-cells (number/mm3) 1365 ± 53 1395 ± 73
CD4+ T cells (number/mm3) 910 ± 59 961 ± 55
T-cell proliferation index 1.72 ± 0.11 1.87 ± 0.12
SIV-5 (T-cell immune score) 11.6 ± 0.3 11.7 ± 0.3
CD8+CD28+ (number/mm3) 181 ± 19 200 ± 20 
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was associated with a decrease in the T-cell proliferative response (MTS-OD 
490

 ); 
i.e., the rate of decline was significantly slower in females than in males.  

  The absolute number of total B-lymphocytes increases about 3-fold from the base 
line in the first year of life and progressively decreases until adult age (Veneri et al. 
 2007 ). We further confirmed that the number of B-cells continued to gradually decrease 
throughout the life and decline was significantly steeper in males than in females.  

  It is still not clear whether the age-related increase in the prevalence of 
CD4 + CD25(high) regulatory T-cells (TREGs) is responsible for immune dysfunc-
tion in the elderly (Dejaco et al.  2006 ). In this respect, we found that the number of 
TREGs showed an increasing trend with age.  

  An age-related increase was observed in the number of NK-cells and this rate of 
increase was significantly steeper in females than in males. In this respect, Lee et al. 
( 1996 ) reported that higher percentage of NK-cells in the Asian population than in 
Caucasian subjects.  

  Olsson et al. (2000) reported that a decrease in the CD4/CD8 ratio was an impor-
tant indicator of the immune risk phenotype (IRP). In the present survey, a con-
trasting feature was observed between CD4 + T-cells and CD8 + T-cells. The number 
of CD4 +  T-cells was relatively steady level or showed an increasing trend with 
age, while the number of CD8 +  T-cells significantly decreased with age; therefore, 
the CD4/CD8 ratio showed a distinct age-related increase. Higher percentage and 
number of CD8 +  T-cells and a decreased CD4/CD8 ratio was observed in the Saudi 
male population compared with Caucasian controls (Shababuddin  1995 ). Hence, 
racial difference should be considered in this case.  

  Anti-CD3 stimulation of T-lymphocytes significantly increased IL-8 production 
and this increase was more evident in the nonagenarian subjects (Mariani E et al. 
 2001 ). Centenarians showed high level of IL-8, indicating that an increased level of 
IL-8 is related to longevity (Wieczorowska-Tobis et al.  2006 ). These reports were con-
sistent with the result of the present study indicating an age-related increase in IL-8.  

  Individuals who are genetically predisposed to produce high level of IL-6 have 
a reduced capacity to reach the extreme limits of the human lifespan. On the other 
hand, a high IL-10 producing genotype is observed among centenarians (Caruso 
C et al.  2004 ). These results were partly consistent with those of the present study, 
which showed that both IL-6 and IL-10 decreased with age. In future studies, an 
adequate sample size should be selected for analysis of cytokine production.  
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   Abbreviations     
 pMHC        peptide MHC complex  
         RTE        recent thymic emigrants
           SPF        specific pathogen-free  

        TCE       T-cell clonal expansions 

                                  Abstract:   Age-related T-cell clonal expansions (TCE) are an incompletely under-
stood disturbance in T-cell homeostasis found frequently in old humans and exper-
imental animals. These accumulations of CD8 T-cells have the potential to distort 
T-cell population balance and reduce T-cell repertoire diversity above and beyond 
the changes seen in the aging of T-cell pool in the absence of TCE. This chapter 
discusses our current knowledge of the role of these expansions in health and dis-
ease, with a special focus on their influence upon immune defense against infec-
tious diseases.  

         Keywords   :    Ageing    •     Clonal expansions    •     Homeostasis    •     Infectious 
diseases    •     T-cells    
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                       1      Introduction  

   As was extensively discussed in other chapters of this handbook, immunosenes-
cence encompasses a number of diverse age-related cellular and extracellular milieu 
changes that affect cells and molecules of the immune and inflammatory system. 
The very definition of immunosenescence, however, operationally includes not only 
the decline of immunity with age by itself, but also its most important clinical mani-
festation, the increased susceptibility to infection and decreased immunosurveil-
lance of cancer. Other factors can contribute to the increased exposure to infectious 
diseases and increased colonization with infectious pathogens (e.g., reduced barrier 
function of skin and mucosal membranes) with age, and multiple factors certainly 
strongly contribute to the age-related increase in incidence of cancer. However, it 
is clear that the inability to mount rapid and vigorous immune defense once an 
infectious invasion (and, likely, detectable malignant transformation) had occurred 
lies at the heart of many of the clinical manifestations of immunosenescence. Due 
to the involvement of numerous other nonimmunological factors in the age-related 
increase of cancer-related morbidity and mortality, this review will solely deal with 
infectious diseases.  

   It has long been known that aging is accompanied by an increase in mortality 
and morbidity from a number of common respiratory infections such as influenza 
(20,000–40,000 annual deaths in the USA alone) (Bender  2003 ; Betts and Treanor 
 2000 ; Couch et al.  1986 ; Glezen and Couch  2003 ; High  2004 ; Yoshikawa  2000 ), 
pneumococcal pneumonia (Bender  2003 ; High et al.  2005 ; Yoshikawa  2000 ) and 
RSV (Glezen and Couch  2003 ; High et al.  2005 ; Yoshikawa  2000 ), and urinary 
infections (Bender  2003 ; Hazelett et al.  2006 ). Moreover, this vulnerability extends 
to dangerous established pathogens such as variola (Hanna  1913 ) as well as the 
newly emerging pathogens that disproportionally affect the elderly such as the West 
Nile virus (Murray et al.  2006 ) the Severe Acute Respiratory Syndrome-causing 
Coronavirus (SARS-CoV) (Chan et al.  2007 ; Leung et al.  2004 ) and others.  

   Several types of age-related defects in the immune function can contribute to this 
increased susceptibility to infection, including defects in innate immunity, antigen 
uptake, processing and presentation, provision of second and third signals to the 
adaptive immune system and impaired humoral immunity, all of which are com-
petently covered in other chapters of this handbook. However, T-cells have been 
known to exhibit some of the most pronounced age-related defects (Miller  1996 ), 
and intervention to correct these defects resulted in successful correction of the 
immune function in a number of cases (Effros et al.  1991 ; Haynes et al.  2004 ; 
Haynes et al.  1999 ; Messaoudi et al.  2006a ). These defects can be grossly divided 
into cell-autonomous defects, which affect T-cells regardless of age-related or com-
pensatory alterations that affect other components of the immune system and which 
can be detected in assays where T-cells are the only component of the immune 
system affected by aging; and age-related changes in the T-cell population balance, 
which mostly involve the initial loss of naïve T-cells and the compensatory, reactive 
changes aimed to maintain T-cell homeostasis in the face of this loss.  
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   This chapter will focus upon the latter changes, given that other aspects of 
T-cell dysfunction will be covered in other chapters of this volume. Moreover, we 
will discuss the impact of a specific type of age-related T-cell disturbances, T-cell 
clonal expansions (TCE) (Callahan et al.  1993 ; Hingorani et al.  1993a ; Posnett et 
al.  1994 ), upon immune defense and pathogen resistance, highlighting the extent 
and the limits of our current knowledge, and the tasks and problems that need to be 
solved before we can fully understand and treat these disturbances.  

       2      T-cell Homeostasis and Development of T-cell 
Clonal Expansions (TCE)  

   The current evidence strongly suggests that the involution of the thymus and the 
decline in production of new naïve T-cells are the initiating factors behind the gen-
eration of at least some TCE (Messaoudi et al.  2006b ), whereas latent persistent 
viral infections may be the perpetrators driving other types of TCE (Pawelec et al. 
 2004 ). Moreover, homeostatic mechanisms that are activated as a consequence of 
naïve T-cell loss may themselves participate in the onset and/or maintenance of 
TCE (Messaoudi et al.  2006b ,  2006c ). Therefore, at the risk of being redundant, we 
will very briefly review thymic T-cell production, involution, latent persistent infec-
tions and T-cell homeostasis. For a more detailed review of these topics, the reader 
is encouraged to read sections of this handbook devoted to thymic involution, as 
well as the recent volume of Seminars in Immunology devoted to T-cell rejuvena-
tion (Nikolich-Žugich  2007 ; Zuniga-Pflucker and van den Brink  2007 ).  

     2.1      Homeostatic Maintenance of T–cell Subsets  

   T-cell homeostasis is defined here as maintenance of naïve and memory T-cell pool 
numbers and diversity and the ability to restore these numbers and diversity fol-
lowing antigenic (Ag) challenge. T-cell homeostasis is regulated by the response 
of T-cells to environmental trophic and survival signals and by the presence and 
availability of such signals. The most important and best understood of these sig-
nals are the common γ-chain cytokines (most notably IL-7, IL-15 and IL-2) and 
self-peptide: MHC (pMHC) complexes. The contribution of each of these signals to 
homeostatic maintenance varies depending on the T-cell subset.  

   Following maturation and selection in the thymus, new T-cells are released into 
the periphery as recent thymic emigrants (RTEs) (Scollay et al.  1980 ). Release of 
RTEs bearing a variety of randomly rearranged TCRs ensures the diversity of the 
peripheral T-cell pool. Once released from the thymus, the RTE join the naïve T-cell 
pool. Naïve T-cells have no preset life spans and are maintained by IL-7 and trophic 
signals from interaction of their TCR with self-p:MHC complexes (rev. in (Lee and 
Surh  2005 ). When these two signals are present, naïve T-cells are believed to be 
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able to survive indefinitely, based upon the results of serial transfer experiments 
(Sprent et al.  1991 ). Murine RTE proliferate faster than naïve peripheral T-cells in 
the first three weeks after export, perhaps in order to maximize naïve T-cell diver-
sity, before they equilibrate with other naïve T-cells (Berzins et al.  1998 ). Naïve 
T-cells display very low levels of spontaneous (or homeostatic) cycling in vivo. 
Homeostatic cycling is greatly increased in lymphopenia, where T-cells sense a sig-
nal, most likely provided by an excess of unused IL-7 and IL-15 (Surh and Sprent 
 2002 ). Under lymphopenic conditions T-cells undergo Ag-independent homeostatic 
proliferative expansion (HPE), in a seeming attempt to fill the empty compartment 
(Fry and Mackall  2005 ; Surh et al.  2006 ). Unlike naïve T-cells, memory T-cells do 
not require specific p: MHC contact for survival. Instead, their survival is depend-
ent on continued homeostatic proliferation, driven mainly by IL-15, or by IL-7 in 
the absence of IL-15. Memory cells cycle and self-renew in vivo significantly (up 
to four times) faster than naïve T-cells and also exhibit faster proliferation dur-
ing lymphopenia (Surh et al.  2006 ). It is likely that there may be other, presently 
unknown pathways regulating T-cell homeostasis, some of which could include 
energy metabolism regulation (Frauwirth and Thompson  2004 ).  

   The above described homeostatic mechanisms function to maintain a bal-
anced and diverse T-cell pool. Over lifetime this means regulating the process of 
Ag-driven expansion of naïve T-cells, their contraction, and selection and main-
tenance of memory T-cells. The role of the homeostatic mechanisms is to balance 
the composition of the T-cell pool so that it contains both naïve precursors with 
diverse TCRs, as well as Ag-experienced memory T-cells, as both of these subsets 
are crucial for the health of the host. The homeostatic forces work very efficiently 
in adult mice housed under specific pathogen free (SPF) conditions, as evidenced 
by remarkably similar size and diversity of the T-cell pool among individual mice of 
the same strain. However, maintenance of homeostasis becomes more complicated 
in the face of constant encounters with new acute pathogens, long-term interac-
tions with persistent pathogens and the aging-associated defects, all of which are 
discussed below.  

       2.2      Disruption of T-cell Homeostasis in Ageing  

   Thymic involution begins soon after birth in humans and quickly after puberty in 
mice, which results in decreased RTE output (Haynes et al.  2000 ; Hirokawa and 
Utsuyama  1984 ). Thus, 22-mo-old mice receive less than 10% of RTE compared to 
young adult mice (Hale et al.  2006 ; Heng et al.  2005 ). Even in old age the thymus 
continues to produce RTE proportionally to its overall cellularity, but as the cel-
lularity itself decreases, so does the output (Gruver et al.  2007 ; Hale et al.  2006 ). 
The cause of thymic involution is discussed in more detail elsewhere in this vol-
ume. From the standpoint of this chapter, thymic involution presents a challenge 
for the homeostatic mechanisms, which strive to maintain the size and diversity 
of the peripheral T-cell pool in the face of decreased influx of diverse new T-cells. 
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Despite the fact that thymus involution begins early in life, it is only in old age that 
homeostatic mechanisms falter and allow dysbalance amongst T-cell subsets.  

   A marked difference between the adult and old lymphocyte T-cell compartment 
is an age-related decrease in representation of naïve phenotype T-cells and con-
comitant increase in frequency and numbers of memory phenotype T-cells. The 
exact mechanisms leading to this population shift were not formally dissected, 
but are believed to likely involve a combination of 1) decrease in naïve T-cell pro-
duction, 2) their conversion into effector or memory cells as a result of encoun-
ters with pathogens, and 3) changes in the environment, including the availability 
of homeostatic cytokines (IL-7, IL-15, IL-2). For example, IL-2 production by 
CD4 T-cells is decreased in old mice(Gillis et al.  1981 ; Miller and Stutman  1981 ; 
Thoman and Weigle  1981 ). Less is known about age-related changes in IL-7 or 
IL-15 levels or the expression and function of their receptors on different T-cell 
subsets. In addition, the naïve T-cell pool could be indirectly affected by a grow-
ing pool of memory T-cells that may compete with naïve T-cells. Considering 
that there is some overlap in the use of survival and maintenance cytokines by 
these two pools, particularly in case of IL-7(Fry, Mackall  2005 ; Tan et al.  2002 ), 
it is possible that the two are not always independently regulated, particularly in 
aging where there is many fewer naïve T-cells. Thus, if naïve T-cells continue 
to decrease in number, this may lead to an excess of survival and maintenance 
cytokines which normally would have been consumed by naïve T-cells. This 
could trigger homeostatic proliferative expansion (HPE) of the remaining naïve 
T-cells and drive their conversion to memory-phenotype. This was demonstrated 
in mice under lymphopenic conditions (Cho et al.  2000 ; Goldrath et al.  2000 ), and 
strongly suggestive results were also obtained in aging monkeys (Cicin-Sain et al. 
 2007 ) and humans (Naylor et al.  2005 ).  

       2.3 T-cell Clonal Expansions (TCE)  

   One of the hallmarks of immune aging is loss of TCR repertoire diversity (rev. in 
(Nikolich-Žugich  2005 )), due in large part to the dominance of memory T-cells over 
the naïve ones. However, on top of that reduction, the CD8 T-cell compartment often 
shows additional loss of diversity, in the form of large, often clonal expansions of T-
cells bearing the same TCR, named T-cell clonal expansions (TCE) (Callahan et al. 
 1993 ; Hingorani et al.  1993b ; Posnett et al.  1994 ). Development of TCEs has been 
documented across mammalian species, including rodents, nonhuman primates, and 
humans, with fractions between 30 and 60% of individuals surveyed exhibiting one 
or more age-associated TCE (rev. in (Nikolich-Žugich, Messaoudi  2005 ). More on 
the biology of TCE can be found in the excellent review by Clambey and Marrack 
elsewhere in this book. However, for the purpose of this chapter, it is most perti-
nent to classify TCE into at least two types with respect to the mechanism of their 
generation and/or maintenance. Large Ag-independent TCE (AI-TCE) are thought 
to arise and/or be maintained independently of antigenic stimulation, due to age-
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related changes in perceiving homeostatic signals. This is based upon: (i) activation 
marker expression on these cells, which dominantly exhibit central memory phe-
notype, with no evidence of recent or repeated antigen-driven activation (Callahan 
et al.  1993 ; Ku et al.  2001 ; Messaoudi et al.  2006c ); (ii) cytokine receptor, spe-
cifically IL-7R and IL-15R, expression, which is higher on these cells compared 
to other memory or naïve T-cells (Messaoudi et al.  2006c ); (iii) the ability of these 
cells to proliferate upon adoptive transfer (Ku et al.  2001 ), with a constant rate 
regardless of whether the recipient is lymphopenic or not (Messaoudi et al.  2006c ); 
and (iv) the ability of manipulations that induce lymphopenia to increase the inci-
dence and accelerate the onset of development of AI-TCE (Messaoudi et al.  2006b ). 
While these results have been obtained in mice, there is evidence that similar funda-
mental principles are at work in primates, including humans (Cicin-Sain et al.  2007 ; 
Naylor et al.  2005 ). In contrast, TCE that have general characteristics consistent 
with the response to antigen, also called Ag-reactive TCE (AR-TCE), were linked to 
latent persistent herpesviral infections in mice (Holtappels et al.  2000 ; Karrer et al. 
 2003 ; Podlech et al.  2000 ) and humans (Almanzar et al.  2005 ; Fletcher et al.  2005 ; 
Ouyang et al.  2003c ; Pawelec et al.  2004 ). Broad discussion of these virus-related 
abnormalities is also presented in other chapters of this handbook.  

   TCE can occupy up to 90% of the total murine and up to 50% of the human 
memory CD8 T-cell pool. TCE themselves are not malignant and do not affect the 
overall size of the CD8 T-cell pool (there is no increase in total T-cell numbers 
in individuals carrying TCE). However, TCE do disturb T-cell homeostasis and 
diversity (Callahan et al.  1993 ; LeMaoult et al.  2000 ; Posnett et al.  1994 ) and 
a drastic disturbance of this type can be expected to impair the ability to mount 
T-cell responses. While T-cell responses are plastic, with a significant reserve that 
allows T-cells to respond to pathogens despite loss of much of the repertoire, this 
plasticity is not unlimited (rev. in (Nikolich-Žugich et al.  2004 ). However, we 
still do not have precise quantitative understanding of limits of T-cell diversity 
necessary to mount protective responses against pathogenic challenge, an issue 
highly relevant from the standpoint of evaluating the impact of TCE upon immune 
defense.  

     3      Impact of TCE on Pathogen Resistance—the Mouse Model  

   The most important question related to the presence of TCE is related to their impact 
upon the health of the organism. One could envision several possibilities in that 
regard. First, TCE could be neutral and not impact the overall health or the immune 
defense of the old organism. While this possibility is intellectually unexciting, it is 
likely that many TCE coexist with the state of health based on their high incidence 
in asymptomatic individuals (Hingorani et al.  1993b ; Posnett et al.  1994 ). Indeed, 
it is likely that a TCE needs to grow to a certain size before it becomes a problem 
for its bearer. Second, TCE could affect other components of the organism, with-
out impacting immune defense. While this is possible, this scenario had not been 
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documented so far and will not be further discussed here. Third, TCE could have an 
active effect, whereby they would secrete cytokines and other short-acting mediators 
that could alter the function of other components of the immune (and other) systems 
in the body. This would be akin to the functional shift seen in replicatively senescent 
fibroblasts, which upon cessation of replication drastically change their secretory 
properties and have the potential to alter extracellular matrix, neovascularization 
and other microenvironmental properties (rev. in (Campisi  2002 ). At the present, 
there is some evidence in support of this possibility (Ortiz-Suarez and Miller  2002 ; 
Ortiz-Suarez and Miller  2003 ), but more precise studies at the level of isolated, 
highly purified TCE are needed. Moreover, the impact of the observed changes 
upon pathogen resistance remains untested.  

   Finally, the role of TCE could be passive, but nevertheless negative. Under 
that scenario, which was invoked by immunologists before (Callahan et al.  1993 ; 
Hingorani et al.  1993a ; Posnett  1994  #1976), and which will be discussed in more 
detail as it currently appears the most likely, these accumulating T-cell clones 
would constrict the repertoire and reduce the useful T-cell repertoire that defends 
us against new infection. Mechanistically, this would most likely occur by these 
cells gaining a survival/maintenance advantage over other T-cells in the body. 
The fact that TCE which occur spontaneously in SPF mice express high levels of 
IL-7Rα and IL-2/15Rβ (Messaoudi et al.  2006c ) is consistent with the possibility 
that TCE operate as IL-7 and/or IL-15 “cytokine sinks”, taking them slowly away 
from other T-cells. Consistent with that, we (Lang et al. submitted) and others 
(Ely et al.,  2007 ) have recently found that often TCE can arise from the pool of 
cells that respond(ed) to prior acute or latent infection. Of interest, once these 
cells begin to significantly expand in old age, they tend to acquire high levels of 
IL-7 and IL-15 receptors (Lang et al. submitted), raising the possibility that the 
“cytokine sink” may be the unifying mechanism by which both “spontaneous” 
and antigen-specific large TCE constrict the remainder of useful T-cell repertoire. 
In fact, it is likely that the “spontaneous” TCE designation simply covers up the 
fact that we don’t know the original antigen that was recognized by these cells, 
and that may be irrelevant if indeed these cells primarily respond to cytokines 
once they become TCE.  

   In order for a TCE to have a demonstrably negative effect upon immune defense 
via TCR repertoire constriction, such a TCE needs to sufficiently erode the num-
bers and diversity of other T cells needed to respond to a new pathogen. Numerous 
studies have shown that manipulations which take away up to half or more of TCR 
diversity are reasonably compatible with T-cell responsiveness (rev. in (Nikolich-
Žugich et al.  2004 ). However, in other models losses of this or greater magnitude 
have been shown to impair responsiveness to certain antigens (rev in. (Nikolich-
Žugich et al.  2004 ) and references therein). In terms of the impact of TCE upon 
the residual diversity of aged naïve T- cells in relationship to immune defense 
against infectious diseases, it is important to consider the overall diversity and 
overall numbers of T-cells involved in a typical response to a pathogen. Exciting 
new studies with direct measuring of precursor T-cell frequencies concur that on 
the average a hundred, and in some cases as few as 15-20 CD4 or CD8 T-cells may 
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be responding to a single epitope (Badovinac et al.  2007 ; Moon et al.  2007 ). Even 
if this is an underestimation, reducing that number by 90%, or even by half, due 
to the presence of a TCE, certainly has the potential to diminish and cripple the 
response to epitopes where few T-cell precursors exist. This low responsiveness 
would be further compounded by an already diminished overall reserve of naïve 
T-cells in aging, as well as by the blunted T-cell signaling (Tamir et al.  2000 ). On 
the other hand, most pathogens present multiple epitopes to the immune system, 
and even if one accounts for immunodominance, usually a handful of epitopes 
are available for T-cell stimulation. Moreover, in many cases other arms of the 
immune system will synergize to provide protection even if T-cell responses are 
diminished. Thus, for a TCE to impact pathogen resistance, T-cells have to provide 
primary and nonredundant protection against that pathogen, the pathogen should 
have few, rather than many, immunodominant and protective epitopes and fre-
quency of T-cells specific for these epitopes should be low. In the one case where 
the impact of TCE upon immune defense was tested (Messaoudi et al.  2004 ), 
most, if not all, of the above conditions were met. In that study, resistance to her-
pes simplex virus (HSV-1) was studied in B6 mice, where an octamer derived from 
the glycoprotein B accounts for > 90% of the total CD8 T-cell response (Dyall 
et al.  2000 ; Messaoudi 2001 #1644; Wallace et al.  1999 ). Moreover, the response 
itself is highly restricted with regard to TCRV region utilization (with Vβ10 and 8 
contributing >80% of the response (Cose et al.  1995 )). Old animals with and with-
out TCE were challenged with HSV and magnitude and functional characteristics 
of the response measured. It was found that TCE could impair the generation of 
productive responses in a selective manner. So, when an animal contained a large 
TCE which expressed Vβ10 and 8, it was unable to mount a response to HSV gB, 
whereas TCE expressing other TCR Vβ segments did not impair responsiveness 
beyond the reduction seen due to age in a littermate control group (Messaoudi 
et al.  2004 ). These results were somewhat puzzling and suggested that TCE pref-
erentially competed out against the T-cells bearing the same TCRVβ segment. 
This could be explained, for example, if TCRVβ residues conserved within the Vβ 
family but differing between Vβ families (e.g. CDR1 & 2 and “framework” parts 
of CDR3) were important in contacting self-pMHC complexes in the course of 
trophic interactions needed for T-cell maintenance, so that a TCE would compete 
out naïve T-cells of the same TCRVβ family. Such a mechanism remains to be 
substantiated. Nevertheless, the above study (Messaoudi et al.  2004 ) does show 
that TCE can potentially impair protective immunity.  

   While the above experiments were performed with spontaneously arising TCE, 
which were most likely AI-TCE, there is no reason to believe that a similar situ-
ation may not exist with AR-TCE as well. Our group is in the process of test-
ing this possibility. Another unaddressed question relates to the impact of TCE 
upon memory responses. Memory T-cells are more difficult to compete out than 
naïve T-cells, possibly due to their ability for self-renewal and relative resistance 
to apoptosis. Perhaps the most pertinent question is whether TCE can affect the 
response to latent and/or chronic persistent pathogens, where a large fraction of 
the immune system is periodically or continuously stimulated by these pathogens. 
At the present, this issue remains unresolved.  
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      4      Impact of TCE on Pathogen Resistance—Evidence 
from Humans  

   In reviewing the known impact of TCEs on pathogen resistance, one needs to dis-
tinguish between two parameters: 1) correlation of presence of TCE with presence 
of other immunological factors known to impair immune responses, and 2) direct 
evidence for impact of TCE on pathogen resistance. The occurrence of TCEs has 
been well documented in patients and in a variety of animal models, so we shall first 
review that scenario. One should bear in mind, however, that it is often difficult to 
distinguish the specific effect of TCE from the effects of old age-associated defects 
in antipathogen immunity, since in most cases TCEs are detected only in advanced 
age. It is therefore most appropriate to evaluate TCE as a superimposing, possibly 
aggravating factor that may, or may not, further impair protective immunity in an 
already suboptimal setting of an old organism.  

   Some TCEs have known antigenic specificity. Two types of conclusions on the 
effects of these TCEs on pathogen resistance can be drawn: 1) effect upon resistance 
to the pathogen the TCE is specific for, and 2) effect upon resistance to unrelated 
pathogens. In humans, the most commonly documented cases of TCEs of known 
specificity involve memory CD8 T-cells specific for CMV (rev. in (Pawelec et al. 
 2004 )) and, to a lesser extent, EBV (Ouyang et al.  2003b ). Original studies docu-
mented the presence of CD28 -  CD8 +  TCEs in elderly patients (Hingorani et al.  1993b ; 
Posnett et al.  1994 ). With the advent of tetramers and intracellular cytokine stain-
ing techniques that allowed enumeration of Ag-specific T-cells, it was shown that the 
CD28- CD8 T-cell expansions were frequently specific for CMV and were clonal 
or oligoclonal in nature (Ouyang et al.  2002 ). Moreover, longitudinal studies in the 
Swedish elderly cohorts concluded that CMV seropositivity, together with an array 
of additional immune characteristics such as the inverted CD4:CD8 ratio and poor 
proliferative responses of T-cells to mitogens, constitute an immune risk phenotype 
(IRP, discussed in detail elsewhere in this book) (Wikby et al.  2005 ), which predicted 
mortality within 2 years in octogenerians of the Swedish cohort (Hadrup et al.  2006 ). 
It will be important to reproduce these results in genetically diverse populations of the 
elderly, particularly in light of early reports that the elderly from West Sicily may not 
show the same effect (Colonna-Romano et al.  2007 ). Moreover, it is not clear exactly 
how the presence of CMV-specific TCE might affect pathogen resistance, in isolation 
from the other IRP-associated defects, highlighting one of the problems inherent to 
the otherwise highly informative human longitudinal studies.  

   At the present, there is some evidence that CMV-specific T-cells may themselves 
be compromised as a direct result of development of TCE. Several studies demon-
strated accumulation of dysfunctional CMV-specific memory CD8 T-cells in the 
elderly (Ouyang et al.  2003a ; Ouyang et al.  2003c ; Ouyang et al.  2004 ). In addition, 
the large CMV-specific memory cell population expressed a marker of replicative 
senescence, KLRG-1, and its expression correlated with decreased production of 
IFNγ upon antigenic stimulation (Ouyang et al.  2004 ). The key question is whether 
this leads to inability to mount an adequate functional response to viral reactivation, 
permitting viral replication above the subclinical level normally associated with 
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CMV seropositivity. In that regard, one study (Stowe et al.  2007 ) demonstrated 
the presence of CMV and EBV DNA in urine (CMV) and blood (EBV) of elderly 
patients, as opposed to the seropositive adults, implying some loss of control of 
viral reactivation in the elderly. Consistent with that explanation, these authors also 
found elevated expression of lytic and latent EBV genes in blood of elderly but 
not adult seropositive patients (Stowe et al.  2007 ). It is possible that accumulation 
of dysfunctional CMV- or EBV-specific TCE, which were unable to control the 
virus, may be the reason for increase in viral reactivation in aging. However, in 
that study, the elderly actually had an elevated frequency of IFNγ-producing CMV- 
and EBV-specific memory CD8 T-cells, making the hypothesis unlikely. Moreover, 
CMV-mediated disease does not seem to be associated with aging in the absence 
of iatrogenic or acquired immune suppression, suggesting that a manifest loss of 
CMV control does not occur in the elderly. Further studies are needed to decisively 
address the role of accumulation of dysfunctional CMV-specific TCEs on the per-
sistent latent Herpes virus control in old age.  

   A separate issue is whether CMV-specific TCE affect immunity to other infec-
tions in humans, and how. There is some evidence that presence of CMV-specific 
TCE is associated with lower frequency of memory CD8 T-cells specific for coresi-
dent EBV infection (Khan et al.  2004 ). This study did not examine whether control 
of latent EBV in patients with large CMV-specific TCE is impaired. While one 
could speculate that the T-cell response, and therefore immunity to EBV will be 
compromised in patients with large CMV-specific TCE similar to the results seen 
in mice with the effect of spontaneous TCE upon HSV immunity (Messaoudi et al. 
2004), the mechanism by which these TCE affect the size of the EBV memory CD8 
T-cell pool is currently unknown.  

   Since many of the TCEs identified in humans are specific for CMV, it was 
proposed that CMV is the main driver behind generation of TCEs (Pawelec et al. 
 2004 ). While this may be the case, evidence from murine studies suggests that 
virus-specific TCE can also develop independently from ongoing antigenic stimu-
lation. Ely et al. (Ely et al.  2007 ) detected presence of TCE specific for Sendai 
virus and flu in old mice that had been infected as adults. Similarly, we have found 
that old mice infected with WNV at a young age developed expansions of virus-
specific memory CD8 T-cells in old age (A Lang et al. submitted). In a different 
infection model, we found that following localized (ocular) HSV-1 infection, mice 
develop expansions of HSV-specific memory CD8 T-cells once they reach old age. 
This process was unlikely to be caused by viral reactivation, as mice treated con-
tinuously with antiviral drugs also developed these age-associated T-cell expan-
sions. At present, only a small number of these antigen-independent age-associated 
expansions were confirmed to be clonal, with oligoclonality being seen more 
often (A Lang et al. submitted). Unlike is the case with CMV-specific TCEs, the 
T-cell expansions that developed independently from ongoing antigenic stimula-
tion were fully functional, showing excellent correlation of percentage of tetramer +  
and IFNγ +  cells (A Lang et al. submitted). Therefore, it is not likely that develop-
ment of TCEs by this mechanism will affect immunity to the cognate pathogen. 
Additional studies will be required to determine whether TCEs can develop from 
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preexisting memory CD8 T-cells specific for nonpersisting pathogens in elderly 
humans, as they do in old mice.  

   Are these TCE impairing productive immunity in humans? Of interest, the 
number of influenza-specific memory CD8 T-cells was shown to decline with age in 
humans (Goronzy et al.  2001 ). This phenomenon was independent of the patients’ 
CMV status. In another study of success of flu vaccination in CMV-seropositive 
patients, CMV seropositivity correlated with impaired response to vaccination 
(Saurwein-Teissl et al.  2002 ). However, the authors did not delineate whether this 
correlates best to the presence of TCE, to the overall decrease in number of naïve 
cells or to proliferative/replicative senescence, and, as with most clinical studies, 
the mechanism responsible for this outcome has not been resolved. Therefore, the 
presence of TCE could be one of the useful biomarkers predicting poor outcome of 
flu vaccination (Goronzy et al.  2001 ; Saurwein-Teissl et al.  2002 ), or perhaps even 
general immunological vulnerability, but that requires further and rigorous verifica-
tion in larger and heterogeneous populations of human subjects.  

       5      Concluding Remarks, Challenges and Questions  

   It follows from the above discussion that much remains to be learned about the biol-
ogy of TCE and their precise impact upon resistance to infectious diseases. Drawing 
generalized conclusions about the impact of TCEs on pathogen resistance from the 
available data is often difficult, since they come from a number of different experi-
mental models. At present we do not know how closely the mechanisms of genera-
tion of TCEs and their subsequent effects on pathogen resistance compare between 
them. However, the models and the reagents that are currently available provide 
good tools to systematically address the questions that still remain regarding the 
impact of TCEs on immunity. In particular, new quantitative tools are becoming 
available allowing us to precisely dissect the breadth and the reserve of T-cell recep-
tor repertoire and the size of precursor populations specific for immunodominant 
epitopes of various pathogens, and that should allow us to quantitatively evaluate to 
what extent is TCR repertoire constricted by different types of TCE, and to deter-
mine what type of intervention (many of which are now in clinical trials (Zuniga-
Pflucker, van den Brink  2007 )) could be applied in individual situations.  

   Overall, the most important practical issues related to TCE and the infectious 
diseases of the elderly are: 

      1.        Which groups of elderly are at an increased risk of infection and which are not? 
Are TCE a risk factor in that regard?  

         2.        For those groups that are at risk, can they be helped with the existing vaccines 
or do they need alternate ways of immunostimulation? Can TCE be removed or 
shrunken?  

         3.        If immunostimulation is to be attempted in a targeted manner, which modes of 
immunostimulation are the most efficacious? Different vaccination regimens, 
additional costimulation or cytokine treatments?  
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         4.        For those where immunostimulation may be insufficient, is T-cell rejuvenation 
the best option?          

   Answering these questions will undoubtedly be rewarding for scientists and 
physicians,     as well as to the growing populations of elderly around the world.  
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                                       Organismal aging is affecting the performance of the immune system of mammals 
(including human one, being the topic of this chapter), and usually is associated 
with decreased ability to built adequate immune response to new and even cognate 
antigenic challenges on one side, and with reported increased frequency of autoim-
mune reactivity against own antigens [34, 61, 64] (but see the chapter by Ewa Bryl 
and JMW in this volume). Common manifestations of this immunological impair-
ment are thus increased susceptibility (and more difficult curability) of infectious 
diseases (which in the old age become one of the most important killers despite the 
achievements of modern “western” medicine), as well as increased frequencies of 
at least certain malignancies.  

         The pool of T-lymphocytes, getting their name from its intrathymic period of 
maturation and selection after exiting the bone marrow and prior to settling in the 
peripheral lymphatic organs, is a variable, multifunctional and multi-phenotype 
group of not-so-similar cells. There is—of course—the basic subdivision into the 
“T-helper” or CD4 +  and “T cytotoxic/suppressor” CD8 +  lymphocytes, but this is by 
far a simplification. Thus, within each of the abovementioned, one would encoun-
ter first the subpopulations differing in their “life history” prior to the moment of 
analysis. Among them, the cells that are still “fresh” from the thymus, or had never 
yet encountered the antigenic epitope for which their T-cell receptors or TCRs were 
selected, are rightly called the naïve or virgin T-lymphocytes, while those that are a 
result of such an encounter would be further subdivided into the—relatively short-
lived—effector lymphocytes and the supposedly long-lived memory cells (but see 
below on the lifespan of naïve and memory T-cells). Within the latter, a further sub-
division exists that allows the distinction of so called central and effector memory 
cells. These subpopulations can be relatively easily detected and quantified with the 
use of monoclonal antibodies recognizing their specific antigens (e.g. CD45RA, 
CD45R0, CD62L, CCR7 and many others, as described in all current immunology 
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textbooks) and flow cytometry, in the samples of peripheral blood, and—when an 
animal (usually mouse) model is studied, also in other lymphatic organs and bone 
marrow.  

   All these cell types function with one major goal: to survey the organism in search 
of alien moieties that are or may become damaging to the integrity of the organism, 
and to develop specific ways of their neutralization and elimination (called adoptive 
immunity), regardless from their origin, which may obviously be extra- and intra-
organismal. To achieve this goal, the T-lymphocytes must properly  interact with 
each other  within the general, and, as sketched above, already complex “family”, 
by means of either direct contact or secreted mediators (cytokines). The scheme of 
these interactions is depicted in  Fig. 1 . Their function towards this goal is not stand-
ing alone; contrarily, in order to perform adequately (i.e., to eliminate or otherwise 
neutralize the alien antigen or cell) T-lymphocytes must interact with, influence and 
be influenced by other cell types, including the broad family of antigen-presenting 
cells (professional APCs, requiring the MHC (or HLA) Class II to interact with the 
CD4 +  cells) on one side, and the two remaining groups of lymphocytes—the NK- 
and B-cells—on the other. One has to remember however, that the above does NOT 
constitute all contacts and interactions of the T-cells. Thus, practically every cell 
may influence the behavior of CD8 +  lymphocytes via its HLA Class I molecules 
and epitopes anchored onto them; cells belonging to the players in the inflamma-
tory process (especially, but not exclusively, all forms of macrophages) would affect 
the T-cells by secreting the “pro-inflammatory” cytokines (e.g., IL-1, IL-6 or TNF) 
that are known to trigger specific receptors on these cells. Finally, T-lymphocytes 
contain receptors (and relevant intracellular signalling pathways) able to react to the 
plethora of other biologically important mediators that may appear in the organism 
under stress, exercise, injury and on many other instances; these would include 
first of all neuromediators generated by the central nervous system and hormones 
(Fig. 1). Through these integrative systems of the organism the lymphocytes get 
knowledge about its status and about external factors that might require their activ-
ity. Any and all of these interactions might be (and, according to the current knowl-
edge mostly are) affected by the aging process.      

   Now, the effectiveness of an immune response, understood as the quickness 
and completeness of the neutralization/removal of potentially dangerous antigen 
is therefore  dependent on the two major, related factors. The first  is the avail-
ability of adequate numbers of the cells that can react to the antigenic challenge. 
They would have appropriate, broad repertoire of the TCR/CD3 complexes and 
accessory molecules (including first of all the CD4 or CD8 and CD28  in right num-
bers  on their surface, and the intracellular machinery of signal transduction, protein 
synthesis, DNA replication, cell division etc. in good working order.  The second  
stems from the first and is the ability of a T-cell population to temporarily increase 
numbers of effector T-cells, whose role is to neutralize the invading antigen directly 
or with the help of cytokine-driven NK killer cells or antibody-producing B-lym-
phocytes, and which should then quickly get stopped by regulatory/suppressive 
T-cells and ultimately disappear by the Activation-Induced Cell Death (AICD) being 
a form of apoptosis (see the chapter by Ewa Sikora in this volume). This second 
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utmost important factor ascertaining the optimal immune response is therefore the 
process, called  T-cell proliferation .  

   The above is of course the basic tenet of current immunology. However, what 
perspires as important for our consideration of aging-related changes in the per-
formance of the immune system, is the need to maintain the right  proportions and 
numbers  of all of the abovementioned cellular (sub)populations in order to keep the 
whole system optimally effective (please mark “optimally”, which does not mean 
“maximally” and might mean the difference between the immunity and the autoim-
munity). As mentioned above, direct intercellular contacts and humoral signals form 
the two ways various cells of the immune system communicate with each other and 
with other cell types. For these “means of communication” to be optimally effective 
and lead to the goal being the antigen neutralization, the communicating cells have 
to be in proximity to each other and in adequate numbers, which is maintained by 
effective proliferation (multiplication) of various T-cell subpopulations responding 
to an antigenic challenge. It is commonly accepted that both the proportions as well 
as absolute numbers of various subpopulations of the human T-cell pool change 
with advancing age which may be at least one of the reasons for decreased overall 
performance of the system in the elderly.  

   Thus, T-lymphocyte pool appears as a component of a very complex, dynamic, 
(and by far not fully understood) web or network of interactions, where the sig-
nals conveying information may be either direct intercellular contacts or cellular 

Fig. 1 The idea of T-cells’ pool interactions within the broader organismal network, requiring 
proper numbers and functionalities of all members
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(secreted) molecules. Each and every component of this network may undergo 
aging- and/or pathology-associated changes, affecting its functions and—among 
other—its interactions with the immune system and with the T-cells in particular. 
It is a very hard task to understand, how in fact aging  “as such”  is affecting the (T) 
cells of the immune system (example: a whatever subpopulation of T-cells drawn 
from an old organism might be absolutely normal and do not functionally differ from 
the same population drawn from a young organism; however, at the moment of sam-
pling, the nervous (or say, hormonal) system in the old organism could have failed 
to secrete some mediator or hormone and this lack would affect the T-cell under 
study leading to an observed different reactivity, when compared with these from a 
young individual). Therefore in practically all current studies such broad analysis 
of multivariable status of organisms, from which the immune cells are drawn, is not 
performed and it is assumed that whatever “extra-T-cell” influences may affect the 
T-cells of an old individual they would integrate and be relatively similar through 
the healthy elderly cohort (yet different from the healthy young cohort, as a matter 
of course). Thus, the result of any test comparing the immune cells’ function in the 
healthy young and elderly bear the burden (and thus—doubts) of our lack of general 
knowledge about the individual’s status preceding the experiment.  

   While trying to understand the complexity of the T-cell system as a part of the 
(more general) immune system, its interactions and interrelations (both within the 
system and with the other ones (Fig. 1)) and, especially, any changes in its func-
tion related to advancing age and the process of aging, one has to be very aware 
of a basic difference between the immune systems of human beings and of model 
laboratory animals. The latter, usually germ-free or at least “specific pathogen-free” 
mice, have their immune systems all but dormant until the experimenter challenges 
them in vivo or in vitro (with possible exception of newly transformed neoplasm 
cells, that may form an unpredicted source of antigens even under such conditions). 
On the other hand, our own immune cells are not only on constant alert, but, in fact, 
constantly in-fight (although not all of them at the same time, of course!); our envi-
ronment (the air we breathe, the foods and drinks, other members of our species, 
our pets and farm animals etc.) is full of antigens, both those already known to the 
immune (memory) cells and the new ones, challenging the naïve T-cell pool.  

   Within the abovementioned network pervading the organism, the T-cells will 
dwell only in certain locations or microenvironments, providing for them the rel-
evant survival and sometimes mitogenic signals; these locations can be collectively 
called the “T-cell niche” ( Fig. 2 ), even if it is already known that different T-cell sub-
populations would require different sets of these survival-and-proliferative signals 
and thus will rather live in a few partially overlapping “niches”. A very good exam-
ple here is the memory T-cell niche, which had recently been shown to be defined 
by the ligands belonging to the TNF family and in fact differentiating between the 
CD8 +  memory and CD4 +  memory “subniches” [74].      

   Thus, the T-cell niche (being, in fact, a sum of all “T-cell subpopulations’ niches”) 
in a human organism is never static. Both the proportions and the absolute numbers 
of various T-cell (sub)populations are homeostatically maintained throughout most 
of our adult life, in order to keep this niche (consisting of the T-cell compartments in 
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the lymphatic organs, bone marrow and circulating lymphocytes, although the latter 
can also be considered a “common sink” or corridor for all of the relevant “niches”, 
where members of different ones may meet and interact) relatively constant in vol-
ume, yet ready to respond to any antigenic challenge with enough effectiveness to 
keep the organism healthy (or, at least, to ascertain its survival when confronted by a 
pathogen). These  homeostatic regulators (homeostats)  consist of the mechanisms 
leading on one hand to fast and concerted accumulation of all the required effector 
cells (the “input” side in the Figs. 2 and 3), but containing various ways the T-cell 
may die (apoptosis, necrosis etc., the “egres” side in the Figs. 2 and 3), including 
the production of regulatory T-cells with one or another type of suppressive activ-
ity against their activated sisters on the other (see below and the chapters by K 
Hirokawa and by P Moss in this volume for more detail on T-cell homeostasis and 
regulatory T-cells respectively).      

   One of the most important questions for our understanding what happens with 
our T-cells when we age was interesting gerontologists for many years and it is still 
not answered yet. Why—knowing that our immune system is impaired and gener-
ally loosing its functionality when we age—we do not observe major decrease in 
its volume—in the peripheral blood lymphocytosis for example, or in the palpable 
volume of the lymph nodes in the old individuals? In other words: what keeps the 
T-cell niche in an active equilibrium over our young and middle age, i.e., what 
homeostats play the major role(s) in the process, and how they change when we 
get old? Let us consider the general situation in the T-cell niche ( Fig. 2 .). The 
mechanisms increasing the volume of the niche(s) (the “input” side in the Fig. 2.) 
can be divided into  intrinsic and extrinsic  to the niche-dwelling cells itself. Those 

Fig. 2 The idea of T-cell niche homeostasis; I = E
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 intrinsic to the in-niche T-cells  themselves will mostly depend on the antigenic (or, 
in vitro—also mitogenic) challenge. They will consist of:  ability to recognize the 
stimulatory signal  (an antigen, in vitro also mitogens) from environmental noise, 
which requires  proper diversity and numbers  of the TCR/CD3 complexes,  ability to 
distinguish the signal as “requiring response”  which requires proper MHC/HLA 
context, availability of other (costimulator) molecules (especially CD28) interact-
ing with the antigen-presenting cells, adequate numbers (surface densities) of these, 
and the  ability to properly respond to incoming signals  which requires func-
tional signal transduction mechanisms (starting from the proper numbers of relevant 
T-cell surface receptors), functional gene activation and transcription machinery, 
functional protein synthesis apparatus. Within this proper response lays, of course, 
the a bility to divide  (proliferate, i.e., undergo productive mitosis, leading to the 
generation of viable daughter (effector) cells), which requires adequately functional 
cellular machinery directly involved in the processes of error-free DNA replication, 
and in its separation into newly formed nuclei of the daughter cells.  

   The mechanisms  extrinsic to the in-niche T-lymphocytes  would contain  influx 
of new, naïve T -cells generated in the thymus or extra-thymically,  T-cell survival 
signals,  which may be generated in the niche or outside (these include IL-2 and other 
growth factors) and, possibly, also the hypothetical and currently mostly unknown 
 factors that govern the development and size of the microenvironment  creating 
the niche stroma. One has also to bear in mind the postulated homeostatic prolifera-
tion of the T-cells—one that supposedly provides new naïve T-cells even after the 
cessation of thymic lymphopoiesis; it can probably also increase or at least sustain 
the numbers of the memory cells (possibly  ex definitione  also without antigenic 
stimulation) and thus would get more and more importance with advancing age (see 
below).  

   Considering the mechanisms  decreasing  the volume of the niche(s) or the elimi-
nators of “surplus” (or temporary surplus) T-cells (the “egres” side in the Fig. 2), 
one would have to list first those  intrinsic to the activation process , i.e.,  any form of 
Activation Induced Cell Death  (AICD). This is a major safety valve against uncon-
trolled overproduction or protracted dwelling of activated T-lymphocytes in the 
niche, which could—and sometimes does—result in either autoimmunity or trans-
formation into leukaemic growth, that eliminates practically all no-more-necessary 
effectors. Apparently, the AICD occurs only or mostly at the early G1A phase of the 
cell cycle [43].  Other forms of apoptosis  will constitute another negative homeo-
stat—like the one related to lack of growth- or survival-promoting factors, or that 
induced by irreparable (or not repaired soon enough) DNA damage. These would 
not be limited to any specific phase of the cell cycle.  

   Another somewhat similar way of elimination of the T-cells will be the  mitotic 
catastrophe —when all the signals and processes are in order until the moment of 
mitosis, where “something” goes wrong and proper separation of genetic material 
does not occur; however, in case of normal human lymphocytes, this way of cellular 
dying is not yet well understood or even proven [82].  

   The T-cell (similarly to other 300+ cell types of our of organism) my also die by 
other means, not directly related to their physiological function. First of all, they 
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may die by  accidental necrosis —when the intracellular compensatory (homeo-
static) mechanisms fail when confronted with—for example—a metabolic toxin, 
lack of oxygen, or (admittedly very unlike for lymphocytes) mechanical damage.  

   And finally, what should be of an utmost interest considering the topic of this 
chapter and the entire book, it is possible that  T-cells die “of old age”  i.e., because 
they had aged so much that their intracellular homeostats cannot support life any-
more. This last possibility bears with it another question, that about the actual 
lifespan of human lymphocytes. Are they short-lived (on the scale of days) and 
rapidly replaced? Are they long-lived and—when not confronted with an antigenic 
challenge—is their lifespan comparable to that of the organisms (i.e., measured in 
many years for human beings)? This question, obviously of an utmost importance 
for understanding the balance within the T-cell niche, is not so easy to answer. In 
order to know the actual (or maximal) lifespan of any T-cells’ subpopulation, one 
would have to mark it somehow at the beginning of the individuals’ life and then 
observe how long these marked cells would stay present in the organism under 
study. In fact, such analysis has been performed both for mice and for humans. In 
the former, it is possible to draw and isolate the lymphocytes, mark them with a 
stable fluorescent tag (for example the carboxyfluorescein diacetate succinimidyl 
ester (CFSE)), reinject in the animal and then seek the fluorescent cells in the blood 
or lymphatic organ of the animal after at least many months, which correspond to 
a substantial portion of the animals’ life [46]. The fluorochrome is found not only 
to be a stable marker of the tagged cell, but also to be proportionally, arithmeti-
cally diluted into its daughter cells; i.e., if the CFSE-tagged cell divided once, their 
daughters would contain ½ of the fluorescent signal, their daughters 1/4 th  etc. Thus, 
if after some time we would still see the cells with the fluorescent signal exceeding 
½ of the original, we must assume they did not divide since the tagging operation, 
so their lifespan has to be at least equal to the period between the tagging and the 
observation. For murine T-cells it was shown to exceed on average half a year, 
which for most mice strains is about 1/4 th  of their typical lifespan. This constitutes a 
proof that at least some murine T-cells may live for a major portion of the animal’s 
life and, possibly, their lifespan would be similar to the lifespan of the mouse.  

   The same is much more difficult in humans—for obvious reasons we cannot 
tag and observe our own cells that way. Also, one has to be careful to distinguish 
between the proliferative lifespan of a T cell—i.e., how long it and its progeny of the 
same clone would stay in the organism—and the lifespan of a T-cell “as such”—i.e., 
how long a nondividing T-cell can stay alive and “clog the niche”. A dreadful event 
in recent history actually did the human cell tagging for us. In 1945, citizens of two 
Japanese cities were exposed to extremely high radiation of atom bombs. Many of 
those, who survived the holocaust, exhibited various mutations and changes in their 
genetic material, frequently leading to the development of malignancy (including 
the leukemias). However, in some of them a special type of chromosomal mutation 
can be demonstrated; this one leads to the appearance of circular chromosomes and 
other chromosomal mutation, precluding the symmetrical division of such T-cells 
[40, 41]. Thus, putting the two together: if the cell with this mutation was generated 
in 1945 and it can still be detected today, it must be more than 60 years old; in fact, 
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these are the maximal estimates of the human lymphocyte lifespan based on this 
singular phenomenon [53–55].  

   Newer data, utilizing other approaches for establishing the maximal (or aver-
age) lifespan of human T-cells are more confounding and yield much smaller val-
ues, from a few days or weeks in the case of naïve, to at most a couple of years 
for the memory T-cells [5, 47, 48] (albeit some papers state that the memory 
T-cells do not differ or have a shorter lifespan [87]. However, these tests, mark-
ing the cells for example with deuterated ( 2 H)-glucose, do NOT actually “see” the 
marked cells throughout their life, but estimate average lifespans based on incor-
poration of the  2 H-glucose deuterium in the DNA; thus it is rather an average than 
a maximal lifespan that they estimate. Another popular way of assessing the T-cell 
clone lifespan is by the estimation of number of population doubling in vitro and 
then multiplying it by the time required for a single population doubling. This is 
of course the T-cell proliferative lifespan, not the maximal (or even average) time 
any single T-lymphocyte may live when undisturbed in an organism. This type of 
study yields the average lifespan for human memory cells about 15 years and their 
maximal lifespan of about 35 years [1]. More recent data from the in vitro cultivated 
T-cell clones show that hey can perform close to 100 population doublings, which 
would extend their maximal lifespan to that close to observed for T-cells of the 
A-bomb victims [62, 63]. Concluding, at least some T-cells may stay alive for a long 
time even if not dividing and thus “clog the niche”;—i.e., limit the available space 
for the progeny of the still-reactive lymphocytes.  

   As long as the two processes (i.e., production and/or influx of new T-cells and 
the removal of the T-lymphocytes that are no more needed) are in relative balance, 
the niche “volume” or total numbers of included T-cells will stay more or less stable 
(even if the properties (phenotype) of the cells filling it will change, the quantity will 
be homeostatically maintained). This seems to be true for the fate of T-cell niche in 
the healthy young individuals (Fig. 3a). Still, all the time one has to be aware that 
the above description is general (using the keyword “T-cells” rather than alluding to 
separate subpopulations of these) and that so far there are not much data regarding 
the behaviour of any single T-cell subpopulation as a niche-filler. One consideration 
that must be made here and that would impact on the overall reactivity of the T-cell 
system in the aged (but would not in fact change much the total numbers of T-cells 
in the niche) would be the slow replacement of many very diversified variants of 
the T-cell receptor TCR (deciding on the ability of T-cells to react to multitude of 
previously unknown antigens) by much fewer numbers of these, leading to the phe-
nomenon described as TCR repertoire contraction and resulting in vastly reduced 
ability of T-cells of even healthy elderly to recognize and react to new antigenic 
challenges [60].  

   However, as the organism/individual ages, these homeostats seem to become 
more and more impaired, as we know from the observational and experimental evi-
dence accumulated so far.  

   Based on the early studies of the ability of T-cells of old mice and elderly peo-
ple to proliferate in vitro to mitogenic challenge, it was long ago established that 
their overall proliferative capacity is significantly dwindling with advancing age. It 
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has been shown many times both for the T-cells of old mice as well as for human 
peripheral blood lymphocytes (for the review see for example [33, 61]). T-cells of 
old organisms incorporate less  3 H-thymidine when stimulated in vitro with either 
immobilized anti-CD3/anti-CD28 or with plant mitogens (like phytohaemagglu-
tinin or concanavalin A) or with the “membrane-bypassing” cocktail of calcium 
ionophore ionomycin and phorbol ester. Also, when their ability to double their 
numbers in vitro is calculated, it is significantly, much lower than that of young 
cells. Both these parameters tell us that the general, T-cell population-wide ability 
to respond to relevant stimuli is decreased in the T-cells of old individuals (reviewed 
in [20 33]). The net result should be the reduction of the T-cell niche volume/cel-
lularity (Fig. 3b).      

   One of the problem a researcher of T-cell aging encounters when studying the 
field is the T-cell phenotypic shift occurring in the elderly. The best known forms 
of this remodeling are the naïve-to-memory shift and the accumulation of T-cells 
deprived of CD28 costimulatory molecule [9, 24, 28]. The first, naïve-to-memory 
shift (or accumulation of phenotypically memory T-cells at the expense of naïve 
ones) is intuitively obvious: given relatively constant T-cell niche volume and many 
years of exposure to environmental antigens and pathogens, our adaptive immune 
system must produce many variants of memory cells left behind after each anti-
genic challenge, that will take the niche space [16]. In addition, we know for many 
decades that the main if not sole provider of new naïve T-cells in our youth, the 
thymus, is grossly reducing its output after the puberty (even if we know now, that 
it does NOT stop working then; in fact, naïve T-cells and the thymic hormones are 
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produced still when we are approaching old age) [15, 59]. At the very old age the 
thymus is apparently no more the source of new, naïve T-lymphocytes, yet even 
in the very old people we can still detect some of them [59, 65]. This leads to the 
conclusion that either they are the survivors from our youth or middle age (but see 
the discussion on the T-cell lifespan in this chapter!) or they are maturing from the 
bone marrow precursors without the need of the thymic microenvironment (extra-
thymically). The data showing decreased numbers of new thymic emigrants con-
taining the TCR gene rearrangement excision circles or TRECS suggest that in the 
very old (centenarians) such cells are practically absent [59] which would rather 
support the first possibility. The question how it in fact is and another—whether 
these naïve T-cells that appear in the elderly are still fully functional (for instance, 
can they still divide as dynamically as the naïve T-cells of young individuals when 
challenged)—remains unanswered so far.  

   A related factor is that the proportion of T-cells that do not enter division cycle 
upon stimulation (nonzero even in the young individuals) is vastly increasing among 
T-cells of old people. These lymphocytes are presumably proliferatively senescent, 
i.e. post-mitotic and unable to divide anymore. However, it is not known as yet, 
whether they in fact only “stay there” and “clog the niche”, or are they still able 
to perform some other, nonproliferative functions, like the cytotoxic or regulatory 
(cytokine- or contact-related) activities. One of the possibilities is that they could 
be devoid of certain essential molecule (or signalling pathway) necessary for initia-
tion of proliferation; an important candidate here could be the major costimulator 
molecule of the T-cells, the CD28.  
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   Accumulation of the CD28 nul  subpopulation in both the CD4 +  and CD8 +  lym-
phocyte populations was found to accompany even healthy aging [9, 21, 24, 88, 92]. 
Certain studies demonstrated that these CD28 nul  cells have many features ascribed 
to the aging T-cell population, including the decreased proliferative capability 
measured by  3 H-TdR incorporation [9, 13, 18, 19, 22, 23, 92], contracted T-cell 
repertoire [78, 89] (see also the chapter by J. Goronzy in this volume) and modi-
fied cytokine production [2, 26, 76]. Thus it was assumed that their accumulation 
might be responsible for the impaired functioning of the T-cell pool in the elderly. 
However, while CD28 nul  cells may form even more than 50% of all circulating 
CD8 +  lymphocytes they rarely exceed 10% of the CD4 +  cells in a healthy elderly 
individual [9, 11, 21, 24, 88, 92]. Thus, their accumulation cannot be considered 
the culprit for grossly decreased proliferation rate of either CD4 +  or even CD8 +  
lymphocytes (even in the latter population, the decrease in 3H-thymidine incor-
poration is by far more than 50% when we compare cells from young and elderly 
individuals). Interestingly, even the relatively high accumulation of CD8 + CD28 nul  
lymphocytes in the elderly cannot be responsible for decreased proliferative 
capacity of the CD8 +  population in old people; it was recently found (using the 
flow cytometric DCT technique utilizing the supravital staining of proliferating 
cells with the fluorescein derivative, CFSE) that in fact, these CD8 + CD28 nul  cells 
do proliferate more and more with advancing age and, when drawn from the blood 
of oldest old, they can make in vitro many divisions [14]. This was also shown for 
t he CD4 + CD28 nul  cells, albeit the latter seem to be less proliferatively active in 
the elderly than their CD8 +  counterparts [12]. Thus, overall effect of accumulation 
of CD28 nul  cells on the status of the T-cell pool in the aged (at least for its CD4 +  
compartment) cannot be that much, unless they would be functional regulators/
suppressors. This latter possibility is tempting, however until now (mid-2007) it 
had not been sufficiently documented, despite showing at least some cytotoxic 
abilities in them [52, 56, 58].  

   On the other hand, the existence and potential importance of the CD28 nul  cells (at 
least within the CD4 +  population of human lymphocytes) may be just the tip of an 
iceberg, with the most of it metaphorically containing the CD4 +  cells with lowered 
numbers of CD28 molecules on their surfaces, but not lacking them altogether. In 
fact, we were able to show some transcriptive activity of the CD28 gene by RT-PCR 
even in the notorious CD4 + CD28 nul  clones, which suggests that the actual range 
of CD28 expression level on the human CD4 +  lymphocytes might be from near-
zero to whatever maximum (Witkowski, unpublished). We have shown before that 
this is the case: CD4 +  lymphocytes of healthy elderly people express on average 
fewer CD28 molecules per cell than those from healthy young people [12, 93]. This 
observation is similar to that obtained for the CD4 +  lymphocytes of rheumatoid 
arthritis (RA) patients, considered to show the phenotype of accelerated aging [11]. 
Decreased numbers of CD28 on elderly CD4 +  cells expectedly have their conse-
quence, the CD28 being known as a major costimulatory molecule for these cells. 
Using advanced DCT technique we were able to show that the CD28 molecules’ 
number inversely correlates with the time, required by the T-cell to exit the resting 
G 

0
  phase and to enter their first division upon stimulation [12, 93].  
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   Summarizing current knowledge, with aging the production of new cells [both 
naïve (first of all) and effector as well as memory] seems to be reduced, and the 
accumulation of post-mitotic, senescent T-cells is increased. On the other hand the 
AICD and, possibly, other forms of apoptosis and—hypothetically—T-cell death 
related to the more and more of them attaining cellular old age (senescence) and 
dying of it, as well as possibly the mitotic catastrophe related to accumulating DNA 
damage are increased. This would result in the net emptying of the T-cell niche, 
observed as lower numbers of T-lymphocytes in the circulating blood, reduced vol-
ume of the T-cell compartments in the lymphatic tissues etc (Fig. 3b). However, 
these symptoms do not occur, so some mechanism must maintain the filling of the 
niche (Fig. 3c).      

   Why do the T-cells proliferate differently in the aged individuals remains not 
fully understood. It is well established that various facets of the signal transduction 
mechanisms leading to the turning on of the DNA replication and cell division are 
impaired in the T-cells of the elderly [31–33] (see also Tamas Fulop’s chapter in this 
book). The major mechanism governing the progression of the cell cycle when it 
was already initiated consists of the interplay between the cyclin-dependent kinases 
(the cdks, in the lymphocytes mostly cdk 2, 4 and 6) that are supposed to phospho-
rylate specific proteins at specific times during the process, the cyclins (A through 
G, forming regulatory parts of the active phosphorylating complexes, but must be 
tightly controlled and timely eliminated or the cell may become neoplastic) and the 
cyclin-kinase complex inhibitors including the p21cip/waf, p16ink4 etc. The latter 
are already known to accumulate in many cell types of old individuals including 

Fig. 3c The T-cell niche homeostasis in elderly: I ≈ E (proposed model)
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the lymphocytes [36]; ultimately their amount is supposedly that high that the cell 
cannot perform any cdk-dependent phosphorylation and stops dividing completely, 
reaching proliferative senescence. On the other hand, the levels of cyclins and the 
cdks are posing more difficulties for interpretation. It was shown that the levels of 
cyclins A, G and D (2 and 3) are lowered in the T-cells of old individuals. These 
observations are related to their increased destruction by the ubiquitin-dependent 
proteolytic machinery [68–70] and possibly also due to decreased activity of rel-
evant genes [4, 25, 36, 73]. Similarly T-cells of the elderly are containing less cdk 
kinases, which disrupts the phosphorylation processes needed for cell cycle pro-
gression [4, 25, 36, 73]. However, the data available so far do not consider the 
remodelling of the T-cell pool, including the increase in the proportion of senescent 
cells. Thus, it is theoretically possible that those T-cells that are still capable to pro-
liferate in the elderly may have these mechanisms even more active than the young 
ones! In fact this is precisely what we see: using the DCT cytometric technique we 
had demonstrated more divisions made in vitro by fewer CD4 +  cells of the elderly 
people, associated with increased levels of D1 cyclin (governing the length of the 
G1 phase of the cycle), both total and cdk-bound in an active complex [93].  

   This brings us to the whole huge question of possible changes in the cell cycle 
length and productivity related to aging.  

   When we consider the actual cell cycle length (or the time between the two con-
secutive mitoses) we have to bear in mind the serious consequences of shortening 
or elongation of the cycle by relatively minor span of time per cycle. Using simple 
enough arithmetic one can show that the cells, for which the cell cycle is shorter, 
will make more divisions at the same time compared to other with longer cycle. As 
the average length of the human T-cell cycle is somewhere between 12 and 20 hours 
[93] and stimulated T-cells are able to perform up to 15 or more division in vitro 
without artificial support (like feeder cells or IL-2 and other growth factor supple-
mentation), one can easily calculate that after the time the cells with longer cycle 
spent on x division, those with shorter cycle would make x + 1/cell cycle length * 
number of cycles until time of observation; eventually, after a precisely calculable 
time faster cells would make one division more than the slower ones, i.e, at the end 
of that time, there should be up to twice as many faster cells than slower ones! This 
may be of physiological importance, for example as a reason for elimination of less 
active clones by more active ones and changed TCR diversity in the elderly. Thus, it 
seems important to know if the cell cycle length changes with advancing age.  

   In fact such studies were performed already a few times for murine and human 
T-cells from donors of different ages. The methodology applied was mostly staining 
the cellular DNA after a designed time of stimulation and detecting the proportions 
of the cells in G0/G1, S, and G2/M stages of the mitotic cycle which, with appropri-
ate analytical tools, allows for approximate estimation of the length of each stage. 
This technique yielded some intuitively expected results—namely, T-cells from old 
individuals tended (on average) to have their cell cycle longer than cells from young 
individuals [4, 25, 73]. While looking at the various stages of the T-cell cycle, vari-
ous authors reported: no change or elongation of G1 (the latter related to the accu-
mulation of the inhibitor of cyclin D/cdk4/6 kinase complex, the p21 cip/waf (by 
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BrdUrd/Hoechst staining; [6]) and an elongated S phase (here the example is the 
Werner’s syndrome S phase length [71], but one can easily, intuitively understand 
that the T-cells (and other cycling cells) of the elderly individuals may have more 
DNA damage accumulated, and less effective mechanisms of its detection (includ-
ing the p53 [51]) and repair [3, 39, 77], thus may be prone to slowing down the 
cycle to allow more time for repairs). Also, and for the same reasons, elongated G2 
phase was reported [66, 67]. According to these reports, age-related G2 elongation 
can be reversed by caffeine which, in turn, is reversed by adenosine (which pro-
vokes the—currently unanswered yet—question on the role of changed availability 
of energy and/or cAMP in the observed process).  

   Thus, in a model of the T-cell cycle changes related to aging, that arises from the 
abovementioned observations (Fig. 4a), with aging all or at least some of the cycle 
phases are elongated, leading to the elongation of the whole cycle. Accordingly, 
compared to the young, the T-cells of elderly would make fewer divisions in the 
same time from stimulation and, assuming other factors influencing the progeny 
number would not change (which is not entirely true, as the level of AICD changes 
with aging, as do probably other means a T-cell might die) we would see fewer 
daughter cells at the end of any observation period. This is in agreement with old 
data on  3 H-TdR incorporation in the DNA of mitogen-stimulated T-cells of young 
and elderly. However, assuming the above as the whole truth we would expect not 
only the immune response involving the T-cell proliferation to be much less effec-
tive (due to not enough effector cells produced on time), but also the numbers of 
T-cells in the elderly to dwindle quite rapidly, both during activation (AICD and the 
mitotic catastrophe on the rise) and during the rest period, where the homeostatic 
mechanisms to fill the niche would also fail. Yet, we do not see a significant change 
in the volume of lymph nodes, spleen and the MALT when we age, even if their 
internal histology may change with age [84, 85, 90, 91].      

Fig. 4 Changes of the length of cell cycle phases (G0 through M) in the T-cells of healthy elderly. 
Relative lengths of cell cycle phases of T-cells of young ( ), and elderlyindividuals( —presenes-
cent, —homeostatically proliferating). Smaller radius indicates shorter cell cycle
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   One common mistake in such studies is that the researchers assume some spe-
cial value for the length of any specific cell cycle stage. For instance, according to 
Kypreou et al, at 72 hours stimulation (in vitro) the lymphocytes are in the S phase 
[42]. In fact even if we assume the initial synchronization of these cells’ entry in 
the activation process (by the token of almost immediate contact of all tested cells 
with the stimulus upon its admixture), we do not know the actual timing of stages 
preceding the S phase, including first of all the G0→G1 transition as well as the G1 
phase itself, which is the most variable and prone to change in length. Thus, any  a 
priori  assumption of the length of any phase of the cell cycle skews our understand-
ing of possible changes, by not allowing the researcher to assume that any of them 
might actually be changing with age! As we had demonstrated confirming earlier 
suggestions, the G0→G1 phase is significantly elongated (in some cases to more 
than 50 hours!) for the CD4 +  cells of healthy elderly and this elongation depends on 
the availability of CD28 as a source of costimulatory signal [93].  

   On the other hand, when we applied the abovementioned DCT flow cytometric 
technique to tag and enumerate dividing human T-cells obtained from people of var-
ious age, and the not-so-complicated mathematics for calculations, we have found 
that, in fact, on average the cell cycle of the CD4 +  lymphocytes of the healthy eld-
erly is shorter than that of the same cell type from young people [93]. In detail, the 
CD4 +  population that we studied that way was more diversified: apart from the cells 
that divided fast (making more divisions per a dividing cell) there were many (more 
that among the lymphocytes of the young people) those that did not divide at all 
(senescent?). Also, the shortening of the cell cycle was true for those CD4 +  cells that 
were still expressing some (but FACS-detectable) CD28 on their surface, while the 
CD4 + CD28 nul  cells of the elderly divided with the speed not different from the same 
population dwelling in the young. This observation—in our opinion—is indicating 
that the cell cycle behavior does NOT undergo any COMMON type of changes in 
aging, even within such a seemingly uniform class of cells like the T-cells; rather, 
different subpopulations of the T-cells, including those differing in the expression 
of CD28, but possibly also the broadly different CD4 +  and CD8 + , naïve and memory 
cells etc. would follow their separate patterns of cell cycle change, requiring sepa-
rate studies. In our opinion this once again describes the CD28 nul  population as an 
end product of the process of aging. At the end, of course, all of them would fit into 
the common pattern of remodeled T-cell niche observed in the healthy elderly.  

   Thus, we propose another model (which according to our experiments is true 
at least for the CD4 +  lymphocytes) where those T-cells of the healthy elderly 
that still had not reached proliferative senescence would actually divide faster 
(their cell cycle would be significantly shorter), while these approaching it, but 
not yet senescent—slower (Fig. 4b). That way in the same time fewer cells than 
in the young would make more divisions than the dividing lymphocytes of young 
individuals and the number of their progeny would remain reasonably similar 
to that seen in the healthy young people. In our opinion, this model fits well in 
the aged immune system remodeling theory [27, 30], adding a changing func-
tional component to its—already known—changing phenotypic characteristics. 
The mixed cell population that fills the T-cell niche in the aged organism would 
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therefore consist of increased numbers of the progeny of those clones that can 
still divide relatively vigorously, steadily reduced numbers of those which still 
divide slowly (presenescent), and relatively constant or slowly rising numbers of 
senescent (postproliferative) T-cells clogging the niche (resulting  inter alia  in the 
observed TCR repertoire contraction)—Fig. 3c. Interestingly, homeostatic prolif-
eration—one that plays a role if filling supposedly empty space in the T-cell niche 
after the demise of exhausted clones—is reported for both the naïve and memory 
T-cells of the elderly [60].  

   The model we propose might gain another aspect, related to the concept of inflamm-
aging (readiness of the immune system of elderly to initiate the inflammatory reac-
tion or even permanent state of such mild, subclinical inflammation [17, 29, 75]). It 
was shown earlier that dexamethasone (a synthetic antiinflammatory glucocorticoid) 
extends the G1 phase of stimulated human lymphocytes and it is suggested that natural 
glucocorticoids do the same [7, 8]. The levels of glucocorticoids in the sera of elderly 
people are variably reported as lowered, unchanged or (quite frequently) increased 
as compared with these observed in young people; the latter are associated with inter 
alia worsening of the hypothalamic functions (including memory) [49, 50, 81]. How-
ever, these data concern mostly the total levels of the hormone and not the levels of 
its free, active form. Yet, in our opinion, the inflamm-aging state should be associated 
with lowered levels of  free  glucocorticoids observed in the elderly. Thus, shorter G1 
that we suggest as the reason for overall cell cycle shortening of elderly CD4 +  cells 
might be related not only to high D1 cyclin in these cells that we have reported [93], 
but also to less free glucocorticoids. Our recent work shows very much decreased 
amount and activity of cellular β-glucuronidase being the product of Klotho gene 
in the CD4 +  lymphocytes of healthy elderly people [94]. Klotho, recently dubbed 
the aging hormone, is deeply related to the process of aging, mostly due its involve-
ment in the regulation of calcium and phosphate balances [38, 83, 86]. However, the 
enzymatic activity of Klotho β-glucuronidase is directed  inter alia  towards the steroid 
glucuronides (a major water soluble conjugate of steroids manufactured in the liver 
as means of eliminating the hormones with urine and thus regulating their concentra-
tion and activity) and thus, when active, it is keeping the free steroid levels up [35]. 
In the elderly, decreased Klotho expression and activity would not prevent glucuro-
nidation and elimination of glucocorticoids which then exert less antiinflammatory 
activity (hence inflamm-aging) and less G1 phase elongating activity (hence shorter 
G1 phase in the ‘Klotho-depleted’ T-cells of old people). Accordingly, T-cells of old 
people seem to be less sensitive to antiproliferative activity of cortisol [45]. Interest-
ingly, very recently Klotho has been described as a direct antagonist of the Wnt gene 
product, at least in certain stem cells [10, 44]. The role of Wnt—related pathways 
in the development, differentiation and function of human B- and T-lymphocytes is 
recognized (for the review, see [72, 80]), and its relation to cellular aging on one hand 
and to the pathogenesis of rheumatoid arthritis on the other at least strongly suggested 
[37, 57, 79]. Negative association between Klotho and Wnt opens a new, interesting 
avenue for aging research.  

   Concluding, despite already broad and constantly increasing knowledge on the 
aging-related changes in the dynamics of human T-cell proliferation, this knowl-
edge is so far (end 2007) by no means complete and requires much further study.  
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                                  Abstract   :     Age-related accumulation of DNA damage in human T-cells has been 
well documented and could be associated with T-cell malfunctions. Therefore, an 
age-related reduction in DNA repair capacity of human lymphocytes may contribute 
to this phenomenon and play a key role in the modification of the immune response 
observed in the elderly. Because the Mismatch Repair system is the main post-
replicative pathway for the correction of replication errors and few data suggest 
a possible alteration with age of this repair pathway, it is conceivable that, also in 
the immune system, age-related alterations of mismatch repair could contribute to 
the accumulation of genetic damage. This is particularly true for adaptive immune 
response, whose function depends on the ability of T-cells to undergo repetitive 
replications after antigenic challenge. The present chapter will focus on the role 
of the Mismatch Repair System that is recently emerging as a possible additional 
mechanism contributing to the accumulation of genetic instability during aging in 
peripheral blood cells. In vivo data at present available in the literature and results 
from studies on cloned human T lymphocytes cultured for different periods in vitro, 
as a model of immunosenescence, will be reviewed.  

         Keywords:        Aging    •     Microsatellite instability    •     Mismatch repair system    •     T-cell clones    

               1   Introduction  

   The understanding and prevention of age-related diseases rely on the study of the 
molecular mechanisms underlying the physiological aging process and different 
theories have been proposed. According to the “soma theory”, the aging process is 
caused by a life-long accumulation of random damages in somatic cells and tissues 
(Kirkwood, Kowald  1997 ) compromising the functional activity of cells and ulti-
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mately leading to cell death. This indicates a central role for the different mechanisms 
of cell care and stress response cooperating in the regulation of life span, allowing 
a definition of the so-called “network theory of aging” that includes the effects of 
defective mitochondria, aberrant proteins, free radicals and DNA mutations (Kirk-
wood, Kowald  1997 ) as contributors to the overall process of senescence.  

    2   Aging and DNA Damage  

   DNA damage might contribute to the aging process by interfering with DNA rep-
lication and transcription impairing the functional ability of cells and thus lead-
ing to a senescent phenotype, loss of cellular function, cell death or tumours 
(Walter et al.  1997 ).  

   A wide range of damages to the native structure of DNA (single and double 
strand breaks, apurinic and apyrimidinic sites, base alterations, methylation, inter 
and intra-chromosomal cross links, bulky and smaller adducts and distortion of helix 
by intercalation) can occur through spontaneous damages arising from byproducts 
of the cellular metabolism or by exogenous chemical, radioactive, viral and muta-
genic agents (Reddy, Vasquez  2005 ). However, the steady state level of spontaneous 
DNA lesions is very low and therefore difficult to evaluate, under normal condi-
tions. Experimental results do not show directly that decreased genomic integrity 
causes senescence of somatic cells, but many studies have demonstrated direct cor-
relations: base adduct levels in nuclear and mitochondrial genomes shorten life span 
and are related to decreased functions of aging. In addition, chromosome aberra-
tions in human peripheral blood lymphocytes do increase with age (Prieur et al. 
 1988 ), as well as mutation frequencies at the level of specific genes (as HPRT locus) 
(Vijg  2000 ). In any case, the critical load of cellular mutation able to induce physi-
ological consequences is still undetermined.  

       3   Aging and DNA Repair  

   Genetic stability is controlled by a number of cellular functions including DNA 
replication, repair and recombination complexes. Mutations in DNA repair genes 
frequently lead to genome destabilization and consequent increases in the frequency 
of mutations. Since systems regulating genome stability are considered to be major 
safety systems for longevity, it is likely that the inactivation of one or more of such 
pathways accelerates both age-related deterioration/death and mutation accumula-
tion, at the same time. Indeed, several studies have addressed relationships between 
DNA damage, its repair and aging, and have suggested an age-dependent accumula-
tion of DNA damage as partially responsible for the impairment of cellular functions 
and an increased rate of diseases, such as cancer, in the elderly. The accumulation of 
DNA damage with age (Walter et al.  1997 ; Barnett, Barnett  1998 ; Vijg  2000 ; Doria, 
Frasca  2001 ) seems to affect various tissues at different rates, as observed in trans-
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genic mice harbouring the LacZ gene (Ono et al.  2000 ). In addition, a positive cor-
relation between DNA repair capacity and life-span has been demonstrated (Hart, 
Setlow  1974 ). The impact of a malfunctioning DNA repair system on genomic 
integrity is also evidenced by progeroid syndromes in which mutations in DNA 
repair genes induce a premature aging phenotype characterised by immune defects 
and increased susceptibility to cancer development (Bohr  2002 ).  

     3.1   DNA Repair Pathways  

   Mammalian DNA repair processes depend on a number of complex pathways 
to cope with lesions in DNA structure. At least four main pathways have been 
described so far: 

      a)        the Direct Reversal Repair pathway catalyses a direct reversal only involving sin-
gle enzymes (e.g., alkyltransferase, removing the methyl group from O6-methyl-
guanine) and DNA ligase (rejoining single-strand breaks) (Harris et al.  1983 );  

         b)        the Excision Repair pathway is the predominant mechanism for the maintenance 
of genomic integrity. This pathway repairs different DNA lesions, ranging from 
simple base methylations to interstrand adduct formation resulting in major 
distortion of the DNA structure. Two distinct systems belong to it: 

     −      Nucleotide Excision Repair, which corrects a broad spectrum of structurally 
unrelated lesions such as UV-induced photoproducts, chemical adducts, intra 
strand crosslinks and some form of oxidative damage. It can repair any part of 
the genome, however, damage recognition and repair of trascriptionally active 
genes (Wood et al.  2001 ) is performed preferentially by an alternative pathway, 
termed transcription-coupled repair (Hanawalt  1994 );  

      −      Base Excision Repair, which is, perhaps, the most fundamental and ubiquitous 
DNA repair mechanism in all higher organisms that depend on oxygen for living 
(Wilson, Bohr  2007 ). It has evolved to handle the numerous minor alterations 
(such as spontaneous modification, oxidation, deamination and loss of bases) 
that can occur in the structure of DNA as a result of cell metabolic activity. This 
kind of repair is important in post-mitotic tissues, where simple base modifica-
tions are likely more prone to occur than major damages;        

         c)        the Recombination Repair pathway that corrects DNA double strand breaks 
frequently arising from the stalling of the replication fork and from the attack 
of exogenous agents (such as ionising radiation or chemicals), inducing inter-
strand or intra-strand cross links and preventing the use of one of the strands 
as a template for the repair process (Thompson, Schild  2002 ). Two types of 
Recombination Repair are described: 

     −      Homologous Recombination, a complex and poorly understood process that 
entails an intact homologous DNA strand as a template to repair DSB (Sonoda 
et al.  2006 );  
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      −      Nonhomologous End Joining that, by contrast, entails relegation of the broken 
ends without respecting homology and is consequently relatively error prone. 
Nevertheless, it is a major pathway for double strand break repair in mammalian 
cells and is thought to be of vital importance in post mitotic tissues (Sonoda 
et al.  2006 ).        

         d)        the Mismatch Repair pathway that corrects mispaired bases occurring most fre-
quently during replication (Kolodner, Marsischky  1999 ).          

   Finally, the discovery of a number of novel DNA polymerases with the ability to 
carry out DNA synthesis across a damaged or altered base added new possibilities 
for understanding DNA repair mechanisms in mammalian cells. These polymer-
ases have different substrate specificities, enabling them to deal with many different 
types of damaged bases, a process known as translesional synthesis (Rattray, Strath-
ern  2003 ; Lehmann 2006).  

    3.2   The Mismatch Repair Pathway (MMR)  

   The Mismatch Repair system is the main post-replicative pathway for the repair 
of mismatched DNA (base-base mismatches and insertion/deletion loops occurring 
during replication, homologous recombination and DNA damage) (Kolodner, Mar-
sischky  1999 ) and it is essential for maintaining the stability of the genome during 
repeated duplications. Essential components of the MMR system were identified in 
 Escherichia coli  and their main activities are reported in the Table  1 .     

     All eukaryotic organisms have MutS (MSH2, MSH3 and MSH6 genes) and 
MutL (MLH1, PMS1 and PMS2—PostMeiotic Segregation 1 and 2 genes) homo-
logues (Wood et al.  2001 ; Modrich, Lahue  1996 ), acting in form of heterodimers, in 
contrast to bacteria in which MutS and MutL function as homodimers.  

   In humans, DNA mismatch repair confers to the genome a 100–1,000 fold pro-
tection against replication-induced mutations (Loeb  1994 ). The initial recognition of 
mismatches is carried out by MutSα and MutSβ, functional heterodimers of Msh2 
bound to either Msh6 or Msh3, respectively. They display some functional overlap, 
with MutSα playing the major role in mismatch correction and being prevalently 
expressed in the cell. In the following step, MutLα or MutLβ (heterodimers of Mlh1 

Table 1  Principal components and functions of the bacterial Mismatch repair system

MutS Detects mismatches in DNA duplex and initiate the MMR 
machinery

MutL Makes a connection between the recognition of a mismatch and its 
excision from the strand within which it is contained

MutH Cleaves hemimethylated GATC sites for excision of mismatch-
containing strand and formation of nick

Uvr/Helicase Enters into the nick generated by MutH together with single-
stranded DNA-binding proteins
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bound to either Pms2 or Pms1, respectively) mediate the recruitment of additional 
proteins for the completion of the repair process, giving rise to the excision of the 
mutated strand in either direction to the mismatch and to the resynthesis of the 
correct sequence (Kolodner, Marsischky  1999 ). Efficient DNA mismatch repair 
requires the combined functions of MutS and MutL. The other proteins involved in 
the repair are: PCNA (Proliferating Cell Nuclear Antigen), whose activity increases 
the binding of MutSα to mismatched DNA suggesting a role of this protein in the 
recognition stage (Flores-Rozas et al.  2000 ; Lau, Kolodner  2003 ); ExoI (exonu-
clease I); RPA (replication protein A) and RFC (replication factor C). Once the 
mutated strand is excised beyond the mismatch, polymerase δ resinthesizes DNA 
and the nick is sealed by DNA ligases not yet identified (Jun et al.  2006 ) (Fig.  1 ).     

   In addition to a role during replication, MMR proteins have been reported to have 
other important functions, such as: antirecombination activity between divergent 

Fig. 1 Schematic representation of the Human DNA Mismatch Repair System. MutS heterodim-
ers (MSH2-MSH6 or MSH2-MSH3) combined with heterodimers of MLH1 with PMS2, PMS1 
or MLH3 have different specificities for DNA mismatches or loops (upper panel). Correction is 
targeted to the primer strand possibly through the interaction with PCNA and additional factors are 
required to complete the process (lower panel). polδ = polymerase δ; PCNA = proliferating cell 
nuclear antigen; RPA = replication protein A; RFC = replication factor C; Exo I = exonuclease I
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sequences, promotion of meiotic crossover, DNA damage surveillance and diver-
sification of imunoglobulins (Jun et al.  2006 ). The involvement of MMR in DNA 
damage response is evidenced by the fact that MMR-defective cells are resistant to 
alkylating and other DNA damaging agents (Fink et al.  1998 ). In fact, DNA damage 
triggers MMR-dependent G2/M arrest, followed by the induction of MMR-depend-
ent apoptosis p53- or p73-mediated. The hypothesis for how MMR is involved in 
somatic hypermutation and class switch recombination is that, after generation 
of mutations by AID (activation-induced cytidine deaminase), MMR proteins are 
recruited to the mismatched DNA and resynthesise the DNA strand with the help of 
an error-prone polymerase such as polymerase η (Wilson et al.  2005 ).  

   Defects in MMR correction pathways are associated with a substantial destabi-
lization of microsatellites, highly polymorphic, tandemly repeated sequences (from 
one to six bp) interspersed in the genome and particularly prone to slippage dur-
ing replication. Slippages determine changes of allele length either for insertion or 
deletion of repeated units. The experimental evidence of this phenomenon is called 
microsatellite instability (MSI), that is the appearance of additional bands of differ-
ent lengths or modification of the expected ones. Mutations are observed in repeated 
sequences, but can also occur randomly in all the genome; therefore, MSI indicates 
a higher susceptibility to mutations.  

   Mutator phenotypes due to inactivation of MMR were initially described in 
HNPCC (hereditary nonpolyposis colorectal cancer) caused by germ line mutations 
in several members of MMR genes (MLH1 and MSH2 in about 90% of cases), 
inducing accelerated mutations in microsatellite sequences compared to normal 
DNA, the so-called replication error (RER) phenotype (Aaltonen et al.  1993 ; De 
la Chapelle  1995 ). Subsequently, it was also described in cancer cell lines and in 
sporadic cancers of the colon, cervix, endometrium, pancreas, lung, prostate and 
stomach (Eshleman et al.  1995 ; Modrich  1996 ; Kane et al.  1997 ), due to somatic 
mutations in MMR genes or, more frequently, to epigenetic mutations, in particu-
lar hypermethylation-mediated gene inactivation (Liu et al.  1995 ; Liu et al.  1996 ; 
Moslein et al.  1996 ; Kane et al.  1997 ; Herman et al. 1998; Kolodner, Marsischky 
 1999 ; Suzuki et al.  1999 ).  

         4      Genetic Damage and Immune System  

   The immune system develops an enormous number of genetically different cells gen-
erated by breaking and rejoining DNA sequences coding for antigen receptors, by 
adapting the DNA repair mechanisms normally used to maintain genome stability. 
Small populations of naïve and memory T-cells, in order to ensure a correct immune 
response, have to expand clonally upon antigen stimulation. The ability to expand 
may depend on the amount of accumulated genetic damage and processes limiting 
T-cell proliferative capacity might impair the overall immune response. The overlap 
between DNA repair and immune system efficiency is evidenced by the fact that indi-
viduals with defective DNA repair pathways frequently show immunodeficiency.  
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   In addition, immune system efficiency is affected by aging, particularly the T-
cell compartment. The impact of age-related immune alterations on lifespan and 
diseases is in accordance with results from studies in centenarians showing that 
healthy individuals who have reached the extreme limit of human life in good 
clinical conditions are equipped with well preserved and efficient immune defence 
mechanisms (Franceschi et al.  1995 ).  

   An age-related accumulation of DNA damage and mutations in human T-cells 
has been well documented and could be associated with T-cell dysfunctions; 
it follows that a reduction in DNA repair capacity of human lymphocytes may 
contribute to this accumulation of DNA damage with age and may play a promi-
nent role in the deterioration of the immune response observed in the elderly and 
to the development of age-associated immune malfunctions possibly affecting 
lifespan.  

    5      MMR System and Aging  

   MMR deficiency inducing high levels of mutations may only increase the rate of 
cancer, but not aging. Since cancer is one of the most important causes of mortality 
in the elderly, it is possible that alterations of the MMR system occurring with age 
predispose to cancer. Indeed, some emerging evidence indicates that MMR effi-
ciency might be impaired in normal somatic cells with progressive aging.  

   Msh-2 deficient mice die within one year of cancer with lymphomas (also a com-
mon cause of death in aged mice) (Reitmar et al.  1996 ), while in the first year of life 
no difference was observed between wild type and Msh2 heterozygotes. MSH2- and 
PMS2-deficient mice crossbred with transgenic mutation reporter mice generate 
animals with elevated spontaneous point mutation frequencies in several organs and 
tissues (Andrew et al.  1997 ; Narayanan et al.  1997 ). However, at present nothing is 
known about mutations accumulated at later ages, since complete lifespan studies 
on these mice have not yet been performed.  

   Toyota et al. ( 1999 ) found an age-related methylation of CpG islands in normal 
colon cells affecting different DNA promoter regions, including MLH1 promoter. 
A large number of CpG in the human genome are progressively methylated dur-
ing the aging process and, for many genes, this methylation process correlates 
with reduced expression. The phenomenon appears to be physiologically induced 
because it is very frequent, it affects large numbers of cells, and it is present in 
colon tissue from healthy donors and in residual normal colon tissue from cancer 
patients. The age-related methylation of MLH1 promoter in cancer cells suggests 
therefore a decreased activity of the MMR system predisposing the elderly to 
malignant transformation in the colon. In agreement, a spread of methylation in 
the MLH1 promoter in the normal colonic mucosa closely associated with age 
and with the development of sporadic MSI in colorectal cancers was found (Naka-
gawa et al.  2001 ). The hypermethylation of the MLH1 gene promoter occurring 
with age correlates with inhibition of its expression and the appearance of MSI. 
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The frequency of MSI in the pathologic tissue of patients suffering from gastric 
lymphoma showed a tendency to increase with age, as did microsatellite variabil-
ity (Starostik et al.  2000 ).  

   5.1    Analysis on Peripheral Blood Cells  

   The immune system, whose impairment is documented with age, is also a possi-
ble target of the MMR deficiency, in particular the adaptive immune response that 
depends on the ability of T-cells to undergo consecutive replications after antigenic 
challenge. This prominent proliferative stress presumably renders T-cells more 
prone to possible inefficiencies of DNA repair systems and replicative senescence. 
In recent years, some data are emerging on age-dependent alterations of the MMR 
pathway in peripheral blood cells.  

   A preliminary study demonstrated an age-associated MSI by analysing eight dif-
ferent microsatellite loci on DNA from peripheral blood cell samples from young 
and old healthy subjects obtained at a ten-year interval (Ben Yehuda et al.  2000 ). 
A significantly higher rate of MSI after ten years (in 40% of the loci tested and in 
45% of the subjects) was found in older individuals, whereas no difference between 
paired samples of any of the young subjects was observed. An overall genomic 
instability in the elderly was subsequently confirmed with an additional panel of 
microsatellites, together with the lack of an association between MSI and methyla-
tion of MLH1 or MSH2 promoters (Krichevsky et al.  2004 ).  

   The possible involvement of the MMR system in the accumulation of genetic 
damage with age was also studied in peripheral blood cell DNA from a wide sur-
vey of differently aged subjects (Neri et al.  2005 ). Five polymorphic microsatellite 
loci (CD4, p53, VWA31, TPOX and FES), in accordance with the international 
criteria for the study of MSI in cancer (Boland et al.  1998 ), were analyzed to find 
possible age-related instabilities or modifications in allele frequencies. Indications 
of instability were supplied by both altered allele frequencies in different groups 
of age and the appearance of trizygosis (three alleles at one locus instead of one 
or two). Excluding the appearance of plurizygosity, that represents a direct indica-
tion of instability, but whose frequency is expected to be low in healthy subjects 
without germline mutations in MMR genes, in this study it was not possible to 
compare the allelic pattern with a control (as between normal and tumour DNA 
from the same patient). For this reason, shifts in allele length, evaluated in terms of 
age-related modifications of allele frequencies, gave only an indirect indication of 
genetic instability, possibly due to defective mechanisms of genomic conservation, 
such as MMR pathway, with progressive aging.  

   The VWA31 microsatellite showed a significant shortening with increasing age. 
VWA31 and FES microsatellite alleles presented peculiar distributions in differ-
ently aged groups, further suggesting modifications in microsatellite stability as 
shown by shifts in patterns of allelic frequencies from young (considered as basal 
condition) to old populations. Only the FES locus, (the most unstable among the 
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five analyzed), resulted trizygotic in five samples among the more than two hundred 
analyzed. All samples that were trizygotic belonged to the old and the centenarian 
groups, while no young subjects ever showed this pattern (Fig.  2 ). In addition, the 
majority of trizygotic centenarians displayed, among the three, a rare allele, never 
observed in homo- or heterozygosis (Neri et al.  2005 ).     

   These data show both an increased instability in very advanced age and an age-
dependent genetic damage affecting repeated sequences (whose stability is pre-
dominantly guaranteed by the MMR system), or a weaker ability to balance the 
increased rate of genetic damage due to advancing age. Cells repeatedly undergoing 
proliferation were more exposed to the repair activity of the MMR pathway and 
possibly, due to its inefficiency, accumulated a greater genetic damage than naive 
cells. A basic characteristic of immunosenescence is the decline of naive T-cells 
as well as the accumulation of specific T-lymphocyte clones, mostly of memory 
and effector T-cells, due to persistent exposure to different antigenic challenges 
(Franceschi et al.  2000 ; Globerson, Effros  2000 ) (Epstein-Barr virus and cytome-
galovirus, being the most frequent) (Wedderbrun et al.  2001 ; Ouyang et al.  2004 ). 
It is conceivable that these clonal cells, repeatedly expanded in vivo, may have 
progressively incorporated a genetic damage not evident in young subjects that, 
conversely, present a prevalent naïve phenotype. The presence of such populations, 
frequently dramatically expanded, (Ouyang et al.  2004 ) could justify the finding 
of additional allele bands (trizygosis) in DNA from heterogeneous populations of 
circulating peripheral blood cells. In fact, to be detectable, mutated alleles should 
be present in an adequate amount of cells, since the appearance of new alleles might 
be undetectable in poorly represented cells (less than 5–10%) among a mixed popu-
lation, because of the overloading amount of normal alleles, therefore inducing an 
underestimation of MSI.  

Fig. 2 Trizygosity observed at the FES locus in DNA from peripheral blood lymphocytes of four 
centenarian (C1-C4) and one old (O) donors. The presence of three alleles at one locus indicates 
heterogeneity among the analyzed cells, presumably acquired during in vitro replication and giv-
ing a different genotype to a portion of cells. Total DNA was amplified by PCR with primers 
specific for FES microsatellite sequence, then products were electrophoresed on polyacrylamide 
gel and silver stained. Allele length is indicated on the left and refers to the number of repeats. L= 
allelic ladder. (from Neri et al. 2005)

Allele
length

Donors

16
15
13

10

C1 C2 C3 C4L O



Mismatch Repair System and Aging  267

   As far as the higher instability at the FES locus is concerned, a different sensi-
tivity of this region to the assumed inefficiency of the MMR system is suggested 
by the evidence that not all sequences are susceptible to, or show the same rate, of 
MSI. In agreement, a specific FES somatic instability was described in sporadic 
gastric cancer (Silva et al.  1997 ) and in lymphocyte clones after in vitro aging 
(Neri et al.  2004 ). It is also possible that some alleles undergoing an age-related 
selection, tend to disappear in the most advanced ages due to a relationship with 
the FES microsatellite sequence, or with other sequences in linkage disequilib-
rium with the FES one. The analyzed FES microsatellite lies at intron five of the 
coding region of FES proto-oncogene that encodes for a nonreceptor protein-
tyrosine-kinase whose activation can mediate cellular transformation. Several 
growth factors, cytokines, immunoglobulin/receptor pairs trigger the activation 
of cellular FES, shown to play important roles in the regulation of inflammation 
and immune response (Greer  2002 ; Yates, Gasson  1996 ), particularly for survival 
and terminal differentiation of hematopoietic myeloid lineage (Manfredini et al. 
 1997 ). Taking into account the involvement of this factor in the homeostasis of the 
immune system and modifications of FES-associated microsatellite allele distri-
butions with age, a possible relationship between allelic variants and aging cannot 
be excluded. Since FES microsatellite alleles are nonexpressed, modifications in 
allele frequencies might depend on coding sequences in linkage disequilibrium 
with the analyzed ones, but also on the correlation between the number of repeats 
and the aging process, thus influencing for example the expression of the gene they 
are located on, as proposed for VNTR sequences (Bennet et al.  1995 ). Accord-
ingly, polymorphic alleles of inflammatory cytokines play an important role in 
age-related chronic inflammatory response diseases, by determining changes in 
cytokine production (Lio et al.  2002 ).      In addition, it cannot be excluded that poly-
morphic variations at multiple loci might have produced genotype characteristics 
contributing to longevity; indeed, a strong familial component of longevity was 
observed in centenarians (Perls et al.  1998 ). Different frequencies of variant alle-
les would indicate a potential functional advantage of those alleles that are more 
frequent in the disease-free long-lived individuals, as suggested by associations 
between longevity and allelic variants for polymorphic markers at specific loci 
such as HLA (Takata et al.  1987 ), ACE (Schachter et al.  1994 ), APOB (Kervinen 
et al.  1994 ), APOC (Louhija et al.  1994 ), APOE (Kervinen et al.  1994 ; Louhija 
et al.  1994 ; Schachter et al.  1994 ), TH and APOB-VNTR (De Benedictis et al. 
 1998 ), HRAS1-3’VNTR (Bonafé et al.  2002 ), as well as mtDNA haplogroups (De 
Benedictis et al.  1999 ). Recently, an association between MLH1 gene and longev-
ity was found in centenarians (Kim et al.  2006 ). In particular, polymorphisms of 
MLH1 seemed to influence genomic stability and thereby lifespan. By analyzing 
three SNPs (single nucleotide polymorphisms) leading to amino acid substitu-
tions, a significantly more represented haplotype was found in centenarians than 
in controls. On the contrary, CD4 (Neri et al.  2005 ) and p53 (Bonafè et al.  2002 ; 
Neri et al.  2005 ) microsatellites appeared to be stable in different studies, allow-
ing the exclusion of a role of variants of these genes in age-related mortality to 
such an extent as to alter gene frequency in old people and centenarians.  
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    5.2      The T-cell Clonal Model  

   To overcome the possible bias of underestimating instability in poorly represented 
cells, because of the overloading amount of normal alleles, Parsons et al. ( 1995 ) 
performed the analysis on highly diluted peripheral blood lymphocytes in order to 
amplify the DNA corresponding to maximum three genome equivalents. By anal-
ogy, Coolbaugh-Murphy et al. ( 2005 ) developed “small pool” PCR for sensitive and 
quantitative analysis of MSI in somatic tissues by diluting DNA and subsequently 
amplifying by PCR so that each small pool contained less than a single genome 
equivalent. Rare mutant fragments contained in one or more small pools would not 
be overwhelmed by progenitor fragments and could be readily amplified and identi-
fied. By using this technique, significant differences in MSI frequencies in DNA 
from differently aged groups and a positive correlation between age and MSI phe-
notype were found (Coolbaugh-Murphy et al.  2005 ). In addition, the frequency of 
mutant fragments linearly increased with age in peripheral blood lymphocytes from 
normal individuals, indicating an age-dependent alteration of MMR efficiency.  

   Long-term CD8+ cell cultures from aged donors undergoing repeated duplica-
tions develop MSI as in vitro cell senescence progress, while no MSI develops in 
young-derived CD8+ T-cells (Krichevsky et al.  2004 ).  

   Other studies overcame the problem of heterogeneous cell population analysis by 
using CD4+ T-cell clones (TCC) (Krickevsky et al.  2004 ; Neri et al.  2004 ; Neri et al. 
 2007 ). This model allows the longitudinal follow-up of a homogeneous cell popula-
tion and the functional analysis of a single cell type that, spending its finite lifespan 
in vitro, provides both important knowledge related to T-cell immunosenescence in 
vivo and a system to study ways of modulating the aging process (Pawelec et al. 
 1998 ; Pawelec et al.  2002 ). The advantage offered by the analysis of a homogeneous 
cell population, allowing to join microsatellite instability to increasing duplications 
in culture, increases the likelihood of detecting new alleles in usually underrepre-
sented cell populations. Indeed, consecutive antigenic stimulation in vitro imposes 
a marked replicational stress on T-cells, mirroring the antigenic challenge in vivo, 
as well as, the culture over the entire clonal replicative lifespan mimics the chronic 
stress thought to really contribute to the possible clonal exhaustion (Hadrup et al. 
 2006 ).  

   Available data indicate that MSI develop with increasing in vitro culture senes-
cence in CD4+ T-cell clones (Krickevsky et al.  2004 ; Neri et al.  2004 ), involv-
ing different microsatellite sequences, suggesting that a progressive impairment 
of the MMR system may contribute to the acquisition of genetic damage during 
chronic antigenic stress in vitro, a phenomenon thought to be of great importance 
for immune response physiology (Pawelec et al.  2005 ; Hadrup et al.  2006 ).  

   In addition, by a modification of the alkaline comet assay, a reduced ability to 
repair acridine ICR-191-induced DNA mismatches was observed with aging in cul-
ture, indicating that MMR capacity may become deficient in clonal T-cells when 
they are challenged with supra-physiological levels of DNA damage (Annet et al. 
 2005 ).  
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   Moreover, no MSI was observed at increasing population doublings in TCC from 
young donors, even almost at the end of their finite lifespan in culture (Neri et al. 
 2004 ), suggesting an additional relationship between MSI and donor age, in agree-
ment with in vivo data (Ben Yehuda et al.  2000 ; Krickevsky et al.  2004 ; Coolbaugh-
Murphy et al.  2005 ; Neri et al.  2005 ).  

   Furthermore, microsatellite instability was particularly evident in clones obtained 
by CD34+ progenitor cells, after undergoing repeated duplication in culture, indi-
cating also the influence of the cell type in addition to in vitro proliferation and 
aging (Fig.  3 ).     

   This may suggest that the efficiency of the MMR system is already optimal in 
mature T-cells, but that it is less efficient in CD34+ progenitors due to their matu-
ration stage and requirement for differentiation to T-cells in vitro and not in the 
normal in vivo environment (Pawelec et al.  1998 ); indeed, early progenitors are 

Fig. 3 Example of MSI evidenced during in vitro culture of one clone obtained from CD34+ 
precursors. CD4, VWA, FES, D2S123 and BAT26 allelic patterns, determined after different popu-
lation doublings (PD) in culture, are shown. Genotyping was done: a: by PCR followed by analysis 
on standard acrilamyde gels for CD4, VWA and FES microsatellites; b: by analysis on an auto-
mated DNA sequencer for D2S123 and BAT26 microsatellites. Modifications of band length or 
peak position appear at increasing PD (grey arrows) (Neri et al. 2007)
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highly proliferative and, during this period, most susceptible to DNA damage (Park, 
Gerson  2005 ). Maturation-dependent alterations in DNA repair function have been 
demonstrated for the lymphohematopoietic system in association with shifts in DNA 
repair gene expression profiles (Bracker et al.  2006 ). In addition, CD34+ cells might 
have lower levels of genetic integrity control, because they perform T-cell receptor 
rearrangement in culture. On the other hand, a role of the MMR system in general 
recombinational processes, VDJ hypermutation and class-switch recombination is 
well documented (Cascalho et al.  1998 ; Bellacosa  2001 ; Larson et al.  2005 ). Finally, 
it cannot be excluded that the in vitro system is unable to remove cells that acquired 
genetic alterations as in vivo occurs by apoptosis. The high instability found during 
in vitro culture of CD34+ cell-derived clones may suggest the need for particular 
care for the clinical use of these cells, such as in stem cell transplantation.  

   The observed MSI did not depend on modifications in the methylation status 
of MLH1 and MSH2 promoters, as assessed by methylation-specific PCR follow-
ing bisulfite treatment of clone DNA and no association among methylation status, 
MMR gene expression, advanced population doublings or presence of MSI was 
found (Krichevski et al.  2004 ; Neri et al.  2007 ).  

   Semi-quantitative real time RT-PCR showed that transcript levels of the six MMR 
genes were similar to those observed in total RNA from normal PBMC. MSH6 RNA 
showed a progressive increase until about 50–60 PD, followed by a slow decrease, 
while MSH3 mRNA exponentially increased until the more advanced PD, thus sug-
gesting a possible shift from MutSα to MutSβ heterodimer at advanced culture pas-
sages. MLH1 RNA did not change significantly during PD, while PMS2 and PMS1 
RNA levels increased exponentially (Neri et al.  2007 ). During aging in culture, 
unstable clones often presented unstable or decreasing levels of expression, while 
stable ones constantly increased their expression levels, consistent with a relation-
ship between MMR gene expression, PD and MSI (Neri et al.  2007 ). In agreement, 
multivariate regression analysis identified advanced PD as one of the predicting 
variables for FES MSI, trizygosis and intra-donor changes among clones. MSI and 
MMR gene expression at the mRNA level were found to correlate, mostly due to 
a reduced expression of the components of MutL heterodimers, pointing to a role 
of MMR in the acquisition of DNA damage with in vitro aging: the MutS com-
ponents MSH6 and MSH3 appeared to be slightly increased in unstable clones; 
in contrast, the MutL components PMS2 and PMS1 showed decreased transcript 
levels in unstable compared to stable clones (Neri et al.  2007 ). This might suggest 
that unstable TCC maintain the ability to interact with mismatched DNA via MutS, 
but have a reduced capacity to recruit the enzymes necessary to complete the repair 
via MutL complexes. Therefore, the upregulation of MutS components in unstable 
clones, possibly in order to correct DNA mismatches occurring during in vitro pro-
liferation, seems to be not accompanied by an upregulation of MutL components 
leading to MSI for a reduced expression of PMS2 and PMS1. However, additional 
posttranscriptional regulation of these genes cannot be definitely excluded. Only 
limited information is available thus far on the genetic regulation of the MMR 
system. In MMR proficient cell lines, the regulation seems primarily at the tran-
scriptional level, but mutational inactivation of the components of the system leads 
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to posttranslational down-regulation of heterodimerizing partners. MMR activity 
appears to be strictly regulated and modulated by changes in gene expression as 
demonstrated by MSI induction for loss of MLH1 expression secondary to pro-
moter-hypermethylation (Herman et al. 1998) or by overexpression of MLH1 and 
MSH3 genes (Marra et al.  1998 ; Shcherbakova, Kunkel  1999 ). Therefore, it cannot 
be excluded that the upregulation of RNA for the MutS components is induced by a 
defect in the corresponding proteins.  

   Concerning a possible effect of donor age on MSI, clones from centenarians 
(an example of successful aging and of preserved immune function) presented a 
level of instability very similar to young-derived clones, despite the presence of 
significantly higher levels of MMR transcripts. In contrast, clones from old subjects 
presented a higher instability compared to young ones, but similar levels of MMR 
gene expression (Fig.  4 ). This might reflect the importance of up regulating MMR 
genes in order to maintain genomic stability and to correct DNA errors accumulat-
ing with age, thus suggesting a protective effect of higher MMR transcript levels on 
genomic integrity.     

Fig. 4 MMR gene expres-
sion at mRNA level (medi-
ans) during culture aging of 
TCC from young, old and 
centenarian donors (from 
Neri et al. 2007)
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   The evidence of differences in allelic patterns among different clones from the 
same donor suggests the acquisition of new alleles in previous not analyzed culture 
passages or even before cloning, further supporting the accumulation of MSI even 
in vivo, as suggested by studies on peripheral blood cells (Ben-Yehuda et al.  2000 ; 
Coolbaugh-Murphy et al.  2005 ; Neri et al.  2005 ).  

   In conclusion, it appears that in vitro aging leads to an accumulation of genetic 
instability manifesting as MSI, possibly to a different extent, depending on cell type, 
and/or that repeated replication could lead to an accumulation of genetic alterations 
not counteracted by the MMR system. The correlation between MMR gene expres-
sion levels and MSI appeared mostly due to a reduced expression of the components 
of MutL heterodimers. However, the involvement of other repair pathways (Guo, 
Loeb  2003 ) or a possible alteration in polymerase functional activity (Srivastava, 
Busbee  2003 ) cannot be excluded. Senescence-associated MMR alterations might 
also be induced by defects of nuclear localization, assembly and activity of the pro-
teins of this pathway, therefore studies on MMR gene protein levels and functional 
activity of the MMR system could help in the understanding of these alterations 
associated to senescence, likely critical for appropriate adaptive immune response.  
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                   Abstract:       The elimination of expanded T-cells at the end of immune response is 
crucial to maintain homeostasis and avoid any uncontrolled inflammation. Resting 
mature T-lymphocytes when activated  via  their antigen-specific receptor (TCR) and 
CD28 coreceptor start to proliferate and acquire resistance to apoptosis. Reactiva-
tion of T-cells induces expression of CD95L which after binding to CD95 surface-
expressed death receptor triggers signaling pathway to apoptosis. The process is 
named Activation-Induced Cell Death-AICD. However, in executing AICD death 
receptor-dependent apoptotic pathway (extrinsic) can overlap with mitochondrial 
(intrinsic) signaling to apoptosis. Immunosenescence leads to the shrinkage of T-cell 
repertoire due to the reduction of naïve cells and accumulation of oligoclonal CD8+ 
and to a lower extent CD4+ cells, which are mainly CD95-positive and CD28-nega-
tive. Also, propensity to undergo apoptosis changes with age. However, data so far 
collected are inconclusive as they show an increased, unchanged or decreased pro-
pensity to AICD in the elderly in comparison with young individuals.  

        1      Introduction  

  Precursor T-cells from the bone marrow enter the thymus, where they undergo nega-
tive or positive selection to produce CD4+ and CD8+ mature cells with diverse 
functions in the peripheral immune system [34]. In the periphery, T-cells are resting 
until they encounter foreign antigens and gain the ability to proliferate, differentiate 
into effector cells, produce cytokines and eliminate target cells. T-cell activation is 
induced by signal receive through the TCR (T-Cell Receptor) activated by the antigen 
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presented by APC (Antigen Presenting Cells) in MHC context, and costimulatory 
molecules, including CD28, adhesion molecules and cytokines (IL-2, IL-13, IL-15). 
This clonal expansion phase is followed by the contraction phase in which T-cell num-
bers decline to maintain homeostasis and avoid any uncontrolled inflammation. The 
majority of activated T-cells die by apoptosis and only a few T-cells that have been 
exposed to the antigen remain. These cells develop into apoptosis-resistant memory 
T-cells. The mechanism of memory T-cells’ survival is not fully recognized, but it can 
be controlled by cytokines [27, 46]. Thus, T-cell activation is highly regulated and 
requires a switch from an apoptosis-resistant (clonal expansion phase) towards an 
apoptosis-sensitive state (elimination phase). The process in which expanded cells are 
eventually eliminated is named Activation-Induced Cell Death (AICD).  

  The term AICD was proposed by Green’s group, when they showed that T-cell 
hybridomas or thymocytes died by apoptosis following activation through their CD3 
molecules [44]. It is now know that AICD of hybridomas and of activated T-cells is 
driven by so called death receptors, such as CD95 (another name is Fas receptor) or 
the tumor-necrosis factor receptor (TNFR) which, once engaged, activate downstream 
pathways that lead to cell death by apoptosis [26].  

  An alternative pathway to that driven by death receptors is activated T-cell autono-
mous death (ACAD), which is determined by the ratio of anti and proapoptotic BCL-2 
family members with the major role of a proapoptotic BIM protein. This type of cell 
death is known also as death by cytokine deprivation or by neglect [18]. Namely, 
the absence of appropriate survival signals induces BIM, which on the mitochondrial 
membrane can bind and neutralize the antiapoptotic BCL-2 or BCL-X 

L
  (see below).  

  T-cells, similarly to other cells, can undergo Damage-Induced Cell Death 
(DICD), which is a cell response to DNA damage induced by both extracellular and 
intracellular insults, such as reactive oxygen species [13].  

  All three processes, although differentially regulated culminate in apoptotic cell 
death named also programmed cell death.  

    2 Apoptotic Pathways in T-cells  

  Apoptosis, or programmed cell death, is a fundamental process essential for both 
development and tissue homeostasis (reviewed in [21]). In the immune system, 
apoptosis plays a crucial role in selection of T-cell repertoire in the thymus, deletion 
of self-reactive T- and B-lymphocytes both in the central and peripheral lymphoid 
compartments, and in the killing of target cells by cytotoxic T-lymphocytes and 
natural killer cells [33]. Defects in apoptosis have been associated with a number of 
disease states, including autoimmunity and AIDS [48].  

   Cells undergoing apoptosis exhibit specific morphological changes, including mem-
brane blebbing, cytoplasmic and chromatin condensation, DNA fragmentation, nuclear 
breakdown and assembly of membrane-enclosed vesicles termed apoptotic bodies, 
eventually subjected to phagocytosis [55]. The dying cells express “eat-me” signals, 
such as phosphatidyl serine, which allow the cells to be removed by phagocytosis.  
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  Two major signaling pathways of apoptosis have been described: the extrinsic 
pathway induced by ligation of death receptors, and the intrinsic pathway com-
prised of the mitochondrial and endoplasmic reticulum pathways and induced by 
DNA damage, cytokine deprivation, gluccocorticoids or stress (Fig. 1). There is 
some crosstalk between these apoptotic pathways, but they lead to activation of dif-
ferent initiator caspases, which in turn activate common effector caspases 3, 6 and 
7 [16, 26]. One of the terminal events of the apoptotic signaling pathways is acti-
vation of specific endonucleases cleaving DNA into oligunucleosomal fragments: 
Endo G and DFF/CAD. The latter is activated by effector caspases which cleave the 
DFF/CAD inhibitory protein [53]. The effector caspases cleave also a number of 
other important cellular proteins including actin, lamins, gasoline, plectin and oth-
ers; their degradation in turn leads to the blebbing and formation of apoptotic bodies 
and final cell destruction.     

Fig. 1 The cross-talk of apoptotic pathways
The extrinsic pathway is mediated by interaction between death receptor and its ligand and leads 
to activation of initiator caspases 8, 10. The intrinsic pathway is comprised of the mitochondrial 
pathway (MIT) and the endoplasmic reticulum (ER) pathway. The mitochondrial pathway leads to 
activation of initiator caspase 9 and endoplasmic reticulum pathway to activation of initiator cas-
pase 12. All initiator caspases activate effector caspases 3, 6 and 7 which in turn activates specific 
endonuclease (DFF) and depredate cellular proteins.
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   The intrinsic apoptotic   pathway  crucially depends on permeabilization of the 
outer mitochondrial membrane and mitochondria seem to be integrators of the many 
apoptotic signals coming from the outside and inside the cell. After receiving an 
apoptotic signal, mitochondria release a variety of molecules of which cytochrome 
c seems to be the most important one, which together with cytoplasmic apoptotic-
protease-activating factor 1 (APAF1) forms the apoptosome. At the apoptosome 
initiator caspase 9 is activated. Crucial roles in determining the mitochondrial mem-
brane permeability is controlled primarily by a balance between the antagonistic 
actions of the proapoptotic and antiapoptotic members of the BCL-2 family. Antia-
poptotic members, such as BCL-2 and BCL-X 

L
  possess so named BH1-4 domains. 

Proapoptotic BCL-2 family proteins comprise two subfamilies: the first including 
BAX, BAK and BOK, which have BH1-3 domains and the second including BH3-
only members, such as BAD, BID, BIM and others. BH3- only proteins, like BIM 
can bind and neutralize the antiapoptotic BCL-2 or BCL-X 

L
 . This in turn activates 

proapoptotic BAX or BAK which release cytochrome c from mitochondria.  
   The extrinsic apoptotic pathway  is triggered by signals originating with cell-

surface death receptors belonging to the TNF receptor (TNFR) superfamily that are 
activated by several ligands such as CD95L (also known as FasL), tumor necrosis 
factor (TNF) or TNF-related apoptosis-inducing ligand (TRAIL). Transduction of 
the apoptotic signal from the death receptors starts with the formation of a large 
protein complex at the cell membrane, known as the death inducing signaling com-
plex—DISC. The CD95 DISC consists of trimerized CD95, the adaptor molecule 
FADD containing so called DD domain, procaspase 8a (also named FLICE), pro-
caspase 8b, procaspase 10 and the cellular FLIP (cFLIP) protein. FLIP protein con-
tains inactive caspase-like domain. Three isoforms of cFLIP are known, but only 
cFLIPs seem to exert an inhibitory effect on caspase 8 activation. Procaspases 8 and 
10 as well as FADD and cFLIP contain DED domain which is required for DISC 
formation. Thus, formation of the DISC results in the assembly of procaspase 8 and 
procaspase 10 leading to their autoproteolytic activation. In some cells this signaling 
pathway suffices to induce executor caspases and eventual cell death (Type I cells). 
However, the level of CD95 DISC and of active caspase 8 may be too low (Type II 
cells) and the signal requires on additional amplification loop involving the cleav-
age of a BH-only BCL-2 family protein, BID, by caspase 8 to form truncated BID 
(tBID). tBID in turn aggregates BAX or BAK, which leads to mitochondria mem-
brane permebilization and cytochrome c release [26].  

    3    Mechanism of Activation-Induced Cell Death  

  AICD is believed to be the major mechanism of elimination of T-cells during the 
termination phase of immune response. Following pathogen entry, T-cell activation 
 via  TCR and coreceptors induces their proliferation and clonal expansion. Pathogen 
killing by effector cells is followed by a severe decrease of T-cell proliferation and 
the beginning of T-cell elimination by death receptor-dependent apoptosis (Fig. 2) 
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[22]. Upon stimulation of activated T-cells CD95L mRNA and protein expression 
on the surface of cell are rapidly induced. CD95L binds to the CD95 receptor on the 
same cell that express CD95L or on neighboring cells and triggers CD95-dependent 
apoptosis. The first type of CD95/CD95L interaction results in autocrine (suicide) 
and the second type in paracrine (fratricide) type of death [26].     

  Studies performed on murine and human T-cells suggested several transcrip-
tion factors to be involved in activation of CD95L expression, such as Ap-1, NFAT, 
NFκB, c-Myc, Erg 1 & 3, and others. Cooperation between some of them is neces-
sary for CD95 gene activation. Also, several tyrosine kinases known to be involved, 
such as PKC, Lck, ZAP-70 and MAPK, among others [14, 19].  

  An in vitro system of T-cell immune response believed to mimic the shutdown 
of immune response occurring in vivo has been developed by Krammer’s group 
[24] and now this model is used, with some modifications by many investigators. 
Originally, freshly isolated primary human T-cells were activated with the non-
specific mitogen-PHA for several hours (short–term activated), which respond to 
CD95 driven apoptosis resistance. However, after in vitro culture lasting for sev-
eral days (long-term activated), the activated T-cells acquired sensitivity to death 
receptor-driven cell death, and IL-2 was found to be necessary for this sensitization 
[27, 43].  

  CD95 is not expressed on T-cells derived from cord blood or on naïve resting T- 
cells, but is rapidly up-regulated upon T-cell activation [23]. Although it was shown 
that long-term activated cells prone to AICD and short-term activated cells resistant 
to AICD express similar high amounts of CD95 [24]. This observation suggests that 
the signaling cascade downstream of CD95 must be modulated. Indeed, the cFLIP 
protein, and particularly its cFLIPs isoform, a potent inhibitor of CD95-mediated 
apoptosis, was found to be expressed at a high level in short- but not in long-term 
activated T-cells [2, 20]. Moreover, it was shown that inhibition of IL-2 produc-
tion or signaling prevented down-regulation of FLIP protein levels and conferred 
resistance to CD95-mediated apoptosis on TCR-activated cells [2]. It cannot be 

Fig. 2 Immune response 
Following patogen entry, 
TCR activation induces T-
cell proliferation and clonal 
expansion. Pathogen killing 
by effector cells is followed 
by cell elimination by death 
receptor-driven apoptosis.
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excluded that expression of antiapoptotic BCL-2 family members, such as BCL-2 
and BCL-X 

L
 , might provide additional protection against cell death at the level of 

mitochondria [3].  
  Overall, AICD regulation is rather complex and involves both extrinsic and 

intrinsic mechanisms of apoptosis; it is also tightly connected with survival signal-
ing pathways triggered by TCR and cytokines [26] (Fig. 3).     

  TCR–mediated NFkB signaling is critical for cell survival (death resistance) by 
inducing prosurvival and antiapoptotic genes [3]. It has been postulated that the 
hematopoetic progenitor kinase HPK1-C mediates sensitivity towards AICD by 
suppression of NFκB activity [4].  

    4  Age-Related Alterations of Activation-Induced Cell Death 
of Human T-cells  

  The aging of the immune system, termed immunosenescence involves several 
components which lead to its decreased functionality contributing to the morbidity 
and mortality of elderly people. The main aspects of immunosenescence are: (i) the 

Fig. 3 TCR-mediated signals to cell death and survival
Stimulation of the TCR receptor can lead to CD95L transcription and engagement of CD95, thus 
activation of the extrinsic apoptotic pathway. TCR stimulation can also cause activation of the 
intrinsic apoptotic pathway via BH3-only BCL-2 family BIM. The extrinsic death pathway can be 
connected to the intrinsic pathway by caspase 8-mediated cleavage of the BH3-only BCL-2 family 
member BID towards truncated BID (tBID). TCR-mediated NFκB signaling is critical for cell sur-
vival and can be blocked by HPK1-C. On the other hand, apoptosis can be blocked by c-FLIPs.
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involution of the thymus and exhaustion of naïve T-cells; (ii) the diminution of the 
T-cell repertoire and accumulation of oligoclonal expansions (megaclones) of mem-
ory/effector cells; and (iii) a chronic inflammatory state called inflamm-aging [8].  

  T-cell senescence in humans involves alterations similar to those observed in 
other cell types, such as changes in functions, cessation of cell proliferation due to 
shortening of telomeres and a changed propensity to undergo apoptosis. The senes-
cence is seen primarily in the CD8+ T-cell population but it also occurs in CD4+ 
T-cells [11, 50].  

  Alterations of apoptosis in T-cells from aged individuals have been reported 
by many investigators, however, a consensus is still lacking in this matter espe-
cially since many studies were only correlative. Some authors show that aging is 
associated with increased apoptosis of T-cells, whereas others report the opposite 
(reviewed in [15, 19, 29]). These apparent discrepancies might be due to differences 
in the stimuli investigated, the phenotype of the cells as well as the general experi-
mental approach. Also, some experiments were performed on lymphocytes under-
going in vitro replicative senescence [45] while others on cells derived from donors 
of different ages [36]. According to our results, replicative senescence in vitro only 
partially reflects the in vivo process [5-7].  

  Moreover, there is profound confusion in the literature concerning the term AICD, 
partially due to some overlapping of dead receptor-driven and mitochondria-mediated 
apoptosis in this process. Second, the question is whether the propensity of activated 
T-cells to undergo apoptosis upon death receptors activation (treatment with CD95L 
or anti CD95 mAb) can be considered as AICD? Taking into account that AICD is 
undergoing  via  engagement of death receptors this can help in understanding this 
process. (Death receptor-driven apoptosis is the subject of another chapter).  

  However, we must keep in mind that according to classical definition, AICD 
is induced by religation of TCR on activated cells [25]. Finally, it should be also 
remembered that AICD is not the only mechanism of T-cell death during shutdown 
of the immune response [47].  

  Generally, the literature guides us to three possibilities concerning AICD in the 
aging process. The first is that  T-cell susceptibility to AICD is increased .  

  Despite the induction of CD95L, the main indictor of the cell ability to undergo 
AICD is the expression of CD95 receptor. While T-cells from cord blood are CD95-
negative, the proportion of CD95-positive cells are growing with age [12, 41]. Moreo-
ver, Aggarwal and Gupta [1] reported on increased expression of CD95 mRNA in the 
elderly in comparison with young subjects. Fagnoni et al. [12] postulated the CD95-
negative cells disappearing with age are unprimed, naïve cells. We also found a dra-
matic decrease in percentage of CD95-negative cells with age, from virtually 100% 
(not shown) in the cord blood to almost undetectable in peripheral blood of centenar-
ians (Fig. 4). However, PBMC cultures from young and old individuals alike show an 
increase in CD95 expression upon activation, the cells from old individuals reaching 
even higher CD95 levels than those from young individuals [31, 37, 40]. Therefore, 
T-cells from the elderly are able to respond to activation with CD95 engagement. 
Moreover, some studies of T-cells from elderly subjects do appear to show a cor-
relation between the increased CD95 expression and increased activation-induced 
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cell death [30, 37, 40]. Lechner et al. [30] observed no differences in the incidence 
of apoptosis in response to activation between PBMC from young and old subjects. 
However, under long-term cultivation, namely at replicative senescence in vitro, an 
increase of AICD was observed and it was more pronounced in T-cell populations 
from old than from young individuals. Phelouzat et al. [36] reported a greater deple-
tion of T-cells upon stimulation in old than in young PBMC which was shown to be 
due to apoptosis. Similar results were obtained by Potestio et al. [40]. Schindowski et 
al. [42] described a slight but statistically significant increase of AICD in elderly in 
comparison to young individuals. Pawelec et al. [35] reported on increased suscepti-
bility to AICD in a late-passage in comparison to an early-passage CD4+ cultured T-
cell clone. Greater CD95-induced apoptosis was found in anti-CD3 stimulated CD4+ 
than in CD8+ cells derived from healthy donors, and both CD4+ and CD8+ T-cells 
from the elderly were more sensitive than those from young individuals [1].     

  The presented so far data indicate that activated T-cells from the elderly are more 
susceptible to undergoing AICD than cells from younger subjects, moreover, the 
population of CD4+ cells is more sensitive to cell death then the CD8+ cells.  

  Based on those studies as well as the results emerging from studies on mice, Ginaldi 
proposed recently an increased propensity to AICD as a hallmark of aging [13]. How-
ever, the literature also shows evidence in favor of other possibilities, namely that 
 T-cell susceptibility to AICD is unchanged or even decreased with age.  Pinti et 
al. [38], similarly to others reported on increasing number of CD95-positive cells and 
an increased level of Fas mRNA with age. Although the reverse trend was observed 
in the case of FasL in resting cells, the amount of FasL produced by lymphocytes 
upon activation with anti-CD3 was the same irrespective of the age of donors (young, 
middle-aged, centenarians). Also AICD level was the same in T-cells from all three 
groups. This is in agreement with our results showing no differences in AICD lev-
els in T-lymphocytes derived from young in comparison to old donors. Following 
a slightly modified classical protocol described by Krammer’s group [24], PBMC 
cells were stimulated with PHA for 72 h and then cultured in the presence of IL-2 

Fig. 4 Fraction of CD95- 
cells in peripheral blood of 
donors at different ages
Young (aged 25–35, N=16), 
middle (aged 45–55, N=11), 
old (aged 65, N=37), cente-
narians (N=32).
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(Fig. 5). However, this protocol does not correctly reflect the situation in vivo, as the 
production of IL-2 is severely diminished with age. Similar results, namely the same 
level of AICD in young and old subjects, were obtained by Herndon et al. [17]. How-
ever, more recent results from this laboratory indicated for decreased AICD in donors 
aged 70–85 years in comparison with younger ones (25–65-year old), but also in com-
parison with nonagenarians. Thus from this results it is difficult to conclude whether 
AICD is really diminished with the age [19]. Whereas, Donnini et al. clearly showed 
that the AICD level analyzed in CD4+ cell subsets, namely naïve (CD62L+CD95-) 
and memory (CD62L-CD95+), did not correlate with the age [10].     

  Indirect, but convincing arguments of reduced AICD in elderly come from 
experiments on the role of lipid rafts in immunosenescence. Lipid rafts are involved 
in many processes, but mainly in signal transduction in T-cells, which is obviously 
impaired in the elderly [28, 29]. It was shown that disruption of lipid rafts reduced 
the sensitivity to Fas-mediated apoptosis after TCR restimulation of CD4+ cells. 
Thus, the redistribution of Fas and other tumor necrosis factor family receptors 
into and out of lipid rafts may dynamically regulate the efficiency and outcomes of 
signaling by these receptors [32]. Larbi et al. [29] reported a decreased expression 
of Fas and FasL in old in comparison with young donors. Expression of Fas was 
diminished and expression of FasL was completely abolished in stimulated lym-
phocytes after disruption of lipid rafts. It was shown that activation of lipid rafts was 
possible only upon ligation of both TCR and CD28, implying that CD28 might be 
critical in the signal transduction leading to AICD.  

    5    The Role of CD28 Coreceptor in Age-Dependent AICD 
of T-cells  

  Senescence effects numerous changes in the phenotype and the functioning of 
T-cells. Lifelong and chronic antigenic load may represent the major driving force 
of immunosenescence due to reducing the number of naïve antigen-nonexperienced 

Fig. 5 AICD of 
T-cells derived from 
young (aged 25-31, N 
= 4) and old (aged 65, 
N = 4) donors. PBMC 
cells were stimulated 
with PHA for 72 h and 
then cultured in the 
presence of IL-2.
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cells and their replacement by expanded clones of antigen-experienced effector 
and memory T-cells with late differentiated phenotype. The thymus releases fewer 
naïve cells with age and those T-cells remaining, especially the CD8+subset, show 
increased oligoclonality with age [51].  

  The recognition of MHC-bound antigen by TCR is a low-affinity interaction 
unable to sustain activation of T-cells; productive activation requires costimulation 
with CD28 which serves as an amplifier of the TCR signal [50]. By activating Akt, 
CD28 acts as a typical transducer of the prosurvival pathway [19].  

  It is known that T-cell activation leads to CD28 down-regulation. Indeed, vari-
ous models of T-cell replicative senescence show that subsequent rounds of cell 
divisions eventually lead to accumulation of CD28-negative cells, which are the 
progeny of CD28-positive ones [7, 11, 39]. We showed a gradual replacement of 
CD8+CD28+ cells by CD28- cells in long-term cultures both in the cord blood and 
in the peripheral blood of donors of different age, including centenarians [7]. It 
was also shown that purified human CD28+ T-cells progressively lose CD28 dur-
ing each successive stimulation, with CD8+ T-cells losing CD28 more rapidly than 
CD4+ cells [50]. Also in vivo the accumulation with age of CD8+CD28- and to 
lesser extent CD4+CD28- is observed [7, 11, 12, 19, 50, 54]. CD28-negative cells 
are highly oligoclonal and have very short telomeres [50]. It is believed that they 
are unable to proliferate, however, we found that this is only true in the case of cells 
undergoing replicative senescence in vitro, but not for those aging in vivo [7].  

  As they accumulate progressively through life and large clones persist for years, 
CD28-negative cells are considered to be resistant to AICD. Indeed, Posnett et al. 
[39] demonstrated that CD8+CD28- cells activated with a superantigen were less 
susceptible to apoptosis than their CD8+CD28+ counterparts. Spaulding et al. [45] 
showed that T-cells reactivated after achieving in vitro the state of replicative senes-
cence acquired resistance do apoptosis induced with different stimuli, including 
antiCD3 and antiFas.  

  Many of the CD8+ and CD28- expanded clones seem to result from previous 
infections by persistent viruses, especially CMV and to lesser extent, EBV and 
other herpesviruses. These are considered dysfunctional, “anergic” cells possibly 
at least partly due to apoptosis resistance, however a direct proof of their AICD 
resistance is lacking [51]. Thus it seems that accumulation with age of long-living 
CD8+CD28- cells can actually be explained by their relative resistance to AICD. 
Also CD4+CD28- cells, unlike their CD28+ counterparts, were shown to be pro-
tected from AICD due to high expression of cFLIP [49].  

  On the other hand, the data showing quite opposite correlation between CD28 
and AICD can not be neglected. We showed no differences between CD28+ and 
CD28- in susceptibility to undergo AICD [6], but there are results providing evi-
dences that maintenance of CD28 expression on T-cells may be even crucial for 
prevention of Fas-mediated apoptosis during the course of antigen engagement. 
Indeed, it was documented that within a superantigen-activated T-cell population, 
cells which were sensitive to Fas ligation were characterized by low CD28 expres-
sion prior to treatment with Fas [52]. It was also shown that CD28-mediated signal-
ing increases expression of antiapoptotic BCL-X 

L
  and thereby promotes survival 
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implying antiapoptotic activity of CD28. Indeed, Krammer’s group reported that 
activated and cultured in the presence of IL-2 T-cells (undergoing AICD) when 
co-stimulated by CD28 showed, besides strong up-regulation of BCL-X 

L
 , down-

regulation of CD95L mRNA and strong up-regulation of cFLIPs [23]. In agreement 
with these results are data presented by others showing that low CD28 expression 
predispose to CD95L mediated apoptosis in activated T-cells and CD28 ligation 
protects from apoptosis [9].  

    6      Concluding Remarks  

  Immunosenscence is believed to be driven by thymus involution, continuous patho-
gen load and common damaging insults. This leads to the shrinkage of T-cell rep-
ertoire due to the reduction of naïve cells and accumulation of oligoclonal CD8+ 
and, to a lesser extent, CD4+ cells, displaying a highly differentiated and senescent 
phenotype with diminished functioning. Activation-Induced Cell Death plays a cru-
cial role in the proper function of the immune system by elimination of expanded 
cells at the end of immune response. This logically implies a crucial role of AICD 
in immunosenescence. Indeed, some data published so far indicates AICD changes 
in the elderly. Nonetheless, this observations are inconclusive, some showing an 
increased some a decreased propensity of T-cells to AICD in the elderly. There 
are also reports of unchanged AICD with age. This apparent controversy probably 
stems from different experimental approaches and highly fragmentary data, espe-
cially concerning human studies. Systematic and comprehensive studies are still 
needed for a conclusive elucidation of the role of AICD in human aging.  
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Abbreviations
CFSE 5-(and -6) Carboxyfluorescein diacetate succinimidyl ester
EBV Epstein-Barr virus
HCMV Human cytomegalovirus
IFN-γ Interferon gamma
IL Interleukin
IL-2Rβ Interleukin-2 receptor, beta chain
IL-7Rα Interleukin-7 receptor, alpha chain
KLRG1 Killer cell lectin-like receptor G1
LCMV Lymphocytic choriomeningitis virus
LIP Lymphopenia-induced proliferation
MHC Major histocompatibility complex
MP Memory phenotype
PD-1 Programmed death-1
PMA Phorbol 12-myristate 13-acetate
SPF Specific-pathogen free
TCE T-cell clonal expansion
TCR T-cell receptor
TCM

 Central memory T-cell
T

EM
 Effector memory T-cell

TRAF Tumor necrosis factor receptor associated factor
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand

Abstract: Aging is associated with a variety of perturbations in the immune sys-
tem. One frequent alteration is a significant skewing of the CD8 T-cell repertoire. 
This alteration manifests as a clonal expansion of CD8 memory T cells, which in 
some cases can occupy the majority of the CD8 T-cell pool. CD8 clonal expansions 
are associated with impaired immunity in the elderly. Although CD8 clonal expan-
sions are commonly found in aging humans and mice, the etiology of this phe-
nomenon is unknown. Here, we describe our current understanding of CD8 clonal 
expansions as it relates to the current state of knowledge about CD8 T-cell memory. 
In addition, we discuss the heterogeneity observed between different types of clonal 
expansions in mice, and how distinct factors may influence both the development 
and properties of clonal expansions in the aging individual.

Keywords:  Ageing • CD8 clonal expansion • CD8 memory T-cell • Homeostasis •
TCE

1  T-cells, TCR Diversity and the Phenomenon of CD8 
Clonal Expansions

A hallmark of the adaptive immune system is its capacity to respond to a myriad 
of different challenges. One way that individuals are able to respond to diverse 
pathogens is through the generation of a highly diverse T-cell repertoire, in which 
each T-cell expresses a slightly different T-cell receptor (TCR). Each TCR is created 
through a process of gene rearrangement of TCR gene segments, followed by further 
diversification methods. Notably, each distinct TCR recognizes a slightly different 
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combination of a short peptide (referred to as antigen) presented in the context of 
a major histocompatibility complex (MHC) molecule. Once a T-cell (and TCR) 
encounters its correct antigen and the appropriate stimulatory conditions, the T-cell 
can undergo a series of steps, including activation, proliferation, and the acquisition 
of effector functions through which the T-cell mediates its protective effects. CD8+ 
T-cells recognize antigen in the context of MHC Class I molecules and respond to, 
and control, a variety of intracellular infections (such as bacteria and viruses).

While young, healthy individuals possess a diverse CD8 T-cell pool, many aged 
individuals develop significant perturbations in the repertoire of TCR specificities. 
In these individuals, a single CD8 T-cell achieves a competitive advantage relative 
to its neighbors and comes to dominate the entire CD8 T-cell pool, a phenomenon 
referred to as CD8 T-cell clonal expansions (or TCEs). This phenomenon is of sig-
nificant interest for many reasons. First, it is a common age-associated alteration to 
the immune system. Second, it results in a significant perturbation to the normally 
diverse CD8 T-cell repertoire. Third, it has been associated with impaired immunity 
in the aged. Fourth, it represents a significant breakdown in the normal homeostatic 
mechanisms that regulate CD8 T-cell survival and proliferation.

This chapter will focus on the biology of CD8 clonal expansions in mice, with only 
brief discussion of clonal expansions in humans. It should be noted that while there are 
some differences between clonal expansions in mice and in humans (for further discus-
sion see [24]), CD8 clonal expansions in both species are characterized by the selective 
outgrowth of a specific subtype of CD8 T-cell, the CD8 memory T-cell. In order to 
understand the properties of clonal expansions, it is essential to have basic information 
about CD8 memory T-cells, their development, regulation, and biological properties.

2  CD8 Memory T-cell Differentiation

2.1  Memory T-cell Differentiation Following an Acute 
Exposure to Antigen

Following TCR stimulation by antigen, a naïve CD8 T-cell initiates a program of 
activation, proliferation and differentiation (Fig. 1a) [56]. The resulting CD8 T-
cell response is characterized by multiple phases: i) proliferation and expansion of 
antigen-specific CD8 T-cells, during which these cells acquire a variety of effector 
functions (such as cytokine secretion and the capacity to kill target cells expressing 
the appropriate antigen), ii) a period of contraction during which 90–95% of the 
total number of antigen-specific CD8 T-cells undergo apoptosis, and iii) a period of 
further differentiation during which the remaining 5–10% of antigen-specific CD8 
T-cells acquire additional phenotypic changes, to ultimately become a CD8 mem-
ory T-cell (Fig. 1a). During the expansion phase, antigen-specific CD8 T-cells can 
occupy a massive fraction of the CD8 T-cell pool (e.g., during acute lymphocytic 
choriomeningitis virus (LCMV) infection, at least 80% of the CD8 T-cells in the 
spleen are specific for LCMV [84]). 
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Fig. 1 CD8 memory T-cell differentiation in various contexts
The dynamics of an antigen-specific CD8 T-cell response in individuals possessing a full lym-
phocyte compartment following either transient, acute antigen exposure (panel a) or prolonged, 
persistent antigen exposure (panel b). CD8 memory T-cells can also develop when naïve T-cells 
are placed in a lymphopenic environment, devoid of other lymphocytes (panel c). The differ-
ent stages of CD8 T-cell differentiation are indicated as follows: naïve (gray cytoplasm, white 
nucleus), effector cell (red cytoplasm, yellow nucleus), memory cell (deep blue cytoplasm, light 
blue nucleus). In the case of persistent antigen, there is impaired memory cell differentiation, as 
indicated by white cytoplasm, black nucleus. Stages of differentiation and factors that influence 
CD8 T-cell response are discussed further in text. Diagram indicates relative, not absolute abun-
dance of CD8 T-cells at each stage.
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CD8 memory T-cells differ from naïve CD8 T-cells in many ways. In contrast 
to naïve CD8 T-cells, CD8 memory T-cells have an accelerated response to antigen 
stimulation, are found at many sites in the body and are maintained at very con-
stant levels for months to years following initial antigen exposure (a process facili-
tated by cytokines). The self-renewing capacity of CD8 memory T-cells can occur 
in the absence of continued antigen exposure, providing an antigen-independent 
mechanism of CD8 memory T-cell maintenance. The combination of these char-
acteristics, as well as the increased frequency of antigen-specific CD8 T-cells in 
antigen-exposed individuals, means that individuals who develop a CD8 memory 
T-cell response against an antigen will have a rapid, robust response upon antigen 
reexposure. In many contexts, CD8 memory T-cells provide an important mecha-
nism of immunological protection, or immunity to reinfection [56, 140].

In the context of CD8 clonal expansions, one particularly important property 
of CD8 memory T-cells is their steady, slow rate of proliferation in the uninfected 
animal. The long-term proliferation and survival of CD8 memory T-cells is heav-
ily dependent on the cytokines interleukin (IL)-7 and IL-15 [7, 37, 72, 116, 118, 
125]. CD8 memory T-cells receive these cytokine cues through expression of the 
IL-7 receptor alpha chain (IL-7Rα, CD127), the IL-2 receptor beta chain (IL-2Rβ, 
CD122), and the common gamma chain cytokine receptor. As discussed below, CD8 
clonal expansions have alterations in their capacity to respond to these cytokines.

2.2  Memory T-cell Subsets

Though CD8 memory T-cells arise following antigen stimulation, not all CD8 mem-
ory T-cells have the same properties. CD8 memory T-cells are most frequently cate-
gorized as either central memory (T

CM
) or effector memory (T

EM
) cells [113]. While 

both these subsets of memory cells express cell surface receptors thought to be typi-
cal of CD8 memory T-cells (e.g. in the mouse, CD44high CD127high CD122high), these 
two subsets differ in their expression of L-selectin (CD62L) and the chemokine 
receptor, CCR7, two proteins that promote trafficking to peripheral lymph nodes. 
Central memory T-cells are CD62L+ CCR7+, and are found in blood, spleen, and 
lymph nodes. In contrast, effector memory T-cells do not express CD62L or CCR7, 
and are found in blood, spleen, and nonlymphoid tissues. T

EM
 cells are generally 

absent from lymph nodes, except in situations of ongoing inflammation [38, 85].
The precise factors that influence whether a CD8 memory T-cell becomes a cen-

tral or an effector memory cell remain contentious. One factor that might influence 
this balance is the magnitude of the initial antigenic stimulus [132]. It should be 
noted, however, that at this time it is debatable whether the T

CM
 and T

EM
 subdi-

visions of CD8 memory T-cells represent true independent cell fates, are capable 
of interconversion, or whether their differences reflect in part the impact of local 
environments on the phenotype and function of a CD8 memory T-cell (for further 
discussion see [76]). Regardless of the precise development details of T

CM
 and T

EM
 

cells, local tissue environments can significantly influence the phenotype and prop-
erties of a CD8 memory T-cell [67, 83, 86].
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Following the identification of T
CM

 and T
EM

 subsets of CD8 memory T-cells, 
further subsets of memory cells have been identified. For example, the IL-7Rα 
(CD127) was identified as a marker to identify activated CD8 T-cells that gave 
rise to long-lived memory cells [46, 55]. Subsequent work has shown that the 
usefulness of this marker varies depending on the experimental system [73], and 
that IL-7 plays an important but perhaps not instructive role in the development of 
CD8 memory T-cells [15, 40, 66, 123]. A recent study also identified expression 
of CD8αα homodimers as a potential marker for CD8 memory T-cell precursors 
[80], although the significance of this observation remains contentious [21, 135, 
143]. Additional subtypes of CD8 memory T-cells, differing by various criteria 
(e.g., ability to divide in the absence of antigen, tissue distribution, and capac-
ity to respond upon antigen rechallenge) have also been identified [12, 44, 109]. 
Despite the identification of these various subsets, a major unanswered question 
is the interrelationship between different types of memory T-cells and the factors 
that drive these distinct phenotypes and properties.

It is worth noting that in some studies of CD8 memory T-cells, cells have the 
phenotype of a memory T-cell (in the mouse, typically defined as CD44high), but the 
precise antigen reactivity and origin of this memory cell is poorly defined. These 
cells are often referred to as CD8 memory phenotype (MP) T-cells. Some CD8 MP 
T-cells probably result from conditions of lymphopenia (discussed below).

2.3  CD8 Memory T-cell Differentiation in the Context 
of Chronic Infection

The above discussion of CD8 memory T-cell differentiation focused on this process 
following an acute, transient infection. It is important to note, however, that CD8 T-
cells are highly attuned to external cues, and that the process of CD8 memory T-cell 
differentiation can be significantly influenced by the nature of the eliciting infec-
tion (e.g., [2]). In addition, the phenotypes and properties of a CD8 T-cell can vary 
between CD8 T-cells responding to different epitopes within the same pathogen [45, 
121]. These different outcomes likely reflect differences in the patterns of antigen 
expression at various stages of infection.

The most dramatic perturbations to CD8 memory T-cell differentiation occur in 
situations of chronic infection (e.g., certain strains of LCMV) that are characterized 
by a prolonged, high pathogen burden. In these situations, CD8 T-cells develop 
an altered state of “memory” in which the resulting CD8 T-cells remain actively 
dependent on persistent antigen and TCR engagement for their survival (Fig. 1b). 
These cells express reduced levels of cytokine receptors for IL-7 and IL-15 (IL-
7Rα and IL-2Rβ, respectively), and do not achieve antigen-independent survival 
and proliferation [120, 131]. In addition, these cells can express sustained levels of 
inhibitory receptors such as programmed death-1 (PD-1), which can actively impair 
the capacities of a CD8 T-cell [6]. Situations of chronic infection can also result in 
the continual recruitment of naïve CD8 T-cells into the CD8 memory pool [130].
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Based on the above differences, it is worth considering whether the CD8 “mem-
ory” T-cells that result during a chronic infection are true CD8 memory T-cells or 
if they instead exist in an altered state of “quasi-memory”. For the purpose of this 
chapter, we will refer to CD8 memory T-cells that develop in the context of chronic 
infection as antigen-dependent CD8 memory T-cells (referring to their continued 
requirement for antigen to survive). This is in contrast to CD8 memory T-cells that 
arise following an acute infection, which we will refer to as antigen-independ-
ent CD8 memory T-cells (referring to their capacity to survive in the absence of 
antigen).

2.4  An Alternate Way to become a CD8 Memory T-cell:
Lymphopenia-induced Proliferation

While CD8 memory T-cells have been traditionally studied in individuals following 
exposure to a variety of antigens, there is an alternate way for a naïve CD8 T-cell 
to become a CD8 memory T-cell. This phenomenon occurs in individuals charac-
terized by a state of severely reduced lymphocyte numbers, a condition known as 
lymphopenia. Lymphopenia is observed in various conditions, including individuals 
exposed to high dose irradiation or chemotherapy, as well as in neonates [75, 92]. In 
mice, genetic models of lymphopenia are also available (such as mice completely 
devoid of T-cells).

The observation that lymphopenia could promote the generation of CD8 memory 
T-cells was made by multiple groups who transferred naïve, antigen-specific CD8 T-
cells into lymphopenic mice (whether irradiated or genetically deficient) (reviewed 
in [51]). In these studies, naïve CD8 T-cells began to proliferate once placed in the 
lymphopenic environment, a process referred to as either homeostatic proliferation 
or lymphopenia-induced proliferation (LIP). In addition to proliferating, however, 
these CD8 T-cells also acquired many of the characteristics associated with a CD8 
memory T-cell [22, 35, 64, 93, 96]. For clarity, these cells will subsequently be 
referred to lymphopenia-induced proliferation (LIP) CD8 memory T-cells.

At this time, it is unknown whether LIP CD8 memory T-cells and antigen-elic-
ited CD8 memory T-cells are identical. There are clear differences in the generation 
of these two cell types (compare Fig. 1a and 1c). First, LIP CD8 memory T-cells 
do not go through a stage of acute activation (e.g., LIP CD8 memory T-cells do not 
express various early activation markers), in contrast to antigen-elicited CD8 T-cells 
[22, 93]. In addition, LIP memory cells undergo a much more modest proliferation 
than antigen-elicited memory T-cells, and have no significant contraction phase [22, 
93]. Despite these differences, LIP memory cells do have a transcriptional profile 
that is similar to that of antigen-elicited CD8 memory T-cells [36], and these cells 
are capable of mediating a protective response against secondary infection [39].

The observation that a naïve CD8 T-cell can become a memory cell in the absence of 
strong antigenic stimulation indicates that there is at least one alternate way for a naïve 
cell to become a memory T-cell (Fig. 1c). While lymphopenia-induced proliferation 



298 E. T. Clambey et al.

can be promoted by TCR stimulation by low affinity ligands [30, 34, 64], this phe-
nomenon is also driven by the high levels of unconsumed cytokines (particularly 
IL-7) present in an environment that is almost devoid of neighboring lymphocytes 
(reviewed by [51, 124]). At this time, the precise contribution of LIP memory T-cells 
to the complete CD8 memory T-cell repertoire is unclear. Nonetheless, given some 
of the factors that influence the development of CD8 clonal expansions (described 
below), lymphopenia-induced proliferation and memory differentiation may con-
tribute to at least part of this age-associated phenomenon.

3 The Regulation of CD8 Memory T-cell Homeostasis

3.1 The Role of IL-7 and IL-15

As previously alluded to, the regulation of CD8 memory T-cell proliferation and 
survival is heavily influenced by extracellular factors. The cytokines IL-7 and IL-15 
are the best-characterized extracellular proteins that promote the survival and pro-
liferation of CD8 memory T-cells [7, 37, 72, 116, 118, 125, 142]. Both of these 
cytokines belong to the common gamma chain (γ

c
) family of cytokines.

In general, the functions of IL-7 and IL-15 are thought to be compartmentalized, 
such that IL-7 primarily provides survival signals whereas IL-15 provides prolifera-
tive signals (reviewed in [124]). Although excess IL-7 can overcome a deficiency 
in IL-15 [65], the mechanism by which these two cytokines are perceived differs 
significantly. IL-7 is present in a secreted, soluble form. In contrast, IL-15 appears 
to be retained on the cell surface of certain cells, requiring direct cell contact of the 
CD8 T-cell with an IL-15 presenting cell in order to receive an IL-15 signal [17, 27, 
114, 117]. While IL-7 and IL-15 can function alone, their effects can also be influ-
enced by other cytokines. For example, IL-21 can synergize with IL-15 to promote 
proliferation of CD8 memory T-cells in vitro [141].

Given the central role of IL-7 and IL-15 in promoting CD8 memory T-cell home-
ostasis, the levels of these cytokines are tightly controlled and for good reasons. 
Limited cytokine expression appears to be important in limiting excessive prolifera-
tion; transgenic mice that express excessive amounts of IL-15 can develop a fatal 
leukemia [32]. Cytokine signals are also subject to additional regulation. For exam-
ple, IL-7 can downregulate expression of its own receptor, IL-7Rα [101].

3.2  The Role of Other Cytokines, Cell Surface Receptors 
and Cells

In addition to IL-7 and IL-15, other cytokines also influence the homeostasis of 
CD8 memory T-cells. For example, IL-2 appears to be critical for CD8 memory 
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T-cells to robustly proliferate upon antigen reexposure [136]. In contrast, transform-
ing growth factor beta (TGF-β) appears to limit the rate of proliferation of CD8 
memory T-cells, possibly through antagonism of IL-15 signals [79]. High levels of 
IL-10 can also impair the appropriate formation of CD8 memory T-cells, as revealed 
by studies of chronic LCMV infection [14, 28].

Various cell surface proteins of the immunoglobulin and tumor necrosis family 
(TNF) families can also influence the magnitude and homeostasis of CD8 memory 
T-cells. Mice deficient in the B- and T-lymphocyte attenuator (BTLA), an immu-
noglobulin superfamily member, have an increased number of CD8 MP T-cells and 
a higher rate of homeostatic proliferation, indicating that BTLA limits the magni-
tude of CD8 memory T-cells [69]. In contrast, mice deficient in the TNF receptor 
ligand 4-1BBL have impaired CD8 memory, suggesting a positive role for 4-1BB 
signaling in the formation of a robust CD8 memory T-cell response (reviewed in 
[111]). Similar data indicate a positive role for CD27 and OX40 in promoting CD8 
memory T-cell responses [42, 43]. Notably, some of the effects of these proteins 
may be directly regulated by cytokine cues elicited by IL-15 [107].

While many of the above cues influence the long-term maintenance of CD8 
memory T-cells, initial signals received during T-cell activation can also heavily 
influence the differentiation of a naïve CD8 T-cell to a CD8 memory T-cell. One 
example of this regulation is the observation that inflammation can prolong the time 
required for CD8 memory T-cell differentiation [41]. As such, CD8 T-cells activated 
in a context of minimal inflammation become memory T-cells more rapidly (e.g., 
following immunization with antigen-pulsed dendritic cells) [5]. At least part of 
this effect is mediated by the effect of inflammatory cytokines, such as interferon 
gamma (IFN-γ), on the responding CD8 T-cell [5]. It is worth noting, however, that 
the effects of IFN-γ on the immune system are pleiotropic, and in some contexts, 
IFN-γ can promote an optimal CD8 memory T-cell response [133, 134]. IL-12 and 
type I interferons can also promote optimal CD8 T-cell activation and CD8 memory 
responses [68, 88].

The properties of CD8 memory T-cells are also heavily influenced by the pres-
ence or absence of CD4+ T-cells. Over the past few years, there has been an increas-
ing appreciation that CD8 memory T-cells generated in the absence of CD4 T-cell 
help can be compromised in various ways (reviewed in [8]). At least part of the 
defect observed in CD8 memory T-cells that do not receive CD4 T-cell help may 
be due to tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) 
induced apoptosis of CD8 memory T-cells upon antigen re-exposure [39, 52]. How-
ever, additional mechanisms are also likely involved in CD4 T-cell optimization of 
CD8 memory T-cell responses [4, 95].

Finally, the properties of CD8 T-cells can be influenced by the frequency of anti-
gen-specific T-cells that participate in a response, as well as subsequent antigenic 
exposure. Studies analyzing the response of TCR transgenic CD8 T-cells, in which 
each CD8 T-cell expresses the identical TCR as its neighbors, have revealed that an 
artificially elevated number of identical antigen-specific T-cells (achieved by adop-
tive transfer of a high number of TCR transgenic CD8 T-cells) results in CD8 T-cells 
with distinct properties not observed during an endogenous CD8 T-cell response 
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[3, 59, 82]. At this time, it is unclear whether this observation reflects an experi-
mental artifact, or whether it reflects some basic physiological regulation observed 
in certain conditions of CD8 T-cell responses. Although CD8 memory T-cells can 
be maintained in an antigen-independent manner, subsequent antigen exposures can 
influence the TCR specificities of CD8 memory T-cells that are maintained [119].

3.3  The Influence of Intracellular Factors

While the properties of CD8 memory T-cells are well defined, the intracellular fac-
tors that coordinate these changes remain poorly characterized. CD8 memory T-cells 
are clearly characterized by a wide variety of transcriptional changes [54], as well 
as changes in chromatin modifications relative to naïve CD8 T-cells [31, 61, 95]. 
While there is no identified master regulator for the development of CD8 memory 
T-cells, there have been an increasing number of transcription factors that either 
facilitate differentiation to, or the properties of, CD8 memory T-cells. These include 
Bcl-6 [47], STAT5 [16, 58], eomesodermin and T-bet [49, 103], Bcl-6b/BAZF [81], 
c-myc [9], MeCP2 [60], and Id2 [19]. At this time, the precise molecular targets of 
these transcription factors and their contribution to CD8 memory T-cell develop-
ment remain largely undefined.

Intracellular proteins that influence the proliferation and survival of CD8 T-cells 
can also impact the development of CD8 memory. The suppressor of cytokine sig-
naling (SOCS) family of proteins is known to inhibit various cytokine signals [1]. 
In particular, SOCS1 is an important regulator of CD8 T-cell responses to cytokine 
signals by IL-7 and IL-15, and deficiency of this molecule results in an increased 
number of CD8 MP T-cells [23, 26, 48].

Regarding proteins that regulate cell survival, the proapoptotic Bcl2-family 
member, Bim, appears to limit the number of cells entering the CD8 memory T-cell 
pool [138]. Signal transduction through tumor necrosis factor receptor associated 
factor (TRAF) 1 is one mechanism that may regulate levels of Bim protein dur-
ing a CD8 T-cell response [112]. The optimal development of CD8 memory also 
depends on appropriate protection of CD8 T-cells against internal damage from 
cytotoxic proteins expressed by CD8 T-cells (e.g. granzymes, cathepsins), some-
thing which can be mediated by various serine protease inhibitors expressed in CD8 
T-cells [78, 104].

4 The Discovery of CD8 Clonal Expansions

Following the discovery of the T-cell receptor, there was an explosion of reagents 
to analyze the properties and diversities of the T-cell pool. One technical advance 
that allowed the discovery of CD8 clonal expansions was the development of mon-
oclonal antibodies that recognized different TCR V alpha (Vα) and V beta (Vβ) 
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gene products. By using these reagents, investigators identified that young, healthy 
individuals had a relatively consistent number of T-cells expressing each Vα and 
Vβ gene product [18, 105]. In contrast, aging individuals frequently had significant 
perturbations in the abundance of T-cells expressing various Vα and Vβ gene prod-
ucts [18, 105]. Significantly, these aged individuals frequently had a massive over-
representation of a single Vα or Vβ that was at least three standard deviations above 
the mean Vα and Vβ usage observed in young individuals. The selective outgrowth 
or accumulation of a single Vα or Vβ gene product within the CD8 T-cell pool 
suggested that these CD8 T-cells might be clonal expansions. Molecular analysis 
of the T-cell receptors used by these expanded populations of CD8 T-cells revealed 
that these overrepresented populations of CD8 T-cells were truly clonal [77, 105]. 
Notably, these clonal expansions were predominantly found within the CD8 T-cell 
lineage, and were rarely identified in CD4 T-cells.

Today, CD8 clonal expansions are frequently identified using antibodies against 
various Vβ gene products (Fig. 2). Based on this method, individuals with CD8 
clonal expansions are identified as those with an overabundance of a single Vβ 
within the CD8 T-cell pool that is increased at least three standard deviations above 
the mean Vβ usage found for that Vβ in young individuals. The strength of this 
approach is that it identifies an overabundance of one Vβ within the entire CD8 
T-cell pool. CD8 clonal expansions can also be identified by molecular analysis of 
TCR diversity (e.g. the spectratyping method [97]). When using such molecular 
methods, however, it is worth noting that these methods can detect reduced diver-
sity within a specific Vβ gene family, despite the fact that that Vβ is not over-rep-
resented within the entire CD8 T-cell pool (a phenomenon we have referred to as 
clonal restriction [24]). Because of this caveat, we consider it preferable to identify 
the presence of clonal expansions by monoclonal antibodies against the TCR, fol-
lowed by molecular analysis of TCR diversity. Age-associated clonal expansions 
are routinely clonal by such analyses. 

One important observation about CD8 clonal expansions is that clonal expan-
sions in different individuals express a diverse range of T-cell receptors. Even in 
genetically identical inbred mice that are housed together, CD8 clonal expansions 
express a wide variety of TCR Vαs and Vβs. The same is true for humans. Based 
on these observations, CD8 clonal expansions appear to arise from a diverse set of 
CD8 T-cells.

5  Properties of Clonal Expansions

5.1  Incidence and Abundance of Clonal Expansions in Humans 
and Mice

CD8 clonal expansions are a common age-associated alteration within the immune 
system. In specific-pathogen free (SPF) mice, almost 60% of mice develop clonal 
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expansions by 2 years of age [71]. In humans, 33% of adults over the age of 65 
have a detectable clonal expansion [108]. CD8 clonal expansions vary widely in 
their size within the CD8 T-cell pool. In the most dramatic situations, CD8 clonal 

Fig. 2 Methodology to identify CD8 clonal expansions in aged mice 
CD8 clonal expansions can be identified based on the percentage of CD8 T-cells expressing vari-
ous TCR Vβ receptors. While young mice have a highly consistent percentage of CD8 T-cells that 
express each Vβ (open bars), certain aged mice (e.g., hypothetical aged mouse #1 in black bars) 
have an overabundance of CD8 T-cells expressing one Vβ (in this situation, a Vβ4+ clonal expan-
sion). CD8 clonal expansions are identified in those mice that have an overabundance of one TCR 
Vβ, that is increased at least three standard deviations above the mean Vβ usage observed in a 
cohort of young mice. Data for young mice indicate mean Vβ usage +/- three standard deviations 
of the mean. Young mice are typically between 3–6 months of age. Aged mice develop detectable 
clonal expansions by 16 months of age. In this example, aged mouse #2 (hatched bar) does not 
have any detectable CD8 clonal expansions.
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expansions can occupy 50% of the CD8 T-cell pool in humans [33] and 90% of the 
CD8 T-cell pool in mice (Clambey et al. unpublished data).

Since clonal expansions are found in many, but not all, mice, it is worth noting 
that studies of T-cell responses in aging mice may be profoundly influenced by 
whether an individual mouse contains a clonal expansion or does not. Given the 
idiosyncratic nature of clonal expansions, we strongly recommend that studies of T-
cell function in aging mice be carefully controlled to minimize the impact of clonal 
expansions on the interpretation of the experiment.

5.2  Factors Associated with the Development of Clonal 
Expansions

While the precise origin of clonal expansions remains unclear, ongoing research has 
provided clues about potential cues that may facilitate the development of clonal 
expansions. One of the strongest factors associated with the development of clonal 
expansions is age. This age-association with clonal expansions is particularly pro-
nounced in the mouse, where CD8 clonal expansions are virtually undetectable until 
16 months of age [18]. In humans, increasing age is associated with an increasing 
prevalence of clonal expansions [108]. In contrast to mice, however, clonal expan-
sions in humans can be found in younger individuals [108]. It is possible that these 
latter clonal expansions may reflect immune responses to childhood infections, 
something that would not be observed in SPF mice [50].

Although clonal expansions are particularly observed in aging individuals, it 
is unknown what factors within the aging environment, if any, contribute to the 
development of clones. It is worth noting that clonal expansions can be transferred 
to young individuals and still retain their competitive advantage [70, 91]. This 
observation indicates that while aging may contribute to the development of clonal 
expansions, the aging environment is not essential for the maintenance of clonal 
expansions.

Beyond the correlation of age and the development of clonal expansions, there are 
two other factors positively associated with the development of clonal expansions.

i) Humans infected with human cytomegalovirus (HCMV). Over the past few 
years, the use of MHC Class I tetramers has allowed investigators to investigate 
the TCR specificity of human clonal expansions. Based on these studies, at least 
some human clonal expansions specifically recognize human cytomegalovirus, 
a common chronic herpesvirus infection [63, 98]. In the most dramatic case, 
27% of CD8 T-cells in one individual were specific against a single HCMV 
epitope [98]. Although HCMV infection can be controlled in healthy individu-
als, there is increasing evidence that HCMV infection in the elderly is associ-
ated with a variety of negative outcomes [62, 102, 106, 122]. Importantly, while 
some humans develop clonal expansions against Epstein-Barr virus (EBV), 
another common chronic Herpes virus infection, these clonal expansions are 
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much smaller in size [62, 97, 129]. Thus, there appear to be certain factors 
associated with HCMV infection that are capable of eliciting pronounced CD8 
clonal expansions in humans. This association may be related in part to the 
observation that chronic CMV infection can elicit large, and in some cases, 
highly focused T-cell responses that often increase in size with age, even in 
individuals without clonal expansions [57, 63, 127].

ii) Lymphopenia and inflammation in mice. Additional insights into cues that pro-
mote CD8 clonal expansions came from the analysis of CD8 clonal expansions 
in various mouse models. Significantly, mice characterized by lymphopenia 
(e.g., mice lacking the IL-7 receptor or mice subjected to adult thymectomy) 
develop clonal expansions at an earlier age and with a higher prevalence than 
intact, unmanipulated mice [90]. Although the precise mechanisms behind this 
outcome remain to be elucidated, one likely explanation for this effect is the 
increased rate of proliferation of CD8 memory T-cells in lymphopenic con-
ditions [90]. In the same study, it was noted that repeated treatment of mice 
with adjuvants (compounds known to induce inflammation and to facilitate 
antigen-specific T- and B-cell responses to coinjected antigen) also modestly 
increased the incidence of CD8 clonal expansions [90]. It is interesting to note 
that states of inflammation, such as those of viral infections, have been associ-
ated with transient states of lymphopenia (e.g., [87]). Thus, it is possible that 
adjuvants promote the development of clonal expansions through the temporary 
generation of lymphopenic conditions. For further discussion of lymphopenia 
and its effects on the generation of clonal expansions please see chapter by 
Nikolich-Zugich.

5.3  CD8 Clonal Expansions may Impair Immune Function 
in the Aged

Given the dominance of CD8 clonal expansions within the aged individual, it is 
likely that clonal expansions have some impact on the immune function of aged 
individuals. To date, there are two studies to support this contention. First, in 
humans, there is a correlation between the presence of clonal expansions and an 
impaired response to influenza vaccination, a common defect in aged individuals 
[115]. Second, in mice, there are data that clonal expansions may result in highly 
focused holes in the T-cell repertoire (particularly in the Vβ subfamily used by 
the clonal expansion) [89]. These narrow holes may be particularly problematic 
in individuals responding to infections in which the T-cell response is heavily 
restricted to use of a single Vβ subfamily. Please see chapter by Nikolich-Zug-
ich for more extensive discussion of the negative impact of clonal expansions on 
immune function in the aged.

While CD8 clonal expansions can have deleterious effects on immune func-
tion, we postulate that perhaps not all clonal expansions are deleterious to health 
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in the elderly. This may be particularly true in the case of clonal expansions spe-
cific for HCMV, a chronic virus infection that can cause disease, especially in 
the immune-suppressed. Although inflated responses to HCMV have often been 
viewed as a negative indication for health in the elderly (e.g., [102]), this is not to 
say that these HCMV-specific expansions are not playing some role in containing 
HCMV infection. Based on this concept, it will be important to test what conse-
quence depletion of CD8 clonal expansions has in animal models of chronic infec-
tion (e.g., individuals which develop comparable clonal expansions in response 
to either mouse or primate cytomegalovirus infection) before further considering 
the possibility of therapeutic intervention to remove CD8 clonal expansions in 
the elderly.

One other important consideration when contemplating therapeutic interven-
tions to remove CD8 clonal expansions in the aged is the effect that this depletion 
might have on subsequent T-cell homeostasis. For example, depletion of a clonal 
expansion that occupies 50% of the CD8 T-cell pool would likely create a transient 
state of lymphopenia, which may, in turn, provoke the subsequent development of 
another clonal expansion.

5.4 CD8 Clonal Expansions are Nonmalignant

Given the growth advantage of CD8 clonal expansions relative to other CD8 T-
cells, one curious feature of clonal expansions is that they are nonmalignant. This 
conclusion is based on the following observations: i) individuals with CD8 clonal 
expansions do not have an increase in the total number of CD8 T-cells [89] and ii) 
clonal expansions can exist for an extended period of time without progressing to 
malignancy (up to 4 years in mice, up to 9 years in humans) (Ku, personal com-
munication) [20]. Given the common occurrence of CD8 clonal expansions, the 
incidence of human tumors with a CD8 memory phenotype is extremely low [99]. 
It is important to note that individuals diagnosed with CD8 T-cell lymphomas not 
only have a clonal expansion of T-cells, but are also characterized by additional 
abnormalities (including elevated lymphocyte counts and frequent neutropenia) 
[110, 137]. At this time, there is no known relationship between those individuals 
with CD8 clonal expansions and those individuals who are diagnosed with T-cell 
lymphomas.

Despite the similarities of clonal expansions to tumors in terms of their clonality 
and competitive advantage relative to their neighbors, CD8 clonal expansions are 
clearly still subject to certain constraints. For example, CD8 clonal expansions do 
not increase in number above the normal number of CD8 T-cells contained within 
an individual [89]. Although the precise mechanisms that limit the growth of clonal 
expansions remain to be elucidated, we propose that a major factor constraining the 
growth of CD8 clonal expansions is availability for cytokines and other extracel-
lular growth factors.
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6  CD8 Clonal Expansions Have an Increased Rate 
of Proliferation

Many CD8 clonal expansions occupy a sizable fraction of the CD8 T-cell pool. The 
ability of expansions to out-compete other CD8 T-cells could result from either an 
increased rate of proliferation or from a decreased rate of attrition (e.g., apoptosis). 
Currently, there are no published reports rigorously examining the survival proper-
ties of CD8 clonal expansions relative to normal CD8 memory T-cells. In contrast, 
there are clear data regarding the rate of proliferation of CD8 clonal expansions. 
Initial evidence regarding the rate of proliferation of CD8 clonal expansions came 
from analysis of the rate of dilution of carboxyfluorescein diacetate succinimidyl 
ester (CFSE), a fluorescent dye that can be used to track the number of cell divi-
sions of CD8 T-cells. Based on transfer of CD8 clonal expansions into syngeneic, 
nonirradiated recipients, CD8 clonal expansions had a modest increase in their rate 
of proliferation (dividing once every 15 days, compared with polyclonal aged CD8 
memory T-cells which divided once every 22 days) [70]. Significantly, many CD8 
clonal expansions were also capable of growing upon adoptive transfer into mice 
lacking beta-2 microglobulin and therefore having little to no MHC Class I ligands 
for the T-cell receptor [70]. This property is consistent with the previous observa-
tion that CD8 memory T-cells can achieve long-term antigen-independent prolifera-
tion [94]. In sum, these data indicate that clonal expansions have an increased rate 
of proliferation and that this proliferation is not dependent on active engagement 
between TCR and MHC.

In this initial study, manipulating cytokine signals also influenced the prolifera-
tion of CD8 clonal expansions. Clonal expansions had diminished proliferation 
when the beta-chain of the IL-2 and IL-15 receptors was blocked by antibody treat-
ment, suggesting that clones were likely growing in response to IL-15 (a common 
proliferative cue for CD8 memory T-cells) [70]. In contrast, CD8 clonal expan-
sions had accelerated proliferation when mice were treated with IL-2 antibodies 
[70], a condition now known to create a strong mitogenic signal for CD8 memory 
T-cells [13].

Since this initial analysis, an additional study examined how CD8 clonal expan-
sions respond to conditions of lymphopenia, a condition known to increase the pro-
liferative rate of CD8 T-cells and to promote the generation of LIP CD8 memory 
T-cells (discussed above). While these studies showed that CD8 clonal expansions 
have an increased rate of proliferation in a nonirradiated recipient relative to other 
CD8 T-cells, they also revealed a surprising finding: CD8 clonal expansions have 
a relatively constant rate of proliferation that is not accelerated in conditions of 
lymphopenia [91]. In this study, CD8 clonal expansions were also identified to have 
a modest increase in the expression of both the IL-7Rα and IL-2Rβ cytokine recep-
tors [91]. Based on these studies, Nikolich-Zugich and colleagues proposed that 
CD8 clonal expansions have an altered capacity to respond to the homeostatic cues 
normally perceived by a CD8 T-cell [91]. On one hand, clones do not stop dividing 
in a full lymphoid compartment. On the other hand, clones do not accelerate their 



The Biology of CD8 Clonal Expansions in Mice 307

division in a lymphopenic setting. At this time, it is unclear why clonal expansions 
are capable of accelerating their proliferation in response to strong mitogenic IL-2 
signals [70], but do not accelerate their proliferation in lymphopenic settings [91]. 
One potential explanation for this apparent discrepancy may be that the proliferative 
cues perceived in a lymphopenic environment are less potent than that received by 
hyperstimulation with IL-2, IL-2 antibody complexes.

Based on the above data, clonal expansions do not simply have a higher rate of 
proliferation than other CD8 T-cells, but instead are capable of prolonged, con-
tinuous proliferation with little apparent regulation by the normal cues perceived 
by neighboring CD8 T-cells. One perplexing issue about these observations is 
that the state of lymphopenia is associated with an increased rate of development 
of clonal expansions, yet clonal expansions do not seem to have a proliferative 
advantage in the context of lymphopenia. One possible resolution for this paradox 
might be that lymphopenia promotes the initiation but not the maintenance of 
CD8 clonal expansions. For further discussion of this topic, please see chapter by 
Nikolich-Zugich.

7  The Spectrum of CD8 Clonal Expansions

7.1  Heterogeneous Characteristics of CD8 Clonal Expansions

One of the challenges in understanding CD8 clonal expansions in both mice and 
humans is the observation that distinct clonal expansions have variable properties. 
While heterogeneity between clonal expansions might be expected in humans, 
a genetically diverse population with significant differences in infection history, 
heterogeneity has also been observed between clonal expansions in genetically 
identical, inbred mice housed together [18]. To date, heterogeneity between clonal 
expansions has been best characterized in CD8 clonal expansions in mice [18], as 
described below.

i) Stability of clones in vivo: CD8 clonal expansions have widely discrepant sta-
bilities in vivo. Some CD8 clonal expansions appear to be extremely stable and 
can continue to grow over a 4-year period, as revealed by serial adoptive transfer 
studies in mice (Ku, personal communication). In contrast, other CD8 clonal 
expansions are very unstable and disappear within 2 months of their initial iden-
tification [18, 77].

ii) Response to stimulation in vitro: CD8 clonal expansions in mice are also vari-
able in their response to stimulation in vitro [18]. For example, some CD8 clonal 
expansions have a normal proliferative response to polyclonal stimulation in 
vitro (e.g., following culture with the concanavalin A or phorbol 12-myristate 13-
acetate (PMA) and ionomycin). In contrast, other CD8 clonal expansions have 
an impaired capacity to proliferate and/or survive following similar stimulation 
conditions, becoming less abundant in bulk cultures following stimulation.
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Despite these differences between CD8 clonal expansions, CD8 clonal expan-
sions are uniformly considered to be CD8 memory T-cells, as defined by cell 
surface markers (in the mouse, CD44high as well as IL-7RαhighIL-2Rβhigh) [70, 91]. 
Many CD8 clonal expansions belong to the T

CM
 subset of CD8 memory T-cells [91]. 

While our recent data (discussed below) have revealed additional heterogeneity in 
cell surface phenotypes, to date all clonal expansions are CD44high, consistent with 
a CD8 memory phenotype in the mouse.

7.2  A New Method to Subclassify CD8 Clonal Expansions 
in Mice

Given the above heterogeneity between CD8 clonal expansions, we have been inter-
ested in identifying methods to subclassify clonal expansions in mice. To do this, 
we initially focused our efforts on microarray analysis in which we analyzed the 
transcriptional profile of multiple, independent clonal expansions in mice.

Through this analysis, we identified integrin α4 (also known as very late antigen-4 
(VLA-4) or CD49d) as a candidate marker that was differentially expressed in dis-
tinct types of clonal expansions. [25] Next, we analyzed the expression of integrin 
α4 on a large number of age-associated CD8 clonal expansions. This analysis iden-
tified that there were two major types of clonal  expansions: those expressing high 
levels of integrin α4 and those expressing low levels of integrin α4.

Based on the differential expression of integrin α4 between different types 
of clones, we analyzed the properties of integrin α4high and integrin α4low 
clones. There were clear differences between these two types of clonal expan-
sions [25]. First, these clonal expansions were identified in mice of different 
ages, with integrin α4high clones identified predominantly in mice 16–20 months of 
age, while integrin α4low clones were found predominantly in mice 20–36 months 
of age. Notably, a longitudinal analysis of these two types of clonal expansions 
revealed that there was no interconversion between these integrin α4 phenotypes. 
Second, these clones differed in their in vivo growth dynamics, with integrin 
α4high clones frequently decreasing in size over a 2-month interval, in contrast to 
integrin α4low clones that rarely decreased in size. Third, integrin α4high clones had 
an impaired response to in vitro stimulation with PMA and ionomycin, becom-
ing less abundant following stimulation. Integrin α4low clones had no advantage or 
disadvantage following this same stimulation. Fourth, integrin α4high and integrin 
α4low clones had differential localization in vivo. Integrin α4high clones were absent 
from peripheral lymph nodes, while integrin α4low clones were absent from Peyer’s 
patches. Fifth, integrin α4high clones had evidence of chronic TCR stimulation, as 
revealed by decreased expression of cytokine receptors (both IL-7Rα and IL-2Rβ) 
and expression of various inhibitory receptors (PD-1 and killer cell lectin-like recep-
tor G1, KLRG1). In sum, integrin α4high clonal expansions had many characteristics 
of chronic antigen stimulation, whereas integrin α4low clonal expansions appeared 
similar to an antigen-independent CD8 memory T-cell [25].
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The identification of integrin α4-defined clonal expansions in mice is significant 
for multiple reasons. First, it provides a molecular marker to distinguish between 
two types of clonal expansions with highly divergent properties. Second, it pro-
vides an explanation for the previous dichotomy observed in the properties of clonal 
expansions [18, 77]. Third, it indicates that these types of clonal expansions may 
have arisen from very different origins. In particular, we hypothesize that integrin 
α4high clones may arise due to an inappropriate response against self-antigens, which 
would result in chronic antigenic stimulation. It is worth noting that while both 
types of clonal expansions meet the current definition of CD8 clonal expansions, 
integrin α4low clones appear to be the subtype of expansion that is most capable of 
long-term growth.

8  Models Regarding the Development and Properties 
of CD8 Clonal Expansions

8.1  Models to Understand the Development and Properties 
of Clonal Expansions

Given the heterogeneity between distinct clonal expansions and the apparent differ-
ences in clonal expansions between mice and humans (discussed in further detail in 
[24]), it is challenging to determine whether there are common mechanisms under-
lying divergent types of CD8 clonal expansions. Here we discuss three conceptual 
models for the development of CD8 clonal expansions and discuss basic tenants of 
each model.
Model 1: Clonal expansions arise from natural variation in the rate of proliferation 
of memory T-cells. Clonal expansions are simply those memory T-cells with the 
fastest rate of proliferation.

Basic details of this model: This model is based on the principle that there is a 
range of proliferative rates of memory T-cells present in a normal individual. While 
the vast majority of cells will proliferate at a very similar rate, there inevitably will 
be some cells that proliferate slightly faster or slower. At first inspection, this idea 
is particularly appealing: CD8 clonal expansions only have a modest increase in 
their rate of proliferation (dividing about once every 15 days compared to CD8 MP 
T-cells which divide about once every 22 days) [70].

Predictions of this model: CD8 clonal expansions will be identical to CD8 
memory T-cells in all parameters, with only a modest acceleration in their rate of 
proliferation.

Evidence against this model: The major observation that is inconsistent with this 
model is that CD8 clonal expansions have an altered capacity to respond to pro-
liferative cues typically perceived by lymphocytes in a lymphopenic environment 
[88]. This property of clones is clearly different than a normal CD8 memory T-cell, 
and these data indicate that clones are not simply derived from the fastest cell in the 
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CD8 memory T-cell pool. Despite this, it is worth noting that subtle variations in the 
expression level of cytokines receptors or inhibitory proteins may still play some 
role in the basic biology of CD8 clonal expansions.
Model 2: Clonal expansions arise from common alterations to growth regulatory 
pathways. The variable properties of clonal expansions reflect differences in TCR 
reactivity and antigen persistence.

Basic details of this model: This model proposes that clonal expansions arise 
from a discrete set of changes in the expression of growth regulatory proteins (e.g. 
cell cycle inhibitory proteins or cytokine receptors) (Fig. 3a). These alterations in 
mRNA or protein expression and/or function may arise to due genetic mutations 
(i.e., creating mutant gene products) or due to perturbations in epigenetic regulation 
(e.g., DNA methylation or chromatin alterations that alter transcriptional expression 
of growth regulatory genes). 

Predictions of this model: A basic prediction of this model is that clonal expan-
sions will arise from a common fate, and possess common changes in growth 
regulatory pathways (e.g., cytokine signaling). Moreover, clonal expansions with 
divergent biological properties should have similar mRNA and protein expression 
profiles (discussed further below).

Evidence against this model: Currently, there are two pieces of evidence against 
this model. The first is that the two major types of clonal expansions in mice (integrin 
α4high and integrin α4low) have widely divergent properties, suggesting that they may 
arise from different age-associated alterations. Integrin α4high clones have many 
characteristics consistent with T-cells actively responding against chronic (poten-
tially self) antigen. If these cells are self-reactive, integrin α4high clones may arise 
from age-associated alterations in central or peripheral T-cell tolerance. In contrast, 
integrin α4low clones do not possess such characteristics, suggesting that they may 
arise from a distinct mechanism (such as epigenetic inactivation of a growth regula-
tory gene). The second piece of evidence against this model is microarray analysis, 
in which integrin α4high and integrin α4low clonal expansions appear to have different 
gene expression profiles (Clambey et al. manuscript in submission). The interpreta-
tion of this latter point, however, has caveats (discussed below), and will require 
analysis of a larger number of integrin α4-defined clonal expansions.
Model 3 : Clonal expansions arise from multiple, distinct age-associated alterations.

Basic details of this model: In contrast to model 2 (above), this model proposes 
that clonal expansions reflect a common physiological outcome (i.e. selective 
outgrowth of a single CD8 T-cell), but that these clones arise due to different age-
associated alterations (Fig. 3b). As such, different types of clonal expansions have 
little in common other than their overabundance in the CD8 T-cell pool.

Predictions of this model: In contrast to model 2, a prediction of this model is 
that different types of CD8 clonal expansions (with different biological proper-
ties) will have different gene and protein expression profiles. While different types 
of clones will have some common expression profiles since they are both CD8 
memory T-cells, the underlying molecular changes and growth requirements for 
these clones will differ. Based on the properties of integrin α4high and integrin α4low 
clones detailed above, integrin α4high clones would depend on ongoing antigen/
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Fig. 3 Models for the development and phenotype of CD8 clonal expansions
In panel a, model 2 (see text for details) proposes that CD8 clonal expansions result from a com-
mon set of changes in growth regulatory genes (indicated here by a red nucleus, denoting a com-
mon transcriptional alteration). Following their initial expansion, the presence or absence of 
antigen then significantly influences the properties and dynamics of the clonal expansion. Clones 
that recognize persistent antigen undergo further differentiation (indicated by a blue cytoplasm). 
In panel b, model 3 (see text for details) proposes that CD8 clonal expansions result from distinct 
age-associated changes. While these distinct changes both result in a CD8 clonal expansion, the 
underlying factors that promote these expansions are completely distinct (indicated by either a red 
nucleus representing a transcriptional alteration or a blue cytoplasm representing antigen driven 
stimulation). See text for further discussion of each model.
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TCR engagement for their proliferative advantage, whereas integrin α4low clones 
would not.

Evidence against this model: Currently there is no direct evidence that contra-
dicts this model.

One important limitation to the above models and predictions is our current ina-
bility to distinguish between changes in gene expression profiles that promote the 
growth of CD8 clonal expansions, compared to changes in gene expression profiles 
that reflect TCR specificity and the presence or absence of antigen. For example, 
a clonal expansion responding to a persistent antigen will have major alterations 
in gene expression (e.g., in the expression of inhibitory receptors such as PD-1). 
As such, it may be very difficult to discriminate between the influence of TCR and 
antigen versus the underlying mechanism that creates a clonal expansion. The abil-
ity to resolve these issues will only become possible when CD8 clonal expansions 
can be reliably generated with defined antigen specificities, and such clones can be 
analyzed in the context of varying conditions of antigen persistence. Future insights 
into the molecular bases of clonal expansions will be significantly advanced through 
gain- and loss-of-function studies in both CD8 clonal expansions and CD8 memory 
T-cells.

8.2  The Probability of Becoming a Clonal Expansion

With regard to models 2 and 3, both models predict that certain stochastic events 
would change the growth properties of a CD8 memory T-cell. We postulate that 
this growth-promoting event is a relatively rare event. This statement is based on 
the observation that not all mice appear to develop CD8 clonal expansions, and 
mice that do develop clonal expansions frequently only have one clone (Clambey 
et al.unpublished data). Given that each mouse has more than 1 x 107 CD8 T-cells, 
the frequency of this growth-promoting event in an aging immune-competent mouse 
(e.g., C57BL/6J mouse) is probably not more frequent than 1 in 107 cells. We pre-
dict that the likelihood that a particular CD8 T-cell specificity becomes a clonal 
expansion would be influenced by the overall abundance of that antigen specificity 
within the CD8 T-cell pool (further discussed in [24]).

It is interesting to note that lymphopenic mice, which have fewer CD8 T-cells, 
have an accelerated rate of clonal expansion development, as well as a higher overall 
incidence of clones [90]. Based on these data, the frequency of the growth-promot-
ing event is increased in conditions of lymphopenia. Since lymphopenic mice are 
characterized by a higher number of proliferating CD8 T-cells [90], we hypothesize 
that the probability that a growth-promoting event occurs is directly related to the 
number of cell divisions that the CD8 T-cell has undergone. Mechanistically, this 
hypothesis is based on the fact that with each cell division, appropriate epigenetic 
programming must be perpetuated from the mother to the daughter cells. If there is 
a certain rate of failure for this event to occur, the more rounds of cell division, the 
more likely it is that any cell would undergo this growth-promoting event.
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8.3  When Do Clonal Expansions Initially Emerge?

In mice, CD8 clonal expansions are not detected until mice are approximately 16 
months of age [18]. Although clonal expansions become apparent at this age, it is 
likely that there is a period during which an emerging clonal expansion remains 
below the limit of detection within the T-cell repertoire. The events within the early 
phase of clonal expansions are completely unknown, and at this point, strictly hypo-
thetical. Nonetheless, it is worth considering how long it might take for a clonal 
expansion to emerge and dominate the CD8 T-cell pool.

CD8 clonal expansions divide once every 15 days, in contrast to polyclonal CD8 
MP T-cells that divide once every 22 days [70]. If this was the only advantage that a 
CD8 clonal expansion had relative to other CD8 T-cells, how long would it take for 
a clonal expansion to outcompete its neighbors?

In an attempt to approximate the growth history of a clonal expansion, we have 
used a very simple model to compare the growth dynamics of a clonal expan-
sion relative to a pool of CD8 MP T-cells. In this model, we made the following 
assumptions:

  i) a clonal expansion results from a single CD8 memory T-cell achieving a growth 
advantage relative to its neighbor

 ii)  the only advantage that a clonal expansion has relative to other CD8 memory 
T-cells is its slightly higher rate of proliferation (dividing once every 15 days, 
instead of once every 22 days)

 iii)  the relative size of the proliferating, polyclonal CD8 MP T-cell pool contains 
approximately 10 x 106 cells (Clambey et al. unpublished data) [11, 47, 89] 
and

 iv)  both the clonal expansion and the CD8 MP pool have an infinite growth 
capacity.

While this model is clearly too simplistic (e.g. it does not take into considera-
tion rate of death nor the changing abundance of naïve T-cells with age), it does 
provide a very useful piece of information (Fig. 4). If a clone only has this subtle 
growth advantage relative to a large CD8 MP T-cell pool, it would take 855 days 
(approximately 28.5 months) for the clone to reach just 5% (a small clonal expan-
sion) of the size of the CD8 MP T-cell pool (Fig. 4). However, in mice, larger CD8 
clonal expansions are already detectable by 16 months of age (~480 days). Based 
on this, clonal expansions are likely to have additional factors which promote their 
dominance within the CD8 T-cell pool. 

One condition that could expedite the dominance of a clonal expansion within 
the CD8 T-cell pool is if there were a higher starting number of cells with a growth 
advantage. Since clonal expansions are clonal, however, cells with a growth 
advantage would need to come from a common precursor. One way in which this 
could happen is if a naïve T-cell achieves a growth-promoting event, and then 
encounters its antigen. Notably, this growth-promoting event does not need to 
change the antigen driven proliferation phase or the extent of death following the 
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peak of the response. Instead, this growth-promoting event simply needs to increase 
the basal rate of proliferation of the resulting CD8 memory T-cells (so that the 
resulting cells divide once every 15 days). The end-result of this outcome would 
be that there would be a higher number of memory cells with a growth advantage. 
This, in turn, dramatically alters the time required for the clonal expansion to domi-

Fig. 4 A simple model to predict how long it takes for a clonal expansion to achieve dominance 
within the CD8 T-cell pool
Graph indicates the relative abundance of a clonal expansion (dividing once every 15 days) relative 
to the size of a pool of ten million proliferating CD8 MP T-cells (dividing once every 22 days). 
This model compares three different growth projections for an emerging clonal expansion: i) in 
blue, a single CD8 memory T-cell achieves a growth-promoting event that results in an increased 
rate of proliferation (expansion divides once every 15 days, compared to CD8 MP T-cells that 
divide once every 22 days) or ii) in black and in red, a single naïve T-cell achieves a growth-pro-
moting event, followed by antigen stimulation. After antigen stimulation, the naïve T-cell goes 
through a normal phase of expansion and contraction. In contrast to the normal CD8 memory 
T-cell pool, however, the resulting CD8 memory T-cells all contain a common growth–promot-
ing event that confers an increased rate of proliferation (clonal expansion divides once every 15 
days, compared to CD8 MP T-cells that divide once every 22 days). For this latter model, growth 
projections include two different estimates for the extent of naïve T-cell proliferation following 
antigen stimulation (either 14 rounds of division indicated in red, or 19 rounds of division indi-
cated in black). Antigen driven proliferation and contraction (95% of cells dying by apoptosis) are 
indicated from day—28 to day—1. Dashed line indicates 5% of the CD8 T-cell pool, which is a 
conservative estimate for the detection of a CD8 clonal expansion. Each data point indicates the 
relative abundance of the clonal expansion relative to the CD8 MP T-cell pool with each round of 
division (occurring every 15 days). This model presumes that both the clonal expansion and the 
CD8 MP T-cell pool have an infinite growth capacity, and does not take into consideration rate of 
death for either population (this parameter is undefined for clonal expansions at this time). See text 
for further details of model.
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nate the CD8 T-cell pool. By using a conservative estimate for how many times a 
naïve T-cell proliferates following an acute antigen exposure (14 rounds of division 
[3, 10, 84]), a clonal expansion can achieve 5% of the CD8 T-cell pool within 435 
days (14.5 months), and occupy more than 30% of the repertoire within 535 days 
(17.5 months) (Fig. 4, red line). If a naïve T-cell undergoes 19 rounds of division 
(a recent estimate for naïve T-cell proliferation during acute infection [3]), it would 
only take 195 days (6.5 months) to achieve 5% of the CD8 T-cell pool, coming to 
occupy >30% of the repertoire within 285 days (9.5 months).

The bottom line from this overly simplistic model is that although a subtle 
increase in proliferation may contribute to the development of clonal expansions, 
there are likely to be other contributing factors. For example, changes in the rate of 
death could significantly influence the ability of clones to compete with other CD8 
T-cells; in addition, if a clone ever goes through a proliferative burst (e.g., following 
antigen engagement) this could also accelerate the development of clonal expan-
sions. Future reductionist studies will allow a more careful dissection of the time 
required for a CD8 T-cell to become a clonal expansion.

9  Factors that Influence the Properties of CD8 Clonal 
Expansions

Regardless of the precise mechanisms that are behind the development of clonal 
expansions, the phenotype and properties of individual clones are certain to be 
influenced by multiple factors, most importantly the interaction between the TCR 
and antigen.

9.1 The Role of Antigen Persistence

It is increasingly clear that the persistence of antigen significantly impacts the phe-
notype and dynamics of the CD8 T-cell. While CD8 T-cells only require a very 
brief period of antigen engagement of the T-cell receptor to become activated 
[53, 128, 139], the duration and context of antigen presentation can significantly 
influence the capabilities of the resulting CD8 T-cell. The crippling effects of 
chronic antigen exposure can be best observed in certain models of chronic infec-
tion, where CD8 T-cells never differentiate to a state in which they can survive in 
the absence of antigen [120, 131].

With regard to CD8 clonal expansions, clonal expansions encountering chronic 
antigen would be predicted to have significantly different cell surface pheno-
types (Fig. 3). These changes in cell surface phenotype would likely influence the 
expression of cytokine receptors for IL-7 and IL-15 (possibly influencing IL-7Rα 
and IL-2Rβ), as well as result in the upregulation of various inhibitory receptors 
(such as PD-1 and KLRG1, which are both receptors whose expression is associated 
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with chronically stimulated T-cells [6, 126]). In addition, these clonal expansions 
would be predicted to disappear if antigen ultimately disappears.

Although chronic antigen exposure would most significantly impact the pheno-
type and properties of clonal expansions, initial encounter of antigen could also play 
a more modest effect on the resulting phenotype, for example influencing the fate of 
the resulting CD8 memory T-cell to become a T

CM
 or a T

EM
 cell.

9.2  The Impact of Initial Conditions of Stimulation

As discussed above, a naïve CD8 T-cell can differentiate into a CD8 memory T-cell 
by at least two distinct paths: i) engagement of the TCR by its appropriate antigen, 
resulting in the full activation of the T-cell, followed by subsequent proliferation, 
contraction and differentiation (referred to as antigen-elicited memory) or ii) lym-
phopenic conditions in which a naïve CD8 T-cell is capable of undergoing prolifera-
tion in the absence of full activation (referred to as LIP memory). While the precise 
characteristics of these two types of memory cells is a subject of ongoing investiga-
tion, it is worth noting that there are surprisingly few differences in the properties 
of these two types of memory cells. Careful microarray analysis of these two types 
of memory cells has revealed very similar transcriptional profiles [36], and LIP 
memory cells can mediate immunological protection, a hallmark of memory T-cells 
[39]. Although no obvious differences between these two types of memory cells 
have been identified to date, the very different conditions from which they originate 
make it highly unlikely that they are absolutely identical.

With regard to CD8 clonal expansions, it appears that CD8 clonal expansions 
may become CD8 memory T-cells through either an antigen-elicited or LIP mecha-
nism. This conclusion is based on the following data:

 i) in mice, conditions of lymphopenia are associated with the accelerated develop-
ment of clonal expansions indicating that LIP memory cells can become CD8 
clonal expansions [90]

 ii) mice infected with certain infections such as Sendaivirus, influenza, Herpes 
simplex virus or LCMV can occasionally develop very large antigen-specific 
clonal expansions in aged mice ([29, 74], Zajac, personal communication), 
indicating that antigen-elicited memory cells can become CD8 clonal expan-
sions (see chapters by Woodland and Nikolich-Zugich for further discussion),

iii) humans infected with HCMV can develop HCMV-specific clonal expansions 
[63, 98].

Given that both LIP and antigen-elicited memory CD8 T-cells can become CD8 
clonal expansions, it is worth noting that the relative contribution of these two types of 
memory cells differs between SPF mice and humans. For example, in SPF mice that 
are typically used to study clonal expansions in mice, the majority of clonal expansions 
almost certainly represent LIP memory T-cells given the relative paucity of antigen 
exposure these animals experience. In contrast, humans have an extremely high rate of 
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antigen exposure, with relatively few memory CD8 T-cells likely to arise from lympho-
penia-induced proliferation. Based on this difference, we postulate that the majority of 
human clonal expansions will recognize a variety of antigens primarily from infectious 
agents, whereas the majority of clonal expansions in mice will recognize a wide variety 
of antigens without a bias for infectious agent antigens. Despite this difference, expo-
sure of mice to a variety of infections should be capable of recapitulating the diversity 
of antigen-elicited clonal expansions that we postulate to occur in humans.

10 Major Questions about CD8 Clonal Expansions

CD8 clonal expansions are a common age-associated perturbation in the immune 
system. The goal in studying this phenomenon is that it will reveal previously unap-
preciated effects of the aging environment on CD8 memory T-cell homeostasis, and 
identify basic cellular and molecular factors that also regulate CD8 memory T-cells 
in healthy, young individuals. While there is increasing information about this phe-
nomenon, there are still many unanswered questions:

1. How does the aging environment influence the development of CD8 clonal 
expansions?

2. What are the molecular alterations that contribute to increased growth of CD8 
clonal expansions?

3. What factors constrain the growth of CD8 clonal expansions?
4. What is the underlying cause for the heterogeneous phenotype of CD8 clonal 

expansions?
5. Can every subset of CD8 memory T-cell become a clonal expansion?

We anticipate that research in the upcoming years will shed light on many of 
these questions, providing new insights into how the aging immune system influ-
ences the dynamics of CD8 memory T-cell homeostasis.
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Abstract: Increase of CD28-CD8 T-cells is one of the hallmarks of aging in the 
human immune system. Recent studies reveal the mechanism of generation and 
gene expression features of CD28-CD8 T-cells. Here, I summarize the recent 
progress focusing on the role of interleukin-15 (IL-15) in generation of CD28-CD8 
T-cells and the identification of unique gene expression in CD28-CD8 T-cells by 
microarray gene expression analysis. These new findings enhance our understand-
ing of the origin and function of the CD28-CD8 T-cells and may provide new means 
for clinical intervention.

1 Overview

CD8 T-cells play an essential role in the control of intracellular pathogens and can-
cerous growths for the host. The capability of the immune system, particularly CD8 
T-cells, to protect the host declines with age [1, 2]. Accumulating evidence suggest 
that increase of CD28-CD8 T-cells in peripheral blood, a consistent age-associated 
change, account for the decline of CD8 T-cell mediated protection in the elderly 
[3–6]. However, the mechanisms underlying the age-associated changes in the 
immune system are complex and have just begun to be understood.

CD28, a membrane glycoprotein serving as a major co-stimulatory receptor for 
TCR mediated activation, plays multiple roles during T-cell activation from ampli-
fication of the TCR signal to induction of key cytokine production such as IL-2 to 
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ensure a complete activation of T-cells after stimulation with antigen [7, 8]. Loss 
of CD28 expression has profound impact on the function of T-cells [9]. For exam-
ple: (1) decreased production of IL-2 and IFN-γ in response to stimulation [10]; 
(2) resistance to apoptosis [11]; (3) reduced antigen repertoire diversity [5], and 
(4) associated with the lack of antibody production after immunization [12]. In 
addition, CD28-CD8 T-cells gain expression of some NK cell markers such as 
KIRs, CD16, CD56, KLRK1 (NKG2D), and retain or increase cytotoxicity with 
high expression of granzyme B and perforin [3].

Despite recent findings, the key issues related to CD28-CD8 T-cells remain to be 
elucidated. What are the causes of CD28-CD8 memory T-cells? How CD28-CD8 
memory T-cells are maintained in vivo? What are the molecular features of CD28- 

CD8 memory T-cells compared to CD28+CD8 memory T-cells? In this chapter, I 
review the ontogeny of CD28-CD8 memory T-cells and summarize the genome-wide 
analysis of gene expression profiles of CD28-CD8 memory T-cells from peripheral 
blood. I will discuss the features of gene expression of CD28-CD8 memory T-cells 
as compared to their CD28+ counterparts.

2 Ontogeny  of CD28-CD8 T-cells

In newborn human, all T-cells in the peripheral blood express CD28 on the cell 
surface [3, 13]. As CD28- T-cells appear after birth and gradually increase with age 
[14], it has been suggested that CD28-CD8 T-cells are derived from CD28+CD8 
T-cells. In the past decades, accumulating evidence support such a notion and the 
causes of CD28-CD8 T-cells are begun to be understood. There is overwhelming 
evidence indicating that repeated antigenic stimulation, mostly viral challenge, is 
one major cause of down-regulation of CD28 expression in T-cells [15, 16]. More 
recently, homeostatic cytokines such as IL-15 are also capable of induce down-
regulation of CD28 expression in CD8 T-cells [17, 18].

2.1 Antigenic Stimulation Induced CD28-CD8 T-cells

An increasing number of publications shows that increase of CD28-CD8 T-cells 
are found in patients with a variety of viral infections including human immuno-
deficiency virus (HIV) [19, 20], cytomegalovirus (CMV) [21, 22], Epstein-Barr 
virus (EBV) [23, 24], and Hepatitis C virus (HCV) [25, 26]. A common feature 
of these viral infections is relative persistent in the host and their interaction with 
immune system is often long lasting and results in varing degree of increase of 
effector T-cells, particularly in the CD8 T-cells. In the CD8 T-cell compartment, 
most of these responding CD8 T-cells are CD28-CD8 T-cells. The notion that these 
CD28-CD8 T-cells are derived from their precursor CD28+CD8 T-cells after viral 
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stimulation is supported by several findings. (1) CD28+CD8 T-cells stimulated in 
vitro loss CD28 expression to become CD28-CD8 T-cells [4]. The loss of CD28 
expression in these viral antigen primed CD8 T-cells appears stable, which is dif-
ferent from a transient down-regulation of CD28 expression on T-cells occurs after 
antigenic stimulation [27].

2.2  Cytokine Mediated Loss of CD28 Expression 
in CD8 T-cells

Recently, down-regulation of CD28 expression in T-cells by cytokines sharing the 
common γ-chain receptors has been reported [17, 18]. Although Borthwick showed 
that IL-2, IL-7, and IL-15 were capable of down-regulation of CD28 expression in 
T-cells after a short term culture, it is unclear if such down-regulation is transient 
or stable and what mechanisms are responsible for these cytokine-mediated down-
regulations of CD28. In addition, TNF-α, a proinflammatory cytokine secreted by 
various types of cells including T-cells, has also been shown to down-regulate CD28 
expression in CD4 T-cells [28]. However, the relationship of cytokines of the com-
mon γ-chain family and the TNF family in down-regulation of CD28 expression is 
not fully understood.

Loss of CD28 expression in memory CD8 T-cells under homeostatic cytokine 
IL-15 in a longer term of culture has been analyzed in more detail [18]. In gen-
eral, CD28 expression was relatively stable during the initial few rounds of cell 
divisions under IL-15 but a significant loss of CD28 expression occurred after the 
fifth cell division. The average ratio of CD28- to CD28+CD8 memory T-cells is 0.43 
for the cells that had undergone fewer than five cell divisions while this CD28- to 
CD28+CD8 memory T-cell ratio increases to 1.4 in cells undergone five or more cell 
divisions. Further analysis to determine if loss of CD28 expression was limited to 
the surface expression or occurred at the transcription level, we found that CD28 
mRNA was absent in CD28-CD8 memory T-cells, suggesting that the down-regula-
tion of CD28 expression under IL-15 is at transcriptional level. Finally, the loss of 
CD28 expression in CD8 memory T-cells is quite stable under IL-15-culture and 
there is no obvious re-gain of CD28 expression in those CD28-CD8 T-cells over a 
month of culture. These findings suggest that IL-15-mediated down-regulation of 
CD28 expression occurs primarily in actively dividing CD28+CD8 memory T-cells 
and that IL-15-induced loss of CD28 expression in CD8 memory T-cells is stable 
under continuous IL-15 stimulation.

How does IL-15 induce down-regulation of CD28 expression in CD8 memory 
T-cells? We found that IL-15 induced production of TNF-α in CD8 memory T-cells 
and blocking TNF-α effect with the neutralizing anti-TNF-α antibody reduced 
CD28-CD8 T-cells by approximately 15% (p=0.002, n=12) after 14-day IL-15 cul-
ture [18]. More dramatically, supplement of recombinant TNF-α(200 ng/ml) in IL-
15 culture induced significantly more CD28-CD8 T-cells than that of the control 
cultures (IL-15 alone) at day 14 (195% increase, p= 7.1×10-6). The loss of CD28 
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expression in CD8 memory T-cells induced by exogenous TNF-α is time and 
dosage-dependent. Supplement of recombinant TNF-α at the beginning of culture 
accelerated CD28 down-regulation in CD8 memory T-cells as early as 7 days of cul-
ture. The effect of TNF-α on down-regulation of CD28 expression in IL-15 cultured 
CD8 memory T-cells is seen as low as 50 ng/ml of TNF-α. Together, these findings 
indicate that IL-15 induced down-regulation of CD28 expression in CD8 memory 
T-cells is partially through production of TNF-α.

2.3  Transcriptional Regulation of CD28 Expression 
in CD8 T-cells

Loss of CD28 expression in CD28-CD8 T-cells appears to be regulated at the tran-
scription level [29, 30]. Analysis of the promoter of CD28 reveals that an inopera-
tive transcriptional initiator (INR) consisting of two motifs α and β at the proximal 
region of CD28 promoter is involved in the regulation of transcription of CD28 
[30]. Loss of α and β bound complexes is found in CD28- T-cells and two proteins, 
nucleolin and heterogeneous nuclear ribonucleoprotein-D0 isoform A (hnRNP-
D0A), bind to the α motif of INR [31]. The binding of these proteins to the α motif 
of INR is required for transcription of CD28 as lack of nucleolin and hnRNP-D0A 
at the α site INR site appears to be associated with the loss of transcription of CD28 
in CD28- T-cell lines [31]. Because these findings were derived from cell lines, it 
remains to be confirmed if the same regulation works in normal/primary T-cells dur-
ing chronic infection and replicative senescence. Equally important is to understand 
how the chronic stimulation and/or replicative senescence lead to the loss of the α/β 
INR complexes in the promoter of CD28 gene.

3 Gene Expression Analysis of CD28-CD8 T-cells

3.1 Experimental Design

Memory phenotype CD8 T-cells that are CD28+ and CD28- were isolated from periph-
eral blood of healthy adults based on the surface markers CD8, CD45RA-  and CD28 
by cell sorting. The purity of sorted CD28+ and CD28- memory phenotype CD8 T-cells 
was over 95%. Total RNA were extracted immediately from half of the sorted cells 
or after 5-day culture with human recombinant IL-15 (50 ng/ml, Peprotech, Boston, 
MA) of the rest of sorted cells. The quality and quantity of total RNA were analyzed 
by an Agilent Bioanalyzer (Agilent Technologies, Palo Alto, CA) and only the high 
quality RNA were used in the microarray experiment and in real time quantitative 
RT-PCR. To minimize the potential differences among individuals, RNA was pooled 
from 2–3 donors and a total of three RNA pools were generated for microarray experi-
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ments and for real time quantitative RT-PCR analysis. A fourth RNA pool was made 
for additional real time quantitative RT-PCR analysis to ensure the changes identified 
here were common between CD28+ and CD28-CD8 memory T-cells.

The microarray gene chips were purchased from Agilent Technologies (Whole 
Human Genome Oligo Chip). This Whole Human Genome Oligo Chip consists of the 
vast majority of the genes and transcripts in human genome (36,866) on a single slide. 
The targets on the chip were 60-mer oligonucleotides which offer an overall excellent 
balance between sensitivity and specificity. The two-fluorescent dyes detection sys-
tem with a standard universal reference RNA was used in the signal detection to allow 
a uniformed comparison among different chips. As only three biological replications 
in this experiment, we applied a conservative error model to reduce the false positives. 
Statistical significance was determined using the false discovery rate (FDR). The FDR 
was set to 0.05, which corresponds to the average proportion of false positives = 5% 
in combination with the pair-wise mean comparison of the signal intensity difference 
was set to be greater than 2 fold. Finally, real time RT-PCR was applied to independ-
ently confirm these selected significant genes. Most of them were confirmed by real 
time RT-PCR, and the agreeable rate was 85%.

3.2 Gene Expression Changes in CD28-CD8 Memory T-cells

Overall, CD28- and CD28+CD8 memory T-cells expressed similar number of genes 
at the comparable levels. A small number of genes (58 out of 36,866 analyzed) 
displayed significant difference in mRNA level between CD28- and CD28+CD8 
memory T-cells. The majority of these differentially expressed genes are known 
genes (78%, 45 out of 58 genes) and they serve a wide range of functions and are 
discussed below.

3.2.1 Expression of Co-Stimulatory Receptors in CD28-CD8 T-cells

The CD28 co-stimulatory receptor family consists of five known members, CD28, 
CTLA-4 (CD152), inducible costimulator (ICOS), program death-1 (PD-1), and 
B and T Lymphocyte Attenuator (BTLA) [8]. The CD28 family transmembrane 
proteins have a single extracellular IgV domain and a cytoplasmic tail. CD28 is con-
stitutively expressed on the cell surface of most T-cells and plays a primary role in 
augmenting TCR signals upon activation. The expression of CD28 decreases after 
activation. CTLA-4 increases expression after activation and serves as an inhibitory 
receptor [32, 33]. ICOS expression increases after activation and may play a role 
in sustained stimulation of effector functions of T-cells [34]. PD-1 and BTLA are 
both expressed on T and B cells and serve as inhibitory receptors [35, 36]. Among 
the five members of CD28 family, we found that only CD28 expression was signifi-
cantly diminished in CD28-CD8 memory T-cells compared to CD28+ counterparts.
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CD40L and CD70 are members of the TNF superfamily and both serve as 
co-stimulatory receptors during T-cell activation. The expression pattern of CD40L 
is similar to CTLA4 during CD8 T-cell differentiation. CD70 is a ligand for CD27, 
a receptor that is member of the tumor necrosis factor receptor (TNFR family). The 
signal generated from CD27/CD70 interaction is temporally or spatially segregated 
from CD28 during T-cell activation [37]. The T-cell activation/survival signals gen-
erated by different co-stimulators have some functions in common and yet distinct 
from each other in other aspects to allow effectiveness and longevity of the T-cell 
response and survival. The levels of CD27 and CD70 are stable from naive to mem-
ory (CD28+ to CD28-) cells. Decreased CD27 expression associated with increased 
CD70 expression are found in the effector memory CD8 T-cells. The significance of 
this altered balance of CD27/CD70 expression remains to be determined. It is clear, 
however, that the parallel loss of CD27 and CD28 expression has profound impact 
on CD8 T-cell function.

Not all co-stimulatory receptors were down-regulated in CD28-CD8 memory T-
cells. Two co-stimulatory receptors (4-1BB and SLAMF7) express higher in CD28-

CD8 memory T-cells. 4-1BB (CD137) belongs to the TNFR gene family and plays 
a key role in activation-induced cell division, survival, and effector function of CD8 
T-cells [38, 39]. An increased 4-1BB expression along with a diminished expression 
of CD154 coexists in CD28-CD8 memory T-cells, suggesting that an elevated 4-1BB 
could facilitate the growth and survival of CD28-CD8 memory T-cells in vivo. If this 
is true, 4-1BB might facilitate the age-associated accumulation of CD28-CD8 T-cells. 
CD2-like receptor activating cytotoxic cells (CRACC, SLAMF7) also belongs to the 
SLAM gene family and is expressed on cytotoxic T-cells, activated B cells, and mature 
dendritic cells [40]. Engagement of SLAMF7 activates NK cell-mediated cytotoxic-
ity [40]. The mRNA level of SLAMF7 was highly expressed in ex vivo CD28-CD8 
memory T-cells and was stable after IL-15 treatment. Although the mRNA level of 
SLAMF7 was lower in ex vivo CD28+CD8 memory T-cells, the level of SLAMF7 was 
similar between CD28- and CD28+CD8 memory T-cells after IL-15 treatment.

Alteration of co-stimulatory receptors expression in CD28-CD8 memory T-
cells appears to be complex. While loss of expression of some receptors (CD28 
and CD154) was apparent, elevated expression of other co-stimulatory receptors 
(4-1BB and SLAMF7) may provide a compensatory measure for the co-stimula-
tory function. The questions are: How are these different co-stimulatory receptors 
regulated in CD8 memory T-cells, particularly in CD28-CD8 memory T-cells? Can 
an elevated expression of 4-1BB and SLAMF7 compensate the loss of CD28 and 
CD154? Further studies are required to address these issues and to better understand 
the activation associated defects of CD28-CD8 memory T-cells and the mechanisms 
of the age-associated decline of immune function.

3.2.2 Expression of NK Cell Receptors in CD28-CD8 T-cells

The NK cell receptors are initially identified on the surface of NK cells and NK T-cells. 
Based on their structures, NK cell receptors can be divided into (1) the Immunoglobulin-
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like NK cell receptors including natural cytotoxicity receptors (NCR), killer immu-
noglobulin-like receptor (KIR), and CD244, and (2) the C-type lectin-like NK cell 
receptors including the killer cell lectin-like receptor (KLR) [41]. According to their 
functions, NK cell receptors can be divided into inhibitory and stimulatory receptors. 
While engagement of the inhibitory receptors prevents NK cells and CD8 T-cells from 
killing target cells, interaction of stimulatory receptors results in the trigging of NK 
cell or CD8 T-cell-mediated cytotoxicity. Expression of NK cell receptors on CD28-

CD8 T-cells have been reported [42]. Here we discuss the expression of seven NK 
cell receptors: KIR2DL2, KIR3DL2, NCR1, CD244, KLRD1, KLRF1, and KLRG1 
during CD8 T-cell differentiation identified from microarray analysis.

KIR2DL2, KIR3DL2, NCR1, and CD244 belong to the Ig-like NK cell recep-
tor family. KIR2DL2 (NKAT6) and KIR3DL2 (NKAT4) bind to the polymorphic 
MHC class I molecules and inhibits lymphocyte cytotoxicity. In contrast, NCR1 and 
CD244 are stimulatory NK receptors that activate NK-mediated cytotoxicity. The 
engagement of CD244 (2B4) with its ligand (CD48) or with an anti-CD244 anti-
body results in enhanced production of interferon gamma (IFN-γ) and cytotoxicity 
in CD8 T-cells and NK cells [43, 44]. Despite their opposite function, the expres-
sion patterns of these four NK cell receptors are similar: all of them are expressed in 
naïve cells, down-regulated in CD28+ memory T-cells, increased in CD28-  memory 
T-cells, and elevated in effector memory cells. After IL-15 treatment, all of them 
are down-regulated in CD28-CD8 memory T-cells [45]. As NCR1 is considered to 
be exclusively expressed in NK cells, the role of its elevated expression in effector 
memory T-cells remains to be determined. It has been shown that CD244 level is 
elevated in CMV-specific effector CD8 T-cells while absent in naïve CD8 T-cells 
[44]. This enhanced expression of CD244 in effector memory cells agrees with the 
elevated effector function of the CMV specific CD8 T-cells.

KLRD1, KLRF1, and KLRG1 belong to the C-type lectin-like NK cell receptor 
family. KLRD1 (CD94) forms heterodimers with KLRC3 (NKG2E) or other mem-
bers. The KLRD1/KLRK1 (CD94/NKG2D) heterodimer is expressed primarily in 
NK cells and CD8 T-cells. KLRF1 (NKp80) is expressed in all NK cells and CD56+ 
T-cells and cross-linking of KLRF1 results in induction of cytolytic activity. KLRG1 
is a newly identified member of the KLR family and is expressed in NK cells and a 
subset of T-cells. Although all of them are highly expressed in CD28-CD8 T-cells, 
the patterns of their expression differ. A down-regulation of expression from naïve 
to memory (CD28+) is observed for KLRD1 and KLRF1 but not for KLRG1. The 
identification of elevated expression of different NK cell receptors in CD28-CD8 
memory T-cells suggests that NK cell receptors may play roles in CD28-CD8 T-cell 
function. The physiological significance of acquiring these NK cell receptors in 
CD28-CD8 T-cells is not clear and will require further study.

 3.2.3 Expression of Cytolytic Molecules in CD28-CD8 T-cells

The function of cytotoxic CD8 T-cells is inducing rapid apoptosis of intracellular 
pathogen-infected or transformed cells. This cellular killing is mediated by two 
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distinct pathways: the granule exocytosis pathway that releases perforin and 
granzymes from the granule cores and the Fas ligand (FasL)/Fas pathway [46]. 
The granule exocytosis pathway consists of secretory granules that contain perforin 
and granzymes. Perforin is expressed only in cytotoxic T-cells and form a pore 
structure on the targeT-cell membrane to facilitate the entry of granzymes [47]. 
Granzymes are proteinases that consist of five members in humans: A, B, H, K and 
M. Each member of granzymes has a different substrate specificity [46]. Granzyme 
A (GZMA) and granzyme B (GZMB) are expressed in CD8 CTL, γδ T-cells, and 
NK cells [48, 49], granzyme H (GZMH) and granzyme K (GZMK) appear to be 
expressed mainly in CD8 CTL [50, 51], and granzyme M (GZMM) is expressed 
mainly in NK cells [52].

Perforin is detected in freshly isolated CD8 memory T-cells and is up-regulated 
after in vitro stimulation by TCR crosslinking or by treatment with IL15 [53]. 
The levels of perforin mRNA was higher in CD28-CD8 memory T-cells than their 
CD28+ counterparts [13, 45]. After culture with IL-15, there is no obvious increase 
of perforin mRNA levels in CD28-CD8 memory T-cells but significantly increased 
perforin in CD28+CD8 memory T-cells. The increase of proforin mRNA in IL-15 
treated CD28+CD8 memory T-cells is compatible to the level of freshly isolated 
CD28-CD8 memory T-cells.

GZMB and GZMH share a high degree of similarity in amino acid sequence 
[50]. However, the expression patterns of GZMB and GZMH are quite different. 
The GZMB level is low in freshly isolated T-cells, but increases after activation [54]. 
The GZMH level is low in both freshly isolated and activated T-cells [55]. In CD28-

CD8 memory T-cells, both GZMB and GZMH are highly expressed, resembling a 
mixed feature of activated T-cells and NK cells. GZMA and GZMK are function-
ally overlapping as up-regulation of GZMK has been found in GZMA deficient 
mice [51]. The levels of GZMA mRNA are similar between CD28- and CD28+ CD8 
memory T-cells, but a low level of GZMK is found in CD28-CD8 memory T-cells 
compared to their CD28+ counterparts. The level of GZMM expression was similar 
between CD28- and CD28+CD8 memory T-cells. Following culture with IL-15, the 
expression of both GZMA and GZMB were increased in both CD8 memory T-cell 
subsets. Although activation by antigen do not significantly increase the expression 
of GZMH [55], IL-15 treatment induces up-regulation of GZMH in CD28+CD8 
memory T-cells. But CD28-CD8 memory T-cells still have higher levels of both 
GZMB and GZMH than CD28+CD8 memory T-cells. This indicates that CD28- 

CD8 memory T-cells possessed more cytolytic granule enzymes than CD28+ coun-
terparts before and after IL-15 culture, providing a molecular basis for high levels 
of cytotoxicity of CD28-CD8 memory T-cells.

The Fas ligand (FasL)/Fas pathway provides another means of T-cell cytotoxicity, 
which applies not only to regular target cells such as intracellular pathogen infected 
and transformed cells but also to immune cells as a negative feedback regulation to 
the generation and expansion of CD4 and CD8 T-cells [46, 56]. It has been reported 
that FasL can block expression of CD28 at the transcriptional level in Jurkat cells 
[57], suggesting the role of FasL/Fas in the age-related decline of CD28 expression. 
The level of FasL mRNA appears higher in CD28-CD8 memory T-cells than in 
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CD28+ counterparts, and IL-15 treatment did not increase FasL expression in CD28-

CD8 memory T-cells but increased in CD28+CD8 memory T-cells. Together, the 
elevated expression of key molecules in both the granule exocytosis pathway and 
the FasL/Fas pathway indicates an enhancement of cytolytic capability in CD28-

CD8 memory T-cells.

3.2.4  Expression of Cytokines, Chemokines and Their Receptors 
in CD28-CD8 T-cells

Cytokines and chemokines are secreted proteins and play essential roles in many 
aspects of immune functions. In lymphocytes, cytokines or chemokines can promote 
their survival or death through strict regulation of their expression and their recep-
tor expression during lymphocyte development and differentiation. Activation of lym-
phocytes induces production of a variety of cytokines and chemokines in turn these 
cytokines and chemocykes influence the effectiveness or determine the consequence of 
an immune response. Therefore, alteration of expression of cytokines and chemokines 
and their receptors could lead to mild or even severe defects of immune function [58].

Changes in cytokine and chemokine production in CD28-CD8 T-cells after in 
vitro stimulation have been previously reported [10, 12, 59]. In freshly isolated 
CD28-CD8 memory T-cells, the mRNA levels of interleukin 12A (IL12A), inter-
leukin 13 (IL13), chemokine (C-C motif) ligand 4 (CCL4, MIP1-β), chemokine 
(C-X3-C motif) receptor 1 (CX3CR1, CCRL1), and chemokine-like receptor 1 
(CMKLR1) are more highly expressed than do CD28+CD8 memory T-cells. In con-
trast, the mRNA levels of interleukin 3 (IL3), interleukin 23A (IL23A), interleukin 
7 receptor (IL7R), and interleukin 12 receptor β2 (IL12RB2) were more highly 
expressed in CD28+CD8 memory T-cells compared with the CD28- cells.

IL-12 and IL-23 are cytokines that are composed of two subunits, one common 
subunit (IL12B, p40), and one unique subunit IL12A (p35) and IL23A (p19) for 
IL12 and IL23, respectively [60, 61]. Functionally, IL-12 induces the production 
of IFN-γ in NK and T-cells, facilitates Th1 differentiation, and serves as a bridge 
between non-specific innate resistance and antigen specific adaptive immunity [60]. 
In contrast, IL-23 participates in the proliferative signal in memory T-cells [60, 
61]. At the mRNA level, IL12A is higher in CD28-CD8 memory T-cells ex vivo 
but down-regulated after IL-15 treatment. In contrast, IL23A is highly expressed 
in CD28+CD8 memory T-cells ex vivo, but was not changed after IL-15 treatment. 
The increased level of IL12 in CD28-CD8 memory T-cells could contribute to the 
cytotoxicity of these cells while decreased levels of IL23A may affect the prolifera-
tive response of CD28-CD8 memory T-cells.

IL-13 is produced primarily by Th2 cells and NK cells and promotes survival, 
differentiation, and proliferation of hematopoietic progenitor cells [62]. It also 
exerts immunoregulatory functions including anti-inflammatory effects, Th2 cell 
development, and B cell proliferation and IgE production [63]. By regulating cell-
mediated immunity, IL-13 modulates resistance to several intracellular organisms 
[63]. IL13 mRNA level was higher in CD28-  than in CD28+CD8 memory T-cells 
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ex vivo. After IL-15 culture, IL13 mRNA level does not increase in CD28-CD8 
memory T-cells but increases in CD28+CD8 memory T-cells. The precise role of 
IL-13 in CD28-CD8 memory T-cells requires further study.

IL-7 is an essential cytokine during T-cell development and also plays a key role 
in homeostasis of memory CD8 T-cells [64]. IL-7 receptor is a dimmer that consists 
of IL-7 unique α receptor (IL7R) and the common γ chain. The function of IL7 
depends on the expression of IL7R, which appears to be regulated in T-cells by the 
availability of IL-7 [65]. The mRNA level of IL7R is lower in CD28-CD8 memory 
T-cells than in the CD28+CD8 memory T-cells and is further down-regulated in both 
subsets after IL-15 treatment. These findings suggest that IL-7 may not be a key 
survival cytokine for CD28-CD8 memory T-cells.

The primary function of chemokines is regulating lymphocyte migration but they are 
also involved in lymphocyte development, differentiation, and effector function. Like 
cytokines, different expression patterns of chemokines and their receptors were also 
observed between CD28-  and CD28+CD8 memory T-cells. CD28-CD8 memory T-cells 
express higher levels of CCL4 (MIP-1β) and CX3CR1 compared to CD28+ counter-
parts. Both are involved in the regulation of adhesion and migration of T-cells and NK 
cells [66, 67]. In addition, the expression of CX3CR1 is found in CTL and NK cells [68, 
69]. Interaction of CX3CR1 with its ligand, CX3CL1 (Fractalkine), induces the adhe-
sion function as well as promotes subsequent migration to the secondary chemokines 
such as CCL4 or IL-8/CXCL8 [69]. After IL-15 treatment, the mRNA levels of CCL4 
and CX3CR1 are increased in both subsets of memory cells. In addition, the mRNA 
levels of chemokines XCL1 (lymphotactin-α) and XCL2 (lymphotactin-β) are induced 
to significantly higher levels after IL15 treatment in CD28-CD8 memory T-cells com-
pared to their CD28+ counterparts. Since they induce both T-cell and NK cell migration 
[70], elevated expression of XCL1 and XCL2 may facilitate migration of CD28-CD8 
memory T-cells. Three chemokine receptors, CCR2, CCR6, and CCR7, express more 
highly expressed in CD28+CD8 memory T-cells than in CD28-CD8 memory T-cells. 
After IL-15 culture, the mRNA levels of CCR2 and CCR6 are increased while the level 
of CCR7 was decreased in both subsets of memory cells.

3.2.5 Differentially Expressed Transcription Factors in CD28-CD8 T-cells

The interaction between T-cells and other cells at various lymphoid compartments 
mediated by different ligands/receptors on the cell surface is an ongoing process 
throughout the life of T-cells. The consequence of these interactions depends on the 
specific interaction, the strength of the interaction, and the states of interacting cells, 
which are essential for the development, differentiation, and function of T-cells. 
One of the consequences of the surface ligand/receptor interaction is activation of 
transcription factors. Here, we will discuss four transcription factors that are differ-
entially highly expressed either in CD28- (TBX21, EOMES, and MYC) or in CD28+ 
(CEBPD) CD8 memory T-cells.

T-box 21 (TBX21, T-bet) is a member of T-box containing gene family and 
is involved in initiating Th1 lineage development from naive precursor cells and 
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regulation of Ig class switching in effector cells [71, 72]. In addition, it is also involved 
in regulation of the effector function by promoting IFN-γ production and cytotoxicity 
in CD8 T-cells [73, 74]. The level of TBX21 mRNA is higher in CD28-CD8 memory 
T-cells than in the CD28+ counterparts but there is no significant difference in the lev-
els of IFN-γ and other Th1 cytokine genes between CD28- and CD28+CD8 memory 
T-cells. Thus, it is plausible that elevated expression of TBX21 may serve as a regula-
tor behind the elevated cytotoxicity in CD28-CD8 memory T-cells.

Eomesodermin (EOMES) is also a member of the T-box containing gene family 
within the same subfamily of TBX21. EOMES has been shown to induce IFNγ, per-
forin, and GZMB in CD8 T-cells [75]. The level of EOMES is higher in CD28-CD8 
memory T-cells than in their CD28+ counterparts. After IL-15 treatment, the levels of 
EOMES are decreased only in CD28-CD8 memory T-cells but did in CD28+CD8 mem-
ory T-cells. As EOMES shares similar function with TBX21 in regulation of effector 
functions of CD8 T-cells, their elevated expression in CD28-CD8 memory T-cells pro-
vides a transcriptional basis of enhanced cytotoxicity in CD28-CD8 memory T-cells.

MYC and its family transcription factors are key regulators of cell growth and 
proliferation as well as inhibition of terminal differentiation and induction of apop-
tosis [76]. Dysregulation of MYC expression leads to unlimited cell growth and 
ultimately development of tumors [77]. MYC is up-regulated after T-cell activa-
tion and is also involved in the induction of apoptosis [78]. The level of MYC 
mRNA is higher in freshly isolated CD28-CD8 memory T-cells than their CD28+ 
counterparts. After IL-15 culture, MYC mRNA levels are highly increased in both 
CD28-  and CD28+CD8 memory T-cells. However, the difference of MYC mRNA 
level remained significantly higher in CD28-CD8 memory T-cells compared to their 
CD28+ counterparts. As previously studies showed CD28-CD8 memory T-cells are 
resistant to apoptosis, MYC in CD28-CD8 memory T-cells may facilitate cell divi-
sion and resistant to apoptosis.

CEBPD is a member of the CCAAT/enhancer-binding protein (C/EBP) family 
that contains a highly conserved of leucine zipper DNA binding motif [79]. Mem-
bers of the C/EBP family have been shown to regulate the differentiation of myelo-
monocytic marrow cells [80]. CEBPD is also involved in regulating the expression 
of IL6 that plays an important role in regulating immune and inflammatory response 
[81].The level of CEBPD mRNA is higher in CD28+CD8 memory T-cells than in 
CD28-CD8 memory T-cells. Although CEBPD expression is tightly regulated in 
G(0) growth-arrested mouse mammary epithelial cells (MEC) [82], IL-15 induced 
proliferation does not appear to affect the levels of CEBPD mRNA in either CD28-  or 
CD28+CD8 memory T-cells. It remains to be determined the significance of down-
regulated expression of CEBPD in CD28-CD8 memory T-cells.

4 Conclusion

Studies of the generation of CD28-CD8 T-cells indicate that both antigenic stimula-
tion and homeostatic proliferation are causes for loss of CD28 expression in CD28+ 

CD8 T-cells. Thus, it is likely that age-associated accumulation of CD28-CD8 



338 N.-p. Weng

T-cells is the combinational consequence of antigenic stimulation and homeostatic 
expansion of memory T-cells. Genome-wide analysis of gene expression profiles 
between CD28-  and CD28+CD8 T-cells reveals the molecular changes in CD28- 

CD8 memory T-cells. The gain and loss of these specific gene expressions in CD28-

CD8 T-cells may reflect an adaptive process of the immune system in which an 
induced cytotoxicity is replaced by a constant cytotoxicity in CD8 memory T-cells 
in compensation of the inability of robust proliferation. Further characterization 
of the regulation and function of those differentially expressed genes in CD28-

CD8 T-cells will help us to better understand this age-associated change in T-cell 
function and may open new avenues of clinical intervention to slow or reverse this 
aging-associated process.
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                            Abstract:   Efficient immune response requires both vigorous effector responses 
and regulation via regulatory subsets. Any disturbances in the balance between 
these two opposite activities of immune system result in either autoimmunity or 
excessive immunosuppression. Undoubtedly immunosenescence contributes to this 
balance as it affects the majority of populations taking part in immune response. 
This chapter describes activities of regulatory subsets, alterations associated with 
their ageing and clinical consequences of these changes.  

         Keywords:   CD25+CD4+       Treg cells    •    Tr1 cells    •    Th3 cells    •    Interleukin 10 
(IL10)    •    Transforming growth factor β (TGFβ)    •    Tolerogenic dendritic cells • 
CD28-CD8+ T suppressor cells    •    NKT cells    

     1      Introduction  

   Aggressive action of immune system against alien agents has to be strictly controlled 
in order to prevent destruction of self tissues. There are several subsets within lym-
phoid system which are responsible for the control of selective targeting of alloanti-
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gens and, at the same time, keeping the immune system neutral to autoantigens. The 
awareness of such immunosuppressive subsets started with Owen’s notion, who 
found that the intraplacental transfusion of blood in cattle caused that each dizy-
gote twin tolerated skin transplants from the other (Owen RD 1945). Soon after, 
Medawar performed a series of excellent Nobel Prize awarded experiments with 
infusion of alloantigens to newborn mice inducing selective alloantigen tolerance 
during their adulthood (Billingham RE 1953). The leading role of T-cells in toler-
ance induction was proved in 70s and 80s (Gershon RK 1970; Fujimoto S 1975; 
North RJ 1984); however, a detailed phenotype of those cells has been discovered 
only recently. In 1995, Sakaguchi reported that deficiency of CD4+ T-cells with 
expression of IL2Rα (CD4+CD25+), so-called T regulatory cells (Treg), in mice 
was associated with multiple autoimmune diseases (Sakaguchi S 1995). Without 
any doubt, different subsets of Treg cells have taken a central stage in immunology 
since that time. Nevertheless, induction of tolerance is much wider than Treg cells 
as some other subsets, such as CD28-CD8+ T suppressor cells (Ts), NKT cells, and 
some dendritic cells, were also found to confer it in immune system. Making the 
story even more complex, recent reports have suggested that efficient regulation of 
immune response is not limited to immunosuppressive cells, but it is more a bal-
ance between suppressive and proinflammatory effector cells. Interestingly, having 
opposite activities, at least some of those cells have common origin. Thus, keeping 
adequate proportions between aggressive effector phase of immune response and 
self-limitation of immune response is probably the best definition of the function of 
all the above mentioned regulatory subsets.

Fig. 1 The balance is required for efficient immune response. Coordinated function of effector 
and regulatory subsets guarantees efficient immune response. Imbalance in this regulation results 
is either autoimmune phenomena or exaggerated immunosuppression
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   2 CD25high CD4+ T Regulatory Cells (Treg)

2.  1 Biology  

   CD4+ T-cells play the central role in T-cell mediated regulation. There are two main 
subsets of CD4+ Treg cells in the body: naturally occurring and adaptive ones. As 
the discovery of Treg cells is relatively fresh, it is very often difficult to distinguish 
between these lineages due to their common features. Naturally occurring or intrin-
sic Treg cells (nTreg) in humans can be defined as CD25 high FoxP3+CD4+ T-cells. 
The expression of CD25 receptor is related to their high dependency on IL2, and 
FoxP3 is a transcription factor that drives intracellular signals which results in sup-
pressive abilities of nTreg cells. Of note, FoxP3 is currently considered as the most 
characteristic intracellular marker of nTreg cells (Baecher-Allan C 2001; Hori S 
2003). nTreg cells originate from the thymus. Maturing nTreg cells are self-reactive 
with intermediate to low affinity to autoantigens and yet they escape from central 
deletion. It is distinctive feature of their development in the thymus. Probably, they 
do not only arise as a result of the presentation of self antigens through TCR-depend-
ent process but also by means of some other not well understood mechanisms. It has 
been only recently discovered that their intrathymic lineage commitment is main-
tained by interactions with medullary thymic epithelial cells expressing the autoim-
mune regulator AIRE (Aschenbrenner 2007). Intracellular mechanisms related to 
the maturation of Treg lineage are still far from final conclusions. The studies with 
 Scurfy  mice, that is, mice without active Treg cells due to the knockout of FoxP3 
gene, revealed that these animals suffer from severe lymphoproliferative autoim-
mune disease (Fontenot JD 2003). Similar defect, so-called IPEX (IPEX–Immune 
dysregulation, Polyendocrinopathy, Enteropathy, X-linked syndrome) was also 
found to be caused by mutations in FoxP3 gene in men (Bennett CL 2001). Genome-
wide profiling revealed that transcription factor FoxP3 can bind to around 700 genes 
imposing phenotypic features of nTreg cells (Zheng Y 2007). Although FoxP3 takes 
a part in both differentiation and functioning of these cells, it appears that its action 
solidifies only pre-established features acquired by developing nTreg cells in the 
thymus as it has been shown that inactive nTreg may develop in the thymus even 
in the absence of FoxP3 (Gavin MA 2007; Wan YY 2007). Moreover, early stage 
of activation may be associated with transient expression of FoxP3 in T effector 
cells (Kretschmer K 2005). Despite self-specificity, nTreg do not damage own tis-
sues at the periphery as they are highly anergic. The anergy might by explained by 
high differentiation of nTreg cells. It has been revealed that the expression of many 
surface markers locate them within memory phenotype, their proliferation is very 
much limited, they are characterised by short telomeres and easily undergo apopto-
sis (Taams LS 2001, 2002). The most important function of nTreg cells is the sup-
pression of other immune cells. Autoreactive cells are not the only targets for nTreg 
cells. They are also highly efficient suppressors of alloresponses. Broad range of 
responses inhibited by nTreg cells caused that they were initially thought to be non-
specific. However, more recent data, mainly from in vitro nTreg expansion experi-
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ments, proved that their suppressive effect can be directed against responses driven 
by specific antigens (Masteller EL 2006). This inconsistency might have come from 
low affinity of their receptors and the phenomenon of bystander regulation exerted 
by nTreg cells,  i.e.  nTreg cells specific to particular antigen may impose tolerance 
to other antigens when activated (Waldmann H 2006). At first, only CD4+ T effec-
tor cells were described to be inhibited by nTreg cells (Suri-Payer E 1998). Twelve 
years after the discovery Treg cells were found to interfere with CD8+ T-cells, 
NK cells, NKT cells, monocytes, dendritic cells, and granulocytes (Piccirillo CA 
2001; Trzonkowski P 2004; Taams LS 2005; Lewkowicz P 2006). Upon stimula-
tion, which usually occurs at the site of inflammation as well as in the local lym-
phoid tissue, nTreg interact with effectors in a direct cell-to-cell manner suppressing 
their proliferation and effector activities (Taams LS 2001; Trzonkowski P 2004). 
Although nTreg cells were found to produce suppressive cytokines, such as IL10 or 
TGFβ, direct contact with other cells is regarded as the most important way of their 
action. The most important receptor of Treg cells cooperating in the immune syn-
apse with both CD4+ and CD8+ T effector cells is CTLA-4 molecule (Cytotoxic T 
lymphocyte antigen 4, CD152). Engagement of this receptor in the presence of TCR 
ligation triggers suppressive activity of nTreg cells (Takahashi T 2000; Sansom DM 
2006). There are several mechanisms of this suppression. Initially, it was postu-
lated that nTreg cells may physically interfere with the interaction of effector T-cells 
with APCs by competing for the costimulatory molecules on APCs (Takahashi T 
2000). It might be possible as, in comparison to the ligands expressed on T effec-
tors, CTLA-4 has higher affinity for B7 family receptors on APC (Linsley PS 1992). 
In addition, nTreg cells express variety of adhesive molecules, such as ICAM-1 
(CD54) and integrins LFA-1 (CD11a/CD18), α4β7 (LPAM-1), αEβ7 (CD103) and 
α4β1 (CD49d/CD49), that may additionally give Treg cells the advantage of cell-
to-cell interaction with APC that is stronger than the interaction of APC with effec-
tors (Takahashi T 2000; Stassen M 2004; Marski M 2005). Another explanation is 
that the interaction between CTLA-4 on nTreg cells and B7 family receptors on 
APC, notably in dendritic cells (DC), induces the expression of enzyme indolamine 
2,3-dioxygenase (IDO) in the latter (Grohmann U 2003). IDO changes metabolic 
pathway of tryptophan to kynurenines, which suppresses T-cell responses (Mellor 
AL 2002). It has been also described that the engagement of CTLA-4 on nTreg 
induces secretion of TGFβ that subsequently strongly suppresses T effector cells 
(Chen W 1998). Apart from T-cells, cell-to-cell interactions were also described in 
the regulation of other immune cells by nTreg cells. Membrane-anchored TGFβ on 
nTreg cells is crucial for the inhibition of NK cells and TLR receptors expressed on 
nTreg cells are prerequisite for the regulation of the activity and survival of granu-
locytes (Ghiringhelli F 2005; Lewkowicz P 2006). The competition between nTreg 
cells and T effectors is not limited to the binding of surface receptors of APC. nTreg 
cells are highly dependent on IL2 but devoid of capabilities of its production. Thus, 
they compete with effector cells for IL2 which decreases the amount of IL2 avail-
able at the site of immune reaction and therefore tempers activities of T effectors 
(Thornton AM 1998). Moreover, despite dependency on IL2, Treg cells suppress 
production of IL2 by CD4+ T effectors which additionally decreases availability of 
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the cytokine during immune response. The most extreme pathway of the regulation 
revealed during research upon nTreg cells is their cytotoxicity. Namely, it has been 
found that these cells upon stimulation kill autologous cells by means of secreted 
cytotoxic perforin and granzymes (Grossman WJ 2004; Gondek DC 2005).  

   Peripherally induced or adaptive Treg cells constitute another subset of CD4+ 
Treg cells. It is a small number of cells generated during each and every immune 
response from activated naïve CD4+ T-cells at the periphery (Karim M 2004). These 
cells are antigen-specific as they arise in response to specific antigens and their acti-
vation is dependent on expressed TCR receptors. Importantly, it is a source of Treg 
cells independent of the thymus. Apart from that, basic characteristics of these so-
called adaptive Treg cells, including the most important marker FoxP3, are similar 
to thymic-derived nTreg cells (O’Neill 2004).  

   There are also some other subsets of adaptive CD4+ Treg cells induced at the 
periphery. In contrast to nTreg cells, these cells do not suppress in cell-to-cell mode 
and their action is dependent mainly on secreted suppressive cytokines. Based on 
secreted cytokines at least two different groups may be distinguished—Tr1 cells, 
which function relies on secreted IL10 (Groux H 1997), and Th3 cells, which 
produce mainly TGFβ (Fukaura H 1996). Apart from cytokine-dependent mode of 
suppression, their basic characteristics are also different from nTreg cells. Tr1 cells 
are anergic mainly due to autocrine action of IL10. These cells seem to be depend-
ent on IL2 family of cytokines as they constitutively express high levels of IL2 
family receptors IL2Rβ (CD122) and IL2Rγ (CD132) and can be expanded in the 
presence of IL2 and IL15. On the other hand, normal level of IL2Rα (CD25) on 
Tr1 cells can be achieved only upon TCR-mediated stimulation (Battaglia M 2006). 
Also the expression of FoxP3 in Tr1 is not constitutive but can be upregulated upon 
activation (Vieira PL 2004). The most consistent intracellular protein postulated as 
a marker of Tr1 cells is the repressor of GATA-3 (ROG); however, its expression 
was also noted in T effectors (Cobbold SP 2003). The most important inducer of 
IL10-producing Tr1 are immature DC (Levings MK 2005). IL10 secreted during 
interaction of Tr1 with DC limits the production of IL12 and TNFα by DC and mac-
rophages which subsequently quenches induction of Th1 and Th2 responses (Moore 
KW 2001). Tr1 cells were found to promote tolerance to both auto- and alloanti-
gens. Their suppressive role was described in allotransplantations of bone marrow 
and solid organs, down-regulation of immune responses in rheumatoid diseases and 
other autoimmune pathologies, allergies and, inflammatory bowel diseases. On the 
other hand, their deficit was found to facilitate chronic course of some infections 
(Battaglia M 2006). It might be important in ageing that IL10 is secreted not only 
by Tr1 cells but also by other T-cells, monocytes, macrophages and nonlymphoid 
cells. IL10 from all those sources is often treated as a counterbalance to proin-
flammatory cytokines, notably to IL6 (Saurwein-Teissl M 2000; Ye SM 2001; 
Hacham M 2004).  

   Like Tr1 cells, TGFβ-producing Th3 cells are distinctive in several aspects. 
First of all, their function is linked mainly to oral tolerance. This aspect is of great 
importance as Th3 cells generated with orally administered antigens might exert 
bystander regulation, which has implications in pathology as well as in potential 



348 P. Trzonkowski

therapeutic strategies (Ochi H 2006). Unlike other Treg cells, the generation of Th3 
cells is dependent on IL4 (Fukaura H 1996; Hafler DA 1997). Also TGFβ on its 
own, or augmented by IL10, may generate Th3 cells from naïve T-cells (Chen W 
2003; Kitani A 2003). Immunosuppressive action of TGFβ secreted by Th3 cells is 
directed against Th1 responses as it downregulates expression of IL12R and tran-
scription factor T-bet in Th1 cells (Kitani A 2000; Gorelik L 2002). TGFβ may work 
as soluble cytokine but also as membrane-anchored receptor. The action of the latter 
form, in relation to TGFβ type 1 on Treg cells, was initially described as an impor-
tant tool of cell-to-cell regulation of T effectors, B cells (Nakamura K 2001) as well 
as NK cells (Ghiringhelli F 2005). Membrane-anchored TGFβ seems to work as an 
executor of several pathways of regulation as its function can be activated by several 
factors, for example, latency-associated protein (LAP) or thrombospondin (Faria 
AM 2005). Like the system associated with IL10, TGFβ-dependent regulation 
appears to be much wider than Th3-mediated effects. The cytokine is fully capable 
of suppression of T-cells responses when produced by nonlymphoid lineages, such 
as macrophages or enterocytes (Barnard JA 1993; Galliaerde V 1995).  

    2.     2 Ageing  

   The regulation of immune responses through Treg cells in ageing appears to have 
some distinctive features. When compared to younger subjects, the elderly are char-
acterised by higher number of Treg cells but per-cell activity of those cells seems 
to be altered.  

   Several laboratories reported increased frequency of Treg cells in aged individu-
als (Trzonkowski P 2003; Gregg R 2005; Gottenberg JE 2005). The percentage of 
CD25 high CD4+ T-cells in the peripheral blood is surprisingly high at birth reaching 
in some cases even 9.5% of total CD4+ T-cells in cord blood (Godfrey WR 2005), 
but then decreases during childhood and remains on a stable level not exceeding 5% 
of total CD4+ T-cells in young and middle aged subjects (Cao D 2004; Beyer M 
2005; Gottenberg JE 2005). In more advanced age the number of Treg cells gradu-
ally increases and, in the extreme, it may be even fivefold higher than that noted in 
earlier phases of ontogeny (Trzonkowski P 2006). There might be several sources 
which give rise to the increased number of Treg cells with ageing. First of all, longer 
life means longer time when the cells can be generated. Although thymic involu-
tion causes reduced output of naturally occurring Treg cells with age, adaptive Treg 
cells may be generated continuously at the periphery throughout entire lifespan. To 
a great extent, this idea was confirmed in animal model. Shimizu’s group found that 
age-associated increase in FoxP3+ T-cells with regulatory properties was mainly 
attributed to CD25-CD4+ T-cells and not to the classical thymus-derived nTreg cells 
(Shimizu J 2003). In humans, FoxP3+ Treg cells were shown to arise from rapidly 
dividing, highly differentiated memory CD4+ T-cells (Vukmanovic-Stejic M 2006). 
Since both memory and regulatory subsets in particular subjects were revealed to 
share the same TCR repertoire, the authors of this report concluded that every chal-
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lenge with specific antigen generates both memory and regulatory cells. This find-
ing, consistent with other reports (Cobbold SP 2006), is of special importance in 
quantitative studies upon Treg cells in aging as it gives a link between the number 
of immune responses and potency of regulation in particular subject. It seems to 
be logic that aged individuals have had higher chance to be challenged with higher 
number of pathogens than the young, simply because they live longer. Thus, as it 
comes from Akbar’s studies, the elderly are not only characterised by increased 
number of memory cells but also those regulatory (Vukmanovic-Stejic M 2006). 
Consistently with this view, when the number of Treg cells was compared between 
subjects of the same age, the higher number was found in those with the history of 
more frequent inflammatory events and exposures to higher number of antigenic 
challenges (Trzonkowski P 2003). Thus, it is not surprising that frail elderly with 
inflammatory burden (Pawelec G 2005) are characterized by higher number of Treg 
cells than their healthy counterparts (Trzonkowski P 2006). Preferential accumula-
tion of Treg cells in unhealthy individuals may be recognized as a kind of “vicious 
circle,’’ when Treg cells arising during particular responses make the patient more 
susceptible to subsequent infections and these infections induce more Treg cells. It 
may be especially detrimental in aged subjects as their “vicious circle’’ lasts for a 
long time and therefore the number of Treg cells is exceptionally high in frail eld-
erly (Trzonkowski P 2006).  

   It has to be highlighted that the estimation from peripheral blood might not cor-
relate with total number of Treg cells in the body as Treg cells are capable of effi-
cient trafficking through lymphoid tissues where their level may be substantially 
higher than that measured in the peripheral blood. For example, Treg cells in mice 
were found to constitute 40% of CD4+ T-cells in the bone marrow or even more, 
in terms of absolute numbers, in the spleen (Hoffmann P 2002). Moreover, the traf-
ficking through the tissues seems to be crucial for the function of Treg cells as the 
expression of receptors allowing them to enter lymphoid tissues, such as CD62L or 
CCR7, was associated with higher capabilities of immunosuppression (Fu S 2004; 
Taylor PA 2004; Ermann J 2005). Since the expression of these receptors declines 
with age on T-cells, it might be the reason that Treg cells in the elderly are not capa-
ble of extravasation and their level is increased in the peripheral blood but not in 
the tissues. These receptors are also markers of naïve cells which implies that Treg 
cells, like other T-cells, may be on different levels of their differentiation. Indeed, 
“naïve’’ CD45RA+FoxP3+CD4+ T-cells, which characteristics are close to other 
naïve T subsets, was described as a subset of Treg cells in humans. The percentage 
of these cells was shown to be substantially reduced with age (Valmori D 2005). 
Initially, no difference in ex vivo suppressive activity was found between CD45+ 
and CD45RA- Treg cells (Valmori D 2005; Seddiki N 2006). Nevertheless, it might 
have been dependent on incomplete phenotyping and assessment based on single 
sampling of the probands. More recent study, in which authors followed phenotype 
of Treg cells over time during ex vivo expansion, proved superiority of Treg cells 
derived from CD45RA+ precursors above those CD45RA- (Hoffmann P 2006).  

   Bearing in mind that the majority of Treg cells in the elderly are highly differen-
tiated and their development, to some extent, is parallel to memory/effector cells, it 
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might be possible that their accumulation might be an attempt of the counteraction to 
the process of “shrinkage and filling up of the immunological space’’ hypothesized 
initially by Franceschi’s group (Franceschi C 2003). The theory is based on the 
observation that lymphoid system in aged individuals is filled with expanded clones 
of anergic CD8+ T-cells that block proper immune responses to new challenges 
(Ku CC 1997). Homeostatic proliferation seems to be an important phenomenon 
responsible for the generation of CD8+ T clones during ageing (Ku CC 2000; Surh 
CD 2000; Goronzy JJ 2007). The process has not yet been fully understood but it is 
known that it is regulated by homeostatic cytokines IL15, IL7, CCL19, CCL21, and 
MHC-signaling which allow T-cells for rapid expansion in the absence of any exter-
nal stimuli. Interestingly, recent reports have proved that Treg cells are important 
players in the limitation of homeostatic proliferation of nonregulatory T effector 
cells (Shen S 2005). Moreover, Treg cells do not undergo homeostatic expansion on 
their own (Liu W 2006; Seddiki N 2006). In the light of these facts, their accumula-
tion with age might be surprising as the logic indicates that homeostatic prolifera-
tion should preferentially give rise to the increased number of CD8+ T clones and, 
at the same time, keep the number of Treg cells low. The explanation comes from 
the nature of resistance of Treg cells to the homeostatic mechanism. Namely, Treg 
cells are devoid of the expression of IL7R (CD127; Liu W 2006; Seddiki N 2006) 
and therefore, in contrast to other CD4+ T-cells, they do not require IL7 for survival. 
The level of this homeostatic cytokine declines with age together with the shrinkage 
of its main producer, the stroma of the thymus and other lymphoid organs (Fry TJ 
2001; Aspinall R 2002). Thus, independence from IL7 may be the reason that CD4+ 
Treg cells, in contrast to non-regulatory CD4+ T-cells, accumulate with age. Making 
the image complete, CD8+ T clones are able to accumulate in a homeostatic manner 
even more vigorously than Treg cells because they are not very much dependent on 
IL7 and utilize IL15 instead (Chiu WK 2006). Importantly, IL2 is prerequisite for 
Treg cells to inhibit homeostatic proliferation of other T-cells (Murakami M 2002). 
In this regard, the role of Treg cells in the suppression of homeostatic proliferation 
might be somewhat ambiguous as, on the one hand, Treg cells require IL2 for the 
limitation of homeostatic proliferation of other cells but, on the other hand, they 
inhibit production of this cytokine by CD4+ T effectors (Piccirillo CA 2001). It 
might be possible that beyond some threshold the accumulation of Treg cells may 
be the reason of self-limitation of their activity due to deprivation of IL2. Reaching 
this point, Treg cells no longer prevent from homeostatic proliferation of T effec-
tors. Indeed, frail elderly seem to “cross the threshold’’ as they are characterized 
by extremely high number of Treg cells concomitantly with deep deficiency of IL2 
(Trzonkowski P 2006). It seems that the regulation of homeostatic proliferation by 
Treg cells was designed by the evolution for short-living individuals. Long-lasting 
or repetitive stimulation, such as continuous stimulation with pathogens like CMV 
described widely during ageing, might be capable of destabilization of this regu-
latory circuit which subsequently results in detrimental expansion of oligoclonal 
CD8+ T-cells found preferentially in frail elderly.  

   It is not a long time since the discovery of Tr1 and Th3 cells was made and there-
fore the data specifically on these two subsets in ageing are scarce yet. Up to date, 
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many questions related to these two suppressive subsets of CD4+ T-cells remain 
not addressed. In many cases, it is not possible to split up the function of different 
regulatory subsets of CD4+ T-cells in a given experimental model. Performed stud-
ies very often suggest overlapping between phenotype and function of different 
subsets. The main suppressive cytokines, TGFβ and IL10, are not only secreted by 
CD4+ T-cells but also by other lymphocytes and nonlymphoid cells and they do not 
only exert action on immune system but also on other tissues. IL10, in particular, is 
associated with regulation in ageing as it is often contrasted with proinflammatory 
activities of IL6 and other proinflammatory cytokines reported to be overexpressed 
in the elderly. Polymorphic variant -1082GG of IL10 gene, which is associated with 
high production of IL10 (Persico M 2006), was found to be preferentially spared in 
centenarian males (Lio D 2002). Interestingly, animal studies suggest surprisingly 
well preserved secretion of IL10 in old animals versus young ones in epithelial 
organs such as intestine and kidney (Hacham M 2004). This finding is consistent 
with previous reports that IL10, also secreted by Tr1 cells, modulate preferentially 
mucosal immune responses (Nakagome K 2005; Uhlig HH 2006). The cytokine 
secreted by Tr1 cells might be also involved in aging of cardiovascular system. 
High levels of IL10 were found in hearts from old mice during their healthy ageing 
(Hacham M 2004). Increased expression of IL10 in the wall of aorta after adop-
tive transfer of Treg cells was found to be an agent slowing down atherosclero-
sis in apolipoprotein E-knockout mice (Mor A 2007). Involvement of IL10 in the 
circulatory system was also described in humans where low levels of IL10 were 
associated with complicated recovery after coronary artery bypass grafting (Wei M 
2003). Some other studies did not find age-related differences in the levels of IL10 
but pointed at increased levels of soluble form of TGFβ in plasma of the elderly 
(Forsey RJ 2003). Increased secretion of TGFβ type 1 was revealed in response to 
elevated levels of IL6, being a counterbalance to proinflammatory activity of the 
latter (Villiger PM 1993). Both TGFβ type 1 and 2 were found to interfere with IL7 
in thymopoiesis which might contribute to faster involution of the thymus (Chantry 
D 1989). At the periphery, TGFβ was described to suppress many different cells. 
It seems that apart from inhibitory action on T-cells (Letterio JJ 2000), TGFβ is 
involved in the inhibition of macrophages, which might be of great importance in 
the prevention of inflammageing (Erwig LP 1998). High levels of TGFβ in aged 
individuals appear to be consistent with increased expression of CTLA-4 on T-cells 
reported in this age group (Wakikawa A 1997; Leng Q 2002). Reciprocal interrela-
tion between TGFβ and CTLA-4 may have some functional implications. Cross-
linking of CTLA-4 results in the secretion of TGFβ by CD4+ T-cells (Chen W 
1998). On the other hand, TGFβ accelerates the expression of CTLA-4 on T precur-
sors which facilitates transformation of CD4+CTLA-4+ T precursors to adaptive 
Treg cells (Zheng SG 2006). As mentioned above, TGFβ secreted by regulatory 
cells must be separated from other sources as, for example, locally decreased pro-
duction of this factor by fibroblasts was linked to impaired wound healing in the eld-
erly (Kudravi SA 2000). Moreover, soluble form of the cytokine is significantly less 
functional than that membrane-bound and the level of the latter was found to drop 
down quite early in life in animal model (Gregg RK 2004). Nevertheless, we still 
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lack the knowledge about age-related differences in the expression of membrane-
bound TGFβ in humans.  

   Despite many efforts, there is no certainty that the accumulation of Treg subsets 
with age results in oversuppression of the immune system in the elderly. For exam-
ple, inflammageing, one of the most commonly accepted theories of ageing, contra-
dicts exaggerated immunosuppression in the elderly. Indeed, some reports suggest 
that the activity of Treg cells declines with age (Tsaknaridis L 2003). Importantly, 
these studies compare suppressive ability of equal numbers of highly purified Treg 
cells sorted from either elderly or young subjects in various in vitro suppression 
assays. In fact, lower responsiveness of Treg cells from the elderly, as compared to 
the young, in these tests may simply illustrate an impairment of aged Treg cells on 
a per-cell basis. If the quality of single Treg cell taken from aged subject is not as 
good as that from the young, it is not surprising that the same number of Treg cells 
taken from the elderly and the young does not reveal similar suppressive abilities in 
the assay. The suggestion that per-cell Treg activity from older subject is lower than 
that from the young is of great importance in the light of reports that local rather 
than systemic level of Treg cells is associated with clinical outcomes (Liu W 2006). 
As such, small proportion Treg cells trafficking to the place of local inflammation, 
might be effective enough in the young but insufficient in the elderly. Bearing in 
mind this quality issue, the accumulation of Treg cells reported in the elderly may 
be not necessarily associated with high suppressive abilities but rather recognized 
as a compensation for their per-cell impaired functioning. Indeed, altered phenotype 
of Treg cells with age, manifested as low proportion of CD45RA+ naïve Treg cells, 
seems to prove this hypothesis. Another example of impaired “molecular hardware” 
of aged Treg cells is their inability to undergo apoptosis. It was described mainly 
in frail elderly and was recognized as a reason of Treg cell accumulation with age 
(Trzonkowski P 2006). Of note, although the level of Treg cells was revealed to be 
extremely high in frail elderly, they were unable of efficient action as those patients 
were the most affected by detrimental effects of inflammageing (Trzonkowski P 
2003). It clearly indicates that aged Treg cells are somehow defective. It is possi-
ble that prolonged exposure to environmental factors throughout the lifespan might 
be responsible for defects of Treg cells. Such environmental influence in the eld-
erly was already described as a cause of damage of naïve CD4+ T-cells (Haynes L 
2002).  

   Although accumulation of Treg cells was not found to be faster in any gen-
der, some specific physiological milestones of human life were linked with sud-
den increase or decrease in the suppressive activity of Treg cells, notably per-cell 
Treg cell activity. The best described effects are associated with pregnancy when 
Treg mediated suppression increases in order to tolerate foetal tissues (Aluvihare 
VR 2004; Somerset DA 2004). However, slightly increased suppressive activity 
can be also detected during each and every luteal phase of menstrual cycle being 
interpreted as an action facilitating implantation of the embryo (Mysliwska J 2000; 
Trzonkowski P 2001). It is very likely that protolerant action of Treg cells towards 
embryonic tissues is the most pronounced locally. For example, primary idiopathic 
infertility is associated with low density of Treg cells in endometrium (Jasper MJ 
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2006). Obviously, the activity of Treg cells in these phenomena is driven by sex 
hormones, notably oestradiol (Prieto GA 2006). No surprise, fading hormonal 
activity around menopause is associated with loss of per-cell Treg activity that tips 
the effector/suppressor balance in favor of the former (Rachon D 2002; Arruvito L 
2007). For example, a peak of some Th1-dependent autoimmune diseases associ-
ated with menopause in women, such as rheumatoid arthritis, might be triggered by 
decreased per-cell activity of Treg cells (Ehrenstein MR 2004). Somehow similar 
effects, but less clear, were also described for androgens (Page ST 2006). Impor-
tantly, also other steroid hormones, both endogenous and administered as drugs, are 
known to keep proper physiological activity of Treg cells (Fattorossi A 2005).  

   In general, the discussion about suppression in immune system should take into 
account effector/suppressor balance rather than suppressors only. It might be of spe-
cial interest in the elderly, where the activation of immune system is prolonged and 
elevated. Namely, it was found in animal model that Treg cells generated throughout 
life regulate weak to moderate immune responses mediated by T effector cells. On 
the other hand, strong stimulation of T effector cells could not be stopped by endog-
enous Treg cells and only adoptive transfer of relatively high number of Treg cells 
specific to the stimulus was able to limit the response (Billiard F 2006). Are these 
conditions adaptable in humans? Would it be possible that we are able to control 
our immune responses to some level and when the input of activatory signals is too 
high or too long, like in the case of inflammageing and CMV, endogenous Treg cells 
are no longer capable of control over T effectors? Some experimental data answers 
in the affirmative. Some factors associated with inflammation may turn the effec-
tor/suppressor balance in favor of exaggerated effector responses. Proinflammatory 
cytokines, such as TNFα and IL6 were described as strong inhibitors of Treg cell 
function (Valencia X 2006; Wan S 2007). Bearing in mind that inflammageing is 
associated with extremely high production of TNFα and IL6, it is not surprising 
that above some threshold Treg cells in the elderly are no longer able to counter-
act inflammation. Moreover, recently discovered strong proinflammatory subset of 
CD4+ T-cells, Th17 cells, were found to have common ties with Treg cells on a very 
early stage of development. Th17 cells exert their actions mainly through secreted 
members of IL17 family cytokines, which are very strong stimulators of inflamma-
tory responses (Veldhoen M 2006). In the extreme, as it comes from animal models, 
they may be involved in the development of chronic inflammation and autoim-
mune diseases (Romagnani S 2006). Pathways leading to transition of precursor 
cells to either Treg cells or Th17 cells were proved to have some common features. 
Like in the case of adaptive Treg cells, the generation of Th17 cells requires TGFβ 
(Bettelli E 2006; Veldhoen M 2006). However, the transition to Th17 cells needs 
also the addition of IL6. The secretion of IL6 by DC stimulated with lipopolysac-
charide, in the presence of TGFβ, was necessary to generate Th17 cells. Interest-
ingly Treg cells could be a source of TGFβ in this process and secretion of TGFβ by 
Treg cells in the presence of IL6 results inevitably in the generation of Th17 cells 
and not Treg cells. Other inflammatory stimuli, TNFα and IL1, were not necessary 
but strongly enhanced this process (Veldhoen M 2006). Moreover, activated Treg 
cells could themselves differentiate into Th17 cells in the presence of IL6 (Xu L 
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2007). This mechanism of regulation is of special importance in the elderly, where 
inflammageing phenomena may easily add inflammatory stimuli to those secreted 
by Treg cells and generate Th17 cells and disturb effector/suppressor balance. Ironi-
cally, accumulation of Treg cells in frail elderly would not prevent from inflam-
mageing but rather gave more signals necessary to generate Th17 cells.  

    2.     3 Infectious Diseases  

   The accumulation of Treg cells with age is an attractive explanation of commonly 
known susceptibility to infections and high incidence of some tumours among the 
elderly. However, regulation mediated by suppressive mechanisms should not be 
always treated as a “pure evil.’’ Effective regulation seems to be inevitable to focus 
immune response on the pathogen clearance and not on unnecessary exaggerated 
inflammation leading to destruction of self tissues. For example, lack of IL10-
dependent regulatory circuit, as shown in IL10-deficient mice, was responsible for 
high sensitivity to lysteriosis (Deckert M 2001), gram-negative peritonitis (Sewnath 
ME 2001) or chronic active  Helicobacter pylori  gastritis (Chen W 2001). TLR4-
defective mice were also found to be highly susceptible to infection with  Bordetella 
pertussis  due to low production of IL10 (Higgins SC 2003). In all those models 
immune response was fulminant and led to a damage of self tissues and not to elimi-
nation of invading pathogen.  

   Of note, TLR-dependent activity is the example of yet another way of regula-
tion of antipathogen responses by Treg cells. It has been only recently found that 
Treg cells are able to directly sense pathogens through expressed TLR receptors 
(TLR4, TLR5, TLR8 in humans; Caramalho I 2003). Signals received by Treg cells 
through at least some of those receptors (TLR2 in mice and TLR8 in humans) were 
found to decrease suppressive abilities of those cells at the time of acute infection 
which allowed for effective immune response. However, the same signals promoted 
proliferation of Treg cells. Thus, it is hypothesized that TLR-dependent regulation 
makes the activity of Treg cells low during pathogen clearance and, at the same 
time, promotes the generation of expanded clones of Treg cells that attenuate poten-
tially harmful responses of residual T effectors left when the infection is gone (Peng 
G 2005; Sutmuller RP 2006). The delay in TLR-stimulated activity of Treg cells, 
as compared to other subsets regulated by TLR stimulation, comes from the fact 
that Treg cells need much stronger signals (more microbial products) than other 
immune cells to be activated via TLR receptors (Raghavan S 2005). In the light of 
this mechanism, repetitive infections may explain accumulation of suppressive Treg 
cells with age. It might be relevant in the clinic as some authors tempt to speculate 
that the protection from atopic diseases in adults might be linked to increased fre-
quency of regulatory cells generated during frequent infections with some patho-
gens during childhood (Braun-Fahrlander C 2002; Yazdanbakhsh M 2002). It is 
possible that it is yet another example of “short-sightedness of evolution,’’ when the 
mechanism good for young individuals might be disastrous in the elderly. At some 
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point, accumulation of Treg cells may become detrimental as it leads to insufficient 
responses to new infectious challenges, which results in chronic nature of infections 
in the elderly or, in the worst case, can prove fatal.  

As already mentioned, Treg cells are capable of inhibition of the variety of immune 
cells. The suppression of effector cells, when affects somehow deteriorated T-cells 
in the elderly, might be a reason of too weak effector responses. Looking into the 
spectrum of cells suppressed by Treg cells it is not surprising that Th1 responses are 
the most depressed. Treg cells suppress efficiently cells with abilities to exert cyto-
toxic effect, such as CTL, NK and macrophages. Thus, infections that are cleared 
by cellular type of immunity, where cytotoxic activity is crucial, are more difficult 
to control in patients with increased activity of Treg cells. It is very much important 
in the elderly. Treg cells, mainly nTreg cells, make infections chronic by decreasing 
cytotoxic abilities of effectors as revealed in persistent infections caused by Hepatitis 
C virus, Herpes simplex virus and CMV (Boettler T 2005; Vahlenkamp TW 2005). 
Involvement of those cells was also described in some other infections known to 
be associated with deteriorated immunity in ageing, such as candidiasis (Netea MG 
2004), tuberculosis (Chen X 2007) or pneumocystis pneumonia (McKinley L 2006).    

    2.     4 Tumors  

   Increased frequency of tumors is recognized as another consequence of increased 
frequency of Treg cells in the elderly (Sharma S 2006). The presence of Treg cells 
associated with tumors might be extremely dangerous in aged individuals as a high 
proportion of those cells recognize self-antigens. As such, these cells mediate tol-
erance also to aplastic self tissue of growing tumors, which additionally hampers 
immune response compromised already by ageing. Accumulation of Treg cells was 
revealed in a wide variety of tumors of different origin (Betts GJ 2006). Some of 
the studies managed even to correlate increasing level of Treg cells with disease 
progression and patient survival (Curiel TJ 2004; Wolf D 2005). Importantly, high 
number of the studies reported increased number of Treg cells in cancer, predomi-
nant type of tumors in the elderly (De Pinho RA 2000). The most convincing link 
between Treg cells and tumor immunity comes from the studies on NK cells. NK 
cells are one of the most important elements of immune surveillance against tumors. 
It is remarkable that aged individuals characterized by low activity of NK cells are at 
higher risk of cancer onset when compared to those with high NK activity (Imai K 
2000). It has been described that Treg cells, mainly nTreg cells, are strong inhibitors 
of NK cells (Trzonkowski P 2004). Utilizing membrane-bound TGFβ, Treg cells 
inhibit cytotoxic activity of NK cells in the site of tumor as well as in local lymph 
nodes and peripheral blood. Importantly, the effect appeared to be quite universal 
as it was found against gastrointestinal stroma tumors (GIST), melanoma, different 
types of cancer and, leukaemia cells in both humans and animals (Wolf AM 2003; 
Ghiringhelli F 2005; Smyth MJ 2006). Apart from NK cells, also CD8+ T-cells were 
found to be directly inhibited by Treg cells within the tumor mass (Curiel TJ 2004).  
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   It might be also possible that tumor environment on its own is able to induce 
regulatory cells from naïve precursors. For example, it is widely known that many 
tumors secrete TGFβ necessary to transform naïve T-cells to Treg cells. Consistent 
with this finding, tumor-infiltrating Treg cells are mainly Tr1 and Th3 cells which 
suppress effector cells via secreted cytokines (Chacrabarty NG 1999; Liyanage 
UK 2002). Moreover, some tumor cells and tumor-infiltrating inflammatory cells 
secrete chemokines, such as CCL22, attracting Treg cells to the site of tumor (Curiel 
TJ 2004).  

   Some anti-tumor drugs were confirmed to have an impact on Treg cells. Small 
dose of cyclophosphamide was confirmed to induce selective apoptosis of Treg cells 
in humans and animals (Ghiringhelli F 2004; Lutsiak ME 2005). Similar effect was 
also described after administration of another oncological drug, fludarabine (Beyer 
M 2005). There are also attempts of more specific immunotherapy targeting Treg 
cells. For example, depletion of those cells resulted in a better immune response 
to tumors or when performed prior to the administration of ant-itumor vaccines, 
enhanced effects of anti-tumor vaccines against cancer cells in animals (Dannull 
J 2005; Nair S 2007). It is of special importance in the elderly as the effectiveness 
of anti-tumor vaccines in preclinical models was revealed to be low at this age and 
there are suggestions that age-associated accumulation of adaptive Treg cells might 
have been responsible for this effect (Gravekamp C 2007).  

    2.     5 Autoimmunity  

   The role of Treg cells in the elderly is intriguing when autoimmunity is taken into 
account. It is surprising that there is an accumulation of Treg cells and, at the same 
time, the incidence of autoimmune phenomena during ageing is higher than during 
earlier ontogeny (Stacy S 2002). Nevertheless, there are few characteristic features 
of autoimmunity in aged individuals, which may explain this apparent paradox. 
First important feature is the hormonal introduction to senescence. Menopause, and 
less evident andropause, are associated with a peak of incidence of some autoim-
mune diseases, mainly those Th1-dependent like rheumatoid arthritis or Hashimo-
to’s thyroiditis. As already mentioned, lack of hormonal protection starting with 
menopause (and to a lesser extent with andropause) might be associated with a 
decrease in regulatory function of Treg cells which facilitates the onset of such 
disorders (Arruvito L 2007). Later phases of senescence are more associated with 
Th2-dependent autoimmunity. Shrunk naïve compartment and cytokine balance 
skewed towards Th2 cytokines makes B memory cells the leading cause of autoim-
mune phenomena in the elderly. Of note, the control provided by Treg cells over B 
cells, notably over B memory cells, is very much limited. It is rather indirect sup-
pression as Treg cells regulate mainly CD4+ T helper cells cooperating with B cells 
(Guay HM 2007). Moreover, as B memory cells are less dependent on signals from 
CD4+ T helper cells than their naïve precursors, therefore B memory cells are the 
least affected by Treg cells. Hence, a wide variety of autoantibodies can be found 
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in the elderly (Stacy S 2002). Streaking feature of these autoantibodies is that the 
vast majority of them is not linked to any autoimmune disease and seem to be not 
interfering with the health status (Xavier RM 1995; Nilsson BO 2006). It might be 
possible that, like during earlier life, crucial immunodominant self antigens are still 
protected from autoaggression in the elderly. Obviously, accumulation of Treg cells 
is relevant for this regulation but it is not the only event contributing to this phenom-
enon (Specht C 2003). Increased proportion of CD5+ B1 cells and elevated level 
of antiidiotypic antibodies together with low affinity and avidity of autoantibodies 
in aged individuals is probably more important in this regulation (Doria G 1978; 
Arreaza EE 1993; Zhao KS 1995).  

   Although high incidence of autoimmune diseases is noted in the elderly, many 
of these diseases have started earlier in life and their presence in aged individuals 
simply reflects the fact that nowadays medicine allows affected individuals reaching 
the age ≥ 65 years. It has to be stressed that the characteristics of late-onset autoim-
mune diseases,  i.e.  diseases starting mainly in the elderly, differs from those start-
ing earlier. For example, pernicious anaemia, Sjögren syndrome, myasthenia gravis 
are relatively slowly progressing as compared to a dramatic course of, occurring 
mainly in children, diabetes mellitus type I. Taking into account that the pressure of 
autoimmune phenomena in the elderly is thought to be much higher than that in the 
young, it seems that immunoregulatory mechanisms in aged individuals might be 
surprisingly well-preserved. Is it due to the accumulation of Treg cells? Obviously, 
Treg cells are only a small piece of the puzzle.  

    2.6 Interventions—Vaccinations  

   Prophylaxis with vaccines in the elderly is one of the most important medical inter-
ventions protecting from exacerbation of symptoms of various medical conditions 
which very often complicate infections at this age. The most advised for the elderly 
are anti-influenza and pneumococcal vaccines. As a leading goal of this form of ther-
apy is to transform naïve lymphocytes into specific memory/effector cells, immune 
alterations associated with immunosenescence make it more difficult than in the 
young. The accumulation of Treg cells should be considered as a one of such harmful 
alterations. Treg cells were found to limit postimmunization effector and memory cell 
numbers (Toka FN 2004; Belkaid Y 2005). Consequently, depletion of Treg cells in 
animal model resulted in improved immune responses to variety of vaccines (Moore 
AC 2005). It is clinically relevant in geriatrics as Treg cells accumulate the most in 
frail elderly, that is, patients at the highest risk of complications, if the vaccination did 
not protect them from infection (Trzonkowski P 2006). Both serological and cellular 
protection achieved after anti-influenza vaccination was found to be the lowest in 
such individuals (Trzonkowski P 2003). The association, at least in case of cellular 
response, was not a co-incidence but proved interrelation as in vitro studies revealed 
that the addition of Treg cells to the cultures of CTL or NK cells resulted in the sup-
pression of responses to the vaccine antigens. Cell-to-cell interactions were revealed 
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as the leading mechanism of this suppression (Trzonkowski P 2004). However, in 
some experimental types of vaccinations, IL10 secreted by Treg cells was the master 
regulator of immunization efficiency (Stober CB 2005). It has to be mentioned at 
this point that surprisingly low efficiency of vaccines against some pathogens, mainly 
parasites, is highly attributed to the effect of immune evasion that involves Treg cells. 
Namely, parasites protects themselves utilizing host Treg cells that suppress the action 
of the host effector mechanisms. Such situation during immunization against parasites 
results in low clinical effectiveness of anti-parasite vaccines (Belkaid Y 2005). Some 
indirect effects might be also very much relevant to the final outcome of the vaccina-
tion. For example, Treg cells may limit production of specific antibodies via suppres-
sion of CD4+ T helper cells cooperating with B cells during antigen encounter. As 
a result, the titer of specific protective antibodies after vaccination is low in patients 
characterized by high number of Treg cells, that is, mainly frail elderly (Trzonkowski 
P 2003). Also the fact, that Treg cells are consumers of IL2 might additionally decrease 
effectiveness of the immunization as this cytokine is necessary to generate protective 
post-immunization immune memory (Effros RB 1983; Provinciali M 1994). Again, 
Treg cells make the deficit of IL2 more severe in the group of patients characterized 
already by the lowest levels of this cytokine,  i.e.  in frail elderly (Trzonkowski P 2003). 
High number of Treg cells prior to the vaccination is not the only obstacle for effi-
cient responses. It has been shown that immunization on its own, due to the challenge 
with administered vaccine peptides, generates vaccine-specific Treg cells which may 
additionally decrease immunization efficiency (Bauer T 2007). Specificity of Treg 
cells seems to be a key point in obtaining good post-immunization responses. For 
example, low response of CTL after immunization with immunodominant peptide 
of  Herpes simplex virus  was attributed to antigen-specific Treg cells. Namely, Treg 
cells isolated from mice chronically infected with  Herpes simplex virus  were much 
more potent in the suppression of  anti-herpes  CTL responses than Treg cells obtained 
from healthy mice (Suvas S 2003). In contrary, there are experimental data from mice 
which proves that very potent graft-specific Treg cells that keep operational tolerance 
to transplanted organs in recipient animals are not the obstacle in efficient cytotoxic 
responses to the challenge with influenza virus antigens as these antigens are different 
from those expressed by the graft (Bushell A 2005).  

   Interestingly, in some models Treg cells were required to receive efficient pos-
timmunization responses. For example, depletion of Treg cells was associated with 
poor antibody responses to the vaccination and subsequent challenge with  Borrelia 
burgdorferi  (Nardelli DT 2006). Another interesting mode of regulation, in which 
regulatory T-cells are necessary to maintain post-immunization immune memory, is 
provided by the hypothesis of anti-idiotypic T-cells. This theory states that after a 
challenge with a given peptide, CD4+ T-cells create a network of idiotypic /anti-idi-
otypic T-cells (to some extent it is similar to Jerne’s idiotypic network of antibodies; 
Nayak R 2001). According to this theory, antiidiotypic T-cells were in fact antigen-
specific Treg cells, which presence was necessary to maintain long-term immune 
memory within both B and T subsets (Nayak R 2001; Lal G 2006). Some dysfunc-
tionalities in this complex network over years of life might have been responsible 
for insufficient responses to vaccines in the elderly.  
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    2.7 Interventions—Transplantation  

   Modern medicine has reached the point when the barrier of age is less important 
and even high-level invasive medical procedures are considered to be applied in the 
elderly. It is the most obvious in transplantation, which significance in geriatrics 
increases parallel with increasing number of elderly patients that received trans-
planted cells or organs. It is not a long time since modern drugs harnessed the major 
problem in transplantation, that is, incidence of acute rejections. Yet, their action is 
associated with many severe adverse effects which limit their use. It is of special 
importance in the elderly, in whom their administration may additionally deteriorate 
existing medical conditions or, in some cases, it is precluded due to insufficiency of 
organs taking part in their metabolism. Thus, dose reduction, application of novel 
less toxic drugs or tolerance induction strategies are one of the primary goals of 
nowadays transplantation. Fortunately, immunity compromised with age can be 
considered as an ally in these strategies. There are number of organs which have 
been reported to be better tolerated in the elderly as compared to the young after 
transplantation. Lower incidence of acute rejections in the elderly was reported in 
kidney, liver, heart, lung and corneal transplantations (Renlund DG 1987; Snell GI 
1993; Vail A 1997; Zetterman RK 1998; Bradley BA 2000). While the majority of 
these studies are based on limited number of patients, renal transplantations can be 
analyzed with great statistical accurateness due to the widespread of this procedure. 
The analysis of around 80, 000 cases from the United Network of Organ Sharing 
(transplant registry in the US) fully confirmed that the level of acute rejections is 
lower in the elderly and the dose of immunosuppressive drugs in the elderly might 
be reduced (Bradley BA 2001, 2002). The need for reduced immunosuppression 
protocols in the elderly is urgent as the majority of posttransplant deaths at this age 
is associated with exacerbated circulatory diseases, tumors and infections, which 
are clear adverse effects of overimmunosuppression (Bradley BA 2001; D bska-

lizie  A 2007). No doubt, accumulation of Treg cells with age may contribute to 
the deterioration of immunity and better transplantation outcomes in the elderly. 
Importantly, the action and number of Treg cells is modified with the use of par-
ticular immunosuppressive drugs which might have implications in establishing of 
immunosuppression protocols. For example glicocorticosteroids and mTOR inhibi-
tors have been found to increase the number and function of Treg cells (Fattorossi A 
2005; Game DS 2005), while calcineurin inhibitors depressed the activity of those 
cells (Zeiser R 2006). Of note, mTOR inhibitors are superior above other immuno-
suppressants as they have less adverse effects. This feature can make mTOR inhibi-
tors a “drug-of-choice’’ in the elderly (Halloran PF 2004). Also the dose of strong 
and toxic calcineurin inhibitors can be reduced in the elderly as it was found that 
aged T-cells activated with alloantigens are less resistant to these drugs than T-cells 
from young recipients (Bradley BA 2001b). Surprisingly, the incidence of chronic 
rejections, currently known as chronic allograft nephropathy (CAN), is higher in the 
elderly than in the young. The most widely described cause of CAN is oversecretion 
of TGFβ (Suthanthiran M 1997). As already mentioned, the level of this cytokine 
is increased in the elderly but, apart from lymphocytes, it is secreted by a variety 
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Subset Phenotype Mechanism Origin

Naturally occur-
ring CD4+ T 
regulatory cells

CD3+CD4+CD25highFoxP3+
CD127-*

Cell-to-cell contact Thymus

Adaptive CD4+ T 
regulatory cells

CD3+CD4+FoxP3+ Cell-to-cell contact Conversion from 
nonregulatory 
CD4+ T-cells at the 
periphery

CD4+ Tr1 cells CD3+CD4+IL10+ROG+ via IL10 Conversion from non-
regulatory (usually 
naïve) CD4+ T-cells 
at the periphery

CD4+ Th3 cells CD3+CD4+TGFβ+ via TGFβ and some-
times IL10

Conversion from non-
regulatory (usually 
naïve) CD4+ T-cells 
at the periphery

CD28-CD8+ type 
1 T suppressor 
cells

CD3+CD28-CD8+ Cell-to-cell contact, 
DC-dependent

Terminally differenti-
ated CD8+ T-cells 
(generated in vitro 
by multiple rounds 
of stimulation with 
APC)

CD28-CD8+ type 
2 T suppressor 
cells

CD3+CD28-
CD8+IL6+IFNγ+

via soluble factors, 
IL6 and IFNγ 
required

Terminally differenti-
ated CD8+ T-cells 
(generated in vitro 
in 1-week coculture 
with monocytes, 
GM-CSF and, IL2)

CD28-CD8+ type 
3 T suppressor 
cells

CD3+CD28-CD8+IL10+ via IL10 Conversion of naïve 
CD8+ T-cells by 
IL10-producing 
plasmacytoid DC

NKT cells ‘Classical’ NKT: CD56+
CD3+TCRαβ(Vα24i)
+‘Nonclassical’ NKT: 
CD56+CD3+TCRγd(Vγ9/
Vd2)+ 

via IL10, IL13 Thymus

Immature den-
dritic cells

LinnegHLA-DR+CD80low

CD86low

CD83low

Cell-to-cell contact, 
IL10 and tryp-
tophan deprivation 
(IDO)

From myeloid and 
lymphoid precursors

Plasmacytoid 
dendritic Cells

LinnegHLA-
DR+CD11clowCD123high

Cell-to-cell contact, 
IL10 and tryp-
tophan deprivation 
(IDO)

From lymphoid 
precursors

Cytokine-modu-
lated mature 
dendritic cells

LinnegHLA-DR+CD80high

CD86highCD83high

IL10, TGFβ, TNFα, 
GM-CSF, G-CSF, 
M-CSF, VIP, IL21, 
thymic stromal 
lymphopoietin

From immature DC

* Other markers suggested but also expressed on other subsets: GITR+, CTLA-4+, neuropilin1+, 
CD45RB-, CD103+, CD62L+, CD54+, CD122+, CD134+, CD137+

Table 1 Regulatory subsets in humans
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of nonimmune cells. In transplanted kidney affected by CAN, TGFβ secreted by 
fibroblasts is suspected to be responsible for fibrosis, medial hyperplasia and there-
fore vessel narrowing. It is very much possible that proinflammatory activity in the 
elderly may contribute to CAN as proinflammatory cytokines directly stimulate 
production of TGFβ and activate mononuclear cells facilitating their trafficking and 
infiltration of the graft (Bradley BA 2002). Not to mention, that synergistic action 
of TGFβ and proinflammatory cytokines results in the generation of highly inflam-
matory Th17 cells. However, it has to be highlighted that pathogenesis of CAN is 
complex and consists of plenty, also non-immune, factors.  

    2.     8 Interventions—Perspectives  

   Adoptive transfer or depletion of Treg cells is recognized as a manoeuvre suppress-
ing or improving immune response, respectively. Bearing in mind that one of the 
major features of immune risk phenotype is a low level of dysfunctional CD4+ 
T-cells, intervention affecting CD4+ T-cells might be of interest in geriatrics. In the-
ory, depletion of Treg cells can be specifically obtained using anti-CD25 antibody, 
the drug commonly used during allogeneic transplantations in humans. Although 
initially confirmed, the depletion was subsequently denied by other reports (Krei-
jveld E 2007). It was reported in some oncological studies that the administration of 
the antibody improved anti-tumor responses but did not kill but rather blocked the 
activity of Treg cells (Fecci PE 2006). On the other hand, the use of other antibodies 
in humans, such as anti-CD3, anti-CD52, anti-lymphocyte globulin preparations, 
was reported to induce different subsets of Treg cells (Belghith M 2003; Ciancio G 
2005; Lopez M 2006). Currently, a lot of effort has been put into attempts of ex vivo 
large-scale generation of Treg cells which might be subsequently used as immu-
nosuppressive medication (Tang Q 2006). Apparently, in the light of the fact that 
Treg cells accumulate in aged subjects, these attempts seem to be irrelevant for the 
elderly. Nevertheless, aged population is a substantial consumer of various immu-
nosuppressive drugs and therapy with Treg cells is thought to be substantially less 
toxic alternative to those drugs.  

     3   Other Regulatory Subsets  

   3.1 Dendritic Cells  

   Although CD4+ T-cells are robust in their regulatory abilities, it is not the only 
subset having such potential. It is not surprising that DC are also considered as 
they are often the first sensors of pathogen pattern. Their action directs all subse-
quent responses of the immune system. While mature DC trigger mainly robust 
effector responses, immature DC have the capability of immunosuppression in 
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order to protect self tissue against uncontrolled effector activity of immune sys-
tem. DC might be of importance as they seem to be relatively slightly affected by 
age (Agrawal A 2007). Some known age-dependent alterations in DC functioning, 
such as low expression of MHC receptors and costimulatory molecules (Shurin MR 
2007), make the phenotype of aged DC close to immature tolerogenic DC. Namely, 
it is widely known that immature DC, that is, DC with low expression of MHC and 
costimulatory molecules, are capable of induction of anergy in effector T-cells and 
transition of naïve T-cells to adaptive subsets of Treg cells (Steinbrink K 1997; Stein-
brink K 1999; Jonuleit H 2000; Vigoroux S 2004). Immature DC are so effective 
in this process as they have become a laboratory tool in expansion of Treg cells for 
therapeutic purposes (Yamazaki S 2006). The mechanism of action of tolerogenic 
DC is associated with release of IL10 (by DC and adaptive Treg cells stimulated 
by DC) and expression of indoleamine 2,3-dioxygenase (IDO; Steinbrink K 1999; 
Munn DH 2002). The latter mechanism is very intriguing as increased expression 
of this enzyme in immune cells of aged individuals was described as predictive for 
mortality (Pertovaara M 2006). As lymphocytes require tryptophan for their proper 
functioning, its deprivation triggered by IDO is recognized as ``immunosuppres-
sion by starvation of immune system’’ (Mellor AL 1999). In addition, IDO in DC 
metabolises tryptophan to kynurenines and these products suppress T-cells. To a 
great extent, anergy of T-cells in such environment is dependent on upregulation 
of GCN2 kinase in T-cells and induction of adaptive Treg cells (Munn DH 2002; 
Mellor AL 2003). The activity of the enzyme was found to be increased in late-onset 
autoimmune diseases and chronic infections (Mellor AL 1999; Pertovaara M 2005). 
Interestingly, the activity of IDO, including the isoform expressed in immune cells, 
is associated with serotonin deficit in depression (Cubala WJ 2006). There are 
assumptions that the enzyme might be an important link between chronic stress, 
inflammation and neurohormonal alterations in this disease (Muller N 2007). As 
depression is one of the most important medical conditions in the elderly and sero-
tonin deficit is the target for a very potent group of antidepressive drugs (SSRI), 
the research upon IDO will for sure find its continuation in the elderly. Recently, 
a growing attention in the field of immune regulation has been given specifically 
to immature plasmacytoid DC (PDC or DC2) which were found to be extremely 
powerful regulators of immune responses. Utilizing IDO-related mechanisms, 
immature PDC significantly reduce antigen presentation, which leads to immuno-
suppression (Munn DH 2004). Induction of anergy of CD4+ T-cells by immature 
PDC occurs in direct cell-to-cell interaction between MHC and TCR receptor which 
prevents from upregulation of CD40L, and possibly other costimulatory molecules, 
on T-cells (Kuwana M 2001). Particular relevance of these cells for the clinic comes 
from the fact that the presence of immature PDC promotes vigorous progression of 
tumor growth and significantly decreases efficiency of anti-tumor vaccines (Munn 
DH 2004; Shurin MR 2007). While there is single study that reported no difference 
in the activity of PDC between young and adult mice (Dakic A 2004), there is still 
no convincing data on the activity of PDC in aged humans (Shurin MR 2007). It 
has to be mentioned that mature DC, in some specific conditions, are also capable 
of immunosuppression. It is mainly due to the action of various cytokines, such as 
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IL10, TGFβ, TNFα, GM-CSF, G-CSF, M-CSF, VIP, IL21 and, thymic stromal lym-
phopoietin, that modulate activity of mature DC (Rutella S 2006).  

    3.     2 CD28− CD8+ T-Cells  

   CD28-CD8+ T-cells, described elsewhere in this book as a substantial burden for 
immunity in ageing, have some regulatory abilities when cooperate with other 
immune subsets. Because of that they are often described as T suppressor cells (Ts). 
Thus, anergy of these cells should be also evaluated in the context of regulation of 
particular immune responses. First of all, CD28-CD8+ Ts cells are heterogeneous 
with at least three subsets distinguished already (Filaci G 2002). Ts type 1 cells trig-
ger anergy of CD4+ T effector cells through interaction with DC presenting specific 
antigens to these effectors (Liu Z 1998). As such, the inhibition is MHC-restricted. 
Anergy occurs due to the inhibition of expression of CD40 receptor on the surface 
of DC, which further prevents from upregulation of B7 molecules on DC. Ts type 
1 cells also upregulate expression of the immunoglobulin-like transcripts ILT3 and 
ILT4 on DC (Chang CC 2002). The expression of these transcripts upon stimula-
tion with Ts type 1 cells not only is responsible for anergy of CD4+ T effector cells 
but also for promotion of adaptive Treg cells (Suciu-Foca N 2005). Ts type 2 cells 
were generated from CD8+ T-cells in vitro in the presence of monocytes, exogenous 
IL2 and GM-CSF (Balashov KE 1995). These cells are capable of suppression of 
cytotoxic cells via secreted cytokines in MHC unrestricted way (Filaci G 2002). 
Interestingly, IL6 and IFNγ secreted by Ts type 2 cells were indispensable in this 
mode of suppression (Filaci G 2001). Finally, Ts type 3 cells can be generated by 
the stimulation of naïve CD8+ T-cells with IL10-producing PDC. Ts type 3 cells 
acquires then the ability to secrete IL10 on their own and suppress other naïve, but 
not effector, CD8+ T-cells. IL10 secretion, rather than downregulation of CD28 
receptor, is the characteristic feature of Ts type 3 cells. Despite IL10-dependent 
mode of action, the inhibitory effects appear to be antigen-specific and limited to 
the antigens presented initially by PDC to Ts type 3 cells (Gilliet M 2002).  

   Like in the case of many other elements of immune response, generation of 
CD28-CD8+ T-cells might be considered profitable during particular infections as 
these cells control effector cells and prevent from damage of self tissues. On the 
other hand, frequent infections, accumulation of infectious episodes throughout 
life or chronic form of infections may result in continuous generation of CD28-
CD8+ T-cells which skews effector/ suppression balance during aging towards 
suppression (Pawelec G 2005). Important way of escape from this age-dependent 
dysregulation, a kind of “rescue circuit of regulation,’’ might be acquired expres-
sion of KIR receptors on CD28-CD8+ T-cells (Abedin S 2005). Unlike the level 
of intrinsic NKT cells, the level of NK-like T-cells expressing KIR receptors is 
increased in aged individuals (Tarazona R 2000; Peralbo E 2007). The expression 
of KIR receptors is not a constant feature of CD28-CD8+ T-cells and becomes evi-
dent at late phase of their differentiation (Arlettaz L 2004). Diversity and function 
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of KIR receptors implies that the expression of some of them make CD28-CD8+ 
T-cells tolerant towards self antigens, while the others are capable of triggering 
their cytotoxic response. Thus, it is probable that the expression of different sets of 
KIR receptors might be responsible for fine tuning of the function of CD28-CD8+ 
T-cells (Abedin S 2005).  

     3.3 NKT-Cells    

   Intrinsic NKT-cells are another subset with regulatory abilities. NKT-cells merge 
the characteristics of T-cells and NK-cells but the facts that the repertoire of their 
TCR is restricted (invariant Vα and limited diversity of Vβ) and they recognize very 
limited range of glycolipids, via CD1d on APC cells classically, place them on the 
border between acquired and innate immunity (Biron CA 2001; Kinjo Y 2005). 
Their proportion in peripheral blood is small and reaches not more than 2–3% of T-
cells. In peripheral tissues they preferentially migrate to the bone marrow and liver, 
where they constitute 10–20% and 30–40% of T-cells, respectively (Emoto M 2003). 
The most classically, NKT cells are generated in the thymus and traffic mainly to 
the liver (Abo T 2000). The number of NKT-cells was found to be increased in aged 
mice but diminished in the general population of the elderly humans with exception 
of very old subjects. It might be important for aged immune system that the liver can 
serve as a site of extrathymic development of NKT-cells which results in increased 
number of those cells in centenarians (Watanabe H 1996; Miyaji C 2000). Regard-
less of number discrepancies, it is altered function of NKT-cells that influences 
substantially the activity of immune system (DelaRosa O 2002; Faunce DE 2005; 
Peralbo E 2007). On the one hand, NKT-cells were found to control autoimmune 
diseases, such as diabetes mellitus type I, rheumatoid arthritis, inflammatory bowel 
disease, systemic sclerosis (Sumida T 1995; Hong S 2001; Lee PT 2002; van Kaer 
L 2005) and promote tolerance to transplanted organs (Jiang X 2005, 2007), but on 
the other hand, they significantly improve anti-tumor responses and potentialize 
efficiency of vaccines (Cui J 1997). These ambiguous results might be explained by 
the mechanisms of their action, which suggest their regulatory activity (Kronenberg 
M 2005). When stimulated, they produce both Th1 and Th2 cytokines. Production 
of Th1 cytokines, mainly IFNγ, is responsible for augmented anti-tumor and viral 
responses via stimulated NK cells (Cui J 1997), while Th2 cytokines, mainly IL4 
and IL10, are responsible for NKT-mediated suppression (Kronenberg M 2005). 
Ageing is associated with decreased secretion of IFNγ by NKT cells, which is rec-
ognized as an important reason of deficits in antiviral and antitumor responses in 
the elderly (Miyaji C 2000; Mocchegiani E 2004). On the other hand, the secretion 
of Th2 cytokines, like IL10, remains unchanged or even increases with age (Faunce 
DE 2005). It seems to be a powerful regulatory mechanism as the secretion of IL10 
by NKT cells was found to be a major inducer of tolerance to many allotransplants 
(Oh K 2005; Jiang X 2007). Moreover, increased suppressive activity of NKT cells 
stimulate secretion of IL10 by CD4+ and CD8+ T-cells and DC (Jiang X 2007; 
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Wahl C 2007). NKT cells were also found to suppress CD8+ T-cells via secreted 
IL13 (Terabe M 2000). However, the most convincing proof of the regulatory activ-
ity of NKT cells comes from the fact of reciprocal influence of NKT cells and Treg 
cells. Some NKT cells were found to secrete IL2 stimulating proliferation of Treg 
cells (Jiang S 2005). In several models, NKT cells were found to promote oral toler-
ance via induction of adaptive Treg cells which secreted IL10 and TGFβ (Roelofs-
Haarhuis K 2004; Kim HJ 2006). Also the shift towards Th2 cytokines produced by 
gut-associated NKT cells was revealed to be associated with local increase in the 
number of Treg cells (Ronet C 2005). In contrary, Treg cells were found to suppress 
activity of NKT cells in cell-to-cell manner (Azuma T 2003). It is probably relevant 
in the clinic as the interference of Treg cells with NKT cells was proved to promote 
enhancement of some tumors (Nishikawa H 2003).  
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                        Abstract    :    The purpose of this chapter is to give an overview of the age-related 
changes in the expression and function of the major transcription factors regulating 
mature B-cells. We also summarize our recent work and show that the age-related 
defects in Ig class switch are directly related to the decrease in the transcription fac-
tor E47 which controls the expression of AID, needed for CSR. The age-associated 
effects on the expression and function of the transcription factors NF-κ B and Pax-5 
are also described. Blimp-1 seems not to be modified by aging. For other transcrip-
tion factors relevant for mature B-cell functions, such and IRF4 and Notch2, no 
effects of aging have been reported so far. The defects presented herein for aged 
B-cells should allow the discovery of mechanisms to improve humoral immune 
responses in both humans and mice in the near future.  

        1      E Proteins  

  Class I basic helix loop helix (bHLH) proteins, also known as E proteins, were 
first identified based on their ability to bind with relatively high affinity to the pal-
indromic DNA sequence CANNTG, referred to as an E-box site (Ephrussi et al. 
1985; Henthorn et al. 1990; Quong et al. 2002), found in the promoter and enhancer 
regions of many B lineage-specific genes, such as the enhancers in the immu-
noglobulin (Ig) loci and the promoters of mb-1, λ5 and RAG-1 (Quong et al. 2002). 
The E protein family includes E12, E47, HeLa E-box binding protein (HEB), and 
E2-2, in vertebrates, and the Drosophila gene product, daughterless (Massari and 
Murre 2000). E12 and E47, arising through differential splicing of the exon encod-
ing for the HLH domain of the  E2A  gene (Murre et al. 1989), regulate a plethora 
of processes involved in B-cell commitment and differentiation. In particular, they 
initiate Ig rearrangements; and regulate the expression of the surrogate light (SL) 
chain, the recombination activating enzymes RAG-1 and RAG-2, the enzyme ter-
minal deoxynucleotidyl transferase (TdT), the IL-7Rα chain, which together with 
the common γ chain (γc) comprises the high affinity IL-7 receptor (IL-7R), and 
the genes encoding the signal transduction molecules Igα (mb-1) and Igβ (B29; 
Schlissel et al. 1991; Sigvardsson et al. 1997; Massari and Murre 2000; Kee et al. 
2002). E2A also induces the expression of EBF, which acts in synergy with E2A to 
promote SL chain transcription.  

  In B lymphocytes, the active DNA-binding complex consists of E47 homodimer, 
as opposed to E12/E12 or E12/E47 complexes, whereas in the bone marrow pro-
B/early pre-B cells the predominant form is E12/E47 (Frasca et al. 2003). The for-
mation and the function of the homodimer or heterodimer depend on the balance 
between the  E2A -encoded proteins, other class I bHLH proteins (HEB and E2-2) 
and the E protein inhibitory proteins, Id 1-4, which lack the DNA-binding domain 
and function as dominant negative inhibitors of E proteins (Rivera and Murre 2001). 
The paradigm of HLH function is that an ubiquitously expressed class I bHLH 
protein dimerizes with a tissue-specific class II factor, such as MyoD (skeletal mus-
cle) or NeuroD (neurons), to regulate cell-specific gene transcription. E2A-deficient 



Transcription Factors in Mature B-Cells During Aging 383

mice display a complete block in B lineage development at a very early stage prior 
to the onset of IgH DJ rearrangement, whereas myeloid development is normal. 
Transgenic introduction of either E47 or E12 restores B lymphopoiesis in E2A-defi-
cient mice, although E47 promotes pre-B cell differentiation more effectively, likely 
because it has a higher DNA-binding affinity than does E12 (Shen and Kadesch 
1995). Mice expressing a transgene for Id proteins, the inhibitors of E protein activ-
ity, have a phenotype similar to the E2A -/-  mice (Quong et al. 2002). These mice 
display the same block in B-cell development, and its severity is dependent on the 
level of expression of the transgene.  

  E2A activity is necessary for class switch recombination (CSR; Quong et al. 
1999; Sugai et al. 2003), as the E47 transcription factor has been shown to be impor-
tant in transcriptional regulation of  Aicda , the gene encoding the activation-induced 
cytidine deaminase (AID; Sayegh et al. 2003), the enzyme responsible for break-
ing the DNA in the switch regions, the first step in the CSR process. Briefly, it has 
been shown that ectopic expression of Id3 in splenic activated B-cells inhibits CSR 
(Quong et al. 1999) because of reduced AID transcription and overexpression of 
E47 can directly induce  Aicda  gene expression both in a B-cell line and in splenic 
B-cells activated in vitro (Sayegh et al. 2003). A cis-regulatory element (E-box) in 
the  Aicda  locus has been identified and shown to be activated by E-proteins. Ectopic 
expression of AID in splenic activated B-cells retrovirally transduced with Id3 only 
partially rescues the ability of these cells to undergo CSR. The Authors concluded 
that the efficient induction of  Aicda  expression is dependent on E-proteins, but also 
suggest that E-proteins have roles in CSR in addition to their induction of  Aicda  
expression. However, the level of restoration of AID was not complete in these 
experiments and therefore an alternative interpretation of these results would be 
that optimal E47, which would induce optimal AID, would itself completely restore 
CSR. Our data showing no decrease in germline μ transcripts in old or in E2A +/-  B-
cells support this hypothesis (Frasca et al. 2004a).  

  In senescent mice, we have previously shown that in vitro stimulated splenic B-
cells are deficient in production of multiple class switch isotypes (IgG1, G2a, G3, 
and E), and CSR (Frasca et al. 2004a, b). This occurs concomitant with decreased 
induction of E47 and AID. The reduced CSR observed in old splenic activated 
B-cells is not the consequence of defective B-cell proliferation, as B-cells from 
old mice can be effectively activated in vitro, but their capacity to undergo CSR 
is impaired. Our results are in line with the findings that expression of the recep-
tors for CD40, and IL-4 are unaffected by aging in mice and humans, as already 
reported (Whisler et al. 1991; Song et al. 1997; Zheng et al. 1997; Bergler et al. 
1999). Although it is known that there are defects in T as well as B-cells during 
aging, our studies indicate that an intrinsic B-cell defect may not be able to be 
rescued by modifying/enhancing T-cell activity alone by itself in aged individuals. 
Both DNA-binding (EMSA) and expression (Western blot) of E47 are decreased in 
stimulated splenic B-cells from old mice. We have previously shown (Frasca et al. 
2003) that the endogenous E47 DNA-binding is low, and importantly, twofold 
lower than that in unstimulated young spleen cells in the majority of aged mice 
individually tested (65%). Activation of B-cells up-regulates E47 DNA binding in 
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young and to a significantly lower extent in old mice. Therefore, both basal and 
activated levels of E47 are decreased in splenic B-cells in aged mice. These find-
ings suggest that the down-regulation of this transcriptional regulator may help 
explain not only decreased CSR in activated splenic B-cells from old mice, but 
also age-related changes in affinity maturation and SHM affecting the quality of 
the Ab response. Other results from our laboratory showing that CSR is perturbed 
in E2A +/-  mice further support the important role of this transcription factor in the 
generation of Abs with different isotypes (Frasca et al. 2004a).  

  In order to determine a mechanism for the age-related decrease in the amounts 
of E47 protein in nuclear extracts, we found that E47 mRNA levels were decreased 
in stimulated splenic B-cells from old as compared with young mice. RNA stabil-
ity assays showed that the rate of E47 mRNA decay was accelerated in stimulated 
splenic B-cells from old mice, but E47 protein degradation rates were comparable 
in young versus aged B-cells, indicating that the regulation of E47 expression in 
activated splenic B-cells occurs primarily by mRNA stability (Frasca et al. 2005b, 
2007b). In contrast with splenic activated B-cells, E47 mRNA expression is compa-
rable in bone marrow-derived IL-7-expanded pro-B/early pre-B cells from young and 
old mice (Van der Put et al. 2004). Thus, the reduced expression and DNA-binding 
of the E12/E47 transcription factor in aged B-cell precursors is not transcriptionally 
regulated, but is due to reduced protein stability (Van der Put et al. 2004; King et al. 
2007) mediated presumably via the ubiquitin–proteasome pathway (Kho et al. 1997; 
Huggins et al. 1999). This instability is largely due to PEST (proline, glutamic acid, 
serine, threonine) residues common to degradation domains (Huang et al. 1998).  

  The stability of labile mRNA may be controlled by signal transduction cascades, 
where the final product of the cascade phosphorylates a protein which interacts 
with adenylate/uridylate-rich elements (ARE) in the 3′ untranslated region (UTR) 
of mRNA and modifies its stability (Chen et al. 1995; Bevilacqua et al. 2003). 
ARE sequences have been found in the 3′-untranslated region (UTR) of many 
mRNAs, including those for transcription factors. ARE motifs have been previ-
ously classified into at least three categories based in part upon the distribution 
of AUUUA pentamers. Class I AREs, found in early response gene mRNAs like 
c-fos and c-myc, contain multiple isolated AUUUA motifs; class II AREs, found 
exclusively in cytokine mRNAs, contain two or more overlapping copies of the 
AUUUA motif; class III AREs contain no AUUUA motifs but generally contain 
U-rich or AU-rich regions and possibly other unknown features for their destabi-
lizing function. The E47 mRNA is a class I/III mRNA, because it has one AUUUA 
sequence and multiple AU/U-rich regions. At least part of the decreased stability 
of E47 mRNA seen in aged B-cells is mediated by proteins. We have found that 
tristetraprolin (TTP), a physiological regulator of mRNA expression and stabil-
ity, is involved in the degradation of the E47 mRNA. Because many studies have 
shown TTP expression and function in macrophages, monocytes, mast cells and 
T-cells, but little is known about the expression and function of TTP in primary B-
cells, we have investigated TTP mRNA and protein expression in splenic B-cells 
from young and old mice. Our recently published results (Frasca et al. 2007b) 
show that TTP mRNA and protein levels are higher in stimulated splenic B-cells 
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from old as compared with young mice. TTP has been described to be directly 
phosphorylated by p38 MAPK in macrophages (Carballo et al. 2001; Chrestensen 
et al. 2004; Cao et al. 2006). We show that inhibition of the p38 MAPK signaling 
pathway significantly reduces TTP protein expression in B-cells. Old B-cells in 
response to LPS make less phospho-p38 MAPK (Frasca et al. 2007b) and there-
fore, as would be expected, make less phospho-TTP. This leads to an increase in 
the amount of TTP bound to the 3′-UTRs, and therefore decrease mRNA stability 
(of E47) in old B-cells. Our studies demonstrate for the first time that TTP is regu-
lated in activated B-cells during aging, that TTP is involved in the degradation of 
the E47 mRNA, and show the molecular mechanism for the decreased expression 
of E47, AID and CSR in aged B-cells.  

    2      NF-κB  

  The transcription factor, nuclear factor-κ B (NF-κB), has also been shown to be impor-
tant for Ig class switch (Snapper et al. 1996). NF-κB has been shown to be strongly 
activated by anti-CD40/IL-4, but not by anti-CD40 or IL-4 stimulation alone in splenic 
B-cells and to be involved in CSR to IgG1/IgE in both humans (Jeppson et al. 1998) 
and mice (Tinnell et al. 1998; Pioli et al. 1999; Kaku et al. 2002). It has also been 
shown to be the key transcription factor in mouse or human B-cells undergoing CSR 
in response to BAFF, the B-cell-activating factor, also called BLyS, TALL-1, THANK, 
ZTNF4 or TNF13B (Litinskiy et al. 2002; Castigli et al. 2005; Yamada et al. 2005).  

  We have recently investigated the ability of BAFF/IL-4, as compared to anti-
CD40/IL-4, to induce CSR to γ 

1
  in splenic B-cells from young and old mice (Frasca 

et al. 2007a). We found that anti-CD40/IL-4 is a better CSR stimulus than BAFF/
IL-4 in young B-cells, as measured by RT-PCR of postswitch transcripts and flow 
cytometry. CSR is reduced in old B-cells with both stimuli, but the suboptimal CSR 
seen in young mice to BAFF/IL-4 shows less reduction in the old B-cells. AID and 
γ 

1
 PSTs are significantly reduced in old B-cells stimulated with anti-CD40/IL-4, and 

less reduced with BAFF/IL-4 stimulus. BAFF receptor mRNA expression (BAFF-
R, TACI, and BCMA) is not affected by aging. The age-related decrease in CSR 
induced by anti-CD40/IL-4 is primarily associated with a decrease in E47, whereas 
the less affected response to BAFF/IL-4 is associated with decreases in both E47 and 
NF-κB. Therefore, NF-κB is not involved in the decreased response of old B-cells to 
anti-CD40/IL-4. These differences in B-cell responses to CD40/IL-4 and BAFF/IL-4 
may help to explain at least a partial maintenance of TI (more BAFF/IL-4-depend-
ent) versus TD responses in senescent mice (Smith 1976; Weksler et al. 1978).  

  The mechanisms by which NF-κB controls CSR are known only in part. Recent 
results show that signals delivered via CD40 that activate NF-κB synergize with 
signals delivered via the IL-4 receptor that activate Stat-6 to induce optimal AID 
gene expression (Dedeoglu et al. 2004). The importance of Stat-6 and NF-κB in 
induction of AID expression by IL-4 and CD40 was demonstrated in studies of 
Stat-6 -/-  and p50 -/-  mice. However, in this study (Dedeoglu et al. 2004) the ability of 
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CD40 ligation to induce AID expression and to synergize with IL-4 in AID induc-
tion in B-cells was only partially impaired in p50 -/-  mice, suggesting that NF-κB is 
only one of the transcription factors involved in inducing AID expression and CSR 
in B-cells. Our studies show that the defect in aging seen in CSR is due primarily to 
E47 and not to NF-κB (Frasca et al. 2007a).  

    3      Pax-5      (BSAP)  

  Pax-5, also called B-cell lineage-specific activator protein (BSAP), is critical for B-
cell lineage commitment, B-cell development and CSR in GC B-cells, but it is not 
expressed in terminally differentiated B-cells (Max et al. 1995; Nutt et al. 1998, 1999; 
Linn et al. 2002; Gonda et al. 2003). B-cell-specific target genes for Pax-5 are λ5, 
CD19, mb-1, blk, RAG-2, J-chain, and IgH genes (Kozmick et al. 1992; Neurath et al. 
1994; Zwollo et al. 1994; Michaelson et al. 1996; Lauring and Schlissel 1999). Bind-
ing sites for Pax-5 have been identified in the promoters of multiple genes as well as at 
multiple sites within the IgH locus (Neurath et al. 1994; Michaelson et al. 1996). Pax-
5-dependent repression of X box binding protein-1 (XBP-1) is probably critical for 
inhibiting plasmacytic differentiation in the GC (Shaffer 2002). It has recently been 
demonstrated that a putative regulatory region in the  Aicda  gene contains both E2A- 
and Pax-5-binding sites, and the latter site is indispensable for AID gene expression 
(Gonda et al. 2003). Id proteins have been shown to interact with Pax-5, and inhibit 
its DNA-binding (Roberts et al. 2001; Gonda et al. 2003). E2A proteins have been 
described to regulate Pax-5 not directly but through its regulation of EBF (Kee and 
Murre 1998). Consistent with these observations is the finding that the Pax-5 pro-
moter contains functional EBF binding sites (O’Riordan and Grosschedl 1999).  

  Pax-5 DNA-binding activity (for the active Pax-5a isoform) has been shown to be 
strongly reduced in resting splenic B-cells from aged mice, whereas protein levels 
did not change significantly (Anspach et al. 2001). Decreased Pax-5 binding activity 
is not the result of decreased levels of Pax-5 RNA transcripts or overall protein lev-
els, as shown by RNase protection and Western blot analyses, suggesting a posttrans-
lational mechanism affecting Pax-5 activity in aged B-cells, possibly involving its 
oxidation status (the oxidative form does not bind to DNA; Tell et al. 1998). Unlike 
E2A, Pax-5 is regulated posttranscriptionally in splenic B-cells. Preliminary results 
from our laboratory have shown that in splenic activated B-cells Pax-5 may also be 
regulated by mRNA stability (Landin, Frasca and Blomberg, work in progress).  

    4      Blimp-1  

  Blimp-1, encoded by the  prdm1  gene (Lin et al. 2003), is a transcriptional repres-
sor which represses proliferation and induces maturation of B-cells into antibody-
secreting plasma cells. It blocks the alternative GC B-cell fate by inhibiting Bcl-6, 
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Pax-5, BCR signaling, E2A, EBF, CSR, activation and homing to follicles (Lin 
et al. 2002; Shaffer et al. 2002; Johnson and Calame 2003, Calame et al. 2003). 
Blimp-1 has been detected in plasma cells, but not in early bone marrow B-cells, 
splenic memory B-cells in spleen, and GC B-cells (Tunyaplin et al. 2004).  

  As demonstrated by Han et al. (2003), there is a substantially higher number 
of antibody-secreting cells in the spleens of old mice than in the spleens of young 
mice. Therefore, we measured Blimp-1 mRNA expression in cultures of splenic 
B-cells from young and old mice activated for different times with LPS. We also 
determined the percentages of plasma cells (CD138 + B220 low ) in cultures of LPS-
stimulated B-cells from young and old mice. The expression of mRNA for Blimp-1 
is induced by LPS and suppressed by IL-4 (Knodel et al. 2001). Our results (Frasca 
et al. 2004b) showed that Blimp-1 mRNA was undetectable in unstimulated B-cells, 
increased at days 2 and 3, reached the optimum levels at day 4 and then decreased 
at day 7 in both young and old mice. Blimp-1 mRNA expression was comparable 
in young and old splenic B-cells. These results again point to the main defect in 
aged stimulated B-cells being at the level of CSR, and not due to differentiation to 
antibody-secreting (plasma) cells.  

    5      IRF4  

  IRF4, also called Pip, LSIRF, ICSAT or MUM1 (Iida et al. 1997) is a member of 
the interferon-regulatory factor family of transcription factors characterized by a 
specific DNA-binding domain and by the ability to bind to regulatory elements 
in promoters of interferon-inducible genes. In the B lineage, IRF4 is expressed 
in immature B-cells in the bone marrow, is absent from proliferating centroblasts 
and then is re-expressed in plasma cells (Lu et al. 2003; Klein et al. 2006). IRF4, 
together with Blimp-1, is required for the generation of plasma cells, both transcrip-
tion factors acting upstream of the transcription factor XBP-1 (Klein et al. 2006). 
No aging effects have been reported so far for IRF4.  

    6      Notch2  

  The Notch family of receptors plays an important role in the development of hemat-
opoietic cells (Maillard et al. 2005). Notch1 regulates T-cell development, whereas 
Notch2 is preferentially expressed in mature B-cells (Saito et al. 2003). Condition-
ally targeted deletion of Notch2 results in a defect in marginal zone (MZ) B-cells 
and their precursors (Kuroda et al. 2003). Among Notch target genes, the expression 
level of Deltex1 is prominent in MZ cells and strictly dependent on that of Notch2, 
suggesting that Deltex1 may play a role in MZ cell differentiation. No aging effects 
have been reported so far for Notch2.  



388 D. Frasca et al.

    7      Conclusions  

  In conclusion, particular transcription factors have been shown to be decreased 
with age in activated murine B-cells,  e.g.  E47, or in resting B-cells,  e.g.  Pax-5. 
The stage of differentiation as well as activation of the cell types studied appears 
to be important as our data on E2A in murine bone marrow versus the spleen has 
shown decreases with age but using different molecular mechanisms (Frasca et al. 
2005a; Riley 2005). Further studies should help to better determine the molecular 
mechanisms for these suboptimal expression of transcription factors, their molecu-
lar consequences, and provide avenues for correction of the immune deficiencies 
created by them.  
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                                        Abstract:        Changes in the antibody repertoire are a well-established feature of 
immunosenescence. These reflect an aggregate of age-associated alterations in the 
generation, numbers, and proportions of B-cell subsets; as well as the homeostatic 
and selective processes governing them. A basic understanding of these relation-
ships, coupled with integrated assessments of how they change with age, should 
reveal mechanisms underlying the immunosenescent phenotype. Mouse models 
provide powerful tools for these analyses, allowing controlled manipulation of 
key genetic, cellular, and microenvironmental factors. Here we summarize current 
understanding of how primary and antigen-experienced murine B-cell repertoires 
are established, as well as how they shift with age.  
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      1 Introduction  

   Immunosenescence, the progressive dysregulation of immune function with age, 
reflects a mosaic of genetic, epigenetic, and microenvironmental changes [10, 
11, 34, 42, 44, 77, 101, 102, 125–127, 158]. This complexity confounds minimal 
explanations of the overall phenomenon, and underscores the need to exploit sys-
tems whereby defined factors can be deliberately manipulated. Accordingly, mouse 
model systems, which have been refined as immunologic experimental tools, should 
yield insights into the underlying mechanistic relationships.  

   Altered clonotype repertoires are a consistent feature of immunosenescence. 
This is anecdotally evident from the shifts in immune responsiveness, increased 
autoimmunity, and clonal expansions that accompany age; and is corroborated 
through empirical evidence in human and animal models. For example, both 
the frequency and clonotypic composition of hapten- and virus-specific primary 
B-cells change with age [76, 112–114, 136, 182, 184, 185]; and nearly all lab-
oratory mouse strains display an age-associated appearance of autoantibodies 
[29, 30]. Most observations addressing these age-associated repertoire shifts are 
based on assessments at single time points. While these can  identify  repertoire 
changes, the underlying mechanisms resist interrogation via such static sampling 
approaches, because lymphocytes comprise multiple, dynamic populations under 
stringent selective and homeostatic controls.  

   Lymphocyte dynamics involve the continuous generation and correspond-
ing loss of cells, such that relatively constant numbers are maintained. Thus, the 
stability of lymphocyte numbers disguises underlying and ongoing cellular and 
molecular processes. For example, commitment rates to the B lineage per se, as 
well as the entrance rates and lifespan of B-cells in different functional subsets, 
can vary. Further, these compartments not only play differing immunological 
roles, but also can interact with and impact one another’s behavior. Finally, selec-
tive events based on B-cell receptor (BCR) specificity, innate ligand responsive-
ness, and homeostatic factors are superimposed on this dynamically changing 
landscape. Accordingly, effective interrogation of repertoire changes—including 
those associated with advancing age—requires simultaneous, longitudinal assess-
ments of lymphocyte generation, homeostasis, and selection.  

   Indeed, the size, proportions, and dynamics of nearly all progenitor and 
mature B lineage subsets shift with age in the mouse, so overall changes in 
clonotype frequency and composition likely reflect the aggregate of these shifts. 
Understanding age-associated repertoire changes therefore requires an apprecia-
tion of the molecular and cellular mechanisms governing primary and antigen-
experienced repertoires. Herein we review currently accepted notions about the 
identity and relationships of B lineage subsets and their progenitors, emphasiz-
ing the selective and homeostatic processes impacting repertoire composition. 
With this as background, age-associated changes in these parameters and their 
potential relationship to repertoire shifts in primary and antigen-experienced 
B-cell subsets are discussed. A schematic summary of these overall changes is 
provided in Fig. 1.  
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    2   Primary Repertoire Development  

   2.1  Lineage Commitment and Developing Bone Marrow 
B-Cell Subsets  

   In adults, B-cells are generated in the bone marrow (BM), where pluripotent 
hematopoietic stem cells (HSCs) give rise to multipotent progenitor (MPPs) that 
initiate lymphoid-restricted gene expression. This yields common lymphoid pro-

   Fig. 1       Changes in B-cell traits with age. Major B-cell subsets are shown at right with character-
istic traits and/or processes at left. Bars indicate changes in aged mice compared to young adults. 
Bars left-of-center denote age-associated reductions, while bars right-of-center indicate age-asso-
ciated increases, of a characteristic. Disparate or mixed results are indicated as bi-directional bars, 
and currently unexplored issues are signified by a central question mark     .
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genitors (CLPs) [65], a population enriched for B lineage specified precursors that 
subsequently become committed to the B lineage [2]. Several transcription factors 
and cytokine receptors comprise a regulatory network for B lineage specification 
and commitment [16, 66, 90, 106, 117, 151] (also see Frasca et al., this volume). 
For example, Ikaros is expressed in all hematopoietic lineages and controls the 
emergence of lymphoid progenitors [68, 111]; the proto-oncogene PU.1 is criti-
cal for both myeloid and lymphoid differentiation [149]; and the transcriptional 
repressor Bcl11A is essential for normal B- and T-cell development [72]. The E 
protein family members E2A and EBF coordinately activate the expression of B-
cell specific genes, especially those governing pre-BCR production and function 
[64, 66, 119, 150] and also regulate Pax-5 [140], a key mediator that activates B 
lineage-specific genes and represses genes associated with other lineages [16, 
17]. IL-7/IL-7R is a key cytokine axis for early B lineage development, promot-
ing both survival and differentiation [2]. Complex interplay between cell intrinsic 
and extrinsic signals characterizes the regulation of these transcriptional systems 
[26, 90, 150].  

   Although these transcriptional and signaling events occur prior to antigen recep-
tor gene rearrangement, they can nonetheless influence repertoire composition in 
several ways. First, they dictate the rate of lineage commitment, thus impacting 
B-cell production rates and shifting downstream homeostatic demands. Second, 
they influence the rate and specificity of key intracellular events, thus coloring the 
likelihood and nature of heavy and light chain gene rearrangements.  

   Subsequent to lineage commitment, B-cell differentiative stages are character-
ized according to surface markers and Ig gene rearrangement status [46–48, 94, 
121, 122, 138]. In the pro-B stage, cells rearrange their Ig heavy chain genes [40, 
180]. This is followed by surface Ig heavy chain expression with surrogate light 
chain and BCR signaling molecules, delineating onset of the pre-B-cell stage. Sur-
face pre-BCR expression and signaling are required for transit from the pro- to pre-
B-cell stage [61, 92, 93, 123, 133, 134, 164, 165], and result in a proliferative burst 
characteristic of the large pre-B-cell compartment. Light chain gene rearrangement 
during the late pre-B-cell stage leads to the expression of a complete BCR, defining 
the immature (IMM) BM B-cell. Once in the IMM subset, cells either die or exit the 
BM to complete maturation [6, 7].  

    2.2   Peripheral Maturation and Primary B-Cell Subsets  

   Recent marrow émigrés have been dubbed transitional (TR) B-cells [73], and can 
be further divided into subsets termed T1, T2, and T3 [1]. While historically viewed 
as a linear progression from the IMM marrow stage through the successive TR 
compartments, it now appears that branched, asynchronous models for transit into 
and through these subsets are more likely [5, 91, 145, 153]. Cells that successfully 
complete TR differentiation enter the mature peripheral B-cell pools.  

   Mature follicular (FO) B-cells, also termed B2 or “conventional” B-cells, 
encompass the majority (>80%) of peripheral B-lymphocytes, and are the progeni-
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tors of both primary antibody forming cells and memory B-cells. Additional subsets 
of mature B-cells include marginal zone (MZ) B-cells, which are phenotypically, 
functionally, and anatomically distinct from FO B-cells and play a major role in 
responses to T-cell independent (TI) antigens. In peritoneal and pleural cavities the 
B1 subset predominates (reviewed in [52]). B1 B-cells appear first in ontogeny and 
are maintained by self-renewal [48, 49, 53]. The MZ and B1 subsets share several 
functional attributes, particularly participation in TI immune responses [63, 74, 75, 
83]. The derivation of B1 B-cells, though distinct from the other B-cell subsets, is 
not yet entirely clear [1, 14, 52, 54, 74, 104, 176]. However, in the context of age-
associated repertoire shifts, it is noteworthy that while production from BM B2 
progenitors predominates in young adults, this wanes in aged mice. Therefore, if 
B1 progenitors are stable and distinct from B2 progenitors, the B1 lineage may wax 
with advancing age; thus altering the combined B-cell repertoire [104, 105].  

       2.3    Selection and Homeostasis Among Emerging 
and Primary B-Cells  

   Although they occur before complete BCR expression and perforce cannot be spe-
cificity-driven, heavy and light chain gene rearrangement processes, as well as heavy 
chain selection at the pre-BCR stage, will influence the incipient B-cell repertoire. 
For example, only heavy chains with structural characteristics affording surrogate 
light chain pairing are selected for further differentiation [81, 95]. In addition, heavy 
and light chain gene rearrangement processes rely on multiple factors, including the 
expression of appropriate enzyme and targeting complexes, accessibility and mark-
ing of heavy and light chain loci, and the activity of DNA damage resistance and 
repair systems (for reviews see [32, 59, 62, 107, 108, 139, 142–144]).  

   The interaction of homeostasis and selection powerfully impacts all B-cell sub-
sets downstream of BCR expression, directly determining repertoire composition. 
A critical notion emerging from appreciation of this interplay is that events acting 
upstream of mature B-lymphocyte pools can impact downstream populations. Since 
advancing age is accompanied by substantial shifts in both B-cell generation and 
the success rate of IMM and TR differentiation, distinguishing primary lesions from 
homeostatic compensation is critical to a mechanistic understanding of age-related 
changes [19, 99, 131].  

   Stringent specificity-based selection occurs at the IMM stage, where high avidity 
interactions yield secondary Ig gene rearrangements or death [21, 22, 41, 109, 110, 
115, 116, 128–130, 162]. These central tolerance mechanisms result in the loss of 
~90% of all IMM cells formed [7, 120]. While it is possible that the IMM pool is 
governed by homeostatic mechanisms to preserve its size, this remains speculative 
and does not seem tied to BCR-mediated negative selection. Instead, BCR signal 
strength is the major, if not sole, determinant of survival at the IMM stage.  

   Specificity-based selection continues to act on newly formed cells that exit the 
marrow to join TR pools. Whereas high avidity BCR interactions lead to cell death, 
a lack of minimal BCR signaling precludes maturation and entrance to mature 
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peripheral pools [20, 23, 33, 51, 82, 169]. While BM negative selection depends on 
BCR signal strength (and is therefore cell-intrinsic), the likelihood that a given cell 
completes TR differentiation to join a mature B-cell subset is based on both BCR 
signal strength and the availability of B-lymphocyte stimulator (BLyS, also termed 
BAFF). BLyS is the limiting resource for which TR, FO, and MZ B-cells compete 
(reviewed in [18] and [100]). Through this competitive mechanism, steady state 
numbers of mature B-cells are governed by ambient BLyS levels that vary the pro-
portion of TR cells completing maturation, as well as the lifespan of FO and MZ B-
cells [50, 57]. This connection between BCR specificity and fitness for interclonal 
competition indicates that BLyS availability, within the context of the emerging 
clonotypic cohort, will determine thresholds for TR selection. This relationship has 
recently been confirmed in several transgenic systems [56, 70, 161].  

   The relationship between BLyS availability, antigen receptor specificity, and TR 
selective stringency makes several implications relevant to age-associated changes 
in the primary repertoire. First it implies that BCR- and BLyS-mediated signals 
must be integrated, possibly via cross-talk between intracellular signaling systems 
[154]. Although the molecular details remain the subject of intense research, age 
associated perturbations of any of these systems may influence primary repertoire 
diversity. Moreover, decreased B-cell generation rates in BM—a feature of the aging 
immune system—might permit a broader array of clonotypes, including autoreac-
tive cells, to enter peripheral pools as competition wanes [100].  

     3   Antigen-Experienced Pools  

   3.1   Establishing and Maintaining Antigen-Experienced Subsets  

   Antigen-experienced subsets contain the descendants of primary B-cells recruited 
into immune responses, and thus include activated cells themselves, as well as 
the resulting effector and memory pools. Humoral immune responses are gener-
ally characterized as T-dependent (TD) or T-independent (TI), depending on their 
requirement for cognate T help. In general, protein antigens engender TD responses, 
reflecting the requisite for MHC class II restricted presentation that affords delivery 
of costimulation. These responses primarily involve FO B-cells, and typically lead to 
long-term humoral immunity. A key characteristic of TD responses is the formation 
of germinal centers (GCs), where proliferating B-cells undergo class switch recom-
bination, as well as the somatic hypermutation (SHM) and affinity-based selection 
processes that culminate in cells producing high-affinity antibody [86]. In contrast, 
TI responses do not require cognate help, although T-cell derived cytokines may 
promote limited isotype switching [15]. TI responses elicit little if any memory, 
lack substantial hypermutation or affinity maturation, and consist predominantly 
of IgM. Two classes of TI antigens exist: TI-1 responses are induced via pattern 
recognition receptors [148]; whereas TI-2 responses are generated by antigens with 
densely repeating epitopes. Both TI-1 and TI-2 responses preferentially arise from 
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B1 and MZ B-cells. Whether this reflects intrinsic bias in the pre-immune reper-
toires of these cells or more extensive expression of pattern recognition receptors 
[58, 84]—both of which are empirically observed—remains debated.  

   Antigen activation yields a series of short-lived cells, which are detectable for 
only days or weeks following antigen challenge; as well as several subsets of long-
lived cells, which persist for months or years [80, 141, 163]. During TD responses, 
antigen activated B-cells become either GC B-cells, or short-lived plasma cells 
(PC), in a differentiation decision dictated by BCR affinity [124]. Short-lived PC 
arise in the first few days of an immune response, congregating at the T/B-cell 
interface and extrafollicular regions of secondary lymphoid organs [86]. The criti-
cal relationship between BCR repertoire and recruitment into long-lived pools has 
been revealed using transgenic systems [24, 25]. For example, B-cells with low 
initial affinity for antigen can participate in GC reactions when higher affinity com-
petition is eliminated, suggesting that initial repertoire can shape the pool of anti-
gen-reactive B-cells that ultimately succeed and contribute to immune responses. 
Long-lived antigen-experienced populations include a group of long-lived PC, as 
well as a separate group termed memory B-cells [79, 87]. The delineation of these 
groups based on surface markers is debated; however, a clear functional differ-
ence is that long-lived PC secrete antibody, while memory cells do not [9, 28, 78, 
85, 87–89]. The lineal relationships between various antigen-experienced subsets 
are unclear. For example, whether long-lived populations are generated from cells 
within the generally short-lived populations, or instead differentiate from distinct 
progenitors through a separate selective mechanism, is debated.  

    3.2   Homeostasis in Antigen Experienced Subsets  

   The concept of a biological niche for naïve B-cells is well established, with the 
BLyS/BR3 ligand/receptor axis playing a central role. In contrast, knowledge of 
factors governing the size and composition of antigen-experienced B-cell subsets 
is more limited. As with naïve pools, interplay between homeostasis and selection 
seems likely in the establishment and maintenance of antigen-experienced subsets. 
Multiple steps in the generation of effector and memory B-cells rely on selective 
decisions. These include the relationship between BCR affinity and recruitment into 
the extrafollicular PC pool versus the GC [124]; affinity maturation per se; as well 
as commitment to long-lived PC versus memory B-cells [8, 31].  

   Homeostatic controls, while evident in antigen-experienced pools, also remain 
poorly understood. While neither short-term effectors or long lived antigen experi-
enced populations compete with primary B-cells for survival, the trophic factors and 
relationships are only now being explored. Recent evidence suggests that additional 
BLyS family receptors or ligands, such as TACI, BCMA and APRIL likely play a 
role. In support of this idea, TACI is associated with activated B-cells and regulates 
some TI immune responses [163, 168], whereas BCMA is required for survival of 
long-lived PC in BM [118]. Further, ongoing immune responses appear to create 
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temporary homeostatic niches for short-lived populations, while leading to little 
change in long-term protective memory pools [132]. Finally, long-lived BM PC 
survival is competitive [78–80], possibly involving cell extrinsic stromal factors, as 
well as Fc-gammaRIIb expression [177].  

     4   Age-Associated Changes in Progenitor and Primary Pools  

   An extensive literature suggests the primary repertoire shifts with age. For example, 
the phosphorylcholine-specific repertoire shifts from one predominated by the T15 
clonotype to a more diverse pool [113, 114, 136, 185]. On the other hand, overall 
diversity in the primary pool is not altered extensively, as assessed by fine specifi-
city analyses [113, 183]. Nonetheless, clonal expansions in both the B and T-cell 
pools suggest that some specificities can be inordinately expanded. Understanding 
the basis for these changes requires considering all events likely to impact reper-
toire generation, selection, and maintenance. These include changes in the size and 
behavior of generative pools, as well as changes in the primary pools themselves.  

   4.1   B-Cell Generative Rates and Subsets Change with Age  

   Age-associated changes in B lineage development include reductions in precursor 
frequencies, lowered expression of critical regulatory genes, diminished pro- and 
pre B-cell numbers, and damped responsiveness to differentiation cues [35, 39, 60, 
69, 97, 136, 146, 156, 157, 166]. Together, these observations indicate overall dimi-
nution of B-cell generation and throughput.  

   The impact of aging is first manifested in HSCs and CLPs. Somewhat para-
doxically, while HSC numbers are maintained and possibly expanded in aged mice 
[179], the MPP/ELP and CLP pools are reduced [3, 97, 98]. Although the basis for 
this remains unclear, correlations with age-associated reductions in stromal IL-7 
production [156]; as well as reduced expression of E2A and EBF and genes they 
control, suggest these may contribute [35, 39, 147, 166, 167]. As might be expected 
from these changes in upstream pools, pro-B-cell numbers are reduced, with an even 
greater proportional reduction in pre-B-cell numbers [4, 131, 135]. This decline in 
part reflects reduced IL-7-mediated proliferation at the pro- to pre-B transition [103, 
155]. Hormonal changes may be another important extrinsic factor, since pregnan-
cies delay the age-associated reduction in BM B-cell production [12].  

   The dynamics of developing B-cells also change with age. In vivo BrdU labe-
ling studies [60, 67, 69] showed reductions in successful pro- to pre B-cell transit, 
yielding a fourfold drop in pre-B-cell numbers, and a corresponding decrease in the 
IMM B-cell generation rate. However, the throughput of pre-B-cells increased, so a 
twofold greater proportion of pre-B-cells enter the IMM pool. In addition, residency 
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within the IMM pool is longer. Together, these apparent compensatory features 
result in an IMM pool that is only about twofold smaller than in young adults.  

    4.2    Dynamics and Proportions of Peripheral Subsets 
Change with Age  

   Reflecting the upstream reductions in IMM B-cell numbers, TR pools are reduced 
in throughput and size; however, because residency time is extended, TR cell 
numbers are not significantly reduced. Similarly, the FO pool’s turnover rate is 
reduced in aged mice [60, 67, 131], so FO pool size is maintained in the face of 
reduced marrow production. Despite this fairly stable overall size, B-cell clonal 
expansions are more prevalent in aged mice [13, 171, 172]. In contrast, the MZ 
and B1 pools are unaffected or even enlarged in aged mice, but this may vary by 
strain [4, 131, 171].  

   Whether the homeostatic mechanisms controlling primary B-cell numbers 
change with age has not been extensively interrogated. However, several recent 
observations suggest this is likely. For example, in young adults, emerging cells 
expressing high levels of the BLyS receptor, TACI, are selected during TR differen-
tiation. This process is dampened in aged mice, allowing cells with lower TACI lev-
els to join the mature FO pool [131]. In addition, FO B-cells from aged mice more 
effectively capture BLyS-mediated survival signals in vitro, although the underly-
ing mechanism is unclear. These observations suggest a model whereby selection 
at the marrow-periphery interface is relaxed in aged mice; yet competition among 
mature B-cells may be more severe, reflecting lifelong selection for optimally fit 
clonotypes [131].  

    4.3   Developing and Primary Repertoires Change with Age  

   Alterations in the BM pre-selection repertoire might be expected, given the numer-
ous age-associated changes in cytokine and transcription factors, many of which are 
involved in Ig gene rearrangement [39, 69, 146, 147, 156]. There is a correlation 
between the age-associated reduction of pre-B-cell numbers and reduced RAG gene 
expression, V(D)J recombinase activity, and V to (D)J rearrangement [69, 159, 160]. 
Evidence for age-associated, intrinsic shifts in V gene segment use are suggested 
by studies showing an increased frequency of phosphorylcholine-responsive cells 
arising from sIg -  BM cells in aged BALB/c mice [185]. These increases included 
clonotypes bearing VhS107 (T15) as well as other Vh segments.  

   The interplay of intrinsic and microenvironmental changes in aged BM could 
affect the pre-selection repertoire in several ways. Shifts in heavy chain allele choice 
at the pre-BCR stage or in light chain choice at the pre-B stage could alter repertoire 
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composition. Decreased pre-B-cell production may mean that fewer B-cells of dif-
ferent clonotypes are generated. However, this effect may be at least partially offset 
if extended residency time in the IMM stage affords greater opportunity for receptor 
editing or Vh gene replacement. Finally, the existence of multiple B differentiation 
lineages whose Vh gene preferences differ and whose dominance varies with age 
might underlie some of these observations.  

   There is ample evidence for age-associated shifts in the primary repertoire, but 
whether these act to generally expand or contract diversity is uncertain. The phos-
phorylcholine-specific response in young BALB/c and B6 mice is dominated by 
VhS107/Vk22 gene segments, whereas aged mice use a broader range of Vh and 
Vk segments [112, 113]. Moreover, phosphorylcholine-binding monoclonal anti-
bodies generated from aged mice show greater polyreactivity. In contrast, while the 
frequency of NP-responsive cells is about twofold lower in aged mice, there is no 
accompanying change in repertoire diversity or clonotype distrubution [184]; and 
repertoire diversity to influenza hemagglutinin is similar in aged and young mice 
[183]. Finally, the autoreconstituting repertoire that emerges after irraditaion- or 
drug-induced lymphopenia is truncated in aged mice, when assessed by CDR3 
length heterogeneity [71].  

     5  Immune Responses and Antigen-Experienced 
Pools Change With Age  

   Some age-related changes in immune responses may be related to shifts in the pre-
selection or primary repertoires, while others may be the result of alterations that are 
observed as or after responding cells have encountered antigen. Immune responses 
in aged mice sometimes—but not always—involve reduced antibody production 
and/or antibody of lower affinity in comparison to young mice; however, over-
all diversity of the responding repertoire is retained or enhanced. Short-lived PC 
responses and pools are normal to increased in aged individuals, whereas long-lived 
PC and memory cell numbers are reduced. All of this suggests that the antigen-
experienced repertoire is different in quality and possibly quantity in aged mice.  

   Extensive age-associated changes have been reported in TD immune responses. 
These include impaired GC formation and kinetics, defective cellular interactions, 
and deficiencies in SHM and affinity maturation (reviewed in [187]). The antibody 
response to NP-CGG in aged B6 mice is impaired in terms of primary response 
kinetics and the amount of antibody produced; moreover, the average affinity of 
NP-binding antibodies is sixfold lower than in young mice [96]. Although GCs 
form in aged mice, their number and size are significantly reduced, their kinetics 
are delayed, and there is no detectable SHM. In apparent contrast, some experimen-
tal systems suggest that SHM yields increased diversity of serum Igs in aged mice 
[175]. These different results are not necessarily contradictory, as SHM may occur 
even when B-cells are activated outside of GCs [173, 174]. Microenvironment may 
play an important role: Peyer’s patch GC B-cells from aged B6D2F1 mice were 
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similar in frequency and activation phenotype to those observed in young mice, yet 
showed higher somatic mutation frequencies [137].  

   Cellular interactions are also altered with age [43, 152, 178]. T-cell intrinsic 
changes may account for some of this; for example, a decrease in IL-2 produc-
tion with age leads to reduced CD40L expression as well as a general CD4+T-cell 
population shift away from a naive phenotype and towards either a memory or a 
regulatory phenotype [55]. The proportion of antigen-responsive B-cells to DNP-
specific stimulation is decreased in aged mice, and T-cells from aged mice can 
down-regulate B-cell responsiveness [181, 182]. In an Igh b   scid  chimera system 
with donor lymphocytes from young or aged mice, where the primary response 
to NP is highly restricted to use of Vh186.2/lambda-1 gene segments, aged donor 
helper T-cells—but not aged B-cells—are less effective at inducing GC formation, 
and shift Vh gene segment use away from Vh186.2 to include higher proportions 
of others, particularly C1H4 [178]. In addition, SHM in GC B-cells was reduced 
in frequency with aged donor T- or B cells. Thus, both germline repertoire use and 
SHM are likely altered in aged mice; and immunosenescence likley results from 
changes in both B- and T cell compartments.  

   Class-switch recombination also appears impaired in aged mice [36–38]. B-cells 
from old BALB/c mice stimulated in vitro with optimal levels of CD40L and IL-4 
display a reduced ability to isotype switch [38]. Defects in isotype switching as well 
as SHM are associated with an age-related downregulation of E47, which leads to 
reduced expression of the activation-induced cytidine deaminase (AID) [37].  

   Mirroring the spectrum of observations in primary repertoire analyses, whether 
age impacts the magnitude or diversity of antibody responses depends on the model 
antigen employed, as well as the strain of mice studied. For example, the magnitude 
of the antibody response to  S. pneumoniae  vaccine and TNP-BA differ in B6 and 
BALB/c mice, indicating a role for genetic factors in the immune response [113]. 
However, the clonotypic diversity of the response to both antigens and to phos-
phorylcholine is greater in aged mice of both strains [112, 113]. In contrast, both 
primary and secondary responses to DNP-BGG are reduced in aged mice [43, 170]. 
A study of the IgM component of the primary response to TNP-KLH shows that the 
peak IgM response is delayed in aged mice but the spectrum and affinity of antibod-
ies are similar to those seen in young animals [186].  

   Several studies have shown decreased affinity or avidity of antibodies pro-
duced by aged mice in TD responses, in some cases along with evidence for a role 
for altered T-cell responses [27, 43, 114, 170, 186]. When mixtures of phospho-
rylcholine-specific antibodies from young or aged donor mice are injected into 
recipients that subsequently receive a lethal dose of  S. pneumoniae , only antibod-
ies from young donors allowed survival [114]. Moreover, the average affinity of 
antibodies from aged donors is lower than that of young donors for free PC hapten 
[114]. Thus the efficacy of antibodies produced by aged mice may be quite dif-
ferent from those produced by young mice. In accord with this overall picture, 
aged mice challenged with NP-CGG show a higher antigen-forming cell (AFC) 
response than young mice, but smaller and fewer GCs [45]. Most of the AFC in 
old mice were low-affinity IgM producers, and the number of high-affinity AFC 
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was half that of young controls. There were significantly fewer AFC in BM of 
aged mice following immunization, and reconstitution experiments demonstrated 
that aged BM was defective in supporting AFC. Thus, the spleen may prove the 
primary source of the antibody response in aged mice, in contrast to BM in young 
mice. This shift in AFC location could reflect several potential age related defects 
in the B-cell response including potential BM homing problems, an altered anti-
gen specific precursor frequency, reduced capacity for AFCs in the BM environ-
ment, or a combination of these and other factors. Due to the unclear relationship 
between naïve B-cells and long-lived PC generation, it is difficult to determine 
whether impaired humoral immunity in the aged is due to a failure to generate 
cells capable of seeding the BM and becoming PC memory, or if the defect is 
downstream. It has been proposed that long-lived PC occupy a highly specialized, 
tightly regulated niche, and it is possible that this niche is unable to support the 
entrance of newly formed long-lived PC in old mice, due to intensive competition 
for survival factors [132].  

   Only a few studies have addressed TI responses in aged mice. Zharhary [186] 
made a direct comparison of the IgM response following immunization with TD ver-
sus TI forms of the TNP hapten. While the peak IgM response was delayed in aged 
mice for the TD antigen, there was no delay for the TI antigen. Similarly, Weksler 
[170] reports that TI responses are generally less impaired than TD responses in 
aged mice.  

   It is tempting to speculate that because TI responses are largely B-cell-intrin-
sic, they will be less severely impacted by age-related changes in T-cell function. 
Moreover, TI responses may be further preserved by the age-associated persistence 
of MZ and B1 cells [131], which are largely responsible for antibody production 
to TI antigens. Thus, the comparative resilience of TI responses may increasingly 
impact repertoire composition with advancing age.  

       6   Summary and Perspective  

   Assessing the nature and basis for repertoire changes is a first-order consideration in 
our understanding of immunosenescence. Multiple processes appear to act in con-
cert to alter repertoire with age. These include reduced B-cell generation, shifts in V 
gene choice, and altered subset dynamics and selection overlaid with compensatory 
homeostatic mechanisms. Murine model systems are attractive routes to interrogate 
the underlying mechanisms, not only because of their substantial similarities to age 
associated shifts in human immune responsiveness, but also because they provide 
an opportunity to approach basic questions experimentally. Some important ques-
tions include why and how BM B-cell generation decreases with age, and how this 
impacts repertoire; whether the stringency of central or TR tolerance change with 
age; and how B-cell repertoire shifts and impaired immune responses in aged indi-
viduals are linked.  
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1                                      Role of B-Cells in Age-Associated Susceptibility
to Infection

It has been well established that the efficiency of the immune system declines with 
increasing age. Immunosenescence causes increased susceptibility to infectious dis-
eases, and infection is, in fact, the third leading cause of mortality in people aged 65 
and over [ 1 ]. As is clearly apparent from the other chapters of this book, there are 
many components of the immune system that can change with age, and are crucial 
to maintaining an effective immune system. The humoral immune system interacts 
with the other components, both as part of its own development and via its effector 
mechanisms. The most important function of B-cells is to produce antibodies, the 
indispensable soluble effectors of many functions. There are a number of different 
stages of development for B-cells and their antibodies ( Fig. 1 ).     

   In the primary B-cell response antibodies that recognize pathogen, although 
not necessarily with high affinity, are rapidly produced. They may include the so-
called “polyspecific’’ antibodies, which have the ability to recognize multiple anti-
gens [ 2 ]. The first antibodies are of the IgM isotype and are crucial for opsonizing 
pathogens, inducing phagocytosis and activating the complement cascade. These 
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antibody functions, and the rapidity of this primary response, have been shown to 
play a vital role in protection from extracellular bacterial pathogens [ 3 ]. Antibodies 
afford protection against viral infection by neutralizing the virus particles; binding 
and blocking key molecules involved in cellular infection. Similarly they can also 
neutralize toxins. Later maturation of the B-cells in the immune response is slower 
but results in the generation of more highly specific antibodies, which may be of a 
different isotype, following a process known as affinity maturation. In addition to 
the neutralizing and opsonizing functions of antibody, B-cells are also important as 
modulators of inflammation [ 4 ,  5 ], regulators of the immune response [ 6 ] and as 
antigen presenting cells and activators of T-cells [ 7 – 10 ].  

Fig. 1 B-cell development. The humoral immune response is mediated by antibodies produced 
from plasma cells. These plasma cells are the end point in B-cell development, which is character-
ized by (a) generation of a huge diversity of different B-cells, each carrying a different antibody 
gene in the bone marrow and (b) selection processes using the affinity of the membrane-bound 
form of the antibody (the B-cell receptor) for it’s antigen as the selection criteria. Diversity is 
generated by a process of gene rearrangement early on in the development of the cell, in the 
bone marrow prior to antigen encounter. The selection processes are twofold. Firstly B-cells are 
selected for survival, or not, on the basis of their antibody recognition—to eliminate inappropriate 
self-reactivity and encourage reactivity with foreign pathogens. Secondly there is a mutation step 
in development, and the resultant B-cells carrying improved antibodies are selected—this occurs 
in the germinal centre of secondary tissues, after encounter with antigen, and serves to increase 
the affinity of the antibody for the relevant antigen. Both generation of diversity and selection of 
antibody are complex processes that are crucial for an effective humoral immune system. A clear 
understanding of these processes, and how they are affected with age, is needed in order to com-
prehend the etiology of age-related inflammatory and infectious disease
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   The elderly are susceptible to infections by a wide variety of pathogens, all of 
which involve B-cells and antibodies in the normal course of the immune response 
(Table  1 ). The lungs are, in common with other mucosal surfaces of the gastrointes-
tinal and genito-urinary tracts, particularly vulnerable to infection by virtue of their 
exposure to the environment. As is illustrated in Table  1 , pulmonary infections are 
common in older people. The elderly are usually the first to be affected by annual 
epidemics of respiratory infections, and frequently suffer the worst clinically. Mor-
tality figures attributable to influenza and pneumonia are confused by the fact that 
influenza is very often followed by a secondary infection—most notably by  Strep-
tococcus pneumoniae . Some would argue that this confounding factor results in a 
two to threefold underestimate of influenza mortality [ 23 ]. It is also argued that 
mortality due to influenza is negligible and it is the secondary bacterial infection 
that causes almost all deaths [ 24 ,  25 ]. Whichever way round, it is generally agreed 
that older people are the worst affected by these diseases. It has been reported that 
90% of all pneumonia and influenza deaths and 88% of respiratory syncytial virus-
associated deaths occur in those aged over 65 years [ 26 ]. In the oldest old (85 years 
and over) there was a 32-fold increased chance of mortality from influenza or influ-
enza-associated pneumonia compared with those aged 65–69 years [ 26 ]. According 
to the Department of Health, in the UK there are more than 18,000 hospitalizations 
resulting from pneumococcal pneumonia each year in those aged 65 years and over 
[ 27 ]. There is also an increased incidence of pneumococcal septicemia in old people 
associated with  S. pneumoniae  infection [ 28 ].     

Table 1 Pathogens found frequently in elderly subjects with respiratory or urinary tract infections. 
(adapted from [1])

Organ system Pathogen found frequently B-cell role in immune response to pathogen

Respiratory tract Bacteria  
(upper and lower) Streptococcus pneumoniae B-cells are crucial to the TI-II response [11]

 Hemophilus influenza Mucosal IgA has a protective role independ-
ent of serum antibody levels [12]

 Legionella pneumophila B-cells are required for opsonization [13]
 Chlamydia pneumoniae Neutralization by antibody [14]
 Viruses  
 Rhinoviruses Antibody-mediated neutralization [15,16]
 Coronaviruses
 Influenza
 Respiratory syncytial

Urinary tract Bacteria  
 Escherichia coli IgA secretion and antigen-specific Ig inhib-

its attachment of bacteria [17,18]
 Proteus An increase in IgM and IgA aids protection 

[19,20] Klebsiella
 Pseudomonasaeruginosa Opsonization [21]
 Enterococci Antibody alone not hugely effective, but 

effective in the presence of complement 
[22]
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     It is known that specific antibodies, generated during a T-dependent B-cell 
response, are crucial for protection against influenza. Ineffective influenza-specific 
antibody, as assessed by the Haemagglutination inhibition (HI) test, is associated 
with lowered protection from the disease [ 29 ]. Studies have shown that 25% or 
more of the elderly fail to develop HI titres of a protective level following vac-
cination [ 30 ,  31 ]. In vivo studies in mice have shown that higher levels of B-cells 
and IgG2a antibody confer increased levels of protection [ 32 ]. It has been said that 
an age-related decrease in influenza protection can be solely accounted for by the 
reduced T-cell help available in the diminished elderly T-cell repertoire. However, 
this does not take into account the fact that the CD4+ T-cells themselves may rely 
on fully functioning B-cells for their activation [ 7 ,  10 ].  

   In other areas of humoral immunity the B-cells are even less reliant on T-cells for 
help. Pneumonia is a bacterial infection, caused by a number of different organisms 
(e.g.  Streptococcus pneumoniae  [ 33 ],  Staphylococcus aureus  [ 34 ],  Streptococcus 
pyogenes  [ 35 ]) although  S. pneumoniae  is the major cause [ 33 ]. Immunity against 
 S. pneumoniae  is particularly reliant on a healthy B-cell population. This is because 
the antigenic portion of  S. pneumoniae  is a capsular polysaccharide and a T-inde-
pendent type II (TI-II) antigen. Unlike a T-dependent B-cell response, where the 
maturation of the B-cell antibody relies on T-cell help and therefore any failure to 
respond could be attributed to a failure of T-cells, the TI-II response is independent 
of direct T-cell help. Therefore a failure to protect against  S. pneumoniae  is more 
likely to be a failure ascribable to deficits in the B-cells themselves.  

   In children a reduced pneumococcal response can be explained by a lack of 
marginal zone B-cells in the spleen, where the main TI-II responding B-cells are 
thought to reside. However, older people appear to have a fully functioning splenic 
marginal zone [ 36 ] so the lack of effective pneumococcal protection in the elderly 
still remains a mystery. One good candidate for further study is the IgM response. It 
has been shown, in mice, that the classical complement pathway, partially mediated 
by binding of natural IgM to bacteria, is vital for innate immunity to S. pneumoniae 
[ 3 ]. Human studies have also shown that antibody of the IgM isotype is vital in 
providing efficient protection against S. pneumoniae [ 37 ], although this has been 
mainly attributed to “IgM memory,” with mutated IgM genes. The exact roles and 
relationships between natural antibody, IgM memory and class switched memory in 
the pneumococcal response remain to be determined.  

   The immune response of the elderly to RSV is less well studied than that against 
other pulmonary infections. Recent data shows that the senescence accelerated 
mouse has a severely compromised cellular immune system and produces less 
virus-specific local IgA in response to RSV infection [ 38 ].  

   Although pulmonary infections of the elderly are the most notable, by virtue of 
the fact that they cause the most mortality, there are also significant increases in mor-
bidity and mortality from other infections. Bacterial infections of the skin, urinary 
tract, soft tissue, and gastrointestinal tract are all increased with age [ 1 ]. The exact 
role of the humoral response in this declined protection has yet to be elucidated.  
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2          V accination in the  E lderly  

   Vaccines are an extremely important tool in preventing deaths from infection, and 
since they are routinely administered as part of a normal health care routine they are 
the main source of data on immune responses in man. It has been consistently shown 
that the effectiveness of vaccines is severely diminished in older people. The most 
commonly studied vaccine is that against influenza. The cellular response, i.e. T-cells 
and release of cytokines, macrophages and natural killer cells, is decreased with age 
[ 39 ]. In terms of the humoral response the antibody titre, in the form of IgG, is sig-
nificantly lower [ 39 – 41 ]. While vaccination of the elderly against influenza is widely 
accepted as a valid health strategy to reduce disease incidence, and studies support 
this, [ 42 – 44 ] other studies suggest that influenza vaccination does not significantly 
decrease influenza-related mortality in older people [ 45 ,  46 ]. The age-related reduc-
tion in specific antibody production also occurs in response to other vaccines, such 
as against hepatitis B [ 47 ], tetanus and tick-borne encephalitis (TBE) [ 48 ]. Data on 
some of the less common vaccines is more scarce, but gradually becoming available 
with the advent of an older population which travels more widely. Some travel vac-
cines, such as hepatitis A, also show a reduced specific antibody response [ 49 ], while 
others such as yellow fever seem to show an undiminished antibody response but 
have an increased risk of adverse events in the elderly [ 50 ].  

   A possible explanation for a decrease in specific antibody is that the process of 
affinity maturation is defective. During one study on influenza vaccine it was discov-
ered that an age-related decrease in specific antibody was accompanied by an increase 
in antibodies against double stranded DNA—indicative of self reactive/polyclonal B-
cells [ 51 ]. Polyclonal B-cells are often associated with naive B-cells that have not 
been through the affinity maturation process and are reacting in either a low-affinity 
manner to specific antigen, or in a non-specific manner by virtue of their innate pat-
tern recognition responses. It was this finding that led to the idea that perhaps humoral 
immunity in the older person was better represented by the T-independent response. 
However, as mentioned above, there is a large T-independent component to immune 
protection against  S. pneumoniae  and general protection is decreased with age. Cross-
reactive antibodies certainly appear to be increased in older people treated with the 
polysaccharide pneumococcal vaccine [ 52 ], although the failure of the vaccine to ade-
quately protect against pneumonia [ 53 – 57 ] implies that they are not adequate com-
pensation for the reduction in specific antibody that is also seen [ 52 ].  

3           A utoantibodies and  A ge  

   There is a well-documented shift towards self-reactive antibody production with 
age. One of the most common autoantibody types, frequently associated with dis-
ease, is antinuclear antibodies (ANAs). These have consistently been found to be 
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increased in the old (over 65) in the absence of disease; a prospective study showed 
persistence of these raised levels throughout older life [ 58 ]. The significance of 
this increase has not yet been determined, and attempts to relate these antibodies 
with general levels of disease and frailty have shown no associations. The Swedish 
longitudinal NONA immune study [ 59 ] showed significantly higher ANA levels in 
the oldest old (86–95 years) but found there to be no association nor any correla-
tion to other immune risk factors (e.g. CD4/CD8 T-cell ratio, CMV seropositivity). 
These findings are echoed by a Finnish study, where ANA positivity at the age of 90 
did not show any correlation with survival, or with the levels of serum markers of 
inflammation [ 60 ]. It has even been suggested that an increase in ANA antibodies 
may have beneficial effects by virtue of a possible anti-tumor activity [ 61 ].  

   ANAs are not the only auto-antibodies to increase with age. The study by Xavier 
et al. [ 58 ] also noted an increase in the frequency of anti-ssDNA antibodies, as have 
other studies [ 62 ,  63 ]. Increases in antibodies against many other auto-antigens 
have been reported, for example against cardiolipin, dsDNA and rheumatoid factor, 
[ 62 – 65 ] although, again, there were no associations found with mortality [ 62 ]. The 
Danish study by Andersen-Ranberg et al. [ 65 ] did find a correlation between autoan-
tibodies and comorbidity and disability, although this was only for the organ-specific 
antibodies, indicating that these were more likely a result of age-associated disease.  

   Although the aetiology of Rheumatoid arthritis (RA) is not yet fully elucidated, 
it is an age-related inflammatory autoimmune disorder. Coincidentally, as reported 
above, there is also an increased incidence of rheumatoid factor (RF) with age—
regardless of whether the subject has RA or not [ 62 – 65 ]. There has been a decline 
in incidence of the disease that has been observed over the last 40 years [ 66 ] which 
has been attributed to environmental factors. One possible contributor to this is 
the gradual decrease in the number of smokers. Recent evidence has shown that 
the presence of another auto-antibody, anti-cyclic citrullinated peptide (anti-CCP) 
is associated with smoking and a higher risk of RA [ 67 ]. The successful use of 
therapies such as Rituximab, which utilize an anti-CD20 monoclonal antibody to 
ablate peripheral B-cells, is ample evidence that B-cells play an important part in 
the disease process of RA [ 68 ]. In addition to the obvious mechanism of depleting 
auto-antibody producing cells, there is increasing evidence for a role of B-cells in 
RA as antigen-presenting cells, activating T-cells, and producing and responding 
to cytokines [ 69 ]. A further complication in understanding the role of B-cells is 
the fact that B-cells have recently been shown to be capable of immunosuppres-
sion—including in animals models of arthritis [ 70 ,  71 ].  

4            Immunodysregulation of B-cells in Aging  

   The above observations are all evidence that the humoral immune system is dysreg-
ulated in older people. At first glance it would appear that there is no easily identifi-
able quantitative defect in the humoral immune system with age. However, although 
the range of B-cell numbers, as a percentage of peripheral blood lymphocytes, varies
 greatly between individuals, it has been reported that there is a slight decline in the 
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number of CD19+ B-cells in old age [ 72 – 75 ]. It has also been reported that hav-
ing a higher number of CD19+ B-cells is associated with better survival [ 76 ,  77 ]. 
When CD20 is used as a marker for B-cells no age-related change could be found 
[ 78 ]. The number of antibody molecules circulating in the periphery of older adults 
remains relatively stable [ 79 ,  80 ]. Similarly, studies have been conducted on the 
ratio of different Ig isotypes in the elderly and most show no significant change 
during later life [ 75 ,  81 ,  82 ]; although it has been reported that an increase of the 
mucosal IgA antibody in the serum can be a predictor of mortality [ 83 ]. In general 
the picture is one of a qualitative change in the antibody repertoire rather than a 
quantitative one [ 84 ].  

4.1          Generation of High Affinity Antibodies  

   Since the lack of high affinity antibodies is a key feature of the older immune sys-
tem, and our expertise is in the study of Ig genes, we initially investigated the affin-
ity maturation process. Affinity maturation occurs in the germinal centre (GC) and 
involves the expansion of antigen-specific B-cells, mutation of their Ig genes (result-
ing in altered antibody function), followed by selection of the B-cells producing the 
best antibody [ 85 – 87 ]. Contained within the dynamic microenvironment of the GC 
are B-cells, T-cells, and follicular dendritic cells (FDCs) all in close proximity to 
allow the exchange of costimulatory molecules and cytokine signaling.  

   Following antigenic stimulation, selected B-cells migrate and converge on the 
GC FDCs, making contact with their long processes [ 88 ] and differentiating into 
centroblasts. The FDCs are the stromal cells of the GC and play a key role in regu-
lating the humoral immune respone [ 89 ]. Unlike antigen presenting cells (APCs), 
FDCs present intact antigen–antibody complexes on their cell surface [ 88 ], in the 
form of immune complexes which are highly immunogenic, and assist GC B-cell 
proliferation [ 90 – 92 ]. Proliferating GC B-cells are known as centroblasts. During 
centroblast proliferation, in the dark zone of the GC, hypermutation of the immu-
noglobulin (Ig) genes encoding antibody occurs. The B-cells move into the light 
zone, as centrocytes, and will die through apoptosis unless they receive rescue sig-
nals conditional on efficient recognition of the antigen by the newly formed B-cell 
receptor. Rescue signals are provided by FDCs and T-cells [ 93 ]. The helper T-cells 
in the GC are a particular subset of CD4+ T-cells, expressing CD57. These cells have 
unique characteristics that have yet to be fully elucidated [ 94 ]. Since FDC and T-cell 
help is limiting there is competition between B-cells and therefore selection of those 
B-cells with the highest affinity for antigen occurs. The resulting B-cells can switch 
the class of their antibody, from IgM to IgG/IgA/IgE, and this also requires T-cell 
help. B-cells with high affinity antibody differentiate into either memory B-cells, to 
provide for an efficient recall response, or plasma cells to secrete antibody. We have 
addressed the possible age-related changes in the GC reaction in three main areas: 
proliferation of B-cells, hypermutation of the Ig genes, and selection of high-affin-
ity, antigen-specific, antibodies.  
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4.2          Proliferation  

   A defect in B-cell proliferation would have severe consequences for the GC reaction, 
since the loss of cells due to deleterious mutations acquired by hypermutation is 
extremely large and the pool of B-cells required to counter this is therefore also 
large. For some cell types proliferating cells can reach replicative senescence—
where the telomeres at the ends of the chromosomes erode at each division and 
therefore there is a limit to the amount of proliferation one cell line can undergo set 
by the length of the telomere [ 95 ]. It has been shown that telomere length decreases 
with age in T-cells, and to a lesser extent in B-cells [ 96 ,  97 ]. However, we do not 
believe that the proliferative capacity of B-cells in the GC is impaired in this way as 
a result of old age. Telomerase, the enzyme that elongates telomeres, is upregulated 
in the GC, being high in centroblasts and higher still in centrocytes. This results in 
B-cells leaving the GC for the periphery with substantially longer telomeres than 
when they first entered, up to 4 kb longer as determined by Southern blotting [ 98 ]. 
Further to this, memory B-cells have telomeres on average 2 bp longer than naïve 
B-cells [ 97 ].  

   There has been much debate as to whether the overall size and number of GCs 
decrease with age. Several studies have pointed to this though they have all been 
conducted in rodent models [ 99 – 101 ]. Immunohistochemical studies measuring the 
size and overall number of B-cell follicles in human spleen, Peyer’s patches [ 36 ] 
and lymph nodes [ 78 ] have not shown any age-related difference. However, there 
have been two studies of human tonsil, performed by flow cytometry rather than 
measuring individual GC sizes, which have both reported a decrease in GC B-cells 
with age [ 99 ,  102 ]. Tissue specific differences may account for these discrepancies 
and further work would be needed to clarify the issue.  

4.3       Hypermutation of B-Cells  

   As outlined above, somatic hypermutation occurs following activation of the B-cells 
by antigen and entry into the GC reaction. The mutations introduced are generally 
point mutations, though some insertions and deletions may occur, and tend to be in 
areas containing hotspot motifs [ 103 – 105 ].  

   There is conflicting opinion regarding whether there is a quantitative change in 
hypermutation in the ageing individual. Reports have indicated no change [ 106 –
 108 ], a decrease [ 109 ,  110 ] or increase [ 99 ,  111 ,  112 ] in mutation with increasing 
age. The fact that these studies do not agree is hardly surprising as they do not take 
into account patient health history i.e. prior immune responses. The tissue origin of 
samples can also make a significant difference to the number of mutations observed, 
for example we have shown consistently that B-cells of mucosal origin have a higher 
level of mutations than those from, say, spleen or blood [ 113 ].  

   We addressed these issues by attempting to quantitate the frequency of hypermu-
tation in individual B-cell GC expansions. We microdissected histologically-defined 
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areas of GC from the spleen and Peyer’s patch follicles of young and old humans so 
that only the mutations in that particular GC reaction were counted [ 114 ,  115 ]. Indi-
vidual B-cell expansions were identified by their Ig gene characteristics; by identify-
ing Ig gene sequences that have the same CDR3 region we can identify related B-cell 
clones ( Fig. 2 ,  see  later for a more detailed explanation of Ig gene rearrangement). 
Furthermore, we can draw a lineage tree of individual B-cell clonal expansions ( Fig. 
3 ) by analyzing the order of accumulation of mutations in the hypermutation process 
[ 114 ,  115 ]. In this way we look at the number of mutations that occurred within that 
particular clonal expansion, and can compare lineage trees from subjects of different 
ages. We have shown that there was no difference in the frequency of mutation occur-
ring in human GC reactions in the spleen and Peyer’s patch with age.           

4.4          Selection of High Affinity B-Cells and Class Switching  

   Lineage tree construction can furnish information on the affinity maturation dynam-
ics by measurement of lineage tree shape parameters. The shape of the lineage tree 
can help indicate the degree of selection that has taken place. For instance, a ‘pruned’ 
tree (few branches) indicates high selection pressure whereas a ‘bushy’ tree (many 
branches), indicates less selection ( Fig. 3 ). Since a failure of adequate selection 

Fig. 2 Immunoglobulin heavy chain gene structure and the complementarity determining region 
(CDR) 3 region. The rearranged immunoglobulin gene contains 3 CDR regions (that form the anti-
gen binding site) and 3 framework (Fw) regions (that provide structural integrity). During germline 
Ig gene rearrangement, a variable (V) region is joined to a diversity (D) region and a joining (J) 
region. During the rearrangement process, random N-nucleotides (N) are inserted into the junc-
tions to form a unique CDR3 sequence

Fw1 CDR1 Fw2 CDR2 Fw3 D J

CDR3 region 
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could result in the production of a population of cells with low affinity, such as is 
seen in the elderly, we investigated lineage trees from GC reactions in samples from 
patients of different ages for selection differences. We found a significant decrease 
in the degree of selection pressure acting on GC B-cells in the Peyer’s patch of the 
gut (but not the spleen). These data were confirmed by further analysis of the dis-
tribution of mutations within the Ig gene. A high level of replacement mutations in 
the complementarity-determining areas of the gene (relative to the more conserved 
Framework areas,  Fig. 2 ) is expected in a selected Ig gene, and is indeed seen in the 
younger Peyer’s patch GC samples but not the old [ 114 ,  115 ].  

   An explanation for these apparent changes in selection is still elusive, but several 
factors could contribute. It may be solely a failure of the quality of B-cells in terms 
of specificity or signaling function. However, since FDCs and T-cells are important 
in the selection process they are also good candidates to investigate for the failure 
of selection pressure.  

   There is a well-documented age-related decline in thymus size and a reduced 
T-cell output. Homeostatic regulation in the face of reduced levels of naïve T-cells 
causes skewing of the T-cell repertoire which may reduce the availability of appro-
priate T-cell help for B-cells. Immunohistochemically stained human tissue sections 
have illustrated changes in T-cell populations in B-cell follicles [ 36 , 102 ]. The CD8+ 
T-cell numbers decline with age resulting in an increased CD4+/CD8+ ratio. Since 
it is CD4+ cells that are important in the affinity maturation process the significance 
of these findings is not known. There is, as yet, no information on whether the GC-
specific T helper cells (CD4+ CD57+) are changed with age. CD40 ligand on GC 

Fig. 3 Representations of lineage trees from clonal expansions of B-cells in the germinal centre 
reaction. Each node (round) represents one mutation away from the germline sequence (square). 
The shape of the lineage tree reflects the degree of selection acting on the clonal expansion as 
shown. The relative frequency of mutation in each lineage tree is compared by comparing the 
distances between the top and bottom of the lineage trees (M)

Less selection.  More
“bushy” appearance 

More selection.
“pruned” appearance  

M
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T-cells interacts with CD40 expressed on B-cells and this relationship is critical to 
T-cell dependent activation of B-cell proliferation, memory formation and class-
switch recombination in the GC. Aged CD4 T-cells in mice have shown reduced 
CD40L expression [ 116 ] and in these animals there is a decrease in IgG levels 
reminiscent of the decreased IgG production in response to influenza vaccination 
in humans [ 40 , 41 ].  

   It has been suggested that the function of FDCs declines with increasing age 
[ 101 ,  117 ,  118 ]. Defects may be intrinsic to the FDCs themselves, or may be a fail-
ure of the FDC-B-cell interactions. FDCs have Fc receptors (FcR) and complement 
receptors 1 and 2 (CR1 and CR2) on their surface which retain antigen as immune 
complexes [ 119 ], and these interactions are crucial for the signaling and activation 
of antigen-specific B-cells. The immune complexes coat the FDCs to form bodies 
known as iccosomes. Aged FDCs have been reported to produce few to none of 
these iccosomes [ 117 ]. This may be due to the apparent down-regulation of FDC-
FcγRII expression by FDC-bound immune complexes demonstrated in the GCs of 
old mice [ 120 ]. The resulting decrease in immune complex retention and presenta-
tion to B-cells would lead to lowered B-cell activation in the GC.  

   Although there is clearly a role for accessory cell failure in the age-related 
changes in GC responses, changes intrinsic to the B-cell itself are also responsible. 
The key enzyme in affinity maturation of B-cells is Activation Induced Cytidine 
Deaminase (AID) which is directly responsible for both hypermutation of Ig genes 
and class switching. Class switch recombination, from IgM to either IgG, IgA or 
IgE isotypes, creates antibodies with the same antigen specificity but different effec-
tor functions (e.g. complement fixing, secretory, opsonizing). AID expression is 
regulated by the E2A-encoded transcription factor E47. It has been shown, in mice, 
that E47 and AID expression is reduced in old B-cells [ 121 ], and that this reduction 
is due to a failure in the CD40 signaling pathway (indicative of T-dependent inter-
actions) and the BAFF signaling pathway (indicative of T-independent reactions) 
[ 122 ]. Preliminary results also suggested that there was a similar decrease of E47 
and AID in human peripheral blood B-cells [ 121 ].  

4.5       Diversity of the B-Cell Repertoire  

   Evidence from our lineage tree studies on individual GCs indicated that in some 
instances the founder B-cells of a GC may have already been mutated. This occurred 
more often in the older samples and led us to postulate that B-cells which have pre-
viously been through the affinity maturation process might be being re-used in sub-
sequent immune responses. If the starting population of B-cells has already been 
modified in response to a different antigen, then its ability to effectively change to 
accommodate a new antigen may be compromised. This could partially explain the 
compromized selection noted above. Naive B-cells are characterized by their IgD 
expression, and memory B-cells are characterized by having mutated Ig genes and 
expressing CD27 on their surface. It has been shown in mice that the older B-cell 
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population is made up of a greater number of B-cells carrying mutated Ig genes—i.e. 
memory B-cells [ 123 ]. Observations of an increased number of CD27+ B-cells in 
humans concur with this [ 124 , 125 ]. A change in serum IgD, which may also reflect 
an increase in the proportion of IgD-, memory, B-cells, has also been noted [ 84 ]. It is 
now well established, in mice, that naïve B-cell output into the periphery decreases 
with age [see p. 395 Scholz et al.]. There is, as yet, no evidence that human bone mar-
row B-cell output decreases with age, although it is known that children reconstitute 
B-cell function after bone marrow transplants more rapidly than adults do [ 126 ]. 
Therefore, if the overall number of B-cells is not drastically reduced, and there are 
less naive cells being produced, an increased proportion of memory B-cells is a logi-
cal conclusion [ 127 ]. Since B-cell memory appears to be maintained by proliferation 
[ 125 ] it is possible that proliferating memory B-cell clones make up for any shortfall 
in immunological space caused by lower naive B-cell input. However, a decrease in 
the number of memory B-cells with age has also been reported [ 128 ], so it would 
seem that this issue is still not completely resolved.  

   Our postulation, that GC reactions in the older samples were using “second hand” 
B-cells, lead us to further investigate B-cell diversity. A diverse and functional rep-
ertoire of antibodies is essential to produce an effective humoral immune response. 
If the repertoire of B and plasma cells is reduced, then the ability to recognize for-
eign antigen is severely compromised. B-cell diversity and antibody specificity are 
defined during the early stages of B lymphocyte differentiation, where the Ig genes 
are formed. The remarkable way in which gene segment rearrangement forms a 
complete Ig gene from different segments ( Fig. 2 ) results in millions of different B-
cells, each with a unique Ig sequence capable of producing antibody with distinctive 
specificity. Briefly, the Ig molecule consists of both heavy and light chains. There 
are three types of gene segments, variable (V), diversity (D, heavy chain only) and 
joining (J). The segments are randomly recombined to generate a V(D)J for the 
heavy chain ( Fig. 2 ) or VJ for the light chain. Thus a germline repertoire of just 
165 different V,D or J genes can result in a possible 8,116 different gene rearrange-
ments. Combination of the heavy and light chains results in a possible 2,643,840 
combinations. The region where the junctions join together is further diversified 
by an incomplete joining process. Addition and deletion of nucleotides by terminal 
deoxynucleotidy transferase (TdT) activity at these joints leads to junctional diver-
sity. The VDJ joining region of the heavy chain, the CDR3 region, is so highly 
variable that it can be considered to be a fingerprint for that particular gene and the 
B-cell (and its progeny) that carries it.  

   There have been a number of studies which have looked for an age-related change 
in diversity by investigating the gene segment usage in Ig genes. The studies vary 
in design (looking at specific gene families only, or at specific isotypes, or only in 
response to a particular challenge) which may account for some of the discrepancies 
between them. The earliest report is probably the most comprehensive in terms of 
VH repertoire, although limited in the number of different subjects used (five old 
and one young) [ 106 ]. They showed an increase in usage of certain IGHV genes, 
in particular of the IGHV4 family [ 106 ]. However, this has since been contradicted. 
In another sequencing-based study of the IGHV4 repertoire in elderly human tonsil 
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Kolar et al. did not find any change [ 99 ]. The IGHV repertoire has also been analyzed, 
in a small group of individuals, using a family-specific PCR-based approach. This 
showed consistency in the IGHV repertoire between samples of the same individual 
at time points 10 years apart [ 107 ]. IGHV family specific studies alone may not pick 
up functionally significant differences in the repertoire. Although the IGHV3 family 
usage in response to pneumococcal polysaccharide vaccination showed no overall 
difference between the elderly and young adults, there was a significant loss of focus 
in the elderly response as evidenced by a loss of oligoclonality [ 52 ]. Furthermore, in 
the same experiments, a difference in Ig light chain usage was observed [ 129 ].  

   Other studies of B-cell diversity have concentrated on the CDR3 region. This, being 
the most variable region of the gene and having importance in antigen binding, has 
traditionally been an area used to define monoclonality and oligoclonality in pathology 
[ 130 ]. However, due to the cumbersome nature of sequencing and identifying V-D-J 
regions, the numbers of patients studied have generally been low, or limited to par-
ticular subsets of genes. For example, one study by Xue et al. [ 131 ] looked at D and J 

Fig. 4 Three different spectratype profiles. All are from old individuals (>88 years). Black bars 
represent the percentage of cdr3 regions of each different length. The red line represents the mean 
distribution for the young controls. The blue line shows the best fit for the individual sample data 
shown. A shows some B-cell repertoire restriction, B shows normally distributed cdr3 lengths, 
C shows an individual with very restricted B-cell repertoire. Approximately one-third of the old 
blood samples analyzed show restricted IgH repertoire along the lines of the spectratype in C

a

P
er

ce
nt

20

0

5

10

15

20

25

30

30 40 50

CDR3 length
60 70

c

b

P
er

ce
nt

20

0

5

10

15

20

25

30

30 40 50

CDR3 length
60 70

P
er

ce
nt

20

0

5

10

15

20

25

30

30 40 50

CDR3 length
60 70



428 K. L. Gibson and D. K. Dunn-Walters

region usage as determined by sequencing and found no difference between younger 
and older samples. However, they had only seven young and seven old samples and 
only studied the CDR3 regions of IGHV5 family IgM genes. A more tractable method 
of looking at CDR3 diversity was also employed by them, using PCR to amplify all 
CDR3 regions and look at the spread of different sized fragments. This method of spec-
tratyping has also been used in the analysis of T-cell repertoires [ 132 – 134 ] and enables 
the study of a much greater number of samples. We performed B-cell spectratyping on 
samples from peripheral blood of 33 old and 24 young subjects. The old samples are 
from the Swedish NONA Immune Longitudinal Study [ 135 ], from patients over 86 
years of age. Preliminary data has shown that the B-cell repertoire is indeed restricted 
in a subgroup (approximately one third) of older people ( Fig. 4 ).     

4.6          Association of Monoclonal B-Cell Expansions With Age  

   Skewed B-cell spectratypes of the kind we have observed may have a number of 
aetiologies. It may indeed be true that a decreasing naïve B-cell output in the face of 
homeostatic mechanisms to keep the total number of B-cells the same has resulted 
in the repertoire being increasingly made up of antigen-experienced expansions of 
cells. Alternatively there may be pathological monoclonal expansions of B-cells, such 
as are seen in leukemia or lymphoma. Usually, these are diagnosed conditions, and 
individuals with this sort of medical history are excluded from studies on B-cell diver-
sity. However, it might be possible that a pre-clinical condition exists in some people. 
An increase in monoclonal expansions of B-cells, both of CD5+ and CD5- pheno-
type, has previously been reported in older people [ 136 ]. Monoclonal gammopathy 
of undetermined significance (MGUS) is a predominant plasma-cell disorder [ 137 ] 
and has been shown to increase with age in both humans [ 137 , 138 ] and mouse [ 139 ]. 
It is characterized by an increase in presence of serum monoclonal Ig. MGUS is not 
found in young subjects, is prevalent in around 2% of over 50s and has been reported 
to vary in the elderly from 11% to 38% [ 138 , 140 ]. There is an association between 
MGUS and onset of multiple myeloma or related malignant condition with average 
risk assessed at about 1% per year [ 141 ]. Questions still remain as to what signifi-
cance these populations have in the aging human. Obviously there is the possibility 
that MGUS accounts for some of the observed repertoire restriction with increasing 
age. However, our data does not suggest a high prevalence of such monoclonal expan-
sions, and the restricted repertoires often have a more oligoclonal appearance.  

5            Summary  

   We have outlined the different factors that are involved in making and maintaining 
an effective humoral immune response and how these may be affected by increasing 
age. It is clear that the ability to produce high affinity antibody with age is diminished 
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but there are many possible explanations as to why this might be. We have identified 
the most likely areas as being a decrease in the ability to select B-cells producing high 
affinity antibodies, and a decrease in the available repertoire in the first instance.  

   Many of the studies on B-cells in old age are carried out in mice and the data 
in humans is sadly lacking. Hopefully this situation will change in the future and 
maybe the advent of the use of B-cell depletion therapies for the treatment of autoim-
mune disease can help provide more human data on B-cell dynamics in individuals 
of different ages.  
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                   Abstract:       The immune response weakens during aging. Especially, the altered 
functions of the lymphocytes of the adaptive immune system have been extensively 
studied. Aged persons > 65 years display a predisposition to inflammation and infec-
tion combined with an increase in morbidity and mortality than younger individu-
als. In the past few years it has been discovered that certain functions of the innate 
immune system, which build the first line of defense against pathogenic microor-
ganisms, are altered with aging. Among the cells of the innate immune system, 
neutrophilic granulocytes (polymorphonuclear leukocytes, PMN, neutrophils) elim-
inate invaded bacteria and fungi and play an accepted important role in regulation of 
the immune response. In vitro studies demonstrate that neutrophilic functions such 
as phagocytosis, generation of reactive oxygen species (ROS), intracellular kill-
ing, degranulation, and possibly chemotaxis are changed in elderly persons whereas 
the number of circulating neutrophils are unaltered compared to young persons. 
However, the reported data of different investigators regarding the above-mentioned 
functions are sometimes controversial. This may result from the use of different 
isolation methods of neutrophils, the degree of contaminating cells and preactiva-
tion of neutrophils during isolation. It could be shown that most of the adhesion 
surface molecules and receptors of neutrophils are not impaired in function and 
expression with age. But there is increasing evidence that age-related changes affect 
receptor-dependent signal transduction and membrane content and fluidity, which 
in turn lead to a decline in function and in inhibition of apoptosis. Further research 
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has to be done to identify the molecular mechanisms that are responsible for the 
age-related modulations in human neutrophils.  
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    1      Introduction  

  Elderly persons are more susceptible to microbial infections with an increase in mor-
bidity and mortality due to declining immune status, termed immune senescence. In 
general, age-related changes include a decreased response to vaccination, increased 
incidence of inflammatory and autoimmune diseases and cancer. There are many 
efforts to clear up the molecular and cellular changes surrounding immune system 
dysfunctions. However, other factors such as nutrition, fitness, social components 
and diseases influence immunity of elderly persons making it difficult to detect sin-
gle, age-dependent changes. To exclude those factors, the SENIEUR protocol was 
created to clearly separate age-related from nonage-related alterations of the immune 
system [ 1 ,  2 ]. This protocol sets the criteria in order for a healthy elderly person 
to participate in immunogerontological studies. The effects of aging are well-docu-
mented for the adaptive immune system, e.g. the alterations in T-cell count, pheno-
type, and function as well as reduced ability of B-cells to synthesize high affinity 
antibodies. But in the meantime, the importance of the innate immune system in 
fighting invading microorganisms and the cooperation with the adaptive immune 
system to ensure optimal immune response has become more widely accepted. Neu-
trophils display alterations of function, surface molecule expression, apoptosis and 
signal transduction with aging. These changes and their effect on the attenuation of 
neutrophil functions will be summarized and discussed by reviewing the literature.  

    2      Neutrophils  

  Polymorphonuclear leukocytes (PMN or neutrophils) are key effector cells of the 
innate immune system. They are the first cells to migrate rapidly to sites of infection 
and recognize and engulf microorganisms by phagocytosis. Neutrophils destroy and 
degrade invaded pathogenic bacteria and fungi via the release of reactive oxygen 
species and antimicrobial and proteolytic granule proteins, which are delivered to 
the phagosomes and to the extracellular environment. Additionally, neutrophils pro-
duce chemokines and cytokines that recruit and regulate the inflammatory response 
of macrophages, T-cells and neutrophils themselves. Finally, activated neutrophils 
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initiate an apoptotic programme where they are digested by macrophages without 
causing tissue damage and necrosis and therefore support the resolution of the 
inflammatory response [ 3 ].  

  Neutrophils are short-lived cells and die by apoptosis spontaneously within 
12–24 h of their release from the bone marrow. The adult bone marrow has to pro-
duce 1−2 x 10 11  neutrophils per day to sustain a sufficient cell number to efficiently 
fight infections [ 4 ]. This continuous production is controlled by granulocyte col-
ony-stimulating factor (G-CSF), granulocyte/macrophage colony-stimulating fac-
tor (GM-CSF) and interleukin-3 (IL-3). To maintain the function of neutrophils 
summoned to infected tissue, “survival” factors such as lipopolysaccharide (LPS), 
hypoxic environment, complement and pro-inflammatory cytokines counteract 
apoptotic programs in neutrophils ( Fig. 1 ) [ 5 – 8 ]. To fulfill their tasks in the defense 
against bacterial and fungal infections specific functions are regulated by specific 
receptors. These receptors are formyl-methionyl-leucyl peptide (fMLP), GM-CSF, 
complement, IgG Fc and interleukin-8 (IL-8) receptors [ 9 ]. Additionally, pattern 
recognition receptors, e.g. toll-like receptors (TLR), binding conserved molecular 
structures of most microorganisms, participate in the inflammatory response of 
PMN and other cells of the innate and adaptive immune system [ 10 ].     

  Historically, the role of neutrophils and their immune response has been under-
estimated and their function has been reduced to being only phagocytic active cells. 
In the past few years the views on the ability of neutrophils to bridge and regulate 
innate and adaptive immune responses have been shifted [ 11 ]. Using an isolation 
method to acquire highly purified human neutrophils without preactivation it was 
shown that neutrophils synthesize only a limited pattern of cytokines released, mainly 
IL-8, after stimulation [ 12 ,  13 ]. In addition, neutrophils produce large amounts of 
the antiinflammatory interleukin-1 receptor antagonist (IL-1RA) after stimulation 
or after high accumulation of neutrophils [ 14 ,  15 ]. Interestingly, neutrophils do not 
synthesize proinflammatory cytokines such as interleukin-1ß (IL-1ß), tumor necrosis 
factor-α (TNF- α) and interleukin-6 (IL-6) as described by others [ 16 ], which may 
be explained as a result of monocyte contaminations in the PMN isolates. Therefore, 
neutrophils not only recruit other immune cells to sites of infection but are also able to 
create an antiinflammatory environment that helps resolve inflammation.  

    3      Neutrophils and Aging 

It is well-known that aging results in a predisposition to inflammation as well as to infec-
tions, which is associated with higher rates of mortality and morbidity [17, 18].

 One might assume that impaired defense against invading pathogens such as fungi 
and bacteria is accompanied by a reduced amount of neutrophils as seen within the 
T- and B-cell system of elderly persons. But there are no alterations in the number of 
precursor cells in the bone marrow or of circulating neutrophils [ 19 ,  20 ]. Moreover, 
neutrophils have been described to be significantly increased in the aged [ 21 ]. Neu-
trophil precursor cells show a reduced proliferative response to G-CSF only ( Fig. 1 ), 
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whereas responses to GM-CSF and IL-3 are not affected [ 19 ]. Elderly persons also 
display a normal neutrophilia during infection [ 22 ], indicating that GM-CSF and IL-3 
mediate sufficient neutrophil production. However, loss of apoptotic rescue and a nor-
mal recruitment of neutrophils by G-CSF during infection might promote an impaired 
immune response with age ( Fig. 1 ). In the case of severe chronic infection, neutrope-
nia can be observed in the elderly, suggesting that persistent infection in the elderly 
impairs neutrophil recruitment [ 20 ].  

    4      Function  

  Although neutrophil count is elevated and adherence to endothelia is unchanged in 
elderly persons, impaired neutrophilic functions can be seen including a decline in 
phagocytic capacity in healthy elderly individuals accompanied by reduced intra-
cellular killing [ 22 – 24 ]. This decline in function may contribute to increased sus-
ceptibility to bacterial infections in the elderly population. In contrast, aged persons 
fulfilling the SENIEUR criteria who also exhibit elevated numbers of granulocytes 
are functionally normal [ 25 – 28 ].  

  Studies that analyze phagocytosis of opsonized bacteria or yeast and opsonized 
zymosan by neutrophils have all demonstrated a significant impairment in phago-
cytic function in the elderly [ 29 – 33 ]. Additionally, the antibody-dependent phago-
cytosis mediated by Fc-receptors is also decreased [ 33 ]. Interestingly, the functions 
of these receptors are not changed, immunoglobulin and complement levels are nor-
mal and serum from elderly donors opsonize bacteria normally so that phagocytosis 
itself is impaired [ 32 – 34 ]. Butcher et al. [ 33 ] have shown that one of the receptors 
involved in recognizing antibodies on the surface of bacteria, CD16 (FcγRIII), is 
significantly reduced with age and may contribute to the observed decline in neu-
trophil phagocytic function with age [ 33 ].  

  After phagocytosis of pathogenic microorganisms, the phagosomes fuse with lyso-
somes containing bactericidal substances and build the phagolysosome. Therein the 
pathogen will be intracellularly killed. Besides other destructive components con-
tained within the phagolysosome, intracellular killing is dependent on the generation 
of ROS, termed respiratory burst. This respiratory burst causes production of superox-
ide, hydrogen peroxide, and hypochloric acid, which are all toxic to microbes. Contra-
dictory findings describing the respiratory burst after fMLP stimulation in neutrophils 
of the elderly have been reported. Some groups determined decreased respiratory burst 
activity after either fMLP [ 35 – 38 ], GM-CSF, or LPS stimulation [ 39 ,  40 ]. Wenisch 
et al. [ 32 ] showed a significant reduction in generation of ROS after stimulation with 

Fig. 1 Recruitment and apoptosis of neutrophils during infection 
a) After phagocytosis of invading microorganisms the apoptosis of neutrophils in young individu-
als is blocked via the release of survival factors. Additionally, G-CSF induces the release of a large 
number of neutrophils from the bone marrow leading to physiological neutrophil leukocytosis. 
b) In elderly persons the inhibition of apoptosis of neutrophils is impaired and the recruitment 
of neutrophils from the bone marrow is not enhanced. This might result in an exhaustion of neu-
trophils and consequently lead to a reduced immune response with age.
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 Staphylococcus aureus  ( S. aureus ) in contrast to no reduction after stimulation with 
 Escherichia coli . These results are in concordance with the reported reduced ability 
of elderly to fight infections caused by gram-positive bacteria [ 41 ], since  S. aureus  
frequently causes postoperative sepsis in the elderly.  

  Others studies using SENIEUR selected persons could not detect a difference in 
respiratory burst compared to younger persons even after stimulation with fMLP [ 22 , 
 23 ]. The application of different stimuli led to various results, based on the assump-
tion that distinct pathways of neutrophilic activation are involved. An early report 
by Tortorella et al. [ 42 ] showed that signal pathways may be impaired. Neutrophils 
obtained from elderly humans and stimulated with GM-CSF displayed a significant 
reduction in phosphorylated ERK1/2 levels and an even larger decrease in ERK1/2 
activation. No changes in GM-CSF-induced p38 MAPK phosphorylation were 
observed [ 42 ]. This coincides with Larbi and colleagues reporting that p38 signal-
ing is not involved in GM-CSF delayed apoptosis in any age-groups [ 43 ]. There are 
few reports about intracellular killing of fungi and bacteria in elderly people. They 
described that the capability of stimulated and unstimulated neutrophils to destroy 
 Candida albicans  is reduced by 10–50% in the elderly, and  E. coli  killing is 44% 
lower than that of young persons [ 39 ,  44 ]. The reason for impaired intracellular kill-
ing in neutrophils of the elderly is not clear yet. Although Piazzolla postulated that 
cytoskeleton affecting compounds are responsible for the alteration of fMLP stimu-
lated superoxide generation [ 45 ], this does not illuminate the selective discrimination 
of one stimulant against the other. It is possible that triggering various signal trans-
duction pathways after recognition of the pathogen and consequent activation of the 
neutrophil are responsible for an impaired defense towards one pathogen whereas the 
response to another remains unaltered in the elderly.  

  Neutrophils respond to various chemotactic products released either by the host 
or by the invading organism [ 46 ,  47 ]. Chemotaxis results from the initial contact and 
adhesion of PMN to endothelial cells through cell adhesion molecules, followed by 
migration through the endothelium following a chemotactic gradient to inflamed sites. 
Some investigators reported that chemotaxis remains largely unaltered in the elderly 
[ 34 ] or at least display a normal reaction after stimulation with fMLP [ 22 ,  23 ]. Other 
research groups found impaired chemotaxis when using other chemotactic substances 
and complement [ 32 ,  48 ,  49 ]. The consequence of the latter is that a fast recruitment 
to sites of infection is functionally restricted. That might explain the occurrence of 
severe wound infections by elderly persons since small numbers of pathogens can-
not be efficiently eliminated. Corberand et al. [ 50 ] reported significantly decreased 
chemotaxis in people over the age of 80 years, and no significant difference in 60- 
to 70-year-old compared with young persons. Curiously, Niwa et al. [ 49 ] presented 
contrary results. They found a correlation between 60- and 70 year-old volunteers 
with diminished PMN chemotaxis and respiratory burst and mortality 7 years after 
the initial study. No difference between people older than 80 years old and the young 
could be seen. The explanation they offer was that there was no difference between 
the over-80-year-old persons and the younger ones because individuals with the more 
suitable neutrophils survived into the oldest age group [ 49 ,  50 ]. Similar data have 
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been obtained for degranulation and superoxide production in response to stimulants 
such as fMLP [ 31 ,  38 ].  

    5      Apoptosis  

  Apoptosis is involved not only in differentiation, development of tissue and home-
ostasis, but also in neurogenerative and immune diseases and cancer. Neutrophils 
display a fast apoptotic rate in vitro as well as in vivo. Apoptosis has to be well-bal-
anced to ensure their survival and production; if the balance is shifted, the risk of 
chronic inflammatory diseases is enhanced.    

The regulation of apoptosis of neutrophils is important to maintain longer sur-
vival in inflamed tissue or the resolution of inflammation. Without stimulation, the 
susceptibility of neutrophils to apoptosis is either slightly increased in the elderly or 
unaffected by aging [ 51 – 53 ].  

  It has been shown that the functions and the rescue from apoptosis by survival 
factors G-CSF, GM-CSF, IL-2 and LPS of PMN diminish with aging. In compari-
son to younger persons only GM-CSF alters apoptotic neutrophils slightly in the 
elderly [ 53 ]. Increased apoptotic rates of neutrophils at the site of infection might 
cause decreased bactericidal function ( Fig. 1 ). DiLorenzo and coworkers reported 
a significant age-related decrease of formation of O 2-  and chemotaxis whereas no 
significant correlation between age and the expression of the death receptor CD95 
(APO1, Fas) on the granulocyte membrane could be detected. The authors suggest 
that an increase of CD95-mediated apoptosis of neutrophils might play a minor role 
in the impairment of neutrophilic function [ 54 ]. Fulop et al. [ 55 ,  56 ] investigated the 
role of antiapoptotic Mcl1 and pro-apoptotic Bax in decreased apoptosis inhibition 
in PMN of the elderly. The authors found that the expression of Bax was unchanged 
in elderly and young persons; also treatment with GM-CSF could not modulate 
the Bax expression. Similar results were obtained by examining Mcl1, which was 
upregulated after GM-CSF stimulation in young persons, whereas in the elderly no 
difference was found between stimulation and spontaneous apoptosis. By compar-
ing the Bax/Mcl1 ratio after GM-CSF stimulation in younger and aged persons 
there was only a slight difference in the Bax/Mcl1 ratio in the elderly, whereas Mcl1 
expression was increased relative to Bax in neutrophils from younger individuals. 
These findings indicate an important role of Bax and Mcl1 in the survival of neu-
trophils mediated by GM-CSF. The Janus tyrosine kinase (Jak)2-signal transducer 
and activator of transcription (Stat)5 signal transduction pathway is also modulated 
in elderly persons [ 44 ,  56 ]. Since Jak2 is related to the expression of antiapoptotic 
Bcl-2 there might be a possible link between Jak2 and Mcl1 being involved in the 
decreased rescue of neutrophils from apoptosis ( Fig. 2 ) [ 56 ]. Larbi et al. [ 43 ] pre-
sented evidence that a modulation in the p42/p44 (ERK1/2) mitogen activated pro-
tein kinase (MAPK) activation occurs in PMN of elderly subjects under GM-CSF 
stimulation and is in part responsible for the decreased apoptotic decline of PMN 
in the elderly. This might be the reason why GM-CSF was not able to down-regu-
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late caspase-3 activation in neutrophils of elderly persons. Interestingly, the authors 
observed that GM-CSF changed the proapoptotic phenotype to an antiapoptotic 
phenotype by alteration of the bcl-2 family members Bax and Bcl-xL in young 
neutrophils in an MAPK independent way whereas this could not be seen in aged 
neutrophils [ 43 ]. Taken together, these modulations might be responsible for the 
creation of a proapoptotic environment and could explain the increased incidence of 
infections in the elderly ( Figs. 1 ,  2 ).     

    6   Signal Transduction  

  Activation of the fMLP receptor via phospholipase C (PLC) leads to the produc-
tion of diacylglycerol (DAG) and inositolphosphate 3 (IP3), the latter initiates the 
enhancement of intracellular Ca 2+ . DAG induces the membrane translocation of pro-
tein kinase C (PKC) and phosphorylation of MAPK family members. Intracellular 
Ca 2+  is decreased in stimulated neutrophils from elderly persons ( Fig. 2 ), suggesting 
that there is an impairment in Ca 2+  flux during cell signaling [ 53 ,  56 – 59 ]. Interest-
ingly, resting neutrophils of elderly subjects show an enhanced level of intracel-

Fig. 2 Signaling in neutrophils of the elderly
Age-related impairment in intracellular signaling after binding of the appropriate ligands to their 
receptors leading to altered functions of neutrophils. Question marks display defects in different 
signal pathways associated with age (modified and adapted from Fulop et al. [56]). PLC, phos-
pholipase C; DAG, diacylglycerol; IP3, inositol triphosphate; MEK, MAPK (mitogen-activated 
protein kinase)/ERK kinase; PKC, protein kinase C.
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lular Ca 2+  [ 32 ,  57 ,  60 ]. Preactivation, modulation of the aged plasma membrane 
followed by altered receptor and adapter protein linkage and defects in the early 
phase of signal transduction might lead to the impairment of Ca 2+  mobilization of 
aged neutrophils after fMLP stimulation. By investigating the impaired Ca 2+  mobi-
lization in aged neutrophils, Klut et al. [ 61 ] found heterogeneity of the examined 
neutrophils concerning time and magnitude of the response. A reduced number of 
neutrophils in the elderly were able to generate an effective reaction, hinting at a 
possible subpopulation [ 61 ].  

  After fMLP stimulation, PKC might also activate the p38 signal pathway, 
which is involved in regulating gene transcription, chemotaxis and adhesion. The 
ERK1/2 signal pathway is also triggered after fMLP stimulation playing a role 
in adhesion and respiratory burst activity. Defects in the signal cascades of both 
pathways and the decrease in activation and phosphorylation levels of p38 and 
ERK1/2 MAPKs are suggested to affect impaired neutrophilic functions in the 
elderly ( Fig. 2 ) [ 56 ].  

  GM-CSF is able to activate the JAK/STAT pathway, the Ras-Raf-1-MEK-ERK1/2 
pathway and phosphatidyl-inositol 3 kinase (PI-3K) triggered signaling [ 56 ]. Inves-
tigating the role of protein tyrosine phosphatases (PTP), especially Src homology 
domain-containing protein tyrosine phosphatase-1 (SHP-1), Fortin et al. [ 62 ] sug-
gested a differential effect of GM-CSF on phosphatase activity in modulating neu-
trophil functions with aging. SHP-1 is a negative regulator of signal transduction 
and can negatively regulate Src kinases, such as the Jak or Lyn kinase, elicited by 
GM-CSF in PMN. When recruited to the plasma membrane and activated, SHP-1 
dephosphorylates proteins activated by receptors, and inhibits cell activation. The 
authors could show that SHP-1 phosphatase activity cannot be down-regulated after 
short stimulation with GM-CSF in the neutrophils of the elderly persons in contrast 
to neutrophils of young. In lipid rafts from neutrophils of elderly, SHP-1 is continu-
ously present, whereas in the neutrophils of young donors, SHP-1 is rapidly dissoci-
ated after stimulation by GM-CSF and is recruited back during a longer period of 
stimulation. In contrast to younger persons, SHP-1 is constantly recruited to Lyn, 
which cannot be relieved by GM-CSF. These modulations together with the above-
mentioned changes in the Jak2-Stat5 and ERK1/2 signal pathways might contribute 
to the decreased GM-CSF effects on neutrophils [ 62 ].  Fig. 2  summarizes the effects 
of aging in signal transduction.  

   7      Adhesion, Surface Molecules and Receptors  

  After receiving a chemotactic signal, the rolling neutrophil adheres via integin 
molecules to endothelial cells and migrates through the endothelium (diapedesis) 
towards the site of infection. Adhesion appears not to be impaired in the elderly. 
After stimulation with fMLP, zymosan, phorbol myristate acetate (PMA), or cal-
cium ionophores, human neutrophils from young and elderly persons displayed no 
difference in adhesion to plastic, gelatin, and bovine aortic endothelium [ 37 ,  44 ].  
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  Additionally, a normal or enhanced adherence of neutrophils to endothelia or 
thrombocytes has been described, but it is not clear whether this has an effect on 
increased tissue migration in vivo. One might argue that increased adherence is 
caused by slightly enhanced expression of CD15 (Lewis X) and CD11b (Mac-1, 
complement receptor 3) on neutrophils [ 31 ]. In contrary, no increase of CD11b 
and CD15 but a decrease of CD62L ( L -selectin) was observed by others [ 33 ,  63 ]. 
Interestingly, the expression of the other two integrins, CD11a (leukocyte function 
antigen, LFA-1) and CD11c (p150, 95) involved in cell adhesion, is not affected 
[ 22 ,  23 ,  31 ,  33 ].  

  De Martinis et al. [ 64 ] compared the expression of CD50 (ICAM-3; a ligand 
for CD11a/CD18) and CD62L adhesion molecules in peripheral blood granulo-
cytes and monocytes between healthy elderly and young persons. They found 
a decrease in the percentage of granulocytes and monocytes expressing CD62L 
in the elderly but no alteration in the density expression on both cell types sug-
gesting a preactivation which might contribute to the proinflammatory status in 
aging. The authors described a downregulation of the density expression of CD50 
at a per cell level on granulocytes and a decrease of CD50 density expression on 
monocytes but an expansion of CD50 positive cells in elderly persons. This indi-
cates that the loss of CD62L on granulocytes leads to impairment in cell adhesion 
and likely contributes to the enhanced susceptibility to acute infections in elderly 
persons.  

  Noble et al. [ 65 ] observed a significantly lower recruitment of early activa-
tion marker CD69 from the vesicles to the plasma membrane after stimulation 
with PMA in elderly people (fulfilling the SENIEUR criteria) than in younger 
persons. fMLP in contrast had no influence in different expression of CD69 in 
young and elderly persons, suggesting again the impairment of distinct pathways 
within aging. Interestingly, also the CD69 expression in natural killer (NK) cells 
is decreased [ 66 ].  

  There is growing evidence that aging is accompanied by changes in receptor 
signaling pathways and membrane fluidity [ 22 ,  24 ,  37 ,  43 ,  56 ,  62 ]. In contrast to 
other cells the fluidity of the PMN membrane increases with age, caused by altera-
tions in the cholesterol/phospholipid content of the membrane [ 56 ,  67 ,  68 ]. These 
modulations result in changed function of lipid rafts, which directly influence TLRs 
and GM-CSF signaling. Additionally actin, which may play a role in cell-surface 
receptor movement and expression, has been indicated to contribute to the changed 
ROS production [ 69 ]. In summary, these alterations in signaling may impair the 
effector functions of neutrophils in aging.  

  After stimulation, the fMLP receptor which is coupled to a Pertussis toxin-sen-
sitive G protein induces the production of superoxide anion, hydrogen peroxide, 
nitrite oxide (NO) and an increase in intracellular free calcium. The influence of 
aging on the release of free radicals has been investigated by different laboratories 
for a long period of time (reviewed by Ref. 24). Some investigators reported a 
decreased synthesis of free radicals by neutrophils of elderly persons, but found 
no change in the expression of fMLP receptor number, [ 37 ,  38 ,  56 ] whereas others 
could not confirm those data [ 22 ]. A recent study by Fulop et al. [ 56 ] examining 
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neutrophils isolated from young and aged persons who met criteria defined by 
the SENIEUR protocol, showed a significantly lower production of superoxide 
anion under fMLP stimulation and/or GM-CSF priming in PMN from elderly 
persons compared with younger ones. Fulop et al. [ 56 ] postulate the existence of 
a subpopulation of neutrophils in aged persons, which seems to be responsible 
for a significantly higher superoxide anion production after 48 h when compared 
with younger PMN, although they found a reduced superoxide anion production 
after 24 h stimulation with fMLP and GM-CSF in elderly persons. The authors 
suggest that PMN from elderly persons might act heterogeneously to down-regu-
late responses to stimulation than PMN from younger persons, which react more 
efficiently.  

  Toll-like receptors belong to the family of pattern recognition receptors and 
have a specificity to bind substances consisting of conserved motifs of bacteria, 
fungi and virus. To date, ten different human TLR have been identified, includ-
ing three intracellularly located types. After ligand binding, the central adapter 
molecule, myeloid differentiation primary response protein 88 (MyD88), trans-
duces signals into the cell by recruiting a cascade of serine–threonine kinases 
and IL-1 receptor-associated protein kinases (IRAKs), leading to nuclear factor 
kappa B (NF-kB)-dependent transcription of proinflammatory genes. Although 
there is a MyD88 independent way, stimulation via TLR leads to the release of 
pro-inflammatory cytokines such as interleukin-1, IL-6 or TNF-α. The additional 
production of chemokines and upregulation of surface molecules through TLR 
signaling build a bridge between innate and adaptive immune responses. Few 
reports about the influence of age on TLR exist at present. Renshaw et al. [ 70 ] 
described that LPS (ligand for TLR4, gram- bacteria)-stimulated macrophages 
from aged mice synthesize less IL-6 and TNF-α than younger ones. This study 
was confirmed by Boehmer [ 71 ]. Additionally, a lower TLR4 mRNA level com-
pared with those of younger macrophages was found in aged macrophages by Ren-
shaw et al. [ 70 ,  71 ], whereas others did not observe a variation in TLR4 surface 
expression with age. These results are not compatible with the situation in eld-
erly human beings where elevated levels of circulating proinflammatory cytokines 
are generally observed; especially since elderly monocytes after LPS stimulation 
produce significantly higher amounts of IL-6 and TNF-α [ 24 ,  72 ,  73 ].  

  By studying the expression of TLR2 (ligand: components of gram+ bacteria) 
and TLR4, Fulop et al. [ 56 ] did not observe any changes in the proportion of neu-
trophils expressing TLR2/4 nor in the expression of both receptors on the surface 
of neutrophils. They also observed no differences of fMLP and GM-CSF receptor 
expression with aging [ 56 ]. What they found was an increase of TLR4 expression in 
unstimulated raft and nonraft fractions and no redistribution after LPS stimulation 
in elderly persons in contrast to younger individuals.  

  Although the TLR2 and TLR4 expression remains unchanged, one key com-
ponent of the TLR signaling, IRAK-1, was not found to be associated with lipid-
rafts after stimulation with LPS. Additionally, the main adapter protein of the 
TLR signal pathway, MyD88, was significantly reduced in the plasma membrane 
of elderly persons ( Fig. 2 ). These observations confirm the thesis that age-related 
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alterations influence receptor-driven signal transduction but do not explain normal 
LPS mediated chemotaxis of neutrophils of elderly persons. One might speculate 
that other signal pathways are involved or a nonreceptor-driven function of LPS 
might exist [ 56 ,  72 ].  

  The views regarding the importance of neutrophils in immune responses have 
been changed over the past few years. In immunogerontological studies, contra-
dictory data may result from different isolation techniques of neutrophils, distinct 
amounts of contaminating cells, preactivation of neutrophils during isolation, and 
selection criteria of aged persons.  

  Taken together, the neutrophils are also affected through aging. The changes are 
found in decreased chemotactic functions which may be associated with the loss 
of CD62L. Therefore, CD62L-mediated migration might be hampered and this 
might lead to increased infection. The shedding of CD62L from the cell surface 
of neutrophils is also a sign of preactivation as postulated by other groups [ 17 ,  18 ] 
and conforms well to the observation of enhanced Ca 2+  flux in elderly persons. Yet, 
one has to be cautious with regards to the purification process of neutrophils since 
some substances may cause a decrease in CD62L expression [ 12 ,  13 ,  24 ]. With the 
exception of CD62L, CD50 and CD16 other surface molecules such as CD11a, 
b, c/CD18 were not found to be modulated in aged persons when compared to 
younger individuals. Recent publications indicate a decline in signal transduction 
as being responsible for receptor-mediated responses and apoptotic rescue mecha-
nisms. Additionally, altered plasma membrane content and fluidity of neutrophils 
in the elderly appear to influence signal transduction. It should be pointed out 
that different PMN isolation techniques and monocyte contaminations cannot be 
excluded as a possible explanation for the controversial results published by dis-
tinct groups of investigators [ 24 ]. The importance of purity and preactivation of 
PMN preparations in defining and differentiating PMN signals from those by oth-
ers could be demonstrated recently [ 13 ,  14 ]. By investigating cytokine production 
of neutrophils in the elderly, one must also take into account that aged monocytes 
produce significantly more proinflammatory cytokines after stimulation than those 
of younger persons [ 72 ,  74 ]. 

Fig. 3 Overview of 
impaired neutrophilic 
functions with aging
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Parameter/function Stimulants/targets Reported effect

Number of circulating 
neutrophils

 ←→19, 20 ↑21 

Number of precursors in bone 
marrow

 ←→19

Proliferation of neutrophilic 
precursors in response to

G-CSF ↓19

 IL-3 ←→19

 GM-CSF ←→19

Phagocytosis Opsonized bacteria, yeast ↓29–33

 Antibody-dependent 
CD16-mediated

↓33

Respiratory burst fMLP ↓ 35–38←→ 22, 23

 GM-CSF, LPS ↓39, 40

 Gram positive bacteria ↓32, 48

 Gram negative bacteria ←→32

Degranulation fMLP ↓31, 38

Chemotaxis fMLP, GM-CSF, LPS ↓32, 48–50←→22, 23, 34

Intracellular killing Gram negative bacteria, fungi ↓39, 44

Adhesion Endothelia, thrombocytes ←→37 31

 CD11a-c/CD18 ←→33, 63, 65 31 (CD11b)

 CD15 ←→63 31

 CD50 64

 CD62L ↓64

Apoptosis  ←→51, 52 53

rescue by IL-2, LPS, G-CSF, GM-CSF ↓51, 53

CD95 induced apoptosis; 
expression of CD95

 ←→54

down-regulation of caspase-3 
activity

GM-CSF ↓43

Bax/Mcl1 GM-CSF ↑55, 56

Antiapoptotic phenotype GM-CSF ↓43

inhibition SHP-1 activity GM-CSF ↓62

Jak2-Stat5 pathway GM-CSF ↓56

Signal transduction  42, 56

intracellular Ca2+ level  ↑32, 57, 60

intracellular Ca2+ mobilization fMLP ↓57–59

ERK1/2 MAPK pathway GM-CSF ↓42

p38 MAPK pathway GM-CSF ←→42, 43

plasma membrane fluidity Receptor signaling in relation 
with lipid rafts

↓56, 67, 68

Expression of surface molecules   

 CD69 ↓65

 fMLP-R ←→ 37, 38, 53 22

 GM-CSF-R ←→ 56

 TLR2, 4 ←→ 56

↓, decreased; , slightly decreased; ↑, increased; , slightly increased; ←→, unchanged

Table 1 Age-related changes of neutrophils
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8 Conclusions

Although neutrophilic counts are normal or slightly increased in aged persons com-
pared to young individuals aging influences the functional properties of neutrophils. 
The changes affect phagocytosis in neutrophils from elderly subjects where sig-
nificant reduction along with decreased antibody-dependent phagocytosis was 
observed. Also, the other toxic mechanisms to destroy pathogenic microorganisms 
such as ROS generation, degranulation and intracellular killing, are impaired by 
age. Studies of chemotaxis have shown contrary results, so it has to be clarified if 
migratory responses of neutrophils from healthy, elderly persons are in fact altered. 
The decline in functionality, impaired Ca2+ mobilization and delayed rescue from 
apoptosis during aging appear to arise from defects of several signaling pathways, 
altered plasma membrane components and modulated protein tyrosine phosphatase 
activity. The molecular mechanisms responsible for those alterations in signal trans-
duction and why distinctive stimuli cause different effects are still poorly under-
stood. Fig. 3 and Table 1 summarize the age-related changes in neutrophils.  

Further research is required since neutrophils display more features than for-
merly assumed, it would spread light on the deficiencies that occur during the aging 
process and could be beneficial to the elderly in the future.
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                                                        Abstract   :       I t is well known that the immune response is decreased with aging 
leading to a higher susceptibility to infections, cancers and autoimmune disor-
ders. The most widely studied alterations are relative to the adaptive immune 
response. Recently, the role of the innate immune response as first line of defence 
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against bacterial invasion and modulator of the adaptive immune response has 
been widely recognized. One of the most important cell components of the innate 
response is neutrophils. It is now accepted that neutrophil functions are changed 
with age however the degree of these changes is still debated. With aging there 
is an alteration of the receptor driven functions of human neutrophils, such as 
superoxide anion production, chemotaxis and apoptosis. One of the alterations 
underlying these functional changes is the decrease of the receptor signalling 
elicited by specific receptors. Alterations were also found in the neutrophil 
membrane lipid rafts. These alterations in neutrophils functions and signal trans-
duction occurring with aging might contribute to the increased infections with 
aging.  

            1      Introduction  

   Neutrophils, also known as polymorphonuclear leukocytes (PMN), are the first 
cells to arrive at the site of an aggression (Medzhitov and Janeway,  2000 ). Their 
role is to eliminate the aggression in a non specific way to prevent ongoing tis-
sue damage and in the mean time regulate and determine the adaptive immune 
response. They are very efficacious to combat the bacterial and fungal infec-
tions (Lehrer et al.  1988 ). The neutrophils are very short lived cells except if 
they receive a proinflammatory signal. These signals may prolong the survival of 
neutrophils to be more effective in eliminating pathogens. Neutrophil functions 
with aging are changing, mainly those of chemotaxis, free radical production 
and adherence. Most of these functions are mediated through the engagement 
of a receptor including formyl methionyl leucine peptide (fMLP), granulocyte 
macrophage colony stimulating factor (GM-CSF), interleukin-8 (IL-8) receptors 
(Fulop and Seres,  1994 ). Recently, novel class of receptors emerged and, they 
have profound impact on the functions of human PMN. Among them, the pattern 
recognition receptors (PRRs), including at least 10 toll like receptors (TLRs) 
which recognize conserved molecular structures, related mostly to pathogens, 
were described and extensively studied (Medzhitov  2001 ; Krishnana et al. 2007). 
Furthermore, the triggering receptor expressed on myeloid cells-1 (TREM-1) is a 
recent addition to the growing members of activating receptors that are members 
of the Ig superfamily and, is up-regulated at the surface of PMN and monocytes 
in infection and LPS-induced sepsis in mice (Bouchon et al.  2000 ; Bleharski et 
al.  2003 ; Gibot  2006 ). Over the past few years, it has been demonstrated that 
PMN-specific receptor-driven effector functions are altered with aging (Fulop 
et al.  1997 ; Varga et al.  1997 ; Fulop et al.  2004 ). One of the causes of these 
decreased functions could be the alteration of signalling with aging via various 
receptors of neutrophils (Fulop et al.  1985a ,b; Vlahos and Matter,  1992 ; Wenisch 
et al.  2000 ; Lord et al.  2001 ; Schröder and Rink,  2003 ; Fulop et al.  2001 ; Biasi 
et al.  1996 ; Seres et al.  1993 ). This chapter will describe our present knowledge 
concerning the signal transduction pathways in neutrophils with aging elicited by 
fMLP, GM-CSF, TLR and TREM-1 ligands.  
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       2      Neutrophil Function Changes with Aging  

   PMN are short-lived cells that play important roles in both host defence and acute 
inflammation. They represent the first line of defence against an assault. They 
are committed to die in circulation within 18 hours unless activated (Akgul et al. 
 2001 ). This activation results in the initiation of an inflammatory response leading 
to chemotaxis via adhesion to endothelial cells, migration and the development 
of effector functions such as free radical production (Babior  2000 ). The adhesion 
(Butcher et al.  2001 ) and migration (Biasi et al.  1996 ) functions of PMN were 
found unchanged with aging. Recent data on chemotaxis indicate a decrease during 
aging towards fMLP and GM-CSF as chemoattractants (Fulop et al.  2004 ). The 
inability of GM-CSF to prime PMN of elderly for superoxide anion production 
was also described (Seres et al.  1993 ). It is of note that the number of receptors 
involved in PMN chemotaxis has not been found to change with aging. We have 
demonstrated some time ago that the production of free radicals by PMN of elderly 
subjects was decreased under fMLP stimulation while the number of fMLP recep-
tors did not change (Fulop et al.  1985a , 1989) and, this was also found by many 
laboratories (Braga et al.  1998 ; Biasi et al.  1996 ), while others found no changes 
(Lord et al.  2001 ). It is of note that the variations in PMN superoxide production 
with aging were dependent on the stimuli indicating different pathways of neu-
trophil activation. It was shown that gram positive pathogens induce a decreased 
production, while gram-negative ones induce no reduction (Wenisch et al.  2000 ). 
Insofar, these pathogens modulate PMN functions through different TLRs (Hayashi 
et al.  2003 ).     Certain proinflammatory cytokines, or other molecules, were shown 
to prolong the life span and the functional survival of PMN (Whyte et al.  1999 ). 
Among these molecules are GM-CSF, LPS and IL-6. Other bacterial products such 
as fMLP, LPS, lipoteichoic acid modulate the effector functions of neutrophils. We 
and others have found that the PMN of elderly subjects can not be rescued from 
apoptosis by various agents known to be very effective for PMN of young subjects 
(Fulop et al.  1997 ; Tortorella et al.  1998 , 2001).  

   Thus, we can hypothesize that alterations of the signal transduction pathways 
of the various receptors are involved in the altered neutrophil functions with aging 
(Fulop and Seres  1994 ; Fulop et al.  2001 ). This altered signal transduction can be 
related to changes in the physico-chemical properties of the PMN membrane with 
ageing determining its fluidity. It has been shown that changes in membrane fluid-
ity affect PMN functions, such as chemotaxis, superoxide anion production (Yuli 
 1982 ; Alvarez et  2001 ). An age-dependent decrease in plasma membrane fluidity 
has been shown in various cell types (Rivnay et al.  1980 ; Shinitzki 1987) including 
T-lymphocytes (Larbi  2004 a,b), whereas in neutrophils an increase was observed in 
the membrane fluidity (Fulop et al.  2004 ). These data suggest that either of these 
changes in membrane fluidity with aging could be deleterious for cellular func-
tions. It should be remembered that PMN are very short lived cells in contrast to all 
the others studied, explaining the differential changes of membrane fluidity with 
aging. Very recently, the presence of lipid rafts in PMN cell membrane has been 
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described and an important role in PMN signal transduction has been suggested for 
them (Kandzelskii et al. 2004; Sitrin  2004 ; Fortin  2007b, c   ). Changes in membrane 
fluidity will affect the function of lipid rafts (Simons and Ehehalt  2002 ; Simons and 
Ilkonen  1997 ), which are special membrane microdomains for signalling that are 
playing an important role in cellular functions, including chemotaxis (Ibanez  2004 ). 
Thus, age-related changes in the cell membrane affect the membrane properties, 
which in turn determine the signal transduction leading to altered effector functions, 
such as chemotaxis, superoxide anion production and apoptosis. This might influ-
ence the sequence of all the other effector functions of PMN with aging. We will 
review herein some specific receptor signalling changes with aging.  

       3      Signal Transduction Changes and Lipid Rafts 
in Neutrophils in Relation to fMLP, GM-CSF
and Toll-like Receptors with Ageing  

   There are rather few data concerning the signal transduction in PMN with aging as 
compared to those in T-lymphocytes (Larbi et al.  2004a ). Nevertheless, accumulat-
ing data suggest that aging cause alterations of specific receptor signalling pathways 
in PMN (Fulop and Seres  1994 ; Fulop et al.  2004 ; Lord et al.  2001 ; Schröder and 
Rink  2003 ; Tortorella et al.  2007 ). The recent description of lipid rafts in PMN 
membrane will also rapidly improve our understanding on PMN signalling path-
ways and permit their extension to a better investigation of the PMN signal trans-
duction with aging.  

       3.1      fMLP Receptor  

   Formyl peptides engage receptors that belong to the seven transmembrane G pro-
tein-coupled receptor (GPCR) family and trigger neutrophil responses, i.e., chem-
otaxis, up-regulation of surface receptors, release of proteolytic enzymes from 
granules and, ROS production (Varga et al.  1988 ; Mcleish et al.  1989 ; Varga et al. 
 1989 ; Rabiet et al.  2007 ). These responses are largely inhibited by Bordetella per-
tussis toxin, indicating that signal transduction is dependent on a heterotrimeric G 
protein of the Gi type. We will review current knowledge about the peptide-induced 
activation of chemoattractant receptors and their regulation, with special emphasis 
on the human formyl peptide receptor family (FPR, FPRL1, and FPRL2). Upon 
chemoattractant binding, receptors undergo a conformational change that enables 
them to interact with the Gi2 protein thereby triggering both the exchange of GDP 
to GTP in the G protein  α  subunit and, the dissociation of the  β  γ  complex from the 
 α  subunit (Gierschik et al.  1989 ). Following its dissociation from the  α  subunit, 
the G protein  β  γ  subunits activate the phospholipase C β 2 (PLC β 2) (Camps et al. 
 1992 ) and the phosphoinositide 3-kinase  γ  (PI3K γ ) (Stoyanov et al. 1995). PI3K γ  
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converts the membrane phosphatidylinositol-4,5-bisphosphate (PIP 
2
 ) into phos-

phatidylinositol-3,4,5-trisphosphate (PIP 
3
 ) which is required for both the directed 

migration of neutrophils in a gradient of fMLP and the generation of superoxide 
mediated by the stimulation of chemoattractant receptors. The activation of PLC β 2, 
which induces the production of IP 

3
 , leads to an increase of intracellular free cal-

cium and of DAG, which result in the translocation of PKC to the membrane and, 

Fig. 1 Alterations in the receptor-mediated signal transduction in human neutrophils with aging. 
In neutrophils, fMLPR engagement leads to activation of PI3-K and PLCγ2, this in turn leads to 
the production of DAG and the influx of Ca2+ to the cytosol where they activate the PKCs. The 
PKCs activate the downstream MAPKs P38 and ERK1/2 through Ras. The ligand of GM-CSFR, 
for its part, induces the phosphorylation of residues in the ITAM of the common β-chain These 
events will induce the recruitment of various signalling molecules to the GM-CSFR and, will lead 
to the activation of the MAPKs P38 and ERK1/2, the Jak2-STAT1/3 and the PI3-K-Akt/PKB sig-
nalling pathway. The down-regulation of the GM-CSFR is mediated by phosphatases, like SHP-1, 
that removes phospho-groups on the ITAM, or the SOCS family of protein, which bind Jak2 and 
other activating upstream kinases thereby impeding the recruitment of signalling molecules on the 
receptor. Upon engagement, TLR4 is recruited into lipid rafts and, with the accessory molecule 
MyD88, leads to the activation of the MAPKs P38 and ERK1/2 and the transcription factor NF-
κB through the IRAK/TRAFs and TAK1/TABs complexes. It also activates the PI3-K-Akt/PKB 
pathway through largely unknown mechanisms. The downstream kinases and the transcription fac-
tors elicited by these receptors mediate, in the cytosol and in the nucleus, the functional responses 
of human neutrophils such as respiratory burst, chemotaxis, degranulation and production of 
cytokines and chemokines. The asterisks indicate impairment that have been found in the signal-
ling pathways of these receptor with aging in human neutrophils. One can appreciate the work that 
remains to be done as the absence of asterisk indicates that potential alterations were not studied 
in the elderly for these signalling molecules
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leading to the phosphorylation of members of the MAPK family (Chang and Wang 
 1999 ). Neutrophils express the classical PKC isoforms ( α , β  I, and  β II), the novel 
PKC isoforms  δ  and the atypical PKC isoforms  ζ . The activation of PKC isoforms 
play a role in the regulation of NADPH oxidase activity. The extracellular signal-
regulated kinases (ERK1/2) and the stress-activated p38 MAP kinase are activated 
by chemoattractants in neutrophils. These two signalling pathways are thought to 
participate at different degrees in adherence, chemotaxis and superoxide produc-
tion. PLA 

2
 - α  is phosphorylated   by MAP kinases and is translocated to the plasma 

membrane in a calcium-dependent manner where it produces free fatty acids and 
lysophospholipids.  

   Stimulation of the cells by fMLP induces, via the production of IP 
3
  and the open-

ing of calcium channels in the membrane, an increase in intracellular free calcium. 
This increase is normally very rapid and returns to the prestimulation level rela-
tively quickly. There is a slight difference between young and elderly subjects in the 
intracellular free calcium kinetics stimulated by fMLP in PMN (Biasi et al.  1996 ). 
The amount of the intracellular free calcium inside the cells is higher under fMLP 
stimulation in PMN of young than elderly subjects, while it was higher in the PMN 
of elderly at unstimulated status (Fulop and Seres  1994 ). This indicates a slight 
activation status of PMN with aging due to the low grade inflammation occurring 
with physiological aging (Franceschi et al.  2000 ; Meyer et al.  1998 ). The return of 
the intracellular free calcium must be tightly regulated, because if it remains high 
this could lead to cell death via the activation of certain intracellular proteases such 
as calpains or endonucleases. These data indicate that aging is associated with a 
decrease in the early phase of signal transduction in PMN.  

   The induction of PKC via the ras pathway in turn induces the activation of MAPK 
family members when the PMN are stimulated by fMLP (Zu et al.  1998 ). MAPKs 
are a family of serine/threonine kinases that are activated by a cascade of protein 
kinase reactions (Kyriakis and Avrach  1996 ), which are not completely elucidated 
in human neutrophils, even after fMLP stimulation. In rat neutrophils the activation 
of Lyn is associated with binding to the Shc adaptor protein and allows the G pro-
tein-coupled receptors to modulate the activity of the Ras/ERK cascade (Chang and 
Wang  1999 ). Nevertheless, investigations of human neutrophils have suggested that 
p38 MAPK is involved in an intracellular cascade that regulates stress-activated sig-
nal transduction. The p38 MAPK can phosphorylate transcription factors, thereby 
regulating gene expression and, can also phosphorylate other proteins to stimulate 
NADPH oxidase activity, adhesion and chemotaxis (Kyriakis and Avreach  1996 ; 
Zu et al.  1998 ; Heuertz et al.  1999 ; Yagisawa et al.  1999 ; Chang and Wang  2000 ). 
fMLP has been shown to induce the activities of ERK1 and ERK2, thus playing a 
role in neutrophil adherence and respiratory burst activity as well as inducing p38 
and contributing to chemotaxis and superoxide anion production (Zu et al.  1998 ). 
Recent data obtained in our laboratory (Larbi et al.  2005 ) indicate that aging is 
associated with a decrease of ERK and p38 tyrosine phosphorylation in PMN under 
fMLP stimulation, suggesting a decreased activity of these MAPKs. These altera-
tions could explain the decrease found in effector functions of PMN with aging such 
as superoxide anion production, as well as chemotaxis. Altogether we assist to an 
alteration of the human fMLP receptor signalling with aging.  
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       3.2      GM-CSF Receptor  

   GM-CSF is a powerful modulator of granulopoiesis and the priming of mature 
PMN to a second stimulation such as fMLP. GM-CSF is able to rescue PMN from 
apoptosis by interacting with its specific receptor on the PMN plasma membrane. 
The receptor for GM-CSF is a member of the superfamily of cytokine receptors 
(Miyajima et al.  1992 ). Its structure consists of a receptor-specific α subunit and a  β  
subunit ( β c) that is shared by the receptors for IL-3 and IL-5 (Miyajima et al.  1993 ). 
Although the GM-CSF receptor is not endowed with intrinsic protein kinase activ-
ity, its occupation triggers the phosphorylation of its βc subunit on tyrosine resi-
dues, most probably by Jak2 (Quelle et al.  1994 ) and, the phosphorylation of a host 
of cytoplasmic proteins on tyrosine residues, the expression of early response genes 
and the proliferation of hematopoietic cells. GM-CSF has been shown to activate 
three distinct pathways in various cells: 1. the JAK/STAT pathway, 2. the Ras-Raf-
1-MEK-MAP kinase pathway and, 3. the PI3-kinase intracellular signalling events 
(Sato et al.  1993 ; Watanabe et al.  1997 ). Recently, the MAPK and PI3K pathways 
were suggested to be involved with the GM-CSF antiapoptotic effect in PMN (Klein 
et al.  2000 ). These signalling pathways modulate the executioner phase of apopto-
sis, mediated by a family of cysteine proteases, the caspases, as well as members of 
the bcl-2 family, which are key players in the regulation of apoptosis.  

   Our recent studies suggest that aging is accompanied by a decrease in GM-CSF-
signal transduction (Fortin et al.  2007a ). PMN functions were shown to decrease 
with aging, as well as the antiapoptotic effect of GM-CSF (Fulop et al.  2004 ). Thus, 
we also investigated whether the Jak/STAT pathway in PMN under GM-CSF stimu-
lation could be altered with aging. We have demonstrated that activation of the Jak/
STAT pathway is altered in PMN of elderly subjects under GM-CSF stimulation. 
Neither short, nor sustained phosphorylation of Jak2 could be demonstrated and this 
inability of GM-CSF to induce Jak2 activation was translated in the decreased activa-
tion of STAT3 and STAT5. Moreover, the density of GM-CSF receptor β   subunit did 
not change with age. The unchanged  β c-subunit expression would assure an equal 
possibility of signalling in PMN of young and elderly subjects. This is supported by 
the fact that the physical association between the GM-CSF receptor  β  subunit and 
Jak2 did not change neither with aging, nor with GM-CSF stimulation. One other 
explanation could be an alteration in the membrane composition rendering diffi-
cult the mobility of the receptors to facilitate the phosphorylation of Jak2 (Fulop 
et al.  2004 ). Recently, the presence of lipid rafts in the cell membrane of PMN was 
demonstrated (Sitrin et al.  2004 ; Kindzelskii et al.  2004 ). These lipid rafts are privi-
leged microdomains in the membrane enriched in cholesterol, sphyngolipids and 
various proteins, such as signalling proteins (Simons and Ikonen  1997 ). We found 
with aging a significant alteration in the composition and properties of lipid rafts 
of T-cells (Larbi et al.  2004a ). In PMN, our group showed in a recent paper an over 
activation of the protein tyrosine phosphatase SHP-1, a negative regulator of signal 
transduction, in the lipid rafts with aging. This over activation caused the defects 
in the activation of the Src Kinase Lyn and contributed to the impaired functions 
of PMN with aging (Fortin et al.  2006 ). Moreover, an over activation or a deregu-
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lated termination of Jak2 negative regulators, including SOCS, with aging cannot 
be ruled out and is currently under investigation by, among others, the group of 
Tortorella ( 2007 ). They demonstrated that both SOCS1 and SOCS3 levels were sig-
nificantly higher in unstimulated neutrophils from elderly individuals than in their 
younger counterparts and, unlike the neutrophils of young subjects, they did not fur-
ther increase following GM-CSF stimulation. As a result, a more effective SOCS1 
and SOCS3 binding to either the GM-CSF receptor or Jak2, which would largely 
account for the GM-CSF dependent defect of PI3-K/Akt/ERK activation, might 
occur in senescent neutrophils. This finding is in line with recent demonstration of 
elevated SOCS3 levels in resting lymphocytes from elderly donors. Therefore, the 
increase in this class of inhibitory molecules may be considered as a general phe-
nomenon associated with aging (Tortorella et al.  2007 ).  

   We also investigated whether this alteration in the activation of the Jak/STAT 
signalling pathway could be linked to the decreased antiapoptotic effect of GM-
CSF in PMN of elderly subjects. We found that GM-CSF was unable to modulate 
the Caspase-3 activity in the elderly subjects (Fortin et al.  2007a ). Moreover, our 
results show that AG490 could not modulate the already decreased anti-apoptotic 
effect of GM-CSF. It is difficult to determine what the exact contribution of the 
Jak/STAT pathway is, but these results indicate that it plays an important role in 
the GM-CSF failure to rescue PMN of elderly subjects from apoptosis. Thus, PMN 
of elderly subjects seem to be in a dominant negative status leading to a decreased 
response to GM-CSF. This also precludes that if the Jak2 activation is decreased, 
other downstream signalling pathways could be also altered, such as the PI3-kinase 
pathway (our unpublished results and Tortorella et al.  2007 ). Thus, Jak2 might play 
an upstream and essential role in the signalling cascade to provide survival signal to 
STATs and other signalling pathways.  

   PI3-K and the downstream serine/threonine kinase Akt/protein kinase B (Akt/
PKB) have a central role in modulating neutrophil respiratory burst activation, 
chemotaxis and apoptosis. Tortorella et al. ( 2007 ) studied the functional activity of 
the neutrophil PI3-K/Akt pathway in the elderly and found, similarly to the ERK1/2, 
higher baseline levels of phosphorylated Akt forms and lower GM-CSF-induced 
phosphorylation of Akt with respect to younger subjects. The link once more 
between these signalling alterations and the age-related inability of GM-CSF to pro-
long neutrophil survival emerged from observations using various pharmacological 
inhibitors such as PD98059, LY294002 or wortmannin. These alterations in the 
PI3-K/Akt pathways could explain the alterations in the MAPK ERK1/2 activa-
tion, as they seem to be activated in succession. In fact, others and we have showed 
significant alterations in the GM-CSF induced ERK1 and ERK2 tyrosine phospho-
rylation and, even a higher decrease in ERK1/2 activation with respect to baseline 
in PMN from elderly subjects compared to young subjects (Larbi et al.  2005 ). The 
p38 MAPK pathway was also found altered in PMN from elderly under GM-CSF 
activation (Larbi et al.  2005 ).  

   It is of note that bypassing the GM-CSF receptor by direct inhibition of Cas-
pase-3 was able to rescue PMN from apoptosis in both groups of age (Fortin et al. 
 2007a ). This further indicates that the GM-CSF inability to rescue PMN of elderly 
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from apoptosis is linked, in part, to the alteration of the signalling pathway that 
leads from GM-CSFR to Caspase-3. However, it is not the sole factor as there is a 
significant fraction of residual procaspase-3 in the PMN of the elderly donors after 
18h of culture. Moreover, after 18h of culture with GM-CSF there is even a larger 
fraction of inactive procaspase-3 in the elderly. These results would be surprising 
if the inhibition of Jak2 by AG490 did resulted in a complete cleavage of procas-
pase-3 in the elderly as it did in the young donors. We can only hypothesize that 
the inability of GM-CSF to rescue PMN of elderly from apoptosis is not mediated 
by the cleavage of procaspase-3 but rather by other mechanisms, especially as the 
Caspase-3 enzymatic activity has been found to be higher in this paper (Fortin et 
al.  2007a ). Others mechanisms include an altered ratio of antiapoptotic vs. proa-
poptotic members of the Bcl-2 protein family, such as Bax, BclXL, Bad and A1 
(Fulop et al.  2002 ; Fulop et al.  2004 ) and, deregulation of the activity of negative 
regulators of GM-CSF signal transduction like SHP-1 (Fortin et al.  2006 ). Sup-
porting this notion, GM-CSF has been shown to up-regulate the expression of the 
antiapoptotic Mcl-1 (Moulding et al.  1998 ) while interferon- α /γ   had similar sur-
viving effects by increasing the expression of the cIAP2 protein (Sakamoto et al. 
 2005 ) .  Moreover, the failure of GM-CSF to sustain STAT3 phosphorylation in the 
elderly may promote PMN apoptosis by not counteracting the proapoptotic effects 
of activated STAT1, as it is the case for Mel80 cells. Moreover, these observations 
in elderly subjects bear a resemblance to the phenomenon observed in T-cells. The 
T-cell receptor (TCR) signalling is altered leading to deficient proliferation with 
aging, while bypassing the TCR by PMA and Ca2+ ionophore stimulation restore 
their proliferative capacity. This could be of importance when we consider the 
increase of infections with aging and the modulation of PMN function might go 
through a nonspecific manner.  

   The Jak/STAT, PI3-K/Akt and MAPK pathways were found to be altered with 
aging in PMN upon GM-CSF receptor stimulation (Fortin et al.  2007a ; Larbi et al. 
 2005 ; Tortorella et al.  2007 ). However, there is no decrease in the GM-CSFR number 
with aging. The primary alteration could be the Jak/STAT pathway as it seems to 
regulate all the others. Not only the positive signalling events but also the nega-
tive signalling events are altered under GM-CSF stimulation in PMN with aging. 
This leads to an altered functioning of the PMN with aging concerning apoptosis, 
chemotaxis and free radical productions.  

       3.3      Toll-like Receptors  

   Toll-like receptors (TLRs) are pattern recognition receptors that recognize conserved 
molecular patterns on microbes and link innate and adaptive immune systems. 
There exists actually of 10 different TLRs. Ligands for the TLR2 are gram-positive 
bacteria, while gram-negative bacterial product, LPS, is a ligand for TLR4 and, both 
of them are found on neutrophils (Remer et al.  2003 ; Kurt-Jones et al.  2002 ). The 
signalling pathways activated by TLRs are broadly classified into MyD88-depend-
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ent and independent pathways (Takeda and Akira  2005 ) as MyD88 is the univer-
sal adapter protein recruited by all TLRs, except TLR3. The MyD88-independent 
pathway of TLR4 signalling is not used in human PMN (Tamassia et al.  2007 ). 
The major pathways activated by TLR engagement are using I κ B kinase (IKK), 
MAPK and phosphatidylinositol 3-kinase (PI3-K)/Akt pathways. These pathways 
regulate the balance between cell viability and inflammation. There are currently 
four cytosolic adaptor proteins that are thought to play a crucial role in specificity 
of individual TLR-mediated signalling pathways. Amongst them, TLR4 signalling 
involves all four adapter proteins, MyD88 (myeloid differentiation primary response 
gene 88), MyD88 adapter like [MAL; also known as TIRAP (TIR domain-con-
taining adapter protein)], TIR domain-containing adapter protein inducing IFN- β  
[TRIF; also known as TICAM1 (TIR domain-containing adapter molecule 1)], and 
TRIF-related adapter molecule [TRAM; also known as TICAM2 (TIR domain-
containing adapter molecule 2)] (McGettrick and O’Neill,  2004 ). The differential 
recruitment of these adapter proteins by different TLRs form the basis for the spe-
cificity in the signalling process activated by them. However, the signal transduction 
pathway initiated by these interactions is mediated initially by an adaptor molecule, 
MyD88, recruiting various serine-threonine kinases, IRAKs and finally leading to 
NF-κB translocation (Kobayashi and Flavell  2004 ). Among IRAK family proteins 
IRAK-4 and IRAK-1 play major roles in signal transduction under LPS stimulation. 
This interaction ultimately results in the secretion of pro-inflammatory cytokines 
(Cloutier et al.  2007 ) that recruit the cells of adaptive immune response. That is why 
the function of TLRs is very important not only for an adequate innate, but also for 
the adaptive immune response. Moreover, there exists a synergy between TLR2 and 
GM-CSF receptors (Hayashi et al.  2003 ).  

   There exists almost no data concerning the TLRs receptor number and signal 
transduction in PMN in relation to aging. Renshaw et al. ( 2002 ) reported impaired 
TLR expression and function with aging in mice macrophages. A recent compre-
hensive evaluation of TLR function in monocytes from older adults was conducted 
using a multivariable mixed statistical model to account for covariates (van Duin and 
Shaw  2007 ). It found that cytokine production after TLR1/2 engagement, which is 
essential for the recognition of triacylated lipopeptides found in a variety of bacteria, 
is substantially lower in monocytes from older adults. The up-regulation of costimu-
latory proteins such as CD80, essential for optimal activation of T-cells, on mono-
cytes from older adults was less for all TLR ligands tested than for cells from young 
individuals and, the extent of CD80 up-regulation predicted subsequent antibody 
response to influenza immunization. These and other consequences of aging on 
human TLR function may impair activation of the immune response and contribute 
to poorer vaccine responses and greater morbidity and mortality from infectious 
diseases in older adults. That is why we investigated the TLR4 and TLR2 recep-
tor numbers on PMN of young and elderly subjects by flow cytometry. We found 
that there is no change in the percentage of PMN expressing TLR4 and TLR2 with 
aging. Similar results were obtained when we measured, by comparing the Mean 
Fluorescence Intensity (MFI), the amount of TLR4 or TLR2 receptors expressed 
by PMN in each age groups (Fulop et al.  2004 ). These results show that there is no 
change with aging in the expression of TLR2 and TLR4 receptors on PMN.  
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   One other element, as mentioned above, which recently changed our comprehen-
sion of the signalling mechanism through the membrane is the existence of specific 
signalling microdomains in the membrane, called lipid rafts (Simon and Ilkonen 
 1997 ). These were demonstrated in numerous cells and recently in PMN too (Shao 
et al.  2003 ). These microdomains, enriched in sphyngolipids, cholesterol and sig-
nalling molecules either are parts of, or are recruited to the signalling complexes 
of the cell membrane. Presently, a few data exist in relation to aging on the exist-
ence of these lipid rafts in PMN membranes and how these lipid rafts could be 
structured and functioning (Fortin et al.  2006 ,  2007b ,  2007c ). Therefore, we also 
studied, whether the unchanged number of TLRs found by FACScan is reinforced 
by the study of the expression of TLR2 and TLR4 in the PMN membrane lipid rafts. 
We showed for the first time that LPS not only increases the expression of TLR4 in 
PMN of young subjects, but increases also its recruitment in the rafts and nonrafts 
fractions. In contrast, the expression of TLR4 in rafts and nonraft fractions were 
increased with aging already at the basal status compared to that of PMN of young 
subjects while no-redistribution occurred after LPS stimulation. It is of note that 
the apparent increase at basal status of TLR4 expression in the membrane of PMN 
of elderly could be in accordance with the slight stimulated status of PMN with 
aging, as already demonstrated (Fulop and Seres  1994 ). This is also in accordance 
with the low-grade inflammation present with aging as stated by the inflamm-aging 
theory of Franceschi et al. ( 2000 ). It is of note that no significant changes in TLR2 
recruitment occurred in rafts and nonrafts fractions of PMN under LPS stimulation 
in either young subjects or elderly subjects. These results indicate that even if the 
number of receptors seems not to change with aging the differential recruitment 
between raft and nonraft fractions could induce an altered signalling of the recep-
tors, mainly in case of TLR4 under LPS stimulation with aging.  

   We also studied the early signal transduction events elicited by LPS through the 
TLR4. The signal transduction of TLR4 under LPS stimulation is mediated at the 
early phases by MyD88 and IRAKs (Kobayashi and Flavell  2004 ). We studied the 
expression of MyD88 and IRAK-1 under LPS stimulation in membrane rafts and 
nonrafts fractions of PMN. MyD88 was evenly distributed before and after LPS 
stimulation in the rafts and nonrafts fractions of the membranes in young and eld-
erly subjects. Thus, no differences in the MyD88 distribution could be found with 
aging, however the quantity of MyD88 in the membrane of PMN of elderly subjects 
was significantly decreased after stimulation (Fulop et al.  2004 ). MyD88 is an adap-
tor protein found very close to the membrane, which could explain that no change 
in its physical distribution can be observed under stimulation. In contrast, there is 
a recruitment of IRAK-1 molecules from nonrafts fractions to lipid rafts in PMN 
of young subjects under LPS stimulation while this recruitment is totally absent in 
PMN of elderly subjects. It is of note that IRAK-1 was already in the rafts fraction 
at basal status, in accordance with the slightly activated status of PMN with aging. 
All these results suggest an alteration in the signal transduction of TLR4 under 
LPS stimulation with aging either in the redistribution of IRAK-1 signalling pro-
tein among rafts and nonrafts fractions, or in the quantity of the MyD88 molecule 
between rafts and nonrafts fractions. These results provide evidence for a lipid rafts 
dependant activation of neutrophils via the Toll-like receptor pathway. However, 
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they cannot explain why the LPS was efficient for chemotaxis of PMN with aging. 
We can only speculate that either this function is mediated through different signal-
ling pathway(s) or this is a nonreceptor dependent function of LPS, playing the role 
of a nonspecific chemoattractant.  

   Altogether, the studies on signal transduction pathways elicited by the stimula-
tion of various PMN receptors suggest that there exists an altered signal transduc-
tion in PMN with aging. These alterations does not seem to arise from a change 
in the receptor number, but most probably from an alteration related to the cell 
membrane physico-chemical status with aging. We and others have found that the 
fluidity of PMN with aging, in contrast to other cells, is increasing due to the altera-
tion in the membrane cholesterol/phospholipid composition (Yuli et al.  1982 ; Alva-
rez et al.  2001 ). The cholesterol content does not change while the phospholipid 
content is increasing. These changes affect the functionality of lipid rafts which 
are important microdomains for the receptor signalling, as was shown in the case 
of TLRs and GM-CSF receptors. A dysfunction of the signalling due to age-related 
changes in actin cytoskeleton function (Rao et al.  1992 ) has been also suggested to 
be a contributing factor. Ultimately these changes in signalling decrease the effec-
tors functions of PMN with aging.  

       3.4      TREM-1  

   This receptor is a recent addition to the growing members of activating receptors that 
are members of the Ig superfamily and, is up-regulated at the surface of PMN and 
macrophages in infection and LPS-induced sepsis in mice (Bouchon et al.  2000 ). 
This family mediate their signal transduction with an adapter molecule, for TREM-1 
the adapter is DAP12, to elicit a number of common signalling molecules (Bouchon 
et al.  2000 ; Klesney-Tait et al.  2006 ; Tessarz and Cerwenka  2007 ). Its ligand is 
still unknown, but the functional responses elicited by the engagement of TREM-1 
on monocytes/macrophages and PMN is well known. TREM-1 triggers the release 
of cytokines and chemokines, ROS production, degranulation and phagocytosis 
(Bouchon et al.  2000 ; Bleharski et al.  2003 ; Radsak et al.  2004 ; Fortin et al.  2007b ). 
Of note, stimulation of PMN with both TREM-1 and TLR ligands resulted in a 
synergistic effect on functional responses (Bleharski et al.  2003 ; Radsak et al.  2004 ; 
Fortin et al.  2007b ) hence amplifying the inflammatory response and, suggesting 
potentially aggravating consequences in infections with aging. Inasmuch, our group 
recently found that TREM-1 and TLR4 colocalized in human PMN upon stimula-
tion with LPS (Fortin et al.  2007b ) and, silencing of TREM-1 in macrophages with 
siRNA resulted in down-regulation of key signalling molecules of the TLR4 path-
way (Ornatowska et al.  2007 ). Thus, emerging data are showing an unsuspected link 
between the TLR4 and TREM-1 and, it is possible that multimeric complexes are 
responsible for the recognition of noncytokines mediators of inflammation such as 
the ligands of TREM-1 (Klesney-Tait and Colonna  2007 ). We have already evoke 
the possibilty of an innateosome, which would be responsible for the recognition 
of LPS and TREM-1 ligands in human PMN, when we showed that stimulation of 
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either receptors lead to the phosphorylation of IRAK1 and the colocalization at the 
membrane of TRL4 and TREM-1 (Fortin et al.  2007b ). Furthermore, the impor-
tance of soluble TREM-1, the shedding of TREM-1 occurs in sepsis or with LPS 
stimulation of macrophages, in a clinical context it is established that this is a rel-
evant marker for human sepsis and, the use of decoy TREM-1 with blocking ability 
favored a positive outcome of the resolution of sepsis (Gibot  2006 ).  

   So far, only our group studied the impact of aging on the TREM-1-induced func-
tions on cells of the immune system. PMN from elderly donors were found to have 
impaired response following TREM-1 engagement (Fortin et al.  2007c ). Notably, 
TREM-1 could not prime the production of ROS in the elderly as it did in the young 
donors and, altered signal transduction of downstream TREM-1-elicited molecules 
(Akt and PLC γ ) was found. Of particular interest, TREM-1 engagement could not 
reverse PMN survival following incubation with LPS or GM-CSF in the elderly 
whereas it did in the young. This particular alteration in TREM-1 response could 
possibly be a contributing factor in the higher incidence of sepsis-related deaths in 
the elderly population as resolution of inflammation requires clearance of effectors 
cells. Finally, TREM-1 engagement could not drive the recruitment of TREM-1 in 
the lipid-rafts of the elderly explaining in part the altered response. Although data 
exist in human relative to the amount of soluble TREM-1 found in the plasma of 
patient with or without sepsis, the study was carried only for one age group (mean 
age 60 ± 15) (Gibot et al.  2004 ). In keeping with the contributions of TREM-1 in 
inflammation and the aforementioned alterations in the TEM-1-induced functions 
in the PMN of the elderly, it would be extremely interesting to have data on lethal 
outcome of sepsis vs. age of hospitalized patients.  

         4      Conclusion  

   PMN are very important part of the immune response towards invading organ-
isms. They are the first line defence being part of the innate immune response 
and, are essential modulators of the adaptive immune response. It is well known 
that the incidence of infections is increasing with age. Decrease in specific recep-
tor mediated functions including free radical production, chemotaxis and apop-
tosis/survival of PMN with aging resulting from an alteration of the positive and 
negative events in the signalling pathways have been recently demonstrated. These 
alterations might contribute to the increased incidence of infections with aging. 
However, these changes in neutrophil functions remain controversial with aging. 
Elucidation with more rigorous and sophisticated methods of PMN function alter-
ations with aging is needed as these changes could have a great impact on the 
adaptive immune response. The recent demonstration of lipid rafts in PMN, as 
being fundamental platforms for signal transduction, will help to better understand 
the mechanism of age-related signalling changes. These changes should be also 
taken into account when tentative is made to increase the immune response of the 
elderly by immunomodulating agents for improving the quality of life of elderly 
persons.  
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                                        Abstract   :     Although ageing is a complex process, we now know much of what 
happens with age at the cellular and tissue level. In contrast, our understanding 
of how the various age-related changes interact to result in frailty and pathology 
is incomplete. For example, ageing is accompanied by a loss of immune func-
tion (Immunesenescence), an increase in the level of circulating proinflammatory 
cytokines (Inflammaging), a decline in adrenal androgen production (Adrenopause) 
whilst concurrently peripheral glucocorticoid availability increases. In this article 
we propose that these changes in combination increase the susceptibility of older 
adults to the adverse effects of physical and emotional stress, exacerbating the 
age-related decline in immune competence and exposing the older individual to 
increased risk of infections. We have focused upon the effects of stress and ageing 
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on neutrophil function, an element of the immune system that has received less 
attention from immunogerontologists, despite the primary role of neutrophils in 
fighting bacterial infections and the major contribution of such infections to age-
related morbidity and mortality. We propose that physical and emotional stressors 
elicit an exaggerated response in older adults that synergises with the age-related 
loss of neutrophil function, to compromise antibacterial mechanisms. Moreover, the 
molecular basis of this effect may lie with the significant changes in tissue concen-
trations of cortisol and dehydroepiandrosterone in peripheral target cells including 
the immune compartment.  

      1 Ageing, Stress and Infection  

   It is now well established that the efficiency of the immune system declines with age 
and this is highlighted most obviously at the functional level by the increased risk of 
morbidity and mortality from infection in older adults [1–3]. The three major causes 
of death in the UK in those aged over 65 are cardiovascular diseases, cancer and res-
piratory disease (Fig. 1). Approximately 1 in 6 older adults will die as a result of the 
latter, the majority succumbing to respiratory infections. Older adults show a three-
fold greater incidence of bacterial dysentery than younger subjects, 50% higher 
mortality from gram-negative bacterial sepsis, and deaths from gastrointestinal 
infections, pneumonia and influenza are largely confined to patients over 65 years of 
age [4, 5]. Age-related reactivation of latent infections previously held in check by 
the immune system is a further indicator of the age-related decline in immune func-
tion (immunesenescence). Thus the incidence of tuberculosis is raised in the elderly, 
indicating reduced functioning of macrophages [6] and reduced T-lymphocyte func-
tion is reflected by reactivation of latent Herpes viruses such as Varicella Zoster 
(shingles) in older age [7]. Older adults are also at increased risk of postsurgical 
complications such as infections, which include infections at the wound site; but are 
dominated by bacterial chest and urinary tract infections [8]. Furthermore, delayed 
wound healing with age has particular relevance in the context of surgery and has 
underlying contributions from senescent fibroblasts as well as senescent immune 

Fig. 1 The figure shows 
the major causes of death in 
adults aged 65-84 in the UK, 
(adapted from data presented 
in the House of Lords Sci-
ence and Technology Com-
mittee 1st report on Ageing: 
Scientific Aspects, 2005, 
Figure 4, page 42)
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cells which are key players in the wound healing response (9). The increased risk 
of infection following surgery may therefore reflect compromised immune and 
wound healing responses and underline the significant effect of physical stress upon 
immunity.  

  It is now well accepted that prolonged exposure to stress, whether psychosocial 
or physical, has detrimental effects upon immunity. Immune suppression associated 
with chronic stress has significant clinical consequences, including increased risk of 
illness and death from infectious disease [10, 11]. In the area of psychosocial stress 
there is now a solid literature showing reduced immunity, suboptimal responses to 
infectious agents and vaccines and increased susceptibility to infection in adults 
following bereavement [12–14] extended care-giving [15, 16], or low social support 
[10, 17–20]. In an elegant study by Cohen et al. [21] the effect of psychosocial stress 
on resistance to infection was clearly demonstrated. In this study almost 400 volun-
teers were exposed to five different respiratory viruses and incidence and severity of 
infection for each virus was found to be positively correlated with their scores on a 
psychological stress index. The reader is referred to a recent comprehensive review 
of this area by Kiecolt-Glaser and Glaser [22].  

   Moderate physical trauma is also a potent mediator of immune suppression, with 
1 in 3 trauma patients succumbing to one or more infections [23]. An extensive ret-
rospective analysis of infections in over 10,000 trauma patients revealed that 32% of 
patients developed respiratory tract infections and 17% had urinary tract infections 
[24]. In older adults the most frequent trauma results from falls leading to hip-frac-
tures. Falls are the leading cause of admission into care homes and a frequent cause 
of death in the elderly population. Again, one of the major health risks associated 
with falls and hip-fracture is infection, such as osteomyelitis, respiratory infections 
and infections at the surgical wound site [24–26].  

       2   Ageing and Neutrophil Function  

   The high incidence of bacterial infections in older adults is particularly suggestive 
of a suboptimal neutrophil response, as these leucocytes form the primary response 
to bacterial, fungal and yeast infections. The preponderance of urinary tract infec-
tions in older adults would also support this conclusion. As the effect of ageing on 
neutrophil function is covered in detail elsewhere in this volume, this topic will be 
covered only briefly here to allow discussion of the combined effect of age and 
stress on neutrophil function.  

   Neutrophils are the dominant leucocyte in the circulation, making up 60% of 
the white cell count. They are also the shortest lived blood cell, dying by apopto-
sis approximately 24h after leaving the bone marrow [27, 28]. Their function can 
be enhanced by proinflammatory cytokines, such as GM-CSF, TNFα and Type 1 
interferon, which not only amplify their basic bactericidal functions, such as gen-
eration of reactive oxygen species, but also extend their lifespan at sites of infec-
tion by inhibiting apoptosis [29, 30]. Neutrophils are recruited to sites of infection 
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via chemotactic signals, such as the chemokine CXCL8 (also known as IL8). Once 
in contact with the pathogen they uptake the microbe by phagocytosis mediated 
via opsonic receptors (CD11b/CD18, CD16, CD32, CD64) that detect comple-
ment proteins C3b and C3Bi or antibody coating the microbe. Once inside the 
neutrophil, pathogens are killed as a result of the generation of reactive oxygen 
and nitrogen species and the release of a range of proteolytic enzymes from cyto-
plasmic granules. Phagocytosis and generation of superoxide trigger the death of 
the neutrophil, which is then removed by macrophages leading to the resolution of 
inflammation [27].  

   Comparison of neutrophils from peripheral blood of healthy young and old 
adults has shown in a majority of studies that chemotaxis is not significantly 
affected by ageing, with adherence of neutrophils to endothelium [31, 32] and 
expression of adhesion molecules [31, 33] both unaltered with ageing. In contrast, 
bactericidal (superoxide generation and degranulation) and phagocytic function 
is dramatically reduced in neutrophils from older adults [34–37]. For superox-
ide generation, responses to the bacterial peptide fMLP and to gram-negative 
bacteria appear to be unaltered by ageing [31, 34, 38], whereas superoxide gen-
eration in response to a gram-positive stimulus such as  Staphylococcus aureus, 
 was significantly reduced in neutrophils from older donors [37]. The latter is of 
clinical importance bearing in mind the reduced ability of older adults to resolve 
infections with gram-positive bacteria [39]. The cause of reduced superoxide gen-
eration with age is not fully understood, though reduced signaling via calcium 
in activated neutrophils has been suggested [36] and reduced responsiveness to 
proinflammatory cytokines such as GM-CSF has also been shown [40, 41]. This 
is an important finding as cytokines such as GM-CSF prime neutrophil function 
leading to improved bactericidal responses to bacterial components such as fMLP. 
In addition, as stated above GM-CSF is also a potent neutrophil survival factor 
and reduced responsiveness to this cytokine would limit neutrophil lifespan exten-
sion at sites of inflammation.  

   Loss of phagocytic capacity has been investigated reasonably thoroughly. Neu-
trophils from older subjects retain their ability to phagocytose opsonized bacte-
rial pathogens per se, but their phagocytic capacity (phagoctyic index, the number 
of microbes ingested per cell) is significantly compromised [34, 35, 42–44]. The 
level of expression of opsonic receptors is known to be a determinant of phago-
cytic capacity and our data showed a significant reduction in one of the cell sur-
face opsonin receptors (CD16) that binds to antibody coating bacterial pathogens. 
Taken together these data indicate that neutrophils should be able to respond to 
chemotactic signals from a site of infection, but will then be severely compromised 
in their bactericidal function and also their ability to respond to local survival fac-
tors such as GM-CSF.  

   In addition to the obvious consequences of reduced neutrophil function for abil-
ity to combat bacterial infections, neutrophils also play a key role in wound healing. 
In response to tissue injury cytokines are released, including CXCL8, which attract 
neutrophils to the site. Neutrophils then aid resolution of the damage by removing 
microbial pathogens and restoring sterility, thus removing the inflammatory stimu-
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lus. Whether neutrophils play a positive role in wound healing beyond clearance 
of pathogens is still a hotly debated topic. Neutrophils release cytokines important 
for revascularization and tissue repair, such as CXCL8 and VEGF [45], but this has 
to be balanced with their ability to produce tissue-damaging agents if they persist 
at a sterile wound site. Reduced phagocytosis of microbes will lead to persistence 
of inflammation and prevention of wound healing by the presence of high levels 
of inflammatory cytokines. Although this aspect of innate immunesenescence has 
received less attention, it is potentially a significant factor in the development and 
persistence of ulcerated wounds in the elderly.  

       3   Stress and Neutrophil Function  

   Stress, whether physical or psychological, is broadly sensed by 2 endocrine regula-
tory systems, the Hypothalamic-Pituitary-Adrenal (HPA) axis and the sympathetic-
adrenal-medullary (SAM) system. Stress induces the release of catecholamines 
(adrenalin and noradrenalin) from the adrenal medulla and the sympathetic nervous 
system and, mediated via an increased pituitary ACTH secretion, results in an acute 
increase in cortisol and dehydroepiandrosterone (DHEA) release from the adrenal 
cortex. Catecholamines and cortisol are both immune suppressive [46, 47], whereas 
DHEA is a precursor to sex hormones and is generally thought to be immune 
enhancing [48–52], though evidence for the latter is less substantial due to lack of 
data generated in humans and human cell-based systems. In particular, all DHEA 
replacement studies in humans have been carried out in healthy older subjects only 
[53–55] and not under conditions of stress in which this hormone may play its vital 
role in counteracting the negative effects of cortisol (discussed below).  

   As the effects of stress on adaptive immune functions are dealt with separately in 
this volume, the focus here will be upon neutrophil function in response to stress.  

     3.1      Acute Stress  

   The impact of acute psychological stress on neutrophils has received little attention 
within the immune literature. In animals, acute psychological stress can be applied 
in a variety of ways including inescapable intermittent electric shock, overcrowding, 
or restraint in an enclosed space. Acute psychological stressors in humans usually 
involve brief laboratory-based tasks such as public speaking or mental arithmetic in 
front of an audience and/or under time pressure, or the cold-pressor test (submer-
sion of the hand in ice-cold water), although some studies have used examination 
stress as a short-term stressor. Overall, the literature suggests that periods of acute 
stress have beneficial effects on neutrophil function. Mice that had received 2.5 
hours of restraint stress showed increased infiltration of neutrophils into a surgically 
implanted sponge in comparison to unstressed control mice [57]. In addition, an 
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increase in neutrophil adhesion and aggregation has also been shown to be induced 
by short periods of inescapable foot shock in rats [58], an acute anticipatory stressor 
in healthy young adults [59, 60], and stroop and mirror tracing tasks in men aged 
30–59 [61].  

   Acute stress has also been shown to modulate phagocytosis: periods of social 
conflict stress between mice for less than one day resulted in increased phagocy-
tosis by neutrophils and other phagocytic cells in comparison to nonstressed mice 
[62]. When neutrophils are activated, they undergo a respiratory burst and produce 
toxic superoxides that kill the pathogens they have phagocytosed. In humans, a 15 
minute time pressured stress task (Raven’s Advanced Progressive Matrices) induced 
an immediate significant increase in the number of activated neutrophils relative to 
resting baseline and in comparison to a nonstressed control group. This increase in 
activation state had returned to baseline 10 minutes following the end of the stress 
task. A comparison of neutrophil function in students between final examination 
week and nonexamination weeks showed that the short-term stress of examinations 
was associated with an increase in neutrophil superoxide production [63, 64], and 
this increase was maintained at 2–3 weeks post examinations [63]. In rats, super-
oxide production was increased in response to 1 hour of open field stress [65]; and 
superoxide production at the site of inflammation following experimental  E.coli 
 injection was observed to be higher in rats previously exposed to inescapable tail 
shock in restraint tubes for two hours in comparison to non-stressed rats. In the 
latter study, stressed rats also showed a complete resolution of the inflammatory 
response to the infection two weeks faster than control nonstressed rats, potentially 
indicating a stress-induced elevation in neutrophil response resulting in more effec-
tive bactericidal activity [66]. This increase in neutrophil function parallels other 
acute stress induced changes in nonspecific immunity such as the increased produc-
tion of secretory immunoglobulin A [67].  

   In summary, acute stress appears to have an overall positive impact upon neu-
trophil function, particularly when acute stress is applied in the context of an inflam-
matory challenge, although the mechanisms of such effects are unclear at present.  

       3.2      Chronic Stress  

   In contrast to acute stress, the effects of chronic exposure to stress are detrimental to 
immune function. A meta-analysis of thirty years literature on the effect of stress on 
the immune system concluded that chronic stress such as bereavement or physical 
trauma resulted in suppression of cellular and humoral immunity and increased sus-
ceptibility to infection [68]. As with acute stress there is very little information relat-
ing to neutrophil function and the research emphasis has been placed upon adaptive 
immune responses. However, chronic stress and depression in cancer patients is 
associated with neutrophilia, but also with decreased neutrophil phagocytic ability 
and raised cortisol levels [69]. Intense or long duration exercise is also associated 
with raised circulating cortisol and adrenalin, together with reduced neutrophil bac-
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tericidal responses namely degranulation and superoxide generation [70]. Our own 
studies of the effect of physical stress (limb or hip-fracture) on neutrophil function 
confirmed a profound neutrophilia in response to stress, but also a significant sup-
pression of superoxide generation in response to a bacterial peptide challenge which 
correlated with raised cortisol levels [71].  

   Glucocortoids are likely to be major mediators of the negative effects of chronic 
stress upon neutrophil biology and function [72]. For example, studies of the effects 
of cortisol infusions in humans have shown a profound neutrophilia, which is 
achieved in part by the inhibition of neutrophil apoptosis thus extending neutrophil 
lifespan in the circulation [73, 74]. Cortisol can also enhance G-CSF mediated stim-
ulation of granulopoiesis in the bone marrow [75], further contributing to raised 
neutrophil numbers in response to cortisol. Unfortunately the potential benefit of 
an increased level of circulating neutrophils with raised cortisol is not realized, as 
cortisol also inhibits neutrophil chemotaxis and extravasation [76]. The clinical 
significance of this observation is seen in studies that reported reduced neutrophil 
chemotaxis in trauma patients and a strong correlation with increased incidence of 
infection [77, 78]. In vitro studies also suggest that the suppression of neutrophil 
superoxide generation after trauma is mediated by cortisol. We and others have 
shown that superoxide generation by cytokine-primed neutrophils in vitro was sup-
pressed by cortisol [71, 79], though we found no effect of cortisol on phagocytic 
function (S.K. Butcher, unpublished data). Taken together these data indicate that 
raised cortisol levels will impact negatively upon neutrophil function, which could 
in turn increase susceptibility to bacterial infections.  

   The meta-analysis carried out by Segerstrom and Miller [68] also revealed that 
the loss of immunity in response to stress was much greater in older adults, which 
in turn concurs with reports of excess infection-related morbidity and mortality in 
older trauma patients [80 –82]. Our own studies have compared responses to stress 
in young and old trauma patients and revealed that the detrimental effect of physical 
stress was most marked in older adults [71, 83], supporting an influence of age upon 
stress mediated suppression of neutrophil responses. That neutrophil function was 
affected by chronic stress in patients with cancer, an age-related disease, adds fur-
ther weight to this proposal. Synergy between the effects of stress and immunese-
nescence on immune function, has also been proposed in relation to psychosocial 
stress and the immune system [22, 84] and there is now a real need to compare the 
differential effects of stress on a broad range of immune responses in young and old 
subjects.  

         4     Ageing and Stress Hormones  

   While cortisol secretion by the adrenocortical zona fasciculata appears to remain 
largely unchanged throughout life [85], adrenal dehydroepiandrosterone (DHEA) 
secretion from the adrenal zona reticularis exhibits a characteristic, age-associated 
pattern. Intraindividual maximum levels of DHEA and its sulphate ester DHEAS are 
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reached during early adulthood, followed by a steady decline throughout adult life, 
eventually decreasing to 10–20% of previous maximum levels by 70–80 years of age 
[86, 87]. This age-associated decline in DHEA synthesis has been termed “adreno-
pause”, which is somewhat imprecise given that adrenocortical glucocorticoid and 
mineralocorticoid secretion is maintained without change across the lifespan. Inter-
estingly, an age-associated secretion pattern of DHEA is only observed in humans 
and higher nonhuman primates [88, 89] and it is important to recognize that rodent 
adrenals are not capable of DHEA secretion, yielding only very low circulating 
DHEA concentrations of primarily gonadal origin, thereby limiting the suitabil-
ity of rodents for studies on the significance of DHEA for human physiology and 
disease. Adrenopause is independent of menopause, and it occurs in both sexes; it 
shows high interindividual variability and has been suggested to be associated with 
a macroscopically visible decrease in size of the adrenal zona reticularis [90]. There 
is also a suggestion of an age related increase in senescent and apoptotic cells within 
the zona reticularis, though whether this contributes to loss of cells in this region 
of the adrenal cortex, or might influence functional activity of the zona reticularis 
cells, has not been established [91].  

   DHEA secretion exhibits a diurnal rhythm similar to that of cortisol and ongo-
ing age has been shown to be associated with an attenuation of the diurnal rhythm 
and the pulse amplitude of DHEA secretion [92]. Furthermore, the adrenal stress 
response seems to be partially impaired with ageing, with a significant reduction 
of acute DHEA release following an acute exogenous ACTH challenge whilst the 
cortisol response remains intact [93]. In young healthy subjects it has been shown 
that an acute psychosocial stressor such as an arithmetic challenge or public speak-
ing test results in an acute rise in cortisol [94], but neither the impact of this on 
DHEA release nor its modification in the aged has been investigated to date. We 
have recently shown that acute sepsis leads to an up-regulation of both cortisol and 
DHEA [95], however, comprehensive data on chronic exposure to physical or psy-
chological stress are lacking.  

   Whilst cortisol mediates its action via the cytosolic glucocorticoid receptor that, 
once activated, translocates to the nucleus and initiates the transcription of gluco-
corticoid effector genes, the exact mechanisms underlying the actions of DHEA 
and its sulphate ester DHEAS still remain controversial. High affinity binding sites 
for DHEA have been described in murine and human T-lymphocytes [96, 97] and 
human vascular endothelial cells [98, 99], but their specificity as opposed to active 
androgens is still debated. DHEA has also been shown to have neurosteroidal prop-
erties and exerts stimulatory effects on NMDA receptors and inhibitory effects on 
GABA 

A
  receptors in the brain [87]. However, the current view is that the majority 

of its actions are mediated indirectly, via downstream conversion to sex steroids and 
other steroids of potentially distinct activity including the putatively immune modu-
latory steroids androstenediol, androstenetriol and 7α-OH-DHEA [100] (Fig. 2).  

   DHEA represents a paradigm for prereceptor metabolism as its action will mainly 
depend on the expression of enzymes responsible for its conversion to other ster-
oids in the specific target cell of interest. Lymphocytes and macrophages have been 
shown previously to express steroidogenic enzymes involved in the downstream 
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metabolism of DHEA [101–103], but their presence in neutrophils has not been 
determined. We have recently shown that the expression level of these enzymes 
changes with ageing and demonstrated enhanced conversion of DHEA to andros-
tenediol as well as increased androgen activation by 5α-reductase in lymphocytes 
from older men as compared to young men [104]. Concurrently circulating levels 
of DHEAS and testosterone were significantly lower in the older men, suggesting 
that the up-regulation of steroidogenic enzymes in the lymphocyte compartment 
may be a counter-regulatory event aiming to maintain intracellular availability of 
androstenediol and dihydrotestosterone.  

  Although circulating cortisol levels do not change significantly with aging, 
intracellular availability of active glucocorticoids within the peripheral target 
cells including immune cells may well be altered with age. The major regula-
tory switch controlling tissue-specific activation of glucocorticoids is the enzyme 

Fig. 2 Dehydroepiandrosterone (DHEA) biosynthesis from cholesterol via StAR (steroidogenic 
acute regulatory protein), CYP11A1 (side chain-cleavage enzyme) and CYP17A1 (17α-hydroxy-
lase/17, 20 lyase) as well as its downstream metabolism to sex steroids and potentially immune-
modulatory steroids via HSD3B (3β-hydroxysteroid dehydrogenase Type 1 and 2), HSD17B 
(17β-hydroxysteroid dehydrogenases), SRD5A1 (5a-reductase Type 1 and 2), CYP19A1 (Aro-
matase), CYP7B (7α-hydroxylase) and HSD11B1 (11β-hydroxysteroid dehydrogenase Type 1). 
Lipophilic DHEA can be converted to its hydrophilic sulphate ester DHEAS by SULT2A1 (DHEA 
sulphotransferase) and back by STS (steroid sulfatase)
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11β-hydroxysteroid dehydrogenase Type 1 (11β-HSD1), which converts inactive 
cortisone to active cortisol [105] (Fig. 3). 11β-HSD1 has two activities; in vivo it 
mainly acts as an oxoreductase, activating cortisone to cortisol, whereas in vitro it 
mostly exhibits dehydrogenase activity, converting cortisol to inactive cortisone. 
11β-HSD1 is anchored in the endoplasmic reticulum (ER) membrane and has its 
catalytic domain directed towards the lumen of the ER. Only recently it has been 
elucidated that its oxoreductase activity is dependent on NADPH generation by 
the endoplasmic reticulum luminal enzyme hexose-6-phosphate dehydrogenase 
(H6PDH) [106, 107] (Fig. 3). It is well established that expression and functional 
activity of 11β-HSD1 can be up-regulated by inflammatory cytokines, e.g., in adi-
pose tissue and bone [108, 109]. As ageing leads to a cytokine profile that is more 
proinflammatory, with raised levels of IL-1β, IL-6 and TNFα [110], it can be readily 
hypothesized that increased activity of 11β-HSD1 would lead to increased tissue-
specific glucocorticoid availability and action. A precedent for age related changes 
in 11β-HSD1 expression may relate to the brain, where an age related increase in 
11β-HSD1 might explain why cerebrospinal fluid cortisol concentrations rise with 
age despite unchanged serum cortisol levels [111]. This concept has been convinc-
ingly supported by recent human in vivo data demonstrating an improvement in 
cognitive function by inhibition of 11β-HSD1 activity [112].  

       Interestingly, it has been shown that 11β-HSD1 is expressed in immune cells 
and that 11β-HSD1 expression is induced in monocytes upon differentiation to 
macrophages [113]. By contrast, intracellular glucocorticoid activation by 11β-

Fig. 3 The oxoreductase activity of 11β-hydroxysteroid dehydrogenase (HSD11B1) converts 
inactive cortisone to active cortisol that binds and activates the glucocorticoid receptor (GR). 
HSD11B1 is predominantly an oxoreductase in vivo, however in vitro, following disruption of the 
endoplasmic reticulum integrity, mainly acts as a dehydrogenase, inactivating cortisol to cortisone. 
HSD11B1 is anchored in the ER membrane with its catalytic domain towards the ER lumen and 
its oxoreductase activity is dependent on NADPH delivery by the intraluminal enzyme hexose-6-
phosphate dehydrogenase (H6PD)
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HSD1 oxoreductase activity sharply declines during the maturation of monocyte-
derived dendritic cells [114]. Whether macrophage and dendritic cell function are 
differentially modulated by cortisol remains an interesting possibility. The loss of 
DHEA with age, accompanied by increased 11β-HSD1 in immune cells and tis-
sues induced by inflammaging, may thus result in increased glucocorticoid activ-
ity in inflamed tissues, further dampening the immune response in older adults. In 
addition, inhibition of 11β-HSD1 decreases cortisol half-life [115] and the observed 
increase in cortisol half-life in the elderly (by as much as 40%) may be a reflection of 
enhanced 11β-HSD1 activity [116]. Thus we postulate that ageing represents a state 
of tissue specific cortisol excess in the context of normal circulating levels and that 
this will impair the peripheral immune response in tissues throughout the body.  

       5   Stress Hormones and Neutrophil Function  

   The vast majority of literature on this topic is focused upon the immune sup-
pressive activity of cortisol, with little attention paid to DHEA or its downstream 
metabolites. Moreover, very few studies of stress hormone effects on immune cells 
have considered neutrophils. The active glucocorticoid cortisol exhibits a variety 
of immune suppressing effects [117], which appear to be counteracted by DHEA. 
For example, it has been suggested that DHEA and glucocorticoids have opposing 
effects on T-helper cell 1 (Th1)/Th2 balance [118] with evidence for protection of 
a Th1 cytokine profile by DHEA [119]. In rodents, DHEA antagonizes dexametha-
sone-induced suppression of lymphocyte proliferation and prevents glucocorticoid-
induced thymic and splenic atrophy [120]. DHEA and dexamethasone may have 
opposing effects on dendritic cell differentiation [121]. DHEA and the glucocorti-
coid receptor antagonist RU486 equally reverse the suppressive effects of glucocor-
ticoids on immune function [49]. In vitro studies utilizing human immune cells have 
demonstrated an increase in IL-2 secretion [52] and natural killer cell cytotoxicity 
[122] following exposure to DHEA. Conversely, DHEA has been shown to inhibit 
IL-6 release and circulating DHEAS levels have been shown to negatively corre-
late with serum IL-6 [123, 124]. Thus DHEA appears to counteract the changes in 
cytokine secretion characteristically observed with ageing, i.e. decreased IL-2 and 
increased IL-6 levels. DHEA replacement in patients with adrenal insufficiency and 
thus pronounced DHEA deficiency has been shown to increase the number of cir-
culating regulatory T-cells [125], but this study did not provide details on functional 
activity.  

   In relation to neutrophil function, as described above cortisol is a potent suppres-
sor of neutrophil bactericidal responses inhibiting neutrophil superoxide generation 
[79]. Our own work has confirmed these reports and shown that DHEAS was able to 
enhance neutrophil superoxide generation in vitro and to overcome the suppressive 
effects of cortisol on primed neutrophil superoxide generation [71]. Indirect support 
for the ability of DHEA to counteract the immune suppressive effects of cortisol in 
vivo, comes from animal studies of DHEA supplementation. For example, dietary 



Cortisol

+

Stress

ACTH

Brain
(Hypothalamus)

DHEA

+

Pituitary
gland 

Adrenal cortex

Peripheral
tissues



Synergistic Effects of Ageing and Stress on Neutrophil Function 487

DHEA supplementation of rodents exposed to physical trauma resulted in reduced 
mortality from the trauma induced sepsis [126]. The latter may be due not only to 
improved neutrophil function in the presence of DHEA, but also to moderation of 
the shock response which can produce excessive neutrophil accumulation in tissues 
leading to nonspecific tissue damage. In this respect DHEA has been reported to 
down-regulate induction of adhesion molecule expression by LPS [127]. It is thus 
clear that both cortisol and DHEA appear to modulate neutrophil function, but much 
more research is necessary to determine the extent of these effects and their mecha-
nisms, i.e. whether the effects of DHEA are direct or via downstream metabolites.  

   Peripheral actions of glucocorticoids may also be modified by DHEA. DHEA 
reverses glucocorticoid-associated immune changes after trauma/haemorrhage in 
mice, concurrently leading to normalisation of elevated corticosterone levels [128], 
which may suggest an effect upon the prereceptor modulation of glucocorticoids, 
specifically on 11β-HSD1. Down-regulation of 11β-HSD1 expression and activity 
by DHEA was recently demonstrated in rat hepatocytes [129], in murine adipocytes 
[130] and in human skeletal muscle [131]. Thus in the situation of ageing we predict 
an increase in glucocorticoid action in immune cells due to enhanced tissue-specific 
activation by 11β-HSD1 whilst the potentially counteracting DHEA pool dimin-
ishes due to the age-associated decline in adrenal DHEA production.  

   In summary, there is still a paucity of data generated in human based systems that 
informs about DHEA-induced immune effects, in particular there are few studies 
investigating the effect of DHEA or DHEAS on neutrophil function. The data avail-
able to date do however suggest that DHEA can counteract the immune suppressive 
effects of corticosteroids, including suppression of neutrophil function [132].  

       6   Ageing, Stress and Neutrophil Function  

   We propose that the age-related immune and endocrine changes outlined above 
have specific implications for resilience to stress in older adults. We hypothesize 
that the combination of adrenopause, leading to a relative preponderance of cortisol 
over DHEA, with increased tissue levels of 11 -HSD1 resulting in raised periph-
eral cortisol availability and an already reduced immune defence against infection, 
leave this population particularly susceptible to the negative effects of stress on 
immunity. For example, relative to age-matched controls, older adults exposed to 
the chronic stress of being the primary caregiver for a partner with dementia have 

Fig. 4 Stress is sensed by the hypothalamus which secretes corticotrophin releasing hormone, 
stimulating the pituitary gland to produce adrenocorticotropic hormone (ACTH). ACTH acts upon 
the adrenal gland causing release of glucocorticoids (cortisol) and DHEA into the circulation. 
Cortisol suppresses neutrophil function, including extravasation, whereas DHEA counteracts the 
effects of cortisol and promotes neutrophil function. With age the ability to produce DHEA is 
reduced (indicated by the dashed line) giving a relative excess of cortisol. Raised levels of inflam-
matory cytokines induce 11β-HSD1 expression in peripheral tissues increasing conversion of inac-
tive cortisone to active cortisol. The overall effect of age and stress is to diminish the antibacterial 
actions of neutrophils, thus increasing susceptibly to these infections in older adults
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shown a variety of immunological decrements. These include a reduced response 
to pneumococcal pneumonia vaccination and poorer in vitro NK-cell cytotoxicity 
[133, 134]. More recently, in vivo assessments of immune function, such as healing 
rates of experimentally administered wounds and antibody response to vaccination, 
have been used to provide clinically relevant outcome measures of the effects of 
stress on immunity. These studies have supported the previous work suggesting 
that psychosocial stress is associated with reduced immune functioning in older 
populations. For example, older adults providing long-term care-giving have shown 
delayed wound healing in the mouth [135]. Further, experimentally induced punch 
biopsy wounds took significantly longer to heal in chronically stressed older car-
egivers and immune cells from the caregivers produced significantly less of the 
cytokine IL-1β in response to stimulation in vitro than the cells of women who were 
not caregivers [135]. Although an interaction between stress and ageing has not, to 
our knowledge, been tested directly in the context of psychological stress, there is 
evidence that younger care-givers of multiple sclerosis patients do not demonstrate 
reduced antibody responses to vaccination compared to controls [136]. In addition, 
influenza vaccination responses were reduced in chronically stressed older adults to 
a much greater extent than young adults [137].  

   Physical bodily trauma, such as hip-fracture, can also be considered as a chronic 
stressor, and is associated with decrements in immune function. For example, the 
experience of hip-fracture in adults aged over 65 years was associated with dimin-
ished neutrophil function (generation of superoxide) and a significant incidence 
(43%) of bacterial infection [83]. Interestingly, this effect of trauma on neutrophil 
function and infection rates was not observed in younger adults with limb frac-
tures, suggesting that this immune impact of stress is worsened by the presence 
of immunesenescence. This finding supports the hypothesis that nonacute stress, 
whether physical [132] or psychosocial [84] exacerbates the negative influence of 
ageing on the immune system.  

         7      Conclusions and Future Directions  

   Ageing has been defined classically as the increasing frailty of an organism with 
time that reduces its ability to deal with stress, resulting in increased probability 
of disease and death. The age-related loss of innate immune function, including 
reduced neutrophil bactericidal function, contributes to such frailty by increasing 
susceptibility of older adults to bacterial, fungal and yeast infections. Chronic stress 
is also detrimental to immune function and although the literature regarding neu-
trophils is sparse, the negative effects of cortisol are well documented. We pro-
pose that the age-related increase in proinflammatory cytokines will increase tissue 
levels of cortisol via induction of 11β-HSD1, contributing to peripheral immune 
suppression in old age. Furthermore, the negative effects of cortisol appear to be 
modified by the counter stress hormone DHEA and we suggest that the loss of this 
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hormone with age mediates a synergistic down regulation of innate immune func-
tion by chronic stress and immunesenescence.  

   There is currently a paucity of experimental data concerning differential responses 
to stress with age and in particular the effects of stress on neutrophil function in 
older adults. Future intervention strategies to improve neutrophil function at times 
of stress may therefore usefully target the altered HPA axis, either by elevating cir-
culating DHEA levels or by functional antagonism of cortisol at the cellular level.  
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                       Abstract   :    Immunesenescence is characterized by a decline in immune functions 
which is responsible for majority of morbidity and mortality associated with aging. 
The possible consequences of this progressive aging of the immune system are an 
increase in autoimmune phenomena, incidence of malignancies and predisposition 
to infections. Innate immune system is the primary defense against invading patho-
gens. Moreover, it also initiates and modulates the functions of adaptive immune 
system. This review focuses on the age-associated changes in the functions of den-
dritic cells, the major antigen presenting cells of the innate immune system.  

        1      Introduction  

  The immune system is composed of two major defenses—1) innate immune or 
nonspecific defense mechanisms consisting of cells such as granulocytes, macro-
phages and dendritic cells (DCs) and proteins such as cytokines which allows an 
extremely rapid response to pathogens. 2) The adaptive immune or specific immune 
defense mechanisms consist mainly of cells such as T- and B-lymphocytes and fol-
low the innate immune response. This response is exquisitely tailored and specific 
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to the particular pathogen and is responsible for generating long-term memory 
against subsequent challenges. These two defense mechanisms are interlinked 
together and the nature of innate immune response dictates the nature or quality 
of adaptive immune response. The proper function of both systems is thus essen-
tial for generating effective immunity. Adaptive immune functions are known to be 
severely compromised with increasing age and believed to be the majo r cause for 
immunosenescence [18, 23, 26,  27, 35, 36, 42, 44, 60]. The knowledge regarding the 
contribution of innate immune cells such as DCs in immunosenescence is still in its 
infancy. This review summarizes the findings on DC functions in aging.  

    2      Dendritic Cells  

  Dendritic cells (DCs) are the most potent of antig en-presenting cells [6, 58] of the 
immune system present at various portals of entry of pathogens like skin, airways etc., 
sensing pathogens, ready to initiate and amplify the immune response. DCs serve as 
critical mediators of both immunity and tolerance [6, 57, 58] by virtue of their ability 
to ascertain that inflammatory immune responses against commensals of the physio-
logic skin microflora, ingested food antigens, or inhaled airborne microorganisms are 
prevented while potent immune responses against harmful pathogens are sustained.  

  DCs can be activated by various stimuli including microbes, dying cells, and 
inflammatory cytokines. An array of Toll-like receptors (TLRs), C-type lectin 
receptors (CLRs) and intracytoplasmic NOD-like receptors (NLRs) in DCs aid 
them in sensing pathogens [5, 28, 50]. The sensing and capture of antigen by DCs 
initiates their differentiation and maturation. During maturation they lose their anti-
gen capturing capacity and upregulate the expression of MHC and costimulatory 
molecules, thus becoming the efficient antigen presenting cells [6, 57, 58]. Matura-
tion of DCs also results in the upregulation of CCR-7 which allows them migrate 
to T-cell areas in the lymphoid organs where antigens are presented to the T-cells, 
initiating an adaptive immune response. In addition to an up-regulation of various 
markers, activation of DCs initiates an inflammatory response through secretion of 
a broad array of cytokines and other inflammatory mediators which allows them 
to communicate between themselves and other cells of the immune system, exert-
ing a broad influence on the immune system [6, 50]. For example, DCs can dictate 
the type of T-cell responses by virtue of the cytokines they secrete in response to a 
stimulus. IL-12 or IL-23 secretion by DCs [1, 13, 34] primes TH1/TH17 responses 
while IL-10 gives rise to TH2 or T-regulatory type of responses [2, 3].  

  Maintenance of tolerance is another key function of DCs [57, 58]. Under steady 
state conditions DCs continuously sample self-antigens from dying cells. However, 
no immune response is initiated since these do not activate DCs. These immature 
DCs interact with T-cells in the absence of costimulation leading to T-cell anergy or 
the development of T-regulatory cells. The presence of danger signals such as proin-
flammatory cytokines can cause DCs to mature resulting in break of tolerance. The 
proinflammatory cytokines and other inflammatory mediators that are increased 
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during aging can modulate functions of dendritic cells affecting the magnitude and 
quality of both innate and adaptive immune responses [10, 19, 30, 45].  

    3      Dendritic Cell Subsets  

  In humans, two major subsets of DCs [6] have been identified that   function 
differently in both the innate and adaptive immune   responses: myeloid DCs (mDCs), 
– interstitial DCs and   Langerhans cells are found in peripheral tissue, secondary 
lymphoid organs and blood, and plasmacytoid DCs (pDCs) are present in the blood 
and secondary lymphoid organs. mDCs are professional   APCs with a strong capac-
ity to prime naive T-cells and to induce   and regulate T-cell responses through secre-
tion of IL-12. pDCs on the other hand are characterized by their plasma cell-like 
morphology, low phagocytic capacity and production of large amounts of Type 
I interferons in response to viral, bacterial and parasitic infections [38]. The two 
subsets of DCs differ in their expression of highly conserved microbial pattern rec-
ognition receptors (PRRs), known as Toll-like receptors (TLR). Circulating pDCs 
express TLR1, 6, 7, 9 and 10, but not TLR4 [29, 51], while blood mDCs express 
TLR1, 2, 3, 4, 5, 6, 7, 8 and 10, but not TLR9 [51].  

    4      DCs in Aging  

  Aging is associated with multiple changes in the cytokine microenvironment that 
could have either inhibitory or stimulatory effect on the activation and/or maturation 
of DCs [9, 10, 19, 30, 45, 49]. The increased TNF-α and prostaglandins would result 
in premature DC activation altering their antigen uptake capacity [30]. Similarly 
elevated IL-10 and glucocorticoid levels in aging may result in the suppression of 
activation of DCs [10, 45]. A change in the microenvironment such as age-associ-
ated increase in proinflammatory cytokines like TNF-α,  may act as a trigger for 
maturation of DCs, and in combination with apoptotic cells may lead to immune 
activation and associated inflammation.  

  Studies on DCs in aging in humans have been focused primarily on the function 
of myeloid DC subset because it was believed to be the major DC subset involved 
in T-cell priming.  

    5      DC Numbers and Phenotype  

  Most studies in humans have reported no change in numbers or phenotype of DCs 
in aging [39, 56, 61]. In our study we found normal numbers and phenotype of 
circulating and monocyte-derived DCs (MDDCs) in aged humans [4]. However, 
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Della-bella et al. [15] reported progressive decline in the number of circulating 
mDCs with age while there was no change in pDC numbers. They also found that 
DCs from aged individuals have a more mature phenotype with an increased pro-
portions of cells expressing CD86 and CD83 as compared to young individuals. 
Recent mouse studies by Grolleau–Julius et al. [22] and Tesar et al. [59] also did 
not report any–significant difference in the numbers and phenotype of blood or 
lymphoid DCs. However, HLA-DR expression on peripheral blood DCs and DCs 
from a strain of senescence-accelerated mouse (SAMP-1) was found to be reduced 
[24]. A few earlier studies in mice document a decrease in the number Langerhan 
cells in the skin [11, 14, 55].  

    6      DC Pathogen Sensing and Cytokine Secretion  

   H. Influenzae  and  Streptococcus pneumoniae  infections account for substantial 
mortality [31, 41] in aged individuals resulting in increased susceptibility to infec-
tions with age. Alterations in PRR functions in aging may impair activation of the 
immune response and contribute to poorer vaccine responses and greater morbidity 
and mortality from infectious diseases. Proinflammatory cytokines are increased 
during aging. A greater understanding of PRR functions in aging is extremely rel-
evant in view of the interest in TLR agonists as therapeutic agents not only for infec-
tions, but also for allergic, autoimmune, and malignant diseases.  

  Amongst the PRRs, TLRs are most studied in aging because of their important 
role in clearing viral and bacterial pathogens. Numerous studies have investigated 
the expression of these receptors on the innate immune cells of both humans and 
mice. Alterations in TLR expression pattern in aging seem to be cell specific with 
monocytes showing decreased expression of certain TLRs while dendritic cells 
appear to express similar level of TLRs as the young.  

  Some earlier studies [8, 48, 54, 61, 62] had reported decreased expression and 
function of TLRs in macrophages from aged mice; however, recent studies by 
Tesar et al. [59] found that TLR expression and function (in vivo) is intact in 
myeloid DCs and macrophages from aged mice. They found that both circulat-
ing mDCs and bone-marrow derived DCs from aged and young mice expressed 
comparable levels of maturation markers following activation with various TLR 
ligands. The levels of cytokine secretion between the groups were also compara-
ble. In contrast, Grolleau-Julius et al. [22] reported decreased secretion of TNF-
α and IL-6 and increased IL-10 secretion from bone-marrow derived DCs from 
aged mice. The reason for this discrepancy is presently unclear. Previous stud-
ies [39, 56] have reported comparable levels of activation and cytokine secretion 
by MDDCs from the aged and young subjects following TLR stimulation. Our 
studies [4] found no differences in TLR expression in MDDCs from aged and 
young subjects at the gene level (Affymatrix analyses) and protein level (TLR4). 
There was no difference in the expression of CD40, CD80, CD83, CD86 and 
HLA-DR on MDDCs before and after activation with TLR-4 ligand, LPS between 
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aged and young subjects. However, we observed an increased secretion of TNF-α 
and IL-6 from MDDCs from aged compared to young subjects, when stimulated 
with TLR-4 or TLR8 ligand. The levels of IL-10, IL-12p40 and IL-12p70 were 
comparable between the two groups. Della bella et al. [15] report decreased IL-12 
secretion from LPS-stimulated circulating mDCs in humans. Unpublished data 
from our laboratory indicates that circulating mDCs in the aged subjects also 
secrete higher levels of TNF-α  and IL-6 upon TLR stimulation. In summary, 
TLR expression and function in DCs during aging appears to be intact except an 
increased secretion of proinflammatory cytokines TNF-α and IL-6. High IL-6 
and TNF-α levels are poor prognostic factors for a number of age-associated dis-
eases. For example, higher IL-6 levels lead to the production of C-reactive protein 
which is identified as a major risk factor for myocardial infarction. Increased 
serum IL-6 and C-reactive protein play a major role in Type-2 diabetes; rheuma-
toid arthritis and osteoporosis, all diseases which show increased incidence with 
age [12, 16, 43]. Likewise there is positive correlation between IL-6 levels and 
congestive heart failure. Increase in another proinflammatory cytokine TNF-α 
has been found to be associated with higher incidence of arteriosclerosis in older 
men [47]. Thus overactivation of the dendritic cells in response to TLR may be 
contributing to age-associated inflammation.  

    7      Antigen Capture  

  Phagocytosis is the major mechanism used by DCs to remove pathogens and cell 
debris and therefore is important for maintaining both immunity and tolerance 
[57, 58]. Our studies [4] have shown that both, the phagocytosis of dextran beads and 
pinocytosis of Lucifer Yellow dye was found to be impaired in MDDCs from aged 
subjects when compared to young. This suggested that MDDCs from aged displayed 
reduced capacity to capture antigen via both receptor-dependent and independent 
mechanisms. In addition to foreign antigens, DCs also capture and present self-anti-
gens in the periphery [25, 57, 58]. In fact the uptake of apoptotic cells by DCs in the 
periphery and presentation to T-cells in the absence of costimulation, is considered to 
be the major mechanism of maintenance of peripheral self-tolerance. Our investiga-
tions indicated that DCs from aged individuals were also impaired in their capacity to 
phagocytose apoptotic cells [4]. Impaired clearance of apoptotic cells in aging would 
lead to accumulation of apoptotic cells which will become necrotic and lyse to release 
auto-antigens such as nucleic acids, heat shock proteins, HMGB1, ATP and uric acid 
along with other cell debris. In contrast to apoptotic cells which are known to inhibit 
maturation of DCs, necrotic cells lead to activation of DCs and secretion of proinflam-
matory cytokines. Thus these auto-antigens can be taken up by DCs and presented to 
T-cells leading to inflammation and autoimmunity associated with age. Therefore, a 
reduction in the phagocytic capacity of DCs with age would not only result in reduced 
clearance of infections but would contribute to age-associated loss of peripheral self-
tolerance, autoimmunity and chronic inflammation.  
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    8      Migration of DCs  

  Following activation, DCs migrate to T- and B-cell areas after activation in order 
to induce effective cellular immune responses. Stimulation of immature DCs with 
TLR ligands results in the down-regulation of CCR6 and up-regulation of CCR7, 
which enhances their ability to migrate from the peripheral tissues to the draining 
lymph node. CCL21 and CCL19 both bind to the CCR7 receptor and are potent 
chemoattractants for mature DCs [32]. Mice deficient in CCR7 are unable to mount 
effective T-cell immunity [20]. Relatively few studies have addressed the ques-
tion of migration of DCs in aging. We determined the migration of DCs from aged 
and young human subjects using a transwell system where the DCs in the upper 
chamber migrate through a transwell of defined pore size to the lower chamber 
in response to a chemokine gradient [4]. We observed that DCs from aged sub-
jects were impaired in their capacity to migrate in response to CCL19 and SDF-1 
compared to DCs from young. This was not a consequence of reduced CCR7 or 
CXCR4 expression. Neither did we observe a significant difference in the secretion 
of basal level of the chemokines from DCs between aged and young individuals. 
Bhushan et al. [7] observed significantly impaired migration of LCs in response to 
TNF-α in elderly subjects. The same group also found decreased TNF-α  induced 
LC migration in aged animals. Choi and Sauder [11] reported decreased LCs mobi-
lization and the subsequent accumulation of DCs in the regional lymph nodes in 
aged mice in response to topical challenge with a chemical agent; however, contact 
hypersensitivity responses were not compromised. Linton et al. [37] have reported 
in vivo impaired migration of DCs from aged mice to the draining lymph nodes, in 
a TCR transgenic mice model. They suggest it to be due to both intrinsic defect of 
DCs and aged microenvironment. Contrary to above studies, Pietschmann et al. [46] 
observed normal trans-endothelial migration of peripheral blood myeloid-enriched 
lymphocyte-depleted cells in elderly subjects. This could be due to the difference 
in the model system. Impaired migration of DCs has also been observed in mice 
[14, 17]. Since the migration of DCs to lymph nodes is pivotal to the establish-
ment of the immune response, reduced migration may contribute to age-associated 
immune dysfunction.  

    9      Dendritic Cells and Adaptive Immunity  

  DCs play a key role in sensing and processing microbial information and direct-
ing the differentiation of naïve lymphocytes to effector cells suitable against par-
ticular types of infection. They have the unique capacity to prime naïve T-cells 
among the antigen presenting cells of the body, therefore they are critical for 
mounting immune responses against new antigens. The engagement of TLRs on 
DCs leads to an increased expression of MHC–peptide complexes and costim-
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ulatory molecules, as well as the production of immunomodulatory cytokines, 
all of which have a profound effect on T-cell priming and differentiation. The 
up-regulation of costimulatory molecules on DCs dictates the decision between 
tolerance and immunity. Antigen presentation by DCs in the absence of costimu-
lation results in the generation of anergic and/ or regulatory T-cells [25]. DCs also 
dictate the nature of TH (TH1, TH2, Treg, TH17) response generated through the 
type of cytokine secreted by them. For example, IL-12 from DCs induces T-cells 
to secrete IFN-γ [2] while IL-23 will induce IL-17 from T-cells [13, 34]. Secretion 
of IL-10 by DCs on the other hand induces either a TH2 or a T-regulatory type of 
response [2, 3]. It is thus clear that any alteration in the function of DCs with age, 
would affect T-cell responses.  

  There is some controversy regarding capacity of DCs in old age to stimulate 
T-cells. Earlier studies in aged mice demonstrated decrease in antigen presentation 
and T-cell priming capacity of DCs in the lymph nodes [17, 33, 55]. However, the 
two recent studies in mice are contradictory. Study by Tesar et al. [59] suggests the 
intrinsic defect in T-cells during age is responsible for the age-associated reduced T-
cell function. Grollaeu-julius [22] on the other hand found old bone-marrow derived 
DCs less effective than young DCs   in stimulating syngeneic ova–specific CD4 T-
cell proliferation. They also reported a decrease in tumor regression in mice treated 
with the ovalbumin peptide-pulsed   aged DCs than   with ovalbumin peptide-pulsed 
young DCs.  

  Similar to the findings of Tesar et al. in mice [59], MDDCs from elderly sub-
jects were not impaired in their capacity to induce T-cell responses. Steger et al. 
[56] and Grewe et al. [21] reported that DCs from young and aged subjects have 
similar stimulatory capacity to induce proliferation of T-cell lines developed in 
long-term cultures. Our preliminary studies with MDDCs show reduced prolifera-
tion of young T-cells when cultured with aged DCs. The reason for this discrep-
ancy is not clear.  

    10      Plasmacytoid DCs and Aging  

  Studies described above are all focused on the mDC subset from either the blood 
or in vitro monocyte-derived DCs. Except for a report by Schodell et al. [53] docu-
menting a decrease in the number and IFN-α secretion by pDCs in aging, virtually 
nothing is known about the functions of the pDC subset in aging. pDCs are key 
players in the elimination of infections and upon activation produce extremely high 
amounts of Type I IFNs. Type I IFN production by pDCs regulates the cytotoxic 
potential of NK and CD8 T-cells [38]. It also induces differentiation of B-cells to 
plasma cells. The NK and CD8 cytotoxicity are reduced with age along with a reduc-
tion in specific antibody responses. Studies of pDC functions with age may help in 
identification of mechanisms responsible for the reduced B and T-cell functions and 
the associated increased susceptibility to infections.  
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    11      Conclusion  

  Though the numbers and phenotype of DCs are relatively unchanged during aging 
dendritic cell functions are altered with age resulting in an enhanced secretion of 
proinflammatory cytokines. This increased in proinflammatory cytokines may be 
due decreased sensitivity of the cells to these cytokines, a phenomenon similar to 
what is observed with insulin resistance. Reduced phagocytosis and migration on 
the other hand increases the susceptibility of the elderly to infections. Therefore, it 
appears that dysfunction of DCs may contribute to T-and B-cell immunosenescence 
and chronic inflammation associated with aging.  
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    Abstract:     Immunosenescence has been envisaged as a situation in which the specific 
immune system deteriorates with age, while the innate immunity is negligibly affected 
and, in some cases, almost upregulated. Ageing represents a state of paradox where 
chronic inflammation is associated with declining immune responses. This peculiar 
finding, known as inflammageing, is mainly sustained by cells of the innate immunity. 
One of the key constituents of the innate immune system are monocytes. Therefore, 
although the age-related changes in the specific immunity are commonly considered 
the hallmarks of immunosenescence, the central role of the complex remodelling 
of first line defence cells, such as monocytes, is gradually emerging. For example, 
chemotaxis and phagocytosis, as well as antigen processing and presentation, are 
depressed, whereas cell activation and the secretion of inflammatory cytokines, such 
as IL-1, IL-6, TNF, are markedly increased. Changes in the expression of functionally 
important cellular receptors on monocyte surface can also contribute to the modifica-
tion of immune function characteristic of the elderly.      

         1      Monocyte Biology and Function  

   One of the key constituents of the immune system are monocyte–macrophages. 
Monocytes originate in the bone marrow and migrate through blood to body tissues 
as macrophages. Monocytes therefore represent the immature macrophages when 
in transit from bone marrow to tissues. These cells, also known as mononuclear 
phagocytes, share a common precursor with neutrophils. Through the expression 
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of a series of transcription factors differentiation takes place [67]. Human bone 
marrow produces approximately 5 × 10 9  monocytes per day. Under the influence 
of cytokines, a small number of macrophages in tissues differentiate and, depend-
ing on the anatomical sites, may become osteoclasts (bone), Kupffer cells (liver), 
microglia (brain), etc., all of which exhibit unusual morphological features and 
functional capacities. Monocytes proliferate in the presence of growth factors, such 
as monocyte colony-stimulating factor (M-CSF), granulocyte-macrophage colony-
stimulating factor (GM-CSF) or IL-3. When these cells are needed at the inflamma-
tory loci, in order to become activated and fully functional, they must interact with 
interferon-γ (IFN-γ), a cytokine released by activated T-lymphocytes that interacts 
with the specific receptor [52, 71].  

   B- and T lymphocytes have specific recognition systems (immunoglobulins and 
the T-cell receptor, respectively), that interact with specific antigens. This mecha-
nism allows the survival of just the small number of lymphocytes that are needed to 
recognize and remove foreign material. However, monocytes are members of innate 
immunity and thus present nonspecific systems on their cell surface to recognize 
and discriminate self from nonself.  

   Monocyte–macrophages play a crucial role in immune response and act through 
several mechanisms: (a) directly, by destroying bacteria, parasites, viruses and tumor 
cells; (b) indirectly, by releasing mediators, such as interleukin-1 (IL-1), tumor 
necrosis factor-α (TNF-α), etc., which can actìvate other cells; (c) by processing 
antigens and presenting digested peptides to T lymphocytes; and (d) by repairing 
tissue damage [70].  

   Monocyte–macrophages can produce an impressive array of cytokines, chemok-
ines, enzymes, arachidonic acid metabolites, and reactive radicals upon activation. 
Many of these functions appear to antagonize or counter each other. These cells 
can clearly enhance or suppress adaptive immune responses. Macrophages display 
both proinflammatory and antiinflammatory functions, produce metalloproteinases 
and inhibitors of these metalloproteinases, and produce toxic radicals that contrib-
ute to tissue cell destruction as well as cytokines that promote tissue regeneration 
and wound healing. All of these functions are not expressed simultaneously but are 
thought to be regulated such that macrophages display a balanced, harmonious pat-
tern of functions [79].  

   In the classic acute inflammatory response, blood monocytes enter the damaged 
tissue shortly after neutrophils. Encounter with bacteria, their products, and dam-
aged tissue results in the activation of pro-inflammatory activities, such as the pro-
duction of TNF-α, IL-1, and IL-6 and the secretion of metalloproteinases [102].  

   In addition to the inflammatory, clearance and tissue regenerative activities, mac-
rophages also play a critical liaison role in the communication between the innate 
and adaptive immune systems. Macrophages can display antigen presenting activity 
and phenotype [46, 95] and the inflammatory milieu created by monocyte–macro-
phages can significantly impact the maturation of myeloid dendritic cells and thus 
influence the nature of the adaptive immune response that will be elicited [47, 117]. 
A function-polarizing synergy can develop between T-cells and macrophages 
wherein the functional pattern displayed by the macrophages influences the nature 
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of the adaptive immune response and the nature of the adaptive immune response 
(TH l vs. TH2) influences the functional pattern displayed by the macrophages. Th 
l cytokines, such as IFN-γ and TNF-α, promote inflammatory and cytotoxic activi-
ties of macrophages. In contrast, Th2 cytokines, such as IL-4 and IL-10, promote 
anti-inflammatory and/or tissue regenerative activities. Ligation of surface recep-
tors such as CD40, TNF-αR, or Toll-like receptors (TLR) on macrophages initiates 
signal cascades that provide a strong activating stimulus for macrophage function. 
IFN-γ selectively upregulates LPS-induced inflammatory cytokine production and 
NOS and oxidase expression while down-regulating other functions, such as argin-
ase and PGE2 and LTC4 production [75, 103, 104].  

    2   The Impact of Ageing on Monocyte Function  

   The immune system is affected by ageing, causing an increased susceptibility to 
infections and mortality, as well as a major incidence of immune diseases and can-
cer in the elderly. Because mononuclear phagocytes are an essential component of 
both innate and adaptive immunity, altered function of these cells with aging may 
play a key role in immunosenescence [98, 50].  

   Human immunosenescence has been envisaged as a situation in which the specific 
immune system deteriorates with age, while the innate immunity is negligibly affected 
and, in some cases, almost upregulated [46]. Aging represents a state of paradox where 
chronic inflammation is associated with declining immune responses [1, 107].  

   Inflammageing is considered the common and most important driving force of 
age-related pathologies, such as neurodegeneration, atherosclerosis, diabetes and 
sarcopenia, among others, all of which share an inflammatory pathogenesis [36]. 
The cell types more involved in the inflammatory processes and therefore in the 
inflammageing are cells of the innate immunity, such as monocytes/macrophages. 
For example, adhesion of monocytes to the arterial wall, via specific cell surface 
adhesion molecules, is an important early event in the development of atheroscle-
rotic lesions [112]. Similarly, the increased incidence of tumours in the elderly has 
been related to a modified antitumour innate defence [63]. In addition, the inter-
face between innate and adaptive immunity, implicates that many of the changes of 
monocytes influence the initiation of specific immune responses. Impaired ability 
of antigen presenting cells (APCs) to stimulate T-cells in elderly has been shown 
[13, 29]. Therefore, although the age-related changes in the specific immunity are 
commonly considered the hallmarks of immunosenescence, the central role of the 
complex remodeling of first line defence cells, such as monocytes, is gradually 
emerging. Some functions of the innate immunity are depressed in the elderly, 
while many other functions are upregulated, exerting a global and peculiar reshap-
ing. For example, while chemotaxis and phagocytosis, as well as antigen processing 
and presentation, are depressed, cell activation and the secretion of inflamma-
tory cytokines, such as IL-1, IL-6, TNF, or mononuclear phagocytic cell specific 
enzymes, are markedly increased [24, 43, 46, 66].  
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   Healthy elderly subjects and centenarians show a decreased susceptibility of 
monocytes to oxidative stress-induced apoptosis [77]. The respiratory burst of 
monocytes during ageing decreases between 45% and 70%. Scavenger receptor 
activity and the expression of apolipoprotein E are reduced in healthy elderly men 
[37] as is the inflammatory wound healing response, which may be related to poor 
expression of cell adhesion molecule-1 [6].  

   Reports on the impact of advanced age on the recruitment of monocytes into 
excisional wound sites vary from observations of no significant effect to observa-
tians of long delays in attainment of peak monocyte numbers [25].  

   Chemotactic activity decreases with advanced age [82, 106]. Phagocytosis and 
clearance of infectious organisms is also reduced with advanced age [2, 4, 12, 73]. 
Expression of class II MHC and antigen presentation by macrophages have been 
reported to be reduced in aged rodents and humans [39, 69, 118]. The production 
of fibroblast growth factor (FGF-2), vascular endothelial growth factor (VEGF), 
platelet derived growth factor (PDGF), epithelial growth factor (EGF), and trans-
forming growth factor-beta (TGF-β) are reduced and/or delayed, as is the expres-
sion of their corresponding receptors [136]. The result is a delay and/or deficiency 
in reepithelialization, collagen deposition, and angiogenesis in excisional wounds 
of the elderly.  

   Haematopoietic stem cells age and have a limited functional lifespan [40]. This 
may explain the hypocellularìty observed in the bone marrow of elderly people [81]. 
Of particular interest is the decrease with age of CD68 positive cells, which are 
markers of macrophage population [70].  

   Cell lifespan may be regulated by multiple factors. Recently, telomeres and tel-
omerase have been implicated in the regulation of replicative lifespan [56]. Several 
studies using peripheral blood mononuclear cells consisting of 10–15% mono-
cytes and 60–70% lymphocytes have shown that these structures shorten with age 
at a rate comparable with that of purified lymphocytes. Mature monocytes do not 
undergo further cell division after activation. Thus, the variations in telomere length 
in monocytes with aging may reflect the changes in telomere length in hematopoi-
etic progenitor cells. While mature monocytes do not express telomerase, myeloid 
progenitor cells do [111].  

   There are several potential molecular mechanisms that may affect monocyte 
ageing. An important and universal mechanism that leads to a wide spectrum of 
intracellular damage during aging are the reactive oxygen species (ROS), which are 
natural by-products of cellular metabolism. Exposure to ROS may lead to structural 
changes in macromolecules that impair their function, such as cross-linking of intra-
cellular and intramitochondrial structural and functional proteins, carbohydrates 
and the oxidation of fats and lipids in membranes. A likely cause of monocyte age-
ing is the acquisition of defects in genomic DNA. This may occur through a reduced 
ability to repair even small amounts of DNA damage or very stringent requirements 
on DNA repair machinery for the maintenance of DNA fidelity, or both. In addition, 
an increased number of spontaneous mutations may occur, thereby producing DNA 
damage [105].  
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    3   The Interface Between Innate and Adaptive Immunity  

   The complex process of immune activation is dependent on the close participation 
of T-cells and APCs. APCs are responsible for uptake, processing, and presenta-
tion of antigen to T-cells. Impaired ability of APCs to stimulate T-cells in elderly 
has been shown. Expression of costimulatory molecules that assist in the effi-
ciency of cell to cell communication may be altered in old subjects and thus alter 
cytokine production by APCs, which regulates downstream T-cell effector func-
tions [46, 48, 86]. However, some studies have shown enhanced antigen presenta-
tion by APCs from healthy elderly, associated with increased levels of IL-10 and 
IL-12. It is hypothesized that this upregulation in IL-12 production by APCs may 
be compensatory to an inherent age-related decline in T-cell function to maintain 
immunocompetence [46].  

   Antigenic presentation is a very complex phenomenon involving the formation 
of the immunological synapse via the activation of the T-cell receptor (TCR) and 
coreceptors. This interaction determines whether the interacting T-cell becomes tol-
erant or proliferates and differentiates into a functional effector T-cell. The capacity 
for immune synapse formation between APC and T-lymphocyte is altered with age. 
This may be partly due to an alteration in the membrane properties and costimula-
tory molecules of the cells of the innate immune system with ageing. The innate 
immune system also influences the adaptive immune response through the timing, 
type and strength of cytokines produced. Ageing is associated even in healthy per-
sons with a non specific increase in the production of proinflammatory cytokines 
originating from monocyte to macrophages [50].  

   Dendritic cells (DCs) are the major APCs responsible for initiating an immune 
response. Agrawal et al. [1] compared the innate immune functions of monocyte-
derived myeloid DCs from elderly subjects with DCs from young individuals. They 
showed that, although phenotypically comparable, DCs from the aging are func-
tionally different from DCs from the young. In contrast to DCs from the young, DCs 
from elderly individuals display (1) significantly reduced capacity to phagocytose 
antigens via macropinocytosis and endocytosis as determined by flow cytometry 
(2) impaired capacity to migrate in vitro in response to the chemokines MIP-3β 
and stromal cell-derived factor-1 and (3) significantly increased LPS and ssRNA-
induced secretion of TNF-α and IL-6, as determined by ELISA. Investigations of 
intracellular signalling revealed reduced phosphorylation of AKT in DCs from the 
ageing, indirectly suggesting decreased activation of the PI3K pathway. Because 
the PI3K-signaling pathway plays a positive regulatory role in phagocytosis and 
migration, and also functions as a negative regulator of (TLR) signaling by inducing 
activation of p38MAPK, this may explain the aberrant innate immune functioning 
of DCs from elderly subjects. Results from real-time PCR and protein expression 
by flow cytometry demonstrated an increased expression of phosphatase and tensin 
homolog, a negative regulator of the PI3K-signaling pathway, in DCs from the 
aging. Increased phosphatase and tensin homolog may thus be responsible for the 
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defect in AKT phosphorylation and, therefore, the altered innate immune response 
of DCs from elderly humans [57, 58, 83, 116].  

   Della Bella et al. [21] analyzed the number, phenotype and function of periph-
eral blood DCs from elderly subjects by using flow cytometric methods that allow 
cell characterization directly in whole blood samples. They demonstrated that the 
number of myeloid DCs progressively declines with age. This finding was accom-
panied by a decrease of CD34+ precursors and increase of circulating monocytes, 
suggesting that the entire differentiation process of APCs is partially dysregulated 
in the elderly. DCs from aged individuals also appeares to have a more mature phe-
notype and impaired ability to produce IL-12 upon stimulation [85].  

   The frequency of CD34+ cells progressively declines with age, suggesting that 
in aged subjects a reduced availability of these cells may contribute to reduce the 
frequency of DCs [99]. On the other hand the frequency of monocytes, that not only 
may differentiate into DCs but also represent another main population of profes-
sional APCs, shows a progressive increase with ageing. Therefore, the entire dif-
ferentiation process of APCs is partially dysregulated in the elderly. The analysis of 
the plasmatic levels of factors known to affect the differentiation of monocytes and 
DCs from their precursors demonstrates in the elderly increased levels of TGF-β, 
which does promote the maturation and differentiation of monocytic cells [33]; and 
increased levels of VEGF, which does impair the differentiation of CD34+ cells 
into mature DCs [63]. The percentage of peripheral blood dendritic cells (PBDCs) 
expressing the costimulatory molecule CD86 and the maturation marker CD83 are 
slightly increased in the aged individuals. The easier explanation for this finding 
is that this partial activation and maturation of PBDCs may be sustained by the 
increased inflammatory activity that accompanies ageing [65]. The finding of higher 
plasma levels of TNF-α in the aged subjects seems to corroborate this hypothesis.  

    4     Age-Related Phenotypic Changes of Monocytes  

   The phenotype of monocytes in the elderly is consistently remodelled [43]. Changes 
in the expression of functionally important cellular receptors can contribute to the 
modification of immune function characteristic of the elderly [42, 45].  

   Our previous studies [23, 24, 44] demonstrated important cell adhesion receptor 
modifications on lymphocyte subsets in the elderly, related to peculiar lymphocyte 
dysfunctions. A significant expansion of CD14dim CD16bright subpopulation of 
circulating monocytes in elderly subjects, that may indicate a state of in vivo acti-
vation, has been demonstrated [96]. Cell adhesion molecules (CAMs) are surface 
receptors mediating cell-cell and cell-matrix interactions [102]. CAMs are essential 
molecules involved in chemotaxis, phagocytosis and killing of microbes and neo-
plastic cells. The increased susceptibility of elderly people to cancer and infections 
could be partly explained as a failure in such basic immune defence functions [24].  

   Since leukocyte adhesion molecules play important roles in mediating a wide 
variety of leukocyte functions, age-related changes in their expression on monocyte 
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surface could be partially responsible for immune dysfunctions during senescence. 
Chiricolo et al. [17] documented a decrease in monocyte subpopulations bearing 
the adhesion molecule CD11a/CD18 and an increase in CD44 antigen density on 
monocytes in the elderly. These changes might be an event in the mechanism lead-
ing to the decreased lymphocyte proliferative response in vitro and to other immu-
nological dysfunctions reported in old subjects.  

   Considering the central role of the innate immunity in the process of immunose-
nescence and the involvement of CAMs in the great majority of leukocyte functions, 
we studied the expression of CD50 and CD62L adhesion molecules in peripheral 
blood monocytes in the elderly. Such adhesion receptors mediate important cel-
lular functions. CD50 (ICAM-3) is an Ig-related molecule which functions both 
in cell adhesion and activation processes [20]. Moreover, ICAM-3 is important in 
the initial scanning of the APC surface by T-cells and, therefore, in generating the 
specific immune response [78]. CD62L ( L -selectin) is an important leucocyte hom-
ing receptor which is required to initiate leukocyte capture, rolling and adhesive 
interactions. In response to inflammatory stimulation, the endothelium expresses 
a distinct ligand for L-selectin that is sufficient for capture of leukocytes. CD62L 
is up regulated on circulating leucocytes early after injury and  L -selectin medi-
ated signalling may directly initiate or amplify neutrophil activation and localiza-
tion selectively at sites of inflammation. The percentages of monocytes expressing 
CD62L is decreased in the elderly, whereas its density expression is unchanged. 
CD50 expression on monocytes from old subjects show a peculiar attitude: its den-
sity expression decreases whereas the number of positive cells is expanded. CD50 is 
associated with tyrosine kinase activity and functions as a ligand for LFA-1 [24].  

   CD50 on the surface of APCs plays an important role in the initiation of the 
immune. Its lower expression on monocytes could therefore contribute to the 
impaired antigen presentation in the elderly. On the other hand, the increased 
number of CD50 positive monocytes in the elderly, despite its decreased density 
expression at a per cell level, could be interpreted as a tentative to counteract the 
inability to mount strong immune responses [76].  

   Under some conditions, engagement of surface adhesion molecules induces acti-
vation of intracellular signaling cascades (outside-in signaling) that causes altered 
cellular function and responses. CD50 stimulation on monocytes potently induces 
secretion and spreading of chemokines (MIP-1alpha, IL-8, and MCP-1 by mono-
cytes and IL-8 by neutrophils) [62]. The increased production of chemokines in the 
elderly is a well known phenomenon [89]. Therefore CD50 downregulation, as the 
consequence of its engagement by specific ligand and consequent activation, is the 
first cellular step in chemokine production.  

   CD50 and CD62L are released to the medium upon cell stimulation. The increased 
proportion of granulocytes and monocytes lacking CD62L and the downregulation 
of CD50 intensity expression may suggest a state of in vivo activation. The pres-
ence of soluble CAMs in plasma might serve as a physiological adhesion regulatory 
system to prevent undesirable leukocyte cell–cell interaction or the attachment of 
leucocytes to endothelium [22]. Serum levels of solubile cell adhesion receptors are 
increased in patients with several pathologic states, as well as in the elderly. There-
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fore CD50 and CD62L shedding from the cell surface of activated monocytes could 
be interpreted as a tentative to counteract the dangerous effects of an excessive 
chronic inflammation in the elderly. However, the increased proportion of CD62L 
negative monocytes in the elderly leads to an impairment in cell adhesion which is 
the first line of response to acute inflammatory stimuli. This phenomenon likely 
contributes to the increased susceptibility to acute infections of elderly people.  

       5      Hormone Modulation and the Stress Response in Senescent 
Monocytes  

   Several hormones, differentially modulated during ageing, can regulate immune cell 
function. For example, ageing is associated with various degrees of insulin resist-
ance together with reduced immune cell activity. Since monocytes express insulin 
receptors, the perturbation of insulin pathway has been proposed as possible patho-
genetic mechanism in the immune derangement in the elderly. Walrand et al. [110] 
measured circulating monocyte receptor expression and density using flow cyto-
metric detection. The density of monocyte insulin receptors was not affected by age. 
Therefore, notwithstanding the presence of insulin receptors on monocytes, insulin 
dysfunction pathway has a limited action on monocyte function during ageing.  

   Alterations in retinoid metabolism and thyroid dysfunction occur with senes-
cence. Vitamin A and retinoid acid have a wide variety of profound effects on 
growth, epithelial tissue differentiation and homeostasis, and are involved in main-
taining an efficient immune system [74]. An age-related hypo-activation of the 
retinoid and thyroid nuclear pathways has also been demonstrated on monocytes 
and lymphocytes [31].  

   Monocytes play early roles in triggering an acute inflammatory response to 
many stressful conditions. The expression of leucocyte  L -selectin increases dur-
ing acute stress events such as injury and is temporally related to an early neu-
roendocrine response. Adrenaline up-regulates whereas TNF-α down-regulates 
the surface expression of  L -selectin on monocytes [90]. The stress response in 
the elderly is impaired as well as the secretion of stress response hormons (corti-
sol, catecolamines) thus contributing to the decreased CD62L expression on both 
monocytes and granulocytes with consequent inhability to trigger acute inflamma-
tory reactions. The downregulation of CD62L on the cell surface could also be the 
consequence of the increase of proinflammatory cytokines, such as TNF-α, which 
characterizes immunosenescence [24].  

   The effect of age in the production of heat shock proteins (Hsp) is very con-
troversial. Hsp are highly conserved proteins and their synthesis is ubiquitous. 
Constitutive and stress-inducible Hsp play diverse roles in cellular function. Under 
normal physiological conditions constitutively synthesised Hsp act as molecular 
chaperones modulating protein folding, assembly, intracellular localisation, secre-
tion, and degradation. When cells endure stress such as high temperature, exer-
cise, oxidative stress, osmotic stress, and inflammation, the expression of inducible 
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Hsp is increased and these proteins participate in protein refolding and protection, 
in dissolving aggregated proteins, and in targeting them for degradation. Hsp27 is 
able to induce an increase in cellular glutathione levels, which works together with 
ascorbic acid and coenzyme Q as a redox buffer for cellular protection. With ageing 
there is a general decline in the capacity of cells to respond to stressors and oxida-
tive insult [80].  

   Some investigators have reported an increase in the basal levels of Hsp with age, 
which is indicative of an adaptive response to cumulative intracellular stress during 
ageing and may be associated with increased oxidative stress. On the other hand, a 
decrease or no effect of age on Hsp basal levels have also been reported [30].  

   Njemini R et al. [80] investigated the effect of age and inflammation on the induc-
tion of Hsp27 in human peripheral blood monocytes, using flow cytometry. There 
is an age-related decrease in the level of Hsp27, which disappeares in the presence 
of inflammation. A relationship between the circulating levels of C reactive protein 
(CRP), IL-6 and TNF-α with Hsp27 levels exists, indicating that cytokines are able 
to influence the production of Hsp27. The basal level of Hsp27, measured as mean 
fluorescence intensity (MFI) or as percentage of Hsp27 producing cells, is inversely 
related to age, for both lymphocytes and monocytes.The expression of Hsp27 as 
well as Hsp70 is high in monocytes compared to other leukocyte subsets. Because 
Hsp27 is up-regulated following oxidative stress a likely explanation for this phe-
nomenon is the higher capacity of monocytes to induce ROS and thus to promote 
oxidative stress. Since Hsp27 production increases with inflammation, it is possible 
that it exerts some antiinflammatory or immune modulatory effects on leukocytes. 
Inflammation results in the neutralisation of the age induced Hsp27 repression. 
Acute phase factors, which mediate the regulation of Hsp genes by interacting with 
several signaling pathways are most likely involved in this process. TNF-α might 
be one such factor, since there is a correlation with the percentages of monocytes 
producing Hsp27. This observation is compatible with the known proinflammatory 
tendency that is observed during ageing, and might explain the lower values for 
Hsp27 in the elderly compared to the younger subjects.  

       6      Monocyte–Macrophage Subset and Cytokine Dysregulation  

   Monocyte–macrophage heterogeneity has been recognized recently, and an imbal-
ance in subsets could be a reason for the difference between the young adult versus 
the aged. Mononuclear phagocytes have been subdivided into M-1 and M-2 phe-
notypes depending on their ability to produce NO and proinfíammatory cytokines 
(M-1 type) or antiinflammatory agents such as IL-1RA and arginase (M-2 type), 
suggesting a possibility that one of these types of macrophages accumulates 
in the spleens of the aged [41, 75]. NOS-2 and arginase, respectively, unique to 
M-1 and M-2 macrophages, are reduced in macrophages from the aged. It has also 
been shown that macrophages can be activated by IL-4, leading to suppression of 
proinflammatory cytokines and enhanced expression of major histocompatibility 
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complex class II (MHC II) genes as well as IL-1RA [47]. As the aged have been 
shown to have an increased incidence of TH2 T-cells [55], it is conceivable that the 
macrophages in the aged have markers of IL-4 activation. Mosser and colleagues [3] 
identified a uniquely hyporesponsive macrophages in spleens from the aged, which 
has profound influences on immune responses to polysaccharide antigens and may 
affect the overall ability of the aged to generate an inflammatory response neces-
sary to contain infections. Several studies have examined the capacity of phagocytic 
mononuclear cells to produce cytokines or chemokines [4, 79]. There are reports of 
increases, decreases or no effects of age on cytokine release by monocytes, either 
spontaneously or after LPS stimulation [80, 81]. The decreased response of mono-
cytes from aged persons to LPS in relation to the production of IL-6 and TNF-α 
has been assocíated with deficiencies in the activation of protein kinase C (PKC), 
mitogen-activated protein kinase (MAPK) and deficient expression of c-Fos and 
c-Jun [57, 59, 91].  

   Ageing is associated with progressive muscle wasting and low-grade systemic 
increases in cytokines such as IL-6 and TNF-α. Higher systemic cytokine levels 
are associated with functional decline and often cachectic disease [7, 93, 109]. 
Monocytes are involved in skeletal muscle repair through proinflammatory and 
alternative functions [49, 51]. Przybyla B et al. [88] quantified the total number of 
macrophages and their pro- and antiinflammatory subpopulations, as well as related 
cytokine expression, in muscle from young and elderly subjects before and after 
exercise and found that the number of macrophages within skeletal muscle from 
the elderly is decreased and their functional properties show defects both at rest and 
in response to resistance exercise, which could contribute mechanistically to age-
related muscle loss [72].  

   The macrophage lineage displays extreme functional and phenotypic heteroge-
neity which appears to due in large part to the ability of macrophages to functionally 
adapt to changes in their tissue microenvironment. This functional plasticity plays a 
critical role in their ability to respond to tissue damage and/or infection and to con-
tribute to clearance of damaged tissues and invading microorganisms, to contribute 
to recruitment of the adaptive immune system, and to contribute to resolution of the 
wound and of the immune response. Ageing alters the proportion and abundance of 
monocuclear phagocyte subsets. Immune cell functions, including monocyte–mac-
rophage functional plasticity, are known to decrease with age [105].  

   Evidence has accumulated that environmental influences, such as stromal func-
tion and imbalances in hormones and cytokines, contribute significantly to the dys-
function of the adaptive as well as innate immune system in the elderly. A current 
hypothesis is that the age-associated dysfunction of monocyte–macrophages is the 
result of their functional adaptation to the age-associated changes in tissue environ-
ments. The resultant loss of orchestration of the functional capabilities of these cells 
would undermine the efficacy of both the innate and adaptive immune systems. Both 
the T-lymphocyte and B-lymphocyte compartments of the adaptive immune system 
deteriorate progressively with advancing age [34, 35, 64, 84, 108]. The implications 
of this hypothesis are that mononuclear phagocyte function may change with age in 
a tissue specific manner, that changes in macrophage function may contribute sig-
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nificantly to decreased clearance of microorganisms and decreased responsiveness 
of the adaptive immune system.  

   DCs and monocytes are progressively affected during ageing. A numerical 
reduction of PBDCs concomitant with increase of monocytes and an impaired abil-
ity of both populations to produce IL-12 have been documented during senescence. 
The ability of PBDCs to produce IL-12 upon lipopolysaccharide (LPS) stimulation 
progressively declines with age, while their ability to produce IL-10 remains unaf-
fected. Monocytes show the same selective impairment. Given the central role of 
IL-12 in the induction of protective immunity, this finding appears relevant to the 
increased incidence of morbidity and mortality from infections and cancer occurring 
in aged people. The decrease in IL-12 production may contribute to the dysregula-
tion between the T-helper (TH)1 and TH2 subsets, characterized by a predominant 
production of TH2 cytokines, which has been described in the elderly [32, 34, 75].  

   Influenza virus-specific T-cell responses are decreased in the aged, and it is in 
part a result of defects in antigen presentation. The increased incidence of pneumo-
coccal infections is a result of a defect in the production of antibodies to the capsular 
polysaccharide antigens, which are critical for killing of the bacteria by the phago-
cytic cells. This is in part a result of deficiencies in function [14].  

   Aged subjects are susceptible to infection with Streptococcus pneumoniaebacte-
ria as a result of an inability to make antibodies to capsular polysaccharides. This is 
partly a result of decreased production of proinflammatory cytokines and increased 
production of IL-10 by mononuclear phagocytes. A major reason for the inability of 
macrophages from the aged to support B-cell responses to polysaccharide antigens 
is a result of a defect in secretion of IL-1 and IL-6. However, the cytokine secre-
tion defect is not limited to IL-1 and IL-6, as other proinflammatory eytokines, 
such as IL-12 and TNF-α are also produced at lower levels by macrophages from 
the aged in comparison with young. To understand the molecular basis of cytokine 
dysregulation in aged mouse macrophages, Chelvarajan RL et al. [15] performed a 
microarray analysis on RNA from resting and LPS-stimulated macrophages from 
aged and control mice revealing that immune response (proinflammatory chem-
okines, cytokines, and their receptors) and signal transduction genes were specifi-
cally reduced in aged mouse macrophages following LPS stimulation. Accordingly, 
expression of IL-l and IL-6 was reduced, and IL-l0 was increased. There was also 
decreased expression of IFN-γ. Genes in the Toll-like receptor-signaling pathway 
leading to nuclear factor-kB activation were also down-regulated by IL-1 receptor-
associated kinase 3, a negative regulator of this pathway. An increase in expression 
of the gene for p38 MAPK was observed with a corresponding increase in protein 
expression and enzyme activity confirmed by Western blotting. Low doses of a p38 
MAPK inhibitor enhanced proinflammatory cytokine production by macrophages 
and reduced IL-10 levels, indicating that increased p38 MAPK activity has a role in 
cytokine dysregulation in the aged mouse monocyte–macrophages [8, 19]. Macro-
phages from the aged were not defective in IL-10 production but produced more of 
this cytokine than macrophages from the young. Thus, the cytokine production is 
dysregulated in monocyte–macrophages from the aged following LPS stimulation.  
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   A reduction in secretion of VEGF and expression of CAMs are thought to con-
tribute to the delay in wound healing in the aged. In contrast, peritoneal macrophages 
from aged mice have been shown to produce more cyclooxygenase-2 (COX-2) and 
prostaglandin E 

2
  (PGE 

2
 ) in response to LPS stimulation. Moreover, the expression 

of a variety of TLRs, including TLR4, is decreased in the aged, which could be 
the reason for a decreased response of mononuclear phagocytes from aged mice to 
LPS [26].  

   LPS stimulation not only induces expression of many genes but also represses 
many genes that are constitutively expressed in mononuclear phagocytes [38]. 
Some of these repressed genes include PPAR-γ, CCL24, and CCRl. PPAR-γ has 
been shown to inhibit production of several inflammatory mediators such as TNF-α, 
IL-1, IL-6, and inducible nitric oxide synthase (NOS) and its suppression by LPS 
may be a prerequisite for the induction of the LPS-induced inflammatory phenotype 
[103, 104]. Macrophages from aged mice have a global defect in the TLR signaling 
pathway and in production of proinflammatory cytokines and chemokines, and the 
antiinflammatory cytokines are increased, such that the splenic macrophages in the 
aged have an antiinflammatory phenotype.  

   Kang et al. [105, 106] observed an age-related increase in COX-2 expression in 
monocytes. Cyclooxygenase catalyses the formation of prostanoids that are crucial 
in maintaining homeostasis and important in inflammation. The increased COX-2 
in monocytes of older humans, which is mirrored in rats, may have downstream 
implications in atherosclerosis and cardiovascular risk as mononuclear prostanoids 
are implicated in atherosclerotic plaque stability. COX-2 is the major COX system 
in monocytes and monocytes-derived macrophages. Upon activation, these cells are 
responsible for production of COX-2-derived PGE 

2
 , which is an important sign-

aling molecule. Therefore, increased expression of COX-2 may lead to enhanced 
PGE 

2
  production, which is known to promote atherosclerotic plaque instability by 

stimulating MMP-2 and MMP-9 to degrade plaque architecture. It is interesting to 
note that in ageing rats, monocyte COX-2 expression increase in line with COX-2 
levels in vascular smooth muscle and endothelial cells, indicating that these blood 
elements may be a predictor of systemic status [107].  

   The mechanism for an age-related change in COX formation is elusive. How-
ever, one mechanism could involve histones. When histones are acetylated by his-
tone acetyltransferase, the DNA becomes more accessible to transcription factors. 
Also, age-linked increases in oxidative stress, proinflammatory agents (IL-1, IL-6), 
and total cholesterol levels could be involved [60].  

   There is some controversy concerning the basis for the decline in production 
of inflammatory cytokines and oxidative radicals in response to LPS stimulation. 
Renshaw et al.[28, 92] reported that the expression of TLR on macrophages was 
reduced with advancing age and that this was the basis for the reduced cytokine 
production upon stimulation with LPS. Boehmer et al. [9, 10] reported that TLR 
expression was not impacted by advanced age. The influence of aging appears to 
be selective. Macrophages from aged mice have increased levels of COX-2 and 
produce elevated levels of PGE2 upon stimulation with LPS [53, 113]. LPS induc-
tion of IL-10 production also appears to be elevated in macrophages from aged 
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rodents and humans [96, 100]. It thus appears that aging selectively impacts LPS-
induced signaling cascades such that some functions are depressed and others are 
elevated. Another example of a signaling deficiency that appears in advanced age is 
responsiveness to IFN-γ. Although expression of the receptor for IFN-γ appears to 
be normal, IFNγ-induced phosphorylation of MAPK and STAT-1 is reduced in aged 
rodents [27, 115]. Oxidative stress is hypothesized to alter transcription factors and 
nuclear receptors and thus alter the ability of macrophages to respond to inflamma-
tory stimuli [68]. Antioxidants do seem to improve monocyte inflammatory func-
tion [87, 101, 114]. Neuroendocrine factors and stress hormones have also been 
hypothesized to contribute to the immunosenescence and decreased macrophage 
function. Haynes et al. [54], reported that administration of inflammatory cytokines 
of the innate immune system enhanced the adaptive immune response of aged mice, 
so that restoration of the functional balance of mononuclear phagocytes in the eld-
erly will not only improve innate responses but, as a result, improve the function of 
the adaptive immune system, as well.  

               References  

    1. Agrawal A, Agrawal S, Cao JN et al (2007) Altered innate immune functioning of dendritic 
cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol 
178:6912–6922   

    2. Albright JW, Albright JF (1994) Ageing alters the competence of the immune system to con-
trol parasitic infection. Immunol Lett 40:279–285

          3. Anderson CF, Mosser DM (2002) A novel phenotype for an activated macrophage: the type 2 
activated macrophage. J Leukoc Biol 72:101–106

     4. Antonini JM, Roberts JR, Clarke RW, Yang HM et al (2001) Effect of age on respiratory 
defense mechanisms: pulmonary bacterial clearance in Fischer 344 rats after intratracheal 
instillation of Listeria monocytogenes. Chest 120:240–249

     5. Ahluwalia N, Mastro AM, Ball R et al (2001) Cytokine production by stimulated mononuclear 
cells did not change with aging in apparently healthy, well-nourished women. Mech Ageing 
Dev 122:1269–1279

     6. Ashcroft GS, Horan MA, Ferguson MW et al (1998) Aging alters the inflammatory and 
endothelial cell adhesion molecule protiles during human cutaneous wound healing. Lab 
Invest 78:47–58

     7. Bautmans L, Njemini R, Lambert M et al (2005) Circulating acute phase mediators and skel-
etal muscle performance in hospitalized geriatric patients. J Gerontol 60:361–367

     8. Beutler B (2004) Inferences, questions and possibilities in Toll-like mceptor signaling. Nature 
430:257–263

     9. Boehmer ED, Goral J, Faunce DE, Kovacs EJ (2004) Age-dependent decrease in Toll-like 
receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein 
kinase expression. J Leukoc Bio1 75:342–349

               10. Boehmer ED, Meehan MJ, Cutro BT, Kovacs EJ (2005) Aging negativrly skews macrophage 
TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated 
pathway. Mech Ageing Dev 126:1305–1313

               11. Bondada S, Wu H, Robertson DA, Chelvarajan RL (2000) Accessory cell defect in unrespon-
siveness of neonates and aged to polysaccharide vaccines. Vaccine 19:557–565

               12. Bradley SF, Kauffman CA (1990) Aging and the response to Salmonella infection. Exp Ger-
ontol 25:75–80



524 L. Ginaldi and  M. De Martinis

               13. Castle SC (2000) Clinical relevance of age related immune dysfunction. Clin Infect Dise 
31:578–585

               14. Chelvarajan RL, Collins SM, Van Willigen JM, Bondada S (2005) The unresponsiveness of 
aged mice to polysaccharide antigens is a result of a defect in macrophage function. J Leukoc 
Biol 77:503–512

               15. Chelvarajan RL, Liu Y, Popa D, Getchell ML et al (2006) Molecular basis of age-associated 
cytokine dysregulation in LPS-stimulated macrophages. J Leukoc Biol 79:1314–1327

               16. Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): 
nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 
49:497–505

               17. Chiricolo M, Morini MC, Mancini R et al (1995) Cell adhesion molecules CD11a and CD18 
in blood monocytes in old age and the consequences for immunological dysfunction. Prelimi-
nary results. Gerontology 41:227–234

               18. Clark RB (2002) The role of PPARs in inflammation and immunily. J Leukoc Biol 
21:388–400

               19. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252
               20. de Fougerolles AR, Qin X, Springer TA (1994) Characterization of the function of intercel-

lular adhesion molecule (ICAM)-3 and comparison with ICAM-1 and ICAM-2 in immune 
responses. J Exp Med 179:619–629

               21. Della Bella S, Bierti L, Presicce P et al (2007) Peripheral blood dendritic cells and monocytes 
are differently regulated in the elderly. Clin Immunol 122:220–228

               22. del Pozo MA, Pulido R, Munoz C, Alvarez V et al (1994) Regulation of ICAM-3 (CD50) 
membrane expression on human neutrophils through proteolytic shedding mechanism. Eur J 
Immunol 24:2586–2594

               23. De Martinis M, Modesti M, Loreto MF et al (2000) Adhesion molecules on peripheral blood 
lymphocyte subpopulations in the elderly. Life Sci 68:139–151

               24. De Martinis M, Modesti M, Ginaldi L (2004) Phenotypic and functional changes of circulat-
ing monocytes and polymorphonuclear leucocytes from elderly persons. Immunol Cell Biol 
82:415–420

               25. DeVeale B, Brummet TL, Seroude L et al (2004) Immunity and aging: the enemy within? 
Aging Cell 3:195–208

               26. Dillon S, Agrawal A, Van Dyke T et al (2004) A Toll-like receptor 2 ligand stimulates Th2 
responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated pro-
tein kinase and c-Fos in dendritic cells. J Immunol 172:4733–4743

               27. Ding A, Hwang S, Schwab R (1994) Effect of aging on murine macrophages. Diminished 
response to IFNgamma for enhanced oxidative metabolism. J Immunol 153:2146–2152

               28. Donnelly R P, Dickensheets H, Finbloom DS (1999) The interleukin-10 signal transduction 
pathway and regulation of gene expression in mononuclear phagacytes. J Interferon Cytokine 
Res 99:563–573

               29. Donnini A, Argentati K, Mancini R et al (2002) Phenotype, antigen-presenting capacity, and 
migration of antigen-presenting cells in young and old age. Exp Gerontol 37:1097–1112

               30. Elenkov IJ, Chrousos GP (2002) Stress hormones, proinflammatory and antiinflammatory 
cytokines, and autoimmunity. Ann N Y Acad Sci 966:290–303

               31. Feart C, Pallet V, Boucheron C, Higueret D et al (2005) Aging affects the retinoic acid and the 
triiodothyronine nuclear receptor mRNA expression in human peripheral blood mononuclear 
cells. Eur J Endocrinol 152:449–458

               32. Fernandez S, Jose P, Avdiushko MG et al (2004) Inhibition of IL-10 receptor function in alveo-
lar macrophages by Toll-like receptor agonists. J Immunol 172:2613–2620

               33. Fortunel NO, Hatzfeld A, Hatzfeld JA et al (2000) Transforming growth factor-β: pleiotropic 
role in the regulation of hematopoiesis. Blood 96:2022–2036

               34. Franceschi C, Bonafe M, Valensin S et al (2000) Human immunosenescence: the prevailing of 
innate immunity, the failing of clonotypic immunity, and the filling of immunological space. 
Vaccine 18:1717–1720



Phenotypic and Functional Changes of Circulating Monocytes in Elderly 525

               35. Franceschi C, Bonafe M, Valensin S et al (2000) Inflammaging. An evolutionary perspective 
on immunosenescence. Ann N Y Acad Sci 908:244–254

               36. Franceschi C, Bonafè M (2003) Centenarians as a model of healthy aging. Biochem Soc 
Transact 31:457–461

               37. Friedman G, Ben-Yehuda A, Dabach Y et al (1997) Scavanger receptor activiry and expression 
of apolipoprotein E mRNA in monocyte derived macrophages of young and old healthy men. 
Atherosclerosis 128:67–73

               38. Gao JJ, Diesl V, Wittmann T et al (2002) Regulation of gene expression in mouse macrophages 
stimulated with bacterial CpG-DNA and lipopolysaccharide. J Leukoc Biol 72:1234–1245

               39. Garg M, Luo W, Kaplan AM, Bondada S (1996) Cellular basis of decreased immune responses 
to pneumococcal vaccines in aged mice. Infect Immun 64:4456–4462

               40. Geiger H, Van Zant G (2002) Thc aging of lympho-hematopoietic stem cells. Nat Immunol 
3:329–333

               41. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets 
with distinct migratory properties. Immunity 19:71–82

               42. Ginaldi L, De Martinis M, D’Ostilio A et al (2001) Changes in the expression of surface recep-
tors on lymphocyte subsets in the elderly: quantitative flow cytometry analysis. Am J Hematol 
67:63–72

               43. Ginaldi L, De Martinis M, D’Ostilio A et al (1999) The immune system in the elderly. III. 
Innate immunity. Immunol Res 20:117–126

               44. Ginaldi L, De Martinis M, Modesti M et al (2000) Immunophenotypical changes of T lym-
phocytes in the elderly. Gerontology 46:242–248

               45. Ginaldi L, Matutes E, Farahat N et al (1996) Differential expression of T cell antigens in 
normal peripheral blood lymphocytes: a quantitative analysis by flow cytometry. J Clin Pathol 
49:539–544

                                                           46. Ginaldi L, Sternberg H (2003) The immune system. In: Timiras PS (ed) Physiological basis of 
aging and geriatrics, 3rd edn. CRC Press, NY, pp 265–283

               47. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35
               48. Gratchev A, Schledzewski K, Guillot P, Goerdt S (2001) Alternatively activated antigen-pre-

senting cells: molecular repertoire, immune regulation, and healing. Skin Pharmacol Appl 
Skin Physiol 14:272–279

               49. Greiwe JS, Cheng B, Rubin DC et al (2001) Resistance exercise decreases skeletal muscle 
tumor necrosis factor alpha in frail elderly humans. FASEB J 15:475–482

               50. Hakim FT, Flomerfelt FA, Boyiadiis M, Gress RE (2004) Aging, immunity and cancer. Curr 
Opin Immunol 16:151–156

               51. Hamada K, Vannier E, Sacheck JM et al (2005) Senescence of human skeletal muscle impairs 
the local inflammatory cytokine response to acute eccentric exercise. FASEB J 19:264–266

               52. Hausser G, Ludewig B, Gelderblom HR et al (1997) Monocyte-derived dendritic cells repre-
sent a transient stage of differentiation in the myeloid lineage. Immunobiology 197:534–542

               53. Hayek MG, Mura C, Wu D et al (1997) Enhanced expression of inducible cyclooxygenase 
with age in murine macrophages. J Immunol 159:2445–2451

               54. Haynes L, Eaton SM, Bums EM et al (2004) Inflammatory cytokines overcome age-related 
defects in CD4 T cell responses in vivo. J Immunol 172:5194–5199

               55. Hsu HC, Scott DK, Mountz JD (2005) Impaired apoptosis and immune senescence-cause or 
effect? Immunol Rev 205:130–146

               56. Iwama H, Ohyashiki JH, Hayashi S et al (1998) Telomeric length and telomerase activ-
ity vary with age in peripheral blood cells obtained from narmal individuals. Hum Genet 
102:397–402

               57. Iwasa H, Han J, Ishikawa F (2003) Mitogen-activated protein kinase p38 defines the common 
senescence-signaling pathway. Genes Cells 8:131–144

               58. Janeway CA Jr (2002) Medzhitov R. Innate immune recognition. Annu Rev Immuno1 
20:197–216



526 L. Ginaldi and  M. De Martinis

               59. Jozsi AC, Dupont-Versteegden EE, Taylor-Jones JM et al (2001) Molecular characteristics 
of aged muscle reflect an altered ability to respond to exercise. Int J Sport Nutr Exerc Metab 
11:7–13

               60. Kang Y-S, Kim JY, Bmening SA et al (2004) The C-type lectin SIGN-Rl mediates uptake 
of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse 
spleen. Proc Natl Acad Sci 101:215–220

               61. Kang KB, Van Der Zypp A, Iannazzo L, Majewski H (2006) Age-related changes in mono-
cyte and platelet cyclooxygenase expression in healthy male humans and rats. Transl Res 
2006;148:289–294

               62. Kessel JM, Hayflick J, Weyrich AS et al (1998) Coengagement of ICAM-3 and Fc recep-
tors induces chemokine secretion and spreading by myeloid leucocytes. J Immunol 
160:5579–5587

               63. Kiertscher S, Luo J, Dubinett SM, Roth MD (2000) Tumors promote altered maturation and 
early apoptosis of monocyte-derived dendritic cells. J Immunol 164:1269–1276

               64. Kohut ML, Senchina DS, Madden KS et al (2004) Age effects on macrophage function vary 
by tissue site, nature of stimulant, and exercise behavior. Exp Gerontol 39:1347–1360

               65. Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp 
Gerontol 39:687–699

               66. Kurt I, Abasli D, Cihan M et al (2007) Chitotriosidase levels in healthy elderly subjects. Ann 
N Y Acad Sci 1100:185–188

               67. Lang R, Patel D, Moms JJ, Rutschman RL, Murray PJ (2002) Shaping gene expression in 
activated and resting primary macrophages by IL-10. J Immunol 169:2253–2263

               68. Lavrovsky Y, Chatterjee B, Clark RA, Roy AK (2000) Role of redox-regulated transcription 
factors in inflammation, aging and age-related diseases. Exp Geronto1 35:521–532

               69. Le Morvan C, Cogne M, Drouet M (2001) HLA-A and HLA-B transcription decrease with 
ageing in peripheral blood leukocytes. Clin Exp Immunol 125:245–250

               70. Lloberas J, Celada A (2002) Effect of aging on macrophage function. Exp Gerontol 
37:1323–1329

               71. Ma J, Chen T, Mandelin J et al (2003) Regulation of macrophage activation. Cell Mol Life Sci 
40:2334–2346

               72. Malm C, Sjodin TL, Sjoberg B et al (2004) Leukocytes, cytokines, growth factors and 
hormones in human skeletal muscle and blood after uphill or downhill running. J Physiol 
556:983–1000

               73. Mancuso P, McNish RW, Peters-Golden M, Brock TG (2001) Evaluation of phagocytosis and 
arachidonate metabolism by alveolar macrophages and recruited neutrophils from F344xBN 
rats of different ages. Mech Ageing Dev 122:1899–1913

               74. Meydani SN, Han SN, Wu D (2005) Vitamin E and immune response in the aged: molecular 
mechanisms and clinical implications. Immunol Rev 205:269–284

               75. Mills CD, Kincaid K, Alt JM et al (2000) M-1/M-2 macrophages and the Thl/Th2 paradigm. J 
Immunol 164:6166–6173

               76. Moffatt OD, Devitt A, Bell ED (1999) Simmons DL, Gregory CD. Macrophage recognition of 
ICAM-3 on apoptotic leukocytes. J Immunol 162:6800–6810

               77. Monti D, Salvioli S, Capri M et al (2000) Decreased susceptibility to ozidative stress-induced 
apoptosis of peripheral blood mononuclear cells from healthy elderly and centenarians. Mech 
Ageing Dev 121:239–250

               78. Montoya MC, Sancho D, Bonello G et al (2002) Role of ICAM-3 in the initial interaction of 
T lymphocytes and APCs. Nat Immunol 3:159–168

               79. Mosser DM (2003) Thc many faces of macrophage activation. J Leukoc Biol 73:209–212
               80. Njemini R, Lambert M, Demanet C, Mets T (2006) The effect of aging and inflammation on 

heat shock protein 27 in human monocytes and lymphocytes. Exp Gerontol 41:312–319
               81. Ogawa T, Kitagawa M, Hirokawa K et al (2000) Age-related changes of human bone marrow: 

a histometric estìmation of proliferative cells, apoptotlc cells, T cells, B cells and macro-
phages. Mech Ageing Dev 117:57–68



Phenotypic and Functional Changes of Circulating Monocytes in Elderly 527

                82. Ortega E, Garcia JJ, De la FM (2000) Modulation of adherence and chemotaxis of macro-
phages by norepinephrine. Influence of ageing. Mol Cell Biochem 203:113–117

                83. Pascual V, Banchereau J, Palucka AK (2003) The central rote of dendritic cells and inter-
feron-alpha in SLE. Curr Opin Rheumatol 15:548–556

                84. Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ (2004) Aging and innate immune cells. J 
Leukoc Biol 76:291–299

                85. Pietschmann P, Hahn P, Kudlacek S et al (2000) Surface markers and transendothelial migra-
tion of dendritic cells from elderly subjects Exp Gerontol 35:213–224

                86. Plowden J, Renshaw-Hcelscher M, Engleman C et al (2004) Innate immunity in aging: 
impact on macrophage funclion. Aging Cell 3:161–167

                87. Poynter ME, Daynes RA (1998) Peroxisome proliferator-activated receptor alpha activa-
tion modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces 
inflammatory cytokine production in aging. J Biol Chem 273:32833–32841

                88. Przybyla B, Gurley C, Harvey JF et al (2006) Aging alters macrophage properties in human 
skeletal muscle both at rest and in response to acute resistance exercise. Exp Gerontol 
41:329–370

                89. Pulsatelli L, Meliconi R, Mazzetti I et al (2000) Chemokine production by peripheral blood 
mononuclear cells in elderly subjects. Mech Ageing Dev 20:89–100

                90. Rainer TH, Lam N, Cocks RA (1999) Adrenaline upregulates monocyte L-selectin in vitro. 
Resuscitation 43:47–55

                91. Rao KMK (2001) MAP kinase activation in macrophages. J Leukoc Biol 69:3–10
                92. Renshaw M, Rockwell J, Engleman C et al (2002) Cutting edge: impaired Toll-like receptor 

expression and function in aging. J Immuno1 169:4697–4701
                93. Reuben DB, Cheh AL, Harris TB et al (2002) Peripheral blood markers of inflammation pre-

dict mortality and functional decline in high-functioning community-dwelling older persons. 
J Am Geriatr Soc 50:638–644

                94. Ricote M, Valledor AF, Glass CK (2004) Decoding transcriptional programs regulated by 
PPARs and LXRs in the macrophage: effects on lipid homeostasis, inflammation, and athero-
sclerosis. Arterioscler Thromb Vasc Bio1 24:230–239

                95. Rossi M, Young JW (2005) Human dendritic cells: potent antigen presenting cells at the 
crossroads of innate and adaptive immunity. J Immunol 175:1373–1381

                96. Sadeghi HM, Schnelle JF, Thoma JK et al (1999) Phenotypic and functional characteristics 
of circulating monocytes of elderly persons. Exp Gerontol 34:959–970

                97. Saurwein-Teissl M, Blasko I, Zisterer K et al (2000) An imbalance between pro- and anti-
inflammatory cytokines, a characteristic feature of old age. Cytokine 12:1160–1161

                98. Sebastian C, Espia M, Serra M et al (2005) MacrophAging: a cellular and molecular review. 
Immunobiology 210:121–126

                99. Shortman K, Wu L (2004) Are dendritic cells end cells? Nat Immuno1 5:1105–1106
               100. Spencer NF, Norton SI, Harrison LL et al (1996) Dysregulation of IL-10 production with 

aging: possible linkage to the age-associated decline in DHEA and its sulfated derivative.
Exp Gerontol 31:393–408

               101. Spencer NF, Poynter ME, Im SY, Daynes RA (1997) Constitutive activation of NF-kappa B 
in an animal model of aging. lnt Immuuol 9:1581–1588

               102. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: 
the multistep paradigm. Cell 76:301–314

               103. Starr R, Willson TA, Viney EM et al (1997) A family of cytokine-inducible inhibitors of 
signaling. Nature 387:917–921

               104. Stout RD, Jiang C, Matta B et al (2005) Macrophages sequentially change their functional phe-
notype in response to changes in micrcenvironmental influences. J Immunol 175:342–349

               105. Stout RD, Suttles J (2005) Immunosenescence and macrophage functional plasticity: dys-
regulation of macrophage function by age-associated microenvironmental changes. Immunol 
Rev 205:60–71

               106. Swift ME, Bums AL, Gray KL, DiPietro LA (2001) Age-related alterations in the inflamma-
tory response to dermal injury. J Invest Dermatol 117:1027–1035



528 L. Ginaldi and  M. De Martinis

               107. Tracy RP (2003) Emerging relationships of inflammation, cardiovascular disease and chronic 
diseases of aging. Int J Obes Relat Metab Disord 27:29–34

               108. Uyemura K, Castle SC, Makinodan T (2002) The frail elderly: role of dendritic cells in the 
susceptibility of infection. Mech Ageing Dev 123:955–962

               109. Visser M, Pahor M, Taaffe DR et al (2002) Relationship of interleukin-6 and tumor necrosis 
factor-alpha with muscle mass and muscle strength in elderly men and women: the health 
ABC study. J Gerontol 57:326–332

               110. Walrand S, Guillet C, Boirie Y, Vasson MP (2006) Insulin differentially regulates monocyte 
and polymorphonuclear neutrophil functions in healthy young and elderly humans. J Clin 
Endocrinol Metab 91:2738–2748    

            111. Weng N (2001) Intetplay between telomere length and telomerase in human leukocyte dif-
ferentiation and aging. J Leukoc Biol 70:861–867

               112. Williams JC, Fotherby MD, Foster LA et al (2000) Mononuclear cell adhesion to collagen ex 
vivo is related to pulse pressure in elderly subjects. Atherosclerosis 151:463–469

               113. Wu D, Meydani SN (2004) Mechanism of age-associated upregulation in macrophage PGE2 
synthesis. Brain Behav Immun 18:487–494

               114. Wu D, Mura C, Beharka AA et al (1998) Age-associated increase in PGE2 synthesis and 
COX activity in murine macrophages is reversed by vitamin E. Am J Physiol 275:661–668

               115. Yoon P, Keylock KT, Hartman ME et al (2004) Macrophage hypo-responsiveness to inter-
feron-gamma in aged mice is associated with impaired signaling through Jak-STAT. Mech 
Ageing Dev 125:137–143

               116. Zhang Y, Blattman JN, Kennedy NJ et al (2004) Regulation of innate and adaptive immune 
responses by MAP kinase phosphatase 5. Nature 430:793–797

               117. Zhang M, Tang H, Guo Z et al (2004) Splenic stroma drives mature dendritic cells to differ-
entiate into regulatory dendritic cells. Nat Immunol 5:1124–1133

               118. Zissel G, Schlaak M, Muller-Quemheim J (1999) Age-related decrease in accessory cell 
function of human alveolar macrophages. J Investig Med 47:51.          



NK and NKT Cells





531

                                                                              Abstract:        NK cells are cytotoxic lymphocytes that are involved in the early defense 
against virus infected and tumor cells. NK cells exhibit the capacity to distinguish 
normal and damaged cells as well as self- and foreign cells. Besides their cyto-
toxic capacity NK cells also regulate the immune response by producing cytokines 
and chemokines that directly participate in the elimination of pathogens or activate 
other cellular components of immunity. NK cells express a broad range of activat-
ing receptors and their function is controlled by inhibitory receptors specific for the 
MHC class I molecules that are ubiquitously expressed on target cells.  

     Several alterations have been described in human NK cell function with advanc-
ing ageing, therefore contributing to immunosenescence. Thus whereas healthy 
elderly, including centenarians, have preserved NK cell number and function, a 
decrease in NK cell activity is associated to increased incidence of infectious and 
inflammatory diseases and to increased risk of death due to infection. Here, we 
describe recent data about the effects of ageing on NK cells.  

         Keywords:     Ageing    •     Immunosenescence    •    NK cells    •    Cytokines    •    
NK cell ceptors    
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         1 Introduction  

   Although it had been generally accepted that some aspects of innate immunity, are 
well preserved in ageing (Pawelec et al.  1998 ), cumulative evidences in the last 
decade support the existence of age-associated changes in the cellular components 
of the innate immune system, including NK cells, that are important in the increased 
susceptibility of elderly individuals to infectious diseases (Delarosa et al.  2006 ; 
Solana et al.  2006 ).  

       2   Natural Killer Cells  

   Natural killer (NK) cells are bone marrow-derived lymphocytes that participate 
in the early defense against intracellular pathogens and tumor cells. NK cells are 
part of the innate immunity arsenal and have been defined as cytotoxic non-T lym-
phocytes. The most important characteristic that distinguishes T-cells from NK cells 
is the T-cell antigen receptor (TcR) which is made from rearranging genes and is 
clonally expressed (Parham  2006 ). NK cells act within hours of infection in con-
trast to T-cells that require several days to arise. NK cells are characterized by the 
expression of CD56, an isoform of the neural cell adhesion molecule (N-CAM) 
and/or CD16, the low-affinity IgG Fc receptor (FcγRIIIa). The discovery on NK 
cells of receptors for polymorphic major histocompatibility complex (MHC) class 
I molecules has contributed to better understanding of NK cell biology. In spite of 
this, NK and T-cells have much in common: cell-surface molecules, effector func-
tions as cytokine secretion and cytotoxicity. Many of the cell surface molecules we 
called NK cell associated receptors (NKR) are also expressed by subpopulations of 
T-cells and NKR expression on T-cells has been associated to memory/effector cells 
(Tarazona et al.  2002 ,  2004 ; Vallejo et al.  2004 ; Abedin et al.  2005 ; Casado et al. 
 2005 ; Delarosa et al.  2006 ; Michel et al.  2006 ; Gayoso et al.  2007 ; Solana et al. 
 2007 ; Lemster et al.  2008 ).  

   Although NK cells have been considered for many years as being a simple, 
homogenous and unspecific population in comparison with T- or B cells of adap-
tive immunity, different subsets have been defined according to the expression of 
NK markers and their capacity to kill or produce cytokines. Thus, human NK cells 
can be divided into two functional subsets based on their cell surface density of 
CD56, CD56 bright  immunoregulatory cells and CD56 dim  cytotoxic cells. Both subsets 
have been characterized extensively regarding their different functions, phenotype, 
and tissue localization. The CD56 bright  NK cell subset has a distinctive role in the 
innate immune response as the primary source of NK cell-derived immunoregula-
tory cytokines (Cooper et al.  2001 ; Farag et al.  2003 ; Wendt et al.  2006 ). CD56 dim  
and CD56 bright  subsets also differ in the expression of chemokine receptors that may 
contribute to cell trafficking (Cooper et al.  2001 ; Fehniger et al.  2003 ; Berahovich 
et al.  2006 ).  
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   NK cells were long thought to respond directly to tumor or infected cells, but 
recent data show that NK cells acquire functionality through priming by dendritic 
cells (DC; Zitvogel et al.  2006 ; Long  2007 ; Lucas et al.  2007 ). This cross-talk 
between NK cells and myeloid DC also leads to DC maturation and may determine 
the quality and strength of the adaptive immunity responses (Vitale et al.  2005 ; 
Moretta et al.  2006 ).  

   NK cells exhibit the capacity to distinguish normal and damaged cells as well 
as self- and foreign cells. NK cell function is controlled by inhibitory receptors for 
the MHC class I molecules that are ubiquitously expressed on target cells (Table  1 ). 
In consequence, MHC class I positive targets are more resistant to NK mediated 
lysis. Human receptors for HLA class I molecules can be included into two struc-
tural types, those with immunoglobulin (Ig)-type domains (killer Ig-like receptors 
(KIR) and leukocyte immunoglobulin-like receptor) and those with lectin-like 
domains called CD94/NKG2 receptors. Inhibitory and activating forms of KIR and 
CD94/NKG2 receptors have been described. The ligands for KIRs are polymorphic 
determinants of HLA-A, HLA-B and HLA-C molecules whereas the ligands for the 
human CD94/NKG2 receptor are complexes of HLA-E bound to peptides derived 
from the leader sequences of other HLA class I molecules (Borrego et al.  2002 ; 
Lopez-Botet et al.  2004 ; Lanier  2005 ; Guma et al.  2006 ). HLA-G, a non-classical 
MHC class I molecule, is recognized by Leukocyte immunoglobulin-like recep-
tor subfamily B member 1 (LILRB1/LIR1/ILT2/CD85j) and member 2 (LILRB2/
LIR2/ILT4/CD85d) and KIR2DL4 (Shiroishi et al.  2006 ). Inhibitory receptors play 
a role in “missing-self” recognition, that confers to NK cells the capacity to attack 
cells that lose or downregulate the expression of MHC class I molecules. However, 
the expressions of inhibitory receptors on NK cells is not uniform and are germline-
encoded by a set of polymorphic genes that segregate independently from MHC 
genes. Therefore, how NK cell self-tolerance arises in vivo is still poorly under-
stood.     

     Licensing of NK cells by self-MHC class I has been proposed as a mechanisms 
for NK cell tolerance to self. This process takes place during NK cell maturation and 
involves inhibitory receptors that recognize target cell MHC class I molecules. This 
process results in two types of tolerant NK cells: functionally competent (licensed) 
NK cells, whose effector responses are inhibited by self-MHC class I molecules 
through the same receptors that conferred licensing, and functionally incompetent 

    Table 1        HLA class I specific inhibitory receptors expressed on human peripheral blood NK 
cells      

   Receptor      Ligand   

   KIR2DL1      HLA-C group 2   
   KIR2DL2/3      HLA-C group 1   
   KIR3DL1      HLA-B alleles   
   KIR3DL2      HLA-A alleles   
   CD94/NKG2A      HLA-E   
   KIR2DL4      HLA-G   
   ILT-2/CD85j      HLA-G and other HLA class I molecules    
   ILT-4/CD85d      HLA-G and other HLA class I molecules   
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(unlicensed) NK cells. Although this process has been defined for mouse NK cells 
several findings suggest that human NK cells also undergo this maturation process 
termed licensing (Kim et al.  2005 ; Parham  2006 ; Raulet  2006 ; Raulet and Vance 
 2006 ; Yokoyama and Kim  2006 ). Once NK cells acquire functional competence 
through “licensing’’ by self-MHC molecules, the result of effector-target interac-
tions is governed by the integration of inhibitory and activating signals that deter-
mines whether the NK cell is finally activated, secretes cytokines and lyses target 
cells (Gasser and Raulet  2006 ).  

   NK cells recognize infected cells or tumor cells by using different types of acti-
vating receptors (Table  2 ) that may act in synergy to enhance cytotoxicity or cytokine 
release after activation (Bryceson et al.  2006 ). Activating receptors expressed by 
NK cells include besides the well characterized receptor CD16 that binds FcγRIIIa, 
NKG2D, CD244, NKp80 and the natural cytotoxicity receptors (NCR) NKp30, 
NKp46, NKp44. Ligands for activating receptors comprise both non-self ligands 
and self proteins up-regulated on damaged cells.       

   The C-type lectin-like receptor NKG2D is unique among activating receptors in 
that it recognizes a wide range of ligands some of which are primarily expressed 
in “stressed” tissues or on tumor cells. Human NKG2D ligands are the MHC class 
I chain related (MIC) proteins MICA and MICB and the UL-16 binding proteins 
ULBP-1, ULBP-2, ULBP-3 and ULBP-4 (Eagle and Trowsdale  2007 ; Mistry and 
O’Callaghan  2007 ).  

   NKp30 and NKp46 are constitutively expressed in NK cells and NKp44 is 
induced after activation (Arnon et al.  2006 ; Bryceson et al.  2006 ; Gasser and 
Raulet  2006 ). The NKp46 and NKp44 receptors recognize viral haemagglutinins 
(Draghi et al.  2007 ; Ho et al.  2008 ; Cagnano et al.  2008 ) and NKp30 has been 
shown to bind a still undefined ligand on DCs. This binding can be inhibited by 

    Table 2    Activating receptors expressed on human peripheral blood NK cells      

   Receptor      Ligand   

   CD16      IgG   
   NKp30      Unknown   
   NKp46      Viral haemaglutinin   
   NKp44*      Viral haemaglutinin   
   KIR2DS1      HLA-C group 2   
   KIR2DS2      HLA-C group 1   
   KIR2DS3      Unknown   
   KIR3DS1      HLA-Bw4?   
   CD94/NKG2C      HLA-E   
   NKG2D      MICA/B, ULBP1-4   
   CD244 (2B4)      CD48   
   DNAM-1      CD155, CD112   
   CRACC      CRACC   
   NTB-A      NTB-A   

      *    Induced after activation    
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the main tegument protein of human cytomegalovirus, pp65 (Arnon et al.  2005 , 
 2006 ).  

   Along with CD244, that binds CD48, other members of the signaling lym-
phocytic activating molecule (SLAM) family of NK cell receptors have been identi-
fied: NTB-A and CRACC, which bind NTB-A and CRACC, respectively.  

   Strong stimulatory signaling resulting from increased levels of stimulatory 
ligands can often overcome inhibitory signals provided by MHC class I mol-
ecules expressed on target cells (Bauer et al.  1999 ; Cerwenka et al.  2000 ; Diefen-
bach et al.  2000 ).  

       3   Effect of Ageing on NK Cell Number and Kinetics  

   Several alterations have been described in NK cells with advancing age, both in 
animals and humans. In old humans, contradictory data exist due mainly to the dif-
ferent selection criteria of the elderly populations studied, a common problem when 
comparing studies by different research groups. Thus, whereas there are studies 
showing that overall NK cell number and cytotoxicity is not significantly affected 
in very healthy elderly people including centenarians, in other studies that have not 
used the same strict selection criteria, the number or functions of these cells from 
elderly subjects are decreased (Table  3 ).     

     In a recent study it has been shown that ageing has an impact on NK cell kinet-
ics (Zhang et al.  2007 ). The analysis of NK cell homeostasis using deuterium-
enriched glucose has shown that these cells are in a state of dynamic homeostasis 
consistent with a model of postmitotic maturation preceding circulation and with 
a turnover time in blood of about 2 weeks. In young healthy individuals the 
proliferation rate is 4,3±2,4%/day, equivalent to a doubling time of 16 days, the 
total production rate is 15±7×10 6  cells/l/day and the half-life is approximately 
10 days. However in NK cells from healthy elderly subjects the proliferation and 
production rates are significantly lower (2,5±1,0%/day and 7,3±3,7×10 6  cells/l/
day, respectively; Zhang et al.  2007 ). This study demonstrates that NK cell num-
bers are well preserved in healthy ageing, in spite of evidences for a reduction in 
total NK cell production rates of about 50%. These results suggest an increased 
proportion of long-lived NK cells in the elderly subjects. This may be related to 
the increased proportion of CD56 dim  cells, as previously reported in elderly sub-
jects (Borrego et al.  1999 ).  

   The decreased proliferation and production rates of NK cells in the elderly can 
be associated to the telomere shortening observed in the elderly. Thus it has been 
shown that NK lymphocytes show an age-associated loss of telomeres together with 
an age-associated reduction of telomerase activity that was evident in individu-
als over 80 years of age in particular in the oldest individuals and in those with 
increased NK cell numbers (Mariani et al.  2003a , b).  
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       4   NK Cells and Health Status in the Elderly  

   An extensive analysis of NK cell number and function in elderly individuals 
strengthens the significance of NK cell activity in healthy ageing and longev-
ity. Thus a decreased NK cell function in old individuals is associated with an 
increased incidence of infectious diseases and death due to infection in elderly 
humans (Ogata et al.  1997 ,  2001 ) and elderly people (aged >85 years) with low 
numbers of NK cells were reported to have three times the mortality risk in the 
first two years of follow-up than those with high NK cell numbers (Remarque and 
Pawelec  1998 ). It has been also reported that decreased NK cell activity in the 
elderly is also associated with increased frequency of disorders as atherosclerosis 

    Table 3    Effect of ageing on the NK cell compartment      

          Decreased      Preserved      Increased   

   Percentage of NK cells                    Facchini et al.  1987 ; 
Mariani et al.  1994 ; 
Borrego et al.  1999 ; 
Lutz et al.  2005     

   Number of NK cells                     Borrego et al.  1999 ; 
Di Lorenzo G. et al. 
 1999     

   CD56 dim subset                     Krishnaraj  1997 ; Bor-
rego et al.  1999         

   CD56 bright subset      Krishnaraj  1997 ; 
Borrego et al.  1999         

              

   Perforin content      Rukavina et al.  1998        Mariani et al.  1996            
   Cytotoxicity      Facchini et al.  1987 ; 

Mariani et al.  1990 ; 
Solana and Mariani 
 2000 ; Ogata et al. 
 2001     

   Sansoni et al.  1993 ; 
Kutza and Murasko 
 1994 ,  1996     

       

   Intracellular signaling      Mariani et al.  1998a                   
   ADCC             Sansoni et al.  1993 ; 

Mariani et al. 
 1998a ; Solana 
and Mariani  2000 ; 
Plackett et al.  2004 ; 
Lutz et al.  2005         

       

   Response to cytokines      Dussault and Miller 
 1994 ; Borrego et al. 
 1999 ; Murasko and 
Jiang  2005     

              

   Cytokine and chemokine 
production   

   Mariani et al.  2001  
 2000a ,  2000b ; 
Mocchegiani and 
Malavolta  2004     

              

   In vivo proliferation and 
production rates   

   Zhang et al.  2007                   
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(Bruunsgaard et al.  2001 ). In a similar way it has been shown that a preserved NK 
function is related to better health status and lower incidence of respiratory tract 
infections in elderly individuals and to a better response to influenza vaccination 
(Mysliwska et al.  2004 ). Additional evidences supporting the significance of NK 
cells in healthy ageing come from studies in centenarians, that, in general, have a 
very well preserved NK cell cytotoxicity (Sansoni et al.  1992 ,  1993 ; Franceschi et 
al.  1995 ). Furthermore, when NK cells are studied in nonagenarians and centenar-
ians the results show that higher NK cell numbers and NK cytolytic activity were 
associated with better retained ability to maintain an autonomous life style. These 
parameters were also associated with higher serum vitamin D levels, a well-nour-
ished status and balanced basal metabolism, indicating the impact of hormonal and 
nutritional variables on NK cell function in elderly people and again emphasiz-
ing that results on NK cells may depend to a much greater extent than T-cells on 
the state of health of the individual (Mariani et al.  1998b ; Pawelec et al.  1998 ). 
Moreover, the percentage of NK cells has been shown to correlate with serum 
zinc and selenium concentrations, and with plasma vitamin E and ubiquinone-10 
concentrations, confirming that micronutrients may affect the number and function 
of NK cells in old age (Mariani et al.  1998b ; Ravaglia et al.  2000 ). This suggests 
that any analysis of biomarkers of immunosenescence must of necessity take these 
variables into account.  

   Together, these results support the fact that preserved NK cytotoxicity can be 
considered a marker of healthy ageing, whereas low NK cytotoxicity is a predictor 
of increased morbidity and mortality due to infections.  

       5    Effect of Ageing on the Expression and Function of NK 
Cell Receptors  

   Although the overall NK cell cytotoxicity seems not to be significantly affected in the 
very healthy elderly donors, it has been demonstrated that, even in these donors, there 
is a decreased cytotoxicity per NK cell, associated with defective signal transduction 
(Table  3 ; Mariani et al.  1998a ; Solana and Mariani  2000 ). Thus, the maintenance of 
NK cell activity is probably due to a compensatory increase in the number of NK cells 
to accommodate a possible decrement of NK cell cytotoxicity (Mariani et al.  1994 ). 
This increased cell number has been related to a higher number of CD56 dim  rather than 
CD56 bright  subset containing the most cytotoxic NK cells (Borrego et al.  1999 ; Solana 
et al.  1999 ). Neither the binding of effector cells to the target cells nor the perforin 
content of NK cells is significantly different in the old and young groups. On the 
contrary the defective NK cell cytotoxicity is associated with a decreased capacity of 
NK cells to release IP3 after interacting with the target cells and a delayed hydrolysis 
of PIP2, indicating that the PKC-dependent pathway is affected as a consequence of 
ageing (Mariani et al.  1998a ). However NK activation and cytotoxic granule release 
induced by CD16 crosslinking is not affected by ageing (Pawelec et al.  1998 ; Solana 
et al.  1999 ; Solana and Mariani  2000 ; Bruunsgaard et al.  2001 ; Lutz et al.  2005 ). 
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Furthermore the PI-3-kinase pathway coupled to CD16 triggering is not significantly 
affected in NK cells from elderly people, indicating that the transduction pathways 
involved in natural or CD16-dependent NK cytotoxicity are differentially affected by 
ageing (Mariani et al.  1998a ; Solana and Mariani  2000 ).  

   Despite the maintenance of CD16-mediated killing, the decreased per-cell NK 
cytotoxicity against the classic target cell line K562 suggests that the expression 
and/or the functionality of other NK activating receptors are likely to be defective in 
the elderly. Very little is known about the effects of senescence on the function of NK 
receptors, and discrepant results have been reported in this context. Whereas it was 
reported that the expression of HLA-specific killer immunoglobulin-like receptors is 
not significantly affected in NK cells from elderly compared to young donors (Mari-
ani et al. 1994), other study has shown that NK cells present an age-related increase 
in KIR expression and a reciprocal decrease in CD94/NKG2A expression, although 
the CD94/NKG2A inhibitory signaling pathway is intact (Lutz et al.  2005 ).  

   In relation with the expression of other NK receptors involved in NK cell cyto-
toxicity, our results show that NK cells from elderly donors have a decreased 
expression of the activating receptor NKp30 ( Fig. 1 ). NKp30 mediates the crosstalk 
between NK and DCs via the recognition of an unknown ligand expressed on DCs. 
As summarized on Figure  1  the engagement of the NKp30 receptor can lead either 
to a direct killing of DCs by NK cells, or to the secretion of IFN-gamma and TNF-
alpha and the subsequent maturation of DCs. Therefore NK-activated DCs loaded 
with tumor or virally derived antigen have an increased capacity to prime T-cells. 
In return, activated DCs release Th1 cytokines that further enhances NK activation 
(Arnon et al.  2005 ,  2006 ). The decreased expression of this receptor on NK cells 

   Fig. 1    Effect of human ageing on NK cell function. Cross-talk of NK cells with DCs through 
NKp30 receptor interaction with its unknown ligand results in inducing DCs maturation and 
NK cell activation. Whereas DCs collaborate with T-cells in the initiation of adaptive response, 
activated NK cells produce cytokines and kill target cells. Age-associated alterations in NK cell 
include: (1) Low expression of activating NKRs that could result in defective cross-talk with den-
dritic cells and defective recognition of target cells, (2) low perforin content, and (3) altered signal 
transduction     
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from elderly individuals should also affect the interaction between these cells lead-
ing to a decreased capacity to collaborate in the initiation of the adaptive immune 
response against virus infected or tumor cells ( Fig. 1 ).     

       6 Effect of Ageing on NK Cell Response to Cytokines  

   Cytokine activation of NK cells results in enhanced cytotoxicity and in the syn-
thesis and release of cytokines and chemokines. The enhancement of the cytotoxic 
activity of NK cells in response to IL-2, IL-12 or IFN-α and γ is well preserved in 
the healthy elderly. However, the capacity of these cytokine-activated killer cells to 
lyse the NK-resistant Daudi cell line is significantly decreased in the elderly (Kutza 
and Murasko  1994 ,  1996 ; Murasko and Jiang  2005 ). A major effect of ageing on 
cytokine and chemokine production by NK cells is a marked early decrease in IFN-γ 
secretion in response to IL-2, which can be overcome by increasing the incubation 
time (Murasko and Jiang  2005 ). In a similar way the production of MIP-1α, Rantes 

   Fig. 2         Expression of NKp30 on NK cells from healthy young (a) and elderly (b) individuals. 
Peripheral blood lymphocytes were labeled with monoclonal antibodies against CD3, CD56 and 
NKp30. Results were analysed with a FACSCanto cytometer. Reduction of percentage and mean 
fluorescence channel of NKp30 was observed in elderly individuals     
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and IL-8 chemotactic cytokines by NK cells is decreased both in elderly subjects in 
response to IL-2 and in nonagenarians in response to IL-2 or IL-12 although these 
cells express the corresponding chemokine receptors. Because of the co-stimulatory 
role of chemokines on NK cell responses, the decreased production of chemokines 
can be involved in the defective functional activity of NK cells from old subjects 
(Mariani et al.  2001 ,  2002a , b).  

   Ageing also affects the response of NK cells to IFN-α/β both in mice and humans. 
This decreased response could be related to the delay in virus clearance observed in 
aged mice (Murasko and Jiang  2005 ). These results suggest that NK cells do show 
an age-associated defect in their response to cytokines, with a subsequent detriment 
both in their capacity to kill target cells and synthesize cytokines and chemokines.  

       7   Conclusions and Perspectives  

   NK cells are a key component of innate immunity in the elimination of virus infected 
or tumor cells. Recent evidences also support their significance in the initiation of 
adaptive responses by their crosstalk with DCs and subsequent activation of T-cells. 
NK cells can be affected by ageing, although several studies have shown a good cor-
relation between the number and/or function of NK cells and the maintenance of an 
adequate health status in elderly and very elderly people (including nonagenarians 
and centenarians). On the contrary a decreased NK cell function is associated to 
increased risk of infectious diseases and risk of death due to infections, supporting 
the importance of the altered functions of NK cells in the age-associated deteriora-
tion of the immune system called immunosenescence.  

   Our recent finding that NK cells from healthy elderly individuals have a decreased 
expression of NKp30 receptor, important not only in NK cytotoxicity but also in 
regulating their cross-talk with DCs strongly support that the alterations in NK cells 
by ageing may have important consequences that may help to explain the associa-
tion between a preserved NK cell function and the maintenance of a healthy status. 
Further studies on the effect of ageing on all NK cell subsets, on the expression 
and function of activating and inhibitory receptors and a more profound study of the 
molecular mechanisms involved in these processes are required to better understand 
the contribution of NK cell ageing to immunosenescence. Considering the increasing 
advances in the understanding of the mechanisms involved in NK cell interactions not 
only with tumor and virus infected target cells but also with other cells of the immune 
system the analysis of how ageing affect these different processes is mandatory.  
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HCV Hepatitis C virus
CMV Cytomegalovirus
MDS Myelodysplastic syndromes
LU Lytic units
PCNK NK activity on a per-cell basis
PS Performance status              

                 Abstract   :    Natural killer (NK) cells are a lymphocyte subset in the innate immune 
system. These cells not only mount an early immune response to infections and 
neoplasia but also affect the adaptive immune system by communicating with 
dendritic cells. In this chapter, we review basic findings on NK-cells and then 
information from 1) rare patients with isolated NK-cell deficiency, 2) patients 
with certain malignant neoplasia, and 3) healthy middle-aged and elderly indi-
viduals. Those findings indicate that NK-cells are crucial immune components 
for sustaining life. With increasing age, numbers of T- and B-lymphocytes decline 
while the number of NK-cells increases. This is especially marked in centenar-
ians. In terms of reduced tolerance to stress such as infections in the elderly, 
the power of early responders in the immune system including NK-cells may be 
especially important. 

Keywords:      Natural killer cells    •    Longevity    •    Infection    •    Neoplasia 

1      Introduction  

  Studies examining healthy people showed that among the various components in 
the human immune system, natural killer (NK) cells are well maintained throughout 
life, even in centenarians. This is sharp contrast to the decline in T- and B-cell num-
bers with increasing age. Therefore, it is hypothesized that well-preserved NK-cell 
function is essential for longevity. In this chapter, we summarize basic findings on 
NK-cells, including recent understanding of the interaction between NK-cells and 
dendritic cells (DCs), and then review information so far obtained on the role of 
NK-cells in human longevity.  

    2      Overview of NK–cells  

   2.1      NK-cell Subsets  

  NK-cells were originally identified as a population of large granular lymphocytes 
and once considered to be a homogenous subset of lymphocytes in the peripheral 
blood (PB). However, NK-cells consist of heterogeneous populations. They can 
be divided into two subsets by the expression levels of CD56 (neural cell adhe-
sion molecule, NCAM) and the presence or absence of CD16 antigen (FcγRIIIA), 
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which binds the Fc portion of IgG and mediates antibody-dependent cellular 
cytotoxicity (ADCC) by binding to opsonized cells [ 18 ,  43 ]. These two subsets, 
CD56 bright CD16 -  cells and CD56 dim CD16 +  cells, differ in their homing capabilities, 
i.e., CD56 bright CD16 -  NK-cells largely predominate in the lymph nodes (LNs) and 
comprise circa 10% of PB NK-cells, as well as in other functions including cytolytic 
activities, cytokine production and ability to proliferate. It was reported that the 
CD56 bright CD16 -  subset potently induces cytokine secretion, is a cytokine-respon-
sive NK-cell subset, but has low intrinsic cytotoxicity, whereas the CD56 dim CD16 +  
subset has little intrinsic secretory capability, but potent cytolytic activity [ 18 ,  56 ]. 
These subsets also express different receptors for chemokines, cytokines, and major 
histocompatibility complex (MHC) Class I ligands [ 67 ]. CD56 bright CD16 -  NK-cells 
constitutively express interleukin (IL)-2 receptors with high and intermediate affin-
ity and increase in response to low doses of IL-2. On the contrary, CD56 dim CD16 + 

 NK-cells proliferate weakly in vitro in response to high doses of IL-2 [ 12 ]. Finally, 
resting CD56 bright CD16 -  NK-cells are large granular cells and express high levels 
of the CD94/NKG2 family and very low levels of the killer Ig-like receptor (KIR) 
family, while resting CD56 dim CD16 +  NK-cells contain numerous cytolytic granules 
in the cytoplasm and express both KIR and CD94/NKG2 receptor at relatively high 
levels [ 39 ].  

    2.2      NK-cell Development and Related Cytokines  

  NK-cells share a common lymphoid progenitor with thymocytes and B-cells [ 17 ]. 
In both humans and mice, early NK progenitors appear to be bone-marrow (BM)-
derived CD34 +  cells, which express receptors for the  fms  tyrosine kinease 3 (Flt3) 
ligand, c-kit ligand, and IL-2 receptor β chain (CD122) shared with the trimeric 
receptor for IL-15, and the BM microenvironment is necessary for complete matu-
ration of NK-cells. BM stroma-derived IL-15 in cooperation with c-kit ligand and 
Flt-3 ligand is a critical factor for the development of mature NK-cells from NK 
progenitors in the BM [ 22 ,  27 ]. IL-15, which is reported to protect NK-cells from 
IL-2 activation-induced cell death, is also important for the maintenance of NK-
cells [ 55 ,  68 ,  79 ]. NK progenitors respond to early-acting, stromal cell-derived 
growth factors such as the c-kit and Flt3 ligands and develop into NK precursors 
with the CD34 + IL-2/IL-15Rβ + CD56 -  phenotype. IL-15 matures these NK precur-
sors into functional CD56 bright  NK-cells [ 28 ]. However, further studies are required 
to understand the regulation of CD56 dim  NK-cell differentiation.  

  IL-21, another cytokine that can bind the common γ-chain shared with IL-2, 
IL-4, IL-7, IL-9, and IL-15, plays a role in the proliferation and maturation of NK-
cells [ 63 ]. IL-7 is an early-acting cytokine responsible for the generation of imma-
ture CD56 bright  NK-cells [ 86 ]. IL-2 is a growth factor for NK progenitors and mature 
NK-cells. In addition, IL-2 induces the production of NK effector molecules and 
enhances the lytic activity of NK-cells. IL-12 and IL-18 are NK-activating cytokines 
during late NK-cell differentiation and synergistically enhance the cytotoxicity of 
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and interferon (IFN)-γ production by NK-cells [ 34 ,  44 ]. IL-1 and IL-18 potentiate 
the effects of IL-12 by upregulating IL-12 receptors on NK-cells.  

    2.3      NK-cell Receptors  

  NK-cell receptors (NKRs) can be classified as inhibitory and activating [ 10 ,  53 ]. 
The MHC Class I-specific inhibitory receptors were first identified in both mice 
and humans. It is well known that NK-cells are able to lyse MHC Class I-negative 
tumors and infected cells, which are not recognized by the inhibitory receptors on 
NK-cells. Several inhibitory types of receptors exist, including the two main groups 
consisting of the KIR family (KIR2DL, KIR3DL, etc.) and the heterodimeric, 
C-type lectin receptors CD94-NKG2A/B, which bind to MHC Class I molecules 
and human leukocyte antigen (HLA)-E, respectively [ 10 ,  11 ]. HLA-E is a nonclas-
sical, Class Ib molecule for which surface expression requires binding of peptides 
derived from the leader sequences of different HLA Class I molecules. The lack 
of even a single MHC Class I allele, which is a frequent event in cancer, sensitizes 
HLA-E to NK-cell cytotoxicity [ 53 ].  

  NK-cell cytotoxicity is also triggered by activating receptors including MHC 
Class I-specific receptors, i.e., KIR (KIR2DS, KIR3DS, etc.), C-type lectin recep-
tor CD94/NKG2C, and non-MHC Class I-specific receptors such as natural cyto-
toxicity receptors, NKG2D, leukocyte adhesion molecule, and DNAX accessory 
molecule-1 (DNAM-1, CD226). NKG2D and DNAM-1 can recognize stress-
induced ligands expressed by several tumor cell lines, such as MHC-I polypep-
tide-related sequence A (MICA), MHC-I polypeptide-related sequence B (MICB), 
and UL-16-binding protein (NKG2D ligands), and poliovirus receptor (CD155) and 
Nectin-2 (CD112, DNAM-1 ligands) [ 15 ,  64 ,  66 ]. Natural cytotoxcity receptors 
such as NKp46, NKp44, and NKp30, for which the host ligands remain unknown, 
mediate the lysis of many types of cancer cells. Additional receptors of NK-cell 
activation also comprise a series of coreceptors including 2B4, NTB-A, and NKp80 
coreceptors, CD18/CD11 (β2 integrins), CD2 adhesion molecules, and Toll-like 
receptors (TLR) [ 51 ,  72 ]. NK-cell activation depends on the expression of these 
ligands on the target cells. These receptors provide both inhibitory and activating 
signals, and the balance between them determines NK-cell activation, proliferation, 
and effector functions.  

    2.4      NK-cell Function  

  The main function of NK-cells is host defense against tumors and infections. NK-
cells can directly kill infected cells or tumor cells that have lost the expression of 
MHC Class I molecules. NK cytotoxicity can be triggered by viral and bacterial 
products directly binding to surface TLR3 and TLR9 [ 52 ,  72 ]. NK-cells also act as 
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the conductor for the activation of the immune defense along with T- and B-cells, 
macrophages, and immune effector cells in local sites.  

  NK-cells can respond to infections directly by recognizing infected cells, and 
indirectly by cytokine secretion and interaction with DCs expressing TLR. It has 
been reported that NK-cells play an important role in antiviral defense, especially 
in controlling the severity of Herpes virus, Hepatitis, and Human immunodefi-
ciency virus (HIV) infections [ 7 ]. To perform this role, NK-cells require the acti-
vation of multiple effector pathways including direct cytotoxicity and the release 
of cytokines and chemokines. Viral infection immediately induces macrophages to 
produce cytokines such as tumor necrosis factor (TNF)-α, IL-12 and IFN-γ. Acti-
vated NK-cells can also secrete several cytokines, i.e., IFN-γ, granulocyte mac-
rophage colony-stimulating factor (GM-CSF), M-CSF, TNF-α, IL-5, IL-10, and 
IL-13, to control the growth and spread of pathogens and tumors. Furthermore, 
many of the cytokines produced by NK-cells can affect the initiation and main-
tenance of adaptive immune responses. Although NK-cells are activated and kill 
virus-infected cells immediately, it takes 1-2 weeks after infection to activate adap-
tive immune responses, such as pathogen-specific killer T-cells and antibodies pro-
duced by B-cells.  

  Intrahepatic lymphocytes (IHLs) contain 37% NK-cells and that percentage in 
the IHL pool may increase to 90% in hepatic disease [ 23 ]. Infection with hepato-
tropic viruses such as Hepatitis C virus (HCV) activate liver NK-cells that play a 
crucial role in the recruitment of virus-specific T-cells to the liver and in inducing 
antiviral immunity in the site. Activated NK-cells can kill virus-infected cells by a 
cytolytic mechanism via the perforin/granzyme and FasL pathways and produce 
proinflammatory cytokines that can induce an antiviral state in host cells. Compro-
mised NK-cell functions have been reported in chronic HCV-infected patients. To 
control mouse cytomegalovirus (CMV) infection, NK-cells use two main effector 
mechanisms: the secretion of IFN-γ and direct lysis of infected cells by exocytosis 
of granules that contain perforin and granzymes. TLR9 recognizes unmethylated 
CpG DNA, a component of bacterial and viral DNA, and delivers signals for cellular 
activation through the adaptor protein MyD88. TLR9-deficient or MyD88-deficient 
mice show an increased susceptibility to mouse CMV, indicating an important role 
of TLR9 and MyD88 in protection against mouse CMV [ 3 ,  20 ,  42 ,  74 ]. In human 
CMV infection, activated NK-cells produce IFN-γ and secrete lymphotoxin-  and 
TNF, which contributes to the NF-κB-dependent release of IFN-β from infected 
cells. IFN-γ and IFN-β work together to inhibit CMV replication [ 38 ].  

  NK-cell-produced IFN-γ might contribute to protecting humans from Influenza 
A and Sendai viruses. Contact between NK-cells and virus-infected macrophages 
induces IFN-γ production. Furthermore, the expression of MICB, a ligand for the 
NKG2D receptor, was up-regulated in virus-infected macrophages, suggesting the 
role of MICB in the activation of the IFN-γ gene in NK-cells [ 71 ]. In HIV infection, 
the number of CD3 - CD56 +  NK-cells in the PB was dramatically reduced in patients 
with ongoing viral replication compared with uninfected or aviremic patients. 
Therefore, NK-cells play an important role in controlling HIV infection. NK-cells 
obtained from viremic patients produce more IFN-γ and TNF-α than NK-cells from 
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aviremic patients [ 2 ]. A recent study has shown that the decrease in MHC Class 
I molecules on T-cell blasts infected with certain HIV strains was selective. The 
expression of HLA-A and -B was decreased in infected cells, whereas HLA-C and 
-E remained on the surface. HLA-C and -E bind to the KIR and CD94-NKG2A 
receptors, respectively, on NK-cells, resulting in inhibition of NK-cell-mediated 
killing of HIV-infected cells [ 8 ].  

  NK-cells are also activated during parasitic and bacterial infections. NK-cells 
produce IFN-γ in response the infection of red blood cells with  Plasmodium falci-
parum , the causative agent of malaria [ 4 ]. The importance of NK-cells in protecting 
against bacterial infection has been controversial and may depend upon the site of 
infection or type of inflammatory response elicited. The expression of the activating 
receptors NKp30, NKp46, and NKG2D was enhanced in NK-cells after exposure 
to monocytes infected with the intracellular pathogen  Mycobacterium tuberculosis . 
The infected monocytes upregulated the expression of the NKG2D ligand ULBP1 
through TLR2 activation, and NK-cells lysed infected monocytes through NKG2D- 
and NKp46-dependent mechanisms [ 75 ].  

    2.5      Localization and Trafficking of NK-cells  

  NK-cells comprise approximately 5–20% of lymphocytes in the spleen, liver, and 
PB, and are present at lower levels in the BM, thymus, and LNs [ 31 ,  45 ]. Although 
NK-cell trafficking is not understood in detail, it was reported that chemokine secre-
tion and chemokine receptor expression by NK-cells are dynamically regulated, and 
that some chemoattractants and chemokines can induce the migration of NK-cells to 
inflammation sites [ 67 ]. It is possible that changes in key adhesion molecules may 
induce the physical movement of NK-cells into sites of infection. CD56 bright CD16 -  
NK-cells express CCR5 and CCR7 as well as L-selectin, which can attract T-cells 
to LNs, and CD56 dim CD16 +  NK-cells express CX 3 CR1. In addition, both of these 
NK subsets express CXCR3 and CXCR4 [ 13 ,  32 ,  67 ].  

    2.6      NK-DC Interactions  

  The crosstalk between NK-cells and myeloid DCs leads to NK-cell activation and DC 
maturation. Activated NK-cells can kill DCs that fail to undergo proper maturation; 
this phenomenon is called “DC editing” [ 53 ]. In vitro studies showed that NK-cells 
activated by IL-2 can kill immature DCs by ligation between NK-activating recep-
tors, mainly NKp30 on NK-cells, and still unidentified cellular ligands on DCs [ 30 , 
 65 ]. Consistent with these data, NK-cells derived from patients with acute myeloid 
leukemia, who frequently exhibit downregulation of NKp30 surface expression, have 
impaired killing of immature DCs [ 19 ,  29 ]. Furthermore, the NK-cell-mediated DC 
killing was inhibited by transforming growth factor-β, which can downregulate the 
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surface expression of NKp30 [ 14 ]. Recently, DNAM-1 has been shown to cooperate 
with NKp30 in the NK-cell-mediated lysis of DCs [ 64 ]. The expression of Nectin-2, 
one of the DNAM-1 ligands, is increased on immature DCs. Studies using immuno-
histochemistry and confocal microscopy showed that DNAM-1 ligands are expressed 
by DCs present in normal LNs. In general, the function of activating NKRs is under 
the control of inhibitory NKRs specific for HLA Class I [ 54 ]. However, immature DCs 
do not follow this rule. Analysis of NK clones showed that an NK subset, which lacks 
KIR specific for HLA Class I alleles and expresses HLA-E-specific CD94/NKG2A 
receptors (the KIR - NKG2A dull  phenotype), can kill immature DCs [ 21 ]. The DC edit-
ing mediated by NK-cells might be important in the selection of appropriate DCs in 
conjunction with the removal of DCs that fail to perform optimal antigen presentation 
and T-cell priming. NK-cells are not able to kill mature DCs, mainly because mature 
DCs express higher levels of HLA-E than immature ones.  

  During NK-DC interaction, NK-cells can induce DC maturation mediated by 
TNF-α and IFN-γ, which are released upon engagement of the NKp30 trigger-
ing receptor [ 77 ]. Semino et al showed that NK-DC interaction results in IL-18 
secretion by DCs and then IL-18-activated NK-cells secrete the proinflammatory 
cytokine high mobility group B1 (HMGB1) [ 70 ]. HMGB1 can induce DC matu-
ration and protect DCs from lysis. These data suggest that NK-cells mediate DC 
maturation by several pathways. NK-cells kill tumor cells and virus-infected cells, 
and subsequently prime DCs with the killed cell-derived antigens to induce specific 
CD8 +  T-cell responses [ 49 ,  50 ,  87 ]. After antigen uptake, DCs undergo maturation 
and release several cytokines, including IL-12, that enhance NK functions. NK-DC 
interactions also induce primary tumor rejection and long-term cytotoxic T-lym-
phocyte memory, bypassing the requirement for CD4 +  helper T-cells [ 1 ].   

     3      Contribution of NK-cells to Human Longevity  

  To gain insight into role of NK-cells in human longevity, we review findings 1) from 
patients with isolated NK-cell deficiency, 2) on the relationship between NK-cells 
and the development and progression of malignancies in humans, and 3) on NK-
cells in the healthy elderly.  

   3.1      Isolated NK-cell Deficiency in Humans  

  Various isolated defects in human immune system have been reported, which pro-
vide valuable information on the function and importance of each component of the 
immune system [ 57 ]. However, primary isolated NK-cell deficiency, in which other 
immunologic functions are normal and which occurs in the absence of other immu-
nocompromising conditions, is very rare. Moreover, in some reported cases, the dis-
tinction between NK-cells and T-cells expressing NK-cell markers was unclear. The 
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rarity of isolated NK-cell deficiency may imply the critical role of NK-cells in human 
life. Another explanation is that because NK-cells are an early responder in the immu-
nogic defense system and communicate with late components in the immune system, 
another immune component(s) is often secondarily impaired in isolated NK-cell defi-
ciency. In this chapter, we do not discuss patients in whom both NK-cells and other 
immunlogic components were compromised or unexamined [ 46 ,  82 ].  

  A girl reported in 1989 by researchers at the University of Massachusetts Medical 
School is probably the best-known patient with isolated NK-cell deficiency [ 6 ]. She 
had experienced recurrent otitis media since infancy and at the age of 13 years devel-
oped severe varicella infection and polymicrobial sepsis with  Haemophilus influen-
zae ,  Streptococcus pneumoniae , and  Staphylococcus aureus  infection. Four years 
later, she again developed sepsis with  S  .   aureus  infection and interstitial pneumonia 
due to CMV. CD56 +  and CD16 +  cells were completely absent in her PB, along with 
an almost complete absence of NK-cell cytotoxicity and ADCC. She later developed 
aplastic anemia and died after undergoing stem cell transplantation [ 62 ]. The second 
patient was a 23-year-old woman who had recurrent condylomata due to human pap-
illoma virus [ 5 ]. Her peripheral blood lacked NK (CD3 - CD56 + ) cells but showed an 
increase in CD3 + CD56 +  cells. NK cytotoxicity was almost completely absent, which 
was only slightly augmented by the administration of IL-2. However, this patient 
appeared not to have experienced devastating infections. The third patient was a 5-
year-old girl, who experienced repeated otitis media and Herpes virus infections, 
requiring acyclovir prophylaxis for the latter [ 40 ]. Examination of her PB showed a 
profoundly reduced number of NK (CD3 - CD56 + ) cells and reduced NK cytotoxicity 
but normal ADCC. The fourth was a 2-year-old girl with recurrent, ultimately fatal, 
varicella infection [ 25 ]. Her PB also contained a markedly decreased number of NK 
(CD3 - CD56 + ) cells and showed reduced NK cytotoxicity.  

  Another group of patients reported in the literature had a normal number of NK-
cells but defective NK-cell functions. Two brothers (6 and 12 years of age), who 
experienced recurrent upper respiratory tract infections and otitis media, had nearly 
normal numbers of CD56 +  and CD16 +  cells in their PB, but NK cytotoxicity was 
almost completely absent, which was not improved by incubating cells with IL-2 or 
IFN-α [ 41 ]. A recent report has suggested that overexpression of inhibitory killer 
receptors is a possible underlying mechanism in such patients [ 33 ].  

  Information from the above patients indicates that NK-cells are important in the 
in vivo defense against viruses mainly in the family Herpesviridae. In patients who 
lack NK-cells, infections with Herpes viruses are usually life-threatening. Even in 
healthy individuals, an initial Herpes virus infection may be followed by latency 
with subsequent reactivation and, in some cases, cause malignancies including lym-
phoma, nasopharyngeal cancer, and Kaposi’s sarcoma. Therefore, it is concluded 
that NK-cell deficiency in humans is associated with life-threatening diseases 
caused by Herpes viruses and therefore affects life span. The association between 
NK-cells and other viral and bacterial infections in vivo is less clear. All four 
reported patients who lacked NK-cells were women. Further accumulation of such 
patients and research on their pathophysiology including genetics will be important 
to understand this association.  
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    3.2      Relationship between NK-cells and the Development 
and Progression of Malignancies  

  NK-cells may contribute to human longevity by controlling neoplastic cells in 
patients with malignancies. An example of data supporting this hypothesis comes 
from studies of myelodysplastic syndromes (MDS). MDS are malignant disorders 
of hematopoietic stem cells and predominantly occur in the elderly [ 58 ]. A well-
designed study in the UK found that in the population aged 70 years and older, 
more than 50 new MDS patients are diagnosed annually per 100,000 persons [ 84 ]. 
MDS are composed of various subtypes and can be grouped into early-stage and 
advanced-stage MDS based on the percentage of neoplastic myeloblasts in the 
BM and PB. It is also believed that early-stage MDS is often overlooked due to 
the absence of specific signs and symptoms of the disorder [ 58 ]. A substantial 
proportion of patients with early-stage MDS progress to advanced-stage MDS and 
then to acute myeloid leukemia by mechanisms that have not been thoroughly 
clarified. MDS patients often have dysfunction in a variety of immunologic com-
ponents including NK-cells [ 35 ]. NK-cell cytotoxicity, which may or may not be 
stimulated by IL-2 in vitro, is preserved in early-stage MDS but decreases with 
disease progression [ 24 ,  60 ]. The elevation in levels of circulating soluble IL-2 
receptor [ 85 ], which can neutralize endogenous IL-2, and reduced expression of 
activating NK receptors such as NKG2D in NK-cells [ 24 ] may contribute to the 
reduced NK-cell cytotoxicity in advanced-stage MDS patients. These data suggest 
that NK-cells contribute to controlling disease progression in MDS and thus may 
affect longevity because of the high prevalence of MDS in the elderly. Similarly, 
NK-cells may prolong the life span of patients with other cancers by inhibiting 
disease progression [ 16 ,  37 ,  76 ].  

  Meanwhile, it is known that NK-cell activity varies significantly among healthy 
individuals. The question is whether differences in NK-cell activity in healthy peo-
ple are involved in the development of malignancies and thus contribute to longev-
ity. Imai et al examined NK-cell cytotoxicity in 3625 healthy Japanese, mainly in 
the 40-69-year-old age-group, living in Saitama prefecture [ 36 ]. They followed the 
cohort for 11 years to investigate cancer incidence and death from any cause. They 
recorded 154 cases of cancer (most frequent sites were the stomach, lung, and intes-
tine) in the study period and found that reduced NK-cell cytotoxicity was a statisti-
cally significant risk factor for the development of cancer.  

    3.3      NK-cells in the Healthy Elderly  

  NK-cells in the healthy elderly have been examined in many studies. Sansoni et 
al carefully selected 138 healthy individuals, ranging in age from 4 to 106 years, 
and examined their immunologic parameters including lymphocyte subsets and 
NK-cell cytotoxicity [ 69 ]. They found that although the number of T- and B-cells 
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declined with increasing age, the number of cells with NK markers did not undergo 
an age-related decline. Instead, the number of CD16 +  cells and CD57 +  cells increased 
with age. Moreover, centenarians had well-preserved NK-cell activity expressed in 
lytic units (LU), the magnitude of which was comparable to that in healthy young 
people and higher than that in the healthy middle-aged.  

  We also selected 82 healthy individuals, aged 30 to 99 years, and investigated 
their immunologic parameters [ 61 ]. We confirmed that the number of T-cells 
declined and the number of CD56 +  cells increased with age and that NK-cell 
activity expressed as LU was maintained throughout this age range. In addi-
tion, because the number of total lymphocytes was found to decrease with age 
in most studies including ours, we calculated the index of absolute in vivo NK-
cell activity (ALU = LU x mononuclear cell count per microliter of PB) and 
found that the ALU decreased as age increased. Moreover, the cytotoxic activity 
exerted by one NK-cell (NK activity on a per-cell basis, PCNK) decreased as age 
increased. When we retrospectively examined the medical records of the elderly 
in our cohort, it was found that low ALU and PCNK values correlated with a 
past history of severe infection. Therefore, we proposed that human NK-cells do 
not escape the aging process and that low NK-cell function is corrrelated with 
the development of severe infections, which may be fatal, in the elderly. Simi-
larly, several other studies of the healthy elderly showed that the T-cell population 
declines while the NK-cell population increases in the PB and that the PCNK 
decreases [ 9 ,  26 ,  47 ,  48 ]. In particular, data from centenarians are striking. Miyaji 
et al reported that roughly 50% of lymphocytes were CD56 +  cells in centenarians 
in contrast to about 11% in the middle-aged [ 48 ]. However, it has not been fully 
clarified whether the NK-cell increase in the very old indicates that NK-cells 
result in longevity or longevity resulting from other factors causes an increase in 
the number of NK-cells.  

  Based on the above findings, we conducted a prospective study to examine 
whether differences in NK-cell function among the healthy elderly is related to 
the development of infection and infectious death [ 59 ]. Our subjects were 108 
immunologically normal elderly people aged 63–99 (mean 81) years residing in 
nursing homes due to impaired performance status (PS). We determined counts 
of lymphocytes, monocytes, and neutrophils, serum albumin value, percentage 
and absolute number of various lymphocyte subsets (CD3 + , CD4 + , CD8 + , CD25 + , 
CD56 + , CD3 + HLA·DR + , CD3 + CD56 + , and CD3 - CD56 +  cells), and NK-cell activ-
ity. The interassay variation in NK-cell activity was minimized by examining the 
same control cells in each assay. We then followed the cohort and analyzed the 
correlation between the development of infection during the first 12 months of 
follow-up and the predetermined parameters as well as age and PS. Using uni-
variate logistic regression analysis, poor PS, low albumin value, old age, and 
low NK-cell activity correlated significantly with the development of infection. 
Multivariate logistic regression analysis showed that low NK-cell activity, poor 
PS score, and older age were independent variables associated with the devel-
opment of infection. The odds ratio for the development of infection increased 
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with the decrease in NK-cell activity. We next analyzed correlations between the 
predetermined parameters and the time until death due to infection in the 108 
individuals. Eleven died of infection (all due to pneumonia) during the follow-
up period. Univariate Cox proportional-hazards regression analysis showed that 
poor PS, high CD8 +  T-cell count, and low NK-cell activity correlated significantly 
with short survival time due to infection. Multivariate Cox proportional-hazards 
regression analysis showed that low NK-cell activity was an independent variable 
associated with short survival time due to infection. Other independent variables 
for short survival due to infection were poor PS and a high CD8 +  T-cell count. 
These findings support the hypothesis that well-preserved NK-cell activity is 
important for human longevity, at least in part because of its antiinfectious effect. 
The association between a high CD8 +  T-cell count and short survival time after 
infection deserves further discussion. A previous study also suggested an associa-
tion between a high CD8 +  T-cell count and high mortality rate in the elderly [ 83 ]. 
One proposed explanation for this association is that clonal expansions of CD8 +  
T-cells, which are often observed in the healthy elderly [ 78 ], are exaggerated in 
those with a high CD8 +  T-cell count. This clonal expansion probably reduces the 
naive repertoire of CD8 +  T-cells, which impairs T-cell responses and thus may be 
associated with vulnerability to infections.  

  Meanwhile, a functional relationship exists between NK-cells and T-cells. In a 
typical viral infection, NK-cell responses against the virus are observed during the 
first 1–3 days of infection [ 80 ]. These are gradually replaced with viral antigen-spe-
cific T-cell responses. When T-cell responses do not occur, as in severe combined 
immunodeficient mice and athymic nude mice, the increased NK-cell response 
is maintained for a prolonged period to defend the host [ 73 ,  81 ]. Considering the 
functional link between NK- and T-cells and the reduced T-cell count commonly 
observed in elderly people, the role of NK-cells in protecting against infections may 
be more important in the elderly than in younger individuals.   

     4      Concluding Remarks  

  NK-cells are a lymphocyte subset in the innate immune system which are early 
responders to infections and neoplasia. Data from isolated NK-cell deficiency, cer-
tain patients with malignant neoplasia, and healthy individuals all indicate that NK-
cells are crucial immune components for sustaining life. In middle-aged people 
in developed countries who can overcome common infections, NK-cells may be 
important for defending against malignancies. In elderly people, common infec-
tions can cause significant morbidity and mortality. In terms of weakened T- and 
B-cell immunology as well as reduced tolerance of stress such as infections in the 
elderly, the strength of the early immune system response including that of NK-cells 
appears especially important. The role of NK-cells throughout the human life span 
should be studied further to confirm this hypothesis.  
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    1 Introduction  

  Natural Killer T (NKT) cells are innate lymphocytes known for their roles in regulation 
of immune responses in cancer, autoimmunity, bacterial and viral infections, and the 
induction of immunologic tolerance [ 1 – 4 ]. Recently, our laboratory and others have 
also identified crucial roles for NKT-cells in the regulation of the host response to 
injury and sepsis [ 5 – 7 ]. As we will discuss further in this chapter, NKT-cells are now 
widely accepted as critical players in the initiation of maintenance of host defense, as 
they are uniquely poised to modulate multiple aspects of protective immunity. NKT-
cells fill this position via their ability to rapidly produce significant quantities of immu-
nomodulatory cytokines very early during the course of the immune response and can 
thereby influence the outcome of both innate and adaptive immune processes.  

  While a significant number of studies, described in this handbook and elsewhere, 
have identified both direct and indirect effects of advanced age on T-cells, B-cells, 
and cells of the innate immune system including macrophages, dendritic cells, gran-
ulocytes, etc., little is known of how NKT-cell populations might change with age 
and moreover, how the aging immune microenvironment affects NKT-cell function. 
Here, we will provide a brief overview of NKT-cells, their role in host defense, and 
review the limited information on the effects of age on NKT-cell biology.  
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    2  NKT-cell Development and Restriction by CD1d, Antigen 
Specificity, and Tissue Distribution  

  Like virtually all T-lymphocytes, NKT-cells arise and differentiate from mainstream 
thymic precursors. Whereas conventional CD4 +  and CD8 +  T-cells differentiate and 
undergo negative and positive selection based upon thymic expression of self-pep-
tide antigens and of MHC-II and MHC-I, NKT-cells on the other hand, acquire their 
differentiation signals and undergo thymic selection based upon thymic expres-
sion of self-lipid ligands presented on the MHC-I-like molecule, CD1d. NKT-cells 
arise from CD4 +  CD8 +  thymic precursors and express a canonical invariant αβ TCR 
(Vα14-Jα18 in mouse and Vα24-Jα18 in human) that recognizes a self-lipid called 
isoglobotrihexosylceramide (iGb3), which is a breakdown product of the hexosami-
nadase-B pathway and is presented in the context of CD1d molecules expressed on 
thymic epithelia [ 8 – 10 ]. Upon engagement of the Vα14-Jα18 TCR with iGb3/CD1d 
complex, double positive NKT precursors down-regulate their expression of CD8. 
While some NKT precursors retain their expression of CD4 molecules, others even-
tually down regulate CD4 and become double-negative, invariant TCR-positive. As 
NKT-cells are so named, they acquire expression of NK lineage receptors including 
NK1.1, NKG2A/D, Ly49C/I in mouse and CD16, CD56, and CD161 in human.  

  NKT-cells are widely distributed throughout the body in both humans and mice 
and can be identified in the thymus, liver, spleen, lymph nodes, and circulation by 
either their co-expression of the invariant TCR and the above-mentioned NK associ-
ated markers or by their ability to bind lipid ligand-loaded CD1d tetramers or dimers 
[ 11 ,  12 ]. Overall, NKT-cells comprise approximately 0.5–1.0% of the entire T-lym-
phocyte pool. In the liver, they account for approximately 25–50% of lymphocytes 
(depending upon species, strain, etc.), in spleen they comprise approximately 2–3% 
of the lymphocyte population, while in the circulation and lymph nodes, NKT-cells 
make up only about 0.5–1.0% of circulating lymphocytes. Within the lymphoid com-
partment NKT-cells can be found in the splenic marginal zones, red pulp, PALS, and 
paracortical areas [ 13 ] (and Faunce et al, unpublished observations) and in the liver, 
they mainly accumulate in the liver sinusoids. Interestingly, the liver seems particu-
larly adept for the recruitment and retention of NKT-cells, since they constitutively 
express CXCR6, the receptor for the chemokine CXCL16, which is expressed among 
other places on the surface of liver sinusoidal epithelium [ 14 ]. NKT-cells may also 
home to lymphoid organs or other sites of inflammation and immune responses via 
signals mediated through CCR1, CCR2, CCR4, CCR5, CCR6, and CXCR2 [ 13 ,  15 ].  

    3 CD1d Molecules and Lipid Antigens  

  Unlike conventional CD4 +  and CD8 +  T-cells that exhibit specificity for peptide 
antigens presented by MHC-II and MHC-I respectively, NKT-cells recognize 
glycolipid antigens presented in the context of the MHC-I-like molecule, CD1d 
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[ 1 ,  3 ,  16 – 18 ]. The CD1 family of cell surface glycoproteins is expressed by a vari-
ety of cell types, however, the CD1d isoform is expressed primarily on professional 
antigen presenting cells including macrophages, dendritic cells and B-cells and is 
expressed at the cell surface in conjunction with β2-microglobulin. In humans, five 
isoforms of CD1 exist, CD1a–e. In mice and rats however, only CD1d is expressed 
[ 1 ,  3 ,  16 – 18 ]. The invariant Vα14 (and Vα24) TCR only recognizes CD1d and not 
the other isoforms and it was the observation in the mid to late 1990’s that minor 
T-cell subsets appeared restricted by CD1d for both function and development that 
led to the discovery that NKT-cells were indeed a unique subset with their own 
developmental restriction and antigen specificity [ 19 – 22 ]. Today, the CD1d-restric-
tion of NKT-cells is exploited through the use of CD1d tetramers and dimers that 
are used for the specific recognition and identification of NKT-cells in both mice 
and humans [ 11 ,  12 ,  23 – 25 ].  

  As mentioned above, CD1d-restricted NKT-cells exhibit specificity for glycoli-
pid antigens, rather than peptide antigens. The concept that CD1d presents lipid 
antigens to invariant TCRs was first considered when it was observed that the bind-
ing grooves of CD1d as well as the invariant TCR were extremely hydrophobic 
[ 20 ]. The first glycolipid identified as a specific activator of NKT-cells was alpha-
galactosylceramide, a lipid isolate of the marine sponge  Agales mauritianus,  whose 
synthetic analogue KRN7000, exhibited potent anti-tumor immunity mediated by 
NKT-cells [ 24 ,  26 – 28 ] and is now known as a potent stimulator for NKT-cells both 
in vivo and in vitro [ 8 , 29 – 31 ]. More recently, it has been shown that specific micro-
bial-derived lipids also are presented by CD1d to the invariant TCR for the activation 
of NKT-cells, including  Sphingomonas  GSL-1 [ 32 ],  Borrelia burgdorferi  alpha-
glactosyldiacylglycerols [ 32 ], and mycobacterial phosphatidylinositolmannosides 
such as PIM-4 [ 33 ]. In addition to reactivity towards exogenous glycolipid antigens 
presented by CD1d, it is also well established NKT-cell development is restricted 
by thymic CD1d expression, thereby suggesting the requirement of a self-glycoli-
pid during positive selection of NKT-cell precursors. Indeed, the glycosphingolipid 
isoglobotrihexosylceramide, or iGb3, appears to be a self-derived glycolipid ligand 
that is required for positive selection and expansion of NKT-cell precursors during 
development [ 10 ,  34 ], since β-hexosaminadase deficient mice, which as a result of 
this enzyme deficiency are unable to convert iGb4 to iGb3, almost completely lack 
invariant NKT-cells [ 34 ].  

    4 Effects of Age on NKT-cell Numbers and CD1d Expression  

  Clearly, age-related alterations in the number and/or function of NKT-cells could 
greatly influence the quality of the effector T-cell response. For the purposes of 
this chapter, we shall consider studies that have examined NKT-cell numbers and 
function in humans aged 59 and older and studies in mice of ages twelve months or 
older. Only a handful of reports have closely examined CD1d-restricted NKT-cell 
numbers in aged mice and humans and most agree that as age increases, so does the 
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number of NKT-cells in the periphery [ 6 ,  35 ,  36 ]. It is not entirely clear whether the 
increase represents an accumulation of cells over time versus increased expansion of 
newly made cells. Increased frequency and numbers of NKT-cells could also result 
from increased recruitment or retention. In fact, it was recently reported by Berzins 
and colleagues that NKT-cells are comparatively long-lived (i.e., greater than one 
year in mice) and are retained for significantly greater periods of time in the thy-
mus compared to conventional T-cells [ 37 ]. Some reports describe an increase in 
accumulated, longer-lived hepatic NKT-cells over time in both humans and mice 
[ 35 ,  36 ]. In mice, NKT-cell number increases 2-to-3-fold in the livers, spleens, and 
lymph nodes of aged animals [ 6 ,  38 ,  39 ]. It could be argued that older mice are 
slightly larger physically and therefore might have greater numbers of cells in gen-
eral, however, the relative frequency of NKT-cells as compared to conventional T-
cells is also 2-to-3-fold higher in aged mice as compared to young [ 6 ]. This increase 
could represent an unusual effect of aging, as most immune cell populations remain 
static or decrease in number. Some data suggests that this age-related increase in 
NKT-cells actually stems from newly made cells. Using 5’-bromo-2-deoxyuridine 
(BrdU) labeling, ligand-loaded CD1d dimer staining and flow cytometry, our labo-
ratory observed that the spleens and lymph nodes of aged mice (18–22 months old) 
contained nearly 2.5-fold greater numbers of BrdU-positive NKT-cells (Palmer and 
Faunce, unpublished observations). BrdU is a thymidine analog that incorporates 
into the newly synthesized DNA, making it an effective marker to distinguish and 
track newly made cells. The precise mechanisms responsible for increased output of 
NKT-cells in aged mice remain to be elucidated. Likewise, the reasons for the poten-
tially greater longevity of thymic NKT-cells also require further investigation.  

  While the majority of observations support the concept that NKT-cells increase 
with age, as with most topics, the opposite has been reported in that numbers of 
Vα14 and Vα24 NKT-cells were found to be decreased with advanced age, particu-
larly in the liver [ 40 ,  41 ].  

  Since NKT-cells are stimulated by lipid ligands presented by the CD1d molecule 
on APCs, it follows that part of the aged-related breakdown could be attributed 
to transitions in CD1d expression or magnitude. However, CD1d magnitude and 
frequency of expression is similar on F4/80 +  monocyte/macrophages and CD11c +  
dendritic cells in aged and young mice [ 6 ]. This suggests that lipid antigen presenta-
tion to NKT-cells is intact in aged animals, so changes probably lie within altered 
responses from NKT-cells once they are activated by ligand-bearing APCs.  

    5 Aging, NKT-cell Function, and Peripheral T-cell Immunity  

  Few studies have directly addressed the effects of age on NKT-cell biology, however 
the topic has been briefly reviewed by others in the recent past [ 36 ,  42 ]. Similarly, 
very few studies have made direct comparisons of CD1d-restricted NKT-cell involve-
ment in immune function between young and aged subjects, however based on what 
is known (again considering mice twelve months or older), it appears that NKT-cells 
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modulate several aspects of T-cell function differently in aged mice compared to 
young. Recent studies by our laboratory demonstrated that in aged mice, NKT-cells 
contributed to the age-associated reduction of antigen-specific T-cell proliferation 
[ 6 ]. Removal of NKT-cells (Ly49C +  NK/NKT) from splenic T-cell preparations prior 
to stimulation restored the capacity of T-cells to proliferate in response to CD3ε 
ligation. The same observation was made for proliferation of peripheral lymph node 
T-cells. Importantly, comparable T-cell proliferation in aged and young mice could 
also be achieved among splenocyte preparations from young vs. aged mice given 
anti-CD1d monoclonal antibody systemically to block NKT-cell activation in vivo. 
Such observations implicated NKT-cells in the age-related suppression of the T-cell 
proliferative response to antigen. Perhaps the most compelling evidence for a direct 
connection between activated NKT-cells and suppression of T-cell effector function 
was demonstrated in a series of experiments conducted by our laboratory that utilized 
delayed type hypersensitivity (DTH) responses after immunization with ovalbumin 
in complete adjuvant as an index of antigen-specific effector T-cell response in vivo. 
From studies by our laboratory and others, it is known that aged mice exhibit blunted 
immune responses (including DTH) in vivo [ 6 ,  42 – 46 ]. However, we observed that 
while aged mice given control IgG mounted DTH responses that were 30–50% less in 
magnitude compared to young mice, aged mice treated systemically with anti-CD1d 
antibody to block the activation of NKT-cells in vivo, generated DTH responses that 
were remarkably similar to those seen in young mice [ 6 ]. Delayed-type hypersensi-
tivity requires adequate generation of CD4 +  effector T-cells during the priming phase 
in order for the effector arm of the response to proceed. Although aged mice and 
humans are known to possess fewer CD4 +  T-cells and a contracted effector T-cell 
repertoire, our studies suggested that despite fewer CD4 +  T-cell numbers overall, 
aged mice could generate adequate effector T-cell immunity in vivo when challenged 
with antigen and an adjuvant, provided NKT-cell activation was attenuated. The idea 
that blunted effector CD4 +  T-cell immunity observed with aging can be overcome is 
also supported by studies from Haynes and colleagues that used a combination of 
adjuvant and inflammatory cytokines to achieve results similar to ours [ 44 ]. Taken 
together, the current observations suggest that the decline in the quality of protective 
T-cell immunity associated with aged animals may be due at least in part, to a CD1d-
NKT dependent active suppression of effector T-cell function.  

  In addition to changes in T-cell function and increased NKT-cell numbers, NKT-
cell cytokine production also appears to change with increasing age. While this area of 
investigation needs to be explored much further, so far it has been shown that spleno-
cytes activated by CD3ε mAb in vitro show increased IL-4 (both cytokine protein and 
mRNA) and diminished IL-2 output as compared to young, when measured by ELISA 
[ 6 ,  47 ]. It has also been demonstrated that CD1d-restricted NKT-cells from aged mice 
produce lower amounts of IFNγ both at basal levels and stimulation with IL-12 [ 36 , 
 48 ]. This apparent NKT-cell dependent change in cytokine profile has been postulated 
to contribute to the overall decreased immunocompetence in aged animals although it 
has not been proven. Interestingly, systemic anti-CD1d treatment does not significantly 
decrease inducible IL-4 production [ 6 ] and it was found that in fact, memory T-cell 
subsets (CD44 high CD445RB low NK1.1 neg ) produce much of the age-associated IL-4 in 
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response to CD3ε-stimulation, however, they do so in an NKT-cell-dependent fashion 
[ 38 ,  47 ]. Our laboratory also reported that IL-10 production among spleen cell popula-
tions is nearly 10 times higher than the amount produced by splenocyte cultures from 
young mice. Unlike IL-4, the age-related increase in inducible IL-10 was significantly 
diminished in splenocytes obtained from aged mice that were given systemic NKT-
cell blockade. There is also evidence that NKT-cells from aged mice have impaired 
IFNγ production, since lower baseline levels and IL-12 induced production of this 
important cytokine have been noted with aging [ 36 ]. Although relatively meager, the 
current set of data collectively support the notion that as age advances, NKT-cells shift 
from a more protective, IFN-γ producing phenotype (Th1), to a suppressive (Th2) type 
phenotype in both mice and humans by increasing IL-4 and IL-10 output.  

  Lastly, in addition to age-related alterations in cytokine production, NKT-cells 
from aged mice have also been reported to exhibit decreased cytotoxic capabilities 
[ 40 ,  49 ]. However, whether this observation applies to all CD1d-restricted NKT-
cells throughout the immune compartment vs. other CD1d-unrestricted NKT-cell 
populations, such as those that exist in the liver, remains to be determined.  

    6 Summary  

  In summary, the effects of age on conventional lymphocyte populations have been 
widely studied, but age-related alterations among innate lymphocytes including 
NKT-cells are not as well understood. From a thorough review of the current lit-
erature that examines elderly humans and truly gerontologic mice, it appears that 
as age advances, the number of NKT-cells increases and their functions, particu-
larly cytokine production, deviate away from immune protection and more toward 
immune suppression. The mechanisms responsible for greater numbers of NKT-cells 
in aged mice is also unclear, but may result from dysregulated ontologic signals that 
control progenitor cell development and proliferation, cell death, and homeostatic 
proliferation. Additionally, the possibility exists that NKT-cells, like other cells of 
the innate immune system may exhibit comparatively greater longevity than con-
ventional lymphocytes. What is clear is that given their potent regulatory capacity 
over immune and inflammatory processes, significantly more research is required 
with both human cells as well as mouse models to understand how age-related 
alterations in NKT-cell biology might contribute to either the age-related decline in 
immunity or development of cancers and autoimmunity.  
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                      Abstract   :    The lympho-hematopoietic system is largely composed of cells with 
short lifespans (days) and thus requires continuous replenishment of the cells lost 
through hematopoietic stem and progenitor cells in a process called hematopoiesis. 
Experimental evidence from several laboratories clearly demonstrates that hemat-
opoietic stem cells (HSCs) harvested from young and aged animals show func-
tional differences that are intrinsic to HSCs, implying that also stem cells in the 
hematopoietic system can not defy aging. We will thus discuss in this chapter the 
cellular phenotypes and the possible molecular mechanisms associated with aged 
HSCs with respect to the specific properties stem cells are endowed with, and will 
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investigate whether stem cell aging is inevitable or whether some of its aspects can 
be reverted or at least ameliorated.  

      Keywords:       Stem cell    •    Aging • Hematopoiesis • Niche • DNA damage    •    Adhesion   

     1     Stem Cells  

  Organ or tissue attrition due to loss of cells by various means is inevitably associated 
with life. Thus to achieve tissue homeostasis for a long period of time, lost cells have 
to be replaced and/or renewed. Many, but perhaps not all tissues or organs, depend on 
undifferentiated stem cells to support the generation of novel differentiated cells for 
a given tissue. Many tissues of the major organ systems are thus composed of short-
lived cells that require continuous replenishment like skin, intestine and the hemat-
opoietic tissue as well as somatic stem cells (Potten and Morris,  1988 ; Morrison et al. 
 1995 ; Fuchs and Segre,  2000 ; Tani et al.  2000 ; Stappenbeck et al.  2003 ). Stem cells 
have been also identified in brain and heart, although their contribution to adult tissue 
homeostasis is still debated (McKay,  1997 ; Doetsch et al.  1999 ; Gage  2000 ; Beltrami 
et al.  2003 ; Oh et al.  2003 ).  

  Stem cells are commonly defined by two characteristics: their ability to either 
self-renew or to differentiate into most of the mature cells types that comprise a tis-
sue (van der Kooy and Weiss  2000 ). Both processes are associated with the ability 
of stem cells to undergo symmetric versus asymmetric divisions (mode of the divi-
sion). The regulation of the mode of division thus poses an important fundamental 
question in stem cell biology. The molecular determinants that influence symmetric 
versus asymmetric divisions of stem cells are not well understood, which still hinder 
rationale approaches to modulate the outcome of stem cell divisions for example for 
clinical purposes.  

   2      Hematopoiesis  

  The lympho-hematopoietic system is largely composed of cells with short lifespans 
(days) and thus requires continuous replenishment of the cells lost through stem 
and progenitor cells in a process called hematopoiesis. Hematopoiesis is in adults 
restricted mostly to the bone marrow (BM) cavities. Hematopoietic stem cells 
(HSCs) are the most primitive cells of the blood lineage and give, upon differenti-
ation, rise to the entire panoply of mature blood cells. They are rare and comprise 
only about 0.01% of the BM cell population, but are a long-lived population that 
are normally not depleted during a lifetime.  

  The cellular differentiation pathway is organized in a functional hierarchy, in 
which HSCs differentiate upon an asymmetric division into progenitor cells (also 
called transient amplifying cells in other stem cell systems), which then differ-
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entiate upon multiple steps of additional asymmetric divisions into mature blood 
cells. Upon differentiation and further specification, hematopoietic progenitor 
cells (HPCs) lose their ability to self-renew forever, and thus only true HSCs are 
associated with unrestricted self-renewal capacity.  

  In addition to their self-renewal and differentiation capacity, HSCs are also 
endowed with a remarkable, but still not well understood mobilization and hom-
ing ability, meaning they are able to migrate out of the BM into the bloodstream 
and also are able to migrate with a relatively high efficiency and specificity from 
peripheral blood back into the BM and to their niche, where this self-renewal and 
differentiation takes place. The physiological role of HSCs found in the circulation 
has puzzled investigators for a long time. One explanation is that these circulating 
HSCs are a pool of cells that help distinct sites of hematopoiesis to communi-
cate with each other (Wright et al.  2001 ). Another interesting recently published 
explanation is that HSCs apparently circulate into and out of the lymphatic system 
serving an immuno-surveillance role, and it is suggested that they can via this 
route survey peripheral organs and foster the local production of tissue-resident 
innate immune cells under both steady-state conditions and in response to inflam-
matory signals (Massberg et al.  2007 ).  

  Thus, due to these distinct abilities, the potential of hematopoietic stem cells 
can be tested in a transplantation assay, which is regarded as the gold standard 
for testing HSCs activity in vivo. In such an assay, syngeneic animals will be 
myeloablated or lethally irradiated, which opens up in both cases niches for HSCs 
in the BM. Subsequently, HSCs that are injected into the bloodstream of these 
recipient mice will home to these empty niches, undergo self-renewal and differ-
entation, and will consequently be able to contribute to the hematopoietic system 
of the animal for a lifetime. The relative or absolute ability of the transplanted 

Fig. 1 Aging of hematopoietic stem cells. (a) Hematopoietic tem cells (HSCs) are defined by 
their ability to self-renew, to home to the bone marrow, to mobilize out of their niche into periph-
eral blood and their ability to adhere to stroma cells. In addition, HSCs will differentiate via hemat-
opoietic progenitor cells (HPCs) in various distinct blood cell lineages. (b) Upon aging, HSCs 
present with reduced self-renewal activity, decreased homing but enhanced mobilization ability, 
which might be a result of the reduced ability of aged HSCs to adhere to stroma. Aged HSCs fur-
thermore show a clear preference for myeloid over lymphoid and erythroid differentiation

HSC

mobilization

homing

HPC

myeloid
lymphoid

a b

differentiation

erythroid

str
om

a

self-renewal
adhesion

young

HSC

mobilization

homing

HPC

myeloid
lymphoid

differentiation

erythroid

str
om

a

self-renewal
adhesion

aged

?



576 H. Geiger and G. V. Zant

stem cells to reconstitute the hematopoietic system of the recipient is regarded as 
a quantitative measurement of the stem cell potential.  

3          How Do We Define and Isolate Hematopoietic Stem Cells?  

  Under a microscope, hematopoietic stem cell look actually identical to HPCs 
and similar to even some differentiated hematopoietic cells, including small- to 
medium-sized lymphocytes. So how do we identify and purify HSCs to study 
their biology? Over 50 years of intense research in the field of hematopoiesis and 
HSCs allow researchers now, at least in mice, to prospectively isolate the putative 
stem cells solely based on the inclusion or exclusion of distinct cell surface mark-
ers trough cell sorting via flow cytometry. HSC function and purity can then be 
subsequently verified in transplantation assays. Various distinct combinations of 
cell surface markers, which further evolved over time in complexity, but inversely 
resulted also in higher purity, have been used to identify HSCs. In aggregation of 
most of the literature, and most widely used by investigators at present, are three 
protocols to prospectively isolated stem cells, the LSK/CD34, the SLAM and 
the side population (SP) approach (Osawa et al.  1996 ; Kiel et al.  2005 ; Lin and 
Goodell  2006 ; Yilmaz et al.  2006 ). In the LSK/CD34 system, HSCs are defined 
as being negative for markers found on differentiated cells (lineage markers, and 
thus LIN- or L) as well as negative for CD34, but positive for the Sca-1 and the 
c-Kit epitopes. In the SLAM system, HSCs are defined as BM cells positive for 
CD150 while at the same time negative for CD48. Finally, in the SP approach 
a distinct cell population that does not retain the Hoechst dye 33342 (measured 
at two distinct emission wavelength) is highly enriched for HSCs. Although the 
purity of the presumed stem cell populations varies among these protocols, and 
each purification system might even enrich for slightly functionally distinct HSCs 
(Weksberg et al.  2008 ), all three are rigorously experimentally validated in terms 
of their ability to highly enrich for stem cells, and of course, there is major cell 
surface phenotype overlap among the purified populations (Kiel et al.  2005 ; 
Yilmaz et al.  2006 ; Weksberg et al.  2008 ).  

3.1          The Aging of Hematopoietic Stem Cells  

  The aging process is probably best defined as a general loss in biological competence 
for both the individual cell and the organism as a whole. At the cellular level, it 
is expressed as decreasing replicative ability in proliferating cells and decreasing 
functional activity in postmitotic cells.  

  Stem cells were thought to be endowed with unlimited self-renewal capacity and 
thus assumed to be exempt from aging, which would result in functionally young 
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stem cells in a chronologically aged animal. But evidence accumulating over the 
past decade has now proven that there is a measurable and successive functional 
decline in hematopoietic, intestinal and muscle stem cell replicative activity from 
adulthood to old age, resulting in a decline of stem cell function (Morrison et al. 
 1996b ; Chen et al.  1999 ; Sudo et al.  2000 ; Geiger and Van Zant  2002 ; Kim et al. 
 2003 ; Van Zant and Liang  2003 ; Rossi et al.  2005 ; Chambers et al.  2007 ). As stem 
cell activity is necessary to replenish lost differentiated cells in a stem cell driven 
tissue, it has been hypothesized that aging of stem cells leads to reduced renewal 
and thus reduced tissue homeostasis in aged animals, probably most obvious under 
stress situations (Geiger et al.  2001b ; Geiger and Van Zant  2002 ; Van Zant and 
Liang  2003 ; Sharpless and DePinho  2004 ; Torella et al.  2004 ).Ultimately, this may 
determine individual longevity, although so far no lifespan extension in response 
to stem cell therapy has been reported. This hypothesis though is supported for 
example by the fact that the function of the innate immune system, which depends 
on stem and progenitor cells activity, is compromised in aged individuals (Ginaldi 
et al.  1999 ; Butcher et al.  2001 ; Lord et al.  2001 ).  

3.2          Defining Aging of Stem Cells  

  Stem cells are social entities that communicate and associate with supporting cells 
(called stroma) in a distinct 3 dimensional space (called niche). It is believed this 
niche is essential for stem cell regulation (Yin and Li  2006 ). So immediately the 
question arises whether stem cells age themselves (intrinsic aging) or the niche 
itself ages, which as a consequence impairs the function of an otherwise young and 
healthy stem cell occupying this niche (extrinsic aging). In case stem cell aging 
was mostly driven by extrinsic clues, we would anticipate that stem cells from aged 
animals, when transplanted into young niches (young animals), become function-
ally young again. Experimental evidence though from several laboratories clearly 
demonstrates that HSCs harvested from young and aged animals show functional 
differences that are intrinsic to HSCs (Geiger and Van Zant  2002 ; Geiger et al.  2005 ; 
Rossi et al.  2005 ) and less dependent on the microenvironment, although it does not 
exclude extrinsic influences on stem cell aging. These data thus allow us to refer 
to the cells as aged HSCs and young HSCs when the age refers to the animal from 
which the cells were harvested. Whether or not though stem cell aging in general 
is mostly driven by intrinsic mechanisms is still a matter of debate, as for example 
in muscle, aging of muscle progenitor cells is reverted by changes in the systemic 
environment and thus most likely dominated by extrinsic factors (Conboy et al. 
 2005 ).  

  Various experimental approaches have been developed/employed to study causes 
and consequences of HSCs aging, and there seems to be a experimental duality in 
the field of aging research in general and also in the context of HSCs: Research 
on aging in a physiological environment and at a physiological pace in contrast to 
research on stem cell phenotypes in genetically modified animals which present 
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with accelerated aging/stem cell aging. Let us have a short detour to the car repair 
shop to explain the differences in more detail.  

  We will start with describing the ailments of old cars (old stem cells) and just list 
all the problems a mechanic usually finds in them and which might be the reason for 
why the old car might not function very well anymore. We know that the mechanic’s 
observations are correlative, but he will eventually replace/fix the worn out part(s) 
he was talking about and thus will subsequently test whether he was guessing right 
(causative approach).  

  Genetically modified animals on the other hand that present with phenotypes 
indicative of accelerated stem cell aging (either partial or in general) are more 
like cars in which we messed up on purpose with let’s say the water pump and of 
course, over time the pump and subsequently the car will break. This tells us that 
the water pump is an essential part for the car, it does though not prove that in most 
cases in aged cars that is the part that will break, or whether preventing in general 
water pumps from braking in old cars will reduce the fragility of old cars. Only 
after the mechanic that usually sees all the old cars in the repair shop agrees that 
water pumps in old cars are an issue and tend to break, we are convinced about the 
relevance of our observations in the accelerated model [ see  also (Hasty and Vijg 
 2004 ; Miller  2004 ; Warner  2004 )]. Although the authors do not imply that one 
approach might be superior over the other, it is still a good idea to differentiate 
between these experimental approaches. We will focus in the following paragraph 
primarily on physiological stem cell aging, and refer to premature aging systems 
whenever relevant.  

  There is still controversy on aspects of the phenotype and function of physi-
ologically aged HSCs. The following phenotypes therefore represent commonly 
agreed phenotypes for aged HSCs and supported by research conducted by mul-
tiple independent investigators (canonical aging phenotypes). We suggest that the 
combination of these phenotypes comprise an physiologically aged HSCs, but that 
of course “partial” stem cell aging might be observed under given circumstances. 
Aged and young HSCs differ mostly in their function, and for HSCs, this function 
is best measured in transplantation assays. Consequently, most of the available data 
characterizing functional differences between aged and young stem cells has been 
generated by comparing young and aged HSCs in transplantation experiments.  

3.3          Changes in Function Associated With Aged HSCs  

  In a competitive transplant setting, when stem cells from aged mice from the 
C57BL/6 inbred strain are transplanted along-side young cells into a lethally irra-
diated recipient animal, aged HSCs are less efficient in contributing to hematopoi-
esis (perturbed homeostasis) compared to young HSCs (Morrison et al.  1996b ; 
Chen et al.  2000 ). Whether or not aged HSCs are also reduced in their ability to 
self-renew is still a matter of debate, although clearly aged HSCs are functionally 
impaired compared to young stem cells in serial transplantation assays.  
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  Aging also affects the differentiation potential of HSCs (Rossi et al.  2005 ). Many 
studies have demonstrated that aged stem cells have a reduced ability to support the 
red blood cell system, and that aged HSCs do not efficiently generate both T- and B 
lymphoid progeny, while they present with an increased ability to differentiate into 
the myeloid lineage [ see  (Linton and Dorshkind  2004 ) and references cited therein]. 
This difference in cell lineage self-renewal is emphasized by age-associated anemia 
and a decline in function of immune cells in aged individuals (Lipschitz and Udupa 
 1986 ; Lipschitz  1995 ; Ginaldi et al.  1999 ; Sudo et al.  2000 ; Butcher et al.  2001 ; Lord 
et al.  2001 ; Kim et al.  2003 ; Rossi et al.  2005 ). The generalized lymphoid defect has 
been at least in part attributed to an impaired ability of aged HSCs to differentiate 
into the common-lymphoid progenitor cell, the progenitor cells that will give rise to 
both the T- and the B-cell lineage. Thus aged HSCs are impaired in their ability to 
support the repopulation of the thymus and are less able to contribute to the B-cell 
as well as the T-cell lineage. Finally, aged HSCs are reduced in their ability to home 
from PB into the BM upon intravenous injection. A reduced ability to home to BM 
of aged HSCs was implied/speculated about in various publication and was recently 
experimentally confirmed by Liang et al. (Sudo et al.  2000 ; Kim et al.  2003 ; Liang 
et al.  2005 ; Rossi et al.  2005 ). The ability of HSCs to home to BM out of PB is 
clinically very important, as this is the first step to achieve successful engraftment 
in a HSC transplantation setting. Interestingly though, aged HSCs show enhanced 
mobilization proficiency upon G-CSF (Xing et al.  2006 ), which might in combina-
tion with the reduced homing indicate reduced cell–cell adhesion parameters for 
aged HSCs. Both impaired homing by old HSC and enhanced mobilization might 
imply “looser” niche association including dysregulated proteins involved in the 
HSC–niche interaction.  

  Comparing the engraftment properties of HSCs from various aged mouse inbred 
strains revealed that there are considerable differences in the rate of which stem cell 
self-renewal activity is reduced in aged animals, suggesting a strong genetic regula-
tion of stem cell aging (Van Zant et al.  1990 ; Chen et al.  2000 ; Chen  2004 ; Gei-
ger et al. 2005; Snoeck  2005 ;). Old C57BL/6 animals for example present with an 
increase in the number of phenotypically defined stem cells, although each of these 
stem cells has a clearly reduced potential upon transplantation, whereas old DBA/2 
animals present with both, a reduced phenotypic number and a reduced function 
for aged HSCs. Thus, although overall the potential of the stem cell population 
decreases in the BM with aging independent of the strain, the pace with which this 
happens seem to be genetically restricted, adding another level of complexity to the 
determination of mechanisms that result in stem cell aging.  

  While the determination of stem cell function in the murine system via the trans-
plantation assay can be relatively easily accomplished, our experimental tools to 
determine the function of human stem cells are understandably more limited. Thus 
investigations into the function of aged human HSCs are still in their infancy and 
more open to speculation, although both a reduced ability to support T-cell devel-
opment as well as a reduced clonality and thus reduced stem cell number in aged 
humans has been so far identified [ see  for example (Wick et al.  1989 ; Abkowitz 
et al.  1998 ; Offner et al.  1999)] . In addition, elderly patients (similar to mice) fre-
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quently present with anemia. The mechanisms for this finding are mostly unex-
plained. (Balducci et al.  2006 ; Ferrucci et al.  2007 ).  

3.4          Molecular Phenotypes Associated With Aged HSCs  

  What might be the molecular mechanisms responsible for the age-associated 
decrease in HSC function? As obvious from the previous paragraph, there are mul-
tiple phenotypes associated with aged stem cells. We thus do not assume that there 
is a single, unique molecular mechanism of stem cell aging, but rather that there are 
most likely multiple molecular pathways that result in these phenotypes, which we 
will address below.  

    3.5      Genome-Wide Gene Expression Profiling of Aged HSCs:
Finding Pathways in Aging?  

  Several laboratories recently undertook a global approach to identify on the genome 
scale changes in the transcription level of genes associated with the young/aged 
transition of HSCs (Chambers et al.  2007 ; Rossi et al.  2005 , Geiger and Van Zant, 
unpublished results). Unfortunately, each of these experiments were performed 
with HSCs purified according to a different scheme and analyzed with distinct 
microarrays, rendering a comparative approach almost impossible. In general 
though,   genes associated with the stress response, cell adhesion, protein turnover and 
signal transduction dominated the up-regulated expression profile, while the down-
regulated profile was marked by genes involved in the preservation of cell adhesion, 
genomic integrity and chromatin remodeling. So far though no specific pathway 
based on these RNA expression analyses could be identified based on the collections 
of these differentially expressed genes, emphasizing probably one more time the com-
plexity of aging even at the single cell level. Interestingly though, in one set of these 
experiments, gene products associated with myeloid leukemia were markedly upregu-
lated, which the authors interpreted in the way that aged stem cells might be, through 
their altered expression profile, already intrinsically prone to leukemia, although this 
hypothesis will require further experimental testing (Rossi et al.  2005 ).  

3.6          The Role of Oxidative Damage in Stem Cell Aging  

  An important and probably universal mechanism that leads to a wide spectrum of 
intracellular damage during aging is extended exposure to reactive oxygen species 
(Hasty  2001 ). Long-term exposure to these metabolic byproducts leads to structural 
changes in a number of cellular macromolecules that impair their function. Such 
changes include the cross-linking of intracellular and intra-mitochondrial structural 
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and functional proteins and carbohydrates, and the oxidation of fats and lipids in mem-
branes as well as DNA damage. The multiple functional components a cell consists of 
form complex and interdependent physiological systems, making it difficult to deter-
mine which age-related change may be the primary cause of aging and which changes 
may be entrained by the primary event. Age-dependent changes in mitochondrial 
function and DNA integrity due to the accumulation of respiratory oxidative stress 
have also been reported for a variety of cell types, including liver, intestinal crypt and 
cardiac muscle cells (Bohr et al.  1998 ; Taylor et al.  2003 ). But the importance and 
frequency of mitochondrial mutations might have been overestimated compared with 
somatic mutations, as no increase in mitochondrial mutations in normally aged mice 
could be detected (Anson et al.  2000 ; Jacobs  2003 ; Khrapko and Vijg  2007 ; Vermulst 
et al.  2007 ). A role for reactive oxygen species and the p38 MAPK activity in limiting 
the self-renewal capacity and thus the lifespan of HSCs was recently experimentally 
demonstrated, as antioxidative treatment of HSCs resulted at least in partial reversion 
of the phenotypes associated with aged stem cells (Ito et al.  2006 ).  

4          The Role of Telomere Length/Telomerase in Aging of HSCs  

  The hypothesis that cellular senescence is mediated via replicative exhaustion (Hay-
flick and Moorhead  1961 ; Barker et al.  1982 ) has received mechanistic support 
from the finding that telomeres may act as a mitotic clock (Vaziri et al.  1994 ; Grei-
der  1998 ). Telomeres, the repetitive sequences at the chromosomal ends that pro-
vide chromosome stability, shorten with each round of cellular replication. When 
a critical short telomere length is reached, the cell enters a state of senescence or 
apoptoses. Some reports suggest a small, but significant decrease in telomere length 
in either human or murine HSCs upon aging or replicative stress post transplanta-
tion [(Vaziri et al.  1994 ; Brummendorf et al.  2001 ; Lansdorp  2008 ), and unpub-
lished data Van Zant]. Since HSCs from laboratory mouse strains present with 
telomeres several times longer than human cells (Hemann and Greider  2000 ), and 
since stem cells synthesize telomerase to maintain telomeric length (Morrison et al. 
 1996a ), whether natural telomere shortening by itself plays a role in HSC aging is 
still a matter of debate. These observations are further supported by the finding that 
although loss of telomerase activity clearly results in phenotypes associated with 
premature aging of stem cells, over-expression of telomerase in HSCs could so far 
not revert stem cell aging (Allsopp et al.  2003a , b).  

5          The Role of DNA Damage in Aging of HSCs  

  A more likely cause for aging of stem cells in general, and HSCs in particular, 
might be age-dependent acquisition of defects in genomic DNA. HSC or intes-
tinal stem cells show a high radiation sensitivity compared with most other cell 
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types (Jacobson et al.  1949 ; Martin et al.  1998 ). This radio-sensitivity implies 
either a reduced ability of stem cells to repair even small amounts of DNA dam-
age, stringent requirements on the DNA repair machinery for the maintenance of 
DNA fidelity, or increased rates of apoptosis. These various possibilities are not 
mutually exclusive. Moreover, brain, liver and muscle cells from old mice have 
a reduced ability to repair radiation-induced damage compared to young animals 
(Hamilton et al.  2001 ). Furthermore, Dolle et al. reported a general increase in the 
frequency of genomic mutations in old compared with young animals. Interest-
ingly, small intestine, the only stem cell system with a high cell turnover analyzed 
in these experiments, showed the highest mutation frequency in 2.5-year-old 
animals among other tissues like heart, brain and liver (Vijg and Dolle  2002 ), 
although recent results indicated that the majority of this increase is attributed to 
a specific cell type in the organ/tissue, and thus does not affect all cells (Busuttil 
et al.  2007 ). Loss of DNA integrity with age as the major cause of stem cell aging 
is also compatible with the finding that aging of HSCs is mostly cell autonomous 
(van der Loo and Ploemacher  1995 ; Geiger et al.  2001a ; Rossi et al.  2005 ; Rossi 
et al.  2007 ). Research to determine DNA-repair capacity in mammalian systems 
has mostly been concentrated on the quantification of DNA damage in whole 
tissues in response to induced damage by utilizing cell culture or animal mod-
els (Gaubatz and Tan  1994 ; Jeng et al.  1999 ; Goukassian et al.  2000 ; Doria and 
Frasca  2001 ; Zhao and Hemminki  2002 ; Beausejour et al.  2003 ; Chevanne et al. 
 2003 ; Parrinello et al.  2003 ; Scarpaci et al.  2003 ;). Although published results are 
contradictory, the majority of the data supports the notion that the DNA repair 
capacity declines with age and that aged HSC present with elevated levels of 
DNA damage (Mullaart et al.  1990 ; Rossi et al.  2007 ). HSC, similar to other types 
of stem cells, show an increased radiation sensitivity compared to mature cell 
types (Jacobson et al.  1949 ; Martin et al.  1998 ) and a distinct expression pattern 
of DNA-repair genes (Geiger lab, unpublished). Both facts imply that stem cells 
might use DNA repair pathways differently compared to well-studied pathways 
in differentiated cells or cell lines, a hypothesis supported by research on DNA 
repair pathways in ES cells (Cervantes et al.  2002 ; Hong and Stambrook  2004 ). 
In addition, the expression of the cyclin-dependent kinase inhibitor p16INK4a, a 
stress/DNA damage indicator, was found to be elevated in physiologically aged 
HSCs and this has been shown to be causative for reduced survival of aged HSCs 
under stress, as loss of p16 expression ameliorated stem cells aging (Janzen et al. 
 2006 ). Taken together, changes in the DNA repair system in HSCs, together with 
changes in cell cycle regulation due to DNA damage with age, might be an impor-
tant cause for the decrease in the functional capacity of aged HSCs or in general 
aging of multiple tissue. Such a connection is further supported by comparative 
linkage analysis of hematopoietic stem cell traits and longevity (Geiger and Van 
Zant  2002 ). Loci mapped to chromosomes 2, 7 and 11 regulate DNA repair and 
aging of primitive hematopoietic cells and at the same time, longevity (Geiger 
et al.  2001a ). As so far though only partial amelioration of HSCs aging could be 
achieved by altering expression of DNA repair genes or by antioxidative therapy, 
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whether the DNA damage response plays the major role in stem cell aging will 
still be a matter of debate.  

6          Altered Stem Cell–Niche Interactions in HSC Aging: A Novel 
Player in the Game  

  HSCs are entities that have social interactions. They reside in specialized three-
dimensional microenvironments, or niches, in the BM. Cell-cell adhesion interactions 
between HSCs and stroma cells in the niche are believed to regulate HSC prolifera-
tion and differentiation. So far two niches, an endosteal and an endothelial niche, have 
been identified in the BM, and the distinct contribution of both of them to hemat-
opoiesis is currently discussed [ see  for example (Adams and Scadden  2006 ; Kiel 
and Morrison  2006 ; Scadden  2006 ; Wilson and Trumpp  2006 )]. Interactions of HSCs 
with stroma cells in the niche are consequently considered to be central to the biol-
ogy of HSCs and have been therefore referred to as a stem cell synapses (similar to 
the immunological synapse; Adams and Scadden  2006 ; Scadden  2006 ; Yin and Li 
 2006 ). We recently reported that aged HSCs are impaired in their ability to strongly 
adhere to stroma cells [unpublished results and (Xing et al.  2006 )]. This observation is 
supported by the fact that for example, the integrins α4 and α5 and the cell adhesion 
molecule VCAM-1 show lower expression on aged HSCs, whereas the expression of 
the adhesion molecule P-selectin and the α6 integrin are elevated in aged HSCs (Rossi 
et al.  2005 ; Xing et al.  2006 ). We could further demonstrate that physiologically 
aged primitive hematopoietic cells presented with elevated activity of the small Rho-
GTPase CDC42, a protein tightly involved in regulating cellular adhesion (Van Hen-
nik and Hordijk  2005 ; Wang et al.  2007 ; Yang et al.  2007 ). A distinct role for altered 
expression of adhesion molecules and thus altered adhesion in HSC differentiation 
was recently also suggested by Forsberg et al. (Forsberg et al.  2005 ), which supports a 
model in which unstable adhesion of aged HSCs to stroma might be causative for sub-
sequent functional changes in aged HSCs. Whether the correlation between changes 
in expression of adhesion receptors and changes in the function of aged HSCs is also 
of mechanistic relevance though is not clear at the moment. We subsequently pro-
posed that aged primitive hematopoietic cells are impaired in their ability to interact 
efficiently with stroma cells, which might result in the reduced self-renewal capacity 
as well as the altered differentiation ability associated with aged HSCs (Geiger et al. 
 2007 ). Elevated level of CDC42 activity detected in aged hematopoietic cells might 
be causative for these changes in cell–cell adhesion. These findings would further 
imply that also the stroma might play an important role in stem cell aging, as it too 
might be reduced in its ability to strongly interact with HSCs when aged. Molecular 
mechanisms that result in altered adhesion dynamics and altered function of aged 
HSCs might thus be tightly interconnected and result in an altered stem cell synapse 
for aged HSC. But as so many hypotheses linked to aging of stem cells, also this one 
is in critical need of additional experimental validation.  
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7          Amelioration/Prevention of Stem Cell Aging  

  Stem cell aging might be the underlying cause for dysregulated tissue homeostasis 
in aged individuals and consequently attenuation of stem cell aging will become 
a central to regenerative medicine. Identifying conditions under which in an aged 
organism aged stem cells are activated to be functionally equivalent to young stem 
cells could thus be a first step towards designing treatments to attenuate/revert the 
consequences of stem cell aging and consequently to improve age-associated imbal-
ances in tissue homeostasis.  

  Studying muscle regeneration by muscle stem cells (satellite cells) in aged ani-
mals, Conboy et al. recently reported that aged muscle stem cells can be activated 
to repair/differentiate as efficiently as young muscle stem cells either by forced 
activation of Notch, or by systemic factors provided by serum from young animals 
(Conboy et al. 2003, 2005). They also identified that factors in serum from aged 
mice negatively affect muscle stem cell activation. As aging of HSCs is at least in 
part cell intrinsic, amelioration of HSCs aging might be more difficult to achieve. 
As mentioned above, loss of the p16 protein as well as antioxidative therapy both 
resulted in partial reversion of HSC aging. In addition, attenuation of HSC aging was 
also achieved by lifelong caloric restriction of mice from the BalbC inbred strain, 
without though further identification of a possible molecular mechanism underly-
ing this stem cell response (Chen et al.  2003 ). These results are very promising and 
prove that it is possible to change the path of stem cell aging. More research though 
will be necessary to translate our knowledge on stem cell aging into therapies that 
promise a lifelong fountain of stem cell youth to all of us.  
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                  Abstract:       Each of the different hematopoietic cell types has their own properties 
and function, but only when they all act in tight synergy are they able to consti-
tute a highly specific and efficient immune defense capable of efficient protection 
from invading pathogens and appropriate maintenance of blood clotting and oxygen 
transport functions.    

  All blood cell types are continuously produced in the bone-marrow by rare hemat-
opoietic stem cells that persist throughout the life of the organism. These stem cells 
are influenced by their environment and developmental history and experience a 
range of cell intrinsic changes that over time alter their functional properties. These 
timed changes include alterations in fundamental processes such as self-renewal, 
proliferation, differentiation and gene expression, thereby being crucial for both 
normal maturation as well as hematopoietic aging.     
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    1   Introduction  

  The blood system produce hundred of millions of new blood cells everyday to main-
tain oxygen transport, blood clotting and immune function [Morrison et al.  1995b ]. 
This process is highly conserved through evolution and therefore largely similar 
between lower vertebrates and mammals [Laird et al.  2000 ; Zon  1995 ].  

  In the early 1960s, McCulloch and Till performed a series of ground breaking 
experiments to search for multipotent and self-renewing hematopoietic stem cells 
(HSC) that could sustain such extensive blood cell production throughout life. Bone-
marrow cells were injected intravenously into irradiated mice and the subsequent 
engraftment of a rare fraction of these cells, as visible nodules in the spleens of the 
recipients, were evaluated. From such experiments, it was established that nodules 
appeared in proportion to the number of bone-marrow cells injected, and that individ-
ual nodules arose from single bone-marrow cells, named colony forming units spleen 
(CFU-S) [McCulloch and Till  1960 ]. The ability of CFU-S to self-renew [Becker et al. 
 1963 ], a cardinal property of stem cell function, provided the first true evidence that 
somatic HSC exists in the bone-marrow. Today, four decades later, we know that the 
bone-marrow is the primary hematopoietic organ by the end of fetal maturation and 
that seeding of HSC to the bone-marrow is a uniform process and results in homoge-
neous distribution to the different bone-marrow compartments, without spatial differ-
ences in hematopoiesis or HSC identity [Kiel et al.  2005 ]. The majority of cells in the 
bone-marrow are maturing blood cells and their progenitors, and thus HSC constitute 
a rare population of less than one in 15,000 bone-marrow cells [Lagasse et al.  2001 ].  

    2   Quiescent Hematopoietic Stem Cells  

  The identity of the bone-marrow HSC cannot be recognized by their morphology 
and phenotype alone, but rather by their unique functional properties [Lagasse et al. 
 2001 ; Matsuzaki et al.  2004 ; Osawa et al.  1996 ]. Traditionally, function is evaluated 
by the ability of cells to reconstitute the blood system following transplantation into 
hosts in which endogenous HSC have been eradicated by a lethal dose of irradiation. 
Similar to the CFU-S assay, reconstituting clones can be assayed by tissue sampling. 
The progeny from reconstituting HSC are identified by monoclonal antibodies and 
detected by flow cytometry to establish both level and quality of engraftment. With 
this assay, HSC properties can be analyzed even at a clonal level by detection of the 
descendants from single transplanted HSC [Osawa et al.  1996 ]. However, although 
ultimately being capable of producing all blood cells, including phenocopies of 
themselves, HSC remain low proliferative, presumably to limit divisional stress and 
any intrinsic changes that comes with accumulated cell divisions and aging. The 
mechanisms underlying such regulated quiescence is currently unknown but is one 
of many features that take place throughout development which eventually lead to 
the functional changes that are ascribed to the aging of HSC.  
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   2.1      Quiescence and Cell Cycle Control  

  Adult HSC are largely quiescent in that their transit through the cell cycle is slow or 
even arrested at times. This is reflected by that as few as eight percent of the cells in 
the HSC pool enter cell cycle every day. Nonetheless, quiescence does not result in 
cell cycle arrest as most cells within a population of HSC have divided at least once 
within four to eight weeks [Bradford et al.  1997 ; Cheshier et al.  1999 ]. The series of 
events in an eukaryotic cell that are referred to as the cell cycle consists of distinct 
phases in which the cell undertakes sequential actions like growth and prepara-
tion of the chromosomes for replication (G 

1
  phase), DNA synthesis to duplicate 

the chromosomes (S phase), additional growth and preparation for cell division (G 
2
  

phase) and finally, mitosis (M phase) during which the cell divides into 2 daughter 
cells [Steinman  2002 ]. This cyclic process is regulated at checkpoints [Mantel et 
al.  2001 ; Pardee  1989 ; Steinman  2002 ] during each phase-transition by cyclins that 
form complexes with cyclin-dependent kinases [Cheng  2004 ; Steinman  2002 ]. The 
cyclin-based surveillance system acts as a quality control that monitors the cell as it 
progresses through the cell cycle. Checkpoints can block progression through one 
phase if certain conditions are not met. For instance, mitosis is inhibited until DNA 
replication is completed or if not all chromosomes are attached to the mitotic spin-
dle. A surveillance network of signaling molecules has been set up to instruct cells 
to stop dividing and to either repair the damage or initiate programmed cell death if 
necessary. For cells, like HSC, that persists and continues to proliferate throughout 
life, quiescence through tight negative control of cell cycle propagation and strin-
gent surveillance of DNA integrity appears essential to minimize divisional stress 
and to ensure that damaged cells are not further propagated and do not progress into 
a cancerous state.  

  Some cells leave the cell cycle at the G 
1
  phase following a cell division and enter 

a nonproliferative G 
0
  stage [Pardee  1989 ]. Most often, G 

0
  cells are terminally dif-

ferentiated and their exit from the cell cycle is thus permanent, whereas other cells, 
like HSC, are only temporally quiescent and can upon mitotic stimulation re-enter 
G 

1
  and prepare for additional cell cycles [Bradford et al.  1997 ]. HSC are relatively 

unresponsive to mitogenic stimuli [Bradford et al.  1997 ; Huang et al.  1999 ; Uchida 
et al.  2003 ] and this might reflect the fact that most cells in the HSC population are 
in a G 

0
  state. Thus, that HSC need a longer time and stronger stimulation than com-

mitted progenitor cells to respond to growth factors might reflect that they first need 
to get activated in order to reenter the cell cycle. Distinct regulation of the cell cycle 
activity of HSC by factors known to limit proliferation and differentiation [Cheng 
et al.  2000 ; Hock et al.  2004 ; Iwama et al.  2004 ; Lessard and Sauvageau  2003 ; 
Park et al.  2003 ; Walkley et al.  2005 ] is therefore presumably a key requirement 
to avoid exhaustion of the HSC compartment [Iscove and Nawa  1997 ] and should 
therefore represent a defining stem cell property. Active cell cycling have been sug-
gested to exert negative effects on stem cell function [Fleming et al.  1993a ; Glimm 
et al.  2000 ; Habibian et al.  1998 ; Jetmore et al.  2002 ; Orschell-Traycoff et al.  2000 ] 
although this can at least in part be an interpretation of experimental observations, 
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as the design of such experiments have assumed both that dividing hematopoietic 
stem and progenitor cells have a similar cell cycle transit time and that HSC are 
identifiable by phenotype alone. Most likely, HSC in cycle are functionally nor-
mal but due to their quiescent state represents a rare fraction within populations of 
enriched HSC in S/G 

2
 /M stages. They are therefore outnumbered by nonquiescent 

and transiently reconstituting multipotent and lineage committed progenitor cells, 
which dominate most HSC enriched populations established to date [Nygren et al. 
 2006 ].  

    2.2   Quiescence but yet Hematopoiesis  

  As HSC divide, they can produce daughter cells of which at least one represent an 
identical replica of its ancestral HSC. Such self-renewing cell divisions are a hall-
mark of stem cells and necessary to maintain a constant HSC pool and lifelong pro-
duction of all blood cell types [Becker et al.  1963 ]. Maintenance of the HSC pool 
can be the result of either asymmetrical cell divisions [Jan and Jan  1998 ] that results 
in one cell that is identical to the mother cell and one cell that is committed to dif-
ferentiation, or of a balance of symmetrical cell divisions leading to either complete 
self-renewal or differentiation (i.e., result in either 2 HSC or 2 committed daughter 
cells). Nevertheless, asymmetric HSC divisions must occur at some point during 
cellular development and multilineage differentiation of committed cells [Takano et 
al.  2004 ] in order to appropriately generate progeny both for daily blood cell pro-
duction as well as maintenance of a fairly constant number of slowly proliferating 
and inactive HSC. Daughter cells that do not inherit a stem cell identity loose the 
regulatory circuitry that limits proliferation by inhibiting mitogenic stimulation, and 
leave the quiescent state. Proliferation at the stages beneath the stem cells is likely 
to be an important regulator of differentiation as hematopoietic maturation requires 
signaling from the cyclin based surveillance system for proper influence on differ-
entiation decisions [Ezoe et al.  2004 ].  

  The mechanisms that underlie and direct the multilineage commitment proc-
esses from HSC are still largely unknown, but several descriptive propositions of 
the differentiation processes has been established [Adolfsson et al.  2005 ; Katsura 
 2002 ; Kondo et al.  2001 ; Yang et al.  2004 ]. Common for these proposals is that self-
renewing and multipotent long-term HSC exist throughout life as they throughout 
development maintain a quiescent state relative other hematopoietic cells [Nygren 
et al.  2006 ]. Their committed progeny irreversibly transit into short-term HSC 
that are also multipotent, but contribute to hematopoiesis for less than six to eight 
weeks, as such cells have lost the ability to extensively self-renew [Adolfsson et al. 
 2001 ; Yang et al.  2004 ]. Such transiently reconstituting HSC thereafter commit and 
enter progenitor states with restricted lineage potentials, to finally develop along 
certain cell lineage pathways with sequential restrictions in lineage potential and 
gene expression [Adolfsson et al.  2005 ; Akashi et al.  2003 ]. In light of the relatively 
short life span of a mouse (~2–3 years depending on strain), the low cell cycle 
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activity among HSC, with a population turnover of several months [Cheshier et al. 
 1999 ], is remarkable. If the steady state is severely disrupted, for example following 
manipulative treatments such as myeloablation and bone-marrow transplantation, 
HSC react by rapid expansion in the recipient [Allsopp et al.  2001 ; Iscove and Nawa 
 1997 ; Plett et al.  2002 ] and under the influence of exogenous growth factors, com-
mitment, migration or even self-renewal might occur [Bodine et al.  1993 ; Fleming 
et al.  1993b ; Kronenwett et al.  2000 ]. This argues for that the activity of the HSC 
needs tight negative and intrinsic regulation to fulfill the requirements in different 
physiological conditions and for the entire life of the organism.  

    2.3      Quiescence Imposed by a Stem Cell Niche  

  It is currently unknown whether there is a default fate regarding aspects such as 
self-renewal or differentiation into individual lineages from HSC. Whereas coor-
dinated and precise control of commitment and differentiation largely depends on 
soluble factors, originating from within and outside of the bone-marrow, mainte-
nance of HSC identities is believed to be mainly achieved by delicate interactions 
of the stem cells and their microenvironment, often referred to as the HSC niche. 
Identification of the factors and their signaling pathways underlying such control 
has been a main focus of hematological research, as knowledge on such regulation 
would allow manipulation for therapeutic purposes.  

  Extrinsic factors produced either by the stem cells themselves or by surrounding 
stromal cells that bind to receptors on the cell membrane of the stem cell can exert 
their effects long range as soluble molecules, or locally through direct cell-to-cell 
contact between the stem cells and adjacent cells [Attar and Scadden  2004 ]. Stromal 
cells and their products are spatially distributed into niches that differ in their HSC 
maintenance capacity and therefore, homing of HSC and hematopoietic progenitor 
cells to different niches affects their fate and the regulation of hematopoiesis [Arai 
et al.  2004 ; Calvi et al.  2003 ; Zhang et al.  2003 ]. Under physiological conditions, 
but more pronounced during stress, HSC migrate in and out of the bone-marrow 
compartment [Dorie et al.  1979 ]. This occurs at a very low frequency [Abkowitz et 
al.  2003 ; Dorie et al.  1979 ; Wright et al.  2001 ] by a mechanism that can be stimu-
lated by exogenous cytokine treatment [Kronenwett et al.  2000 ]. The purpose and 
regulation of this migratory activity is not completely understood but might play a 
role in the seeding of HSC to other niches within the bone-marrow [Abkowitz et al. 
 2003 ; Wright et al.  2001 ], secondary lymphoid organs, like the thymus [Schwarz 
and Bhandoola  2004 ] or other organs [McKinney-Freeman and Goodell  2004 ].  

  The best direct evidence for stem cell niches comes from work in the Drosophila 
testis, where germline stem cells surround apical hub cells at the tip of the testis, 
which provide self-renewing signals [Kiger et al.  2001 ; Tulina and Matunis  2001 ]. 
As the stem cells divide, the daughter cell that keeps contact with the hub cells, and 
thereby continues to receive self-renewing signals, retains a stem cell identity. The 
other daughter cell that is relocated away from the hub cells initiates differentiation. 
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In the bone-marrow, similar regional patterning of self-renewing signals has been 
found within the endosteal zone lining the bone surface in the marrow cavity [Arai 
et al.  2004 ; Calvi et al.  2003 ; Zhang et al.  2003 ], with a gradient decreasing toward 
the central zone of the marrow space. In support of this, the majority of hematopoi-
etic stem and progenitor cells has long since been known to be distributed preferen-
tially along the bone surface [Lambertsen and Weiss  1984 ; Lord and Hendry  1972 ; 
Lord et al.  1975 ]. These findings suggest that fate determination of HSC within the 
endosteal zone occurs in a similar fashion as for germline stem cells in Drosophila 
testes, where the fate of the 2 daughter cells from a dividing HSC at least in part 
is determined by their attachment to or displacement from the stem cell-supportive 
niche [Wilson and Trumpp  2006 ].  

    2.4      Regulating Quiescence or Commitment  

  Asymmetry of the daughter cells derived from HSC self-renewing divisions might 
be due to asymmetric distribution of intrinsic factors, such as transcription factors, 
cellular components or DNA during cell division [Enver et al.  1998 ; Takano et al. 
 2004 ]. However, HSC regulation is a complex process involving both intrinsic and 
extrinsic factors that can be both counteracting and synergistic and hence, asym-
metric cell division through asymmetric distribution of intrinsic factors might be 
dependent on extrinsic signals that prime HSC for the subsequent intrinsic regula-
tion. This might explain why extensive efforts to ex vivo expand HSC so far has, 
with some exceptions, been fruitless [Bryder and Jacobsen  2000 ; Glimm and Eaves 
 1999 ; Miller and Eaves  1997 ; Moore et al.  1997 ; Quesenberry et al.  2002 ; Sauvageau 
et al.  2004 ; Srour et al.  1999 ]. Regardless of the outcome from an asymmetric HSC 
division, the interaction of the 2 daughter cells with their environment results in fate 
decisions that determine the destiny of each particular cell and such interaction con-
tinues throughout the life of the cell. The newly formed cells can either return to a 
quiescent state as the parental HSC, carry on a second self-renewing asymmetric (or 
symmetric expanding) cell division, commit to differentiate along a certain lineage 
pathway or migrate to a distant site that offers suitable environment for either of the 
fates above [Wagers et al.  2002 ]. If the environment does not support any of these 
possibilities, the cell will due to the lack of instructive signals inevitably undergo 
apoptosis, a process that plays an important regulatory function for hematopoietic 
homeostasis [Domen and Weissman  2000 ; Wagers et al.  2002 ].  

  Regulation of these HSC fate decisions is most likely a combination of stochas-
tic (random) events, mainly though intrinsic regulation at the time of cell division 
[Enver et al.  1998 ; Greaves et al.  2003 ; Ogawa  1999 ; Phillips et al.  1992 ; Till et al. 
 1964 ], and deterministic events, mainly due to extrinsic factors in the HSC niche, 
that can be either permissive or instructive in their action [Metcalf  1998 ; Morrison 
and Weissman  1994 ; Muller-Sieburg et al.  2002 ]. Eliminating single or multiple 
hematopoietic growth factors or signal transduction pathways by genetic engineer-
ing in mice, allows determination of the type of action a factor imposes on the 
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HSC. The action of some factors is redundant as their removal does not result in 
hematopoietic phenotypes and can be compensated for [Akashi et al.  1998 ; Metcalf 
 1993 ; Sitnicka et al.  2002 ] whereas others are indispensable for certain fates [Iwa-
saki et al.  2005 ]. The first case exemplifies permissive regulation, allowing cells to 
differentiate along a predestined differentiation pathway, and the latter instructive 
regulation, instructing cells toward a specific fate [Kondo et al.  2000 ].  

  A major group of extrinsic factors in hematopoiesis are cytokines that play an 
important role in regulation of hematopoiesis. Most such molecules are available 
both in soluble and cell membrane bound forms and interact by direct binding to 
cell membrane receptors on the hematopoietic cells or on intermediate cells with 
which the hematopoietic cells interact. The early acting cytokines Stem Cell Factor 
and Thrombopoietin are nonredundant regulators of the HCS-pool [Zhu and Emer-
son  2002 ]. Other cytokines act on more committed cells and drive differentiation 
along particular pathways, like Erythropoietin for erythroid cells, granulocyte-mac-
rophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulat-
ing factor (G-CSF) for myeloid cells and interleukin 7 (IL-7) for B-cells [Ogawa 
 1993 ; Zhu and Emerson  2002 ]. Signaling from membrane bound receptors on HSC 
is propagated through elaborate intracellular signal transduction pathways to the 
nucleus, where they influence the activity of transcription factors. These bind to 
promoter elements on the DNA and regulate together with other regulatory mol-
ecules and DNA polymerases the transcription of target genes and ultimately, fate 
decisions. Several transcription factors have been implicated in the regulation of 
HSC self-renewal (ICN/CSL, Ikaros, HoxB4 and GATA-2), whereas others partici-
pate at more downstream cellular levels by inducing commitment toward individual 
hematopoietic lineages [Zhu and Emerson  2002 ].  

     3   Hematopoietic Stem Cell Developmental Switches  

  Development of a fully functional blood system occurs early in development and the 
hematopoietic system thereafter continuously changes to meet the demands on the 
organism at each stage of development. These changes mainly occur through altera-
tions of identities and functions of the HSC through specific and seemingly irrevers-
ible switches that are mainly cell autonomous but depend on and are influenced by 
variation of the cellular environment of the HSC niches throughout ontogeny.  

   3.1       The Primitive to Definitive Switch  

  Onset of hematopoiesis is an early event in embryonic development and required to 
meet the demands of oxygen transportation as the embryo becomes larger and to pro-
vide an early defense against pathogens. In mouse development, gastrulation starts 
7.5 days post conception (dpc) and leads to the formation of ectoderm, mesoderm 
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and endoderm. During this process the extra- and intra-embryonic regions, the yolk 
sac and embryo proper, are established. In the yolk sac, cell aggregates called blood 
islands are formed and contain cells of both hematopoietic and endothelial lineages. 
These develop in close contact, and perhaps from a common progenitor cell known 
as the hemangioblast [Choi et al.  1998 ; Keller et al.  1999 ; Mikkola et al.  2003 ]. 
Commitment toward a hematopoietic fate occurs through the influence of various 
transcription factors, such as Tal-1/SCL, AML-1, Lmo2 and GATA-2, and results in 
the formation of committed primitive hematopoietic precursor cells [Zhu and Emer-
son  2002 ]. Such primitive precursors are primed towards myelo-erythroid lineages 
and mostly produce monocytes, for infectious defense in the placenta, and primitive 
erythrocytes, that are large, nucleated and produce embryonic globins [Weissman 
 2000 ]. This early burst of extra-embryonic erythrocyte production is necessary for 
oxygen transportation within the embryo at a time when oxygen diffusion from 
maternal circulation becomes insufficient [Cumano and Godin  2001 ]. The yolk sac 
remains a hematopoietic organ until the embryo itself can support blood cell pro-
duction by around 11.5 dpc. Within the embryo, a region comprising the rudiments 
of the dorsal aorta and surrounding splanchnic mesoderm forms at around 8.5–10 
dpc and at this site the development of definitive HSC initiates [Bertrand et al.  2005 ; 
de Bruijn et al.  2002 ; Godin et al.  1999 ]. The region, named the para-aortic splanch-
nopleura (P-Sp), later develops into the aorta gonad and mesonephros (AGM) at 
10–12 dpc. Hematopoietic precursor cell activity can be identified by 10.5 dpc in a 
region of the mesenchyme surrounding and within the dorsal side of the aorta [Ber-
trand et al.  2005 ; de Bruijn et al.  2002 ; Godin et al.  1999 ]. These precursors develop 
into the HSC that support definitive hematopoiesis yielding small enucleated eryth-
rocytes that express adult globins. The intra-embryonic definitive HSC are the sole 
precursors of the adult HSC that supply HSC activity throughout life [Cumano and 
Godin  2001 ], thus no further HSC are generated during late fetal and neonatal stages 
of development [Gothert et al.  2005 ]. The origin of the intra-embryonic definitive 
HSC has been under debate as to whether they really are descendants from the 
primitive yolk sac derived precursors or originate independently from definitive 
hematopoietic precursors. Studies by Moore and Metcalf in 1970 suggested that the 
yolk sac is required for both primitive and definitive hematopoiesis in mice [Moore 
and Metcalf  1970 ]. Culture of precirculation 7 dpc embryos from which the yolk 
sac had been removed developed without blood cell formation, whereas culture of 7 
dpc yolk sac alone yielded abundant hematopoietic colonies. Although challenged 
over the years [Cumano et al.  2001 ; Medvinsky and Dzierzak  1996 ], this concept 
was recently confirmed by noninvasive labeling of progenitors of definitive hemat-
opoiesis, expressing Runx1 in the yolk sac blood islands at 7.5 dpc, establishing 
that intra-embryonic definitive HSC can originate from extra-embryonic primitive 
precursors in the yolk sac of the developing embryo.  

  As definitive HSC in the AGM mature, they migrate and enter the blood circu-
lation [Christensen et al.  2004 ; Delassus and Cumano  1996 ] to colonize the liver 
[Morrison et al.  1995a ]. In the fetal liver environment, such cells gain properties 
changing their identity from being nonproliferating, nondifferentiating and non-
transplantable, to cells that can rapidly proliferate and self-renew to expand their 
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numbers to meet the growing requirements of the hematopoietic system [Ikuta and 
Weissman  1992 ; Lansdorp et al.  1993 ; Rebel et al.  1996b ]. The capacity of the fetal 
liver HSC for multipotent blood cell production and long-term repopulation when 
transplanted into lethally irradiated hosts is extensive and unprecedented through-
out ontogeny [Jordan et al.  1995 ; Rebel et al.  1996a ; Rebel et al.  1996b ]. With emer-
gence of fetal liver hematopoiesis, the necessity of yolk sac erythropoiesis (12–14 
dpc) decreases and leads to disappearance of yolk sac hematopoietic precursors. 
However, as yolk sac and fetal liver HSC display similar globin switching, these 
events are unlikely to be the result of alternating cell populations, but rather repre-
sent the outcome of developmental switches of primitive to definitive hematopoiesis 
and thereby changes in transcription. By the end of pregnancy, hematopoiesis in the 
liver transfers through the migration of HSC to the bone-marrow [Christensen et al. 
 2004 ; Delassus and Cumano  1996 ; Potocnik et al.  2000 ], which remains the main 
hematopoietic organ throughout life [Morrison et al.  1995b ]. During these develop-
mental processes, mesenchymal progenitor cells (with osteogenic, adipogenic and 
chondrogenic potential) in parallel home to and develop niches supporting self-
renewal in the primary hematopoietic organs (fetal liver, bone-marrow and spleen) 
as these tissues develop in the fetus [Christensen et al.  2004 ; Mendes et al.  2005 ; 
Palis et al.  2001 ; Potocnik et al.  2000 ]. Whether the colonization of niches sup-
porting hematopoiesis during midgestation is a multiwave process or the result of a 
constant flow of rare HSC in the fetal blood is currently unclear [Christensen et al. 
 2004 ; Delassus and Cumano  1996 ; Potocnik et al.  2000 ]. It appears likely that low 
numbers of HSC are constantly circulating both before and after their expansion 
and maturation in the fetal liver, until a suitable environment for hematopoiesis has 
developed in the bone-marrow.  

  The distinct developmental fates of extra- and intra-embryonic progenitors in 
extra- and intra-embryonic niches [Matsuoka et al.  2001 ; Orkin and Zon  2002 ; 
Walker et al.  2001 ; Yoder et al.  1997 ] thus require intrinsic developmental switches 
that alter lineage priming, gene expression, function, cell cycling and the pheno-
type of HSC. As transplantation of primitive extra-embryonic progenitors to intra-
embryonic sites directs these cells to adopt a definitive fate, it appears as appropriate 
instruction is also contingent on environmental cues [Turpen et al.  1997 ].  

    3.2   Fetal to Adult Switch  

  Both embryonic and adult hematopoiesis is hierarchical, with differentiation occur-
ring through distinct and sequential progenitor subsets [Kondo et al.  2003 ]. This 
suggests that the molecular mechanisms underlying cell fate decisions are con-
served from embryo to adult. Despite of this similarity, the properties of fetal liver 
HSC that migrate to the bone-marrow by the end of gestation are in many aspects 
different from when they have adopted adult properties and fates in the bone-mar-
row [Jordan et al.  1995 ; Rebel et al.  1996a ; Rebel et al.  1996b ]. This fetal to adult 
developmental switch occurs in the bone-marrow during the first weeks after birth in 
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a precise manner and involves coordinated alterations in the abilities to self-renew, 
proliferate, differentiate as well as in regulation of gene expression, suggesting cell 
intrinsic regulation rather than random environmental changes [Bowie et al.  2007b ; 
Kikuchi and Kondo  2006 ].  

  Expansion of HSC numbers in the fetal liver occurs with cell cycle kinetics that 
are significantly different from those of adult HSC in the steady state bone-marrow 
[Nygren et al.  2006 ]. Following lodging to the bone-marrow environment, there 
is a need for reduction of the extended proliferative activity and hence switching 
of the regulatory circuitry into a more quiescent state [Bowie et al.  2006 ]. Such 
transformation seems to occur during neonatal week three to four after birth and 
completely alters the cycling behavior from a fetal high proliferative into an adult 
quiescent state that is maintained throughout adulthood [Bowie et al.  2006 ]. Fetal 
liver HSC have a dominating lymphoid potential [Morrison et al.  1996 ], differ in 
the factor dependence for their differentiation compared to adult HSC [Kikuchi 
and Kondo  2006 ] and support differentiation to B- and T-cell subtypes that are dis-
tinct in function and phenotype and normally not present in adults [Hayakawa and 
Hardy  2000 ; Ikuta et al.  1990 ]. These differences in lineage priming are changed 
upon adoption of adult HSC properties during the first week after birth. Whether 
the effects of these switches are reversible remains to be determined, but as HSC 
of fetal type undergo similar changes with analogous kinetics following transplan-
tation into an adult environment they must involve intrinsic and, at least during 
steady state conditions, irreversible changes of the fetal HSC [Bowie et al.  2007b ]. 
This change could involve components of c-kit signaling [Bowie et al.  2007b ], in 
accordance with the role of the c-kit receptor in control of self-renewal in HSC 
[Bowie et al.  2007a ]. Shorter cell cycle passage time of fetal HSC might be due to 
intrinsic proliferative control that favors symmetric self-renewing cell divisions. 
Similar intrinsic changes occurs in otherwise quiescent adult HSC that are exposed 
to an environment that demands a high degree of self-renewing cell divisions, for 
instance following serial transplantation [Allsopp et al.  2001 ]. That self-renew-
ing cell divisions dominates fetal HSC cell divisions is not only reflected by an 
increased proliferative activity in vivo compared to adult bone-marrow HSC but 
also an enhanced capacity to long term repopulate the blood system of lethally 
irradiated recipient mice [Rebel et al.  1996a ]. This can not be correlated with dif-
ferences in the ability of transplanted cells to migrate to and engraft in the host 
bone-marrow, as fetal HSC transplanted together with a population of competitive 
adult counterparts maintain this property. Cells from both origins engraft similarly 
well in the adult recipients but the fetal donor cells out competes adult cells over 
time. Although fetal HSC transferred to an adult environment undergo developmen-
tal switching into an adult state, they maintain an enhanced capacity to proliferate 
with extended and preserved self-renewing abilities compared to adult cells having 
developed normally [Bowie et al.  2007b ; Bowie et al.  2006 ; Rebel et al.  1996a ]. As 
transition into an adult stage seems to occur with precise timing, it appears as cell 
autonomous molecular switches tightly regulate lineage priming during fetal and 
adult hematopoiesis, but depend on proper development with sequential changes 
of fate that cannot be sidestepped.  
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    3.3   The Adult to Old Switch  

  Upon the fetal to adult developmental switch, HSC persists throughout adulthood 
in a relatively quiescent state compared to their progeny [Nygren et al.  2006 ], 
with more or less maintained properties and regulatory control. However, ran-
domly occurring events impose direct wear and tear on HSC during their life span 
and as such changes can accumulate over time due to the self-renewal capability 
of HSC, it appears reasonable that they can result in phenotypic and functional 
changes and even a reduced capacity to maintain cellular homeostasis and sur-
vival. However, gene expression patterns of aged HSC have revealed that, com-
pared to post-mitotic cells in other tissues, stress induced damage does not seem 
to play a major role on HSC aging in steady-state [Rossi et al. 2005]. This might 
be a result of a unique ability of HSC to maintain a quiescent state relative to their 
down stream progeny throughout ontogeny [Nygren et al.  2006 ] which would 
allow HSC to escape from much of the negative stress associated with life long 
and continuous proliferation. Furthermore, not all observed changes of HSC dur-
ing aging appears to be attributed to macromolecular damage, suggesting contri-
butions of cell autonomous changes through internal molecular switches [Rossi 
et al.  2007b ]. In line with this, loss of immune function of aged HSC is likely due 
to cell autonomous changes that results in altered gene expression favoring mye-
loid specific genes, resulting in lineage skewing towards a myeloid fate [Rossi 
et al.  2005 ]. Thus, reduced competence of the adaptive immune system appears 
to be a result of an increased myeloid progenitor cell capacity, at the expense 
of lymphoid developmental potential. Phenotypical and functional evaluations 
have shown that the numbers of HSC in the aged bone-marrow are significantly 
increased [Rossi et al.  2005 ; Sudo et al.  2000 ]. Transplantation of HSC from 
young and old donors into young recipients showed that the elevated numbers of 
HSC in old mice were due to cell autonomous changes in the HSC leading to a 
higher incidence of self-renewing cell divisions with HSC aging.  

  Taken together, HSC that until recently were assumed to be exempt from aging 
show progressive alterations in many aspects upon reaching advanced age. Such 
changes however does not seem to occur in an as controlled and defined way as 
for the developmental switches that occur during early development. Although the 
cellular changes act in a cell autonomous manner, the actual switching of a cell 
from young to adult might indeed be triggered by environmental cues. Such factors 
would be linked to aging of the cellular environment of HSC, thereby altering the 
regulatory circuitry that controls on demand production of HSC progeny and in 
maintenance of their own quiescence. In support of this, aged HSC have been sug-
gested to be affected by changes of the interaction with the supporting HSC niches 
in the bone-marrow, with a reduced ability for adhesion to stromal cells, impaired 
homing to the bone-marrow following transplantation and increased responsive-
ness to mobilizing factors [Liang et al.  2005 ; Xing et al.  2006 ]. Thus, intrinsic and 
environmental changes that occur within the pool of HSC collectively sets the pre-
requisite for cellular deterioration. With this interpretation, the developmental his-
tory of each individual cell establishes how and when the aging process will begin. 
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Such processes seem to be irreversible and unaffected by environmental factors 
once initiated, as the transfer of aged HSC to a young environment does not change 
their adult identity [Rossi et al.  2005 ; Sudo et al.  2000 ].  

     4   Aging of Hematopoietic Stem Cells  

  Aging are generally though of as the sum of the deteriorative effects on a cellular 
identity or function that accumulates over time and eventually reaches a state that 
leads to tissue failure. However, for the hematopoietic system it is doubtful whether 
the consequences of aging are attributed to changes of the actual HSC due to accu-
mulation of wear and tear or environmental signals. Instead, many changes on func-
tion and identity of HSC might in fact constitute normal developmental steps that 
occur through controlled and evolutionary conserved switches. Such adaptation to 
changes in environment and requirement imposed in the system, begin in the devel-
oping embryo and continue throughout ontogeny.  

   4.1   Aging as the Result of Environment  

  As described earlier in this chapter, HSC are exposed to dramatically different 
environments during their maturation. Commitment towards hematopoiesis occur 
outside the embryo in the yolk sac blood islands, transit through the AGM region 
and fetal liver for developmental switching and expansion, and by the end of fetal 
development find their home in the bone-marrow where they, except from rare and 
transient migration into the blood system for relocation, stay throughout adult life. 
During this process, wear and tear of the most primitive HSC do occur but the extent 
of this and the importance it plays for their function remains largely unknown. 
Throughout adulthood, it has been proposed that the main site that supports main-
tenance of HSC is the endosteal bone-marrow niche, providing a sanctuary with 
limited damage to proteins, membranes and DNA imposed by the environment. The 
cell layers that comprise the endosteal zone are highly hypoxic, suggesting that it 
provides an environment with low pressure of cellular damage derived from reac-
tive oxygen species [Parmar et al.  2007 ]. Furthermore, hypoxic conditions might be 
important for optimal stimulation of self-renewal and quiescence and thereby play 
an important role in avoiding accumulation of cellular damage by limiting prolifera-
tion [Tothova et al.  2007 ]. Hypoxic conditions could be entertained by a low flow 
of extra-cellular fluids in the HSC niche, thereby also limiting exposure to toxins, 
metabolic by products and toxic compounds from immune responses as seen else-
where in the organism.  

  As HSC by definition persist for the lifetime of an organism, developmental marks 
should be accumulating and with time reach levels influencing cellular function 
thereby imposing changes on HSC stem cell identity. Recent studies have however 



Implications of Developmental Switches for Hematopoietic Stem Cell Aging 601

underscored that environmental influences plays a minor role in the specification 
of these cells as transferring of aged cells to an young environment does not alter 
their identity or function [Rossi et al.  2005 ]. This argues for that environmental cues 
can not alter cell intrinsic changes of HSC once established or modify the genetic 
control that regulate the kinetics of this process [Phillips et al.  1992 ]. However, 
environmental factors such as toxins, inflammatory cytokines and DNA interfering 
compounds might well act over long time to impose some of the cellular changes 
accompanying age. Many of these are closely linked to metabolic and proliferative 
activities, emphasizing the importance of avoiding such influence on HSC by main-
taining quiescence at all times, including during stress responses and extensive self-
renewal [Nygren et al.  2006 ]. As all other cells, the bone-marrow stromal cells that 
constitute the HSC microenvironment age and undergo changes that might affect its 
HSC supporting capacity [Liang  2005  #646]. An increasing number of senescent 
stromal cells might be one important factor that through deteriorated HSC support-
ive function fails to prevent or possibly by themselves drive HSC aging.  

    4.2   Avoiding Aging by Quiescence  

  Downstream progenitor cell populations that have committed to individual hemat-
opoietic lineages consist of a limited number of clones with an extensive capacity to 
produce mature effector cells of each lineage. The high degree of multiplying and 
differentiating cell divisions that take place within these populations impose a high 
degree of divisional stress on each cell. However, as progenitor cells lack extensive 
self-renewing properties, any damage on cells or their genetic material can only 
spread within the progeny of that clone and will disappear as it reaches its prolifera-
tive limit [Hayflick  1965 ; Lemischka et al.  1986 ]. In contrast, HSC, which through 
their asymmetric cell divisions can generate all different progenitor cell subsets, 
must find means to avoid such accumulation of damage as they will be carried on 
and amplified at progenitor cell stages for the rest of the life of that HSC clone. It 
therefore appears likely that HSC have adapted a regulatory circuitry that limits 
proliferation at the HSC stage.  

  In vivo labeling with the thymidine analogue BrdU into the DNA of proliferat-
ing cells have established that although all HSC constantly divide and participate in 
hematopoiesis, they are generally quiescent, with a population turnover that is distin-
guishable from that of the downstream progenitor cells even during stress or exten-
sive expansion [Bradford et al.  1997 ; Cheshier et al.  1999 ; Nygren et al.  2006 ]. To 
expand the numbers of progeny generated from each clone, a finite but extensive pro-
liferative capacity instead occurs at downstream progenitor cell levels. Thus, clonal 
stability of rare HSC seems to be the general incidence, whereas clonal succession 
occurs within all hematopoietic progenitor cell populations as each progenitor cell 
has a limited life span and is eventually succeeded by a new progenitor cell.  

  When studying hematopoiesis during aging, any cell type will however eventu-
ally reach its end point and succumb or perhaps enter senescence. As new HSC 
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clones are not formed after midgestation embryogenesis [Gothert et al.  2005 ] loss 
of HSC clones can not be replenished but only substituted by expansion of similarly 
old clones that will eventually reach senescence or die. Senescent cells are meta-
bolically active but have a changed pattern of gene expression and an irreversible 
loss of proliferative capacity. HSC senescence should normally represent a minor 
problem, if occurring at all, as HSC can be propagated for as long as four times the 
normal life span of a mouse through serial transplantation into sequential recipients 
[Harrison  1979 ]. The elements that are involved in avoiding senescence of HSC 
are not known but through studies of different mice strains, several genetic ele-
ments has been identified that are indispensable for controlling proliferation and 
thereby preservation of the HSC pool [Chen et al.  2000 ]. Although HSC appears 
to have found means to escape from proliferative stress such as through lodging 
to a hypoxic environment with low degree of oxidative stress [Parmar et al.  2007 ; 
Tothova et al.  2007 ], efficient exclusion of toxic components taken up from the 
environment by multidrug resistance membrane transporters [Zhou et al.  2002 ] and 
limiting genetic deterioration from repeated explicative stress [Nijnik et al.  2007 ; 
Rossi et al.  2007a ], complete protection from these effects is unlikely. An example 
of this is the shortening of the critical telomere elements at the ends of the chromo-
somes following extensive proliferation.  

  Telomeres are the regions of highly repetitive DNA at the end of the chromosomes 
and functions as a disposable buffer of genetic material. Every time chromosomes 
are replicated, DNA polymerase complexes are incapable of continuing replication 
all the way to the end of the DNA strand of each chromosome, thereby leading to a 
gradual loss of nucleotides with each mitosis. This ultimately results in a genome 
with an increased chromosomal instability and, as a cellular defense mechanism, an 
increased predisposition to enter senescence or cell death. In some cells, including 
somatic stem cells, telomerase extend telomeres by adding extra repetitive DNA 
elements constituting telomeric sequences. However although genetic instability 
and functional impairment of HSC coincides with telomere shortening following 
extensive proliferative stress and following genetic alteration of telomerase func-
tion [Allsopp et al.  2001 ; Allsopp et al.  2003a ; Samper et al.  2002 ], maintenance of 
telomeres is likely not sufficient by itself to avoid stem cell exhaustion [Allsopp et 
al.  2003b ].  

    4.3   Avoiding Aging by Asymmetry  

  The quiescent stem cell specific asymmetric partitioning of cell fate during cell 
division of HSC into either preserved stem cell identity, or loss of such and com-
mitment towards differentiation, limits the proliferative tension on the stem cell 
clone by allowing one of the daughter cells to maintain quiescence. Which ele-
ments that are unequally distributed to the daughter cells and how such partition-
ing takes place is not fully understood. However, displacement from a certain 
stem cell supporting environment within the niche might play a role [Kiger et al. 
 2001 ; Tulina and Matunis  2001 ; Wilson and Trumpp  2006 ] as well as regulated 
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or stochastic distribution of transcription factions, organelles, receptors and other 
cellular constituents and biomolecules into gradients that establish differences in 
cell fate [Arai et al.  2004 ; Rusan and Peifer  2007 ; Yamashita et al.  2007 ; Zhang 
et al.  2003 ]. It would therefore seem reasonable that partitioning of cell fates by 
asymmetric cell divisions might play a role for avoiding aging of the HSC clone 
that strive for persistence throughout life. During stem cell divisions, centrosomes 
can be asymmetrically inherited with mother centrosomes that always ends in the 
daughter cell with remained stem cell identity, arguing that also genetic material 
could be passed on from stem cell to stem cell in a similar fashion. The concept 
of such partitioning of the DNA have been hypothesized and could explain how 
long lived cells that proliferate extensively avoid accumulation of genetic defects 
acquired during replication [Nijnik et al.  2007 ] by using the same DNA strand 
as template for DNA polymerase replication and passing it along into the daugh-
ter cell that inherit stemness, whereas the newly replicated strand ends up in the 
daughter cell with lost stem cell capacity [Cairns  1975 ]. Retaining the same set of 
template DNA strands throughout development could help preventing adult stem 
cells from accumulating mutations arising from errors in DNA replication. Instead, 
randomly occurring mutations during replication within a HSC clone are passed 
on to nonstem cell daughters that soon terminally differentiate. Such mechanism 
would reduce the rate of accumulation of mutations in HSC that would otherwise 
eventually lead to serious genetic disorders or aging [Rossi et al.  2007a ]. The idea 
of an immortal strand in HSC has however to be strengthened by experimental 
data, and if present, it has to be established how such stem cell specific partition-
ing of immortal template and mortal copy strands take place. All definitive HSC 
clones are established during midgestation embryogenesis and thereafter no new 
clones are born. Thus expansion of the HSC pool thereafter can only occur through 
multiplication of such HSC clones. Depending on when immortal templates would 
be established, not all HSC necessarily need to have the capacity to partition DNA 
into mother and daughter cells following replication. Similarly, asymmetric distri-
bution of proteins and cellular constituents, an event that plays important roles in 
specifying asymmetry of the daughter cells from asymmetric cell divisions [Enver 
et al.  1998 ; Takano et al.  2004 ], could be speculated to also be operational to spec-
ify fates at a HSC level, although to date representing an under explored mecha-
nisms to these processes.  

  Chromatin remodeling is critical for regulating transcription, replication, recom-
bination and segregation of the chromosomes. Histone complexes organize chroma-
tin and play a major role in epigenetic imprinting of the DNA, and a critical role in 
HSC biology for the polycomb protein Bmi-1, a transcriptional repressor that main-
tain repression of genes after a cell division and thereby maintain epigenetic mem-
ory, was suggested [Lessard and Sauvageau  2003 ; Park et al.  2003 ]. It appears likely 
that such processes play key roles in determination of stemness of daughter cells 
from self-renewing HSC cell divisions, although the order of such events remain 
currently unknown. However, as epigenetic imprinting of DNA has to be replicated 
onto the daughter chromatin following each cell division, it appears reasonable that 
accumulated numbers of cell divisions might lead to functional changes, including 
reductions in self-renewing ability.  
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    4.4   Genetic Control of Aging  

  Aging is a multi parameter sequence of events controlled by both environmental 
factors and the genetic composition of the individual. As outlined above, environ-
mental factors can influence on normal wear and tear of HSC and their development, 
but seem to have a subordinate role for establishing the transcriptional networks that 
specifies developmental switches and aging. Although the molecular mechanisms 
have not been elucidated in detail, it is clear that various genetic traits are involved 
in the modulation of life span [de Haan et al.  2002 ; Geiger et al.  2005 ; Rossi et al. 
 2007a ]. Such modulation in HSC involves reduction of damage to the cell and its 
genetic components over time, and is crucial to avoid premature ageing and senes-
cence. Damage control is not mainly supplied by repair systems that maintain the 
integrity of proteins, DNA and cellular components, but also accomplished through 
preventing metabolic stress and genetic instabilities acquired from extended divi-
sional activity. This provides a strategy to limit the number of deleterious actions 
occurring within the limited and irreplaceable HSC pool, and is mainly accom-
plished by an in nature unique ability to constantly participate in the process of 
hematopoiesis, while still maintaining proliferative quiescence over time [Nygren 
et al.  2006 ].  

  Several genes involved in maintaining HSC quiescence and the action of their 
protein products have been characterized. These components form a network that 
signals to the stem cell to maintain stem cell properties through self-renewing cell 
divisions [Reya et al.  2003 ; Willert et al.  2003 ] and is believed to transfer epigenetic 
memory that identifies stemness to at least one of the daughter cells [Lessard and 
Sauvageau  2003 ; Park et al.  2003 ]. The process of self-renewal however needs to be 
restricted and factors are needed that interfere with cell cycle control to restrict pro-
liferation [Hock et al.  2004 ] and maintain and strengthen adhesive interaction of the 
HSC with the niche supporting quiescence [Wilson et al.  2004 ; Yang et al.  2007 ]. 
However, although many components of the circuitry that signals self-renewal and 
quiescence in the HSC and their niche have been postulated, little direct mechanistic 
insights have so far been provided.  

  Genes and genetic elements that have a general effect on the life span of an 
organism suggests that molecular machineries can be activated to ensure that home-
ostasis is maintained at various situation of stress, thereby putting some sort of 
break to the aging process. Genetic information located in the mitochondria has 
been identified as one major heritable component involved in aging. Instabilities 
of the mitochondrial DNA due to damages or replication can lead to mitochondrial 
dysfunction, increased oxidative stress and cellular senescence emphasizing the 
importance of long lived cells to limit metabolic activity and proliferation [Cadenas 
and Davies  2000 ]. Studies of cellular processes in mice have been standardized to 
involve only a limited number of inbred mouse stains. In these a varying degree of 
effects on HSC function have been observed during aging, however generally HSC 
does not seem to loose regenerative capacity as they age [Rossi et al.  2005 ]. This 
is further supported by studies demonstrating maintenance of hematopoiesis during 
conditions and time spans that by far extends the normal life expectancy of the 
organism [Ross et al.  1982 ].  
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     5   Conclusion  

  The constant ongoing process of cell replacement in the hematopoietic system 
imposes a strong degenerative stress on the cellular elements that participate in 
these processes. Luckily, many of these adverse effects from prolonged regeneration 
disappear upon cellular differentiation and are therefore present only transiently. 
However, as stem cells are maintained throughout life, accumulation of any damage 
or other heritable cellular traits that occurs along these processes and its regulatory 
networks will have dramatic effects due to the hierarchical structure of hematopoi-
etic development. Limiting metabolic and divisional stress in hematopoietic stem 
cells is therefore key for maintaining their appropriate lifelong function and to avoid 
proliferative exhaustion or leukemic transformation with age.  
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                                  Abstract:        Deterioration of the immune system with aging is associated with an 
increased susceptibility to infectious diseases, cancer and autoimmune disorders. 
It has been demonstrated that immunosenescence is associated with chronic, low-
grade inflammatory activity. The aging process is very complex and longevity is 
a multifactorial trait, which is determined by genetic and environmental factors, 
and the interaction of “disease” processes with “intrinsic” ageing processes. It is 
hypothesized that the level of immune response as well as possibly longevity could 
be associated with genes regulating immune functions. It is further hypothesized 
that the diversity of these genes might influence successful aging and longevity by 
modulating an individual´s response to life-threatening disorders. Several studies 
have focused on the role of genes encoding molecules with immune functions. In 
this chapter we will review the data on the role of cytokine gene polymorphisms in 
human longevity.     

     Keywords:       Cytokines    •    Cytokine gene polymprphisms    •    Immunosenescence 
Longevity    
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1 Introduction

       Aging is a universal phenomenon affecting all animal species. This physiological 
process could be characterized as: inevitable consequence of being a multicellular 
organism; associated with a random passive decline in function; leading to a global 
loss of homeostasis over time and mortality increasing with aging (Helfand and 
Rogina, 2003). Aging is determined by a complex interaction of genetic, epige-
netic and environmental factors, but a strong genetic component appears to have an 
impact on survival to advanced age. Among the several theories of aging proposed, 
the genetic theory suggests that several genes are involved in longevity (Kirkwood, 
2002; Browner et al. 2004). Additionally, studies of Mitchell et al. indicated that 
up to 25% of the variation in human lifespan is heritable (Mitchell et al. 2001). 
The genetics of human longevity is quite peculiar in a context where antagonistic 
pleiotropy can play a major role and genes can have different biological role at dif-
ferent ages. Data of several studies imply that aging process may be associated with 
alterations in the immune system, suggesting that genetic determinants of senes-
cence also resides in those polymorphisms for the immune system genes that regu-
late immune responses. Genes, encoding molecules involved in the development of 
protective immunity are highly polymorphic, present significant variation possibly 
resulting from an evolutionary adaptation of the organism facing an ever evolving 
environment. These genes include: HLA genes; genes encoding “unusual” HLA-
like molecules (CD1); killer cell immunoglobulin-like receptor genes (KIR); leu-
kocyte Fc  receptor genes; cytokine and cytokine receptor genes; Toll-like receptor 
gene family; TNF- receptor associated factors. Several studies have focused on the 
role of cytokine gene polymorphisms for human longevity. The diversity of these 
genes might influence successful aging and longevity by modulating an individual´s 
response to life-threatening disorders.  

   In this chapter we summarize present knowledge on the role of cytokines in 
human longevity.      Cytokines are an internal part of the immune response stimulated 
by antigen presentation in the context of HLA. Many studies have shown that the 
pathology of some infectious, autoimmune and malignant diseases is influenced by 
the profiles of cytokine production in pro-inflammatory (Th1) and anti-inflamma-
tory (Th2) T cells. Additionally some authors have shown differences in cytokine 
levels in elderly and possible association with age-related diseases. Pro-inflamma-
tory cytokines play a role in chronic inflammation, a phenomenon proposed to call 
“inflammaging” (Salvioli et al. 2006). People genetically predisposed to develop 
weak inflammatory activity seems to have fewer chances of developing cardiovas-
cular diseases and subsequently live longer if they do not become affected by seri-
ous infectious diseases. Ferrucci et al. 1999, Harris et al. 1999 demonstrated that 
increased IL-6 serum levels could be a marker for functional disability and predictor 
of mortality in elderly. Increased expression levels of IL-6 were observed also in 
stress conditions, one of the characteristics of ageing (Heinrich et al. 2003). Ele-
vated levels of this cytokine associated with development of frailty and susceptibil-
ity to diseases in elderly were also observed (Forsey et al. 2003). This inflammatory 
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marker could be involved in low-grade inflammatory that develops with age (Cohen 
et al. 1997; Bruunsgaard et al. 1999; Ershler and Keller 2000). Dysredulation of 
IL-6 has been thought to be involved in the pathogenesis of a variety of age-related 
diseases, such as diabetes and atherosclerosis, which have a substantial inflamma-
tory pathogenesis (Chamorro 2004; Dandona et al. 2004). IL-8 is also considered to 
be a potent inflammatory agent. However, IL-8 has also been reported to serve as an 
organ protective factor. It seems possible that an association of an increased serum 
level of IL-8 and a low level of IL-6 is related to longevity (Wieczorowska-Tobis et al. 
2006). Additionally in elderly was observed a decreased capacity to produce IFN- , 
IL-2, IL-4 upon stimulation (Franceschi et al. 2000). The higher levels of TNF-  
also correlate with functional status and decreased chance of long-life survival in 
elderly (Ferrucci 1999; Harris et al. 1999; Ershler et al. 2000; Forsey et al. 2003). 
Moreover, dysregulation and, in particular, overproduction of TNF has been impli-
cated in a variety of human diseases including sepsis, cerebral malaria, and autoim-
mune diseases such as multiple sclerosis, rheumatoid arthritis (RA), systemic lupus 
erythematosus, and Crohn disease, as well as cancer. Interestingly, in a very large 

Table 1 Gene polymorphisms of pro-inflammatory cytokines associated with aging

Cytokine gene 
polymorphism

Effect Population References

IL-2 (-330 T/C) No association in 
elderly 

Irish Ross et al. 2003

 Increased (T-low) 
marginally in 
centenarians

Italian Scola et al. 2005

IL-6 (-174 C/G) Increased (C-low) in 
male centenarians

Italian Bonafe et al. 2001

 No association Sardinia, Southern Italy Capurso, 2004; Pes 
et al. 2004

 Decreased (G/G-high) 
in octogenarians and 
nonagenerians 

Irish Rea et al. 2003; Ross O 
et al. 2003

 No association in 
nonagenarians

Finish Wang X et al. 2001

 Increased G allele in 
elderly survivors

Finish Harume et al. 2005

 Increased (GG) in 
elderly

Danish Christiansen L et al. 
2004

 No association Bulgarian Naumova et al. 2004
IFN-G (+874 T/A) Increased (T/T-high) in 

female centenarians
Italian Lio D et al. 2002

 No associations Bulgarian Naumova et al. 2004
TNF-A (-308 G/A) Decreased (A-high) in 

centenarians
Danish Buunsgaard H et al. 

2004
 No association in 

nonagenarians
Finish Wang X et al. 2001

 No association in 
centenarians

Italian Lio D et al. 2003

 No association in 
elderly

Bulgarians Naumova et al. 2004
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study in Italian population IL-1Ra plasma levels were increased with age in both 
male and female subjects (Cavallone et al. 2003). Because of the pivotal role of 
anti-inflammatory cytokines TGF- 1 and IL-10 in regulation of immune responses, 
the variability of their levels may affect low grade inflammation that develops with 
age. It has been shown that the elevated level of anti-inflammatory cytokines IL-10 
and TGF-  in serum of elderly is associated with increased resistance against septic 
shock (Forsey et al. 2003). Increased ex vivo capacity of macrophages from elderly 
to produce anti-inflammatory IL-10 was also found. Intriguingly, the existence of 
“risk immunological phenotype,” probably associated with lack of tight control in 
systemic inflammation was also discussed.  

   Similarly to other genes, coding molecules with immune functions, cytokine 
genes are highly polymorphic. Most of the polymorphic sites identified so far 
are located in the noncoding regions, containing regulatory sequences, while 
exon sequences are highly conserved. Three main forms of polymorphisms were 
identified in cytokine genes: single nucleotide polymorphisms (SNPs) (Kruglyak 
et al. 1999), variable number of tandem repeats and micro-satellites (Weber and 
May 1989; Bidwell et al. 2001). Although still controversial, polymorphic vari-
ants observed for some cytokine genes have been correlated to the level of gene 
expression. Thus the cytokine gene polymorphism may be responsible for observed 
inter-individual differences in cytokine production and may be one possible mecha-
nism for perturbation of the Th1/Th2 balance. Some polymorphisms may have a 
functional significance by altering directly or indirectly the level of genes expres-
sion and/or its function, others may only be useful for the determination of genetic 
linkage to a particular haplotype associated in turn with a given clinical condition 
(Bidwell et al. 1999, 2001).  

   Although the data are limited and controversial (Caruso et al. 2000) and many 
discrepancies are reported likely due to population-specific interactions between 
gene pool and environment, interleukins could be considered as putative “longevity 
genes. “ It has been hypothesized that longevity could be associated with cytokine 
gene polymorphism correlated with different level of cytokine expression and 
modulating immune response to several diseases (Ershler et al. 2000; Bruunsgaard 
et al. 2001; Volpato et al. 2001). Taking into account the internal part of cytokine 
genes in immune response, the regulation of cytokine expression level and their pol-
ymorphic nature, investigation the genetic variations of these loci with functional 
significance could be appropriate immunogenetic candidate markers implicated in 
the mechanism of successful aging and longevity.  

   Genetic variations correlating with elevated levels of pro-inflammatory cytokines 
have been negatively associated with ageing (Bhojak et al. 2000). Several studies 
showed that cytokine polymorphisms related to different level of secretion were 
associated with longevity. Genetic polymorphisms, associated with high level of 
IL-10 expression were increased (Lio et al. 2003), while polymorphisms possi-
bly related to increased expression of proinflammatory cytokines - IFN- , TNF-  
and IL-6 were decreased in elderly individuals (Lio et al. 2002; Bruunsgaard et al. 
2004). These data confirmed the hypothesis that longevity is related to antiinflam-
matory genotype profile. Additionally, the pro-inflammatory cytokine profile was 
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correlated with decreased life span in elderly. However, in elderly with different eth-
nical background, investigations reported contradicting results on associations with 
cytokine gene polymorphism (Bonafe et al. 2001; Lio et al. 2002). Additionally, 
the majority of data were associated with investigation of single polymorphisms in 
single cytokine genes. The analysis of extended haplotypes which include several 
polymorphisms in the cytokine gene, as well as haplotypes which consist of SNPs 
in different cytokine genes will help to determine the precise immunogenetic basis 
of longevity.  

     2    Gene Polymorphism of Proinflammatory Cytokines 
and Aging  

     2.1      IL-2  

   IL-2 is a proinflammatory cytokine, which plays a central role in activation of 
T-cell mediated immune response and defects in IL-2 mediated activation induce 
severe immune deficiency (Demoulin and Renauld, 1998). Several polymorphisms 
in the promoter (position -330) and coding (position +166 and exon 1) regions were 
described in IL-2 gene. A promoter polymorphism -330 T/C was shown to influence 
IL-2 production in anti-D3/CD28-stimulated peripheral blood lymphocytes. T-lym-
phocytes from -330 CC homozygous subjects are able to produce higher amount of 
IL-2 than heterozygous or -330 TT homozygous individuals (Hoffmat et al. 2001).  

   Age-related decline in IL-2 production has been recognized since the early work 
of Gillis et al. Subsequent studies showed that IL-2 is reduced in aged subjects with 
associated effects on intracellular activation on nuclear transcription pathways (Rea 
et al. 1996; Pawelec et al. 2002). In humans, high IL-2 serum levels characterize 
subjects affected by Alzheimer’s disease. Resent study in Italian (Scola et al. 2005) 
and Irish (Ross et al. 2003) elderly subjects did not showed a statistically significant 
effect of IL-2 -330 polymorphism in aging. However, a T allele associated with IL-2 
low producer genotype was discussed to be marginally associated with aging (Scola 
et al. 2005). Data suggested that the genetic background favoring an increased IL-2 
production might be detrimental for longevity.  

       2.2      IL-6  

   IL-6 is a pleotropic growth factor involved in different physiological and pathologi-
cal processes. IL-6 is considered to be a potent inflammatory agent. It was found 
also to inhibit neutrophil apoptosis, suggesting that there is an autocrine or para-
crine antiapoptotic role for IL-6 (Lindermans et al. 2006).  
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   The human IL-6 gene is mapped to chromosome 7p21–24. Different studies 
identified three SNPs (−597G/A, −572G/C  −174G/C) and one AT polymorphism 
(−373(A)n(T)m) in 5  regulatory region in the gene (Fishman et al. 1998; Terry 
et al. 2000; Georges et al. 2001). It was demonstrated that IL-6–174C allele was 
significantly associated with lower plasma concentrations of this cytokine (Terry 
et al. 2000).  

   Despite of the significant number of studies on possible role of IL-6 gene polymor-
phisms in different diseases, the associations still remain to be clarified (Rauramaa et 
al. 2000; Terry et al. 2000; Humphries et al. 2001; Nauck et al. 2002). Great amount 
of papers reported a positive association between some polymorphic markers of IL-
6 gene and human longevity, and capacity of producing low levels of IL-6 thought 
life-span appears to be beneficial for longevity (Wright et al. 2003; Christiansen, 
2004; Franceschi et al. 2005; Hurme et al. 2005) Most studies focused on IL-6 -174 
C/G polymorphism and susceptibility to common causes of morbidity and mortal-
ity among elderly, such as type 2 diabetes, cardiovascular diseases, and dementia. 
IL-6-174 C/G polymorphism is predictive for longevity (Salvioli et al. 2006) Data 
on centenarians and elderly individuals from Italy showed increased frequency of C 
alleles in male centenarians and it seemed to be a gender specific effect on longevity 
(Bonafe et al. 2001). Correlations with the serum levels showed that men carrying 
the GG genotype had higher IL-6 serum levels in respect to subjects with CC or CG 
genotypes. The authors hypothesized that individuals predisposed to produce high 
level of IL-6 (men carrying GG) have a reduced capacity to reach the extreme limits 
of human life-span. Additionally, authors demonstrated that age-related increase of 
IL-6 serum levels in women is quite independent from -174 C/G genotype. It has also 
been shown that the proportion of IL-6 high producers (GG genotypes) was increased 
by individuals affected by age-related diseases with inflammatory pathogenesis—dia-
betes, atherosclerosis, osteoporosis, and neurodegenerative diseases. Similarly, Rea et 
al. (2003), Ross et al. (2003) reported decreased frequency of IL-6 -174 GG carriers in 
Irish octogenarian and nonagenarian subjects from the BELFAST elderly longitudinal 
ageing study. However, in Finish nonagenerians analysis on IL6-174, IL1a-889, IL1b-
511, IL1Ra VNTR, IL10-1082, and TNFa-308 did not show any associations, alone 
or in combinations (Wang et al. 2001). It appears that IL-6 polymorphism does not 
affect life expectancy neither in the Sardinian population, nor in people from southern 
Italy, suggesting that the effect of IL-6 polymorphism on longevity might be popula-
tion specific and dependent on gene – environment interactions (Capurso, 2004; Pes 
et al. 2004). Similar lack of association of IL-6 gene polymorphism with longevity 
was observed in the Bulgarian population (Naumova et al. 2004). These controversial 
data could be partly explained by population specific factors including genetic back-
ground, environmental factors and life stile. Most of studies analyzed the effect of 
isolated polymorphisms and this could partly contribute to the contradicting results. 
Recently, Terry et al. (Rauramaa et al. 2000) demonstrated that haplotype combination 
of promoter polymorphisms in IL-6 gene is more informative marker associated with 
the level of gene expression, compared with the influence of −174 G/C in isolation. 
Additionally, studies have demonstrated that CC or CG carriers have an increased risk 
of Alzheimer disease (AD) and cardiovascular diseases (Zhang et al. 2004).  
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       2.3   IFN-   

   IFN-  is one of the most representative type 1 cytokines, which plays a pivotal role 
in defense against viruses and intracellular pathogens and the induction of immune-
mediated inflammatory responses. Taking into account the key role of this cytokine, 
its genetically controlled production is focused on investigation in several studies 
associated with longevity. Among numerous intronic polymorphisms in the IFN-  
gene, a variable length CA repeat sequence and polymorphism in the intron 1 at 
position +874 relative to the transcriptional start site has been implicated to influ-
ence the level of gene expression in vitro (Pravica et al. 1999). The single nucleotide 
polymorphism +874 T/A is one well-known single-nucleotide polymorphism at the 
5’ end of the CA repeat region in the first intron of the IFN-  gene. Specific binding 
of the nuclear transcription factor- B to the DNA sequence containing the +874 
T allele has been reported and it could have functional consequences for the tran-
scription of the IFN-  gene and could then influence the rate of expression. Studies 
in Italian centenarians showed increased frequency of +874 T/T in female centenar-
ians. On the other hand, investigations in elderly individuals from the Bulgarian 
population did not show significant differences in IFN-  (+874) allele distribution 
compared to young controls (Naumova et al. 2004).  

       2.4   TNF-   

   TNF-  is a pro-inflammatory cytokine involved in the immune response. This pleio-
tropic cytokine plays a wide variety of functions in many cell types.  

   The gene for TNF-  is located within the class III region of the major histo-
compatibility complex, which is a highly polymorphic region and its expression 
is tightly controlled at the transcriptional and posttranscriptional level. Several 
biallelic polymorphisms have been described within the TNF-  gene, including 
six in the promoter region at positions -1031T>C, -863C>A, -857C>T, -376G>A, 
-308G>A and -238G>A. Moreover, a number of studies have shown that the TNF-

 promoter polymorphisms have a significant effect on transcriptional activity. 
Susceptibility to many diseases is thought to have a genetic basis, and the TNF 
gene is considered a candidate-predisposing gene. However, unraveling the impor-
tance of genetic variation in the TNF locus to disease susceptibility or severity is 
complicated by its location within the MHC and the strong linkage disequilibrium 
with other genes. Several investigations reported associations of MHC haplotypes 
with different TNF-  phenotypes: DR3 and DR4 haplotypes were correlated with 
high level of TNF-  (Jacob et al. 1990; Abraham et al. 1993), while DR2 hap-
lotypes were associated with low expression (Bendtzen et al. 1988; Jacob et al. 
1990). These finding proposed the existence of functional polymorphism involved 
in the regulation of TNF-  production. SNPs at position -308 have been commonly 
studied with respect to their influence on TNF-  expression. Transfection studies 
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in human B-cell lines showed that the presence of rare TNF2 allele (A at position 
-308) results in higher constitutive and inducible levels of TNF expression com-
pared with a common TNF1 allele (G at position -308), confirming the importance 
of this site in the transcriptional regulation of the TNF gene (Wilson et al. 1997; 
Makhatadze et al. 1998; Lio et al. 2001; Hajeer, 2001). The functional relevance 
of this SNP has been confirmed by its involvement in determining susceptibility 
to immune-inflammatory diseases (Makhatadze, 1998; Lio et al. 2001; Hajeer and 
Hutchinson 2001; Dalziel et al. 2002; Heijmans et al. 2002; O’Keefe et al. 2002; 
Sakao et al. 2002; Witte et al. 2002). Although the polymorphism -308 G/A associ-
ated with different gene expression is one of the most widely investigated in differ-
ent diseases, no correlation of this SNP and longevity was found in centenarians 
from the Finnish and the Italian population (Wang et al. 2001; Lio et al. 2003). 
Similar results were observed for elderly individuals from the Bulgarian population 
(Naumova et al. 2004). In the Danish population, however decreased frequency of 
A allele was observed among centenarians. Positive association with the process of 
successful ageing was observed also in men centenarians from Italian population 
when the two SNPs -308 G/A from TNF  gene and -1082 G/A SNP from IL10 
gene were analyzed simultaneously (Wang et al. 2001). The group of Lio D et al. 
reported that an anti-inflammatory genotype TNFA GG (low)/ IL10 GG (high) has 
a protective role in longevity. TNF-A and IL-10 have complex and opposing roles, 
and an autoregulatory loop appears to exist (Candore et al. 2002).  

    Table 2        Gene polymorphisms of anti-inflammatory cytokines associated with aging      

   Cytokine gene 
polymorphism   

   Effect      Population      References   

   TGF-B1 (915 C/G)      Decreased  allele and C/G 
genotype in centenarians   

   Italian      Carrieri G et al. 2004   

   TGF-B1 (cdns 10, 25)      No associations in elderly      Bulgarians      Naumova et al. 2004   

   IL-10 (-1082 A/G)      Increased (G/G-high) in 
male centenarians   

   Italians      Lio D et al. 2002   

          No association with 
longevity   

   Finish       Wang X et al. 2001   

          No association with 
longevity   

   Irish      Ross O et al. 2003   

          No association with 
longevity   

   Sardinian      Pes G et al. 2004   

IL-10 (-819 C/T) No association with 
longevity

Italian Lio D et al. 2002

IL-10 (-592 C/A) No association with 
longevity

Italian Lio D et al. 2002

IL-10 
(-1082G,-819C,-592C)

Increased in elderly Italian Lio D et al. 2002

IL-10 
(-1082G,-819C,-592C)

Increased in elderly Bulgarians Naumova et al. 2004

IL-10 
(-1082A,-819T,-592A)

Decreased in elderly Bulgarians Naumova et al. 2004
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         3      Gene Polymorphism of Antiinflammatory Cytokines
and Aging  

     3.1   TGF-B1  

   TGF-B1 is a multifunctional cytokine that regulates cell proliferation, differentia-
tion, and migration, and it was considered as an aniinflammatory molecule (Wright 
et al. 2003). In the study of Carrieri et al, the plasma levels of biologically active 
TGF-B1 were significantly increased in the elderly group, independently from 
TGF-B1 genotypes (Carrieri et al. 2004). The TGF- 1 gene consists of 7 exons and 
6 introns. Until now, eight polymorphisms in the promoter (-509 C T, -800 G
A and -988 C T), coding (+896 T C, +915 G C, +788 C T, +652 C T and 
+673 T C) regions end one deletion (713 del C) in inton 4 of the TGF- 1 gene 
were discovered. Polymorphisms +896 (codon 10) and +915 (codon 25), associated 
with different level of expression are the most commonly studied. For polymor-
phism +915 G/C, the presence of C allele is generally associated with lower TGF-  
synthesis in vitro and in vivo. Association between the presence of particular TGF- 

1 allele and the level of the product indicates that the G-800 A and C-509 T poly-
morphisms may also be involved in the modulation of expression of the TGF- 1 
gene. The -509 T allele - has been reported to be associated with marginally higher 
transcriptional activity of TGF-  compared to the -509C allele. TGF-  -800 G A 
polymorphism is in a consensus CREB (cAMP response element-binding protein) 
shalf-site. The presence of A allele was suggested to have reduced affinity for the 
CREB family of transcription factors, resulting in a lower level of total TGF- 1 in 
the circulation. Analysis of these three SNPs +915 G C, -509 C T and -800 G
A by the group of Carrieri G et al. observed that only +915  allele and GC geno-
type with significantly lower frequency, compared to controls. Additionally they 
found also decreased frequency of extended haplotype G -800/C -509/C 869/C 915 
and elevated level of TGF- 1 in elderly, but correlation with investigated genotypes 
in TGF- 1 gene was not found (Carrieri et al. 2004). Similarly no associations of 
TGF-B1 codons 10 and 25 genotypes with longevity were observed in Bulgarians 
(Naumova et al. 2004). It has been hypothesized that genetic determined cytokine 
profiles of TGF- 1 could be involved in mechanism of successful ageing but more 
data are need to confirm this results.  

       3.2       IL-10  

   IL-10 is a powerful cytokine that inhibits lymphocyte repeication and secretion of 
inflammatory cytokines (My-Chan Dang et al. 2006). Since one of the main func-
tions of IL-10 is to limit inflammatory responses (Moore et al. 2001), polymor-
phisms in the regulatory region of this gene could be possibly related to longevity. 
Stimulation of human blood samples with bacterial lipopolysaccharide showed 
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variation of IL-10 production, suggesting a genetic component of approximately 
75% (Westendorp et al. 1997). Inter person differences in the regulation of IL-10 
production may be critical with respect to the final outcome of an inflammatory 
response.  

   The IL-10 gene is located on chromosome 1 at q31–32. Several polymorphisms 
in the human IL-10 5’ flanking region and two microsatelites associated with dif-
ferential IL-10 production have been identified. The most extensively investigated 
SNPs are in the promoter region at position -1082, -819 and -592 (Turner et al. 
1997, D’Alfonso et al. 2000; Kube et al. 2001) correlating with different transcrip-
tional activity. The three dimorphisms appear in three potential haplotypes: GCC, 
ACC and ATA (G/A at position -1082, C/T at position -819 and C/A at -592 corre-
spondingly) related to different level of gene expression. The ability of individuals 
to produce high levels of IL-10 is evidently controlled by a G at position -1082, 
as this variant is found in the highest producers (Turner et al. 1997; Eskdale et al. 
1998; Crawley et al. 1999; D’Alfonso et al. 2000; Kube et al. 2001; Lio et al. 2002). 
Several studies reported the linkage between the sites -819 and -592. The A allele 
of the -592 SNP was found to be associated with lower stimulated IL-10 release. 
In the presence of allele -1082A, stimulation of lymphocytes with concanavalin A 
resulted in lower IL-10 production than in allele -1082A negative cells (Turner et al. 
1997; Hutchinson et al. 1999). The functional relevance of this SNP has been shown 
by its involvement in determining susceptibility to immune-inflammatory diseases 
(Hajeer et al. 1998; Crawley et al. 1999; Tagore et al. 1999; Howell et al. 2001; 
Girndt et al. 2002; Shoskes et al. 2002; Wu et al. 2002) The two dimorphisms -819 
and -592 exhibit strong linkage disequilibrium.  

   The IL-10 -1082 A/G polymorphism has been reported to be a male-specific 
marker for longevity (Lio et al. 2002), while no differenced were found regard-
ing the -819 and -592 polymorphisms. The -1082GG genotype, associated with 
high IL-10 production, was argued to confer an anti-inflammatory status (Lio et al. 
2002). Studies in Bulgarians demonstrated significant differences for two IL-10 
haplotypes: one of them (-1,082A,-819T,-592A), possibly associated with the low 
level of gene expression was decreased in elderly, while the other (-1,082G,-819C,-
592C) associated with high level of cytokine gene expression was significantly 
more frequent among healthy elderly compared to young controls. This effect was 
more pronounced in GCC homozygous individuals as indicated by the analysis of 
IL-10 genotypes. However, studies in two other populations— Irish nonagenarians 
(Ross et al. 2003) and Finish nonagenarians (Wang et al. 2001) did not show any 
association with longevity. A possible explanation for the negative results in the 
Irish and Finnish studies could be the younger age of the old subjects investigated 
in comparison with the Italian study. Interestingly to note that the IL-10 -1082 GG 
genotype is much less frequent in patients affected by Alzheimer’s disease (Lio 
et al. 2003).  

   In summary, the capability to maintain a lower production of pro-inflammatory 
cytokines appears to be favorable for reaching the extreme limits of human life 
span in good health conditions and could be genetically controlled. Cytokine genes 
related to inflammation seems particularly relevant taking into account that the 



Associations of Cytokine Polymorphisms with Immunosenescence 625

innate immunity is more involved during inflammation, and a chronic inflammatory 
status appears to be the major component of the most common age-related diseases, 
including cardiovascular diseases and infections. The emerging data on the pivotal 
role of additional interactions in affecting expression of some relevant cytokines 
(for example zinc–gene interactions) and studies in populations with different envi-
ronmental background will allow to clarify further the role of cytokines in aging.  
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                                        Abstract  :      The influence of genetics on immunosenescence is still to be resolved. 
Common genetic variants (polymorphism) that reside within the genes encoding 
cytokines are candidates to positively or negatively affect immunosenescence. 
Cytokines regulate the type and magnitude of the immune function. Polymorphism 
can influence the expression level of the cytokine protein which can subsequently 
cause an imbalance in the cytokine cascade.  

   Herein we examine the current literature with respect to cytokine polymorphisms 
in ageing and the age-related neurodegenerative disorder, Parkinson’s disease. 
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Ageing studies have identified two cytokine promoter polymorphisms that have 
shown repeated associations IL-6 (-174) and IL-10 (-1082). Others have failed to 
confirm these associations. This is due in part to studies of limited sample sizes 
examining a restricted number of cytokine polymorphisms. The inflammatory 
processes that characterize the cell death that is the hallmark of neurodegenerative 
disorders such as Parkinson’s disease, may also be influenced by cytokine polymor-
phisms. However as with ageing, the results to date have been inconsistent although 
a number of studies have suggested the IL-1β (-511) and TNF-α (-308) show sig-
nificant association with Parkinson’s disease susceptibility.  

     Given the complexity of the cytokine network, and the dynamic interplay between 
anti and proinflammatory aspects, cross-sectional studies examining many cytokine 
variants in large sample series are now warranted. Genome-wide association studies 
may hold promise in resolving the role of cytokine polymorphisms in the inflamma-
tory processes in both disease and ageing.  

             1      Introduction  

   Ageing is a complex, multifactorial process which can be defined as a progressive, 
generalized impairment of function resulting in a loss of adaptive response to stress 
and an increasing risk of age-associated disease [ 44,   45,   51–  53 ]. Although the spe-
cific biological basis of ageing remains obscure, molecular investigations over the 
last 50 years have led to a cluster of theories that attempt to resolve ageing across 
species. However the complexity of the ageing process has only been reflected in 
the numerous hypotheses that have been proposed [ 72 ].  

   There is increasing evidence from a growing number of studies that longevity has 
heritability in families. However, a familial history of longevity could also be caused 
by a shared environment. A study of Danish twins noted only modest heritability in 
the ability to reach the septuagenarian years and above; no evidence for an effect of 
shared family environment was found [ 47 ]. Other studies show that siblings of cen-
tenarians are shown to have a 4-fold higher survival rate to ages above 85 years com-
pared to siblings of persons who died at the age of <75 years [ 89,   90 ]. Whereas the 
twin study examined correlations of age at death in those of old age, the latter study 
focused on those who survive to extreme old age, and was therefore more likely to 
detect a stronger effect if genetic factors play a role in longevity.  

   As the world of scientific research moves into a new era beginning with the 
publication of the human genome and the continual description of novel variations 
in genes, the prospect of greater resolution to the question of ageing is at hand. The 
draft publication of the human genome was released on February 16th 2001, on 
the day when one of the pioneers of modern science, Charles Darwin, would have 
reached the ripe old age of 192 years. The human genome is composed of 46 chro-
mosomes that are estimated to encode for between twenty and thirty thousand genes 
(approximately 40 % of which are functionally unresolved) [ 56,   117 ]. Extensive 
variation has also been observed at the nucleotide level. DNA sequence variants are 
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estimated to occur in one in every three to five hundred base pairs and are linked 
with a large diversity of phenotypes, ranging from variation in traits e.g., eye colour, 
height, susceptibility to disease and even the variation in the rate of ageing.  

   Polymorphism, literally translated “multiple forms”, is the term used to describe 
the DNA variants that exist within a species. Polymorphism in a gene may result 
in increased/reduced protein production or affect the level of the abnormal pro-
teins generated, through directly influencing gene transcription [ 115 ]. There is 
increasing evidence to show that gene expression is regulated by complex interplay, 
from simple polymorphic variants in regulatory regions such as the promoter or 3’ 
untranslated regions, to the presence of microRNA species that can work through a 
negative/positive feedback mechanism.  

   At the recent 55 th  American Society of Human Genetics (2005) meeting held 
in Salt Lake City, the International HapMap project released its Phase I data. This 
project’s major aim was to help identify linkage disequilibrium patterns traversing 
the entire human genome and facilitate the identification of haplotype “tagging” 
single nucleotide polymorphisms (SNPs) [ 2,   22 ]. In 2006, public databases (such as 
dbSNP) housed data on more than nine million candidate human SNPs for which 
genotype data is available for nearly two and a half million of them [ 2 ]. These vast 
volumes of data, coupled with the incredible advances in genotyping and DNA 
sequencing technologies, create a situation whereby the geneticist can pinpoint 
a trait loci [ 68,   114 ]. Genome-wide association studies are being proclaimed as 
the latest, and perhaps most powerful, tool in the mapping of causative/modifying 
genetic loci in complex disorders such as ageing [ 101 ].  

   The human genome displays a considerable level of inter-individual variability 
from simple SNPs and short repeats to large-scale deletions, multiplications and 
rearrangements. Recent studies have demonstrated that large gene copy number vari-
ations (CNVs) occur frequently in the general population with for the most part no 
determinable disadvantage to carriers. However this phenomenon can be pathogenic 
and in rare cases result in severe disease phenotypes [ 99,   111,   121 ]. The severe dis-
ease state is usually caused through either a “gain or loss of function” that occurs 
from an altered balance in the level of the essential protein. However, the presence of 
variants that give rise to much milder phenotypes and produce a fractional increase/
decrease in gene expression may result in the slow, progressive manner of symptoms 
that typify both the ageing process itself and also the numerous age-related diseases, 
including cardiovascular disease, cancer and neurodegenerative disorders.  

   Human longevity appears to be inextricably linked with optimal functioning of the 
immune system, suggesting that specific genetic determinants may reside in polymor-
phic loci in genes that regulate immune response. The deterioration of the immune 
system due to “immunosenescence” (age-associated immune deficiency), coupled 
with the associated increase in the susceptibility to infectious disease, cancer and 
autoimmune disorders has restricted the potential human lifespan [ 14,   32,   34 ]. How-
ever this deterioration of the immune function accompanied by an increased risk of 
morbidity and mortality observed in the noncentenarian elderly is in sharp contrast to 
the more intact immune function of centenarians [ 33 ]. Profound and complex changes 
within the humoral, cellular, and innate immune responses occur during the ageing 



634 O. A. Ross et al.

process, therefore immunosenescence is reflected in the sum of dysregulations of the 
immune system and its interactions with the other major systems in the human body.  

   Cytokines are proteins that have a key function, as intercellular messengers, during 
immune responses and in tissue remodelling. The cytokine network plays a pivotal 
role in the regulation of the specific type and magnitude of immune and inflammatory 
response. Consistent with the “remodelling theory” of immunosenescence, differing 
levels of cytokine production are reported in the elderly and centenarians [ 8,   9,   96 – 98 ]. 
A potent inflammatory response is vital in the defense against pathogens through-
out life and may positively influence reproductive success, but chronic inflammation 
appears to be a common component in the development of major age-related diseases. 
This “trade-off” effect is largely predictable since advanced age does not seem to have 
been foreseen by evolution [ 14 ]. Many age-related diseases display altered cytokine 
profiles, suggesting that an inflammatory pathogenesis may be at the basis of these 
common causes of morbidity and mortality among elderly. It may be expected that 
people reaching the extreme limits of human lifespan, having escaped from major-
age-related diseases, i.e. healthy centenarians, will be characterized by having geno-
typic combinations that produce “optimal” pro/antiinflammatory activity [ 32 ].  

    2 Cytokine Polymorphism in Immunosenescence  

   In several cytokine genes, polymorphism (mostly SNPs or microsatellites) located 
within the critical promoter or other regulatory regions, is reported to affect gene 
transcription resulting in inter-individual variation in levels of cytokine production 
(Table 1). Any qualitative or quantitative effect on cytokine production will ineluc-
tably impinge upon the synthesis and secretion of effector molecules downstream 
in the cytokine cascade and may therefore alter the immune response. The polymor-
phic nature of the cytokine genes may confer flexibility on the immune response 
with certain alleles promoting differential production of cytokines. These then may 

Cytokine Nucleotide position Polymorphism
IL-1α
IL-1β

-889
-551
+3953

C/T
C/T
C/T

IL-2 -330 T/G
IL-6 -174 C/G
IL-8 -251 A/T
IL-10 -1082 G/A
IFN-γ Intron 1 (CA)n  

TNF-α
TNF-β
TGF-β

+874
-308
+252
-800
-509
+869
+915

A/T
G/A 
A/G
G/A
C/T
T/C
G/C

Table 1 Position and polymorphisms in selected cytokine genes
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influence the outcome of viral and bacterial infections and/or increase susceptibil-
ity/resistance to autoimmune disorders. In summary, cytokines are essential in all 
areas of the immune response, so any age-related variation may be of crucial impor-
tance in determining whether intact immune function remains preserved. Herein 
we examine the current literature available investigating the frequency of cytokine 
polymorphism in ageing (Table 2 and 3).  

          2.1 Tumor Necrosis Factor Gene Cluster  

   The human leukocyte antigen (HLA) has been described as a gene system that regu-
lates both the immune system and the ageing process. The HLA plays a central 
role in antigen presentation and immunosurveillence, and a number of studies have 
been carried out to investigate whether there is evidence of polymorphic associa-
tion with immunosensecence [ 15,   16 ]. Studies have shown that the HLA-A1, B8, 
DR3 ancestral haplotype (8.1 AH) is associated with a variety of immune dysfunc-
tions, autoimmune diseases and displays gender specific longevity association [ 15, 
  86 ]. Also of interest, the 8.1 AH is associated with variant immune responses and 
altered cytokine secretion patterns [ 15 ]. This HLA haplotype is also associated 
with a genetically-determined, high production setting for tumor necrosis factor-α 
(TNF-α) [ 60 ].  

   The  TNF  gene locus is found within the central HLA Class III region and deter-
mines the strength, effectiveness and duration of local and systemic inflammatory 
responses, as well as repair and recovery from infectious and toxic agents.  TNF  
genes show strong linkage disequilibrium with HLA Class I and II genes, and with 
other genes in the HLA region that are factors in immunoregulation [ 58 ]. The mul-
tiple pro and antiinflammatory activities of TNF-α and related cytokines in the  TNF  

Study Gene 
polymorphism

Cente-
narians

Elderly
(age)

Young  
(age)

Population Results

Bonafe et al. 
(2001)

IL-6 –174 C/G 68 M 150M(60-99) Italian  GG

Rea et al.
(2003)

IL-6 –174 C/G 58 M(80-97) 75  M (19-45 ) Irish  GG

Christiansen 
et al. (2004)

IL-6 –174 C/G 178 1058 (60-95) 474 (18-59 ) Danish  GG

Lio et al. 
(2002)

IL-10 –1082A/G 31 M 161  M (18-60 ) Italian  GG

Lio et al.
(2003)

IL-10 –1082A/G 72 M 115  M (22-60 ) Italian  GG

Lio et al. 
(2004)

IL-10 –1082A/G
IFN-γ  +847T/A

54 M 
142 F

110  M (18-60 )
90 F (19-45 )

Italian
Italian

 GG 
 A

 and  represent a statistically significant (p < 0.05) increase or decrease of alleles or genotypes 
respect to control population.  

M = male; F = female.

Table 2 Positive studies on cytokine gene polymorphisms in young, elderly and centenarians
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Study Gene 
polymorphism

Population Centenarians Elderly (age 
range)

Young (age 
range)

Wang et al. 2001 IL-1α -889 C/T
IL-1α -889 C/T

Finnish
Finnish

52 M (90)
198 F (90)

400 (18-60 )

Cavallone 
et al. 2003

IL-1α -889C/T
IL-1α -889C/T
IL-1β -511C/T
IL-1β -511C/T

Italian
Italian
Italian
Italian

40 M
94 F
40 M
94 F

160M(65-99)
149F(65-99)
160M(65-99)
149F(65-99)

478 M (19-65)
210 F (19-65)
478 M (19-65)
210 F (19-65)

Wang et al. 
2001

IL-1β -511 C/T
IL-1β -511 C/T
IL-1β +3953
IL-1β +3953
IL-1raVNTR86bp
IL-1raVNTR86bp

Finnish
Finnish
Finnish
Finnish
Finnish
Finnish

52 M (90)
198 F (90)
52 M (90)
198 F (90)
52 M (90)
198 F (90)

400 (18-60 )
400 (18-60 )
400 (18-60 )

Cavallone 
et al. 2003

IL-1raVNTR86bp
IL-1raVNTR86bp

Italian
Italian

40 M
94 F

160M(65-99)
149F(65-99)

478 M (19-65)
210 F (19-65)

Ross et al. 
2003

IL-2 – 330 T/G
IL-2 - 330 T/G

Irish
Irish

28M (80-97)
65 F(80-97)

41 M (19-45 )
59 F (19-45 )

Scola et al. 
2005

IL-2 - 330 T/G Italian 168 214

Wang et al. 
2001

IL-6 –174 C/G
IL-6 –174 C/G

Finnish
Finnish

52 M (90)
198 F (90)

400 (18-60 )

Bonafe et al. 
2004

IL-6 –174 C/G Italian 255 F 227F(60-99)

Ross et al. 
2003

IL-6 –174 C/G
IL-6 –174 C/G
IL-6 –174 C/G

Irish
Irish
Irish

55 M(80-97)
127F(80-97)
135F(80-97)

 69 M (19-45 )
120 F (19-45 )
107 F (19-45 )

Capurso et al. 
2004

IL-6 –174 C/G
IL-6 –174 C/G

Italian
Italian

19 M 
62 F 

44 M (19-73 )
78 F (18-73 )

Pes et al. 
2004

IL-6 –174 C/G
IL-6 –174 C/G

Italian
Italian

36 M 
76 F 

68 M (60 )
68 F (60)

Ross et al. 
2003

IL-8 -251 A/T
IL-8-251 A/T
IL-10 –1082A/G
IL-10 –1082A/G

Irish
Irish
Irish
Irish

28 M(80-97)
65 F(80-97)
28 M(80-97)
65 F(80-97)

41M (19-45 )
59 F (19-45 )
41 M (19-45 )
59 F (19-45 )

Wang et al. 
2001

IL-10 –1082A/G
IL-10 –1082A/G

Finnish
Finnish

52 M (90)
198 F (90)

400 (18-60 )

Lio et al. 
2002

IL-10 –1082A/G Italian 159 F 99 F (18-60 )

Lio et al. 
2003

IL-10 –1082A/G Italian 102 F 112 F (22-60 )

Pes et al. 
2004

IL-10 –1082A/G
IL-10 –1082A/G 

Italian
Italian

32 M 
55 F 

31 M (60 )
54 F (60)

Ross et al. 
2003

IL-12 exon8 A/C
IL-12 exon8 A/C
IFN-γ intron 1
IFN-γ intron 1

Irish
Irish
Irish
Irish

28 M(80-97)
65 F(80-97)
28 M(80-97)
65 F(80-97)

41 M (19-45 )
59 F (19-45 )
41 M (19-45 )
59 F (19-45 )

Lio et al. 
2002

IFN-γ +847T/A Italian 32 M 158 M (19-45 )

Pes et al. 
2004

IFN-γ +847T/A
IFN-γ +847T/A

Italian
Italian

32 M
64 F

36 M (19-45 )
58 F (19-45 )

Wang et al.
 2001

TNF-α -308G/A
TNF-α -308G/A

Finnish
Finnish

52 M (90)
198 F (90)

400 (18-60 )

Lio et al. 
2003

TNF-α -308G/A
TNF-α -308G/A

Italian
Italian

72 M
102 F

115 M (18-60 )
112 F (18-60 )

Table 3  Selected negative studies on cytokine gene polymorphisms in young, elderly and 
centenarians
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cluster make them attractive candidates along with other HLA genes for unravel-
ling the molecular mechanism(s) underlying the development of ageing and related 
diseases.  

   The  TNF  cluster, containing both  TNF-α  and  TNF-β  genes, has numerous pol-
ymorphisms that may have an effect on transcription and ultimately protein levels. 
The  TNF-α  - 308A/G polymorphism has been investigated in four studies that were 
aimed to assess its association, if any, with longevity. In studies of elderly and 
young subjects from Finland and Sweden there were no differences regarding 
the frequency of the  TNF-  α- 308A/G polymorphism between the two age groups 
[ 19 ,  119 ]. In an Italian study, the frequency of this polymorphism did not vary 
between centenarians and younger subjects, and no significant gender difference 
emerged [ 63 ]. Likewise, the frequency of  TNF- α -308A/G polymorphism in a 
study with Irish nonagenarians was not different compared to younger controls 
[ 105 ]. In the same study, no significant frequency difference for the  TNF-β  +252 
A/G polymorphism between Irish nonagenarians and young control subjects was 
found either. Thus, these 4 studies appear to demonstrate that the  TNF -α -308A/G 
polymorphism does not have a major independent effect on longevity.  

    2.2 Transforming Growth Factor-β  

   The cytokine transforming growth factor-β (TGF-β) has been shown to have an 
essential role in inflammation and in maintenance of immune response homeosta-
sis. TGF-β belongs to the group of cytokines with antiinflammatory effects, due to 
its deactivating properties regarding macrophages [ 57,   120 ].  TGF- gene overexpres-
sion has been observed in human fibroblasts that displayed a senescent-like phe-
notype after exposure to oxidative stress [ 37 ]. Polymorphisms in the  TGF- β gene 
influencing the cytokine production have been identified and subsequently linked to 
age-related pathologies, such as Alzheimer’s disease [ 66 ].  

Study Gene 
polymorphism

Population Centenarians Elderly (age 
range)

Young (age 
range)

Ross et al. 
2003

TNF-α -308G/A
TNF-α -308G/A
TNF-β +252A/G
TNF-β +252A/G

Irish
Irish
Irish
Irish

28 M(80-97)
65 F(80-97)
28 M(80-97)
65 F(80-97)

41 M (19-45 )
59 F (19-45 )
41 M (19-45 )
59 F (19-45 )

Carrieri et al. 
2004

TGF-β1 –800G/A
TGF-β1 -800G/A
TGF-β1 -509C/T
TGF-β1 -509C/T
TGF-β1 +869C/G
TGF-β1 +869C/G
TGF-β1 +915C/G
TGF-β1 +915C/G

Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian

50 M
122 F
50 M
122 F
50 M
122 F
50 M
122 F

94 M (20-60 )
153 F (20-60 )
94 M (20-60 )
153 F (20-60 )
94 M (20-60 )
153 F (20-60 )
94 M (20-60 )
153 F (20-60 )

Table 3 (continued)
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   A study by Carrieri et al. (2004) analyzed 419 subjects from Northern and Cen-
tral Italy, including 172 centenarians and 247 younger controls, to examine the 
hypothesis that variability of the  TGF-β  gene affects successful aging and longev-
ity [ 12 ]. The level of the active cytokine increased with age, and significant differ-
ences were found between the age groups for the genotype and allele frequencies 
at the +915 site but no differences were found for the other tested variants (the 
-800 G/A, -509 C/T and +869 C/G loci). As this +915 C/G polymorphism results 
in an arginine to proline substitution at codon 25 within the signal peptide that is 
cleaved from the TGF-β precursor, it is possible that the substitution could play a 
role in the efficient production of the mature growth factor or misdirection of the 
protein. Since TGF-β is immunosuppressive, the age-related increase of the active 
cytokine suggests that it could counteract/counterbalance the harmful effects of 
inflamm-ageing.  

    2.3 Interleukin-1 Gene Cluster  

   The interleukin-1 ( IL-1 ) gene cluster is located on chromosome 2q13 and is an 
important mediator of systemic inflammatory responses. Genetic variation of 
three genes ( IL-1 α,  IL-1 β, and  IL-1Ra ) in the cluster has been investigated in age-
ing. Three studies to date have examined the frequency of  IL-1  variants in Finn-
ish, Italian and Swedish populations [ 18 ,  19 ,  119 ]. These studies failed to show 
any association with either centenarians or elderly individuals in comparison to 
young controls. Promoter SNPs in this gene cluster are reported to alter gene 
expression and may therefore give rise to a different expression profile. Also,  IL-1  
gene cluster polymorphisms are implicated in a number of age-related patholo-
gies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s 
disease [ 81 ,  95 ].  

    2.4 Interleukin-2  

   Interleukin-2 (IL-2) cytokine plays a pivotal role in cellular immunity by regulating 
the activation, differentiation and proliferation of T-lymphocytes during an immune 
response. In the elderly, decreased levels of proinflammatory IL-2 production and 
secretion have been reported, leading to a situation of limited T-lymphocyte pro-
liferation and thus inhibited cellular response [ 13 ]. A promoter variant of the  IL-2  
gene at position -330 T/G has been shown to negatively affect expression levels, 
demonstrating that the more common T-allele has a higher level of expression. Two 
studies have examined the frequency of the  IL-2  promoter polymorphism -330G 
in ageing populations. The first study by Ross et al. did not identify any frequency 
difference with this SNP and successful ageing in the Irish population [ 104 ]. The 
second study with Italian centenarians supported the lack of association. However, a 
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trend was observed suggesting that the -330G allele is increased in frequency in the 
second study’s centenarian cohort and thus decreased levels of the proinflammatory 
IL-2 cytokine promotes successful ageing [ 109 ]. Interestingly, although decreased 
IL-2 production was reported during the ageing process, increased levels of inter-
leukin-6 (IL-6) were found [ 78 ].  

    2.5 Interleukin-6  

   The interleukin-6 (IL-6) protein is arguably the best cytokine candidate to act as a 
potential marker for the overall health status of an individual [ 27,   67 ]. This is partly 
due to the fact that IL-6 plays a major role in inflammation and in the humoral 
immune response. It has been reported that healthy elderly individuals and cente-
narians exhibit a proinflammatory status, with a distinctive increase in IL-6 pro-
duction [ 32 ]. There is increasing evidence for directly proportional association of 
the  IL-6  -174 C/G promoter polymorphism ( Fig. 1 ) with production levels of the 
cytokine and with age [ 7,   30 ,  85 ].     

   Bonafe and colleagues (2001) published that the homozygous -174GG geno-
type was a disadvantage for longevity in men, reporting associated higher IL-6 
serum levels. The findings of Ross et al. that an overall decrease in the -174GG in 
a cohort of Irish octo/nonagenarians from the Belfast Elderly Longitudinal Free-
living Ageing Study (BELFAST) study group and with particular respect to the 
total males in comparison to the controls during the study would appear to con-
cur with the findings by Bonafe et al. However, Olivieri and colleagues (2002) 
reported that their subjects containing the -174C allele showed a significant age-
related increase in the capability to produce IL-6, even though this genotype 
is supposed to predispose these individuals to be low producers [ 85 ]. Another 
study by Wang et al. in Finland detected no significant change in  IL-6  frequencies 

   Fig. 1 Genomic structures of IL-6 and  IL-10        
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between nonagenarians and blood donors, though a reduction of 2% was noted in 
–174GG frequency in comparison with their age-selected younger control group 
[ 119 ]. This trend for a reduction in –174GG homozygosity in elderly males in 3 
countries across Europe seems intriguing since it appears to confirm in differ-
ent study populations and with alternate study designs like the earlier findings 
obtained in the Italian population.  

   In later studies, there was no difference in the  IL-6  -174 C/G promoter allelic and 
genotypic frequencies between centenarians and controls, but the number of sub-
jects enrolled in these studies was low [ 10 ]. A modest but significant increase in the 
frequency of  IL-6  –174 GG homozygotes with age was noted in a group of Danish 
subjects, though no analysis was carried out for gender [ 20 ]. This discrepancy may 
be due to racial/genetic as well as lifestyle and ethnic/cultural differences between 
these populations.  

   A total of 9 studies have now looked at  IL-6  polymorphism with respect to age-
ing [ 11 ,  19 ]. IL-6 looks like the most interesting cytokine with respect to longev-
ity studies, separate Caucasian European elderly populations and with different 
selection criteria, appear to demonstrate a decrease in the  IL-6 -174GG homozygote 
frequency with extreme old age. Italian researchers additionally demonstrated a 
reduction in  IL-6  high producer allele frequency for male centenarians which was 
not seen in females. In conclusion, large scale studies on many diverse racial and 
ethnic populations are needed to clarify this important topic.  

    2.6 Interleukin-8  

   Interleukin-8 (IL-8) is defined as a “chemokine” due to the observed chemotactic 
activity for specific types of leukocytes. It is produced by most cell types and is impor-
tant for the activation of the inflammatory response and acts as a costimulatory factor 
for T-lymphocyte responses. IL-8 is also a potent neutrophil chemokine that facilitates 
the movement of neutrophils to inflammatory sites where they limit and contain the 
infection. As serious infections are more common in the elderly, it has been postu-
lated that aspects of neutrophil function might be comprised with increasing age [ 23 ]. 
Recently, varied levels of IL-8 production by T- and natural killer (NK)-lymphocytes 
were reported in an elderly Italian population [ 69 ]. Only one study to date has exam-
ined the frequency of the functional  IL-8  -251 A/T promoter variant in ageing, though 
the researchers did not identify any association with either allele [ 104 ].  

    2.7 Interleukin-10  

   Antiinflammatory interleukin-10 (IL-10), which affects both the T- and B-lym-
phocyte responses, has been reported at an increased level in the elderly [ 88 ]. 
IL-10 is a potent proliferation and differentiation factor for B-lymphocytes and 
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prevents production of proinflammatory cytokines such as IL-6 and IL-8. Along 
with significantly increased IL-6 and IL-10 levels, Rink and colleagues (1998) 
reported significantly increased production of IL-8 by leukocytes from the eld-
erly. In the same paper, significantly decreased levels of IL-2 and interferon-γ 
(IFN-γ) were also reported [ 100 ]. A number of studies have investigated the asso-
ciation of ageing with the  IL-10  -1082 A/G promoter SNP ( Fig. 1 ), and although 
the studies have not found any evidence for this, three reported an increase of 
 IL-10  -1082GG homozygous carriers in elderly males of Italian descent [ 59 ,  62 , 
 63 ]. This may highlight a population-specific effect, although it is noteworthy that 
this association was not confirmed in other European Caucasian populations [ 91 , 
 104 ,  119 ].  

    2.8 Interleukin-12  

   NK-lymphocytes play a central role in the innate immune response against bacterial 
or viral infections and tumors, and the NK-lymphocyte activities are highly regu-
lated by numerous cytokines, particularly interleukin-12 (IL-12). IL-12 is secreted 
during the earliest stages of infection and inflammatory response, acting as the key 
immunoregulatory molecule in cellular immune responses. The critical action of IL-
12 at the interface between innate and adaptive immune responses means that any 
age-associated alterations in expression levels are likely to have crucial functional 
consequences in vivo [ 96 ]. Increased levels of total IL-12, due to higher levels of 
the p40 subunit, are reported in the aged Irish population [ 96 ]. In the paper look-
ing at  IL-12  polymorphisms and ageing by Ross et al., similar frequencies of the 
 IL-12  +16,974 A/C polymorphism in aged versus control subjects were observed. 
Although there was a trend for AA homozygotes to be underrepresented in elderly 
males with a 7% decrease in the A allele in elderly males, neither of these decreases 
achieved significance. Likewise, no apparent difference was present for old and 
young female subjects.  

       2.9 Interleukin-18 and Interleukin-19  

   Interleukin-18 (IL-18) is a proinflammatory cytokine that plays a vital role in both 
innate and acquired immune response [ 48 ]. IL-18 has been shown to induce IFN- γ 
and is implicated in a number of inflammatory diseases and neurodegenerative dis-
orders [ 29 ,  83 ]. IL-18 serum concentrations are reported to be higher in centenar-
ians compared to the younger population [ 38 ]. Frayling and colleagues (2007) 
reported an association of an  IL-18  SNP (rs5744292) on serum concentrations of 
the cytokine product and correlated these with physical functionality in the elderly 
[ 36 ]. These findings suggest a possible genetic association of  IL-18  with successful 
ageing and warrants further investigation.  
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   Interleukin (IL)-19 belongs to the IL-10 family of cytokines, functioning to 
stimulate the expression of IL-10 (and the gene locus is adjacent to the  IL-10  gene). 
To date only one study has examined polymorphism of  IL-19  and its association, 
if any, to ageing. Okayam and colleagues (2007) investigated the frequency of four 
SNPs in the  IL-19  gene in the Japanese population. The results showed a significant 
association with age using logistic regression analysis. This preliminary finding 
requires independent replication to prove its validity.  

    2.1     0 Interferon-γ  

   Interferon-γ synthesis by T- and NK-lymphocytes and play a decisive role in defense 
against parasitic/viral infections and intracellular pathogens [ 82 ]. Proinflammatory 
IFN-γ was initially recognized for its antiviral activity but has since established 
itself as a multifunctional cytokine playing an important role in modulating almost 
all phases of the immune response, particularly the inflammatory response [ 4 ].  

   In centenarians, Lio and colleagues first reported that possession of the IFN-γ 
+874A allele (+847 SNP T/A is in linkage with a CA repeat microsatellite allele) was 
associated with longevity in Italian centenarian females likely by controlling inflam-
matory status [ 61 ]. Subsequently, Ross et al. could not be replicate this observation 
in nearly 200 Irish nonagenarians reporting similar frequencies for the CA 12 allele 
repeat in control and aged subjects [ 104 ]. The small decrease in the CA 12 repeat in 
aged, Irish, female nonagenarians was not significant but does demonstrate a similar 
trend to the findings in the Italian centenarian female cohort suggesting a gender-
specific effect in  IFN-γ  genotypes. In Ross et al. the CA 13 repeat allele of  IFN-γ  
microsatellite was similarly represented between Irish aged and young groups with no 
gender difference. The study also commented on a notable trend showing a decrease 
in the frequency of the heterozygote 12, 13 genotype within the aged subjects in com-
parison to the young controls (which was observed to be independent of gender).  

   In the aforementioned Italian study, trend of a decrease in the  IFN-γ  + 874T allele 
was observed among female Sardinian centenarians, however these results relate to only 
a relatively small number of Sardinian female centenarians, which may limit the statis-
tical power of the study [ 91 ]. Thus, the  IFN-γ  high producer haplotype 12 CA/+874T 
showed a decrease in centenarian Italian females with a trend for the same change in 
Irish nonagenarians and Sardinian centenarians. These findings certainly warrant further 
replication studies and gender differences also need to be taken into account.  

       2.1     1 Gender Bias  

   It is postulated that cytokine allele frequencies are possibly gender- and geographi-
cally-specific, similarly to what has been proposed for other polymorphic systems 
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such as the human leukocyte antigen [ 16 ]. Franceschi and colleagues (2000) have 
postulated that gender is a variable concerning the genetics of ageing, proposing 
that men and women follow different pathways to extreme longevity [ 35 ]. This pos-
tulate has been demonstrated in Italian centenarian studies for the  IL-6  -174 G/C, 
 IL-10  -1082 G/A and  IFN- γ +874 T/A polymorphisms, where significant frequency 
differences have been identified when the data was analyzed on the basis of gender 
[ 7 ,  62,   85 ].  

   The  IL-6  -174GG genotype frequency is reported to be decreased in elderly 
males in two independent studies in Italian and Irish populations [ 7 ,  104 ]. The 
 IL-10  -1082 G/A and  IFN- γ +874 T/A polymorphism have also been reported to be 
gender-specific markers for longevity [ 61,   62 ]. Lio and colleagues (2002) reported 
an increased frequency of the homozygote  IL-10  –1082GG genotype in Italian 
centenarian men, and this genotype is associated with high IL-10 cytokine pro-
duction, conferring an anti-inflammatory status which is postulated to increase the 
possibility of extreme longevity [ 62 ]. The  IFN- γ +874T allele is reported to be in 
absolute correlation with the 12 CA repeat allele, where the latter is associated with 
increased IFN-γ production [ 61,   93 ,  94 ]. The group reported that possession of the 
 IFN- γ +874A allele, particularly in females, conferred an overall antiinflammatory 
status promoting longevity.  

    2.1     2 Cytokine Polymorphism Conclusions  

   Due to the intricate nature of the cytokine cascade and the perpetual interaction 
of cytokines within the immune function, a situation is created where the overex-
pression of one cytokine may be either compensated for or enhanced by another. 
This complexity, coupled with the difficulty of clearly defining cytokine activity as 
anti or proinflammatory, may well have confounded the groups whose studies are 
reviewed in this chapter [ 17 ]. The aforementioned studies also highlight the impor-
tance of validation of significant results in either a second subgroup or independent 
cohort of subjects. There is also need to identify such variables as race/ethnicity, 
gender and age when endeavouring to fully ascertain the role(s) of cytokine poly-
morphisms in immunosenescence.  

   Genetic variants in immune response genes are certainly attractive candidates 
to study in the attempt to elucidate the molecular mechanism(s) that occur dur-
ing immunosenescence. However, the absence of age-association for many of the 
cytokine gene variants, even those associated with changing expression levels, 
would indicate the complexity of the cytokine cascade can not be truly reflected by 
a small number of polymorphic markers. Future studies concentrating on compiling 
a genetic cytokine profile that encompasses the overall network (and working in 
tandem with expression levels) will aid in the resolution of the role(s) of cytokines 
in the aged immune function/longevity.  
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     3 Age-related Disorders  

   Identification of major genetic variants affecting population mortality and extreme 
longevity may spur the characterization of pathways high in the hierarchy of the 
physiological processes that influence the onset of common age-related diseases 
[ 46 ]. Conversely, the study of age-related disease may provide greater insight into 
the molecular mechanism(s) that contribute to the ageing process. For example, 
Parkinson’s disease (PD) is one of the most prevalent age-related neurodegenerative 
disorders, with approximately 1% of the population older than 50 years being 
affected. The question that must be asked is whether age-related disorders such as 
PD are a direct cause or a result of the ageing process. Unlike the study of progeriod 
syndromes (which are characterized by accelerated ageing), age-related disorders 
require more focused attention to particular aspects of the disease that mimic, or 
contrast with, healthy ageing.  

   With increasing knowledge of the complexity of the biological pathways of 
the brain there is growing evidence to suggest that there is an active, endogenous 
immune system. Glia cells are one of the most numerous cell types in the brain, 
and a subgroup, microglia, form the tissue macrophage population. The microglia 
play an important role in the growth and survival of neurons and are also critical 
in the inflammatory response of the brain through the production and secretion of 
cytokines [ 21 ]. Inflammation of the brain is postulated to contribute to the patho-
genesis of a number of neurodegenerative disorders including multiple sclerosis, 
Alzheimer’s disease and PD. The pathological, neuroinflammatory damage that is 
observed in these diseases has led researchers to generate hypotheses regarding 
their progression and susceptible neuronal populations. This hallmark neuroinflam-
mation also provides groups with a possible avenue for therapeutic intervention 
and implicates DNA variants that regulate the inflammatory response in disease 
pathogenesis. This next section of the chapter will focus on the role of cytokine 
polymorphisms in PD and how genetic findings in this complex disorder can help 
guide future studies regarding the mechanisms influencing ageing.  

     3.1 Parkinson’s Disease Background  

   The renowned French neurologist Jean Martin Charcot (1825–1893) defined 
the clinical syndrome “maladie de Parkinson” that has since become known as 
Parkinson’s disease. First described by the English physician James Parkinson 
(1755–1824) in his milestone 1817 publication “An Essay on the Shaking Palsy”, 
parkinsonism is characterized by the triad of tremor, rigidity and bradykinesia. 
PD is the most common cause of parkinsonism and the second most frequent 
neurodegenerative disorder, after Alzheimer’s disease. Neuropathological find-
ings in PD are loss of pigmented neurons in the brain stem,  substantia nigra  and 
 locus coeruleus , with intracellular Lewy body inclusions found within surviving 
neurons.  
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   Historically PD was thought to have no genetic basis and epidemiological data 
appeared to support this view. Cross-sectional studies by Tanner et al. and Wird-
efeldt et al. suggested that either there is no genetic basis or that it is only evident 
in early-onset PD (age of onset <50 years), although to date twin studies have 
been underpowered to refute incompletely penetrant genetic causes of PD [ 112 ]. 
Differing disease concordance rates between monozygotic and dizygotic twins in 
longitudinal studies (including those using 18F-dopa positron emission tomogra-
phy; PET) do support heritability in PD [ 92 ]. In fact, many clinical reports note that 
familial aggregation of parkinsonism and a family history of disease is the second 
most significant risk factor after age [ 110 ].  

   The etiology and pathogenesis of PD remains unclear, however, it has been 
suggested that PD, like ageing, may be a multifactorial disorder caused by a combi-
nation of age, genetic and environmental factors. During the last decade, contention 
regarding the importance of genetics in PD was challenged by the identification 
of several large pedigrees in which parkinsonism appeared to have a monogenic, 
Mendelian pattern of inheritance (either autosomal dominant, autosomal recessive 
or X-linked) [ 28 ,  106 ]. However, research studies that have analyzed PD families 
with classical linkage methods have given rise to data which allowed the subsequent 
nomination of 13 regions of the human genome, where pathogenic mutations since 
been identified in five genes (α -synuclein ,  parkin ,  DJ-   1, PINK1 and LRRK2 ), thus 
confirming the role of genetics in PD.  

   The identification of  LRRK2  pathogenic mutations as a cause of autosomal 
dominant parkinsonism which is clinically indistinguishable from sporadic PD has 
once again revolutionized this research field. The  LRRK2  c.6055G>A (Gly2019Ser) 
mutation has become renowned for its high frequency in specific racial groups 
(e.g., ~40% of PD patients of Berber Arab ethnicity) and appears to be present in 
most Caucasian populations. The  LRRK2  variant c.7153G>A (Gly2385Arg) may be 
the most frequent genetic risk factor the development of PD to date, but it appears to 
be restricted to those individuals of Chinese descent [ 107 ]. The reduced penetrance 
observed for  LRRK2  mutations accounts for the presence of these variants in healthy 
control subjects and is reflected in the diversity of the age at symptomatic onset 
of disease in patients. Likewise, even individuals within the same family carrying 
the same  LRRK2  mutation can present with symptoms decades apart with regards 
to age. These observations suggest that  LRRK2 -associated disease is regulated by 
important environmental and/or genetic modifiers [ 103 ].  

    3.2 PD and Cytokines  

   Evidence has also been accumulating over the last decade to indicate that chronic 
inflammation of the brain may be one of these possible disease modifiers and play a 
crucial role in the pathognomic dopaminergic neuronal death of PD [ 1 ,  71 ]. In support 
of this theory, proinflammatory cytokines, such as TNF-α, IL-2 and IL-6, are shown to 
be markedly up-regulated in the brain or the cerebrospinal fluid in PD patients [ 6 ,  24 , 
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 74 ,  75,   77 ]. Despite the potentially important role the inflammatory response, directed 
by cytokines, may play in the pathogenesis of PD, only a limited number of studies 
have been performed to assess if there is an underlying genetic influence (Table 4).  

     In 2000, Kruger and colleagues performed one of the first studies investigat-
ing the possible role of cytokine polymorphisms regarding susceptibility to and 
the pathogenesis of PD [ 55 ]. This study identified significant associations between 
two genes in the  TNF  pathway ( TNF- α and  TNFR1 ). These findings implicated the 
proinflammatory pathway in promoting the dopaminergic neuronal cell death that 
typifies PD. Between 2000 and 2003 further studies were performed in the Japanese 
and Finnish PD populations [ 70 ,  79 – 81 ]. Nishimura and colleagues investigated the 
frequency of variants in  TNF- α,  IL-1ß , chemokine monocyte chemoattractant protein 

Study Population Gene 
polymorphism

Patients Controls Results

Kruger et al. 
2000

German TNF-α -308 G/A 264 (114F 148M) 198 GA

Wahner et al. 
2007

US TNF-α -308 G/A 289 (133F 156M) 269 (130F 139M)  2o

Wu et al. 
2007

Taiwanese TNF-α -863 C/A 369 (173F 196M) 326 (143F 183M) AA

Nishimura et 
al. 2001

Japanese TNF-α -1031 C/T 172 (103F 69M) 157 (98F 59M)  C

Wu et al. 
2007

Taiwanese TNF-α -1031 C/T 369 (173F 196M) 326 (143F 183M)  CC

Kruger et al. 
2000

German TNFR1 -609 G/T 264 (114F 148M) 198  B/2

Kruger et al. 
2000

German TNFR1 +36 A/G 264 (114F 148M) 198  B/2

Nishimura et 
al. 2000

Japanese IL-1β -511 C/T 122 112 1 o 1 o 
(AAO)

Schulte et al. 
2002

German IL-1β -511 C/T 295 (123F 172M) 270 (130F 140M)  T

McGeer et al. 
2002

Canadian IL-1β -511 C/T 100 100  T

Mattila et al. 
2002

Finnish IL-1β -511 C/T* 52 (27F 25M) 73 (34F 39M)  2 o 2o

Wahner et al. 
2007

US IL-1β -511 C/T 289 (133F 156M) 269 (130F 139M)  2o

Hakansson et 
al. 2005

Swedish IL-6 -174 G/C 265 308  GG

Ross et al. 
2003

Irish IL-8 -251 A/T 90 (41F 49M) 93 (65F 28M)  AT

Hakansson et 
al. 2005

Swedish IL-10 -1082 G/A 265 308  GG 
(AAO)

Nishimura et 
al. 2003

Japanese MCP-1 -2518 
A/G

329 (200F 129M) 340 (190F 150M)  AA 
(AAO)

 and  represent a statistically significant (p < 0.05) increase or decrease of alleles or genotypes 
respect to PD patients.  

M =male; F =female. 1o =allele 1; 2o=allele 2. AAO= affects age-at-onset of symptoms.
This table highlights the inconsistency in results (*is inversely associted compared to other stud-

ies) and nomenclature that is used to describe each cytokine polymorphism. 

Table 4 Positive studies on cytokine gene polymorphisms in Parkinson’s disease
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( MCP-1 ), and chemokine receptor-2 ( CCR-2 ) in the Japanese population. Mattila et 
al. investigated the  IL-1  gene cluster, including  IL-1 α,  - ß and  IL-1RN  along with a 
SNP in the intercellular adhesion molecule 1 ( ICAM1 ). The results of both studies 
supported the hypothesis that genetic variation of proinflammatory cytokine genes 
may influence PD with SNPs in the  TNF- α and  IL-1ß  genes associated ( Fig. 2 ). How-
ever, a number of the SNPs examined showed no association with PD susceptibility.     

   A study in the German population also found no evidence of association with the 
 IL-1 α (-889 C/T) SNP with risk of PD [ 76 ]. Ross and colleagues (2004) investigated 
a cross-section of promoter variants in proinflammatory cytokine genes  IL-2  (-330 
T/G),  IL-6  (-174 C/G),  IL-8  (-251 A/T) and  TNF- α (-308 G/A) [ 108 ]. Although no 
association was observed for the variants of  IL-2 ,  IL-6  and  TNF- α, a significant 
decrease in the number of TT homozygous carriers for the  IL-8  gene was observed 
in the PD patients. Interestingly, IL-8 is also known as CXCL8 and belongs to the 
specific group of cytokines known as chemokines.  

   The cells of the brain, particularly neurons, are believed to possess a wide range of 
chemokine receptors [ 73 ]. Neurological injury and PD are often associated with the 
increase of nitric oxide and free radicals from glial cells in the brain [ 64,   113 ]. At sites 
of inflammation, brain cells are exposed to high concentrations of reactive oxygen 
species and reactive nitrogen intermediates (produced by activated neutrophils, mac-
rophages and T-cells) as a normal part of the immune response. A potential variation 
in IL-8 expression in PD subjects may facilitate the influx of neutrophils, immune 
and activated glial cells to sites of damage and inflammation, resulting in increased 
oxidative damage and cell death. However when Huerta and colleagues (2004) 
examined the frequency of polymorphic variants in four chemokine genes,  RANTES , 
 MCP-1 ,  CCR2  and  CCR5 , no significant associations with PD were observed in the 
Spanish population studied [ 49 ]. These results support earlier results for  MCP-1  and 
 CCR2  observed by Nishimura et al. in the Japanese population.  

   In two Swedish studies by Hakansson and colleagues the frequency of several 
cytokine polymorphisms were studied [ 42 ]. No association with PD was observed 
for variants in the  IFN-γ ,  IFN-γR2 , platelet-activating factor acetylhydrolase and 

   Fig. 2      Genomic structures of IL-1cluster and TNF-α    
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 ICAM1  genes. Likewise, a promoter SNP in the  IL-10  gene did not demonstrate 
any association with susceptibility to PD, however it did appear to affect the age-
at-onset with a significantly higher frequency of the A-allele in early-onset PD 
patients. Interestingly, the  IL-6  (-174 G/C) promoter SNP did show association with 
PD with an increased number of -174 GG carriers in the PD patients. The authors 
further suggest this association is stronger when interactions with a SNP in the 
 estrogen receptor-β  gene were considered [ 41 ].  

   The latest two papers on this topic have looked at the primary genes that were 
implicated in PD pathogenesis,  TNF-α  and  IL-1β  [ 118 ,  122 ]. Wu et al. (2007) inves-
tigated 4 -promoter SNPs of the  TNF-α  gene (-308, -857, -863 and -1031) in their 
Taiwanese samples and identified a significant association for the -863 and -1031 
SNPs, which were found to be in high linkage disequilibrium in the study. The 
strongest association was observed with an increased frequency of the -1031 CC 
genotype in PD patients, and these results concur with the earlier Japanese study 
by Nishimura et al. (2001) where an increase in this allele with early-onset PD was 
observed. Wahner et al. (2007) examined the  TNF-α  (-308 G/A) and the  IL-1β  (-511 
C/T) SNPs in a US PD patient-control series and observed a significant association 
with both SNPs, suggesting each SNP individually increased the risk of PD by two-
fold and when combined three-fold ( Fig. 2 ).  

    3.3 Age-Related Disorders Conclusions  

   It is possible that cytokine polymorphism and genetic variants influence suscepti-
bility to the development of parkinsonism symptoms. Given this hypothesis, it is 
then even more likely that these variants will influence pathogenesis of the disease 
affecting age-at-onset, progression and severity of symptoms. The complex nature 
of this devastating disease is indicative of a multifactorial disorder that is influ-
enced by environmental agents (e.g., infection) acting on a genomic background of 
susceptibility. The hypothesis that neuroinflammation enhances the degenerative 
processes involved in PD implies that anti-inflammatory therapeutics may slow 
disease progression. The use of nonsteriodal antiinflammatory drugs (NSAIDs) 
has shown some promise in both PD and Alzheimer’s disease [ 3,   54 ]. At present 
the only symptomatic relief comes from dopamine replacement (levodopa) and 
dopamine agonists, as research into the genetics of PD is still a relatively young 
field. In conclusion, further studies of cytokine polymorphism and genetic variants 
within genes of the proinflammatory network in PD are certainly warranted.  

     4 Perspectives  

   The first century of this new millennium will bear witness to a new era in both 
ageing research and clinical practice. We are moving into the postgenomic era and 
the beginning of individualized medicine and treatment. This holds great promise 
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for the study of complex disorders such as ageing. The field of longevity genet-
ics (“Longevics”) will mature, and the identification of mutations that affect the 
immune system and prolong life will once again revolutionize our views of the age-
ing process [ 102 ]. A strong immune response is clearly important for survival, how-
ever this double-edged sword can also increase morbidity. The studies described 
in this chapter on cytokine gene polymorphisms and ageing certainly suggest that 
further work is warranted in order to achieve a greater understanding of the complex 
mechanism(s) underlying longevity.  

   The intricate nature of the cytokine cascade suggests that any imbalance may be 
detrimental to the individual. This possible imbalance may be due to an aberrant 
genomic background of the cytokine network and may be exaggerated by external 
forces such as infection, stress, smoking and/or diet. Many researchers support the 
pleiotrophic effect hypothesis as to why immunosenescence occurs by the immune 
system/response. To elaborate on this concept, it is thought that a proinflammatory 
genome-genotype (“genomotype”) is beneficial in early-childhood and develop-
ment when the individual is prone to infection. However as we survive past our 
optimal age and generalized degeneration begins, the proinflammatory genomotype 
becomes detrimental thus causing damage and promoting autoimmune disorders. 
Therefore what this phenomenon suggests is that each individual’s inflammatory 
genomotype may behave either as a positive or negative influence on lifespan and 
this outcome is ultimately determined by the individual’s specific environment.  

   By necessity, both the immune response and the ageing process are determined 
by genetic, environmental and stochastic factors. Each component is thought to 
produce a different size effect on a single biological pathway and therefore com-
parisons are extremely difficult to make. Therefore, the identification of genetic 
and environmental factors involved in regulating the cytokine response will help 
highlight other biological pathways that are important in maintaining a healthy 
immune system. A further confounding effect is gender, as a consistent increased 
number of females are becoming centenarians than males. The reason(s) for this 
difference remain unresolved, although studies suggest that gender may effect a dif-
ferential immune responsiveness which then leads to an inflammatory phenotype. 
This observation of a gender-bias is supported by similar findings in age-related 
diseases such as PD, which is more prevalent in males.  

   Given the complexity previously described, how can one objectively measure 
the contribution of cytokine genetics to immunosenescence? This question is of 
course applicable to every pathway postulated to have an effect on the ageing proc-
ess. Likewise, the underlying answer may also be the same being that one must 
measure the genetic influence(s) of the overall pathways. To date, as reviewed in 
this chapter, most studies have examined a small number of variants in one or two 
cytokine genes and observed inconsistent associations. This has in part been due to 
small sample sizes and financial restraints. However, the advances that are being 
made in molecular genetic techniques (including large-scale, rapid genotyping and 
direct DNA sequencing) will allow objective measurements of cytokine genetics 
with respect to immunosenescence to be ascertained. This means there is an unprec-
edented opportunity now available to help unravel the mechanism(s) of the immune 
system regarding ageing and age-related disorders.  
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   Genome-wide association studies provide an objective measure of genetic vari-
ations and are an extension of the classical patient-control studies. These studies 
are now common-place in leading scientific journals (Nature, Science and the New 
England Journal of Medicine). Recent genome-wide association studies have iden-
tified polymorphisms of cytokine genes as being involved in numerous age-related 
disorders, like multiple sclerosis [ 5 ,  25,   26 ,  39 ,  40 ,  43 ,  65,   84 ,  116 ]. It remains to 
be seen if these types of association studies will lead to the identification of those 
genetic factors which influence ageing. These studies will likely require a large col-
laborative effort to obtain the necessary numbers of aged individuals that will pro-
vide the statistical power needed to observe moderate “effect sizes”. The Genetics of 
Healthy Ageing (GEHA) is a current European study of nonagenarian sibling pairs 
which should have the statistical power to elucidate whether the earlier suggestive 
changes in cytokine polymorphisms in relation to age and perhaps gender have any 
coherence, across heterogeneous populations of nonagenarian siblings [ 31 ].  

   Ageing research is becoming of greater interest and importance. The average 
human lifespan continues to be increased, which has resulted in an expanding pro-
portion of elderly people in society. The developments in molecular, gerontologi-
cal research have created the potential for survival beyond that of centenarians. The 
development of stem cell research alone could allow for the generation of completely 
new cells and organs. In the case of PD, mouse embryonic stem (ES) cells have been 
used for cell replacement therapy in an animal model of PD [ 50,   87 ]. From cultured 
ES cells, Kim and colleagues (2002) were able to generate a supply of neurons that 
produce dopamine. The neurons functioned normally and gave clear behavioural 
responses when grafted into the brains of rats that model PD. The potential benefits of 
revolutionary experiments like this regarding the treatment and possible prevention of 
age-related pathologies and perhaps even the rate of ageing itself mean that the dete-
riorative processes of ageing may no longer be the scourge of mankind.  
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                                               Abstract:       Innate immunity provides a first line of host defense against infection 
through microbial recognition and killing while simultaneously activating a clono-
typic immune response. Toll-like receptors (TLRs) are principal mediators of rapid 
microbial recognition and function mainly by detection of pathogen-associated 
molecular patterns (PAMPs) that do not exist in the host. The different members of 
TLRs recognize several PAMPs, such as peptidoglycan for TLR2, lipopolysaccha-
ride (LPS) for TLR4, flagellin for TLR5, and CpGDNA-repeats for TLR9. Several 
endogenous ligands of various TLRs have been also identified in the host. In this 
chapter, we describe the involvement of TLR-4 polymorphisms in immunosenes-
cence, and in particular in age-related diseases, suggesting the crucial role of mol-
ecules of innate immunity on these diseases pathophysiology. Hence, we observed 
that proinflammatory alleles may be related to unsuccessful aging as atherosclerosis 
and Alzheimer’s disease; reciprocally, controlling inflammatory status by antiin-
flammatory alleles may allow to better attain successful aging.  
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     1       Introduction  

  Ageing and longevity are due to a complex interaction of genetic, epigenetic and 
environmental factors [ 1 ]. The genetic component seems to have a relevant role 
in the attainment of longevity, because it is involved in cell maintenance systems, 
including immune system. An optimal performance of the both innate and clono-
typic branches of immune system has been correlated with survival to extreme 
ages [ 2 ]. The ageing of immune system, known as immunosenescence, is the con-
sequence of changes of clonotypic and innate immune cells caused by lymphoid 
tissue involution and chronic antigenic overload. The antigenic stress affects the 
immune system thorough out life with a progressive activation and generation of 
inflammatory responses involved in the pathophysiology of age-related diseases. 
Most of the parameters influencing immunosenescence appear to be under genetic 
control, and immunosenescence fits with the basic assumptions of evolutionary 
theories of aging, such as antagonistic pleiotropy. Accordingly, the innate immune 
system, by neutralizing infectious agents, plays a beneficial role until the time of 
reproduction and parental care, but, by determining a chronic inflammation, can 
play a detrimental one late in life, in a period largely not foreseen by evolution. 
In contrast, the clonotypic immune system, with advancing age, shows an exhaus-
tion, due to accumulation of memory cells, which fill the immunological space [ 2 ]. 
As already mentioned, the genetic background seems to modulate the functional-
ity of innate/inflammatory and clonotypic responses and consequently the inflam-
matory state occurring with advancing age [ 1 ,  2 ]. So, genes encoding molecules 
involved in innate/clonotypic immunity might influence the susceptibility to age-
related diseases and the survival to extreme ages. In other words, the presence of 
pro/antiinflammatory genotypes might determine a negative or positive control of 
inflammation, influencing the susceptibility to age-related diseases and/or promot-
ing longevity [ 2 ].  

  In this chapter, we describe the involvement of Toll-like receptor (TLR) 4 
polymorphisms in immunosenescence, and in particular in age-related diseases, 
suggesting the crucial role of molecules of innate immunity on these diseases patho-
physiology. Hence, we observed that proinflammatory alleles may be related to 
unsuccessful aging as atherosclerosis and Alzheimer’s disease (AD); reciprocally, 
controlling inflammatory status by anti-inflammatory alleles may allow to better 
attain successful aging.  

    2       TLR4  

  The innate immune system is the first line of the defensive mechanisms that pro-
tect host from invading microbial pathogens. Host cells express various pattern 
recognition receptors (PRRs) that sense diverse pathogen-associated molecular pat-
terns (PAMPs), ranging from lipids, lipoproteins, proteins and nucleic acids [ 3 ,  4 ]. 
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Recognition of PAMPs by PRRs activates intracellular signaling pathways that cul-
minate in the induction of inflammatory cytokines, chemokines, interferons (IFNs) 
and upregulation of co-stimulatory molecules. To date, it has been identified three 
families of PRRs, usually defined as “the trinity of pathogen sensors”: Toll-like 
receptors (TLRs), NOD-like receptors and RIG-like receptors (RLR). NLRs with 
known functions detect bacteria, and RLRs are antiviral [ 3 ,  4 ].  

  TLRs family include, in human beings, 10 members that trigger innate immune 
responses through nuclear factor-κB (NF-κB)- dependent and IFN-regulatory fac-
tor (IRF)-dependent signaling pathways [ 4 ,  5 ]. TLRs are evolutionarily conserved 
molecules and were originally identified in vertebrates on the basis of their homol-
ogy with Toll, a molecule that stimulates the production of antimicrobial proteins in 
 Drosophila melanogaster  [ 6 ,  7 ].  

  Some molecules of this family are expressed at the cell surface, whereas others 
are expressed on the membrane of endocytic vesicles or other intracellular organelles 
( Fig. 1 ). The structure of these receptors is quaternary and they are composed of an 
ectodomain of leucine-rich repeats n (LRRs), which are involved directly or through 
accessory molecules in ligand binding, and a cytoplasmic Toll/interleukin(IL)-1 
receptor (TIR) domain that interacts with TIR-domain-containing adaptor mole-
cules ( Fig. 2 ) [ 8 ]. The different members of TLRs recognize several PAMPs, such 
as peptidoglycan for TLR2, lipopolysaccharide (LPS) for TLR4, flagellin for TLR5, 
and CpGDNA-repeats for TLR9 ( Fig. 1 ) [ 9 – 12 ]. Several endogenous ligands of 
various TLRs have been also identified in the host [ 13 ].          

  Fig. 1     The members of 
TLR family are expressed 
at the cell surface and on 
the membrane of endocytic 
vesicles or other intracellular 
organelles. They recognize 
several microbial molecules, 
as shown in the figure   .
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  Taking into account their ability to link several molecules, it has been postu-
lated that the genes encoding TLRs receptors would be subject to diversifying 
selection [ 14 ] This is because the proteins are in direct contact with molecules of 
microbial origin, which might change in structure to evade immune detection. In 
fact, weak purifying selection seems to apply in the case of the TLRs [ 14 ,  15 ]. 
Furthermore, the need for detection of various signature molecules seems to come 
and go in evolution. For example, while some invertebrates are highly sensitive 
to LPS, most invertebrates are not [ 16 – 19 ]. Drosophila exhibits no response to 
pure LPS or lipid A at all. Similarly, most vertebrates (fish, amphibians, reptiles, 
and birds) are at least relatively insensitive to LPS, if not entirely unresponsive 
[ 14 ]. In the case to Danio rerio and Gallus gallus, it is clear that TLR4 encoding 
genes are represented in the genome. However, in fish and in birds, these TLR4 
homologs evidently to not trigger the same set of events as witnessed in mam-
mals. Besides, among mammals, sensitivity to LPS is quite variable, depend-
ing upon which endpoint is examined. Humans, anthropoid apes, ungulates, and 
rabbits are highly sensitive to LPS; mice, rats, and baboons are comparatively 
resistant [ 14 ].  

  To date, it is possible to suggest that TLRs receptors are the key molecules 
of natural responses and they also provide a link between innate and clonotypic 
immunity [ 20 – 22 ]. These evidences have also opened inquiries into previously 
unknown disease mechanisms [ 23 – 25 ]. Their ability to detect different PAMPs 
gives a link between infection and various human diseases [ 23 – 25 ]. In fact, mem-
bers of TLR family have been involved in the pathogenesis of several diseases by 
studies of people analyzing the incidence of diseases having different polymor-
phisms in genes encoding TLRs. So, it has been evidenced the crucial role of well-
known component of TLR family, the TLR4, in some diseases, as atherosclerosis 
and AD [ 24 – 26 ].  

  TLR4 has been identified as the first human homologue of the Drosophila Toll 
[ 6 ,  7 ]. The extracellular domain of TLR4 that contain over 600 amino acids is 
highly polymorphic compared with the transmembrane and intracellular domain 
of the protein [ 5 ,  18 ]. This TLR4 polymorphism contributes to species-specific dif-
ferences in recognition of LPS, the prototypic TLR4 ligand [ 5,   19 ]. The intracel-
lular TIR domain, which is composed of three highly conserved regions, contains 

  Fig. 2     The TLR structure is 
composed of an ectodomain 
of LRRs, which are involved 
directly or through accessory 
molecules in ligand binding, 
and a cytoplasmic Toll/inter-
leukin-1 (IL-1) receptor 
(TIR) domain that interacts 
with TIR-domain-containing 
adaptor molecules   .
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150 amino acids [ 5 ,  20 ]. The TIR domain modulates protein–protein interactions 
between the TLRs and signal transduction elements [ 5 ,  20 ]. As already mentioned, 
TLR4 has been shown to be involved in the recognition of LPS, a major cell wall 
component of Gram negative bacteria [ 14 ]. In addition to LPS, TLR4 recognizes 
several endogenous ligands, such as oxidized-LDL (ox-LDL), lipoteichoic acid, 
heat-shock proteins (HSP), fibronectin and Aβ amyloid peptide of AD. Its activa-
tion by induction of NF-kB and mitogen dependent protein kinase pathways deter-
mines the production of cytokines, chemokines, other inflammatory mediators 
( Fig. 3 ) [ 13 ]. Therefore, it has been suggested that activated TLR4 triggers not only 
innate immunity but also clonotypic immunity. TLR4 activation on dendritic cells 
induces the expression of costimulatory molecules and production of inflammatory 
cytokines [ 22 ]. Then, activated dendritic cells present microorganism derived pep-
tide antigens expressed on the cell surface with Major Histocompatibility Complex 
class II antigen to naive T-cells, thereby initiating an antigen-specific clonotypic 
immune response [ 20 – 22 ].     

  TLR4 activity and function may be modulated by genetic polymorphisms (for 
the most part, single nucleotide polymorphisms, SNPs), prevalently presented in 
extracellular domain. It has been identified a functional SNP in the human TLR4 
gene, an A-G base transition at position +896 base pairs from the transcriptional 
start site, resulting in an aspartic acid to glycine exchange at position 299 in the 
amino-acid sequence (referred to as Asp299Gly or +896A/G) [ 27 ,  28 ]. This SNP 

  Fig. 3     Activation of TLR4 receptor by LPS (or other agents, as endogenous molecules-as shown 
in the figure) induces transmembrane signals that activate NF-kB and mitogen dependent protein 
kinase pathways, determining the expression of a wide number of genes encoding proteins, such as 
cytokines, with regulatory functions upon leukocyte activation and tissue inflammation   .
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causes hyporesponsiveness to LPS as well as an increased risk and susceptibility to 
Gram-negative infections both in human and experimental animals. Recently, it has 
been suggested that this SNP plays a role in a variety of human diseases, ranging 
from infectious and inflammatory diseases to cancer [ 23 – 26 ]. So, TLR4 plays a key 
role in both innate and clonotypic immunity to Gram-negative bacteria and to other 
agents and it seems to be the hub of inflammatory pathophysiology of age-related 
diseases, as atherosclerosis and AD [ 23 – 26 ].  

    3    Involvement of TLR4 in Age-Related Diseases: Its Role 
in Atherosclerosis, AD, and Cancer  

  By now, evidence is accumulating that TLR4 could affect atherosclerosis in mul-
tiple ways [ 24 ,  25 ,  28 – 35 ]. The association between TLR4 and atherosclerosis is 
consistent with findings showing that TLR4 mRNA and protein are more abundant 
in atherosclerosis lesions than in unaffected vessels [ 24 ,  25 ,  30 ]. Furthermore, cul-
tured human vascular endothelial cells express little TLR4 under baseline condi-
tions, and they express high levels of TLR4 on stimulation with proinflammatory 
cytokines [ 29 ]. Among cellular components presented in atherosclerotic plaques are 
several TLR4-expressing cells, including macrophages, endothelial cells, smooth 
muscle cells, T-cells and dendritic cells [ 24 ,  25,   28 – 35 ]. It is largely accepted that 
ox-LDL as well as other endogeneous ligands, that are expressed during arterial 
injury, as HSP are responsible for TLR4 ligation and activation. However, tak-
ing into account the role of life-long pathogen load on the development of elderly 
inflammatory status and atherosclerosis, PAMPs should also be involved in TLR4 
activation ( Fig. 4 ) [ 2 ,  28 – 37 ].     

  To date, there is a large body of genetic data pointing the involvement of 
Asp299Gly SNP in atherosclerosis development. Ultrasound analysis of carotid 
arteries in a large Italian population showed that the Asp299Gly was found less 
frequently in people with progressive lesions representing carotid atherosclerosis, 
compared with a control group. These results were confirmed by other studies that 
found a protective effect of the TLR4 variants on acute coronary events. However, 
other studies investigating a potential association of this SNP with cardiovascu-
lar diseases (CVD), as myocardial infarction (MI), did not yield significant results 
(Table  1 ) [ 28 ,  36 – 46 ]. On the other hand, association studies are influenced by a 
number of possible confounding factors, like the total number of patients and con-
trols and the homogeneity of the population in term of geographical origin among 
others. Artefacts might occur if the controls are not ethnically matched with the 
patients.     

    Literature data have also recently demonstrated the involvement of TLR4 recep-
tor in neurodegeneration. It is now known the role of innate immunity, and pre-
cisely of microglial cells, in the inflammatory pathogenesis of AD, as stated by 
the amyloid cascade/neuroinflammation hypothesis. The former is responsible for 
the production of the neurotoxic substances, such as reactive oxygen and nitrogen 
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species, proinflammatory cytokines, complement proteins and other inflammatory 
mediators that bring important neurodegenerative changes.   Some studies have sug-
gested that activation of microglial cells may be induced throughout the binding 
of Aβ peptides.   Several membrane proteins expressed on microglial cells seem to 
be implicated in Aβ peptides binding. It has been demonstrated that TLR4 recep-
tor binds highly hydrophobic Aβ peptides aggregates suggesting the production of 
neurotoxic substances. A further, not mutually, alternative explanation on the key 
role of microglial activation may be related to the role of TLR4 as LPS receptor. In 
fact, also in AD life-long pathogen burden has been linked to the pathophysiology 
of the disease. So it should to be biologically plausible that functional variation in 
the TLR4 gene might influence the susceptibility to sporadic AD [ 47 – 56 ].  

  This might be the case for the allelic variants of TLR4 gene, as Asp299Gly SNP, 
associated, as above described, with an attenuated receptor signaling and a blunted 
inflammatory response. Association between this polymorphism and AD has been 
described by Minoretti et al. [ 57 ] in an Italian population sample. Our preliminary 
results of a recent study have confirmed that Asp299Gly polymorphism of TLR4 
gene is associated with AD [ 56 ].  

  It has been also suggested the involvement of TLR4 receptor in cancer [ 23 ]. 
It is known the involvement of inflammation, as an etiological factor in several 
human cancer. Growing evidence suggests that the chronic inflammation induced 

  Fig. 4    TLR4 signaling pathway and its relation with atherosclerosis. Both endogenous and exog-
enous ligands can activate TLR4 on cells, such as endothelial cells, vascular smooth muscle cells, 
adventitial fibroblasts, dendritic cells and macrophages. Activated TLR4 lead to activation of the 
NF-KB. This activated transcription factor mediates the expression of several genes and the secre-
tion of proinflammatory cytokines and chemokines, and it also induces expression of adhesion 
molecules. Ultimately, these processes might initiate or promote atherosclerotic lesions   .
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by different pathogens may also play a role in pathophysiology of some cancer, as 
gastric cancer [ 23 ,  58 – 62 ]. Considering that genetic susceptibility is a major risk 
factor for this disease, it has been hypothesized that sequence variants in genes that 
regulate inflammatory response may modify individual susceptibility to cancer. So, 
some studies have analyzed the relationship between the associations of several 
functional polymorphisms in genes involved in LPS signaling variants and risk of 
cancer. Garza-Gonzales et al. [ 59 ] have investigated the association of Asp299Gly 
TLR4 SNP and distal gastric cancer in a Mexican population. The results obtained 
have not demonstrated any association between this SNP and distal gastric cancer, 
suggesting that it do not contribute to the development to disease. The same data 
have been obtained in a study performed in a Venezuelan population [ 60 ]. In an 
other study, it has been investigated the role of different SNPs of some inflammatory 
genes, as Asp299Gly of TLR4 gene, in 377 patients affected by colorectal cancer 

  References    Association studies    Results    P-value  

  Kiechl 
et al28  

  Carotid stenosis    Participants with SNP have lower 
incidence of carotid stenosis  

  0.05  

  Ameziane 
et al38  

  Acute coronary events    Participants with SNP have lower 
incidence of coronary events  

  0.037  

  Balistreri 
et al39  

  MI    Patients (men) with SNP have lower 
incidence of MI  

  0.002  

  Edfeldt 
et al40  

  MI    Men with SNP have increased inci-
dence of MI  

  0.004  

  Zee et al41    MI and stroke    Not significant    0.25  

    Yang et al42   Coronary artery 
stenosis  

  Participants with SNP have not lower 
risk of stenosis  

  0.9  

  Labrum 
et al43  

  Carotid events    There was no association between SNP 
and baseline intima-media thickness 
(IMT) or progression of IMT over 
the 3-year follow up  

  Not   significant  

  O’Halloran 
et al44  

  Coronary artery disease    There was no evidence overall that the 
resistance alleles cumulatively influ-
enced the risk of CVD compared to 
controls or stable angina patients  

  0.12, and 0.40, 
respectively  

  Vainas 
et al 45   

  Peripherical arterial 
disease  

  Among patients affected by periph-
eral arterial disease, TLR4 +896 G 
allele carriership was univariantly 
associated with extensive (more than 
two vascular territories affected) 
atherosclerotic disease  

  0.02  

  Nebel 
et al 46   

  MI    Patients (men) with SNP have not 
lower incidence of MI  

  0.36   

   Table 1       Summary of studies investigating the potential association of Asp299Gly TLR4SNP 
with cardiovascular diseases    



Role of TLR Polymorphisms in Immunosenescence 667

and 326 controls from Spain [ 61 ]. There was no statistically significant association 
between this SNP and colorectal cancer risk. However, different results have been 
found in a study performed in 710 patients affected by lymphoma [ 62 ]. In fact, the 
TLR4 Asp299Gly variant was positively associated with the risk of mucosa-asso-
ciated lymphoid tissue lymphoma (OR=2.76, 95% CI=1.12–6.81) and Hodgkin’s 
lymphoma (OR=1.80, 95% CI=0.99–3.26). Hence, this study suggests an effect of 
this SNP in factors of the innate immune response in the etiology of some lym-
phoma subtypes.  

4     Conclusions  

  Genetic factors play an important role in the ability to achieve exceptional old age, 
theoretically two class of genes can be considered to be at play [ 1 ]. On the one 
hand, individuals with a genetic make-up useful to achieve extreme old age most 
likely present with mutations that significantly increase the risk of premature death 
by lethal, age, and nonage-associated diseases. On the other hand, it has been sug-
gested that genetic variants conferring protection against basic mechanisms of aging 
and/or age-related illnesses also might exist [ 1 ,  2 ].  

  To discover the gene factors that let an organism to survive beyond its reproduc-
tive age, it is necessary to use an extreme phenotype. From this perspective, the 
centenarians are the good choice as they represent the survived tail of a very special 
segment of population. They comprise a cohort of living people who celebrate today 
the 100th birthday and escaped neonatal mortality, preantibiotic era, fatal outcomes 
of age-related complex diseases. A small number of centenarians is in quite good 
heath (in “ good robustness ”), defined as ‘‘group A’’ by Franceschi et al., ‘‘escap-
ers’’ by Evert et al., and ‘‘exceptionals’’ by Gondo et al. [ 63 – 65 ]. The centenarians 
also represent that segment of population who better adapted and readapted from 
both biological and non-biological point of view. Centenarians, as representative of 
longevity, consent to understand the role played by genetic structure of population 
on the onset of phenotype and the historical dynamism of the longevity trait from a 
demographic point of view. So, they are the best model for studying the genetics of 
longevity, and for identifying the genetic factors involved in age-related diseases, 
since the centenarians represent selected survivors who have clearly delayed or in 
some cases even escaped age-related diseases, that affect old people and are respon-
sible their morbidity and mortality [ 66 ]. Hence, centenarians are a human model of 
disease-free [ 67 ]. In addition, centenarian offspring have increased likelihood of 
surviving to 100 years and show a reduced prevalence of age-associated diseases, as 
CVD and less prevalence of cardiovascular risk factors [ 68 ,  69 ]. So, genes involved 
in CVD may play an opposite role in human longevity, as Asp299Gly SNP. In par-
ticular, we have postulated that alleles associated to CVD susceptibility should not 
be included in the genetic background favoring longevity. So, the genetic back-
ground promoting pro-inflammatory responses may play an opposite roles in CVD 
and in longevity [ 37 ,  70 – 72 ].  
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  Following a novel approach to study genes involved in CVD and reciprocally in 
longevity, we have recently demonstrated that antiinflammtory allele of Asp299Gly 
SNP of TLR4 gene, +896G, is overrepresented in male Sicilian centenarians and 
underrepresented in men affected by MI, with intermediate values in control popu-
lation [ 37 ]. Thus, our results suggest a role of the innate immune defense system 
and particularly TLR4 in CVD, and our comparison with the oldest old may help 
elucidate the role of genetics in age-associated diseases characterized by a multifac-
torial etiology [ 39 ]. Accordingly, TLR4 polymorphisms, which attenuate receptor 
signaling, enhance the risk of infections, but decrease that of atherogenesis, presum-
ably by limiting inflammatory responses [ 27 ,  28 ]. Hence, the mutation might result 
in an increased chance of longevity in a modern environment with reduced pathogen 
load and improved control of severe infections by antibiotics.  

  However, a recent study has excluded a noteworthy influence of Asp299Gly SNP 
upon human longevity or MI in German men [ 46 ]. The causes of the discrepancies 
seem be not clear, but the inclusion criteria, the studied populations, and the meas-
ured endpoint differed substantially among the studies. Further, it is claimed that 
results obtained on human populations should always be replicated. Indeed, asso-
ciation with particular genetic polymorphisms and longevity is reported for some 
population but not for others. However, this is not strange because, as underlined 
by Capri et al. [ 73 ] human populations are characterized by specific gene pools 
that arise from the particular group’s history in terms of chance (genetic drift) and 
environment (natural selection). Hence, replication cannot reasonably be expected 
for longevity in light of the considerations discussed in that study.  

  The suggestion that enhanced male life expectancy is associated with anti-
inflammatory TLR4 SNP is interesting in view of the role of TLR-4 proinflamma-
tory allele in the control of infectious diseases [ 25 ]. In order to rationalize these 
two seemingly conflicting situations, it might be argued that males carriers of the 
antiinflammatory allele who are lucky enough not to contact serious bacterial infec-
tion earlier in life may have an increased chance of long life survival (trade-off). 
However the same appears not to be true for female life expectancy [ 74 ].  
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Part III
Mechanisms - Receptors 
and Signal Transduction





                             Abstract:       There are several functions of T-lymphocytes which are altered with 
aging. The cause is not exactly known. However the changes in T-lymphocyte acti-
vation could be caused by the altered T-cell receptor (TCR) signaling after ligation. 
The recently described membrane lipid rafts (MR) are critical to the assembly of the 
TCR, the CD28 coreceptor and the IL-2 receptor signaling machinery. The defect 
in IL-2 production by CD4 +  T-cells with aging is not due to lower levels of expres-
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sion of the TCR, CD28 or intracellular signaling molecules. However, there is a 
direct correlation between the activation of p56 Lck  and LAT at the cellular level and 
their association/recruitment with the lipid raft fractions of CD4 +  and CD8 +  T-cells. 
p56 Lck , LAT and Akt/PKB are weakly phosphorylated in MR of stimulated CD4 +  
T-cells of elderly as compared to young donors. Moreover, MR undergo changes 
in their lipid composition (ganglioside M1, cholesterol) with aging. There exists a 
differential role for lipid rafts in CD4 +  and CD8 +  T-cell activation with aging and 
consequently a differential localization of CD28 which may explain disparities in 
response to stimulation in human aging, mainly affecting the CD4 +  T-lymphocyte 
population.  

      Keywords:        T-cells    •    CD4+ T-cells    •    CD8+ T-cells    •    Lipid rafts    •    Signal
transduction    •    Aging Cholesterol    •    CD28 Coreceptor   

     1      Introduction  

  Most of the cell functions occur through specific receptors triggered by various 
ligands. T-cells possess several receptors which lead to their activation and to the 
maintenance of their activation status. Antigenic recognition by the T-cell receptor 
(TCR) triggers a series of biochemical events that result in the expression of a range 
of genes that are essential to T-cell responses, expansion and effector functions [ 1 ]. 
In addition, ligation of costimulatory CD28, that is required for interleukin-2 pro-
duction and commitment to proliferation [ 2 ], enhances lipid raft polarization [ 3 ,   4 ]. 
Thus, CD28 triggering is essential for sustained T-cell activation [ 2 ]. Once IL-2 is 
secreted it will act in a paracrine manner on T-cells to trigger their clonal expansion 
via the IL-2 receptors. Membrane lipid rafts (MR) are dynamic structures and the 
time-dependent recruitment or exclusion of signaling proteins in these MR control 
T-cell activation and immune responses [ 5 ]. Moreover, lipid rafts are dynamic struc-
tures whose composition and function may vary according to cell types and cell 
subsets, especially in the case of T-lymphocytes [ 6 ]. Heterogeneity in MR composi-
tion and function may explain disparities in lymphocyte subset functions [ 7 ].  

    2   Signaling via TCR, CD28 and IL-2 Receptors 
and Their Changes with Aging  

   2.1   Receptors Involved in T-Lymphocyte Activation  

  The encounter of pathogens with lymphocytes will initiate their activation resulting 
in clonal expansion. The cascade of signaling molecules initiated by the stimulation 
of specific surface receptors results in the activation of several transcription factors. 
The most important receptors implicated in the clonal expansion of T-cells are the 
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TCR, the coreceptors including CD28 and the IL-2 cytokine receptor (IL-2R). These 
receptors function via an intracellular signaling cascade assuring the specificity and 
the fidelity of the expected response. T-cells need a first signal (signal 1) priming them 
to the possibility to respond by a clonal expansion to a specific antigen presented in 
the frame of a major histocompatibility complex (MHC) by an antigen-presenting cell 
(APC). This will assure that the whole membrane and the early signaling machinery is 
readily assembled to proceed toward the next stage, that is, the progression toward the 
full, sustained response. This is ensured by various coreceptors among which the most 
important is CD28, which represents signal 2. Signals transmitted by this receptor 
assure that the clonal expansion occurs via a sustained activation by the creation of the 
immune synapse (IS). Finally, as the concerted CD28 activation leads to the production 
of IL-2, it should also efficiently stimulate T-cells, representing signal 3. Altogether 
these receptors act for a complete response of T-cells assuring an adequate response to 
a specific antigen. With aging several studies have shown that the number of TCR is 
not changed. The CD28 number, claimed as a biomarker of aging, seems to decrease 
mainly in the case of a specific T-cell subpopulation, the memory CD8+ T-cells. These 
cells seem to represent a very late differentiated population characterizing immunose-
nescence [ 8 ]. These cells are the result of continuous chronic stimulations by antigens 
probably of viral origin including cytomegalovirus (CMV) and other herpes viruses, 
as similar changes were observed during CMV infection [ 9 ]. They are also the result 
of the low-grade chronic inflammation, however, the inflam-aging theory could not 
be validated in SENIEUR donors. One naturally arising question is whether this is a 
normal process related to aging, whether related to age-related disease processes or to 
the progressing frailty syndrome occurring in certain groups of elderly subjects. Our 
works suggest that in case of CD4+ T-cells the number of CD28 co-receptor is not 
decreasing, while it is decreasing in the CD8+ T-cell subpopulation [ 10 ]. Whether, the 
expression of IL-2R change during aging is still controversial, however, our work sug-
gests a maintained expression in healthy elderly individuals. The TCR and CD28 are 
signaling via two specific cascades, however, there are more and more data suggest-
ing that a cross-talk could exist between these two major pathways. We will describe 
these signaling pathways individually and in their cross-talk with a special emphasis 
on changes occurring with aging. However, first we will discuss MR and their role in 
signaling with special emphasis on the age-related changes.  

    2.2   Membrane Lipid Raft Function and Composition  

  One of the most important advances in membrane biology and consequently in the 
signaling field was the discovery of the existence of lipid rafts in the cell membrane 
that are now called membrane rafts (MR) [ 11 ]. These microdomains are composed 
mainly of satured lipids, cholesterol, glycosphyngolipids, GPI-anchored proteins, and 
posttranslationally modified proteins. These high-melting sphingolipids packed with 
cholesterol generate a liquid-ordered phase (lo) arrangement. This composition forms 
an efficient signaling platform necessary for an adequate signaling and cell response. 
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TCR ligation induces a redistribution of phosphorylated proteins into MR, which are 
highly compact relatively small domains (20–200 nM). The saturation of the lipids as 
well as the enrichment in cholesterol both allow the rafts to move through the mem-
brane as discrete units. Their movement will be differentially segregated to the various 
poles of the cell depending on their main specific component, such as ganglioside 
M1 (GM1), GM3, or flotillin. The consequence of cell polarity is the asymmetric 
localization of membrane receptors and signaling molecules between the leading edge 
(at the cell front) and the uropod at the rear edge [ 12 ] This cell polarity will also influ-
ence the protein composition and the protein–protein interactions into the rafts. Data 
support the role of MR in the asymmetric distribution of membrane proteins during 
cell polarization. There is still a debate on which interactions direct and determine 
the MR movements and functions, and whether they involve cholesterol, membrane 
proteins, or both [ 13 ]. Experimental data seem to indicate that there could be several 
types of rafts playing different roles [ 14 ]. Furthermore, the role of MR is not limited 
to signal transduction, but also to lipid transport, virus entry, cell movement, as well 
as cell–cell communication. The accumulation or clusters of signaling molecules via 
MR initiate the formation of a signaling platform, which increases the efficiency of 
signaling. T-cell activation is the consequence of the interaction between the TCR and 
specific antigen presented by the APC. Signal 1 is occurring over a time frame of a 
few seconds but the interaction between T-cells and APC can be sustained for many 
hours. This prolonged interaction leads to the formation of the supramolecular activa-
tion cluster (SMAC) at the immunological synapse (IS). Thus, the sustained T-cell 
activation via organized MR signaling ultimately leads to the formation of a mature IS 
needed to achieve full T-cell activation through the contribution of CD28. The organi-
zation and composition of the membrane will directly modulate the formation of such 
a signaling platform, which ultimately influences cellular activation and functions. 
Thus, MR play a very important role in signaling by the formation of the signalo-
some, which are multicomponent transduction complexes. The correlation between 
the capacity of a molecule to be recruited into the IS and its preference for being 
linked to membrane rafts is still debated. However, very recent experimental evidence 
suggest that dynamic rafts reorganization at the IS favor T-cell activation by generat-
ing an environment where signal transduction is protected and essentially amplified 
[ 12 ]. Thus, the recruitment and clustering of MR within the IS segregate negative and 
positive actors of T-cell activation and protect TCR signaling.  

  Furthermore, the localization of molecules throughout the membrane is depend-
ent on posttranslational modifications including acylation, farnesylation, and palmi-
toylation. Recently, it was demonstrated that LAT phosphorylation was not optimal 
in antigen-primed anergic CD4+ T-cells after TCR ligation [ 15 ]. It is of interest that 
LAT association with membrane rafts was defective in these CD4+ T-cells and this 
was partly explained by the impaired palmitoylation of LAT. It can be supposed that 
the posttranslational lipidation of the signaling molecules targeting them to MR 
under stimulation is altered with aging. In T-cells some of the signaling machinery 
is constitutively included in MR, such as the TCR, Lck, while other molecules are 
recruited during activation, such as CD28, IL-2R, LAT, PI3K. It is of note that we 
presented evidence that CD4+ and CD8+ T-cells require differential activation [ 10 ]. 
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The signaling machinery in CD4+ T-cells relies on MR for its assembly, while in 
CD8+ T-cells a certain preassembly of the signalosome decreases the necessity of 
MR for adequate signaling. This could be perhaps explained by the differential fate 
of these two T-cell subpopulations. There are still numerous questions to answer 
on the role of MR in T-cell activation and IS formation, nevertheless, a consensus 
exists, which states that in a way or another MR participate in T-cell activation.  

    2.3    The Contribution of Membrane Lipid Rafts to the Altered-
T-Lymphocyte Functions with Aging  

  We have reported an alteration in the function of MR with aging. MR poorly 
coalesce in CD4 +  T-cells of elderly subjects [ 10 ] although the alterations are less 
pronounced in the case of CD8 +   T-cells. We have also reported alterations in the 
recruitment and activation of Lck and LAT into MR of T-cells from aged humans 
[ 16 ]. One important finding was that CD28 and IL-2R were weakly recruited to MR 
in CD4 + T-cells of elderly subjects. In contrast, these proteins were already located 
to MR in CD8 +  T-cells from elderly subjects prior to stimulation. These observa-
tions suggested that the assembly of the signaling machinery in CD4 +  T-cells relies 
largely on MR, whereas in CD8 +  T-cells a preassembly of the signalosome has been 
suggested by us [ 10 ] and by others [ 6 ,   7 ].  

  Moreover, MR of CD4 +  and CD8 +  T-cells behave differently in polarization 
experiments induced by anti-TCR/CD28-coated beads. While the beads induced MR 
polarization to the region of contact in CD4 +  T-cells of young and elderly individu-
als, the beads failed to induce coalescence in CD8 +  T-cells of both groups of donors. 
Recently, it was supposed that the expression of CD8 gives to the cell a “domi-
nant-negative” phenotype towards MR polarization [ 6 ] as it occurred in immature 
CD4 + CD8 +  T-cells [ 18 ]. Thus, MR functions may be settled on during T-cell selec-
tion by an unknown mechanism. Altogether these data suggest that CD4 +  T-cells 
heavily rely on MR to reach a full state of activation, while CD8 +  T-cells due to 
their pre-existing signalosome could circumvent “lipid rafting.’’ This raised the pos-
sibility that similar age-related changes in MR cholesterol composition may affect 
differentially CD4 +  and CD8 +  T-cells, the former being much more affected.  

  To further support the hypothesis that the properties of the signalosome in CD8 +  
T-cells differ from that of CD4 +  T-cells we assessed the effect of MR disruption on 
T-cell proliferation. Data revealed that CD8 +  T-cells were less sensitive to a low con-
centration (0.5 mM) of β-methyl cyclodextrin, a MR disrupting agent, as compared 
to CD4 +  T-cells. Whereas the proliferative response of CD4 +  T-cells of young and 
elderly donors was completely abolished, there still remained a partial response of 
CD8 +  T-cells to TCR/CD28 stimulation. These observations suggested differential 
intrinsic properties of MR in CD4 +  T-cells as compared to CD8 +  T-cells which may 
result in a differential mode of signaling. These data may also explain the differen-
tial kinetic of IL-2 production by CD4 +  and CD8 +  T-cells.  



680 T. Fulop et al.

  One key component of MR is cholesterol which serves to stabilize their structure 
and to modulate their fluidity [ 19 ]. The concentration of cholesterol was 1.6-fold 
higher in MR fractions from CD4 +  and CD8 +  T-cells of elderly subjects as compared 
to young individuals. The anisotropy of CD4 +  and CD8 +  T-cells and MR fractions 
prepared from these cells was increased by approximately 10% in the case of elderly 
donors, suggesting an inverse correlation between MR cholesterol content and plasma 
membrane fluidity. The cause of the increase in the concentration of cholesterol in 
resting T-cells with aging is not known but may be the result of an imbalance in cel-
lular cholesterol metabolism. Preliminary data from our laboratories indicate that sig-
nificant changes occur with aging in the HDL-mediated reverse cholesterol transport. 
This mechanism is membrane raft-dependent [ 20 ] and suggests that its deregulation 
may contribute to the elevated plasma membrane cholesterol content in T-lymphocytes 
from normolipemic elderly humans. Altogether the increased cholesterol content and 
decreased fluidity of the membrane found here in both T-cells subsets reinforce our 
previous data in T-cells [ 21 ], contributing to functional decrease, however can not give 
an explanation for the differential functional behavior between these T-cells subsets. 
In this context another question arises concerning the properties of the lipids order-
ing the lipid rafts. We showed a quantitative increase in rafts cholesterol with aging 
but changes in oxidative status should alter MR properties and functioning as well. 
Since CD8 +  T-cells possess a cytotoxic activity via their granules, they may be gifted 
with a higher potency towards oxidation and other aggressions than CD4 +  T-cells also 
explaining why they were less affected by immune senescence. Moreover, unsatured 
fatty acids were shown to inhibit T-cells activation and functions by selectively dis-
placing signaling molecules from MR. Thus, changes in fatty acids composition may 
also explain discrepancies between young and elderly donors as well as between CD4 +  
and CD8 +  T-cells from the same donor. We are currently addressing these questions.  

  In view of the alterations in plasma membrane cholesterol concentration in MR, we 
also analyzed the distribution of the GM1. The GM1 fluorescence intensity in CD4 +  
and CD8 +  T-cells of elderly individuals was more than two-fold than that measured 
in the corresponding T-cells of young donors. The increase in GM1 may have critical 
effects on T-cell functions that depend on MR, namely the recruitment of proteins 
involved in the early events of signaling. In this connection, it has been reported that 
over-expression of membrane microdomains constituent such as GM1 in PC12 cells 
can suppress nerve growth factor signals by modulating signal-transducing molecules 
localization and plasma membrane fluidity [ 22 ]. As a corollary, high levels of GM1 in 
MR of resting CD4 +  T-cells of elderly individuals may interfere with GM1 turnover 
[ 23 ] resulting in defects in early T-cell signaling as well as in IL-2 production.  

  The end-point of MR function is to induce the formation of the IS via SMAC [ 24 , 
 25 ]. The data of O’Keefe et al. [ 26 ] showed that the formation of SMAC is not required 
for activation of naïve CD8 +  T-cells, giving support to the differential sensitivity of 
activation between CD4 +  and CD8 +  T-lymphocytes. This reinforces our hypothesis 
that CD4 +  T-cells did not behave in the same manner as CD8 +  T-cells in aging due do 
their differential mode of signalling. The triggering of CD28 is a critical step for MR 
polarization which results in SMAC formation leading ultimately to IL-2 production 
[ 27 ]. Differential alterations in the CD28 signaling between CD4 +  and CD8 +  T-cells 
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subsets may clearly explain the functional alterations of MR with aging leading to 
altered signaling and function mainly in CD4 +  T-cells, as will be described below.  

    2.4   T-cell Receptor Signalling and its Changes with Aging  

  T-lymphocyte activation culminates in cell proliferation and differentiation into effec-
tor and memory cells. The engagement of the receptors by duly presented antigens 
leads to a specific response driven by the signaling cascade. At the very early step 
of T-cell activation there are several key events that determine the specificity and the 
intensity of T-cell response. The first step in TCR-mediated signaling is the activation 
of different tyrosine kinases, leading to the tyrosine phosphorylation of several down-
stream molecules. The first signal through the TCR induces the phosphorylation of 
Lck, via recruitment of ZAP-70 leading to LAT phosphorylation (see Figure  1 ) which 
becomes a scaffold for the recruitment of multiple partners including other adaptor 
proteins and enzymes involved in phospholipid metabolism such as phosphatidyli-
nositol-3-kinase (PI3K) and phospholipase-Cγ1 (PLC-γ1). A host of experimental 
data support the view that many proteins involved in T-cell signaling such as p56 Lck , 
LAT, SLP-76, protein kinase-Cθ and Gads are recruited in MR, whereas others such 
as CD45 are excluded [ 28 ] or transiently associated as in the case of CD4 [ 29 ].     

  The activation of Lck is a very tightly controlled process, which involves phos-
phatases, such as CD45 and the tyrosine kinases Csk, as well as regulatory mole-
cules, such as Cbp/PAG and FynT. The control of Lck activation involves the tyrosine 
phosphatase CD45 and the PTK Csk which is regulated by the MR-resident Cbp/
PAG and FynT, as well as the CaMKII substrate, cytosolic resident C3BP [ 30 – 32 ]. 
Csk is a ubiquitously expressed cytosolic PTK; it plays a negative regulatory role in 
cells by inhibiting intracellular processes induced by Src tyrosine kinases. The Csk 
SH2 domain interacts specifically with several tyrosine phosphorylated molecules 
and among them with the recently identified adaptor-Csk-binding protein/phos-
phoprotein associated with glycosphyngolipid-enriched microdomains (Cbp/PAG). 
Cbp/PAG has been shown to be palmitoylated and targeted to rafts. In resting human 
T-cells Cbp/PAG is constitutively phosphorylated and this results in recruitment 
of Csk to the rafts. This interaction increases the catalytic activity of Csk on its 
substrate, thereby inhibiting Src tyrosine kinases activity. However, this interaction 
is reversible. The dephosphorylation of Cbp/PAG releases Csk and promotes the 
activation of Src kinases upon TCR stimulation. This represents a sort of threshold 
regulator in T-cell activation. So far, no data exist concerning the activity of these 
factors with aging. However, it can be hypothesized that the interaction between 
Cbp/PAG and Csk is altered, therefore affecting the release of Csk.  

  With aging there is a well-known deregulation of the immune response. This 
deregulation is mainly the reflection of alterations in the cellular immune response 
mediated by T-lymphocytes. The main alterations are the decreased proliferation due 
to reduced IL-2 production leading to altered clonal expansion. The causes of this 
decline are not well understood, however, many explanations have been proposed. 
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One hypothesis to explain this observation suggests alterations in TCR-dependent 
signaling. During the past few years our laboratory has greatly contributed to the 
elucidation of the multiple changes in TCR signal transduction [ 16 ]. We and others 
have shown that several steps of the signaling cascade following TCR ligation are 
altered with aging [ 33 ]. However, much effort has focused on downstream events of 
T-cell signaling and less attention has been given to possible alterations in upstream 
events [ 34 ,   35 ], including the assembly of signaling molecules in MR. Recently, 
we have presented evidence that the age-related alterations in T-cell activation are 
linked to changes in MR composition and function [ 16 ]. It is now well documented 
that other early events related to protein tyrosine phosphorylation following TCR 
activation are altered in T-cells with aging, such as the generation of myoinositol 
1, 4, 5-trisphosphate, intracellular free calcium mobilization, and PKC translocation 
to the membrane. It was also shown that defects in translocation of PKC following 
TCR stimulation are present in T-cells of old humans [15] and mice. Recently, our 
work showed that the activation, that is, tyrosine phosphorylation of the upstream 
molecules, such as Lck and LAT was also altered with aging. Thus, with aging we 
observe an alteration in all activation phases of T-cell signaling. This activation via the 
intermediate signaling events finally should lead to the activation of NFAT and NF-kB 
for the production of IL-2, which is consequently also altered with aging ( Fig.1 ).  

  Fig. 1    Signalling pathways involved in signal 1, 2, and 3. TCR, CD28 and IL-2 receptor signal-
ling is shown. The signalling events shown here are described and quoted throughout this review   
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  Recently, data clearly showed that changes in MR machinery also occur in 
autoimmune diseases such as in systemic lupus erythematosus (SLE). Jury et al. 
[ 36 ,   37 ] demonstrated in their paper that p56 Lck  was over-associated in MR of CD3 +  
T-cells explaining the hyperactivity of these cells in SLE patients. Based on the 
data presented, we suggest that the changes in MR composition and functions lead 
to impaired p56 Lck  activation and may be the main cause of the alterations in CD4 +  
T-cell functions and consequently in immune senescence.  

    2.5   CD28 Dependent Signaling and Their Changes with Aging  

  For an efficient T-lymphocyte activation, the T-cell co-receptors (e.g., CD28, ICOS) 
should also be activated by their ligands (e.g., CD80/CD86) expressed on antigen 
presenting cells (APC) [ 38 – 41 ]. Certain pathways seem to be privileged and among 
them the phophatidylinositol 3-kinase (PI-3K;  See   Fig. 1 ). The main components of 
the PI-3K pathway include the following molecules PI-3K→Akt→IKK→NF- B and 
PI-3K→PDK-1→PKCθ→IKK→NF- B from which certain are recruited to MR. 
Interestingly, the CD28 pathway also activates the Lck, LAT, SLP-76, Grb2/GADS, 
Vav and the protein phosphatase PP2A [ 42 – 45 ]. Ultimately this co-stimulatory path-
way regulate the translocation of NF-AT and NF- B [ 46 ,   47 ]. The cytoplasmic tail 
of CD28 is phosphorylated by Lck which in turn initiate the recruitment and activa-
tion of PI-3K [ 48 ]. PI-3K initiates the translocation of Akt (PKB) in MR following 
its phosphorylation by PDK1. PDK1 is inserted in MR and phosphorylates PKCθ 
which leads to the activation of the latter molecule. The activated PKCθ recruit 
NEMO to MR and activates, via CARMA1 (CARD11), the complex Bcl10/MALT1/
TRAF6 [ 43 – 45 ]. This complex induces the ubiquitination of IKK, its degradation by 
the proteasome and, finally the activation of NF-kB and the translocation of the Rel 
proteins to the nucleus. Thus, PI-3K and Akt are the essential early components for 
the induction of T-lymphocytes functions by the concurrent and/or individual activa-
tion of TCR et CD28 [ 45 ,   49 ]. All these events assure that IL-2 will be produced and 
secreted. As the level of CD28 expression is decreasing with aging this could con-
tribute to the diminished production of IL-2 via an altered T-lymphocyte signaling, 
leading ultimately to a decreased T-lymphocyte clonal expansion.  

  Our recent work indicates that CD28 signaling leading to the phosphorylation of 
Akt is decreased mainly in CD4 +  T-cells from aged individuals. Akt was weakly acti-
vated in CD4 +  T-cells of elderly subjects but not in the case of CD8 +  T-cells. These 
data indicate a critical alteration in CD28 signaling in CD4 +  T-cells of elderly subjects, 
which can not be explained by the slight change in CD28 expression. Paradoxically, 
the marked increase in CD28 low  CD8 +  T-cells did not affect Akt activation. This further 
contributes to the decrease of NF- B activation in mice and in humans already shown 
to be due to a decreased inactivation of I B by the proteasome. Moreover, in view 
of the pleiotropic effects of Akt, its decreased activation also suggested that in CD4 +  
T-cells, downstream signaling events including the up-regulation of the transcription 
factors, NF-kB and NF-AT, would be impaired and that would result in defects in 



684 T. Fulop et al.

cytoskeletal rearrangements, cell cycling and ultimately in a decreased production of 
IL-2 in T-cells. We have also demonstrated that the CD28 number only partly explains 
the inability to activate adequately T-cells as Akt activation was more efficient in 
CD8 +  T-cells, having reduced CD28 co-receptors, compared to CD4 +  T-cells, having 
relatively conserved CD28 co-receptor number with aging. Our most recent results 
seemed to suggest that this is not the decreased number of CD28 co-receptors which 
plays the crucial role but the altered CD28 localization as a determinant factor of the 
immunosenescence [ 10 ]. Thus, changes in the CD28 co-receptor signaling might have 
far reaching consequences on T-cell functions in aging.  

  These findings explain one very important finding in immunosenescence which 
is the differential sensitivity of CD4 +  and CD8 +  T-cells towards activation induced 
cell death (AICD). CD4 +  T-cells are more susceptible to AICD than CD8 +  T-cells 
[ 50 ]. This can be explained by the differential signaling of CD28 towards Akt acti-
vation as this pathway mediates the survival/apoptosis of T-cells. Moreover, we 
already published data showing that the level of expression of a special receptor is 
not the best marker for cellular function but its differential membrane localization, 
such as for Toll-like receptors [ 51 ] and/or signaling molecules will ultimately influ-
ence cell fate and this immune function.  

2.6  Convergence of TCR/CD28 Signaling Pathways in T-cells 
Activation and Their Changes with Aging

      The signaling pathways elicited by TCR and CD28 converge for inducing the translo-
cation of NF- B and initiate the transcription of the IL-2 gene. It was suggested that 
the amplification of the signaling cascade initiated by the TCR is mainly dependent 
on CD28 for the polarization of MR [ 47 ]. Indeed, the engagement of CD28 induces 
the redistribution of MR enriched in GM1 at the site of TCR contact with APC. CD28 
generates a favorable environment where the signals are protected, segregated and 
amplified. This prolonged physical stability between the T-lymphocyte and APC is 
fundamental to the production of IL-2 and to the clonal expansion of T-lymphocytes 
[ 40 ]. The IS formation is occurring after the MR polarization. The IS is a special spa-
tial region highly organized containing signaling proteins, adhesion and cytoskeleton 
molecules [ 3 ,   24 ,   52 ,   53 ]. In this context, it is of note that the activation of CD4 +  
and CD8 +  lymphocytes differ in their dynamics. The CD4 +  necessitate a prolonged 
activation to be able to proliferate, while a hour contact is enough in case of CD8 +  
lymphocytes [ 54 ]. Three different studies including our suggest a differential role for 
MR in the activation of CD4 +  and CD8 +  cells [ 6 ,   10 ,   17 ] as described above.  

  In summary, with aging, there is an alteration of T-cell signaling either in signal 1 
or signal 2 or both. As already described there are many alterations in the signaling 
cascade of T-cells, including calcium metabolism, tyrosine kinases phosphorylation, 
and PKC translocation to the membrane. Moreover, it is now well accepted that there 
are alterations in the very early stages of the signaling cascade, that is, in the composi-
tion and function of MR. There is an increase in cholesterol and sphingolipid content, 
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while a decrease in Lck and LAT tyrosine phosphorylation was observed. Not only 
was the composition of membrane raft found altered but also their functions. With 
aging MR polarize much less than do those of young subjects. These changes, taking 
into account what was described above concerning the role of MR in IS formation, 
underline the functional changes observed in T-cells with aging. It is of note that vari-
ous subpopulations of T-cells are differently affected. CD4 +  cells are most affected by 
these signal transduction changes with aging, whereas although CD8 +  T-cells are also 
affected, their reactivity is better maintained than that of CD4 +  T-cells. Nevertheless, 
one should also consider the changes within CD8 and CD4 susbets, i.e., naïve versus 
memory cells. This will need further investigations to identify whether the loss of cel-
lular functions and signaling are only due to loss of CD28 expression (in the memory 
cells) or has another origin.  

    2.7   IL-2 Signalling and its Changes with Aging  

  IL-2 is one of the most important cytokine for T-cells representing the “signal 3” 
for the efficient clonal expansion of T-cells under antigenic stimulation [ 55 ]. IL-2 
receptor is composed of several subunits having specific role, however only the β 
subunit is involved in the signaling initiation [ 56 ,  57 ]. Whether this subunit is asso-
ciated with MR for effective signaling is still controversial. Nevertheless, the signal-
ing cascade is well known. The ligand attachment to the IL-2 receptor is initiating 
the activation by tyrosine phosphorylation of Janus kinases 3 (JAK3), which in turn 
activates the signal transducer and activator of transcription 3 and 5 (STAT3 and 
STAT5) [ 58 ,   59 ]. This results in the translocation to the nucleus of these transcrip-
tion factors which initiates the cellular response of proliferation [ 60 ]. The Jak/STAT 
pathway is a rapid intracellular communication system used by many cytokines 
and growth factors to mediate signals from the plasma membrane to the nucleus in 
order to regulate proliferation and differentiation of most tissue types ( See   Fig. 1 ). 
These pathways play a crucial role in the induction of the T-cell response to these 
cytokines namely clonal expansion [ 60 ,  61 ]. Many factors are controlling the Jak/
STAT pathways which are also zinc dependent [ 62 ]. Furthermore, the Jak/STAT is 
one of the signaling pathway which is sensitive to redox conditions [ 63 ,   64 ].  

  In T-cells from elderly individuals we reported recently an alteration in IL-2 recep-
tor signal transduction resulting in decreased JAK3 and STAT3/5 activation [ 65 ]. 
Thus, aging is accompanied with a signaling defect of the cytokine receptors IL-2 
independently of the receptor number, as was already demonstrated [ 21 ] except for 
the very elderly aged over 90 years. This latter phenomenon seems to be in accordance 
with studies demonstrating less immune dysfunction in old old compared to young 
old individuals suggesting a contribution of an intact immune system to longevity. 
It is of note that zinc supplemented at physiological doses could not modulate the 
altered IL-2 signaling of individuals aged up to 90 years old. This suggests that either 
the normal zinc levels in T-cells are not sensitive to a supplementation or that the zinc 
mediated processes including anti-oxidant, anti-inflammatory, membrane physiology 



686 T. Fulop et al.

maintenance are not major players in the altered signaling. Indeed, as we have 
shown, one of the basic age-related alterations affects the membrane composition 
[ 10 ]. In contrast, over 90 years old, the zinc could reverse the negative signaling effect 
of IL-2 indicating that the physiological behavior of T-cells of old–old individuals 
is fundamentally different. This needs further studies to determine the mechanism 
by which zinc is acting but it can be hypothesized that the inhibitory molecules like 
Protein inhibitor of activated STATs (PIAS) can be more efficiently modulated at this 
age [ 66 ]. This indicates that in T-lymphocyte activation one should always take into 
account the negative regulatory factors too.  

     3   Membrane Lipid Rafts and Cytoskeleton  

  T-cell activation involves F-actin rearrangements. Several molecules which are associ-
ated with DRM participate in tethering DRM to the actin cytoskeleton. Actin polymer-
ization is regulated by the RhoGTPase Rac1 which activates WASP and Cdc42 which 
upreglulates the activity of Scar/WAVE. Activation of WASP and WAVE stimulates 
F-actin branching by upregulating the activity of the Arp2/3 complex [ 67 ]. The inter-
action between DRM and the actin cytoskeleton works in two directions: DRM-asso-
ciated proteins regulate F-actin rearrangements whereas the actin cytoskeleton serves 
to induce and sustain DRM polarization in activated cells. During the formation of IS, 
CD28 is responsible for actin rearrangement and the coalescence of DRM. In addi-
tion, the adaptors Vav1 and Slp76 are key regulators of actin rearrangements required 
for the accumulation of signaling molecules/DRM at the T-cell/APC interface. The 
upregulation of Vav1 activity by CD28 is achieved through Lck. Thus, Lck is involved 
in CD28-related actin remodeling, MR coalescence and T-cell activation. A decade 
ago, it was found that F-actin polymerization was altered in T-cells of elderly under 
stimulation. No data in relation to MR exist, however, considering the alterations 
found in their composition and function in T-cells with aging we can suggest that 
the F-actin rearrangements could also be deficient in aging. Taken together, it can be 
concluded that with aging there is an alteration in T-cell activation due to a deregula-
tion of the intracellular signaling pathways via an alteration of the T-cell membrane 
composition leading to altered functions, such as proliferation and IL-2 production. 
Although F-actin polymerization has been reported to be altered in lymphocytes of 
aged mice [ 68 ], there are no data in T-cells with respect to actin reorganization in 
young or elderly subjects and the relationship to MR.  

    4    Negative Regulation of T-Lymphocyte Activation 
and its Changes with Aging  

  Lymphocytes are not only positively activated by kinases but also negatively. This 
can be at the level of various molecules of the signaling cascade or the termination 
of the activation process. One way to negatively regulate T-lymphocyte activation is 
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through protein phosphatases (PPases). In addition to the kinase component of T-cell 
activation, it exists other enzymes which intervene in the negative regulation of the sig-
naling cascade such as the PPases and the phosphatidylinositol (PtdIns) phosphatases 
[ 69 ,   70 ]. The most important targets of PPAses are the activation pathways of Lck and 
PI-3K. SHP-1 dephosphorylates and inhibits PI-3K [ 47 ,  71 ]. The PPase SHIP and the 
PtdIns phosphatase PTEN converge for the negative regulation of PI-3K. While SHIP 
hydrolyses the phosphate groups on phosphotyrosine residues of PI-3K, the PTEN cut 
the phosphate groups in position 3 of PtdIns-3, 4, 5 trisphosphates, destroying recog-
nition site by the PH domain of PI-3K [ 71 – 73 ]. The activity of PPases, which is as 
finely regulated as that of protein kinases, ultimately also depends on their interaction 
with MR. This is clearly demonstrated for the modulation of CD45 activity [ 74 – 76 ] 
and as we have demonstrated for the PPase SHP-1 [ 77 ]. CD45, when located in MR 
has a positive effect on Lck activation, while when CD45 is displaced, such as in the 
quiescent state, Lck is inactivated. We have recently shown a similar phenomenon for 
SHP-1 in neutrophils [ 77 ]. There is more and more experimental evidence that the 
balance between tyrosine kinases and phosphatases is essential for the maintenance of 
the resting status and for activation, which can predict alterations with aging. Only a 
few data exist concerning phosphatase activity in T-cells with aging. CD45 is a recep-
tor-like phosphatase expressed on all nucleated hematopoietic cells. One key function 
of CD45 is to serve as a positive regulator of Src tyrosine kinases, by opposing Csk 
function, and dephosphorylating the negative regulatory C terminal tyrosine of Src 
tyrosine kinases. CD45-protein tyrosine phosphatase activity in old T-cells was found 
to be decreased compared to young cells [ 78 ]. However, it may be necessary to reas-
sess the behavior of CD45 under activation in terms of its involvement in the IS, from 
which it is usually excluded upon T-cell activation. Our own studies using cholesterol 
repletion of T-cells from young subjects, being a partial aging model of T-cells, sug-
gest alterations in phosphatase activities (our unpublished data). Furthermore, because 
in neutrophils which are very short-lived cells important alterations were found for 
SHP-1 activity, it can be suggested that phosphatase activities might also be altered 
with aging in long-lived cells such as T-cells. Our very recent data indicate that there 
is much more SHP-1 content in the membrane of T-cells from elderly compared to 
young subjects [ 79 ]. The activity of SHP-1 is also increased in T-cells of elderly as 
determined by tyrosine phosphorylation following anti-CD3 and anti-CD28 stimula-
tions compared to identical conditions in T-cells of young subjects. The exact signifi-
cance of this increased activity is not well understood, but could have a negative effect 
on Lck activation [ 80 ]. Altogether, there are interestingly very few data concerning the 
phosphatase activity in relation to TCR activation. Certainly, no data exist concerning 
their association/recruitment to MR. This should be further explored in the future.  

  The other way to negatively regulate T-lymphocyte activation is by scaffold 
Homer proteins. The Homer proteins are composed of three members. These pro-
teins expressed in several tissues were found in MR of glial cells. These Homer 
proteins were, until very recently, associated to Ca 2+  mobilization, following their 
interaction with TRP canonics (TRPC) [ 81 ]. However a recent publication of Huang 
and al [ 82 ] clearly demonstrate that Homer2 and Homer3 are negative regulators of 
lymphocyte activation. These proteins compete with calcineurin for NF-AT. This 
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competition stops the calcineurin-dependent dephosphorylation of NF-AT and its 
subsequent translocation to the nucleus. These results raise the possibility that 
Homer (1, 2 ou 3) could be differentially recruited in MR of lymphocytes in elderly 
subjects. A preferential and sustained recruitment of Homer in MR could contribute 
to the diminution of the immune response of elderly subjects.  

  Thus, most of the early signaling events were shown to be altered with aging in 
human T-cells especially in CD4 +  T-cells. Thus, it would be very difficult to assign the 
alteration in T-cell activation to any of the participating signaling molecules. Then, 
what can be the cause of these signaling alterations in T-cells occurring during immu-
nosenescence? Could a common change explain this signaling alteration in T-cells 
upon activation? Investigations in the late 1980s already suggested that biochemical 
and biophysical alterations of the cell membrane could be responsible for the altered 
immune response with aging. Alterations in the lipid composition and fluidity of the 
cell membrane were found [ 83 ]. One explanation that is naturally emerging is the 
changes at the membrane level either qualitatively or quantitatively.  

    5      Membrane Composition Changes with Aging: Role 
of Cholesterol  

  It was suggested several decades ago that the T-cell membrane from elderly su bjects 
is more rigid than that of young subjects [ 83 ]. We recently presented evidence that an 
increase in free cholesterol could explain these physicochemical changes observed 
about 20 years ago [19]. There is a twofold increase in the T-cell membrane cho-
lesterol content with aging. Cholesterol is an essential component of the membrane 
as it maintains a certain order in the plasma membrane structure, as it is now well 
recognized, through the MR ( See   Fig. 2 ). This increase in cholesterol content leads 
to the contention that if we can extract the overcharge we would be able to restore 
T-cell functions. Unfortunately, until now only partial restoration of the functions 
was obtained. Methyl-β-cyclodextrin (MBCD) used in small quantities has so many 
other membrane disturbing effects that no functional improvement was observed 
in T-cells of elderly [ 21 ,  84 ]. Statin (which inhibits cholesterol synthesis via the 
inhibition of the HMG-CoA reductase) used at high concentrations necessary to see 
a reduction in cellular cholesterol levels in Jurkat cells resulted in apoptotic death 
[ 51 ]. The only known physiological cholesterol extracting agent is high-density 
lipoprotein (HDL). HDL via the reverse transport of cholesterol is able to decrease 
the membrane cholesterol content very rapidly, but it was much less efficient in case 
of T-cells of elderly (our unpublished data). Nevertheless, the proliferation and IL-2 
production of T-cells of elderly were slightly improved.     

  The other way to assess the role of cholesterol is to replenish the membrane of 
T-cells of young subjects with cholesterol to the level observed in T-cells of elderly 
subjects. Our results with the replenishment with free cholesterol have shown a 
decrease in proliferation and IL-2 secretion, such as observed in immunosenes-
cence. Thus, increased cholesterol in the membrane of T-cells from young subjects 
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rendered them functionally aged. In the mean time the GM-1 content in the mem-
brane is increased. There is no explanation why the cholesterol is increasing as the 
serum cholesterol content is remaining unchanged in elderly subjects. It could be 
that the cholesterol uptake is dysregulated, the intracellular cholesterol production 
via the HMG-CoA reductase can be increased, or that the reverse cholesterol trans-
port assured by HDL is deficient. Our recent experimental data seem to indicate that 
the reverse transport of cholesterol by HDL is indeed altered in T-cells with aging.  

    6    Do Membrane Rafts Properties Contribute to Human 
Immunosenescence?  

  Considering all the changes described above the question naturally arises what is 
the role of MR and could changes in their composition and in their function con-
tribute to the altered T-cell activation observed during immunosenescence? The 
experimental data presented so far seem to support a positive answer to this ques-
tion. With aging, as described above, we demonstrated an alteration in the func-
tion of the MR as they are almost unable to coalesce in CD4 +  T-cells with aging. 
The alterations are less dramatic for CD8 +  T-cells. We have demonstrated an alter-
ation in the recruitment and activation of Lck and LAT into MR. In this context 
one of the most important findings is that the CD28 as well as the IL-2R cannot 
be recruited to the membrane rafts in CD4 +  T-cells of elderly subjects explaining 

Fig. 2 Age-associated alterations in TCR signaling. TCR signaling events which are altered with 
aging are depicted here. Non-cited molecules or pathways are not changing with age. The relevant 
reference can be find throughout this review
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the alteration of the signaling of these receptors with aging. In contrast, in CD8 +  
T-cells these receptors are already recruited to the MR. Thus, the age-associated 
alterations in their properties include the increase in cholesterol content, impaired 
coalescence, and selective differences in the recruitment of key proteins involved 
in TCR signaling. It can be thus hypothesized taking into account these experi-
mental data that the increased rigidity of the membrane following the increase 
in cholesterol content limits MR functionality. This loss of function leads to the 
inability to recruit to the IS the necessary machinery or alternatively to exclude 
the nonparticipating molecules to reach an adequate activation, which is a hall-
mark of immunosenescence.  

    7   Conclusion  

  With aging we observe an alteration of the immune response collectively desig-
nated as immunosenescence. One of its most striking aspects is the altered T-cell 
activation for clonal expansion by specific antigens. The causes of this decreased 
activation are not completely known. Recent studies shed light on the role of sig-
naling alterations following TCR and CD28 ligation. The final outcome of protein 
rafting is the formation of the IS, which is needed to sustain the activation, which 
will result in a proper immune response. We can document changes in molecular 
events with aging, but we are not yet able to explain these changes. The ultimate 
defect in signaling can be explained by the newly discovered membrane rafts 
alterations in composition, function, and size with aging. These functional and 
physicochemical properties are influenced by intrinsic as well as extrinsic fac-
tors. Understanding the events that lead to changes in the TCR signaling cascade 
would be of great benefit considering the large number of diseases in which MR 
dysfunction is thought to play a role. Altogether these data suggest that MR altera-
tions in T-cells do contribute to immunosenescence.  
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                                Abstract:        There are multiple ways for cells to die, including necrosis, apoptosis, and 
autophagy. Apoptosis or programmed cell death or suicidal cell death is a physiological 
form of cell death, which is critical in cellular homeostasis. Apoptosis occurs in almost 
all cell types in the body and begins as early as eight cell embryo stage and continues 
throughout the lifespan of the organism, albeit at different rate. There are multiple 
roads to apoptotic cell death, including extrinsic or death receptor-mediated and intrin-
sic, which may be mediated via mitochondrial pathway and the endoplasmic reticulum 
pathways. Most of apoptotic cell death are mediated by serine proteases, the caspases, 
which cleave a number of target substrates, including enzymes, transcription factors, 
and structural proteins. However, apoptosis may also be mediated by caspase-inde-
pendent pathways. In this review we will discuss molecular signaling and regulation of 
death receptor pathways, particularly CD95- and TNFR- mediated apoptosis, in naïve 
and various memory subsets of T-cells, and changes during human aging.  

        Keywords   :     CD95    •     Caspases    •     NF-κB    •     FLIP    •     TNF    •     TNF receptors    
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     1 Introduction  

   Life requires death; without cell death many of us may have been borne with 
chromosomal defects. There is an evidence to suggest at even at 8 cell stage of embryo, 
2 cells that display chromosomal abnormalities are deleted by apoptosis. In postnatal 
life, apoptosis plays a critical role in cellular homeostasis and removal of mutated or 
undesired cells. In the immune system, apoptosis plays an important role in selection of 
T-cell repertoire, killing of target cells by cytotoxic T-cells (CTL) and natural killer cells, 
removal of effector cells at the termination of an immune response, immune privilege, 
and lymphocyte homeostasis. One of the major players in the execution of apoptosis is 
a group of cysteine proteases, the caspases; though under certain conditions, and in cer-
tain cell types, apoptosis may be mediated by a caspase-independent pathway (Loeffler 
et al. 2001). Apoptosis signals may be mediated via extrinsic or death receptor pathway 
(Ashkanazi and Dixit 1998; Gupta 2001, 2002; Larvik and Krammer 2005; Gupta and 
Gupta 2007), and intrinsic pathway, which is mediated via mitochondria and the endo-
plasmic reticulum (ER) (Ferri and Kroemer 2001; Gupta 2000; Gupta and Gupta 2007; 
Green and Evan 2002; Kroemer and Reed 2000; Martnou and Green 2001; Zamzami 
and Kroemer 2001). In all 3 pathways, a set of distinct initiator or proximal caspases 
are activated, which then activate common effector or executioner caspases to induce 
morphological and biochemical features of apoptosis (Gupta 2002). All caspases are 
produced as catalytically inactive zymogens and undergo proteolytic activation. Initia-
tor caspases (caspase-8 and caspase-10) are activated in a large membrane death-induc-
ing signaling complex (DISC). Initiator caspases are characterized by the presence of 
80–100 amino acid death domain (DD). DD superfamily is comprised of subfamily 
of DD, death effector domain (DED), and the caspase-recruiting domain (CARD), 
which facilitates the recruitment of initiator caspases into the DISC. Initiator caspases 
undergo autoproteolytic activation following homodimerization. Activated initiator 
caspases cleave and activate executioner caspases, primarily caspase-3, caspase-6, and 
caspase-7. Activated executioner caspases cleave a number of cell-death substrates, 
including actin, lamin, inhibitor of caspase-activated DNAse (ICAD), plectin, RAS 
homologue-associated coiled-coil containing protein kinase 1 (ROCK1) and gelsolin, 
DNA-repair enzymes, and survival transcription factors to induce apoptosis (Gupta 
2002; Igney and Krammer 2002). The apoptotic cells express several “eat-me” sig-
nals including phosphatidyl serine and different surface sugars which allow them to be 
engulfed by neighboring phagocytic cells. More recently, certain caspases have shown 
to be involved the activation and proliferation of T-cells. However, these mechanisms 
will not be discussed in this review.  

    2 Death Receptor Signaling Pathways of Apoptosis  

   In the death receptor pathway, apoptosis cascade is triggered by signals via cell 
surface death receptors, which belong to a large superfamily of tumor necrosis factor 
receptors (TNFR), and are characterized by the presence of DD in their cytoplasmic 



Molecular Signaling of CD95- and TNFR-Mediated Apoptosis  697

tail. They include TNFR1, CD95, TNF-related apoptosis-inducing ligand receptor-1 
(TRAILR1), TRAILR2, death receptor 3 (DR3) and DR6 (Krammer et al. 2007). In 
this review we will discuss two prototype death receptors, the CD95 and TNFR.  

   2.1 CD95-mediated Apoptosis Signaling (Fig. 1)  

       Ligation of CD95 with CD95 ligand (CD95L) or anti-CD95 antibodies triggers 
the recruitment of a set of adaptor molecules and procaspases (due to homotypic 
interactions between their DD and DED) resulting in the formation of DISC. DISC 

   Fig. 1       CD95-mediated apoptosis pathway  
     Upon ligation with CD95 ligand (CD95L), CD95 undergoe oligomerization of its death doman 
(DD), which recruits am adaptor Fas-associated death domain (FADD) and then by homotypic 
protein-protein interaction between their death effector domain (DED), it recruits initiator pro-
caspases (-8, -10) forming a death-inducing signal complex (DISC) as a platform for initiation 
of apoptosis, Procaspase-8, -10 are activated by homodimerization and axtive caspase-8, -10 
are released from the DISC into the cytoplasm where they cleave executioner caspases to form 
homodimetic active executioner caspases to induce apoptosis. When caspase-8 at the DISC is 
low, it cleaves Bid to generate truncated Bid (tBid), which is translocated to the mitochondria 
where it promotes apoptosis by releasing cytocrome c. Cytochrome c binds to Apaf-1 and recruits 
procaspase-9 to form an Apoptosome. Active caspases-9 activates effector caspases resulting in 
apoptosis. XIAP inhibits the activation and activity of caspase-3.     
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contains oligomerized/trimerized CD95, Fas-associated death domain (FADD), 2 
isoforms of procaspase-8, procasapse-8a (FLICE or MACHα1) and procaspase-
8 (MACHα2), procaspase-10, and cellular FLICE inhibitory protein (FLIP). The 
formation of DISC results in autoproteolytic activation of initiator caspases, pro-
caspase-8 and procaspase-10. The activation of procaspase-8 is dependent upon 
its local concentrations (high concentrations favor) for autoproteolytic activation. 
The homodimers of procaspase-8 have proteolytic activity and proteolytic proc-
ess appears to occur at the DISC by 2 cleavage events, resulting the generation of 
an active caspase-8 tetramer (Chang et al. 2003), which is subsequently released 
from the DISC into the cytosol to activate effector procaspases to induce apoptosis. 
Procaspase-10 forms active heterodimer at the DISC; however, whether caspase-10 
can trigger CD95-induced apoptosis in the absence of caspase-8 is controversial; 
levels of procaspase-10 at the DISC are not sufficient to trigger apoptosis alone 
(Kischkel et al. 2001; Sprick et al. 2002). Based upon the concentration of caspase-
8 at the DISC CD95-mediated apoptosis signaling pathway is divided into 2 types 
(Scaffidi et al. 1998). Active caspase-8 concentration at the DISC is high in Type-I 
cells. In these cells, active caspase-8 activates effector caspase-3, caspase-6, and 
caspase-7. In contrast, Type-II cells are characterized by low levels of active cas-
pase-8 at the DISC and requires additional amplifying mechanism to induce apop-
tosis. It involves cleavage of BH3-interacting-domain death agonist (BID) by active 
caspase-8 to generate truncated BID (tBID), which induces aggregation of Bcl-2-
associated X protein (Bax) at the mitochondria and release of cytochrome c. In the 
cytosol cytochrome c binds to adapter Apaf-1 (Apoptosis-activating factor) to form 
large protein complex, apoptosome, along with procaspase-9. This is followed by 
activation of procaspase-9 to active caspase-9, which in turn activate effector cas-
pase-3, caspase-6, and caspase-7 to induce apoptosis. Type-II signaling is blocked 
by Bcl-2 and Bcl-x 

L
 , whereas Type-I signaling cannot be blocked by Bcl-2 or Bcl-x 

L 

 (Scaffidi et al. 1998). CD95-mediated apoptosis in T-cells is predominantly medi-
ated via Type-I signaling.  

       2.2 TNFR-mediated Apoptosis Signaling  

   TNF-α exerts a variety of biological effects, including production of inflammatory 
cytokines, proliferation, differentiation, and cell death (Ashkanazi and Dixit 1998; 
Gupta 2000, 2001, 2002; Hsu et al. 1996). While pleiotropic effects of TNF-α are 
mediated by binding to type I and type II receptors (TNFR-I and TNFR-II), the 
death-inducing signal is predominantly mediated via TNFR-I; however, TNFR-II 
have been shown to participate indirectly in TNF-α-induced cell death via regulating 
apoptosis mediated by TNFR-I (Declercz et al. 1998; Haridas et al. 1998; Locksley 
et al. 2001; Pimentel-Muinos and Seed 1999; Screaton G and Xu 2000; Tartaglia et 
al. 1993; Thomas et al. 1990; Vandenabeele et al. 1995; Weiss et al. 1998). Both cell 
survival and cell death signals mediated by TNFR require distinct sets of adapters 
and other downstream signaling molecules. Steps of TNF-α -induced signaling are 
reviewed [33,34] and shown in Fig. 2.  
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         Upon interaction with TNF-α, TNFR-I undergoes trimerization of its receptor 
death domains, which in turn recruit an adaptor protein, TNFR-associated death 
domain (TRADD). In order to induce death signal, TRADD recruits FADD. There-
fore, for death inducing signaling via CD95 or TNFR, FADD serves as a common 
conduit. The remaining downstream signaling steps are similar to those described 
above for CD95-mediated apoptosis. Alternatively, for the survival and other biologi-
cal function of TNF-α, TRADD recruits distinct sets of adapter proteins, the TRAF-2 
(TNFR-associated factor-2) and receptor interactive protein (RIP). TRAF-2 and RIP 
stimulate pathways leading to activation of MAP kinase and NF B. Both NF- B 
(Ghosh and Karin 2002; Karin and Lin 2002) and transient activation of (mitogen-
activated protein kinases) MAPK induce survival signals (Natoli et al. 1997), whereas 
prolonged activation of MAPK promote apoptosis (Hacki et al. 2000). MAPK is a 
family of proteins, including p38, MAPK, and extracellular signal regulatory kinase 
1 and 2 (ERK). The antiapoptotic genes that are up-regulated by NF- B activation 
include  cIAP1, cIAP2, XIAP, Gadd45 β , Bcl-X   

 L 
   , A20, TRAF-1, TRF-2 and FLIP  (Chen 

et al. 2000; DeSmaele et al. 2001; Ghosh and Karin 2002; Tang et al. 2001)  .

     3 Regulation of Death Receptor-mediated Apoptosis  

   3.1 cFLIP Proteins  

   A role of cFLIP proteins in the inhibition of extrinsic pathway of apoptosis is well 
established (Golks et al. 2005; Thome and Tschopp 2001). Three alternatively spliced 

   Fig. 2      TNF-TNFR signaling pathway       
Upon ligation with TNF-α, TNFR-I mediates both survival signal and death signal by recruit-
ment of different set of adapter proteins (TRAF-2/RIP and FADD).     
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forms of cFLIPs (cFLIP 
L
 , cFLIPs, cFLIP 

R
 ) have been described. All 3 isoforms con-

tain 2 DED with homology to n-terminal domain of procaspase-8 and are recruited 
to the CD95 DISC by protein-protein interactions via their DED. Both cFLIPs and 
cFLIP 

R
  are structurally related and block activation of procaspase-8 at the DISC; 

however, the role of cFLIP 
L
  is more complex. At high level cFLIP 

L 
 blocks the 

activation of procaspase-8 at the DISC by blocking its processing, whereas at low 
concentration of cFLIP 

L
  at the DISC promotes the cleavage of procaspase-8 resulting 

in the formation of cFLIP 
L
 —procaspase-8 heterodimer resulting in facilitating apop-

tosis. Therefore, cFLIP 
L
  based upon its concentration at the CD95 DISC may serve 

as antiapoptotic or proapoptotic molecule. Both cFLIPs and cFLIP 
R
  rescue T-cells 

from activation-induced cell death (AICD). A role of cFLIP in T-cell activation has 
been supported in FLIP transgenic and knock out mice, as well as by an overexpres-
sion of cFLIP 

L
  (Dohrman et al. 2005; Thome and Tschopp 2001).  

   In addition to 3 spliced isoforms, 2 N-terminal cleavage products of cFLIP, 
p43-FLIP and p22-FLIP have been reported, which promote survival via activation 
of NF- B (Golks et al. 2005; Kataoka and Tschopp 2004). P43-FLIP (a cleaved 
form of FLIP 

L)
  activates NF- B via its interaction with TRAF1, TRAF2 and RIP-1, 

which together activate NF- B. Since FLIPs does not associate with this complex, 
it appears that caspase-like domain of cFLIPl is essential in the activation of NF- B 
via TRF2/RIP pathway. P22-FLIP, which is generated by N-terminal cleavage by 
caspase-8, activates NF- B by directly interacting with IKK complex via IKKγ. 
The ratio between procaspase-8 to cFLIP is critical in determining the amount of 
p22-FLIP generation and therefore, activation of NF- B. Though described origi-
nally as an inhibitor of CD95-mediated apoptosis, it is apparent that cFLIP proteins 
also regulate TNFR-mediated apoptosis.  

    3.2 NF- B  

   The predominant form of NF- B in lymphocytes is a heterodimer comprising of p50 
and p65. In unstimulated cells, NF- B is kept in the cytoplasm through interaction 
with the inhibitory proteins termed as I B (inhibitor B) (Ghosh and Karin 2002; 
Karin and Lin 2002). When cells are exposed to TNF-α, I B is phosphorylated 
followed by ubiquitination and degradation of I B by the 26S proteosome. Free 
NF- B dimers are released and translocated to the nucleus, where they activate tran-
scription of a number of target genes, including anti-apoptotic genes  cIAP1, cIAP2, 
XIAP, Gadd45 β , Bcl-X   

L
   , A20, TRAF-1, TRF-2 and FLIP .  

    3.3 A20 and Gadd45β  

   TNFR-mediated apoptosis is also regulated by A20 and gadd45β (De Smaele et al. 
2001; Opipari et al. 1992). A20 is a ring finger protein, which has dual activity in 
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that it inhibits apoptosis as well as inhibits NF- B activation (Heyninck and Beyaert 
2005; Opipari et al. 1992).These activities of A20 are cell type specific. A20 inhibits 
NF- B activation and therefore promotes apoptosis by first deubiquitination of K 63  
RIP (which activates NF- B) and subsequent K 48  ubiquitination of RIP rendering 
RIP susceptible to S26 proteasomal degradation. In contrast, A20 inhibits apoptosis, 
at least partially, by binding to TXBP151, which inhibits TNF-α-induced apoptosis. 
Furthermore, A20 and cIAP interact with a common region in TRAF2. Therefore, 
A20 releases cIAP from the TRAF2-signaling complex, thereby allowing cIAPs 
to exert their antiapoptotic effects. Gadd45β inhibits TNF-α-induced apoptosis by 
inhibiting prolonged activation of MAPK (De Smaele et al. 2001).  

    3.4 IAP Proteins  

   IAP family proteins, which were originally identified in the genome of baculovirus, 
have a key role in the negative regulation of caspase-dependent apoptosis medi-
ated by death receptor, the ER pathway, and mitochondrial pathway (reviewed in 
Salvesen and Duckett 2004). The cIAP-1 and cIAP-2, two structurally homologous 
proteins were initially isolated by their interaction with TRAF-1 and TRAF-2 in 
the TNF-RII complex. cIAP1 is also recruited to DISK of TNF-RI by TRAF-2. 
In addition to cIAP1 and cIAP2, XIAP have a conserved COOH-terminal RING 
finger, zinc-binding domain (Liston et al. 1996). Among these IAPs XIAP sup-
presses apoptosis by preventing the activation of procaspases9-and caspase-3 and 
by inhibiting directly the enzyme activity of mature caspases. TRAF-2-IAP complex 
inhibits caspases-8 activation by an unknown mechanism.  

     4  Apoptosis in Naïve and Memory Subsets of CD4+ and CD8+ 
T-cells in Aging  

   4.1 T-cell Differentiation into Memory Subsets  

   Recent work has suggested that following virus infection or antigen stimulation, 
naïve T-cells (T 

N
 ) undergo a series of proliferative and differentiation steps ulti-

mately culminating in an acquisition and maintenance of memory for a particu-
lar antigen/pathogen (Gupta et al. 2004; Kataoka et al. 2001; Sallusto et al. 2004; 
Tomiyama et al. 2002; Weninger et al. 2001). The memory T-cells display differen-
tial expression of adhesion molecules (CD62L) and chemokine receptors (CCR-7). 
CCR7+ and CD62 high  T-cells are found in lymph nodes, whereas CCR7- and CD62L low  
are found in extranodal sites such as liver and lung. Based upon these adhesion 
molecules and chemokine receptors, memory CD8+ T-cells have been divided into 
“central” memory (T 

CM
 ) T-cells for those that are found in lymphoid organs and 



702 S. Gupta and A. Gupta 

“effector” memory (T 
EM

 ) cells that are found in peripheral nonlymphoid tissues 
and mucosal sites. Furthermore, effector memory CD8+ T-cells in humans (not in 
mice) have been further subdivided, based upon the expression or lack of CD45RA, 
into CD8+CD28-CCR7-CD62 low  CD45RA- (T 

EM
 ) and CD8+CD28-CCR7-CD62 low 

 CD45RA+ (T 
EMRA

 ). These subsets have been extensively characterized (Gupta et al. 
2004, 2006) and shown in Fig. 3.  

    4.2 Apoptosis of Naïve and Memory Subsets and Effect of Age  

   We have reported that T 
N
  and T 

CM
  T cell subsets (T 

CM
 >T 

N
 ) are sensitive to TNF-α-

induced (Gupta and Gollapudi 2006, 2006a; Gupta and Gupta 2007), where as T 
EM

  
and T 

EMRA
  cells are resistant to apoptosis. Similar observations have been made 

with CD95-mediated poptosis (Gupta et al. 2008), and oxidative stress-induced 
apoptosis (Gupta et al. 2007). We have also defined various molecular mecha-
nisms responsible for such differential sensitivity to TNF-α-induced apoptosis 
(Gupta et al. 2006). Several investigators have reported increased apoptosis in 
T-cells and CD4+ and CD8+ T-cells in aged humans (Aggarwal and Gupta 1998; 

   Fig. 3       Phenotypic and apoptosis characteristics of naïve (T 
N
 ) and different subsets of memory 

T-cells (T 
CM

 = central memory; T 
EM 

 and T 
EMRA

 = two types of effector memory)     
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Aggarwal et al. 1999; Gupta 2000; Gupta 2002; Gupta 2002a; Gupta et al. 2003; 
Lechner et al. 1996; Phelouzat et al. 1996, 1997). We and others have reported 
increased susceptibility of aged T-cells and CD4+ and CD8+ T-cells to activa-
tion-induced apoptosis and Fas (CD95)-induced apoptosis (Aggarwal and Gupta 
1998; Aggarwal and Gupta 1999; Iwai et al. 1994; Lechner et al. 1996; Miyawaki 
et al. 1992; Phelouzat et al. 1997; Shinohara et al. 1995), which is associated 
with increased caspase activation (Aggarwal and Gupta 1999). Furthermore, we 
have demonstrated that FADD plays an important role in increased sensitivity 
of aged T-cells to apoptosis (Gupta et al. 2004). We have also demonstrated that 
TNF-α-mediated apoptosis is increased in both CD4+ and CD8+ T-cells in aged 
humans [Aggarwal et al. 1999; Gupta 2002; Gupta et al. 2003]. Increased apopto-
sis is associated with decreased expression of Bcl-2 and TRAF-2. We have dem-
onstrated that both up-regulation of FADD and decreased NF- B activity play an 
important role in increased sensitivity of aged T-cells to TNF-α-induced apopto-
sis. Recently, we have observed that T 

N
  and T 

CM
  CD8+ T-cells and CD4+ in aging 

are more sensitive to TNF-α induced [Aggarwal and Gupta 1998; Gupta 2002a; 
Gupta and Gollapudi 2006a; Kataoka and Tschopp 2004; Phelouzat et al. 1997], 
and anti-CD95-induced apoptosis (Gupta et al. 2008) as compared to young sub-
jects. Therefore, increased sensitivity of T 

N
  and T 

CM
  CD8+ T-cells is not unique to 

TNF-α. We have also shown that T 
EM

  and T 
EMRA

  CD8+ and CD4+ T-cells in aged 
humans are equally resistant to apoptosis as that of young subjects, suggesting 
that the accumulation of T 

EM 
 and T 

EMRA
  during aging is not due to alterations in 

apoptosis (Gupta and Gollapudi 2006, 2006a).  
   We and others have investigated various mechanisms, which may be asso-

ciated with increased apoptosis of T-cell subsets in aged humans, especially 
TNF-α-induced apoptosis. NF- B is an important regulator of TNF-α-induced 
apoptosis. Pahlvani and Harris (1996) reported decreased NF- B DNA binding 
activity in nuclear extracts of concanavalin A-stimulated splenic lymphocytes 
from old Fischer rats as compared to young rats. Whisler et al. (1996) reported 
decreased levels of NF- B in unstimulated and PHA, PMA and anti-CD3-stimu-
lated T-cells from a small number of aged humans as compared to young subjects. 
Trebilcock and Ponnappan (1996) demonstrated decreased induction of NF- B 
in response to PMA and TNF-α. These authors suggested that decreased induc-
tion of NF- B could be due to decreased proteosome-mediated degradation of 
I B (Ponnappan et al. 1999). We have investigated TNF-α signaling pathway of 
apoptosis in aged subsets in detail and observed that TNF-α-induced activation 
of NF- B in T 

N
  and T 

CM
  is significantly decreased as compared to young sub-

jects (manuscript in preparation). Furthermore, aged T 
N 

 and T 
CM

  CD8+ T-cells 
display decreased activation of IKKα/β, and decreased phosphorylation of I B 
as compared to T 

N 
 and T 

CM
 . We have also demonstrated that an overexpression 

of IKKβ that resulted in the upregulation of NF- B corrected increased sensitiv-
ity of aged T-cells to TNF-α-induced apoptosis (Gupta et al. 2005). Therefore, 
establishes a role of decreased NF- B in increased sensitivity of aged T-cells to 
TNF-α-induced apoptosis.  
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     5  Naïve, Central Memory and Effector Memory CD8+ T-cells 
in Aging  

   In aging, there is a significant reduction in naïve CD8+ T-cells (Fagnoni et al. 2002) 
and CD8+ CD28+ T-cells, which contain both naïve and central memory CD8+ T-cells 
(Brzeznska et al. 2004). In addition, there is an accumulation of CD8+CD28- T-cells, 
which are oligoclonal and show characteristics of cellular senescence (i.e., short 
telomere length indicative of long replicative history), and increased IFN-γ produc-
tion [Bandres et al. 2000; Effros. 1994; Monteiro et al. 1996; Nociari et al. 1999; 
Posnett et al. 1994; Saurwein-Teissl et al. 2002]. These CD28- CD8+ T-cells are 
comprised of 2 subpopulations of effector memory CD8+ T-cells, namely T 

EM
  and 

T 
EMRA

  CD8+ T-cells. Our study shows a marked decrease in the proportions of naïve 
CD8+ T-cells and an increase in T 

EM
  and T 

EMRA
  CD8+ T-cells. However, when data 

were analyzed for absolute numbers, a significant decrease in T 
N
  and T 

CM
  a sig-

nificant increase in T 
EMRA

  CD8+ T-cells was observed (Gupta 2005). Fagnoni et al 
(2002) also observed an increase in primed CD8+CD28-CD45RA+ (equivalent to 
T 

EMRA
 ) in aged humans.  

    6  Apoptosis of Naïve, Central Memory and Effector Memory 
T-Cell Subsets in Aging  

   Herndon et al. (Herndon et al. 1997) have provided evidence of increased AICD 
of naïve T (CD45RO-) cells in aged humans and suggested its role in age-
associated T-cell deficiency. However, they did not investigate apoptosis in 
memory T-cells. Brezinska et al. (2004) concluded that AICD (as measured by 
DNA content and caspasese-3 activation) in CD8+CD28+ (containing T 

N
  and T 

CM
 ) 

and CD8+CD28- (containing T 
EM

  and T 
EMRA

 ) was comparable. However, these 
investigators presented data from a single middle aged individual.  

   We have reported that in aged humans, both CD45RA+ (naïve) and CD45RO+ 
(memory) CD4+ and CD8+ T-cells were more sensitive to anti-CD95-induced 
apoptosis as compared to young subjects (Brzezinska et al. 2004). Furthermore, 
CD45RO+ displayed greater sensitivity to anti-CD95-induced apoptosis as com-
pared to CD45RA+ CD4+ and CD8+ T-cells in both young and aged subjects. 
Miyawaki et al. (1992) also reported that healthy adult memory T-cells are more 
susceptible to anti-CD95-induced apoptosis as compared to naïve T-cells. We 
reported decreased expression of Bcl-2 in both CD4+ and CD8+ T-cells from aged 
humans as compared to young subjects; however, we did not examine Bcl-2 expres-
sion in naïve and memory subsets (Aggarwal and Gupta 1998). Shinohara et al. 
(1995) demonstrated decreased Bcl-2 expression in memory subsets of CD4+ and 
CD8+ T-cells in healthy adults. This would be consistent with our observation of 
increased sensitivity of memory T-cell subsets to death-receptor-mediated apoptosis 
as compared to naïve T-cell subsets. Although a role of Bcl-2 family protein in death 
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receptor pathway has been argued, Iwai et al. (1994) and Yoshina et al. (1994) have 
demonstrated that Bcl-2 blocks anti-CD95-induced apoptosis in mitogen-activated 
T-cells. Therefore, it is likely that decreased Bcl-2 expression in aging may play a 
role in increased sensitivity of T-cell subsets in aged humans. However, experiments 
of Bcl-2 overexpression need to performed to define a definitive role of decreased 
Bcl-2 in increased susceptibility of aged naïve and memory subsets to death-recep-
tor-mediated apoptosis.  

   We have also examined TNF-α-induced apoptosis in both naïve and memory 
subsets of CD4+ and CD8+ T-cells, using TUNEL assay and flow cytometry and 
observed that both CD45RA+ naïve and CD45RA- memory CD4+ and CD8+ T-cells 
from aged individuals were more sensitive to TNF-α-induced apoptosis (Aggarwal 
and Gupta 1998).  

   As discussed above, naïve T-cells, as defined by the presence of CD45RA con-
tain T 

EMRA
  CD8+ T-cells (and a very small population of T 

EMRA 
 CD4+ T-cells), and 

CD45RA- (CD45RO+) contain both T 
CM 

 and T 
EM

  CD8+ T-cells. Therefore, we have 
examined the relative sensitivity of T 

N
  and T 

CM
 , T 

EM
  and T 

EMRA
  CD8+ and CD4+ 

T-cell subsets to TNF-α-induced apoptosis. Naïve CD8+ T-cells and central mem-
ory CD8+ T-cells are more sensitive to death-receptor and oxidative stress-induced 
apoptosis, whereas effector memory CD8+ T-cells are resistant to apoptosis (manu-
script in preparation). In aged humans we observed that naïve and central memory 
CD8+ T-cells displayed increased TNF-α-induced apoptosis as compared to young 
subjects, which is associated with increased caspase-8 and caspase-3 activation. In 
contrast, effector memory subsets are resistant to TNF-α-induced apoptosis and 
display minimal caspase activation in both young and aged subjects. Therefore, it 
appears that during aging decrease in naïve CD8+ T-cells is due to both decreased 
thymic output as well as increased apoptosis. We have also observed increased 
apoptosis in T 

N
  and T 

CM
  (T 

CM
 .> T 

N
 ) CD4+ T-cells in aged humans as compared to 

young subjects; however, no significant difference was observed in the apoptosis of 
T 

EM
  and T 

EMRA
  CD4+ T-cells between aged and young humans; both were resistant 

to apoptosis (Gupta and Gollapudi 2006).  
   There are several possible mechanisms to explain differential sensitivity of 

various memory subsets to apoptosis. Since T 
CM

  cells have high a replicative prop-
erty (more than T 

N
  cells), increased apoptosis may be critical to make niche for 

new T 
CM

  CD4+ and CD8+ T-cells and to maintain homeostasis of T 
CM 

 cells. It is 
known that IL-7 and IL-15 provide survival signals in maintaining memory T-cells 
(Schluns and Defracois 2003; Alpdogan and van den Brink 2005). Furthermore, 
we have observed that IL-7 serves as an important preferential survival factor for 
T 

CM 
 cells, whereas, IL-15 provides preferential survival signal for T 

EM 
 and T 

EMRA 

 T-cells (Personal unpublished observations). A decreased IL-7 in aging may con-
tribute to increased apoptosis of T 

CM 
 cells in aging. The low replicative property of 

T 
EM 

 and T 
EMRA 

 cells, which does not allow for the creation of an “immunological 
nitch” may be responsible for relative resistance of T 

EM 
 and T 

EMRA 
 cells to apoptosis. 

A large number of studies have been reported on CD8+CD28- T-cells generated 
after repeated stimuli (as a model of aging) and reported features of replicative 
senescence (low proliferative potentials and resistance to apoptosis). However, 
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Brzezinska et al. (2004) have reported that aged CD8+CD28- proliferate more than 
adult counterparts. We have observed that both T 

EM 
 and T 

EMRA 
 CD8+ T-cells from 

young and aged subjects can proliferate well in the presence of exogenous IL-2 
and IL-15 (unpublished observation). We have also observed increased expression 
of IL-15 gene in CD8+ T-cells from aged humans (by gene array). These observa-
tions suggest that CD8+CD28- T-cells generated by repeated activation in vitro are 
not a true model for CD8+CD28- T-cells in aged humans. Furthermore, increased 
accumulation of CD8+CD28- T-cell population in aged humans may be due to an 
increased growth provided by increased IL-15 in aging.  
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                                    1   Introduction  

   The immune system undergoes age-associated changes, that affect its response to 
infections and cancer, and contributes to the organism’s aging and its associated 
pathologies. An eminent hypothesis to explain the aging process, most supported by 
experimental data, is the mitochondrial free radical theory. Evidence is accumulat-
ing, linking mitochondrial oxidative damage and apoptosis to immunosenescence.  

       2      Mitochondria- Structure and Biology  

   Mitochondria are ubiquitous organelles that are intimately involved in many cel-
lular processes. Its principal task is to provide the energy necessary for normal 
cell functioning and maintenance. Mitochondria are composed of several compart-
ments, each with specific metabolic functions, including the inner and the outer 
membranes, the intermembrane space and the matrix. The inner membrane joins the 
mitochondrial cristae at specific junctions. The cristae contain the electron transport 
chain (ETC), phosphorylation apparatus, and membrane transporters [1].  

   The electron donors, NADH and FADH 
2
 , provide reducing equivalents to the 

ETC. The ETC is composed of 4 multisubunit enzyme complexes. NADH is oxi-
dized by complex I, reducing the lipid soluble mobile electron carrier coenzyme Q. 
Complex III oxidizes reduced coenzyme Q and in turn reduces the mobile car-
rier protein cytochrome c that donates its electron to cytochrome oxidase, complex 
IV, for the reduction of oxygen to water. The complexes of the ETC are likely to 
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be organized in larger supercomplexes, forming a respirasome, in order to opti-
mize channeling of reducing equivalents. Electron transfer down the redox poten-
tial gradient is coupled to the active transport of hydrogen ions from the matrix 
to the cytosol. This process requires a tightly controlled permeability of the inner 
membrane to ions and small molecules.  

   The phosphorylation apparatus uses the inner membrane proton gradient to 
phosphorylate ADP by complex V. Complex V couples proton flow down the elec-
trochemical gradient from outer aspect of the inner membrane to the matrix side and 
the energy is utilized to drive complex V resulting in ATP production.  

   Uncoupling of respiration from ADP phosphorylation is a mechanism of physi-
ologic regulation of the rate of oxidative phosphorylation. Uncoupling of respira-
tion in pathologic states occurs due to damage to either the integrity of the inner 
membrane or of complex V. Uncoupling of respiration in pathologic states is more 
likely to collapse the electrochemical gradient, impairing energy production and 
increasing the probability of mitochondrial permeability transition [1, 2].  

       3   Mitochondrial Diseases  

   The classic mitochondrial diseases result from mutations in mitochondrial DNA 
(mtDNA) or nuclear genes that disrupt mitochondrial respiratory functions. These 
disorders have brain and skeletal muscle manifestations, and are often referred to 
as mitochondrial encephalomyopathies. Hundreds of point mutations, deletions and 
rearrangements have been associated with these diseases. Since all of the mito-
chondrial diseases have a disrupted respiratory function, one might expect a similar 
phenotype. The clinical variability is large, however, with many disease exhibiting 
tissue specific manifestations.  

   The role of mitochondrial dysfunction in a number of common conditions includ-
ing the process of aging is being slowly elucidated. Evidence is emerging to suggest 
that mitochondria play a key role in the etiology of neurological disorders.  

   Parkinson’s disease is a chronic neurodegenerative condition. Mitochondrial 
dysfunction, and in particular oxidative stress, has been implicated in its patho-
genesis. Deficiencies of complex I have been observed in some patients with Par-
kinson’s disease [3, 4], in the substantia nigra and subsequently in the peripheral 
tissues. Complex I is the target of toxins known to produce parkinsonian features 
in humans, such as MPTP. Inhibition of complex I results in increased free radi-
cal generation and could contribute to the oxidative mediated damage seen in Par-
kinson’s disease. Families with mtDNA mutations and Parkinsonism have been 
identified [5]. Several studies that have sequenced mtDNA in Parkinson’s disease 
patients have not identified any consistent mutations, although none has focused on 
Parkinson’s patients with complex I deficiency. Mitochondrial complex I deficien-
cies have been described not only in the brain but also in skeletal muscle, platelets 
and lymphocytes in Parkinson’s disease [6]. The relation between mitochondrial 
dysfunction and Parkinson’s disease has evoked an attempt to develop treatment 
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that might improve disease progression, using coenzyme Q 
10

 , that may enhance 
respiratory chain function [7].  

   Mutations in the genes for amyloid precursor protein are associated with Alzhe-
imer’s disease. Amyloid Aβ can inhibit oxidative phosphorylation in mitochondria 
[8]; impaired COX activity, reduced immunoreactive protein or decreased mRNA 
for mtDNA encoded proteins have been observed in the Alzheimer’s disease brain; 
Aβ directly interacts with a mitochondrial enzyme, ABAD. ABAD is important 
in cell function, its inactivation results in a lethal phenotype, it is up regulated in 
Alzheimer’s disease neurons and its coexpression with amyloid precursor protein 
exacerbates Aβ induced free radical mediated cell damage and death [9]. ABAD and 
Aβ colocalize in the mitochondria of Alzheimer’s disease cortex and this interaction 
causes increased mitochondrial activity and apoptosis.  

       4   Mitochondria and Aging  

   The mitochondrial theory of aging states, that the original insult to mtDNA is induced 
by the continuous generation of reactive oxygen species (ROS) and other toxic spe-
cies. mtDNA may be particularly susceptible to oxidative damage due to its lack of 
protective histones and its proximity to the inner mitochondrial membrane, where 
reactive oxygen species are produced. Some of the mutations in mtDNA impair res-
piratory chain function, leading to increased ROS production and further mtDNA 
damage, creating a vicious cycle. The positive feedback between mtDNA mutation 
and generation of ROS is thought to result in an increase in oxidative damage during 
aging, with eventual loss of cellular and tissue functions through a combination of 
energy insufficiency, signaling defects, apoptosis and replicative senescence.  

   Two mechanisms combine to increase ROS production from mitochondria in 
aged tissues. First, decreased flux through the electron transport chain increases 
the reduction of upstream complexes, especially complexes I and III, enhancing 
electron leak that generates ROS. Second, aging-induced modification of individual 
electron transport chain complexes can directly result in a greater fraction of elec-
tron leak.  

   Decreases in enzyme activity of an ETC complex can lower the rate of oxidative 
phosphorylation [1]. A decrease of 30-50% in activity is probably needed to result 
in a significant maximal rate lowering. The sites of greatest control of respiration 
are complex I in the ETC and the adenine nucleotide translocase and complex V 
in the phosphorylation apparatus. These sites require the least decrease in enzyme 
activity for decreases in the rate of oxidative phosphorylation to occur. Aging may 
alter the inner membrane, thereby impairing the activity of ETC complexes, or alter 
complex V, thereby slowing the rate or efficiency of phosphorylation.  

   Mitochondrial transmembrane potential is the driving force of cellular ATP forma-
tion, and its reduction can lead to ATP depletion and cell deenergization. Evidence 
show that oxidants may induce mitochondrial transmembrane potential reduction and 
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mitochondrial depolarization by promoting mitochondrial permeability transition due 
to oxidation of mitochondrial pyridine nucleotides and glutathione [10].  

   In support of this hypothesis many studies have linked ROS production and 
oxidative stress to aging and longevity [11].  

   Many tissues from aged individuals have lower respiratory function compared 
to tissues from younger individuals. Many reports also demonstrate that the rate of 
production of ROS from mitochondria increases with age in mammalian tissues: 
an increase of ROS was found in hepatocytes from aged rats [12], higher levels 
of peroxide and increased peroxide production after an adriamycin-induced oxida-
tive stress. ROS production was also shown to increase in senescent fibroblasts and 
aging skeletal muscle cells.  

   A strong negative correlation has been demonstrated between expected lifespan 
and metabolic rate and ROS production rate of different species [13], and between 
lifespan and membrane lipid saturation.  

   Interventions and mutations that prolong survival tend to decrease the production 
of ROS from mitochondria, providing further evidence to the connection between 
aging and mitochondrial function: Calorie restriction has been shown to extend lon-
gevity; it increases the life span of rodents and delayed autoimmunity and onset of 
malignancy in mice. Calorie restriction also reduces the over-production of various 
T-cells subsets while maintaining the capacity of cells to respond to mitogens. It 
also maintains appropriate levels of apoptosis, including responses to dexametha-
sone induced death. The potency of NK and cytolytic T-cells was also maintained 
for longer periods in calorie restricted mice [14]. Sohal et al. proposed that calo-
rie restriction significantly reduces aging of the mitochondria and production of 
ROS [15]. It attenuates age related changes in lipid peroxidation. It also decreases 
mitochondrial ROS production at complex I and lowers mtDNA oxidative damage. 
The major impact of calorie restriction on mitochondrial respiration appears to be 
a modulation of state 4 respiration, which increases via an increase in uncoupling 
protein content. The decreased coupling of respiration results in a decreased pro-
duction of ROS that is reversed by an increase in fat intake (reviewed in 1). Calo-
rie restriction also seems to trigger an adaptive response protecting the most basic 
requirements of membrane integrity.  

   Antioxidants experimental effect on aging may also demonstrate the mitochon-
drial relation, since it has been suggested that improvement in the age-related 
decreases in mitochondrial oxidative phosphorylation caused by antioxidants, atten-
uates aging. Still, the role of antioxidants in longevity is disputed. Studies compar-
ing constitutive antioxidant levels between mammalian species, and experiments 
increasing or decreasing their tissue antioxidant concentrations in different ways, 
indicate that antioxidants do not seem to control aging rate, although they can pro-
tect against different pathologies and early death (reviewed in 16).  

   ROS have been shown to target al.l biomolecules in the cell, which undergo 
chemical modifications that accumulate with age- protein carbonylation and methio-
nine oxidation, advanced glycation end-products, lipid peroxidation and nucleotide 
modifications [11].  
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   Finally, mtDNA point mutations and deletions are more prevalent in aged 
tissues and cells. Numerous studies have documented the presence of large mtDNA 
deletions from muscle and brain from old individuals. A minimal threshold level of 
90-95% of mutated mtDNA is usually necessary to impair respiratory chain func-
tion, depending on the type of mutation and the tissue affected. This may result from 
extensive fragmentation of mtDNA in minicircles in elderly subjects, increasing the 
amount of mtDNA mutations [17].  

   Two mouse models have further implicated mtDNA mutations in the aging proc-
ess. Knockin mice have been developed by two research groups [18, 19]. These 
mice express a proofreading-deficient PolgA, the nuclear encoded catalytic subunit 
of the mtDNA polymerase, and acquire mtDNA mutations at a much higher rate 
than normal. The PolgA mutator mice accumulate mtDNA mutations in numerous 
tissues, reproducing the effect of aging. The mice have a phenotype consistent with 
premature aging, including osteoporosis, reduced activity, alopecia, reduced fertil-
ity, cardiac hypertrophy, and severe weight loss with decreased muscle mass and 
lipoatrophy. Interestingly, in spite of the widespread mutations, these mice do not 
appear to have any change in the levels of hydrogen peroxide or increased oxidative 
damage to DNA, proteins or lipids [19]. Still, evidence shows that mitochondrial 
but not cytosolic targeting of catalase, an antioxidant enzyme, over-expression 
enhances lifespan and reduces age-related cardiac pathology and cataracts. This 
further emphasizes the contribution of the mitochondrion to free radical mediated 
cellular damage and dysfunction in relation to aging [20].  

   Many tissues in error-prone PolgA mice described above contain increased lev-
els of caspase-3. This increase in caspase-3 activation was also observed in tissues 
from normal aged mice. The mutant mice also showed increased TUNEL staining, 
an indication of the DNA fragmentation, a hallmark for apoptosis. Therefore, the 
diverse signs of aging in these mice may be due to apoptosis induction [19]. The 
induction of apoptosis may be related to the observation that patients carrying high 
loads of certain mtDNA mutations show a high degree of TUNEL-positive muscle 
fibers. Widespread apoptosis is also found in mouse embryos lacking mitochondrial 
transcription factor A, which is necessary for mtDNA expression and maintenance. 
These studies support the hypothesis that mtDNA mutations accumulation can 
induce the premature emergence of aging associated features (reviewed in 21). The 
role of mtDNA mutations in normal aging still remains to be elucidated.  

       5   Mitochondria and Immunosenescence  

   The mechanisms involved in immunosenescence have not been fully deciphered 
yet. The mitochondria could contribute to alteration of the age-related immunode-
ficiency by two mechanisms. First, like any eukaryote cell, lymphocytes require 
oxidoreductase processes by mitochondria, via the respiratory chain. Second, 
mitochondria are involved in apoptosis, a major process in T-cell death.  



718 P. Beckerman and A. B. Yehuda

   Mitochondrial modifications in the immune system cells are still largely obscure. 
Peripheral lymphocytes of 366 healthy individuals were examined by electron 
microscope. Ultrastructural mitochondrial damages increased from 50 years of 
age until 80 years, but after 80 years decreased [22]. The morphologic changed 
consisted of disappearance of the mitochondrial cristae, which were replaced by a 
lamellar structure, electron dense and electron opaque material, that was similar to 
lipofuscin.  

   With increasing age, human lymphocytes express reduced proliferation in 
response to mitogens [23], suggesting that the mitogenic stimulus induces stress 
which is better tolerated by cells from young, rather than from old individuals. It has 
been shown that antioxidants were able to recover the age dependent impairment of 
lymphocyte response to mitogens [24], which suggests an oxidative stress.  

   A few studies have evaluated the age dependent alterations of mitochondrial 
parameters in immune cells.  

   A clear cut delay of the increase in ATP following phytohemagglutinin stimula-
tion has been shown in older human cells [25]. Also, a decrease of mitochondrial 
respiration with aging of mouse splenic lymphocytes was found [26].  

   Several studies have identified, using fluorescent probes specific for mitochon-
drial transmembrane potential, a decrease in respiratory activity of murine lym-
phocytes during aging [27]. The existence and maintenance of the lymphocyte 
transmembrane potential involves two main mechanisms: the active transport of 
monovalent cations, sodium and potassium, and their diffusion through membrane 
pores. The reduction in ATP-ase activity during aging may lead to the reduction in 
membrane potential.  

   Another study used two mitochondrial specific probes with a potential dependent 
or independent uptake, and found that the decline in the respiratory activity in the 
mouse occurred approximately six months prior to the decrease in mitochondrial 
membrane mass [28]. Respiratory activity of splenocytes decreased with age in ani-
mals older than six months to 50% of its initial level by 24 months. Mitochondrial 
membrane mass decreased after 12 months, by 25% up to 24 months. These results, 
with minor differences, were repeated in rat cells [29], showing that respiratory 
activity per unit of mitochondrial mass declined in an age dependent manner.  

   Rottenberg et al. showed that spleen lymphocytes from old mice had lower 
respiration rates than lymphocytes from young mice. Cyclosporine, an inhibi-
tor of the mitochondrial permeability transition (PT), restored normal respiration 
rates to lymphocytes from old mice, suggesting enhanced susceptibility to mito-
chondrial permeability transition activation. By using DiOC6 as a probe for mito-
chondrial transmembrane potential, they showed that lymphocytes from old mice 
also had a lower mitochondrial membrane potential than lymphocytes from young 
mice, which was also restored by cyclosporine. Lymphocytes from old mice also 
exhibited a more oxidized state, as represented by the ratio FAD/FADH, a useful 
measure for the redox potential in mitochondria. It was suggested that enhanced 
generation of ROS leads to increased oxidative stress in lymphocytes from old 
mice, which renders their mitochondria more susceptible to PT activation [30].  
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   These results were later demonstrated on leukocytes from healthy human 
volunteers of different age groups. Leukocytes were subjected to oxidative inju-
ries by exposure to t-butylhydroperoxide, and were labeled with fluorochromes 
for measuring mitochondrial transmembrane potential, membrane peroxidation 
and mitochondrial oxidant formation. Mitochondrial transmembrane potential 
declined after t-butylhydroperoxide exposure, and the change was more promi-
nent in leukocytes from older individuals. Cyclosporine A partially restored mito-
chondrial transmembrane potential, implying again the contribution role of PT. 
The mitochondrial depolarization was accompanied by increased oxidant forma-
tion and oxidation of pyridine nucleotides, which were more prominent in older 
individuals [31].  

   Studies of age-induced immune dysfunction suggest that the decline of the 
immune system response is largely due to T-cells dysfunction, which is associated 
with shifts in the composition of the T-cells population, specifically, a shift from a 
low memory to naïve ratio to a higher ratio [32]. One of the dysfunctions identi-
fied in T-cells from old rodents and humans is an attenuation of calcium signaling, 
which accompanies the expansion of memory T-cells [33]. Mather et al. review 
the changes in calcium signaling in aging T-cells [34]. Activation of TCR receptor 
induces a sustained elevation of calcium ions, which activated the nuclear factor 
of activated T-cells, transcription factors, and initiates the transcription of genes 
of the immune response. Ionomycin, a calcium ionophore that induces a sustained 
increase in calcium ions, induces T-cells proliferation, but is much less effective in 
raising calcium levels in T-cells from old mice, suggesting that calcium signaling 
mechanisms might be modulated in aging. The small fraction of ionomycin resistant 
cells in T-cells preparations from young mice, similar to the majority of cells from 
old mice, consists of memory cells.  

   Thapsigargin, an inhibitor of the endoplasmic reticulum Ca 2+  ATPase releases 
calcium from internal stores and activates calcium release activated calcium chan-
nels in T lymphocytes. The thapsigargin-induced sustained calcium elevation was 
shown to depend critically on mitochondrial calcium uptake, which is driven by 
the mitochondrial transmembrane potential. The mitochondria remove Ca 2+  from 
the vicinity of the calcium channels, thus preventing their activation. Inhibition of 
mitochondrial calcium uptake also inhibits the T-cell receptor-induced sustained 
elevation of calcium. Permeability transition (PT) is a large non specific channel 
that is activated by calcium and ROS. Its activation collapses the mitochondrial 
transmembrane potential, inhibits oxidative phosphorylation and calcium seques-
tration by mitochondria, and may induce apoptosis. Mather et al. showed that in 
T lymphocytes from young mice, the ionomycin-induced elevation of cell free cal-
cium was inhibited by collapsing the mitochondrial membrane potential by uncou-
plers and ionophores, and activation of the PT. In T lymphocytes from old mice, 
ionomycin is ineffective in sustaining the calcium elevation, but treatment with 
cyclosporine A, which inhibits PT, restores the ionomycin-sustained calcium eleva-
tion. The enhanced activation of PT in T-cells from old mice was associated with 
enhanced oxidation of mitochondrial FAD, therefore aging may result in a reduc-
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tion in mitochondrial transmembrane potential and enhanced oxidation of T-cell 
mitochondria, thereby activating PT and inhibiting calcium elevation, which affects 
T-cells proliferation [34].  

   Ayub et al. suggested that this change in calcium influx, whether mitochondria-
mediated or not, is actually the result of activation of apoptotic pathways. Fas-stim-
ulation of T-cells was shown to block calcium influx [35], a blockade that was 
specific for the fas-induced apoptosis route. A similar uncoupling of calcium influx 
from the calcium store release was observed in neutrophils [36]. The mechanism by 
which fas ligand uncouples calcium channel opening is not yet resolve, although the 
mechanism described above, including loss of mitochondrial membrane potential, 
is a possible explanation [37].  

   A number of studies measured the enzyme activity of individual electron trans-
port chain complexes or oxygen consumption by leukocytes as an index of aging-
related decrease in oxidative function of these cells.      

   Drouet et al. examined oxidative phosphorylation parameters with aging in lym-
phocytes [38]. Lymphocytes were retrieved from human volunteers, aged from 23 to 
98 years, who were divided into two age groups, with average ages of 35 and 80.8 
years. T-cells subpopulation analysis revealed a decline in absolute count of naïve 
cells in the elderly, whereas no significant change was observed in the percentage 
and absolute number of memory cells. Activity of complexes II, III, and IV of the 
respiratory chain was analyzed. Complex III activity did not change with aging, 
however, a significant decrease in complex II+III activity occurred in the elderly 
group. No difference was observed in complex IV activity between the groups.  

   The authors suggested that decline in complex II activity with aging could be 
secondary to a decline in the levels of active enzyme molecules per mitochondrion, 
or due to accumulation of altered molecules in the organelle. The decreased produc-
tion of energy in the mitochondria, together with an increase of oxidative stress 
with aging, can activate the mitochondrial permeability transition pore and initiate 
apoptosis.  

   The sensitivity of lymphocytes in this study to specific inhibitors of respiratory 
chain complexes, such as rotenone and malonate, was high and unaffected by age, 
as opposed to an effect previously shown on human platelets.  

   Drouet et al. also examined the possibility that the decreases in respiratory chain 
activity could be secondary to mtDNA mutations, but found no mtDNA deletion, 
concluding that the dysfunction could be related to nuclear DNA damage, a sugges-
tion that requires more investigation.  

   Sandhu et al. measured the activities of complexes I-V and CS [citrate synthase] 
in crude mitochondria fraction from four brain areas as well as from lymphocytes, 
from 1, 3-4, 12 and 24-month-old age group rats [39]. Age related alterations in 
mitochondrial electron transport chain complexes I-V and CS were observed. With 
the increasing age of the rats, a significant decline was seen in the specific activity 
of complexes I-V and CS. Since mtDNA encodes seven subunits of complex I and 
three subunits of complex IV, the authors suggest that the pattern of complex I and 
IV activities may be consistent with mtDNA deletions.  
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   This study also correlated mitochondrial dysfunction with simultaneous aging 
in brain and immune cells. Interestingly, T-cells mediated immunity dysfunction 
has been implicated in the etiology of many of the chronic neurodegenerative 
diseases in the elderly. Several studies also give partial indication that lymphocyte 
analysis may provide an easy noninvasive method for investigating respiratory 
chain enzymes and assessing mitochondrial function in patients with neurodegen-
erative diseases.  

    6      Mitochondria and Apoptosis  

   Mitochondria play a central role in the regulation of programmed cell death.  
   Cells undergoing apoptosis exhibit a decrease in mitochondrial transmembrane 

potential that precedes nuclear signs of apoptosis. This applies to different cells types, 
including lymphocytes exposed to glucocorticoids or other lethal activation signals 
(40, 41). Apoptosis induced by pathologic stimuli is preceded by mitochondrial 
transmembrane potential dissipation. Both transcription of mitochondrial genome 
and synthesis of mitochondrial proteins are perturbed early during the apoptotic 
process. Loss of mitochondrial function is also observed in anucleate cells induced 
to undergo apoptosis, indicating that apoptotic alterations of mitochondrial function 
can occur in complete independence of the nucleus. Mitochondria are required in 
some cell free systems to induce nuclear apoptosis. Cyclosporine A, a PT inhibitor, 
efficiently prevents the apoptosis associated fall in mitochondrial transmembrane 
potential, which may indicate that apoptotic mitochondrial transmembrane poten-
tial reduction results from PT.  

   Direct induction of PT by protoporphyrin IX, which is well known for its PT-
triggering capacity, induced mitochondrial transmembrane potential disruption, 
enhanced generation of superoxide anions, and increased signs of apoptosis in thy-
mocytes and T-cells from mice, as evidenced by DNA hypoploidy and fragmenta-
tion and chromatin loss [42].  

   Regulation of T-cells apoptosis is essential for lymphocyte homeostasis and 
immune functions [43]. During an adaptive immune response naïve and memory T-
cells proliferate and fulfill their effector function. This expansion phase is followed 
by the contraction phase, in which T-cells numbers decline and reach normal levels. 
This process is highly regulated and requires a switch from an apoptosis resistant 
towards an apoptosis sensitive state in T lymphocytes. T-cells homeostasis is basi-
cally controlled by two separate apoptosis pathways: activation induced cell death 
(AICD) and activated T-cells autonomous death (ACAD). In ACAD, cell death is 
determined by the ratio between anti- and pro-apoptotic Bcl-2 family members at 
the mitochondria. The intrinsic cell death pathway critically depends on permeabi-
lization of the outer mitochondrial membrane for cell death execution. A number of 
apoptotic signals converge on mitochondria, such as oligomerization of the apop-
totic Bax and Bak proteins, leading to permeabilization of the outer membrane and 
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release of cytochrome c, apoptosis inducing factors and Smac/DIABLO into the 
cytoplasm. Cytochrome c binds to adaptor molecules, including apoptosis protease 
activating factor 1 (Apaf-1) and initiator pro-caspase proteins, forming an ‘apopto-
some’, which leads to cleavage of pro-caspase-9 to active caspase 9, which can 
then activate downstream effector caspases 3 and 7, resulting in apoptosis. During 
ACAD, the pro-apoptotic Bcl-2 and Bcl-X 

L
  are found in a constitutive association 

with Bim on the mitochondrial membrane, blocking the apoptotic function of Bim 
assuring cell survival. The ratio between Bcl-2 versus Bim regulates T-cells death. 
Mitochondria in apoptotic cells are also believed by some to release considerably 
more ROS.  

    7   Apoptosis and Immunosenescence  

   Apoptosis plays a key role in a variety of immune processes, including elimina-
tion of potential anti-self clones, removal of faulty pre-B and pre-T-cells arising in 
the marrow and thymus, and also destruction of virally infected and tumorigenic 
cells by natural killer cells and cytolytic T-cells. Given the importance of apoptosis 
in the normal functioning of the immune system, immunosenescence itself could 
be altered by age related changes in apoptosis, including the mitochondrial path-
way. Controversial data exist in the literature. Some investigators have reported 
a decrease of Fas/FasL-induced apoptosis in aged animals, and in human CD8+ 
T-cells reaching replicative senescence after multiple rounds of antigen-specific 
proliferation [44].  

   Increased resistance to apoptosis was found in cells from people chronically 
exposed to oxidative stress, as in patients affected by Fanconi’s Anemia or uremia.  

   Monti et al. [45] examined peripheral blood mononuclear cells from three age 
groups of human donors. They induced apoptosis by 2-deoxy-D-ribose (dRib), an 
agent that induces apoptosis in mononuclear cells by interfering with cell redox 
status and mitochondrial membrane potential. They found an inverse correlation 
between the age of the donors and the propensity of their mononuclear cells to 
undergo apoptosis. Cells from old people showed an increased resistance to dRib-
induced glutathione depletion and a decreased tendency to lose the mitochondrial 
membrane potential. No difference in Bcl-2 was found. This indicates a decreased 
tendency to undergo apoptosis in the old. Moreover, the increased resistance of 
dRib-induced apoptosis of mononuclear cells appeared to be related to glutathione 
depletion, but independent of Bcl-2 content, suggesting mitochondrial involvement 
that is age related.  

   On the other hand, others identified increased apoptosis in lymphocytes from 
elderly people following activation with anti-CD3, Phytohemagglutinin, Concana-
valin, or activation with polyclonal mitogen plus anti-Fas treatment.  

   Gupta et al. [46] examined T-cells subsets of the aged (65-95 years) and the 
young (20-29 years) using peripheral blood T-cells. They found increased expres-
sion of Fas and FasL on both CD4+ and CD8+ lymphocytes of the aged subjects. 
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They also compared naïve and memory cells. A decreased expression of Bcl-2 (anti 
apoptotic protein) and increased expression of Bax (pro apoptotic protein) was 
noted in naïve and memory T-cells of the aged [47-48].  

   Monti et al. [45] suggested that this apparent contradiction in results can be 
explained taking into account the experimental setting, and hypothesized that aging 
is characterized on one hand by an increased tendency to undergo apoptosis in acti-
vated lymphocytes, and on the other hand, by a decreased tendency to undergo 
apoptosis as a more general process of senescence.  

   These changes in aging T-cells could explain the reduced number of naïve T-
cells produced in the elderly, and contribute to the early termination of immune 
responses in the elderly.  

   Another explanation to the different response of memory versus naïve cells was 
offered by Kim et al. They have demonstrated that splenic T lymphocytes from old 
mice exhibit a significant decline in mitochondrial membrane potential; yet despite 
this change, there is a lower rate of withdrawal apoptosis in the memory CD4 +  and 
CD8 +  T-cells. To explain the survival of the cells in spite of increased oxidative stress, 
the authors demonstrated increased glutathione production and phase II enzyme 
(antioxidants) expression, which protect the memory T-cells. Phase II enzymes play 
a role during aging, and age-related changes in their expression were shown in 
various tissues, including brain and liver. Kim et al. showed similar increases in 
memory T-cells, compared to naive cells. Moreover, compared with wild type mice, 
mice lacking the expression of NF-E2-related factor-2, the transcription factor that 
regulated phase II enzyme expression, had a significantly increased rate of apopto-
sis in response to an oxidative stress stimuli. These cells exhibit a greater decline 
in mitochondrial membrane potential and increased ROS production. The authors 
claim that this mechanism could contribute in part to the accumulation of memory 
T-cells during aging [49].  

   In summary, the aging process affects the function of multiple cells and organs 
in the human organism. One theory that explains the aging process, and supported 
by experimental data, is the mitochondrial free radical theory. According to this 
theory, ROS accumulate in the mitochondria, causing an oxidative damage to mito-
chondrial DNA and to the mitochondrial respiratory chain function, thereby caus-
ing the decrease in cellular function. A large body of evidence exists that supports 
this theory in different tissues, including heart, skeletal muscle and brain. Data is 
accumulating that similar processes also take place in the immune system. Studies 
on immune cells from humans and animals have shown age-related decreases in 
mitochondrial respiration, mitochondrial transmembrane potential, and respiratory 
chain complexes activity. Moreover, mitochondria are also involved in the apoptotic 
process, which in itself plays an important role in T-cells regulation and homeos-
tasis, and is essential for immune system function. Changes in apoptotic processes 
have been shown to occur in cells of the aging immune system, thereby further 
emphasizing mitochondrial role in immunosenescence. Further studies are needed 
in order to understand to what extent mitochondrial changes with age influence the 
dysregulation of both innate and cognate immunity and what are the clinical conse-
quences of such changes.  
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                            Abstract:   The proteasome is the main proteolytic system implicated in the removal 
of oxidatively damaged proteins, general turnover of intracellular proteins and tar-
geted degradation of proteins that have been marked by poly-ubiquitination. Impair-
ment of proteasome function has been associated with cellular aging in a variety 
of tissues and cell types including lymphocytes, and is believed to contribute to 
the age-related accumulation of oxidized proteins due to their decreased elimina-
tion by the proteasomal pathway. This chapter first summarizes the most relevant 
features of the proteasomal system and then expands on the current knowledge on 
the impact of aging on proteasome structure and function, taking in account the fate 
of proteasome upon oxidative stress situations. Finally, the possible implication of 
age-related alterations of the proteasomal system in the process of immunosenes-
cence is presented.  

         Keywords   :    Proteasome    •     Aging • Protein oxidation • Damaged protein 
degradation    •      Immunosenescence    
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                       1   Introduction  

   Aging is a complex process controlled by genetic and environmental factors, which 
is accompanied by the decline of different physiological functions of an organism 
during the last part of its life. Damage to macromolecules has been implicated in the 
cellular degeneration that occurs during aging and accumulation of oxidized proteins 
represents a hallmark of cellular aging (Beckman and Ames 1998; Berlett and Stadt-
man 1997). Indeed, proteins are targets for numerous posttranslational modifications 
such as oxidation, conjugation with lipid peroxidation products and glycoxidation, 
that have been shown to affect their biological function (Davies 1987, 1993; Stadt-
man 1990, 2006). In addition, calorie restriction, the only intervention known to slow-
down aging, delays the age-related accumulation of oxidatively damaged proteins 
(Goto et al. 2002; Shibatani and Ward 1996) while long-lived transgenic animals 
were found to exhibit a decreased load of protein oxidative damage (Orr and Sohal 
1994). Elimination of damaged protein and protein turnover is critical to preserve cell 
function and the main proteolytic system in charge of cytosolic protein degradation is 
the proteasome, a multicatalytic proteolytic complex that recognizes and selectively 
degrades oxidatively damaged and poly-ubiquitinated proteins (Coux et al. 1996; 
Davies 2001; Grune et al. 1997; Voges et al. 1999). Since accumulation of oxidized 
protein with age can be due to increased protein alteration, decreased elimination 
(i.e., repair and degradation) of oxidatively damaged protein or the combination of 
both phenomenoms, one of the hypothesis put forward to explain oxidized protein 
build-up is a decrease of proteasome activity with age (Friguet 2006; Friguet et al. 
2000; Gaczynska et al. 2001; Keller et al. 2000a). In fact, age-related impairment of 
proteasome has been documented in a variety of organs, tissues and cell types, which 
appears to be the result of numerous factors including decreased proteasome compo-
nents expression, alteration and/or replacement of proteasome subunits and forma-
tion of inhibitory elements such as oxidatively modified cross-linked proteins. Since 
both age-related accumulation of damaged proteins and impairment of proteasome 
have been documented in lymphocytes (Beregi et al. 1991; Poggioli et al. 2002; Pon-
nappan et al. 1999; Sell et al. 1998), alterations of proteasome structure and function 
may therefore directly contribute to the complex process of immunosenescence.  

    2      Proteasomes  

     2.1   20S Proteasome Structure and Proteolytic Activity  

   The 20S proteasome is a high molecular weight multicatalytic proteolytic complex 
found in Archaebacteria and Eukaryotes that is implicated in the degradation of most 
of the intracellular proteins including oxidized and poly-ubiquitinated proteins (Coux 
et al. 1996; Davies 2001; Grune et al. 1997; Voges et al. 1999). This complex that 
has been first observed in erythrocytes by Harris in 1968 (Harris 1968), is ubiquitous 
in eukaryotic cells, in which it can represent up 1% of total soluble proteins (Tanaka 
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et al. 1986). In mammalian cells, the proteasome constitutes the main nonlysosomal 
proteolytic system involved in protein degradation in the cytosol and in the nucleus. 
Besides acting as a housekeeping enzyme by eliminating abnormal and oxidized 
proteins, the proteasome is also implicated in a broad range of cellular functions 
through the selective degradation of ubiquitin-targeted regulatory proteins such as 
transcription factors, cyclins and rate-limiting enzymes in important metabolic path-
ways (Cie-chanover and Iwai 2004; Goldberg et al. 1997; King et al. 1996; Pajonk 
and McBride 2001). The 20S proteasome exhibits a cylinder shape of about 15 nm 
length and 11 nm diameter and is made up of four stacked rings of seven subunits 
classified as α or β subunits (Groll et al. 1997; Hegerl et al. 1991; Lowe et al. 1995). 
The seven α subunits form the apical rings of the complex while the seven β subunits 
form the inner rings and carry the catalytic activities. The two outer chambers are 
formed by the junction of one α ring and one β ring and the central catalytic chamber 
is made by the junction of the two β rings. The eukaryotic proteasome has only three 
catalytically active β subunits: β1 for the peptidyl glutamylpeptide hydrolase (or 
postacidic) activity, β2 for the trypsin-like activity and β5 for the chymotrypsin-like 
activity that cleave peptide bonds after an acidic, basic and hydrophobic aminoacid, 
respectively (Coux et al. 1996; Groll et al. 1997; Kisselev et al. 1999). The specificity 
pockets S1 have been described as positive, negative or neutral electrostatic potential 
surfaces (Borissenko and Groll 2007). Two copies of each subunit are present in the 
catalytic chamber that contains six active sites. These activities can be conveniently 
assayed using specific fluorogenic peptides. Proteasomes have the unique property 
to use a N-terminal threonine as a catalytic residue. A maturation step is needed to 
generate the N-terminal amino group which implicates intramolecular autolysis to 
remove the prosegments of the β-subunit precursors. The proteolytic mechanism was 
elucidated using crystal structures of yeast and bovine liver proteasomes (Groll et al. 
1997; Unno et al. 2002) and site-directed mutagenesis (Ditzel et al. 1998; Groll et al. 
1999). Interestingly, when cells are exposed to such stimuli as IFNγ, TNFα or LPS 
the subunit composition of the 20S proteasome is modified, as inducible homologous 
subunits are incorporated in the structure upon de novo synthesis: the iβ1, iβ2 and 
iβ5 subunits, respectively replace their β1, β2 and β5 constitutive counterparts to 
form the immunoproteasome (Fruh et al. 1994; Gaczynska et al. 1993; Tanaka 1994). 
Such replacement of proteasome subunits modify proteasome peptidase activities 
and lead to higher chymotrypsin-like and trypsin-like activities and lower pepti-
dyl glutamylpeptide hydrolase activity, thus increasing production of peptides with 
higher affinity for MHC class I complex (Fruh et al. 1994; Gaczynska et al. 1993; 
Kloetzel 2004; Rivett and Hearn 2004; Rock and Goldberg 1999; Tanaka 1994).  

       2.2   20S Proteasome Inhibitors  

   The development of selective inhibitors of the proteasome has been very useful 
for deciphering the cellular functions of the proteasome. The majority of protea-
some inhibitors are short peptides bearing a reactive group which creates a cova-
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lent bond with the catalytic N-terminal threonine such as peptide aldehydes (MG 
132, Braun et al. 2005; Groll et al. 1997), peptide boronates (MG 262, bortezomib 
or Velcade TM , Adams et al. 1998; Adams and Kauffman 2004) and peptide vinyl 
sulfones (Bogyo et al. 1997; Borissenko and Groll 2007). Epoxomicin is a pep-
tide epoxyketone that is a natural molecule isolated from the actinomycete strain 
Q996-17. Epoxomicin preferentially inhibits the chymotrypsin-like activity and is 
characterized by its unique specificity for the proteasome (Elofsson et al. 1999). 
The natural β lactone lactacystin (Streptomyces sp.) is a nonpeptidic molecule that 
form covalent acyl ester bond with the N-terminal threonine (Borissenko and Groll 
2007; Fenteany et al. 1995). Lactacystin in itself is not active against the proteasome 
but its spontaneous hydrolysis generates clasto-lactacystin β lactone (omularide) 
which binds specifically to the β5 subunit and inhibits the chymotrypsin-like activ-
ity. Noncovalent inhibitors of the proteasome have been investigated less exten-
sively. The anti HIV protease Ritonavir and benzylstatine derivatives have been 
shown to inhibit the proteasome non-covalently (Furet et al. 2004; Schmidtke et al. 
1999). The cyclic tripeptide TMC-95A, which is a metabolite of Apiospora mon-
tagnei, is a very potent inhibitor of all three peptidase activities of the proteasome 
(Koguchi et al. 2000). Non covalent binding of TMC-95A with the proteasome 
active sites has been demontrated by X-ray analysis (Groll et al. 2001). Other mol-
ecules have also been described as proteasome inhibitors such as gliotoxin (Kroll et 
al. 1999), lipopeptides (Basse et al. 2006), bi- or multivalent molecules (Loidl et al. 
1999), ajoene (Xu et al. 2004), arecoline derivatives (Marastoni et al. 2004) and epi-
gallocatechin-3-gallate analogs (Wan et al. 2005).  

       2.3   20S Proteasome Regulators and the 26S Proteasome  

   The eukaryotic 20S proteasome cylinder is closed in its latent form and can be 
switched to an active form under certain experimental conditions such as heat treat-
ment, addition of fatty acids or detergent at low concentration (Ando et al. 2004; 
Dahlmann et al. 1985). In addition, the opening of the α rings can be promoted upon 
binding to the 20S proteasome of regulatory complexes such as PA700 (19S) or PA28 
(11S), Dahlmann 2005). The 26S proteasome results from the ATP-dependent asso-
ciation with PA700 or 19S regulator and is an essential component of the ubiquitin–
proteasome degradation pathway of poly-ubiquitinated proteins. The axial channel 
of the 20S proteasome is gated by the Rpt2 subunit of PA700 while PA28 stimulates 
20S proteasome peptidase activities and may facilitate product release in vivo (Koh-
ler et al. 2001). 20S proteasome can bind one or two 19S regulators resulting the for-
mation of either “single-capped” or “double-capped” 26S proteasome. In addition, 
hybrid proteasome containing one PA28 and one PA700 complex associated at both 
end of the 20S proteasome can be formed (Tanahashi et al. 2000). The association 
of PA28 to the 20S proteasome is ATP-independent and results in an increase of pro-
teasome peptidase activities while it does not improve protein degradation (Dubiel 
et al. 1992; Ma et al. 1992; Whitby et al. 2000). As for the immunoproteasome 
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subunits, the expression of PA28 subunits is induced after treatment of cell by IFNγ. 
In the cytosol PA28 is composed of two types of subunits α and β of about 28 kDa 
forming hexa or heptameric rings α3β3 or α3β4 while in the nucleus PA28 is made 
of single type subunit γ (Ahn et al. 1995; Knowlton et al. 1997; Mott et al. 1994). 
The 19S regulator is composed of at least eigthteen subunits belonging to either the 
«lid» or the «base» of the complex. Six of the nine subunits of the base are ATPases 
exhibiting a chaperone-like activity and are believed to participate to the unfolding 
of the substrate protein prior to its entrance in the 20S proteasome catalytic chamber 
and its degradation (Braun et al. 1999; Hershko and Ciechanover 1998; Kloetzel 
2001). The lid subunits are involved in the recognition of polyubiquitinated protein 
substrates and recycling the ubiquitin moiety through isopeptidase activity (Dever-
aux et al. 1994; Hershko and Ciechanover 1998). Polyubiquitination of a protein is a 
complex process that requires ATP and involves ubiquitin, a 76 amino acids protein, 
and three enzymes, E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating 
enzymes) and E3 (ubiquitin ligases), to ensure specific recognition of the protein 
substrate (Ciechanover and Iwai 2004; Finley et al. 2004; Weissman 2001).  

         3   Age-Associated Impairment of Proteasome Function  

     3.1   Accumulation of Oxidized Proteins  

   Protein are oxidized as a result of oxidative insult derived from the production of 
reactive oxygen species (ROS) and reactive nitrogen species (RNS), that includes 
superoxide anion, hydrogen peroxide, the hydroxyl radical, nitric oxide and per-
oxynitrite (Berlett and Stadtman 1997; Dean et al. 1997). These reactive species 
are produced in the cell during the aerobic metabolism at the level of organelles 
such as mitochondria and peroxisome and by other enzymatic or nonenzymatic 
pathways (Beckman and Ames 1998). Increased ROS production is also achieved 
during situations of oxidative stress such as UV irradiation or inflammation. 
Basal production of ROS is part of normal cellular redox homeostasis, and anti-
oxidants (enzymatic and nonenzymatic) regulate their level. However, when the 
balance between ROS production and elimination is disrupted, increased damage 
to macromolecules (including lipids, nucleic acids and proteins) occurs, leading 
to both reversible and irreversible oxidative modifications (Hensley and Floyd 
2002). Within a protein, all amino acids can be oxidized but sulfur-containing 
(cysteine and methionine) and aromatic (tryptophane and tyrosine) amino acids 
are the most susceptible to oxidation (Stadtman and Levine 2003). In addition, 
tyrosine is a target for the reactive nitrogen species peroxynitrite, giving rise to 
nitrotyrosine. Oxidation of cysteine leads to disulfide bridges, mixed disulfides 
and cysteic acids, i.e. cysteine sulfenic, sulfinic and sulfonic acids (Requena et 
al. 2003). Formation of disulfide bridges, mixed disulfides or cysteine sulfenic 
acids is reduced by the thioredoxin/thioredoxine reductase or the glutaredoxin/
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glutathione/glutathione reductase systems (Holmgren 2000; Levine and Stadtman 
2001; Poole et al. 2004). Oxidation of methionine into methionine sulfoxide can 
be reversed catalytically by the peptide methionine sulfoxide reductases system 
(Grimaud et al. 2001; Sharov et al. 1999).  

   Oxidation of other amino acids most often leads to the formation of hydroxyl 
and carbonyl derivatives. Thus, detection of protein-associated carbonyl groups has 
been widely used for assessing the extent of protein oxidation. Several methods 
aimed at quantitative measurement of carbonyl groups within proteins are based 
on their specific derivatization by 2, 4–dinitrophenylhydrazine and immunochemi-
cal detection of such derivatized carbonylated proteins can be achieved using an 
antidinitrophenyl antibody (Levine et al. 1994). Upon oxidation, proteins usually 
become less active, less thermostable and more hydrophobic (Davies 1987; Fisher 
and Stadtman 1992; Friguet et al. 1994b). Protein damage can also originate from 
oxidation-derived reactions of amino acids such as lysine, arginine, histine and 
cysteine with lipid peroxidation products (e.g., 4-hydroxy-2-nonenal, malondial-
dehyde) or with sugars or derived metabolites to form glycoxidation adducts (e.g., 
carboxymethyl lysine, pentosidine). The resulting adducts that are formed on the 
protein often bring in carbonyl groups and/or cross-links (Friguet and Szweda 1997; 
Szweda et al. 2002). The function of these modified proteins is generally impaired 
or even completely inactivated.  

   Age-related increases in protein carbonyl content, taken as a signature of oxida-
tive modifications, have been widely documented in different tissues and organisms: 
human dermal fibroblasts, human epidermal cells, human lenses, human erythro-
cytes, human brain, rat hepatocytes and whole  Drosophila  (Levine and Stadtman 
2001; Petropoulos et al. 2000). In human keratinocytes and lenses, we have shown 
that increased protein oxidation is associated with increased protein glycoxidation 
and conjugation by lipid peroxidation adducts (Petropoulos et al. 2000; Viteri et al. 
2004). Such an increase in oxidatively damaged protein is believed to affect cel-
lular integrity, since it is associated with the impairment of key enzymes. Recent 
data argue for an age-related increase in protein carbonyl content such that elderly 
individuals would have one-third of their proteins in average carrying this oxidative 
modification (Stadtman and Levine 2000). However, not all proteins are equally 
sensitive to oxidation and there are growing evidence that only a restricted set of 
proteins would be preferentially affected. Indeed, Sohal and colleagues have already 
reported that in aging flies, two mitochondrial enzymes, aconitase and adenine 
nucleotide translocase, are specific targets for oxidative modification (Yan et al. 
1997; Yan and Sohal 1998) and we have recently shown that glutamate dehydro-
genase and ornithine carbamoyl transferase are preferentially glycoxidized in the 
liver mitochondrial matrix of old rats (Hamelin et al. 2007). Moreover, based on 
a proteomic approach, we have previously reported that age-related increases in 
protein glycoxidation and modification by the lipid peroxidation product 4-hydroxy-
2-nonenal (HNE) are also restricted to preferential target proteins in human periph-
eral blood lymphocytes (Poggioli et al. 2002, 2004).  
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     3.2      Oxidized Protein Elimination  

   Since repair of oxidized proteins is limited to reduction in specific oxidation products 
of sulfur-containing amino acids, oxidation of all other amino acids within a pro-
tein will target it for degradation (Carrard et al. 2002; Friguet 2006). Upon mild 
oxidation, proteins become more prone to proteolysis, while highly oxidized pro-
teins usually become resistant to proteolysis because of the formation of intra- and 
intermolecular cross-links (Friguet and Szweda 1997; Grune et al. 1997). Oxidized 
proteins represent good substrates for degradation by the proteasome in vitro, and 
oxidized proteins have been shown to be preferentially degraded by the 20S protea-
some in an ATP- and ubiquitin-independent manner in a variety of cell types (Dav-
ies 2001; Shringarpure et al. 2003). However, certain studies have reported that the 
ubiquitin-26S proteasome pathway is involved in degradation of oxidized protein 
from lens cells (Shang et al. 2001). Moreover, ubiquitination of proteins carrying 
glycoxidation and lipid peroxidation adducts has also been documented (Bulteau 
et al. 2001b; Marques et al. 2004). The increased susceptibility of an oxidized pro-
tein to proteolysis has been correlated with exposure of hydrophobic amino acids 
at the surface of the protein that may represent a recognition signal for degrada-
tion by the 20S proteasome (Davies 2001; Grune et al. 1997). Alternatively, such 
exposure of residues that are normally hidden in the hydrophobic core of the pro-
tein may result from decreased thermodynamic stability of the oxidized protein that 
renders it more flexible, especially at the C-terminus and/or N-terminus end of the 
protein, hence making it more prone to progressive degradation by either the 20S 
or 26S proteasomes (Goldberg et al. 1997). Interestingly, recent evidence has been 
provided that chaperone-mediated autophagy of proteins carrying a KFERQ motif 
is activated upon oxidative stress, implying participation of this proteolytic path-
way in elimination of some oxidized proteins (Kiffin et al. 2004). Moreover, it has 
been also recently reported that when proteasome capacity is exceeded, autophagin 
expression is induced suggesting a physiological link between the lysosomal and 
proteasomal degradation systems (Klionsky 2005).  

   The proteasome appears to be a key actor in damaged protein elimination and 
other regulatory processes, and oxidative damage to protein has been implicated in 
age- and disease-related impairment of cellular functions. Therefore, the fate of the 
proteasome during oxidative stress has received particular attention. Indeed, pep-
tidyl glutamyl peptide hydrolase and trypsin-like activities are readily inactivated 
upon exposure of the 20S proteasome to metal-catalyzed oxidation in vitro (Con-
coni et al. 1996, 1998). However, these alterations depend on whether the protea-
some is in its active or latent state, a finding that may be related to the differential 
susceptibility to oxidative stress of the 26S and 20S proteasomes (Reinheckel et 
al. 1998). Moreover, in vitro treatment of the 20S and 26S proteasomes with nitric 
oxide or HNE was found to inactivate certain peptidase activities (Conconi and 
Friguet 1997; Farout et al. 2006; Ferrington and Kapphahn 2004; Glockzin et al. 
1999). In addition, the proteasome is a target for modifications by oxidative proc-
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esses in vivo that can lead to either its transient or irreversible inactivation. We 
first reported that FAO hepatoma cells, treated with iron and ascorbate in order 
to promote metal-catalyzed oxidation, exhibited decreased peptidyl glutamyl pep-
tide hydrolase and trypsin-like activities, indicating that the proteasome was a 
target for inactivation upon oxidative stress (Conconi et al. 1998). Interestingly, 
both α-crystallin and Hsp 90 were found to protect proteasomes against oxidative 
insults in vitro, while depletion or overexpression of Hsp 90 in FAO cells resulted 
in decreased or increased protection of proteasome trypsin-like activity, respec-
tively. This chaperone-mediated protection of proteasome activity during oxida-
tive stress may be related to other antioxidant properties described, especially for 
small heat shock proteins (Arrigo 2001). In addition, neural SH-SY5Y cells sta-
bly transfected with human HDJ-1, a member of the HSP40 family, were shown 
to retain a greater preservation of proteasome activity following oxidative injury 
(Ding and Keller 2001). Taken together the data suggest that heat shock proteins 
may confer resistance to oxidative stress, at least in part, by preserving proteasome 
function. Oxidative stress induced in vivo by treatment with ferric nitriloacetate in 
kidney and ischemia-reperfusion in brain induced impairment of proteasome func-
tion correlated with the appearance of HNE-modified proteasomes (Keller et al. 
2000c; Okada et al. 1999). Upon coronary occlusion-reperfusion, inactivation of 
trypsin-like activity has been associated with specific modification by HNE of three 
proteasome subunits (Bulteau et al. 2001a). In contrast, upon UV irradiation of 
cultured keratinocytes leading to a decline in proteasome activity, no modification 
of the proteasome was observed when the proteasome was purified from irradiated 
cells (Bulteau et al. 2002a). Proteasome inhibition resulted from the UV-induced 
increased load of damaged proteins, such as HNE modified proteins. In neural cells, 
inhibition of mitochondrial complex I by rotenone and 1-methyl-4-phenylpyridin-
ium was found to increase the production of ROS and to inactivate the proteasome, 
most likely through oxidative damage and ATP depletion (Hoglinger et al. 2003; 
Shamoto-Nagai et al. 2003). Upon treatment of neuroblastoma cells with rotenone, 
a drastic reduction in proteasome activity was observed and suggested to originate 
from direct modification of 20S proteasome subunits by acrolein while aggregated 
acrolein-modified proteins coimmunoprecipated with the proteasome (Shamoto-
Nagai et al. 2003). Conversely, proteasome inhibition has been shown to decrease 
complex I and complex II activities and to increase oxygen free radical production, 
indicating that mitochondrial homeostasis is altered, oxidative stress is triggered, 
and cell vulnerability to oxygen free radicals is increased as a result of proteasome 
inhibition (Hoglinger et al. 2003; Sullivan et al. 2004). These findings underscore 
the critical importance of the interplay of the different protein maintenance systems 
implicated in cellular redox homeostasis, protection against oxidative stress and 
oxidized protein removal. Finally, it has been recently shown that both 26S and 
20S proteasomes peptidase activities could be inhibited upon treatment with the 
prooxidant buthionine sulfoximine of T cells from young donors resulting in an 
increase in oxidized proteins and a decline in both activation-induced proliferation 
and degradation of the NκB inhibitor, IκB (Das et al. 2007).  
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   3.3   Decreased Proteasome Activity with Age  

   The age-related accumulation of oxidatively modified and ubiquitinated proteins, 
and the general decline in protein turnover, have raised the possibility that proteas-
ome function is impaired with age (Carrard et al. 2002; Friguet et al. 2000). Pioneer-
ing studies from our group and that of Ward indicated that proteasome proteolytic 
activity is affected with aging (Conconi et al. 1996; Shibatani and Ward 1996; 
Shibatani et al. 1996). Indeed, we showed that the 20S proteasome from rat liver 
exhibited a 50% decrease for the peptidyl glutamylpeptide hydrolase activity when 
purified from old animals compared with young ones, while Ward and collaborators 
reported a 40% decrease in the same peptidase activity when activated by SDS and 
assayed in crude homogenates (Conconi et al. 1996; Shibatani et al. 1996; Shibatani 
and Ward 1996). Interestingly, we also reported that decreased protein uptake upon 
dietary self-selection of nutriments, can compensate for the age-related decrease 
of 20S proteasome activity observed with standard diet in rat liver (Anselmi et al. 
1998). This finding may be related to the beneficial effects associated with dietary 
restrictions in calories and proteins, including decreased macromolecular damage, 
increased expression of antioxidant enzymes and increased longevity. Subsequently, 
we and other groups have reported that proteasome activity declines with age in a 
variety of tissues (Bardag-Gorce et al. 1999; Bulteau et al. 2002b; Hayashi and Goto 
1998; Keller et al. 2000a; Merker et al. 2000; Petropoulos et al. 2000; Ponnappan 
et al. 1999; Viteri et al. 2004), although some studies have shown that this decline 
may not be universal. Such a decline in proteasome activity is believed to contribute 
to the age-associated build up of oxidized protein.  

   We have shown that the age-related decline in proteasome activity might be 
explained by decreased expression of proteasome subunits in human keratinocytes 
(Petropoulos et al. 2000), human fibroblasts (Chondrogianni et al. 2000), and rat 
cardiomyocytes (Bulteau et al. 2002b). Interestingly, fibroblasts from healthy cen-
tenarians exhibited proteasome activity and proteasome subunit expression levels 
closer to those of younger individuals than older ones, suggesting that sustained pro-
teasome activity could have contributed to the successful aging of these individuals 
(Chondrogianni et al. 2000). In a more recent study, the exhaustive analysis of pro-
teasome subunit expression in senescent WI 38 human fibroblasts has indicated that 
only the expression of catalytic β-subunits is decreased, and that less 20S protea-
some is assembled while certain α-subunits are found in a free state (Chondrogianni 
et al. 2003). Moreover, exposure of WI 38 young fibroblasts to sublethal doses 
of the proteasome inhibitor epoxomycin resulted in a senescent-like phenotype. 
Transcriptome analysis using microarrays performed on both mouse skeletal mus-
cle and human fibroblasts has shown decreased expression of several 20S and 26S 
proteasome subunits (Lee et al. 1999; Ly et al. 2000). In both analyses, performed 
with either post-mitotic or mitotic cell types, fewer than 2% of the genes monitored 
showed age-related altered expression, with very little overlap except for protea-
some components. The gene expression profile observed with dietary-restricted old 
animals led the authors to propose that the anti-aging effect associated with dietary 
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restrictions may have originated from stimulation of protein turnover and decreased 
accumulation of macromolecular damage (Lee et al. 1999). Evidence for changes 
in the proteasome composition has been provided in certain age related neurode-
generative diseases (Vigouroux et al. 2004). Of particular interest is the Huntington 
disease where a concomitant increased of chymotrypsin-like and trypsin-like activi-
ties of the proteasome and an overexpression of the iβ1 and iβ5 inducible subunits 
were observed in the affected brain regions, indicating that changes in the 20S core 
particle subunit composition may play a role in neurodegeneration (Diaz-Hernan-
dez et al. 2003, 2004). More recently Ferrington et al. reported in aged muscle a 
two to threefold increased of immunoproteasome whereas 20S proteasome expres-
sion was decreased. Moreover the low proteasome activity was attributed to a 75% 
reduced amount of PA700 and PA28 complexes, suggesting that in aged muscle, the 
endogenous content of proteasome activators is inadequate for complete activation 
of the 20S proteasome (Ferrington et al. 2005).  

   In addition to decreased and/or modified proteasome subunits expression, as an 
explanation for the age-related decline in proteasome activity, our initial finding 
of decreased peptidyl glutamylpeptide hydrolase specific activity of proteasome 
purified from aged rat liver was indicative of direct inactivation of the proteasome 
(Anselmi et al. 1998; Conconi et al. 1996). Further studies on proteasome purified 
from rat liver or cardiomyocytes and human epidermis showed decreased protea-
some proteolytic activity coupled with subunit replacement and/or posttranslational 
modifications, as evidenced by comparison of two-dimensional gel electrophoretic 
patterns of proteasome subunits (Anselmi et al. 1998; Bulteau et al. 2000; Bulteau 
et al. 2002b). In the spinal cord of Fisher 344 rats, the age related decrease of pro-
teasome activity was associated with both a decreased level of proteasome expres-
sion and an increased level of HNE modified β subunits (Keller et al. 2000b). In 
more recent studies, 26S proteasome was purified from human peripheral blood 
lymphocytes obtained from donors of different ages, and the patterns of proteasome 
subunits modified by either glycoxidation or conjugation with a lipid peroxidation 
product were analyzed by 2D gel electrophoresis followed by specific immunode-
tection of the carboxymethyl lysine or HNE adducts (Carrard et al. 2003). These 
modifications were analyzed, since treatment of purified proteasome with either 
glyoxal or HNE can inactivate the proteasome (Bulteau et al. 2001b; Conconi and 
Friguet 1997). Interestingly, only a restricted number of 20S proteasome subunits 
were modified with age, while PA700 subunits were hardly modified (Carrard et al. 
2003). The question as to why some proteasome subunits are more prone to modi-
fications than others remains to be elucidated, but the age-related increased load 
of modifications in certain proteasome subunits might be related to the observed 
inactivation of proteasome peptidase activities. Finally, the fate of the proteasome 
was analyzed in the human eye lens and an age-related decline in all three peptidase 
activities was observed (Viteri et al. 2004). This finding was consistent with a pre-
vious report from Wagner and Margolis indicating an age-related decline in pro-
teasome peptidase activities in the bovine lens (Wagner and Margolis 1995). This 
decline could be explained, at least in part, by decreased proteasome content with 
age. However, among the three peptidase activities, the peptidylglutamyl peptide 
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hydrolase activity was much more decreased than the other two, indicating that this 
peptidase activity has been targeted for inactivation. Although this finding was only 
correlative and may not be related to the observed inactivation, increased glycoxida-
tive modifications of the proteasome were evidenced with age (Viteri et al. 2004).  

   Proteasome activity has been reported to be inhibited by highly modified pro-
teins such as cross-linked proteins generated upon incubation with the lipid peroxi-
dation product HNE (Friguet et al. 1994a). Indeed, in contrast to oxidized G6PDH 
that becomes more sensitive to degradation, when treated with HNE, the model 
protein glucose-6-phosphate dehydrogenase (G6PDH) becomes less susceptible 
to proteolysis by the 20S proteasome. Moreover, these cross-linked proteins were 
found to inhibit the degradation of an oxidized protein by the proteasome in a non-
competitive manner (Friguet and Szweda 1997). Thus, if present in cellular extracts 
of elderly individuals, such cross-linked proteins could act as inhibitors of the pro-
teasome. Evidence for such an inhibitory mechanism has been provided since intro-
duction of artificial lipofuscin (a ceroid pigment that accumulates in aged cells) 
has been shown to inhibit proteasome function (Sitte et al. 2000). More recently, 
accumulation of lipofuscin has been shown to result in proteasome inhibition which 
can induce apoptosis through the increase of proteasome regulated proapoptotic 
proteins (Powell et al. 2005). Conversely, proteasome inhibition can promote lipo-
fuscin formation, suggesting that insufficient proteasomal function may contribute 
to lipofuscinogenesis by a compensatory increase in the amount of proteins that 
are directed for lysosomal degradation (Terman and Sandberg 2002). Since protea-
some inhibition also induces alteration of mitochondrial homeostasis in neural cell 
(Hoglinger et al. 2003; Sullivan et al. 2004), the appearance of increased level of 
lipofuscin suggest that impairments in mitochondrial turnover may occur follow-
ing proteasome inhibition. Of additional interest is the observation that proteasome 
peptidase activities that were strongly inhibited in rat heart homogenates from old 
animals, were partially restored when assayed on the purified proteasome, sug-
gesting that endogenous inhibitors were eliminated during the purification process 
(Bulteau et al. 2002b). Finally, depending on the cellular system investigated, the 
age-related decline in proteasome activity appears to be due, at least in part, to the 
combined effects of: (a) decreased proteasome subunits expression; (b) direct inac-
tivation upon modification of proteasome subunits; and (c) the presence of endog-
enous inhibitors such as cross-linked proteins.  

     4      Proteasome and Immunosenescence  

   Proteasomal function is generally impaired with age. Indeed, an age-related decline 
of proteasomal function has been documented in a variety of tissues and cell types 
such as rat cardiomyocytes (Bulteau et al. 2002b), human keratinocytes (Petropoulos 
et al. 2000), human fibroblasts (Chondrogianni et al. 2000, 2003; Merker et al. 
2000) and human lens (Viteri et al. 2004). In the immune system, aging is associated 
with significant deficits in immune function and a decline of proteasome proteolytic 
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activity has been reported in lymphocytes with increasing age of human donors 
(Carrard et al. 2003; Ponnappan et al. 1999). It is commonly accepted that older 
individual fail to generate a vigorous immune response, particularly to antigens not 
previously encountered (Ginaldi et al. 2001; Webster 2000). This decline in immune 
responsiveness with age is due, at least in part, to loss of Th cell function which 
affect both cellular and humoral immunity (Gravekamp 2001; Weksler and Szabo 
2000). Thus, the decreased B cell response to antigenic stimulation is related to Th 
cell deficiency and to alterations in B cell development (Kline et al. 1999). In addi-
tion to lower antigenic response, an increase in autoantigenic response is observed 
with advancing age (Stacy et al. 2002; Weksler and Szabo 2000). The overall decline 
of the immune system is linked to several pathologies such as higher susceptibility 
to infections, autoimmunity and cancer (Ben-Yehuda et al. 1998; Dunn and North 
1991; Miller 2000). In the immune system, decreased proteasomal activity would 
be expected to contribute not only to accumulation of oxidized proteins but also to 
the lower activation of transcription factors such as NFκB, and most importantly to 
the lower production of antigenic peptides by the immunoproteasome for binding 
to MHC class I molecules.  

   Several studies have demonstrated the crucial role of the transcription factor 
NFκB in the activation of T cell through the activation of IL-2 and IL-2R genes 
(Pimentel-Muinos et al. 1994). The expression of the two latter have been shown 
to decline with age suggesting a default in their transcriptional activation. In the 
cytosol, NFκB is under an inactive form bound to its inhibitor IκB. The activa-
tion of NFκB occurs after stimulation by numerous agents such as cytokines (IL-1 
and TNF-α), bacterial and viral infection (Ponnappan 1998). The stimulated-deg-
radation of IκB by the proteasome declines with advancing age and results in the 
decreased induction of NFκB, hence contributing to the immune decline observed 
in the elderly (Ponnappan et al. 1999). Examination of stimulated phosphorylation 
and ubiquitination of IκB did not demonstrate any significant age-related alterations 
(Ponnappan et al. 1999). The lowered degradation of IκB was then associated to a 
decreased proteasome function in the elderly. Indeed, proteasome chymotrypsin-like 
activity was shown to decrease for T cell proteasome enriched fractions (Ponnap-
pan 2002) and for purified 26S proteasome from human lymphocytes (Carrard et al. 
2003). However, no evidence for 20S proteasome (Ponnappan et al. 1999) nor 26S 
proteasome (Carrard et al. 2003) decreased content was found in the elderly sam-
ples. Since the observed lower activity was not related to a decreased proteasome 
expression, we investigated the integrity of the proteasome structure during aging 
(Carrard et al. 2003). The 19S complex subunits were marginally altered upon aging 
since only two of its subunits, the ATPase subunits S4 and S7, were glycoxidized 
and/or conjugated with the lipid peroxidation product HNE. Nevertheless, it should 
be pointed out that S4 subunit has been implicated in 26S proteasome assembly in 
human cells (Mason et al. 1998). However, glycation of this subunit did not appear 
to affect the stability of the 26S proteasome complex, since no enhanced dissocia-
tion into 20S and 19S was observed with age. In contrast, the 20S core was much 
more prone to posttranslational modification during aging. Indeed, α and β subunits 
were overall more affected by glycation, conjugation with lipid peroxidation product 
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and ubiquitination in the elderly. Those modifications could have a direct impact on 
proteasome stability or activity. Indeed, modifications of α subunits could interfere 
with the accessibility of the substrate to the catalytic chamber and/or impact cata-
lytic activities by destabilizing the interaction between regulatory α and catalytic β 
subunits. For example, the α7 subunit is thought to coordinate the assembly of the 
rest of the α subunits in human proteasome (Gerards et al. 1998) and was severely 
modified by glycation, conjugation with HNE and was ubiquitinated. Another inter-
esting finding regarding lowered protease activity with age was the modification by 
both glycation and HNE conjugation of the iβ5 catalytic subunit which carries the 
chymotrypsin-like peptidase activity. Despite glycation of iβ5 in early ages, the chy-
motrypsin-like specific activity was not affected. However, this does not rule out the 
possibility that glycation occurring in samples from elderly donors may target more 
crucial lysine residues involved in the catalytic activity. In contrast, conjugation of 
iβ5 with HNE resulted in a concomitant decreased chymotrypsin-like activity of the 
proteasome complex. The observed increased ubiquitination of iβ5 with age may 
also contribute to proteasome inactivation. The specific modification of 26S protea-
some subunits could be central in the defect of activation of transcriptional factors 
implicated in the immune response and in antigen processing. Indeed, age-related 
decline of proteasome in human T-lymphocytes has been recently attributed to both 
a lower expression of certain catalytic and structural proteasome subunits, including 
immunoproteasome subunits, and increased oxidative modification of proteasome 
subunits (Ponnappan et al. 2007). Consequently, a lower degradation of infectious 
protein agents by the 26S proteasome and immunoproteasome could then result 
directly in a higher infection level and indirectly in a lowered immune response of 
the elderly. An age-related up-regulation of immunoproteasome subunits has been 
documented in muscle and brain that could be associated with constant inflamma-
tion or oxidative stress (Diaz-Hernandez et al. 2004; Ferrington et al. 2005), while 
down-regulation of immunoproteasome subunits in certain tumor cells has been 
interpreted as an immunosurveillance escape mechanism (Kageshita et al. 1999; 
Meidenbauer et al. 2004; Murakami et al. 2001). Up-regulation of immunoprotea-
some subunits has also been documented upon treatment with oxidants arguing for 
the ability of the proteasome system to cope with stress and the immunoproteasome 
to be part of the anti-stress response (Ding et al. 2003). Interestingly, treatment of 
senescent fibroblasts with IFNγ, as opposed to young fibroblasts, failed to induce 
immunoproteasome subunits (Stratford et al. 2006). In addition, such polymor-
phisms of immunoproteasome subunits as the LMP2 (iβ1) codon 60 (R60H) have 
been associated with certain autoimmune diseases like spondylo and rheumatoid 
arthritis, and insulin-dependent diabetes mellitus (Deng et al. 1995; Pryhuber et al. 
1996; Vargas-Alarcon et al. 2004) while an influence on susceptibility to TNFα-
induced apoptosis of this particular polymorphism was observed in peripheral blood 
lymphocytes (Mishto et al. 2002). Therefore, investigating the age-related status of 
the immunoproteasome may be of critical importance due to its pivotal role in the 
antigen presentation pathway and both quantitative and qualitative alterations of 
the immunoproteasome activity would be expected to have a strong influence on 
the quantity and quality of immunodominant epitopes presented to T-cell receptor 



742 B. Friguet

of CD8+ lymphocytes, hence leading to subsequent modifications of the immune 
response against antigens.  
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                                    Abstract   :    Aging is accompanied by several changes in immunity; however, altered 
T-cell function is one of the most consistent and dramatic changes observed. 
Because of the key roles that cyokines play in modulating the immune response, 
investigators have hypothesized that these age-related changes in T-cell function 
are related to, at least in part, by alterations in cytokine production. While data 
from murine studies generally support an age-related shift form a Th1-like cytokine 
response to a Th2-like response, data in humans do not support this age-related shift 
in cytokine production. This review of several studies indicates that age-associated 
changes in cytokine productions in humans are inconsistent. Further, these age-
associated changes in cytokine production do not necessarily induce a shift to a 
Type 2 cytokine response. This review highlights the variables that may contribute 
to the inconsistent results among studies. Additional studies in humans are both 
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critical and warranted to clearly identify the effect of altered cytokine production on 
age-associated changes in immune function.  

         Keywords   :     Aging    •      Cell-mediated response    •      Humans Humoral 
response    •      Immunity Type 1 cytokines    •      Type 2 cytokines    

         1      Introduction  

   It is well known that the incidence of cancer, infectious diseases, and autoim-
mune disorders increases with advancing age (Miller 1996). In addition, aging is 
accompanied by multiple changes in immune function, including decreased lym-
phoproliferative responses to both mitogens and antigens, reduced delayed type 
hypersensitivity reactions, and impaired antibody responses to both vaccination and 
infection (Miller 1996; Murasko and Gardner 2003). Thus, it has been postulated 
that these age-related diseases can be explained, at least in part, by an overall dys-
regulation in immune function (Shearer 1997).  

   The most consistent and dramatic age-related changes of the immune system have 
been demonstrated in the T-cell compartment (Miller, 1996; Murasko and Gardner 
2003). Therefore, many studies have examined T-cell responses during aging to iden-
tify potential mechanism(s) responsible for these age-associated alterations in immune 
function. Investigators have postulated that altered cytokine production may contribute 
significantly to age-associated changes in immune function in both animal models and 
in humans. The best evidence for an age-associated dysregulation in cytokine produc-
tion has been demonstrated in the mouse model. Most studies indicate that interleukin-2 
(IL-2) production is consistently decreased, (Shearer 1997), while interleukin-4 (IL4) 
production is generally increased (Albright et al. 1995; Hobbs et al. 1993).  

   The above observations have led investigators to postulate that aging per se 
may induce a shift from a Type 1-like cytokine (IL-2, IFN-γ, IL-12) cell-mediated 
response to a predominantly Type 2-like cytokine (IL4, IL-5, IL-6, IL-10) response. 
While this hypothesis is generally supported in murine models, there is no con-
clusive evidence that such a shift to a dominant Th-2 response occurs in elderly 
humans. In fact, in 2002, we published a comprehensive review of the literature 
in humans to evaluate whether or not there were definitive and consistent changes 
in cytokine production in elderly subjects (Gardner et al. 2006). This survey of the 
literature did not support an age-related shift in cytokine production that favored a 
predominantly Th-2 response in the elderly. Since that review, little new informa-
tion has emerged to support the hypothesis that there is a consistent age-related shift 
in cytokine production in elderly humans.  

   The purpose of the current review is not to reiterate our previous survey of the 
literature (Gardner and Murasko 2002), but rather to provide a concise summary of 
what is known about age-related changes in cytokine production in elderly humans, 
to suggest possible explanations for differences in outcomes of studies, and most 
important, to call for future studies to determine the impact of age-related changes 
on cytokine production on the immune response of the elderly.  
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       2      Parameters that Confound Comparison of Results 
Among Human Studies  

   In our previous review (Gardner and Murasko 2002), we extensively described the 
various confounding variables that can influence the outcome of studies on age-
related changes in human populations. These confounding variables are described 
briefly below and in Table 1 so that the reader is aware of possible factors that may 
influence the outcome of a study of immune function in elderly subjects.           

       2.1   Subject Populations  

   One of the major variables that may contribute to the outcomes of different studies 
is the age distribution of subjects in any given study. In order to evaluate whether 
or not cytokine production is altered in elderly humans, it is necessary to review 
the criteria utilized to select elderly subjects. First and foremost, the elderly must 
be at least 60 (preferably 65) years of age. It is equally important to design studies 

Table 1 Parameters to consider when evaluating multiple studies on age-related changes in im-
mune function of elderly subjects

Subject population Advantages Disadvantages

Age range
Elderly: 60+ years of age
Young: 18–40 years of age

Able to determine age-related 
changes in immune function 
in well-defined populations

Difficult to enroll both young 
and elderly subjects in the 
same study.

Difficult to enroll elderly 
subjects

Health status 
Frail (nursing home) Elderly 
Healthy elderly
Senieur (exceptional elderly)

Able to obtain information 
about the response of 
elderly populations with 
varying health status

Frail and Senieur elderly 
may not reflect age-related 
changes in immune func-
tion of general elderly 
population

Demographics
Racial background
Socioeconomic status

Similar demographics afford 
assessment of immune 
function in elderly reduces 
variability in subject 
population

Similar demographics may 
not reflect total elderly 
population, with differ-
ent racial backgrounds or 
economic status

Sample sizes
Large Reduce possible skewed 

responses due to heteroge-
neity in immune response

Difficulty in enrolling a large 
sample number in a single 
study

Small Enrollment and retention more 
likely

Response may be skewed 
and not reflect response of 
entire population
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in which both young and elderly subjects are evaluated concurrently. Inclusion of 
both age groups in the same study enables investigators to clearly delineate the 
changes in immune function that can be attributed to old age, minimizing any varia-
tion due to assay conditions. Despite this, studies have utilized subjects who cannot 
be categorized as elderly (e.g., <60 years of age) and have not included a concurrent 
examination of young and elderly in the same study (Gardner and Murasko 2002). 
Therefore, the best design for assessing age-related changes in immune function, 
including cytokine production, is to choose subjects who meet the age requirement 
for elderly and to include both young and elderly individuals in the same study.  

       2.2      Health Status of the Subjects  

   A second critical component of any aging study is to clearly define the health sta-
tus of the population to be evaluated in that given study. In general, human studies 
evaluate age-related changes in immune function in three classes of elderly: frail 
or nursing home elderly, exceptionally healthy (Senieur) elderly, or healthy elderly. 
Frail or nursing home elderly typically represents a population who is generally 
not in good health, having chronically debilitating disorders. Therefore, it is dif-
ficult to delineate changes in immune function that are due to age rather than to 
disease. However, it is still important to assess immune function in this popula-
tion to identify strategies that may enhance the immune response or reduce the 
incidence and/or severity of infectious disease in this population. It is important 
to note that the changes that occur in immune function in the frail elderly may not 
reflect the changes seen in the healthy, free-living elderly population. The Senieur 
protocol was developed to limit the influence of chronic disease on age-related 
changes in the immune response of the elderly. The criteria employed for selection 
of elderly individuals in the Senieur protocol are described in detail (Ligthart et al. 
1990). These Senieur elderly represents a group of individuals with exceptional 
health status, who are largely free from debilitating or chronic illnesses, which is 
not typical of the health status of the overall elderly population. Therefore, while 
this protocol is useful to elucidate changes in immune function that are primarily 
due to age and not to underlying disease, the data obtained may not be extended 
to the general elderly population. Finally, many studies enroll elderly who do not 
meet the criteria of the Senieur protocol, but whose health is generally good. In 
general, these individuals are independent, community-living individuals who do 
not have debilitating diseases, immune-related disorders or are taking chemothera-
peutic agents. This population has the advantage of being more readily accessible 
for aging studies and results from this population are more representative of the 
response of the elderly population.  

   In summary, regardless of which population of elderly is employed in a study, 
it is critical to carefully define that population and to recognize the limitations of 
examining the chosen population for assessment of age-related changes in cytokine 
function.  
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       2.3      Demographics of the Subject Population  

   Another consideration when evaluating age-related changes in the immune response 
of the elderly is the demographics of the population, which includes, but is not lim-
ited to, racial background and socioeconomic status. In order to limit variability of 
results, investigators typically assess age-related changes in a nearly homogeneous 
population of elderly. Thus, most if not all, of the subjects have the same racial 
(but not necessarily ethnic) background with similar socioeconomic status. While 
it may be argued that controlling for race and economic status can ultimately limit 
the variability of the results of the study, it is important to recognize that the results 
obtained from one subset of the elderly population may not reflect the diversity of 
responses within the elderly population at large. For example, most of the studies 
performed in the United States on age-related changes in the immune response have 
been generated in the Caucasian population; similiar studies in non-Caucasian eld-
erly are seriously lacking (Marin et al. 2002; Sambamoorhi and Findley 2005).  

   It is recognized that subject recruitment is difficult under the best of circum-
stances. In fact, we recently reported strategies that we utilized to successfully 
enhance both recruitment and retention of elderly in human studies (Gonzales et 
al. 2007). The lack of data in non-Caucasian groups may not be intentional, but 
rather, may reflect the inability of investigators to gain access to these populations 
for their studies. Secondly, the under-representation of non-Caucasians may also 
reflect a lack of trust of elderly subjects at the time of recruitment (Gonzales et al. 
2007). Our laboratory recently conducted a study to evaluate age-related changes 
in the immune response of a racially-diverse elderly population. The results of this 
study (Gardner et al. 2006), which will be discussed below, clearly indicate that 
immune response data generated from Caucasian elderly do not necessarily reflect 
the responses of subsets of non-Caucasian elderly. Therefore, additional studies in 
racially diverse populations are warranted to provide conclusive data regarding age-
related changes in the elderly population at large.  

       2.4   Sample Size of the Population  

   We (Murasko et al. 1991) and others (Barcellini et al. 1988) have documented that 
the immune response of elderly subjects shows marked heterogeneity. It has been 
postulated that several factors may contribute to this heterogeneity and include fac-
tors such as health status, genetic variability, and behaviors, such as diet, smoking, 
level of physical activity, or cognitive status (Ritz and Gardner 2006). Although 
many studies have consistently shown that the mean proliferative responses to either 
nonspecific stimulation or antigenic stimulation are reduced in the elderly com-
pared to young individuals (Bernstein et al. 1998; Gardner et al 2006); we have 
clearly shown that there are some elderly who produce responses that are nearly 
equivalent to those of young, while others produce responses that are only about 
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20% of the response of the young (Murasko et al. 1997). Therefore, it is necessary 
to employ large samples to control for this heterogeneity in the immune response of 
the elderly. However, many studies in the literature have assessed immune function 
on a small number of elderly. Therefore, it is plausible that small sample sizes may 
unintentionally select for responses that are either very high or very low. Thus, the 
data generated on a small cohort of elderly subjects may not be indicative of a larger 
elderly population and can contribute to differences in the outcomes of studies on 
age-related changes in the immune response even when other variables, such as 
health status, are controlled. Investigators should perform a statistical power analy-
sis to determine the number of subjects needed to offset the expected heterogeneity 
of the immune response in an elderly population.  

         3   Age-Related Changes in Cytokine Production  

   Evaluation of age-related changes in cytokine production has been the focus of 
many studies in which both young and elderly individuals have been assessed 
concurrently. It would seem, therefore, that a comprehensive review of these 
reports should definitively answer the question of whether or not there is an 
age-associated dysregulation in cytokine production in elderly humans. Unfor-
tunately, this has not been the case; differences in experimental conditions, such 
as the stimulating agent, the tissue employed, and the time points of evaluation, 
make it difficult to compare the results of all studies and to draw general conclu-
sions from them.  

   Typically, cytokine production has been assessed in peripheral blood mononu-
clear cells (PBMC), but some investigations have utilized cultures of whole blood 
or have isolated specific subsets of lymphocytes for analysis. Likewise, some 
studies have evaluated cytokine production in response to a nonspecific stimulus, 
such as PHA, while others after specific stimulation, such as influenza. Clearly, 
differences in outcomes may reflect the tissue analyzed as well as the stimulating 
agent utilized to induce cytokine production. Both the time points and the meth-
ods of assessments vary considerably among studies. In most cases, cytokine pro-
duction is measured at only one time point (e.g., 48 or 72 hrs after stimulation); 
therefore, it is possible that differences in outcomes of reports may simply reflect 
kinetic differences in the peak of the response to a particular cytokine. Finally, 
comparison of reports on age-related alterations in cytokine production is made 
more difficult by the various techniques used to quantitate cytokines. Some stud-
ies have measured cytokines in supernatants from stimulated cells by bioassays, 
while others have employed enzyme-linked immunosorbent assays (ELISA) or 
radioimmunoassays (RIA). Bioassays assess the functional activity of a sample 
using either growth or inhibition of growth of cell lines specifically responsive 
to that particular cytokine (e.g., IL-2, IL-4, IL-6) or inhibition of viral cytopathic 
effect (i.e., IFN). In contrast, both ELISA and RIA measure the total amount of a 
cytokine by using antibodies specific for antigenic determinants of the cytokine. 
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While ELISA and RIA are highly sensitive and specific in quantitating cytokine 
concentrations, they do not provide any information about the functional activity 
of the cytokines measured. Importantly, it is difficult to compare the results of 
studies on the same cytokine when one employed a bioassay and the other used 
ELISA since these results do not necessarily correlate (Murasko, unpublished 
data).  

   Some studies have evaluated cytokine mRNA produced by cells of young and 
elderly to avoid the problems of measuring proteins in the supernatants of stimu-
lated cells. While the levels of mRNA provide useful information regarding age-
associated alterations in transcription of cytokine genes, it is important to recognize 
that mRNA results do not always reflect the amount of protein produced and 
secreted. For example, we have reported previously (Gardner and Murasko 2002), 
elderly individuals who had increased levels of IFN-γ mRNA had comparable levels 
of biologically active IFN-γ relative to young controls.  

   It is, therefore, difficult to resolve disparities among studies when different meth-
ods of cytokine analyses have been employed. Clearly, the combination of these 
variations in experimental design could significantly contribute to the varying out-
comes, even when all other parameters of the study population are controlled. It is 
quite possible that differences among studies of humans may reflect even subtle 
differences in experimental design.  

   In summary, appropriate evaluation of the current literature of changes in cytokine 
production with age requires careful consideration of the health of the subjects, the 
demographics of the population, the cell types and stimuli used, and the techniques 
employed to measure cytokines. Additional comprehensive evaluations in studies that 
utilize appropriate and well-controlled experimental designs are absolutely critical to 
identify the impact of altered cytokine production on immune function in the elderly.  

       4   Age-Related Changes in Type 1 and Type 2 Cytokines  

   In human studies, IL-2 and IFN-γ are the most frequently measured cytokines for 
characterization of Type 1 cytokine responses, while ILs-4, 6, and 10 are often 
employed to characterize Type 2 cytokine responses. In order to make general 
conclusions regarding the effect of cytokine dysregulation on age-associated 
changes in immune function, the data from several reports in which Type 1 or 
Type 2 cytokines were assessed from either healthy or Senieur elderly, along with 
young subjects in the same study, are summarized below. For simplicity and ease 
of comparison among studies, this review will mainly focus on studies in which 
cytokine production was assessed in PBMC after mitogenic or antigenic stimula-
tion. However, when appropriate, a discussion of those studies in which cytokine 
production was assessed in isolated immune cells, whole blood, plasma, or sera 
will be included. These criteria regarding the studies reviewed in this chapter were 
selected in order to draw broad conclusions regarding cytokine dysregulation in 
the elderly.  
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       5      Type 1 Cytokines  

     5.1      Interleukin-2  

   One of the most consistent age-related changes in immune function is decreased T-
cell lymphoproliferative responses (Miller 1996; Murasko et al. 1987). Since inter-
leukin-2 (IL-2) is necessary for the activation and proliferation of T lymphocytes 
(Janeway et al. 2005), it stands to reason that age-related changes in IL-2 production 
have been assessed in several studies in the elderly. Age-related changes in IL-2 pro-
duction have been measured in elderly subjects under various culture conditions and 
in response to nonspecific stimulation or after stimulation with specific antigens, 
such as influenza.  

   The overall results of several studies in which IL-2 production was evaluated are 
summarized in Table 2. In a survey of fourteen studies, in which PBMC or whole 
blood from young and elderly subjects were stimulated with PHA, an age-related 
decrease was observed in eleven reports (Barcellini et al. 1988; Born et al. 1995; 
Gardner et al. 2000, 2006; Gillis et al. 1981, Murasko et al. 1991; Nagel et al. 1986; 
Orson et al. 1989; Song et al. 1993; Wu et al. 1994; Xu et al. 1993), while there was 
no age-related difference in three studies (Bruunsgaard et al. 2000; Sindermann 
et al. 1995; Weifang et al. 1996). However, the two studies (Bruunsgaard et al. 
2000; Sindermann et al. 1995) reporting no change in IL-2 levels stimulated whole 
blood with PHA, rather than PBMC. Interestingly, in one of the more recent studies 
(Gardner et al. 2006), PHA-induced IL-2 production was assessed in PBMCs from 
a racially-diverse group of elderly, consisting of 33 Caucasians, 39 African Ameri-
cans and 41 Latinos. This study demonstrated that IL-2 production was reduced in 
all elderly, regardless of racial background, relative to young controls assessed con-

    Table 2       Summary of age-related changes in type 1 cytokines a       

   Cytokine      Assessment      Stimulus      Age-related Changes   b     

   IL-2     PBMC

  Whole Blood  
  PBMC  

  PBMC  

  PHA

  PHA  
  Trivalent influenza vaccine  

    Live influenza virus  

  Decreased (11 reports)  
No change (1 reports)
  No change (2 reports)
  Decrease (5 reports)  
No change (1 report Latino) 
 Decrease (2 reports)  
No change (2 reports)  

   IFN-γ     PBMC   

    
Whole blood  
  PBMC  

  PHA or ConA  

    PHA 
   Influenza vaccine  

  Decreased (4 reports)
  No change (2 reports)  
Increased (1 report)  
  No Change (2 reports)
  Decreased (4 reports)
  No change (1 reports)  

     a    Adapted from (Gardner and Murasko 2006)  
    b    Results are compared to young controls   
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currently. This observation of decreased IL-2 production in non-Caucasian elderly 
has been confirmed in a subsequent study in our laboratory (Gardner and Murasko, 
unpublished data). Therefore, the majority, but not all, of studies demonstrate an 
age-related decrease in PHA-induced IL-2 production, relative to young controls.                      

     Several studies (Gardner et al. 2006; McElhaney et al. 1990, 1992, 1995; Quyang 
et al. 2000) have also evaluated IL-2 production in the elderly after stimulation with 
influenza to determine the response to a specific antigen. In two reports (McElhaney 
et al. 1990, Quyang et al. 2000), when PBMC were stimulated with trivalent influ-
enza vaccine, the elderly produced significantly less IL-2 after vaccination than did 
young controls. Interestingly, a more recent influenza study (Gardner et al. 2006) 
in a racially-diverse elderly population demonstrated that PBMC from elderly Cau-
casians and African Americans, but not from Latinos, produced significantly less 
IL-2 after influenza vaccination, relative to that produced by young controls. When 
various strains of live influenza virus were employed, mixed results were obtained. 
Studies have indicated that IL-2 production after stimulation of PBMCs with influ-
enza virus was either reduced or unchanged (McElhaney et al. 1992, 1995), depend-
ing on the strain of influenza utilized, relative to the response of young controls.  

   Therefore, a careful review of current literature clearly suggests that while many 
elderly produce less IL-2 than young, not all elderly demonstrate an age-related 
decrease in IL-2 production. Importantly, recent data also suggests that racial back-
ground must be considered when evaluating age-related changes in IL-2 production. 
The reasons for these disparate results among studies are not clear. However, pos-
sible reasons include differences in sample numbers assessed within various stud-
ies, the overall heterogeneity in the immune response of the elderly, and the type of 
stimulus. Based upon this review, decreased in IL-2 production cannot be presented 
as a definitive age-associated alteration in humans.  

    Table 3       Summary of age-related changes in Type 2 Cytokines a       

   Cytokine      Assessment      Stimulus      Age-related changes  b    

     IL-4             PBMC

  PBMC  

  PHA, ConA  
Anti-CD2/Anti-CD28  
Anti-CD3/PMA
  Influenza vaccine  

  No change (2 reports)  
Increased (1 report)  
Decreased (1 report)
  Undetectable (2 reports)  

   IL-6     PBMC 

 Serum  
Plasma  

  PHA or ConA

  None  

  No change(3 reports)  
Increased (2 reports) 
 Decreased (report)  
  No change (3 reports) 
 Increased (2 reports)  

   IL-10     Blood  
  PBMC 
 
PBMC  
Serum  

  PHA
    Influenza vaccine 

 None
  None  

  Decreased (1 report)
    Increase (1 report)  
Decreased (2 reports)
  No change (2 reports)  
No change (1 report)  

     a    Adapted from (Gardner and Murasko 2006)  
    b    Results are compared to young controls   
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         6      Interferon-γ (IFN-γ)  

   IFN-γ is secreted mainly by T lymphocytes and NK cells and is known for inducing 
antiviral activity, upregulating MHC class I and II antigens, and activating mac-
rophages (Janeway et al. 2005). Since IFN-γ is a strong inducer of cell-mediated 
immune (CMI) responses, investigators have hypothesized that age-related changes 
in IFN-γ may play a role in the decline of CMI with age (Shearer 1997).  

   There have been several reports that have assessed the effect of age on IFN-γ 
production in the elderly. The results of these studies are summarized in Table 2. 
When changes in IFN-γ production by PBMC after stimulation with either PHA or 
ConA were evaluated in young and elderly subjects, four studies reported an age-
associated decrease (Born et al. 1995; Candore et al. 1993; Lio et al. 1998, 2000), 
two studies demonstrated no change (Hessen et al. 1991; Weifeng et al. 1986), and 
one showed an increase in IFN-γ (Murasko et al. 2001), relative to the response 
of young subjects. Two other studies in which cultures of blood were stimulated 
with PHA reported no differences in IFN-γ production between young and elderly 
individuals (Bruunsgaard et al. 2000; Sindermann et al. 1993). Although the exact 
reasons for the differences in outcomes among these reports are not clear, a review 
of these studies clearly indicates that the experimental designs among studies varied 
considerably. There were differences in length of stimulation in vitro (1–5 days) and 
in the techniques used to measure IFN-γ (biossay versus ELISA). Therefore, the 
discrepancy among studies may simply reflect altered kinetics of IFN-γ production 
or variations in assays used for quantitation of IFN-γ.  

   Studies in which PBMC were incubated with specific stimuli using influenza 
antigen generally support an age-related decrease in IFN-γ. Five studies demon-
strated decreased IFN-γ production to influenza virus in the elderly, relative to 
young controls (Bernstein et al. 1998, Gardner et al. 2006, McElhaney et al. 2006; 
Murasko et al. 2001; Quyang et al. 2000;). In one study (Bodnar et al. 1997), IFN-γ 
production by PBMC from elderly after stimulation with influenza showed a non-
significant decrease relative to that produced by young subjects. This lack of statisti-
cal age-related decrease in the elderly was likely due to the small number of subjects 
included in the study. Our recent study (Gardner et al. 2006) in a racially-diverse 
elderly population also supports an age-related decrease in IFN-γ production, with 
both the total elderly, as well as all elderly subgroups, producing less IFN-γ after 
influenza vaccination compared young controls. However, an interesting observa-
tion that emerged from this study was that IFN-γ levels decreased from pre- to 
post-vaccination in elderly African Americans, but not in any of the other groups 
of elderly individuals or in the total elderly population. This observation was con-
firmed in a subsequent study (unpublished observations). These data suggest that 
racial background can influence age-related changes in the cell-mediated response. 
Importantly, these altered responses of elderly African Americans, relative to the 
total elderly population, may not have emerged had the elderly not been categorized 
by racial background. Future studies are necessary to validate these findings.  
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   In a recent report, McElhaney et al. (2006) questioned whether or not indices of 
CMI could be utilized to distinguish between elderly individuals who did or did not 
develop laboratory diagnosed influenza (LDI). In this study, 90 elderly (60 years 
and older) and 10 healthy young adult controls were immunized with the 2003–
2004 trivalent inactivated influenza vaccine. The study reported that 9 out of 90 
elderly developed LDI during the course of the study. Before vaccination, subjects 
who developed LDI had 10-fold lower levels of IFN-γ after stimulation with live 
influenza virus compared to those elderly who did not develop LDI. Although the 
subjects without LDI showed no significant change in IFN-γ levels over the course 
of the study, the older adults who developed LDI showed significant increases in 
IFN- γ levels in influenza-stimulated PBMCs. The mean IFN-γ:IL-10 ratio in influ-
enza-stimulated PBMC was 10-fold lower in LDI versus nonLDI subjects. These 
results are important because they correlate cytokine production with LDI in the 
elderly and also argue for altered Type 1 and Type 2 cytokine responses in the eld-
erly. Clearly, future studies should confirm this observation in a larger population of 
elderly with or without LDI.  

   In summary, a careful review of the current reports suggest that there are no 
consistent age-related changes in IFN-γ production after non-specific stimulation, 
at least when PHA or ConA are utilized. Until additional studies that carefully com-
pared dose and kinetics are performed, no definitive conclusions can be made. In 
contrast, the data to date are fairly consistent in demonstrating an age-associated 
decrease in IFN-γ production upon antigen-specific stimulation, at least when influ-
enza is the antigen used.  

       7      Type 2 cytokines  

     7.1   Interleukin 4  

   IL-4 is a Type 2 cytokine secreted by T-cells, B cells, macrophages, mast cells, and 
basophils and induces B cell differentiation and antibody class switching (Janeway 
et al. 2005). It has been demonstrated that IL-4 plays a critical regulatory role in 
inhibiting the production of Type 1 cytokines, while stimulating the production of 
Type 2 cytokines (Shearer 1997).  

   Assessment of age-related changes in IL-4 production in humans in response 
to mitogenic stimulation is quite limited and the results of these studies are not 
consistent (Gardner and Murasko 2002). While two reports showed that stimulation 
with either PHA (Candore et al. 1993) or ConA (Bernstein et al. 1998) resulted in 
comparable IL-4 production by both young and elderly, there are reports to indicate 
either an age-related increase (Nijhuis et al. 1994); or decrease (Karanfilov et al. 
1999) in IL-4 production. However, those studies indicating an age-related increase, 
measured IL-4 production by PBMCs after stimulation with a combination of anti-
CD2/anti-CD28, whereas the report demonstrating an age-related increase utilized a 
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combination of CD3 and PMA. Therefore, differences in IL-4 production after non-
specific stimulation may be dependent on the agent used to induce the response.  

   Attempts have been made to evaluate the age-related changes in IL-4 production 
by PBMC after stimulation with specific antigens. When PBMCs from young or 
elderly subjects were stimulated with either trivalent whole inactivated influenza 
vaccine (Bodnar et al. 1997) or after stimulation of PBMC with trivalent influenza 
subvirion vaccine (Bernstein et al. 1998), IL-4 levels could not be detected. It is 
possible that increasing age has either no effect on IL-4 production or that the effect 
is not very robust, since variations in experimental design result in very different 
outcomes. Additional studies that address these experimental issues are necessary 
before the effect of age on IL-4 production can be ascertained.  

       7.2      Interleukin 6  

   IL-6 is a Type 2 cytokine that impacts both T and B cell responses, and is a major 
component of the acute phase inflammatory response. The major cells types that 
produce IL-6 include T-cells, monocytes, macrophages and mast cells (Janeway 
2006). T-cell activation and differentiation, B cell differentiation and mucosal IgA 
responses are all induced by the production of IL-6.  

   IL-6 has been deemed a “gerontologist cytokine” because it has been postulated 
that advancing age is associated with increased IL-6 levels (Ershler et al. 1993). 
However, a careful review of the literature to date does not support this claim, at least 
in human studies. Several studies have assessed the impact of age-related changes 
on IL-6 production after stimulation of PBMC or whole blood with mitogens. Stim-
ulation with PHA (Candore et al. 1993; Beharka et al. 2001) or a combination of 
PHA and PMA (Fagiolo et al. 1993) induced comparable IL-6 production from 
PBMC of elderly and young after 24 hrs of incubation. However, a longer stimu-
lation with PHA and PMA induced higher levels of IL-6 in elderly at 48 and 72 
hrs of stimulation, while IL-6 levels remained constant in the young from 24–72 
hrs (Fagiolo et al. 1993). It is not certain if this age-related increase is due to the 
type of stimulus (e.g., the addition of PMA to the culture) or reflects actual kinetic 
differences between young and elderly. Clearly, measurement at later time points 
may indicate an age-related increase in IL-6. However, an additional study argues 
against age-related kinetic differences since whole blood incubated with PHA for 
96 hrs induced comparable levels of IL-6 in young and elderly subjects. The pos-
sibility that the inducing agent influences IL-6 production can not be excluded. 
A well-defined study by Beharka and colleagues measured IL-6 production by 
PBMCs from the same individuals after stimulation with PHA or ConA in fetal 
bovine serum (FBS) or autologous plasma (AP). While PHA in AP, PHA in FBS, 
and ConA in FBS induced comparable levels of IL-6 in young and elderly, IL-6 was 
decreased when ConA in AP was utilized, relative to young controls. Collectively, 
it appears that kinetic differences as well as the stimulating agents influence IL-6 
production after nonspecific stimulation. Future studies in which a detailed kinetic 
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analysis is performed using the same stimulating agent are required to definitively 
determine the effects of age on IL-6 production.  

   The effect of age on IL-6 production by PBMC stimulated with specific antigen 
has only been evaluated in response to influenza vaccine (Bernstein et al. 1998). 
In this study, IL-6 production was comparable between young and elderly subjects 
when PBMCs were stimulated in vitro with trivalent influenza vaccine before and 
after influenza immunization. However, it is important to note that there was con-
siderable heterogeneity in IL-6 responses in both young and elderly before and after 
influenza vaccination. Therefore, if small numbers of subjects are evaluated, it is 
possible that a higher IL6 response in the elderly may reflect a sampling error rather 
than true biologic differences.  

   It has been suggested that concentrations of IL-6 in plasma or serum increase 
with advancing age (Ershler et al. 1993; Kania et al. 1995). Although the investi-
gators who support this hypothesis recognize that IL-6 is usually undetectable in 
the absence of inflammation, (Ershler 1993), they still believe that this increase 
is solely due to age and not symptomatic inflammation. However, this conclu-
sion is difficult to support since the elderly subjects in these reports, although 
defined as healthy elderly, were not screened for inflammatory diseases, such 
as arthritis. We have found in a previous influenza study that IL-6 levels were 
significantly elevated in a subset of elderly individuals prior to vaccination with 
influenza (Bernstein et al. 1998). These individuals did not produce a significant 
increase in IL-6 after vaccination with influenza. When the health status of these 
individuals was analyzed retrospectively, those individuals with increased IL-6 
levels had reported that they did have arthritic flare-ups (Bernstein et al. 1996). 
Three additional studies evaluating IL6 levels in plasma and sera have observed 
no age-associated difference (Beharka et al. 2001; James et al. 1997; Peterson et 
al. 1994). In one study (Beharka et al. 2001) it was reported that there was no age-
associated increase in IL-6 among the elderly; interestingly, subjects that were in 
the 65–69 and 75–80 age groups had higher IL-6 levels than those in the 70–74 
and > 80 age groups. Collectively, these studies suggest that both health status 
and genetic heterogeneity may be a major factor in the variation in IL6 production 
observed among studies.  

   Overall in the human system, the data for an age-related increase in IL-6 is not 
convincing. Studies using similar techniques and subject populations have reported 
contrasting results. While there is strong evidence for elevated levels of IL-6 in dis-
ease states (Ershler, 1993) that are associated with aging, in the absence of disease, 
the current data does not support an age-associated change in IL-6 production.  

       7.3   Interleukin-10  

   IL-10 is produced by T and B cells, monocytes, and macrophages and inhib-
its macrophage activity by inhibiting cytokine production and downregulating 
MHC class II antigen expression (Janeway 2006). Like IL-4, IL-10 plays a key 
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regulatory role in inhibiting production of Type 1 cytokines (Shearer 1997), thus 
down-regulating CMI responses. Investigators have hypothesized that an age-
related increase in IL-10 production may influence the age-related decrease in 
CMI. Recent data from McElhaney et al. (2006) support this hypothesis since 
IL-10 levels increased after ex vivo stimulation of PBMC with influenza follow-
ing immunization of elderly subjects, regardless of whether or not they had LDI. 
However, LDI subjects had threefold higher levels of IL-10 production by PBMC 
after ex vivo stimulation with influenza, compared with non-LDI subjects. This 
suggests that those elderly who develop LDI may favor a more Th-2 like response 
due to altered IFN-γ:IL-10 ratios.  

   Earlier studies, however, have utilized a number of culture conditions to evaluate 
production of IL-10 by PBMC or whole blood. Basal IL-10 production by PBMC cul-
tured for 24 hrs without stimulation showed comparable levels in young and elderly 
(Llorente et al. 1997). The only study examining IL-10 in serum found comparable 
levels in young and elderly subjects (Peterson et al. 1994). Stimulation of PBMCs with 
trivalent influenza vaccine prior to immunization (Bernstein et al. 1998) also demon-
strated no age-related differences. However, production of IL-10 after stimulation of 
PBMC with trivalent influenza vaccine or influenza B after immunization resulted in 
significantly decreased IL-10 production in the elderly compared to young (Bernstein 
et al. 1998; Llorente et al. 1999). A similar age-associated decrease was observed after 
stimulation of whole blood with PHA for 24 hrs (Bruunsgaard et al. 2000).  

   Therefore, similar to the data with other cytokines, conflicting results have been 
observed with IL-10. The data on IL-10 production range from being decreased, 
unchanged or increased, and are influenced by the stimulus or tissue examined. The 
age-related changes in influenza vaccine-induced IL-10 production that is observed 
only after influenza vaccination indicate that altered IL-10 production in response 
to specific stimuli is subtle and may be unmasked only by in vivo immune chal-
lenges, such as illness or vaccination. However, due to the differences in stimuli and 
the limited number of studies, a definitive conclusion is not possible at this time.  

         8   Conclusions and Future Directions  

   It is well established that immune function declines with advancing age in both 
humans and in animal models. Since cytokines are key components in the regula-
tory communication that occurs among immune cell, it is likely that altered cytokine 
production may contribute to these age-associated changes in immune function. 
Murine models of aging have shown an age-regulated dysfunction in cytokine pro-
duction, as evidenced by consistently decreased IL-2 and increased IL-4. These 
data, coupled with the increased incidence of cancer and virus infections in the 
elderly have led investigators to hypothesize that aging may favor a predominant 
Type 2 cytokine response. Therefore, the purpose of this chapter was to evaluate the 
current literature regarding age-related changes in cytokine production in the elderly 
to determine whether the preponderance of evidence supports this contention.  
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   Our current review of the literature cannot support the contention that there is, in 
fact, an age-associated shift to a predominant Type 2 cytokine response in the elderly. 
Despite the large number of studies that have been conducted over the last several 
years, differences in experimental design make it extremely difficult to compare the 
data among studies. This review clearly shows that factors such as age, health status, 
genetic heterogeneity and the demographics of the elderly population, all influence 
the outcome of a study. Likewise, differences in stimulating agent, its dose, time 
points of assessments and method of assessment for cytokine production all greatly 
influence the results of human studies. Therefore, without some way to control for 
the confounding variations in experimental design, a definitive conclusion among 
studies cannot be made. In epidemiologic studies, a meta analysis of raw data from 
several studies is often employed to draw conclusions regarding a biologic outcome 
from studies that do not have the same design. Perhaps a meta analysis of the studies 
evaluating cytokine production in the elderly may reveal associations that have not 
been apparent by simply reviewing the published data.  

   In order to validate the contention of an age-related shift in cytokine production, 
it is necessary to assess both Type 1 and Type 2 cytokines concurrently in the same 
study. While this concurrent analysis has been done in some of the studies reviewed, 
it has not been reported in all of them. Likewise, it is not acceptable to measure only 
one cytokine falling into either category and suggest that a predominant Type 1 or 2 
response has been achieved. Rather, it is necessary to measure a panel of cytokines 
that may be induced during the response being assessed. Such an analysis can eas-
ily be performed with the development of multiplex cytokine bead arrays, in which 
several cytokines can be assessed from the same sample.  

   In summary, based on the current data, the reader is left with more questions than 
answers regarding the effect of cytokine dysregulation on age-related changes in 
immune function. It is clear that there are age-related changes between young and 
elderly in cytokine production; however, more comprehensive studies are required 
to assess the influence of age-associated cytokine dysregulation on the immune 
response of the elderly. Further, while assessment in response to mitogens may 
reflect the potential of cells, it is the response to natural, environmental stimuli, such 
as infectious agents that are most important. Therefore, is important for these stud-
ies to focus on the immune response to infectious agents, rather than to nonspecific 
stimulation, so that effective cytokine treatments may be developed to enhance vac-
cination strategies and immunotherapeutic targets.  
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1 Introduction

Ageing is associated with various changes in immune parameters, alterations in 
lymphocyte subsets and cytokine dysregulation (Cossarizza et al. 1997). Cytokines 
are central to the regulation of the immune-inflammatory response in old age and 
so perhaps play a pivitol role in ageing and survival. But whether these alterations 
in cytokine expression and production are the secret of long life or are an indication 
of underlying disease, even in the apparently healthy, is uncertain. While studies of 
cytokine gene polymorphisms suggest that certain cytokine genotypes are associ-
ated with long life (Rea et al. 2006), cytokine levels have also been associated with 
various age-related diseases (Forsey et al. 2003). Studies of these parameters in very 
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elderly subjects, i.e., those who have aged successfully, are perhaps the most useful 
in determining the key to longevity.

Cytokines have been investigated extensively in elderly people, at times with 
conflicting results. This is possibly in part due to the number of different methodol-
ogies employed. Immunoassays have been used for the measurement of circulating 
cytokines in plasma. However, due to the detection limits of kits, and the presence 
of natural inhibitors, soluble receptors or antagonists, their presence in serum may 
be masked. Bioassays, involving in vitro stimulation of whole blood or separated 
mononuclear cells, have also been widely employed in the study of age-associated 
changes in cytokine production. However, the response of cells to stimulants in an 
unnatural environment may not reflect what occurs in vivo. Also neither bioassays 
or immunoassays give an indication of the exact cellular source of these growth 
factors. Intracellular cytokine detection is a relatively new methodology which ena-
bles detection of cytokines at a single cell level thereby identifying the specific cell 
subsets producing these mediators (Jason et al. 1997; Jung et al. 1993; Prussin et 
al. 1995). The technique is performed in whole blood so cells can be kept in their 
natural environment. Still, while each of these methodologies have their limitations, 
a great deal of information on the cytokine profile of very elderly subjects has still 
been and is continuing to be elucidated.

2   IL-6

Interleukin 6 (IL-6) has been described as a “cytokine for gerontologists” (Ersh-
ler, 1993). It plays a key role in the acute phase response and displays both proin-
flammatory and anti-inflammatory activities. It is normally present in low levels in 
the blood, with increased levels detected during infection or trauma. Interleukin 6 
levels have been widely reported to be elevated in the serum of very elderly sub-
jects (Cohen et al. 1997; Forsey et al. 2003; Giuliani et al. 2001; Wei et al. 1992). 
Giuliani et al, in a study of 220 women aged 25–104 years, including 22 centenar-
ians, showed that serum IL-6 levels increased exponentially with age. In the same 
group, soluble IL-6 receptor, which enhances IL-6 activity, and soluble gp130, an 
IL-6 inhibitor, increased until the 7th decade of life before decreasing in the older 
age groups.

The mechanisms behind this increase in IL-6 levels with age, as well as the cel-
lular sources are still not fully understood. IL-6 production by both stimulated and 
unstimulated leucocytes is increased in elderly subjects by both PBMN cells and 
monocytes (Rea et al. 1995; Rink et al. 1998; Roubenoff et al. 1998). Using the 
technique of intracellular cytokine detection by flow cytometry, O’Mahoney et al. 
(1998) showed a statistically significant increase in intracellular IL-6 production in 
CD3+ T-cells and an insignificant increase in monocytes.

A number of studies have linked IL-6 polymorphisms to longevity, however, 
results have been conflicting. In a study of Italian centenarians, the 174G/C pro-
moter polymorphism in the IL-6 gene, the GG genotype was decreased in male 
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centenarians and was associated with increased plasma IL-6 levels. This would sug-
gest that those genotypes producing high levels of IL-6 appear to be detrimental to 
long life, at least in men; there was no difference detected in women (Bonafe et al. 
2001). Studies of Irish octo- and nonagenarians have also shown the GG genotype 
to be decreased in the elderly (Rea et al. 2003; Ross et al. 2003a). Other studies, 
however, have shown no difference in genotype frequencies between centenarians 
and young controls (Carpurso et al. 2004; Pes et al. 2004). The reasons for these 
discrepancies are unclear, however, cultural and lifestyle differences between the 
populations studied may play a role.

This increase in IL-6 levels, rather than being the key to longevity, may instead 
be a reflection of an increased inflammatory state caused by underlying disease 
even in the apparently well elderly person. Elevated IL-6 levels have been reported 
to be associated with several age-related diseases including coronary heart disease, 
arthritis and osteoporosis (Forsey et al. 2003). High levels are also associated with 
a decline in function and cognitive ability and also in stroke (Barbieri et al. 2003; 
Cesari et al. 2004; Cohen et al. 1997; Ershler and Keller 2000). It has also been 
indicated as a strong predictor of mortality in elderly people (Bruunsgaard et al. 
2003a; Harris et al. 1999; Volpato et al. 2001) but not in persons aged 100 years 
(Bruunsgaard et al. 2003b).

3   TNF-α

TNF-α is another pro-inflammatory cytokine and an important mediator of the 
immune response. It is widely reported as being elevated in the plasma of eld-
erly people and levels have been found to correlate with IL-6, sTNFR and CRP 
in centenarians (Rea et al. 1999; Bruunsgaard et al. 1999, 2000, Sandmand et al. 
2003). Increased production from unstimulated monocyte monlayers has also been 
reported (McNerlan et al. 1997), However, LPS stimulated leucocytes have yielded 
conflicting results (Bruunsgaard et al. 2003a).

Using intracellular cytokine detection by flow cytometry, the percentage and 
absolute counts of CD3+ T-cells producing TNF-α were significantly higher in a 
study of very healthy octo- and nona-genarians compared to young controls (McN-
erlan et al. 2002). In another study of slightly younger individuals, >62 years (mean 
age 73), there were significant increases in intracellular T-cell TNFα and an insig-
nificant increase in monocyte TNF-α (O’Mahoney et al. 1998). However, a Danish 
study which showed increased circulating TNF-α with increasing age in a cohort 
including centenarians only found an increase in the percentage and number of 
T-cells expressing TNF-α in the group of 81 year olds but not in the centenarians, 
suggesting that T-cells contribute to the increased TNF-α levels in elderly subjects 
but other mechanisms must come into play in the much older individual (Sandmand 
et al. 2003).

Polymorphisms of the TNF-α gene do not appear to be associated with longevity 
(Rea et al. 2006). Three studies of Finnish nonagenarians, Italian centenarians and 
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Irish nonagenarians showed no difference in the frequency of the TNFα-308A/G 
polymorphism compared to young controls (Lio et al. 2003; Ross et al. 2003b; 
Wang et al. 2001). No significant sex differences emerged either. There is, however, 
a reported association with Alzheimers disease. A haplotype for TNFα associates in 
siblings with late onset AD and carriers of -308A show an earlier mean age at onset 
(Alvarez et al. 2002; Collins et al. 2000; McCusker et al. 2001). High plasma levels 
of TNF-α were found to be associated with moderate to severe dementia in a cohort 
of Danish centenarians (Bruunsgaard et al. 1999), however, it is unclear whether 
its role is causative or if it is the result of an increased immune activation caused by 
the underlying pathologic processes.

TNFα is evident in other disease processes associated with ageing. High levels 
of TNF-α were seen in a study of 130 octogenarians with atherosclerotic CVD 
(Bruunsgaard et al. 2000), and in a group of centenarians with generalized athero-
sclerosis (Bruunsgaard et al. 1999). Higher levels of TNF-α were found in a study 
of 70-year-old men with type II diabetes mellitus compared to age-matched controls 
and levels were found to correlate with the severity of insulin resistance (Nilsson 
et al. 1998). High levels of both TNF-α and IL-6 were associated with lower muscle 
mass and muscle strength in older men and women (Visser et al. 2002).

In a study of 333 relatively healthy 80 year olds, TNF-α was found to be associ-
ated with mortality in men but not women (Bruunsgaard et al. 2003a), whereas in a 
group of centenarians, recruited around their 100th birthday, elevated TNF-α was 
associated with mortality in both men and women (Bruunsgaard et al. 2003b).

4  Other Pro-Inflammatory Cytokines

Ageing is characterized by a low grade increase in inflammatory markers. In addi-
tion to IL-6 and TNFα, another primary mediator of the inflammatory response 
is IL-1. Reports on the production of IL-1β from cells from elderly people have 
been conflicting with reports of increased, decreased and no difference (Krabbe 
et al. 2004). Differing results may be due to different cell populations (WB, PBMC, 
monocytes,etc.) and the stimulants used (LPS, PMA, etc.). The InCHIANTI Study 
of subjects >65 years of age found no relationship between serum levels of IL-1β 
and age but found levels were associated with heart failure and angina (Di Iorio 
et al. 2003).

IL-18 is another proinflammatory cytokine associated with various major disa-
bling conditions, including ischemic disease. However, whether it is the cause or a 
byproduct of these events is uncertain. Serum IL-18 levels are higher in centenar-
ians compared to a young control group and also compared to a group of patients 
with chronic ischemic syndromes (Gangemi et al. 2003). These authors also report 
a significant increase in circulating levels of IL-18 binding protein, a natural inhibi-
tor, compared to the other 2 groups which would explain the apparent paradox of 
elevated IL-18 with no vascular disease in these centenarians. Another study of 
1671 elderly subjects aged 65-80 years showed elevated IL-18 levels to be associ-
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ated with a decline in physical function, and that a polymorphism in the IL-18 gene 
which reduces IL-18 serum concentration, was associated with improved walking 
speed (Frayling et al. 2007).

IL-8 is a neutrophil chemotactic factor and inflammatory cytokine which brings 
neutrophils to the site of inflammation to contain infection (Baggiolini, et al. 1992). 
Increased levels have been detected after LPS stimulation of leucocytes from eld-
erly individuals (Rink et al. 1998). IL-8 has been proposed as a possible key to 
longevity in a small study of centenarians. A study of 30 young people (21–37 
years), 30 healthy elderly (65–87 years) and 10 centenarians found levels of IL-8 
to be elevated in the serum of the centenarians compared to the other two groups 
(Wieczorowska-Tobis et al. 2006), while IL-6 levels were unchanged. This might 
suggest that increased serum IL-8 alongside low IL-6 might be related to longev-
ity, although larger studies are needed to confirm this finding. However, Ross et al. 
(2003a) found that while AA homozygotes of the IL-8 -251 A/T polymorphism are 
associated with higher production levels of IL-8, there was no significant difference 
in IL-8 -251 A/T polymorphisms in a group of nonagenarians compared to young 
controls, but the study was relatively small.

IL-12 is a central cytokine acting on T- and NK cells directing proliferation of 
activated T-cells towards a Th1 phenotype (Trinchieri 1993). It is an important 
cytokine in the early inflammatory response where it stimulates IFNγ production 
from T- and NK cells. It is a disulphide linked heterodimer composed of a p40 
heavy chain and a p35 light chain. The heterodimer IL-12p70 equates with biologi-
cal activity whereas the homodimer IL-12p40 acts as an IL-12 antagonist in vitro 
(Mattner et al. 1993). Several studies have investigated age-related IL-12 production 
by mitogen-stimulated PBMCs in elderly people but results have been conflicting 
(Tortorella et al. 2002). In a study of very elderly subjects there was no difference in 
the IL-12A/C polymorphisms with ageing (Ross et al. 2003a).

However, in a study of very elderly subjects (Irish octo/nonagenarians), serum 
levels of total IL-12, IL-12p40 and the IL12p40/IL-12 p70 ratio, but not IL-12p70, 
were increased significantly with age (Rea et al. 2000). This increase in total IL-12 
and the p40 subunit may be part of the cytokine dysregulation evident in the elderly 
or there may be an age-related imbalance in the transcription of the p40 and p70 
subunits which are encoded on different genes.

5  Anti-Inflammatory Cytokines

Antiinflammatory activity is also reportedly increased in the elderly. IL-10 has both 
anti-inflammatory and B-cell stimulatory activities. It is produced by activated T-
cells, B-cells, monocytes/macrophages and dendritic cells and is thought to block 
the ability of monocytes etc to act as antigen presenting cells by down-regulating 
the MHC. IL-10 is an important anti-inflammatory cytokine, capable of inhibiting 
the synthesis of proinflammatory cytokines such as IFNγ, TNFα, IL-2 and IL-3 and 
is produced in higher amounts by stimulated leucocytes from elderly subjects com-
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pare to the young (Rink et al. 1998). IL-10 production by unstimulated monocyte 
monolayers was also found to be increased in a group of very elderly subjects and 
correlated with IL-6 production from the same monocytes (Rea et al. 1996a).

The GG 1082 allele of the IL-10 promoter polymorphism, a polymorphism associ-
ated with increased IL-10 production, was found to be increased in male centenarians 
compared to young controls, suggesting that an increased antiinflammatory state is 
the key to longevity in men (Lio et al. 2002). However, this was not found in Finn-
ish or Irish nonagenarian studies (Rea et al. 2006). It also stands contrary to other 
findings where increased IL-10 production has not given survival advantage. Patients 
with meningococcal septicaemia who are high IL-10 producers have a 20-fold higher 
chance of a fatal outcome compared to low producers (Westendorp et al. 1997). Also 
children with sudden infant death tend to have high IL-10 levels or high IL-10 pro-
ducer allele status (Summers et al. 2000). Therefore perhaps only homozygous GG 
1082 men who have avoided serious bacterial infections earlier in life may have an 
increased chance of longevity. An antiinflammatory genotype might be advantageous 
later in life, when a chronic proinflammatory state appears to develop. This phenom-
enon is called Inflamm-ageing (Franceschi et al. 2000) and is more evident in males 
compared to females, which may explain the higher frequency of antiinflammatory 
genotype in very elderly males.

IL-19 is a relatively new member of the IL-10 family, whose full function 
remains to be elucidated. IL-19 induces the production of IL-10 and IL-19 from 
PBMCs (Jordan et al. 2005). It also stimulates production of IL-6 and TNFα from 
monocytes in vitro (Liao et al. 2002), suggesting it may exhibit pro-inflammatory 
activities. As increased production of both IL-6 and TNFα are reported in ageing, 
IL-19 may also play a role in the ageing process. To date there have been no reports 
of any age associated changes in IL-19 levels, however, a recent Japanese study of 
500 subjects aged between 19 and 100 years has shown an association between IL-
19 gene polymorphisms and age (Okayama et al. 2007).

TGFβ is another cytokine with anti-inflammatory activities which seems to have 
an important role in ageing. In a study of Italian centenarians the active cytokine 
was found to increase with age and there was a significant difference found for the 
genotype and allele frequencies at the +915 site on the TGFβ gene (Carrieri et al. 
2004). This increase in the active anti-inflammatory cytokine may contribute to lon-
gevity by counteracting the harmful effects of the increased inflammatory activities 
seen in advanced age.

Cytokine antagonists also play a role in the anti-inflammatory response. IL-1 
receptor antagonist (IL-1RA), produced by monocytes and macrophages, blocks 
the binding of IL-1 to its cell surface receptors. Also 2 distinct soluble forms of 
the TNF-receptor occur in the plasma of healthy individuals, where they bind 
TNF and act as physiological inhibitors of TNF activity (Seckinger et al. 1989). A 
study of elderly Italian subjects (mean age 79.6±5.8) found that plasma concentra-
tions of both IL-1RA and sTNFr were greater in healthy aged subjects compared 
to young controls. Levels of plasma neopterin, a product of activated monocytes/
macrophages, were also elevated and positively correlated with both IL-1RA and 
sTNFr, suggesting that the increase in these antagonists is due to monocyte activa-



Cytokine Expression and Production Changes in Very Old Age 777

tion in elderly people (Catania et al. 1997). Another Italian study of aged subjects 
(range 66–80 years old) and 20 centenarians also showed sTNFRI and sTNFRII to 
be significantly elevated in healthy old subjects compared to young controls, and 
even higher in centenarians (Gerli et al. 2000). Soluble CD30, another member of 
the TNF superfamily, was also increased in the plasma of centenarians compared 
to the young.

As cytokines do not work alone but are instead a part of a complex network, 
more studies are needed of the balance of the pro- and antiinflammatory cytokines 
in successful ageing. Lio et al. (2003) report that a combination of high IL-10 
and low TNFα producer polymorphisms is a combination that favors longevity 
in males but not females. However, the number of males in the study was small. 
Further larger studies are therefore required into the balance of these systems in 
elderly subjects.

6  TH1/TH2 Cytokines

Helper T-cells (TH) in humans have been classified into either TH1 or TH2 cells 
depending on the cytokines they produce. IL-12, IL-2 and IFNγ are associated with 
TH1 responses while IL-10, IL-4, IL-6 and IL-13 are prominent TH2 cytokines 
(Mosmann et al. 1996). Altered cytokine production in elderly people has suggested 
that there is a shift towards a Type 2 cytokine profile. However, not all findings have 
been clear cut.

Most studies have shown that lymphocytes from elderly subjects produce sig-
nificantly less IL-2, the most important T-cell growth factor, compared to the young 
(Caruso et al. 1996; Gillis et al. 1981; Rea et al. 1996b). Methodology of intracel-
lular cytokine detection has shown no change in the proportion of IL-2+ve T-cells 
(McNerlan et al. 2002) or an increase (Pietschmann et al. 2003). IL-15, another 
stimulator, particularly of memory T-cells, has been found to be increased in the 
serum of centenarians compared to both young and old controls (Gangemi et al. 
2005). Interestingly there was no significant difference between the young and the 
old. As IL-15 is an important stimulator of memory T-cell proliferation, this may 
explain the accumulation of memory T-cells in the very elderly individuals.

IFNγ is the major TH1 cytokine. Caruso et al. (1996) showed a significant 
decrease in both IFNγ and IL-2 production by mitogen-stimulated mononuclear 
cell cultures from elderly subjects but no significant difference in TNFα, IL-4 and 
IL-6. Rink et al. (1998) also reported that IFNγ is produced less by lymphocytes of 
elderly people.

However, several reports have shown, using intracellular cytokine detection 
methods, an increase in the percentage of IFNγ positive T-cells in aged subjects 
(McNerlan et al. 2002; Pietschmann et al. 2003; Sandmand et al. 2002). Sandmand 
and Rink also showed that IL-4 and IL-10 positive T-cells were increased in aged 
subjects. Pietschmann showed that some changes were gender-specific. In elderly 
women they showed an increase in the proportion of T-cells positive for IFNγ, IL-2, 
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IL-4, IL-10 and IL-13. In men they only saw an increase in IL-2, IL-4 and IL-13. 
Therefore changes in IFNγ and IL-10 seemed likely to be gender-specific.

Zanni et al. (2003) showed an increase in both type 1 (IFNγ, IL-2 and TNFα) 
and type 2 (IL-4, IL-6, IL-10) cytokines with age. Type 1 cytokine-positive cells in 
all three CD8+ subsets investigated (CD95-CD28+(naïve), CD95+CD28- (effec-
tor/cytotoxic) and CD95+CD28+ (memory)). An increase in type 2 producing cells 
was only seen in the memory CD8 cells.

7  Conclusions

Cytokine expression and production drives and modulates the inflammatory 
response through the complex network of activating and down-regulating inter-
actions, always striving to achieve a homeostatic milieu after the “stress/danger” 
response, whether bacterial, viral or other, has been quenched.

As with other body systems, the homeostatic control, titration and modulation of 
immune responsiveness seems to become more fragile and less tightly focused with 
increasing age and this may explain some of the dissonance between the proinflam-
matory and anti-inflammatory control mechanisms and some of the elements of 
immune-ageing.

However, there is suggestive evidence that other factors both genetic and envi-
ronmental, together with sex, are likely to have or have had an important influ-
ence on shaping the immune profile of our most aged people. In geographically 
separate populations, cytokine allele shift seems to have been shaped by different 
bacterial, viral or antigen exposure. Similarly in nonagenarians and centenarians, 
there is some suggestion of an allele frequency shift towards a more anti-inflam-
matory profile which may have a gender-weighted effect. It is not clear whether 
this is acquired or innate, or a “nature” or “nurture” effect. An interesting sug-
gestion might be that survivors of the 1915 influenza pandemic, such as present-
day nonagenarians, may carry a cytokine genotype profile which both facilitated 
their survival from the influenza epidemic but allowed survival to very old age, in 
an environment where antibiotic use could soften the need for an action-packed 
immune responsiveness.

Much research needs to be carried out to answer these very challenging but 
fascinating questions, which have an important role in helping us understand our 
immune systems better, the role which they have in protecting us from acute and 
chronic disease and improving the quality of our ageing. A large pan European 
study, such as is currently being carried out with the “platinum seniors” of Europe 
in European Union-funded Genetics of Healthy Ageing (GEHA) project, has the 
organizational breadth of ability and the statistical weight, to help answer some of 
these questions.
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                                            1     Introduction  

   In living beings, external stimuli elicit a behavioral, verbal, or physiological 
response. The stimuli can be classified into 2 types: ordinary stimuli such as sound, 
smell, sight, and touch that are received by the sensory organs and pathological 
stimuli such as bacterial, viral, and fungal infections that are received by the immune 
system ( Fig. 1 ).     

     Ordinary stimuli that are received by the sensory organs, perceived by the cer-
ebral cortex, and recognized by the association cortex, stimulate the limbic sys-
tem and finally reach the hypothalamus. In contrast, infections stimulate the cells 
of the immune system and induce the production of various cytokines that are 
transported via the blood stream to the brain and influence the function of the 
hypothalamus [ 1 ].  

   The hypothalamus has many centers that are responsible for various functions 
such as the regulation of pituitary secretion, sexual behavior, reproduction, water 
balance regulation, satiety, autonomic nerve regulation, feeding, circadian rhythms, 
aggressiveness, fighting behavior, drinking, exploration behavior, and heat con-
servation [ 2 ]. It is believed that the hypothalamus influences the functioning of 
the immune system via 1) pituitary-adrenal-gonad axis and 2) the innervation of 
lymphoid organs.  
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   Thus, all stimuli that are received by the body can reach the hypothalamus and 
influence its functions including the functions of the endocrine and immune systems. 
This consequently leads to the activation of the neuroendocrine-immune network.  

   Ordinary stimuli are essential for the normal development and growth of a living 
body. Physical stimuli help the development of normal body constitution. Visual and 
auditory stimuli including words and language promote the normal psychological 
and spiritual development of humans. Exposure to various infectious agents is also 
necessary for the normal development of the immune system.  

   It is not unusual for stimuli to exceed the normal physiological range. In such 
situations, these stimuli act as a source of stress for the body. In such cases, the 
hypothalamus plays a major role in the activation of the neuroendocrine-immune 
network for the maintenance of homeostasis. Homeostatic control involves the acti-
vation of the autonomic nervous system [ 3 ] and the hypothalamus-pituitary-adrenal 
axis. The former induces the production of catecholamines and the latter, glucocor-
ticoids. These products are essential for the maintenance of homeostasis when the 
body is exposed to stress. However, both catecholamines and glucocorticoids have 

   Fig. 1          Activation of the neuroendocrine-immune network by stress and infection  .     The various 
types of environmental stimuli that are received by sensory organs act as stress factors when they 
exceed normal physiological limits. This stress eventually stimulates the hypothalamus to secrete 
corticotropin releasing factor (CRF). CRF then stimulates the pituitary gland to secrete adrenocor-
ticotropic hormone (ACTH), which in turn stimulates the adrenal cortex to secrete glucocorticoids. 
At the same time, the hypothalamus also stimulates,the autonomic nervous system (ANS), leading 
to the secretion of catecholamines by the adrenal medulla. Infections independently stimulate the 
immune system to produce various types of cytokines, most of which can enter the brain though 
areas where the blood-brain-barrier is weak, and stimulate the hypothalamus. This eventually 
results in the secretion of both glucocorticoids and catecholamines     
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a suppressive effect on the immune system. This is a kind of physiological trade-off. 
In any event, stress downregulates the activity of the immune system.  

   It is important to note that the nervous, endocrine, and immune systems change 
with age, and thus, the action of the neuroendocrine-immune system against stress also 
changes with age. To put it plainly, the ability of the neuroendocrine-immune system to 
cope with stress declines with age [ 1 ]. This chapter will briefly summarize various neu-
roendocrine-immune interactions and the age-related changes in these interactions.  

       2       Neuroendocrine-immune Interactions at the Cellular Level  

   Lymphocytes can produce various hormones and neurotransmitters [ 4 , 5 ] and express 
receptors for these molecules. Table  1  shows the common mediators released by the 
cells of the immune and neuroendocrine systems. The cells of the immune system 
produce many interleukins (ILs). It has become apparent that the cells of the nervous 
and endocrine systems can also produce most of these ILs and express receptors for 
them. The right hand side of  Table  1   lists the mediators originally produced by the 
cells of the neuroendocrine system. It is now commonly accepted that the cells of 
the immune system produce pituitary hormones and express their receptors.  Fig. 2  
shows the expression of hormones and neurotransmitter receptors in the splenic 
T-cells of mice, as determined by reverse transcription-polymerase chain reaction 
(RT-PCR). It is interesting to note that the expression levels of these receptors change 
in a variable pattern with age. Expression levels of mRNA of the glucocorticoid and 
thyroid stimulation hormone (TSH) receptors do not change greatly with age. The 
levels of the thyrotropin-releasing hormone receptor (TRH-R), adrenocorticotropin 

    Table 1      Common Mediators      

   Immune system             Neuroendocrine system   

                 Endorphin, Encephalin   

                 Somatostatins, Substance P   

   Interleukins             Catecholamine, Acetylcholine   

   Interferons             VIP   

                 GH, TSH, PRL, ACTH   

                 LH, TRH, CRH, LHRH   

                 Thyroxin   

                 Insulin   

                 Adrenal steroids   

                 Gonadal steroids   

          Serotonin*          

          Histamine*          

          Prostaglandin*          

    Asterisk (*) indicates substances that were considered to be produced by both the immune and 
neuroendocrine systems.    
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receptor (ACTH-R), and the acetylcholine receptor (acetylcholine-R) increase with 
age while those of the prolactin receptor (prolactin-R) and the oxytocin receptor 
(oxytocin-R) decrease with age [ 1 ]. These facts suggest that interactions between 
the cells of the immune and neuroendocrine systems change with age.           

         3       Neuroendocrine-immune Interaction at the Organ Level  

     3.1       Hypothalamus-pituitary Axis and Immune System  

   The hypothalamus plays an important role in the control of both endocrine func-
tions and the autonomic nervous system. Accordingly, it also operates as a control 
center for immune functions.  

   Thymic hypoplasia with T-cell-dependent immunodeficiencies was observed 
in Snell dwarf mice with congenital hypopituitarism [ 6 ]. This is consistent with 
the fact that the suppression of pituitary functions either by hypophysectomy [ 1 ] 
(Table  2 ) or the administration of antipituitary antibodies [ 7 ] results in a decrease 
in immune functions. Conversely, implanting growth hormone (GH)-producing cell 
lines in rats resulted in the reversal of the thymus atrophy and induced the thymus to 
regrow to a larger size [ 8 ]. The effects of GH in the thymus are mediated by insulin-
like growth factor-1 (IGF-1), and thymic functions are actually under the control of 

   Fig. 2          The mRNA expression of various hormone and neurotransmitter receptors (R) in splenic 
T-cells from young and old mice  .     The columns indicate the ratio of old to young mice. The mRNA 
expression levels of thyrotropin-releasing hormone receptor (TRH-R), adrenocorticotropin recep-
tor (ACTH-R), and acetylcholine receptor (acetylcholine-R) are increased in the T-cells from the 
old mice     
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GH/IGF-1-mediated circuits [ 9 ]. These findings taken together indicate that thymic 
size and function are dependent on the serum GH level.     

     Several reports have indicated that electronic lesions in the anterior hypothalamus 
resulted in a decrease in thymic weight [ 10 , 11 ], presumably by compromising pitui-
tary function. Lesions in the ventromedial nucleus result in a significant decrease in 
pituitary and plasma GH levels [ 12 ]. We extended these earlier studies in rats by wid-
ening the area of destruction in the anterior portion of the hypothalamus, including 
the anterior hypothalamic nucleus, suprachiasmatic nucleus, and periventricular 
nucleus, (hereafter referred to as anterior hypothalamic lesioning, (AHTL)) and per-
formed AHTL not only in young rats but also in aged rats with an atrophic thymus 
[ 1  ,13 , 14 ].  

    Table 2      Weight of organs after AHTL and hypophysectomy      

   Treatments      Thymus      Adrenal      Ovary      Hypophysis   

   Control 
+Sham-AHTL   

   314 ± 23      57 ± 3      99 ± 4      12 ± 1   

   Control +AHTL      423 ± 19      35 ± 3      61 ± 2      15 ± 1   

   Hypox 
+Sham-AHTL   

   128 ± 8      11 ± 1      12 ± 1      (–)   

   Hypox +AHTL      146 ± 15      12 ± 1      13 ± 1      (–)   

    Each group, 5 rats. Control group, sham operation of hypophysectomy.AHTL, lesioning of 
anterior hypothalamus. Sham-AHTL, sham operation of AHTL.Hypox, hypophysectomy. Data, 
mean ± 1 SEM.    

   Fig. 3         Effect of destruction of the anterior portion of the hypothalamus (AHTL) in Wistar rats  .     
AHTL was performed in rats at 2 months (open columns), 11 months (grey columns), and at 24 
months of age (solid columns). Body weight and the weight of various organs were assessed 
4 weeks after AHTL. The results are expressed as a percentage of the control age-matched rats that 
underwent a shamoperation. Vertical bars, 1 standard error of the mean     
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   Contrary to the results of previous reports, AHTL resulted in thymic hypertrophy 
not only in young rats but also in middle-aged and old rats ( Fig. 3 ). Interestingly, the 
magnitude of thymic hyperplasia after AHTL differed with age, indicating that the 
relationship between the hypothalamus and thymus changes during the course of 
aging. Furthermore, it was found that thymic hyperplasia did not occur in hypophy-
sectomized rats (Table  2 ); thus, indicating that pituitary hormones regulate thymic 
hyperplasia.     

   Significant atrophy of the adrenal glands and gonads (testes or ovaries) was 
observed in rats subjected to AHTL, suggesting that ACTH and luteinizing hor-
mone (LH) were not associated with thymic hyperplasia. High serum GH levels 
were noted in rats treated with AHTL, and these high levels were observed not only 
in young rats but also in middle-aged and old rats (Table  3 ). Since the secretion of 
GH is episodic, the single point sample data shown in Table  3  must be interpreted 
with caution. However, the rise in serum GH levels was consistent with the slightly 
hypertrophic pituitary gland in rats subjected to AHTL, i.e., the weight of the pitui-
tary gland in the control and AHTL groups was 12 ± l mg and 15 ± 1 mg, respec-
tively. Furthermore, high serum GH levels were not observed in adrenalectomized 
(adx) or ovariectomized (ovx) rats (Table  3 ).     

     We presume that a high serum GH level is necessary for thymic hyperplasia. 
When the serum GH levels of rats and mice at various ages were assessed, high 
serum GH levels were observed only at the newborn stage (Table  4 ). This is con-
sistent with the results of a previous study [ 15 ] that reported profuse GH secretion 
in neonates. The fact that atrophy of thymus can be reversed and the thymus can 
be induced to regrow to a larger size by the administration of GH (8) suggests that 
the serum GH level shows a gradual decline with age. Actually, the fall in GH over 

    Table 3      Serum GH and LH levels in various experiments      

   Age      Treatments      GH   (ng/ml)      LH   (ng/ml)   

   6 weeks       Sham-AHTL      9.4 ± 2.2      6.8 ± 1.5   

          AHTL      182.3 ± 7.0      4.0 ± 1.5   

          Hypox + Sham      4.0 ± 0.9      2.4 ± 0.3   

          Hypox + AHTL      3.1 ± 0.1      2.5 ± 0.6   

   2 months       Ovx      12.7 ± 1.7      14.1 ± 0.5   

          Sham-Ovx      13.8 ± 1.4      3.7 ± 0.3   

          Adx      15.6 ± 2.6      3.0 ± 0.1   

          Sham-Adx      15.1 ± 4.6      3.3 ± 0.5   

   11 months       Sham-AHTL      26.9 ± 7.0      2.5 ± 0.2   

          AHTL      176.0 ± 7.5      3.4 ± 0.3   

   24 months       Sham-AHTL      41.0 ± 18.4      2.8 ± 0.3   

          AHTL      168.0 ± 0.7      3.0 ± 0.2   

    AHTL: lesioning of anterior hypothalamus. Sham-AHTL, shamoperation of AHTL. Ovx, ova-
riectomy. Sham-Ovx, sham operation of Ovx. Adx, adrenalectomy. Sham-Adx, sham operation 
of Adx.
Data, mean ± 1 SEM, obtained from 5 rats.    
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the life span is from 1200 μgm -2  in adolescents to 60 μm -2  in older individuals [ 15 ]. 
However, the most important point to be noted is that GH secretion appears to be 
extraordinarily high at the newborn stage in mice, rats, and humans and that this 
high level is necessary for thymic growth.     

     These findings collectively indicated that the serum GH level is dependent on the 
balance between positive and negative signals (growth-hormone-releasing hormone 
(GHRH) and growth-hormone-release-inhibiting hormone (GHRIH), respectively) 
or somatostatin (SST) in the hypothalamus. We examined the mRNA levels of these 
positive and negative signals in the mouse hypothalamus and found that the level of 
GHRH mRNA decreased with age while that of pre-pro-SST mRNA increased with 
age. In addition, we also analyzed the receptors for these signals in the pituitary 
glands and found that with age, the level of GHRH-receptor mRNA also decreased 
while that of the SST receptor increased (Utsuyama, personal communication). 
These observations are consistent with those of some previous reports. Florio et al. 
[ 17 ] reported that the pre-pro-SST mRNA levels in the hypothalamus of 25-month-
old rats were slightly greater than those in younger rats. Furthermore, an age-related 
increase was observed in the levels of the SST receptor (sst2) in the pituitary gland 
of aging rats [ 18 ]. Based on the fact that high levels of serum GH are observed only 
at the newborn stage in rats and mice (Table  4 ), it can be assumed that hypothalamic 
positive signal is superior to hypothalamic negative signal, resulting in a high level 
of GH. However, at later stages of development, the negative signal becomes supe-
rior to the positive signal, leading to a decline in the secretion of GH ( Fig. 4 ). This 
concept has been validated in aging humans; i.e., available clinical data have sug-
gested that excessive SST release occurred with diminished GHRH secretion [ 19 ]. 
Thus, the destruction of the anterior portion of the hypothalamus, which contains 
the cells that produce SST (negative signal), shifts the balance between the positive 
and negative hypothalamic signals toward the predominance of the positive signal. 
This results in high serum GH levels even in the middle-aged and old rats, and even-
tually leads to thymic hyperplasia.     

    Table 4      Serum level of GH in mice and rats at various ages      

   Age      Rat      Mouse   

   18 fd      1.5      ND   

   NB      129.3 ± 5.4      141.7   

   1 month      3.9 ± 0.4      2.2 ± 0.6   

   3 months      14.0 ± 4.9      1.8 ± 0.4   

   6 months      12.3 ± 0.7      2.3 ± 0.3   

   12 months      10.4 ± 1.2      2.6 ± 0.1   

   18 months      8.8 ± 0.8      2.4 ± 0.2   

   24 months      12.0 ± 1.2      6.8 ± 2.5   

    Fd, fetal day. NB; Newborn Data: mean concentration of GH (ng/ml) ± SEM,obtained from 4 to 
6 animals. Asterisk (*) indicates that the GH levels in samples pooled from several animals were 
assessed. ND, not done.    
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   In addition to having various centers for the control of endocrine functions, the 
hypothalamus is closely related with the sympathetic nervous system (SNS). As the 
thymus is rich in nerve fibers [ 20 ], it is possible that the hypothalamus also influ-
ences thymic function through the sympathetic nerve fibers. To test this possibility, 
we examined the effect of AHTL on both the host thymus and the thymus implanted 
under the kidney capsule. Briefly, 2 lobes of a newborn thymus were implanted under 
the kidney capsule in young rats, and AHTL was performed on these rats after 1 
month. One month after AHTL, the rats were sacrificed and the weight of the host and 
implanted thymuses was assessed. Contrary to our expectation, AHTL had no effect 
on the implanted thymus; although the host thymus, however, became hyperplastic. 
However, hypophysectomy greatly influenced both the host and implanted thymuses 
(Table  5 ). These results suggested that thymic hyperplasia after AHTL depends not 
on only the high serum GH levels but also on some unknown local requirement. The 
variation in the response could be attributed to the difference in autonomic innerva-
tion between the host and the implanted thymuses. The stimulation of the SNS is 
known to suppress immune function. Miles et al. [ 21 ] reported that ablation of the 
peripheral nervous system caused a significant increase in splenic T-cells. Earlier 
studies by Besedovsky et al. [ 22 ] reported that surgical denervation of the rat spleen 
resulted in an increase in the antibody-forming activity. Therefore, it is likely that 
AHTL affects the functions of the SNS, and alterations in the SNS around the host 
thymus might be essential for the development of thymic hyperplasia after AHTL in 
addition to the high serum GH levels. Furthermore, a decrease in serum GH levels 
by hypophysectomy leads to a significant atrophy of both the implanted and host 

   Fig. 4         Schematic representation of the control thymic function by the hypothalamus-pituitary 
axis  .     In newborn animals, the strength of the positive signal of growth hormone releasing hormone 
(GHRH) is greater than that of the negative signal of somatostatin (SST) in the hypothalamus, 
leading to an increased secretion of growth hormone (GH). In young adult animals, the strength of 
the negative signal is greater than that of the positive one, leading to a decrease in the secretion of 
GH. A decrease in the serum level of GH in the young adult results in to thymic involution      
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thymuses (Table  5 ). Further experiments are clearly necessary to clarify the relation-
ship between nerve fibers, the thymus, and the hypothalamus.     

         3.2       Adrenal Glands and the Immune System  

   With the exception of erythrocytes, most cells have glucocorticoid receptors. There-
fore, physiological and pharmacological effects of this hormone are very variable. 
Glucocorticoids are known to have distinct antiinflammatory, immunosuppressive, 
and oncostatic effects. Glucocorticoid immunosuppression is mediated by a direct 
cytolytic effect, through the inhibition of lymphocyte function, or indirectly through 
soluble suppressor mediators [ 23 ]. In vivo glucocorticoid administration results in 
pronounced thymic involution, and immunohistological analysis of the changes fol-
lowing glucocorticoid performed using the terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) method reveal the development of extensive 
apoptosis in the cortex [ 24 ].  

   Adrenal glands removal in mice leads to a significant increase in the weight of 
the thymus and spleen as well as in the number of splenic T-cells (Table  6 ). The 
effect is partly due to a decrease in the serum levels of glucocorticoids and partly 
due to an increase in the serum levels of the adrenocorticotropic hormone (ACTH) in 
the serum. These changes are mediated by a negative feed back reaction through the 
hypothalamic-pituitary axis. Interestingly, the thymus can also influence the function 
of the adrenal glands, i.e., it was observed that the implantation of a newborn thymus 
increased the weight of the adrenal glands in nude mice [ 25 ]. This increase in weight 

   Table 5      Effect of AHTL on the host and implanted thymuses in normal and hypophysectomized 
rats      

   Treatment      Host thymus       Implanted thymus      Adrenal gland   

   Sham-AHTL      304 ± 23      137 ± 11      57 ± 5   

   AHTL      441 ± 13      102 ± 21      36 ± 3   

   AHTL + Hypox      105 ± 11      47 ± 12      19 ± 5   

A new-born thymus was grafted under the kidney capsule in 2-month-old normal rats or in hypo-
physectomized rats. One month after the implantation of the thymus, the rats underwent AHTL, 
and 1 month later, they were sacrificed for the assessment of organ weight. AHTL, lesioning of 
anterior hypothalamus. Sham-ATHT, sham operation of AHTL. Data, mean ± 1 SEM, obtained 
from 5 rats.   

    Table 6       Effect of adrenalectomy on thymus and splenic T-cells in rats      

   Groups      Body weight       Thymus      Spleen      Splenic T cells   

   Sham      194 ± 4      233 ± 4      195±7      1.49 ± 0.12   

   Exp      192 ± 3      417 ± 19      549 ± 24      2.33 ± 0.44   

    Exp indicates adlenalectomy    .
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might be mediated by the secretion of ACTH by the T-cells following appropriate 
stimulation [ 26 ].     

         3.3       Gonads and the Immune System  

   Sex steroids are known to suppress immune functions [ 27 ]. We also reported that vari-
ous steroids suppressed the in vitro proliferation of mouse spleen cells by mitogenic 
stimulation [ 28 ]. Physiological thymic involution that starts around puberty can be 
ascribed to the increased level of sex steroids. Interestingly, this thymic involution is 
not an irreversible phenomenon. In mice and rats, thymus atrophy at any age can be 

   Fig. 5          Effect of gonadectomy on thymic weight in female (a) and male (b) C57BL/6 mice  . 
    Thymic weight was assessed 2 months after gonadectomy. Open columns, sham operation (Cont). 
Grey columns, gonadectomy (Gx). (c) Ratio of gonadectomized to control mice (Gx/Cont ratio). 
The magnitude of increase in thymic weight after Gx is more prominent in males than that in 
females, and thymic weight tends to increase with age      
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reversed, and the thymus can be induced to regrow to a larger size by the removal of 
testes or ovaries ( Fig. 5a ,  Fig. 5b ) [ 29 – 32 ]. It is important to note that the extent of 
thymic restoration after gonadectomy in our study was gender- and age-dependent. 
The size of the restored thymus was considerably larger in males than in females and 
in older mice than in younger mice ( Fig. 5c ). The restoration of thymic size after gona-
dectomy is temporary and is observed for several weeks. It differs from the long-term 
thymic hyperplasia observed after AHTL. Thymic restoration after gonadectomy may 
be simply due to the decreased suppressive effect of sex steroids on lymphocytes [ 30 ]. 
The decrease in the serum levels of sex steroids stimulates the hypothalamus-pituitary 
axis through negative feedback to secrete hormones capable of restoring thymic size 
and cellularity. This concept has been supported by the fact that thymic hyperplasia 
after gonadectomy does not occur in hypophysectomized rats [ 31 ].     

         4       Neuroimmune Interaction at the Time of Infection [ 33 ]  

   Overwhelming evidence suggests that various cytokines and their receptors are 
present in the brain and influence its functions. It was previously thought that large 
molecules such as cytokines are prevented from entering the brain by the blood-
brain-barrier (BBB). However, it has been clearly shown that recombinant IL-2 
injected into patients can enter the brain through areas where the BBB is weak, 
and exert a neuromodulatory effect [ 34 ].  

   Lipopolysaccharide (LPS) is known to trigger an acute-phase response and the 
synthesis of proinflammatory cytokines. LPS injection in experimental animals 
induces various neurological manifestations and physiological changes such as 
fever, hypotension, and the secretion of variable hormones and is therefore used 
to develop infection models.  

   During an infection, cytokines are mainly produced in the immune system and 
partly, to some extent, in the brain. Therefore, it is quite likely that cytokines pro-
duced in the immune system might influence the neurological and physiological 
functions of the brain.  

   It is interesting to note that the mRNA level of various cytokine receptors was 
found to be increased in the spleen of young mice but not old mice. A similar 
enhancement in the levels of cytokine receptor mRNA was also observed in the brain 
of mice after LPS stimulation, but the magnitude of this increase varied according to 
the type of cytokine receptor, the brain region, and the age of the mice [ 33 ].  

     Fig. 6  indicates the mRNA expression level of various cytokine receptors in the 
cerebral cortex after LPS injection in mice. In young mice, the mRNA levels of IL-
1R1, IL-2Ra, IL-3R, and IL-6R peaked at 3 or 6 h after LPS injection. In old mice, 
the expression of IL-1R1 and IL-3R was delayed, definitely lower in IL-2Ra, and 
almost similar in IL-6R. However, the mRNA expression level of tumor necrosis factor 
(TNF)αR and interferon (IFN)γR was higher in the old mice than in the young mice.     

   In any event, cytokines produced by immune cells might directly or indirectly 
influence brain function through the various cytokine receptors expressed in the 
brain. Moreover, the interaction between the immune system and the brain during 
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an infection is expected to be different in young and old mice because cytokine pro-
duction changes with age as does the expression of cytokine receptors in the brain 
[ 35 ]. It is interesting to note that the mRNA levels of some cytokine receptors in 
old mice were higher than that in young mice after LPS stimulation. In other words, 
the neuroimmune interactions are subject to change with advancing age, and these 
changes could be responsible for the fact that the elderly are vulnerable to various 
physiological disorders during an infection.  

       5       Conclusion  

   All environmental stimuli including infection eventually reach the hypothalamus 
and influence its function. The hypothalamus has many centers, which are essential 
for the maintenance of the life. An important hypothalamic function is the control 

   Fig. 6          Changes in the 
mRNA level of various 
cytokine receptors in the 
frontal cortex of mice after 
lipopolysaccharide (LPS) 
injection (30 mg/mouse)  
    The type of cytokine recep-
tor is indicated in the upper 
right-hand corner of each 
graph. Open circles with 
solid line, young mice. 
Open circles with dotted 
line, old mice. Each point, 
average of 3 samples. 
Vertical bars, standard error 
of the mean. Ordinate, the 
ratio of the mRNA level 
after LPS injection to that 
before the injection     
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of the neuroendocrine-immune network. Therefore, all environmental stimuli are 
processed by the neuroendocrine-immune network. When the stimuli exceed the 
normal physiological range, the neuroendocrine-immune network plays a major 
role in the maintenance of the internal environment, which is known as homeostasis. 
With aging, however, the activity of the 3 systems, i.e., the nervous, endocrine, and 
immune systems, decline and so does the homeostatic capacity of the neuroendo-
crine-immune network. This chapter has shown several examples of age-related 
changes observed in the neuroendocrine-immune network at both the cellular as 
well as the organellar level. 1) The mRNA expression levels of hormone and neu-
rotransmitter receptors in T-cells changes with age. 2) The destruction of the ante-
rior portion of the hypothalamus causes thymic hyperplasia, and the extent of this 
hyperplasia varies with the age of the animal,. 3) Thymic involution is controlled by 
the hypothalamus. 4) Gonadectomy has a serious influence on thymic weight, and 
its effect varies with gender and age. 5) An intravenous injection of LPS induces an 
elevation in the mRNA levels of the receptors of various cytokines in the brain. The 
extent of this elevation varies with age and the brain region investigated. These find-
ings indicate that the homeostatic control of the neuroendocrine-immune network is 
more efficient in young than in old individuals.  
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                          Abstract   :    Sex hormones impact a number of aspects of immunity. As a result of 
the aging process, dramatic changes occur in the endocrine system, including the  
levels of sex hormones. Thus, it is possible that the hormonal environment may 
play a role in the effects of aging on normal aspects of the aging immune system, 
as well as in immune responses to injury and infection. Although much has been 
discovered regarding age-related changes in the immune and the endocrine systems, 
the exact mechanism of the interplay between these factors has yet to be resolved. 
In this chapter, we explore each of these areas and investigate how sex hormones 
may be an important component to immunosenescence. Finally, both beneficial and 
adverse effects of hormone replacement therapy on the aging process are discussed. 
As age and gender are potential modifiers of the disease process, therapies targeted 
to the specific hormonal and immune status of an individual may prove to be most 
beneficial for optimal clinical outcomes.  

        1     Introduction  

  In studying human longevity, two observations clearly stand out: first, the highest 
increase in life expectancy recorded in history has occurred in the past century and 
[ 186 ], second, the average lifespan of women is almost 10% higher than men [ 227 ]. 
The fact that this sex difference occurs not only in humans but also in many mam-
malian species suggests that the hormonal environment plays a role in the aging 
process.  

  Among the prominent effects of sex on aging is the response of the immune 
system. While not as dramatic as the role that sex steroids (estrogens and andro-
gens) play in sexual differentiation and reproduction [ 188 ,  248 ], their effects in 
immune function have been well documented [ 48 ,  188 ,  248 ]. Overall, females 
exhibit stronger humoral and cell-mediated immune responses than males [ 248 ]. 
For example, females in their reproductive years have higher plasma levels of 
immmonoglobulins (Ig), such as IgM and IgG, and mount more vigorous antibody 
responses than males after immunization or infection [reviewed in [ 10 ]]. Females 
also exhibit a more rapid allograft rejection compared to males [ 93 ]. As a result 
of this heightened immunity, females also have an increased susceptibility to vari-
ous autoimmune diseases. Additionally, female to male incidence of developing of 
rheumatoid arthritis is 2–4:1, 5–13:1 for systemic lupus erythematosus and 25–50:1 
for Hashimoto thyroiditis [ 10 ]. There are also sex differences in the response to 
injury [ 9 ,  96 ]. Among those sustaining most types of traumatic injury, male patients 
show increased mortality compared with female patients [ 82 ]. In addition, females 
have significantly higher infection and sepsis survival rates [ 33 ,  188 ,  215 ], and a 
lower risk for postinjury pneumonia [ 80 ]. Interestingly, unlike other forms of trau-
matic injury, females have greater mortality following burn injury than males [ 127 ]. 
This may be sex hormone mediated during reproductive years, but since it occurs 
over most of the life span, from ages 10–70 [ 127 ], factors other than sex hormones 
alone are likely to be involved.  



Sex Hormones and Immunosenescence 801

  While chromosomal effects may explain some of the sex differences in immu-
nity, the hormonal environment seems to have the greatest influence [ 10 ]. As part 
of the normal aging process, changes occur in both the immune and endocrine 
systems. Since the endocrine system is an important component in the regulation 
of the immune system, it is possible that a more complex interplay between these 
two systems exists. Understanding the consequences of aging on immunity is fur-
ther complicated by genetic background, mutations, oxidative damage, etc. [ 232 ]. 
In this chapter, we will first describe how sex hormones modulate the immune 
response. Next, we will examine how the endocrine system changes with age, 
focusing on the sex hormones. We will then describe specific manifestations of 
immunosenescence from a perspective involving age-associated changes in sex 
hormones. Finally, the therapeutic and adverse effects of sex hormone replace-
ment on the aging process and on specific aspects of immunosenescence will be 
discussed. Although progress has been made with regard to the effects of age on 
the immune system and the endocrine system, the exact mechanism of the inter-
action between these systems in the elderly has yet to be resolved. In this review, 
we will explore each of these areas and investigate how sex hormones may be an 
important component of immunosenescence.  

    2   The Effects of Sex Hormones on the Immune Response  

  During reproductive years, females have a more robust humoral and cellular 
immune response compared to males [ 98 ]. Depending on the concentration of 
estrogen, it can either be immunostimulatory or immonosuppresive.  See  Figure 
 1  for the biosynthetic pathway of the sex hormones. At levels seen over the men-
strual cycle (in particular proestrous levels of estrogen) boost immunity. However, 
in pregnancy higher levels of estrogen are immunosupresive [ 41 ,  233 ]. In contrast 
to estrogen, all concentrations of testosterone are though to be immunosupre-
sive [ 35 ,  177 ]. Sex hormones modulate immune cell responses through direct 
and indirect actions on a series of targets, including lymphoid organs, T cells, 
B cells, natural killer (NK) cells, and macrophages. For instance, the number of 
CD4 +  lymphocytes is higher in females [ 178 ] and thymocytes and lymphocytes 
from female mice respond more vigorously to antigens than those from males 
[ 255 ]. In addition, the production of cytokines, such as interleukin (IL)-1β was 
higher in macrophages from females after in vitro stimulation [ 106 ]. In addi-
tion, the production of IL-4 [ 60 ] and interferon-gamma (IFN-γ) [ 214 ] was higher 
in splenocytes from females compared to males. Sex hormones also influence 
the immune system through their actions on the central nervous system, bones, 
endocrine organs, and nonlymphoid tissues (liver, kidney, complement producing 
cells, and mucosal epithelial cells) [ 48 ].  

       The immunomodulatory role of estrogen, particularly on lymphopoiesis and 
immune responses have been studied extensively (reviewed in [ 147 ,  233 ]). Peri-
ovulatory levels of estradiol have been shown to stimulate antibody production by 



802 C. R. Gomez et al.

B cells [ 50 ,  76 ,  172 ,  190 ]. However, this increases the potential for autoimmune 
diseases [ 2 ,  182 ,  247 ]. In contrast, peri-ovulatory estradiol levels led to a suppres-
sion of B cell lineage precursors [ 111 ,  165 ]. Pregnancy levels of estrogen, on the 
other hand, suppressed the T cell-mediated delayed-type hypersensitivity (DTH) 
reaction [ 43 ,  64 ,  95 ] and inhibited the release of tumor necrosis factor-α (TNF-α). 
These high levels of estrogen also stimulated T cell-induced IL-4, IL-10, and IFN-γ 
secretion [ 123 ,  211 ]. In macrophages, late pregnancy levels of estrogen inhibited 
LPS-stimulated IL-6 secretion [ 56 ,  112 ] and TNF-α release [ 239 ,  268 ]. In addition, 
secreted IL-1β levels were increased at peri-ovulatory levels, but inhibited at high 
pregnancy levels [ 201 ,  221 ]. This biphasic effect of estrogen is especially relevant 
when considering proinflammatory diseases in pre and postmenopausal women, as 
will be discussed later.  

  Progesterone is a major gonadal hormone synthesized primarily by the corpus 
luteum, the testes, and the adrenal cortex [ 217 ]. Besides its well-known endo-
crine and neuroprotective effects [ 217 ], progesterone has been suggested to have 
an immunosuppressive role. This is thought to play a protective role in pregnancy 
[ 229 ]. The regulatory effects of progesterone on the immune system include block-
ing cytotoxic T cell activity [ 159 ], reducing NK cell activity [ 102 ], and modifying 
the cytokine response [ 46 ,  197 ,  198 ].  

  Testosterone also has many immunomodulatory roles [ 35 ,  177 ]. T cell apoptosis 
is decreased in males compared to females, as reflected in the decreased numbers 
in the periphery of men [ 164 ]. In B cells, testosterone inhibited IgG and IgM secre-
tion [ 121 ]. In contrast, endotoxin-stimulated monocytes from males produced more 
TNF-α than females [ 14 ,  34 ,  218 ]. Whether this response to endotoxin is due to 
increased testosterone concentrations remains uncertain, though, since in vitro stud-
ies have not shown an effect of testosterone on TNF-α production [ 202 ]. In vivo 
and in vitro analysis of immune-endocrine interactions, including manipulation 
of testosterone levels through castration, have elucidated the differences between 
males and females in terms of immunocompetence [ 177 ]. These differential roles 
of sex hormones on the immune system have been proposed to be main determi-
nants of male versus female responses to injury and infection. As a result of the 
aging process, dramatic changes occur in the endocrine system, including the sex 
hormones. Thus, it is possible that the hormonal environment may play a role in the 
effects of aging on the immune system.  

    3      Endocrine Changes with Aging  

   3.1      Overall Changes  

  As a normal part of aging, hormonal changes occur resulting from a decline in 
secretion of hormones and/or availability of target cells. Perhaps the most char-
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acterized hormone changes with age are the decline in secretion of estrogen in 
the ovaries (menopause) and testosterone in the testes (andropause) (all of the 
following hormonal changes with age are reviewed in [ 13 ,  44 ,  146 ]). As a result, 
the levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) 
released by the pituitary gland are elevated, due to the lack of negative feedback 
by the gonadal hormones. Changes in the sex hormone environment occurring as 
a result of advanced age are summarized in Table  1 . Other changes in the endo-
crine system seen with age include a decreased release of growth hormone caus-
ing a diminished production of insulin-like growth factor-1 (IGF-1) by the liver 
and other organs (somatopause) and a diminished production of the sex hormone 
precursor, dehydroepiandrosterone (DHEA) by the adrenal cortex (adrenopause). 
Altogether, both central (hypothalamic and pituitary) and peripheral (ovarian, tes-
ticular, and adrenal) components of the endocrine system are affected over time 
and have thus been linked with the aging process [ 146 ].     

Table 1  Sex hormone environment in advanced age

Factor Females References Males References

Tropic hormones     

FSH ↑ [116, 223] ↑ [171]

LH ↑ [116, 223] ↑ [171]

Sex hormones     

Pregnenolone ↓ [103] ↓ [103, 174]

Estradiol ↓↓ [92, 107, 156,180] ↓ [73, 100, 242]

Progesterone ↓ [79, 107, 223, 228] no change or ↓ [29, 187]

Testosterone ↓ [54, 145] ↓ [36, 61, 120, 166, 
252]

DHT ↓ [145, 224] no change or ↓↑ [52, 70, 94, 246]

Androsterodione ↓ [94] ↓ [94]

DHEA (S) ↓ [94, 124, 149, 189] ↓ [94, 124, 149, 189]

Sex hormone 
receptors

    

Estrogen receptors tissue specific [37, 114, 222, 258] ↓ [222] 

Progesterone 
receptors

tissue specific [37, 45, 78, 226] tissue specific [37, 45, 78, 225]

Androgen receptor ↓ [238] ↓ [210, 261, 270]

Others     

SHBG no change or ↓↑ [40, 54, 161] ↑ [241, 242]

Aromatase ↑ [109, 110, 204] ↑ [109, 241]

5 α-reductase   ↓ [241]

Arrows indicate increase or decrease in aged subject relative to young. FSH follicle stimulating 
hormone, LH luteinizing hormone, DHT dihydrotestosterone, DHEA (S) dehydroepiandrosterone 
(sulfate), SHBG sex hormone binding globulin.
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       4      Menopause and Andropause  

  In women, the average onset of menopause is 51 years of age, and results in a 
postreproductive period that encompasses nearly a third of their lives [ 116 ]. For 
most women, menopause is accompanied by vasomotor symptoms, depressed 
mood, changes in body composition (such as increased body fat), and an elevated 
risk of coronary heart disease, myocardial infarction, and stroke [ 116 ]. The use of 
animal models has helped to uncover some of the mechanisms involved in reproduc-
tive aging like humans, female primates exhibit hormone cyclicity in that extensive 
menstrual bleeding and shedding of the endometrial lining occur similar to humans 
[ 260 ]. However, utilization of humans and nonhuman primates for experimenta-
tion purposes involves a series of complications, including their extended lifespan 
and excessive research cost [ 260 ]. As an alternative, rodent models have been used. 
The estrous cycle in female rodents can be divided into four stages: proestrus, 
estrus, metestrus, and diestrus, with ovulation normally occurring during estrus 
[ 148 ]. In female mice, advanced age correlates with progressively longer estrous 
cycles, characterized by lower levels of estrogen [ 181 ]. Eventually, this decline 
in estrogen leads to the absence of ovarian follicle development and low plasma 
estrogen and progesterone concentrations [ 181 ]. The effect of aging on the estrous 
cycle in female rats is different from mice, in that they have well defined estrous 
cycles [ 157 ]. However, irregular cycles emerge at middle age, in which ovulatory 
activity occurs at longer intervals. This period is chronologically followed either 
by constant estrus, irregular pseudopregnancies, and anestrus [ 72 ,  157 ]. Overall, 
the decline in ovarian function differs between rats and mice, as well as between 
strains, and may occur between 6 and 18 months of age, or even up to 24 months 
for some strains [ 72 ].  

  Andropause, on the other hand, is defined as the progressive decline (0.8–2% 
each year) in testosterone levels, beginning at middle-age [ 175 ]. Unlike women, 
men do not have a universally recognized “syndrome of andropause,” as the decline 
occurs more gradually [ 195 ]. The clinical features associated with andropause 
include increased body fat, loss of muscle and bone mass, fatigue, depression, 
anemia, poor libido, erectile dysfunction, insulin resistance, and a higher risk of 
cardiovascular disease [ 124 ]. Andropause is also present in male rodents; however 
this is strain dependent in both mice [ 36 ,  61 ] and rats [ 120 ,  166 ,  252 ].  

    5      Specific Changes in Sex Hormones with Age  

   5.1      Pregnenolone  

  Pregnenolone is the precursor of all known steroid hormones [ 194 ]. In humans 
maximum serum pregnenolone levels are achieved between 25 and 30 years of age 
in both men and women [ 103 ]. After this time, women exhibit a gradual decline 
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[ 103 ], while men maintain constant levels up to approximately 52 years of age, 
followed by a continuous decrease [ 103 ,  174 ]. Since circulating pregnenolone is 
mostly, if not entirely, of adrenal origin [ 103 ], these results have raised the ques-
tion of the contribution of the adrenal glands to the defective production of sex 
steroids during aging [ 103 ].  

    5.2      Estradiol  

  The most dramatic change with the onset of menopause in women is an abrupt 
decrease in circulating estradiol. By perimenopause, serum estrogen concentra-
tions decline, FSH concentrations become augmented to levels higher than in 
younger women, but LH does not change [ 223 ]. Eventually, follicular activity 
ceases, estrogen concentrations fall, and LH and FSH rise above premenopausal 
levels [ 116 ]. After menopause, however, small quantities of estrone—an estradiol 
precursor synthesized from androsterodione in the cortex of the adrenal gland and 
in interstitial ovarian cells—are converted to estradiol (Fig.  1 ). Thus, estradiol is 
still present, but the normal cycling levels seen prior to menopause are replaced 

Fig. 1 Biosynthetic pathways for sex hormones
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by levels that are much lower and do not fluctuate [ 156 ]. Similarly, during the 
period of lengthening cycles in female mice, a fall in circulating levels of estra-
diol can be measured [ 180 ]. In the phase of persistent diestrus, low plasma lev-
els of estradiol were observed in conjunction with follicle-depleted ovaries [ 92 ], 
suggesting that ovarian aging in mice also contributes to the reproductive defect 
in estradiol production. Aged female rats, however, produced levels of estradiol 
at constant estrous levels, which are comparable to that of animals with regular 
cycles [ 107 ]. Since the ovaries of aged rats are capable of normal function under 
appropriate gonadotrophic stimulation, it has been hypothesized that altered 
hypothalamo–pituitary function is a major cause for cessation of regular estrous 
cycle in the female rat [ 107 ].  

  Estrogens in males, predominantly produced by peripheral aromatization of 
testicular and adrenal androgens, have diverse roles including spermatogenesis 
[ 185 ], sexual behavior [ 185 ], and development and maintenance of the skeleton 
[ 244 ]. As in women, serum concentrations of estradiol decrease in men [ 73 ]. This 
decrease in males has been attributed to a decline in free estradiol, or that which 
is unbound to sex hormone-binding globulin (SHBG)—the carrier protein used 
by estradiol and testosterone in the serum. Levels of the SHBG-bound fraction 
of estradiol, in contrast, increase with age [ 242 ]. With this estradiol reduction 
in men, a more pronounced decline in estrone is also observed [ 242 ]. Studies in 
rodents, on the other hand, have shown interesting results. Aged male Fisher 344 
rats, which frequently have Leydig cell hyperplasia or develop testicular Leydig 
cell tumors, had augmented levels of estradiol, mainly at the testicular level [ 99 ]. 
On the contrary, male Brown Norway rats exhibited decreased circulating levels 
of estradiol with age, and orchidectomy produced a progressive decline in FSH 
and LH [ 100 ]. These findings suggest that aged male Brown Norway rats experi-
ence both primary and secondary testicular failure. Therefore, this strain is likely 
a better rat model for studying male reproductive aging, compared to Fisher 344 
rats.  

    5.3      Estrogen Receptors  

  Estrogen receptor (ER)α and ERβ belong to the steroid/thyroid hormone super-
family of nuclear receptors [ 183 ]. These receptors are expressed in a variety of 
immune cells, including T cells and macrophages [ 233 ]. The decline in circulating 
estrogen associated with advanced age may also differentially modulate ER levels 
in males and females. ERα mRNA and protein levels were decreased and ERβ 
was virtually absent in uteri from aged mice [ 222 ]. Similarly, sex, age, and region-
dependent expression of ERα and ERβ were found in rat brains [ 37 , 258 ]. However, 
ERα decreased in kidneys from aged males, but was augmented in those from aged 
females; ERβ, was not expressed in kidney [ 222 ]. The gender effects in the expres-
sion of ERs may contribute to sex specific pathology in the elderly [ 233 ].  
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    5.4      Progesterone  

  In 30–49 year old women with normal cycles, progesterone levels are lower than 
those of younger females at the last stage of the estrus cycle [ 79 ]. This decrease 
seems to be more accentuated during the menopausal transition [ 79 ,  223 ,  228 ]. 
Similar to humans, middle-aged female rats experienced a reduction in the levels 
of progesterone compared to young rats [ 259 ]. In contrast, serum progesterone was 
much higher in aged Long-Evans female rats during the pseudopregnancy phase 
than in rats experiencing constant estrous or anestrous [ 107 ]. Thus, as discussed 
earlier in the context of estradiol, strain differences must be taken into account when 
trying to compare the altered rat hypothalamic–pituitary–gonadal axis of aging with 
that of humans.  

  Outside of the luteal phase in females, healthy adult men and women do not show 
significant differences in serum levels of progesterone [ 187 ] In two independent 
studies, no variation in serum progesterone was found with age in males [ 29 ,  187 ]. 
However, in one  study, a progesterone derivative,17-hydroxyprogesterone (which 
is derived from progesterone via 17-hydroxylase, or from 17-hydroxypregnenolone) 
was significantly reduced with age [ 29 ]. Since most of the 17-hydroxyprogesterone 
in the male is synthesized in the testis, it has been hypothesized that this decrease 
probably may reflect a decrease in Leydig cell function [ 29 ].  

    5.5      Progesterone Receptors  

  The biological effects of progesterone are mediated through the progesterone recep-
tor (PR), which has two isoforms (PR-A and PR-B) [ 217 ]. The changes in proges-
terone levels are associated with age and affect the number, activity, and distribution 
of PRs. In mammary glands, greater expression of PR was found with advanced 
age in 30–40-week-old ovariectomized mice in response to estradiol, compared 
to younger females. Similarly, aged (40-week-old) mice, relative to their younger 
(10 and 20 weeks old) counterparts, had higher expression of PR [ 226 ]. PR expres-
sion, on the other hand, was decreased in the rat penis and was linked to erectile 
dysfunction [ 225 ]. There appeared to be no global or marked decline in brain PR 
with age [ 37 ,  45 ,  78 ]. Overall, these results indicate that the effects of advanced age 
on PR expression are determined in a tissue specific manner.  

    5.6      Testosterone  

  As a result of abnormalities in the hypothalamic–pituitary–testicular axis during 
andropause, serum LH and FSH levels increase with age [ 171 ]. However, serum 
LH concentrations often do not parallel the decline in testosterone [ 171 ], as a result 
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of impaired gonadotrophin-releasing hormone secretion and alterations in gonadal 
steroid feedback mechanisms [ 245 ]. In fact, since testosterone is synthesized from 
estradiol, decreases in total serum levels of testosterone observed in aged men have 
been explained by a reduction in the circulating levels of free (unbound) estradiol 
[ 242 ]. As noted earlier, some strains of male rodents also experience a decline in 
serum testosterone. For example, aged CBF1 male mice had decreased levels of 
testosterone, which was associated with reduced LH, but not FSH, relative to young 
animals [ 36 ]. In contrast, DBA/2J mice showed comparable levels of testosterone at 
all ages, while C57BL/6J male mice had a very slow rate of decline [ 61 ]. Similarly, 
many aged male rats exhibit a significant decrease in testosterone when compared 
to younger animals [ 120 ,  166 ,  252 ].  

  The mechanisms involved in the age-related decline in serum testosterone of 
males include primary structural gonadal impairment, degenerative modifications 
of the pituitary gland, and deficits of the neuro-hypothalamic system. In addition, 
alteration of peripheral components of the testosterone axis has been found, such 
as an increase in SHBG and aromatase [ 109 ,  241 ] (which causes the bioconver-
sion of testosterone to estrogens), and a decrease in 5-α-reductase (which converts 
dihydrotestosterone (DHT) to the active form of testosterone) [ 241 ]. Unlike testo-
sterone, DHT cannot be aromatized into estradiol. While these age-related obser-
vations are important, it is also crucial to consider the effect of other factors, such 
as genetics, chronic diseases, medications, obesity, alcohol consumption, smoking, 
diet, and stress [ 241 ].  

  Irrespective of age, androgens play an important role in women. In fact, female 
androgen insufficiency can lead to symptoms including fatigue, diminished sense 
of well-being, decreased libido, and reduction in bone mass, muscle strength, and 
memory [ 23 ]. A decline in total and free testosterone with age has been reported 
in women [ 54 ,  145 ]. However, reports are inconsistent regarding the levels of 
SHBG and the effect on testosterone levels in aged women [ 40 ,  161 ]. Using a 
larger number of subjects, no variation in SHBG with age was reported [ 54 ]. 
However, a more consistent increase in aromatase has been described [ 109 ,  110 ,  
204 ]. The decline in testosterone in women is more pronounced in the early repro-
ductive years, plateaus in midlife, and tends to increase slightly in the later years 
[ 54 ] In contrast, with the sharp decline in estradiol that occurs with menopause an 
effect on circulating testosterone may not be observed at this time [ 54 ].  

    5.7      Other Androgens  

  Aside from testosterone, additional androgens, including DHT, androstenedione, 
DHEA and its sulfated form (DHEAS), may be affected with increasing age. Nev-
ertheless, information regarding age-associated changes of serum DHT in aging 
men is conflicting. Some have reported increases [ 70 ], while others have found no 
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changes [ 94 ,  246 ] or even decreases in serum levels of DHT [ 52 ]. Plasma andros-
tenedione levels decline with age, both in males and in females [ 94 ]. Plasma levels 
of DHEA and DHEAS, secreted mostly by the adrenal glands, are also reduced 
in both males and females [ 94 ,  124 ,  189 ]. DHEAS peaked at 20–24 years in men 
and at 15–19 years in women, then declined steadily in both sexes, though the lev-
els were significantly higher in men than women at ages from 20 to 69 years old 
[ 189 ]. In general, women show a more pronounced androgen decline in their early 
reproductive years, and a plateau in midlife [ 54 ]. Menopause does not produce an 
abrupt decline in androgens, as it does with estradiol.  

    5.8      Androgen receptors  

  The androgen receptor (AR) is a member of the steroid nuclear receptor superfamily 
that is activated by testosterone and its derivatives [ 24 ]. To date, only one AR gene 
has been identified in humans [ 158 ]. AR is mainly expressed in androgen target tis-
sues, such as the prostate, skeletal muscle, the liver, and the central nervous system 
(CNS). The highest expression levels are observed in the prostate, adrenal gland, 
and epididymis [ 124 ]. It has been reported that aging is accompanied by a decrease 
in AR concentration in different tissues from men [ 210 ] and rodents [ 31 ,  205 ]. In 
support of the notion that decreased AR is biologically relevant, a CAG-repeat poly-
morphism of the AR that causes decreased androgen sensitivity has been associated 
with reduced bone mineral density in men aged 20–50 years [ 270 ] and impaired 
cognitive function in men as they age [ 261 ]. The amount of AR declined in the brain 
cortex of mice of both sexes with advanced age [ 238 ]. However, the relative level 
of AR phosphorylation was significantly higher in aged compared to adult, as well 
as female relative to male, mice [ 238 ]. The significance of differences in the levels 
of phosphorylation is not clearly understood, but it has been proposed that it might 
lead to a transformation of AR into a tight nuclear binding form, which is required 
for downstream hormone activity [ 238 ].  

     6      Changes in Sex Hormones Contribute  to  Immunosenescence 
During Normal Aging  

   6.1      Sex Hormones and the Age-Associated Increase 
in Circulating IL-6  

  The well described chronic proinflammatory state in aged individuals without 
underlying disease [ 25 ,  38 ,  68 ,  75 ,  213 ], is characterized in part by circulating 
levels of interleukin-6 (IL-6) [ 65 - 67 ]. This age-related increase of IL-6 in serum 
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begins as early as 30–40 years of age and is more prominent among men [ 265 ]. 
Population studies have identified serum IL-6 levels as a reliable predictor of 
disability among the elderly [ 74 ]. Genetic studies indicated that those who are 
predisposed to produce low levels of IL-6 during aging—for example, men posi-
tive for the polymorphic variant at the 174 C/G locus—appeared to have extended 
longevity [ 32 ]. Moreover, these same investigations indicated that later in life, 
women experience higher serum IL-6 levels compared to men, in a 174 C/G 
locus–independent manner [ 32 ]. These results suggest that genetics influence 
longevity in men more than in women. It is possible that environmental factors 
play a greater role in determining longevity in women or that genetic factors may 
become prominent later in their life [ 32 ].  

  The increase in circulating IL-6 associated with age can be explained, in part, 
by the decline in sex hormones, as has been suggested for estrogen, testosterone, 
and DHEA [ 231 ]. In vitro studies using cells obtained from humans and rodents 
showed that spontaneous increases in the expression and secretion of IL-6 and other 
proinflammatory cytokines (IL-1 and TNF-α) occurred in macrophages as a result 
of estrogen deficiency produced by natural [ 30 ,  191 ] or surgical menopause [ 115 ,  
130 ,  133 ,  192 ,  193 ], or after discontinuation of estrogen replacement [ 30 ,  192 ]. In 
vivo cytokine increases, as a consequence of estrogen deficiency, have been more 
difficult to demonstrate because of technical limitations [ 196 ], but similar results 
to the in vitro observations have been found [ 42 ,  87 ]. In support of these observa-
tions, macrophages obtained from ovariectomized mice showed increased expres-
sion of components of the IL-6 receptor complex [ 154 ]. Since the IL-6 gene lacks 
the classical estrogen response elements (ERE) in its promoter [ 203 ], a mechanism 
other than direct transcriptional regulation must be present to explain the effects of 
estrogen on IL-6 production. Perhaps the best described mechanism involves the 
binding of estrogen-ER/NF-κB dimers to NF-κB binding sites, thereby preventing 
subsequent transcription [ 119 ]. Additionally, exposure to low proestrus levels of 
estrogen in vivo attenuated the activation of NF-κB in macrophages from young 
adult mice cultured ex vivo in a model of acute ethanol exposure followed by burn 
injury [ 167 ].  

  Similar to estrogen deficiency, the age-associated decline in androgens may 
also upregulate proinflammatory cytokines [ 196 ]. Testoterone deficiency induced 
IL-6 mRNA and protein synthesis in bone marrow cells obtained from young 
mice after orchidectomy [ 267 ]. In vitro, testosterone reduced IL-6 production in 
macrophages [ 121 ],  osteoblasts [ 105 ], synoviocytes [ 150 ] and cell lines [ 125 ].  

  An inverse correlation has also been described for plasma DHEA and circulat-
ing IL-6 with age [ 113 ,  230 ]. After in vivo hormone supplementation with DHEA 
and DHEAS, circulating concentrations of IL-6 [ 55 ] and TNF-α were inhibited 
[ 131 ]. The effects of low levels of DHEA on IL-6 production have been observed 
in splenocytes [ 113 ,  128 ], monocytes [ 230 ] and macrophages [ 132 ]. However, 
it has yet to be established whether androgen effects on IL-6, such as testoster-
one and DHEAS, occur through downstream cell signaling or through indirect 
mechanisms.  
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    6.2      Sex Hormones and the Age-Related Shift to a Th2 Immune 
Response  

  Lymphocytes from aged individuals have decreased proliferation and a decline in 
production of the Th1 cytokines, IL-2, IFN-γ and IL-12. In contrast, the produc-
tion of the Th2 cytokines, IL-4, IL-5, IL-6 and IL-10, is increased [ 81 ]. These 
alterations in cytokine secretion produce a shift from a Th1/Th2 balance to a 
predominantly Th2-phenotype. This, in turn, results in altered immune responses 
and a higher susceptibility to bacterial and viral infections, as well as to neopla-
sias [ 208 ].  

  An important contributor to the development of the Th2 phenotype observed in 
aging is a result of augmented numbers of memory T cells over naive Tcells [ 169 ]. 
When pregnancy and aging were used as variables for different levels of sex hor-
mones, having given birth, parous mice delayed their increase in splenic memory 
T cells. Also, they augmented the memory/naïve ratio in old mice [ 27 ]. In addition, 
the memory to naïve T cell ratio was lower in aged males [ 27 ]. Female mice which 
have produced offspring exhibited only a slight decrease in circulating IL-2 and an 
increase in IL-4, IFN-γ, and IL-6 compared with virgin females in association with 
advanced age [ 26 ]. Males, on the other hand, had a smaller decrease in IL-2 during 
adulthood and lower IFN-γ production with age [ 26 ]. From these data, it can be 
concluded that the onset, magnitude and kinetics of the age-related changes in Th1 
and Th2 cytokine production are dependent on the sex hormone status.  

     6.3      Hormones, Other Major Information Exchange Systems, 
and Advanced Age  

  The endocrine, immune, and nervous systems communicate through the release of 
hormones, cytokines, and neurotransmitters. As aging modifies the functionality 
of each one of these information exchange systems, it is expected that the interac-
tion between them will also be affected. Straub and collaborators have provided 
evidence that changes in sex hormones in conjunction with neurotransmitters can 
contribute to the Th2 shift associated with advanced age [ 232 ].  

  While not a sex hormone, the glucocorticoid cortisol increases the secre-
tion of Th2 cytokines [ 243 ,  251 ] and reduces the production of Th1 cytokines 
[ 184 ,  249 ,  251 ]. Similarly, the neurotransmitter, norepinephrine, inhibits the pro-
duction of Th1 cytokines [ 62 ,  71 ] and augments the levels of Th2 cytokines [ 62 ]. 
However, in contrast with sex hormones, advanced age is associated with a relative 
increase in cortisol [ 104 ,  149 ] and increased circulating levels of norepinephrine 
(10–15% per decade over the adult level) [ 219 ]. Thus, in addition to sex hormones, 
imbalances in neurotransmitters can further shift aged individuals towards a Th2 
phenotype, perpetuating the defects associated with aging, such as autoimmune 
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disease, tumor growth, and acceleration of atherosclerosis. The involvement of sex 
hormones in the manifestation of the aberrant immune responses in advanced age, 
during normal aging, is summarized in Table  2 .     

      7      Specific Outcomes of Sex Hormone-Related Changes 
with Age  

  Independent of age, epidemiologic evidence indicates that sex is a risk factor for 
trauma and sepsis [reviewed in [ 7 ]]. For example, most injury victims are young 
males [ 136 ]. In addition, a higher incidence of bacteremic infections, as well as 
increased mortality, has been reported in male trauma patients compared with 
females [ 33 ,  162 ]. The major insults that result in systemic immune dysregulation 
and are affected by age and sex hormones are hemorrhagic shock, burn injury, and 
sepsis. After a review on each of these models, the long term effects of aging and 
sex hormones on wound healing will be discussed.  

   7.1      Trauma-Hemorrhage  

  Clinical and experimental studies demonstrated that age and sex are major deter-
minants in the host response following traumatic injury, shock, and/or infection 
[ 9 ,  83 ,  168 ]. Following hemorrhagic trauma, female rodents had increased survival 
and improved cell-mediated immune responses compared to their male counter-
parts [ 3 ,  7 ,  135 ,  266 ]. Additional studies identified testosterone as mainly responsi-
ble for the depressed cell-mediated immune responses in males [ 4 - 6 ,  8 ,  256 ,  257 ] 
and estrogen in enhancement of cell-mediated immune responses in females [ 6 ,  
8 ,  77 ,  134 ,  135 ,  262 ]. Interestingly, some studies showed a reversal of the pattern 
observed in the young. As opposed to younger injured animals, aged males exhib-

Table 2 Involvement of sex hormones in the manifestation of some aberrant immune responses 
in advanced age

Condition References

Normal aging  

Onset of IL-6 increase [30, 42, 87, 105, 113, 115, 121, 125, 130, 133,
150, 154, 191–193, 196, 203, 230, 231, 267]

Th2 phenotype [26, 27, 232]

Immune response after injury  

Trauma-hemorrhage [9, 82, 83, 117, 118, 168]

Burn injury [1, 90, 127, 138, 140, 155, 200, 240, 139]

Sepsis [49, 51, 199]
Dermal wound healing [15, 19–22, 85, 86, 144, 170, 173, 206, 263]
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ited enhanced immune responses following injury, when compared to aged females 
[ 82 ,  117 ]. In addition, macrophages obtained from young males secreted low levels 
of IL-1β and IL-6 and higher IL-10 than aged subjects Meanwhile, macrophages 
from aged males released higher levels of IL-1β and IL-6 and reduced IL-10 [ 117 ]. 
In contrast, macrophages isolated from young females following trauma-hemor-
rhage had enhanced IL-1β and suppressed IL-10 production. Unlike their aged male 
counterparts, aged females did not have differences in the production of IL-1β and 
IL-6, but released higher levels of IL-10 secretion [ 117 ]. In other studies, spleno-
cyte responses, such as proliferation and the release of IL-2 and IFN-γ, declined in 
young males but were enhanced in young females after trauma-hemorrhage [ 118 ] 
These effects were reversed in aged animals [ 118 ]. Thus, in the trauma-hemorrhage 
model, the sexually dimorphic cellular response of macrophages and splenocytes in 
young males and females is reversed, as sex hormone levels decline with age.  

    7.2      Burn Injury  

  After burn injury, there is an enhanced systemic inflammatory response, char-
acterized by higher levels of proinflammatory mediators, and defective immune 
responses, such as DTH and lymphocyte proliferation [ 59 ,  141 ,  269 ]. Epidemio-
logical studies in burn patients have demonstrated higher mortality in females rela-
tive to males sustaining a similar sized burn injury [ 84 ,  127 ,  163 ,  209 ]. Similarly, 
after a 15% total body surface area (TBSA) burn, decreased survival was observed 
in female mice relative to males [ 97 ]. Interestingly, estrogen levels were signif-
icantly higher (10–15 fold over baseline) in females following burn injury [ 58 ], 
whereas concentrations of circulating testosterone were decreased [ 58 ,  152 ,  167 ] 
These observations suggest that significantly higher levels of estrogen may lead to 
an improper cell-mediated immune response. Further support for this idea is seen in 
experiments which show that proestrus levels of estradiol inhibited IL-6, whereas 
pregnancy levels of the hormone increased the expression of IL-6 [ 56 ,  97 ,  115 ,  167 ] 
Thus, the disparity in the sex-associated outcome between burn injury and hemor-
rhagic trauma may most likely be due to changes in circulating hormones present 
after injury.  

  Aged humans [ 127 ] and rodents show higher mortality following burn injury 
[ 137 ] After a 15% TBSA burn, aged mice had a higher mortality rate than young 
adult mice [ 137 ]. In addition, aged female burn–injured mice showed elevated 
circulating levels of IL-6 and Th2 cytokine production by lymphocytes, but sig-
nificant decreased DTH response and Con A-stimulated splenocyte proliferation 
responses compared to young mice [ 200 ]. As low, proestrus levels of estrogen 
suppressed the production of proinflammatory cytokines [ 47 ,  95 ,  234 ], our labo-
ratory tested the therapeutic efficacy of estrogen supplementation on the immune 
response following injury in aged female mice. In our studies, low, proestrus lev-
els of estrogen resulted in a marked improvement in survival over a 10-day period 
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after burn injury [ 90 ]. In addition, attenuated serum levels of IL-6 were observed, 
in conjunction with a partial restoration of the DTH response [ 140 ]. A recov-
ery in IFN-γ, but not in IL-4 production, suggested a restoration of the Th1-Th2 
shift, as a result of the estrogen treatment [ 139 ]. Overall, our results demonstrate 
that using the immunomodulatory properties of estradiol has beneficial effects in 
aged, injured subjects.  

    7.3      Sepsis  

  Retrospective studies indicate that men have increased morbidity and mortality 
from sepsis as compared to women [ 9 ,  33 ,  160 ,  215 ,  266 ]. After sepsis-induced 
cecal ligation and puncture in rodents, splenocytes from septic males exhibited 
reduced proliferative capacity and decreased production of IL-2 and IL-3, but not 
in those from female septic mice [ 266 ]. In similar studies, higher plasma levels 
of IL-1β were found in female mice versus male mice after LPS administration, 
as a model of the inflammatory response provoked during infection [ 153 ]. These 
data suggest that better cellular responses and higher levels of proinflammatory 
cytokines may contribute to the improved response in females relative to males 
during sepsis.  

  Infectious diseases comprise one of the ten major causes of death in the elderly 
[ 264 ]. Moreover, pneumonia, influenza, and complications of bacteremia in this 
age group are associated with a poor prognosis. Elderly patients hospitalized with 
 Streptoccocus pneumoniae  infection, had prolonged elevation of circulating proin-
flammatory cytokines [ 39 ], as do aged volunteers given endotoxin [ 142 ]. In animal 
models, aged mice given LPS were approximately six times more sensitive to the 
lethal toxicity than young mice [ 237 ]. In addition, LPS exposure induced higher 
serum and tissue levels of IL-6, IL-1β and TNF-α in aged mice as compared to 
young [ 88 ,  89 ,  169 ,  237 ].  

  The effect of age and sex on cytokine production has also been studied in 
peripheral blood mononuclear cells isolated from young and elderly subjects 
[ 199 ]. After in vitro stimulation with LPS, decreased intracellular levels of 
TNF-α and IL-6 were detected in monocytes from elderly women, relative to 
young women [ 199 ]. In contrast, monocytes from elderly males showed an ele-
vated number of cells positive for both IL-1β and TNF-α after LPS stimulation 
[ 199 ]. In different analyses, spontaneous production of the chemokine IL-8, was 
decreased in macrophages obtained from elderly males, as compared to that of 
aged females [ 49 ]. Upon in vitro stimulation with LPS, production of IL-8 by 
macrophages from elderly males was increased over levels in young males. How-
ever, cells from aged females showed no change compared to cells from young 
donors [ 49 ]. The involvement of sex hormones in the response to LPS with aging 
was further supported by the observation that castrated young male rats exhibited 
similar macrophage function to aged male rats [ 51 ].  
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    7.4      Wound healing  

  The process of wound healing can be separated into the following overlapping 
phases: hemostasis, inflammation, proliferation, and resolution [ 57 ]. These four 
phases have been studied in detail and exhibit impairment in association with aging 
[reviewed in [ 91 ]]. The detrimental effects of aging on the healing of acute wounds 
include a prolonged inflammatory response [ 18 ,  235 ], upregulation of protease 
activity [ 17 ], and reduced extracellular matrix deposition [ 16 ].  

  Elderly men heal more slowly than do elderly women. Interestingly, this is true 
even when both sexes receive estrogen treatments [ 19 ]. Estrogen treatment has been 
shown to accelerate the rate of acute healing in men, and particularly in elderly 
women, by reducing the inflammatory response [ 15 ]. On the contrary, testoster-
one significantly delayed acute healing in aged humans, as a result of an increased 
inflammatory response [ 21 ]. This suggests that, besides the alterations in immune 
status [ 168 ,  220 ], the age-associated decrease in sex hormones [ 86 ] may also con-
tribute to sex differences in wound healing in the elderly.  

  The salutary effect of estrogen in wound healing includes lessened inflamma-
tory cell infiltration [ 19 ,  170 ] and inhibition of the proinflammatory cytokines 
macrophage migration inhibitory factor (MIF) and TNF-α [ 22 ]. In addition, estrogen 
improved the rate of re-epithelialization [ 20 ], promoted angiogenesis [ 173 ], and 
stimulated wound contraction [ 206 ].  

  In elderly men, elevated serum testosterone levels correlated with delayed 
healing of excisional punch wounds [ 21 ]. The use of animal models has allowed 
us to gain a great deal of information regarding the mechanisms involved in this 
phenomenon. In mice, systemic administration with the AR antagonist, fluta-
mide, improved wound repair, decreased DNA-binding activity of NF-κB, and 
lowered the production of TNF-α. In other studies, macrophages isolated from 
the wound site directly upregulated the proinflammatory cytokines, TNF-α [ 21 ] 
and IL-6 [ 85 ] in response to testosterone. This evidence suggests a possible role 
for the AR in impaired healing and increased wound inflammation [ 21 ]. How-
ever, careful interpretation of these results is required, as there is conflicting 
evidence showing both inhibitory and stimulatory effects of testosterone in the 
production of proinflammatory cytokines in vitro [ 86 ]. The participation of sex 
hormones in the manifestation of the aberrant immune responses in advanced age 
after injury is summarized in Table  2 .  

    8      Therapeutic Benefits Versus Detrimental Effects of Hormone 
Replacement Therapies  

  As discussed in the previous pages, experimental research and observational clini-
cal data have provided evidence for the beneficial effects of hormone replacement 
therapy (HRT) on the aging process. However, large trials have recently called into 
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question whether the effects of some forms of HRT are truly advantageous, poten-
tial hazards and concerns have even been raised. In this section, we will briefly 
discuss the results of recent HRT trials.  

    8.1      Estrogen and Progesterone  

  As noted above there is a vast array of immunomodulatory properties of estrogen 
and progesterone [ 217 ]. Thus, the accumulation of basic and clinical data prompted 
the development of interventional studies to analyze the therapeutic effects of HRT. 
Postmenopausal estrogen therapy, alone and in combination with progestin, involves 
approximately 100 years of research and 75 years of clinical practice [ 254 ]. How-
ever, for the last few years, evidence has surfaced against the beneficial effects of 
estrogen replacement [ 129 ].  

  The Heart and Estrogen/Progestin Replacement Study (HERS) compared the 
effects of conjugated equine estrogens plus medroxyprogesterone acetate on car-
diovascular function in 2,763 women with prior coronary disease. The results 
showed an increase in coronary heart disease in women taking HRT [ 108 ]. The 
Women’s Estrogen for Stroke Trial (WEST), a randomized, double-blind, placebo-
controlled trial, assessed the effects of estradiol therapy in 664 postmenopausal 
women (mean age, 71 years) who already had an ischemic stroke or transient 
ischemic attack. In this study, no benefit of estrogen treatment on cerebral stroke 
incidence was found and, in fact, an increased risk of fatal stroke was reported 
[ 250 ]. The Women’s Health Initiative (WHI), a large, placebo-controlled trial 
involving more than 16,000 women aimed to study the effects of estrogen therapy 
alone or combined estrogen plus progestin. Benefits included decreased risks for 
colorectal cancer, beginning at 3 years, and for hip fracture over time [ 212 ]. This 
study was terminated in 2004 resulting from findings of an increased risk of breast 
cancer, cardiovascular complications, ischemic stroke, levels of inflammatory 
biomarkers, and dementia, including Alzheimer’s disease (reviewed in [ 217 ]). 
Other studies have indicated that the greatest benefits of estrogen replacement 
are increased bone density and decreased risks of fractures [ 129 ]. Subsequent to 
these trials, many medical organizations recommend that estrogens should not be 
used in women over the age of 60 years [ 217 ]. Accordingly, the use of estrogen 
currently is recommended only temporarily for women who undergo surgical or 
natural premature menopause [ 129 ] and for short-term control of hot flashes at the 
beginning of menopause [ 69 ].  

  As an aftermath of the HERS, WEWT and WHI trials, the recommended dos-
ages of estrogen and estrogen–progestin therapies have markedly decreased since 
they first were introduced. Data demonstrating that benefits in vasomotor and vul-
vovaginal symptoms, prevention of bone loss, and protection of the endometrium 
in association with aging can still be achieved with lower doses than the commonly 
prescribed ones [ 254 ].  
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    8.2      Testosterone  

  Most of the information regarding the benefits of testosterone replacement therapy 
has been postulated from studies involving younger hypogonadal patients and ani-
mal models [ 236 ]. In younger men, the benefit to risk ratio is high. However in aged 
males, potential risks have not been assessed, so the benefit to risk ratio of testoster-
one replacement therapy in the aging male is still not known [ 124 ].  

  In older, hypogonadal males, continued testosterone therapy increases muscle 
mass [ 124 ,  129 ]. In one study, transdermal testosterone was administered to 123 
subjects continuously for up to 42 months [ 253 ]. Continuous treatment normal-
ized testosterone levels, increased the mean serum estradiol to testosterone ratio, 
and suppressed mean serum FSH and LH levels [ 253 ]. In addition, lean body mass 
augmented as early as 3 months, while fat mass decreased. These changes were 
maintained with treatment, but were not accompanied by significant increments in 
muscle strength [ 253 ]. As a caveat, however, this study was neither placebo-control-
led nor powered to determine the effects of the treatment on prostate cancer risk.  

  Testosterone treatment has been shown to improve libido in both males and 
females [ 129 ]. However, information from controlled trials, specifically on sexual 
function in the elderly, remains scarce [ 28 ,  124 ]. In some small studies, parameters 
of sexual function in elderly men have been shown to be improved compared with 
placebo treatment [ 143 ,  179 ]. Nevertheless, a lack of an effect has been reported in 
trials using the anabolic androgen, oxandrolone [ 216 ], an aromatase inhibitor [ 151 ], 
or DHT [ 143 ]. Additional studies are needed to accurately make conclusions on the 
effects of androgen administration on sexual function in elderly men. In many short 
term studies, testosterone therapy has shown an improved, but rather modest, sexual 
function in elderly women compared with those on estrogen or placebo [reviewed 
in [ 28 ]]. However, secondary effects, such as supraphysiological and unpredictable 
levels of testosterone to an adverse lipid profile, have been observed. Thus, andro-
gen replacement to improve sexual function in aged females may not be the best 
choice of therapy [ 28 ].  

  The effects of testosterone on cardiovascular disease include improvement of 
cardiovascular efficiency [ 63 ], reduced incidence of angina [ 63 ], and improved 
cardiac muscle remodeling and coronary artery vasodilation [ 122 ,  126 ]. However, 
when the effects of androgen therapy on cardiovascular risks have been analyzed, 
the findings have generally been unremarkable. This dampens the potential of using 
androgen therapy to prevent the occurrence or to improve the outcome of cardio-
vascular diseases in elderly men [ 124 ]. In addition, side effects can be seen with 
long term testosterone treatment using near physiologic doses. Polycythemia is the 
major side effect [ 129 ], but long term administration of testosterone or DHT may 
also increase the risk of prostatic carcinoma and benign prostatic hyperplasia [ 176 ]. 
Other side effects include sleep apnea, breast development in men, breast carci-
noma, fluid retention, hypertension, alterations in the lipid profile, and atheroscle-
rosis [ 101 ,  207 ].  
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    8.3      DHEA  

  A great deal of information has been accumulated in recent years regarding the 
beneficial effects of pharmacological doses of DHEA. Potential benefits include 
cardioprotection, antiobesity, immunostimulation, and neuroprotection [ 129 ]. 
The effect of DHEA on the improvement of immune function in the elderly was 
evidenced by observations in aged mice showing that immunization shortly after an 
oral dose of DHEAS provided adjuvant effects that improve immunity against influ-
enza [ 11 ,  12 ]. However, in a prospective randomized, double-blind study, in which 
participants received either DHEA for 4 consecutive days starting 2 days before 
immunization or placebo, there was no improvement in the age-related decrease 
response to immunization against influenza [ 53 ]. In conclusion, more studies are 
necessary to justify the use of DHEAS as an adjuvant for the elderly.  

     9      Conclusions  

  Analysis of the contribution of sex hormones to different aspects of imnunosenes-
cence has been presented in this chapter. After a review of the enormous amount 
of literature on the field, one may conclude that changes in the sex hormone envi-
ronment can contribute to immunosenescence. Thus, sex hormone status can help 
shape normal aspects of the aging immune system, as well as immune responses 
to injury and infection. Additionally, we can conclude that immunosenescence is a 
manifestation of the continuous interplay between the immune, the endocrine, and 
the nervous systems over time. Overall, when trying to determine the best treatment 
option for any number of pathological conditions, it is important to consider both 
age and sex as potential modifiers of the disease process. Thus, therapies targeted to 
the specific hormonal and immune status of an individual may prove to be of most 
benefit for optimal clinical outcomes.  
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                                                    Abstract   :     This chapter summarizes recent work suggesting that human immunose-
nescence may be closely related to both psychological distress and stress hormones. 
The age-related immunological changes are also similarly found during chronic 
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stress or glucocorticoid exposure. It follows that endogenous glucocorticoids (cor-
tisol) could be associated to immunosenescence. When compared with young 
subjects, healthy elders are emotionally distressed in parallel to increased corti-
sol/dehydroepiandrosterone (DHEA) ratio. Furthermore, chronic stressed elderly 
subjects may be particularly at risk of stress-related pathology because of further 
alterations in glucocorticoid-immune signaling. Although DHEA and its metabo-
lites have been described with immune-enhancing properties, their potential use 
as hormonal boosters of immunity should be interpreted with caution. The psy-
choneuroendocrine hypothesis of immunosenescence is presented in which the age-
related increase in the cortisol/DHEA ratio is major determinant of immunological 
changes observed during aging. We finally discuss that strictly healthy elders are 
largely protected from chronic stress exposure and show normal cortisol levels and 
T-lymphocyte function. This information adds a new key dimension on the biology 
of aging and stress.  

         Keywords   :     Aging    •      Immunosenescence    •      Glucocorticoids    •      Lymphocytes    

         1   Introduction  

   Aging is a continuous and slow process that compromises the normal functioning 
of various organs and systems in both qualitative and quantitative terms. The clini-
cal consequences of immunosenescence may include increased susceptibility to 
infectious diseases, neoplasias and autoimmune disease (Castle  2000 ). This altered 
morbidity is not evenly distributed and should be influenced by other immune-mod-
ulating factors, including genetic background and chronic stress exposure (Bauer 
 2005 ). Indeed, several immunosenescence-related changes (e.g., thymic involu-
tion, lower counts of naïve T-cells and blunted T-cell proliferation) resemble those 
observed following chronic stress (McEwen et al.  1997 ; Selye  1936 ) or glucocorti-
coid (GC) treatment (Fauci  1975 ).  

   In addition to immunosenescence, the endocrine system also undergoes important 
changes during aging (endocrinosenescence). It has been demonstrated a decline in 
growth hormone (GH), sex hormones and dehydroepiandrosterone (DHEA) with 
aging (Roshan et al.  1999 ). DHEA is the major secretory product of the human 
adrenal and is synthesized from cholesterol stores (   Fig. 1   ). The hormone is uniquely 
sulphated (DHEAS) before entering the plasma, and this prohormone is converted 
to DHEA and its metabolites in various peripheral tissues (Canning et al.  2000 ). 
Following secretion, total DHEA in the circulation consists mainly of DHEAS—the 
serum concentration of free DHEA is less than 1%. Serum DHEA levels decrease 
by the second decade of life reaching about 5% of the original level in the elderly 
(Migeon et al.  1957 ). It has been suggested that DHEAS/DHEA may antagonize 
many physiological changes of endogenous glucocorticoids (Hechter et al.  1997 ) 
including enhancing immunomodulatory properties.     

   There is also evidence suggesting that aging is associated with significant activa-
tion of the hypothalamic-pituitary-adrenal (HPA) axis (Halbreich et al.  1984 ; Heuser 
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et al.  1998 ; Luz et al.  2003 ) in increased production of cortisol in the man. The HPA 
axis is pivotal for the homeostasis of the immune system and its dysregulation has 
been associated with several immune-mediated diseases. For instance, HPA axis 
over-activation, as occurs during chronic stress, can affect susceptibility to or sever-
ity of infectious disease through the immunosuppressive effect of the glucocorti-
coids (Kiecolt-Glaser et al.  1996 ); (Vedhara et al.  1999 ). In contrast, blunted HPA 
axis responses are associated with enhanced susceptibility to autoimmune inflam-
matory disease (Sternberg  2002 ). It is noteworthy to mention that elderly subjects 
are particularly at risk for both infectious and chronic inflammatory diseases. Fur-
thermore, chronic inflammatory diseases may be associated with premature aging 
of the immune system and present several similarities of immunosenescence includ-
ing shortening of cellular telomeres, decreased T-cell receptor specificities, loss of 
naïve T-cells and increased production of proinflammatory cytokines (Straub et al. 
 2003 ). Dysregulation of the HPA axis may contribute to but it is not solely responsi-
ble to immunosenescence. Chronic stressed elderly subjects may be at risk of stress-
related pathology because of further alterations in GC immunoregulation (immune 
signaling).  

   The present chapter summarizes recent findings that suggest that immunosenes-
cence may be closely related to both psychological distress and stress hormones. In 
particular, striking similarities of immunological changes are found during aging, 
stress exposure or GC treatment in vivo. The neuroendocrine hypothesis of immu-
nosenescence is reconsidered in which both the psychological distress and increased 
cortisol/DHEA (C/D) ratio are thought to be major determinants of immunological 
changes observed during aging. We also discuss the protective effects of a strictly 
health status during chronic stress exposure during aging.  

   Fig. 1          Adrenal steroidog-
enic pathways.     
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       2   The SENIEUR Protocol  

   It remains controversial whether immunosenescence cause or are caused by underly-
ing disease commonly observed in elderly populations. Therefore, strenuous efforts 
have been made to circumvent this problem by separating “disease” from “aging”, as 
exemplified by the application of the SENIEUR protocol (Ligthart et al.  1984 ) that 
defines rigorous criteria for selecting healthy individuals in immunogerontological 
studies. The health conditions are checked accordingly to clinical investigations 
and to hematological and various biochemical parameters. The exclusion criteria 
includes: infections, acute or chronic inflammation, autoimmune diseases, heart dis-
ease, undernourishment, anemia, leucopenia, clinical depression, neurodegenerative 
disease, neoplasia and use of hormones and drugs. Based on this protocol, it is pos-
sible to select up to 10% of strictly healthy volunteers from elderly populations.  

       3      Healthy Aging is Associated with Emotional Distress 
and Increased Cortisol/DHEA Ratio  

   Psychological distress may be an important risk factor for immunosenescence. 
Human aging has been associated with several psychological and behavioral 
changes, including difficulty to concentrate, progressive cognitive impairments and 
sleep disturbances (Howieson et al.  2003 ; Piani et al.  2004 ). Although individu-
ally identified, these alterations may be associated with major depression. Indeed, 
depression is highly prevalent in several age-related chronic degenerative diseases, 
including cardiovascular diseases, Parkinson’s disease, Alzheimer’s dementia, can-
cer and rheumatoid arthritis (Dew et al.  1998 ). In addition, both aging (Gabriel et al. 
 2002 ) and major depression (Schiepers et al.  2005 ; Trzonkowski et al.  2004 ) have 
been associated to increased levels of proinflammatory cytokines and could thus 
contribute for further immunological diseases in the frail elderly.  

   We have recently demonstrated that healthy aging was associated with significant 
psychological distress. In particular, it was found that SENIEUR elders were sig-
nificantly more stressed, anxious and depressed than young adults (Collaziol et al. 
 2004 ; Luz et al.  2003 ). Several stressors were ascribed to the healthy elders, includ-
ing: feeling unable to work or having problems to perform their house work, sexual 
problems and reduced libido, loss of a relative or friend, and social exclusion. The 
literature regarding age-related psychological changes is controversial and others 
did not find these changes (Nolen-Hoeksema and Ahrens  2002 ). This could be due 
to methodological issues, since specific clinical interviews are required to assess 
depression in the elderly.  

   In parallel to psychological distress, we have also observed that SENIEUR elders 
had significantly higher (~45%) salivary cortisol production throughout the day 
compared to young adults (Luz et al.  2003 ). Cortisol peaked in the morning and 
presented a nadir at night, with a regular circadian pattern for both groups. These 
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data further suggest that healthy aging is associated with significant activation of the 
HPA axis (Deuschle et al.  1997 ; Ferrari et al.  2000 ; Ferrari et al.  2004 ; Halbreich et 
al.  1984 ; Heuser et al.  1998 ; Van Cauter et al.  1996 ). However, some previous stud-
ies have also observed an flattened diurnal amplitude of ACTH and cortisol levels 
during aging (Deuschle et al.  1997 ; Ferrari et al.  2004 ). Increased cortisol levels are 
also seen in demented patients (Maeda et al.  1991 ), major depression (Gold et al. 
 1988 ) or during chronic stress (Bauer et al.  2000 ; Kirschbaum et al.  1995 ).  

   In addition, it was observed that healthy elders had lower DHEA levels (-54%) 
throughout the day compared to young adults (Luz et al.  2006 ). Furthermore, elders 
also displayed a flat circadian pattern for DHEA secretion. The morphological corre-
lates of the age-related changes of DHEAS/DHEA secretion are progressive atrophy 
of the zona reticularis of adrenal glands (Ferrari et al.  2001 ). The lack of appropriate 
DHEA levels could be another detrimental factor during immunosenescence since 
this hormone has immune enhancing properties (as further discussed in this chapter).  

   The higher cortisol in parallel to lower DHEA levels will consequently lead to 
higher C/D ratios throughout the day. The assessment of molar concentrations con-
stitute another way to evaluate the adrenal function in the organism (Butcher and 
Lord  2004 ; Ferrari et al.  2001 ; Straub et al.  2000 ). The measurement of isolated 
hormonal samples may be an oversimplification and the C/D ratio may contribute 
to the effective determination of functional hypercortisolemia. The impaired DHEA 
secretion, together with the increase of cortisol, results in an enhanced exposure of 
various bodily systems (including brain and immune system) to the cytotoxic and 
modulatory effects of GCs. Some brain cells (hypocampus) and lymphocytes are 
specially targeted by the cortisol because they express higher densities of mineralo 
receptors (MRs) and GC receptors (GRs) (McEwen et al.  1997 ). The peripheral 
tissues of elders may be thus more vulnerable to the GC actions in a milieu of low 
protective DHEA levels. The antagonist action of DHEA to cortisol in the brain 
suggests that measurement of cortisol alone may provide an incomplete estimate of 
hypercortisolemia.  

   In our previous study, psychological distress was positively related to salivary 
cortisol levels and negatively correlated to DHEA levels during aging (Luz et al. 
 2003 ). Therefore, it becomes difficult to dissociate these neuroendocrine changes 
observed in the elderly with those produced by psychological stimuli. It should be 
also pointed out that endocrinosenescence includes a substantial decline in several 
hormones, including growth hormone, testosterone, progesterone and aldosterone—
all of which with reported immunomodulatory properties. Thus the endocrinosenes-
cence may be considered as another risk factor for immunosenescence.  

     3.1      The  G lucocorticoid Cascade Hypothesis  

   Cumulative neural damage produced by stressors during life may contribute to 
increased HPA function during aging. In this context, peripheral GCs may have an 
important role in damaging key brain areas involved with regulation of the HPA 
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axis. Evidence for GC involvement in hippocampal aging led to the establishment 
of the “glucocorticoid cascade hypothesis” (Sapolsky et al.  1986 ). This hypoth-
esis states that GCs participate in a fed-forward cascade of effects on the brain 
and body. In this case, progressive damage to the hippocampus, induced by GCs, 
promotes a progressive elevation of adrenal steroids (i.e. cortisol) and dysregula-
tion (down-regulation of GC receptors) of the HPA axis (Sapolsky et al.  1986 ). 
The glucocorticoid cascade hypothesis of aging is a prime example of “allostatic 
load” (McEwen  1998 ; McEwen  2003 ) since it recognizes a mechanism that gradu-
ally wears down a key brain structure, the hippocampus, while the gradually dys-
regulated HPA axis promotes pathophysiology in tissues and organs throughout out 
the body. The net results of the age-related hippocampal damage are impairment 
of episodic, declarative, spatial, and contextual memory and also in regulation of 
autonomic, neuroendocrine, and immune responses. It should be mentioned that the 
effects of glucocorticoids on the hippocampus are reversible.  

   Sapolsky and col. (1986) have also proposed that several age-related pathologies 
are also observed following excessive glucocorticoid exposure and include muscle 
atrophy (Salehian and Kejriwal  1999 ), osteoporosis/hypercalcemia (Tamura et al. 
 2004 ), hyperglycemia/hyperlipidemia, atherosclerosis, type II diabetes and major 
depression (Juruena et al.  2003 ; Lee et al.  2002 ).  

     4      Similarities between Aging and Chronic Glucocorticoid 
Exposure  

   We have now discussed that healthy aging is associated with psychological distress 
in parallel to increased C/D ratio. All leucocytes exhibit receptors for the neuroen-
docrine products of the HPA and sympathetic-adrenal medullary axes. It seems rea-
sonable to speculate that increased cortisol and lower DHEA may thus contribute to 
immunological changes observed during aging. This section will provide significant 
evidence that the immunological changes observed during aging are also similarly 
found during psychological stress or chronic GC exposure.  

     4.1      Changes in Cellular Trafficking  

   Trafficking or redistribution of peripheral immune cells in the body is of pivotal 
importance for effective cell-mediated immune responses. Aging is associated 
with several peripheral enumerative changes in leukocytes, including a decrease of 
naive (CD45RA+) and an increase of memory (CD45RO+) T-cells, an expansion 
of CD28- T-cells or an increase of natural killer (NK) cells (Gabriel et al.  1993 ; 
Globerson and Effros  2000 ; Hannet et al.  1992 ; Martinez-Taboada et al.  2002 ). 
Overall, cellular components of the innate immune system (e.g., monocytes, neu-
trophils and NK-cells) seems to be preserved during aging in contrast to several 
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age-related decrements in adaptive immune responses—especially T-cells (Pawelec 
et al.  2002 ). However, T-cells are also especially targeted in the same direction dur-
ing chronic stress exposure (Biondi  2001 ) or following GC treatment in vivo(Bauer 
et al.  2002 ; McEwen et al.  1997 ) (see  Table     1   ). Immunologists have recently charac-
terized a new T-cell subset (CD4+C25+FoxP3+) with important regulatory role in 
suppressing excessive or misguided immune responses that can be harmful the host. 
These lymphocytes were called regulatory T (Treg) cells and are responsible for 
turning off immune responses against self antigens in autoimmune disease, allergy 
or commensal microbes in certain inflammatory diseases (Fontenot et al.  2003 ; Sak-
aguchi  2000 ). It was interestingly found that aging, glucocorticoid or chronic-stress 
can increase peripheral Treg cell numbers (Hoglund et al.  2006 ; Navarro et al.  2006 ; 
Trzonkowski et al.  2006 ). In spite of the several similarities among age- and stress-
related immunological alterations, only a few studies have addressed the role of 
stress factors on human immunosenescence.     

     We have recently investigated the role of psychoneuroendocrine factors in regu-
lating the distribution of peripheral T-cell subsets during healthy aging (Collaziol 
et al.  2004 ). The mechanisms underlying the regulation of the peripheral pool of 
lymphocytes are still largely unknown. It has been speculated that CD95 (APO1/
Fas) may be involved in this process through engagement of apoptosis (Potestio 
et al.  1999 ). CD95 is a member of tumour necrosis factor (TNF) family and its 
ligand (CD95L) is found on activated T-cells (Nagata and Golstein  1995 ). The 
CD95-CD95L binding seems to play an important role in maintaining the cellular 
homeostasis of the immune system and may contribute to stress-related changes in 
cell trafficking (Yin et al.  2000 ). Confirming previous reports, we recently demon-
strated that changes in lymphocyte distribution were noted in the elderly as dem-
onstrated by a significant drop in naïve T-cells associated with higher expression 

    Table 1      Changes in cellular trafficking. Direction of arrows indicate increase ( ), decrease ( ) 
or no change ( ) compared to corresponding control levels. ? = data not available; NK, natural 
killer; Treg = T-regulatory; CD3+CD45RA+, naïve T-cells; CD3+CD45RO+, memory T-cells. 
Based on references (Bauer et al.  2002 ; Biondi  2001 ; Fauci  1975 ; Globerson and Effros  2000 ; 
Hoglund et al.  2006 ; McEwen et al.  1997 ; Navarro et al.  2006 ; Trzonkowski et al.  2006 )      

   Cell      Aging      Stress      GC treatment   

   Neutrophils   

   Monocytes   

   NK cells   

   B cells   

   CD4+ T cells   

   CD8+ T cells   or

   Treg cells   

   CD3+CD45RA+   

   CD3+CD45RO+   or

   CD3+CD28-      ?      ?   
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of CD95 in this subset (Collaziol et al.  2004 ). We have speculated this differential 
expression of CD95 may potentially select naive T-cells for apoptosis and could 
further explain age-related reductions in CD45RA+ (naïve) cells. Furthermore, 
healthy elders were significantly distressed and stress scores were found positively 
associated to CD95 expression on CD45RA+ cells.  

   Glucocorticoids may also contribute to the numerical cellular changes observed 
during aging. It has been demonstrated that GC-induced apoptosis on monocytes 
is at least partially mediated by the expression of both CD95 and CD95L (Schmidt 
et al.  2001 ). Another study showed that glucocorticoids may either induce T-cell 
apoptosis in a CD95-independent manner, or protect T-cells from CD95-mediated 
apoptosis (Zipp et al.  2000 ). Furthermore, there is some evidence that psychologi-
cal stress may regulate the proportion of peripheral lymphocytes via the expres-
sion of CD95. It has been demonstrated that chronic stress may induce lymphocyte 
apoptosis in mice (Yin et al.  2000 ) or in man (Oka et al.  1996 ) via upregulation of 
CD95. Our results support the concept that age- or stress-related increase in cortisol 
levels may be preferentially altering the expression of CD95 on CD45RA+ cells. 
Preliminary data from our laboratory indicate that human CD45RA+CD95+ cells 
are in fact more sensitive to dexamethasone (DEX) treatment in vitro(unpublished 
results). There is some data suggesting that human naïve T CD4+ cells are more sen-
sitive to DEX than memory T CD4+ cells (Nijhuis et al.  1995 ). Overall, our results 
suggest that there are complex psychoneuroendocrine interactions involved with 
the regulation of the peripheral pool of lymphocytes. In particular, it was shown that 
both psychological stress and GCs synergize during aging to produce alterations in 
T-cell trafficking.  

       4.2      Changes in Innate Immunity—Focus on DCs  

   To date, the effects of stress or aging on dendritic cells (DC) are largely unknown. 
These professional antigen presenting cells play a determinant role on the inter-
face between innate and adaptive immunity (Steinman  2003 ). They sense patho-
gens through a myriad of toll-like receptors, endocytose them and produce immune 
mediators that lead to inflammation, such as TNF-α and nitric oxide (NO). They also 
secrete cytokines that are key to the development of specific, adaptive responses, 
such as type I interferons (IFN-α and –β), and IL-12. DC process antigens from 
pathogens and present them to T-cells and the concentration of antigen, the magni-
tude of co-stimulatory signals such as CD86 delivered, together with the cytokines 
produced, set up the stage for T-cell responses. Antigen presentation by mature DC 
leads to the initiation of immune responses, and the predominant cytokines pro-
duced can skew the response towards a TH1 or TH2 phenotype (Banchereau et al. 
 2000 ). Presentation by immature DC, however, can result in tolerance, in some situ-
ations even leading to the recruitment of regulatory, CD4+CD25+Foxp3+ T-cells 
(Luo et al.  2007 ; Yamazaki et al.  2006 ). Thus, DC play a fundamental regulatory 
role in immunity.  
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   An intriguing aspect of dendritic cell biology is the existence of differ-
ent subpopulations (Vremec and Shortman  1997 ). These can be distinguished 
by the expression of different surface markers, are distributed in different body 
compartments, and possess different functions. Also, some are derived from dis-
tinct precursors. Basically, both in human and mice, two subpopulations can be 
identified; tissue derived, and blood derived cells. Tissue derived DC include 
Langerhans cells (LC) and interstitial cells, that respectively reside in skin and 
tissues. They capture antigen in the periphery and migrate to lymph nodes, to inter-
act with other DC and T-cells. Blood derived DC are replenished in lymphoid 
organs from the blood, and are generally designated as plasmacytoid (important 
for anti-viral immunity-(Banchereau et al.  2000 ), myeloid or lymphoid, these latter 
ones apparently responsible for cross-presentation (the ability to present endocy-
tosed antigens in MHC Class I molecules—(Brossart and Bevan  1997 ). DC can be 
derived in vitro directly from bone marrow precursors (Inaba et al.  1992 ) and also 
from circulating monocytes, although the cells that arise from these cultures do not 
directly correspond to the same populations identified in vivo. Because so little is 
known about antigen presentation and T-cell activation by each subpopulation, it 
is important to identify the effects of stress on different DC populations, as well as 
how that relates to immunosenescence.  

   Probably, the most studied effect of chronic stress over dendritic cell function is 
the modulatory function of glucocorticoids. For example, in vitro studies show that 
murine bone marrow differentiated DC treated with DEX show downregulation of the 
costimulatory molecules CD86, CD40, CD54, as well as of MHC Class II, but not 
MHC Class I, molecules (Pan et al.  2001 ). This study also verified a decreased capac-
ity of MHC class II presentation of antigens, but not of endocytic activity for DEX 
treated DC, and a reduction on their production of interleukin (IL)-1β and IL-12. It 
has also been reported that glucocorticoids can downregulate the production of TNF-
α and IL-12, but not IL-10, by DC, and thus are able to affect skew T-cell responses 
towards a TH2 phenotype (Elenkov et al.  2000 ). Studies with glucocorticoids applied 
to skin in vivo for 7 days showed a reduction in the number of LC in situ, as well as 
a reduction in expression of costimulatory molecules, leading to reduced alloreactive 
stimulatory capacity (Ashworth et al.  1988 ). Accordingly, in transplant models, DEX 
has been shown to affect differentiation and reduce costimulatory function of DC 
(Abe and Thomson  2003 ) suppressing MHC Class II and CD86 expression (Muller et 
al.  2002 ), and consequently DC maturation in vitro. In the same study, treatment with 
DEX during graft procedure reduced DC, as well as T-cell, infiltration on the graft.  

   There are very few studies on DC function in experimental systems of psycho-
logical stress. One study found that the increase in corticosterone levels correlated 
with decreased processing of viral antigens and their presentation in MHC Class I 
molecules, leading to decreased antiviral immune responses (Truckenmiller et al. 
 2005 ). Their results pointed to an effect over the processing machinery of all cells, 
suggesting stress can profoundly affect the protein processing pathways. Finally, 
glucocorticoids can induce natural anti-inflammatory cells through DC. Studies 
with bone marrow derived DCs showed that glucocorticoids can not only impair 
development of immature DC into mature DC, but also that multiple restimulation 
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of CD4+ T-cells with DEX treated DC can lead to the expansion of T-cells with the 
regulatory phenotype (CD4+CD25+) (Matyszak et al.  2000 ), which are vital for the 
control of inflammation and autoimmunity in vivo.  

   Curiously, DHEA and DEX appear to have somewhat opposing effects over the 
differentiation of dendritic cells from monocyte precursors. The only study com-
paring the 2 hormones (Canning et al.  2000 ) showed that continuous presence of 
DHEA on dendritic cell cultures from monocytes in the presence of GM-CSF and 
IL-4 leads to the accumulation of immature DC, although markers like CD80 or 
CD40 are only slightly altered compared to the control. Cultures of monocytes in 
the same conditions, only continuously supplemented with DEX, however, leads 
to their differentiation into macrophage-like cells, with high CD14 expression, and 
low surface CD80 and CD40, with almost no IL-12, but high IL-10 production.  

   Aging has been associated with similar changes in DC function. While some 
report no changes in surface expression of MHC Class II and CD86 in aged in vitro 
monocyte-derived DC (Agrawal et al.  2007b ) or in vivo DC (Lung et al.  2000 ), oth-
ers have observed a markedly reduced expression of HLA-DR (Pietschmann et al. 
 2000 ) for monocyte enriched, lymphocyte depleted peripheral blood cells of aged 
subjects. Also, the numbers of LC in gingival epithelium (Zavala and Cavicchia 
 2006 ) or and skin (Bhushan et al.  2002 ) appear to be diminished in aged individu-
als. A normal TNF-α and IL-12 production by monocytes-derived DC from aged 
subjects was reported (Lung et al.  2000 ), but an increased TNF-α and IL-6 response 
to LPS was found by others (Agrawal et al.  2007a ), as well as a decreased migratory 
and phagocytic capacity. Monocyte-derived DC from elderly individuals were not 
impaired in their ability to induce T-cell responses (Grewe  2001 ) or proliferation 
of T-cell lines (Steger et al.  1997 ). However, the efficacy of autologous DC-based 
antitumor vaccines was impaired in aged individuals (Sharma et al.  2006 ).  

   In our laboratory, we compared the effects of stress induced glucocorticoids and 
aging on the differentiation of bone marrow derived DCs. Results are shown in 
Fig. 2     . After seven days of culture with IL-4 and GM-CSF (Inaba et al.  1992 ), 
murine bone marrow cells consistently yield three distinct populations of DC, as 
determined by MHC Class II and CD86 expression (   Fig. 2   ). The population in the 
upper right quadrant of the plots (Class II hi, CD86 hi) represents the mature DC, 
while the population in the middle (Class II lo, CD86 lo) contains the immature DC. 
The population in the bottom left quadrant is negative for both markers and has not 
yet started to differentiate. Bone marrow cultures from 6 month old mice yielded 
precisely these populations (in A and C). However, treatments with 10 -7  M DEX 
(B) on day 5 of culture lead to an arrest of dendritic cell differentiation, leaving 
the cells mostly at the immature stage. A similar pattern was observed in D, when 
bone marrow of a 2 year old mouse was cultured in the same conditions as A and C. 
Consequently, aged bone marrow produced mostly immature DC.     

     Together, these results consistently point to an inhibitory effect of stress, aging 
and glucocorticoids over DC function. They also suggest that these GCs can affect 
immunoregulation, modulating the TH1/TH2 decision and also leading to the gen-
eration of regulatory T-cells. These are pleiotropic effects, and it is likely that a 
variety of mechanisms is involved.  
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       4.3      Changes in  C ell-mediated  I mmunity  

   Although many components of the immune system show age-related changes, T-
cells show most consistent and largest alterations. T-cells are of pivotal importance 
for the generation of cell-mediated immunity. Cell-mediated immunity is a process 
that requires (1) recognition of antigens, (2) cell activation and proliferation, and (3) 
effector functions such as cellular cytotoxicity, phagocytosis, and immunoglobulin 
synthesis. Steps 2 and 3 seem to be particularly impaired during aging. Follow-
ing antigen recognition, lymphocytes need to divide into several clones in order 
to mount effective cell-mediated immune responses. Cell division or proliferation 
can be readily assessed in vitroby stimulating lymphocytes with mitogens. When 
diseased subjects are excluded, immunosenescence involves impaired humoral 

   Fig. 2        Dexamethasone and aging lead to an arrest in the maturation phenotype of DC.   Bone mar-
row cells from young (6 months: A, B and C) or aged (2 year old:D) mice were cultured in vitro 
with IL-4 and GM-CSF. In C, 10 -7 M dexamethasone was added to the cultures on day 5. Numbers 
represent the percentages of gated populations.    
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responses and blunted T-cell proliferation to mitogens (Pawelec et al.  2002 ). The 
latter is one of the most documented age-related change observed during aging (Liu 
et al.  1997 ; Murasko et al.  1987 ). Yet, these changes are not exclusive of aging and 
stress or GC treatment are also associated with decrements of T-cell proliferation) 
(see  Table      2   ). Indeed, we have observed that healthy SENIEUR elders were signifi-
cantly more distressed, had activated HPA axis and had significant lower (-53.6%) 
T-cell proliferation compared to young adults (Luz et al.  2006 ) ( Fig. 2 ). Interest-
ingly, the HPA axis may be implicated with this change since salivary cortisol levels 
were found negatively correlated to T-cell proliferation.     

     Thymic involution is a common consequence of mammal aging and it precedes 
the malfunctioning of the immune system, resulting in a diminished capacity to gen-
erate new T-cells. This thymic involution has been proposed to be due to changes 
in the thymic microenvironment resulting in its failure to support thymopoiesis 
(Henson et al.  2004 ). However, stress-related GCs (Selye  1936 ) or GC treatment 
(Fauci  1975 ) also atrophy the thymus and, to a lesser extent, other lymphoid tissues, 
triggering apoptotic death in immature T- and B-cell precursors and mature T-cells 
(Sapolsky et al.  2000 ). Therefore, thymic involution is not an exclusive phenom-
enon of aging.  

   The effector phases of both innate and acquired immunity are in large part medi-
ated by cytokines. Different subpopulations of CD4+ T-cells synthesize specific 
cytokines and have been designated Th1 (IFN-g, IL-2, lymphotoxin a) or Th2 (IL-4, 
IL-10) cells. Th1 cytokines provide help for cell-mediated responses and the IgG2a 
antibody class switching whereas Th2 cytokines help B cells and IgA, IgE and IgG1 
antibody class switching. Both human and mouse models have demonstrated that 
aging is associated with a Th1 to Th2 shift in cytokine production (Ginaldi et al. 
 2001 ; Globerson and Effros  2000 ). However, this is not an age-specific phenom-
enon but also seen during stress (Biondi  2001 ; Glaser et al.  2001 ) or GC treatment 
(Galon et al.  2002 ; Ramirez et al.  1996 ).  

   Recent work suggests that cytokines and hormones could be considered as 
possible links between endocrinosenescence and immunosenescence (Straub et al. 
 2000 ). Indeed, it has long been known that proinflammatory cytokines can readily 
activate the HPA axis during infection in animals (Besedovsky et al.  1977 ) or after 
administration in humans (Mastorakos et al.  1993 ). Another studies have linked the 

    Table 2    Changes in cell-mediated immunity. Direction of arrows indicate increase ( ), decrease 
( ) or no change ( ) compared to corresponding control levels. Based on references (Biondi 
 2001 ; Galon et al.  2002 ; Globerson and Effros  2000 ; Ramirez et al.  1996 ; Sapolsky et al.  2000 )      

   Mechanism      Aging      Stress      GC treatment   

   Thymus   

   T-cell proliferation   

   Cytotoxicity   

   IL-2, IFN-γ   
   IL-4, IL-10   

   TNF-α, IL-1, IL-6   or



Glucocorticoids and DHEA: Do They Have a Role in Immunosenescence? 845

age-related decline in DHEA production to increased serum levels of IL-6 (Daynes 
et al.  1993 ; Straub et al.  1998 ). In addition, increased plasma TNF-α levels were 
correlated to major depression in the elderly (Vetta et al.  2001 ). However, we do not 
know exactly how the extent of these changes may be related to altered psychologi-
cal and HPA axis functions in the elderly.  

   We have investigated whether psychoneuroendocrine status of healthy elders was 
associated with changes in lipopolysaccharide (LPS)-induced monocyte production 
of proinflammatory cytokines (TNF-α and IL-6) and soluble IL-2 receptor (sIL-
2Ra) production by T-cells in vitro(Luz et al.  2003 ) .  Cellsofhealthyelders produced 
equivalent proinflammatory cytokines and soluble IL-2Rα when compared to cells 
of young adults. These data are in disagreement with previous work showing that 
human aging was associated to increased serum (Straub et al.  1998 ) or monocyte 
proinflammatory cytokines (Fagiolo et al.  1993 ; Gabriel et al.  2002 ). However, these 
data should be interpreted with caution because other cellular sources than mono-
cytes can produce cytokines and thus increase serum levels. Considering that our 
cohort of elderly subjects was significantly distressed, we hypothesize this could 
have normalized the cytokines investigated in this study—due to antiinflammatory 
GC actions. On the other hand, there is also some evidence of increased proinflam-
matory cytokines during major depression (Schiepers et al.  2005 ; Trzonkowski et 
al.  2004 ; Vetta et al.  2001 ). Therefore, it becomes difficult to dissociate the cytokine 
changes observed in the elderly with those induced by psychological stimuli. Ghre-
lin, an endogenous ligand of the GH secretagogue receptor, has been recently dem-
onstrated to inhibit the expression and production of proinflammatory cytokines 
(TNF-α, IL-1β and IL-6) (Dixit et al.  2004 ). This effect was mediated via binding 
on ghrelin receptors expressed on peripheral T-cells and monocytes. There is some 
evidence for increased stomach ghrelin production in the aged rat (Englander et al. 
 2004 ). Increased peripheral ghrelin levels may thus attenuate cytokine levels during 
aging. It remains to be investigated, however, whether psychological stress is capa-
ble of producing significant effects on stomach or immunoreactive ghrelin levels.  

   Previous studies have long demonstrated that serum growth hormone (hGH) lev-
els are significantly reduced during aging (Corpas et al.  1993 )—a process known 
as somatosenescence. However, hGH is not exclusively produced by pituitary 
gland and human immune cells are able to secrete several neuropeptides includ-
ing GH (Hattori et al.  1994 ; Weigent et al.  1988 ). Immunoreactive GH has several 
immuno-enhancing proprieties and may be important in modulating both humoral 
and cellular immune function (Malarkey et al.  2002 ; Weigent et al.  1988 ). However, 
there is no data on the impact of aging on the production of GH by immune cells. 
In a recent study, we investigated whether somatosenescence could be associated 
with (a) related reduced production of immunoreactive GH and (b) psychologi-
cal status of healthy SENIEUR elderly subjects (Luz et al.  2006 ). We found that 
elders had significantly lower (77%) serum hGH levels compared to young adults. 
In contrast, however, no changes in hGH production by activated monocytes or 
lymphocytes were observed between elders and adults (Luz et al.  2006 ). Interest-
ingly, psychological distress (stress, anxiety and depression) was found negatively 
correlated to serum hGH levels only. No differences in serum hGH levels were 
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observed between groups when controlling for psychological variables (partial cor-
relation). We provided first line of evidence that age-related psychological distress 
may be implicated with somatosenescence. Finally, somatosenescence was not 
associated with reciprocal decline in immunoreactive GH.  

         5      Role of DHEA During Immunosenescence  

   The lack of appropriate DHEAS levels during aging could be another detrimen-
tal factor for immunosenescence. This androgen and its metabolites have reported 
immune enhancing properties in contrast to the immunosuppressive action of 
GCs. Indeed, this hormone may be considered as natural antagonist of GCs and 
the impaired DHEA secretion, together with the increase of cortisol, results in an 
enhanced exposure of lymphoid cells to the deleterious GC actions. Therefore, pre-
vious studies have evaluated the immunomodulatory DHEA(S) effects in vitroas 
well as its properties during in vivosupplementation. The immunomodulatory in 
vitroeffects include increased mitogen-stimulated IL-2 production (Daynes et al. 
 1990 ; Suzuki et al.  1991 ), increased rodent or human lymphocyte proliferation 
(Padgett and Loria  1994 ), stimulated monocyte-mediated cytotoxicity (McLachlan 
et al.  1996 ), diminished TNFa or IL-6 production (Di Santo et al.  1996 ; Straub et al. 
 1998 ) and enhanced natural killer cell activity (Solerte et al.  1999 ).  

   DHEA(S) replacement therapy has yielded significant beneficial effects for 
healthy elders, including increased well-being, memory performance, bone mineral 
density and altered immune function (Buvat  2003 ). It has been shown that DHEA 
supplementation significantly increased NK-cell counts and activity and decreased 
IL-6 production and T-cell proliferation of the elderly (Casson et al.  1993 ). These 
data highlight the potential use of DHEA(S) as antiaging hormone. However, there 
is lacking information concerning the clinical significance of those findings.  

   Because of its enhanced immunomodulatory properties, several studies investi-
gated the potential of DHEA(S) as adjuvants in vaccine preparations. Initial studies 
reported increased adjuvant effects on the immunization of aged mice with recom-
binant Hepatitis B surface antigen (Araneo et al.  1993 ) or influenza (Danenberg et al. 
 1995 ). These studies reported increased antibody titers to vaccines or even effective 
protection against challenge with the influenza infection (Danenberg et al.  1995 ). 
More recently, we studied the adjuvant effects of DHEAS during immunization to 
 Mycobaterium tuberculosis  in mice (Ribeiro et al.  2007 ). Only young mice co-immu-
nized with  M. tuberculosis  heat shock protein 70 (HSP70) and DHEAS showed an 
early increase in specific IgG levels compared to old mice. However, splenocytes of 
both young and old mice that received DHEAS showed increased IFN-g production 
following priming in vitro with HSP70. These data further highlight the importance 
of DHEAS as hormonal adjuvant because of the role of this cytokine in the cel-
lular response against mycobacteria. However, these animal data are in contrast to 
previous studies reporting DHEA(S) with minor (Degelau et al.  1997 ) or no adju-
vant effects (Ben-Yehuda et al.  1998 ; Danenberg et al.  1997 ; Evans et al.  1996 ) dur-
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ing immunization to influenza or tetanus in human elderly populations. Therefore, 
extrapolation from studies on murine models to the human should be regarded with 
caution—especially because of lower circulating DHEA(S) levels in rodents.  

    6      Aging  Impairs Neuroendocrine-Immunoregulation  

   Most GC effects on the immune system are mediated via intracellular GC receptors 
(GR; genomic action) (McEwen et al.  1997 ). However, high concentration of GCs 
may also interact with membrane binding sites at the surface of the cells (nong-
enomic action) (Gold et al.  2001 ). The presence of these receptors indicates that the 
immune system is prepared for HPA axis activation and the subsequent elevation in 
endogenous GCs. However, the functional effect of a stress hormone will depend 
on the sensitivity of the target tissue for that particular hormone. For instance, the 
number and activity of specific receptors for these signaling molecules on the target 
organ will ultimately direct the physiologic effect of the stressor.  

   Recent findings suggest that GC sensitivity (a) may vary between different target 
tissues in the same organism, (b) shows large individual differences and (c) can be 
acutely changed in times of acute stress (Hearing et al.  1999 ; Rohleder et al.  2003 ). 
Furthermore and of special interest of this review, (d) GC sensitivity also changes 
during human ontogeny. Kavelaars and col. ( 1996 ) have shown that cord blood T-
cells of newborns appear to be extremely sensitive to inhibition of the proliferative 
response. This high sensitivity of cells to DEX) can still be observed in the first two 
weeks after birth. Subsequently, the sensitivity to DEX inhibition of T-cell prolif-
eration gradually decreases. At one year of age, the adult response pattern has been 
acquired. It is interesting that the increased sensitivity of the immune system to GC 
inhibition occurs at a period in life when the endogenous levels of glucocorticoids 
are low (Sippell et al.  1978 ). The increased sensitivity to glucocorticoids may serve 
as a compensatory mechanism, so that the important regulatory function of gluco-
corticoids is fully maintained despite low circulating levels.  

   In a recent study, we have also investigated the lymphocyte sensitivity to both 
synthetic (DEX) and natural occurring steroids (cortisol and DHEA) and so exam-
ined whether aging was associated with alterations in neuroendocrine-immu-
noregulation (Luz et al.  2006 ). It was found that healthy (SENIEUR) elders had a 
reduced (-19%) in vitrolymphocyte sensitivity to DEX (but not cortisol or DHEA) 
when compared to young adults. This phenomenon has previously been described 
during chronic stress (Bauer et al.  2000 ; Rohleder et al.  2002 ), major depression 
(Bauer et al.  2002 ; Bauer et al.  2003 ; Truckenmiller et al.  2005 ) or in clinical situ-
ations where GCs are administered, including treatment of autoimmune diseases, 
organ transplantation, and allergies. It has been recently shown (Rohleder et al. 
 2002 ) that aging is associated with changes in GC sensitivity of proinflammatory 
cytokine (TNF-α and IL-6) production following psychosocial (TRIER) stress test 
(Kirschbaum et al.  1993 ). In particular, monocytes of healthy (non-SENIEUR) eld-
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erly men had a higher sensitivity to DEX treatment in vitroat baseline and showed 
a reduced sensitivity to this steroid following acute stress exposure (speech coupled 
to mental arithmetic task). These data suggest that psychological factors may be 
implicated in regulating peripheral GC sensitivity during healthy aging.  

   A reduced sensitivity to GCs can also be demonstrated at the central level dur-
ing aging. Indeed, higher cortisol levels in old than in young subjects have been 
described during some pharmacological challenges, such as the DEX suppression 
test, the stimulation by human or ovine corticotrophin-releasing hormone or by 
physostigmine (Ferrari et al.  2001 ; Raskind et al.  1994 ).  

     6.1      Potential Mechanisms of Impaired GC Signaling  

   The mechanisms underlying acquired steroid resistance are poorly understood. Based 
on our previous observations (Luz et al.  2003 ) we suggest that higher cortisol levels 
would render lymphocytes to be less sensitive to the effects of GCs in vitro. Indeed, 
there is some evidence in the literature suggesting that changes in GC sensitivity 
could be the result of chronic GC treatment (de Kloet et al.  1998 ; Silva et al.  1994 ). 
Several mechanisms may be implicated in this acquired steroid resistance (Juruena 
et al.  2003 ; Rohleder et al.  2003 ).    Fig. 3    summarizes putative molecular mechanisms 
that may account for age-related changes in GC sensitivity. There is some evidence 
that aging is associated with reduced numbers of intracellular GRs (Grasso et al. 
 1997 ; Zovato et al.  1996 ) but changes in GR affinity cannot be ruled out. In addition, 
altered translocation of GC/GR complex to nucleus and altered acti vity of transcrip-
tion factors may also explain acquired GC resistance. Alternatively, it has been shown 
that a non-ligand binding β-isoform of the human GR (hGRβ) may also be implicated 
in acquired steroid resistance (Castro et al.  1996 ). It was hypothesized that the hGRβ 
probably heterodimerises with ligand-bound hGRα and translocates into the nucleus 
to act as a dominant negative inhibitor of the classic receptor. However, there is no 
evidence for age-related changes in expression of GR isoforms. Furthermore, we 
cannot exclude the participation of mutations in the GR or changes in the GR trans-
duction system (e.g., altered AP-1 and NF-kB expression, heat shock proteins) in 
promoting tissue sensitivity to glucocorticoids (reviewed in Bronnegard et al.  1996 ).     

     In addition, there is considerable evidence that cytokines may have a significant 
impact on GR expression and function. There is some evidence suggesting that 
local concentrations of cytokines produced during an inflammatory response may 
produce acquired GR resistance (Pariante et al.  1999a ). Of note, the GR resistance 
in major depression has been associated with increased levels of proinflammatory 
cytokines (TNF-α, IL-1 and IL-6) and acute phase proteins (Maes et al.  1993 ; Schi-
epers et al.  2005 ; Trzonkowski et al.  2004 ). Furthermore, it has recently been shown 
that IL-13, a cytokine with similar properties to IL-4, reduces GR binding affinity 
in peripheral blood mononuclear cells (PBMCs) (Spahn et al.  1996 ). In summary, 
various mechanisms may mediate age-related changes in immune GC signaling, 
however, further research is required to fully understand the basis of the changes in 
altered lymphocyte sensitivity to steroid.  
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         7      The Impact of Chronic Stress on Strictly Healthy Aging—
Damaging and Protecting Effects  

   The caregiving of demented patients is a recognized model to study the impact of 
chronic stress in elderly populations (Bauer et al.  2000 ; Kiecolt-Glaser et al.  1991 ; 
Vedhara et al.  1999 ). Care of the chronically ill is a demanding task that is associ-
ated with increased stress, depression, and poorer immune function (Redinbaugh 

   Fig. 3         Cellular sensitivity to glucocorticoids     . Extracellular hormone availability can be deter-
mined by (1) differential expression of tissue-dependent expression of 11β-hydroxysteroid dehy-
drogenases that catalyze the interconversion of active glucocorticoids (cortisol) to inactive forms 
(cortisone) and vice versa (Zhang et al.  2005 ); and (2) levels of plasma corticosterone binding 
globulin (CBG) which delivers biologically active glucocorticoids (GCs) into peripheral tissues. 
Intracellular sensitivity to glucocorticoids can be modulated by several mechanisms, including: 
(3) altered densities of functional  membrane or intracellular glucocorticoid receptor (GRα) as 
well as receptor affinity changes (Pereira et al.  2003 ); (4) altered expression of heat shock proteins 
(HSP90 and HSP56) which stabilizes GR and are dissociated following binding of GCs (Picard 
et al.  1990 ); (5) altered expression of GRβ which in turn antagonises GRα (Castro et al.  1996 ); 
(6) altered translocation of GR-GC complexes into the nucleus (Matthews et al.  2004 ); (7) altered 
expression of several cytokines (Kam et al.  1993 ; Pariante et al.  1999b ); and (8) altered expres-
sion of transcription factors AP-1 (Adcock et al.  1995 ) and NFkB which in turn antagonise GRα. 
Dashed lines represent inhibitory actions on GRα Adapted from Bauer ( 2005 ). 
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et al.  1995 ). Furthermore, providing care for a relative with dementia typically falls 
on the partners who are themselves elderly and often ill prepared for the physical 
and emotional demands placed upon them.  

   The daily stress experienced by the caregivers of Alzheimer patients may acceler-
ate many age-related changes, particularly on neuroendocrine and immune systems. 
We have previously demonstrated that caregivers of demented patients had a blunted 
T-cell proliferation in association with increased cortisol levels (Bauer et al.  2000 ) 
compared to nonstressed elders. Furthermore, lymphocytes of elderly caregivers 
were more resistant to GC treatment in vitrocompared to noncaregiver elders. When 
stressed elderly are compared to healthy elderly and young adults (see    Fig. 4   ), these 
immunological changes are found in similar magnitude to increased cortisol lev-
els. These data suggest that chronic stress and cortisol would thus accelerate human 
immunosenescence. Indeed, it has recently been observed that psychological stress 
(both perceived stress and chronicity of stress) was significantly associated with 
higher oxidative stress, lower telomerase activity, and shorter telomere length, which 
are known determinants of cell senescence and longevity (Epel et al.  2004 ).     

   Fig. 4       Effects of chronic stress on cortisol and T-cell function during aging.        Young adults (Y), 
elderly (E) or stressed elderly (SE) subjects were compared accordingly to area under the curve 
(AUC) cortisol production (A), T-cell proliferation to phytohemagglutinin(PHA) stimulation (B) 
or T-cell sensitivity to glucocorticoids in vitro(C). Data summarized from previous work (Bauer et 
al.  2000 ; Luz et al.  2003 ; Luz et al.  2002 ) and shown as the percentage of change between groups. 
Adapted from Bauer (2005). 
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     Several studies have implicated caregiving as a risk factor for health of elderly 
populations. Compared with noncaregivers, subjects who provide care to a spouse 
with a stroke or dementia report more infectious illness episodes (Kiecolt-Glaser 
et al.  1991 ), they have poorer immune responses to influenza virus (Kiecolt-Glaser 
et al.  1996 ; Vedhara et al.  1999 ) and pneumococcal pneumonia vaccines (Glaser et 
al.  2000 ), they present a slow wound healing (Kiecolt-Glaser et al.  1995 ), they are 
at greater risk for developing mild hypertension (Shaw et al.  1999 ), and they may 
be at greater risk for coronary heart disease (Vitaliano et al.  2002 ). In addition, 
a prospective longitudinal study found that the relative risk for mortality among 
caregivers was significantly higher (63%) than noncaregiving controls (Schulz and 
Beach  1999 ). A recent study indicates that a proinflammatory cytokine (IL-6) may 
be involved with this increased morbidity in caregiving populations (Kiecolt-Glaser 
et al.  2003 ). It remains to be investigated, however, how the extent of these changes 
may be related to neuroendocrine alterations observed during aging.  

   Recent data produced by our laboratory have suggested that the maintenance 
of health status during aging may protect elders from chronic stress exposure. We 
have recruited strictly healthy (SENIEUR) elderly caregivers (n=41) from a large 
population of primary caregivers of demented patients (n=342). Only 12% of car-
egivers were considered “strictly healthy” accordingly to this stringent protocol and 
this may further confirm that chronic stress exposure is associated with increased 
morbidity in elderly populations. Therefore, we investigated whether a stringent 
health status would protect caregivers from chronic stress exposure and compared 
psychoneuroendocrine and immunological changes to nonstressed controls.  

   We observed that SENIEUR elderly caregivers were significantly distressed, as 
shown by increased stress, anxiety and depression scores as well as by higher systolic 
blood pressure compared to nonstressed elders (unpublished data). These data pro-
vide further support for this chronic stress model. However, salivary cortisol levels 
remained unchanged in healthy caregivers compared to nonstressed elders, contrasting 
to previous work (Bauer et al.  2000 ). Indeed, previous studies have linked the stress-
related hypercortisolemia with blunted cellular and humoral immune responses (Bauer 
et al.  2000 ; Vedhara et al.  1999 ). This could be of beneficial value for the caregiver 
and may indicate that a stringent health status in the elderly can buffer the impact of 
chronic stress on neuroendocrine responses. Therefore, healthy caregivers would be 
protected from the deleterious effects of cortisol excess in the organism. The normali-
zation of HPA axis function could be related to endocrine habituation associated to 
the development of coping strategies, cognitive and learning skills (Huether  1996 ). 
These results, taken together with our previous studies with nonstressed SENIEUR 
elders, may further indicate that a stringent health status may protect individuals from 
stress exposure but not from age-related increase in salivary cortisol (Luz et al.  2003 ). 
The peripheral lymphoid cells could be spared from the increased and deleterious 
cortisol signaling normally observed during chronic stress exposure.  

   The SENIEUR caregivers had increased T-cell proliferation when compared non-
stressed healthy controls (unpublished data). We speculate that the intact HPA axis 
function may have spared the lymphocytes from the negative effects of cortisol excess. 
Peripheral lymphocytes of caregivers are thus expected to display a better GC signal-
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ing. Indeed, the lymphocytes of SENIEUR caregivers had a higher GC sensitivity 
when compared to non-stressed controls, as shown by the increased GC-induced sup-
pression of lymphocyte proliferation in vitro(unpublished data). These data further 
highlight the close communication of neuroendocrine and immune systems during 
aging. In contrast to increased peripheral GC-immune signaling, the healthy caregiv-
ers were more resistant to central effects of glucocorticoids. Indeed, there were a 
higher proportion of SENIEUR caregivers (29.3%) who had failure to suppress cor-
tisol levels through dexamethasone administration comparing to nonstressed controls 
(3%). The dexamethasone suppression test suggests that caregivers may have a dys-
function of the HPA axis related to chronic stress exposure but not to peripheral GC 
levels. These data are in partial contrast to previous work relating hypercortisolemia 
to reduced lymphocyte sensitivity to GCs in elderly British caregivers (Bauer et al. 
 2000 ). However, the central defect in HPA axis regulation may not necessarily be 
associated to endogenous GC levels since previous studies reported this change in 
patients with major depression without hypercortisolemia (Bauer et al.  2003 ).  

   Taken together, these results suggest that a strictly healthy (SENIEUR) aging 
may buffer or attenuate many deleterious neuroendocrine and immunological effects 
associated to chronic stress exposure.  

       8      The Psychoneuroendocrine Hypothesis of Immunosenescence  

   The studies reviewed here support the notion that immunological changes observed 
during healthy aging may be closely related to both psychological distress and stress 
hormones. Of note, changes cellular trafficking as well as cell-mediated immunity 
observed during aging are similarly found following stress or chronic GC expo-
sure. These changes are mainly produced via engagement of specific intracellular 
adrenal receptors expressed on peripheral lymphocytes. Based on these data, the 
neuroendocrine hypothesis of immunosenescence is reconsidered here (see    Fig. 5   ). 
During aging, cumulative neuronal damage produced by stress-related cortisol action 
in the brain (hippocampus and hypothalamus) is associated with decreased central 
sensitivity to cortisol (Ferrari et al.  2001 ; Raskind et al.  1994 ; Sapolsky et al.  1986 ). 
This will lead to increased cortisol levels (Deuschle et al.  1997 ; Ferrari et al.  2004 ; 
Halbreich et al.  1984 ; Heuser et al.  1998 ; Luz et al.  2003 ; Van Cauter et al.  1996 ) which 
in turn may produce more neuronal damage in the brain and promote thymic involu-
tion. These effects may be exacerbated by reduced DHEA/DHEAS levels frequently 
observed during aging. The impaired DHEAS secretion, together with the increase of 
cortisol, results in an enhanced exposure of various bodily systems (including brain 
and immune system) to the cytotoxic/immunomodulatory effects of GCs. These tis-
sues are preferentially targeted by cumulative cortisol action because they express the 
greatest densities of MRs (hippocampus) and GRs (thymus) (McEwen et al.  1997 ). 
The critical consequence of thymic involution is reduced output of naïve T-cells—a 
hallmark of immunosenescence. It remains to be investigated, however, why periph-
eral T-cells are preferentially targeted during aging comparing to B or NK-cells. It 



Glucocorticoids and DHEA: Do They Have a Role in Immunosenescence? 853

should be kept in mind this hypothesis is over simplistic and do not take into account 
other stress-related mediators (neuropeptides, noradrealine, GH, etc.) and intrinsic 
cellular mechanisms of aging, including oxidative stress and telomere shortening. 
Further studies are required to investigate whether cellular aging is associated with 
aging of neuroendocrine functions. In addition, the role of increased cortisol/DHEA 
ratio during immunosenescence may be over simplistic since many other important 
hormones also become lower during aging in relation to cortisol (Straub et al.  2001 ).     

         9      Conclusions and Outlook  

   When age-related diseases are controlled for, healthy aging is associated with 
changes in allostatic systems (endocrine and immune) that play major roles in the 
adaptation of organism to outside forces that are threatening the homeostasis of the 
internal milieu. In particular, healthy aging is associated with significant psycholog-
ical distress and activation of the HPA axis (increased cortisol and reduced DHEA). 

   Fig. 5         The psychoneuroendocrine hypothesis of immunosenescence     .   During aging, cumulative 
neuronal damage produced by stress-related cortisol action in the brain (1 and 2) (Sapolsky et al. 
 1986 ) is associated with decreased central sensitivity to cortisol (3) (Ferrari et al.  2001 ; Raskind 
et al.  1994 ). This specific effect is associated with increased cortisol/DHEA ratio (4) (Ferrari et al. 
 2004 ; Luz et al.  2003 ) which in turn may produce more neuronal damage in the brain and further 
promote thymic involution (5). The latter may be related to immunosenescence via two ways: (a) 
indirectly reducing the output of central naïve T-cells and (b) directly acting at the level of periph-
eral lymphoid cells (6)(Luz et al.  2006 ). Adapted from Bauer ( 2005 ). 
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Over weeks, months, or years, exposure to increased secretion of stress hormones 
would result in allostatic load (“wear and tear”) and its pathophysiologic conse-
quences (McEwen  1998 ). Given the findings that even discrete HPA axis activation 
may impair cognitive function (Lupien et al.  1994 ) and induce sleep disturbances 
(Starkman et al.  1981 ), conditions frequently associated in the elderly, psychologi-
cal or pharmacological strategies attenuating or preventing increased HPA function 
during aging might be of considerable benefit for the elderly.  

   Although the mechanisms underlying immunosenescence are still being 
unraveled, it is becoming increasingly clear that many of the physiologic changes 
associated with aging are characterized by deficient communication between neu-
roendocrine and immune systems. Data presented here suggest that aging is associ-
ated with reduced lymphocyte sensitivity to GCs. Glucocorticoid-induced acquired 
resistance may have an important physiological significance of protecting cells from 
the dangerous effects of prolonged GC-related immunosuppression. However, the 
significance of this adaptive phenomenon is questionable since T-cell proliferation is 
still profoundly suppressed during aging. Additionally, altered steroid immunoregu-
lation may have important therapeutic implications in clinical situations where GCs 
are administered, including treatment of autoimmune diseases, organ transplanta-
tion, and allergies. Clinicians should consider both patient’s age and psychological 
status in prescribing steroids as anti-inflammatory drugs.  

   Chronic stressed elderly subjects may be particularly at risk of stress-related 
pathology because of further alterations in GC-immune signaling. Elderly indi-
viduals who experience chronic stress exhibit poorer immune functions, and thus 
increased disease vulnerability, than their less stressed counterparts. Indeed, chronic 
stressed elderly populations are associated with increased morbidity and mortality 
rates. Therefore, stress management and psychosocial support should promote a 
better quality of life for the elderly as well as reducing hospitalization costs for 
the governments. In addition, the maintenance of health status during aging may 
protect elders from chronic stress exposure (   Fig. 6   ). Further studies in systems biol-
ogy are needed to analyze the role and relationships of health-related behaviors on 
immunity that might promote better coping with aging and stress exposure. We are 
currently entering a new era of investigation in biology of aging in which systemic 
approach will replace reductionism in order to explain how we age and get sick.     

   Fig. 6         Buffering effects of health status during chronic stress exposure.      This picture presents two 
different scenarios of protective (upper line) or damaging (bottom line) stress-related effects dur-
ing aging. Strictly healthy individuals will be protected from chronic stress and will have extended 
life span. Diseased or quasi-healthy subjects, however, will show accelerated aging.
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Abbreviations    
AIRE       Autoimmune regulator  
      CCL       Chemokine (C-C motif) ligand; CCL21 and CCL25  
      CCR       Chemokine (C-C motif) receptor; CCR9 and CCR7  
      CMJ       Cortical-medullary junction  
      cTEC       Cortical thymic epithelial cells  
      DN       Double negative (CD4 –  CD8 – ) thymocyte  
      DP       Double positive (CD4 + CD8 + ) thymocyte  
      ETP       Early thymocyte progenitor  
      FGF       Fibroblast growth factor  
      FGFR2-IIIb       Fibroblast growth factor receptor 2-IIIb  
            GH       Growth hormone  
      HAART       Highly active anti-retroviral therapy   
      HSC       Hematopoietic stem cell  
      IGF       Insulin-like growth factor 1  
      IL-7       Interleukin 7  
      KGF       Keratinocyte growth factor, also FGF7  
     LHRH        Luteinizing hormone releasing hormone  
     MPP       Multipotent progenitor cell  
     mTEC       Medullary thymic epithelial cells  
     PSGL1       P-selectin ligand  
     PVS       Perivascular space  
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     RAG2/γ c        Recombination-activating gene/common  chain  
      RTE       Recent thymic emigrant  
      SCZ       Subcapsular zone  
      sjTREC       Signal joint T cell receptor rearrangement excision circle  
      SP       Single positive (CD4 +  or CD8 + ) thymocyte  
  TCR      T cell receptor 
      Treg       Regulatory T cell  
     VDJ      Variable, diversity and joiner elements of the TCR beta chain 

                              Abstract   :     A primary factor in immunosenescence, the age-dependent deteriora-
tion in immune function, is the decline in the capacity to generate naïve T-cells 
due to thymic involution. The thymus reaches its greatest size and cellularity in the 
first year of life and undergoes a gradual involutional decline in both structure and 
thymopoietic productivity. Thymic involution results from the interplay of systemic 
factors and intrinsic changes in thymic epithelial cells and thymocyte progenitors 
themselves. In patients undergoing lymphodepletion, however, the thymus is capa-
ble of significant renewal through the fifth decade of life. This chapter will explore 
the factors regulating thymic growth, involution and renewal.   

         Keywords   :     Thymus    •     Thymocyte    •     Thymic epithelial cells    •     Cortex    •     Medulla    • 
    Hematopoietic stem cell    •     ETP    •     DN    •     Notch    •     IGF-1    •     KGF    •     IL-7    

                         1      Introduction: The Immunologic Consequences of Thymic 
Involution in the Elderly  

   Aging is associated clinically with a decline in adaptive immune system responses 
to vaccines, increases in the frequency and severity of infectious diseases, and an 
increased incidence of chronic inflammatory and autoimmune disorders. The altera-
tions in immune competence underlying these disorders have been collectively termed 
immunosenescence. A primary cause of immunosenescence is the gradual decline in 
thymic generation of new naïve T-cells. When the thymus can no longer replace the 
naïve T-cells lost daily, the result is a steady decline in the levels of naïve T-cells.  

   This decline has profound consequences for immune function. The naïve T-cell 
population provides a reservoir of T-cell receptor (TCR) diversity that may be 
needed to respond to novel antigens. In young and even middle aged adults the 
repertoire diversity has been estimated at 20 million different TCRβ chains; in the 
elderly (greater than 70 years), the pool has severely contracted to 200,000 TCRβ 
specificities (Naylor et al.  2005 ). The 99% decline in TCR repertoire diversity in 
CD4 T-cells in the elderly may in itself be a critical factor in limiting functional 
response; a 2–10 fold decrease in repertoire has been found to abrogate T-cell 
mediated responses in mice (Nanda et al.  1991 ). Furthermore, studies in adults 
recovering from lymphopenia have demonstrated that both the capacity to respond 
to vaccines and the resistance to opportunistic infections correlate with the levels of 
naïve CD4 +  T-cells and the presence of broad TCR repertoire diversity (Lewin et al. 
 2002 ; Roux et al.  2000 ).  
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   Since naïve cells provide the reservoir from which memory cells are drawn, a 
decline in the frequency of naïve cells impacts memory populations. The relative 
representation of different T-cell specificities remains relatively constant through-
out life, due to a homeostatic balance between turnover and a steady influx of new 
T-cells (Tanchot et al.  2000) . In the elderly, this balance is lost. The repertoire diver-
sity of memory populations in the elderly declines concurrent with the decline in the 
frequency of naïve cells (Schwab et al.  1997) . Analogously, the repertoire diversity 
of the memory CD4 +  T-cell population in adult patients recovering from transplant-
induced lymphopenia has been found to directly depend upon the extent of posttrans-
plant thymic function (Hakim et al.  2005 ). Individuals lacking a strong recovery of 
thymic function had a limited oligoclonal repertoire in their memory T-cell popula-
tions even 2–5 years post transplant (Hakim et al.  2005 ). Chronic infection with 
CMV and to a lesser extent EBV may further alter the memory/effector repertoire 
by driving virus-reactive cells into oligoclonal expansions or even to replicative 
exhaustion (Fletcher et al.  2005 ). Oligoclonal expansions can by themselves limit 
overall immune function in the remainder of the T-cell population (Khan et al.  2004 ; 
LeMaoult et al.  2000 ; Messaoudi et al.  2004 ). Yet these expanded cells are often 
dysfunctional, responding poorly to stimulation by their target antigens (Ouyang 
et al.  2003 ). Thus the loss of a strong influx of ‘replacement’ cells into the memory/
effector pool may contribute to immune deficits.  

   The decline in naïve CD4 +  T-cell numbers may also affect humoral immune func-
tion. Much of the decline in vaccine responses in the elderly is due to reductions in the 
formation and function of germinal centers as compared to those in young individu-
als (Lazuardi et al.  2005 ). Germinal center formation depends upon the frequency of 
CCR7 and CD62L-bearing naïve and central memory CD4 +  T-cells, which can enter 
lymph nodes and initiate germinal center formation. These CD4 populations decline 
in the elderly. Within germinal centers, cognate interaction between CD4 +  T-cells 
and B-cells promotes somatic hypermutation of immunoglobulin chains, a process 
that increases the avidity of antibodies. Age-dependent deficits in CD4 +  T-cells that 
reduce cognate B-T interactions may therefore contribute to the decline in antibody 
avidity observed in the elderly.  

   Finally the involutional changes in the thymus with age may result not only in 
immune deficits but also in dysfunctional increases in autoreactivity. The thymus 
contributes to the regulation of tolerance and the prevention of autoimmunity at 
many levels. First of all, auto-reactive CD4 +  and CD8 +  T-cells are clonally deleted 
during negative selection in the thymus, establishing central tolerance. The unique 
expression of the AIRE (autoimmune regulator) gene in medullary thymic epithelial 
cells (mTEC) results in expression of a broad array of tissue-specific antigens (Gal-
legos et al.  2004 ). Thymocytes bearing T-cell receptors (TCR) that bind to these 
tissue-specific antigens are clonally deleted. This process removes self-reactive 
T-cells from the repertoire before T-cells are exported into the periphery. Although 
the thymus is known to continue to support a low level of thymopoieis for many 
decades (Jamieson et al.  1999 ; Sempowski et al.  2000 ), the continued efficiency of 
negative selection in involuted thymuses has not been evaluated in man. With age, 
there is a decline in the level of mTEC expressing high levels of MHC II (Gray 
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et al.  2006 ); these include the AIRE expressing cells critical in negative selection. 
Secondly, regulatory T-cells (Treg) are believed to play a critical role in the preven-
tion of autoimmunity, suppression of inflammatory responses and the modulation 
of T-cell homeostasis. Treg develop in parallel with CD4 +  and CD8 +  effector T-cells 
in the thymus (Wing et al.  2002 ; Wing et al.  2005 ), but whether their production 
similarly declines in parallel with overall thymopoiesis has not been assessed. Since 
Treg development has been linked to Hassall’s corpuscles of the human thymus 
(Watanabe et al.  2005 ), the loss of these medullary structures with aging may be 
problematic. Treg can also arise in the periphery from memory CD4 T-cell popu-
lations in adults (Walker et al.  2003 ), but such cells may turn over rapidly (Vuk-
manovic-Stejic et al.  2006 ). The numbers of circulating Treg cells have been found 
to actually increase with age, but regulatory function declined (Gregg et al.  2005 ; 
Zhao et al.  2007 ). Finally, productive thymopoiesis, in and of itself, may be a factor 
deterring autoimmunity. Under conditions of lymphopenia prolonged by inadequate 
thympopoiesis, compensatory peripheral expansion of T-cells occurs to maintain 
stable T-cell levels. This extended homeostatic proliferation has been proposed to 
provide the opportunity for T-cells reactive to self-antigens to expand, leading to 
autoimmune disorders (King et al.  2004 ). Both lymphopenia and elevated levels 
of cycling (Ki-67 + ) peripheral T-cells are found in the elderly, consistent with such 
a model of autoimmune development (Naylor et al.  2005 ). In all of these respects, 
the thymus maintains immunologic tolerance to self. The gradual age-dependent 
decline in thymic cytoarchitecture and thympoietic productivity may therefore con-
tribute to the development of autoreactivity and loss of self-tolerance.  

       2      Thymic Organogenesis and Thymopoiesis  

   The thymus is located in the superior mediastinum, just over the heart, and consists 
of two lobes, connected by areolar tissue and enclosed in a fibrous capsule. Each 
lobe is further subdivided into lobules containing immature thymocytes in a network 
of epithelial cells termed thymic stroma. The denser outer areas are termed cortex 
and the looser inner areas are termed medulla. Committed T-progenitors enter the 
thymus through the vasculature at the cortico-medullary junction (CMJ); as these 
cells proliferate and differentiate, they follow a migration path outwards through 
the cortex to the subcapsular zone (SCZ) (Fig.  1 ). Thymocytes then migrate back 
inwards through the cortex to complete maturation and selection in the medulla, 
before emigrating from the thymus as mature, naïve T-cells via the CMJ vascula-
ture. Lying between the lobules are is the perivascular space of the thymus (PVS). 
While limited to narrow septa of connective tissue in the neonate, it is the PVS 
which expands and fills with adipocytes and fibroblasts during thymic involution.     

        The thymus begins as an outpocketing of the third pharyngeal pouch endoderm 
which gives rise to thymic epithelial cells. Mesenchymal cells derived from neural 
crest contribute to the thymic capsule and PVS connective tissue at this early stage, 
but previously postulated ectodermal contributions to thymic anlage have recently 
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been excluded (Gordon et al.  2004 ). When the thymic rudiment is subsequently 
colonized by a wave of hematopoietic progenitors, the progenitors of the thymic 
epithelial cells are still immature and capable of differentiation into both cortical 
and medullary thymic epithelial cells (cTEC and mTEC) (Rossi SW et al.  2006 ; 
Rossi SW et al.  2007 ). Thymocytes are not necessary for the initial development 
of the TEC, but are required for the subsequent development and maintenance of 
TEC (Klug et al.  2002 ). Mesenchymal production of the fibroblast growth factor 
family cytokine FGF10 is necessary, however, for proliferation and early expansion 
of the TEC (Jenkinson et al.  2003 ; Jenkinson et al.  2007 ). Failure to express the 
FGFR2-IIIb receptor for these mesenchymally derived factors blocks TEC expan-
sion (Revest et al.  2001 ). Thus it is through the cooperative interactions of mesen-
chymal cells, endoderm-derived thymic epithelial cells and hematopoietic-derived 
T-cell progenitors that the fetal thymus is formed.  

   T-progenitors arise in the marrow from hematopoietic stem cells (HSC). HSC give 
rise to multipotent progenitors (MPP), which in turn are the source of myeloid and 
lymphoid cells. Progenitors may become committed to the T lineage upon interac-
tion of the Notch ligand Delta-like-1 on supportive stroma with Notch expressed on 
lymphoid progenitors (Schmitt et al.  2002 ; Schmitt et al.  2004 ). This commitment 
step may occur in the marrow prior to emigration to the thymus, but when the early 
thymocyte progenitor (ETP) engrafts in the thymus the T lineage commitment is 
reinforced by Notch/Notch ligand interactions during thymopoiesis (Schmitt et al. 
 2004 ). Upon leaving the marrow, T-progenitors home to the thymus (Rossi FM et al. 
 2005 ). The most immature thymocytes are termed double negative cells (DN) due to 
a lack of expression of CD4 or CD8. In the DN stage, subdivided into DN1 through 
DN4, thymocytes increase in number, migrate outward through the cortex, and rear-
range the variable (V), diversity (D) and joiner (J) segments of the TCRβ chain (see 
Fig.  1 ). During the DN3 stage, signaling through the rearranged TCRβ chain and an 
associated invariant preTα receptor chain triggers the main proliferative expansion 
of thymocytes. and differentiation into CD4 and CD8 double positive (DP) cortical 
thymocytes. Upon final rearrangement of the TCRα chain and surface expression 
of a complete TCRαβ, the DP-cells undergo positive selection, based on affinity for 
Class II or Class I MHC molecules, into single positive (SP) CD4 +  or CD8 +  T-cells, 
respectively. During this positive selection process, DP thymocytes migrate back 
inwards across the cortex. Finally, within the medulla, the SP-cells undergo a negative 
selection process in which autoreactive cells are clonally deleted. Mature SP CD4 +  
and CD8 +  T-cells then leave the thymus through the cortical-medullary vasculature 
(See Fig.  1 ).  

   Interactions between developing thymocytes and surrounding thymic epithelia 
control all aspects of thymopoiesis. Entry of T-progenitors depends on interaction 
between chemokine and adhesion molecules on progenitors, such as CCR9 and 
PSGL1, and the corresponding ligands (CCL25 and P-selectin) expressed by thymic 
stroma (Jenkinson et al.  2007 ; Rossi FM et al.  2005 ; Schwarz et al.  2007 ; Scimone 
et al.  2006 ; Zediak et al.  2007 ). T-cell lineage commitment and differentiation is 
reinforced upon signaling through Notch receptors (on T-progenitor cells) triggered 
by delta-1-like ligand expressed on stromal cells (Ciofani et al.  2004 ; Schmitt and 
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Fig. 1 An overview of T-cell maturation is shown at the left with expanded views on the right of 
the 3 areas of control of thymic productivity: the marrow compartment site of T-progenitor com-
mitment, the CMJ vasculature and inner thymic cortex niches for progenitor engraftment, and the 
outer cortex and SCZ sites of thymocyte migration and expansion. Agents affecting each of these 
sites are noted in boxes.

In the bone marrow, pluripotent hematopoietic stem cells (HSC) with the capacity for self-
renewal are supported in a calcium rich endosteal microenvironment. Proliferation is regulated by 
osteopontin (OP), secreted by osteoblasts, and by interaction of Notch (N, white box) on HSC with 
its ligand Jagged-1 on osteoblasts; osteoblast support for hematopoiesis in turn is regulated by lev-
els of parathyroid hormone (PTH) and Insulin-like Growth Factor 1 (IGF) and IL-7. HSC give rise 
to Multipotent Progenitors (MPP), which cannot self-renew, but can expand and give rise to mye-
loid common progenitors (MCP), B-lymphoid and T-lymphoid progenitors. Commitment to the T 
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Zuniga-Pflucker  2002 ; Schmitt et al.  2004 ). Thymocyte migration across the thy-
mus is controlled by chemokine signals in the stroma (Takahama  2006 ). Cytokines 
secreted by TEC, such as IL-7, support thymocyte survival at key checkpoints, such 
as the DN1–>DN2 transition (Phillips et al.  2004 ) and the positive selection process 
(Yu et al.  2003 ). Finally, thymic stroma is critical to the positive and negative 
selection processes. Cortical TEC expressing Class I and Class II MHC molecules 
support positive selection of cortical thymocytes into CD4 and CD8 SP T-cells. 
Medullary TEC and dendritic cells, expressing tissue antigens, support negative 
selection of autoreactive thymocytesand development of Treg (Gallegos and Bevan 
 2004 ; Watanabe et al.  2004 ). Thus all aspects of adult thymopoiesis depend upon 
interaction of thymocytes and TEC.  

   Yet this interaction is not unidirectional. After the fetal organogenesis period, 
the maintenance of TEC structure is strictly dependent upon on the presence of 
thymocytes. In mice in which the T-cell developmental pathway is blocked at its 
earliest stages, such as Ikaros mutant, CD3εtg26 mice and recombination-activating 
gene/common γ chain (RAG2/γ 

c
 ) deficient mice, immature TEC cells proliferate 

in the fetal thymus and develop characteristic cytokeratins (Jenkinson et al.  2005 ; 
Klug et al.  2002 ). The continued maintenance of cortical and medullary TEC in the 
adult, however, requires the presence of functional thymocytes. Thymuses in adult 
CD3εtg26 mice, in which T-cell development is blocked at the earliest DN1 stage, 
show an absence of both cortical and medullary TEC, with only immature TEC pro-

lineage results from Notch interactions with Delta-like ligand 1 (Dl1). T-progenitors leave the bone 
marrow and home to the thymus, where they become early thymocyte progenitors (ETP).

The thymus is divided structurally and functionally into three main areas, the subcapsular epi-
thelial zone (SCZ), the cortex (COR) and the medulla (MED). Distinct populations of cortical and 
medullary thymic epithelial cells (cTEC and mTEC) support T-cell maturational stages in each 
region. The migration path of thymocytes undergoing proliferative expansion and differentiation 
is symbolized by the gray band.

T-progenitor cells enter the thymus from the circulation via the vasculature at the cortico-med-
ullary junction (CMJ). Uptake of ETP into the thymus is in part controlled by the interaction of 
P-Selectin Ligand 1 (PSGL1, black) expressed on the ETP with P-selectin (P-sel, black triangle) 
on CMJ vasculature. Upon entering the cortex, the earliest thymocytes, termed double negative 
cells (DN) due to a lack of expression of CD4 or CD8, strengthen commitment to the T lineage 
by repeated signaling through Notch (N, white box) and Delta-like ligand 1 on cTEC, and migrate 
outward toward the subcapsular zone. Migration depends upon adhesion of DN integrins (black 
box) to VCAM (black stripes) and is polarized by a gradient of cTEC secreted chemokines, includ-
ing CCL21 (gray triangle) and CCL25 (dark gray triangle) which bind to chemokine receptors 
CCR7 and CCR9 on DN-cells. Based on the expression of surface markers (that correlate with the 
process of TCRβ chain rearrangement), the DN stage is subdivided into DN1 through DN4. Dur-
ing the outward migration and in the SCZ, the main proliferative expansion of DN cells occurs. 
Several factors, such as KGF and IGF-1 and gonadal steroids have regulatory effects on thymopoi-
esis, increasing the uptake of T-progenitors, the numbers of TEC and the associated expansion 
of DN thymocytes. Upon final rearrangement of the TCRα chain and expression of a complete 
TCRαβ, the CD4 and CD8 double positive (DP) thymocytes begin a migration back across the 
cortex and into the medulla. DP differentiate into single positive (SP) CD4+ or CD8+ T-cells, based 
on affinity for Class II or Class I MHC molecules, respectively. Finally, within the medulla, the SP 
cells undergo a negative selection process in which autoreactive cells are clonally deleted based on 
interaction with self peptides expressed on mTEC and dendritic cells (DC). Mature SP CD4+ and 
CD8+ T-cells then leave the thymus through the CMJ vasculature.
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genitors present (Jenkinson et al.  2005 ). The interdependence between thymocytes 
and TEC is stepwise. Cortical TEC but not medullary TEC are present in RAG –/–  
mice, which have a block at the DN2/3 stage (Klug et al.  1998 ; van Ewijk et al. 
 2000 ). SCID mice, which similarly are unable to generate T-cell receptor-expressing 
thymocytes, have small thymuses with disorganized structure, with only scattered 
mTEC; yet when TCR-transgenic thymocytes expressing a full TCR are present in 
SCID mice, a medulla develops (Shores et al.  1991 ; Shores et al.  1994 ). These inter-
actions between thymocytes and TEC are not limited to the early postnatal period of 
greatest thymic productivity. TEC populations are not static, but rather are continu-
ously differentiating and turning over (Gray et al.  2006 ). Thymocytes are constantly 
being renewed by an input of T-progenitors. The interdependence of thymocytes and 
TEC may contribute to their mutual decline with aging. Yet this same interdepend-
ence may underlie the ability of thymuses to renew growth and expand.  

       3      Thymic Involution  

   The thymus attains its greatest size and cellularity in the late fetal and early neona-
tal period. The overall physical size of the thymus remains relatively constant after 
early childhood (Steinmann et al.  1985 ), but perivascular spaces containing connec-
tive tissue expand and thymic epithelial spaces are reduced, until thymic medullary 
and cortical tissues are limited to small islands surrounded by adipose and fibrous 
tissue (Gruver et al.  2007 ; Shiraishi et al.  2003 ). Thymocyte depletion begins in the 
subcapsular area and then declines throughout the cortex (Brelinska  2003 ). Cortical 
TEC markers gradually decline. The relative levels of thymocytes and stromal cells 
are reduced proportionately. By computerized tomography the large thymic profile 
and radiodense parenchyma evident in children dwindles into a much smaller profile 
in adults and appears merely as diffuse strands after middle-age (Hakim et al.  2005 ; 
Mackall et al.  1995 ; Sfikakis et al.  2005 ).  

   Despite the quantitative reductions in cortical and medullary tissue, thymopoi-
esis at some level continues throughout life (Haynes BF et al.  2000 ; Jamieson 
et al.  1999 ; Naylor et al.  2005 ). The thymus continues to generate new T-cells into 
the adult years and even into old age (Douek et al.  2000 ; Jamieson et al.  1999 ; 
Nasi et al.  2006 ; Naylor et al.  2005 ). The naïve T-cells that are newly generated in 
aged mice appear functionally normal, capable of germinal center formation and 
support of humoral immunity (Haynes L et al.  2005 ). In adoptive transfer studies 
into irradiated aged host mice, thymuses seem capable of supporting positive and 
negative selection (Mackall et al.  1998 ). Thus the main effect of thymic involution 
is quantitative—concomitant with involution, the level of productive thymopoiesis 
declines. By 40–50 years of age the thymus is producing only about 10% its maxi-
mal capacity (Flores et al.  1999 ). Phenotypically naive T-cells (CD45RA + CD45RO –

 CD62L + CCR7 + CD95 – ) are present in the peripheral blood even in the elderly, but 
their numbers dwindle and fewer of these cells express markers of recent thymic 
emigrants (RTE)—CD31 in CD4+ T-cells and CD103 in CD8+ T-cells respectively 
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(Kimmig et al.  2002 ; McFarland et al.  2000 ; Nasi et al.  2006 ). This decline in naïve 
T-cells in the peripheral blood is paralleled by the decline in cells containing T-cell 
receptor rearrangement excision circles (TREC). TREC are non-replicating episo-
mal DNA circles generated during V(D)J rearrangement in TCR β and α chain 
formation. The most commonly measured TREC, the signal joint TREC (sjTREC), 
is generated through the excision of the TCRδ locus during the rearrangement of 
the TCRα locus (Douek et al.  1998 ). Because most intrathymic expansion has 
been completed at this point, sjTREC are found in a high percentage of DP and SP 
thymocytes and in RTE in the peripheral blood. Because episomal DNA does not 
replicate, TREC frequencies are diluted by activation-induced or even homeostatic 
T-cell proliferation (Hazenberg et al.  2002 ). TREC frequencies in peripheral blood 
T-cells decline with age, reflecting both the decline in the level of thymopoiesis and 
the dilutional effects of T-cell proliferation (Douek et al.  1998 ; Gruver, Hudson and 
Sempowski  2007 ). Indeed the 2-log decline in TREC frequency between young 
adults and elderly is more extreme than the decline in phenotypically naïve T-cells; 
the numbers of phenotypically naïve cells are maintained by increased homeostatic 
cycling despite falling thymic production (Naylor et al.  2005 ; Wallace et al.  2004 ).  

       4      Capacity for Renewal of Thymopoiesis  

   Despite this gradual age-dependent decline in thymic productivity and structure, the 
adult thymus is remarkably capable of renewal of thymopoiesis after severe periph-
eral cytoreduction (Douek and Koup  2000 ; Hakim et al.  2005 ; Sfikakis et al.  2005 ). 
In a cohort of middle-aged to elderly patients undergoing autologous hematopoietic 
stem cell transplant for treatment of breast cancer, we were able to examine the 
frequency, timecourse and consequences of thymic recovery without the presence 
of confounding factors such as hematologic malignancy, immunosuppressive drugs 
or graft-versus-host disorder (Hakim et al.  2005 ).  

   We assessed thymic structural change during the post transplant period by evalu-
ating serial thoracic CT scans using a 4 point thymic size index (Hakim et al.  2005 ; 
Kolte et al.  2002 ; McCune et al.  1998 ). The thymic profile was extremely reduced 
in size by the end of transplant conditioning (thymic index (TI) = 0) and in most 
patients thymic size remained minimal after transplant. In one third of the patients, 
however, thymic size gradually increased, attaining a maximum TI of at least 2, 
the size of the typical thymus in middle-aged adults (Hakim et al.  2005 ; McCune 
et al.  1998 ). Furthermore 7 of 32 patients achieved a TI of at least 3, a significantly 
larger thymic profile with moderate cellularity. This change in size and radiodensity 
is particularly remarkable in that only 2 of these patients had a TI of 3 prior to the 
start of therapy. Thus the development of a radiodense thymic profile post transplant 
in these patients represented not merely a return to the pretreatment status, but an 
increase over their previous status.  

   Two points are worth noting. The first is that the maximum thymic size attained 
correlated strongly with age. Whereas 4 out of 5 of the patients aged 30–39 showed 
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a significant thymic enlargement, the incidence of thymic recovery dropped to only 
6 of 13 patients among those aged 40–49, and only 2 of 14 over 50 years of age 
demonstrated any thymic enlargement from the treatment nadir (Hakim et al.  2005 ). 
Second the development of thymic enlargement proceeded very slowly, requiring 
6–12 months in younger patients to reach maximal size and as long as 24 months in 
older patients showing thymic recovery.  

   The changes in thymic profiles represented a renewal of thymopoiesis. The 
recovery of radiodense thymic mass correlated strongly with the recovery of newly 
matured CD4 +  T-cells in the peripheral blood. Because more than 95% of naive 
CD4 +  T-cells are lost during transplant regimens, the reappearance and increase of 
phenotypically naïve T-cells post transplant can provide an estimate of recovery 
of newly matured cells and hence an assessment of thymic function (Hakim et al. 
 2005 ; Mackall et al.  1995 ). Following autologous HSC transplant, levels of naive 
(CD45RA + CD62L + ) CD4 + + T-cells remained low, returning to normal levels of 
naïve cells only in the second year, even in patients with the best thymic recovery 
(Hakim et al.  2005 ). Consistent with the pattern of thymic enlargement, the levels 
of naïve cells at the end of 2 years—whether assessed by phenotypic markers or by 
quantitative PCR of TREC—were strongly age-dependent and correlated with the 
maximum thymic expansion. Finally, a broad TCR repertoire diversity appeared 
within CD45RA +  naïve CD4 +  T-cells within a few months after transplant. Hence 
the thymic role of generating broad TCR repertoire diversity was maintained in the 
restored thymus post transplant (Hakim et al.  2005 ).  

   In HIV seropositive patients, initiation of highly-active antiretroviral therapy 
(HAART) has similarly resulted (after a several month lag) in increased thymic 
volume and cellularity, and enhanced metabolic activity as assessed by PET imag-
ing (Hardy et al.  2004 ; Hudson et al.  2007 ). Rapid early increases in CD4 numbers 
have occurred after HAART, but these were due to trafficking, increased T-cell sur-
vival and peripheral expansion (Bucy et al.  1999 ; Pakker et al.  1998 ). In contrast, 
the slow long-term increases in the total CD4 count after HAART were accom-
panied by increases in the numbers of naïve CD4 and sjTREC in the peripheral 
blood, indicative of a renewal of functional thymopoiesis (Dion et al.  2004 ; Dion 
et al.  2007 ; Douek et al.  1998 ; Hudson et al.  2007 ). As in the studies of transplant 
patients, however, the recovery of naïve populations required months to appear and 
the frequency of successful renewal of thymopoiesis declined with age (Dion et al. 
 2004 ; Dion et al.  2007 ; Hudson et al.  2007 ).  

       5      Control Points of Thymic Involution and Renewal  

   The capacity of the adult or even the aged thymus to expand and increase both 
thymocyte and TEC content is not limited to rebound from transplant or HIV infec-
tion. When aged porcine thymic lobes were placed in young swine as vascularized 
renal grafts, the thymuses were rejuvenated. Expanded TEC and thymocyte popula-
tions appeared, and became organized into densely cellular cortical and medullary 
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structures (Nobori et al.  2006 ). Infusion of normal hematopoietic stem cells into 
IL-7Rα –/–  mice resulted in not only an influx of normal thymocytes into the stunted 
thymus, but a marked increase in thymic size and cellularity (Prockop et al.  2004 ). 
Treatment with a variety of cytokines and systemic hormones has been found to 
enhance thymic recovery after transplant and to renew thymic size and productiv-
ity even in aged hosts, as described in section-6. Thus the adult thymus shows a 
remarkable ability to reverse involution, to increase thymic epithelial space and 
enhance productive thymopoiesis. Given this plasticity, therefore, it is important to 
identify the elements which control thymic size and productivity in involution and 
in renewal. The conditions of cytoreductive transplant regimens and the addition 
of various agents can impact the thymopoietic process at multiple levels. Current 
research points to 3 main control points determining the status of thymopoieisis: the 
number of functional T-progenitors that migrate to the thymus, the number of avail-
able “niches” for such cells to enter and initiate thymopoiesis, and the productive 
capacity of the thymopoietic maturational process itself (see Fig.  1 ).  

     5.1      Stem Cells  

   The capacity to generate T-cells is ultimately dependent upon the availability of func-
tional T-progenitors. When marrow from normal mice was mixed with that from mice 
with T-cell maturational blocks, the final output of T-cells was directly dependent 
on the proportion of competent progenitors (Almeida et al.  2001 ). Conversely, when 
T-progenitors isolated from marrow or generated ex vivo by Notch signaling were 
infused into irradiated mice, the increased T-progenitor doses enhanced thymocyte 
numbers, TREC and peripheral T repopulation (Chen et al.  2004 ; Zakrzewski et al. 
 2006 ). Increasing evidence suggests that age-dependent declines in the levels of 
marrow-derived T-progenitors are a key element in decreased thymic productivity. 
When equivalent numbers of T-depleted marrow from young and old mice have 
been transplanted into irradiated young hosts, the aged marrow generated fewer 
peripheral T-cells (Mackall et al.  1998 ). Competitive thymic repopulation studies 
using mixtures of young and aged marrow have further determined that the aged 
marrow gave rise to only one tenth as many DP-thymocytes as the young marrow 
(Zediak, Maillard and Bhandoola  2007 ). The problem was not an engraftment fail-
ure; the aged marrow-derived progenitors were less productive even when injected 
directly into the thymus, or when cultured with Notch-ligand expressing stroma ex 
vivo (Zediak, Maillard and Bhandoola  2007 ).  

   These adoptive transfer and culture studies point to quantitative and qualitative 
changes in the marrow derived T-progenitor population. There is no evidence of a 
quantitative deficit in marrow of the long-term self-renewing HSC (LT-HSC). Earlier 
studies suggesting that LT-HSC increased 5 fold with age have been substantiated 
with current multiparameter cytometry (Rossi DJ et al.  2005 ; Rossi DJ et al.  2007 ; 
Sudo et al.  2000 ). The LT-HSC, which are mostly quiescent, give rise to MPP, that 
in turn become committed to myeloid and lymphoid lineages in response to ligand-
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receptor interactions and growth factors provided by the marrow microenvironment. 
In adoptive transfer experiments, the MPP in aged mice retained the capacity to gen-
erate myeloid populations, but lymphoid lineages were markedly reduced compared 
to MPP from young mice (Rossi DJ et al.  2005 ; Zediak, Maillard and Bhandoola 
 2007 ). It is this skewing away from lymphoid commitment that has been proposed to 
underlie declining lymphoid progenitor activity.  

   One unresolved question is whether the changes in lymphoid progenitors are due 
to intrinsic changes in the stem cells or to age-dependent changes in the marrow 
microenvironment. Rossi has argued persuasively for intrinsic changes. He deter-
mined that LT-HSC expressed a broad diversity of genes believed to be restricted 
to more mature and lineage-committed cell types, suggesting that transcription of 
lineage associated genes in stem cells occurred prior to full lineage commitment, 
if not as a requirement of that differentiation. When lineage-associated genes were 
compared in young and old HSC, marked changes in gene expression were observed, 
consistent with a pattern of reduced commitment toward lymphocytes and increased 
commitment to myeloid lineage. Genes consistent with lymphoid development such 
as IL-7R and Flt3 were reduced while myeloid genes were increased (Rossi DJ et al. 
 2005 ; Rossi DJ, Bryder and Weissman  2007 ). Since these changes occurred in the 
LT-HSC, preceding lineage commitment, these data support an intrinsic model of 
HSC decline. On the other hand, the marrow compartment undergoes aging-depend-
ent changes that may well impact on stem cells. The most primitive long term HSC 
are maintained in the marrow in the calcium rich environment along the bone. In 
these endosteal niches, osteoblast cells producing osteopontin regulate HSC prolif-
eration (Haylock et al.  2006 ). Osteoblasts provide growth factors and express Notch 
ligands such as Jagged-1 that shape HSC expansion and differentiation (Calvi et al. 
 2003 ; Weber et al.  2006 ). Administration of osteoblasts or bone fragments at the 
time of transplant has enhanced HSC engraftment (El-Badri et al.  1998 ). Further-
more administration of parathyroid hormone, which stimulates osteoblast growth, 
markedly increased the number of stem cells in intact mice and improved survival 
after transplant with limited HSC doses (Calvi et al.  2003 ). Finally, purified primary 
murine osteoblasts, cultured with parathyroid hormone, supported the full differen-
tiation of HSC into mature B-cells whereas cytokines produced by nonosteoblast 
stroma shifted the cultures instead toward myeloid differentiation (Zhu et al.  2007 ). 
These last data would support a microenvironment model, one that suggests that 
declines in osteoblast and calcium-rich bone levels in the elderly skew the marrow 
microenvironment toward stromal elements favoring myeloid commitment.  

   Whether T-progenitor changes are intrinsic or marrow microenvironment-induced, 
these models would propose that a decline in committed T-progenitors would gradu-
ally starve the thymus of new progenitors and, in the absence of adequate numbers 
of developing thymocytes, the TEC would decline. Min et al. have determined that 
while thymic DN1 levels appeared to remain constant, the number of thymic ETP in 
unmanipulated aged mice was reduced 40-fold as compared to those in young mice 
(Min H et al.  2004 ). A gradual age-dependent decline in T-progenitors could therefore 
contribute to thymic decline.  
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       5.2      Changes in Thymic Niches  

   The second control point for thymopoiesis is the entry or engraftment of T-
progenitors into the thymus. The ability of progenitors to productively engraft 
is constrained by thymic elements. Much of the evidence for this is indirect. 
Entry of progenitors into the thymus is not a continuous process but rather a 
gated event; progenitor entry occurs in waves during embryogenesis and in 
adulthood, at least in mice, with a periodicity of 3–5 weeks in nonirradiated 
mice (Goldschneider  2006 ). Adoptive transplant experiments have shown that 
the number of progenitor binding sites in the thymus is limited and can be sat-
urated (Foss et al.  2001 ). Treatments such as KGF (see below) can increase 
the number of engraftment sites, as measured by uptake of labeled progenitors 
(Rossi SW et al.  2007 ). Furthermore, functional and dysfunctional DN thymo-
cytes can compete for these limited numbers of sites (Prockop and Petrie  2004 ). 
Capacity to productively mature into T-cells does not determine occupancy of 
progenitor niches; occupancy by Rag –/–  thymocytes can block engraftment of 
normal progenitors (Prockop and Petrie  2004 ). This may be particularly relevant 
to aging given Min’s findings that ETP in aged mice were not only severely 
reduced in number, but that these cells were less functional than ETP from 
young mice (Min H, Montecino-Rodriguez and Dorshkind  2004 ). If dysfunc-
tional ETP occupying thymic niches accumulate (since they do not mature and 
“move on”), then productive thymopoiesis could be progressively reduced. This 
is an intriguing hypothesis, in that the ablation of dysfunctional (as well as 
functional) ETP by transplant irradiation or chemotherapy regimens could open 
up these niches for new engraftment. Such a general clearance of niches could 
contribute to the thymic renewal and expansion observed after transplant in man 
(Hakim et al.  2005 ).  

   The mechanisms determining progenitor engraftment “niches” remain unknown. 
Part may relate to expression (on progenitors or thymus) of the factors regulating 
T-progenitor homing. In the fetus thymus, T-progenitors depend on chemotaxis to 
migrate into the thymic anlaga. CC-chemokine ligands 21 (CCL21) and CCL25 on 
TEC interact with their corresponding receptors CCR7 and CCR9 on progenitors 
(Takahama  2006 ). Later, ETP enter through the vasculature at the CMJ (Lind et al. 
 2001 ). Although CCR9 deficiency reduces homing, it is unclear whether chemok-
ines are specifically involved in homing or in drawing engrafted DN1 cells away 
from the CMJ (see 5.3 below) (Petrie et al.  2007 ; Takahama  2006 ). In contrast, the 
interaction of P-selectin on thymic endothelium and P-selectin ligand (PSL1) on 
circulating thymic progenitors plays a significant role in uptake through the CMJ 
vasculature (Rossi FM et al.  2005 ). Furthermore, the number of thymic progenitors 
present in the inner cortex can affect expression of P-selectin on the endothelial 
cells, a negative feedback loop which may play a role in gating entry of progenitors 
(Rossi FM et al.  2005 ).  
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       5.3      Changes in Productive Expansion of DN Thymocytes  

   Thymic productivity is determined not only by progenitor engraftment in the thy-
mus, but by the proliferative expansion of DN thymocytes, the process by which 
small numbers of progenitors can increase many thousand fold. Assessment of 
TREC provides evidence that the degree of expansion of DN cells during the proc-
ess of thymic maturation declines with age. Although the overall number of thymo-
cytes declines with age, the ratio of sjTREC per 10 5  thymocytes remains constant 
(Jamieson et al.  1999 ; Sempowski et al.  2000 ). This does not necessarily mean that 
increasing the supply of progenitors would increase thymopoiesis in a straightfor-
ward manner. The vast majority of thymocytes are DP cells that have just completed 
TCRα chain rearrangement and therefore most of these cells contain sjTREC. Dion 
has further analyzed thymic productivity by measuring the ratio of sjTREC (gener-
ated at the end of DN4 thymocyte proliferative expansion) to DβJβTREC (gener-
ated early in the TCR β-chain rearrangement process) (Dion et al.  2004 ). This ratio 
therefore measures the extent of proliferative expansion occurring during the main 
DN3/DN4 period of thymocyte increase. This ratio steadily declines with age (Dion 
et al.  2004 ). Dion’s analysis of TREC ratios was particularly informative in the 
renewal of thymopoiesis with HAART therapy. The ratio of sjTREC to DβJβTREC 
increased after HAART therapy indicating an increase in the proliferative expansion 
of DN thymocytes during maturation, that is, an increase in thymic productivity 
(Dion et al.  2004 ; Dion et al.  2007 ).Thus the structural changes in the thymus are 
associated with a lower intrathymic proliferative expansion of progenitors, resulting 
in a lower thymic productivity.  

   The mechanisms regulating the extent of DN expansion are not fully resolved, 
but it is well supported that this process involves the close association of DN 
thymocytes with cortical TEC cells and the factors they produce during the DN 
migration from the CMJ vasculature outward to the SCZ of the cortex. T-cell com-
mitment occurs in DN1 and DN2 thymocytes by recurrent signaling through Notch 
by its Delta-like-1 ligand on TEC-cells (Schmitt et al.  2004 ). TEC-cells produce 
IL-7, which provides a necessary survival signal during the DN1 transition to DN2 
(Andrew et al.  2001 ; von Freeden-Jeffry et al.  1997 ). TEC-cells also produce the 
chemokines CCL21 and CCL25 that draw DN from the inner to the outer cortex 
and into the SCZ. Migration requires not only polarizing signals but a substrate for 
cell adhesion; TEC also produce the V-CAM1 that binds with the α4β1 integrins on 
DN-cells. The main expansion of DN occurs during this outward migration and in 
the SCZ, all in close association with TEC. It is recently been recognized that the 
TEC populations are not static but rather are maintained in a dynamic equilibrium 
with thymocytes (Gray et al.  2006 ). The wave of proliferative expansion of TEC 
produced by factors like keratinocyte growth factor (KGF), are immediately fol-
lowed by a wave of expansion of thymocytes (Rossi SW et al.  2007 ). Thus factors 
that stimulate TEC expansion can result in expansion of thymocytes.  
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         6      Factors Regulating Thymic Involution and Supporting 
Thymic Renewal  

   Over the last decade several factors have been identified that can effectively act on 
one or more of the control points in thymopoiesis (see Fig.  1 ). These factors can be 
broadly subdivided into those produced systemically in the body, those generated 
by the thymic stromal cells, and finally those intrinisic to the hematopoietic-lineage 
thymocytes themselves. Some of these factors may interact with thymopoiesis at 
multiple levels. Nevertheless examination of these 3 categories is useful in terms of 
suggesting potential avenues for thymic renewal.  

     6.1      Systemic Hormones  

   Thymopoiesis can be significantly affected by systemic hormones; age-related 
changes in these may therefore contribute to involution or support renewal. One 
candidate is the growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis. 
Pituitary growth hormone (GH) levels peak in man early in the third decade of 
life and decline with age. Most of the actions of GH are carried out by IGF-1, 
which is generated in the liver in response to GH, but is also produced by TEC (de 
Mello Coelho et al.  2002 ). Preclinical studies in aged mice as well as studies in 
lymphopenic HIV +  patients have consistently found that treatment with either GH 
or IGF-1 can produce an increase in thymic cellularity and circulating naïve T-cell 
levels (Montecino-Rodriguez et al.  1998 ; Napolitano et al.  2002 ). Administration 
of IGF-1 or GH accelerates enhances hematopoietic and immune reconstitution 
after hematopoietic stem cell transplant in murine transplant models (Alpdogan 
et al.  2003 ; Chen et al.  2003 ). GH and IGF-1 may affect thymopoiesis at two lev-
els. IGF-1 treatment increases lymphoid progenitors in the marrow, resulting in 
increases in pre and pro B-cells as well as increasing the supply of functional DN 
thymocytes (Alpdogan et al.  2003 ). IGF-1 also increases production of extracel-
lular matrix by TEC and increases thymocyte adhesion to TEC (de Mello Coelho 
et al.  2002 ). Since the earliest T-progenitors migrate from the vasculature at the 
cortico-medullary junction to the outer subcapsular epithelium in the course of 
their proliferative expansion, factors that enhance DN interactions with TEC and 
accelerate this migration could enhance thymic productivity. Yet the level of GH is 
not the main determinant of involution. Thymic size is normal and involution rate 
is not significantly different in GH-deficient Little ( lit/lit ) mice and their normal 
littermates (Min H et al.  2006 ). Furthermore, while GH treatment can produce 
a doubling in thymic cellularity in old mice, just as in young ones, this increase 
does not reverse the much greater decline accompanying age-dependent involution 
(Montecino-Rodriquez et al.  2005 ).  
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   While the declining levels of GH and IGF-1 may reduce lymphopoiesis, it is 
the converse, the post-pubertal rise in gonadal steroids—androgens, estrogens and 
progesterone—that may contribute to the involutional process. Gonadal steroid 
treatment induces involutional changes in the thymus, whereas castration or ovariec-
tomy in rodents results in thymic enlargement, and increased thymic and peripheral 
T-cell populations, even in aged animals (Greenstein et al.  1986 ; Leposavic et al. 
 2001 ; Windmill et al.  1998 ). The effects of androgens on thymopoiesis are mediated 
through TEC, as demonstrated by experiments involving reciprocal marrow trans-
plants between normal mice and those lacking expression of androgen receptors 
(Olsen et al.  2001 ). Drugs blocking testosterone production are equally as effective 
as surgical treatment. Treatment of aged rats with luteinizing hormone-releasing 
hormone (LHRH) analogue produced a significant increase in thymic weight (Ken-
dall et al.  1990 ). Following autologous or allogeneic hematopoietic stem cell trans-
plant, treatment with an LHRH agonist enhanced thymic recovery and increased 
the numbers of circulating naïve CD4 + + T-cells (Goldberg et al.  2005 ; Goldberg 
et al.  2007 ; Heng et al.  2005 ; van den Brink et al.  2004 ). These data support the 
role of systemic levels of gonadal hormones in modulating thymopoiesis. It must be 
remembered however that progressive thymic decline in man begins in the first year 
of life, not at puberty. Hypogonadal mice do not have delayed thymic involution 
(Min H, Montecino-Rodriguez and Dorshkind  2006 ). Additional mechanisms must 
therefore contribute to thymic involution.  

       6.2      TEC Generated Cytokines—IL-7  

   Because of the critical role of TEC in all aspects of thymopoiesis, changes in TEC 
could regulate thymopoiesis. One mechanism proposed for thymic involution is 
a decline in TEC production of the cytokine IL-7, which is necessary for thymo-
cyte maturation from DN1 to DN2. T-cell maturation was severely reduced in both 
IL-7 and IL-7Ra –/–  mice(Peschon et al.  1994 ). In mice (although not in man), the 
level of IL-7 mRNA declined with age (Andrew et al.  2002 ). IL-7 therapy in vivo 
and in vitro reduced the apoptotic loss of thymocytes during the DN1->DN2 tran-
sition in aged mice (Andrew and Aspinall  2002 ; Phillips et al.  2004 ). Systemic 
IL-7 treatment also sped recovery of thymopoiesis following marrow transplant 
into irradiated hosts (Alpdogan et al.  2001 ; Bolotin et al.  1996 ). But IL-7 effects 
on thymopoiesis seemed to be greatest under conditions of TEC damage. IL-7 sup-
plementation post transplant may have been replacing cytokine production lost by 
radiation damage to stromal cells (Chung et al.  2001 ). Supplemental IL-7 therapy 
has had only limited effects on thymopoiesis in intact hosts. IL-7 treatment did not 
increase thymic size or productivity in young mice (Chu et al. 2004), and short 
term IL-7 treatment in aged mice produced no increase in overall thymopoiesis 
(Sempowski et al.  2002 ). Marrow stroma also produce IL-7, which plays a sig-
nificant role in early B-lymphoid development. Addition of IL-7 to IGF therapy 
had additive effects on marrow B-cell development, but did not further enhance 
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thymopoiesis (Alpdogan et al.  2003 ). The strongest evidence of the limitations of 
IL-7 in contolling thymopoiesis come from studies of long-term IL-7 augmentation 
by injection of IL-7 producing stromal cells into the thymus in young mice (Phil-
lips et al.  2004 ). When these mice with elevated intrathymic IL-7 production were 
monitored for up to 2 years, the levels of DN1 thymocytes transiting to the DN2 
stage were maintained in aged mice, but structural involution of the thymus and the 
age-dependent decline in DP and SP thymocytes were not altered. The age-depend-
ent decline in DN4 proliferative expansion continued unchanged despite elevated 
IL-7 (Phillips et al.  2004 ). Thus the decline in thymopoietic productivity is not 
dependent primarily on TEC IL-7 production.  

       6.3      Thymocyte Generated Cytokines—KGF  

   Keratinocyte growth factor, also known as fibroblast growth factor 7 (FGF-7), is 
produced in the mature thymus by DP- and SP-thymocytes (Erickson et al.  2002 ; 
Jenkinson et al.  2003 ). The TEC express the receptor (FGFR2IIIb), which binds 
KGF as well as the mesenchymally derived FGF-10 (Min D et al.  2002 ; Rossi SW 
et al.  2007 ). Unlike FGF-10. KGF is not necessary for initial thymic organogenesis, 
but plays an important role in the adult in renewing thymopoiesis post cytoreduc-
tion (Alpdogan et al.  2005 ). KGF treatment increased the uptake of labeled T-pro-
genitors, that is the number of engraftment niches (Rossi SW et al.  2007 ). KGF 
treatment in adult mice also stimulated growth of TEC-precursors and expansion 
of TEC, resulting shortly afterwards in a wave of proliferative expansion in DN-
thymocytes (Rossi SW et al.  2007 ). In aged mice or in  klotho  mice, an aging model 
showing early thymic involution, KGF treatment increased thymopoietic capacity 
and reversed involutional changes (Min D et al.  2007 ). Repeated monthly KGF 
treatments prolonged these effects and reversed involution in aged murine thymic 
structure, returning the thymuses to the size of those in young adults (Min D et al. 
 2007 ). The KGF results also point up the interconnections between thymocytes and 
TEC. RAG –/–  thymocytes, perhaps because they are arrested prior to the DP stage, do 
not produce KGF (Erickson et al.  2002 ). The RAG –/–  medullary region is rudimen-
tary and disorganized in mice, but can be induced to develop either by transplant of 
normal hematopoietic stem cells (van Ewijk et al.  2000 ), or by treatment with KGF 
(Erickson et al.  2002 ).  

   Thus factors such as systemic hormonal shifts and intrinsic cytokine programs 
within thymocytes and TEC-cells can all affect thymopoiesis. The complex inter-
active web linking thymocyte and TEC survival and differentiation acts as an 
amplifying factor. Increasing the input of functional thymic progenitors can trig-
ger an expansion of TEC, which create in turn new niches for T-cell lineage com-
mitment and supports increased thymocyte proliferation. Alternatively, in aging, 
the decline in these factors may reinforce a downward spiral resulting in thymic 
involution.  
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         7      Conclusions  

   Aging is associated with a progressive decline in the generation of new T-lym-
phocytes, with consequent losses in repertoire diversity and functional compe-
tence. The age-dependent involution of the thymus underlies this loss. Achieving its 
greatest size in the neonatal period, the thymus undergoes a steady lifelong decline 
in structure and productive thymopoiesis. Yet the presence of thymic renewal in 
adults—following autologous transplantation in cancer patients or HAART therapy 
in HIV + + individuals—demonstrates that the thymus is capable of regrowth. Multi-
ple experiments in animal models have demonstrated dramatic increases in thymic 
size and productivity. Thus the decline in thymopoiesis is not irreversible.  

   Our understanding of the regulation of thymic structure and thymopoietic 
productivity is in a rapid state of flux. The availability of recombinant cytokines 
and transgenic and knockout mice have shaped our concepts of the cellular and 
cytokine factors regulating lymphocyte generation and homeostasis. Thymopoiesis 
is dependent upon a continuing supply of T-lymphoid progenitors, maintenance of 
open thymic niches for progenitor engraftment and support of DN migration and 
productive expansion by the cortical stromal microenvironment. All of these are 
regulated by reciprocal interactions between the marrow and thymic stromal ele-
ments and developing lymphocytes, involving both cytokine/chemokine signals and 
direct cell contact mediated signalling. Novel strategies have been tested to enhance 
progenitor numbers by supporting osteoblast growth (Ballen et al.  2007 ; Calvi et al. 
 2003 ; Zhu et al.  2007 ), or to directly stimulate early lymphoid progenitors with IGF 
or IL-7 (Alpdogan et al.  2003 ), or to bypass the marrow completely and expand 
committed T-progenitors ex vivo (Zakrzewski et al.  2006 ). On the thymic stromal 
side, factors such as IGF, KGF or LHRH agonists have produced increases in TEC 
and subsequent increases in productive thymopoiesis. Combinations of these thera-
pies may provide the means to reverse thymic decline and renew the generation of 
naïve T-cells in adults or even in the aged. Although many questions remain, such 
treatments might provide a long-term benefit in reversing immunosenescence.  
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                                                                              1   Introduction  

   The function of immune system depends on a subtle and well tuned network of 
humoral mediators, collectively called cytokines, responsible for differentiation, 
proliferation and survival of lymphoid cells. They include colony stimulating fac-
tors, and cytokines such as interferons and tumor necrosis factors (TNFs). These 
molecules constitute a complex network: cytokines, such as IL-2, have a particular 
importance for the proliferation and differentiation of T, B, and NK cells. IL-2 and 
IL-10 lead to an increased production of IgM, IgG and IgA, whereas IL-4 and IL-
13 induce IgE and IgG4 synthesis. Other cytokines, such as IL-1, IL-6 and TNF-α 
are considered proinflammatory agents, and play an important role in the immune 
response and inflammation.  
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   It’s widely accepted that many of the most important age-associated diseases, 
such as cardiovascular diseases, atherosclerosis, Alzheimer’s disease, arthrosis 
and arthritis, sarcopenia and diabetes share a common inflammatory background 
(Appay and Rowland-Jones 2002; Boren and Gershwin 2004; Cappola et al. 
2003; Licastro et al. 2003; Roubenoff et al. 2003a,b; Szmitko et al. 2003; Zanni 
et al. 2003). Inflammatory reactions are a complex series of physiological events 
designed to limit insult and promote repair. During aging it has been observed a 
complex remodelling of the immune system responsible for a series of age-related 
phenomena, among which a profound modification within the cytokine network. 
The typical feature of this phenomenon is a general increase in plasmatic levels 
and cell capability to produce proinflammatory cytokines. The first evidence of 
this age-associated modification in the balance of cytokine network was described 
by Fagiolo et al. (1993) who found an increase of IL-6 plasma levels and a decrease 
of IL-2 production in healthy elderly subjects (Fagiolo et al. 1993; Franceschi et 
al. 1995). Moreover, the authors described a significant increase of IL-6, TNF-α 
and IL-1β levels in mitogen-stimulated cultures from aged donors. These data 
indicated that the cellular machinery for the production of these cytokines is well 
preserved in aging, and also that cells from old people are able to up-regulate their 
production in response to appropriate stimuli. The well established increase with 
age of IL-1, IL-6 and TNF-α plasma levels appears to be unexpectedly present 
either in persons who enjoyed successful aging and those who suffered age-
associated pathologies. This increase continues with age, until the extreme limit 
of human life, and high levels of IL-6 are found in healthy centenarians (Baggio 
et al. 1998). In these exceptional individuals other inflammatory factors, such as 
acute phase proteins, lipoprotein a [Lp(a)], fibrinogen, coagulation factors, and 
other proinflammatory cytokines are similarly increased (Baggio et al. 1998; 
Bruunsgaard et al. 1999; Mannucci et al. 1997; Mari et al. 1995). Thus, even if 
high levels of IL-6 have been indicated as one of the most powerful predictors of 
morbidity and mortality in the elderly (Ferrucci et al. 1999; Harris et al. 1999), an 
inflammatory status is compatible with extreme longevity and paradoxically proin-
flammatory condition have been documented in centenarians in relatively good 
health (category A and B as in Franceschi et al. 2000a). Another proinflamma-
tory cytokine, IL-18, increases with age and centenarians display significant higher 
serum levels compared to people of younger ages. However, higher levels of IL-
18-binding protein, a protein which binds and neutralizes IL-18, is also increased, 
suggesting that compensatory mechanisms capable of quenching the proinflam-
matory activity of IL-18 likely occur with age (Gangemi et al. 2003). In addition, 
the reshaping of the cytokine network in aging is extended to chemokines and 
proinflammatory molecules regulating monocyte and T lymphocyte recruitment 
towards sites of inflammation. The production of chemokines such as RANTES, 
MIP-1α, IL-8 and MCP-1 is increased in the elderly with clear consequences for 
the inflammatory mechanisms and the recirculation of lymphocyte subsets (Gerli 
et al. 2000; Mariani et al. 2002).  

   This chronic, low grade, proinflammatory condition was named  inflamm-aging  
(Franceschi et al. 2000b,c) and it is characterized by a general increase in the 
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production of inflammatory cytokines and a subsequent rise of the main 
inflammatory markers, such as C-reactive protein (CRP) and serum amyloid A. It is 
at the present unknown whether the derangement in the regulation of inflammatory 
reactions is a cause or rather an effect of the aging process as a whole. Nevertheless, 
an altered inflammatory response can probably be the result of the chronic exposure 
to stressors, such as antigens, leading to a progressive activation of macrophages 
and related cells in most organs and tissues of the body, but also to chemical and 
physical agents that threaten the integrity of the organism (Franceschi et al. 2000b). 
The chronic proinflammatory status can be in some cases an important cause of 
damage, by itself or by interacting with other pathological molecular mechanisms, 
thus contributing to the acceleration of the onset of different diseases or their sever-
ity. Indeed, it has been demonstrated that a proinflammatory status is related to 
mortality risk for all causes in older persons (Bruunsgaard et al. 2001) rendering the 
subjects more prone to a variety of infectious and noninfectious diseases (cardiovas-
cular diseases, neurodegenerative disorders, osteoporosis, sarcopenia and diabetes, 
among others; De Martinis et al. 2005).  

    2   Memory Cells and Filling of Immunological Space  

   Immunosenescence is not accompanied by an unavoidable and progressive deterio-
ration of the immune function, but is rather the result of a remodelling where some 
functions are reduced, others remain unchanged or even increased. Both humoral and 
cell-mediated specific immune response are modified and remodelled by aging. The 
ancestral/innate compartment of the immune system appears relatively preserved 
during aging in comparison to the more recent and sophisticated adaptive compart-
ment that exhibit more profound modifications. Clinical evidence indicates that with 
advancing age, immune responses against recall antigens may still be conserved 
(Ahmed et al. 1996), but the ability to mount primary immune responses against novel 
antigens declines significantly (Weigle 1989). The impaired ability to mount immune 
responses to new antigens may result in an higher susceptibility to infectious diseases 
and may limit the efficacy of vaccination strategies in elderly people.  

   In fact, one of the main characteristics of immunosenescence is the process 
termed  thymic involution , responsible for a progressive, age-related reduction in 
size of the thymus, due to profound changes in its anatomy, associated with loss of 
thymic epithelial cells and a decrease in thymopoiesis. This decline in the output of 
newly developed T-cells results in a diminished number of circulating naïve T-cells 
and an impaired cell mediated immunity (Fagnoni et al. 2000). A major conse-
quence of thymic involution is a profound age-related change in T lymphocyte sub-
populations (Nasi et al. 2006).  

   The rate of naïve T-cell output from the thymus dramatically declines, and 
memory T-cells proliferate in the periphery to replace the loss of thymic output, a 
phenomenon called  homeostatic expansion  (or  proliferation ; Aspinall et al. 2000, 
Berzins et al. 2002).  
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   Thus, the loss of naïve T-cells, able to cope with new antigens, leads to the 
accumulation of memory and effector cells, a phenomenon described as “filling of 
the immunological space” (Franceschi et al. 2000b,c; Luciani et al. 2001). Indeed, 
we demostrated that aging is accompanied by an increase of memory T-cells, and 
this phenomenon is different in CD4 +  and CD8 +  T-cells (Cossarizza et al. 1996). The 
concomitant occurrence of these two phenomena, i.e., decrease of virgin T-cells and 
increase of memory T-cells, related to thymic involution and lifelong antigenic load, 
respectively, is the most important characteristics of immunosenescence and of its 
clinical correlates.  

T  he exhaustion of thymic output occurring during aging is also confirmed by 
phenotypic analysis, and this phenomenon is more rapid and evident in CD8 +  
T-cells (Fagnoni et al. 1996, 2000; Franceschi et al. 1995; Zanni et al. 2003). 
Recently, CD31 - CD4 +  T-cells were identified as an autonomously regulated 
subset, characterized by a highly restricted oligoclonal TCR repertoire, which 
constitutes a pool of naïve T-cells not affected by thymic decline, likely play-
ing a central role in adaptive immunity and providing sufficient number of naïve 
CD4 +  T-cells in the elderly, even in the presence of a drastically reduced thymic 
function (Kohler et al. 2005). T-cells accumulating with age are mainly CD28 –  T 
lymphocytes in both CD8 +  and CD4 +  subsets (Fagnoni et al. 1996; Valenzuela 
et al. 2002; Zhang et al. 2002). CD28 serves both as a costimulatory molecule for 
T-cell activation (Krause et al. 1998; Sepulveda et al. 1999) and as a signal for 
glucose transport (Frauwirth et al. 2002). CD28 –  T-cells display several aspects 
of senescence, including oligoclonal expansion (Batliwalla et al. 1996), shortened 
telomeres (Effros 1997; Valenzuela et al. 2002), limited proliferative potential 
(Effros 1997; Valenzuela et al. 2002, Vallejo et al. 2001), production of TNF-α 
and IL-6 (Zanni et al. 2003), and resistance to apoptosis (Brzezinska et al. 2004; 
Posnett et al. 1999). Many studies indicate that the memory pool is composed of 
different subsets based on the expression of chemokine receptors, selectins, and 
costimulatory receptors.  Central memory    T-cells  (TCM) bear lymph node hom-
ing receptors (L-selectin, CD62L, and CC-chemokine receptor 7 [CCR7]) and 
costimulatory molecules, such as CD27 and CD28. These cells show a scarce 
effector function, but can have extensive replicative response to their specific anti-
gen (Maus et al. 2004).  Effector memory  T-cells (TEM) have the capability to 
exert immediate effector functions (cytokines secretion and/or cytotoxic activity) 
and are characterized by the lack of CCR7 and by a heterogeneous expression 
of CD62L. Both the mentioned cell subsets have down-regulated the CD45RA, 
a marker of virgin T lymphocytes. Moreover,  terminally differentiated T-cells  
(TTD), characterized by the expression of CD45RA (as naïve cells), the lack of 
CCR7 and CD62L, and usually of CD28−, accumulate with age, particularly in 
CD8 +  T-cells (Pawelec et al. 2005). These profound age-related changes at the 
cellular level are accompanied by the peculiar, chronic, low grade proinflamma-
tory status (inflamm-aging) suggesting that immunosenescence is mainly driven 
by a chronic antigenic load which not only induces an enormous expansion of 
CD28 -  T-cells, but also increases their functional activity, confirmed by an high 
frequency of cells positive for proinflammatory cytokines.  
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Indeed  , a general trend towards an increase of both type 1 and type 2 
cytokine-positive cells in naïve, memory and effector/cytotoxic CD8 T-cells was 
found. The increase of type 1 intracellular cytokines is particularly marked in mem-
ory and effector T CD8 +  lymphocytes. In old subjects, IFN-γ and TNF-α produc-
ing cells account for more than 60% of the CD8 +  T-cells. The increase of type 2 
cytokines producing cells is lower when compared to type 1 and it results more 
evident in CD8 +  memory cells (Zanni et al. 2003).  

The   increased proinflammatory cytokines can be regarded as a double edged 
sword that at one side could be beneficial and protective in amplifying, via IFN-γ, 
the immune response against internal or external pathogens (Guidotti et al. 
1996), and, on the other side, could be detrimental, later in life, via an exces-
sive TNF-α and IFN-γ production capable of sustaining chronic inflammatory 
or autoimmune processes (Feldmann et al. 1997) that negatively correlate with 
human longevity.  

Within this scenario, we can surmise that the continuous attrition caused by 
clinical and subclinical infections, as well as the continuous exposure to other types 
of antigens (food, allergens), is likely responsible for the chronic immune system 
activation and inflammation (De Martinis et al. 2004; Franceschi et al. 1999).

  Emerging data suggest a possible contribution of CMV infection to this pro-
gressive, systemic, low grade proinflammatory status characteristic of immunose-
nescence. The age-dependent expansion of CD8 + CD28 -  T-cells, mostly positive for 
proinflammatory cytokines and including the majority of Cytomegalovirus (CMV)-
epitope-specific cells, underlines the importance of chronic antigenic stimulation in 
the pathogenesis of the main immunological alterations of aging and may favor the 
appearance of several inflammatory pathologies (arteriosclerosis, dementia, oste-
oporosis, cancer; Sansoni et al. 2008).  

   Large clonal expansion of peripheral CD8 +  T-cells carrying receptors for single 
epitopes of CMV and Epstein-Barr Virus, detected using tetramer technology, are 
common in the elderly and are associated with a loss of effector memory cells, 
an increase of terminally differentiated CD8 +  cells and a gradual reduction of the 
immunological space (Franceschi et al. 2000c).  

   Functional T-cell responses to pp65 and IE-1 peptides, two CMV immunogenic 
proteins, performed on humans of different ages indicate that the pp65 is the major 
antigen against which aged people target their T-cells effector function with mas-
sive production of Th1 cytokines and increased presence of potential cytotoxic cells 
exhibiting degranulation markers (CD107a). Indeed, both CMV antigens are able 
to increase the production of IFN-γ and TNF-α in old subject in comparison with 
younger even if the CD4 and CD8 T- responses are not so similar. In fact, these 
two lymphocyte subsets respond differently to the same antigen and an inverse cor-
relation exists between anti pp65-INF-γ +  CD4 +  and CD8 +  T-cells (Vescovini et al. 
2007).  

   On the whole, the existing literature suggests that CMV could represent one of 
the most important agent of effector T-cell expansion and a possible main mecha-
nism underlying the persistent activation of the immune system in the elderly. 
This stable load of effector helper and cytotoxic T-cells producing IFN-γ and TNF-α 
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and having a potential cytolytic activity may be necessary to protect elderly people 
from CMV endogenous reactivation but, at the same time, may also became detri-
mental at the systemic and tissue levels. Finally, we can say that the expansion of 
functional effector T-cell producing high amounts of inflammatory cytokines may 
be considered as a general age-related phenomenon in CMV seropositive donors, 
that might give a substantial contribution to inflamm-aging (Vescovini et al. 2007).  

Indeed  , the number of functional CMV-specific CD8 cells is quite similar in 
young and old individuals. This is consistent with suggestion that these cells may 
contribute to the proinflammatory status often observed in the elderly and may 
contribute to frailty and mortality. Furthermore, in the elderly there is an accumula-
tion of CMV-specific CD8 cells negative for CD28 and positive for the KLRG-1 
and CD57. The presence of these two markers identifies dysfunctional CD8 T-cells 
that were not able to proliferate (Koch et al. 2007). In CMV seropositive individuals 
an accumulation of CMV-specific CD4 cells during aging is present. These cells 
are characterized by an effector phenotype (CD28 - , IFN-γ +  and IL-2; Pourgheysari 
et al. 2007).  

Moreover, the   production of type 1 or type 2 cytokines by CD4 +  T-cells appears 
to be differently affected by aging process. Precisely, the percentage of INF-γ +  cells 
decreases in virgin CD4 +  and in activated/memory T-cells from aged subjects in 
comparison with young subjects. The percentage of TNF-α +  cells increases in acti-
vated/memory CD4 +  T subsets from nonagenarians. Concerning type 2 cytokines, 
IL-4 +  cells increased in activated/memory CD4 +  subset from nonagenarians sug-
gesting a shift towards type 2 cytokines (Alberti et al. 2006).  

    3   Shrinkage of T-Cell Repertoire  

   Both quantitative and qualitative changes of T lymphocyte subsets are implicated in 
the age-related remodelling of the immune response (Miller et al. 1996). Antigen-
independent mechanisms such as different survival of T-cell clones or decreased 
thymic generation of new naïve T-cells may also influence the clonal composition 
of peripheral T-cells. These factors may eventually lead to the narrowing of the 
clonal repertoire and to the appearance of predominant clones in aged people. Both 
in CD4 and in CD8 T-cells, clonal expansion comprises several TCR V β  families 
suggesting that a multiplicity of antigenic stimulations are involved in the selec-
tion of the expanded clones. The CD4 +  T-cell repertoire remains largely polyclo-
nal throughout life, since CD4 +  expanded clones accumulate predominantly in the 
CD45R0 +  compartment of exceptionally individuals (centenarians; Wack et al. 
1998). On the other hand, CD8 +  T-cell subsets contain expanded clones which are 
already detectable in young adults and become very frequent in older donors both 
in CD45RA +  and in CD45R0 +  compartments. The presence of expanded clones in 
the CD45RA +  compartment implies that this age-related phenomenon starts earlier, 
and it is more pronounced in CD8 +  than in the CD4 +  T-cell subsets indicating that 
in these two subsets the clonal expansion is controlled by substantially  different 
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mechanisms. Besides, while the finding of expanded CD45R0 +  T-cell clones is 
explained by antigen-driven proliferation, the detection of expanded clones both in 
CD45RA +  and in CD45R0 +  subsets support the idea of reversion from the CD45R0 +  
to the CD45RA +  phenotype after antigen encounter (Wack et al. 1998). Moreover, 
TCR V β  repertoire of T lymphocytes was studied in healthy, long-living people and 
centenarians using a spectra typing method, and expansion of TCR Vβ1, Vβ8, and 
Vβ20 in long-living people compared with young people was found. In addition 
these expanded clones were mainly negative for CD28 (Pennesi et al. 1999, 2001) 
moderate. Indeed, human aging markedly reduces diversity in both CD45RA +  and 
CD45R0 +  CD8 +  T lymphocytes thus affecting the cytotoxic compartment in elderly 
where several compensatory mechanisms may contribute to alleviate the restricted 
CD8 +  T-cell repertoire (increased cross-reactivity of primed CTL clones, increased 
number of cytolytic CD28 -  T-cells or finally increased number of NK cells). 
Furthermore CD4+ T cell clones derived from centenarians produce mainly Th0 
type cytokines with wide effector functions (Wack et al. 1998).  

       4   Systemic Inflamm-Aging  

   The inflammatory scenario that characterizes inflamm-aging constitutes a highly 
complex response to various subtle internal and environmental inflammatory stimuli 
mediated mainly by the increased circulating levels of pro-inflammatory cytokines. 
This condition is able to continuously generate Reactive Oxygen Species (ROS) 
causing both oxidative damage and eliciting an amplification of the cytokines’ 
release, thus perpetuating a vicious cycle resulting in a chronic systemic proinflam-
matory state where tissue injury and healing mechanisms proceed simultaneously 
and damages accumulate slowly and asymptomatically over decades. Accordingly 
inflamm-aging is at the same time a major determinant both of the aging proc-
ess and of the development of age-associated diseases (Candore et al. 2006; De 
Martinis et al. 2005; Franceschi et al. 1995; Giunta, 2006; Lio et al. 2003; Vasto 
et al. 2007). Moreover, the shift of cytokine production toward a pro-inflammatory 
profile is accompanied by endocrine and metabolic alterations (Paolisso et al. 2000) 
that could explain some age-related processes such as sarcopenia, obesity, meta-
bolic syndrome and diabetes, among others.  

   Sarcopenia, i.e. the age-associated decline in skeletal muscle mass, strength 
and power resulting in physical disfunctioning, contributes to physical inactivity, 
functional disability and mortality. The specific mechanisms underlying age-related 
muscle wasting are still largely unknown, although a decreased anabolic state in 
combination with an increased catabolic state results in a progressive loss of lean tis-
sue. In recent years, the role of inflammatory cytokines in the progression of muscle 
wasting has been focused (Roth et al. 2006). Recent data support the association 
between elevated IL-6 levels with in advancing age increased physical decline and 
mortality. For example, muscle performance measures are significantly lower in 
hospitalized geriatric patients with high levels of CRP and IL-6 compared with 
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matched patients with normal levels of inflammation (Bautmans et al. 2005). We 
evaluated the joint effect of IGF-I and IL-6 on muscle function in a population-based 
sample of 526 persons with a wide age range (20–102 years). After adjusting for 
potential confounding factors (age, sex, body mass index), IL-6 receptor, IL-6 pro-
moter polymorphism, IL-6, IGF-I, and their interaction were significant predictors 
of muscle power. In analyses stratified by IL-6 tertiles, IGF-I was an independent 
predictor of muscle function only in subjects in the lowest IL-6 tertile, suggesting 
that the effect of IGF-I on muscle function depends on IL-6 levels. This mechanism 
may explain why IL-6 is a strong risk factor for disability (Barbieri et al. 2003a). 
Giresi and colleagues (2005) reported a “molecular signature” of sarcopenia, com-
ing from microarray analyses of young versus old skeletal muscle response. An 
increased expression of genes involved in the inflammatory was noted within this 
signature, providing some of the first direct evidence of the role of inflammation in 
aged muscle changes.  

   Several papers show data about the importance of TNF-α in muscle wasting. 
Roubenoff et al. (2003b) reported an association between higher levels of TNF-α 
and IL-6 with increased mortality in community dwelling elderly, while Yende et 
al. (2006) observed lower quadriceps strength in older man and woman with high 
IL-6 and TNF-α levels. Importantly, an interplay between an increase of inflamma-
tory signals and a reduction of opposite growth factors signals may have the most 
relevance for the progression of muscle wasting. For example, elevated levels of 
TNF-α and IL-6 have been associated with an increased risk of sarcopenia, frailty 
and mortality, whereas elevated IGF-I levels have generated opposite associations 
(Leng et al. 2004; Payette et al. 2003; Roubenoff et al. 2003b).  

   Recent data on animals and humans indicate a possible more complex role of 
IL-6. It has been suggested that muscle-derived IL-6 contributes to mediate the 
beneficial metabolic effects of exercise and may contribute to inhibit TNF-pro-
duction and thereby insulin resistance (Pedersen and Bruunsgaard 2003). Indeed 
experimental data indicate that IL-6 is released from skeletal muscle during acute 
exercise, and its production can result in an increase of antiinflammatory cytokines 
such as IL-1ra and IL-10 and in a concomitant inhibition of TNF-α (Petersen and 
Pedersen 2006).  

   Several studies have investigated the potential relationship between muscle mass 
and body fatness. How these two components of body composition change with 
aging, and their combined effects on functional performance and development of 
frailty, has led to the concept of “sarcopenic obesity” (Baumgartner et al. 2004; 
Dominguez and Barbagallo 2007; Roubenoff et al. 2004; Zoico et al. 2004). Weight 
changes are associated with the loss both of fat and lean mass, with the greatest 
proportion being fat. Individuals with an obesity state associated with high levels of 
body fat and low levels of muscle mass have an increased risk of functional decline 
(Baumgartner et al. 2004; Newman et al. 2003; Visser et al. 2002; Zoico et al. 2004) 
and mortality.  

   Obesity itself is associated with an elevation of inflammatory markers, and adi-
pose tissue evolved from being identified as a mere deposit of fat as highly meta-
bolically active organ with a critical role in the inflammatory process. In fact, the 
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current view of adipose tissue is that of a dynamic secretory organ, sending out and 
responding to signals that modulate appetite, energy eaxpenditure, insulin sensivity, 
endocrine and reproductive systems, bone metabolism, inflammation and immunity. 
Mature adipocytes are involved in endocrine, paracrine and autocrine regulatory 
processes trough the secretion of a large number of multifunctional molecules col-
lectively termed as “adipokines” (Yudkin et al. 1999). In addition to playing roles 
in the regulation of lipid and glucose homeostasis, adipokines modify some physi-
ological processes, such as hematopoiesis reproduction, feeding behavior and may 
mediate the genesis of the multiple pathologies associated with increased fat mass 
(Chaldakov et al. 2003; Rajala et al. 2003). In humans, the development of adipose 
tissue has been associated with an increased production of inflammatory markers, 
including adhesion molecules (P-selectin, intercellular adhesion molecule-1, and 
plasma E-selectin) and inflammatory cytokines (TNF-α, IL-6, IL-8 and MCP-1; 
Loffreda et al. 1998; Takahashi et al. 2003). It has also been shown that macro-
phages residing in the adipose tissue may also be a source of proinflammatory fac-
tors, such as IL-6 and TNF-α, and that they also may modulate the secretory activity 
of adipocytes (Xu et al. 2003). It is therefore tempting to speculate that adipocytes, 
via the production of adipokines, are directly involved in the genesis of systemic 
and vascular inflammation.  

   The effects of adipocytokines on vascular function, immune regulation and 
adipocyte metabolism make them key players in the pathogenesis of metabolic 
syndrome. Obesity and inflammation have also been associated with the presence 
of the metabolic syndrome (Aronson et al. 2004; Florez et al. 2006), a cluster of 
clinical symptoms associated with increased risk of developing cardiovascular dis-
ease, diabetes, mortality, and other important adverse health outcomes. The preva-
lence of metabolic syndrome increases dramatically with age and comprises five 
cardiovascular risk factors including abdominal obesity, hypertriglyceridemia, low 
high-density lipoprotein (HDL) levels, hypertension, and hyperglycemia. Insu-
lin resistance is at the basis of most of the features of this syndrome. Given the 
role of insulin in suppressing several proinflammatory transcription factors, such 
as NF-kB, Egr-1 and AP-1 (Aljada et al. 2002), an impairment of the action of 
insulin would result in the activation of these proinflammatory transcription fac-
tors, explaining why an insulin-resistant state may be considered proinflammatory 
(Dandona et al. 2005). High levels of inflammation increase the risk of developing 
diabetes and atherosclerosis and are thought to be a possible mechanism for the 
adverse consequence of metabolic syndrome (Barzilay et al. 2001; Pradhan et al. 
2001). Whether inflammation leads to metabolic syndrome or vice versa is unclear. 
Most likely, inflammation and metabolic syndrome are related in a circular process 
(inflammation leads to metabolic syndrome, and metabolic syndrome increases 
inflammation; Dandona et al. 2005). In addition, markers of inflammation and sev-
eral individual components of the metabolic syndrome have been associated with 
an increased risk of developing dementia and cognitive decline (McGeer EG and 
McGeer PL 1999, 2004; Yaffe et al. 2003). Most likely, the metabolic syndrome 
contributes to accelerate atherosclerosis associated with inflammatory response 
and, in turn, either atherosclerosis or inflammation or both contribute to the 
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 cognitive decline (Yaffe 2007; Grundy 2003; Ridker and Morrow 2003). Insulin 
resistance and/or hyperinsulinemia associated with metabolic syndrome, increas-
ing systemic inflammatory responses and oxidative stress (Caballero 2004; Parrott 
and Greenwood 2007), play a central role in increasing central nervous system 
(CNS) inflammatory markers (Fishel et al. 2005). We showed that independently 
of age, sex, body mass index, waist-to-hip ratio, triglycerides, drug intake, diasto-
lic blood pressure, smoking habit, and carotid atherosclerotic plaques, higher IL-6 
serum concentrations were associated with higher insulin resistance, whereas sIL-
6R levels were associated with lower insulin resistance. Furthermore, IL-1ra con-
centrations were associated with insulin-resistance syndrome, and higher sIL-6R 
plasma levels continued to correlate negatively with insulin-resistance syndrome 
(Abbatecola et al. 2004).  

   Interestingly, increased CNS inflammation has been positively correlated with 
amyloid-beta (Aβ) levels and insulin-resistant individuals with the highest inflam-
mation exhibit more serious cognitive deficits (Yaffe et al. 2004). This synchro-
nous hyperinsulinemia-induced increase of Aβ and inflammation may represent an 
important pathway through which insulin resistance promotes both cognitive dete-
rioration and Alzheimer’s disease pathology (AD; Craft 2007). Thus, inflammation 
has been demonstrated to play a role in AD pathogenesis and IL-1 and IL-6 are 
two of the most important cytokines involved in AD neuro-inflammation (Akiyama 
et al. 2000; Franceschi et al. 2001; Griffin et al. 2000). In this context, it is important 
to remember that the biological role of these cytokines in the brain is quite complex, 
and that their release may directly affect neuronal survival and injury response. In 
fact, IL-1 and IL-6 may have either trophic or toxic effects. In particular, IL-1 can 
induce the over-expression of S100β, a neurite growth-promoting cytokine mark-
edly elevated in the brain of AD patients, by reactive astrocytosis. IL-1 can stimu-
late excessive synthesis, translation and processing of Aβ and plaque associated 
proteins, and it was shown to lead to over-expression and increased phosphorylation 
of TAU, thus contributing to an acceleration of degenerative cascades. This cytokine 
can activate astrocytes and their production of neurotoxic molecules, being astro-
gliosis a hallmark of AD in the cortex and hippocampus. Concerning IL-6, it appears 
that microglia, astroglia, neurons and endothelial cells are capable injury response 
this cytokine, which in turn can induce acute phase proteins. Elevated levels of IL-6 
cause significant CNS damage and behavioral deficits (Akiyama et al. 2000). In AD 
patients, the expression of IL-6 mRNA is increased in brain areas where amyloid 
deposition and astroglia activation are more prominent (Strauss et al. 1992) and 
increased IL-6 levels in the brain have been implicated in plaque formation (Huell et 
al. 1995). Two different polymorphic regions of the IL-6 gene were investigated in 
patients with AD and nondemented controls (Licastro et al. 2003). The -174 C allele 
in the promoter region of IL-6 gene was over-represented in AD patients compared 
to controls, significantly increasing the risk of AD. Moreover, the -174 CC genotype 
was associated with a high risk of the disease in women. The D allele of a vari-
able number of tandem repeat (VNTR) was in strong linkage disequilibrium with 
the -174 C allele and slightly increased AD risk. On the other hand, the frequency 
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of the VNTR C allele decreased in patients with AD and was negatively associated 
with the risk of developing AD. Both the -174 CC and VNTR DD genotypes were 
also associated with increased IL-6 levels in blood and brain from AD patients. 
These findings suggest that IL-6 may play a multifaceted role in AD affecting the 
turnover of the cytokine.  

   However, at present, the sources of inflammatory stimuli underpinning and sus-
taining inflamm-aging are not completely cleared. In addition to the age-related 
increase of inflammatory compounds occurring the brain (Licastro et al. 2003), 
adipose tissue, and muscle, it is becoming more and more evident the possible and 
until now unexplored contribution of other or
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       dsRNA      double-stranded RNA
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       HSC      hematopoietic stem cell
       IFN- γ       interferon gamma
       I κ B      inhibitor of NF-  κ  B
       IL      interleukin
       LPS      lipopolysaccharide
       MAPK      mitogen-activated protein kinase
       MCAF      macrophage chemotactic and activating factor
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       M-CSF      macrophage colony-stimulating factor
       MDC      macrophage-derived chemokine
       MHC      major histocompatibility complex
       MIP-1      macrophage inflammatory protein-1
       MR      mannose receptor
       NER      nucleotide excision repair
       NF-  κ  B      nuclear factor-kappa B
       NHEJ      non-homologous end-joining
       NOS2      inducible nitric oxide synthase
       OPG      osteoprotegerin
       PASG      proliferation-associated SNF2-like gene
       PBMC      peripheral blood mononucleated cell
       PKC      protein kinase C
       RANKL      soluble receptor activator of NF- κ B ligand
       ROS      reactive oxygen species
       Sir2      silent information regulator 2
       SIRT      sirtuin
       TARDC      thymus and activation regulated chemokine
       TGF      tumor growth factor
       TLR      toll-like receptor
       TNF- α       tumour necrosis factor alpha
       TRAF      TNF-receptor-associated factor
       VEGF      vascular endothelial growth factor  

       Abstract:       Macrophages are key cells in innate and adaptive immune function. 
These cells are involved in the destruction of bacteria, parasites, viruses and tumor 
cells and lead to the initiation of the inflammatory process. In addition, macro-
phages are responsible for processing antigens and presenting digested peptides 
to T-lymphocytes initiating the adaptive immune response. Finally, macrophages 
participate in the resolution of the inflammatory process by promoting tissue repair. 
Macrophage functions are affected by aging, thereby contributing to the immu-
nosenescence of adaptive and innate immunity. Here, we summarize data about the 
effects of aging on macrophages and we discuss the molecular events that could be 
involved in this process.     

   Keywords   :    Aging    •     DNA damage    •     Immunosenescence    •     Inflammation    •     
Macrophages   

      1      Introduction  

  Aging can be defined as the time-related deterioration of the physiological func-
tions required for survival and fertility. Among these, immune function has been 
shown to be dysregulated with advancing age, thus leading to increased suscepti-
bility to viral and bacterial infections, reactivation of latent viruses and decreased 
response to vaccines (Miller, 1996; Effros, 2001). This impairment of the immune 
system, called immunosenescence, is associated with increased mortality and major 
incidence of immune diseases and cancer in the elderly.  
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  Innate and adaptive immunity are compromised by aging. T-cell-dependent 
and T-cell-mediated functions, such as proliferation, cytotoxicity, cytokine secre-
tion and capacity to respond to novel antigens, are impaired in old age (Fabris 
et al. 1997; George and Ritter, 1996; Miller, 1996; Pawelec and Solana, 1997). 
Alterations in B-cells during aging have also been reported. In mice, a progressive 
decline in germinal centre formation is observed with age (Zheng et al. 1997); the 
number of circulating CD27 +  memory B-cells is reduced in the elderly (Breitbart 
et al. 2002; Colonna-Romano et al. 2003), and CD40 expression in B-cells is also 
impaired. Similar to the decline of the adaptive immune system, the functions 
of NK cells, macrophages and neutrophils also decrease with age (Butcher et al. 
2001; Garg et al. 1996; Lloberas and Celada, 2002; Solana and Mariani, 2000), 
which may explain the increased incidence of bacterial and viral gastrointestinal 
and skin infections.  

  Macrophages are key cells in innate and adaptive immune function. These cells 
may act directly, by destroying bacteria, parasites, viruses and tumor cells, or indi-
rectly, by releasing mediators such as interleukin-1 (IL-1), tumor necrosis factor- α  
(TNF-  α ), etc, which can regulate other cells. Macrophages are also responsible 
for processing antigens and presenting digested peptides to T-lymphocytes, as 
well as for tissue damage repair. Macrophage functions are altered in old age in 
humans, mice and rats, thereby contributing to the immunosenescence of adaptive 
and innate immunity (Lloberas and Celada, 2002). Phagocytic activity, cytokine 
and chemokine secretion, antibacterial defenses such as the production of reactive 
oxygen and nitrogen intermediates, infiltration and wound repair function in the 
late phase of inflammatory response, and antigen presentation, are altered in aged 
macrophages (Donnini et al. 2002; Herrero et al. 2002; Plowden et al. 2004), which 
lead to impairment in the first line of immune defense and a decreased capacity 
to contribute to the development of specific immune responses by presenting anti-
gens to T-cells and by producing regulatory cytokines. Since macrophage activ-
ity is essential for the proper function of the immune system, studies regarding 
the effects of aging on the biology of these phagocytic cells and the molecular 
mechanisms involved in this process may contribute to a greater understanding of 
aging and immunosenescence. In addition, it would be of great interest to distin-
guish between the indirect (i.e., interactions with other cells) and the direct (i.e., 
genome modifications) effects of aging on macrophage biology to fully understand 
the macrophage aging process.  

    2      Macrophages  

  Macrophages are phagocytic cells involved in a number of complex functions in 
disease and health. They are critical to the establishment of the immune response 
against invading pathogens and to the maintenance of homeostasis, by promoting 
angiogenesis and tissue remodeling and repair. In addition, these cells are responsi-
ble for scavenging cellular debris and apoptotic cells (Mantovani et al. 2002).  
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  Under the effect of growth factors, macrophages proliferate but the presence of 
microbial agents, cytokines or inflammatory molecules blocks this proliferation and 
induces functional activities (Xaus et al. 1999). This activation leads to the release 
of toxic metabolites and to the elimination of microbes by phagocytosis (Schroder 
et al. 2004).  

  Macrophages, as all blood cells, originate from hematopoietic stem cells 
(HSCs) in bone marrow under the presence of some growth factors and cytokines. 
The combined action of interleukin (IL)-1, IL-3 and/or IL-6 induces stem cell 
division, giving rise to a new stem cell and a pluripotent myeloid cell, also referred 
to as granulocyte-erythrocyte-megakariocyte-macrophage colony-forming unit 
(GEMM-CFU). In the presence of IL-1 and/or IL-3, this precursor is committed 
to becoming a progenitor of both macrophages and granulocytes known as the 
granulocyte-macrophage colony-forming unit (GM-CFU), which is also commit-
ted to the macrophage colony-forming unit (M-CFU) by action of the macrophage 
colony stimulating factor (M-CSF), the granulocyte-macrophage colony stimu-
lating factor (GM-CSF) and IL-3. The M-CFU differentiates, in the presence of 
M-CSF, into monoblast, promonocyte, monocyte and, finally, into differentiated 
macrophages.  

  The differentiation process is regulated by the combined action of several tran-
scription factors (Valledor et al. 1998); among these, PU.1, C/EBP and AML1/CFB β  
play a crucial role in regulating the myeloid-specific expression of the M-CSF and 
GM-CSF receptors required for differentiation, proliferation and survival of mac-

Fig. 1 Macrophages originate from HSC in bone marrow and migrate to body tissues where they 
become differentiated. Once in the tissues, macrophages may proliferate or become activated dur-
ing an inflammatory process. However, when not activated, most macrophages die by apoptosis
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rophages (Hohaus et al. 1995; Lloberas et al. 1999; Smith et al. 1996). Once in the 
blood, these cells can migrate to body tissues and differentiate, under the influence 
of cytokines and depending on the tissue type, into cell types with different func-
tional activities such as osteoclasts (bone), Kupffer cells (liver), microglia (brain), 
etc. However, when not activated, most macrophages die by apoptosis (Fig. 1).  

   2.1 Macrophage Functions  

  Macrophages play a key role in both innate and adaptive immunity. They recog-
nize and destroy invading pathogens and apoptotic cells and modulate the immune 
response by producing cytokines and chemokines. Moreover, macrophages, as anti-
gen presenting cells, are involved in the regulation of the differentiation and activa-
tion of T-cells by the antigen presentation process. In addition to these functions, 
macrophages play a crucial role in the resolution of inflammation and in tissue 
repair by promoting synthesis of the extracellular matrix, fibroblast proliferation, 
angiogenesis and elimination of cellular debris (Rosmarin et al. 1995). Lastly, mac-
rophages eliminate modified proteins, oxidized low density lipoproteins, apoptotic 
cells and other components from the tissues by expressing scavenger receptors.  

  Macrophages arriving at the inflammatory loci in the early steps kill remaining 
microorganisms, remove cell debris and apoptotic bodies and, in a second step, these 
cells reconstitute damaged tissues (Arnold et al. 2007; Fig. 2). Under the effect of 

Fig. 2 Macrophages play a key role during the inflammatory process. In the initial phase they 
are activated in a Th1 context, leading to the release of inflammatory mediators (proinflamma-
tory cytokines and chemokines, nitric oxide, ROS, etc.). In the resolution phase, macrophages 
become alternatively activated by Th2-type cytokines and participate in tissue repair and remod-
eling through the production of polyamines and proline
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cytokines or bacterial products, macrophages become activated and undergo a series 
of biochemical, morphological and functional modifications. Th1-type cytokines 
such as interferon-gamma (IFN- γ ) that interacts with its specific receptor, or bacte-
rial products such as lipopolysaccharide (LPS), Gram-positive bacteria and yeast 
cell wall components, dsRNAs, bacterial flagellin and CpG oligodeoxynucleotides, 
induce classical activation of macrophages. These molecules are recognized by spe-
cific receptors called Toll-like receptors (TLRs; Akira et al. 2001; Alexopoulou et al. 
2001; Gewirtz et al. 2001; Hemmi et al. 2002). This activation leads to inflammation 
and elimination of the pathogen. In addition to this classical activation, also known 
as M1, it has been reported that several cytokines such as IL-4 and IL-13 induce a 
distinct alternative activation programme (M2; Gordon, 2003). Recently, it has been 
shown that IL-21, Activin A and Chitin also mediate alternative macrophage activa-
tion (Ogawa et al. 2006; Pesce et al. 2006; Reese et al. 2007). Classical activation 
is characterized by the expression of inducible nitric oxide synthase (NOS2) and by 
the biosynthesis and release of proinflammatory cytokines, including tumor necrosis 
factor (TNF)- α , IL-1 and IL-6. In the alternative activation, the expression of argin-
ase 1 is induced, together with the upregulation of the mannose receptor (MR) and 
several other markers (Mantovani et al. 2004). Curiously enough, arginine is the sub-
strate for NOS2 and for arginase 1 and the system that transports this amino acid is 
induced by both types of cytokines providing more arginine inside the cell (Yeramian 
et al. 2006a, b). NOS2 degrades arginine to produce NO while arginase produces 
ornithine and polyamines. Alternatively activated macrophages exert immunoregula-
tory functions, drive type II responses and participate in tissue remodeling.     

   2.2 Activation of Macrophages  

  The main activators of macrophages are LPS and IFN- γ . These molecules induce 
microbicidal and proinflammatory functions in macrophages and, therefore, the 
destruction of the invading pathogen.  

  IFN- γ  is a type II interferon mainly produced by activated T and NK cells (Imai 
et al. 1999; Yoshimoto et al. 1998). However, other cell types such as professional 
antigen presenting cells can also release it (Frucht et al. 2001; Pestka et al. 2004). 
IFN- γ  induces an antiproliferative and antiviral response and is critical to the estab-
lishment of the immune response as it promotes the recruitment of lymphocytes at 
the inflammation site by inducing the production of chemokines and the expression 
of adhesion molecules (Puddu et al. 1997). Moreover, IFN- γ  leads to the expres-
sion of several genes that regulate many aspects of macrophage biology. It induces 
the expression of the Fc high affinity receptors (Fc γ RI) in the cell surface lead-
ing to increased antibody-dependent cytotoxicity (Vaday et al. 2001); it increases 
the phagocytic activity of macrophages; it induces a respiratory burst (generation 
of nitric oxide and reactive species of oxygen) and the expression of lysosomal 
enzymes promoting the destruction of the pathogen (Capsoni et al. 1994). IFN- γ  
inhibits M-CSF-dependent proliferation and protects macrophages from apoptosis 
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induced by glucocorticoids or M-CSF withdrawal. This protective effect of IFN- γ  
is mediated by p21 waf1  expression and blockade of the cell cycle at the G1/S bound-
ary (Xaus et al. 1999). We have observed that in granulomas, where macrophages 
need to survive for a longer time, there are increased levels of IFN- γ  correlating 
with increased levels of p21 waf-1  (Xaus et al. 2003). In addition to modulating the 
innate immunity, IFN- γ  regulates the adaptive immunity by regulating the expres-
sion of the major histocompatibility complex (MHC) class II genes at several levels 
(Cullell-Young et al. 2001; Gonalons et al. 1998), which are crucial for presenting 
antigens to T-lymphocytes and for initiating an immune response.  

  The effect of LPS on macrophage function is mediated by the interaction with 
its receptor, the Toll-like receptor 4 (TLR4). Activation of macrophages by LPS 
leads to an increase in mRNA synthesis and to the secretion of proinflammatory 
cytokines such as TNF- α , IL-6, IL-1 β , IL-8, IL-12, TGF- β  and the macrophage 
inhibitory factor (MIF). Moreover, in response to LPS macrophages release ara-
chidonic acid metabolites (e.g., platelet-activating factor, prostaglandin and leukot-
riens), proteases, eicosanoids, nitric oxide and other reactive oxygen species (ROS; 
Miller et al. 2005; Muzio et al. 1997). All these cytokines and mediators are critical 
to the initiation of inflammatory response and contribute to the efficient control of 
growth and dissemination of invading pathogens.  

  In addition to this classical activation, macrophages can be activated by Th2 
cytokines acquiring an M2 phenotype. Alternative activation of macrophages by IL-4 
and IL-13 produces M2-type responses, particularly in allergic, cellular and humoral 
responses to parasitic and extracellular pathogens. This alternative activation results 
in the up-regulation of the expression of the MR and MHC class II molecules, which 
stimulates endocytosis and antigen presentation, respectively. These cytokines also 
induce the expression of selective chemokines such as macrophage-derived chemok-
ine (MDC, also known as CCL22) and thymus and activation regulated chemokine 
(TARDC, CCL17), and intracellular enzymes, such as arginase, that are involved in 
cell recruitment and repair of granuloma formation, thereby counteracting the effects 
of the inducible NOS2 activation and nitric oxide release (Gordon, 2003). Moreover, 
the induction of arginase down-regulates the expression of NOS2 at the translational 
level (Lee et al. 2003). The catabolism of arginine by arginase produce  l -ornithine and 
ultimately polyamines that induce fibroblasts proliferation and collagen production.  

     3 Aged Macrophages  

  Macrophages from aged humans and mice display several defects in their func-
tion. Many studies have focused on the effects of aging on macrophage biology 
but have yielded conflicting, and sometimes opposing, results. This may be due to 
factors such as the strain and sex of experimental subjects, distinct macrophage ori-
gin (bone-marrow, peritoneum, spleen, or alveolus) and differences in experimen-
tal conditions (culture, stimulant used, etc.). Furthermore, in the case of humans, 
it is difficult to define the term ``healthy elderly subject,’’ which implies careful 
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screening for health. Furthermore, most studies on humans have been performed 
with monocytes, which generally provide a limited view of tissue macrophages. In 
addition, the majority of studies on macrophage aging have shown modifications 
in their functional activities; however, in few cases these studies have provided an 
explanation of the basis of this dysfunction.  

   3.1      Differentiation and Maturation of Macrophages  

  The immune system is maintained by the generation of immune cells from HSCs. 
These cells reside in the bone marrow and provide lifelong production of progenitors 
and peripheral blood cells. Simultaneously, HSCs must be able to maintain the stem 
cell pool by selfrenewal divisions. Increasing experimental evidence supports the 
premise that HSCs become aged and have a limited functional lifespan (Geiger and 
Van Zant, 2002). The first studies to suggest stem cell aging involved serial trans-
plantation of whole bone marrow that supported only 4 to 5 rounds of transplanta-
tion (Harrison and Astle, 1982; Van Zant and Liang, 2003). Given that the HSC 
compartment facilitates this regeneration, these findings suggested an exhaustion of 
the stem cell pool. In fact, there is ample evidence that stem cell quality decreases 
with each selfrenewal division (Van Zant et al. 1997). Mouse experiments revealed 
that the number of HSCs increased while their proliferative capacity decreased with 
age (de Haan and Van Zant, 1999; Morrison et al. 1996). Results from studies com-
paring HSCs in different mouse strains indicate that HSC functional decline can 
be correlated with lifespan. In addition, a negative correlation has also been shown 
between lifespan and proliferative capacity (de Haan et al. 1997; Geiger and Van 
Zant, 2002). Progenitor cells from long-lived C57BL/6 mice have a relatively low 
cycling activity, whereas the stem cell pool increases with age and is relatively 
small. In contrast, DBA/2 mice have a shorter lifespan than C57BL/6 mice, their 
progenitors show increased cycling activity, and their stem cell pool decreases upon 
aging and is relatively large (de Haan et al. 1997). All this suggests that rapidly 
dividing cells exhaust faster.  

  But, how does the aging of HSCs affect the generation of macrophages? To 
date, it is not clear whether the generation of macrophages from their precursors 
is impaired with aging. In humans, there is a reduction of CD68-positive cells, 
which are markers of macrophage population (Ogawa et al. 2000). The percent-
age of CD68-positive cells is high in children (first and second decades) and then 
decreases as the individual gets older. Moreover, it has been hypothesized that this 
reduction in the macrophage population may have an influence on the reduction of 
HSC proliferation and on the induction of apoptosis in the bone marrow of elderly 
people, probably via reduced production of growth factors and cytokines (Arkins 
et al. 1993; Kelley et al. 1996; Minshall et al. 1997). By contrast, macrophages 
increase in density in myeloproliferative disorders suggesting that there was a 
correlation between macrophage density and myelopoietic activity (Sadahira et 
al. 1999). In mice there are conflicting data. According to Wang et al. (1995), the 
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macrophage population is enhanced in bone marrow, as shown by an increase in 
Mac1-positive cells. This is reflected as an increase with age in the macrophage 
colony forming unit (M-CFU). Moreover, macrophages from bone marrow of old 
mice generate less TNF- α  than macrophages from young mice suggesting that 
the increase in the number of macrophages may reflect a compensation for their 
reduced function. However, we have found that the number, size, DNA content 
and cell surface markers expressed during macrophage maturation, such as Mac1, 
were similar in macrophages from aged and young mice (Herrero et al. 2001). 
Recently, Rossi et al. (2007) have demonstrate that accumulation of DNA dam-
aged has a profound impact on the functional capacity of HSCs with age, lead-
ing to loss of reconstitution and proliferative potential, diminished selfrenewal, 
increased apoptosis and, ultimately, functional exhaustion. In transplantation 
experiments, it has been shown that recipients transplanted with HSCs from mice 
deficient in several genomic maintenance pathways have a marked decrease in 
reconstitution of B-cells, T-cells and myeloid cells. Moreover, these authors pro-
vide evidence that endogenous DNA damage accumulates with age in wild-type 
stem cells. This suggests that an impaired functional capacity of HSCs accumulat-
ing DNA damage may derive in a deficient generation of blood cells.  

    3.2      Effects of Aging on Macrophage Functions  

  A great number of macrophage functions including phagocytosis, antibacterial 
defenses, chemotaxis, wound repair and activation have been reported to be altered 
in human, rats and mice during aging, thereby contributing to the immunosenes-
cence of adaptive and innate immunity (Table 1).  

Table 1 Effect of aging on macrophage function

Function Change with aging

IFN-g activation
Production of ROS Decreased
Production of NO Decreased
Activation of MAPK Decreased
Expression of MHC II Decreased
Production of PGE2 Increased
LPS activation
Production of proinflammatory citokines Decreased
Production of chemokines Decreased
Production of ROS Decreased
Production of NO Decreased
Expression of TLR4 Decreased or no change
Activation of MAPK Decreased
Phagocytosis Decreased
Wound repair Decreased
Chemotaxis Decreased
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     3.2.1      Phagocytosis  

  Phatocytosis constitutes the first step of immune defense against invading pathogens. 
Tissue macrophages, alveolar macrophages and polymorphonuclear leucocytes 
in the blood have all phagocytic activity. However, the data available addressing 
the effect of aging on the phagocytic function of macrophages and monocytes is 
unclear. An age-related decline in phagocytosis by neutrophils but not by alveolar 
macrophages was observed in rats (Mancuso et al. 2001). However, several reports 
using murine models indicate a decline in the adherence, opsonization, tumor cell 
killing and phagocytosis by peritoneal macrophages (De La Fuente, 1985; De la 
Fuente et al. 2000; Khare et al. 1996). In addition, it is observed that the phagocytic 
activity of macrophages from aged individuals declines in parallel with reduced 
production of macrophage-derived chemokines (Swift et al. 2001). Altered expres-
sion and function of receptors involved in the phagocytic process and their signal 
transduction may explain the observed reduced phagocytic ability in aging models. 
However, the effect of aging on these proteins has not been reported.  

    3.2.2 Chemotaxis  

  To eliminate invading pathogens macrophages must migrate toward the inflamma-
tion site in a process controlled by chemotactic stimuli. The main chemotactic fac-
tors are chemokines secreted by the endothelium, neutrophils, T-cells, monocytes 
and macrophages, such as macrophage chemotactic and activating factor (MCAF), 
macrophage inflammatory protein (MIP)-1 α , MIP-1 β , RANTES and IL-8 as well 
as complement products such as C5a, C3a and C4a. A reduction in the production of 
MIP-1 α  and MIP-1 β  by macrophages from aged mice has been described (Ashcroft 
et al. 1998). Moreover, the chemotactic response of macrophages to complement-
derived factors is impaired in elderly individuals (Fietta et al. 1993). Aschroft et al. 
(1998) collected coetaneous punch biopsies of the wounds from 138 healthy sub-
jects, aged 19–96 years at fixed time-points from day 1 up to 3 months postwound-
ing. Using quantitative imaging, they demonstrated that monocyte/macrophage and 
lymphocyte appearance was delayed in the aged individuals. Thus, these data sug-
gest that aged macrophages show an impaired chemotactic response that may con-
tribute to delayed pathogen clearance in healthy elderly individuals.  

    3.2.3 Activation of Macrophages  

  The different aspects of macrophage classical activation is the most studied effect of 
aging on macrophages. IFN- γ  activation is impaired in aged macrophages. Studies 
using rats have demonstrated a 75% decrease in the capacity of macrophages from 
aged animals to produce superoxide anion after incubation with IFN- γ  or opsonized 
zymosan (Davila et al. 1990). Furthermore, the production of peroxide and nitric 
oxide in response to IFN- γ  by peritoneal macrophages is diminished in aged mice 
(Ding et al. 1994). This was explained by a reduced IFN- γ  induced mitogen-acti-
vated protein kinase (MAPK) phosphorylation in macrophages from aged mice.  
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  In addition to microbicidal activities, IFN- γ  induces the expression of MHC class 
II molecules that are involved in the initiation of the adaptive immune response. Anti-
gen presentation by macrophages is decreased with age, possibly due to diminished 
expression of MHC class II molecules both in human and mice (Herrero et al. 2001; 
Plowden et al. 2004). We have found that bone marrow macrophages from aged 
mice express half of the MHC class II antigen IA molecules at the cell surface when 
stimulated with IFN- γ  (Herrero et al. 2001). IA β  mRNA expression is also lower in 
aged macrophages because there is a smaller amount of transcription factors that 
bind to the W and X boxes of MHC class II gene promoter. In addition, it has been 
shown that human monocytes express decreased levels of HLA-DR/DP (Villanueva 
et al. 1990). Moreover, activated macrophages from aged humans and mice produce 
higher amounts of prostaglandin E2 than younger individuals, which inhibits surface 
expression of MHC class II, thus contributing to the decreased capacity of antigen 
presentation of macrophages observed with age (Plowden et al. 2004).  

  Activation by LPS is also altered in aged macrophages. Although inflammatory 
cytokines are elevated in the plasma of aged animals and humans (Franceschi et 
al. 2000; Saurwein-Teissl et al. 2000), the production of inflammatory cytokines 
by peritoneal macrophages from rats and mice decreases with age. Stimulation of 
macrophages from aged rodents with LPS results in significantly lower production 
of IL-1, TNF- α , and IL-6 (Inamizu et al. 1985; Plackett et al. 2004; Wallace et al. 
1995), as well as lower production of chemokines, such as MIP-1 α  and MIP-1 β  
(Swift et al. 2001). The production of oxidative radicals in response to LPS also 
appears to decline with age, and the expression of NOS2 and the production of nitric 
oxide are reduced in macrophages from aged rodents (Alvarez et al. 1996; Khare 
et al. 1996; Kissin et al. 1997; Plackett et al. 2004).  

  There is some controversy concerning the basis for the decline in the production 
of inflammatory cytokines and oxidative radicals in response to LPS stimulation. 
Renshaw et al. (2002) found that expression of a variety of TLRs, including TLR4, 
was decreased in the aged, which could be the reason for a decreased response of 
macrophages from aged mice to LPS. Conversely, Boehmer et al. (2004) did not find 
a reduction in TLR expression and they attributed the impaired cytokine production 
to a decrease in c-jun N-terminal kinase (JNK) and p38 MAPK activation in mac-
rophages from aged mice. In humans, the decreased response of monocytes to LPS 
has been associated with deficiencies in the activation of protein kinase C (PKC)- α , 
PKC- β I and PKC- β II, MAPK and deficient expression of c-Fos and c-Jun (Delpedro 
et al. 1998). Using a microarray analysis on RNA from resting and LPS-stimulated 
macrophages from aged and control mice, Chelvarajan et al. (2006) demonstrated 
that immune response (proinflammatory chemokines, cytokines and their recep-
tors) and signal transduction genes (TLR and MAPK pathways) were specifically 
reduced in aged mouse macrophages. In addition to reduced levels of IL-1 β , IL-6, 
IL-12 and TNF- α , they found a decrease in IFN- γ , M-CSF, GM-CSF and bone mor-
phogenetic protein-1 (BMP-1) production in aged macrophages. Moreover, many 
chemokines involved in innate immunity and inflammation are reduced in macro-
phages from aged mice, such as CCL4, CXCL1, CCL6, CCL9 and CCL24, as well 
as the receptors CC chemokine receptor 3 (CCR3) and CCR5, involved in chemo-
taxis of neutrophils, macrophages and eosinophils (Chelvarajan et al. 2006). All this 
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correlates with the reduction in the overall inflammatory response in spleens from 
aged mice. Furthermore, a variety of chemokines and receptors (CXCL9, CXCL10, 
CXCL11, CCR7), which affect CD4 and CD8 T-cell migration and T helper cell type 
1 (Th1) development, are reduced in macrophages from aged mice (Chelvarajan et 
al. 2006). This is in agreement with an age-associated decrease in T-cell function 
and in particular, Th1 cell function. Several components of the TLR pathway [TNF-
receptor-associated factor 6 (TRAF6), CD14, Rel, RelB and some of the subunits of 
the NF- κ B transcription factor] have reduced levels in LPS-stimulated aged macro-
phages. As this pathway is known to be critical for the production of chemokines and 
proinflammatory cytokines, these authors conclude that reduced levels of the com-
ponents of TLR pathway could explain the impaired production of several cytokines 
and chemokines in LPS-stimulated macrophages from aged mice. In addition to 
TLR pathway, they also found an increase in the expression and phosphorylation of 
p38 MAPK in aged macrophages. Low doses of a p38 MAPK inhibitor enhanced 
proinflammatory cytokine production by macrophages indicating that p38 MAPK 
activity has a role in cytokine dysregulation in aged mouse macrophages. This is in 
contrast with the results of Boehmer et al. (2004;  See  above). This discrepancy could 
be the result of the use of thioglycollate-induced peritoneal macrophages in the Boe-
hmer study versus macrophages from spleen in the Chelvarajan study.  

  There are few data regarding the way in which aging may affect the alternative 
activation of macrophages. However, alterations in cytokine secretion by T-cells could 
affect this process. In mice infected with  S. mansoni , the production of Th2 cytokines 
is lower in aged BALB/c animals compared to young ones (Smith et al. 2001). More-
over, older IL-4-/- BALB/c mice express a transient resistance to  L. major  infection, 
indicating that these animals have a lower capacity for Th2 response (Kropf et al. 
2003). Arginase expression, which may play a crucial role in M1/M2 polarization, is 
also affected by age. Total arginase activity in the postrhinal cortex and in some regions 
of the hippocampus decreases in aged mice (Liu et al. 2003a, b). However, it has been 
shown that insulin augments alternative activation of macrophages by IL-4 (Hartman 
et al. 2004; Liang et al. 2004). As insulin blood levels and insulin resistance increase 
with age (Petersen et al. 2003), it is tempting to speculate that alternative activation 
of macrophages may increase during aging. Moreover, the insulin pathway regulates 
the lifespan in worms, flies and mammals (Tatar et al. 2003). Mutations in some of 
the components of this pathway leads to an extension of the lifespan of these species 
(Kenyon, 2005) suggesting that increased insulin signaling may be related to aging. 
However, further studies are required to examine whether changes in macrophage 
polarization with aging are responsible for some aspects of immunosenescence.  

    3.2.4      Wound Repair  

  In addition to their crucial role in the initial phases of the inflammatory response, 
macrophages develop important functions in the removal and regeneration of the 
damaged tissue by secreting angiogenic and fibrogenic growth factors. Studies 
in human and rodent species have shown an age-related decline in the coetane-
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ous wound repair process, which impacts on the inflammatory response and the 
growth phase of the repair process (Gosain and DiPietro, 2004; Thomas, 2001). 
These changes include enhanced platelet aggregation, delayed re-epithelialization, 
delayed agiogenesis, delayed collagen deposition, turnover and remodeling, delayed 
healing strength, decreased wound strength, and delayed infiltration and function of 
macrophages. Using a murine model of excision wound repair, Danon et al. (1989) 
demonstrated that repair and re-epithelialization processes were delayed signifi-
cantly in aged mice and that the rate of wound repair could be partially restored 
by the addition of peritoneal macrophages from young mice. In addition, the rates 
of collagen synthesis and angiogenesis [attributed to a decrease in the secretion of 
vascular endothelial growth factor (VEGF)] were delayed. TLRs 2, 4, 7, and 9 and 
adenosine A (2A) receptors mediates the production of VEGF and other angiogenic 
factors by macrophages (Olah and Caldwell, 2003; Pinhal-Enfield et al. 2003). 
Hence, the observed decrease in TLR function in aging may contribute to delayed 
wound healing. Furthermore, the expression of cell adhesion molecules on the vas-
cular endothelium is decreased in the elderly (Ashcroft et al. 1998), and responsive-
ness (receptor expression) to VEGF and epithelial growth factor (EGF) is reduced 
(Ashcroft et al. 1997; Kraatz et al. 1999). Thus, the communication between tissue 
cells and the innate immune system appears impaired, contributing to the observed 
functional deficiencies in tissue repair.  

     3.3      Effect of Aging on Tissue-Specific Macrophages  

  In addition to studies regarding the effect of aging on macrophage biology, many 
reports have focused on the impact of aging on some tissue-specific macrophages. 
Thus, alteration in the function of these macrophages may contribute to the patholo-
gies observed in these tissues during the aging process.  

  Macrophages are dispersed throughout the body. Some take up residence in par-
ticular tissues becoming fixed macrophages which serve different functions in dif-
ferent tissues and are named to reflect their tissue location: alveolar macrophages 
in the lung, thymic macrophages in the thymus, histiocytes in connective tissues, 
Kupffer cells in the liver, mesangial cells in the kidney, osteoclasts in bones, Lang-
erhans’ cells (LCs) in the skin and microglia in the brain.  

  LCs were originally described as an epidermal macrophage population contain-
ing large granules and capable of phagocytosis (Hume et al. 1983; Ralfkiaer et al. 
1985). Later, LCs were typed as immature dendritic cells since they can migrate 
after activation from the skin to regional lymph nodes, a hallmark characteristic of 
dendritic cells (Cumberbatch and Kimber, 1992; Yamazaki et al. 1998; Wang et al. 
1999). Although both macrophages and LCs belong to myeloid lineage, the precise 
lineage relationship between them is not yet clear. The number of epidermal LCs 
and their function is diminished as a result of the aging process in humans and 
mice (Bhushan et al. 2002; Thiers et al. 1984). However, it is not clear whether this 
defect is a consequence of diminished bone marrow precursor production. These 
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age-related changes may contribute to altered coetaneous immune function, such as 
poor or variable contact hypersensitivity to allergens in the elderly.  

  The functional capacity of Kupffer cells is also impaired in aged mice. They have 
a substantial reduction in their respiratory burst activity, lessened endocytic capac-
ity and enhanced oxidative stress (Videla et al. 2001).  

  Among the most striking changes that occur with age is thymic involution, which 
correlates with the observed impairment of T-cell immunity. This decrease in thy-
mus size is also associated with alterations in thymus architecture (Aspinall, 1997; 
Bertho et al. 1997). However, little information is available on macrophages during 
age-dependent thymus involution. In mice, relatively early in the involution process, 
the number of macrophages and their phagocytic activity increases, with these cells 
appearing to have a large number of phagolysosomes containing cellular material 
at various stages of lysis (Hirokawa, 1977; Nabarra and Andrianarison, 1996). This 
correlates with the decrease in thymocyte numbers (Aspinall, 1997). Over time the 
number of thymic macrophages diminishes gradually (Nabarra and Andrianarison, 
1996; San Jose et al. 2001), in correlation with a reduction in the total number of 
macrophage precursors and their capacity to proliferate (Zeira and Gallily, 1990). In 
addition, Varas et al. (2003) demonstrated that the thymic macrophages phenotype 
(expression of cell surface markers and chemokine receptors) is unaltered in the 
elderly suggesting that their functional properties on T-cell stimulation, adhesion 
and migration would also be unimpaired.  

  Microglia cells are the small, highly ramified immune sentinels of the brain. These 
cells are distributed throughout the brain parenchyma and are continuously sensing 
the microenvironment in search for injuries or pathogens (Davalos et al. 2005; Nim-
merjahn et al. 2005). After activation, microglia initiate an innate immune response 
by producing proinflammatory cytokines. Different lines of evidence from humans 
and mice suggest that senescence of microglia does occur leading to neurodegen-
eration. Proliferation of microglia during activation is not impaired by old age. In 
fact, microglia appear to proliferate even more vigorously in older rats after a facial 
nerve lesion (Conde and Streit, 2006). Moreover, human and rodent microglia show 
signs of aging-related structural and morphological deterioration (Streit, 2006). The 
incidence of dystrophic microglia increases in older individuals, supporting the idea 
that dystrophy is a reflection of cell aging. It is suggested that the deterioration of 
microglia may be involved in the pathogenesis of neurodegenerative disease, per-
haps through progressive loss of microglial neuroprotective capacity (Streit, 2002). 
In addition to this structural alteration, microglia from healthy aging brains show an 
increased expression of proinflammatory cytokines (TNF- α , IL-1 β , IL-6 and IL-12; 
Sierra et al. 2007). The higher levels of these cytokines produce tissue degeneration 
(Aloisi, 2005), and thus the increased levels in aging microglia could contribute to 
brain damage during aging, and even contribute to the onset of neurodegenerative 
diseases (Mrak and Griffin, 2005).  

  There are few data regarding how aging affects the function of osteoclasts. Bone 
mass is maintained by a delicate balance between formation and resorption. At cell 
level, the rates of bone formation and resorption reflect the number and activity of 
stromal/osteoblastic cells and osteoclasts, cells of macrophage origin. Stromal/oste-
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oblastic cells regulate the number and activity of osteoclasts through expression of the 
soluble receptor activator of NF- κ B ligand (RANKL), M-CSF and osteoprotegerin 
(OPG; Cao et al. 2005). With advancing age, expression of RANKL in whole bone 
and in culture marrow cells from both, humans and animals, gradually increases, and 
expression of OPG either decreases or remains unchanged. RANKL expression is 
also increased in early stromal/osteoblastic cells from aged mice (Cao et al. 2003; 
Fazzalari et al. 2001; Ikeda et al. 2001; Makhluf et al. 2000). Furthermore, the osteo-
clast progenitor pool is reported to increase with advancing age in mice (Perkins et 
al. 1994). Cao et al. (2005) showed that aging significantly increases stromal/osteob-
lastic cell-induced osteoclastogenesis, promotes expansion of the osteoclast precur-
sor pool and alters the relationship between osteoblasts and osteoclasts. Coincident 
with these changes, the efficacy of osteoclasts to form bone is also impaired. All 
these modifications may contribute to the osteoporosis associated with aging.  

  In summary, the aging process has an impact on the function of macrophages and 
tissue-specific macrophages, thus leading not only to an impaired immune response 
but also to the development of several pathologies in the tissues where they reside.  

     4 Molecular Mechanisms Involved in Macrophage Aging  

  The data presented so far indicates an age-associated malfunction of macrophages. 
Most of these publications describe the events but do not shed light on the origin of 
this malfunction. Many theories have been formulated to explain the aging process. 
Because immunosenescence is a hallmark of aging, these theories may also explain 
the changes that occur in the immune system as a result of maturation (Fig. 3).  

Fig. 3 Molecular view of macrophage aging. Altered gene expression caused by accumulation 
of DNA damage and by epigenetic changes may, in part, explain the altered functional activities 
observed in aged macrophages
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   4.1   Aging and Altered Gene Expression  

  Aging has been associated with changes in gene expression (Kanungo, 1975). 
Many genes show an altered expression in several cell types contributing to the 
observed modification of some functional activities during aging. Loss of the 
expression of several genes occurs in immune cells. For instance, in T-cells, loss 
of expression of CD28 (Effros et al. 1994) and IL-2 receptor is related to a defi-
cient co-stimulatory signal and poor proliferative responses. As discussed above, 
aged macrophages also have altered expression of many genes (TLRs, proinflam-
matory cytokines, chemokines, MHC class II molecules, signal transduction mol-
ecules, transcription factors, etc), which may explain the loss of some functional 
activities. The molecular basis of the altered expression of some of these genes 
is related to an impaired signal transduction (MAPK, PKC; Boehmer et al. 2004; 
Delpedro et al. 1998). In other cases, changes in gene expression result from 
age-related modifications of one or more transcriptional factors. For example, 
we have demonstrated that loss of MHC class II expression in aged macrophages 
was due to lower levels of transcription factors that bind to the promoter of these 
genes, indicating reduced binding efficiency (Herrero et al. 2001). Moreover, 
changes in gene expression may be due to epigenetic mechanisms. It has been 
reported that methylation of CpG islands decreases during cellular senescence 
and aging (Hornsby et al. 1992; Singhal et al. 1987) and that the activity of the 
DNA-methyl transferase is also lower in senescent cells (Vertino et al. 1994). 
In addition, disruption of PASG (lsh), a SNF2-like factor that facilitates DNA 
methylation, causes premature aging in mice (Sun et al. 2004), which suggests 
that DNA methylation is essential to maintain the expression patterns required 
for normal growth and longevity. Furthermore, acetylation and deacetylation of 
histones are involved in cell senescence (Howard, 1996; Ogryzko et al. 1996; 
Villeponteau, 1997). In mammals, the histone acetyl transferase activity of p300/
CBP is reduced in several tissues in aged mice (Li et al. 2002) and its expression 
is impaired in neurons of aged rats (Matsumoto, 2002). Moreover, the histone 
deacetylase Sir2 and its homologs in mammals SIRT1 and SIRT6 are involved 
in regulation of genomic stability and aging in yeast, worms and mice (Chua 
et al. 2005; Hekimi and Guarente, 2003; Mostoslavsky et al. 2006). On the basis 
of these observations, it is of interest to study the epigenetic regulation of gene 
expression during aging in macrophages.  

    4.2 Telomere Shortening  

  Telomeres are chromatin structures that cap and protect the end of chromosomes. In 
vertebrates, they are formed by tandem repeats of hexamer sequences (TTAGGG) 
that are associated with various specific proteins (Blackburn, 2001; Chan and 
Blackburn, 2002; de Lange, 2002) involved in the maintenance and regulation of 
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telomere length. With selfreplication, telomeres lose TTAGGG repeats because 
conventional DNA polymerases are not able to completely replicate linear chromo-
somes (Lansdorp, 2005). Progressive telomere shortening has detrimental impli-
cations; chromosome caps are unprotected leading to genomic instability and cell 
death (Blackburn, 2001; McEachern et al. 2000). However, in normal cells, tel-
omere erosion initiates a cell senescence program which prevents further divisions, 
thereby protecting cells from excessive telomere loss and cell death (Blackburn, 
2001; McEachern et al. 2000).  

  Telomere shortening has been involved in the aging process and in the regulation 
of replicative lifespan (Iwama et al. 1998). Late generations of the telomerase KO 
mice, Terc -/- , show severe telomere dysfunction characterized by critically short tel-
omeres and end-to-end fusions. These mice suffer from various age-related diseases 
that affect highly proliferative tissues (Blasco, 2002). Among these, the generation 
and function of immune cells has been shown to be affected by telomere attrition. 
Numerous studies have confirmed that loss of telomeric DNA with progressive tel-
omere shortening occurs in cells of the hematopoietic system as a function of nor-
mal replicative aging. Age-dependent loss of telomeric DNA was demonstrated in 
both neutrophils and lymphocytes (Hastie et al. 1990; Vaziri et al. 1993). Moreover, 
reduced proliferative capacity of T- and B cells has been described in Terc -/-  mice 
(Blasco, 2002). However, no direct assessment of aged-induced changes in telomere 
length in monocytes and macrophages has been performed to date. Several stud-
ies using peripheral blood mononucleated cells consisting of 10–15% monocytes, 
60–70% lymphocytes and 30–15% granulocytes, have shown that these structures 
shorten with age at a rate comparable to that of purified lymphocytes (Weng, 2001). 
Mature monocytes do not undergo further cell division after activation. Thus, the 
variations in telomere length in monocytes as the aging process advances may reflect 
changes in telomere length in hematopoietic progenitor cells. In fact, HSCs show 
telomere shortening during in vitro culture and in vivo aging (Engelhardt et al. 1997; 
Vaziri et al. 1994; Zimmermann et al. 2004). HSCs derived from human and mice 
lose telomeric DNA with age despite the presence of detectable telomerase activity 
(Allsopp et al. 2001; Vaziri et al. 1994). Moreover, telomere shortening occurs dur-
ing serial transplantation of HSCs, coinciding with impaired function (Allsopp et al. 
2001). This suggests that telomere attrition may alter the HSC capacity to generate 
blood cells. In support of this notion, HSCs from telomerase-deficient mice whith 
short telomeres show a reduced ability to repopulate irradiated mice (Allsopp et al. 
2003; Samper et al. 2002).  

    4.3 DNA Damage  

  Accumulation of DNA damage may also explain the aging process. Increasing 
experimental data suggest that somatic mutations accumulate during aging (Cur-
tis and Crowley, 1963; Ramsey et al. 1995; Tucker et al. 1999) and that this 
accumulation increases exponentially (Martin et al. 1996). This may be due to 
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an increase in the number of mutations or to a deficient repair activity. DNA 
damage produced by these mutations may cause an alteration in gene expression 
patterns, the generation of modified proteins and the alteration of some cellular 
functions. To repair this DNA damage, cells have developed a DNA damage 
response which includes the detection of the lesion, the activation of cell cycle 
checkpoints and the activation of several repair mechanisms to eliminate the 
damage (Sancar et al. 2004). Deficiencies in some of the components of the DNA 
damage response leads to senescence and premature aging (Lieber and Karanja-
wala, 2004) supporting the idea that accumulation of DNA damage is involved 
in the aging process.  

  An important mechanism that leads to a wide spectrum of intracellular dam-
age during aging is extended exposure to ROS generated by cellular metabolism 
(Kregel and Zhang, 2007). It has been long recognized that high levels of ROS can 
inflict direct damage on macromolecules such as lipids, nucleic acids and proteins 
impairing their function (Blumberg, 2004). In the hematopoietic system, stem cell 
functional capacity is severely affected by accumulation of DNA damage (Nijnik et 
al. 2007; Rossi et al. 2007). Alterations in telomere length maintenance and in the 
nucleotide excision repair (NER) and non-homologous end-joining (NHEJ) repair 
pathways limit stem cell function in an age-dependent manner by intrinsically dimin-
ishing selfrenewal and proliferative capacity of HSCs. Moreover, elevated levels of 
ROS are involved in the impairment of HSC function. Studies in mice deficient for 
the ataxia telangiectasia mutated ( Atm ) gene show that the selfrenewal capacity of 
HSCs depends on  Atm -mediated inhibition of oxidative stress.  Atm -deficient mice 
show progressive bone marrow failure resulting from a defect in HSC function that 
is associated with elevated ROS (Ito et al. 2004). Therefore, DNA damage- and 
ROS-dependent HSC failure may lead to an impaired generation of blood cells and, 
among these, macrophages during the aging process.  

  Few reports have assessed the direct influence of DNA damage and ROS on mac-
rophage biology. Activation of macrophages leads to an increase in ROS and nitric 
oxide production as well as many proinflammatory cytokines that result in the clear-
ance of the invading pathogen. However, this pro-oxidant environment may also 
cause DNA damage in macrophages themselves, including the induction of apop-
tosis (Xaus et al. 2000), suggesting that having very efficient antioxidant defenses 
could be very important for these cells. In this regard, it has been shown that the 
levels of antioxidant defenses, such as superoxide dismutase activity, decrease with 
aging in macrophages (de la Fuente et al. 2004), although no data about DNA dam-
age in these cells has been reported.  

  In addition, elevated levels of ROS modulate some redox-sensitive transcrip-
tion factors (Kregel and Zhang, 2007). Among these, NF- κ B is very relevant 
because it is a key regulator of macrophage biology. It is thought that the phos-
phorylation of I κ B, the inhibitory subunit of NF- κ B, is the key step in NF- κ B 
redox activation. ROS-mediated phosphorylation of I κ B, leading to its ubiqui-
tination and degradation, allows the NF- κ B complex to be translocated to the 
nucleus and act as a transcriptional activator (Piette et al. 1997). On the other 
hand, direct oxidation of critical cysteine residues in the p50 subunit of NF- κ B 
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decreases its DNA binding activity (Piette et al. 1997). It has been reported that 
macrophages suffer from oxidative stress with aging as reflected by an increase 
in the oxidized glutathione/reduced glutathione ratio (de la Fuente et al. 2004). 
Thus, alteration of redox status in macrophages during aging may alter the activ-
ity of NF- κ B and the expression of its target genes which may lead to the loss of 
some functional activities.  

     5 Conclusions and Perspectives  

  Macrophages are a key component of both innate and adaptive immunity and are 
of outmost importance in the elimination of an invading pathogen, the initiation of 
an immune response by activating T-cells and in the resolution of inflammation and 
tissue repair. Among the physiological functions that are affected by aging, the dete-
rioration of the immune system, called immunosenescence, represents a hallmark of 
the aging process and contributes to the increased mortality and major incidence of 
immune diseases and cancer observed in the elderly. Because of the importance of 
macrophages in the immune system, the altered functions of these cells as a result 
of the aging process may play a key role in immunosenescence.  

  Here, we have summarized increasing experimental data about how aging affects 
macrophage functions. We, and many other authors, have described that most of 
these functions are altered in aged humans, rats and mice suggesting that dysfunc-
tional macrophages may be involved in the deterioration of the immune system with 
aging. However, most of these studies have used peritoneal macrophages or blood 
monocytes which may be influenced by their interaction with other cell types that 
are also affected by aging, thereby providing a limited view of macrophage aging. 
On the other hand, the use of bone-marrow derived macrophages represents an 
extraordinary model to study the effect of aging on the genomic expression of mac-
rophages without the influence of other cell types but does not reflect the precise 
function of macrophages in vivo in the tissues. Therefore, the integration of data 
from all macrophage models provides the best strategy to assess how aging affects 
macrophage function and the molecular mechanisms involved in this process.  

  Many theories have been postulated to explain the aging process. Even though 
these theories have been demonstrated in many cell types, very few data are availa-
ble regarding the cellular and molecular mechanisms involved in macrophage aging. 
It would be of great interest to study telomere shortening and telomerase activity 
in aged macrophages as well as the influence of accumulation of ROS and DNA 
damage in these cells with aging because these studies could probably shed light 
on the origin of macrophage dysfunction with aging. In summary, a great amount 
of data demonstrates that macrophage functions are altered by aging contributing 
to immunosenescence. However, an integrative model which includes all macro-
phages subsets and a more profound study of the molecular mechanisms involved 
in this process would be necessary to gain further insight into macrophage aging 
and immunosenescence.  
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                                  Abstract:   The population of HIV-infected adults is progressively aging, due to more 
effective treatments that lower the viral load. Since aging and HIV disease each have 
major detrimental effects on the immune system, it is possible that in older persons 
who are infected with HIV-1, the immune changes due to the infection combined with 
those that occur with age may synergize to exacerbate the disease. Indeed, clinical 
studies have already documented older age as an independent risk factor for more 
rapid HIV disease progression. Moreover, immunological recovery in older individu-
als treated with antiretroviral drugs is less robust than in younger adults, even with 
equivalent levels of viral suppression. The challenge to future research will be to 
develop a detailed mechanistic understanding of the interplay between HIV-related 
and age-related immunological changes. This information will advance our theoretical 
understanding of the immune system, and, at the same time provide practical informa-
tion regarding age-appropriate approaches to therapy and prophylactic vaccines.  

             1     Introduction  

   Chronic infection of young individuals with human immunodeficiency virus (HIV-1) 
is associated with immunological changes reminiscent of those that occur during nor-
mal aging. Indeed, HIV disease has even been proposed as a model of premature 
immunosenescence (Appay and Rowland-Jones 2002a). In young persons infected 
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with HIV-1, the pace of immunological change is accelerated. Compounding this 
effect, the cohort of HIV-infected persons is actually aging chronologically as well. 
Recent data from the U.S. Centers for Disease control and Prevention indicate that the 
cumulative number of AIDS cases in the U.S. in persons > 50 years of age quintupled 
during the last decade, with similar trends reported in Europe (Grabar, Weiss and 
Costagliola 2006). In New York City, the epicenter of AIDS in the U.S., 30% of HIV-
infected persons are over age 50. Aging of the baby boomers, the increased sexual 
activity of elders in the era of erectile dysfunction drugs, and the prolonged survival 
of those infected with HIV-1 are among the contributory factors to the overall increase 
in age of the HIV-1-infected population.  

   HIV-1 infection and aging each have major effects on the immune system, rais-
ing the possibility that in older persons who are infected with HIV-1, the immune 
changes due to the infection combined with those that occur with age may synergize 
to exacerbate the disease. Indeed, age is an independent risk factor for more rapid 
disease progression, and immunological recovery after antiretroviral drug treatment 
in older individuals is less robust than in younger adults, even with equivalent levels of 
viral suppression. (Rosenberg, Goedert and Biggar 1994; Darby, Ewart, Giangrande, 
Spooner and Rizza 1996; Fordyce, Singh, Nash, Gallagher and Forlenza 2002; Egger 
et al. 2002; Shah and Mildvan 2006). It therefore becomes essential to develop a 
detailed mechanistic understanding of the interplay between HIV-related and age-
related immunological changes. Efforts in this direction may ultimately lead to novel 
age-appropriate therapies to enhance immune control over the virus. Immune-based 
approaches to therapy may, in turn, reduce the need for drugs that target the virus. 
This is important because one of the emerging issues with respect to the elderly is 
that many of the antiviral therapies are not tolerated well in this group (Casau 2005). 
Moreover, long term antiretroviral therapy (ART) may interfere with certain medica-
tions or exacerbate age-related pathologies.  

   This chapter will review immune system changes that are common to human aging 
and HIV disease, highlighting those areas that merit more detailed investigation. One 
of the fortuitous outcomes emerging from the confluence of research on aging and 
HIV disease is that the 2 fields are mutually benefiting each other. Indeed, informa-
tion on T-cell changes that occur during normal aging, many of which are due to 
untreated persistent infections, has caused HIV biologists to focus on the immune 
consequences of the chronic antigenic stimulation. Conversely, detailed analysis of 
immune reconstitution dynamics following ART, which lowers the level of HIV-1, 
provides immunogerontologists with a unique model system to test the hypothesis 
that reducing chronic antigenic stimulation retards age-related deleterious changes 
within the human memory T-cell compartment.  

       2     Aging and HIV Disease Progression  

   There is an extensive body of research suggesting that age constitutes a significant 
risk factor for more rapid disease progression and a strong predictor of increased 
AIDS-related mortality, both in the presence and absence of ART (Ferro and Salit 
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1992; Phillips et al. 1991; Kalayjian et al. 2003; Rosenberg et al. 1994; Blatt et al. 
1995; Darby et al. 1996; Fordyce et al. 2002; Egger et al. 2002). Moreover, even 
though virologic efficacy of ART may be equivalent in young and old persons, 
immunological recovery is, nevertheless, often slower and blunted in older HIV-
infected adults (Shah et al. 2006; Manfredi 2004). The negative effect of older age 
has been observed in persons infected via blood transfusion as well as intravenous 
drug use. A study on more than 6,000 HIV-infected persons documented that those 
who were older than age 50 had a significantly increased risk of contracting AIDS 
wasting syndrome and AIDS dementia, and showed a shortened survival time after 
AIDS diagnosis (Balslev et al. 1997). Even after adjusting for patterns of compli-
cating diseases, the effect of age persisted. Clearly, a more comprehensive under-
standing of the effect of age on immune reconstitution within multiple lymphoid 
compartments is critical in order to develop strategies to prevent the increased 
incidence/severity of opportunistic infections and the poor responses to vaccines.  

   Chronic HIV-1 infection is also associated with earlier onset of a number of age-
related diseases/pathologies, many of which involve the immune system. Comorbid 
conditions, such as cardiovascular disease and colon cancer, occur at younger ages 
in HIV-1-infected patients, an observation that is beginning to affect screening rec-
ommendations (Berretta and Tirelli 2006; Engels et al. 2006; Orlando et al. 2006; 
Palella, Jr. et al. 1998; Murphy et al. 2001; Guy-Grand et al. 1991; Palella, Jr. et al. 
2003). Chronic immune activation, a signature feature of HIV-1 disease, is known 
to contribute to bone loss (Arron J.R. and Choi 2000), which is already accelerated 
with age. Indeed, one of the immune correlates of hip fracture in a group of unin-
fected elderly women is the increased proportion of CD8 + CD57 +  T-lymphocytes 
(Pietschmann et al. 2001). This same cell subset, which has been shown to have 
telomere lengths consistent with replicative senescence, is significantly increased in 
HIV-infected persons (Brenchley et al. 2003).  

   It is well-established that aging is associated with a dramatically increased risk of 
developing cancer. Indeed, old age carries a cancer risk exceeding that of smoking. 
The diminished immune surveillance associated with the general immune system 
deterioration has been assumed to play a significant role in the age-associated 
cancer risk. Interestingly, chronic HIV infection is also associated with increased 
cancer incidence, further implicating immune deficiency. A recent meta-analy-
sis compared cancers in HIV-infected with immunosuppressed transplant recipi-
ents (Grulich, van Leeuwen, Falster, and Vajdic 2007). Both populations showed 
increases in cancers with a known infectious cause, such as EBV lymphomas, liver 
cancer, and human papilloma virus (HPV)-associated cancers, including those of 
the mouth, penis, anus, liver, stomach, esophagus, larynx and eye. In cancers that 
are associated with persistent infections, such as EBV, exhaustion of the relevant 
virus-specific CD8 T-cell response is believed to be one of the contributing factors 
(Effros 2004). Overall, the similarity in the patterns of increased cancer risk in the 
elderly and in HIV-infected younger persons is consistent with the notion that the 
immune deficiency, rather than other risk factors, is responsible for the increased 
cancer incidence associated with chronic HIV disease. These and other data predict 
that the combination of aging and HIV disease will further increase the cancer risk, 
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which would be consistent with the notion of synergy between the immune effects 
of each separate condition.  

   In considering the combined effect of HIV and aging on immunosenescence, it 
should be emphasized that there are two categories of older HIV-infected persons—
those who become infected during youth, but survive to old age due to successful 
treatment, and those individuals who first become infected during old age. Most 
of the data on aging and HIV are derived from the first category, with minimal 
information on persons who become infected when they are already old. This latter 
group of elderly persons may be at a distinct disadvantage, given that the initial con-
trol over HIV-1 during the primary infection is so critical in terms of the long term 
effect on the rate of disease progression. Since aging itself is associated with subop-
timal responses to acute infections, from this standpoint alone, the newly infected 
elderly would be predicted to be at greater risk of more rapid progression to AIDS. 
A second issue that affects disease progression in newly infected elderly persons 
relates to the initial diagnosis. It is rare that physicians discuss sexual activity or 
safe-sex with elderly persons, and even in the face of symptoms suggestive of HIV, 
blood tests for the virus are rarely advised. Thus, HIV disease may be diagnosed 
later in older persons, which will have an additional impact on the rate of progres-
sion to AIDS.  

       3     T-lymphocyte Changes During Aging  

   Changes in cellular immunity are considered to be the main factors responsible for 
the well-documented increases in infection-related morbidity and mortality in the 
elderly. CD4 T-lymphocytes are key players in the immune response to pathogens 
and vaccines, and during aging, the requisite helper functions with respect to both 
B-lymphocytes and CD8 T-lymphocytes are diminished (Haynes and Swain 2006; 
Haynes, Eaton and Swain 2002). In addition to the reduced number of recent thymic 
emigrants, as determined by T-cell excision circle (TREC) analysis (Douek et al. 
1998), the naïve CD4 T-lymphocytes that are produced show specific functional 
decrements. For example, defective T-cell help is responsible for the delay, reduced 
size, and diminished number of B-cell germinal centers in old mice (Zheng, Han, 
Takahashi and Kelsoe 1997). Similarly, alterations in CD4 T lymphocyte function 
have also been implicated in the reduced level of B-cell hypermutation (Yang, Stedra 
and Cerny 1996) and in the failure to produce high titer antibody in response to influ-
enza vaccination (Swenson and Thorbecke 1997). CD4 T-lymphocytes also provide 
help for CD8 T-lymphocyte responses, most notably in chronic diseases, and are 
required for the maintenance of CD8 T-lymphocyte memory after acute infections 
(Sun, Williams and Bevan 2004). Therefore, the age-associated reduced numbers 
and quality within the naïve T-cell pool affect multiple facets of immunity.  

   The progressive reduction of naïve T-lymphocytes with age is due to the com-
bined effects of thymic involution and the homeostatic pressure of the expanded 
memory T-cell population. The lower numbers of naïve T-cells are associated with 
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blunted capacity to respond to neoantigens, such as those present in vaccines. The 
reduced proportion of naïve T-cells also has an impact on cancer, which, as noted 
above, increases with age and during HIV disease. Interestingly, thymic output is 
related not only the development of cancer, but also to tumor progression. Specifi-
cally, in the most deadly form of brain tumor, glioblastoma multiforme, the number 
of recent thymic emigrants within the CD8 T-cell subset influences both tumor anti-
gen recognition and age-dependent mortality (Wheeler et al. 2003). Thus, a variety 
of age-associated defects have been identified for the naïve T-lymphocyte subset, 
all of which may contribute to the phenomenon of immunosenescence, but arguably 
to a lesser extent than changes that occur within the memory T-lymphocyte popula-
tion, as will be discussed below.  

   Aging in humans is associated with significant changes within the memory CD8 
T-lymphocyte compartment, particularly in the cytotoxic T-lymphocyte (CTL) 
responses to viruses, where both delayed and diminished responses have been 
documented (Deng, Jing, Campbell and Gravenstein 2004; Po, Gardner, Anaraki, 
Katsikis and Murasko 2002; Zhang et al. 2002). Within the memory pool of elderly 
humans, there are clonal expansions of CD8 T-lymphocytes that often occupy a 
large proportion of “immunological space” and which are also associated with a 
constriction of the available T-cell repertoire (Ouyang et al. 2003). A large propor-
tion of the lymphocytes within the clonally expanded populations lack expression 
of the CD28 costimulatory molecule.  

   Based on extensive cell cultures studies, it appears that the increased proportions 
of CD28-negative (CD28 – )T-lymphocytes in the elderly may be the in vivo corre-
lates of cells that reach the end stage of irreversible cell cycle arrest in vitro follow-
ing multiple rounds of antigen-driven proliferation. These cells show permanent and 
irreversible loss of CD28 expression (Effros et al. 1994). Similar to lymphocytes in 
senescent culture, CD8 + CD28 –  T-lymphocytes tested ex vivo are resistant to apopto-
sis (Spaulding, Guo and Effros 1999; Posnett, Edinger, Manavalan, Irwin and Maro-
don 1999), show minimal proliferative potential (Effros et al. 1996; Almanzar et al. 
2005) and have shortened telomeres (Monteiro, Batliwalla, Ostrer and Gregersen 
1996; Effros et al. 1996). CD8   T-lymphocytes that reach replicative senescence in 
culture also produced high levels of 2 proinflammatory cytokines (TNFα and IL-6) 
that are associated with a variety of age-related pathologies, and whose concentra-
tion is increased in the serum of frail elderly individuals.  

   The clinical relevance of age-related changes within the T-cell compartment is 
underscored by data from longitudinal studies in humans, which have identified a 
cluster of T-cell parameters, the so-called “immune risk phenotype” (IRP) that is pre-
dictive of early mortality in the very old. These include an inverted CD4/CD8 ratio, 
poor proliferative responses and high proportions of CD8 + CD28 –  T-lymphocytes. 
The IRP is significantly associated with latent viral infections, particularly CMV, 
and to lesser extent with Epstein-Barr virus (EBV) and varicella zoster (Ouyang, 
Wagner, Wikby, Remarque and Pawelec 2002). Interestingly, immune control over 
CMV is also relevant with respect to HIV-1 disease: in patients with AIDS, detect-
ible plasma CMV viremia is an independent predictor of death even after adjusting 
for HIV-1 level and CD4 T-cell counts (Wohl et al. 2005). The above mortality data 
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from both aging and HIV-1 disease suggest that the continuous antigenic stimulation 
of CD8 T-cells involved in maintaining the latent status of persistent viruses plays a 
major role in the accumulation of dysfunctional virus-specific lymphocytes, result-
ing in the reconfiguration of the aging immune system (Pawelec et al. 2004a).  

       4     CD8 T-cell Replicative Senescence in HIV Disease  

   As in most viral infections, HLA Class I-restricted CTL are a critical compo-
nent of immunological response   to HIV-1. The decline in plasma viral RNA after 
the   appearance of HIV-specific CTL during acute infection (Koup 1994; Bor-
row, Lewicki, Hahn, Shaw and Oldstone 1994) and   the prognostic significance 
of vigorous CTL responses in disease   progression (Carmichael, Jin, Sissons and 
Borysiewicz 1993; Connor, Mohri, Cao and Ho 1993) highlight the key role of 
CTL. These observations in humans are further bolstered by experiments in rhe-
sus macaques, where depletion of CD8 T-lymphocytes led to striking increases 
in plasma SIV   RNA (Schmitz et al. 1999; Jin et al. 1999). Thus, there is strong 
indication that CTL are critical in HIV-1 immunopathogenesis, and, it follows that 
viral persistence and disease progression are due, at least in part, to the eventual 
failure of CTL.  

   Similar to aging, chronic infection with HIV-1 is associated with reduced thymic 
function. In HIV disease, the number of recent thymic emigrants, as determined 
by TCR excision circle (TREC) analysis of both CD4 and CD8 naïve T-cells, is 
reduced (Nobile et al. 2004). There is also evidence suggesting that naïve T-cells 
generated during aging and/or HIV infection may be qualitatively different from 
those generated during youth. Telomere measurements on 2 populations of naïve 
CD4 T-lymphocytes, one that represents the most recent thymic emigrants, and the 
other that has lost expression of CD31 due to homeostatic proliferation (defined by 
the CD31 marker) show that both types of naïve cells undergo telomere shortening 
with age. Indeed, the naïve CD4 T-cells in young HIV-infected persons were shown 
to have telomere lengths that were similar to uninfected persons 30 years their sen-
ior (Rickabaugh et al. 2007). These cells also had reduced levels of telomerase 
activity compared to uninfected controls.  

   Even the most antiretroviral successful treatment strategy does not eradicate 
the virus, resulting in ongoing stimulation/replication of HIV-1-specific CD8 
T-lymphocytes over many years. Indeed, it is likely that the persistence of suboptimal 
(i.e., low perforin) HIV-1-specific CD8 T-cell responses despite prolonged therapeutic 
viral suppression is associated with continuous proliferation and telomere shorten-
ing, which can eventually lead to the end stage cell cycle arrest known as replicative 
senescence. Telomere shortening within the CD8 T-cell subset in HIV-1-infected 
persons has, in fact, been documented by several investigators (Palmer et al. 1997; 
Effros et al. 1996; Wolthers et al. 1996). Conversely, robust, continuous proliferation 
and CTL function of HIV-specific CD8 T-lymphocytes has been identified as a key 
biomarker of long-term nonprogressors (Migueles et al. 2002).  
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   The importance of telomere maintenance in retarding the process of replicative 
senescence is underscored by studies demonstrating that gene transduction of HIV-
specific CD8 T-lymphocytes from infected donors with the human catalytic com-
ponent of telomerase leads to indefinite proliferation, increased suppression of viral 
production by acutely infected CD4 T-lymphocytes, and enhanced HIV-specific 
IFN-γ secretion, consistent with the importance of telomere length maintenance in 
anti-viral CTL (Dagarag, Evazyan, Rao and Effros R.B. 2004). Gene transduction 
with hTERT also retards loss of CD28 expression, which is important, since chronic 
infection with HIV is associated with increased proportions of CD28- T-cells (Appay 
et al. 2002b; Effros et al. 1996; Brinchmann et al. 1994).  

   As with aging, in chronic HIV infection, the presence of CD8 T-cells that are CD28 –  
is associated with deleterious outcomes. A recent study compared the predictive value 
of CD28 on CD8 T-cells between two carefully matched HIV-infected cohorts—one 
that progressed to AIDS within 4 years, and the second that progressed more slowly 
(i.e., > 8 years). The data show that the fast progressors had significantly greater pro-
portions of CD8 + CD28 –  T-lymphocytes at the start of the study (Cao 2007). Moreover, 
the telomere length of the CD8 + CD28 –  T-cells in young (mean age 43) HIV-infected 
persons is the same as that of PBMC from centenarians (Effros et al. 1996), consist-
ent with the notion that HIV disease may represent premature immunological aging 
(Appay et al. 2002a). Interestingly, CMV, which plays a key role in aging, is also 
important in HIV disease. It has been shown that in HIV-infected persons who have 
progressed to AIDS, detectible plasma CMV DNA was an independent predictor of 
death even after adjusting for HIV-1 level and CD4 T-cell counts (Wohl et al. 2005).  

       5     Chronic Antigenic Stimulation and Replicative Senescence  

   Although the total number of T-cells in the peripheral blood remains stable through-
out life in the very healthy elderly (Pawelec et al. 2005), there are marked changes in 
the relative distribution of T-lymphocyte subsets. In particular, there is a significant 
decrease in the proportion of naïve CD8 T-lymphocytes, which is accompanied by 
increased proportions of memory CD8 T-lymphocytes. Most of these memory cells 
are part of clonal expansions that are specific for persistent viruses, mainly CMV, but 
also EBV and VZV (Pawelec et al. 2005). Although these viruses do not necessar-
ily reemerge or cause disease, it is becoming increasingly evident that maintaining 
control over persistent infections over many decades is “costly” in terms of over-
all immune function (Pawelec et al. 2004a). Thus, it seems that chronic antigenic 
stimulation of CD8 T-lymphocytes plays a central role in age-related reconfiguration 
of the human immune system.  

   In the elderly, replicative senescence within the CD8 T-lymphocyte population is 
associated with a variety of deleterious clinical outcomes. For example, one of the 
key immune correlates of reduced vaccine responses is the presence of high propor-
tions of CD8 T-cells that lack CD28 expression. Furthermore, clonal expansions 
of CD8 T-cells that are CD28- are part of a so-called “immune risk phenotype” 
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(IRP), which is predictive or early mortality in the very old (Wikby et al. 2002). 
As mentioned above, the IRP is significantly associated with latent viral infections, 
particularly CMV. High proportions of senescent CD8 T-lymphocytes are also asso-
ciated with osteoporotic fractures in older women (Pietschmann et al. 2001), and 
with accelerated disease progression in the autoimmune disease, ankylosing spond-
ylitis (Schirmer et al. 2002). Finally, in patients with head and neck tumors, the 
CD8   +   CD28   –    T-cell subset undergoes expansion during the period of tumor growth, 
but is reduced following tumor resection (Tsukishiro, Donnenberg and Whiteside 
2003), underscoring the putative role of chronic antigenic stimulation in the genera-
tion of senescent CD8 T-cells.  

   It has been proposed that persistent herpes virus infection may cause CD8 
T-lymphocyte replicative senescence in vivo. The persistent nature of these infec-
tions is believed to periodically stimulate T-cell responses, resulting in considerable 
proliferation and clonal expansion of virus-specific CD8 T-cells over time (Appay 
et al. 2002b). Most of these infections are acquired during youth and establish 
chronic infection with latency and reactivation, so that by old age there is a cumula-
tive effect of chronic periodic antigenic stimulation of CD8 T-cells causing accumu-
lation of senescent cells (Pawelec et al. 2004b). Chronic infection with CMV seems 
to be important with respect to HIV disease as well. During the primary (acute) 
phase of HIV infection, CMV-specific CD8 T-cells in the blood become activated 
(Doisne et al. 2004), and once the infection becomes chronic, a large proportion of 
the CD8 T-cell pool is directed at CMV.  

   The herpesviruses CMV/EBV/VZV establish latency with intermittent reac-
tivation causing chronic intermittent antigenic stimulation leading to replicative 
senescence. The effect is even more dramatic effect during chronic infection with 
HIV-1, which persists with exuberant ongoing viral replication and therefore vigor-
ous chronic antigenic stimulation of the CD8 T-lymphocyte pool. This accelerated 
process of stimulation and senescence would therefore be an ideal model to study, 
in a short time frame, the aging-associated immune dysfunction caused by ongoing 
significant antigenic stimulation. HIV-1 provides an additional experimental advan-
tage in that it is a chronic viral infection for which viral replication is easily quan-
titated and blunted by antiviral treatment. Asymptomatic chronic CMV/EBV/HSV 
infections, in contrast, are not typically monitored for viral replication or treated 
due to their predominantly latent state. Thus, studies comparing age-matched 
treated and untreated HIV-1-infected persons might provide novel insights into the 
role of chronic antigenic stimulation on the process of replicative senescence.  

       6      Gut-Associated Lymphoid Tissue (GALT): the Missing 
Link in Aging Research  

   In humans, essentially all the information on the immune system has been derived 
from studies on peripheral blood, which contains approximately 2% of total body 
lymphocytes. As noted above, a salient finding from those studies is the profound 



Aging and HIV Disease: Synergistic Immunological Effects? 957

alteration in function and composition of the memory CD8 T-lymphocyte pool, due, 
in large part, to the progressive accumulation of cells with features of replicative 
senescence. There are no data on the age-related changes in CD8 T-lymphocytes 
in the human gastrointestinal tract, the major reservoir of lymphocytes, and an ana-
tomical region of high antigenic exposure.  

   The data from animal studies suggest that aging is associated with significant 
alterations within the GALT, underscoring the need for similar studies in humans. 
Significantly, changes in the distribution of CD8 T-lymphocytes in the GALT have 
been observed in aged rats (Daniels, Perez and Schmucker 1993). Mucosal immune 
system studies in mice have documented age-related reduced frequencies of naïve 
CD4 T-lymphocytes and dendritic cells in Peyer’s patches (Fujihashi and McGhee 
2004). Defects in mucosal IgA secretion (Taylor, Daniels and Schmucker 1992) as 
well as in helper T-cells, CTL function and mucosal vaccine responses have been 
described for old mice (Fayad, Zhang, Quinn, Huang and Qiao 2004). Finally, the 
reported age-associated reduction in immune responses to cholera toxin and  E. coli  
enterotoxin, which are adjuvants frequently used in mucosally-delivered vaccine 
preparations, may have broad implications for vaccine success in the elderly (Sch-
mucker, Heyworth, Owen and Daniels 1996). Based on these animal studies, it has 
been proposed that age-associated alterations arise in the mucosal immune system 
of the gastrointestinal tract earlier than in the peripheral immune compartment 
(Koga et al. 2000). These data underscore the need for detailed characterization of 
the effect of aging on the human GALT.  

   HIV disease, which, as noted above, shows many immunological parallels with 
aging, provides a unique opportunity to elucidate changes within the GALT that are 
due to chronic antigenic stimulation. In fact, it is becoming increasingly recognized 
that most of the immunological “action” during HIV-1 infection occurs in the gut. 
Regardless of the route of transmission, the HIV-1 virus selects CD4 T-lymphocytes 
that also express CCR5 receptors, most of which reside in the gut, with enhanced 
per-cell CCR5 expression as compared to the blood (Anton et al. 2000). Indeed, 
treatment strategies based on peripheral blood measurements of CD4 T-lymphocytes 
or level of viremia have been described as “misguided”, since these values are often 
an underestimate of the profound and continuous loss of CD4 T-lymphocytes in the 
gut (Veazey and Lackner 2005).  

   The importance of early and persistent immune responses within the gut mucosa 
is highlighted in comparisons between long-term nonprogressors and those with high 
levels of viremia, in which the former show prolonged maintenance of mucosal T-
lymphocytes, enhanced virus-specific responses and distinct gene expression profiles 
(Sankaran et al. 2005). Once the infection has become chronic, the CD8 T-cell response 
in the gut is “too little, too late”, with a magnitude that is <5% of that seen in any other 
lymphoid organ (Reynolds et al. 2005). Indeed, the ultimate failure of the immune 
system has been suggested to occur when CD4 and CD8 T-lymphocytes are unable 
to sustain sufficient frequencies of effectors in both lymphoid and extra-lymphoid tis-
sues, particularly the gut (Grossman, Meier-Schellersheim, Paul and Picker 2006).  

   There is accumulating evidence that HIV-1 may continue to replicate in mucosal 
tissues, despite being undetectable in the blood. A recent study, which compared the 
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viral burden of DNA and RNA in lymphocytes from the gastrointestinal tract to lym-
phocytes from the blood concluded that the GI mucosal lining carries a dispropor-
tionately high viral burden (Comi et al. 2001). In fact, quantifiable levels of HIV-1 
can be detected in rectal mucosa-associated tissue despite years of undetectable lev-
els of plasma HIV-1 RNA (Anton et al. 2003). Also, in some women, levels of HIV-
RNA are higher in the genital mucosa compared to the blood (Neely et al. 2006).  

   Peripheral blood studies may also fail to reflect the level of immune reconsti-
tution in the gut. In a seven year study of HIV-1-infected individuals who began 
ART shortly after infection, it was observed that although the blood population of 
CD4 T-lymphocytes rebounded to normal levels, a subset of lymphocytes within 
the gut remained depleted in 70% of the subjects. After three years of intensive 
drug therapy that suppresses HIV-1 replication very effectively, most patients still 
had only half the normal number of CD4 effector memory T-lymphocytes in their 
gastrointestinal tracts (Mehandru et al. 2006). All of these data from studies on 
HIV disease underscore the need for increased research on the human gut mucosal 
immune compartment, which has, for various reasons, heretofore been ignored in 
human immunological studies.  

       7     Translational Implications  

   One of the shared features of immunosenescence and AIDS is the accumulation 
of memory CD8 T-lymphocytes with features of replicative senescence. In both 
aging and HIV disease, the driving force seems to be chronic antigenic stimulation 
by persistent viruses. Clearly, prevention of primary infection with these viruses 
would be the most efficient strategy to prevent replicative senescence. However, 
it is highly unlikely that prophylactic vaccines against CMV and HIV-1 will be 
developed in the foreseeable future. Another possible approach is to reduce the 
antigenic burden by treatments directed against the virus itself. Anti-CMV ther-
apy is usually reserved for situations of extreme immunosuppression, such as in 
organ transplant patients or the final stages of HIV disease, but it is possible that 
expanding the criteria for treatment to include all CMV seropositive individuals 
may lead to improved immune function during aging and AIDS. Antiretroviral 
therapy (ART) against HIV does, in fact, reduce the antigenic burden, and should 
theoretically also retard the generation of senescent HIV-specific CD8 T-cells, but 
no studies have actually addressed this question.  

   An alternative to reducing the antigenic burden is to augment the function of the 
virus-specific CD8 T-cells by retarding replicative senescence. For example, since 
senescent CD8 T-cells no longer express the CD28 costimulatory molecule, one 
approach that has been used is gene transduction with CD28. Indeed, the reexpres-
sion of an intact signaling CD28 molecule in CMV- or HIV-specific CD8 T-cells 
that had lost CD28 expression led to the restoration of IL-2 production and auto-
crine-induced proliferation in response to antigen recognition (Topp et al. 2003). 
Another approach to modulating replicative senescence is based on the enzyme 
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telomerase, which is upregulated in T-cells during primary and secondary antigenic 
stimulation, but becomes undetectable by the third and all subsequent stimulations. 
Transduction of HIV-specific CD8 T-cells isolated from HIV-infected persons with 
the gene for hTERT (the catalytic telomerase component) results in increased pro-
liferative potential, telomere length stabilization, and enhanced ability to control 
viral replication (Dagarag et al. 2004; Dagarag, Ng, Lubong, Effros R.B. and Yang 
2003). These proof-of-principle demonstrate that telomerase-based immunomodu-
latory strategies may be practical approaches to enhancing anti-viral CD8 T-cell 
function in both aging and AIDS. Indeed, preliminary studies show that exposure 
of CD8 T-cells to certain small molecule telomerase activators leads to increased 
proliferation and antiviral function (Fauce et al. 2005).  

   If replicative senescence can be retarded, the result would be a reduction in the 
proportion of senescent T-cells, and presumably the associated deleterious clinical 
effects noted above. Thus, more detailed studies on the process of T-lymphocyte 
replicative senescence may lead to improved prognosis for both aging and HIV 
disease. An additional benefit of immune-based approaches to therapy may be a 
reduced need for drugs that target HIV-1. Many of the current drug treatments 
are associated with metabolic changes normally associated with aging, including 
lipodystrophy, dyslipidemia and insulin resistacnce, all of which increase the risk 
of cardiovascular disease (Morse and Kovacs 2006). Thus, HIV disease is asso-
ciated not only with premature immunosenescence, but also in treatment-associ-
ated acceleration in the appearance of many other physiological features of aging 
(Morse et al. 2006).  

       8     Concluding Remarks  

   Treatment advances have resulted in increased life expectancy for persons infected 
with HIV, which is leading to the “graying” of this cohort (Hinkin, Castellon, 
Atkinson and Goodkin 2001). In addition, the age of primary infection with HIV-1 
is increasing, due to the greater levels of high risk behavior in older adults. The 
question of whether the immunological changes associated with HIV-1 infection 
synergize with those that occur during chronological aging has not been addressed. 
Elucidation of the underlying immune system basis for the relationship between 
age and HIV-1 disease progression will have far-reaching translational/treatment 
implications for the progressively increasing elderly population of HIV-1-infected 
persons. If it turns out that older HIV-infected persons have less immunological 
reserve, the timing of treatment initiation may require modification. Indeed, many 
of the current guidelines have been derived from correlations between CD4 T-cell 
counts and opportunistic infection incidence in younger persons. In addition, since 
HIV-1 persists with exuberant ongoing viral replication and therefore vigorous 
chronic antigenic stimulation, particularly of the CD8 T-cell pool, this infection 
constitutes an ideal model to study the effects of chronic antigenic stimulation on 
immune dysfunction. It is anticipated that the convergence of immunological studies 
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in the areas of HIV disease and aging will undoubtedly lead to new paradigms for 
medical care and vaccine strategies for both situations.  
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                                                        Abstract:   It is well-known that infections and sepsis are increased in elderly 
subjects, and that the immune system changes with age. The question arises whether 
dysfunctionality of the immune system, or immunosenescence, contributes to this 
increased incidence of infections and if so, how. As the immune system evolved to 
protect against infection, the role of aging is likely to be important for the increased 
occurrence, progression and outcome of infections and sepsis in the elderly. How-
ever, the intricate multiple mechanisms that contribute to this increase are difficult 
to dissect with certitude and remain controversial. Immune alterations most likely 
to contribute to this overwhelming clinical burden of infections and sepsis will be 
reviewed in this chapter.      

           1 Introduction  

   It is well-known that infections and sepsis are increased in elderly subjects and that 
the immune system becomes in many ways dysfunctional with aging [1–3]. The 
question arises whether immunosenescence contributes to this increased incidence 
of infections and if so, how. The answer would seem to be a priori in the affirmative, 
but it is very difficult to ascertain a direct relation between these two phenomena. 
Immunosenescence differentially affects the various components of the immune 
system; moreover, many extrinsic factors such as nutrition, chronic diseases, chronic 
antigenic stress or hormonal changes also contribute to immunosenescence [4–7]. 
Furthermore, aging is associated with a low grade inflammatory state that might be 
causally involved in inappropriate responses to infection.  

     2      Infections in the Elderly  

   Typical bacterial infections including pneumonia, urinary tract, and skin and 
gastrointestinal infections are a common problem in older adults [2]. Not only 
bacterial, but viral infections such as respiratory tract infections due to influ-
enza A or Respiratory Syncytial Virus, or reactivation of Herpes zoster are also 
very common in elderly. Moreover, pseudomembraneous colitis related to micro-
bial colonization of Clostridium difficile or methicillin-resistant Staphylococcus 
aureus (MRSA) in severely ill patients treated with antibiotics is becoming an 
important health issue in elderly people [2]. One of the most significant public 
health problems is Influenza virus infection, which causes 10,000–40,000 excess 
deaths in the USA, of which 90% are in persons over 65 years [8]. Influenza is 
the fifth leading cause of death among people aged 50 and older and this is a 
major target of vaccination campaigns [9–11]. The incidence of pneumococcal 
infections increases dramatically in people over 75 years of age [12]. Mortality 
is higher in the elderly and rises with increasing age, approaching almost 80% in 
those over 85 years of age. Rates of bacteremia and meningitis from pneumococcal 
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infections are also higher in the elderly [6]. The incidence of Herpes zoster is also 
greater in people over 75 years of age [13]. Not only the incidence and prevalence 
of infections are increased in the elderly but also the consequences and the burden 
in terms of morbidity and mortality.  

   The problem of infection is even greater in elderly nursing home residents, who 
are particularly vulnerable to infections. In addition to decreased immune responsive-
ness, malnutrition and chronic diseases, long-term care facilities themselves provide 
environments that promote infectious outbreaks [3]. Elderly people in nursing homes 
suffer infections due to urinary catheters more often and have more frequent oropha-
ryngeal colonization with Gram-negative bacilli [14, 15]. Nearly one third of persons 
80 years of age and older live in nursing homes where antibiotic resistance is a grow-
ing problem [3], and residents who are infected are at a higher risk of mortality.  

         3   Sepsis in the Elderly  

   Sepsis is defined as the systemic host response to infection [16, 17]. Most of the 
time it appears as a life-threatening clinical situation. It is not a single disease but 
is an intricate and heterogeneous process expressed through the interaction of a 
complex network of biochemical and cellular mediators and amplification cascades. 
Its severity is mainly determined by the causative agent, the patient’s genetic back-
ground and the rapidity of medical intervention [17]. This inherently complex proc-
ess, reflecting the dynamic interaction of an acute, life threatening infection with 
the adaptive protective mechanisms of the host and its environment, is frequently 
modified often in an unpredictable manner by the effects of advancing age, sex 
and/or acute and chronic underlying disorders [16].  

   Each year in the USA nearly 2500 cases of sepsis occur per 100,000 persons 
aged 85 years, with elderly persons being much more likely to suffer sepsis and 
bacteremia than younger subjects [3,18]. Incidence rates of sepsis increased 20.4% 
faster among elderly persons than among younger persons from 1979 to 2002 (mean 
increase per year, 11.5% vs. 9.5% p<0.001). Other large studies have reported that 
the incidence of sepsis and bacteremia increase with older age [19, 20]. Furthermore, 
the microbiology of these infectious diseases is also different in the young and old 
[3]. In contrast to young sepsis patients, most of these disorders in the elderly are due 
to Gram-negative organisms. Escherichia coli was found to be the responsible agent 
in most cases in the elderly, while in young subjects Staphylococcus aureus was the 
main pathogen in community-acquired bacteremia [21]. The causative agent tends 
to be different in nosocomial bacteraemia, in that in the elderly the most frequent 
pathogens is MRSA while in young patients this is again S. aureus. These differ-
ences in the microbiology of sepsis with age are partly explained by the source of 
infection leading to sepsis among the elderly. Urinary tract infections due to Gram-
negative bacteria are more frequently the source of bacteremia or sepsis in elderly 
than in young patients. In a study of community-acquired bacteremia, Lark et al. 
[22] found that patients 65 years of age were more likely than younger patients to 
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have the urinary tract as the source of infection. Other studies demonstrated similar 
origins for sepsis in aging. These data suggest that the elderly could be more suscep-
tible to Gram-negative bacterial infections than young subjects due at least partly to 
changes in immune functions with aging. Together, these data show that older age is 
independently associated with an increased likelihood of severe sepsis although the 
relationship was not shown to be linear [16].  

       4    Alterations in the Immune System with Aging which Could 
Favour the Increase of Infections and Sepsis  

     4.1    Innate Immune System  

   The innate immune system includes neutrophils (PMN), macrophages and NK-cells. 
These cells are the first to encounter any type of infection, whether bacteria or viruses 
[23]. They recognize pathogens by means of their nonpolymorphic conserved pat-
tern recognition receptors (PRRs) and discriminate between invaders representing a 
danger for the organism and those not pathogenic [24–26]. One of the most studied 
groups of PRRs belong to the Toll-like receptor family (TLRs). There are more than 
11 members of this family, including TLR4 reacting to Gram-negative bacteria, TLR2 
reacting to Gram-positive bacteria and TLR3 and TLR9 reacting to viruses. Stimula-
tion of innate immune system cells via TLRs initiates a complex signal transduc-
tion cascade which can result in proinflammatory activation through translocation of 
NF-kB to the nucleus [24]. This renders the cells of the innate immune system more 
potent in their effector functions, such as phagocytosis, free radical production, and 
intracellular killing which result in the destruction of the invader. Such activation may 
also initiate and modulate adaptive immune responses either by antigen presentation 
or secretion of different cytokines and chemokines, perhaps as a mechanism required 
if the innate immune response fails to clear the pathogen.  

   Ageing affects components of the innate immune system differentially. Some 
functions are well-preserved, such as phagocytosis, while others are decreased, such 
as chemotaxis, intracellular killing and free radical production [23]. Furthermore, 
even if the number of TLRs expressed on the cell surface appears unchanged, their 
signalling is altered, leading to dysregulated intracellular activation of proinflam-
matory cytokines [23]. Furthermore, the persistence of infections due to failure to 
clear the pathogen may result in persistent, chronic, activation.  

       4.2      Adaptive Immune System  

   The adaptive immune system responds specifically to a unique antigen via anti-
genic presentation. The response is either humoral via B-lymphocyte antibody 
production or cellular via T-cell activation. The T-cell compartment is divided into 
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helper (CD4+) and effector subsets (mainly CD8+). B- and T-cells also responding 
to antigens via specific cell surface receptors which initiate a signalling cascade 
leading to their activation [27]. There could also be chronic antigenic activation in 
this compartment mainly by latent viruses such as CMV or herpes zoster [28–30]. 
Furthermore, a network of cytokines plays a major role in orchestrating a coordi-
nated adaptive immune response via T- and B- cells.  

   T-cell functions are the most altered with age [1, 2, 6]. Following antigenic stim-
ulation, the clonal expansion of T-cells is decreased with age due to altered IL-2 
production. There is also a shift from naïve T-cells towards memory T-cells [31]. 
This shift is partly explained by the involution of the thymus, leading to decreased 
output of naïve (virgin) T-lymphocytes. One other very important factor seems 
to be chronic CMV infection, as mentioned above. This leads to the oligoclonal 
expansion of CD8+ T-cells in the elderly, the accumulation of which, in the form 
of apoptosis-resistant anergic effector CD8+ memory T-cells, may have far-reach-
ing consequences. These cells may fill the immune space and even suppress the 
function of the remaining naïve CD4+ T-cells [32–34]. This leads to decreased rec-
ognition of novel antigens and in consequence a decreased ability to respond to 
previously unencountered pathogens. Another alteration, limiting the response of 
T-cells to stimulation, is altered intracellular signalling following ligation of the 
TCR and CD28 coreceptor [35, 36]. All these alterations lead to a dysregulated 
adaptive immune response with aging. Evidence for the clinical importance of viral 
persistence along with other immune parameters has been provided from longitu-
dinal studies of subjects above 85 years, where it was observed that the increased 
anti-CMV Ig levels correlated negatively with survival [28–30]. Moreover, these 
subjects had a lower response to vaccination.  

       4.3      Low-Grade Inflammation: Inflamm-Aging  

   An apparent disequilibrium between the relatively reactive innate immune response 
and the altered adaptive immune response with aging leads to the presence of a 
low grade inflammatory status with aging [37]. The cause of this low grade inflam-
mation is multifactorial. One of the most important is chronic antigenic stimula-
tion. The antigen can be exogenous, such as bacteria or viruses, or endogenous 
like the various posttranslationally-modified macromolecules such as DNA or pro-
teins. They can be modified by oxidation, by acylation or by glycosylation. Such 
altered molecules can stimulate the innate immune response, mainly macrophages 
via TLRs, thus contributing to sustaining a proinflammatory state [24]. This is 
measurable in some circumstances as increased circulating levels of IL-6, IL-1β or 
TNFα. These modifications may also result in the stimulation of adaptive immune 
responses, recognized in an extreme form by an inverted CD4:CD8 ratio, caused by 
an overwhelming expansion of CD8+ cells [38]. All these changes contribute to a 
decreasingly effective immune environment which seems not to be able to respond 
appropriately to new infectious agents.  
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         5    How Can Immunosenescence Contribute to Increased 
Infections and Sepsis in the Elderly?  

   Because underlying disorders are more frequent in the elderly, the role of age is cru-
cial in delineating the true influence of underlying disorders on the host response and 
susceptibility to infections (Table 1 and 2). Many large epidemiological studies now 
demonstrate that age is related to the occurrence [39, 40] and prognosis of infection.    

       5.1 Contribution of the Intestinal Mucosal Defense  

   The barrier functions of the mucosal components including sIgA, mucins, defensins, 
gastric acid, and epithelial integrity may be seriously compromized with aging [24]. 

    Table 1    The most significant functional alterations of the immune system with aging potentially 
implicated in the increased infections and sepsis       

  Innate immune response    neutrophils and monocytes/macrophages   

              ↓ ROS production    
↓ intracellular killing    
↓ TLR signalling   

       dendritic cells  
            ↓ antigen presentation   

       NK cells  

            ↓ decreased effector functions   

  Adaptive immune response      T cell antigenic response:   

             ↓ proliferation
   ↓ Th1 response: IL-2, IFNγ
↑   Th2 response IL-4, IL-5, IL-10, IL-12
  ↓ Delayed type hypersensitivity   
↓ T cells inducers of suppression    
↓ T cell repertoire    
↓ Signal transduction: early, intermediate and late events  

       T cell subpopulations   

             ↓ naive T cells  
↑ memory T cells   

       T cell apoptosis:  

             ↑ CD4+ T cell apoptosis
↓   T cell repertoire CD8+ T cell apoptosis  

       B cell antigenic response   

            ↓ B cell repertoire  
↓ Amtibody quality ?  

  Low grade inflammation    Cytokines  

   ↑ Pro-inflammatory cytokines : IL-6, TNF α    
↑ Anti-inflmmatory cytokines: IL-10   
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The result of these alterations is that this first line of defense is no longer very effi-
cient at excluding extracellular pathogens or sustaining protective commensals, which 
can even become pathological. However, there are still very few data regarding how 
mucosal immunity changes with age and influences the incidence of infections.  

       5.2      Contribution of the Innate Immune Response  

   Alterations in the innate immune response with aging as discussed earlier may greatly 
contribute to the increased incidence of infections and sepsis with aging. Decreased 
chemotaxis in response to chemokines results in poorer accumulation of the cells 
necessary for first line defence, including PMN [23]. Lower production of reactive 
oxygen species by PMN and macrophages detracts from the clearance of pathogens. 
The presentation of antigens by dendritic cells seems to be fairly well-maintained in 
healthy elderly, but there may be subtle differences, as well as the speed of process-
ing being decreased [2, 8]. Elderly nursing home patients with significant chronic 
illness however, do have impaired APC functions [8]. The exact role of NK-cells in 
the increased infections seen with aging is still controversial, as their exact functional 
changes with aging have not been determined exactly.  

    Table 2    The most significant external factors with aging potentially implicated in the increased 
infections and sepsis       

  Malnutrition :    Macronutrients  

            ↑ Lipids    
↑ Carbohydrates    
↓ Proteins  

       Micronutrients  

            ↓ Zinc, Selenium    
↓ Vitamins: Vitamin E, Vitamin C    
↓ Antioxidants  

  Chronic diseases:    Diabetes mellitus type 2       

       Cardiovascular diseases: congestive heart failure  

       Dementia       

       Autoimmune diseases       

       Pulmonary diseases: COPD       

       Cerebrovascular diseases       

       Cancers       

  Frailty:    Low grade inflammation  

          ↑   Pro-inflammatory cytokines : IL-6, TNFa   

  Chronic antigenic stress:    Chronic infections: CMV, EBV, Herpes zoster  

  Neuroendocrine changes:    ↑ cortisol       

       ↓ DHEA, Growth hormone       
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   The decreased functions of PMN are particularly important in this setting. These 
cells are the first line of defense against infection. There is a complex process prior 
to PMN arrival at the site of invasion, including rolling, adherence, diapedesis and 
chemotaxis [41]. This process is relatively well-conserved in ageing, although 
chemotaxis may be compromized. Most importantly, the production of reactive 
oxygen species (ROS), playing a crucial role in intra and extracellular killing, is 
altered. It was shown that various Gram-positive bacteria ingested by PMN were not 
to be destroyed as efficiently as in young subjects [42, 43]. Together, these data rein-
force the notion of an important contribution of altered innate immune responses to 
the increased incidence of infections with aging.  

   As part of innate immunity, the proinflammatory response to infection which is 
not diminished in the elderly, may contribute to the increased proinflammatory state 
commonly observed [16]. However, it should be mentioned that in SENIEUR eld-
erly subjects, selected for exceptionally good health, this low grade inflammation 
is practically nonexistent [1]. This state of “inflamm-Aging” as it has been dubbed 
seems to manifest by an increase in the IL-6 level, which may be a reliable marker 
for functional disability and a predictor of disability and mortality in the elderly 
[44, 45]. Indeed Cohen et al. [46] have reported that activation of the coagulation 
(D-dimer) and the inflammatory (IL-6) pathway at baseline is associated with mor-
tality and decline in function. Aging is also associated with inadequate response to 
infections and sepsis-related stress. Monocytes from elderly patients undergoing 
surgery produced more TNFα than those from younger patients [47]. After chal-
lenge with LPS in healthy young and elderly volunteers the latter showed more 
prolonged fever response than in younger controls and levels of TNFα and soluble 
TNF receptor I levels were higher in the elderly [48]. This study suggests that aging 
is associated with an altered host response with initial hyperreactivity and a sus-
tained secondary antiinflammatory response. Elderly persons with pneumocococal 
infections also show prolonged and exaggerated cytokine responses, compared with 
those of younger persons [49]. Higher levels of proinflammatory cytokines, such as 
TNFα and IL-6, have been observed in elderly patients with sepsis when compared 
to young subjects [50]. In sepsis these cytokines and others generated in response to 
toxic microbial stimuli activate leukocytes, promote leukocyte-endothelium adhe-
sion and induce endothelial damage [51].  

       5.3      Contribution of the Adaptive Immune Response  

   Aging is associated with dysfunction of T-cell mediated adaptive immunity. Thymic 
involution together with chronic antigenic stimulation decreases the number and rep-
ertoire of naïve T-cells which leads to an inability to respond appropriately to a new 
antigen. This is correlated with an expansion of memory CD8+ T-cells which fill the 
“immune space” due to their resistance to apoptosis. Moreover, they may suppress 
the retained CD4+ T cell response. It is also well-recognized that the B cell-medi-
ated humoral response is also decreased, contributing to the increase of infections by 
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reduced specific antibody production, by reduced affinity and shrinkage of the B-cell 
repertoire. As well as B-cell intrinsic changes, decreased CD4+ T-cell help contributes, 
to these alterations [1]. Furthermore, it was also recently shown that increasing age has 
a significant impact on the memory CD8+ T-cell response to respiratory virus infec-
tions [33]. There is a significant loss of effector memory cells from peripheral sites 
over time which may reduce the immediate response of memory T-cells to secondary 
challenge. However, this is efficiently counteracted in part by the long term mainte-
nance of large numbers of memory CD8+ T-cells in the secondary lymphoid organs 
and the progressively increasing capacity of these cells to generate proliferative recall 
responses [52]. Overall it appears that T-cell memory is not only maintained for long 
periods of time, but may also be enhanced in the face of an age-related decline in the 
capacity of the immune system to respond to new pathogens [33, 53].  

       5.4    Contribution of the Low Grade Inflammation  

   The low grade inflammation is only the common pathway of immunosenescence 
leading to its increased clinical consequences. This state favours the development and 
progression of other age-associated chronic diseases, such as atherosclerosis, neuro-
degeneration (dementia), Type 2 diabetes, metabolic syndrome and congestive heart 
failure [24, 37]. It is well-recognized that these diseases contribute to the further dete-
rioration of defense mechanisms and thus patients suffering from chronic diseases are 
more susceptible to infections such as influenza or pneumonia. Hence the severity of 
infectious diseases is greater in patients with chronic underlying disorders compared 
to healthy elderly subjects. The presence of one or 2 chronic illnesses such as emphy-
sema, diabetes, cardiovascular diseases, chronic renal or hepatic failure, is associated 
with a 40- to 150-fold increase in the basal incidence rate of influenza pneumonia [4, 
6, 54]. Hospital mortality is also related to severity of the underlying chronic diseases, 
including cardiovascular insufficiency, chronic obstructive pulmonary disease and 
kidney failure. This is even more striking in nursing home settings.  

   Furthermore, low grade inflammation plays a specific role in metabolic disorders 
of the elderly. The production of proinflammatory cytokines affects insulin resist-
ance and muscle wasting (sarcopenia). This leads to a dramatic increase of diabetes 
in elderly subjects even if they are not obese. Moreover, this proinflammatory state 
contributes to the appearance of frailty as a newly recognized physiological syn-
drome [55]. Most of the metabolic alterations related to low grade inflammation can 
be also found in frailty. Thus, frailty seems to be in a continuum with aging before 
the development of specific diseases. It is also known that these frail individuals 
are more prone to infections than those not suffering from this syndrome. The low 
grade inflammation, metabolic alterations, malnutrition, chronic diseases and sar-
copenia all mediate a concerted effect to the increase of infections in the elderly.  

   The low grade inflammatory status can even have a paradoxical effect in favoring 
the development of infections. “Overstimulation” might induce a compensatory anti-
inflammatory overreaction (e.g., IL-10, IL-13) which could further impair immune 
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responsiveness toward new antigens. This could also lead to the development of the 
well-known autoimmune disorders associated with aging.  

         6    Response to Vaccination  

   To date approximately 26 different infectious diseases can be prevented by vac-
cination, influenza being one of them [56]. However, as a result of age-associated 
immune alterations, the elderly generally have a poorer response to vaccination than 
the young [10, 11, 57, 58]. This correlates with decreased levels of protective anti-
bodies following influenza vaccination [6]. Cell-mediated immunity represented by 
the CTL response, which may be even more important for protection than antibody, 
is decreased too [59]. Not only is the vaccine response impaired in the elderly, but 
even when it seems adequate, protection from infection is still less than in young 
subjects. This is probably related to the quality of antibody formed in terms of 
viral neutralizing. Nevertheless, despite this low efficacy of the immune response, it 
should be emphasized that vaccination in elderly subjects is efficacious in reducing 
adverse events [8, 10, 59].  

   An underlying chronic illness or frailty dramatically increases the risk of influ-
enza infection as well as impairing the response to vaccination. One study on vac-
cine responses in nursing home residents demonstrated that only 50% of vaccines 
generated an adequate response based on the definition of a 4-fold increase in anti-
body titers [54]. However, this population is one of the most targeted for vaccination, 
taking into account the clinical efficacy of vaccination in elderly subjects [59].  

       7    Conclusions  

   Immune dysfunction, mainly in the T-cell compartment, is associated with age even 
in the healthiest elderly. The cause of this dysregulation is certainly multifactorial. 
The results of these alterations are obvious in certain clinical situations such as 
infections. The role of aging is important for the increased occurrence, progression 
and outcome of infections and sepsis in the elderly. However, the intricate multiple 
mechanisms that contribute to this increase are difficult to dissect with certitude and 
remain controversial. Nevertheless, the clinical burden most likely resulting from 
such immune dysregulation is overwhelming. Strategies should be developed in 
order to modulate the immune response in such a way that morbidity and mortality 
caused by infectious disease in the elderly is decreased. More effective vaccination 
strategies must be developed. Other solutions should be also rapidly sought and 
implemented to improve the quality of life of the elderly in the rapidly increasing 
elderly populations of the developed countries.  
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                                     Abstract   :    Increasing age is associated with a decline in adaptive immunity and 
poorer responses to vaccination. While specific immune defects have clearly been 
defined in the naïve T-cell pool of aged individuals, much less is known about the 
memory T-cell pool. Current data suggest that T-cell memory generated in an aged 
individual has a reduced capacity to mediate recall responses due primarily to defects 
in the proliferative capacity of individual cells. These defective recall responses in 
the aged can be further compounded by the development of ‘holes’ in the T-cell 
repertoire due to a dwindling supply of naïve T-cell precursors. In contrast, T-cell 
memory generated in young individuals undergoes a variety of changes over time 
including both an increase in the proliferative capacity of individual memory T-cells 
and a decrease in the overall efficacy of the recall response in the lung. Furthermore, 
the development of T-cell clonal expansions with age can have a dramatic impact on 
the makeup of the memory T-cell pool, thereby influencing the number of pathogen-
specific T-cells capable of participating in the recall response. Collectively, these 
changes appear to reflect the redistribution of memory T-cell subsets within the 
memory T-cell pool and the dysregulation of memory T-cell homeostasis over time. 
This review outlines each of these processes and discusses their implications for 
vaccination in the elderly.  
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     1     Introduction  

  Influenza and other respiratory virus infections are a major human health problem 
in the United States (Murphy and Webster 1996). They represent a major cause of 
illness and death in the U.S. and are responsible for an average of approximately 
20,000 deaths and 110,000 hospitalizations each year (Glezen 1982). Furthermore, 
mortality from this class of infections has increased significantly over the last two 
decades, particularly in the elderly (Pinner et al. 1996). In addition, newly emerging 
respiratory viruses, such as the highly virulent influenza H5N1 variant that appeared 
in Hong Kong in 1997, are of particular concern (Gubareva et al. 1998; Shortridge 
et al. 1998; Subbarao et al. 1998). Thus, there is an urgent need to understand pul-
monary immunity to these viruses, especially in the elderly.  

  Influenza virus infections appear as yearly epidemics that peak in the winter 
months and are characterized by short incubation periods, high infection rates, and 
rapid spread through the population (Murphy and Webster 1996). The capacity of 
influenza virus to generate yearly epidemics depends on the virus’ ability to evade 
humoral immunity. This is achieved in the case of influenza by both antigenic drift 
due to mutation of coat proteins (which are targets for neutralizing antibodies) and 
antigenic shift due to reassortment of viral RNA segments. Given the capacity of the 
virus to evade humoral immunity, cellular immunity plays a major role in controlling 
secondary virus infections (Rimmelzwaan and Osterhaus 1995; Yewdell et al. 1985). 
It has been noted that the severity of influenza virus infections in individuals decreases 
over time and it is believed that this reflects repeated boosting of cross-reactive T-
cells (Bender and Small 1993; Frank et al. 1983; Liang et al. 1994; McMichael 1994; 
Schulman 1970; Sonoguchi et al. 1985). However, beyond a certain age, individuals 
become more susceptible, suggesting a waning of this memory response (Bender 
and Small 1993; Bender et al. 1991; Liang et al. 1994). Also the capacity of vaccines 
to induce cellular memory appears to wane with age (Fagiolo et al. 1993; Murasko 
et al. 2002). This is a significant problem for public health organizations since the eld-
erly are the most at-risk population for influenza-associated mortality (Belshe 1998). 
Clearly, there is an urgent need to better understand the mechanisms that underlie the 
loss of immune function with age and to use this information for the development of 
approaches that promote improved vaccine efficacy in the elderly.  
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    2    Characteristics of CD8 +  T-Cell Memory
to Respiratory Pathogens  

  An important aspect of the adaptive immune system is the capacity to mediate 
stronger and more effective responses to secondary pathogen challenge as com-
pared to primary pathogen challenge (Dutton et al. 1998; Woodland 2003). This 
characteristic is referred to as immunologic memory and is mediated by both the 
T and B cell arms of the immune system. In the case of CD8 +  T-cells, increased 
antigen-specific cell numbers, higher activation status, reduced stimulatory require-
ments, more rapid induction of effector functions, and altered homing patterns of 
memory T-cells all contribute to enhanced recall responses (Dutton et al. 1998; 
Hammarlund et al. 2003; Seder and Ahmed 2003). Memory CD8 +  T-cells are also 
characterized by the capacity to persist for many years after their initial generation 
and potentially maintain functional immune memory for the life of the individual. 
While various aspects of T-cell memory have been extensively studied, relatively 
little attention has been paid to the impact of age on memory T-cell generation and 
maintenance.  

  Over the last few years, a great deal of progress has been made in understanding 
how T-cell memory operates in a complex mucosal organ such as the lung. It is now 
recognized that memory CD8+ T-cells are heterogeneous in terms of their phenotype 
and anatomical distribution. This has led to a broad categorization of memory T-cells 
into central memory cells (TCM  ) that persist in the secondary lymphoid organs and 
peripheral or effector memory cells (T EM ) that persist in nonlymphoid sites (Cauley 
et al. 2002; Flynn et al. 1998; Hogan et al. 2001; Lefrancois and Masopust 2002; 
Marshall et al. 2001; Masopust et al. 2001; Murali-Krishna et al. 1998; Reinhardt 
et al. 2001; Sallusto et al. 1999; Usherwood et al. 1999). The CD62L (the lymph 
node homing-receptor) and CCR7 molecules are particularly relevant to this classi-
fication since they divide memory T-cells into peripheral (T EM , CD62L - /CCR7 - ) and 
systemic (T CM   , CD62L + /CCR7 + ) subsets. Interestingly, most memory CD8 +  T-cells 
generated by an intranasal influenza or Sendai virus infection are of a T EM  phenotype 
(CD62L - /CCR7 - ).  

  The anatomical distribution of peripheral and systemic memory CD8 +  T-cells 
predicts that they will be differentially involved in recall responses to secondary 
viral challenge in the lung. Indeed, it has now emerged that the recall response can 
be divided into at least three temporally distinct phases, each mediated by differ-
ent subsets of memory CD8 +  T-cells. The first phase involves antigen-specific T EM  
residing in the lung airways. These cells are the first to encounter the pathogen and 
they have been shown to mediate early control of a secondary respiratory virus 
challenge (Hogan, Usherwood et al. 2001; Hogan, Zhong et al. 2001). The second 
phase involves circulating T EM  that are directly recruited to the lung airways from 
the circulation by inflammatory signals. The recruitment of these cells does not 
require cognate antigen stimulation and these cells do not divide prior to migration 
into the lung airways. The third phase involves both T EM  and T CM  that proliferate in 
response to antigen and are recruited to the lung airways as fully activated effector 
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T-cells (Sallusto et al. 1999). Since these cells are proliferating in the secondary 
lymphoid organs, this phase of the response is sustained through the protracted pro-
duction of new effector cells (Berenzon et al. 2003; Bjorkdahl et al. 2003; Harris 
et al. 2002; Hengel et al. 2003; Unsoeld et al. 2002). The combination of the three 
phases results in a sustained recall response to the infection, and the early control 
of pathogen load during the first two phases of the response provides time for the 
proliferative third phase of the recall response to develop and begin producing sec-
ondary effector T-cells.  

  An interesting feature of memory CD8 +  T-cells is that they exhibit considerable 
phenotypic heterogeneity. This heterogeneity defines a number of subpopulations 
that exhibit distinct trafficking and functional properties. For example, antigen-spe-
cific populations of T EM  and T CM  cells can be further divided into several different 
subpopulations based on the expression of markers such as CD43, CD27, CD127 
and Ly6C (Oehen and Brduscha-Riem 1998; Sprent 1997). It should be emphasized 
that cells within these subpopulations appear to be resting, despite their expression 
of markers associated with activation. Recently, we have analyzed the phenotype of 
memory CD8 +  T-cells generated by intranasal Sendai virus infection with a particu-
lar emphasis on the expression of markers that distinguish quiescent from semiacti-
vated memory T-cell subsets, such as CD27, CD43 (activated isoform), and CD127 
(Baars et al. 2005; Croft 2003; Jones et al. 1994; Kaech et al. 2003; Onami et al. 
2002). These studies showed that the memory T-cell pool can be further divided into 
three distinct subpopulations; CD27 hi /CD43 lo  (most quiescent), CD27 hi /CD43 hi , and 
CD27 lo /CD43 lo  (most activated; Hikono et al. 2007). Interestingly, these subpopula-
tions differed in their capacity to mediate recall responses to respiratory virus infec-
tion in vivo, with the strongest response being associated with the most quiescent 
phenotype (CD27 hi /CD43 lo ). Furthermore, the cells that mediated the weakest recall 
response (CD27 lo /CD43 lo ) also express KLRG1, which has been associated with cell 
senescence (Voehringer et al. 2001). Thus, these data define a new categorization 
of memory T-cells that is distinct from the T EM  and T CM  subsets. As we will discuss 
below, aging has a significant impact on the distribution of these different memory 
CD8 +  T-cell subpopulations and consequently on immune responsiveness.  

    3   Generation of T-Cell Memory in the Aged  

  As a better understanding of T-cell memory has emerged over the last few years, 
there has been a growing interest in the impact of age on the generation of T-cell 
memory (Ely et al. 2007; Gupta et al. 2004; Linton et al. 2005). Several studies have 
clearly established that memory generated in aged individuals is inferior to that 
generated in young individuals (Haynes et al. 2005; LeMaoult et al. 2000; Miller 
1996; Wick et al. 2000). However, the underlying mechanisms for this observation 
are not clear. The defect does not appear to lie in the capacity of aged individuals 
to generate peripheral or mucosal memory cells since these cells are generated in 
large numbers and appear to be functionally normal. Rather, it appears that the 
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problem lies in the capacity of memory CD8 +  T-cells in the aged to mediate the 
proliferative aspect (phase 3) of the recall responses. Indeed, several studies have 
shown that memory CD8 +  T-cells generated in aged mice exhibit a poor capacity to 
expand. A critical question is whether this reflects the poor proliferative capacity of 
antigen-specific CD8 +  themselves (an intrinsic effect), or whether it is controlled 
by the aged environment in which the cells are responding (an extrinsic effect). We 
have addressed this question using a dual adoptive-transfer system in which we are 
able to directly compare the proliferative capacities of Sendai virus-specific CD8 +  
memory T-cells that had been generated in either young or aged mice. These data 
showed that memory cells generated in aged mice were two to threefold less effi-
cient on a per cell basis than memory cells generated in young mice at mediating 
recall responses in the lungs and other tissues (Roberts et al. 2005). Since the cells 
were compared in the same young recipient animals, the data cannot be explained 
by differences in the viral load, antigen load, degree of inflammation, or other fac-
tors thought to be abnormal in an aged environment. Thus, these studies demon-
strated that the poor responsiveness of memory CD8 +  T-cells generated in aged 
mice is an intrinsic feature of the cells. One possible explanation for this decreased 
responsiveness is that the distribution of memory T-cell subpopulations is different 
in aged mice. Indeed, preliminary evidence suggests that de novo immune responses 
in aged mice generated a greater number of nonresponsive antigen-specific memory 
T-cells compared to young mice (Hikono et al. 2007). An alternative possibility is 
that the characteristics of the CD8 +  memory T-cell pool may depend on the quality 
of T-cell help present during the infection. In this regard, the decline in naïve CD4 +  
T-cell responses in aged individuals may have a secondary effect on the quality of 
CD8 +  T-cell memory generated (Haynes 2005; Kovaiou and Grubeck-Loebenstein 
2006). We are currently investigating these ideas in more detail.  

    4   Repertoire Loss Associated with Aging Impacts Immunity  

  A well-characterized consequence of aging is loss of T-cell repertoire diversity. 
Fewer new T-cells emerge from the thymus, due to age-related involution (Miller 
1991; Sempowski et al. 2002). In addition, the proportion of cells with a naïve phe-
notype (CD44 low ) compared with those of a memory phenotype (CD44 high ) gradually 
decreases with age, such that in an 18-month-old mouse naïve T-cells constitute 
less than 5% of total peripheral CD8 +  T-cells (Effros et al. 2003; Lerner et al. 1989; 
Naylor et al. 2005). Finally, there is the development of large clonal expansions that 
can further reduce repertoire diversity (Callahan et al. 1993; Hingorani et al. 1993; 
Posnett et al. 1994; Schwab et al. 1997). Thus, there is a dramatic age-associated 
reduction in repertoire diversity of naïve CD8 +  T-cells which is thought to contrib-
ute to the well-characterized inability of the elderly to mount effective immune 
responses to newly encountered antigens (Fagnoni et al. 2000; P. J. Linton and 
Dorshkind 2004; Messaoudi et al. 2004; Miller 1996; Mosley et al. 1998; Naylor 
et al. 2005; Nikolich-Zugich 2005). We have previously proposed that consequences 
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of the declining diversity of the aged naïve repertoire are twofold (Woodland and 
Blackman 2006). First, we predicted that the decline in numbers of antigen-specific 
naïve T-cells could drop below a necessary threshold, resulting in the development 
of ‘holes in the repertoire’, particularly for those clonotypes with a low precur-
sor frequency. Second, we predicted that the response to new antigens would be 
increasingly dominated by fortuitously cross-reactive memory T-cells. T-cell rec-
ognition has been shown to be highly degenerate (Mason 1998; Nikolich-Zugich 
et al. 2004), and a great deal of cross-reactivity to viral antigens that are not obvi-
ously structurally related has been demonstrated (Selin et al. 2004; Selin and Welsh 
2004). In addition, memory T-cells are more readily activated than naïve T-cells 
(Ahmed and Gray 1996; Dutton et al. 1999; Seder and Ahmed 2003). Thus, as the 
number of naïve T-cells declines, responses to newly encountered antigens will be 
increasingly dependent on preexisting cross-reactive memory T-cells. This would 
result in weaker, highly stochastic responses reflective of an individual’s prior anti-
genic experience.  

  We have recently obtained experimental evidence for our first prediction by tak-
ing advantage of the well-characterized mouse model of influenza virus infection 
(Yager et al. 2008). Three immunodominant epitopes in C57BL/6 mice have been 
described: NP 

366–374
 D b  (NP), PA 

224–233
 D b  (PA) and PB1 

703–711
 K b  (PB1; Belz et al. 2000; 

Deckhut et al. 1993; Townsend et al. 1986; Zhong and Reinherz 2004). Despite the 
fact that the response to these three epitopes following influenza virus infection of 
young mice is relatively equi-dominant, we found that the naïve T-cell precursor 
frequency for these three epitopes was approximately 1:10:30, respectively. We then 
examined the CD8 +  T-cell response elicited in aged mice following de novo infec-
tion with influenza virus. Our analysis of the ability of aged mice to clear influenza 
virus confirmed the reports of others (Bender et al. 1991; Effros and Walford 1983; 
Po, Gardner et al. 2002) in that clearance was delayed in aged mice. However, we 
observed a great deal of variation in the ability of individual aged mice to clear 
virus effectively. This variation could not be explained by a global defect in T-cell 
responses in individual aged mice, as the frequencies and number of CD8 T-cells in 
the BAL and lung tissue after infection were comparable for individual young and 
aged mice. There were, however, major perturbations in the epitope specificity of 
the majority of aged mice, in that there was an approximate fivefold reduction in 
the mean response to NP, with many aged mice completely negative, whereas the 
mean responses to PA and PB1 were comparable between young and aged mice. 
Furthermore, our characterization of the T-cell receptor (TCR) repertoire using both 
Vβ-specific antibodies and DNA spectratype analysis showed a major perturbation 
in the TCR repertoire of NP-specific T-cells in the aged mice, with a frequent loss 
of T-cells expressing the dominant Vβ8 T-cell receptor (Deckhut et al. 1993). Thus, 
we identified an age-associated loss in the ability of individual mice to respond to 
a normally immunodominant influenza virus epitope. The correlation between low 
naïve precursor frequency in young mice and reduced thymic output in aged mice 
was further reinforced by analysis of thymectomized young mice. Thymectomy 
mimics one effect of aging by eliminating export of new thymic immigrants to the 
periphery. Our analysis of the repertoire of influenza virus-specific CD8 +  T-cells 
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following infection of mice 7 months postthymectomy (8 months of age) showed 
that, similar to the response of aged (18-month-old) mice, there was a selective loss 
of responsiveness to NP. Taken together, these data provide formal evidence for the 
preferential development of “holes in the repertoire” of aged mice to a normally 
immunodominant viral epitope having a low naïve precursor frequency.  

  A key question is whether the loss of a response to NP has implications for the 
development of protective immunity in aged mice. To test this, we first analyzed the 
CD8 +  T-cell response to NP after primary influenza virus infection (PR8, H1N1) in 
individual young and aged mice by tetramer staining of peripheral blood, and 30 
days later challenged the mice with a heterologous influenza virus that could not 
be cross-neutralized by antibody (x31, H3N2).  Seven days after challenge, a time 
at which all young primed mice have cleared virus, aged mice were analyzed for 
viral clearance and epitope specificity.  The results showed a remarkable associa-
tion between the ability to generate a robust response against NP and effective viral 
clearance. Importantly, individual aged mice in which NP-specific CD8+ T-cells 
constituted less than 5% of the total CD8+ T cell response failed to clear virus, while 
those mice with a more robust NP response (5-15% NP-specific CD8 T-cells) had 
cleared virus on day 7, analogous to the young mice in which the NP-specific CD8+ 
T-cells constituted between 6-25% of the CD8+ T cell response. These data show 
that an age-associated loss in responsiveness to specific epitopes is associated with 
a decline in protective heterosubtypic immunity, providing direct evidence for the 
contribution of declining CD8 +  T-cell repertoire diversity on the loss of immune 
function with age.  

  We have yet to experimentally address the second part of our hypothesis; that the 
response of the elderly to new antigens will be increasingly dominated by fortui-
tously cross-reactive memory T-cells. However, preliminary data show that mem-
ory T-cells isolated from aged naïve mice can respond to specific influenza virus 
epitopes, supporting the existence of fortuitously cross-reactive memory T-cells that 
have the potential to respond to de novo influenza virus infection. As expected, the 
response pattern was distinct in individual animals, reflecting uniqueness in the 
repertoires of memory cells in each aged mouse. Experiments to further character-
ize the contribution of fortuitously cross-reactive memory responses in aged mice 
following de novo influenza virus infection are ongoing.  

    5 The Impact of Aging on Peripheral Memory T-Cell Pools  

  In addition to understanding the impact of age on de novo infections, it is also 
important to understand how age impacts T-cell memory that was originally gener-
ated in a young individual. This is a critical question, since many pathogens, such 
as influenza virus, are first encountered during youth. A key feature of CD8 +  T-cell 
memory to respiratory virus infections is that the efficacy of the recall response 
declines over the first year in both mice and humans (Ely, Roberts et al. 2007). 
This declining efficacy is related to the progressive loss of virus-specific CD8 +  T EM  
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cells from the peripheral and systemic memory T-cell pool. Although the absolute 
number of memory cells in the circulation remains relatively constant over time, 
there is a gradual conversion of the virus-specific population from a T EM  to a T CM  
phenotype (Hikono et al. 2006, 2007; Hogan, Usherwood et al. 2001; Tripp et al. 
1995). The conversion of the population from a T EM  to a T CM

 
 phenotype, denoted by 

the re-expression of CD62L over time, appears to represent the specific outgrowth 
of central memory cells by homeostatic mechanisms rather than a change in pheno-
type in individual cells (Marzo et al. 2005). There is some evidence that the selective 
outgrowth of central memory T-cells may occur in the bone marrow (Becker et al. 
2005). The expression of the activation-associated glycoform of CD43 also changes 
with similar kinetics, progressing from a mixed CD43 high  and CD43 low  phenotype to 
an exclusively CD43 low  phenotype. Thus, it would appear that memory T-cells ulti-
mately progress toward a more quiescent CD62L high /CD43 low  phenotype.  

  Despite a negligible impact on the total number of virus-specific memory CD8 +  
cells, phenotypic conversion of the memory T-cell population can have a dramatic 
impact on the kinetics and efficacy of a recall response. This conversion results 
in the progressive loss of T EM  cells from peripheral sites such as the lung (phase 
1 responders) and a reduced capacity to mediate the rapid recruitment of memory 
T-cells early during the recall response (phase 2 responders). The decline in these 
early phases of the recall response results in a diminished capacity to clear a second-
ary virus infection in the lung. In mouse models, the loss of peripheral memory takes 
about 8 months to a year. A similar loss of peripheral memory occurs in humans, 
although the kinetics are less clear. In light of the relatively rapid loss of peripheral 
memory, it should be emphasized that this process is not a direct effect of aging and 
occurs in both young and aged animals alike.  

  While the loss of peripheral T EM  cells with age results in a decline in mucosal 
immunity, it is less clear whether age also impacts the ability of systemic T CM  cells 
to mediate recall responses. We have addressed this question by comparing the 
capacity of recent versus long-term memory CD8 +  T-cells to proliferate in response 
to Sendai virus infection in vivo using a dual transfer approach (Ely et al. 2003; 
Roberts and Woodland 2004). In these experiments, memory cells were isolated 
from the spleens of donor mice that had recovered from a prior Sendai virus infec-
tion (either 1-month or 12-month postinfection) and cotransferred into Sendai 
virus infected recipient mice. These two populations were then compared for their 
capacity to generate recall responses in the lungs of the same host. These studies 
demonstrated that although both donor populations proliferated strongly, the 12-
month donor memory cells generated much stronger responses than the 1-month 
donor memory cells (on a per cell basis). Importantly, the dominance of 12-month 
memory CD8 +  T-cells could not be attributed to better CD4 +  T-cell help since both 
the 1-month and 12-month recall responses occurred within the same animal in the 
presence of the host Sendai virus-specific CD4 +  T-cell response. Thus, these data 
indicated that memory T-cell populations actually improve with age in terms of their 
capacity to mediate proliferative recall responses in the lung.  

  One possible explanation for the increased capacity of aged memory T-cells to 
mediate recall responses is the progressive accumulation of T CM  cells, which may 
have an enhanced capacity to proliferate in response to antigen However, using the 
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dual adoptive transfer approach, we showed that the improved capacity of long-term 
memory cells to mediate proliferative responses occurred in both the CD62L lo  (T EM ) 
and CD62L hi  (T CM ) subsets. This led to the speculation that other T-cell subpopula-
tions could explain the differences in the response of recent versus aged memory. In 
this regard, we have demonstrated that a subpopulation of memory T-cells express 
the killer cell lectin-like receptor G1 (KLRG1; Hikono et al. 2007). KLRG1 is a 
marker of senescent cells that exhibit poor in vivo proliferative capacity, but do 
not express programmed death-1 (PD-1), a marker of T-cell exhaustion (Barber et 
al. 2006; Voehringer et al. 2001; Zajac et al. 1998). KLRG1 + /PD-1 -  cells can rep-
resent up to 40% of a newly established memory T-cell pool and transfer studies 
confirmed that these cells have only a limited capacity to mediate recall responses 
(Hikono et al. 2007; Voehringer et al. 2001). Thus, newly generated memory con-
tains a substantial fraction of these poorly responsive cells. Over the long term, this 
population declines, leading to an ‘enrichment’ of the remaining memory T-cell 
pool due to increasing frequencies of highly responsive T-cells. Consistent with 
this, long-term memory cells from aged mice were more responsive than recently 
generated memory cells on a per-cell basis at mediating recall responses. In other 
words, the memory T-cell pool actually improved in its capacity to mediate recall 
responses in the lung with increasing age due to the gradual loss of poorly prolifera-
tive KLRG1 +  cells. Note that in these experiments, animals exhibiting T-cell expan-
sions were purposefully excluded to avoid complications ( See  below).  

    6   Dysregulation of T-Cell Memory with Age  

  As discussed above, the capacity of memory T-cell pools to mediate recall responses 
is clearly differentially affected by age. Whereas the overall efficacy of the response 
is reduced due to the decline in peripheral memory, there is also a corresponding 
increase in the capacity of systemic memory to mediate proliferative responses on 
a per cell basis. An additional complication is that the immune repertoire is further 
dysregulated by the appearance of CD8 +  T-cell clonal expansions (TCE). TCE are 
nonmalignant monoclonal populations of CD8 +  T-cells that appear with increasing 
frequency as individuals age (Callahan et al. 1993; Clambey et al. 2005; Effros 
et al. 2003; Hingorani et al. 1993; Messaoudi et al. 2004; Posnett et al. 1994, 2003). 
The sizes of these expansions are variable, but they can sometimes represent up to 
90% of the entire peripheral T-cell repertoire. TCE in humans strongly correlate 
with seropositive responses to chronic virus infections, such as cytomegalovirus, 
suggesting that persistent antigenic stimulation drives these expansions (Khan et al. 
2002; Koch et al. 2006). However, TCE are also observed in humans and mice that 
lack any obvious persistent infection (Clambey et al. 2005). These data suggest that 
TCE may fall into two distinct categories that are either dependent or independent 
of chronic antigenic stimulation (Messaoudi et al. 2006).  

  The requirement for antigen in the generation and maintenance of TCE in the 
absence of a persistent infection is enigmatic. We have analyzed this question using 
mouse models of acute Sendai and influenza virus infections. Intranasal infection 
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of mice with these viruses elicits a strong CD8 +  T-cell response that clears virus 
from the lungs within 10 days of infection. Antigen-specific memory CD8 +  T-cells 
specific for immunodominant epitopes persist for life in the animals and typically 
represent less than 1% of the total CD8 +  T-cell pool. However, 18 months postinfec-
tion, CD8 +  TCE specific for the different immunodominant Sendai and influenza 
virus epitopes were found to emerge with increasing frequency, in some cases rep-
resenting greater than 90% of the CD8 +  T-cell pool. Spectratype and T-cell receptor 
Vβ analysis confirmed that these TCE were monoclonal in nature (Ely et al. 2007). 
In general, these TCE expressed phenotypes typical of conventional memory cells 
and were present in both the T EM  and T CM  subsets. TCE were also functional in 
terms of their capacity to produce cytokines and to proliferate in vitro in response 
to cognate antigen or homeostatic cytokines (Li et al. 2005; Zhang et al. 2002). 
These observations suggest that TCE can arise from the entire memory T-cell pool, 
however we cannot formally rule out that the TCE identified arose from a particular 
subset and subsequently changed their phenotype. Importantly, the appearance of 
these cells cannot be readily explained by persistent antigen since infectious virus 
is cleared within 10 days and there is no evidence for antigen persistence longer 
than a few weeks (Jelley-Gibbs et al. 2005; Zammit et al. 2006; Hou et al. 1992; 
Usherwood et al. 1999). While the antigen-specific TCE that develop in mice that 
have recovered from either Sendai or influenza virus infections are clearly antigen-
specific, it is tempting to speculate that expansions of unknown specificity also arise 
from the memory T-cell pools that are present even in specific pathogen free mice. 
Taken together, these data were the first to demonstrate that at least some TCE can 
develop from the conventional memory T-cell pool elicited by an acute (as opposed 
to persistent) pathogen infection.  

  The mechanisms by which TCE develop are unclear. Homeostatic proliferation 
appears to play an important role, although the rate of proliferation of a given TCE 
is not overtly different from that of the general memory T-cell pool. Consistent 
with this idea, TCE typically express receptors for cytokines that are involved in 
CD8 +  T-cell homeostasis, namely CD122 (IL2Rβ/IL15Rβ) and CD127 (IL7Rα). 
Furthermore, antigen is not required for the maintenance of antigen-specific TCE 
since they continue to proliferate and maintain their numbers following transfer into 
mice in which the cognate antigen is absent (Clambey et al. 2005; Ely et al. 2007). 
A more detailed analysis of the memory T-cell pool indicates that large TCE may 
simply be the most prominent feature of a general breakdown or dysregulation of 
the memory T-cell pool. The impression is that TCE are constantly emerging and 
expanding to varying degrees, resulting in a progressive decline in the overall diver-
sity of the memory T-cell pool. For example, using memory T-cell pools in young 
mice as a standard, approximately 75% of aged mice (greater than 18 months old) 
expressed perturbations that were two standard deviations outside the normal range 
for young mice and were therefore considered potential TCE. Thus, one possible 
explanation for the appearance of TCE is that they reflect a gradual dysregulation of 
the normal process of homeostatic proliferation that operates to maintain memory 
T-cell numbers. In other words, TCE may be a natural outcome of the long-term 
homeostatic proliferation of the memory T-cell pool. This would become evident on 
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a population level if individual clones proliferated at slightly different rates, causing 
the overall memory T-cell pool to become progressively less diverse over time and 
leading to the emergence of TCE. While an attractive idea, it should be noted that 
some TCE appear to expand and then subsequently regress within the same indi-
vidual (Clambey et al. 2005). This means either that different TCE are regulated by 
distinct mechanisms or that there are universal control mechanisms that can come 
into play.  

  The extent to which TCE are able to impact immune responses is not well under-
stood. TCE generated by chronic viral infections, and presumably by persistent anti-
genic stimulation, appear to be functionally impaired as they fail to produce effector 
cytokines upon restimulation in vitro (Clambey et al. 2005; Khan et al. 2002; Koch 
et al. 2006; Messaoudi et al. 2004; Posnett et al. 2003). In addition, TCE that expressed 
the same Vβ as a dominant portion of the normal response to HSV-1 were shown to 
have a Vβ-specific negative impact on the subsequent de novo response to HSV-1 
(Messaoudi et al. 2004). In the case of antigen-specific TCE, their presence will gener-
ally be detrimental due to the fact that they severely compromise the overall size, and 
therefore the diversity, of the rest of the T-cell pool. This will have the effect of reduc-
ing the number of memory cells specific for other antigens or pathogens. However, 
this hypothesis has yet to be proven. It may also be the case that their high frequencies 
could actually benefit a response to the pathogen for which they are specific. This may 
be relevant for a pathogen like influenza in which an individual may encounter the 
same T-cell epitope during multiple infections over the course of many years.  

    7   Implications for Vaccination  

  It is well-established that the elderly are difficult to vaccinate, and efforts to improve 
vaccination efficacy are a high priority. Our data suggest that declining repertoire 
diversity and the potential to develop “holes in the repertoire” can have a profound 
effect on strategies to boost effectiveness of vaccination. For example, the use of 
epitope-based vaccine strategies would be counter-intuitive for aged individuals 
since naïve T-cell precursors capable of recognizing a particular epitope may be 
missing. In addition, the use of potent adjuvants in the elderly may be both inef-
fective and dangerous, because a lack of naïve T-cell precursors could allow for 
the boosting of unwanted, pathological cross-reactive responses (Selin et al. 2006). 
Instead, a more proactive approach earlier in life may result in efficacious cellu-
lar immunity among elderly individuals. For example, because memory generated 
in young individuals persists with time (Haynes et al. 2003; Kapasi et al. 2002; 
Roberts et al. 2005), one rational approach is to enhance vaccination efficacy of 
young adults by focusing on strategies that will generate robust and diverse T-cell 
responses that will persist into old age. This enhancement will involve the admin-
istration of vaccines that elicit large numbers of pathogen-specific memory T-cells, 
while limiting the number of poorly responsive (KLRG1 + ) cells that could dampen 
protective immunity during a recall response. In addition, efforts to prolong thymic 
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output and/or the lifespan of naïve T-cells, or to reconstitute naïve T-cells in the 
elderly, warrant further investigation (Beverley and Grubeck-Loebenstein 2000; 
Goronzy et al. 2007; R. D. Kovaiou et al. 2007; McElhaney 2005; Nikolich-Zugich 
2005; van den Brink et al. 2004). The prolonged availability of naïve T-cell precur-
sors could allow for continued boosting of the response through vaccination, in turn 
renewing the peripheral T EM  population capable of mounting immediate responses 
at the site of virus infection.  

  Clearly, the last several years have seen considerable progress in the elucidation 
of the dynamics of T-cell memory during aging, and the underlying defects that 
hamper the establishment of quality T-cell memory in aged individuals. As we move 
forward, the identification of the mechanisms that govern these processes will be of 
crucial importance. A thorough understanding of these mechanisms will be neces-
sary for the development of rational vaccination strategies for the elderly.  
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         Abstract:        Since its discovery in 1983, HIV-1 has become the most extensively 
studied pathogen in history. Massive CD4+ T-cell depletion and sustained immune 
activation and inflammation are hallmarks of HIV-1 infection. However, the precise 
pathway to the onset of immunodeficiency that develops during HIV-1 infection 
has not been resolved yet. In recent years, an intriguing parallel between HIV-1 
infection and ageing has emerged: HIV-1 infected individuals present immuno-
logical alterations that are remarkably similar to those accumulated with age by 
HIV-1 uninfected elderly. These alterations, e.g., loss of regenerative capacity and 
accumulation of ageing T-cells, are suggestive of a process of immunosenescence, 
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which may result from persistent HIV-1 replication and systemic immune activa-
tion. Furthermore, the comparison between HIV-1 infection and human ageing may 
go beyond the sole onset of immunosenescence, and extends to the deterioration 
of a number of physiological functions related to inflammation and systemic age-
ing. In the present chapter, we provide to the readers the different pieces of the 
HIV pathogenesis puzzle, from the virus itself to the development of therapeutic 
strategies, and discuss how they fit together into a model of accelerated immunose-
nescence and systemic ageing in HIV infection.  

         Keywords:        HIV pathogenesis    •     CD4+ T-cells    •     Immune activation    •     
Regenerative capacity    •     Exhaustion 

     1 Introduction  

   In 1981, physicians in the United States reported an unusual outbreak of infections in 
the homosexual community: previously healthy homosexual men were dying from 
infections that should normally be resolved with no problem [1, 2]. Within a year, 
this condition, characterized by markedly reduced circulating CD4+ T-cell counts, 
was referred to as acquired immunodeficiency syndrome or AIDS. The pathogen 
responsible for AIDS was identified as a T-lymphotropic retrovirus for the first time 
in 1983 by a French group [3], followed by groups in the US [4, 5]. Formerly known 
as lymphadenopathy-associated virus (LAV), human T-lymphotropic virus Type III 
(HTLV III) or AIDS related virus (ARV), the virus was named human immunodefi-
ciency virus or HIV. Retrospectively, the first recorded case of HIV-1 infection was 
reported in a blood sample taken in 1959 in former Zaire [6].  

   Over the past 50 years, from isolated case reports, the scale of the HIV epidemic 
has become a global pandemic, and HIV the most extensively studied and notorious 
pathogen in history. The World Health Organisation (WHO) and UNAIDS estimate 
that close to 40 million people were living with HIV by the end of the 2006, with 
Africa accounting for the great majority of these cases. For instance, in Bostwana, 
the prevalence of infection is estimated to be about one third of the adult population, 
and in Namibia, life expectancy has dropped from 61 years in 1991 to 45.5 years 
in 1996. In addition to its disastrous impact on the African population, HIV is very 
likely to have profound consequences on the economies and therefore on the future 
of these developing countries.  

   Most surprisingly, such devastation is caused by a rather small virus, consist-
ing of only 9 genes. Scientists had originally anticipated the rapid development of 
effective vaccines and cures against this virus. However, the solution to the HIV 
pandemic is still to come. In reality, the precise reasons for the onset of immunode-
ficiency that almost inevitably develops during HIV infection, or the exact process 
through which HIV leads to AIDS, have not been resolved yet. The relationship 
between HIV and its host has emerged as extremely complex: immunologic, genetic, 
viral and environmental factors, can potentially contribute to the rate of HIV disease 
progression. However, 25 years of intense research have not been futile: pieces of 
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the puzzle are starting to come together and the whole picture of HIV pathogenesis 
is being unraveled little by little. The infection of CD4+ T-cells, key players of the 
immune system, by HIV and its capacity to mutate rapidly in order to escape its 
host immunity are central features of the virus efficacy to persist and cause severe 
damage. However, in recent years, 2 further points or observations have emerged as 
being potentially fundamental in HIV pathogenesis: the role of immune activation 
and inflammation, and an intriguing parallel between HIV infection and ageing.   

   In the present chapter, our aim is to present to the readers the different pieces 
of the HIV pathogenesis puzzle and discuss how they fit together into a model of 
accelerated immunosenescence and systemic ageing in HIV infection.  

     2 Important Properties of HIV-1  

   2.1   Infection with HIV-1  

   HIV belongs to the lentivirus subgroup of retroviruses. Two HIV viruses have been 
described: HIV-1 and HIV-2. Infection with HIV-1 is highly prevalent worldwide 
and is responsible for the HIV pandemic. HIV-2 infection is observed only in some 
countries of West Africa and usually results in a mild disease course. HIV is an 
enveloped RNA virus whose structural components can be broadly divided into 
the viral envelope, matrix and core, viral RNA and enzymes. Its genome consists 
of only 9 genes divided into 2 structural genes ( gag  and  env ) encoding the capsid 
and envelope proteins, one gene ( pol ) encoding enzymes necessary for the HIV 
replicative cycle (i.e. reverse transcriptase, integrase, and protease), and a series of 
accessory genes ( nef, rev, tat, vpu, vif  and  vpr ). Moreover the long terminal repeat 
(LTR) found at each end of the virus is responsible for encoding binding sites for the 
initiation of virus transcription, as well as for utilizing cellular transcription factors 
after the virus has been integrated into its host genome [7].  

   Infection with HIV occurs primarily by sexual contact (heterosexual as well as 
homosexual), transfer of infected blood or transmission from mother to child. In 
order to enter cells and initiate its replicative cycle, HIV requires that its target 
expresses two separate molecules: CD4, which acts as the primary HIV receptor; 
and a second co-receptor, generally either CCR5 or CXCR4. Several cell popula-
tions present in the genital tract express the requisite receptors for productive HIV-1 
infection, including CD4 lymphocytes, Langerhans cells and macrophages. The main 
cell target during established HIV-1 infection is the activated CD4+ T-lymphocyte 
[8]. After productive infection by HIV-1, there are still several possible fates for an 
infected host cell. Most HIV-infected, activated cells will die quickly (t 

1/2
  1 day), 

through direct cytopathic effects of the virus, apoptosis or killed by the host antiviral 
immune response [9, 10]. However, a fraction of these T-cells, carrying integrated 
proviral DNA, revert back to a resting state. These CD4+ lymphocytes constitute 
a stable pool of long-lived memory T-cells, which are not transcribing viral genes 
and so are not susceptible to killing by host HIV-specific cellular effectors. These 
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latently infected cell pool constitutes a reservoir for the virus and the integrated 
HIV-1 genome will actively replicate upon cell activation [8]. HIV-1 can spread 
to the whole lymphatic and blood system, including lymphoid organs like lymph 
nodes or the thymus.  

    2.2 The Course of HIV-1 Infection  

   The clinical course of HIV-1 infection can be divided into three distinct stages: an 
early, acute stage; a middle, chronic stage; and a late, immunodeficiency stage (AIDS) 
(see Fig. 1a). During the latter stage, opportunistic illnesses develop that are charac-
teristic of AIDS, and if untreated this stage will progress to death. Acute HIV-1 infec-
tion is characterized by extensive viral replication and dissemination, prior to the 
induction of host immune responses, resulting in a transient CD4+ lymphocytopaenia. 
The symptoms and high viremia associated with primary infection generally decline 

Fig. 1 (a) The course of 
natural HIV-1 infection 
(b) The course of HIV-1 infec-
tion with antiretroviral therapy
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within a few weeks, as the host cellular immune response reduces plasma viremia. 
With the resolution of the clinical symptoms associated with primary infection, 
CD4+ counts generally return to more normal levels; the initial viremia is followed 
by the establishment of a viral set point, an equilibrium between virus and host [11], 
defining the chronic stage of HIV-1 infection, that can last for up to several years. 
This phase of HIV-1 infection is associated with no (or minimal) clinical symptoms, 
although CD4+ T-cell counts fall gradually [12]. The late stage of HIV infection is 
AIDS, manifested by a decline in the number of CD4+ cells to below 200/mm 3  and 
a raise in plasma viremia, eventually resulting in immunologic collapse and the inci-
dence of opportunistic infections. The time taken to progress from clinical latency 
to AIDS, in the absence of antiretroviral therapy, has a median of 10 to 11 years in 
developed countries, and 3 to 4 years in developing countries. The higher the viral 
set point, the faster the individual is to progress to symptomatic AIDS. The 2 most 
characteristic manifestations of AIDS are Pneumocystis pneumonia and Kaposi’s 
sarcoma. However, many other opportunistic infections occur with some frequency. 
These include viral infections such as disseminated herpes simplex, herpes zoster, 
and cytomegalovirus infections and progressive multifocal leucoencephalopathy; 
fungal infections such as thrush, cryptococcal meningitis, and disseminated histo-
plasmosis; protozoal infections such as toxoplasmosis and cryptosporidiosis; and 
bacterial infections such as disseminated Mycobacterium avium-intracellulare and 
Mycobacterium tuberculosis infections. Many AIDS patients have also severe neu-
rologic problems, e.g., dementia and neuropathy. Unless the underlying immunode-
ficiency can be addressed by the use of antiretroviral drugs [13], subjects who have 
reached the stage of AIDS will generally die within one to two years [12].  

    2.3   Mechanisms of Persistence  

   HIV is one of the most successful viruses to subvert and manipulate the host immune 
system, achieving life long chronic infection. Thorough studies have permitted to 
reach a good understanding of the reasons why the immune system fails to eradicate 
completely the virus after primary infection. HIV-1 possesses a range of mecha-
nisms to escape its host immunity and to establish persistence.  

   The replication process of HIV-1 using the error prone enzyme reverse tran-
scriptase can generate around 1 point mutation per 10 4  nucleotides, meaning that 
each progeny virus will potentially contain at least one base site mutation. It is esti-
mated that an infected person can produce up to 10 billions new virions each day. 
This leads to an amazing capacity to produce new mutants during the entire course 
of an HIV infection [14]. HIV-1 is therefore able to mutate under selection pressure 
from the immune system, resulting in the rapid emergence of variants that can elude 
both antibody and T-cell recognition [15, 16]. For instance, mutations appear in 
the sequence of viral epitopes normally recognized by CD8+ T-cells, affecting the 
binding of the peptide to the MHC Class I molecule, and resulting in loss of CD8+ 
T-cell detection and stimulation. In some case, the development of escape mutants 
correlates directly with disease progression [17, 18].  
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   HIV-1 expresses also factors known to enhance pathogenicity. The most studied 
of these factors is Nef. Nef is able to downregulate the surface expression of surface 
MHC Class I [19, 20] and to upregulate FasL [21], providing a possible role in eva-
sion of the immune response. Moreover, Nef induces a 5 to 10 fold increase in the 
endocytosis of the CD4 molecule, followed by transport to the lysosomes [22]. This 
may facilitate the generation of new virions, as intracellular CD4 interferes with 
gp120 incorporation into the virus [23, 24]. Another HIV protein, Vpu, has been 
shown to induce degradation of CD4 molecules by targeting CD4 to the proteosome 
[22]. Vpu also prevents the cell surface expression MHC Class I molecules, by dis-
rupting its processing [22].  

   Finally, as seen earlier, HIV-1 establishes latent reservoirs in resting memory 
cells that confers on the virus the capacity to remain hidden from immune surveil-
lance and to pursue low levels of replication throughout the lifetime of the infected 
person [25]. Although these mechanisms are exclusive to HIV-1, the ability to per-
sist in its host and to establish chronic infection is not unique to HIV-1, as a range 
of other viruses (e.g., Herpes and Hepatitis viruses) have also developed means to 
escape their host immunity and establish successful persistence.  

    2.4   HIV-1 Mediated Depletion of CD4+ T-cells  

   What then makes HIV-1 different from other persisting viruses which do not lead 
to a general process of immunodeficiency? HIV is unique in that it targets the 
CD4+ T-cell pool (as well as, but to a lesser extent, macrophages and dendritic 
cells), which holds an essential role in immunity. The infection and depletion 
of CD4+ T-cells represents the most fundamental event in the pathogenesis of 
HIV-1 infection. Acute HIV-1 infection is characterized by a transient and mod-
est decrease of CD4+ T-cell count as observed in the peripheral blood. However, 
this is not representative of the total body CD4+ T-cell count since the majority 
of CD4+ T-cells resides actually not in peripheral blood, but in lymphoid tissues 
like the lymph nodes, and in particular, the mucosal lymphoid tissues like the 
gastrointestinal tract. Mucosal CD4+ T-cells consist predominantly of memory 
CD4+ T-cells which express the HIV co-receptor CCR5 and present relatively 
activated status [26–28]. They are therefore ideal targets for the virus. Impor-
tantly, studies performed in primates infected with SIV (the simian equivalent 
of HIV) as well as in HIV-1 infected humans revealed that massive CD4+ T-cell 
depletion takes place in mucosal tissues during acute infection [28–30], due to 
direct target cell infection [31, 32] and apoptosis [33]. As a consequence, the gut 
associated mucosal tissue becomes the most important site of active viral replica-
tion and T-cell depletion during acute infection. It is thought that HIV infected 
patients can lose the majority of their CD4+ T-cell pool (60 to 80%) within the 
first few weeks post infection. This massive depletion of CD4+ T-cells, which is 
maintained throughout all stages of HIV infection [28], is obviously not left with-
out consequences, as discussed later.  



HIV Infection as a Model of Accelerated Immunosenescence  1003

   HIV-1 infected individuals are also characterized by a gradual decline of 
peripheral blood CD4+ T-cell counts during chronic infection, which, although it 
does not reflect the massive depletion of mucosal CD4+ T-cells, is critical in HIV 
pathogenesis. It is directly associated with HIV disease progression: low circulating 
CD4+ T-cells count coincides best with the onset of AIDS, as minimum levels of 
CD4+ T-cells are required to maintain immune integrity. The frequency of infected 
circulating CD4+ T-cells during chronic infection is too low (0.01 to 1%) to account 
solely for this general decline of peripheral blood CD4+ T-cells [34–36]. Activation 
induced apoptosis (discussed soon after) is actually considered as a major cause of 
peripheral CD4+ T-cell depletion in HIV infected patients. Moreover, CD4+ T-cell 
depletion takes place in a context of impaired or reduced T-cell renewal, so that a 
significant proportion of depleted CD4+ T-cells will eventually not be replaced, 
hence this progressive decline.  

     3   Immune Activation and Inflammation in HIV-1 Infection  

   3.1 The Paradoxical Immune Activation  

   Progressive CD4+ T-cell depletion is the hallmark of HIV-1 infection. However, 
another phenomenon has become apparent: the association between HIV infection 
and chronic immune activation and inflammation. HIV infected individuals display 
elevated markers of activation and apoptosis of CD8+ and CD4+ T-cells [37–40], as 
well as B-cells, NK-cells and monocytes. High levels of proinflammatory cytokines 
such as tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6) and interleukin 
1 beta (IL-1β) in both plasma and lymph nodes, are also observed from the early 
stages of HIV-1 infection [41–45]. The secretion of chemokines like MIP-1α, MIP-
1β and RANTES is increased in these patients [46, 47]. Immune activation, which 
usually reflects the mounting of antiviral immunity, may be seen as a normal and 
positive observation in the case of an infection with any pathogen including HIV. 
However, in the 90s, Giorgi and colleagues reported a rather counter intuitive obser-
vation: T-cell activation levels, as measured with the expression of the activation 
marker CD38 on CD8+ T-cells, were predictive of an adverse prognosis for the 
infected patients [48–50]. Several investigators have then confirmed that there is 
indeed a direct correlation between HIV-1 disease progression and CD8+ T-cell 
activation levels [51–53].  

   Further evidence of the paradoxical role of immune activation in HIV infection 
was brought by studies of SIV infected primates. Rhesus macaques which, like HIV 
infected humans, suffer progressive CD4+ T-cell depletion and progression to AIDS 
upon SIV infection, are characterized by strong T-cell activation. In contrast, SIV 
infected Sooty mangabeys and African green monkeys, which do not develop any 
immunodeficiency, exhibit minimal T-cell activation despite evident viral replica-
tion [54]. Another interesting observation comes from the study of HIV-2 infected 
individuals: HIV-2 infection leads to a mild or slow disease progression, and most 
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HIV-2 infected patients will die from HIV-2 unrelated causes; interestingly these 
patients display significantly less immune activation compared to HIV-1 infected 
individuals [55]. The adverse effect of immune activation in HIV pathogenesis may 
also account for the observations linking more rapid disease progression in Kenyan 
prostitutes and frequent intercurrent infections and related immune activation [56], 
or for the accelerated SIV-induced disease progression reported in SIV-infected 
macaques which were subjected to repeated SIV-independent immune stimulus to 
mimic chronic activation [57].  

    3.2  The Causes of Immune Activation and Inflammation 
in HIV-1 Infection  

   During HIV-1 infection, immune activation and inflammation involve several 
mechanisms, which are both directly or indirectly related to viral replication. The 
common cause of T-cell activation during an infection is antigenic stimulation by 
the virus, which is the foundation of the adaptive immune response. During primary 
infection, HIV-1 induces strong T-cell responses, in particular CD8+ T-cells, which 
can persist during the chronic infection phase due to the continuous replication of 
the virus: up to 20% of circulating CD8+ T-cells can be HIV specific in untreated 
chronically infected patients [58, 59]. HIV specific CD4+ T-cell responses are usu-
ally present at a lower magnitude (i.e., up to 3% of circulating CD4+ T-cells) [58], 
which may be related to their preferential depletion by the virus [35].  

   Nonetheless, the extent of activation during the course of HIV-1 infection is such 
that stimulation with HIV antigens solely cannot account for the complete phe-
nomenon of immune activation observed. Although the physiological impact is not 
known yet, in vitro studies suggest that HIV gene products can induce directly the 
activation of lymphocytes and macrophages, and the production of proinflammatory 
cytokines and chemokines. The envelop protein gp120 may be able to activate cells 
or to enhance their responsiveness to activation, even in absence of direct infection, 
through binding to CD4 or coreceptors [60–62]. The accessory protein Nef is also 
able to lead to lymphocyte activation either directly [63, 64] or through the infection 
of macrophages [65].  

   HIV-1 causes also immune activation and inflammation through indirect means. 
Antigenic stimulation during HIV-1 infection may be induced by other viruses, like 
CMV and EBV. CMV reactivation appears to occur recurrently in healthy donors 
as evidenced by the presence of a large population of CD69+ CMV specific cells 
indicative of recent  in vivo  activation [66]. During HIV-1 infection, the depletion of 
CD4+ T-cells may result in suboptimal immune control of these persistent viruses 
and thus permits their reactivation and replication. In addition, inflammatory condi-
tions occurring during HIV infection (e.g., release of proinflammatory cytokines) 
may also participate in the reactivation of latent forms of CMV and EBV. Recent 
studies have shown significant activation of EBV and CMV specific CD8+ T-cells 
during HIV-1 acute infection [67, 68]. Hence, sustained antigen mediated immune 
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activation occurs in HIV-1 infected patients, which is due to HIV-1, but also to other 
viruses (and may not be only restricted to CMV and EBV).  

   Recently, Douek and Brenchley have brought to light another potential mecha-
nism that could be central in HIV pathogenesis and involves the activation of innate 
immune system [69]. The massive depletion of CD4+ T-cells (and possibly mac-
rophages and dendritic cells) by HIV-1 in mucosal lymphoid tissues can result in 
disrupting the different immune components that constitute the mucosal barrier. 
This barrier usually prevents the translocation of the flora that inhabits the intestinal 
tract and restricts these pathogens to the lamina propia and the mesenteric lymph 
nodes. Compromising its integrity may therefore results in microbial translocation 
from the gut to the systemic immune system [70]. Interestingly, HIV-1 infection is 
associated with a significant increase of plasma LPS levels, an indicator of microbial 
translocation. Plasma LPS is directly correlated with measures of immune activa-
tion [69]. Translocation of bacterial products is highly likely to result in a profound 
activation of the innate immune response: for instance lipopolysaccharide (LPS), 
flagellin, and CpG DNA, which are toll like receptor (TLR) ligands, are known to 
directly stimulate peripheral macrophages and dendritic cells to produce a range of 
proinflammatory cytokines (e.g., TNFα, IL-6 and IL-1β). The eventual outcome 
is bystander activation and differentiation of lymphocytes and monocytes, and the 
establishment of a proinflammatory state.  

     4  The Consequences of Immune Activation and Inflammation 
in HIV-1 Infection  

   The initiation of this state of immune activation and inflammation and its long term 
establishment due to persistence of the virus have extensive and detrimental effects 
on the immune system and human health.  

   4.1  The Vicious Cycle of Immune Activation and HIV-1 
Spreading  

   A direct consequence of T-cell activation is the increase of intracellular nuclear fac-
tor kappa B (NF-κB) levels, which enhances the transcription of integrated virus, 
and therefore the production of new virions that will infect new targets [ 71 ]. A 
vicious cycle is therefore established during which HIV-1 replication promotes 
immune activation, and immune activation promotes HIV-1 replication. Released 
proinflammatory cytokines participate also to this refueling cascade: the synergic 
action of IL-1β, TNFα and IL-6 can lead to T-cell activation [ 72 ]; IL-1β and TNFα 
may also decrease transepithelial resistance in mucosal tissues, therefore promoting 
microbial translation [ 73 ].  
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   Immune activation implies enhanced T-cell turnover, differentiation from 
naïve to antigen experienced cells, and apoptosis. A large number of T-cells end 
up dying upon activation, independently from HIV infection. However, dynam-
ics of activation, expansion and apoptosis seem to differ between CD4+ and 
CD8+ T-cells [74–76]. CD8+ T-cells experience extensive expansion upon activa-
tion and can establish a stable pool of resting memory cells. In contrast, the capacity 
of CD4+ T-cells to expand and survive seems to be lower, so that the vast major-
ity of activated CD4+ T-cells apoptose rapidly, hence a further burden with regard 
to the renewal of the CD4+ T-cell pool. Overall, the immune system of HIV-1 
infected individuals faces major difficulties: it has to cope with a massive cellular 
destruction, in particular CD4+ T-cells (through apoptosis or direct infection), and 
to contain HIV-1 replication, as well as associated pathogens. Dealing with such 
overwhelming and enduring challenge has a cost.  

    4.2   Immunosenescence and HIV-1 Infection  

   4.2.1 The Limited Regenerative Capacity of the Immune System  

   Considering the multiplicity of pathogens the immune system must face through-
out a life time, its plasticity and efficacy are prodigious. The complete reconstitu-
tion of the pool of immune cells from a small number of precursors in the context 
of leukemia/lymphoma treatment (i.e., infusion of hematopoietic stem cells after 
chemotherapy and total body irradiation) has highlighted the fantastic capacity 
of the immune system to regenerate itself. Nonetheless, this capacity may have 
boundaries. Accumulating evidence suggests that the so-called Hayflick limit (i.e., 
the irreversible state of growth arrest indicative of replicative senescence, initially 
observed with cultured human fibroblasts) applies to cells of the immune system 
[77], so that their replicative lifespan in vivo is limited. The occurrence of replica-
tive senescence is primarily related to the number of cell divisions. A commonly 
used marker of replicative history is the length of the telomeres (repeated hexameric 
DNA sequences found at the ends of the chromosomes), that is reduced with each 
cell division. Important telomere shortening can result in chromosome instability 
and eventually in growth arrest and/or apoptosis of the cells. During primary viral 
infection, upregulation of telomerase (the enzyme involved in the maintenance of tel-
omere length) occurs in order that activated virus specific T-cells maintain telomere 
length despite the considerable clonal expansion which takes place at that moment 
[78, 79]. However, such capacity to upregulate telomerase seems to decrease after 
repeated stimulation [80], so that memory T-cells specific for persisting viruses will 
eventually present shorter telomere length, as exemplified in EBV infection [81, 
82], and reach stages of replicative senescence. The immune system deals with this 
irreversible exhaustion of T-cells by continuously providing new cells.  

   However, the thymus (the organ on which depends the generation of naïve 
T-cells and the maintenance of TCR diversity [83]), is known to involve with time, 
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so that it has almost completely disappeared by the age of 60 in humans [84, 85]. 
Evidence show that the age related changes in the thymus are quantitative rather 
than qualitative [86]: the rate of naive T-cell output from the thymus dramatically 
declines with age [85, 87, 88]. Limitation of T-cell regenerative capacity may also 
occur further upstream in the development of lymphocytes. All the cells which con-
stitute our immune system originate from bone marrow derived hematopoietic stem 
cells which differentiate and commit themselves to one specific cellular lineage 
(e.g., myeloid or lymphoid) to generate new granulocytes or naïve lymphocytes 
continuously. However, emerging data suggest that deregulation of hematopoiesis 
can occur overtime (i.e., with age). Progenitor cells in elderly individuals present 
shorter telomeres than in cord blood of newborns [89]. Poor results of bone-mar-
row transplantation in elderly individuals [90] suggest also that the aged bone-mar-
row microenvironment has a significantly reduced ability to support hematopoietic 
regeneration. Moreover, granulocytes and/or naïve T-cells show a shortening in tel-
omere length associated with age [91], or after bone-marrow transplantation [92], 
suggesting that this applies also to hematopoietic stem cells. Although it is unclear 
whether this phenomenon has a real consequence on the immune function in ageing, 
these data support the idea that the regenerative capacity of the progenitor pool may 
not be unlimited and could reach exhaustion overtime. The overall deterioration 
of the immune system with time is referred to as immunosenescence. A number 
of alterations, which characterize HIV infected individuals, seems actually to be 
related to immunosenescence, as initially supported by Effros and colleagues [93, 
94]. This is the likely consequence of immune activation, manifested at two distinct 
levels.  

     4.2.     2 Senescence/Exhaustion of T-cell Responses  

   Levels and/or recurrency of cellular activation is a major factor, driving prolifera-
tion and T-cell differentiation resulting in the generation of antigen experienced 
cells, that eventually lack expression of CD28, and show increasing expression of 
CD57 [67, 95]. These subpopulations tend to lose the capacity to produce IL-2 
and present a decline of their proliferative capacity, associated with a shortening of 
telomere lengths, so that highly differentiated cells (CD28-/CD57+) have been con-
sidered as approaching end-stage senescent cells [67, 96]. HIV specific CD8+ T-cell 
populations play a major role in holding back HIV spreading. These populations are 
heterogeneous, and consist of cells which can vary in their anti-viral efficacy. For 
instance, long term non progression may be established through the action of certain 
populations of HIV specific CD8+ T-cells that display polyfunctional characteris-
tics [97] and/or proliferative capacity [98], and are able to maintain low viral load in 
infected patients. Avidity of antigen recognition by antigen-specific CD8+ T-cells 
correlates also with the efficiency of antigen recognition as shown in several anti-
genic systems [99, 100], and can be one of the main parameters that determines the 
efficacy of antiviral immunity [101]. However, due to persistent viral replication and 
repeated stimulation, HIV specific CD8+ T-cells may be gradually driven towards 
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an irreversible exhaustion of their replicative capacities to become worn-out cells, 
even resulting in the loss of important anti-HIV T-cell cell subpopulations [101]. 
Due to their sensitivity for the antigen, high avidity T-cells may be particular sensi-
tive to such stimulation driven depletion. The exhaustion and loss of these “high 
quality” T-cells may play a significant role in the onset of HIV disease progression, 
despite other HIV specific CD8+ T-cells, still functionally active but less effective 
(of lower avidity/efficacy), remain present in the patients [101]. It is important to 
make the distinction between this irreversible loss of cells and the recently reported 
exhaustion of HIV specific CD8+ T-cells, based on the expression of PD-1 [102, 
103]. The latter may actually be more regarded as a reversible decrease of T-cell 
functions, as previously described [104, 105] and its upregulation could even reflect 
T-cell activation due to high viral load, rather than exhaustion [106].  

    4.2.     3 Global Exhaustion of Regenerative Capacity  

   It is important to appreciate that activation driven immune exhaustion in HIV infec-
tion may go far beyond the simple loss of virus specific CD8+ T-cells but extend 
to a global decline of the immune resources. Although data are still emerging and 
reasons unclear, HIV infection appears to result in a deregulation of hematopoiesis 
(lower numbers of progenitor cells and decline in their ability to generate new cells) 
[107–109]. The capacity of the thymus to produce new cells is also significantly 
reduced in HIV infected individuals [86]. Several reasons may account for this 
decline of thymic output: the direct infection of the thymic stroma and thymocytes 
by HIV [110, 111], the atrophy of the thymus in HIV infected subjects, which is 
similar to the age related “thymic involution” [112], and may be related to thy-
mosuppressive effects of proinflammatory cytokines (like IL-6) (e.g., by inducing 
apoptosis of immature thymocytes) [113, 114]. In addition, immune activation and 
inflammation are thought to cause fibrosis of the lymphatic tissue (i.e., collagen 
deposition), therefore damaging its architecture and preventing normal T-cell home-
ostasis [115, 116]. HIV infected subjects are therefore characterized by a general 
decline of T-cell renewal capacities. Naïve T-cell numbers decrease during HIV-1 
infection [117], in contrast to CD28-/CD57+ cells, which accumulate in the CD4+ 
and particularly CD8+ T-cell compartments [67, 118]. Telomere length is signifi-
cantly shortened in the CD8+ lymphocyte population of HIV-1 infected patients 
[119, 120], which may relate to the decreased proliferative capacity reported in 
this population [121]. These changes, together with alterations in cytokine secre-
tion (e.g., decreased IL-2 production) [122] and increased susceptibility to activa-
tion induced cell death [39], reflect a general shift of the T-cell population towards 
increasingly differentiated and senescent cells [123], the likely consequence of HIV 
mediated systemic immune activation.  

   The precise mechanisms involved in the decline of regenerative capacity are still 
not completely understood, however the following hypothesis may be proposed. In 
order to supply new T-cells (to replace senescent, apoptosed and infected cells), pre-
cursors in the bone-marrow and in the thymus are mobilized. However, due to the 
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limitation in primary immune resources, this process may deteriorate with persistent 
activation and inflammation, resulting in the exhaustion of these resources. With 
the gradual decline of the T-cell renewal capacities, the naive T-cell pool is not 
replenished, and is therefore unable to continually replace old exhausted CD8+ T-
cell clones and depleted CD4+ T-cells in HIV infected individuals, so that highly 
differentiated, oligoclonal and senescent antigen-experienced cell populations accu-
mulate to fill the immunological space, reflecting the maintenance of homeostasis 
in the context of inadequate regenerative capacity.  

   As this occurs, the fragile balance between functional HIV-specific CD8+ T-cell 
activity and ongoing HIV-1 replication is broken. Uncontrolled viral replication 
rapidly depletes what is left of the CD4+ T-cell population, leading to immune col-
lapse. The pace of this process may vary depending on the intrinsic pathogenicity 
of the virus, host genetic factors and also environmental factors. For instance, less 
pathogenic viruses (such as those with attenuating Nef mutations) are more readily 
controlled and are associated with clinical non-progression [124]. In the same line, 
age seems also be an important positive factor of HIV disease progression among 
HIV infected individuals [125, 126], possibly reflecting the impact of HIV-1 on an 
already ageing immune system.  

      5 Parallel with Age  

   5.1 The Immune Risk Phenotype  

   A comparison of the immunological changes observed in HIV-1 infected individu-
als with those accumulated with age in the HIV-1 uninfected elderly shows actually 
remarkable similarities summarized in Table 1 [123]. During ageing, a reduction 
in T-cell renewal together with a progressive enrichment of terminally differenti-
ated T-cells, thought to be the consequence of immune activation over a lifetime, 
translate into a general decline of the immune system, gradually leading to immu-
nosenescence [127]. Human ageing can result in clinical immunodeficiency, char-
acterized by an increased incidence and/or rapid progression of many infectious 
diseases (e.g., influenza, pneumonia, meningitis, sepsis, varicella zoster virus, HIV) 
and possibly cancers. This leads to increased morbidity and mortality [128, 129]. 
The immunogerontologists have defined the “immune risk phenotype” (IRP), which 
regroups a cluster of immune measures that are predictive of early all-cause mortal-
ity in elderly persons [130]. Studies performed in the elderly revealed that the most 
significant factor of the IRP is the inverted CD4:CD8 ratio [130–134]. Moreover, 
longitudinal studies suggest that increased numbers of CD28-/CD57+ T-cells, poor 
T-cell proliferation, as well as seropositivity for CMV are part of the IRP [135, 136]. 
Interestingly, all these factors are features of HIV-1 infection.  

   Of note, CMV infection may hold a particular role of in HIV pathogenesis. 
CMV infection is extremely common in HIV-1 infected individuals, and CMV 
seropositive subjects generally experience more rapid HIV disease progression 
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than CMV seronegative subjects [137]. Interestingly, CMV infection in the eld-
erly has also been associated with alterations in T-cell subsets  that shows all the 
characteristics of replicative exhaustion [138, 139] and has also been associated 
with an increase in morbidity [136, 140]. Increasing evidence suggest that the anti-
CMV response monopolizes a significant fraction of the whole T-cell repertoire 
[141] so that it might compromise the response to other antigens by shrinking the 
remaining T-cell repertoire and reducing T-cell diversity. In elderly individuals, 
CMV specific T-cells may comprise very high percentages of the CD8 population 
(up to 45%) [142, 143]. The accumulation of CMV specific T-cells has indeed 
been associated with reduced T-cell immunity against EBV infection [142] or 
after influenza vaccination [144]. Recurrent reactivation of CMV in HIV infected 
subjects may put further stress on the immune resources and thus could amplify 
the IRP of such patients.  

      5.2 Beyond Immunosenescence   

   The onset of a process of immunosenescence is not the only similarity between 
HIV-1 infection and human ageing: HIV-1 infected individuals present several alter-
ations of physiological functions which usually characterize the individual of old 
age (Table 1). An increasing number of investigators have reported reduced bone 
mineral content and bone formation rate, along with osteoporosis in HIV-1 infected 
patients [145–148]. A study by cardiologists, endocrinologists, and HIV physicians 
also found more atherosclerosis in persons with HIV-1, with faster progression than 
in the general population [149]. In addition, HIV-1 infected individuals present 

  Table 1  Similarities between HIV-1 infection and human ageing 

Characteristics usually associated with human ageing Also found in 
HIV-1 infection

Immunosenescence Altered hematopoiesis ref. 107–109
Thymic involution and decreased output ref. 86 & 112
Reduced naïve T-cell numbers ref. 117
Inverted CD4:CD8 ratio ref. 1
Decreased IL-2 production by T-cells ref. 122
Reduced T-cell capacity to proliferate ref. 121
Shorter telomere length in CD8+ T-cells ref. 119 &120
Increased susceptibility to activation induced

cell death
ref. 39

Accumulation of highly differentiated T-cells ref. 67 & 118
Increased susceptibility to infections ref. 1

Inflamm-ageing High serum levels of IL-6/TNFα/IL-1β ref. 41– 45
osteoporosis ref. 145–148
atherosclerosis ref. 149
neurocognitive deterioration ref. 150 –152
frailty ref. 153
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a variety of symptoms associated with the progressive deterioration of cognitive 
functions (e.g., memory loss, slower mental capacity, dementia) [150–152], that are 
usually related to old age. Last, recent work indicates that HIV-1 disease progres-
sion shows also a relationship with the onset of frailty [153], which corresponds to 
physiological alterations associated with advanced ageing (measured by uninten-
tional weight loss, general feeling of exhaustion, weakness slow walking speed and 
low levels of physical activity) [154].  

   In view of these initial, yet fascinating observations, accelerated ageing in 
HIV-1 infection may therefore extend beyond the immune system to unantici-
pated facets of human health. The deterioration of several physiological functions 
in both HIV-1 infected individuals and HIV non infected elderly suggests parallel 
mechanisms of decline. Chronic immune activation and inflammation is likely to 
be again the cause of this systemic ageing of physiological functions. In response 
to tissue damage elicited by trauma or infection; proinflammatory cytokines like 
TNFα, IL-1β, and IL-6 are produced to initiate a complex cascade designed to 
destroy pathogens and activate tissue repair processes in order to return to the 
normal physiological state. However, the excessive production and/or accumula-
tion of these mediators, as this happens during HIV-1 infection, may have adverse 
effects. TNFα, IL-1β, and IL-6 are thought to play a significant role in the process 
of ageing and are actually also found at higher concentrations in the blood of eld-
erly [155, 156]. IL-6 in particular has been directly associated with the develop-
ment of age related disorders including osteoporosis, cognitive decline and frailty 
symptoms [157–160]. Recurrent reports associate increased plasma levels of both 
TNFα and IL-1β in the elderly with atherosclerosis [161, 162]. In addition, a 
direct role of these cytokines is suspected in neuronal injury and neurocognitive 
deterioration [163, 164], possibly through the induction of large amounts of nitric 
oxide [165, 166], thus conducting to oxidative stress related damage [167]. Inter-
estingly, links between CMV infection and atherosclerosis or frailty have also 
been recently established [168, 169].  

   This overall process can be referred as to “Inflamm-ageing” [170], that is the 
up-regulation of anti-stress responses and inflammatory cytokines. It is the conse-
quence of the immune system ability to adapt to, and counteract, the effects of a 
variety of stressors. Paradoxically, it represents the main determinant of the most 
common age-related diseases and a major determinant of the ageing rate [171].  

    5.3 HIV-1 Infection: A Model of Accelerated Immunosenescence  

   In this part, we summarize the links between the different parts described above 
and propose a simplified model of HIV pathogenesis, which integrates its 3 main 
aspects, i.e., the massive depletion of CD4+ T-cells, the paradoxical immune activa-
tion and the accelerated process of immunosenescence (see Fig. 2).  

   A fundamental event in the HIV-1 pathogenesis is the infection of the CD4+ 
T-cell pool. During primary infection, HIV-1 is able to infect a large number of 



1012 V. Appay and D. Sauce

CD4+ T-cells, in particular activated memory cells expressing CCR5. At this stage, 
the anti-HIV immunity is not mounted yet, so that viral replication and spreading 
remain uncontrolled. Viremia shoots up to reach peak levels, until the appearance 
of the immune response, in particular HIV specific CD8+ T-cells, which sees the 
end of the acute phase. However, the damage has been done: HIV-1 has been able 
to establish the premise of its latent reservoir, rooting itself in its host, and extensive 
viral replication has resulted in the massive depletion of CD4+ T-cells, in particular 
from mucosal lymphoid tissues. This has immediate consequences on the integrity 
of the mucosal surfaces, and microbial translocation ensues.  

   Considerable immune activation then takes place, which is multicausal and lasts 
throughout the course of the infection. First, the immune response against HIV-1 
itself is activated, and aims at controlling the virus, despite persisting replication 
and emergence of variants that can escape both cellular and humoral responses. The 
immune system has also to cope with other persisting pathogens (like CMV), whose 
reactivation is enhanced by the substantial loss of CD4+ T-cells. HIV proteins can 
directly induce cellular activation. Last but not least, translocation of microbial 
products leads to systemic activation of lymphocytes and monocytes. As a conse-

Fig. 2 HIV pathogenesis: 
a model of accelerated 
immunosenescence
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quence, levels of proinflammatory cytokines increase notably. In addition, immune 
activation promotes HIV replication, thus establishing a viscous cycle.   

   Immune activation causes considerable cellular turnover, senescence and apop-
tosis, which represent a massive task for the immune system in terms of cellular 
renewal in order to maintain homeostasis. Overtime, the consequence is a progres-
sive decline of regenerative capacities and the development of immunosenescence. 
In parallel, the elevated production of proinflammatory cytokines leads to the dete-
rioration of a series of physiological functions. With the exhaustion of primary 
resources, naïve T-cells disappear and highly differentiated oligoclonal populations 
accumulate. Optimal anti-HIV immunity cannot be maintained and the CD4+ T-cell 
pool cannot be replenished, resulting in the collapse of the immune system ability 
to control pathogens, characterizing AIDS.  

   The development of immunosenescence is determined by the very physiological 
defense function of the immune system. Normal life is characterized by low grade, 
recurrent immune activation and inflammatory activity, which eventually leads to 
immunosenescence. Through the induction of persistent, sustained immune activa-
tion, HIV-1 infection may induce therefore an accelerated process of immunose-
nescence and systemic ageing. During this process, the immune system burns itself 
quickly, as the source of its combustion (i.e., the virus) cannot be put off.  

     6 Immune Activation and Anti-HIV Therapy   

   Taking into consideration the pivotal role of immune activation in HIV pathogenesis 
opens several possibilities of intervention or therapy to counteract the adverse effect of 
HIV-1 infection. These may be divided into 2 axes or strategies of treatment: upstream, 
in order to block or minimize immune activation and inflammation, or downstream, in 
order to restore or boost the regenerative capacity of the immune system.  

   6.1 Antiretroviral Therapy  

   The development of effective antiretroviral therapy or ART (which combines a series 
of inhibitors of the HIV replicative cycle) has proven to be decisive for the survival 
of millions of HIV infected patients, who can now live for years despite the infection 
[172]. ART remains the most successful therapy against AIDS to date. Through its 
potent inhibition of HIV replication, ART represents somehow the best “deactivator” 
of the immune system for HIV infected patients (see Fig. 1b). Although unexpected 
inflammatory disorders, known as immune restoration inflammatory syndrome can 
sometimes accompany the beginning of ART (due to augmentation of inflamma-
tion during immune reconstitution in immunocompromised HIV infected patients) 
[173], the abnormal activation and apoptosis observed during the course of the infec-
tion usually resolves with prolonged treatment with antiretroviral drugs, in parallel 
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to the plasma virus load reduction [174–176]. A similar decrease is observed for 
inflammation markers such as the proinflammatory cytokines TNFα and IL-6. Anti-
gen specific stimulation is also strongly diminished, as seen with the rapid decline in 
the numbers of HIV specific CD8+ T-cells [177–179]. Eventually ART enables the 
reduction of naïve T-cell consumption and helps to restore their numbers. The indi-
rect anti-inflammatory effect of ART may also play a role in the recovery of de novo 
thymic production. Thus antiretroviral drugs by blocking virus production reduce 
virus-driven immune activation and play a strong antiinflammatory role.  

    6.2 Prevention of Immune Activation  

   Other strategies are being developed to prevent immune activation and/or inflamma-
tion. For instance, treatment with the immunosuppressive drug cyclosporine A (which 
inhibits T-cell activation) has been tested: although significant increases in CD4+ 
T-cell counts were initially observed [180], the apparent benefit of cyclosporine A 
remains controversial [181]. Further along the activation pathway, one may attempt 
to inhibit the stimulating effect of bacterial products, translocated from the gut. For 
instance, antagonists of TLR-4, the receptor for LPS, could be good candidates in the 
context of HIV infection. One TLR-4 antagonist, Eritoran [182], has been tested in 
the context of septic shock where, it has diminished systemic inflammatory response 
by limiting the release of TNFα and IL-6 in mice [183]. On the same line, adapted 
inhibitors of proinflammatory cytokines could also deserve consideration as anti-HIV 
therapy. Several anti IL-1β, IL-6 or TNFα antibodies have been developed for use 
in humans and are currently being tested for their effect in inflammatory disorders 
like rheumatoid arthritis [184]. A recent study performed in primates revealed that 
long term caloric restriction could delay the process of immunosenescence [185]. 
Although the exact mechanisms remain to be understood, caloric restriction is likely 
to have a broad beneficial influence in lowering inflammatory and oxidative stress 
responses [155]. Last, one could also aim at reducing secondary challenges to the 
immune system. In particular, preventing CMV infection or reactivation may have a 
significant impact in delaying immunosenescence. In this context, the development of 
effective CMV vaccines may provide non negligible benefit.  

    6.3 Enhancement of Regenerative Capacity  

   Strategies to rejuvenate our immune resources are also being explored. Early tri-
als with IL-2 resulted in marked expansion of circulating CD4+ T-cells, but the 
eventual benefit on disease progression has remained modest [186]. Recent data 
indicate that the adult thymus keeps some capacity to produce naive T-cells. As 
thymic activity has been demonstrated to be crucial for the full recovery of immune 
reactivity, namely for the reconstitution of the naive T-cell pool after T-cell-depleted 
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bone-marrow transplantation [187], reconstitution of the thymic microenvironment 
may be a critical factor for the success of strategies aiming at reversing immunose-
nescence. Thus immune interventions, which could lead to thymic “rejuvenation”, 
represent a great interest both in the context of HIV infection and of ageing. Dif-
ferent strategies have been proposed based on the use of hormones or cytokines. 
Indeed, hormones influence both thymic maturation and thymic involution and it 
has been shown that castration of old mice resulted in the regrowth of the thy-
mus at values found for younger animals [188]; in the same way, administration 
of synthetic inhibitors of luttinizing-hormone-releasing-hormone seem to restore 
thymic activity [189]. In elderly, it has been shown that treatment with growth hor-
mone restores the cellularity of the thymus [190, 191]; and in the context of HIV 
infection, it results also in increased thymic mass and circulating naïve CD4 T-cells 
[192]. Age-associated thymic atrophy results also from defects in the thymic envi-
ronment with lower amount of interleukin-7 (IL-7) available [85, 193, 194]. It can 
then be assumed that treatment by IL-7 could reverse thymic atrophy and could 
induce thymopoiesis, leading to more circulating naïve cells in the periphery. Of 
note, prolonged exposure of CD8+ T-cells to IL-7 or IL-15 can stimulate prolifera-
tion without differentiation or loss of telomere length [195]. Last, the potential of 
HSC transplantation may also be considered for therapy in HIV infection, since this 
can lead to the total reconstitution of the immune system.  

     7 Concluding Remarks   

   25 years of intense research on HIV pathogenesis have certainly taught us unantici-
pated lessons as to the depth of the relationship between a pathogen and its host, 
and the fragility of its equilibrium. HIV has developed several mechanisms in order 
to establish persistence, but it is really through its unique capacity to target a central 
element of the immune response, i.e., the CD4+ T-cells, that it can deregulate the 
integrity of its host immunity so efficiently. Nonetheless, this may be considered 
as imperfect, since as a consequence of infection, its host will undergo accelerated 
exhaustion and die, thus ending the virus life cycle. In contrast, CMV and EBV 
seem to have adapted to their host. These pathogens are seen as ancient viruses, 
which may have undergone a process of evolution overtime to become highly preva-
lent in humans. HIV may be seen as a very young virus in comparison. Research 
supports that a jump between species, from primates to humans, occurred during 
the 20 th  century, with SIV being the ancestor of HIV. Interestingly, the natural hosts 
of SIV, i.e., Sooty mangabeys and African green monkeys do not progress towards 
AIDS after SIV infection. Investigating the mechanisms of adaptation (e.g., that 
prevent systemic immune activation and therefore the onset of immunosenescence 
in these primates) could certainly help the design of effective strategies to fight 
HIV-1. A recent study has actually revealed that the Nef protein from nonpatho-
genic SIV strains as well as HIV-2 harbors a T-cell activation suppressing function 
(through down-modulation of the TCR complex), which was lost by HIV-1 [196]. 
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In contrast to nonpathogenic SIV and primates, HIV-1 and humans may require 
further adaptation. Ironically, HIV-1 may lead to the accelerated ageing of its host 
because of its youth.  
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                    Abstract:       In the majority of papers dealing with immune system changes, higher 
prevalence of autoimmunity and autoimmune diseases among elderly people is 
stressed as one of the factors confirming the changes of immune system function 
in aging. This statement is repeated for a very long time and most of the authors 
treat it as a “stone-carved” truth. However, we will show below that, as we look into 
this problem in details, there are not so many diseases which appear in the elderly 
population more frequent to the younger ones. So, where is the problem and why 
is that so?  

        1  Autoimmunity Phenomenon in the Elderly Population  

  In order to discuss the topic, we first need precise definitions of autoimmunity, 
autoimmune diseases and their diagnosis. Classical definition of autoimmunity 
describes it as a hostile, improper reaction directed against autologous antigens. 
There are two major ways of checking such improper immune reaction existence in 
human body: one searches for autoreactive immune cells (mainly T-cells) and the 
second (but by far more popular) is focused on searching for autoantibodies. Look-
ing for human autoreactive T-cells is limited to those possibly present in the periph-
eral blood, and it is not an easy task, mainly because of usual lack of identified 
autoantigen. Current MHC tetra- or pentamer technique facilitates the screening, 
but it still requires known aminoacid sequences in the tested, potentially antigenic 
peptide. Much easier way of looking for an autoimmune reaction is therefore to 
find the autoantibodies circulating in the serum of the individual that we suspect to 
develop such a reaction (or just for screening). One has to bear in mind that autoim-
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munity thus defined does not necessarily have to be overtly pathogenic, i.e., be a 
part of pathomechanism of any disease.  

  The definition of an autoimmune disease is not so clear, at least for some of 
them. As for all diseases, also the diagnosis of autoimmune diseases is made based 
on clinical symptoms (deviations from norm that describe the disease), usually 
defined by scientific committees for such diseases. For the majority (if not all) of 
autoimmune diseases diagnosis is based on detection and/or determination of the 
levels of certain autoantibodies (Table 1) which, together with other clinical symp-
toms finally define the disease.         

    In some diseases the self (auto-) antigen is well defined and these diseases are 
usually not causing diagnostic problems; the majority of them could be called 
organ-specific autoimmune diseases, indicating that they usually involve one organ 
or system of the body; there, the auto-antibodies detected will also be “organ-spe-
cific.” In many cases the self antigen is not known and autoantibodies are used for 
diagnosis based on their more frequent appearance with combination of disease’s 
symptoms and thus are not specific for type of disease. This is a case for a majority 
of autoimmune diseases called systemic autoimmune diseases.  

  The problem with such definitions is that autoantibodies are the end-product of 
improper immune system activity and not its beginning (so, ultimately, they cannot 
be considered the primary cause of an autoimmune disease), and the level (titer) of 
these antibodies may not be dependent on the actual strength of the immune reac-
tion. Many of autoantibodies were reported to be increased in the healthy elderly 
population as compared to young ones (Table 1). However, the tendency of titer 
of various autoantibodies to increase with age is not uniform. Especially, so called 
organ-specific and nonspecific autoantibodies reveal different patterns. The organ 
specific autoantibodies increase in healthy people can be observed until 80–90 years 
of age, but the centenarians show lower prevalence of these autoantibodies [16, 50]. 
For example, the prevalence of anti-thyroglobulin and anti-parietal cell autoanti-
bodies in centenarians had not differ from that recorded for 60 years old healthy 
subjects [16].  

  Quite different picture was observed for nonorgan specific antibodies, like anti-
cardiolipin and anti-nuclear antigens, which constantly showed higher prevalence 
with advanced age, including centenarians [16, 49].  

  In one of the studies cited above, the anti-nuclear antibodies (ANA) were found 
in sera of elderly people (mean age 80 years), with frequencies 31.3% [49], but not 
correlation was found with age or sex. The presence of higher frequency of ANA in 
the sera of elderly people seems rather a common finding, which seems to be indeed 
aging-dependent, as no changes in ANA frequency were found in healthy people 
between age 20 and 60 [90]. The latter authors raised a valid methodological point 
concerning their and similar studies, i.e., the titer of autoantibody, which should be 
considered positive; different dilutions gave different positivity rates, for example 
changed the frequency of positive ANA in the same group from 31.7% to 3.33% for 
1:40 and 1:320 dilutions, respectively [90]. These observations resulted in a change 
regarding what titer of ANA should be considered “normal”; thus, anything below 
1:40 for 20-30 years olds and below 1:80 for people above 60 years old is now 
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considered ok. However, even with this change, the majority of reports agree with 
higher frequency of ANA in healthy elderly peoples’ sera.  

  In another study, the overall prevalence of these autoantibodies rose steadily with 
age, particularly in females, until the seventh decade, and after the age of 75 there 
was a sharp fall flowed by a steep rise in very old subjects for ANA [37].  

  Interestingly, more controversial data were obtained for antidouble stranded 
(ds)DNA antibodies. Some reports show about 14% of elderly people aged 80+ 
years old positive for these antibodies [49], but the others did not find anti-dsDNA 
antibodies (found in the sera of people suffering from various autoimmune dis-
eases, notably the SLE) in any of the examined age groups including people over 80 
[16]. About 17% of the elderly sera were also found to contain anti-single stranded 
(ss)DNA antibodies, and the majority of the elderly burdened with these antibodies 
were aged more than 81 years old [49].  

  Rather uniform data exist for anti-cardiolipin antibodies—the majority of data 
showed about 50% appearance in the serum of apparently healthy elderly people 
[16, 49]. While some autoantibodies had a tendency to appear together (e.g., dsDNA 
autoantibody always were detected in the presence of other autoantibodies), in half 
of individuals the anti-cardiolipin autoantibodies appeared alone [49].  

  The similar phenomenon was described for rheumatic factor (RF) an autoan-
tibody directed against immunoglobulins. The proportion of elderly people with 
positive IgM RF reached 26.6% and for IgA RF 18.7%, supporting the idea about 
nonorgan specific autoantibodies increased in the elderly [4].  

  Finally, when the organ- and nonorgan-specific antibodies were sought in healthy 
Danish centenarians, out of 79% of them that had autoantibodies the majority of 
them were nonorgan specific (in 47% of subjects), whereas organ-specific antibod-
ies only were found in 8% of centenarians [4].  

  These findings are parallel to changes in the cellular immunity described by 
others, where T-cell function measured by different means was frequently reported 
to be impaired in healthy elderly people, but not in centenarians, e.g. [54, 59, 67]. 
Similar observation was made for the NK activity, but the age above 80 was already 
the border for high NK activity of healthy people [56].  

  The above findings tell that there is a tendency for certain autoantibodies to 
increase in titer or prevalence in the otherwise healthy elderly population. Unfor-
tunately, these observations were sufficient for many authors to describe old age as 
autoimmune disease prone and to state that the frequency of autoimmunity meant 
as autoimmune diseases is increased in the elderly cohort.  

  Another question which seems important is: should all autoantibodies detected 
in the person’s serum be treated the same way? Are they all telling us about the 
same? What does it clinically mean that more autoantibodies appear in the plasma 
of elderly people? There is a possibility that they are not pathological, but serve 
as regulators of the immune reaction—reviving the old concept of immunoglobu-
lin network [82, 89]. Perhaps they control each other, which in the known case of 
decreased central suppression from thymus observed in the elderly due to thymic 
involution should be considered an adaptation process. Do we have answers for 
the questions posed that way? We believe that some answers are already possible; 
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below we show an example that in our opinion tells that not every appearance of 
autoantibodies should be treated as a manifestation of ongoing or imminent autoim-
mune disease.  

  Our example are the organ-specific versus not-organ-specific autoantibodies. We 
are temped to put below the hypothesis about the possible different reasons for their 
appearance.  

  Organ specific autoantibodies are in majority connected with a more or less 
defined pathology of specific organ and many of them are directed against surface 
markers of “attacked” cells— like anti-acetylocholine receptor antibody, anti-TSH 
antibody, etc. Thus, essentially, the precondition for their appearance would be a 
mistaken recognition of self as alien or lack of proper regulation (tolerizing ‘switch-
off of the reactive clones) due to less suppression. When we consider such a pos-
sibility, the thymus derived natural regulatory CD4 +  T-cells (or—in fact—decreased 
function of these) are the first to come to mind. Decreased thymic function in the 
elderly is well-described, meaning both—fewer new emigrants from the thymus in 
the elderly [111] and less humoral activity [59]. The removal of thymus in young 
animals was shown to lead to the development of autoimmunity, and especially 
of organ-specific autoimmune diseases [9, 80]. The reason for this phenomenon 
could be that after thymectomy fewer CD4+CD25+ regulatory T-cells appeared in 
the peripheral circulation of studied animals [7, 53]. If the animal models can be 
extended to humans, it would lead to conclusion that the decreased function of the 
thymus in the elderly would manifest not only as a generalized lower output of 
new T-cells, but also as relatively decreased numbers (and function) of the “natural 
Tregs” [20].  Very few  publications so far deal with this problem mainly because of 
problems with Tregs definition, therefore published data are contradictory, show-
ing the relatively decreased numbers/proportions or function of natural CD4+CD25+ 
T-cells in peripheral blood of elderly people [97, 100], whereas the opposite finding 
can be also found [31, 96]. Please see the chapters by P. Moss and J. Shimizu in this 
volume for a current update on the regulatory T-cells in the elderly. Summarizing, 
it looks possible that organ-specific autoimmunity can be in part a result of less 
thymic function and thus derailed T-cell dependent regulation in elderly people.  

  The autoantigens which are directed against the intracellular epitopes present in 
the cytoplasm, mitochondria or nucleus seem to have a different genesis and mean-
ing. On one hand, intracellular epitopes (especially the ones containing lipids or 
fragments of DNA in addition to the peptide stretches) are sequestered inside the 
living cells and physiologically unavailable for the recognition and reaction by the 
immune system. On the other, even if generated, such an autoantibody could not 
enter the living, intact cells to react with ‘its’ antigen! So, are these autoantibodies 
(like for example the anti-nuclear and anti-DNA antibodies) the result of a process 
different than autoimmunity?  

  The necessary step in the process of triggering the anti-nuclear or anti-DNA anti-
bodies is the release of antigen or its epitopic fragments from the cells, in order to be 
picked up by the APCs at the beginning of the autoimmune reaction. It implies the 
destruction of own cells as a start of that process. The two major processes of cel-
lular destruction, leading to the generation of cellular fragments or debris that may 
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become the source of—previously unavailable, hence not tolerized—autoantigens 
are the apoptosis and necrosis. Many data are confirming the greater susceptibility 
of lymphocytes to undergo apoptosis if the source of lymphocytes is a peripheral 
blood of elderly people (e.g., [41, 46, 68]). The same is apparently true for many 
other human cells and tissues, including notably the skeletal and heart myocytes, 
nerve cells, and neutrophils [21, 27–29, 35, 107, 113]. Lymphocytes seem to be 
more resistant to apoptosis than other cell types, so it is very likely that apoptosis 
rate is greater in tissues of elderly people, providing larger quantities of apoptotic 
bodies as the source of many autoantigens, some of which can—at least in theory—
start the autoimmune reaction.  

  Destruction of the cells leading to the liberation of their internal contents (includ-
ing the putative autoantigens to be picked up by the APCs) can be also due to the 
process of necrosis. This type of cellular death can be a result of many causes. It 
was found by numerous authors that the necrotic death of various cell types is more 
frequent in the aged humans, possibly due to increased fragility of the cellular mem-
branes, lower resistance to stress, mechanical and chemical agents, etc. [40, 55, 62, 
94]. One interesting possibility is that increased necrotic destruction of the cells in 
an elderly individual is due to lower immunity to viral infections, and the lytic activ-
ity of viruses invading increased numbers of cells.  

  More dead cells in the body of elderly people should cause increased level of 
inflammatory process, which is a physiological response to the cells’ damage. 
Majority of available data support that hypothesis, showing that the immune system 
of elderly people is acting more proinflammatory, and the balance is shifted towards 
(subclinical) inflammation even in apparently healthy elderly. This is the basis of the 
term inflamm-aging coined by Franceschi et al. [26]. Available data show increased 
concentrations of proinflammatory markers like IL-6 and neopterin in the sera of 
elderly healthy people [17, 57]. Since neopterin is a product of activated monocytes, 
these findings indicate rather the in vivo activation of monocytes, especially that the 
numbers of peripheral blood monocytes are not different between young, middle 
aged and elderly people [13]. In the light of these facts, maybe we should look at 
the antinuclear (and possibly also other antiintracellular antigen) antibodies as the 
result of “normal” reaction to the cells’ destruction. Combined with less immune 
complex clearance due to decreased expression of Fc receptors on phagocytic cells 
of the elderly or decreased phagocytosis of the immune complexes by these cells 
[12, 15] it could give as a result the observed increased levels of autoantibodies.  

  Increased inflammation can also be a result of improper innate immune response. 
Majority of data showed that monocytes and macrophages isolated from elderly 
people, both unstimulated and stimulated in vitro, produce more proinflammatory 
cytokines (IL-1β, TNF, IL-6, and IFN-γ, detected both by measurements of secreted 
cytokines and intracellular in monocytes) than the “young” ones [13, 24, 72, 75, 61]. 
The existence of more pro-inflammatory status of elderly people was demonstrated 
also in an in vivo experiment, when the bolus of endotoxin was given and the acute 
phase response was compared in age groups. The elderly people showed an ini-
tial hyperreactivity (measured by higher and faster increase of TNF concentration), 
higher proinflammatory activity and prolonged fever response [44]. Also, surgical 
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stress caused higher TNF and IL-6 production in elderly people than in the younger 
group, who underwent the same surgery process [63]. All the abovementioned facts 
seem to indicate for more monocytes activation in the elderly people in vivo, and 
increased proportion of subpopulation of activated monocytes in peripheral blood 
of elderly people [77]. The reasons are not fully explained, but changed expres-
sion and/or function of the “first danger sensors” of innate immunity, including the 
expression levels and functions of toll-like receptors (TLRs) and triggered recep-
tor expressed on myeoloid cells (TREM-1) should be considered as a possibility. 
However, limited data so far did not seem to demonstrate the increased expression 
or function of TLRs (reviewed in [102] or TREM1 signaling [25]. Thus, high mobil-
ity box protein 1 (HMGB1, secreted from monocytes and macrophages or released 
from necrotic cells) emerged as a candidate target responsible for more active status 
of monocytes in the elderly.  

  HMGB1 stimulates monocytes and macrophages and acts through the receptor 
called RAGE (receptor for advanced glycation end products); that indicates that the 
function of the RAGE/HMGB1 system may be enhanced in the elderly people with 
increased levels of circulating AGE products. Activity of the RAGE/ HMGB1 results 
in increased production of proinflammatory mediators. It also acts on endothelial 
cells—induces VCAM-1, ICAM-1 and RAGE expression and stimulates secretion 
of TNF, IL-8, MCP-1 and PAI-1 (plasminogen activator inhibitor -1) and tissue 
plasminogen activator. HMGB1 acts also on enterocytes, increases the permeability 
of enterocytic monolayers (epithelia) and bacterial translocation to lymph nodes 
(mice in vivo). One of the theories about increased inflammation in elderly people 
suggests larger “bacterial load” in intestine being a reason for the process [105]. If 
so, the increased activity of HMGB1 could be a possible connection of these two 
concepts leading to more permeability of intestinal wall for intestinal commensal 
bacteria and causing a pro-inflammatory status of elderly people. A recent find-
ing demonstrates that, at least in a mouse model, HMGB1 may act as an adjuvant 
increasing the production of autoantibodies [76].  

  Summarizing, the processes leading to the accumulation of autoantibodies (espe-
cially those directed against the intracellular antigens) in the healthy elderly people 
could be depicted as in the Fig. 1.  

    2   Autoimmune Diseases in Elderly Population  

  According to many, even current, positions on the subject, the autoimmune diseases 
are more frequent in the elderly. However, this notion is too general and requires 
more detail in order to be understood precisely. First of all, we need to distinguish 
the two important parameters: one would be the cumulated prevalence of any (or 
all) autoimmune disease(s) in the elderly (above 65 years of age) cohort, and the 
other, the proportion (or incidence) of actual NEW cases in each age group.  

  Reported higher proportion of elderly people suffering from  manifest  autoimmune 
diseases could be due to the nature of these disorders, which could be characterized 
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as chronic, incurable and nonlethal. If we remember, that—once diagnosed—an 
autoimmune disease “stays” with the patient for the rest of person’s life. Thus, it is 
a very easy way to accumulate the percentage of sufferers of autoimmune diseases 
with increasing age of population. One can even predict, that—in the future—more 
and more elderly people would have been diagnosed with autoimmune diseases 
which, at least in part, will be dependent on modern medicine being more effective 

Fig. 1 How aging leads to increased autoimmunity. +: increased number, proportion, function; 
stimulation-: decreased number, proportion; function; inhibition
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in diagnosing and treating of these diseases and thus participating to the longer life 
of the patients. Modern medicine however, with all its drugs can only slow down 
the progress of the diseases or modify their course, but definitely not cure them, at 
least for now.  

  On the other hand as we look into the available statistics of “first diagnosis” 
of autoimmune diseases for adults, many of them start at 20–30 years of age and 
have the highest incidence between 40 and 50 years of age and NOT in advanced 
age (after 65 years, Table 2). A good example of such a case is rheumatoid arthritis 
(RA), considered for many years a disease of elderly people, mainly because of the 
fact of late diagnosis and the diagnosis at late stage, which was and still is prevalent 
among people aged more than 60 years. Based on a very well defined study from 
Rochester, Minnesota, USA [22] the conclusion can be drawn that in the cohort 
of people born in 1880 and 1890 the RA incidence was highest in women above 
80 years old, and in the cohort born in 1910 or later—the median age of diagnosis 
was about 50–60 years old. Along with that tendency one can even be tempted to 
think that the highest incidence of RA in modern times should occur even earlier! 
However, this would be probably jumping to conclusion, because the definition and 
recognition of RA changed during last 60 years, and at the age of 50 people born 
in 1890 could not be diagnosed properly; the authors of cited paper themselves 
described that the mean age of incidence remained stable over the 40 years of obser-
vation time [22]. An interesting observation was also made for gender differences, 
with women aged 35 to 44 years having a higher rate of RA incidence than men 
from the same age group, while the disease incidence for both sexes at age 75–84 
was comparable [22]. Different RA incidence dynamics were also reported in the 
longitudinal studies reported by these authors—the incidence in women rose until 
age 55–64 after which it steadily declined, but for men it started very low at the 
age 18–34, but later the incidence progressively increased until the oldest group 
observed (> 85 years old), when it decreased dramatically. One of the conclusions 
of the same report is also that the mean age at diagnosis is lower for women than 
for men [22].  

    The drawback which should be taken into consideration when considering these 
data is that there is no available information on how many patients were hospi-
talized and how many were in Outpatients Clinics Care; in our opinion lack of 
this information or it not being considered by the authors of the study may change 
the recorded age at diagnose. The mean age of hospitalized RA patients should 
be higher than mean age of RA patients in Outpatients Clinics; however, since no 
direct data were published about this problem, the indirect confirmation can be the 
RA frequencies in patients hospitalized because of pneumonia, where 62% of all 
hospitalized RA patients were above 65 years old [109]. It is easy to imagine that if 
the data for that study were obtained from hospitals, the reported mean age of RA 
patients at diagnosis would be higher, while the Outpatients Clinics see on average 
patients of lower age and often are the source of the first diagnosis, also for the 
autoimmune diseases. The example above shows how biased may be the estimation 
of actual ages at diagnosis, incidences in relation to age even for an apparently very 
well known and epidemiologically described disease as the RA.  
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  To support the notion of lack of correlation between rising incidence of RA 
and age of patients, a long-term observation which reported only the incidences of 
RA in the cohorts aged above 65 years, clearly showed that these incidences were 
decreasing with advancing old age, being the highest for patients aged 65–75 and 
lowest for those aged 85–96 years [81].  

  Interesting data for the same disease were obtained in Netherlands, where the 
age of onset of RA was compared between sporadic and familial RA defined by 
presence of at least two siblings fulfilling the ACR criteria [71]. The authors did not 
find any differences in age at onset between familial and sporadic RA groups when 
 the whole population  was analyzed. However, again the situation was different if 
women and men groups were analyzed separately. In the examined women popula-
tion the percentage of first diagnoses being set before the patients reached the age 
of 60 contains 77% cases for sporadic and 81% for familial RA in women cohort, 
with a peak about 60 years of age for familial RA [71]. Similar analysis in men 
cohort revealed that 60% of sporadic RA diagnosis was done before or at 60 years 
of age, while as many as 88% of diagnoses for familial RA were set before the age 
of 60, with the highest frequency in the middle aged cohort (40, 45–60 years old 
men) [71]. The earlier onset of familial RA seems to be logical as RA is thought to 
be dependent in a large extend on genetic background, but it was found only in men 
population. The later onset for familial RA in women group is rather unexpected 
finding and is difficult to explain.  

  Apart from cited above, limited epidemiological studies exist for the prevalence 
of RA in outpatient practice. Based on the recent Dutch data the mean age of RA 
patients was about 56 years, and the age at first diagnosis was younger [104]. Unfor-
tunately that publication did not mention the age at diagnosis.  

  The patients’ age at disease (RA) onset can be also influenced by different diag-
nostic criteria applied and not always “clean” clinical picture at the beginning. 
American College of Rheumatology (ACR) criteria for RA diagnosis allow to 
define the cases for epidemiological studies, but it was observed that in individual 
cases, even if person had not fulfilled ACR criteria during the first visit, they were 
fulfilled (and the patient diagnosed with RA) on second or next visit 3, 6 or 12 
months later [23, 64]. Obviously, such a patient was having the incipient RA already 
at the first visit and the date of it plus patient’s age at the first reported symptoms 
should be recorded as the age of onset and age of diagnosis, respectively. One of 
these relatively late criteria is the existence of detectable bone erosions, and many 
rheumatologists are at opinion that diagnosis at that stage is quite late and the dam-
age was already done; i.e., the disease had to be lasting for at least many months 
prior to the appearance of this symptom! Recently, the necessity for early diagnosis 
is not longer as a matter of discussion (dysputable), and many programmes have this 
as a target [18, 101].  

  Also our own data obtained after 7 years of observations revealed that among 
74 RA patients from local Outpatient Rheumatologic Clinic the age of onset for 
the majority of patients was between 40 and 60 years (Fig. 2). In the light of these 
facts (including our own observations), it is hard to confirm the opinion that RA is a 
disease of elderly people. Rather, it becomes the disease of middle-aged people that, 
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because of (still) lack of complete knowledge regarding its causes and pathomecha-
nism, and therefore lack of really successful therapy, remains with the patients to 
the end of their life and, with increasing average lifespan in the western population, 
boosts the statistics of its occurrence in the 65+ year olds.  

       However, the possibility of late onset of RA is a fact, and nowadays, two forms 
of adult RA are recognized and defined by age of onset of disease—early onset 
RA—onset before 65 years old (about 70–80% cases) and late onset RA—onset 
at age above 65 years old (about 20–30% cases) [99, 103]. The studies compar-
ing the outcome of these two forms of disease were performed and in many of 
them the outcome was more favorable for late-onset of RA measured by fewer and 
less aggressive joint erosions, or easier remission [99]. Clinical differences reported 
include more frequent shoulder involvement, less classical hand deformities, inter-
stitial lung disease and Sjogren’s syndrome, but more frequent weight loss, myalgia, 
lymphadenopathy and polymyalgia rheumatica –like syndrome in the late onset RA 
[8, 98]. The laboratory data were also different with the late onset RA characterized 
by lower rheumatoid factor (RF) frequency, less specific autoantibodies like ANA, 
anti-SSA/Ro and anti-SSB/La, but elevated ESR and C-reactive protein [98]. The 
differences between early and late onset RA patients are variable throughout various 
human populations; for example less differences were found for Greek population 
[66] and for North American Caucasians, but even in those studies despite more 
frequent methotrexate usage for late onset of RA, the doses were significantly lower 
and the number of DMARDs used in the elderly group with late onset was also sig-
nificantly lower, indicating lower clinical activity of this form of the disease [99]. 

Fig. 2 Incidence 
(upper panel) and 
cumulative proportion 
of patients in con-
secutive age groups. 
Graphs show frequency 
histograms (bars) and 
polynomial trend lines; 
N=74
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One recent study showed that late onset of symptoms of polyarthritis in age group 
above 50 years old, favors more erosions within 1-year of observation, the differ-
ence being 51% versus 71% between groups 50–69 years and more than 70 years 
old [14]. However, this could be caused by milder symptoms of arthritis in older 
group and later diagnosis, or less aggressive treatment of older patients. Thus, based 
on the majority of clinical observation of late-onset RA patients, its clinical course 
is generally milder and easier to achieve remission.  

  The data comparing the immune system in elderly RA patients with new onset 
of disease with elderly healthy people are limited. Based on existing publications, 
for example the telomere length in CD4 +  T-cells in both elderly groups are compara-
ble [43], but information is lacking if these were elderly with new onset of disease, 
or patients who had long RA history. A recent paper showed that shorter telomere 
length in lymphocytes isolated from peripheral blood of RA patients is not dependent 
on duration of disease, nor disease activity [87]. The similar story is for measuring 
TRECs content in CD4+ T-cells, which is lower number in elderly RA patients [43].  

  Rheumatoid arthritis is even more interesting and relevant to the topic of this 
volume when we consider that the studies of the properties of the lymphocytes 
(especially of the CD4+ T-cells) isolated from RA patients aged 20–30 years old 
and examined less than 1-year from disease onset, showed a profound changes in 
phenotype and behavior (especially in vitro proliferation dynamics), resulting in 
the patients’ cells being similar to the CD4+ lymphocytes isolated from healthy 
60–70 years old people [108]and own unpublished data. So, the picture which is 
quite opposite to the established paradigm is emerging: not only RA is NOT a de 
facto disease of elderly people, but moreover, its early adult onset is associated with 
the accelerated immunosenescence of CD4+ T-cells. RA starting in younger age is 
usually more aggressive and clinical changes are going faster, unless the disease is 
treated more aggressively. It is possible to imagine that early start of the disease in 
young individuals, when the immune system is more vigorous, could result in more 
aggressive form of arthritis than in case of RA onset at or above 65 years of age. In 
the latter case, the course of disease is described as milder possibly because of less 
vigorous immune system, leading to less tissue damage.  

  Obviously, rheumatoid arthritis is by far not the only autoimmune disease that 
can be considered more deeply in relation to the patients’ age and to the “functional 
age” of their immune systems. Few other notable examples (the number of which 
must be kept low due to the space limitations in the volume) are multiple sclerosis 
(MS) and myasthenia gravis (MG).  

  A peak onset age of MS about 30 years is quite typical worldwide [106], but the 
characteristics of immune system of these young people is already comparable to 
that of healthy elderly people. Specifically, lymphocytes isolated from MS patients 
showed shorter telomeres and higher proportion of CD4+CD28- cells in the periph-
eral blood [91, 92], which is in very similar to the findings in young RA patients 
and healthy elderly people [30, 43]. Also, the levels of TRECs-expressing CD4+ and 
CD8+ T-cells (early thymic emigrants) were significantly decreased in MS patients, 
and matched those of healthy individuals who were 30 years older [39], which is 
again a similar to RA findings [43].  
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  However, so called late-onset MS was also reported, but the age limit distin-
guishing the early- and late-onset disease was set at 50 years old; thus, also the late 
onset MS cannot be considered the disease typical for elderly. The report indicates 
the prevalence of late-onset between 4% and 9.6% [51]. The course of the disease 
is often primarily progressive and pyramidal or cerebellar involvement is observed 
in the majority of MS patients with onset above 50 years old. Late onset of MS was 
also associated with a faster progression to disability and more atypical forms of 
the disease; here, the differentiation can be difficult due to accompanying diseases 
including the most frequent cerebro-spinal vascular syndrome, and hypertension-
related disorders [51]. Despite the fact that the set limit of 50 years does not in 
fact distinguish between young and elderly MS patients, the percentage of elderly 
people with MS could increase, mainly due to longer life of patients, similar to the 
situation observed for RA.  

  Considering MG studies performed across last 30 years – they report an increas-
ing age of onset. The original reports (from late 70-ties) describe MG as a rare dis-
ease, occurring mostly in young women around 20 years old [45]. Within the next 
20 years, the observed age of onset of MG had significantly increased in all popula-
tions reported so far. Thus, recent Japanese study compared the age of onset and 
found that the mean age of onset changed from 35 years in 1982 to 1986, through 
43 years from 1992–1996 to 49 years from 1997 to 2001 [52]. The same authors 
found significant increase of the MG age of onset among elderly population above 
65 years of age, particularly among females [52]. In another study the mean age 
of onset is not mentioned, but the two peaks of high frequency of MG onset were 
reported for women aged 30–39 and 70–79, and for men just one peak appeared in 
the cohort aged 60–69 [79]. The data in the latest publication was obtained by age 
distribution of people with positive AchRab. At the same time, the increased rate of 
MG was reported for the disease form characterized by late-onset, while for early 
MG the rate was stable [85]. Interestingly, the age of disease onset seems to be 
dependent on genetic background, the early but not the late onset MG was associ-
ated with the HLA-DR3 phenotype [85].  

  The above nicely illustrates either the changing dynamics of the disease devel-
opment with regard to patients’ age (on the more general level stressing that when 
autoimmunity and autoimmune diseases are analyzed against the individuals age, 
nothing is certain and the paradigms can change, affecting also the clinical think-
ing), or the changing knowledge related to the diseases’ identification, diagnosis, etc. 
Among the important factors that may contribute to these changes, may be recently 
increased interest of scientist in the health of elderly population, caused by signifi-
cantly increased numbers of people aged more than 65 in most “western” coun-
tries and thus, more data available for this population. Another possibility is the true 
increase in rate of late-onset MG, both connected and not connected with thymoma, 
depending on reports [1, 110]. The authors who reported increased frequency of MG 
in elderly people are rather suggesting environmental factors as its cause, but since 
the phenomenon is reported in many distant regions of the world, including USA, 
Europe and Japan, the existence of the same environmental factor(s) seems unlikely. 
Increased rate of late onset MG could depend on changed immune system of the 
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elderly people. Some initial findings, including an observation that the serum level 
of anti-AChR antibodies is often lower in elderly onset of MG patients than in the 
young group, but antibodies to titin can be found in half of elderly, and these latter 
are uncommon in young patients [73, 83, 85]. Myasthenia patients with positive 
serum anti-titin antibodies were older than those without these antibodies, mean age 
58 years old versus 36 years old, respectively [73]. In this recent study the additional 
subgroup of MG was defined based on appearance of anti-ryanodine receptor anti-
body, and clinical features—the highest rate of bulbar, respiratory and neck involve-
ment at MG onset; the mean age of this group was about 57 years old [73].  

  This information could be an another illustration of the above-described 
hypothesis, that autoantibodies against intracellular antigens could have a different 
origin than those directed against the surface antigens, since the anti-titin and 
anti-ryanodine receptor antibodies were found preferably in elderly patients with 
myopathies (or muscle destruction; i.e., [74, 86] their appearance required first the 
damage of muscle fibers to release intracellular antigens).  

  Summarizing, the prevalence of some autoantibodies is increasing with advance 
age but the frequency of new incidences of autoimmune diseases is not follow-
ing. One very good illustration of this statement is found in a paper, in which the 
frequencies of autoantibodies in the sera of Danish unselected centenarians are 
reported at 79%, but autoimmune diseases confirmed by medical records were 
present only in 20%; in addition, the majority of them were diagnosed with perni-
cious anemia (10%), 3% with rheumatoid arthritis, and another 3% with  Polymyal-
gia rheumatica . Graves’ disease and autoimmune thyroiditis were rare (1% each) of 
examined people [4].  
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                    Abstract   :    Recent evidences suggest that the apoptotic pathway plays a central role 
in tolerazing T-cells to tissue-specific self-antigen, and may drive the age-related 
autoimmune phenomenon. Primary Sjögren’s syndrome (SS) is an autoimmune 
disorder characterized by lymphocytic infiltrates and destruction of the exocrine 
glands, and systemic production of autoantibodies to the ribonucleoprotein (RNP) 
particles SS-A/Ro and SS-B/La. It can be considered that a defect in activation 
induced cell death (AICD) of effector T-cells may result in the progression of 
autoimmune exocrinopathy in SS. We found that aging-associated disturbances in 
T-cell homeostasis are accelerated in the animal model with SS, resulting in the 
development of extraglandular manifestation including autoimmune arthritis and 
interstitial pneumonia. We demonstrated that tissue-specific apoptosis may contrib-
ute to autoantigen cleavage, leading to the age-related acceleration of autoimmune 
exocrinopathy. The immune system undergoes profound changes with advancing 
age that are beginning to be understood and that need to be incorporated into the 
pathogenesis of SS. The studies reviewed the molecular mechanisms on aging-asso-
ciated progression in animal model of autoimmune exocrinopathy.  

      Keywords   :     Aging    •     Apoptosis    •     T-cell tolerance    •     Autoantigen    •    
Sjögren’s syndrome   
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     1 Introduction: Primary Sjögren’s Syndrome  

  Primary Sjögren’s syndrome (SS) is generally considered to be a T-cell-mediated 
autoimmune disorder characterized by lymphocytic infiltrates and destruction of the 
exocrine glands, and systemic production of autoantibodies to the ribonucleoprotein 
(RNP) particles SS-A/Ro and SS-B/La [7, 10, 28]. It is assumed that autoreactive T-
cells bearing CD4 molecule may recognize unknown autoantigen triggering autoim-
munity in the exocrine glands, leading to clinical symptoms of dryness of the mouth 
and eyes (sicca syndrome) [24]. A combination of immunologic, genetic and envi-
ronmental factors may play a key role on development of autoimmune lesions in the 
exocrine glands [24]. Lymphocytes first surround the salivary ducts and then extend 
into the acinar epithelium, leading to diminished glandular secretion as a result of 
apoptosis. Indeed, epithelial cell activation has been proposed by some to be the major 
pathological process in SS with increased expression of MHC Class II antigens, and 
Fas on epithelial cells in this disease [35]. There is an infiltration of a minor propor-
tion of B-cells besides T-cells into the exocrine glands of SS [8]. Infiltrating B-cells 
account for up to 20% of the cells found in the salivary tissue. It is reported that B-cell 
activation leads to the production of autoantibodies and polyclonal hypergammaglob-
ulinaemia characteristic of SS and the B-cell activation may account for the increased 
propensity of these patients to developing lymphomas [29]. BAFF is a member of 
the TNF superfamily and is involved in B-cell maturation and survival. It is found at 
increased levels in serum, salivary tissue and synovial fluid of patients with SS, and is 
expressed by T-cells [25]. Moreover, BAFF transgenic mice display a phenotype simi-
lar to SS or SLE [11]. These data imply an important role for T-and B-cell interaction 
in the pathogenesis of SS. On the other hand, it is well-known that a wide spectrum 
of extraglandular manifestations involving skin, joints, lung, heart, kidneys, nervous 
system and hematological and lymphoproliferative disorders may occur in SS patients 
[43], but the mechanisms for in vivo progression in autoimmune condition are still 
obscure. Although an important role for T-cells on the development of autoimmune 
disease has been argued, it is not known whether disease is initiated by a restrained 
inflammatory reaction to an organ-specific autoantigen. It is possible that individual 
T-cells activated by an appropriate self-antigen can proliferate and form a restricted 
T-cell clone. Previously, we have identified a 120 kDa α-fodrin autoantigen in the 
pathogenesis of primary SS [12], but the role of autoantigen which render in vivo 
immunoregulation remain unclear.  

    2 Crucial Role of Apoptosis  

  Apoptosis plays an important role in maintaining T-cell repertoire and deletion of 
autoreactive T-cells [3, 44], and is regulated by a number of gene products that pro-
mote cell death or extend cell survival [14, 23]. Fas ligand (FasL) mediates cell death 
by cross-linking Fas receptor in apoptosis-sensitive Fas+ cells [4, 29]. It is now evident 
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that the interaction of Fas with FasL regulates a large number of pathophysiological 
process of apoptosis including autoimmune diseases [5, 18, 26, 40]. Recent stud-
ies have now confirmed the observation that apoptotic cells in various cell types 
implicated as the sourse of autoantigen when stimulated with different proapoptotic 
stimuli [6, 31, 38]. Much evidence shows that β-cell apoptosis is a fundamental   proc-
ess involved in the pathogenesis of Type 1 diabetes [1, 27]. In addition to apopto-
sis   being the main mechanism by which β-cells are destroyed,   β-cell apoptosis has 
been implicated in the initiation   of Type 1 diabetes mellitus. These studies support 
that exaggerated β-cell   damage can induce activation of β-cell-specific T-cells. In 
addition, nonobese diabetic (NOD) mice exhibit a defect in the clearance   of apoptotic 
β-cells [34]. Therefore, the apoptotic   cells may be a critical determinant contributing 
to the initiation   of autoimmunity by having the capacity to instruct antigen-presenting 
cells (APCs) to modulate   immune responses so that the outcome is T-cell activation. 
Although cleavage of certain autoantigens during apoptosis may reveal immunoc-
ryptic epitopes that could potentially induce autoimmune responses in systemic 
autoimmune diseases [5, 45], accumulated evidences suggest an important role of 
apoptosis in the disease pathogenesis of SS [15, 17, 32, 41].  

    3 Age-related Decline in T-cell Functions  

  It is well-known that aging is associated with immunological   defects, especially at 
the level of T-cells [13, 30, 36]. The   mechanisms governing hyporesponsiveness 
in aged T-cells are   poorly understood. The repertoire of naive and memory T-cells 
is less diverse, possibly as a result of thymic insufficiency, and it is biased toward 
autoreactive cells. Aging is associated with progressive decline in T-cell functions, 
including decreased response to mitogens, soluble antigens, and production of IL-2, 
expression of IL-2R, decrease in naive and increase in memory cells, and defect in 
signaling pathway [33, 39]. Activation-induced cell death (AICD) is a well-known 
mechanism of peripheral T-cell tolerance that depends upon an interaction between 
Fas and Fas ligand (FasL) [4]. AICD plays a central role, especially in killing auto-
reactive T-cells and in preventing autoimmune responses [44]. It has been reported 
that activation of T-cell clones induces FasL expression and AICD in autoreactive 
T-cells in vivo has been proposed to limit the expansion of an immune response by 
eliminating effector cells [46]. Previous studies have demonstrated that CD4 +  T-cells 
are susceptible to AICD induced through T-cell receptor (TCR) mediated recogni-
tion of allogeneic MHC Class II molecules, supporting the notion that AICD can be 
triggered in activated T-cells through the TCR-mediated recognition of antigen [20, 
37]. These observations have suggested that a defect in AICD of autoreactive Th1 
cells may contribute to the pathogenesis of SS. We detected a significant increase of 
TUNEL + apoptotic epithelial duct cells in the salivary glands in the aged SS model of 
NFS/ sld  mice than those in the young model ( Fig. 1 ). We found that Fas expression 
on the cultured mouse salivary gland (MSG) cells from the aged SS model mice was 
significantly augmented than those in the young model. Indeed, severe destructive 
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autoimmune lesions in the salivary and lacrimal glands were observed in the aged SS 
animal model [16]. An increased expression of Fas by MSG cells has been shown to 
have a major influence on the susceptibility of severe tissue destruction in the aged 
salivary and lacrimal glands. These results indicate that the aging-associated accel-
eration of apoptotic cascade developed in the SS model mice.  

        4 Extraglandular Manifestation  

  A wide spectrum of extraglandular manifestations including arthritis may occur in SS 
patients [43]. Rheumatoid arthritis (RA) is a disease of adults with the highest inci-
dence rates reported in the elderly [21, 42]. The immune system undergoes profound 

  Fig. 1    Severe destructive autoimmune lesions in Sjögren’s syndrome (SS) model mice with 
aging (Ref. 16).       (a) Detection of TUNEL + -apoptotic epithelial duct cells in the salivary gland 
tissues from aged SS model mice (18–20-mo-old, upper panel), and those in the young group 
(2– 4-mo-old, lower panel). (b) A significant increase of TUNEL +- apoptotic epithelial duct cells 
was observed in the salivary gland tissues from aged SS model mice, compared with those in the 
young group. The percentage of duct cells staining positively with TUNEL was enumerated using 
a 10 x20 grid net micrometre disc, covering an objective of area 0.16 mm2. Data were analyzed in 
10 fields per sections, and were expressed as mean percentage ± SD in 5 mice examined per each 
group (asterisks*, p<0.01 & asterisks**, p<0.001, Student’s t-test)   
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changes with advancing age that are beginning to be understood and that need to be 
incorporated into the pathogenetic models of RA. Age-dependent disturbance in T-
cell homeostasis are accelerated in patients with RA [2]. A defect in AICD of effector 
T-cells may result in the development of autoimmune disease [9], but an in vivo role 
of autoantigen for AICD with aging is entirely unclear. We examined the in vivo age-
related changes on the development of extraglandular manifestations of autoimmune 
lesions in the NFS/ sld  SS model mice, compared with control young mice. Inflam-
matory lesions in aged SS model were observed in several organs including joints, 
lung, liver, and kidney, and most prominent histopathology was obtained in arthritic 
lesions. Destructive autoimmune arthritis developed in aging SS model mice, and 
these lesions aggravated with age [22]. The effects observed in aged SS model mice 
included synovial hyperplasia, pannus formation, bone erosion, and infiltration of 
mononuclear cells into the subsynovial tissue (Fig. 2). Culture supernatants from anti-
CD3 mAb-stimulated splenic T-cells obtained from aged SS model mice contained 
higher levels of IL-2, and IFN-γ with advance of age, while no different levels of IL-4, 
and IL-10 were observed by ELISA. We detected increased levels of serum RF, anti-
CII Abs (CII: type-II collagen, candidate autoantigen of RA), anti-ssDNA and anti-
CII Abs in aging SS model mice but not in control mice, and these levels increased 

  Fig. 2      Effects of aging on joint histopathology in SS model mouse (Ref. 22)  .     Representative pho-
tomicrographs taken from SS model mice at 18-mo- and 24-mo-old. The histopathological effects 
observed in aged SS model mice at 18-mo- and 24-mo-old included pannus formation, synovial 
hyperplasia and infiltration of mononuclear cells into the subsynovial tissues (H.E.)   
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with advance of age (Fig. 3). A high titer of serum autoantibodies against N-terminal 
α-fodrin fragments (JS-1) that originally identified in primary SS model mice were 
detected in the aged SS model mice by ELISA. Moreover, autoantibody production 
against C-termini of α-fodrin fragment (3 DA) was frequently detected in aged SS 
model mice. To address the role of autoantigen-reactive T-cells, we examined the pro-
liferative T-cell responses against α-fodrin fragments (JS-1, 2.7A, and 3’DA), and CII 
in the spleen cells at different ages. We detected a significantly increased prolifera-
tion in spleen cells from aged SS model mice stimulated with CII, in addition to the 
response with JS-1, 2,7A and 3’DA protein (Fig. 4). By contrast, impaired prolifera-
tive responses were observed when stimulated with anti-CD3, and LPS with advance 
of age. These data suggest that α-fodrin-reactive T-cells may spread against different 
antigenic epitope, followed by bystander T-cell activation involving against CII on 
the progression of autoimmune lesions in aged SS model mice [22]. Furthermore, 

  Fig. 3    Age-related changes in SS model with serum autoantibody productions (Ref. 22)  .     Increased 
levels of serum RF were observed in aged SS model (*p<0.05 at 12-mo-old and **p<0.01 at 24-
mo-old, Student’s t test), compared with those in control mice. Significant increase in serum anti-
CII was observed in aged SS model (*p<0.05 at 24-mo-old, Student’s t test), compared with those 
in control mice. Contiguous increases in anti-ssDNA Abs in SS model mice were found at differ-
ent age (*p<0.05 at 3-mo-and 24-mo-old and **p<0.01 at 12-mo-old, Student’s t test), compared 
with those in control mice. High IgG2a/IgG1 ratio in sera from SS model mice was detected with 
advance of age, compared with those from control mice (*p<0.05 at 3-mo-old and **p<0.01 at 
12-mo- and 24-mo-old, Student’s t test)   
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interstitial pneumonia of autoimmune nature was involved in aging SS model mice 
until 24-months-old. The results showed that CD4 +  T-cell population, CD4 +  T-cells 
bearing CD44 high , Mel-14 low , CD45RB low  activation markers, and MHC class II+ cells 
were significantly up-regulated in the spleens from SS model mice with aging. These 
results indicate that age-related disturbance of T-cell tolerance may play a crucial role 
on the involvement of interstitial pneumonia besides autoimmune arthritis in a murine 
SS model.  

    5 Concluding Remarks  

  The data discussed in this review are strongly suggestive of essential roles of 
apoptotic cascade for α-fodrin autoantigen cleavage leading to age-related accel-
eration in autoimmune exocrinopathy. In vitro T-cell apoptosis assay indicated that 
FasL-mediated AICD is down-regulated by autoantigen stimulation in spleen cells 
from aging model for SS. Although antigen-induced T-cell death is known to be 
regulated by CD4 expression, molecular mechanisms responsible for T-cell death 
should be further elucidated. Moreover, it remains unclear whether T-cells specific 
for endogenous epitopes play a significant pathologic role in tissue damage dur-
ing the clinical episodes. Taken together, aging-associated disturbance in T-cell 
homeostasis have a potent effect on the proteolysis of α-fodrin autoantigen through 
up-regulation of apoptotic activity. Increasing our knowledge of the biology from 
different aspects will be of vital importance for the future application of immune 
suppressive therapy of aging-associated autoimmunity.  

  Fig. 4    Possible role of bystander T-cell activation on the development of autoimmune arthritis 
in aging SS model (Ref. 22)  .     A significantly increased proliferation in spleen cells from aged 
SS model mice stimulated with JS-1,2,7A and 3’DA protein (asterisk*, p<0.05, Student’s t test). 
Moreover, a significant increase in CII-specific T-cell proliferation was found in the aged SS model 
mice with advance of age (asterisk*, p<0.05, Student’s t test). In contrast, decreased proliferative 
responses were observed when stimulated with anti-CD3, and LPS with advance of age (asterisk*, 
p<0.05, Student’s t test). Data are expressed as counts per minute per culture ± SD in triplicate   
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      1 Introduction  

   1.1   Age-dependent Diseases  

  With increasing age, various diseases that mostly have their roots earlier in life 
become clinically manifest and are, therefore, age-dependent diseases.  Table 1  lists 
the most frequent medically as well as the most important diseases from a socio-
economical perspective. However, several age-related diseases often develop in 
a single patient and this multimorbidity is the major problem in geriatrics that 
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becomes ever more important with increasing life expectancy. Worldwide, cardio-
vascular diseases and infections are the main causes of death followed by tumours 
[1]. Interestingly, in the developed world, the costs imposed upon society by treat-
ment of age-related diseases shows a different distribution, i.e., cardiovascular 
diseases followed by autoimmune diseases and tumours with infections at lower 
ranks. Among cardiovascular diseases, atherosclerosis is the most important repre-
sentative leading to the known severe sequelae, i.e., myocardial infarction, stroke 
and peripheral arterial occlusion. In recent years, increasing experimental and clin-
ical evidence has emerged supporting the concept that inflammatory-immunologi-
cal processes play a major role in the initiation and progression of atherosclerosis 
including the hypothesis of a triggering of atherogenesis by microbial-human anti-
genic crossreactivity as well as  bona fide  autoimmunity.  

  The following chapter will focus on this latter aspect.  

    1.2 Pleiotropic Antagonism  

  In principle, theories of aging comprise two major groups viz.: 

    (a)       aging due to stochastic processes (random damage to DNA, RNA, proteins)  
     (b)     deterministic concepts (genetically determined lifespans, biological clocks, etc.).      

  Our own gerontological research with respect to the elucidation of the patho-
genesis of age-dependent diseases was always based on the concept of pleiotropic 
antagonism (pleiotropic =  Gr , multifunctional; antagonistic =  Gr  having the opposite 
effect). In the present context, pleiotropic antagonism means that genes, the effect 
of which is beneficial during youth, may exert deleterious effects at older age when 
natural selection is not active anymore [2]. These deleterious (i.e., antagonistic as 
compared to beneficial expression before reproductive age) effects are pleiotropic 
(i.e., occur at different sites and tissues). Examples for pleiotropic antagonism as 
an explanation for the development of age-dependent diseases have been discussed 
in detail earlier [3, 4]. They include the activation of genes responsible for the bio-
chemical processes leading to the calcification of bones early in life that can later be 
expressed in the arterial wall, leading to the development of severe atherosclerotic 
lesions. Another example is the benign prostatic hypertrophy (BPH) that in part is 
due to the autocrine and paracrine activity of growth factors contained in prostatic 
fluid. In youth, these factors are beneficial for the survival of spermatozoa and pro-
liferation of prostatic parenchymal cells with the aim to produce large amounts of 

Table 1 Major Age Associated Diseases

• Cardiovascular disease (MI, Stroke, Claudication)
• Diabetes, Obesity, Metabolic-Syndrome
• Tumors (Breast, Lung, Prostate, Colon)
• Osteoporosis
• Arthrosis
• Dementia (Vascular, Alzheimers Disease)
• Depression
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seminal fluid that will facilitate reproductive success. However, in older age when 
sexual activity decreases, these factors together with a decrease of proapoptotic 
components that are also contained in seminal fluid will contribute to the develop-
ment of BPH.  

  In conclusion, age-dependent diseases are often the “price that we pay for the 
vigour of youth”.  

     2 Hypotheses for the Development of Atherosclerosis  

  The term  atherosclerosis  refers to an arterial lesion containing foam cells and inter-
stitial lipid deposition. In contrast,  arteriosclerosis  is a collective term, summarising 
different metabolic and degenerative arterial alterations that cause hardening (scle-
rosis), thickening, and loss of elasticity of the arterial wall. Atherosclerosis encom-
passes spontaneous atherosclerosis [5], restenosis after percutaneous transluminal 
coronary angioplasty, autologous arterial or vein graft atherosclerosis and transplant 
atherosclerosis, the latter an accelerated form of atherosclerosis. The atheroscle-
rotic lesion is defined by arterial intimal and smooth muscle cell (SMC) prolifera-
tion, lipid accumulation, and connective tissue deposition [6, 7]. Arteriosclerosis is 
characterised by SMC hyperplasia or hypertrophy and extracelluar matrix (ECM) 
protein accumulation in the intima and/or media with or without lipid deposition, 
resulting in thickening and stiffness of the arterial wall. A common feature of all 
these vascular diseases is related to altered hemodynamic stress [8]. Although arte-
riosclerosis is the umbrella term of all these forms of vascular diseases including 
atherosclerosis, the 2 terms are often used interchangeably and we will thus refer to 
atherosclerosis throughout this article.  

   2.1 Classical Hypotheses of Atherosclerosis  

  The main classical hypotheses for atherogenesis are the following: 

    (a)      The response to injury hypothesis [9] 
           This concept assumes a primary endothelial cell damage as the initiating event 

of the disease. This injury can be brought about by mechanical stress (hyperten-
sion), oxygen radicals, toxins (e.g., from cigarette smoke), etc. and entails an 
increase in vascular permeability and the expression of growth factors, proin-
flammatory cytokines and adhesion molecules. Although lymphoid cells were 
already recognised in the intima at the time when this theory was formulated, 
no major early pathogenetic relevance was initially attributed to this finding. 

    (b)    The arterio-ELAM theory [10]      
     This is a supplementary concept to the response to injury hypothesis, where 

endothelial dysfunction is also considered a primary event in the pathogenesis 
of atherosclerosis, followed by infiltration of monocytes/macrophages into the 
intima where they transform into foam cells. These cells produce proinflamma-
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tory cytokines, such as IL-1 and TNFα, platelet derived growth factor (PDGF) 
and fibroblast growth factor (FGF) that together with infiltrating T-cells stimulate 
the proliferation of SMC and endothelial cells. These cellular changes entail the 
expression of inducible endothelial leukocyte adhesion molecule (ELAM) and 
other adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM 1),
and form the basis for a perpetuation of the atherogenic process. 

    (c)    The altered lipoprotein hypothesis [11]      
     This hypothesis states that chemically altered, e.g., oxidized, low-density 

lipoproteins (oxLDL) represent the trigger for the development of atheroscle-
rotic lesions. OxLDL is deposited or formed de novo in the arterial intima 
where it acts as a chemoattractant for monocytes from the blood stream on one 
hand, and is taken up by macrophages and SMC in the intima via nonsaturable 
scavengor receptors on the other. The latter process leads to the formation of 
foam cells and extracellular cholesterol deposits resulting in the development 
of so called fatty streaks that for a long time where considered as being the first 
atherosclerotic manifestations. 

    (d)       The autoimmune hypothesis [12]      
     This newer hypothesis formulated by our group that is described in detail below 

seems to encompass all the former classical theories described so far. In this 
context it is important to emphasize that our laboratory is only interested in 
the very earliest events leading to clinically not yet apparent atherosclerotic 
changes that may later progress into more severe lesions if classic atherosclero-
sis risk factors are continuously present.  

    2.2 Inflammation and Atherosclerosis  

  The fact that inflammatory processes could be observed in atherosclerotic lesions was 
already pointed out by several authors in the 19 th  century [13]. However, this observa-
tion has fallen into oblivion until it was rediscovered in the early 1980s and condensed 
into new, inflammatory hypotheses of atherogenesis, albeit without a clear cut knowl-
edge if the inflammatory events were of a primary or secondary nature [14]. As a matter 
of fact, in the middle of the 19 th  century, the 2 leading European pathologists, Rudolf 
Virchow, Berlin, Germany, and Carl von Rokitansky, Vienna, Austria, were engaged 
in a fierce dispute about this issue. Both of them observed inflammatory mononuclear 
cell infiltration in atherosclerotic lesions, but while von Rokitansky considered these 
as of secondary in nature, Virchow assigned a primary pathogenetic role to them. We 
recently had the opportunity to reevaluate atherosclerotic specimens harvested by von 
Rokitansky himself over 150 years ago and stored at the pathology museum at the 
General Hospital in Vienna with modern immunohistochemical methods. Our data 
support the position of Virchow rather than that of von Rokitansky [15].  

  It later became increasingly clear that in advanced atherosclerotic lesions, i.e., 
those that are also available as surgical specimens for detailed studies, a great 
number of facets of inflammatory-immunological hallmarks can be found, thus 
rightly supporting the designation of these as “complicated lesions”.  
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  In principle, hallmarks of both innate and adaptive immune reactions have 
been described in atherosclerosis. With respect to humoral factors these include 
depositions of complement, C-reactive protein (CRP) and a great number of 
cytokines and chemokines. Intralesional cellular components of the innate immune 
system comprise macrophages and NK T-cells, but not granulocytes. In this context, 
the expression of TOLL-like receptors (TLRs), both on effector and target cells, 
e.g., endothelial cells (ECs), is of special relevance [16].  

  With respect to the adaptive immune system, T-cells dominate the scene with 
a preponderance of CD4 +  over CD8 +  cells. Within the CD4 +  population, Th1 cells 
predominate over Th2 cells. Most T-cells express the α/β T-cell receptor (TCR α/β) 
but a surprisingly high percentage of intralesional T-cells is TCRγ/δ + , i.e. 10–15% 
versus 1–2% in the peripheral blood of the same individuals [17]. This fact later 
became important because it is known that TCRγ/δ +  T-cells recognize heat shock 
proteins (HSPs) in a non-MHC restricted fashion. In immunohistological stud-
ies comparing early lesions obtained from young (<30 yrs) donors who died from 
non-CVD-related causes with late lesions from older (>60 yrs) patients with severe 
plaques, it became clear that the first cells to infiltrate the intima at the known predi-
lection sites are T-cells only then followed by blood-borne macrophages and finally 
smooth muscle cells (SMC) migrating from the media [18]. In addition, both early 
and late lesions contain abundant numbers of dendritic cells (DC) providing the 
conditions for local antigen presentation or transport of antigenic material to drain-
ing lymphnodes for antigen-presentation, and subsequent migration of sensitized 
T-cells to lesion areas, similar to the situation in contact dermatitis. Finally, early 
lesions contain considerable numbers of mast cells that secrete vasoactive products 
which increase vascular permeability [19].  

  Immigration of these different cell types is guided by appropriate chemokine 
gradients and the expression of chemokine surface receptors. Before intimal infil-
tration, mononuclear cells interact with ECs via adhesion molecules, the expression 
of which differs at predilection sites compared to the rest of the arterial territories. 
While ECs at the latter locations are subjected to laminar shear stress, the former 
sites experience turbulent blood flow conditions that build up after vascular branch-
ing, and lead to the expression of ICAM-1 (intercellular adhesion molecule-1), 
VCAM-1 (vascular cell adhesion molecule-1), and ELAM-1 (endothelial leukocyte 
adhesion molecule-1) all aiding the adhesion of cells.  

  These adhesion molecules are excessively expressed by ECs subjected to classi-
cal atherosclerosis risk-factors and—as will be detailed later—are a prerequisite for 
the interaction of T-cells with specific antigens expressed on the surface of target 
ECs. The binding affinity of the TCR for an appropriate MHC-peptide complex is 
only about 10 -5  molar i.e., does not suffice for the interaction of effector and tar-
get cells in the arterial blood stream. However, after firm adhesion of T-cells onto 
ECs expressing appropriate adhesion molecules, specific immunologic interaction 
becomes possible. Similar rules apply for the interaction of monocytes with ECs 
with subsequent infiltration of the intima and transformation into macrophages.  

  In conclusion, all these findings supported a role of innate and adaptive immune 
reactions during atherogenesis, but the relevant antigen(s) triggering such reactions 
were not identified.  
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    2.3 The Autoimmune Hypothesis of Atherosclerosis  

  In order to identify one or several (auto) antigens that may induce an immune 
response in the arterial wall, we resorted to the original approach of Rose and 
Witebsky for the identification of disease-specific autoantigens [20]. We immu-
nized normocholesterolemic rabbits with a mixture of proteins isolated either from 
dilapidated human atherosclerotic plaques or from plaques of atherosclerosis-prone 
rabbits (so-called Watanabe rabbits) that have a genetic defect of the low density 
lipoprotein receptor (LDL-R), mixed with complete Freund’s adjuvant (CFA). Oval-
bumin (OVA) plus CFA was used for control purposes. We hypothesised that rabbits 
immunized with either human or rabbit plaque proteins should develop atheroscle-
rotic lesions if atherogenic autoantigens were present in these preparations, while 
OVA immunized rabbits should remain unaffected. To our surprise, all three groups 
developed mononuclear cells infiltration at the known atherosclerosis predilection 
sites [21]. Since CFA was the common denominator, we then immunized rabbits 
with CFA alone and used incomplete Freund’s adjuvant (IFA) for controls. In these 
experiments, CFA immunized animals again developed atherosclerosis while IFA 
immunized animals remained normal. Immunization with other nonmycobacterial 
containing adjuvants (e.g., lipopeptide) also had no atherogenic effect. CFA con-
sists of heat-killed mycobacteria, mineral oil and the emulsifier Arlacel. An active 
component of mycobacteria is heat shock protein 65 (mHSP65) and we therefore 
continued these series of experiments by immunizing rabbits with recombinant 
mHSP65, which again led to the development of atherosclerosis.  

  Lesion-derived T-cell preparations showed a significantly higher reaction with 
mHSP65 than T-cells isolated from the peripheral blood of the same animals [22]. 
If mHSP65 immunized rabbits were additionally fed a cholesterol-rich diet, much 
more severe lesions developed [23]. While lesions in mHSP65 only immunized 
rabbits were still reversible, the more severe changes in mHSP65 immunized 
hypercholesterolemic animals were not reversible, at least during an observation 
period of 32 weeks.  

  From these and other data, we developed a new “Autoimmune Hypothesis for 
Atherogenesis” identifying HSP60 as a culprit antigen initiating the first inflam-
matory, clinically still inapparent stage of the disease that subsequently develops 
into more severe forms when classical atherosclerosis risk-factors persist [24–26]. 
The basis for this hypothesis is the fact that HSP60 is a phylogenetically old and 
highly conserved protein [27]. Thus, HSP60 from different bacterial species display 
over 97% homology and bacterial and human HSP60 still show about 55% homol-
ogy, exceeding 70% at certain molecular domains. In addition, microbial HSP60 is 
not only a quantitatively but also qualitatively important constituent that exhibits 
strong immunogenicity. Every healthy human and animal has humoral and cellular 
immunity against microbial HSP60, as well as  bona fide  physiological autoimmu-
nity against biochemically altered antologous HSP60 that is released during cellu-
lar necrosis and has to be removed. Under normal circumstances, this anti-HSP60 
immunity exerts positive protective effects and contributes to the survival fitness of 
the respective organism. However—as will be reiterated below—subjecting vascular 
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ECs to  classical atherosclerosis risk-factors leads to the simultaneous expression of 
certain adhesion molecules and human HSP60 [28–30], the latter being recognized as 
a danger signal by the innate and adaptive immune system leading to an immunologic 
attack on these target ECs. Arterial ECs that are subjected to lifelong higher blood pres-
sure than venous ECs have a significantly lower threshold for the adhesion molecule 
and HSP60-inducing effect of various stress factors such as classical atherosclerosis 
risk-factors. This is the reason why we develop arterio- rather than venosclerosis.  

  We do not, of course, deny the well-proven atherosclerosis-promoting effect of 
classical atherosclerosis risk-factors but we assign a different role to them in the very 
earliest stages of the disease, viz. acting as endothelial stressors. In the rare person 
that is exposed to various risk-factors but does not develop atherosclerosis, the ather-
ogenic T-cell peptides of HSP60 apparently are not accommodated in the MHC class 
I or class II groves, a constellation on which one should, however, not count.  

  In conclusion, the early inflammatory stage of atherosclerosis is the price that we 
pay for the preexistent antimicrobial immunity and  bona fide  autoimmunity against 
HSP60 when we maltreat our vascular system with HSP60-inducing atherosclerosis 
risk-factors, such as high blood pressure, smoking, oxygen radicals including oxi-
dized LDL (oxLDL), high blood cholesterol levels, diabetes, etc.  

     3 Heat Shock Proteins  

  The HSPs are a diverse family of proteins that perform vital roles in the cell, the 
most important of these being the folding and re-folding of proteins to their native 
structures, as well as intracellular protein/peptide transport (Table 2). Although 
the discovery of HSP was made in  Drosophila , it soon became apparent that they 
were present in all organisms, whether eukaryotic or prokaryotic. Despite the evo-
lutionary distance between these domains, sequencing various genes and proteins 
revealed the above mentioned highly phylogenetically conserved sequences, 
emphasising the functional importance of HSPs.  

Table 2 The Heat Shock Protein Family

HSP Family Molecular Function

10 kDa Protein folding, co-chaperone with Hsp60

27 kDa Inhibits protein aggregation, stabilises cellular structure

40 kDa Protein folding, co-chaperone with Hsp70

60 kDa Protein folding and re-folding, protein translocation

70 kDa Nascent protein folding, refolding of denatured proteins, regulation of heat 
shock response, cell cycle and cell signalling, anti-apoptotic function

90 kDa Protein folding, interaction with steroid receptors, controls HSF-1 activity 
by direct binding

100 kDa Protein folding and re-folding after aggregation

Adapted from Jolly C, Morimoto RI. Journal of the National Cancer Institute 2000 
92(19):1564-1572
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  The HSPs are ordered into families depending on their molecular weight, which 
varies from over 100 kDa to under 10 kDa. The major HSP families include the 100, 
90, 70, 60, 40, and 28 kDa families, all of which perform various roles in protein 
folding and transport, and prevention or dissolution of protein aggregates [31, 32]. 
A special case here is HSP90, which not only binds to denatured polypeptides, but 
also performs many other tasks in cell cycle control, signal transduction, and even 
steroid receptor function. HSP expression is induced in cells that have undergone 
exposure to some form of stress, leading to an increase in the levels of unfolded or 
erroneously folded proteins. This occurs not only upon exposure to high tempera-
tures (the stress that lead to the discovery of HSP), but also to a variety of other 
stressful situations, including heavy metals, UV light, reactive oxygen species, and 
bacterial or viral infection [31]. Induction of HSP occurs when the transcription 
factor, heat shock factor 1 (HSF-1), is released from its quiescent state by HSP70, 
which is sequestered to refold denatured proteins [33]. HSF-1 is now able to relo-
cate to the nucleus and form a homotrimer, which is subsequently phosphorylated 
and binds to heat shock responsive elements (HSRE) which are present in the pro-
moter regions of HSP genes. A negative feedback loop inactivates the HSF trimer as 
the excess HSP70 eventually binds to HSF and dissociates the complex.  

  Because of their ubiquitous nature, HSP have also been found to be implicated in 
a number of diseases, including arthritis, multiple sclerosis, and diabetes [34–38]. 
The role of HSP60 in atherosclerosis has already been mentioned, and will be dis-
cussed in further detail below.  

    4  Classical Atherosclerosis Risk-factors as Endothelial 
Stressors  

  The risk factors for atherosclerosis have been well defined from a number of large epi-
demiological studies over the last several decades, usually having myocardial infarc-
tion or ischemic stroke as an endpoint [39-43]. Some of these factors are (currently) 
unable to be addressed, such as being male, and the rest of the genetic makeup which 
ascribes a 3-fold higher risk to people who have two or more close relatives succumb-
ing to atherosclerosis. The other risk factors are of an environmental nature, and can in 
principle all be described as capable of inducing a stress response in ECs.  

  High blood pressure is one of the most important risk factors in atherogenesis, and 
is aggressively treated in patients. As mentioned, it is well known that atherosclerotic 
lesions form at certain predilection sites in arteries, where a turbulent, non uniform, 
non linear blood flow is found. These sites are commonly found at branch points and 
even curved regions of arteries. Linear blood flow forms the normal environment for 
EC, and areas of disturbed flow cause the expression of a totally different set of genes 
[44], and increase the ability of mononuclear cells to attach and migrate across the 
endothelium. In addition, increased and turbulent mechanical stress has been shown to 
increase the expression of HSP60 on the protein level both in vivo and in vitro. In rats, 
ligation of one carotid artery dramatically increases blood flow in the other, after which 
HSP60 induction was shown both on a transcriptional and translational level [30]. Fur-
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thermore, shear stress experiments on cultured endothelial cells using a cone and plate 
viscometer showed that turbulent flow induced HSP60 protein expression [30].  

  Numerous studies have found a strong link between smoking and an increased 
incidence of heart attacks and strokes [45, 46]. Indeed, smoking has even been 
found to be the major risk factor in the development of early ateriosclerosis [47]. In 
our laboratory, young male smokers aged 17–18 years were shown to carry a 3.5-
fold higher risk of having an increased intima-media thickness (IMT) at one or more 
sites investigated by ultrasound compared to nonsmokers. We have investigated 
the effects of treating cultured EC with an aqueous cigarette smoke extract (CSE), 
which has been reported to contain the substances responsible for atherogenesis. We 
have shown in vitro and ex vivo that ECs undergo a strong cytoskeletal contraction 
due to the rapid degradation of microtubulin, which in vivowould lead to vessel 
denudation [48]. Microarray experiments have shown that CSE induces HSP60 
expression, along with a large number of other heat shock and stress response genes 
(Henderson et al. in press; doi:10.1016/j.atherosclerosis.2008.02.022). HSP60 has 
also been shown to be released in copious amounts into the cell culture medium in 
response to CSE [49].  

  The role that LDL plays in atherosclerosis is also well known, with LDL per-
meating the endothelial monolayer to the intima, undergoing oxidisation there, and 
then being taken up by nonsaturatable scavenger receptors present on monocytes 
and smooth muscle cells to form foam cells, leading to the appearance of the clas-
sical fatty streak [50, 51]. Oxidised LDL is a strong EC stressor, with the effects 
on ECs of arterial origin stronger than that of venous origin [29]. This supports the 
assertion mentioned above that arterial EC are more susceptible to stressors due to 
the prestress by higher arterial blood pressure.  

  In an analogous fashion, proinflammatory cytokines represented by TNF-α, 
reactive oxygen species (H 

2
 O 

2
 ), and bacterial infection (LPS treatment) have all 

been shown to induce HSP60 protein and adhesion molecule expression in EC in 
vitro [29]. Furthermore, bacterial LPS administration in rats led to simultaneously 
increased expression of HSP60 and ICAM-1 [52].  

  In recent, still unpublished experiments, we have visualized HSP60 expression 
by in vivo imaging techniques in rabbits that were i.v. injected with LPS as a surro-
gate for infections (M. Wick et al Cell Stress Chaperones. 2008 Sep;13(3):275-85). 
Fig. 1 shows this fact by  en face  immunohistochemistry.  

  In view of the ongoing “electrosmog” discussion, we have also investigated 
whether the 50 Hz magnetic fields produced by domestic power supplies could repre-
sent an endothelial stressor by assessing HSP60 and 70 expression in vitro and in vivo. 
After exposing EC to various intensities and durations of 50 Hz fields, no response of 
HSP60 or 70 was found on the RNA or protein level [53]. Further investigations using 
microarray analysis also failed to produce any candidate genes that were reproducibly 
affected by 50 Hz exposure [54]. To look at this issue in a more complicated system in 
vivo, a mouse model of arterio-venous bypass restenosis was exposed to 50 Hz mag-
netic fields over several weeks. No change in progression or in the cellular composition 
of restenosed bypass conduits could be found compared to control groups. In addition, 
no change in HSP60 expression could be determined, thus rendering a proatherogenic 
role of low frequency magnetic fields rather improbable [55].  
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    5 Role of the Adaptive Immune System  

   5.1   Humoral Immunity  

  Although B-cells are generally not found in atherosclerotic plaques in humans 
or mice [56], antibodies do play a role in atherosclerosis [18]. Fifteen years ago, 
we were able to demonstrate that sonographically visible carotid atherosclerosis 
significantly correlated with the antibody titer to mHSP65 [57]. It was subsequently 
shown that a positive correlation exists between antibody titer not only with mor-
bidity and even with cardiovascular disease mortality [26]. Antibodies to mHSP65 
have also been shown to cross-react with HSP from other pathogens ( Chlamydiae , 
 E. coli ), and—importantly—with human HSP60 (hHSP60) [58, 59]. Linear and 
conformational cross reactive HSP60/65 have also been identified which form a 
starting point for further investigation of the role of antibodies in atherogenesis 
[60, 61]. A number of studies have since reproduced this data (reviewed in [12]), 
while other studies have found a role for antibodies against heat shock protein 70 
[62]. However, immunisation with HSP70 fails to induce atherosclerosis, in con-
trast to mHSP65 (Wick et al.  unpublished data ). High levels of soluble HSP60 also 
correlate with an increased carotid IMT, which is exacerbated by the presence of 
chronic infections [63]. Interestingly, a negative correlation between disease and 
soluble HSP70 or HSP27 proteins has been shown [64, 65].  

  Other antigens have also shown a correlation of antibody titer and atherosclerosis. 
These include ox-LDL, where increased antibody concentrations have been linked 
to peripheral vascular disease and carotid and coronary atherosclerosis [66, 67]. 
As with HSP60 antibodies, increased ox-LDL antibody titres were correlated with 
disease progression and death [68, 69]. On the other hand, it has been shown that 
antiox-LDL antibodies are protective in mice, with their induction reducing the size 
of atherosclerotic lesions, probably due to the removal of ox-LDL from the blood 

Fig. 1 En face in vitro immunohistochemical demonstration of HSP60 expression of a rabbit 
aorta branching into an intercostal artery using a mouse IgG2a anti-HSP60 monoclonal antibody 
(clone II-13) 24 hours after 10 μg/kg bodyweight LPS injection (left image), compared to a nega-
tive staining control using unspecific IgG2a (right image). Magnification:1.6x2.0
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stream [70]. Anticardiolipin antibodies, which target b2-glycoprotein-I which is 
found in atherosclerotic lesions [71], were found to be elevated in patients with 
myocardial infarction and cardiac death [72].  

    5.2 Cellular Immunity  

  T-cells play an important role in atherogenesis and development of the atherosclerotic 
lesion (reviewed in [56]). After initial activation of the T-cell, generally in lymph 
nodes by antigens presented by dendritic cells, they are free to migrate into other tis-
sues and become reactivated. Definitive evidence that CD4+ T-cells are atherogenic 
has been provided using mouse models of atherosclerosis. Immune compromised 
SCID mice show reduced atherosclerosis compared to immune competent mice, 
and reconstitution with CD4+ T-cells leads to more severe atherosclerosis [73]. The 
absence of CD4+ T-cells, or their depletion using anti-CD4 antibody were found to 
reduce fatty streak formation in C57BL/6 mice on a high fat diet [74]. Depletion 
of T-cells using an anti-CD3 antibody also lead to a reduction in atherosclerosis 
in normocholesterolemic rabbits which had been immunised with mycobacterial 
HSP65 [75, 76]. Proinflammatory cytokines produced by Th1 T-cells in the athero-
sclerotic lesion activate bystander cells, including macrophages and NK-cells, and 
are mainly responsible for the atherogenic effect of T-cells. The secretion of IFN-γ, 
IL-12 and IL-18, along with TNF family cytokines leads to the development of a 
proinflammatory environment. The role of these cytokines in atherosclerosis has 
been shown by various knockout mice lacking either the cytokines or their recep-
tors [77–81]. Proinflammatory cytokine secretion by T-cells and activated bystander 
cells also leads to the expression of adhesion molecules, proteases, and ox-LDL 
scavenger receptor in various cell types, including EC and smooth muscle cells.  

  As previously mentioned, CD4 +  dominate over CD8 +  T-cells within lesions, 
with the vast majority of the former being α/b receptor positive. The fact that 
a considerably increased proportion of CD4 +  cells expressing the γ/δ receptor 
are also found provides an interesting link to innate immunity. Since γ/δ T-cells 
are capable of recognising antigens such as HSPs, without the need for MHC 
presentation, this introduces a link between the adaptive and innate immune sys-
tems [82]. The higher incidence of γ/δ T/cells in early atherosclerotic lesions is 
further evidence of the role of HSP60 in atherogenesis. Interestingly, knocking 
out TCRαβ T-cells on an ApoE-/- background led to a significant reduction in 
both early and late atherosclerosis, while deletion of the γδ T-cells had only a 
minor effect [83]. Antigen presenting cells (APC) such as dendritic cells and 
macrophages (expressing MHC II) are closely associated with T-cells in plaques, 
suggesting an interaction in situ [84]. It has been shown that T-cells undergo 
clonal expansion in atherosclerotic lesions. Using the Immunoscope technique, 
which is PCR-based and shows the clonal distribution of the Vβ T-cell recep-
tor, a restricted T-cell repertoire has been found in late atherosclerotic lesions in 
humans [85, 86]. We were able to show that T-cells isolated directly from lesions 
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showed a significantly higher degree of monoclonally and oligoclonally restricted 
α/β T-cell receptor repertoire than those isolated from peripheral blood (p<0.004 
and p<0.003 respectively; [87]). This suggests that plaque T-cells are proliferating 
in response to a specific antigen(s). The identity of these atherogenic epitopes has 
not been proven, but studies have shown that T-cells isolated from late lesions are 
reactive to HSP60 [87–90], and ox-LDL [91]. Other potential antigens include 
Chlamydial antigens, herpes simplex, cytomegalovirus, and β2-glycoprotein I 
which are all found in atherosclerotic plaques [71, 92].  

  Natural killer (NK) lymphocytes, which play an important role in the innate early 
defense response, have also been shown to be present in atherosclerotic lesions, 
albeit at very low levels, independent of lesion progression [93]. The deficiency 
of NK-cells in LDL receptor knockout mice led to a significant reduction in early 
lesion development, although its role in atherosclerosis is yet to be defined [94].  

  NK T-cells (NKT) are a heterogenous group of cells which possess character-
istics of both NK- and T-cells, and act as a link between the innate and adaptive 
immune responses. Activation of NKT by IL-12 leads to the production of TNF-α 
and IFN-γ enabling the stimulation of macrophages, NK-cells and T-cells. NKT 
also express proinflammatory cytokines IL-2 and IL-12, and have also been shown 
to express Th2 cytokines IL-4, IL-5, and IL-10 [95]. Several publications have 
shown that NKT-cells contribute indirectly to the development of atherosclerotic 
lesions in mouse models, via activation of other immune cells and the production 
of a proinflammatory local environment [95–97].  

  Dendritic cells play an important role in the stimulation of T-cells and NKT-cells. 
Indeed, they are the most effective antigen presenting cells, capable of displaying 
antigens via MHC class I and II molecules, and controlling the differentiation of 
T-cells into Type 1 or Type 2 effector cells depending on IL-12 secretion [98–102]. 
The presence of co-stimulatory molecules (CD40, CD80/B7.1, CD86/B7.2) on the 
surface of DC are critical in the activation of T-cells, while their absence will cause 
T-cell anergy or even apoptosis [98–102]. DC were first reported to be present in 
severely diseased arteries by Bobryshev and Lord in 1995 [84], and later shown to 
be present in high numbers in healthy arteries but not veins, where they make up part 
of what we have termed the vascular associated lymphoid tissue (VALT) [103]. The 
VALT is partly analogous to the mucosa associated lymphoid tissue (MALT), and 
consists of mononuclear cells in the intima (T-cells, dendritic cells, mast cells, and 
macrophages) at known predilection sites for atherosclerotic lesions [93]. Present 
even in the arteries of babies and young children, the VALT is thought to have a 
similar role to the MALT: i.e., being a local immune monitoring site for potentially 
dangerous autologous and exogenous antigens present in the blood, an internal 
surface barrier region. DC present in atherosclerotic lesions have been shown to 
be far more abundant than in nondiseased arteries, and to be activated (shown by 
increased expression of adhesion molecules Cd11a, CD50, CD54; costimulatory 
factors CD58, CD80 + , CD86 + ; and antigen presenting Class I and II MHC mol-
ecules and CD1) in contrast to normal tissue [104, 105]. This implies that DC under-
goes maturation during atherogenesis, although the exact timing and nature remain 
unknown. Clusters of DC are essential to, and have been shown to be an indicator 
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of autoimmune disease also supporting the HSP60 autoimmune hypothesis outlined 
earlier [106].  

    5.3 Immune Regulation  

  Regulatory T-cells (Tregs) are a subset of CD4 +  or CD8 +  T-cells that exert an important 
regulatory effect on the cellular immune system by secreting cytokines (principally 
IL10 and TGF-β) suppressing T-cell proliferation in response to antigenic activation. 
CD4 +  Tregs occur naturally and are produced in the thymus expressing CD25 and the 
transcription factor Foxp3, and may also be induced in the periphery from Tr1 T-cells 
as a response to antigenic stimulation and do not express Foxp3 [107, 108].  

  A lack of CD4 + /CD25 +  regulatory T-cells, has a profound effect on the extent of 
atherosclerosis in mouse models. Since CD25-/- mice quickly succumb to autoim-
mune diseases, as do irradiated ApoE mice reconstituted with CD25-/- bone-marrow 
or T-cells, an alternative approach was required. This was elegantly solved by look-
ing at CD80/CD86 and CD28 deficient mice, which are no longer able to form 
the CD80/86-CD28 interaction necessary for Treg generation [109]. Mice lacking 
either CD80/86 or CD28 suffered from atherosclerotic lesions twice the size of 
wildtype controls. This effect was shown to be due to increased CD4 +  T-cell sup-
pression by IL-10 and TGF-β [109].  

  In addition, the number and potency of Tregs was found to be reduced in the 
ApoE-/- mouse model of hypercholesteremia compared to C57BL/6 wild-type lit-
termates [110]. Furthermore, 6 month old mice had significantly fewer Treg than 
6 week old mice without atherosclerotic lesions. The transfer of CD4 + /CD25 +  cells 
into ApoE-/- mice led to a reduction in the size of atherosclerotic lesions associated 
with an increased aortic expression of IL-10, while CD4 + /CD25 -  cells led to more 
vulnerable plaques [110]. The same authors had previously shown an association 
between acute coronary syndromes and a deficiency in Treg numbers and activity 
in humans [111].  

  The generation of HSP60 specific CD4 + CD25 high  regulatory T-cells has recently 
been shown to dramatically decrease lesion size in ApoE-/- mice fed a high fat 
diet [112]. Using immature DC that had been loaded with HSP60, specific Treg 
cells were generated in vitrobefore being injected into ApoE knockout mice. Aortic 
arch lesion size in 20 week old mice was reduced by more than 50% compared to 
ovalbumin and PBS controls. Although the authors did not expect any undesirable 
immune problems using Treg specific for the whole HSP60 protein, in   ublished at 
the same time compared oral and nasal tolerance induction to HSP65 using the same 
model and a high fat diet to induce atherosclerosis [114]. Tolerance induction again 
led to a reduction in lesion size, with nasal tolerance proving more successful. Mice 
showed a reduction in macrophage and T-cell infiltration and an increase in IL-10 
production compared with control mice.  

  This provides an exciting opportunity for preventing or even treating atheroscle-
rosis by vaccination as discussed below, and it will be interesting to see if specific 
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atheroprotective/atherogenic epitopes, which still have to be identified, will prove 
as efficient as the whole HSP60/65.  

     6 Role of the Innate Immune System  

  Macrophages enter the intima from the bloodstream as monocytes, with this migra-
tion representing an early step in atherogenesis, after T-cell migration [115, 116]. 
After differentiation into macrophages, these cells continue to play a crucial role in 
the development of an atherosclerotic lesion via several different mechanisms. They 
form foam cells (along with DC and SMC) by phagocytising modified (usually 
oxidised) LDL in a nonsaturatable manner by scavenger receptors [117–119]. This 
removes the cytotoxic oxLDL from the intima, but in doing so contributes strongly 
to the proinflammatory environment of the lesion by stimulating the expression of 
cytokines including IL-8 [120]. Macrophages are also a source of matrix metallo-
proteinases (MMP) which contribute to the vulnerable plaque formation by the deg-
radation of stabilising extra-cellular matrix around the advanced plaque connective 
tissue cap [121]. Macrophages can also contribute to the oxidation of intimal LDL 
by the release of iron from phagocytosed erythrocytes [122]. On the other hand, 
phagocytosis of apoptotic cells, particularly prominent in advanced atheroscle-
rotic plaques, by macrophages induces antiinflammatory factors such as IL-10 and 
TGF-β while repressing proinflammatory cytokines IL-1β, IL-8, IL-12 and TNF-α 
[123–126]. Impairment of the phagocytosis of apoptotic cells has been shown to 
lead to larger atherosclerotic lesions in mouse models, due to an increasingly proin-
flammatory environment [125, 127, 128]. However, it should not be overlooked 
that macrophages are also efficient antigen presenting cells, capable of activating 
CD4 +  T-cells via MHC Class II. As outlined in Section 5 above, this leads to T-cell 
proliferation and expression of a wide range of cytokines.  

  The complement system is a biological amplification system, comprising around 
30 proteins interacting to form a cascade upon activation. They assist in the clear-
ance and destruction of targets identified by antibody binding, via opsonisation or 
cytolysis of target cells, or by inducing the expression and release of cytokines 
and adhesion molecules. There are 3 pathways which lead to complement activa-
tion, the classical pathway, the lectin pathway, and the alternative pathway (recently 
reviewed in [129]). Activation of the classical pathway occurs when the inactive 
form of C1 binds to antigen bound antibodies or to CRP, and it’s cleavage triggers 
the complement cascade. The lectin pathway avoids the need for C1 activation, 
with the next step in the cascade (activation of C4) occurring directly via man-
nan-binding lectin-associated serine proteases, which have indirectly bound to 
microorganism surface oligosaccharides via mannan-binding lectins. Alternative 
pathway activation can occur due to low levels of spontaneous C3 activation, and 
the subsequent binding and cleavage of Factor B. Both the classical and the alterna-
tive pathways have been shown to play a role in atherosclerosis, with markers and 
various activated complement components and regulatory proteins found in athero-
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sclerotic lesions, while healthy arteries show no activation [130, 131]. Activation 
of complement components via necrotic cells and oxidised LDL has been shown 
in atherosclerotic lesions in vivo [132]. Due to the ability to clear apoptotic cells 
and immune complexes, the classical activation pathway has been found to protect 
against atherosclerosis, with humans deficient in this pathway being more prone to 
vascular disease and various other systemic autoimmune diseases such as systemic 
lupus erythematosus [133, 134].  

  Mast cells have been known to aggregate in atherosclerotic lesions for some 
time [135], although their exact role in atherosclerosis was not known. Sugges-
tions had been made that mast cells lead to an increased vascular permeability and 
fibrosis, accelerating lesion development [19]. A recent study on LDL-receptor 
knockout mice crossbred with mice which were unable to develop mature mast 
cells has shown that mast cell derived IL-6 and IFN-γ promote atherogenesis [136]. 
These authors found that atherosclerotic lesion size in the mutant mice was greatly 
reduced compared to normal Ldlr-/- mice, and contained far fewer macrophages, 
CD4r T-cells, and apoptotic cells [136].  

  Toll-like receptors, members of the IL-1R superfamily, are critical to the innate 
immune response by acting as first line sensors of infection and inflammation. This 
occurs not by the detection of specific antigens, but by scanning patterns that are 
common across antigenic proteins from various species [137]. Activation of TLR-
signalling leads to the expression of proinflammatory cytokines, various antimi-
crobial agents, and can induce the maturation of dendritic cells which may in turn 
initiate T-cell expansion and differentiation, linking the innate and adaptive immune 
responses. The pathogen associated molecular patterns (PAMPs) associated with 
the 11 human TLRs currently identified cover a wide range of bacterial and viral 
motifs. This includes lipoproteins and peptidoglycans (TLR2), viral double stranded 
RNA (TLR3), LPS and HSP60 (including human; TLR4), and bacterial CpG DNA 
(TLR 9). TLR are expressed on a wide variety of cells, including EC and various 
immune cells including dendritic and T-cells. Activation of TLR by ligand bind-
ing leads to a signalling pathway via the adaptor molecule MyD88, which requires 
further recruitment of IL-1 receptor associated kinases (IRAK) 1 and 4 along with 
tumour necrosis factor receptor associated factor 6. This pathway leads to the deg-
radation of IKK and subsequent activation of NF-κB, and the transcription of a wide 
variety of genes, including proinflammatory cytokines and chemokines [138, 139]. 
TLR 3 and 4 are also capable of MyD88 independent signalling, activating inter-
feron regulatory factor 3 and stimulating the expression of interferon and co-stimu-
latory molecules [140]. TLR2 activation leads to the expression of IL-8, IL-12, and 
IL-23, while TLR4 responses involve IL-10, IFN-β, and IL-12, underscoring the 
complexity of the innate immune response to various pathogenic determinants [141]. 
As the progression of atherosclerosis is an inflammatory/immune driven process, 
TLR provide a link between chronic infections and the inflammatory environment 
which promotes atherosclerosis. TLR expression has been shown in atherosclerotic 
plaques [142, 143], and TLR2 and 4 levels are found to be increased during lesion 
development in ApoE-/- mice [144]. Some studies have reported a reduction in the 
risk of atherosclerosis or coronary artery syndromes in humans with a Asp299Gly 
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TLR4 polymorphism [145, 146], however this effect was not reproducible in later 
studies with larger participant numbers [147–149]. Animal models with loss of 
function mutations of TLR4 or MyD88 showed significantly lower levels of athero-
sclerosis on an ApoE-/- background [150, 151], while TLR2 knockout mice showed 
only a slight reduction on a Ldlr-/- background [152]. Interestingly, treatment with 
the TLR2 agonist PAM3 on the same background resulted in a dramatic increase in 
lesion size, in a dose dependent manner [152]. Finally, since endogenous hHSP60 
acts as a ligand for both TLR2 and 4 [153, 154], sHSP60 released from cells after 
stress and/or necrosis may activate TLR signalling, providing a connection to our 
HSP60 autoimmune hypothesis and alternative source of arterial inflammation.  

    7 Vaccination Against Atherosclerosis  

  As detailed in this review, the last 2 decades have experienced the collection of 
solid experimental and clinical data that speak for a primary role of immunological-
inflammatory processes in the initial stages of artherogenesis as well as an impor-
tant contribution to advanced lesions. Among the many candidate (auto) antigens 
HSP60 and oxLDL have received most of the attention. These two molecules there-
fore, are also prime candidates for the formulation of vaccines aimed at preventing 
or treating the disease via the induction of tolerance.  

  In earlier publications, oxLDL has been considered as a culprit autoantigen trig-
gering an atherosclerosis-promoting immune response. As mentioned above, it later 
became clear that immunity against oxLDL is protective rather than atherogenic, 
most probably due to the elimination of this proatherogenic molecule from the cir-
culation and tissue. Thus, immunisation of mice—both hypercholesterolemic wild-
type and various types of knock-out models—leads to a significant reduction of 
atherosclerotic lesions [70, 155]. In this context it is of special interest that an IgM 
antibody produced by B1 cells against an oxidised phospholipid moiety shows an 
unexpected cross-reactivity with an epitope of pneumococcal polysaccharide. This 
observation will also open an additional avenue for protective intervention [156].  

  With regard to HSP60, the situation is more complicated due to the described 
extensive cross-reactivity between human and prokaryotic HSP60. Induction of 
oral or nasal tolerance against HSP60 protects mice from atherosclerosis induced 
by hypercholesterolemia and/or immunisation with HSP60 [113, 114]. The mecha-
nisms underlying this successful tolerisation are not yet studied in detail but most 
probably involve the stimulation of Tregs. It is important to note that in humans 
tolerance against the whole HSP60 molecule would not be desirable because it may 
entail increased susceptibility to bacterial and parasitic infections. However, com-
pared to the situation in rheumatoid arthritis where arthritogenic and arthritopro-
tective HSP60 epitopes have already been defined [157, 158], research is not yet 
as advanced in the field of atherosclerosis. Therefore, the endeavours of our and 
other groups are now focussing on the delineation of atherogenic and atheroprotec-
tive mammalian and mammalian-microbial cross reactive HSP60 T-cell epitopes 
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in addition to the already defined HSP60 B-cell epitopes [60, 61]. These epitopes 
will then be used for the development of a tolerogenic vaccine aimed at preventing 
and/or treating atherosclerosis, respectively.  
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                                  Abbreviations:

     ECM    Extracellular matrix   
         SMC      Smooth muscle cells 
       ER        Elastin receptor 
          ROS      Reactive oxygen species 

       CFA     Complete Freund’s adjuvant 

Abstract:        The emergence of cellular immunology in the second half of the 20th 
century triggered the interest of scientists and clinicians to explore the potential 
role of immune-mechanisms in degenerative chronic diseases, among others in 
athero- arteriosclerosis. These experiments were preceeded and encouraged by the 
important work of Klemperer, who coined the term collagenoses implying autoanti-
bodies to collagen in such chronic diseases as disseminated lupus erythematosis and 
related chronic affections of connective tissues (Gardner 1965 for review). Several 
authors obtained reproducible vascular lesions similar to those observed in humans 
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by immuni z ing rabbits with arterial wall homogenates. Using a fractional extraction 
procedure we could show that the major antigen responsible for this experimen-
tal immune-atherosclerosis was elastin, considered previously as nonantigenic. 
The more hydrosoluble macromolecular fractions of the vascular wall, although 
strongly antigenic, as judged from the production of precipitating antibodies, did 
not produce the same lesions with the same regularity and severity. Immuni z ation 
of rabbits with highly purified elastin induced only a modest increase of circulating 
antibodies, but did produce arteriosclerotic plaques without any increase of dietary 
lipid administration. These results were completed and reinterpreted after the iden-
tification of the elastin-laminin receptor, activated by circulating elastin peptides 
by triggering a release of proteolytic enzymes and free radicals. The functional 
profile as well as the transmission pathway of this receptor, present on vascular 
cells and also on circulating white blood cells (WBC) was shown to change with 
age, loosing its physiologically relevant regulatory functions and preserving only 
its harmful effects. Circulating elastin peptides acting on the elastin receptor  (ER) 
 can induce vascular damage by upregulation of proteolytic (elastolytic) activity 
and reactive oxygen species (ROS) production. These reactions form a vicious cir-
cle with autoamplifying feedback mechanisms and age-dependent increase of the 
harmful effects on the vascular wall. A large number of human blood samples were 
tested for antielastin antibodies and also for elastin peptides. All blood samples con-
tained both of these markers of the (auto)immune atherogenetic process involving 
the activation of the elastin-receptor, its uncoupling which results in the progressive 
increase of the degradative processes leading to the age-dependent amplification 
of the athero- arteriosclerosis. Elastin peptides were also shown to induce oxyda-
tion of LDL. This experimental model is an example of the delicate interplay of 
immune-triggered reactions with cell-signaling events during the development of 
athero- arteriosclerosis.  

         Keywords:        Elastin    •      Aorta    •      Vascular wall    •      Antielastin antibodies    •      Elastases    •      
Immune-atherosclerosis    

                           1      Introduction  

     1.1      Historical Remarks  

   Although inflammation was recognized by Hippocrates and his school and defined 
by its cardinal symptoms (tumefaction, redness, heat, pain, and tissue dysfunction), 
its description in cellular terms had to await the birth of histochemistry. The inven-
tion of specific stains by Paul Ehrlich and others during the last decades of the 19th 
century, helped to designate the leucocytes as the essential cellular elements of the 
inflammatory process. With the development of clinical chemistry and biochemistry 
more and more molecular markers of the inflammatory process became avail-
able. Besides the increase of leucocytes in the blood and in tissues, the rate of red 
cell sedimentation, followed by that of the so-called acute phase glycoproteins 
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(haptoglobine, α 
1 
 acid glycoprotein or orosomucoid) and of C-reactive protein were 

routinely determined and considered as the hallmarks of the inflammatory process. 
This same period was dominated by the birth and expansion of humoral immunity, 
dominated by the french and german schools (Pasteur, Roux, Behring and others). 
Refinement of methodology, with the routine practice of passive hemagglutination 
and the ELISA-methodology, an important progress could be achieved, enabling 
the detection and quantification of low concentrations of nonprecipitating antibod-
ies, cytokines and other molecular players of the inflammatory process. Based also 
on refined methods of immunohistochemistry it became difficult to maintain the 
strict distinction between degenerative and inflammatory processes, examplified by 
the joint diseases. Arthrosis considered as a degenerative disease of articular tissue 
was more adequately designated osteoarthritis because of the inevitable develop-
ment of the inflammatory process (Trentham 1984 for review). The possibility to 
create experimentally such articular pathology by immunizing with the major col-
lagen component, collagen type II, of articular cartilage further blurred the frontiers 
between degenerative, inflammatory or (auto)immune mediated diseases. These 
conceptual and methodological advances prepared the way for the birth and expan-
sion of cellular immunity, which dominated the field over the second half of the 
20th century. This slowly emerging and finally dominating methodological and 
conceptual advances reached also cardiovascular pathology. During the last dec-
ades of the 20th century several teams entered the field of cardiovascular pathology, 
and introduced the above summarized methodology. These studies which will be 
described in this review revealed progressively the immuno-inflammatory nature 
of the athero-arteriosclerotic process also. Further progress came from the rapidly 
advancing field of cellular signaling. The study of receptors, agonists, antagonists, 
message transmission pathways considerably improved the understanding of the 
details of cellular-molecular immuno-inflammatory processes underlying such 
chronic, degenerative diseases as cardiovascular pathology. As however the lipid-
based concepts continued to dominate the field of atherogenesis, the final junction 
between these different avenues of approach for the understanding of this family of 
diseases was difficult to achieve. Of great help for openminded scientists and physi-
cians was the relatively rapid increase of the senior population over the last decades. 
Thanks to progress made in preventive and curative cardiovascular medicine, the 
fatal outcomes of cardiovascular pathologies were progressively postponed to later 
years of life, still remaining however the dominant cause of fatalities. This fact 
is certainly the motivation for experimental gerontologists to reassess the diverse 
contributing factors playing crucial roles in the development and progression of 
cardiovascular pathologies. Inflammation in particular was more recently recog-
nized as an important factor in most age-related pathologies. A number of studies 
over the last decades clearly showed the importance of the inflammatory process as 
an omnipresent player in geriatric pathology. Cardiovascular pathology is no excep-
tion. Our laboratory actively participated in this progressive evolution of our con-
cepts elaborated for the understanding of vascular diseases. We shall briefly review 
the successive stages of the above mentioned shifts of emphasis in the description 
and conceptualisation of vascular pathology, essentially its importance as an age 
related disease.  
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       1.2      Arteriosclerosis and Atheromatosis  

   Progressive hardening, rigidification of the vascular wall, termed later arteriosclerosis, 
was recognized by early pathologists (Robert L. 1996, 1999a for review). These obser-
vations were based on autopsies and could not be easily generalized. The importance 
of nutritional factors in general and especially of cholesterol started to gain accept-
ance with the demonstration by Anitchkoff in the early decades of the 20th century 
of the induction of lipid infiltration and plaque formation in rabbits kept for several 
weeks on a cholesterol-enriched diet (Olsson 1987 for review). This model became 
the most widespread in laboratories of experimental medicine and formed the basis 
of the lipid-hypothesis of atherogenesis. The development of atherosclerotic plaques, 
as observed in human blood vessels at autopsy, could therefore be attributed to nutri-
tional factors, cholesterol and saturated fat in particular. As however calcified plaques 
and lipid infiltration were regularly associated in human blood vessels, the term pro-
posed by the german physician, Marchand: athero-arteriosclerosis was progressively 
adopted as more adequate to describe the human disease. The vast majority of sci-
entists engaged in this field adopted the lipid hypothesis further comforted by the 
characterisation of lipoprotein-classes and during the second half of the 20th century 
by the description of the LDL-recognising receptor by Brown and Goldstein (Olsson 
1987 for review). Some laboratories did however continue to explore avenues related 
to the immuno-inflammatory hypothesis.  

         2      Role of (Auto)Immune Factors  

   As mentioned in the introductory, historical section, immune-inflammatory factors 
were discovered as of crucial importance in some chronic diseases and especially 
in rhumatoid arthritis and osteoarthritis. Rapid progress in the field of extracellular 
matrix biology, in the characterisation of collagen(s), major components of connec-
tive tissues (more correctly of extracellular matrix, ECM) led to the identification 
of collagen type II as a major component of articular cartilage (Comper 1996 for 
review). Immunization with purified collagen type II was shown to induce osteoar-
thritic pathology. Autoantibodies to collagen type II were demonstrated in patient’s 
sera (Trentham 1984 for review). Simultaneously several teams showed that immuni-
zation with arterial extracts could induce in rabbits athero-arteriosclerotic lesions.  

     2.1      Induction of Athero-Arteriosclerotic Lesions 
by Immunization with Arterial Homogenates  

   Apparently the first description of the production of athero-arteriosclerotic 
lesions in rabbits with homologous aorta-extracts was produced by a hungarian 
team (Szigeti I. et al. 1960, 1968). These results were obtained without excess 
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cholesterol administration. The severity of the lesions could be increased by pro-
longed protocols of immunization. The principally involved antigenic fraction was 
considered by these authors present in the saline-soluble fraction containing among 
other components a fraction with β-globulin mobility. Delayed-type tissue-allergic 
reactions could also be demonstrated. Similar lesions were created in rats by injec-
tion of rabbit sera immunized with aorta extracts. Total plasma lipids were shown 
to increase during immunization, similar to that found in cholesterol-fed animals 
(Szigeti I. et al. 1968 for review). Soon after these reports the french team of Scebat 
and Renais reported the production of immuno-atherogenic reactions in rabbits by 
immunization first with heterologous (rat) aorta extracts and later with homologous 
aorta extracts (Renais et al. 1968; Scebat et al. 1966, 1967;). In between White and 
Grollman (1964) produced periarteritis nodosa in rats also by immunization. The 
team of C.R.Minick at the New York Hospital (1966) also produced immuno-arte-
riosclerotic lesions by combining « allergic injury » and lipid-rich diet. – Altogether 
these experiments illustrated the possibility of an immune-mechanism underlying 
the atherogenetic process. As however all the above cited experiments were car-
ried out with aorta-homogenates, the principal antigen(s) involved in this immune-
atherogenic process remained to be determined. Some of the authors opted for the 
β-lipoproteins (LDL) of the blood-serum, present in the soluble aorta-extracts also 
as the principal atherogenic antigen.The hungarian team of S. Gero et al. (1959, 
1960, 1967) induced lesions with anti-β-lipoprotein antibodies and proposed a 
variant of the immuno-atherogenic process based on these observations. The sym-
posium organized by the French Atherosclerosis Society in 1964 in Bordeaux ena-
bled the confrontation of these different views on the immune-factors involved in 
the atherogenic process. Our experiments, detailed in the next section, were also 
first presented at this meeting, proposing elastin as the main culprit as sensitising 
antigen and as the target of the immune-pathological process underlying athero-
arteriosclerosis (Robert L. et al. 1967, 1968, 1970b, Robert A.M. et al. 1971).  

       2.2      Immune-Atherosclerosis Obtained with Purified 
Aorta-Extracts  

   The most important step to follow up on the above summarized results showing that 
active and passive immunization with crude aorta extracts could induce vascular 
lesions similar to human athero-arteriosclerosis was the reproduction of such experi-
ments with purified aorta extracts. These experiments were performed in our 
laboratory and will be summarized in this section. Human and porcine aorta extracts 
were prepared, using lesion-free portions by a fractional extraction procedure used 
previously for other ECM-rich tissues as cornea and skin (Robert L.Parlebas, 1965). 
The soluble macromolecules were extracted with a 1 M Ca Cl 

2 
 solution buffered to 

pH 8.0 with Tris/citrate (termed CTC-extract). The insoluble stroma remaining after 
several extractions in ice-cold buffer with the Ultra-turrax, was suspended in 2.7% 
TCA and heated to 90°C for 30 minutes to hydrolyze selectively insoluble collagen. 
The remaining stroma contains essentially the elastic fibers. Adhering microfibrillar 
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fraction (structural glycoproteins) were extracted by tourmixing the washed residue 
(0.9% Na Cl) in 8 M urea in presence of 0.1% mercaptoethanol. After centrifugation 
and washing in sterile 0.9% Na Cl the final residue analyzed as pure, insoluble elas-
tin. Elastin was shown to be selectively hydrolyzed to large peptides when sus-
pended in 1 M KOH in 80% (v/v) aqueous ethanol at 37°C for about 30 minutes 
(Robert L.Poullain, 1963). This large peptide solution (average MW about 70 kDa) 
was used for immunization. The other CTC, TCA and urea extracts were dialyzed 
and lyophylized. All these operations were carried out in sterile conditions, in the 
cold, on tissues delivered in dry ice. Rabbits (New Zealand-white or Fauve de Bour-
gogne), kept on rabbit-chow and fresh vegetables were immunized with 1–5 mg 
proteins in complete Freund’s adjuvant, two injections weekly as described (Robert 
A.M. et al. 1971). After 4 weeks on this schedule the animals were left for 4 more 
weeks and received a final injection (i.v. or i.p.without Freund’s adjuvant) with 
aluminium hydroxide as adjuvant. This was followed by testing animals for delayed 
hypersensitivity directly or using guinea pigs sensitized to the same antigens, as 
described (Robert A.M. et al. 1971, Jacob et al. 1984). Control animals received 
saline injections with or without Freund’s complete adjuvant. Some rabbits received 
a cholesterol-enriched diet (1 g cholesterol in 7.5 ml peanut-oil homogenized with 
bran and barley). Titration of immune-sera was carried out with passive hemaggluti-
nation using glutaraldehyde-treated sheep erythrocytes. The antigens were fixed on 
treated erythrocytes using either a water-soluble carbodiimide or diazotated benzi-
dine (Bing et al. 1967). The histological, histochemical and electronmicroscopic 
procedures were described (Robert A.M. et al. 1971). The CTC-extract contained a 
number of saline-soluble proteins and glycoproteins as shown by immune-electro-
phoresis and immune-diffusion according to Ouchterlony. The urea-extract con-
tained several glycoproteins characterized by their size and glycan composition 
(Robert L. et al. 1967b, Robert A.M. et al. 1971). The κ-elastin solution had the typi-
cal amino-acid composition of purified elastin (Robert, Poullain, 1963). Purified 
elastin before and after urea extraction was also examined by electron microscopy 
(Robert B. et al. 1971) in order to demonstrate that urea-extraction largely elimi-
nated the microfibrillar components. The amino-acid and glycan composition of the 
aorta fractions used as sensitizing antigens was described (Robert A.M. et al. 1971). 
As shown by immune-diffusion, antisera to the CTC-extract showed strong precipi-
tation lines to several soluble macromolecules, not further characterized. They also 
showed faint precipitation lines to the urea- and κ-elastin fractions. Antisera to the 
urea-extract showed one strong and several faint precipitation-lines to the urea 
extract and one to three faint precipitation lines to κ-elastin. Anti-κ-elastin antisera 
also gave faint precipitation lines to the κ-elastin solution as well as to 2 to 3 faint 
lines to the urea extract. This precipitation lines, observed with antiCTC and anti-
urea extract antibodies to the κ-elastin solution can be considered as a first indica-
tion of the presence of elastin peptides in the soluble fractions of human and porcine 
aortas. Up to this time elastin was considered as strictly insoluble. As shown by the 
passive hemagglutination tests, peak values of titrable antibodies were obtained at 
about 100 days after immunization, both to the urea extract and to κ-elastin. The tit-
ers fall than rapidely, suggesting an absorbtion of antibodies by the proper tissue-
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antigens of the animals. Relatively high titers were obtained, about 10 -5  for the urea 
extract and about 5x10 -3  to κ-elastin (lowest hemagglutinating dilution of antisera). 
κ-elastin from human aorta gave higher titers than from porcine aorta. Cholesterol-
fed animals showed low titers to all antigens tested (well below 10 -2 ). Delayed 
hypersensitivity reactions were regularly observed on the immunized rabbits as well 
as on guinea pigs sensitized to the same antigens. This can be taken as an indication 
that besides the humoral immune-reaction, immunizations with aorta-extracts did 
trigger also cellular immune-reactions. Total serum cholesterol did increase signifi-
cantly 1-month after the onset of immunization (from 0,36±0,07 to 0,88±0,01 g/l 
in elastin immunized animals), and returned later to preimmunization values. 
β-lipoprotein (LDL) determined according to Burstein and Samaille (1959) did 
increase continuously with time in immunized as well as in control rabbit sera. This 
selective increase of circulating LDL might be attributed, besides immunization, to 
the diet and the aging of the animals. There were however significant differences 
between animals immunized with different aorta extracts. The strongest increase of 
LDL as compared to the starting levels (before immunization), were found in ani-
mals immunized with the urea-extracts (137–200% increase) followed by those 
immunized with elastin (without adjuvant!), 145% increase on the average. Immu-
nization with elastin in complete adjuvant produced a less important increase (about 
70%) compared to similar increase in nonimmunized control animals. The macro-
scopic and microscopic observations of the aorta of immunized rabbits revealed 
conspicuous modifications (Figs. 1–3). The most important modifications were 
observed on the aortas of animals immunized with pure elastin : lipidic-sclerous 
infiltrations covering most of the intimal surface, from the origin of aorta to the renal 
arteries, most obviously on the cross and around the ostia. Calcified plaques imitat-
ing egg-shell apparence, sometimes with aneurismal dilations were observed (Fig. 1). 
Migrating smooth muscle cells (SMC) were observed in the intima, accompanied by 
fragmentation of elastic lamellae (Figs. 2–4). Ultrastructural and histochemical 
studies confirmed the strong calcification of the fragmented elastic fibers. At some 
places necrotic modifications of the media were observed with SMC-s undergoing 
lysis. In all cases of immune-lesions a striking difference was observed with lesions 
produced by the high cholesterol diet. The cholesterol-induced lesions were similar 
to those described by a number of authors in other cholesterol-fed rabbits (Table 1). 
Differences were observed between the two strains of rabbits used. White rabbits 
were more resistent to immune-induced lesions than the fauve de Bourgogne strain 
as observed after several 1-month cycles of immunization followed by 1-month 
without. In our first experiments (Robert A.M. et al. 1971) about 40% of all the 
immunized animals presented the above summarized lesions with 25% presenting 
wide-spread macroscopic and microscopic lesions as those shown on Figs. 1–3. 
There were however important differences in the frequency and severity of lesions 
according to the antigen used (Table 1). Immunization with the soluble extract 
(CTC-extract) gave only infrequent lesions (1 out of 7 animals immunized) and only 
at the ultrastructural level. Immunization with elastin produced lesions both at the 
microscopic and macroscopic levels in more than 70% of the immunized animals. 
Immunization with the urea extract gave macroscopically detectable lesions, only in 
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about 15% of animals, and microscopic lesions in about half of the immunized ani-
mals. These results suggested the presence of the most pathogenic antigen, supposed 
to be elastin, in all extracts, but in highly variable proportions: lowest concentrations 
in the CTC extract, somewhat higher concentration in the urea extract, and the high-
est in the purified elastin fraction. Further studies largely confirmed these observa-
tions (Jacob et al. 1984). The most severe microscopic and macroscopic lesions 
were seen in elastin immunized animals, followed by the urea extract. Such lesions 
included vacuolized, calcified endothelial cells (Fig. 2) above strongly dislocated, 
lyzed and calcified elastin lamellae. Table 1 shows a comparison of most frequent 
lesions seen in the aorta of animals immunized with the different aorta extracts. One 
of the crucial observations was the inverse relationship between the three aorta 
extracts used for immunization as far as the induction of precipitating antibodies and 
lesion-induction is concerned. The soluble (CTC) extract induced high titers of pre-
cipitating antibodies and only infrequent and relatively mild lesions. Purified elastin, 
wether used in its insoluble, fibrous form or as soluble, κ-elastin, did induce regu-
larly the most severe lesions, but gave only low titer hemagglutinating or precipitat-
ing antibodies, the urea extract occupying an intermediary position. The low titer of 
circulating antibodies could best be explained by their adsorption on elastin fibers 
and was confirmed by the fixation of immunofluorescent anti-rabbit-IgG antibodies 

Fig. 1  Aorta of a rabbit 
immunized with κ-elastin 
from human aorta. Isolated 
or confluent fibrous calci-
fied lesions covering most 
of the intimal surface. 
(From Robert AM. et al. 
1971)

Fig. 2 Intimal portion 
of rabbit aorta immunized 
to urea extract of porcine 
aorta. Electron microscopy, 
3,200x. Notice the granular 
infiltrate of strongly modi-
fied SMC-s, fragmented, 
lyzed and calcified elastic 
lamellae and vacuolized and 
calcified endothelial cells. 
(From Robert AM. et al. 
1971)
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on elastic fibers (Jacob et al. 1984; Robert L. et al. 1967, 1968, 1970b). The pre-
dominant localization of the lesions at the level of elastic fibers was certainly the 
most conspicuous observation: fragmentation and calcification. Degenerescent 
modifications of endothelial cells and SMC-s was also a constant observation. Extra-

Fig. 3 Modified, fragmented, lyzed and calcified elastic lamellae (LE) in the thoracic aorta of 
rabbits immunized with human κ-elastin. Fibrillar deposits (arrows) and strong perielastic calci-
fication (double arrow; Electron microscopy by Grosgogeat Y. in collaboration with Robert A.M. 
et al. 1971)

Fig. 4 Fragmentation of elastic lamellae in aortas of rabbits immunized with κ-elastin (right, K) 
as compared to a control aorta (left, C). E = elastic fibers. (From Jacob et al. 1984)
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cellular calcium-containing crystals could also be observed occasionnally. The mac-
roscopic and microscopic-ultrastructural lesions were quite similar to those observed 
in human athero-arteriosclerosis, but quite distinct from those produced by the cho-
lesterol-rich diet. Although a more or less important and transitory increase in β-
lipoproteins (LDL) was observed in immunized animals, we also did observe 
unexpectedly an increase of antielastin antibody titer in the sera of cholesterol-fed 
animals, although the titers remained relatively low (≤10 -2 ). Further experiments on 
the elastin receptor (ER) of vascular cells confirmed the role of elastin peptides in 
the lipid-induced lesions also ( See  later). Some years later these experiments were 
repeated in our laboratory, using only κ-elastin as the sensitising antigen (Jacob 
et al. 1984). These experiments will now be described.  

Table 1 Macroscopic, microscopic and ultrastructural lesions of the aortas of rabbits immunised 
with aorta extracts

Antigen injected n animals with 
visible lesions

Nature and intensity of lesions

Macroscopic Microscopic Ultrastructural

Controls NaCl 
0,9% + 
adjuvant

0 out of 5 No lesions No fibrosis 
Normal elastic 
lamellae

No lesions

CTC extract 1 out of 7 No Calcified 
lesions 
Nor plaques

No Fibrosis 
of intima or 
media Elastic 
lamellae intact

No necrotic 
SMC-s 
No intimal 
hyperplasia

Urea extract 8 out of 12 Diffuse lesions 
covering Part 
of the intimal 
surface

Necrotic plaques 
in media 
Fibrosis 
Calcified 
elastic 
lamellae

Fibrotic infiltra-
tion of the 
intima Elastic 
lamellae frag-
mented, fibril-
lar, calcified 
Degeneres-
cence of cells 
in media

κ—elastin 5 out of 7 Heavy lesions 
covering the 
whole  intimal 
surface 

Strong 
calcification

Fibrosis of 
intima; elastic 
lamellae lysed, 
fibrillated, 
calcified; 
medial necro-
sis; SMC-s 
disoriented

Medial fibrosis 
Calcified 
deposits in 
elastic 
lamellae and 
collagen fibers

Cholesterol 
feeding

2 out of 4 Soft lipidic 
lesions at the 
cross 

No calcification

Lipidic infiltrate 
of intima Foam 
cells, fibrosis

No calcification 
Endothelial 
cells with lipid 
infiltration; 
intercellular 
fibrosis 

Rupture of elastic 
lamellae

(modified from Robert A.M. et al. 1971).
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      2.3      Extension of Elastin-Immune-Pathology to Pulmonary Ves-
sels, Metabolic Effects  

   The above described experiments were repeated using this time only κ-elastin of high 
molecular weight purified by gel filtration (≥ 70 kDa, designated κ 

1
 —elastin) from 

bovine ligamentum nuchae-elastin as the immunizing antigen with New Zealand 
white rabbits, carried out essentially as in the first experiments (for methodological 
details  See  the original publication, Jacob et al. 1984). This time however besides 
the aorta, detailed investigations were carried out on the small arteries in the lung 
parenchyma also. The macroscopic, microscopic and ultrastructural investigations 
were completed by experiments on the biosynthetic capacity of aorta-wall explant 
cultures using  14 C-lysine and  14 C-glucosamine incorporation. Another innovation as 
described in more detail in the next section was the determination of elastase-type 
endopeptidase activity in aorta extracts from control and immunized animals. The 
presence of such activity in human aorta extracts was previously described in our 
laboratory (Hornebeck et al. 1975b; B. Robert et al. 1974b;) as will be detailed 
below. This activity could explain the presence of soluble elastin-peptides in the 
buffer-soluble aorta extracts, suspected in our first experiments. The biological 
properties of elastin peptides started to be studied in several laboratories and will 

Fig. 5 Histological 
appearance of rabbit lung 
arterioles in control (a) and 
in κ-elastin immunized (b) 
rabbits. (Modified from 
Jacob et al. 1984)
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be described in the following sections. These relatively recent results extended the 
horizon of our investigations and triggered a more complete search for pathological 
effects produced by elastin immunization as well as by elastin peptides. This time 
all rabbits immunized to κ-elastin developed typical vascular lesions at the macro-
scopic and microscopic level similar to those seen in our first experiments described 
in the previous seection. The histological study of the lungs of the immunized rab-
bits revealed the presence of granulomatous lesions, absent in the control animals 
(Figs. 5, 6). The most conspicuous modifications were however the lysis of elastic 
laminae in the large vessels as well as in the walls of small lung-vessels (Figs. 4, 5). 
This time the loss of continuity of elastic fibers was quantitatively assessed by 
computerized image-analysis. A pronounced fragmentation of elastin fibers could 
be demonstrated as shown on Figure 4. No such fragmenhtation was seen in ves-
sels of control animals injected only with complete Freund’s adjuvant or with BSA 
in complete Freund’s adjuvant. A curious observation was the more pronounced 
fragmentation of the elastic lamellae in the outer segment of the media than in its 
inner segment, near the intima. The SMC-s of elastin-immunized animals showed 
striking morphological changes and random orientation, comparable to those seen 
in our first experiment (Figs. 2, 3). Their number was also decreased. The aver-
age length of elastic lamellae were about 13-times shorter in elastin-immunized 
aortas as compared to controls receiving adjuvant injections with or without BSA. 

Fig. 6  Granulomatous 
lesion with vasculitis in the 
lungs of κ-elastin immu-
nized rabbit. (Unpublished 
results from Chantal 
Lafuma in the author’s 
laboratory)
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This proportion when calculated separately for the internal part of the media gave 
a ratio of only four times shorter elastin segments for the inner part of the media 
and a much more pronounced fragmentation, 40-times as compared to controls in 
the outer half of the media. In the lungs of the elastin-immunized animals intense 
granulomatous lesions were seen as well as a strong elastolysis in the walls of small 
lung-vessels (Figs. 5, 6.). The granulomatous lesions contained giant cells and eosi-
nophil leucocytes. On the ultrastructural level the findings were similar to those 
described in our first experiments (Robert A.M. et al. 1971). Electron microscopy 
confirmed the alterations of SMC-s and elastic lamellae which were fragmented, 
disorganized with an increased density of the microfibrillar components (Fig. 3). 
Endothelial cells were enlarged, vacuolated and calcifyed as in the first experiments 
(Fig. 2). One of the striking observations was the loss of continuity of elastic fibers 
or close contact between SMC-s and elastic lamellae, (Fig. 7) clearly seen in control 
aortas. The increased titer of antielastin antibodies in the κ-elastin immunized rab-
bits could be confirmed by passive hemagglutination, the titers were however lower 
than in the first experiments (10 -2 –10 -3 ). The adsorption of these antielastin antibod-
ies to purifyed, micronized elastin fibers could be confirmed by immuno-peroxidase 
staining using sheep anti-rabbit Fb antibodies. No such reaction was seen with sera 
of animals immunized to BSA in Freund’s complete adjuvant. The same reaction, 

Fig. 7  Strong adhesion 
of a fibroblast to a purified 
and micronized elastic fibril 
under the electron micro-
scope. No such adhesion 
with SMC-s from elastin-
immunized animals was 
observed (modified from 
Perdomo et al. 1994)
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adsorbed autologous IgG on aorta elastic fibers could be demonstrated in the κ-
elastin immunized rabbits also.  

                          Figure 8 shows the results of radioactive lysine and glucosamine incorporation 
by aorta explant cultures, results beeing expressed as cpm per mg DNA. Incorpo-
ration was strongly decreased in the aorta explants from the κ-elastin immunized 
animals as compared to control animals injected with the complete adjuvant alone. 
Another important observation was the increase of elastase-type endopeptidase 
activity of the aorta extracts of κ-elastin immunized animals (Table 2). N-succinyl-
ala 

3
 -PNA was used as the chromogenic substrate, relatively specific for elastase-

type endopeptidases (Bieth, 1978). These experiments largely confirmed and 
extended our first observations (Robert A.M. et al. 1971) on the pathological modi-
fications of large and small elastic vessels in animals immunized to human, porcine 
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Table 2 Elastase-type endopeptidase activity of soluble extracts of aortas from rabbits immu-
nized or not with κ-elastin

Nature of sera Activity Significance

Control 130±23.4  

Immunized 434±111.2 p<0.01

The endopeptidase activity of sera was determined with N-suc-ala
3
-PNa and expressed as nano-

grams of porcine pancreatic elastase equivalents per mg of DNA. The figures of the table are 
averages of 5–7 animals. The statistical significance of the results was determined according to the 
Mann and Whitney distribution free test (Modified from Jacob et al. 1984).
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Fig. 9  Increase of elastase-
type endopeptidase activity 
in fibroblast cultures in pres-
ence of increasing concen-
trations of κ-elastin (0,10 
ad 100 μg/ml). Addition of 
melibiose, an ER antagonist 
inhibits this upregulation 
of elastase activity. (Modi-
fied from Archilla Marcos, 
Robert L. 1993)

or bovine elastin-peptides. All treated animals showed characteristic macroscopic, 
microscopic and ultrastructural modifications with conspicuous fragmentation of 
elastic lamellae, modifications of endothelial cells and SMC-s and also strong cal-
cification. Further experiments were carried out in order to specify the individual 
aspects of these moditications at the cellular and molecular levels.  

        3      Cellular-Molecular Mechanisms Involved 
in the Immune-Inflammatory Vascular Pathology  

   The above described experiments confirmed the possibility of the induction in rab-
bits of a macro and microvascular pathology reminiscent of arterio-atherosclerosis 
by immunization with elastin. Peptides derived from highly purifIed fibrous elastin, 
κ-elastin was shown to be the most efficient (if not the only) inducing antigen. The 
humoral immune reaction could be confirmed by the passive hemagglutination test 
and by immunodiffusion. There was however an inverse relationship between anti-
body titers and efficiency of lesion-induction when consecutive aorta extracts were 
used.The ultrastructural studies revealed severe modifications of cells and ECM-
components, mainly of elastin. Among the most conspicuous modifications was 
intra- and extracellular calcification, obvious even at macroscopic examination of 
longitudinally opened aortas of elastin-immunized rabbits. It remained to elucidate 
the underlying cellular and molecular mechanisms. Some of these experiments will 
now be described.  

     3.1      Degradation of Elastic Fibers  

   One of the most conspicuous modifications produced by immunization with elastin 
was the pronounced degradation of elastic fibers of the large and small blood vessels. 
It could be shown that this is at least partially the result of an autoamplifying vicious 
circle mediated by the action of elastin peptides on the ER. As shown on Fig. 9 the 
addition of elastin peptides at concentrations shown to be present in the blood serum 
( See  later) produced a pronounced upregulation of the production of elastase-type 
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endopeptidases (Robert L. et al. 1986) essentially of MMP-2 and MMP-9 (Archilla-
Marcos, Robert L.1993). This increase of elastase production could be inhibited by 
lactose and melibiose, antagonists of the ER. It could also be shown during these 
studies that aging, both chronological and in vitro (increasing passage number) 
produced an increased expression of elastase-type endopeptidases (Fig. 10). These 
experiments, repeated over the years, suggested a mechanism for the progressive 
degradation of vascular and pulmonary elastic fibers. Using an ELISA-procedure, 
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the concentration of circulating elastin peptides could be determined in a large 
number of normal and pathological human sera (Bizbiz et al. 1997; Fülöp et al. 
1989a). Their level followed a Gaussian curve with an average concentration in the 
μM range, largely exceeding the K 

D 
 value of the ER, shown to be in the nanomolar 

range (Fülöp et al. 1989b; Robert L. et al. 1989). In elastin-immunized animals these 
processes appear to be exagerated by the action of soluble immune complexes on 
monocytes and lymphocytes able to trigger an increased release of elastin degrading 
endopeptidases. The presence of antielastin antibodies in all human sera tested sug-
gests a similar mechanism in human also (Fülöp et al. 1989a, b). The selective and 
irreversible adsorption of elastases on the surface of elastic fibers largely limits the 
possibility to counteract this process by elastase inhibitors (Robert B. et al. 1974a).  

              3.2      Calcification of Elastin  

   The intense calcification of elastin fibers in the immunized animals, seen mac-
roscopically and on the electron-microscopic preparations, could be confirmed 
by specific histochemical methods (Van Kossa staining) and direct chemical 
determinations. A partial explanation of this strong affinity of elastin for cal-
cium came from physicochemical studies of Dan Urry (1980) showing that the 
β-turns of elastin represent high affinity fixation sites for calcium. Earlier studies 
by Max Burger (1947) and Lansing (1959) revealed the progressive Ca-fixation 
in elastic blood vessels in a diffuse fashion, and still present in elastin purified 
by heating to 100°C in 0,1 N NaOH, the standard procedure for purifying elastin 
(Robert L. et al. 1985 for review). Moreover it was shown that calcium fixation on 
elastin strongly potentiates its affinity for lipids (determined by using  14 C-choles-
terol (Jacob et al. 1983; Hornebeck, Partridge, 1975a) and vice versa, lipid fixation 
potentiates Ca-fixation. As β-lipoproteins (LDL) increased during the first phase 
of elastin-immunization, this also could contribute to Ca-retention in elastin. We 
have to mention here the demonstration by the team of J.L.Beaumont the role of 
anti-LDL antibodies in the development of atherosclerosis (Beaumont 1965, 1969, 
1970, Beaumont et al. 1965, Beaumont, Beaumont, 1968). This team demonstrated 
also the importance of anti-heparin antibodies in atherogenesis (Beaumont, Lemort 
1974, Buxtorf et al. 1981, Lorenzelli-Edouard et al. 1980). The work of Bihari-
Varga and Gero pointed also on the potential role of LDL and anti-LDL antibod-
ies on the atherogenic process (1966, 1984, 1986). This team pionieered also the 
recognition of the acid polysaccharides (glycosaminoglycans, proteoglycans) of 
the vascular wall in the retention of lipoproteins (Bihari-Varga, Gero, 1966). These 
two, essentially postsynthetic processes, calcification, lipid fixation confirmed by 
direct analysis of lipid classes in purifyed human aorta elastin by Claire et al. 
(1976) largely explained the progressive loss of elasticity and increased suscepti-
bility to degradation of vascular elastic fibers.  
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       3.3      Role of the Elastin Receptor  

   The demonstration of an elastin-recognising cell-membrane receptor started in 
our laboratory with the observations on the capacity of cells to strongly adhere to 
micronized elastin fibrils, as shown by time lapse video-microscopy (Hornebeck 
et al. 1986). Addition of elastin peptides to cells (fibroblasts and vascular SMC-s) 
was supposed to compete with fibrous elastin and inhibit elastin fiber fixation on 
cells. The opposite effect was observed, low concentrations of κ-elastin strongly 
increased the speed of adherence of cells to elastic fibers (Groult et al. 1998). This 
effect could be attributed to the induced synthesis of a membrane glycoprotein of 
120 kDa termed elastonectin (Hornebeck et al. 1986). These initial experiments 
were followed by a series of other experiments aimed to the exploration of the 
physio-pathological roles of the elastin-receptor. Using immune-histochemical 
procedures, the presence of the elastin-receptor could be demonstrated on vascular 
cells, endothelial cells, SMC-s, fibroblasts as well as on WBC-s, monocytes, PMN-
s and lymphocytes (Faury et al. 1995, 1998a; Jacob et al. 1987a, Perdomo et al. 
1994, Péterszegi et al. 1997c). Most importantly, the elastin-receptor could be dem-
onstrated on monocytes and lymphocytes inside the human atherosclerotic plaques 
obtained by endarterectomy (Péterszegi et al. 1997a). A variety of tumor cells did 
also exhibit the ER (Timar et al. 1995). All these cells, mobile and sessile, found 
in the vascular wall might therefore contribute to the ER-mediated upregulation of 
elastolytic protease production. It could be shown also during a long collaboration 
with T.Fülöp and his team, that the activation of the ER contributes by still other 
mechanisms to the progression of vascular lesions. One of these mechanisms is the 
elastin-peptide triggered release of superoxide (Fülöp et al. 1989b) suggesting a free 
radical (ROS-mediated) contribution to the vascular-cellular lesions. Another sig-
nificant observation was the demonstration of accelerated oxidation of LDL by acti-
vation of the ER (Fülöp et al. 2005). It also could be shown that aging accelerated 
these harmful effects mediated by the ER. In cells (monocytes, PMN-s) obtained 
from old individuals, the normal transmission pathway of ER, as shown to function 
on young cells (Fülöp et al. 1990a; Varga et al. 1988, 1989) did no more function as 
shown by the inefficiency of pertussis toxin to block the transmission pathway medi-
ated by a Gi protein in young cells. Free radical release was however maintained 
and even amplified. These observations suggested an uncoupling of ER in old cells 
from its normal transmission pathway. This uncoupling results in the exacerbation 
of the harmful effects mediated by the receptor and loss of its physiologically useful 
functions, as NO-mediated vasodilation (Faury et al. 1997, Fülöp et al. 1992) and 
inhibition of cholesterol synthesys by monocytes (Varga et al. 1997). Most of these 
experiments as well as others pertaining to the role of ER in the malignant process 
were reviewed recently (Labat-Robert J., Robert L. 2007). ER-mediated mecha-
nisms play an important role in the inflammatory process also, which accompanies 
the immune-induced pathologies. Elastin peptides were shown to be chemotactic 
to WBC-s, monocytes especially (Antonicelli et al. 2007 for review). Activation of 
the ER on PMN-s and monocytes triggers the release of proinflammatory enzymes 
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and cytokines (Antonicelli et al. 2007 for a review). ER-triggered reactions include 
endothelial iNOS upregulation and NO  -dependent vasodilation (Faury et al. 1998a, 
b). As mentioned above, ER-NOS coupling decreases with age with a steady age-
dependent loss of vasodilation by elastin peptides (Faury et al. 1997). Besides the 
ER-triggered proinflammatory reactions, soluble immune-complexes formed by the 
reaction of antielastin antibodies and circulating elastin peptides might well con-
tribute also to the harmful effects produced by immunization with elastin. These 
rapidly summarized experiments substantiated the claim for an important pathoge-
netic role of the elastin–antielastin system in the genesis of athero-arteriosclerosis 
(Fülöp et al. 2001; Robert L. 1999a, b).  

         4      Extension to Human Pathology  

   The first experiments on immune-atherosclerosis were performed on human sera 
with the demonstration of antielastin antibodies present in all sera tested, using the 
passive hemagglutination method (Stein et al. 1965). Although the titers were rela-
tively low (from 1/2 dilution to 1/512 in these first experiments) it could be shown 
that sera from 68 atherosclerotic persons were in the lower range (1/2–1/32 dilution 
still giving agglutination) attributed to the enhanced adsorption of antielastin anti-
bodies on degrading elastin fibers offering a larger surface for antigen–antibody 
complex formation. Such complexes were demonstrated on fibrous elastin (Jacob 
et al. 1984, 1987b). The anti-elastin antibodies appeared at about 20 years and dis-
appeared after 80 years (Stein et al. 1965). Surface area measurements on purified 
elastin using radioactive Krypton (Robert L. et al. 1970a, 1971) revealed a relatively 
large specific surface of elastin fibers, favoring interaction (adsorption) with soluble 
molecules. These results were further confirmed by microcalorimetric adsorption 
studies (Robert L. et al. 1971). Later experiments (Fülöp et al. 1989a) confirmed the 
presence of antielastin antibodies, by direct titration of IgG and IgM type antibodies, 
in a larger number (265) of human sera, normal and pathological, mainly athero-arte-
riosclerosis of the legs, ischemic heart disease, stroke, diabetes, hyperlipidemia type 
II/b and IV and hypertension. No obvious correlation was found with age. IgG-type 
antielastin antibodies were elevated in obliterative arteriosclerosis of the legs and 
ischemic heart disease. No such modifications were seen in the IgM-type antibodies. 
Both types of antibodies were however decreased in type IV hyperlipidemia. Figure 
11 shows the age-dependent evolution of the above summarized determinations of 
antielastin antibodies in human sera. More details on the specificity and sensitivity of 
the ELISA method used can be found in the original publication (Fülöp et al. 1989a). 
Circulating elastin peptides were also determined by an ELISA-procedure on about 
1,500 human sera (Bizbiz et al. 1997; Fülöp et al. 1990b). These last experiments 
performed in collaboration with epidemiologists on a study on the role of vascular 
aging on brain aging (the EVA-study, Bizbiz et al. 1996) confirmed also the cor-
relation between carotid artery wall thickness and plaques with the elastin-elastase 
parameters. Elastase-type endopeptidases were also demonstrated in a large number 



of human sera (Table 3, Hornebeck et al. 1983, Bihari-Varga et al. 1984, Bizbiz et al. 
1996). Monocyte-macrophage elastase-type activity was shown to be upregulated 
by cholesterol and by proinflammatory cytokines (Rouis et al. 1990). It should be 
mentioned however that after screening a large number of synthetic elastin peptides 
by monoclonal and polyclonal antibodies, it could be shown that according to their 
structure they presented a variable reactivity to antibodies used for their detection 
and quantification (Wei et al. 1993). Further confirmation of the role of the elastin-
immune system and of the cenral importance of ER-mediated processes came from 
the above mentioned demonstration of ER-exhibiting mononuclear cells in freshly 
excised human endarterectomy samples (Péterszegi et al. 1997a). It also could be 
shown that human helper (CD4) and memory (CD45R+) lymphocytes when cultured 
in presence of elastin peptides exhibit inducibly the ER as shown by flow-immuno-
cytofluorimetry (Péterszegi et al. 1997c). Addition of increasing concentrations 
of elastin peptides upregulated in a dose-dependent fashion the expression of a 
serine-elastase identical to PMN-elastase (shown by inhibition with monoclonal 
anti-PMN-elastase antibody) followed by cell death (Péterszegi et al. 1999; Fig. 12). 
The crucial role of the ER could be demonstrated in these experiments also by the 
inhibition of cell death in presence of the antagonists of the ER, lactose and melibiose 
(Robert L. 1999a, b). It. also could be shown that circulating lymphocytes isolated 
from the blood of elderly patients suffering from denutrition and dementia exhibited 
an increased elastase and cathepsin G activation mediated by the ER (Péterszegi 
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Table 3 Elastase-type endopeptidase activity of normal and pathological human sera

Nature of sera Activity Significance

Control 78.1±41.9  

Atheroma 91.1±63.8 N.S.

Emphysema 237,2± 133.8 p<1×10-8

The endopeptidase activity of sera was determined with N-suc-ala
3
-PNa and expressed as μg/ml 

pancreatic elastase ±SD. The statistical significance of the results was determined according to the 
Mann and Whitney distribution free test (Modified from Hornebeck et al. 1983).

1108 L. Robert and A. M. Robert



Immuno-Inflammatory Athero-Arteriosclerosis Induced by Elastin Peptides 1109

%
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40

co
m

pa
ris

on
 w

ith
 th

e 
co

nt
ro

l

1 5 10 100 1000 10000

cell proliferation
elastase production

50

45

40
35

30
25

20

15
10
5
0

1 10

control k-elastin

100 1000 10000

%
 o

f d
ea

d 
ce

lls

b

c

a

with elastin peptides

Fig. 12  Upper Fig. a: Human lymphocytes cultured in presence of increasing concentrations of 

κ-elastin (in log conc.μg/ml on the abscissa). — : modification of cell proliferation and of elastase 

production — as a function of κ-elastin concentration. b: increase of cell death with increasing 
κ-elastin concentration, as % of total cells. c: Electron microscopy of a normal lymphocyte from 
the above cultures (control) and a lymphocyte with apoptotic bodies (κ-elastin) (modified from 
Péterszegi et al. 1999)
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et al. 1997b). Another finding in favor of the above hypothesis, connecting the 
immun-hypothesis to the lipid-theory of atherogenesis came from the demonstra-
tion of an increased concentration of elastase-type endopeptidases in aorta-extracts 
from cholesterol- fed animals (Jacob et al. 1982) confirmed by in vitro experiments 
showing that addition of human LDL and VLDL (but not HDL) to vascular SMC-
cultures strongly increased the production of elastase-type endopeptidases (Fig. 10; 
Bourdillon et al. 1984).  

      The pharmacological consequences of the above described immuno-atheroscle-
rotic process were also investigated. It could be shown that immunization of rabbits 
with elastin strongly increased SMC-membrane permeability, as shown by the 
increase of ouabaine-insensitive  22 Na +  efflux, the  86 Rb efflux (indicator of K +  efflux) 
and the  45 Ca ++  influx. Passive permeability to Na +  and K +  as well as the sodium pump 
were enhanced. Administration of porcine calcitonine largely prevented these modi-
fications, as well as the development of the athero- arteriosclerotic plaques (Jacob 
et al. 1987b). Treatment with calcitonin largely prevented also the calcification of 
elastin fibers in these animals (Jacob et al. 1987b). The inhibition of Ca-influx by 
calcitonine might well be the key factor in these experiments.  

   Among the not completely elucidated consequences of the above summarized 
immun-mechanisms remain the effect of possible age-dependent modifications of 
immun-functions on elastin induced athero-arteriosclerosis. Age-dependent modifi-
cations of the human and animal immun-systems were extensively investigated over 
the second half of the 20th century (Robert L, Robert B. 1973 for a review). The 
described age-dependent modifications of the immun-systems might well influence 
the outcome of the immun-atherosclerotic process also. As however the emphasis of 
our research and the interest of other teams shifted to the age-dependent modifica-
tions of receptor function (Joseph and Roth, 1990; Robert L. 1998 for reviews; Roth 
1979) the interpretation of the observed pathological modifications shifted progres-
sively towards postgenetic (epignetic, posttranscriptional) mechanisms (Robert L., 
Labat-Robert J., 2000 for review). Several experimental facts pleaded in favor of 
the progressive preponderance of such mechanisms. Although the selective uptake 
of cholesterol by the vascular elastin fibers were first demonstrated in vivo in ani-
mals (Jacotot et al. 1973, Robert L. et al. 1984b; Szigeti M. et al. 1972) qualitative 
and quantitative determinations of lipid classes strongly associated with purified 
human elastin carried out on human aorta samples (Claire et al. 1976) confirmed the 
same strong affinity of human elastin also to lipids, attributed to factors inherent to 
the hydrophobic nature of elastin. Circulating elastin peptides present in all human 
sera examined were shown to exhibit a number of relevant pharmacological prop-
erties (Robert L. et al. 1984a) important also for lipid mediated processes during 
atherogenesis.  

   Some remarks on circulating elastase-type endopeptidases. Their upregulation 
could be, at least partially attributed to circulating elastin peptides as described in 
previous sections of this review. The presence of identical or very similar peptide 
sequences in elastin of several species might also contribute to the explanation of 
the incomplete elimination of elastin-recognizing immunocompetent cells during 
human development. And finally the demonstration of increased elastin mobilisa-
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tion with cholesterol feeding alone (Jacob et al. 1982, 1983) might have justified to 
some extent the neglection of the immune-mediated mechanisms in human athero-
genesis. With the rapid increase of human longevity this approach might however 
reach its limits, producing a revival in the interest of immune-mediated processes in 
human vascular diseases.  

       5    Conclusions  

   The above summarized experiments and conceptions support the contention for an 
immuno-inflammatory mechanism involved in the development of athero-arterio-
sclerosis. Although most studies were conducted on animal models, the findings 
on humans reviewed in the preceeding sections strongly support the validity of the 
elastin-antielastin antbody-based process as of importance also for human pathology 
(Robert L. et al. 1967, 1968, 1970b, 1984c; Robert B., Robert L., 1974c, 1975). The 
connection of this process to the ER mediated pathways via elastin degradation and 
elastin peptide liberation in the circulation is of importance for the rationalisation 
of the role for both immun-mediated and receptor mediated mechanisms. There is 
also the connection to the lipid-mediated processes, essentially by the upregulation 
of elastase production by the atherogenic lipoproteins, increasing therefore the local 
liberation of elastin peptides. Not all elastin peptides are however equivalent in this 
respect. Synthetic hexapeptides made on the pattern of several exons of the elastin-
gene were used for screening with monoclonal antibodies (Wei et al. 1993) and for 
triggering the ER on endothelial cells (Faury et al. 1998b). These and other studies 
revealed the sequences recognized by the ER, corresponding to the pattern GXXPG 
comprising the most studied peptide, VGVAPG. Using the endothelial cell model 
it could be shown however that even tripeptides as VGV can already trigger the ER 
(Faury et al. 1998b). Although all the above cited studies enlarged the scope of the 
initially proposed immune-theory of atherogenesis, its essential features remained 
valid, close to the original hypothesis (Robert L. et al. 1967, 1968). Further experi-
ments are clearly needed essentially to explore the relevance of notions acquired 
during the study of the ER and their physiopathological consequences as well as 
their connection to known risk factors of atherogenesis. It seems probable that such 
studies could open new vistas for original pharmacological innovations.  

               Acknowledgements    The original experiments reported in this review were supported by the 
French National Research Center (CNRS), by several contracts with the pharmaceutical industry 
and also by Institut DERM, Paris.  

       References  

       Antonicelli F, Bellon G, Debelle L, Hornebeck W.(2007) Elastin-elastases and inflamm-aging Cur 
Topics Dev Biol 79:99–155    



1112 L. Robert and A. M. Robert

       Archilla-Marcos M, Robert L (1993) Control of the biosynthesis and excretion of the elastase-type 
protease of human skin fibroblasts by the elastin receptor Clin Physiol Biochem 10:86–91    

       Beaumont J-L, Jacotot B, Vilain C, Beaumont V (1965) Presence of an anti-beta-lipoprotein 
autoantibody in a myeloma seum. C R Acad Sci 260:5960–5962    

       Beaumont J-L (1965) Hyperlipidemia caused by anti-beta-lipoprotein antibodies. A new patho-
logical entity C R Acad Sci 261:4563–4566    

       Beaumont V, Beaumont J-L (1968) Experimental hyperlipemia induced by immunization in the 
rabbit Path Biol 16:870–876    

       Beaumont J-L (1969) Gamma globulins and hyperlipemia. Hyperlipemia caused by autoantibod-
ies. Ann Biol Clin 27:611–635    

       Beaumont J-L (1970) Auto-immune hyperlipidemia. An atherogenic metabolic disease of immune 
origin. Rev Eur Etud Clin Biol 15:1037–1041    

       Beaumont J-L, Lemort N (1974) Anti-heparin immunoglobulins, a factor of thrombosis, hyperlipi-
demia and atherosclerosis. Path Biol 22:67–76    

                                          Bieth J (1978) Elastases: structure, function and pathological role. In:Robert L (ed) Frontiers in 
matrix biology, vol 6. Karger, Basel, pp 1–82    

       Bihari-Varga M, Gero S (1966) Role of intimal mucoid substances in the pathogenesis of athero-
sclerosis. Investigations on the components of the mucopolysaccharide-beta-lipoprotein com-
plex formation in vitro. Acta Physiol Acad Sci Hung 29:273–281    

       Bihari-Varga M, Keller L, Landi A, Robert L (1884) Elastase-type activity, elastase inhibitory 
capacity, lipids and lipoproteins in the sera of patients with ischemic vascular disease. Athero-
sclerosis 50:273–281    

       Bihari-Varga M, Kadar A, Jacob M-P, Robert L (1986) Physicochemical and ultrastructural proper-
ties of cholesterol esters bound to elastin Connect Tissue Res 15:43–55    

       Bing DK, Weygand JGM, Stavitsky AB (1967) Hemagglutination with aldehyde-fixed erythro-
cytes for assay of antigens and antibodies. Proc Soc Exptl Biol Med 124:1168    

       Bizbiz L, Bonithon-Kopp C, Ducimetière P, Berr C, Alperovitch A, Robert L (1996) Relation of 
serum elastase activity to ultrasonographically assessed carotid artery wall lesions and cardio-
vascular risk factors. The EVA study. Atherosclerosis 120:47–55    

       Bizbiz L, Alperovitch A, Robert L, and the EVA group (1997) Aging of the vascular wall: serum 
concentration of elastin peptides and elastase inhibitors in relation with cardiovascular risk fac-
tor. The EVA study. Atherosclerosis 131:73–78    

       Bourdillon M-C, Soleilhac J-M, Crouzet B, Robert L, Hornebeck W (1984) Influence of lipopro-
teins on elastase-type activity of arterial smooth muscle cells in culture. Cell Biol Internat Rep 
8:415–421    

                         Bürger M (1947) Altern und Krankheit . Georg Thieme, Leipzig    
       Burstein M, Samaille J (1959) Nouvelle méthode de séparation et de dosage des lipoprotéines de 

faible densité. Ann Biol Clin 17:23    
       Buxtorf J-C, Lorenzelli-Edouard L, Beaumont J-L (1981) Immunoglobulins and hyperlipopro-

teinemias. Biomedicine 35:90–93    
       Claire M, Jacotot B, Robert L (1976) Characterisation of lipids associated with macromolecules of 

the intercellular matrix of human aorta. Connect Tissue Res 4:61–71    
     Comper WD (ed) (1996) Extracellular Matrix, vol. I–II. Harwood Academic Publishers, Australia    
       Faury G, Ristori MT, Verdetti J, Jacob M-P, Robert L (1995) Effect of elastin peptides on vascular 

tone. J Vasc Res 32:112–119    
       Faury G, Chabaud A, Ristori MT, Robert L, Verdetti J (1997) Effect of age on the vasodilatatory 

action of elastin peptides. Mech Aging Dev 95:31–42    
       Faury G, Usson Y, Robert-Nicoud M, Robert L, Verdetti J (1998a) Nuclear and cytoplasmic free 

calcium level changes induced by elastin peptides in human endothelial cells. Proc Natl Acad 
Sci 95:2967–2972    

       Faury G, Garnier S, Weiss AS, Wallach J, Fülöp T Jr, Jacob M-P, Mecham RP, Robert L, Verdetti 
J (1998b) Action of tropoelastin and synthetic elastin sequences on vascular tone and on free 
calcium level in human vascular endothelial cells. Circ Res 82:328–336    



Immuno-Inflammatory Athero-Arteriosclerosis Induced by Elastin Peptides 1113

       Fülöp T Jr, Jacob M-P, Robert L (1989a) Determination of anti-elastin antibodies in normal and 
atherosclerotic human sera by ELISA. J Clin Lab Immunol 30:69–74    

                                                                  Fülöp T Jr, Jacob M-P, Robert L (1989b) Biological effects of elastin peptides. In: Robert L, 
Hornebck W (eds) Elastin and elastases, vol I. CRC Press, Boca Raton, pp 201–210    

     Fülöp T Jr, Varga Zs, Csongor J, Jacob M-P, Robert L, Leovey A, Foris G (1990a) Altered phos-
phatidylinositol breakdown in polymorphonuclear leukocytes with aging. In:Goldstein AL (ed) 
Biomedical advances in aging. Plenum Publishing, New York    

       Fülöp T Jr, Wei SM, Robert L, Jacob M-P (1990b) Determination of elastin peptides in normal and 
atherosclerotic human sera by ELISA. Clin Physiol Biochem 8:273–282    

       Fülöp T Jr, Barabas G, Varga Zs, Csongor J, Hauck M, Szücs S, Seres I, Mohacsi A, Kekessy D, 
Despont J-P Robert L, Penyige A (1992) Transmembrane signaling changes with age. Ann 
New York Acad Sci 673:165–171    

       Fülöp T Jr, Douziech N, Jacob M-P, Hauck M, Wallach J, Robert L (2001) Age-related alterations 
in the signal transduction pathways of the elastin-laminin receptor. Path Biol 49:339–348    

       Fülöp T Jr, Larbi A, Fortun A, Robert L, Khalil A (2005) Elastin peptides induced oxidation of 
LDL by phagocytic cells. Path Biol 53:416–423    

                         Gardner DL (1965) Pathology of the connective tissue diseases Edward Arnold Publishers, 
London    

       Gero S, Gergely J, Jakab L, Székely J, Virag S, Farkas K, Czuppon A (1959) Inhibition of choles-
terol atherosclerosis by immunisation with beta-lipoprotein. Lancet 7088:6–7    

       Gero S, Gergely J, Dévényi T, Jakab L, Székely J, Virag S (1960) Role of mucoid substances of the 
aorta in the deposition of lipids. Nature 187:152–153    

       Gero S (1967) Some data on the influence of cholesterol atherosclerosis by immunological means.
Rev Atheroscler (Paris) 9(Suppl 1):194–198    

       Groult V, Hornebeck W, Robert L, Pouchelet M, Jacob M-P (1998) Interactions of elastic fibers 
with fibroblasts – A time-lapse cinematographic study. Path Biol 46:507–516    

       Hornebeck W, Partridge M (1975a) Conformational changes in fibrous elastin due to calcium ions. 
Eur J Biochem 51:73–78    

       Hornebeck W, Derouette J-C, Robert L (1974b) Isolation, purification and properties of aortic 
elastase. FEBS Lett 58:66–70    

       Hornebeck W, Potazman JP, De Cremoux H, Bellon G, Robert L (1983) Elastase-type activity of 
human serum., Clin Physiol Biochem 1:285–292    

       Hornebeck W, Tixier J-M, Robert L (1986) Inducible adhesion of mesenchymal cells to elastic 
fibers: elastonectin. Proc Natl Acad Sci 83:5517–5520    

       Jacob M-P, Brechemier D, Robert L, Hornebeck W (1982) Variation of elastase-type protease activ-
ity and elastin biosynthesis in rabbit aorta induced by cholesterol diet. Artery 10:310–316    

       Jacob M-P, Hornebeck W, Robert L (1983) Studies on the interaction of cholesterol with soluble 
and insoluble elastins. Int J Biol Macromol 5:275–278    

       Jacob M-P, Hornebeck W, Lafuma C, Bernaudin JF, Robert L, Godeau G (1984) Ultrastructural 
and biochemical modifications of rabbit arteries induced by immunisation with soluble elastin 
peptides. Exp Mol Pathol 41:171–190    

       Jacob M-P, Fülöp T Jr, Foris G, Robert L (1987a) Effect of elastin peptides on ion fluxes in mono-
nuclear cells, fibroblasts and smooth muscle cells. Proc Natl Acad Sci 84:995–999    

       Jacob M-P, Moura AM, Tixier J-M, Lafuma C, Robert AM, Robert L, Worcel M (1987b) Pre-
vention by calcitonin of the pathological modifications of the rabbit arterial wall induced by 
immunisation with elastin peptides: effect on vascular smooth muscle permeability. Exper Mol 
Pathol 46:345–356    

       Jacotot B, Beaumont J-L, Monnier G, Szigeti M, Robert B, Robert L (1973) Role of elastic tissue 
in cholesterol deposition in the arterial wall. Nutr Metabol 15:46–58    

                                                                  Joseph JA, Roth GS (1990) Loss of agonist-receptor efficacy in senescence: possible decrements 
in second messenger function and calcium mobilisation. In: Bergener M, Ermini M, Stähelin 
HB (eds) Challenges in aging. Acadamic Press, New York, pp 167–184    

                                Labat-Robert J, Robert L (2007) The effect of cell-matrix interactions and aging on the malignant 
process. In: Advances in cancer research, vol. 98. Elsevier, Amsterdam, pp 221–259    



1114 L. Robert and A. M. Robert

                            Lansing AI (ed) (1959) The arterial wall. The Williams & Wilkins Co, Baltimore    
       Lorenzelli-Edouard L, Marie F, Beaumont J-L (1980) Antilipoprotein autoimmune hyperlipidemia. 

The Ig-Lp test. Biomedicine 33:160–163    
       Minick CR, Murphy GE, Campbell WG Jr (1966) Experimental induction of athero- arteriosclero-

sis by the synergy of allergic injury to arteries and lipid rich diet. J Exp Med 124:635    
                            Olsson AG (ed) (1987) Atherosclerosis. Biology and clinical science. Churchill Livingstone, 

Edinburgh    
       Perdomo JJ, Gounon P, Schaeverbeke M, Schaeverbeke J, Groult V, Jacob MP, Robert L (1994) 

Interaction between cells and elastin fibers: an ultrastructural and immunocytochemical study. 
J Cell Physiol 158:451–458    

       Péterszegi G, Mandet C, Texier S, Robert L, Bruneval P (1997a) Lymphocytes in human athero-
sclerotic plaques exhibit the elastin-laminin receptor: potential role in atherogenesis. Athero-
sclerosis 135:103–107    

       Péterszegi G, Texier S, Robert AM, Moulias R, Robert L (1997b) Increased elastase and cathepsin 
G activity in activated lymphocytes from aged patients. Role of denutrition and dementia. Arch 
Gerontol Geriatr 25:285–298    

       Péterszegi G, Texier S, Robert L (1997c) Human helper and memory lymphocytes exhibit an 
inducible elastin-laminin receptor. Int Arch Allergy Immunol 114:218–223    

       Péterszegi G, Texier S, Robert L (1999) Cell death by overload of the elastin-laminin receptor 
on human activated lymphocytes : protection by lactose and melibiose. Eur J Clin Invest 
29:166–172    

     Renais J, Groult N, Scebat L, Lenegre J (1968) Pouvoir antigénique et pathogène du tissu artériel. 
In: Le rôle de la paroi artérielle dans l’atherogénèse . Colloque International CNRS, Paris    

       Robert AM, Grosgogeat Y, Reverdy V, Robert B, Robert L (1971) Lésions artérielles produites 
chez le lapin par immunisation avec l’élastine et les glycoprotéines de structure de l’aorte. 
Études biochimiques et morphologiques. Atherosclerosis 13:427–449    

       Robert B, Szigeti M, Derouette J-C, Robert L, Bouissou H, Fabre M-T (1971) Studies on the 
nature of the microfibrillar component of elastic fibers. Eur J Biochem 21:507–516    

       Robert B, Hornebeck W, Robert L (1974a) Cinétique hétérogène de l’interaction élastine-élastase. 
Biochimie 56:239–244    

       Robert B, Derouette J-C, Robert L (1974b) Mise en évidence de protéases à activité élastolytique 
dans les extraits d’aortes humaines et animales. C R Acad Sci Paris 278:3251–3254    

       Robert B, Robert L, Robert AM (1974c), Elastrine, élastase et artériosclérose. Path Biol 
22:661–669    

     Robert B, Robert L (1975) Aortic elastase, its role in the degradation of arterial elastin. In: Peeters 
H (ed) Protids of biological fluids. Pergamon Press, pp 413–418    

       Robert L, Poullain N (1963) Étude sur la structure de l’élastine et le mode d’action des élastases. 
I. Nouvelle méthode de préparation des dérivés solubles de l’élastine. Bull Soc Chim Biol 
45:1317–1326    

       Robert L, Parlebas I (1965) Biosynthèes in vitro des glycoprotéines de la cornée. Bull Soc Chim 
Biol 47:1853–1866    

       Robert L, Stein F, Pezess MP, Poullain N (1967), Propriétés immunochimiques de l’élastine. Leur 
importance dans l’atherosclerose. Arch Maladies du Cœur 60(Suppl. 1):233–241    

     Robert L, Robert AM, Moczar M, Moczar E (1968) Constituants macromoléculaires de la paroi 
artérielle. Antigénicité et rôle dans l’atherosclérose. In: Le rôle de la paroi artérielle dans 
l’atherosclérose. Colloque CNRS, pp 395–424    , Paris

       Robert L, Robert B, Medema J, Houtman JPW (1970a) Surface areas of elastin samples deter-
mined by krypton-85 adsorption. Biochim Biophys Acta 214:235–237    

       Robert L, Robert B, Robert AM (1970b) Molecular biology of elastin as related to aging and 
atherosclerosis. Exptl Gerontol 5:339–356    

       Robert L, Robert B, Houtman JPW, Stack MV (1971) Flow calorimetry of the sorption of butanol 
to elastin preparations and comparison with surface areas determined by Krypton-85 adsorp-
tion., Biochim Biophys Acta 251:370–375    

       Robert L, Robert B (1973) Immunology and aging. Gerontologia 19:330–335    



Immuno-Inflammatory Athero-Arteriosclerosis Induced by Elastin Peptides 1115

     Robert L, Jacob M-P, Szemenyei K, Robert AM (1984a) Pharmacological properties of elastin pep-
tides, their action on serum and aorta lipids and on the atherosclerotic process. In:Carlson LA, 
Olsson AG (eds) Treatment of hyperlipoproteinemia, Raven Press, New York, pp 185–188    

     Robert L, Chaudière J, Jacotot B (1984b) Interaction between lipids and the intercellular matrix of 
the arterial wall: its role in the evolution of atherosclerotic lesions. In: Malinow R, Blaton VH 
(eds) Regression of atherosclerotic lesions. Plenum Publishing Corporation, pp 145–173    

       Robert L, Jacob M-P, Frances C, Godeau G, Hornebeck W (1984c) Interaction between elastin 
and elastases and its role in the aging of the arterial wall, skin and other connective tissues. A 
review. Mech Aging Dev 28:155–166    

                                            Robert L, Moczar M, Moczar E (eds) (1985) Methods of connective tissue research. Frontiers in 
matrix biology, vol 10. Karger, Basel    

       Robert L, Labat-Robert J, Hornebeck W (1986) Aging and atherosclerosis. Atherosclerosis Rev 
14:143–170,    Raven Press, New York

       Robert L, Jacob M-P, Fülöp T Jr, Timar J, Hornebeck W (1989) Elastonectin and the elastin recep-
tor. Path Biol 37:736–741    

       Robert L (1996) Aging of the vascular wall and atherogenesis: role of the elastin-laminin receptor. 
Atherosclerosis 123:169–179    

       Robert L (1998) Mechanisms of aging of the extracellular matrix. Role of the elastin-laminin 
receptor. Novartis Price Lecture. Gerontology 44:307–317    

       Robert L (1999a) Aging of the vascular wall and atherosclerosis. Exper Gerontol 34:491–501    
       Robert L (1999b) Interaction between cells and elastin, the elastin receptor. Connect Tissue Res 

40:75–82    
       Robert L, Labat-Robert J (2000) Aging of connective tissues, from genetic to epigenetic mecha-

nisms. Biogerontology 1:123–131    
       Roth GS (1979) Hormone receptor changes during adulthood and senescence: significance for 

aging research. Federation Proc 38:1910–1914    
       Rouis M, Nigon F, Lafuma C, Hornebeck W, Chapman J (1990) Expression of elastase activity 

by human monocyte-macrophages is modulated by cellular cholesterol content, inflammatory 
mediators and phorbol myristate acetate. Arteriosclerosis 10:246–255    

     Scebat L, Renais J, Iris L, Groult N, Lenegre J (1966) Lésions artérielles produites chez le lapin 
par des injections de broyat d’aorte homologue et hétérologue. Arch Mal Cœur 59 (suppl.n°1) 
Rev Athér Arter Périph, pp. 56–72    

       Scebat L, Renais J, Groult N, Iris L, Lenegre J (1967), Arterial lesions produced in rabbits by injec-
tions of pulverized rat aorta. Preliminary study. Rev Atheroscler (Paris) 9:249–262    

       Stein F, Pezess M-P, Robert L, Poullain N (1965) Anti-elastin antibodies in normal and pathologi-
cal human sera. Nature 207:312–313    

     Szigeti I, Ormos J, Jako J, Toszegi A (1960) The atherogenic effect of immunisation with homolo-
gous complex great vessel wall in rabbit. Acta Allergologica (suppl. VII):374–387    

     Szigeti I, Jako I, Doman J (1968) Study of the antigenic and immunopathological effects of structural 
proteins of the mammalian arterial wall and their role in the pathogenesis of atherosclerosis. In: 
colloque CNRS N° 169: Le rôle de la paroi artérielle dans l’athérogénèse, pp 387–394 , Paris   

     Szigeti M, Monnier G, Jacotot B, L. Robert (1972) Distribution of ingested 14C-cholesterol in the 
macromolecular fractions of rat connective tissue. Connect Tissue Res 1:145–152    

         Timar J, Diczhazi Cs, Ladanyi A, Raso E, Hornebeck W, Robert L, Lapis K (1995) Interaction of 
tumor cells with elastin and the metastatic phenotype. In: The molecular biology and pathology 
of elastic tissues. John Wiley & Sons, Chichester pp 321–333    

       Trentham DE (1984) Immunity to type II collagen in rheumatoid arthritis: a current appraisal. Proc 
Soc Exp Biol Med 176:85–104    

                                                  Urry DW (1980) Sequential polypeptides of elastin. Structural properties and molecular patholo-
gies. Front Matrix Biology. In: Robert AM, Robert L (eds) Biology and pathology of elastic 
tissues, vol 8. Karger, Basel, pp 78–103    

       Varga Z, Kovacs EM, Paragh G, Jacob M-P, Robert L, Fülöp T Jr (1988) Effect of elastin peptides 
and N-Formyl-methionyl-Leucyl-Phenylalanine on cytosolic free calcium in polymorphonu-
clear leucocytes of healthy middle-aged and elderly subjects. Clin Biochem 21:127–130    



1116 L. Robert and A. M. Robert

       Varga Z, Jacob M-P, Robert L, Fülöp T Jr (1989) Identification and signal transduction mechanism 
of elastine peptide receptor in human leucocytes. FEBS Lett 258:5–8    

       Varga Z, Jacob M-P, Robert L, Csongor J, Fülöp T Jr (1997) Age-dependent changes of k-elastin 
stimulated effector functions of human phagocytic cells: relevance for atherogenesis. Exp Ger-
ontol 32:653–662    

       Wei S.M, Erdei J, Fülöp T Jr, Robert L, Jacob M-P (1993) Elastine peptide concentration in human 
serum : variation with antibodies and elastin peptides used for the enzyme-linked immunosorb-
ent assay. J Immunol Methods 164:175–187    

       White FN, Grollman A (1964) Experimental periarteritis nodosa in the rat Arch Pathol 78:31    
    



Cancer





1119

                    Abbreviations  
ADM      AIDS defining malignancies  
     AT      Ataxia-Telangiectasia  
     EBV      Epstein Barr virus  
     FA      Fanconi’s Anemia  
     FasL      Fas Ligand  
     GM-CSF      Granulocyte Macrophage Colony Stimulating Factor  
     GVT      Graft-versus-tumor  
     INF-γ      Gamma interferon  
     IL-1β / 6      Interleukin-1β / 6  
     MCA      Methylcholantrene  
     nADM      non-AIDS defining malignancies  
     NFκB      Nuclear Factor-κB  
     RAG-2      Recombinase Activating Gene -2  
     S.E.E.R.      Surveillance, Epidemiology and End Results  
     TNF       Tumor Necrosis Factor-   
    XLA     X-linked Agammaglobulinemia 

Abstract:   Although the increased incidence of common cancers with age on 
one hand and immunosenescence on the other are both well documented in animal 

Aging, Immunity and Cancer
Claude Sportès and Frances T. Hakim

Contents

1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1120
2 Evidence for Increased Incidence of Cancer with Aging. . . . . . . . . . . . . . . . . . . . . . . . . 1121
3 Evidence for Tumor Immunosurveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122

3.1 Immunosurveillance in Animal Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122
3.2 Immunosurveillance in Human Immunodeficiencies . . . . . . . . . . . . . . . . . . . . . . . 1123
3.3 Immunosurveillance in the General Immune Competent Population . . . . . . . . . . . 1126
3.4 Clinical Evidence for Immune Eradication of Tumors . . . . . . . . . . . . . . . . . . . . . . 1126

4 Role of Chronic Inflammation in Cancer and in Aging. . . . . . . . . . . . . . . . . . . . . . . . . . 1127
5 Cancer and Immuno-senescence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129

5.1 Concept of Immuno-editing Deficiency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
5.2 Animal Model Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
5.3 Clinical Medicine Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135

C. Sportès ( ) · T. Hakim
Experimental Transplantation & Immunology Branch 
Center for Cancer Research, National Cancer Institute
10 Center Drive, Bldg 10-CRC Room 43142 
Bethesda, MD 20892-1203 
Tel: (301) 435 52 80 
Fax: (301) 402 75 15
E-mail: csportes@mail.nih.gov

T. Fulop et al. (eds.), Handbook on Immunosenescence, 
DOI 10.1007/978-1-4020-9062-2_55, © Springer Science+Business Media B.V. 2009



1120 C. Sportès and F. T. Hakim

models and in humans, evidence for a causal link between the two is controversial. 
It is, therefore, most appropriate to critically consider whether the dysfunctional 
immune processes occurring with aging may play a contributing role in the increased 
incidence of cancer with aging. Indeed whether or not immunosenescence plays 
a significant role could have a determinant impact on devising cancer prevention 
and/or immunotherapeutic strategies for the presently growing elderly population.  

      Keywords   :    Immuno-surveillance    •    Primary immuno-deficiency    •    Adoptive 
immunotherapy    •    Inflammation    •    Immuno-editing   

     1 Introduction  

  Aging involves most if not all physiologic systems. As knowledge about the aging 
process increases, it becomes apparent that it cannot be viewed simplistically as the 
decay phenomenon of the various parts of a complex machine but, rather, as the 
development of active processes that are maladapted or dysfunctional and actively 
lead to progressive organ or system dysfunction. Some of these processes may be 
initially triggered by a phenomenon of aging but the clinical consequences of this 
initial phenomenon may be considerably amplified by these active processes which, 
therefore, should become the primary target of anti-aging therapeutic or prophylac-
tic interventions. The understanding of the pathophysiology of these processes may 
lead to the discovery of effective anti-aging interventions since they are more likely 
to be amenable to effective therapeutic interventions than primary phenomena of 
aging. Immuno-senescence, the aging of the immune system, to which this entire 
volume is dedicated, is no exception to this approach to understanding the overall 
physiology of aging.  

  Although the increased incidence of cancer with aging is a fact, such a general 
statement does not accurately represent the complexity of the phenomenon and, 
therefore, may lead to erroneous interpretation. In this chapter we will review the 
multiple lines of evidence that the immune system has an active role in detecting and 
eradicating nascent tumors grouped under the broad concept of immuno-surveil-
lance. This concept is widely accepted and based mostly on the presented evidence 
in various clinical and experimental immuno-deficient states. There is, therefore, 
an obvious connection to be made between the progressive state of immune defi-
ciency called immuno-senescence, a putative lack of adequate immune-surveillance 
(in analogy to the severe immune deficient states) and the increased incidence of 
cancer during aging. Another connection to be easily made is between the accumu-
lating knowledge that chronic inflammation is a hallmark of many of the critical 
aging processes and the developing evidence that growing tumors may recruit nor-
mal inflammatory processes for their own benefit, protection and growth. Finally, 
the concept of tumor immuno-editing is an attempt to consider more dynamically 
the interplay between the multiple opposing forces implicated in tumor develop-
ment and tumor eradication. This concept offer a platform to critically discuss 
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the hypothesis that immuno-senescence contributes significantly to the increased 
incidence of cancer with aging.  

    2 Evidence for Increased Incidence of Cancer with Aging  

  The increased incidence of the most common cancers with age is well established and 
will be only briefly summarized. The lifetime risk of cancer is about 1 in 2 in men and 
1 in 3 in women. Cancer incidence shows a steep increase after the age of 65, but pla-
teaus for most common cancers between age 80 and 85 and even decreases thereafter. 
It should be noted, however, that this global increase in incidence of cancer is pre-
dominantly caused by the peak incidence of the most common malignancies (prostate, 
lung, colo-rectal, breast, bladder, and pancreatic cancers) in the later decades of life. It 
is interesting to note that, for most of these common cancer types (except colo-rectal 
and bladder cancers), incidences both for males and females start to decline after age 
80 to 85. Table 1 shows recent data obtained from the Surveillance, Epidemiology 
and End Results (S.E.E.R.) database on the overall incidence over age 65, the peak 
incidence and age and the age after which the incidence declines. The late decrease 
in incidence may be the simple reflection of the bell shaped curve distribution of 
new cancer cases, centered on the peak incidence. Hence, it could be convincingly 
argued that the observed global increased incidence of cancer in older age is, in fact 
for the most part, an artifact (Zhang and Grizzle 2003)   and does not specifically result 
from patho-physiologic mechanisms found uniquely in the aging population (such as 

Table 1 Incidence, peak incidence and declining incidence of most common cancers

Tumor type Incidence over
age 65

Peak incidence Age of Peak 
incidence

Declining incidence 
(after age.)

 Male Female Male Female Male Female Male Female

Prostate 924.6 - 1,021 - 70-74 - + (80) -

Lung 469.5 282.5 570.2 336.1 75-79 75-79 + (80) + (80)

Colon 334.3 243.8 460.5 377.4 85+ 85+ No No

Breast - 424.4 - 464.8 - 75-79 - + (80)

Bladder 228.1 54.1 330 79.6 85+ 85+ No No

Pancreas 71.4 58.9 93 87.7 80-84 85+ + (85+) No

Melanoma 96.9 38.2 119.7 42.7 80-85 80-85 + (85+) + (85+)

Corpus Uteri - 83.5 - 89.1 - 65-70 - + (70)

Kidney 78 37.9 88.1 43.1 75-79 75-79 + (80) + (80)

Ovary - 49.8 - 58.1 - 80-84 - + (85+)

Brain 23.9 15.7 28.3 18.7 75-79 75-79 + (80) + (80)

All cancer 
sites

2875.3 1686.5 3266.4 1968.1 75-79 80-84 + (80) + (85+)

Data obtained from the S.E.E.R. database (http://seer.cancer.gov/csr/1975_2004/sections.html) 
Incidence given per 100,000 individuals in population.
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immunosenescence). In particular, one can argue that, if immuno-senescence were a 
significant factor in the phenomenon of aging and increased cancer incidence, one 
would expect to see a continued rise in cancer incidence with age in the 9 th  and 10 th  
decades of life, if immuno-senescence continues to progress.  

           The increased cancer incidence with increasing age underlies complex mecha-
nisms, linked to various degrees to a multiplicity of active processes associated with 
aging and, therefore, it may be considered a consequence of aging. Alternatively, it is 
also clear that the progressive accumulation of either genetic alterations or other cel-
lular insults resulting in malignant transformation is time dependent and that, there-
fore, cells in older individuals will be more likely to accumulate a critical number of 
insults necessary to undergo such transformation. In that sense, the increased inci-
dence of common cancers later in life is not due to aging but to being older.  

    3 Evidence for Tumor Immunosurveillance  

  There is ample evidence for a critical role of the immune system in the defense 
against various cancers before any of the aging processes become clinically signifi-
cant which defines immunosurveillance and immuno-editing of cancer.  

   3.1 Immunosurveillance in Animal Models  

  After being first proposed in the early 20 th  century, the concept of tumor immune 
surveillance fell in disfavor after initial experiments failed to demonstrate the proof 
of principle that immuno-deficient (athymic nude) mice would have an increased 
incidence of cancer when compared to their immuno-competent heterozygote lit-
termates (Stutman 1974). As monoclonal antibody and transgenic technologies 
developed, allowing systematic targeting of specific immune pathways, proof of 
principle was demonstrated and spawned a renewed interest in the concept of tumor 
immuno-surveillance.  

  A large number of animal models have been developed, generating immuno-defi-
cient mice with enhanced sensitivity to chemically induced and spontaneous tumors. 
Some of these models are also informative on the increased incidence of cancer with 
aging. The state of knowledge of immuno-surveillance has been the object of several 
recent reviews (Dunn et al. 2004; Dunn et al. 2006; Swann and Smyth 2007). Mul-
tiple mouse knockout experiments have been performed on various mouse genetic 
backgrounds with varying results underscoring the influence of the genetic back-
ground in the nature and efficiency of immune surveillance for a given gene defect 
(Street et al. 2002). Some models evaluated the spontaneous occurrence of tumors 
while others used tumor induction with a carcinogen (Shankaran et al. 2001) or an 
added transgenic defect known to induce tumors (e.g., double knockout p53 -/-  / pore 
forming protein  -/-  or INF-γ insensitivity [Kaplan et al. 1998; Smyth et al. 2000]).  
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  Two major systems have been described to be involved in immune mediated tumor 
suppression based on these mouse knockout models.  The gamma interferon (IFN-γ) 
pathway : mice insensitive to INF-γ (129/SvEv mice) lack either the INF-γ receptor 
(INFGR1) or STAT1, a critical transcription factor in mediating INF-γ receptor 
signaling. These mice are 10-20 times more sensitive to tumor induction with meth-
ylcholantrene (MCA) than their wild-type counterparts (Kaplan et al. 1998).  The 
perforin pathway : Perforins are critical in the cytotoxicity of T-cells and NK-cells. 
Perforin-null mice show increase spontaneous tumor formation (lymphomas or 
epithelial tumors [Street et al. 2002]) as well as increased MCA-induced tumors. 
The RAG-2 (Recombinase Activating Gene) knockout experiments also brought a 
higher degree of specificity to the immune mediated tumor suppressor model since 
this gene is exclusively expressed in the immune cells (T-, B- and NKT-cells) at 
the time of their antigen receptor gene rearrangements. Therefore, RAG-2 deficient 
animals have no T-, B- or NKT-cells. In these experiments, 60% of the RAG-2 
deficient mice versus 20% of the wild-type mice developed tumors (Shankaran et 
al. 2001). In older animals (age 13 to 24 months) not exposed to MCA, 100% of 
the RAG-2 deficient animals developed spontaneous tumors, most being malignant 
versus 25% of the wild type animals, mostly developing benign tumors. Interest-
ingly, in this system, the double knockout mice (RAG2 -/-  / STAT1 -/- ) did not show 
an increase in tumor generation over either single knockout strain, suggesting that 
the protective effects of the INF-γ pathway may be mediated through the adaptive 
immune system.  

    3.2 Immunosurveillance in Human Immunodeficiencies  

  The evidence for an operational immune surveillance system in humans is not as 
scientifically compelling as in these precisely defined animal models but, yet, is 
quite convincing. It stems from two distinct groups of immune deficient individuals: 
subjects with congenital primary immuno-deficiencies and subjects who develop 
immune deficiency later in life, such as from HIV infection or immunosuppressive 
therapy in the context of organ transplantation.  

   3.2.1 Primary Immunodeficiencies and Cancer  

  As is so often the case, valuable insight in broad patho-physiologic concepts can 
be gained from observation in very rare diseases. The evidence for a significantly 
increased incidence of predominantly lymphoid malignancies in primary immu-
nodeficiency diseases is indisputable (Ochs et al. 2006). This includes lymphoid 
malignancies that are either virally associated or not but the most consistent finding 
in these congenital immuno-deficiencies is that a disproportionate number of the 
tumors that develop are virally associated, if not virally-induced. This emphasizes 
the major role of the adaptive immune system in the long term control and eradica-



1124 C. Sportès and F. T. Hakim

tion of viral infections and the causal link, direct or not, between viral infections and 
many malignancies: EBV and Hodgkin’s lymphoma or EBV—lymphoproliferative 
disease, Hepatitis B and C viruses and Hepatocellular carcinoma, human Papilloma 
virus and cervical cancer, human Herpes virus 8 and Kaposi sarcoma.  

  Interestingly, of all the most common primary immunodeficiency diseases, 
X-linked Agammaglobulinemia (XLA) is the only one that does not seem to be 
associated with an increase incidence in lymphoid malignancies (Table 2). This 
suggests that antibody mediated immunity has little role in immune surveillance of 
cancer in humans. Data on the incidence of nonlymphoid and nonvirally associated 
malignancies in these rare diseases are, however, much less compelling.    

Table 2  Primary immunodeficiency diseases and cancer susceptibility Compiled from [Ochs 
et al. 2006]

Syndrome Other Defect Increased Lymphoid 
malignancies

Increased 
Nonlymphoid 
malignancies

Ataxia Telangiectasia (AT) 
[Varan et al. 2004]

yes yes yes

Bloom Syndrome yes yes yes

Cartilage-Hair Hypoplasia 
(CHH)

possible yes not clear(1)

Fanconi’s anemia (FA) yes yes yes 

Nijmegen Syndrome yes yes Possible(2)

Autoimmune lymphoprolif-
eration sd (ALPS)

no yes not clear(3)

CD40 L deficiency (Hyper 
IgM syndrome)

no yes not clear(4)

Common Variable Immuno-
deficiency (CVID)

no yes Gastric ca(5)

Hyper IgE syndrome (Job 
syndrome)

no yes no

Wiskott Aldrich Syndrome 
(WAS)[Sullivan et al. 
1994]

no yes not clear

X-linked Agammaglob-
ulinemia (XLA)

no not clear no

(1) In adulthood, 90-fold increase in lymphoma NHL over general population and 6.9-fold for 
other cancers. The function of deficient gene is unknown (leaving open the speculation on other 
pathogenesis of cancer)
(2) 40% of patients develop malignancy before age 21. The overwhelming majority are leuke-
mias / lymphomas. Second malignancies are lymphomas with much rarer instances of medul-
loblastoma, rhabdomyosarcomas, Gonadoblastoma and Ewing sarcoma. The defective gene may 
function as a tumor suppressor gene.
(3) Hepato-cellular Ca (Hepatitis C +) at age 43, Basal cell Carcinoma. The frequency is not 
clearly distinct from that in general population.
(4) Liver and biliary tumors may be linked to increased incidence of local infections
(5) 50- to 100-fold increase in lymphomas. Gastric carcinoma may be linked to deficient immu-
nity to H. pylori.
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  In all the syndromes that show either a definite or a possible increased inci-
dence in nonlymphoid malignancy (Table 2), there is either clear or sugges-
tive evidence that other carcinogenic mechanisms are most likely responsible 
for the increase (e.g., chromosomal instability in Fanconi’s Anemia (FA), 
Ataxia-Telangiectasia (AT), Bloom syndrome, etc). Conversely, among the con-
genital immuno-deficiency syndromes that do not seem to involve either chromo-
some instability or other known cancer susceptibility mechanisms (e.g., XLA, 
Wiskott Aldrich Syndrome, CD40L deficiency), it is either difficult to find a defi-
nite increase in incidence of non-lymphoid tumors over the general population or 
the increased incidence is more likely due to chronic infection and/or inflammation 
secondary to the immunodeficiency state than to a defective tumor immuno-sur-
veillance per se (Hayward et al. 1997). It is however noteworthy that the putative 
increase in non-lymphoid malignancies appears to remain mostly in “age appropri-
ate” tumors unless a mechanism of carcinogenesis other than immune deficiency 
can be incriminated (e.g., FA and epithelial tumors). This latter fact is concordant 
with the concept of active, ongoing tumor immune surveillance because the few 
mechanisms of carcinogenesis that are operational in this early age group, if not 
well controlled by an efficient immune surveillance system, would be expected 
to result mostly in an increase in age appropriate tumors rather than in adult type 
tumors.  

  As the overall incidence of cancer (and in particular of epithelial cancers) is 
considerably less in children than in adults owing to differences in carcinogenic 
mechanisms in the two populations, it remains difficult to extrapolate the data from 
congenital immuno-deficiencies to the adult and aging population. Therefore, one 
must seek evidence in immuno-suppressed adult populations.  

    3.2.2 Cancer and the Immuno-suppressed Host  

  There is an abundant clinical literature on the increased incidence of tumors in indi-
viduals treated with various immuno-suppressive therapies for solid organ trans-
plantation. Initially, tumors developing in the context of immuno-suppression were 
believed to be mostly virally related (EBV lymphoproliferative disease, Kaposi sar-
coma) or lymphoproliferative diseases. This was felt to be consistent with what is 
seen in the congenital immuno-deficiency syndromes described above. More recent 
studies of large cohorts of organ transplant recipients, however, show a significant 
increased risk in the more common tumors such as lung, prostate, colon carcinomas 
as well as melanomas and non melanoma skin cancers and nonvirally induced sar-
comas (Penn 1995; Penn 1996; Pham et al. 1995). The state of knowledge on malig-
nancy in transplantation has been recently reviewed (Buell et al. 2005).  

  With the recent advent of effective antiviral and other antiinfectious therapies 
which have allowed prolonged survival of HIV infected individuals, much infor-
mation about the role of immune surveillance in the development of cancer is now 
also being accumulated in this population. It is becoming increasingly clear that 
the higher incidence of malignancy in HIV disease is seen in both AIDS defining 
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malignancies (ADM: Kaposi sarcoma, non-Hodgkin lymphoma and cervical carci-
noma) and non-AIDS defining malignancies (nADM). Data from the prospective, 
multinational Data Collection on Adverse Events of Anti-HIV Drugs study (DAD) 
was recently presented on follow up of 23,437 HIV infected individuals (for a total 
of 104,961 patient-years follow up) (D’Arminio Monforte et al. 2007). Only 37% of 
all deaths from malignancy were due to ADM. This study demonstrated that a low 
CD4 T-cell count and not HIV RNA copy number was correlated with the increased 
incidence of nADM. Twenty percent of all deaths from malignancy were due to 
lung cancer, the most commonly occurring nADM and, although smoking remained 
the greatest risk factor for the increased incidence of lung cancer in this HIV popu-
lation, low CD4 T-cell counts were significantly correlated with the incidence of 
lung cancer, independent of the smoking history. These data suggest first, that the 
increase incidence of lung cancer in the HIV population is not entirely due to the 
high prevalence of smoking in this population and second, that the consequence of 
HIV infection (i.e., immuno-suppression with low CD4 T-cell counts), rather than 
a direct viral effect of HIV, is responsible for the increase incidence of lung cancer.  

     3.3  Immunosurveillance in the General Immune Competent 
Population  

  There is evidence in the general immune competent population that the degree of host 
immune response is correlated to cancer prognosis. In an 11-year follow-up longitudi-
nal study of a general population, higher natural cytotoxic activity of peripheral-blood 
lymphocytes was found to be correlated with a decreased cancer incidence (Imai et al. 
2000) and circulating natural killer cell activity has been found to be of prognostic sig-
nificance in patients with gastric carcinoma in a multivariate analysis (Takeuchi et al. 
2001). This study was the first prospective cohort study to link, in a normal population, 
host immune defenses (in this case innate immunity) and the incidence and prognosis 
of cancer. It is also noteworthy that, to date, no comparable epidemiologic study has 
linked similarly adaptive immunity and cancer. However, there is also now growing 
clinical evidence that the presence of tumor infiltrating lymphocytes is associated with 
a better survival in a variety of tumors including ovarian cancer (Zhang et al. 2003), 
colo-rectal cancer (Chiba et al. 2004; Pages et al. 2005) and others (Abe et al. 2003; 
Cho et al. 2003; Hiraoka et al. 2006; Nakakubo et al. 2003; Wakabayashi et al. 2003).  

    3.4    Clinical Evidence for Immune Eradication of Tumors  

  Demonstrating the proof of principle of successful active cancer immunotherapy, 
immune mediated eradication of clinically relevant tumors in humans can be spec-
tacular, albeit documented thus far only in a small number of cases. High-dose inter-
leukin-2 in the treatment of metastatic melanoma or renal cell carcinoma results in 
durable clinical remissions in a significant minority of patients (Atkins et al. 1999; 



Aging, Immunity and Cancer 1127

Phan et al. 2001; Rosenberg 2000). Intensive research on various forms of adoptive 
cancer immunotherapy with autologous lymphocytes infusion has been pursued for 
many years with some definite but unfortunately still limited success. Recently, 
the induction of a profound immuno-depletion prior to the reinfusion of expanded 
tumor infiltrating autologous lymphocytes has led to significant and durable tumor 
responses in metastatic melanoma. These studies and parallel murine studies have 
led to new hypotheses for the mechanisms at play in effective immunotherapy (Pau-
los et al. 2007). Encouraging results such as these extend cancer immunotherapy 
beyond the stage of proof of principle (Dudley et al. 2005; Gattinoni et al. 2006).  

  Some tumors developing in severely immuno-suppressed individuals following 
solid organ transplantation can be completely eradicated with a simple withdrawal 
of their immuno-suppressive therapy (Wilson et al. 1968). Furthermore, following 
allogeneic stem cell transplantation, individuals (mostly with recurrent chronic myel-
ogenous leukemia but also with other diagnoses) can be re-induced into a durable 
complete molecular remission simply with infusion of lymphocytes from their trans-
plant donor (Collins et al. 1997; Mackinnon et al. 1995a; Porter et al. 1994; Porter 
et al. 1997). These results, along with the evidence of the poor tumor control following 
T-cell depleted allogeneic stem cell transplantation or stem cell transplantation from 
identical twins, has led to the realization that the immunologic graft-versus-tumor 
(GVT) effect may be, in certain diseases, as important as the high dose radio-chemo-
therapy in the overall therapeutic effect of allogeneic hematopoietic stem cell trans-
plantation. This has led to the development of the whole new field of clinical research 
in non-myeloablative stem cell transplantation which attempts to maximize the allo-
reactive GVT effect and minimize toxicity from the radio-chemotherapy preparative 
regimen (Khouri et al. 1998). Interestingly, the donor lymphocyte dose needed to 
eradicate the primary disease occurring spontaneously prior to the recipient being 
immuno-suppressed (e.g., relapsed chronic myelogenous leukemia) is greater than the 
lymphocyte dose needed to eradicate a secondary, virally induced malignancy (EBV 
lymphoproliferative disease) that occurs during the immuno-suppression period of the 
transplant (Mackinnon et al. 1995b). An alloreactive GVT effect has also been dem-
onstrated for some solid tumors such as breast and renal cell carcinoma (Bishop et 
al. 2004; Childs et al. 2000; Ueno et al. 2003). These latter two observations are very 
interesting since they indicate that some tumors that develop in normal, non immuno-
suppressed individuals (and therefore have become non-immunogenic to the host) 
remain immunogenic to the donor T-cells in the context of the alloreactivity created 
by the transplant and that second malignant tumors developing in the context of host 
immuno-suppression remain more immunogenic than the primary tumor.  

     4   Role of Chronic Inflammation in Cancer and in Aging  

  Acute inflammation occurs in response to invasion by infectious agents or tissue 
injury. It is the first line of defense of the body and is operated by the innate immune 
system. This initial defense response is intimately linked to the subsequent devel-
opment of an efficient response by the adaptive immune system. When this initial 
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inflammatory response results in the eradication of the infectious agent or in healing 
of the tissue injury, the inflammatory process ceases. Persistent, chronic inflam-
mation, however, may have many deleterious effects. Many causes of chronic 
inflammation unrelated to aging are linked to the development of specific malignan-
cies and, conversely, human epidemiologic studies and murine experimental models 
have established the protective role of chronic anti-inflammatory drugs (aspirin, 
COX-2 inhibitors) against the development of cancer such as colon or breast can-
cers (Steinbach et al. 2000). The role of an inflammatory microenvironment and 
tumor development has been recently reviewed (de Visser and Coussens 2006).  

  Cancer promoting inflammation can be perpetuated by a specific disease proc-
ess (e.g., ulcerative colitis and colon carcinoma [Eaden et al. 2001] or chronic 
pancreatitis and pancreatic cancer [Whitcomb 2004]), by the incomplete eradica-
tion of an infection (e.g., Hepatitis B or C and hepato-cellular carcinoma [Donato 
et al. 1998]) or by a chronically recurrent infection (e.g., Helicobacter pylori and 
gastric carcinoma [Ernst and Gold 2000]), as well as by repeated low level tissue 
injury caused by prolonged exposure to chemical (e.g., chronic gastro-esophageal 
reflux and esophageal carcinoma [Cameron et al. 1995]) or physical (e.g., asbestos 
and mesothelioma [Manning et al. 2002] irritation). In many of these associations, 
the clinical data are corroborated by animal models of specific tumor induction fol-
lowing repeated exposure to the specific offending agent that leads to the chronic 
inflammation. In some of these animal models, B-cells have been shown to be 
critical, linking innate and adaptive immune responses in inflammation induced 
carcinogenesis (de Visser et al. 2005). Exaggerated responses to pro-inflammatory 
stimuli such as LPS (e.g., increased Tumor Necrosis Factor-α (TNFα), Interleukin-
1β (IL-1β) and Interleukin-6 (IL-6)) may promote tumor through the Nuclear Fac-
tor (NF)-κB / IKK pathway (Karin and Greten 2005; Lin and Karin 2007) and 
the role of the activation of the NFκB / IKK pathway provides a mechanistic link 
between inflammation and carcinogenesis (Karin 2006). Some mouse models of 
de novo carcinogenesis also point to the critical involvement of an inflammatory 
process in the carcinogenesis. GM-CSF -/- , IFN-γ  -/-  double knockout mice develop 
spontaneous lymphomas and solid tumors on a backdrop of persistent inflamma-
tion and recurrent infections. These mice can be protected from developing tumors 
by an aggressive antibiotic therapy from birth, decreasing the bacterial load (Enzler 
et al. 2003).  

  Chronic inflammation is not only involved in the pathogenesis of tumors, it also 
plays a significant active role in tumor progression, aggressiveness and metastatic 
potential. Although in situ tumor infiltration with cells of the adaptive immune sys-
tem is often associated with improved survival and better tumor control (Abe et al. 
2003; Chiba et al. 2004; Cho et al. 2003; Hiraoka et al. 2006; Nakakubo et al. 2003; 
Pages et al. 2005; Wakabayashi et al. 2003; Zhang et al. 2003), the presence of 
cellular infiltrates of the innate immune system (mostly macrophages and myeloid 
cells) is often associated with more aggressive tumor progression (Lin and Pol-
lard 2004a; Lin and Pollard 2004b). The understanding of the interactions between 
tumor-associated macrophages and the tumor is the object of particularly inten-
sive investigations that may lead to novel therapeutic approaches (Pollard 2004). 
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The dichotomy of beneficial effects of the adaptive immune system opposed to 
deleterious effects of the innate immune system is, however, an oversimplification 
since circulating NK activity has been found to be of good prognostic significance 
in patients (Takeuchi et al. 2001) while B-cells and regulatory T-cells have been 
implicated in the development of an immunosuppressive milieu in the tumor micro-
environment which favors tumor progression. The state of knowledge of these com-
plex interactions has been recently reviewed (Bronte et al. 2006).  

  A critical balance between pro-inflammatory and anti-inflammatory responses 
is maintained at all times. It involves complex local responses but also multiple 
systemic responses including the nervous system (Tracey 2002). On one hand, an 
insufficiency in pro-inflammatory signals may lead to an increase in numbers of 
infections or cancers due to decreased immune surveillance. On the other hand, 
an insufficiency of anti-inflammatory signals may result in increased morbidity or 
mortality due to exaggerated proinflammatory responses (e.g., shock in response to 
infection) or in increased autoimmunity, atherosclerosis and cancer. There is indeed 
considerable evidence for a shift toward a proinflammatory state during aging and 
for chronic inflammation playing a critical role in the pathogenesis of most of the 
prevailing diseases associated with aging including Alzheimer disease, Type II dia-
betes, atherosclerosis, osteoporosis, arthritis and wasting syndrome. The multitude 
of elements (cytokines, chemokines, cellular components) at play in maintaining the 
inflammatory balance, the alterations of these various elements leading to chronic 
systemic low level inflammation with aging and the clinical impact in the diseases 
of the elderly have been recently reviewed (Bruunsgaard 2006) and are specifically 
addressed in other chapters of these volume.  

    5 Cancer and Immuno-senescence  

  Although the increased incidence of cancer with age on one hand and immunose-
nescence on the other are both well documented in animal models and in humans, 
the evidence for a causal link between the 2 is controversial. It is generally accepted 
that histologically similar tumors grow more slowly, with less angiogenesis, in aged 
mice relative to young mice (Reed et al. 2007). This is in keeping with the human 
experience.  

   5.1 Concept of Immuno-editing Deficiency  

  Recently, a concept more global than immuno-surveillance, called immuno-editing, 
has emerged in order to include the on-going interactions between a developing 
tumor and its destruction by the immune surveillance system (Dunn et al. 2004).  

  A critical aspect of the experiments in various immune deficiency models described 
above in section 3.1 is the demonstration that tumor development is in large part the 
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consequence of the failure of, or the escape from, the immuno-surveillance machinery 
and that the intact immuno-surveillance system of an immune competent host 
actively contributes to the selection of poorly immunogenic tumors. Indeed, tumors 
that develop in immune deficient mice, either spontaneously or following exposure 
to a carcinogen can be very efficiently rejected when injected into the wild-type 
immune competent counterpart strain, demonstrating that these tumors remain 
immunogenic. However, tumors induced by the same carcinogen in a wild-type 
immune competent animal cannot be rejected by syngeneic animals, suggesting 
that the intact immune surveillance system of the wild-type animals progressively 
eliminated the immunogenic components of the developing tumor resulting in the 
selection of poorly immunogenic tumors. Meanwhile, the tumors developing in the 
immune deficient mice, having not been subjected to immune pressure, remained 
immunogenic for competent hosts (Engel et al. 1997; Shankaran et al. 2001). The 
cause of the immuno-deficiency (e.g., IFN-γ or perforin deficiency), operating on 
various genetic backgrounds, and its possible association with other genetic defects 
may also lead to varying manifestations of tumor immuno-selection leading to dif-
ferent immunogenicities of the resulting tumors (Street et al. 2002).  

  The constant emergence of mutant tumor cells (due to their inherent genetic 
instability and interactions with their micro-environment) repeatedly challenges the 
system of immune surveillance to adapt and develop new ways to eradicate the 
newcomers. This on-going interplay takes place in the first two phases of the cancer 
immunoediting: elimination and equilibrium. These processes therefore contribute 
to what has been coined the “immunologic sculpting” of a tumor during its develop-
ment, the immunogenic components of the tumor being progressively eliminated 
(Dunn et al. 2004) by the immune surveillance mechanisms.  

  The third phase (escape) begins when a nascent, sub-clinical tumor develops 
characteristics that either render it insensitive to the immune surveillance or blunt 
the immune surveillance responses (e.g., tolerance induction), thereby allowing 
its development into a clinically relevant tumor. This model predicts that tumors 
developing in immune deficient animals would remain more immunogenic than 
the ones developing in immune competent animals, as their survival did not require 
refining an ability to elude a fully functional immune system. This prediction 
is also confirmed in the previously mentioned human clinical experience in the 
immuno-suppressed host where tumor eradication is achieved by simple withdrawal 
of immuno-suppressive therapy, indicating that tumors developing in immunocom-
promised human hosts tend to remain more immunogenic, presumably by lack of 
effective immuno-editing (Mackinnon et al. 1995b).  

  The concept of immunologic sculpting of nascent tumors also predicts that the 
nature of the immune pressure delivered by an aging immune system to arising 
tumors may evolve with time resulting in a different tumor evolution without being 
considered to be the result of an immune deficiency per se but simply because the 
tumor is submitted to a different immune pressure. For example, studies have demon-
strated an increase in Fas receptor (CD95) expression with age, either as percentage 
of Fas-expressing T-cells or as mean fluorescence intensity per T-cell, concomi-
tant with the increased frequency of memory and effector T-cells. This increase in 
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Fas receptor expression might facilitate the immune escape of Fas ligand (Fas-L) 
expressing tumors in elderly patients by promoting tolerance via the apoptosis of 
tumor specific leukocytes. In the sense that tumor editing by a senescent immune 
system will result in somewhat different tumors than in younger individuals, 
immuno-senescence can be considered to have an impact on tumor generation in 
the elderly. The question to answer in humans would be: are tumors arising in older 
individuals more immunogenic than in younger individuals? In keeping with the 
experimental data mentioned above, this would argue in favor of immuno-senes-
cence specifically allowing a greater immune escape for tumors. Such a question 
cannot be answered directly in humans. The answer would have to come from large 
epidemiologic studies or the realization, in future clinical trials, that effective cancer 
immunotherapy (unfortunately, yet to be developed) is more effective in older than 
in younger individuals although this would only be indirect evidence.  

  The immuno-editing model presents arguments both for and against immuno-
senescence being a cause for the increased incidence of cancer in the elderly. On 
one hand, it may be argued that the repeated assaults of mutating tumor cells on the 
immune surveillance system are more likely to be successful as the immune system 
weakens, be it due to pathologic (HIV or primary immuno-deficiencies), iatrogenic 
(immuno-suppressive therapies) or physiologic (age) causes. On the other hand, the 
model also implies that the longer tumor cells are present the more likely they are to 
ultimately find the Achilles’ heel of immune surveillance, regardless of its strength. 
Overall exposure to mutating tumor cells will inevitably increase with age and, there-
fore, immune escape would be expected to become more prominent with time.  

    5.2   Animal Model Arguments  

  A very dramatic model of heightened cancer immuno-surveillance is found in the 
SR/CR strain of mice (Cui and Willingham 2004) which developed a still poorly elu-
cidated genetic defect. This strain displays a very powerful resistance to a variety of 
highly lethal mouse tumors. Eradication of transplanted tumors occurs with a mas-
sive tumor infiltration with cells from the innate immune system. This appears to be 
the result of a highly coordinated response since the depletion of single leukocyte 
populations does not abrogate tumor protection. Interestingly, this genetically deter-
mined trait is highly age dependent as the mice lose their tumor protection ability 
between age 6 and 12 months (Cui et al. 2003). Leukocytes of young SR/CR mice 
lose their tumor protection functional ability when transferred to normal older mice 
but not when transferred to normal younger mice, suggesting that it is the “older 
environment” that is responsible for the loss of tumor protection while the cells 
themselves have the ability to remain functional when transferred in the younger 
animals. Although this model is useful to generate hypotheses of tumor surveillance 
mechanisms, it does not shed direct light on the human situation in aging.  

  The suggestive evidence derived from animal models is informative on the pos-
sible mechanisms at play; however, it remains subject to the criticism that it is limited 
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to very defined animal models that may or may not be relevant to human physiology 
(Cui and Willingham 2004) or involves mostly severely immuno-deficient ani-
mals which do not reflect the physiologic aging conditions in the normal human 
population. In this regard, the evidence presented above for the role of primary or 
acquired immuno-deficiencies in human cancer incidence also involves subjects who 
are much more immuno-suppressed than the general aging population and, therefore, 
do not reflect either the physiologic aging conditions of the human population at 
large.  

  However, if one is to accept that there is indeed a more immuno-deficient milieu 
surrounding tumors developing in the elderly, it may not only be due to intrinsic 
defects of the aging immune system as suggested above. Alternatively, the responses 
to tumor derived immuno-suppressive signals may have a more profound impact in 
the elderly because of characteristics newly developed in the aging immune sys-
tem. As previously mentioned, Fas receptor expression is increased in aging T-cells 
which may then become more susceptible to apoptosis in presence of FasL-bearing 
tumor cells. Tumor cells secretion of immuno-suppressive cytokines such as TGF-β 
or IL-10 may synergize with an already known heightened production in the elderly 
and result in an increased tumor-derived immune suppression. Indeed, some animal 
models would favor such mechanisms. In a study comparing the impact of the pres-
ence of lung tumors on the tumor induced immune dysfunction in young versus old 
mice, no difference was found in the number of either freshly isolated or anti-CD3 
stimulated spleen and lymph node CD4+ T-cells in young and old tumor bearing 
mice versus non-tumor bearing mice (although there was a overall decline in CD4+ 
T-cells with age, unrelated to the presence of a tumor); however the IFN-γ secretion 
by these CD4+ T-cells was significantly more decreased by the presence of tumors 
in the older tumor bearing animals than in the younger tumor bearing animals. Simi-
larly, although neither age nor presence of tumor had an effect on the number of 
spleen or lymph node CD8+ T-cells, IFN-γ secretion of these CD8+ T cells was also 
significantly more decreased in the older tumor bearing animals than in the younger 
tumor bearing animals (Young et al. 2001).  

  Some animal models point to a decrease in cell mediated immune surveillance 
as a cause of decreased tumor protection. Older mice immunized with a HER-2 
DNA plasmid are not well protected against a tumor challenge compared to younger 
mice. Although similar antibody production was found, no anti-p185neu specific 
cytotoxicity was found in lymphocytes from old animals (Provinciali et al. 2003).  

  In mice, statistically elaborated T-cell subset patterns, characteristic of aging, can 
be defined and are predictive of the longevity of the animals which includes resist-
ance to spontaneous lymphoma, mammary adenocarcinoma, and fibrosarcoma. 
These T-cell patterns are associated with disease development and occurrence of 
these T-cell patterns earlier in the life of the animals predicts earlier occurrence of 
tumors, suggesting that, in this model, early immuno-senescence (defined as the 
occurrence earlier in life of the T-cell patterns characteristic of aging) might predis-
pose to early death from cancer (Miller and Chrisp 2002).  

  Only few animal studies have attempted to approximate the conditions of nor-
mal human aging by studying the duration of exposure to a carcinogen in non 
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immunodeficient mice. In a large study of normal mice exposed to a carcinogen, 
while the incidence of tumor was dependent on the duration of carcinogen expo-
sure, it was not age dependent for a given exposure duration. The overall increased 
incidence of tumors with increasing age could be completely accounted for sta-
tistically as a result of increased exposure to the carcinogen and no other puta-
tive factors (such as immuno-senescence) needed to be incriminated (Peto et al. 
1975). Therefore, the duration of exposure to the carcinogen and the duration of 
the presence of newly mutated tumor cells in the animals more than the strength of 
the immune surveillance would determine the generation of clinically significant 
tumors. Although such studies are very instructive and argue against a specific role 
for immuno-senescence in the increased cancer incidence with aging in a generally 
healthy population, one must keep in mind that modeling the exposure to a single 
carcinogen is not adequate to model the complexity of carcinogenesis in the aging 
human population and that, therefore, these results cannot be fully extrapolated to 
the human circumstances.  

    5.3      Clinical Medicine Arguments  

  Several examples in clinical medicine argue against immuno-senescence having a 
significant role in the increased incidence of cancers (Zhang and Grizzle 2003). The 
incidence of most common cancers increases with aging but, as mentioned previ-
ously however, for most, the incidence plateaus around age 80 and declines there-
after while immuno-senescence continues to progress in the subsequent decades. In 
a study of 507 autopsies of elderly individuals, the prevalence of cancer was 35%, 
20% and 16% among people aged 75–90 years, 90–99 years, and over 100 years, 
respectively while the prevalence of metastases was 63%, 32% and 29% in the same 
age groups (Stanta et al. 1997). Other data on autopsy records confirm these trends 
(Miyaishi et al. 2000). If immuno-senescence were playing a significant role in 
decrease tumor immuno-surveillance, one would expect the cancer rates to continue 
to increase along with the immune deficiency. In fact, one hypothesis is that the 
decreased incidence of cancer in the oldest old is in part due to an unfavorable tumor 
environment created by the alterations of the innate immune system in this age 
group. In addition, multiple, non immune factors involved in aging could certainly 
contribute to this phenomenon (Bonafe et al. 2002).  

  Invasive prostate cancer develops 15 to 20 years following precursor lesions such 
as prostatic intraepithelial neoplasia. The immuno-editing model predicts that the 
lag time from benign to malignant lesions must be in part the reflection of an effec-
tive immune-surveillance at play. If immuno-senescence were contributing signifi-
cantly to the increased incidence of prostate cancer in older men, one would expect 
the time to transformation of a precursor lesion into prostate cancer to shorten as the 
population ages, reflecting a decline in immunosurveillance capacity with immu-
nosenescence as seen in multiple animal models cited above. This is not the case; the 
lag time from precursor lesions to prostate cancer remains the same with aging.  
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  Furthermore, if one is to accept that immuno-senescence facilitates tumor escape 
from immuno-surveillance, one should expect these tumors to develop more rapidly 
(therefore be more aggressive) since they are unhindered by the failing immune 
system. This is not true in the case of breast cancer where, when matched for tumor 
grades and types, there is no difference in clinical outcome between younger and 
older women.  

  The risk of developing lung cancer is very much a function of the duration of 
exposure to smoking and of the length of the smoking-free interval following expo-
sure. The lung cancer risk is reduced by 60% after a 10-year smoking-free period and 
continues to decline thereafter although the population at risk ages. This would argue 
against immuno-senescence as contributing to cancer incidence for this tumor. Unfor-
tunately, in order to properly evaluate whether or not smoking cessation in the elderly 
results, because of a putative effect of immunosenescence, in a lesser reduction of lung 
cancer risk, one would need to study and compare to the general population of smok-
ers a population of older individuals with the same duration of smoking exposure: a 
very unlikely population of subjects, older than 70 years of age, who started smoking 
in their 50’s and stopped by age 70. Furthermore, smoking is such a powerful risk 
factor in lung cancer that any significant increase or decrease in smoking exposure or 
smoking-free interval will be the predominant influences on lung cancer incidence, 
overpowering any other potentially true, but weaker, etiologic factors. The impact of a 
putative decrease in immuno-surveillance effectiveness with immunosenescence may 
be insufficient to counteract the power of the smoking exposure in the general popula-
tion and difficult to evaluate statistically. Of interest, as mentioned above, low CD4 
T-cell counts in HIV infected individuals now appear to be strongly correlated with lung 
cancer, independently of the smoking history, suggesting that, in this case, the HIV-
induced immuno-deficiency is pronounced enough for its effect to be noticeable.  

     6   Conclusion  

  The evidence that immuno-senescence markedly contributes to the increased incidence 
of cancer with aging is not strong. First, the observed increased incidence of cancer 
with aging is heavily weighted by the more common cancers that happen to have a 
peak incidence late in life for reasons most likely irrelevant to immune surveillance. 
Second, although the clinical evidence where human immunodeficiency is associated 
with an increased incidence in malignancies is convincing, it is restricted to popula-
tions of subjects with severe immuno-deficiencies and it may not be appropriate to 
extrapolate this evidence to the much less immunodeficient normal aging population. 
Third, the animal models contributing evidence for the causal link between cancer 
incidence increase and immuno-senescence are also mostly developed in severely 
immuno-suppressed animals and of the few studies performed in non severely 
immuno-suppressed animals some argue against a causal link between the two.  

  Furthermore, the many processes involved in the pathophysiology of cancer evolve in 
different directions with aging, some leading to an increased susceptibility and some to a 
decreased susceptibility to cancer. For example, the time factor leading to accumulation
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of more cellular carcinogenic injuries and the phenomenon of immuno-senescence 
would contribute to the overall trend in the direction of an increased incidence while 
the selection, in the oldest old, of a residual population who has withstood life either 
without the occurrence of cancer or with the ability to survive it (possibly due to a com-
bination of favorable genetic polymorphisms associated with longevity) contributes to 
the overall trend in the direction of an decreased incidence and can explain the decreas-
ing incidence in the 9th and 10th decades of life. Therefore the overall cancer incidence 
trend cannot be interpreted as the result of a single one of these processes.  

  In order to further address the question of the role of immuno-senescence in over-
all cancer incidence, more research must be done, both in models of non severely 
immunosuppressed animals and in large epidemiologic human studies. These stud-
ies must use reliable biologic markers (many of which have yet to be defined and / or 
validated), not only of immunosenescence but also of other significant factors con-
tributing to the overall cancer incidence such as genetic polymorphisms associated 
with longevity. Although the difficulty and the complexity of the answer underscore 
the complexity of carcinogenesis, the question of the role of immuno-senescence in 
overall cancer incidence remains a very important one to answer, not only for the 
understanding of cancer development in general but also for the development of future 
therapeutic or prophylactic immune strategies in the growing aged population.  
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Abstract: Breast cancer is a disease primarily of older women and, since the 
elderly population is rapidly expanding, so too will the number of breast cancer 
patients. The increased incidence of breast cancer in elderly people and its lower 
aggressiveness have been both related to the age-associated changes occurring in 
the immune system, the so-called immunosenescence. This phenomenon is best 
characterized by a remodelling of the immune system, which appears early on and 
progresses throughout a person’s life. The immunosenescence may not only impact 
on the incidence of breast cancer but also on the effectiveness of preventive and 
therapeutic approaches based on immune system activation. Immune adjuvants as 
well as anticancer substances which primarily exert a direct action on tumor cells 
may have an additive effect on immune-based anticancer approaches, thus playing 
an important role for the enhancement of immune responses in old ages. This review 
aims to perform a brief analysis of the age-related alterations of the cell populations 
involved in antitumour immunity and to analyze the main immunological targets of 
breast cancer, the effectiveness of immune-based prevention and therapy for breast 
cancer, and the adjuvant or additive approaches to activate an anticancer immune 
response in aging.
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1  Biology of Breast Cancer in the Elderly

Breast cancer is the most common malignancy in women with an age related increase 
in incidence ranging from 1 in 50 at age 50 to 1 in 10 at age 80 (Rao et al. 2007). With 
the aging of the western population and rising breast cancer incidence with advanc-
ing age, the number of women diagnosed with and surviving breast cancer will dra-
matically increase over the coming decades. A common view holds that older women 
develop a form of breast cancer that is intrinsically less aggressive (Silliman and Bal-
ducci 1998). In fact, though there is a higher frequency of malignant tumours in the 
aged, many naturally occurring tumours in humans and laboratory animals are less 
aggressive with advancing age and permit longer host survival (Ershler and Longo 
1997; Balducci et al. 1998). Both the growth and the metastatic spread of breast can-
cer are slower in older than in younger organisms. The less aggressive characteristics 
of breast cancer in the elderly have been related to the mechanisms that control the 
tumor growth in older individuals and, in particular, by the immunosenescence (Kaes-
berg and Ershler 1989). Weak or nonimmunogenic tumours, like spontaneous tumours 
in humans, may trigger a low immune response which is unable to reject the tumour 
but, on the contrary, may cause tumour growth enhancement due to the production of 
nonspecific growth stimulatory factors by immune cells. In old individuals, the induc-
tion of a weaker immune response and the consequent reduced production of growth 
factors may determine less fertile “soil” for tumour cells (Ershler and Longo 1997). 
In this context, a direct correlation between tumor growth rate and mononuclear cell 
infiltration has been observed in primary breast cancers leading to the hypothesis that 
mononuclear cells produced a tumor growth-stimulating cytokine (Kurtz et al. 1990); 
the degree of mononuclear cell response was inversely related to the age of the patient. 
On the other hand, the age-related immune alteration may influence the success of 
preventive or therapeutic interventions based on immune-system activation, raising 
the possibility to discover and to employ immune adjuvant or additive approaches 
for the elderly population (Provinciali and Smorlesi 2005). The need of adjuvant or 
alternative anticancer approaches based on immune system stimulation is particularly 
raised by the evidence that traditional therapies are often more aggressive in elderly 
patients, because of the higher risks of treatment related to the comorbidity associated 
to old age that renders the elderly a very “frail” patient.

2  Characteristics of Immunosenescence

Experimental and clinical data have demonstrated that ageing is associated with 
immune system dysregulation, generally characterized with the term of immunose-
nescence (Solana and Pawelec 1998). Age-associated immune alterations have been 
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related to the increase of infections, tumours, and autoimmune diseases in the elderly 
(Thoman and Weigle 1989; Miller 1996; Pawelec and Solana 1997; Burns and 
Goodwin 1998). For many years, on the evidence that postpuberal thymus involu-
tion may be relevant for specific immunity, studies on immunity during ageing have 
concentrated on the adaptive response and its hallmarks. Many investigators have 
examined age-related changes in T-cell subsets, in the hope of obtaining clues to the 
cellular basis of age-associated changes in immune functions. Most of this literature 
suggests that, in mice and in humans, ageing leads to an increase in the proportion 
of memory T-cells, and a reciprocal decrease in T-cells with the naïve phenotype, 
i.e., lymphocytes which have never encountered their specific antigen and that are 
essential for the induction of primary immune responses against new tumour anti-
gens. The numerical change in lymphocyte representation is accompanied by func-
tional alterations of T-cells that include reduced proliferation, generation of cytolitic 
effector cells, delayed-type hypersensitivity, and diminished primary and secondary 
antibody responses (Burns and Goodwin 1998). Furthermore, diminished and/or 
altered cytokine patterns have been described in old age with lower production of 
Th1 cytokines, such as IL-2 and IFN-γ and, conversely, higher amounts of Th2 
cytokines, such as IL-1, IL-6, IL-8, and IL-10, than young donors (Shearer 1997; 
Rink et al. 1998). The shift towards a Th2 profile is often associated with a chronic 
inflammation state in elderly people which, in turn, correlates with processes that 
contribute to the onset or progression of cancer (Franceschi et al. 2007). Though, 
the number of circulating B-cells has not been generally reported as changing with 
age, functional defects of B-cells have been reported in elderly subjects, mainly 
related to the decline in T-lymphocyte function arising during ageing.

Ageing may affect the antigen presenting cells (APCs) by influencing their anti-
gen processing capacity, the presence of costimulatory signals on their surface, the 
levels of cytokines in their microenvironment, or their migratory capacity (Provin-
ciali and Smorlesi 2005). It seems that one of the first alterations in APCs in ageing 
may affect the crucial step of antigen presentation, i.e., the degradation of endog-
enous proteins, and then the generation of peptides for presentation by MHC Class I 
molecules. A second defect occurring in APCs, which has been described during age-
ing is the expression of costimulatory molecules and the regulation of their activity. 
Though the total number and the expression of MHC I and II, CD80, and CD86 both 
on immature and mature APCs do not seem to differ significantly in young and old 
mice (Donnini et al. 2002; Lung et al. 2000), dendritic cells in germinal centres of 
aged mice were found to lack expression of important costimulatory ligands such as 
CD86 (Miller et al. 1994), which would promote the induction of anergy in the anti-
gen-specific T-cells with which they interacted. Among the factors that regulate the 
expression of costimulatory activity on APCs are sets of receptors of the nonclonal 
innate recognition system called pattern-recognition receptors (PRRs). Of these, 
toll-like receptors (TLRs) are receptors that recognize conserved molecular patterns, 
which are shared by large groups of microbial components and are perfectly capable 
of distinguishing between self and nonself pathogen-associated structures and in 
turn of signalling the presence of a pathogen to the APCs (Akira et al. 2001). The 
decreased TLR expression and function recently demonstrated on APCs from aged 
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mice may have an impact on the antigen presenting function resulting in an impaired 
immune activation of both innate and adaptive responses (Renshaw et al. 2002). The 
migratory capacity of DCs has also been found to be affected by the ageing proc-
ess (Steger et al. 1996a). A lower expression of the mRNA for the migratory CCR7 
chemokine receptor was found in APCs from old mice, and a lower lymphocyte 
cytotoxicity and a reduced number of CD8+ T-cells producing IFN-γ were induced 
by APCs from aged mice in comparison to APCs from young animals (Donnini 
et al. 2002). The fact that CCR7 was greatly increased in mature APCs up to the levels 
found in young animals and that in vivo migration of APCs to regional lymph nodes 
was higher in old than in young mice, suggests that an increased migratory capacity 
of old APCs may be required to balance their reduced antigen presentation to cyto-
toxic lymphocytes (Donnini et al. 2002). The latter assumption is further empha-
sised by the fact that the lower CTL cytotoxicity induced by APCs from old mice 
has been attributed to an age-related defect of antigen presentation rather than to an 
intrinsically lower frequency of cytotoxic T-lymphocytes (CTL). Evidence that the 
precursors of cytotoxic T-lymphocyte (pCTL) frequency always improved when the 
source of APCs was changed from old to young animals (Ershler and Longo 1997), 
and that the transfer of young T-lymphocytes to old mice was unable to correct 
the deficit in T-lymphocyte responsiveness observed in aged animals (Provinciali 
et al. 2000) is consistent with this suggestion. Through less evident than in T-cells, 
age-related alterations have been described also at the level of innate components 
of cell immunity, such as macrophages, polymorphonuclear leukocytes, as well as 
natural killer (NK) and γδ T-cells. With regards to macrophages, although early 
studies conducted in ageing mice or in human subjects showed normal macrophage 
function (Bar-Eli and Gallily 1979; Jaroslow and Larrick 1973), more recent studies 
have suggested that macrophage number and function may indeed be altered with 
ageing. A significant expansion of CD14dim/CD16bright circulating monocytes, which 
are considered to show phenotypic evidence for activation, has been reported to 
occur in elderly people (Sadeghi et al. 1999). The constitutive or induced produc-
tion of IL-1, IL-1 receptor antagonist, and IL-6, was found to increase in monocytes 
from elderly subjects (Sadeghi et al. 1999; O’Mahony et al. 1998). On the other 
hand, monocytes from old donors, when compared with monocytes from young 
subjects, displayed decreased cytotoxicity against tumour cells after LPS activation 
(McLachlan et al. 1995). Alterations in macrophage number and function have also 
been described in old rats and mice: impaired TNF-α production, reduced antitu-
mour activity and impaired capacity to produce TNF, IL-1 and nitric oxide, after 
in vitro activation with IFN-γ and LPS (Wallace et al. 1995; Khare et al. 1996; 
Corsini et al. 1999), lower expression of MHC Class II gene after incubation with 
IFN-γ (Herrero et al. 2001), and reduced expression of toll-like receptors (TLRs) 
on macrophages in ageing mice (Renshaw et al. 2002), were found in either rat or 
mouse cells. Polymorphonuclear leukocytes (PMNs) have been found among the 
cell populations more represented in the tumoral infiltrate after in vivo immuniza-
tion both in young and in old age (Provinciali et al. 2000; Cavallo et al. 1992, 1997). 
The peri- and intra-tumoral release of cytokines attracts PMNs, as demonstrated by 
the fact that mice challenged with IL-2-engineered tumour cells were able to reject 
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the tumour because of direct killing by activated PMNs and macrophages both in 
young and old age. Several studies show that the neutrophil number in blood and 
neutrophil precursors in bone marrow, as well as the response to GM-CSF and IL-3, 
are not lowered in the healthy elderly, albeit, the proliferative response of neutrophil 
precursor cells to G-CSF was found reduced (Chatta et al. 1993;Born et al. 1995; 
Angelis et al. 1997). The data from the Literature have reported differences arising 
from the effects of age on PMN phagocytosis, several studies showing a dramatic 
decrease in the PMN phagocytic activity from aged individuals (Antonaci et al. 
1984; Charpentier et al. 1981). Several groups have examined neutrophil microbi-
cidal activity and, though data are often conflicting, the bulk of evidence supports a 
decline in cytotoxicity towards bacteria and yeast with age (Corberand et al. 1981; 
Fulop et al. 1985; Lipschitz et al. 1988).

Whereas an age-related impairment of both endogenous and cytokine-induced 
NK-cell activities has been commonly reported in mice, the changes occurring in 
human NK-cell activity with advancing age remain to be fully elucidated. Data from 
the Literature demonstrates differences in line with the enrolment criteria used to 
select for the elderly subjects for the study and the use of total lymphocyte popula-
tions or purified NK-cells. Overall, both the total and the relative number of circu-
lating NK-cells were found to be significantly increased in healthy elderly people in 
comparison with young-adult ages. The age-related increase of NK-cell number has 
been considered as a compensatory mechanism for the decreased cytolytic activity 
per cell found in elderly subjects, (Sansoni et al. 1993). Their direct MHC-unre-
stricted cytotoxic effects apart, NK-cells have been shown to represent one of the 
first lines of defense during the early stages of immune activation because of their 
inducible secretory function. NK-cells synthesize many cytokines and chemokines 
that can positively or negatively modulate their activity and that of cells of the adap-
tive immune response. A lower production of IFN-γ, IL-8, and chemokines, was 
observed in either resting or activated NK-cells taken from healthy elderly subjects 
in comparison with young subjects (Krishnaraj 1997; Mariani et al. 2001).

Regardless of mechanism, the defect of NK activity in aged mice does not repre-
sent an irreversible process, since it may be recovered by hormonal and nutritional 
treatment (Fabris et al. 1994). Among hormonal factors relevant for NK function, 
it has been observed that thymic peptides or thyroid hormones, but not the pineal 
hormone melatonin, were able to restore the crippled NK cytotoxicity of spleen 
cells from old mice (Fabris and Provinciali 1989; Fabris et al. 1997; Provinciali 
et al. 1991a, 1997). Among the nutritional factors, either zinc or a lipid mixture 
which increases membrane fluidity, called “active lipids”, were able to recover the 
impaired NK function in aged animals (Provinciali et al. 1990a, 1991b). Whether 
endocrine and nutritional factors have an additive effect or act through the same 
intracellular mechanism remains to be seen, though the first possibility seems more 
likely since the action of TSH and thyroid hormones is specifically directed towards 
lymphokine-boosted NK activity, while active lipids are able to prevent age-associ-
ated impairment of basal NK cytotoxicity (Provinciali et al. 1990b, 1991a). Apart 
from IFN and IL-2, the effect of cytokines on the development of cytotoxic cells 
during ageing has scarcely been investigated. In a study conducted using IL-12, the 
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cytokine was able to boost both endogenous and IL-2-induced NK-cell activity in 
young and old mice. The levels of cytotoxicity were lower in old than in young ani-
mals although the relative increase of IL-12 plus IL-2 versus IL-2 alone was greater 
in old mice (Argentati et al. 2000). These data confirmed and extended previous 
findings obtained in humans and show that IL-12 is able to enhance NK cytotoxic-
ity to the same degree in both young and elderly subjects, whereas the induction of 
IL-2-activated cytotoxic cells decreased in elderly compared to young individuals 
(Kutza and Murasko 1996).

The data from the Literature on numerical or functional changes of γδ T-cells 
during ageing are scarce and fragmentary. It has been reported that the complexity 
of the gamma delta T-cell repertoire decreases with age as a consequence of the 
expansion of a few T-cell clones (Giachino et al. 1994). The analysis of γδ T-cell 
number and function in elderly people and in centenarians has demonstrated an 
age-dependent alteration of γδ T-lymphocytes, with a lower frequency of circulat-
ing γδ T-cells, an altered pattern of cytokine production, and an impaired in vitro 
expansion of these cells (Argentati et al. 2002). The decrease in the γδ T-cell number 
was due to an age-dependent reduction of Vδ2 T-cells, whereas the total number of 
Vδ1 T-cells was unaffected by age. As a result, the Vδ2/ Vδ1 ratio was inverted in 
old subjects and centenarians. A higher percentage of γδ T-cells producing TNF-α 
was found in old donors and centenarians whereas no age-related difference was 
observed in IFN-γ production. After in vitro expansion, a 2-fold lower expansion 
index of γδ T-cells, and particularly of the Vδ2 but not of the Vδ1 subset, was found 
in old people and centenarians in comparison with young subjects demonstrating 
the existence of a proliferative defect in γδ T-lymphocytes from aged subjects. In 
contrast, the cytotoxicity of sorted γδ T-cells was preserved in old people and cen-
tenarians. Interestingly, these cells were found more activated in the elderly than in 
young subjects, as determined by the increased expression of the early activation 
marker CD69 on γδ T-lymphocytes from old subjects, suggesting that the high level 
of basal activation of γδ T-cells was due to the “inflamed” environment of the eld-
erly host (Colonna-Romano et al. 2002).

3  Immunological Targets of Breast Cancer

The immune response is a potentially useful tool in cancer prevention and treat-
ment, and developing immunotherapies against proteins expressed on transformed 
cells remains a major goal of tumor immunology. Tumor-infiltrating lymphocytes 
obtained from metastatic effusions of breast cancer patients have been found to 
contain CD8+ cytotoxic T-lymphocytes (CTL) that recognize autologous tumor 
cells in a tumor-specific, HLA Class I-restricted manner, strongly suggesting that 
tumor-specific antigens are present in breast cancer cells (Linehan DC 1995). Sub-
sequent studies identified the HER-2/neu proto-oncogene and the transmembrane 
protein mucin (MUC1), whose expression has been correlated with poor prognosis, 
as important breast cancer-associated antigens. The main characteristics of these 
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antigens, together with those of novel breast cancer-associated antigens, such as 
mammaglobin-A, survivin, NY-BR-1, and nectin-4, are briefly described below.

3.1  HER-2/neu

The HER-2/neu oncogene encodes a 185-kDa receptor-like thyrosine kinase that 
was found to be overexpressed in several types of human adenocarcinomas, espe-
cially in breast tumours, and which was correlated with short time to relapse and 
poor survival of breast cancer patients (Slamon et al. 1989; Berchuck et al. 1990). 
It is estimated that approximately 1 in 4 breast cancers have too many copies of the 
HER-2 gene, resulting in the overproduction of protein receptors found on the sur-
face of tumor cells. These special proteins bind with other circulating growth factors 
to cause uncontrolled tumor growth. Consequently, HER-2 positive breast cancers 
tend to grow fast. In healthy individuals HER2/neu receptor, which is involved in 
organogenesis and epithelial growth, is highly expressed during foetal development 
while is present at low levels in adult tissues. HER2/neu is a self antigen with poor 
immunogenicity due to immunological tolerance, but weak humoral (Disis et al. 
1994, 1997) and cytotoxic (Fisk et al. 1995; Peoples et al. 1995) immune responses 
directed against HER2/neu antigen have been detected in patients with HER2/neu 
expressing mammary and ovarian tumours. These observations demonstrate that 
tolerance to this oncoprotein is not absolute and could be circumvented by using 
potent active vaccines enhancing to therapeutic levels the ineffective naturally 
occurring anti-HER2/neu immunity. In fact, in experimental models conducted in 
transgenic mice or in mice challenged with syngeneic tumor cells, immunization 
with DNA plasmids coding for p185neu, the product of the HER-2/neu oncogene, 
has been shown to hamper and to oppose mammary carcinoma development (Chen 
et al. 1998; Amici et al. 2000; Quaglino et al. 2004; Smorlesi et al. 2006).

3.2   MUC1

Human mucin (MUC) family member, MUC1, is a high molecular weight protein 
normally expressed in a highly glycosylated form and low levels on the apical sur-
face of many types of normal epithelial cells (Finn et al. 1995). MUC1 is of interest 
and a potential target for tumor immunotherapy because it is aberrantly expressed 
on a wide variety of epithelial adenocarcinomas, including breast and ovarian can-
cer. There is an up to 100-fold increase in the amount of mucin present on cancer 
cells compared with normal cells; this MUC1 has an ubiquitous rather than focal 
cellular distribution and is present in a hypoglycosylated form, revealing peptide 
epitopes not easily identified in normal mucins. Such alterations are recognized 
by the immune system of cancer patients with MUC1+ tumors. In fact, analyses of 
immune responses in cancer patients with various adenocarcinomas have revealed 
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the presence of low-titer anti-MUC1 Abs and of low-frequency MUC1-specific 
CTL (Kotera et al. 1994; Barnd et al. 1989). Both in experimental mouse models 
transgenic for human MUC-1 and in clinical studies in cancer patients, immuniza-
tion against human MUC-1 increased the number of mucin-specific CTL precursors 
and induced some objective responses (Ko et al. 2003; Tanaka et al. 2001; Disis 
et al. 2002; Mukherjee et al. 2003). Higher protection was recently obtained in a 
transgenic mouse model expressing human MUC1; immunization of these mice 
with MUC1 plasmid DNA and with a plasmid encoding murine interleukin-18 
(IL-18) resulted in a significant tumor protection and survival after challenge with 
tumor cells expressing human MUC1 (Snyder et al. 2006).

3.3  Mammaglobin-A

Mammaglobin-A has been recently identified as a novel breast-cancer associated 
antigen using a differential screening approach. Several properties of mammaglobin-
A make it a clinically relevant breast cancer-associated marker. Unlike other genes 
overexpressed in breast cancer, including HER-2/neu and MUC1, mammaglobin-A 
is expressed at high levels in most human breast cancer cell lines and primary breast 
tumors (Watson et al. 1996). Furthermore, the expression of mammaglobin-A seems 
to be independent by breast tumor differentiation. CD8+ CTL have been developed 
in vitro against several mammaglobin-A derived epitopes and have been found able 
to recognize some epitope of this tumor-associated antigen (Jaramillo et al. 2002). 
Using a transgenic mouse model expressing human HLA-A2 and human CD8, it 
has been demonstrated that vaccination with mammaglobin-A cDNA results in the 
development of a CD8+ CTL response against mammaglobin-A+ tumors. These 
CD8+ CTL were able to induce the regression of established breast cancer tumors in 
vivo (Narayanan et al. 2004). Furthermore, CD8+ T-cells generated against recom-
binant mammaglobin-A-pulsed dendritic cells were found to display a marked cyto-
toxic activity against mammaglobin-A-positive breast cancer cell lines, suggesting 
that mammaglobin-A can serve as a breast cancer-specific antigen and may be use-
ful for designing new immunotherapy protocols for the treatment and prevention of 
breast cancer (Manna et al. 2003).

3.4  Survivin

Survivin is a member of the inhibitor of apoptosis (IAP) family, which is also 
involved in the regulation of cell division and is also overexpressed and associated 
with parameters of poor prognosis in breast cancer and in other human cancers, 
including carcinomas of the lung, colon, stomach, esophagus and pancreas (Sohn 
et al. 2006). Overexpression of survivin has been associated with resistance to 
chemo/endocrine therapy in breast cancer patients. Furthermore, survivin expres-



Breast Cancer and Immunosenescence 1147

sion correlated with Grade III and lack of oestrogen receptor, and was identified as 
an independent predictor of shorter survival in poor prognostic breast cancer patients 
(Hinnis et al. 2007). The detection of circulating cancer cells expressing survivin 
mRNA was associated with increased recurrence of breast cancer (Yie et al. 2006). 
The presence of autoantibodies to survivin in the sera of patients with infiltrating 
ductal carcinoma of the breast (Al-Joudi and Iskandar 2006), and the activation 
of cytotoxic T-cells directed against survivin after in vitro culture of autologous 
lymphocytes with dendritic cells loaded with killed allogeneic breast cancer cells 
(Saito et al. 2006), demonstrated the possibility to activate both humoral and cel-
lular immune responses against survivin, suggesting that this protein may be a suit-
able target for future immune-based therapeutic strategies.

3.5  NY-BR-1

NY-BR-1 is a recently identified differentiation antigen of the mammary gland 
which is expressed in >80% breast tumors and which elicits humoral and cellular 
responses in a subset of breast cancer patients (Jager et al. 2005). Furthermore, NY-
BR-1 has been recently found to be more frequently expressed in grade 1 than in 
grade 2 or 3 carcinomas, with no difference in expression between primary tumors 
and metastases, and to be correlated directly with estrogen receptor expression and 
inversely with HER-2/neu and EGFR expression (Theurillat et al. 2007). The strong 
expression of NY-BR-1 in breast tumors, its cytoplasmic and membrane localiza-
tion and accessibility to immune system components has suggested to pursue NY-
BR-1 as a potential target for immune-based therapies in breast cancer patients (Seil 
et al. 2007).

3.6  Nectin-4

Nectins belong to a new family of cell adhesion molecules which are members of 
the immunoglobulin superfamily and are components of E-cadherin-based adherent 
junctions in epithelial cells (Reymond et al. 2001). Four nectins have been described 
which are structurally related and exibit three conserved immunoglobulin-like 
domains in their extracellular regions. All nectins except nectin-4 are expressed in 
various kinds of cells in adult tissues. Nectin-4 is mainly expressed during embryo-
genesis but is not detected in normal adult tissues or in serum. With regards to breast, 
nectin-4 is not detected in normal epithelial cells, and is highly expressed both in 
tumor cell lines and tumors from breast origin. Recently, it has been reported that 
nectin-4 is shed from the tumor cell surface and represents a sensitive serum marker 
for the follow-up of patients with metastatic breast carcinoma (Fabre-Lafay et al. 
2007). For these reasons, nectin-4 has been suggested as a new tumor-associated 
antigen for breast cancer and a potential target for breast cancer immunotherapy.
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4  Immune-mediated Approaches for the Prevention 
and Therapy of Breast Cancer in Ageing

Although newer modes of therapy for breast cancer are being applied, traditional 
therapy involving surgery, radiotherapy, chemotherapy, and endocrine therapy, con-
tinues to be primarily used. However, in spite of favourable prognostic factors and less 
aggressive biological behaviour, elderly breast cancer patients receive less aggres-
sive treatment when compared with their younger counterparts. Patient preferences, 
comorbidity, functional status, life expectancy, risks and benefits of treatment, and 
family support are all important considerations when developing a treatment plan in 
older woman. Relevant therapies, such as chemotherapy, may have a role in a select 
group of patients with adverse prognostic factors. In fact, the pharmacokinetics 
behaviour of anticancer drugs may be altered with aging due to differences in body 
composition and decreased hepatic and renal function. For this reason, even if age 
is not a contraindication to cancer treatment, the administration of chemotherapy 
to older cancer patients involves adjustment of the dose to renal function, prophy-
lactic use of myelopoietic growth factors, maintenance of haemoglobin levels, and 
proper drug selection. Adjuvant approaches based on immune system activation are 
promising in breast cancer treatment and, particularly in the elderly population; they 
might overcome the problems related to conventional treatments in the frail elderly. 
Immunoprevention and immunotherapy for tumor-associated antigens has become 
a major field of investigation for the treatment of cancer, and, particularly, of breast 
cancer. Cancer vaccination represents today the most intriguing possibility in acti-
vating an immune response capable of effectively hampering the progression of the 
preclinical stages of a tumour (Finn 2003). Cancer vaccines that can be applied in 
both prevention and therapy are potentially less toxic than chemotherapy or radia-
tion and could be especially suitable for older more frail cancer patients. In recent 
years, experimental data have shown the effectiveness of anticancer vaccination 
models which can potentially elicit a potent immune response and induce immune 
memory against tumour antigens (Cavallo et al. 1997;Oshikawa et al. 1999; Stewart 
et al. 1999). Most data on the preventive potential of vaccines have been drawn 
from studies performed in mice transplanted with parental tumors or in transgenic 
mice. The use of transgenic mouse models spontaneously developing cancers is 
certainly preferable since murine models of cancer involving the challenge of mice 
with a bolus of tumour cells provide information that, while informative, may not 
be entirely relevant to cancer development in humans, where the tumour is initiated 
by the clonal expansion from a single in vivo cell. An experimental model which 
is widely used in studies on cancer immunoprevention is represented by murine 
tumours overexpressing the rat HER-2/neu proto-oncogene or its mutated trans-
forming form. HER-2/neu transgenic mice express the activated rat neu oncogene 
neu-T, in which a point mutation renders the neu gene product under the control of 
the regulatory sequences of the MMTV promoter constitutively active. These mice 
develop spontaneous focal mammary adenocarcinomas beginning at 5-6 months of 
age, with a development kinetics and histology of these tumors that bears a striking 
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resemblance to what is seen in patients with breast cancer. Though the efficacy of 
active vaccination might be limited by the nature of HER2/neu, targeting a self 
tumour antigen offers the remarkable advantage in avoiding the problem of the 
emergence of tumour specific antigen-loss variants which are usually obstructive 
when targeting tumour specific nonself antigens. The genetic instability of tumour 
cells which can elude immune surveillance by activating mechanisms of phenotipi-
cal changes is one of the reasons why immunotherapy is ineffective (Cahill et al. 
1999), but when the presence of a tumour antigen on tumour cells is the prerequisite 
for their tumorigenicity, as is the case with HER2/neu-expressing tumours, cells that 
have lost the antigen are unable to grow and cause tumours. So far the experiments 
performed in murine models of HER2/neu-expressing mammary carcinoma have 
clearly demonstrated that the efficacy of antitumour vaccination is dependent on 
the immunocompetence of the host (Colombo and Forni 1994; Cavallo et al. 1997). 
Indeed, the rejection of tumors was related to the immune effectiveness of mice and 
no protection against the tumour challenge was obtained in physically or chemically 
immunosuppressed hosts (Colombo and Forni 1994) whereas an increased anti-
tumoral response was observed to enhance immunological effectiveness through 
adjuvants (Amici et al. 2000).

The remodelling of the immune system taking place during ageing suggests that 
vaccination models which proved efficacious in young-adult age may be not wholly 
efficient in old age.

In particular, at least 3 main characteristics of the immunosenescence may deter-
mine an age-related disadvantage for the potential application of cancer vaccina-
tions in the elderly. First, the possibility of inducing an effector-cell population in 
response to a vaccine depends on the recognition of the vaccine antigen by naïve 
T-cells. It has been clearly shown that old mice give weaker primary responses than 
young mice, because of an age-dependent reduction of the pool of naïve T-cells 
and of the fact that the conversion to memory phenotype is compromised with age 
(Pawelec and Solana 1997; Pawelec et al. 2001; Kapasi et al. 2002). Second, in 
contrast to vaccines against infectious agents, in which the generation of neutral-
ising humoral immunity is the most important feature, the major focus in cancer 
immunoprevention has been on the generation of Th1-cell immunity which pro-
motes CTL responses. The ageing process appears to be accompanied by a dysregu-
lation of Th1 and Th2 responses, with a shift to the Th2 phenotype (Shearer 1997). 
This dynamic change towards a Type 2-dominant state may imply that a particular 
vaccine strategy may not be equally efficacious in young adults and in the elderly. 
Third, the defect of antigen presentation by APCs to T-lymphocytes, which has 
been reported in aged mice, strongly suggests the existence of an age-associated 
multi-step defect in which the different cell populations involved in the activation of 
anticancer immunity are all affected (Pawelec et al. 1998; Donnini et al. 2002).

The new light shed on innate immunity and on its integration with specific 
immune effectors over the past few years emphasizes a further disadvantage effect-
ing preventive approaches in the elderly. The signals that are produced by the com-
ponents of the innate system required to direct the adaptive immune response may 
be insufficient or erroneous in aged individuals and might thus adversely influence 
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the specific clonal adaptive response. It is thus that the age-related alterations of γδ 
T-cells, NK-cells, the expression of toll like receptors on antigen presenting cells, 
may be relevant for their implications in the activation of inefficient specific T-cell-
mediated responses.

Some direct evidence of the decreased efficiency of breast cancer vaccines in 
ageing have been recently described in mouse models. A study was conduced on 
the efficacy of interleukin-2 (IL-2)-engineered mammary tumour cells to induce an 
immune response capable of rejecting the tumour and of inducing specific immune 
memory in young and old mice (Provinciali et al. 2000). In this study it was found 
that mammary adenocarcinoma TS/A cells engineered to release IL-2 were rejected 
in both young and old mice, whereas, unlike what occurred in young mice, it was 
not possible to induce a specific immune memory against TS/A cells in old animals. 
Whereas the rejection of IL-2-transduced cells was attributed to the good infiltra-
tion of neutrophils and macrophages, the defect in memory acquisition was cor-
related with a reduced representation of both CD4+ and CD8+ lymphocytes in the 
tumoral infiltrate in old mice (Provinciali et al. 2000). The age-related decreased 
effectiveness in inducing memory against tumour cells was recently confirmed in 
another paper which adopted a different experimental approach. The antitumoral 
vaccination with DNA plasmids codifying HER-2/neu in old mice demonstrated 
that effectiveness in inducing protective immunity against a lethal challenge with 
syngeneic tumour cells overexpressing HER-2/neu was lower in old mice than it 
was in young animals (Provinciali et al. 2003). The reduced number of objective 
responses observed in old mice was associated with an age-related impairment of 
several immune responses. Although further evidence in other experimental models 
has to be provided, present knowledge suggests that the application of anticancer 
vaccination in ageing may not be so effective as it is in young age because of the 
existence of age-related defects in the activation of specific immune responses mak-
ing it necessary to develop specific approaches for the immuno-prevention of cancer 
in advanced age.

A great bulk of experimental and clinical evidence has demonstrated that the 
age-related immune alteration does not represent an irreversible process and that 
it is possible to recover the damaged immune function through endocrinological 
or nutritional manipulation in old ages (Provinciali et al. 1991a, 1991b). In this 
context, the possibility to improve the low effectiveness of vaccination against 
mammary cancer in aging using “adjuvant” substances seems to represent a good 
approach. In fact, adjuvants are often required to augment immune responses to 
vaccines, particularly when the vaccine is targeting weak antigens or self-antigens, 
such as HER-2/neu or MUC1. One of such adjuvants might be represented by Imiq-
uimod, an immune response modifier of the imidazo-quinoline family that has been 
demonstrated to exert profound anti-viral and antitumor effects (Suader 2000). The 
immune-modulating properties of Imiquimod have been found to be exerted through 
its capacity to bind to and stimulate the toll-like receptor (TLR) –7 and TLR-8, with 
consequent activation of the innate immune response as well as the cellular arm of 
acquired immunity (Stanley 2002). The potential of Imiquimod and its analogue 
S-27609 as adjuvants of DNA vaccination against HER-2/neu have been recently 
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evaluated in transgenic mice developing spontaneous mammary tumors (Smorlesi 
et al. 2005). The association of a DNA vaccine encoding a portion of rat HER2/neu 
with either Imiquimod or S-27609 was found to delay the development of sponta-
neous mammary tumors and to reduce their incidence, in comparison with DNA 
vaccination alone. Almost 80% or 40% of tumor-free mice were found at the end 
of measurement time in mice vaccinated and supplemented with Imiquimod or S-
27609, respectively. The antitumor preventive effect was associated with increased 
antibody and cell-mediated immune responsiveness against HER-2/neu. In mice 
vaccinated and supplemented with Imiquimod, a small but significant increase of rat 
p185neu-specific cytotoxicity and of IFN-γ and IL-2-producing CD8 T-cells, together 
with a reduction of IL-4 producing CD4 T-cells, and a switch from a IgG1 towards 
a IgG2a phenotype of anti-p185neu antibodies, suggested for a TH1 polarization of 
the immune response. Whether imiquimod is effective in recovering the reduced 
immune responsiveness observed after immunization against HER-2/neu in aged 
mice remains an open question even if the good adjuvant effect obtained in young 
age make imiquimod a good candidate for boosting aged immune functions after 
immunization.

Another compound that has been demonstrated potential as adjuvant of immune 
response in breast cancer models is the drug metformin. The treatment of HER-2/
neu transgenic mice with the antidiabetic biguanide metformin inhibited mammary 
tumor development decreasing the incidence and the tumor size, increased their 
latency, and prolonged life span of these mice (Anisimov et al. 2005). The metformin 
effect was associated with a significant increase of cytotoxic lymphocytes produc-
ing granzyme B and perforin in their tumoral mammary glands. The exact mecha-
nisms involved in this effect were not investigated in detail, even if an increased 
lymphocyte metabolism determined by the metformin-induced changes in glucose 
metabolism was suggested (Frauwirth and Thompson 2004).

Whereas the above described studies have demonstrated the possibility to induce 
a specific immune response able to prevent the development of breast cancer, the 
approaches the have been tried with the aim of activating an immune response able 
to provoke the regression of established tumours have demonstrated that rejection 
of an established cancer is a difficult, if not impossible, task for the immune sys-
tem. The difficulty in inducing the regression of established tumors is particularly 
true when normally expressed “self antigens” are used as targets for human tumour 
immunotherapy such as, for example, HER-2/neu or MUC1 for breast cancer. This 
approach is based on immunologic principles which focus on circumventing tol-
erance, a primary mechanism of tumour immune escape. The premise for such a 
possibility is that the autoimmune consequences of this therapeutic approach are 
tolerable and not life limiting; in other words, they may effect functions that are 
not necessary for survival or that can be readily replaced. In murine models, the 
therapy of very early mammary carcinomas has been accomplished by immuniz-
ing animals against the self protein p185. Up until now these results have been 
obtained in murine models transplanted with HER-2/neu overexpressing tumour 
cells and in current studies in transgenic mouse models (Lollini a Forni 2003; Cur-
cio et al. 2003). Immunisation of breast cancer patients with HER-2/neu peptides 



1152 M. Provinciali et al.

generated CD8+ and CD4+ T-cells responsive to HER-2/neu and, as appears from the 
preliminary results, in some effective clinical response, without inducing autoim-
munity against tissues expressing basal levels of the protein (Ko et al. 2003; Bern-
hard et al. 2002). In a recent study, the immunization of early breast cancer patients 
(ductal carcinoma in situ) with dendritic cells pulsed with HER-2/neu HLA Class 
I peptides increased the number of HER-2/neu-HLA-A2 tetramer-staining CD T-
cells bearing CD28 antigen and decreased the inhibitory B7 ligand CTLA-4 on the 
same cells. The vaccinated subjects also showed accumulation of T- and B-lym-
phocytes in the breast and decreased HER-2/neu expression in the surgical tumor 
specimens, often associated with measurable decreases in residual ductal carcinoma 
in situ (Czerniecki et al. 2007). Studies on the immunotherapy of spontaneous car-
cinomas targeting the self antigen mucin-1 (MUC-1) are also in progress. Both in 
experimental mouse models transgenic for human MUC-1 and in clinical studies 
in advanced cancer patients, immunisation against human MUC-1 increased the 
number of mucin-specific CTL precursors and induced some objective responses 
(Tanaka et al. 2001; Disis et al. 2002; Ko et al. 2003; Mukherjee et al. 2003). In a 
recent clinical trial conducted in early stage breast cancer patients, immunization 
with oxidized mannan-MUC1 resulted in a significant beneficial effect, with no 
recurrences in patients receiving immunotherapy after more than 5.5 years after 
treatment. In the same study, many of immunized patients had measurable antibod-
ies to MUC1 and MUC1-specific T-cell responses (Apostolopoulos et al. 2006).

Though there are no yet clinical data on the effectiveness of these immuno-
therapeutic approaches in elderly breast cancer patients, an important question is 
whether the immunosenescence may prove to be an advantage or disadvantage for 
the potential application of immunotherapeutic approaches in the elderly. Indeed, 
if, on the one hand, the remodelling of immune functions determines an impairment 
of the processes involved in immune-mediated anticancer defenses and limits the 
use of immunotherapy in ageing, on the other hand, the generalised phenomenon 
of senescence may contrast some mechanisms that favour the growth of tumours 
and consequently might lend support to immunological anticancer strategies. As 
mentioned above, the slower growth rate and the reduced aggressiveness of cancer 
in the old has been related to the low immune response activated in aged people 
against weak or nonimmunogenic tumours, like spontaneous tumours in humans; 
this low immune activation, even if it is unable to reject the tumour, determines a 
reduced production of nonspecific growth factors by immune cells which, in turn, 
may determine less fertile “soil” for tumour cells (Ershler and Longo 1997). Fur-
thermore, the weaker immune response induced in old age might reduce the risk 
of metastatic cancer-cell clones selection caused by a powerful but incomplete 
immune response (Seymour et al 1999). Finally, the fact that certain poor immuno-
genic tumours do not grow well in old hosts but grow aggressively in young hosts 
has been related to age-associated deficits in tumour vascularisation and, in par-
ticular, to a lack of angiogenic factors or the presence of host inhibitors (Kreisle et 
al. 1990; Pili et al. 1994). A further age-related disadvantage that may contrast the 
activation of effective anticancer immune responses is represented by the fact that 
some of the mechanisms used by cancer cells to escape immune clearance might 
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be more effective in ageing. One of these is related to the Fas ligand (FasL)/Fas 
receptor (FasR) interaction. Various studies have demonstrated significant increases 
in the FasR expression with age, either as percentages of T-cells or as an intensity 
of mean fluorescence (Fagnoni et al. 2000). An increased FasR expression on aged 
leukocytes might facilitate the immune escape of tumours expressing FasL in eld-
erly patients by promoting the apoptosis of tumour infiltrating leukocytes. Another 
mechanism which enables tumours to evade immune rejection is the release by 
tumour cells of immunosuppressive cytokines. Many tumours produce TGF-β, or 
IL-10, or other cytokines which tend to suppress inflammatory T-cell responses and 
cell-mediated immunity, which are needed to control tumour growth and to destruct 
tumour cells. In old subjects, these suppressive cytokines released by tumour cells 
may synergize with immunosuppressive cytokines (TGF-β, IL-10, and others) which 
are already overproduced by leukocytes up to elevated concentrations able to impair 
antitumour immune responses. Furthermore, IL-6, another cytokine overproduced 
in the elderly, has been reported to increase the expression of the TGF-β receptor, 
thus facilitating this mechanism of tumour immune escape (Zhou et al. 1993). Pros-
taglandins are other factors that have been involved in cancer-induced immune sup-
pression. Tumour cells produce prostaglandins which can inhibit various immune 
functions. The immune suppression induced by tumour cell-derived prostaglandins 
may have particular implications in ageing, since lymphocytes from elderly subjects 
are now known to be sensitive to inhibition by prostaglandins in comparison with 
lymphocytes from younger individuals (Goodwin and Messner 1979).

Another piece of evidence that may influence the success of immunotherapy 
against self antigens in the elderly is the suspected reduced representation of cells 
with potential suppressive activity. In particular, it has recently reported that the 
number of CD4+CD25+ T-regulatory cells, a cell population capable of down-regulat-
ing immune responses to self-antigens, progressively decreases with increasing age of 
mice (Murakami et al. 2002). The decrease of these cells in the elderly may favour the 
induction of reactive immunity against self antigens rather than the activation of toler-
ogenic mechanisms. It seems then, that various factors may be involved in reduced 
tumour growth and metastatisation in the elderly particularly in the case of spon-
taneous tumours which express “self” antigens and are weakly immunogenic. This 
age-related advantage might be further exploited in the development of immunothera-
peutic approaches for the elderly. A reduced T-regulatory cell number, for example, 
might favour the application of immunotherapeutic procedures capable of enhancing 
the CTL response specific for cancer associated “self” antigens.

5  Anticancer Agents as Inducers of Apoptosis and Senescence 
Like Growth Arrest in Breast Cancer Models

Apart from or in addition to the activation of immune-mediated anticancer effects, 
several agents have demonstrated effective direct antitumor activity in breast can-
cer models. The mechanisms involved in this anticancer action have been mainly 
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related to the induction of apoptosis and/or of senescence like growth arrest. For 
many years, the anticancer effect exerted by chemotherapeutic substances has been 
related to the induction of apoptosis, i.e., an active type of cell death operating in 
either physiological or pathological conditions in adult life and tumor regression 
(Vaux 1993); more recently, it has been demonstrated that an alternative pathway 
to cell death leading to permanent growth arrest in cancer cells may occur and may 
be involved in the anticancer effect of many substances. This phenomenon, called 
senescent-like growth arrest, is a cellular response that resembles replicative senes-
cence occurring in normal cells and that may be crucial for protection against cancer 
development (Wanh et al. 2003; Narita and Lowe 2005). A commonly used surro-
gate marker of senescence is the senescent associated β-galactosidase (SA-β-gal) 
active at pH 6.0; this activity was shown to correlate with senescence in aging cell 
cultures in vitro and in vivo. Like other damage responses of normal cells, such as 
quiescence and apoptosis, senescent-like terminal proliferation arrest involves the 
function of wild-type p53 (Serrano et al. 1997).

A group of agents, mostly represented by natural substances, has been studied for 
its effect on breast cancer in in vivo murine models. The effect of these substances, 
mainly exerted directly on tumor cells, may certainly be useful in breast cancer 
treatment, having an additive effect with the antitumor immune responses induced 
by immunization with tumor antigens, or with immune adjuvants, particularly in old 
ages, when the immunosenescence may impair the efficacy of immune-mediated 
therapeutic approaches.

5.1  Natural Substances

5.1.1 Resveratrol

Resveratrol (trans-3, 4′, 5-trihydroxystilbene) is a naturally occurring polyphenolic 
antioxidant compound present in grapes, mulberries, peanuts, and red wine. Resver-
atrol has been identified as an excellent candidate cancer chemopreventive, based 
on its safety and efficacy in experimental models of carcinogenesis. It has been 
found to inhibit diverse cellular events associated with tumor initiation, promotion 
and progression (Jang et al. 1997). The effect of Resveratrol on the development 
of mammary tumors appearing spontaneously in HER-2/neu transgenic mice has 
been recently investigated (Provinciali et al. 2005). The mechanisms involved in 
Resveratrol antitumor effect were evaluated studying the immune effectiveness, 
the tumor apoptosis, and the expression of mRNA and protein for HER-2/neu in 
tumoral mammary glands from Resveratrol-treated mice and in tumor cell lines. In 
vivo Resveratrol supplementation delayed the development of spontaneous mam-
mary tumors, reduced the mean number and the size of mammary tumors, and 
diminished the number of lung metastases in HER2/neu transgenic mice. These 
effects were associated with a down-regulation of HER2/neu gene expression and 
an increased apoptosis both in tumoral mammary glands and in murine and human 
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breast cancer cell lines. The induction of apoptosis caused by Resveratrol was 
probably consequent to its effect on HER-2/neu expression, since it has been dem-
onstrated that apoptosis in HER-2/neu over expressing cells may be induced both by 
down regulating HER-2/neu expression or by inhibiting the expression or function 
of the p185 HER-2 protein (Roh et al. 2000). The Resveratrol supplementation did 
not affect immune efficiency, as neither the basal nor the IL-2-induced NK activi-
ties, nor the lymphocyte number and proliferation were modified in Resveratrol 
supplemented in comparison with control mice. The Resveratrol effect was then 
directly exerted towards cancer cells without the modulation of the immune system 
thus implying that the Resveratrol anticancer action may be additive to that exerted 
by immune-mediated therapeutic intervention.

5.1.2 Silybin

Silybin, a main component of the milk thistle of Silybum marianum, has been 
reported to possess anticancer activity (Kren and Walterova 2005). The effects of 
IdB 1016, a complex of silybin with phosphatidylcoline, were recently investigated 
on the development of mammary tumors appearing spontaneously in HER-2/neu 
transgenic mice (Provinciali et al. 2007). The mechanisms involved in IdB 1016 
antitumor effect were evaluated studying the apoptosis, the senescent-like growth 
arrest, the intratumoral leukocyte infiltrate, and the expression of HER-2/neu and 
p53 in tumoral mammary glands from transgenic mice and in the human breast 
SKBR3 tumor cells. IdB 1016 administration delayed the development of spon-
taneous mammary tumors, reduced the number and the size of mammary tumor 
masses, and diminished the lung metastatization in HER2/neu transgenic mice. In 
tumoral mammary glands from IdB 1016-treated mice, a down-regulation of HER2/
neu gene expression was associated with an increased senescent-like growth arrest 
of tumor cells, and an increased infiltrate of neutrophils, CD4 and CD8 T-cells. 
Both senescent-like growth arrest and apoptosis were significantly increased and 
were associated to a reduced p185HER2/neu protein and an increased p53 mRNA in 
SKBR3 in vitro treated with IdB 1016 in comparison with control cells. Differently 
with what observed using resveratrol, silybin may retain a double anticancer effect 
exerted at the level of both tumor cells and cellular immunity.

5.2  Hormonal Treatment

5.2.1 Melatonin

The pineal gland hormone melatonin has been shown to have an important function 
in the development of breast cancer. Epidemiological observations have demon-
strated an increased risk of breast cancer in night shift workers, flight attendants, 
radio and telegraph operators, in whom an altered melatonin production is present, 
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and, conversely, a decreased risk in blind women. An inhibition of the pineal 
function with pinealectomy or with the exposure to the constant light regimen has 
been shown to stimulate mammary carcinogenesis, whereas the light deprivation 
inhibited the same (Anisimov 2003). Treatment with melatonin as well as the pineal 
peptide preparation Epithalamin or the synthetic tetrapeptide Epitalon was found 
to inhibit mammary carcinogenesis in pinealectomized rats, in animals kept at the 
standard light/dark regimen or at the constant illumination regimen. In HER-2/neu 
transgenic mice, the exposure to constant light illumination was found to promote 
mammary carcinogenesis whereas the administration of melatonin decreased the 
incidence and the size of mammary carcinomas and the incidence of lung metastasis 
(Baturin et al. 2001; Anisimov et al. 2002). The effects were related to the decrease 
of the expression of HER-2/neu mRNA determined by melatonin treatment in mam-
mary tumors from HER-2 /neu mice. Similar effects were obtained in mice supple-
mented with the pineal tetrapeptide Epitalon. Besides to its direct effects on tumor 
cells, the anticancer action of melatonin is certainly in part linked to the modulation 
of immune effectiveness exerted by the pineal hormone, as previously demonstrated 
in various experimental models (Carillo-Vico et al. 2005).

5.2.2 Tamoxifen

The use of endocrine therapyis well established as a primary treatment for locally 
advanced breast cancer. Tamoxifen is an oral selective estrogen receptor modula-
tor which is used for the treatment of early and advanced estrogen receptor posi-
tive breast cancer in pre and postmenopausal women. Tamoxifen competes with 
estrogen in the body for estrogen receptors in breast tissue so that transcription of 
estrogen-responsive genes is inhibited. Tamoxifen has traditionally been the hor-
mone therapy of choice for patients with estrogen receptor-positive breast tumors 
unable to undergo surgery. However, nearly 40% of estrogen-dependent breast 
tumors do not respond to tamoxifen treatment and the positive response is usually 
of short duration because of the development of tamoxifen-resistance (Macaskill 
et al. 2006).

5.2.3 Aromatase Inhibitors

Aromatase inhibitors are a class of drugs used in the treatment of breast cancer that 
block the action of the enzyme aromatase, which converts androgens into estrogens. 
These drugs are generally used in postmenopausal women in whom most of the 
body’s estrogen is produced in the adrenal gland from the conversion of androgens. 
Newer third-generation aromatase inhibitors, in particular letrozole, have been 
shown to be superior to tamoxifen in this setting with greater downstaging of tumor 
and disease control. The aromatase inhibitors are now the treatment of choice in eld-
erly patients with estrogen receptor-positive breast cancer who are being considered 
for neoadjuvant therapy (Macaskill 2006).
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6  Conclusions

The incidence of breast cancer increases with increasing age. The high rate of 
comorbidity in elderly patients increases the risk for complications and mortality 
following conventional therapies such as surgery and other adjuvant treatments, like 
chemotherapy and radiotherapy. Immunosenescence is a well-defined phenomenon 
concerning primarily the adaptive immune responses, even though some alterations 
at the level of most of the components of the innate pathway have been demon-
strated. These age-related immune alterations play an important role both on the 
incidence and aggressiveness of breast cancer and on the possibility to apply pre-
ventive or therapeutic immune-based approaches in elderly patients.

Over the last few years the use of immunological measures to prevent cancer 
in experimental mouse models has demonstrated the possibility of preimmunising 
mice through new vaccines against even a poor or apparently nonimmunogenic 
tumour. Preventive antitumour vaccination is currently considered in humans for 
the prevention of the reappearance of the cancer after a primary tumour resec-
tion. On the basis of the data obtained in experimental mouse models, the strate-
gies of immunoprevention which were effective in young-adult age do not seem to 
be applicable in old individuals. Attempts at finding adjuvants to improve the low 
effectiveness of immunisation in the elderly are needed and studies targeting this are 
currently being performed. It is noteworthy that the efforts aimed at designing spe-
cific protocols for the prevention and cure of cancer in the elderly should take into 
account either the advantages or the disadvantages offered by the senescent immune 
system. At the same time, anticancer substances having a primary direct action on 
cancer cells should be studied for their application as enhancers of immune-based 
strategies, particularly in old ages where the immunosenescence may impair the 
immune-mediated therapeutic approaches.
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damage  

                    1 Introduction   

   The incidence of cancer generally increases with aging of hosts in both animals and 
humans [39, 49], and thus advanced age is, so to say, a most powerful and potent 
carcinogen. In humans, the overall incidence of cancer rises exponentially in the 6 th , 
7 th  and 8 th  decades of life [45]. Although it is not clear what underlies this close link 
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between cancer and advanced age, it is believed that the cancer-prone phenotype 
of aged people is due to the cumulative mutational load over a person’s lifetime. In 
other words, the high frequency of cancer in older individuals simply reflects a more 
prolonged exposure to various carcinogenic events [12]. Analysis of the frequency 
of human cancer as a function of age shows that between 4 and 7 mutations in key 
genes are usually necessary to produce cancers. However, it is still under debate 
whether normal mutation rates followed by the selective advantage of mutated 
clones are enough to produce the numerous mutations found in human cancers 
[106]. But, by whatever means, cancers might be caused by genetic/epigenetic 
alterations. Even under physiological conditions, the stem cells of our body may 
contain multiple somatic mutations, some of which target cancer-relevant genes 
[113]. For example, 1% of neonatal blood samples contain significant numbers of 
myeloid clones harboring oncogenic fusion of chromosomes [90] and 1/3 of adults 
possess detectable  IgH-BCL2  translocations associated with follicular lymphoma 
[85]. Thus, our body’s cells experience multiple routes for oncogenesis every day. 
However, not so many people are affected by cancer. This may be partly because we 
have adequate systems that suppress carcinogenesis and constrain the growth and 
survival of potential cancer cells.           In humans, tumor suppressor systems include the 
p16-Rb, ARF-p53 and telomere systems. Some of these systems protect the genome 
from damage or mutation. Others eliminate or arrest the proliferation of potential 
cancer cells by processes called apoptosis or cellular senescence. The Rb system 
induces cell cycle arrest and p53 and telomere dysfunction, which in turn induce 
apoptosis in abnormal cells. Furthermore, the immune system influences various 
aspects of tumor growth and metastasis [ 48 ], although there is no conclusive evi-
dence of an immune surveillance system for carcinogenesis in humans [ 38 ].  

  On the other hand, aging is hastened by two major phenomena, the acceleration 
of cell loss and retardation of tissue repair [ 54 ,  58 ]. These events lead to multiorgan 
system functional compromise of the host, which is clinically manifested as frailty, 
accelerated aging, and death. Accumulating evidence suggests that dysregulation of 
apoptosis is associated with aging [ 127 ]. It is not clear whether such age-associated 
dysregulation is genetically programmed or results from nonadaptive homeostatic 
failure [ 64 ]. Oxidative stress and DNA damage, both important factors in aging, 
induce apoptosis.  

  The term “senescence”, originally defined as a series of cellular changes associ-
ated with aging, now more commonly refers to a signal transduction program leading 
to irreversible arrest of cell growth, accompanied by a distinct set of changes in the 
cellular phenotype. Cellular senescence is a potent anticarcinogenic program, and 
the process of neoplastic transformation involves a series of events that allow the 
cell to bypass senescence [ 114 ]. Cellular senescence is controlled by the p53 and Rb 
tumor suppressor proteins and constitutes a potent anticancer mechanism. Nonethe-
less, senescent cells acquire phenotypic changes that may contribute to aging and 
certain age-related diseases. Thus, the cellular senescence response may be antago-
nistically pleiotropic, promoting early-life survival by curtailing the development of 
cancer but eventually limiting longevity as dysfunctional senescent cells accumulate 
[ 31 ,  32 ]. The main self-regulatory system of cell senescence, apoptosis, provides 
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a protective mechanism by selectively eliminating senescent, preneoplastic or super-
fluous cells from the body. If the regulation of this process is managed normally, 
apoptotic processes come at the cost of a decline in the number and proliferative 
reserve of stem cells, thereby suppressing tissue repair and promoting aging. In 
addition, if the apoptosis-inducing mechanism is dysregulated, carcinogenesis 
is not suppressed, resulting in the proliferation of cancer cells. Therefore, senes-
cence-associated changes of signaling systems in cells have a significant influence 
on carcinogenesis. However, cellular senescence and aging of the host should be   
analyzed in association with cancer. The issues concerning cellular senescence are 
beyond the scope of this chapter, and we will restrict our discussion to the effects of 
aging of the host animals/humans on carcinogenesis.  

  Based on the understanding of the above mentioned relationship between aging 
and carcinogenesis, we can summarize the characteristics of changes due to aging 
associated with carcinogenesis as follows: 1) Increased frequency of genetic/chro-
mosomal abnormalities [ 106 ], 2) Increased frequency of epigenetic gene silencing 
through DNA methylation [ 134 ], 3) Telomere dysfunction [ 40 ], 4) Decreased ribos-
omal RNA expression resulting in altered stromal function, which creates an envi-
ronment conducive to stem cell growth [ 79 ], and 5) The deterioration of immunity 
by immunosenescence [ 29 ,  66 ,  68 ,  100 ]. We will detail animal model and human 
data that support this summary, and discuss the implications of the link between 
cancer and aging.  

    2 Aging and Cancer in Animal Models  

   2.1 Viral Carcinogenesis  

  There are several mouse models in which age-associated alterations in immune 
responsiveness are correlated with a decreased ability to cope with infection [ 100 ]. 
Among numerous natural pathogenic organisms of laboratory animals, viruses 
especially cause tumors in certain situations [ 20 ]. Using a murine experimental 
system of Friend leukemia virus (FLV) infection, we demonstrated an age-depend-
ent increase in susceptibility to FLV-induced leukemogenesis [ 131 ]. This virus 
induces erythroleukemia in susceptible strains of mice, and the resulting tumors are 
highly immunogenic [ 35 ,  80 ,  81 ]. When the immunological functions of hosts was 
compromised by irradiation, the susceptibility to FLV-induced leukemia increased 
in a radiation dose-dependent manner, showing an inverse correlation with the 
deterioration of immune function.  

  First, we generated bone marrow chimeras between young and old C3H/He 
mice. Bone-marrow cells from young mice were transplanted to lethally-irradiated 
young (young → young) or old hosts (young → old), and bone-marrow cells from 
the old mice were transplanted to the young (old → young) or old hosts (old → old). 
After infection with the virus, the susceptibility of these 4 types of chimeras to FLV 
was compared. In young → young mice, leukemia did not develop 1 week after 



1168 M. Kitagawa and K. Hirokawa

FLV-inoculation, while young → old chimeras exhibited a significant increase in 
the nucleated cell count (NCC) in the peripheral blood. Similarly, old → young 
mice did not develop leukemia in contrast to the increase of NCC in old → old 
mice. Thus, young → old mice were more susceptible to FLV-induced leukemo-
genesis than young → young mice, and old → old mice were more susceptible than 
old → young mice. Differences in the susceptibility were not significant between 
young → young and old → young as well as old → old and young → old mice. The 
CD4 +  as well as CD8 +  T-cell populations of the spleen were reduced in chimeras 
with old hosts (young → old and old → old chimeras). These findings suggest that 
aged mice were more susceptible to FLV induced leukemogenesis, and that the 
major influence was due to the difference in host age and not the difference in donor 
age. Age-related changes in susceptibility to FLV have also been determined for 
other strains of mice, such as C57BL/6 and SJL [ 36 ] and the results were similar to 
our data. Thus, in highly immunogenic virus-induced tumors, such as FLV-induced 
leukemia, the deterioration of immunity due to host aging [ 67 ,  68 ,  99 ,  122 ] is a 
major factor controlling the age-dependent increase in susceptibility to viral car-
cinogenesis. The susceptibility-inducing mechanisms that underlie the immunosup-
pressive state of aged hosts probably include morphological/functional atrophy of 
the thymus [ 66 ,  67 ], age-related changes in the signaling pathways of T-cells [ 68 ,  
99 ,  100 ,  122 ], age-related changes in cytokine producing ability of T-cells [ 66 ,  67 ], 
and age-related changes in the distribution and subpopulations of immune cells [ 66 ,  
67 ]. Many T-cell-associated immune functions as well as antibody-producing func-
tions of the hosts are known to control the susceptibility to FLV-induced leukemo-
genesis [ 35 ,  80 ]. For other retroviruses, genetic functions of host genes play a role 
in controlling retroviral diseases, including tumors, in aging in wild mice [ 53 ].  

  Although it is very difficult to experimentally identify the distinct immunosur-
veillance mechanisms in the in vivo models [ 118 ], we have a good understanding 
of phenomena that indicate that immune deterioration in aged hosts permits the 
proliferation of tumor cells in cases of human viral carcinogenesis, such as EB 
virus associated lymphoma [ 3 ,  91 ] and HTLV-1-induced leukemia/lymphoma 
[ 24 ,  116 ]. Thus, attempts to transfer immune activated cells/factors to aged or 
immunosuppresssed hosts might realize the control of carcinogenesis as well as 
tumor progression of immunogenic tumors [ 101 ].  

    2.2 Radiation-induced Carcinogenesis  

  Host aging effects have also been implicated in radiation-induced carcinogenesis. 
We analyzed this using a mouse model of radiation-induced thymic lymphomagen-
esis [ 123 ]. To separately determine the influence of aging of target cells and host 
environment, thymic tissues from newborn mice were transplanted to the subcapsu-
lar region of the kidney of young or old mice. Then, fractionated whole-body irradi-
ation was performed to induce lymphoma as described earlier [ 77 ]. In young hosts, 
thymic lymphoma was induced in the grafted thymus as well as in the self-thymus. 
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However, in the old host, both the grafted thymus and self-thymus were refractory 
to lymphomagenesis. Thus, even in the grafted thymus, where target cells were 
derived from young mice, lymphoma did not develop in the old hosts. After frac-
tionated irradiation, the young thymus exhibited a higher frequency of proliferative 
cells but a similar frequency of apoptotic cells compared to the old thymus. Even 
in the grafted newborn thymus, there were significantly fewer proliferative cells in 
the old host than the young host. We believe that the difference in the frequency 
of proliferative thymic cells is the cause of the difference in lymphomagenesis in 
young and old host environments.  

  In addition, in the rat system, the sensitivity to radiation-induced carcinogenesis 
is reduced with aging of the mammary glands, ovary and thyroid gland [ 8 ], which is 
consistent with our data. Taken together, these facts indicate that age-related factors 
of the target organ microenvironment, bone-marrow and whole host environment 
are responsible for the down-regulation of radiation-induced carcinogenesis in aged 
hosts, although further analysis, including measurement of cytokine or growth fac-
tor levels, is necessary to clarify the mechanism responsible for this.  

  In contrast to the case of viral carcinogensis, decreased immunity in the aged 
host cannot account for the loss of control of radiation-induced tumors. The rea-
sons may include the quite low immunogenicity of radiation-induced tumors which 
do not have expression of novel proteins equivalent to those in viral infection, the 
potential enhancement of immune function by low dose irradiation, or the strong 
factor-dependent character of radiation-induced tumors.  

    2.3 Chemical Carcinogenesis  

  Some alterations characteristic of normal aging increase susceptibility to chemical 
carcinogens [ 44 ]. These alterations, such as a decline in DNA repair capacity and 
a decline in cellular immune reactivity, facilitate the induction and early growth 
of neoplasms. Age-dependent changes that counteract cancer development include 
loss of proliferative stimulation and depletion of the pool of immature cells at great-
est risk. On the other hand, it has been found that genetic selection for vigorous 
antibody responses in most cases produces mice with longer life span and lower 
tumor incidence. Moreover, the results of genetic segregation experiments indicate 
that antibody responsiveness and life span are polygenic traits regulated by a small 
number of the closely linked loci. In contrast, mice genetically selected for high or 
low mitotic responsiveness to PHA exhibit low or high tumor incidence, respec-
tively, but no difference in life span. These results suggest that T-cell activity is 
involved in immune surveillance of neoplastic transformation [ 42 ]. Actually, immu-
nodeficient mice with a targeted disruption of the recombination-activating gene-2 
(RAG2) were more susceptible to methylcholanthrene-induced tumorigenesis than 
wild-type mice [ 112 ]. However, whether age-related immune dysfunction influences 
the incidence of tumors caused by chemical carcinogens remains to be determined.  
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  Recent studies on genoprotectors revealed that the long-term administration of 
the pineal indole hormone melatonin was followed by an increase in the mean life 
span in mice and rats [ 11 ]. In mice and rats, melatonin is a potent antioxidant both 
in vitro and in vivo and inhibits mutagenesis by chemical mutagens. Actually, mela-
tonin inhibits the various types of chemically induced carcinogenesis in rodents. 
These experiments clearly revealed a close link between antiaging and anticarcino-
genesis mechanisms, and thus aging and cancer, in experimental animals.  

  By contrast, in the case of hormone-dependent cancers such as breast cancer, 
development of chemically (N-nitrosomethyl urea) induced tumors is inversely cor-
related with the age of the host [ 88 ]. The function of the stroma plays a crucial role 
in mammary gland carcinogenesis. Thus, in certain conditions, aging effects are 
considered as negative factors for chemical carcinogenesis.  

  Overall, aging involves an increase or decrease in the sensitivity of tissues and the 
whole organism to the action of carcinogenic chemicals or no changes at all. These 
differences are due to the specific characteristics of the age-associated dynamics of 
the activity of drug-metabolizing enzymes and the proliferative activity of target 
tissues controlled by various host factors [ 5 ,  6 ,  7 ,  21 ,  135 ].  

    2.4 Spontaneous Carcinogenesis  

  The last topic we will discuss regarding carcinogenesis in animal models is the 
effect of aging on spontaneous carcinogenesis. The incidence of spontaneous 
tumors and an increase in the rate of occurrence of tumors are associated with 
aging in experimental animals as well as in humans [ 65 ,  89 ,  107 ]. Mutant and 
genetically modified animal models, which are characterized by a shortened or 
extended life span, offer the unique possibility of evaluating the role of gene 
expression in mechanisms responsible for carcinogenesis. Transgenic and knock-
out animal models also offer the opportunity to identify and study carcinogens and 
cancer-preventing agents. Generally, animal models of life span extension exhibit 
a longer cancer latency period than normal animals, although the incidence of 
spontaneous tumors is similar to that in the controls. As a result, long-lived ani-
mals are relatively resistant to spontaneous carcinogenesis [ 124 ,  125 ,  128 ]. In 
contrast, all models of accelerated aging have a higher incidence of tumors and 
the latency is shorter. Thus, aging and carcinogeneis are well correlated in experi-
mental animal models [ 9 ,  33 ].  

  As an example, we generated  XPG  knockout mice that have a defect in DNA 
repair and act as a model of accelerated aging [ 63 ]. The knockout mice had small 
bodies and their organs were smaller in general. Furthermore, we observed frequent 
apoptosis in systemic organs similar to the changes in old control animals. In this 
model, the failure of DNA repair evokes p53 activation, frequent apoptosis in sys-
temic organs and a phenotype similar to aging. At the same time, failure of DNA 
repair in this model is also associated with a higher incidence of UV-induced as well 
as spontaneous cancers.  
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  Telomeres are specialized nucleoprotein complexes that serve as protective caps 
at the ends of linear eukaryotic chromosomes. Telomere dysfunction impairs DNA 
repair [ 129 ], and thus enhances sensitivity to various DNA-damage-inducing sig-
nals. Therefore, telomere dysfunction in aged animals is related to aging phenotypes, 
the lower potential of target organ cells to proliferate and a higher level of apoptosis. 
Accumulation of telomere dysfunction in old animals is also related to a higher inci-
dence of spontaneous cancers [ 109 ,  129 ]. The issue of telomere dysfunction will be 
discussed again in a later chapter concerning the human clinical setting.  

    2.5 Summary of Animal Models  

  Susceptibility to viral carcinogenesis increases with advancing age of the host. This 
is probably associated with a deterioration in immunity in aged hosts, because virus-
induced tumors are usually highly immunogenic. However, for other tumors there is 
little evidence to support a direct causal link between immunosenescence and can-
cer development in animals or humans [ 29 ,  48 ]. On the contrary, radiation-induced 
carcinogenesis occurs at a lower frequency in aged hosts, and is influenced by host 
environment factors, including cytokine and growth factor production, resulting in 
low proliferative activity of target tissues. Chemical carcinogenesis occurs more 
frequently in aged hosts because of accumulated genetic abnormalities that cause 
instability and a lower ability to metabolize carcinogens. However, the relationship 
between the incidence of chemically induced tumors and age is not uniform, and 
depends on the characteristics of chemicals and the mechanisms by which they 
induce tumors. Finally, spontaneous cancer is usually more frequent in the aged 
host, both for normal animals and genetically modified animals. The accumulation 
of genetic mutations as well as telomere dysfunction is associated with a higher 
incidence of spontaneous cancers in old animals. The overall influence of the aging 
effect on tumor induction in animal models is controversial because multiple factors 
contribute to the susceptibility to carcinogenesis (Table 1).  

   Table 1      Host aging effects on carcinogenesis: summary of animal models    

  Manner    Susceptibility    Age-related mechanisms  

  Viral carcinogenesis    Increased    Deterioration of immunity 
against highly antigenic 
tumor  

  Radiation-induced 
carcinogenesis  

  Decreased    Altered host environment, low 
proliferative activity of target 
tissues  

  Chemical carcinogenesis    Increased/Decreased    Gene instability, low metabolic 
activity, inadequate hormone 
production  

  Spontaneous carcinogenesis    Increased    Frequent gene mutations, tel-
omere dysfunction  

  Overall    Increased/Decreased    Multifactorial  
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        2.6  Differences in Cancer Development between Animals 
and Humans  

  Information obtained from animal models has contributed substantially to the 
development of treatments for human cancers. However, important interspecies dif-
ferences have to be taken into account when considering the mechanisms of cancer 
development and extrapolating the results from animals (mainly mice) to humans 
[ 10 ]. The essential differences in cancer development between mice and humans 
include 1) tumor origin (commonly mesodermal sarcomas in mice compared with 
epithelial carcinomas in humans), 2) carcinogenic risk factors (many mouse car-
cinogens are noncarcinogenic in humans and vice versa, probably due to differences 
in the basal metabolic rate and metabolic pathway in the liver), 3) the number of 
genetic events necessary to induce malignant transformation (fewer genetic events 
are required in mice), 4) spontaneous regression of tumors (occurs in infants but is 
rare in adult humans, whereas it is common in adult mice) and so on. The intracellu-
lar wiring mechanisms of cells also differ regarding telomere biology, regulation of 
cellular senescence by p53 and Rb, and the RAS pathway [ 60 , 104 ]. Moreover, after 
a steady increase during adult life, the cancer incidence rate decelerates or even 
declines in very old age (above 70 in humans) for most sites of cancer development 
in both animals and humans [ 10 ]. This fact might reflect important commonalities 
in the basic mechanisms of age-specific predisposition to cancer among different 
mammalian species. It might indicate that aging, as a fundamental process, affects 
susceptibility to cancer similarly in humans and animals. Therefore, differences in 
the manner of cancer development do not diminish the importance of animal model 
analysis.  

     3 Aging and Cancer in the Clinical Setting  

   3.1 Types of Tumors Characteristically Observed in the Elderly  

  Next, we will analyze the characteristics of human cancers in the elderly in com-
parison with those in younger populations. Common cancers the incidence of which 
increases with age include prostate, colon and lung cancers, which originate from 
epithelial cells. From the discussion of animal models, age-dependent genetic and 
epigenetic events are considered likely to contribute to the increased incidence of 
these cancers in the elderly. Less evident is how such events spur the preferential 
development of such epithelial cancers in the elderly, while sarcomas and some types 
of lymphomas generally predominate in younger and even pediatric populations. 
A recent study using a telomerase-knockout mouse indicated that differences in 
telomere length and regulation might impact the spectrum of tumors during aging 
[ 18 ]. Conversely, constitutive telomerase expression promotes mammary carcino-
mas in aging mice [ 19 ]. In contrast to humans, the laboratory mouse possesses long 
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telomeres, and thus the overexpression of telomerase might promote shortening of 
telomeres. From the viewpoint of the telomere length, this means the introduction 
of a human-like condition in mice. Compared to tumors that arise in mice with 
intact telomeres, tumors in mice with telomere dysfunction possess higher levels 
of genomic instability and show numerous amplifications and deletions in regions 
syntenic to human cancer hotspots [ 96 ]. Although it is unknown whether these data 
from telomerase-modified mice are relevant to mechanisms of epithelial carcino-
genesis in the elderly, telomere dysfunction can be used to interpret the specificity 
of cancer distribution in the elderly. From the point of view of immunosenescence, 
differences in the immunogenicity of tumor types would explain the selectively 
higher incidence of epithelial tumors in the elderly. In other words, the incidence 
of highly immunogenic tumors would be more directly influenced by immunose-
nescence than that of weakly immunogenic tumors. Although even spontaneous 
tumors such as melanoma are immunogenic [ 101 ], overall immunogenic properties 
do not correrate with the specific tumor types commonly observed in the elderly 
[ 78 ,  112 ].  

  We next discuss hematological malignancies and gastrointestinal cancers as well 
as the specificity of cancers in the elderly.  

    3.2  Effects of Aging on Hematopoiesis with Reference 
to Myelodysplastic Syndromes  

  Anemia is an issue of concern for the management of older patients with various 
diseases. The prevalence of anemia gradually increases after age 60 [ 4 ]. The preva-
lence and incidence also start increasing by age 65, with steeper increases after 
age 80. The hematopoietic reserve may become compromised due to a number of 
factors, including a reduced concentration of hematopoietic stem cells, reduced sen-
sitivity of stem cells and hematopoietic progenitors to growth factors, increased 
circulation of substances that inhibit hematopoiesis in the circulation and in the 
hematopoietic microenvironment, and compromised ability of the microenviron-
ment to support and nurture these elements [ 22 ]. Among these, a decline in the 
number of pluripotent hematopoietic stem cells and a decline in the production of 
hematopoietic growth factors are supported by data that are inconclusive at best 
[ 23 ]. The best evidence suggests that aging is associated with increased levels of 
circulating cytokines such as IL-6, which may compromise the response of stem 
cells and hematopoietic progenitors to growth factors [ 61 ], although currently avail-
able experimental evidence is not conclusive regarding this [ 103 ]. To assess the 
overall effects of aging-associated factors, we examined the change in cellularity of 
the bone marrow with age [ 95 ]. Bone-marrow samples from the iliac/sternal bone 
show stable levels of cellularity in the young, middle-aged and even in old age at 
< 80 years. However, the bone-marrow shows significantly hypoplastic features in 
people over age 80. These features are consistent with the findings that the preva-
lence and incidence of anemia starts increasing by age 65 and is especially high after 
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age 80 [ 4 ]. The question then, is what causes the hypocellularity of bone-marrow 
in the elderly over 80? First, we investigated the proliferative activity of the bone-
marrow cells. The change with age was not striking for those under 80, although 
the activity was slightly reduced in those over 80. In contrast, a remarkable increase 
in the apoptotic cell frequency was observed in the bone marrow of the elderly. 
Therefore, apoptotic cell loss rather than the reduced proliferation of bone-marrow 
cells leads to the hypocellularity of bone-marrow in the elderly, and thus the high 
frequency of apoptosis is an important characteristic of aged bone-marrow.  

  Myelodysplastic syndromes (MDS) are hematological malignancies which 
mainly affect the elderly. The bone-marrow cells of MDS patients exhibit frequent 
apoptosis [ 83 ] which causes ineffective hematopoiesis resulting in cytopenias of the 
peripheral blood in spite of normo- to hyperplastic bone-marrow. Therefore, fre-
quent apoptosis is a hallmark of the bone-marrow of the elderly under normal and 
neoplastic conditions. Many factors are associated with frequent apoptosis in the 
MDS bone marrow. We have shown that the TNF/TNFR, Fas/FasL, and NO systems 
are all involved [ 82 ,  83 ,  84 ,  110 ]. However, when the apoptotic machinery is sup-
pressed [ 132 ], the proliferation of more malignant cells occurs in the bone-marrow 
of MDS, thereby causing the evolution of overt leukemia. This correlation between 
apoptosis and malignant transformation in MDS bone-marrow is well documented 
together with correlations with aging phenomena (apoptosis of multiple organs) and 
carcinogenesis (suppression of apoptosis) in the elderly.  

    3.3 Gastrointestinal Cancer in the Elderly  

  Concerning carcinomas of the gastrointestinal tract in the elderly, clinicopathologi-
cal studies have pointed out several characteristics in these patients. Gastric cancers 
in aged patients tend to be distributed over the lower one-third of the stomach, show 
histological features of well-differentiated adenocarcinoma, and exhibit a higher 
incidence of multiple cancers in the stomach [ 16 ,  50 ,  69 ]. Old patients show a lower 
incidence of peritoneal involvement and lymph node metastasis of gastric cancer as 
compared with younger patients [ 51 ]. Duodenal cancers in the elderly frequently 
occur in the first portion of the duodenum in contrast to the majority of primary 
duodenal cancers, which are found in the second portion in younger patients [ 13 ]. 
Colorectal cancers in the elderly occur more frequently in the proximal colon (prox-
imal to the splenic flexure) than in younger people and the ratio of proximal colon 
cancer increases with advancing age. Higher proportions of poorly differentiated 
adenocarcinoma, mucinous carcinoma, cancer >5 cm in size, and protruding-type 
cancer are present in the elderly, although these kinds of tumors typically occur in 
the proximal colon [ 14 ]. The incidence of multiple cancers shows no age-related 
difference for colorectal cancer [ 15 ].  

  Many naturally occurring tumors in humans and experimental animals show 
slower growth with advancing age [ 76 ,  87 ,  102 ]. In the case of poorly antigenic 
tumors, the immune system might transduce stimuli responsible for the proliferation 
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rather than the elimination of tumor cells. Thus, age-related hypofunction of the 
immune system may contribute to slower tumor growth in cancers of the elderly [ 47 ,  
76 ]. Another mechanism involves vascular factors, whereby transplanted tumors in 
animal models grow and spread less readily in older hosts due to a reduced capacity 
to vascularize the tumors [ 102 ]. We next introduce our data on the biological aspects 
of colon cancers in the elderly. To clarify the cell dynamics of colon cancer cells 
in the elderly in vivo, we analyzed cell proliferation and apoptosis in colon cancers 
of old people. Ki-67-positive proliferative cells increased with advancing age, and 
at the same time the TUNEL-positive apoptotic cell ratio increased with aging in 
normal as well as in cancer tissues [ 119 ]. Therefore, the slow growth of colon can-
cers in the elderly may be related to an increase in apoptotic cells rather than being 
associated with the proliferative activity of tumor cells, because the rate of cell 
proliferation is higher in cancer tissues of elderly compared to younger patients. We 
confirmed that molecules which may be associated with cell growth, such as c-myc, 
were more strongly expressed in cancer tissues from elderly than younger patients 
[ 111 ]. Furthermore, apoptosis-enhancing molecules such as Bak and Bax were 
more strongly expressed in the tumors from the elderly [ 111 ,  119 ]. We also exam-
ined the expression of apoptosis-inhibitory proteins in colon cancer. We expected 
that apoptosis-prone cancer of the elderly would show lower expression of inhibitor 
of apoptosis protein (IAP), but our results were contrary to this. Colon cancers from 
the elderly exhibited a higher expression of apoptosis-inhibitory proteins of the 
IAP family such as survivin and cIAP2 compared with those from younger patients 
[ 46 ]. Immunohistochemical staining also revealed strong expression of surviving in 
cancers of the elderly. The question then is, what causes the frequent apoptosis in 
colon cancers in the elderly? In general, apoptosis-causing signals such as cellular 
injury induce the up-regulation of Bak and Bax, and this reaction is suppressed by 
Bcl-2 [ 121 ]. These signals stimulate mitochondria to induce caspase-dependent and 
caspase-independent pathways associated with apoptosis. Bak/Bax expression is 
higher and Bcl-2 expression is lower in colon cancers in the elderly than in cancers 
in the young [ 119 ]. Therefore, stimulation of the mitochondria to induce apoptosis 
is stronger in cancers in the elderly. However, IAP proteins are also up-regulated 
in these cancers. Thus, the caspase-dependent apoptotic pathway is suppressed by 
IAPs, and the caspase-independent apoptotic pathway [ 1 ] is important for inducing 
apoptosis in the elderly. Further studies should clarify the contribution of recently 
identified molecules such as AIF or Endo G to this process [ 37 ,  41 ].  

  From these findings, we hypothesized that old patients with colon cancer have a 
better prognosis than younger adult patients because the growth of tumors should 
be slower, but this also was not the case. We followed the prognosis of patients with 
colon cancer who underwent surgery for the resection of tumors. When they were 
divided into 2 groups comprising those over 80 and those under 80, the older group 
exhibited a significantly worse prognosis than the younger group. To eliminate other 
factors associated with aging, we selected only Dukes B group patients and patients 
who apparently died of cancer, but the results were the same. Older patients exhibited 
worse prognosis than did younger patients [ 92 ]. Thus, the behavior of cancers in the 
elderly is complicated. One explanation for the poor survival of colon cancer patients 
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among the elderly is the late manifestation of clinical symptoms, which might be 
caused by the slower growth of tumors or other factors such as lower sensitivity 
of the host to abnormal functions. Colon cancers in the elderly tended to be in an 
advanced stage at the time of initial diagnosis, showing deeper invasion and a higher 
frequency of metastases. This partly explains the poor prognosis of colon cancer 
patients among the elderly. Patients with slow growing tumors have a better progno-
sis when we see the whole course of the disease. However, because we have the tools 
necessary to treat cancers by surgical resection, slow growing tumors do not always 
mean a good prognosis. Finally, we have to consider the influence of immunosenes-
cence. Lower ability to immunologically eliminate cancer cells in the elderly might 
permit the progression of the primary tumor as well as metastatic tumors. This might 
also influence the poor prognosis of colon cancers in the elderly.  

    3.4 Genetic Disorders and Cancer  

  There are numerous genetic disorders marked by chromosome instability that are 
associated with various cancers. Chromosomal instabilities and neoplastic outcomes 
are related to abnormalities of DNA metabolism, DNA repair, cell cycle activity 
and the control of apoptosis. Among these diseases are ataxia telangiectasia and 
Nijimegen breakage syndrome, which are associated with an increased incidence 
of lymphomas. Bloom syndrome, Werner syndrome, and Rothmund-Thompson 
syndrome, each characterized by a DNA helicase defect, are associated with early 
incidence of different types of cancers. Other diseases that combine phenotypes 
associated with chromosomal instabilities and neoplastic development are Fan-
coni anemia and breast cancers associated with mutant BRCA1 and BRCA2 genes 
[ 43 ]. In these disorders involving DNA recombination, some DNA helicase defects 
are associated with aging, although the exact pathways that link the mechanisms 
responsible for the genetic defects to the eventual development of various cancers 
as well as early aging remain to be elucidated.  

    3.5 Werner Syndrome: Accelerated Senescence and Cancer  

  Werner syndrome (WS) is an autosomal, recessively inherited segmental progeroid 
syndrome in which patients appear much older than their chronological age and 
exhibit many of the clinical signs and symptoms of normal aging at an early stage 
in life [ 55 ,  57 ]. They develop many age-associated diseases early in life, including 
atherosclerosis, osteoporosis and cataracts, and display a high incidence of cancer. 
This mimicry of normal aging has made this syndrome a focus of recent molecular 
studies on the pathophysiology of aging.  

  WS is caused by a mutation in  WRN , which is a member of the  RECQ  family 
of DNA helicases [ 133 ]. WRN helicase associates with proteins involved in DNA 
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transactions, including those that resolve alternative DNA structures or repair DNA 
damage. The biochemical activities of WRN and the functions of WRN-associated 
proteins suggest that in vivo WRN resolves topological or structural DNA aberra-
tions that occur during DNA metabolic processes such as recombination, replication 
and repair or that are the result of DNA damage [ 115 ]. However, some features of 
WS are also present in patients with other mutations such as laminopathies caused 
by mutant  LMNA  encoding nuclear lamin A/C [ 34 ]. Thus, WS may be a molecularly 
heterogeneous disease.  

  About 80% of WS cases worldwide are Japanese, which is probably due to 
inbreeding and to the background of high  WRN  mutation rates in Japan [ 70 ,  71 ,  108 ]. 
Surveys of Japanese patients [ 56 ] revealed that WS is associated with a high risk of 
a spectrum of rare neoplasms rather than the accelerated occurrence of ordinary can-
cers. They include 1) nonepithelial malignant or premalignant tumors/conditions; 
osteosarcomas, soft tissue sarcomas, malignant melanomas, myeloid leukemia and 
myelodysplastic syndromes, 2) an epithelial neoplasm; thyroid carcinoma, and 3) 
meningiomas, although the majority of cases are benign. Common carcinomas of 
the aged, for example, lung, colon and prostate cancers, are rare. Thyroid carci-
noma, the most frequent epithelial cancer in WS, accounts for 14% of neoplasms in 
Japanese with WS. The ratio of epithelial to nonepithelial cancer is 1:1 compared 
with 10:1 in the general adult population. Germline mutations may be related to 
cancer with atypical features, in that they differ in their distribution according to 
age, gender, anatomic site and/or histologic type [ 98 ].  

  WS is also marked by increased genome instability manifested as chromosomal 
alterations. Characterization and analysis of the WRN protein suggests that it par-
ticipates in several important DNA metabolic pathways, and that its primary func-
tion may be in DNA repair [ 97 ]. Thus, the WRN protein represents an important 
link between defective DNA repair and processes related to aging and cancer. The 
relationship between the failure of DNA repair and aging/carcinogenesis can also be 
observed in animal models, as we showed for  XPG  knockout mice [ 63 ].  

    3.6  Dyskeratosis Congenita: Telomere Dysfunction Linking 
Aging and Cancer  

  Telomeres consist of small tandem nucleotide repeats that are located at the ends of 
chromosomes and operate to protect the chromosomes from end-to-end fusions. Due 
to the “end-replication insufficiency” of DNA polymerase, telomeres shorten during 
each round of cell division. Telomere erosion below a certain length can then trigger 
apoptosis of the cell. Therefore, telomere shortening limits the proliferative capac-
ity of cells and restrains the regenerative capacity of organ systems during aging, 
leading to age-related phenotypes such as reduced wound healing and a weakened 
immune system. Telomere shortening apparently has a dual role in tumor develop-
ment and progression. On the one hand, it induces chromosomal instability and the 
initiation of cancer; on the other hand, tumor progression requires stabilization of 
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telomeres [ 109 ]. The predominant mechanism of telomere stabilization in tumor 
cells is the activation of the telomere-synthesizing enzyme telomerase.  

  Some of the most persuasive data on this point comes from patients suffering from 
dyskeratosis congenita [ 117 ]. These patients have lost telomerase function, resulting 
in a defect of the preservation of telomere length. Analysis of cells from dyskeratosis 
congenita patients reveals telomere shortening and dysfunction compared with that 
in the cells of age-matched controls. Patients suffering from this disease manifest 
several distinct abnormalities, including abnormal skin pigmentation, nail dystrophy, 
mucosal leukoplakia, bone-marrow failure and cancer disposition.  

  Thus, telomere shortening results in phenotypes of aging and also causes genomic 
instability that is believed to be a driving force in the cell transformation process. 
The cellular response to telomere dysfunction—senescence and apoptosis—might 
contribute to aging phenotypes [ 105 ]. However, it is only in cells that have lost 
the checkpoint functions (tumor suppressor functions) that involve apoptosis and 
senescence that telomere dysfunction can lead to the genomic instability that fuels 
cancer.  

    3.7 Epigenetic Changes in Human Cancers and Aging  

  Because the alterations of gene function in cancer cannot be explained by muta-
tions alone [ 106 ], a nonstructural mechanism may exist as well. Some cancers show 
hypermethylation of gene promoters resulting in the loss of gene function. DNA 
methylation patterns can be inherited when cells divide. This epigenetic process 
as an alternative to mutations can inhibit tumor suppressor gene function [ 25 , 74 ]. 
Thus, aberrant DNA methylation is a powerful mechanism for the abolition of gene 
activity and is observed in various cancers. Other examples of genes silenced by 
DNA methylation include imprinted genes and genes on the inactive X chromo-
some in female mammals [ 86 ,  130 ].  

  Although three major methyltransferases have been cloned from mammalian 
cells [ 27 ], the molecular mechanisms involved in transcriptional silencing through 
DNA methylation have not been determined. However, the following mecha-
nisms have been suggested [ 25 ]. Dense methylation reduces the binding affinity 
of sequence-specific transcription factors. In addition, methyl DNA-binding pro-
teins may exclude transcriptional machinery and interfere with RNA polymerase 
activity. Recently, the functional implications of the association of methylation with 
transcriptionally repressive chromatin were outlined. Methyl DNA-binding pro-
teins bind to methylated DNA and recruit histone deacetylase and transcriptional 
corepressors. The deacetylation of histones then reduces transcription by allowing 
tighter nucleosomal packing [ 134 ].  

  There are 3 types of cancer-related genes: oncogenes, tumor suppressor genes 
and DNA repair genes. Several tumor suppressor genes and DNA repair genes 
have been reported to be methylated in various cancers [ 52 ,  75 ] and include  APC , 
 BRCA1 ,  CDH1 ,  p14  ARF ,  p15  INK4b ,  p16  INK4a  and  WT1  as tumor suppressor genes and 
 hMLH1 ,  GSTP1  and  MGMT  as DNA repair genes. Hypermethylation of other 
genes, including  COX-2 ,  DAPK  and  TIMP3 , has also been reported for several 
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types of cancers. Some of these genes are simultaneously methylated in the same 
tumor and are methylated in various cancers, while others show cancer-type-spe-
cific hypermethylation [ 52 ]. Genetic changes such as point mutations, insertions, 
deletions and allelic losses are involved in the inactivation of tumor suppressor and 
DNA repair genes. However, the discovery of many hypermethylated promoters of 
tumor suppressor genes indicates that DNA methylation is an important alternative 
mechanism for gene inactivation in many cancers [ 134 ].  

  Aging, chronic inflammation, and viral infections are known to promote methyl-
ation of noncore regions of promoter CpG islands. The noncore methylation is con-
sidered to serve as trigger for dense methylation of promoter CpG islands, which 
permanentaly repress expression of their downstream gene. In the normal colon 
mucosa, DNA hypermethylation of the  estrogen receptor (ER) ,  CSPG2 ,  IGF2 , 
 MYOD1  and  N33  genes was observed to have occurred in a subpopulation of cells, 
which increased with advancing age [ 2 ,  72 ]. Furthermore, age-related hypermeth-
ylation was also demonstrated in the  DBCCR1  gene in the normal urinary bladder 
[ 59 ] and in the  Hic1  gene in the prostate. Increased age-related DNA methylation 
was found in the colonic mucosa of patients with ulcerative colitis [ 73 ], suggesting 
that chronic inflammation is associated with high levels of methylation, probably as 
a result of increased cell turnover.  

  These genes affected by age-related methylation in normal tissue are also meth-
ylated in primary cancers that originate from the same tissue [ 134 ]. Therefore, in 
some tissues, age-related methylation starts in the normal mucosa as a function of 
age, and then may suppress gene function, possibly in association with carcinogen-
esis of the primary cancer. However, in many organs cancer-related methylation 
is restricted to cancer tissues and no methylation is observed in normal tissues. 
Although DNA methylation is not a general or direct factor that links aging and 
cancer, further studies should clarify the role of epigenetic modification of DNA in 
association with aging as well as carcinogenesis.  

  For the  hMLH1  gene, which is a member of the DNA mismatch repair gene 
family, methylation was only found in cancers and not in the normal tissue [ 120 ]. 
Patients with gastric cancers showing aberrant  hMLH1  expression and methyla-
tion are significantly older than those with cancers without these aberrant pheno-
types. The prevalence of aberrant hMLH1 expression and methylation significantly 
increases with advancing age. Thus,  hMLH1  methylation is not only cancer-specific 
but also age-related in cancers. It is also likely that  hMLH1  methylation plays a role 
in gastric carcinogenesis in the elderly [ 93 ]. Furthermore, a recent study found that 
 hMLH1  hypermethylation also plays a role in the development of medullary-type 
poorly differentiated colorectal adenocarcinomas in the elderly [ 17 ].  

    3.8  Altered Expression of MicroRNA (miRNA) in Aging 
and Cancer  

  Remarkable progress in embryonic and adult stem cell research in the past several 
years has yielded a wealth of information regarding the mechanisms regulating 
self-renewal and differentiation, two processes often used to decline stem cells. 
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Some investigators speculate that aberrant epigenetic events as well as altered 
microRNA (miRNA) expression in aged stem cell populations play important 
roles in carcinogenesis [ 94 ]. Stem cells retain the expression of miRNAs that 
are important to maintain the stemness state [ 62 ]. Data from recent studies sug-
gest that miRNA-mediated carcinogenesis results from either down-regulation of 
tumor suppressor and/or up-regulation of oncogenes [ 30 ]. Thus, miRNAs that are 
important in maintaining stem cell identity also seem to be important in cancer 
development. It remains to be clarified how miRNA expression patterns change 
as a function of aging.  

     4  Apoptosis: the Key Phenomenon Linking Aging 
and Carcinogenesis  

   4.1 Overview  

  Animals, including humans, have evolved strategies—tumor suppressor mecha-
nisms—to suppress the development of cancer. It is clear that at least 2 strategies 
have evolved to suppress cancer. One is so-called “caretaker” proteins that prevent 
cancer by protecting the genome from acquiring potentially carcinogenic mutations. 
By contrast, “gatekeeper” tumor suppressors prevent cancer by acting on intact cells 
to eliminate or prevent the growth of potential cancer cells [ 31 ]. However, recent 
evidence indicates that some mammalian tumor suppressor mechanisms contrib-
ute to aging. Namely, the gatekeeper causes apoptotic and senescence responses 
that may limit longevity by contributing to aging and late-life pathology. In the 
case of apoptosis, this process could eventually deplete nonrenewable tissues of 
irreplaceable postmitotic cells and renewable tissues of proliferating or stem cell 
pools. The senescence response could likewise deplete tissues of proliferating or 
stem cell pools. Furthermore, senescent cells are dysfunctional and may actively 
disrupt normal tissues as they accumulate. Therefore, in this chapter we overviewed 
the mechanisms of aging and carcinogenesis with special reference to apoptosis.  

  Although many hypotheses have been proposed to explain the strong link 
between aging and cancer, as described above, the exact mechanisms responsible 
for the increased frequency of cancer with advancing age have not been fully 
defined. Recent evidence indicates that dysregulation of apoptosis may contribute 
to certain aging processes [ 127 ]. On the other hand, apoptosis provides a protec-
tive mechanism by selectively eliminating gene-mutated, senescent, preneoplastic 
or superfluous cells. If the regulation of this process is managed normally, apoptotic 
processes come at the cost of a decline in stem cell number and their proliferative 
reserve, thereby suppressing tissue repair and promoting aging. In addition, if the 
apoptosis-inducing mechanism is dysregulated, carcinogenesis is not suppressed, 
resulting in the proliferation of cancer cells. Although how apoptosis is altered dur-
ing aging in vivo is still being debated, this phenomenon is a key candidate for dis-
secting the complicated mechanisms that link cancer and aging.  
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  During aging, we observed 1) increased apoptosis in normal/tumor tissues, 2) the 
accumulation of genetic/epigenetic abnormalities and telomere dysfunction, and 3) 
increased spontaneous cancer (epithelial).  

  Regarding the mechanism that links aging and spontaneous carcinogenesis, we 
propose the mechanism shown in the flow chart of Fig. 1, whereby stress, DNA-
damage, telomere dysfunction, etc., produce abnormal cells including preneoplastic 
cells, resulting in the activation of the apoptotic machinery. If the regulation of 
apoptosis is normal, this process leads to aging effects. However, once this system 
is malregulated via various factors [ 126 ], the risk of cancer increases. Although it 
may seem paradoxical that aging and cancer both originate from the same proc-
esses involved in maintaining the viability of the cell/host, the apoptosis-inducing 
mechanism is a key factor that links aging and cancer. However, we should also take 
into account the influence of immnosenescence on carcinogenesis in the elderly. 
We can detect the immunosurveillance phenomenon [ 112 ] and even spontaneous 
tumors such as melanoma are immunogenic and are commonly infiltrated by tumor 
antigen-specific T-cells [ 101 ]. Thus, especially in immunogenic tumors, immunose-
nescence would help to promote carcinogenesis in the elderly, as observed in animal 
models [ 131 ] and human viral diseases [ 3 ,  24 ,  91 ,  116 ].  

    4.2 Role of Mitochondria in Aging and Cancer  

  Mitochondria play roles in multiple cellular functions, including energy produc-
tion, cell proliferation and apoptosis. These organelles contain their own genetic 
material, mitochondrial DNA (mtDNA), which is maternally inherited. Although 
much smaller than the nuclear genome, mtDNA is also important, and has been 
hypothesized to play a crucial role in aging and carcinogenesis. This is partly due 
to the fact that mitochondria represent the major site for the generation of cellular 
oxidative stress and play a key role in mediating apoptosis. Damage to mtDNA is 
therefore an important contributor to aging and cancer [ 28 ].  

  The free radical theory remains the most vigorous contender to explain the basis 
of aging in a wide range of species by postulating that the production of intrac-
ellular reactive oxygen species (ROS) is the major determinant of life span [ 28 ]. 
Intracellular ROS are primarily generated by the mitochondrial respiratory chain 
and are prime agents of oxidative damage. Free radical damage is generated and 
accumulates during normal metabolism and in stress situations. Persistently high 
ROS is linked to several age-related diseases. Furthermore, recent data from elegant 
mouse models now confirm that mutations of mtDNA do indeed play a central and 
pivotal role in the aging process [ 26 ].  

  One important development has been the recognition that mitochondria play a 
central role in the regulation of apoptosis. A number of apoptotic signals converge 
on mitochondria. Thus, mitochondria have been implicated in the carcinogenic proc-
ess because of their role in apoptosis and other aspects of tumor biology, and also 
because of their role as generators of ROS (Fig. 1). Many types of human malignan-
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cies, such as colorectal, liver, breast, pancreatic, lung, prostate, bladder and skin 
cancer, have been shown to harbour somatic mtDNA mutations [ 28 ]. It is currently 
unknown whether the observed mtDNA damage has a primary and causative link 
to the process of cancer development or if it may simply represent a secondary 
bystander effect that reflects an underlying nuclear DNA instability.  

  In conclusion, it is likely that the interplay between nuclear and mitochondrial 
genes may hold the final key to understanding the role of mitochondria in aging and 
cancer.  
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                                          Abstract:   The impact of aging on T-cell tolerance has yet to be elucidated. More 
importantly cancer vaccines that will be effective both in the young and the old have 
yet to be developed. As a result, there is a need for relevant tumor models which 
include aspects of self-tolerance and development of spontaneous tumors in the aged. 
Such models are critical for the development and optimization of specific cancer-
related immunotherapeutic strategies for the elderly. Although the majority of studies 
augmenting immune responses against a self-antigen like the Her-2/neu have used 
young Her-2/neu transgenic mouse models and put a lot of effort into aspects such 
as increasing the immunogenicity, very little attention has been paid to the immune 
competence of the aging population. Based on the Her-2/neu transgenic mice, our 
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group has developed a mouse model (HLA-A2.1/Kb mice crossed with the FVB-
Her-2/neu mice) where self-tolerance, spontaneous tumor progression and aging are 
present simultaneously. The immunological aspects of the A2xneu mice closely reflect 
those of cancer patients whose immune systems are not fully competent to reject their 
tumors. Models like this are critical as they may provide data that closely predict the 
clinical outcomes and will help to customize immunotherapeutic strategies that would 
be effective for the treatment of tumors in both the young and the old. In this chapter, 
we will focus on the Her-2/neu transgenic mouse model for the evaluation of immune 
and antitumor responses against a self-tumor antigen in both the young and the old.  

            1   Tumor Associated Antigens  

   Immunotherapeutic strategies designed to induce a cellular immune response have 
received much attention as a promising approach for the treatment of many types 
of cancers. The discovery of tumor associated antigens (TAA) [90, 179, 178] has 
been an important breakthrough in tumor immunology, because it is now possible 
to devise immunotherapeutic approaches to promote T- and B cell responses against 
such antigens and induce protective immunity against neoplastic malignancies [39, 
176]. TAA can be classified into four categories based on their expression and rec-
ognition patterns of T-cells [137]. The first family is known as cancer-testes anti-
gens (CTAs). These proteins are normally expressed only in testes but are aberrantly 
expressed in melanoma, bladder, colon, lung, prostate and other cancers. The NY-
ESO-1 [19] and the MAGE families [180] are proteins that characterize this group. 
The second family is known as differentiation antigens, like the melanocyte lineage 
[77]. These antigens show a lineage specific expression in tumors (melanomas) and 
are also expressed in normal cells of the same origin. The tyrosinase [10] or gp100 
antigens [195] are examples of this group. The third family of antigens are viral-
based proteins. These are cancers induced by viruses like the human papillomavi-
rus (HPV 16) that induce cervical cancer [162]. Antigens such as E6 and E7 from 
HPV 16 can be recognized by T-cells and used as targets for tumor protection [42]. 
The fourth family are “self-antigens” that are overexpressed in the tumor compared 
to the level of expression in normal cells [113]. The Her-2/neu [69] and p53 [64] 
are examples of this family. These antigens can be used to target a wide range of 
tumors from different origins. This chapter reviews basic information on targeting 
Her-2/neu for cancer immunotherapy in the young and the old.  

       2   Her-2/neu  

   Breast carcinoma is a biologically complex disease that ranges from a localized tumor 
to a widely varied metastatic neoplasm. Expression and amplification of oncogenes 
have been studied in attempts to define the molecular correlation of the prognosis, 
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progression and clinical behavior of breast cancer. A major genetic alteration in breast 
cancer is the overexpression of the Her-2/neu (also known as c-erbB-2) proto-onco-
gene [27, 1, 7]. This protein is expressed in 25-35 % of all breast cancers. Her-2/neu 
is a transmembrane glycoprotein with tyrosine kinase activity whose structure is 
similar to epidermal growth factor receptor (EGFR) [126]. Her-2/neu is a compo-
nent of a four member family of closely related growth factor receptors including 
EGFR, Her-1, Her-3 and Her-4 [181]. Her-2/neu is involved in the regulation of vital 
functions including cell proliferation and cell differentiation, therefore, these effects 
can initiate a hyper-mitogenic signal with oncogenic potential [174]. The presence 
of Her-2/neu on tumors is associated with metastatic disease, poor prognosis and 
overall survival [156]. One of the consequences of overexpressing the Her-family 
of proteins is that it presumably contributes to uncontrolled growth signal transduc-
tion and hence cellular transformation [106]. However, the exact role of the Her-2/
neu receptor expression in the pathogenesis of breast cancer remains unclear. Also, 
tumors overexpressing Her-2/neu show low responsiveness to adjuvant therapy that 
includes cyclophosphamide, methotrexate and 5’flourouracil (CMF) [52]. Further-
more, Her-2/neu seems to synergize with the multidrug resistance protein p170mdr-1, 
rendering breast cancer more resistant to taxol [193]. The cell surface localization of 
the Her-2/neu makes it a candidate for targeted immunotherapy [15, 135, 138]. Sev-
eral clinical trial studies are underway utilizing an anti-Her-2/neu monoclonal anti-
body, tratuzumab (Hereceptin), which has potent antiproliferative activity towards 
the cancer cells expressing Her-2/neu [125, 67, 68]. It has been demonstrated by 
several groups that the combination of anti-Her-2/neu treatment and chemotherapy 
elicits an additive antitumor effect resulting in tumor growth inhibition [189, 120]. 
Additionally, there is evidence indicating that some patients have existing immunity 
against Her-2/neu. Several studies have demonstrated the presence of humoral [38] 
and cellular responses [37] against Her-2/neu. These findings indicate that target-
ing Her-2/neu could suppress the malignant phenotypes of Her-2/neu-overexpressed 
tumors and strongly suggests that Her-2/neu could serve as an excellent target for 
developing anti-cancer immunotherapies specific for Her-2/neu expressing tumors.  

    3   Self-Tolerance and Induction of Tumor Immunity  

   The goal of tumor immunologists is to develop immunotherapeutic strategies to 
generate tumor immunity capable of eliminating cancers. While this goal has been 
persistently pursued, the road to achieving this goal has not been consistent. The 
evidence that the immune system in some instances is effective against tumors 
proves that the development of immunotherapeutic strategies to combat cancer 
is worth the pursuit. In order to understand the lack of immune responses against 
cancer and achieve tumor immunity, awareness of the concept of self versus non-
self antigens is critical. The principle of the immune system is to tolerate self-
antigens but develop vigorous responses against foreign antigens [160, 161]. The 
discrimination between self and nonself antigens for T-cells occurs in the thymus 



1192   J. Lustgarten and N. Mirza  

where lymphocyte precursors first assemble T-cell receptors (TCR). Following 
TCR recombination T-cells are selected based on the interaction with peptide/
MHC molecules. If T-cell interactions are of low-to-intermediate affinity for 
MHC/peptide complexes, these T-cells are positively selected and become part 
of the T-cell repertoire [74, 81]. However, when the interaction of T-cells with 
self-antigens is too strong, they are negatively selected resulting in the clearance 
of high avidity T-cells (also called clonal deletion) [148, 163]. Although it is quite 
likely that central tolerance deletes the bulk of self-reactive T-cells, there is accu-
mulating evidence that self-reactive T-cells that have reached the periphery can 
also be deleted by peripheral tolerance [14, 132]. Although the identification of 
TAA encoding mutated cellular genes serves as a target for T-cell immunity, the 
majority of the currently defined TAA are often mutations in proto-oncogenes 
and tumor suppressor genes that lead to the development of cancer. Since these 
TAA are self-antigens and the immune system is trained not to respond to these 
molecules, mechanisms of self-tolerance dampen the immune responses against 
TAA. As such, the development of immunotherapeutic strategies against self-
tumor antigens is not as simple as previously thought.  

   Based on transgenic mouse models expressing foreign antigens as self-anti-
gens, it is clear that immune-tolerance is capable of deleting self-reactive high 
avidity T-cells against the transgene (self), thereby leading to self-tolerance 
[47, 48]. However, T-cell elimination through tolerance is not absolute, since 
self-specific T-cells can be isolated from tolerant hosts [75, 58, 25]. A charac-
teristic of these self-reactive T-cells is that the majority of these cells are of low 
avidity [76, 57, 26]. This raises the question: what is the useful contribution of 
these low avidity T-cells to the immune defense? The answer to this question 
probably relates to the degenerate specificity of the TCR. Complete elimination 
of all T-cells reactive against self-antigens would severely restrict the diversity 
of the immune repertoire. It is possible that T-cells recognize self-antigens with 
low avidity and may be able to recognize other antigens with high avidity. Even 
though TCR are specific for particular epitopes, it is also clear that such TCR can 
recognize a variety of related ligands [79, 71] and even peptides without appar-
ent homology to the original antigenic peptide [97]. This represents an optimal 
repertoire that is capable of recognizing a maximum diversity of antigens while 
being functionally tolerant to self-antigens. Although the T-cell repertoire for 
self-antigens is severely restricted, a central question is whether the available 
repertoire of T-cells specific for tumor-self antigens is sufficient in number or 
avidity to mount an effective anti-tumor response. For example Morgan et al. 
[101] and de Visser et al. [33] demonstrated that the activation of low-avidity 
CD8 +  T-cells specific for a self-tumor Ag epitope can protect against tumor cell 
challenges in mice without the induction of an overt autoimmune reaction. Thus, 
the observation that low-avidity T-cells persist in vivo and that they can induce 
an antitumor response underscores their potential role in antitumor immunity and 
offers an important component for the antitumor response. This raises the ques-
tion of which conditions should be optimized in order to maximize the ability of 
low avidity T-cells to eliminate tumors.  
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    4   Her-2/neu Transgenic Mice  

   The availability of strains of transgenic mice expressing tumor antigens has pro-
moted research into the investigation of tissue specific transformation properties of 
a number of oncogenes [70]. Additionally, these transgenic models could serve as 
tools for assessing the immune responses against self-tumor antigens and evaluat-
ing the immunotherapeutic strategies in preventing and curing tumors. Although 
the pathogenesis and progression of tumors in these oncogene transgenic mice 
resembles the human disease, these models have drawbacks. Since the expression 
of oncogenes is driven by specific promoters the timing of expression of the onco-
gene does not completely overlap with the human situation. This has important 
immunological ramifications influencing the timing and intensity of immune-tol-
erance. Even though these models are not perfect, the lessons learned from them 
have helped us to better understand: (1) how self-tolerance influences the immune-
repertoire, (2) to analyze the immune responses against self-tumor antigens, (3) to 
evaluate immunotherapeutic strategies to overcome tolerance, and (4) to improve 
antitumor vaccination strategies.  

   Almost 20 years ago Muller et al. reported the first Her-2/neu transgenic mice 
[102, 53]. Today there are several lines of Her-2/neu transgenic mice that overex-
press the nontransformed and transformed rat Her-2/neu oncogene. In the nonmu-
tated Her-2/neu transgenic mice, the rat Her-2/neu is under the control of the MMTV 
promoter. These animals are on the FVB background. Morphological changes are 
detected in these mice at approximately week 25. Hyperplasia and carcinoma in situ 
are evident at approximately week 33 followed by invasive lobular carcinoma start-
ing at approximately week 39. Palpable tumors become apparent by approximately 
week 45. Shortly after the appearance of palpable tumors, animals develop lung 
and liver metastases that also express elevated levels of neu. This course of disease 
progression is in marked contrast to the escalated appearance of malignant changes 
seen in Balb/c transgenic mice expressing the mutated rat neu (BALB-neuT mice) 
oncogene also driven by the MMTV-promoter [35, 12, 89, 117]. BALB-neuT trans-
genic mice display one of the most aggressive   progressions of Her-2/ neu  carcino-
genesis in which the Her-2/neu is already   overexpressed on the surface of the cells 
of the rudimentary   mammary, salivary and Harderian glands on 3–4 week-old mice. 
At 10 weeks, Her-2/neu positive cells   give rise to a widespread atypical mammary 
hyperplasia, which   progresses to form an invasive and metastasizing carcinoma. By 
week 22–25 palpable masses are detected.  

    5   Analysis of T-Cell Responses in Her-2/neu Transgenic Mice  

   A major approach to cancer immunotherapy is the induction of T-cells’ responses 
capable of controlling and killing tumor cells [171]. As explained above the major-
ity of the currently defined TAA are often overexpressed products of normal 
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cellular genes. Therefore, in practice, these overexpressed proteins pose a significant 
challenge to the design of effective T-cell immunotherapies due to considerations of 
self-tolerance. The significance of understanding the mechanism responsible for the 
persistence of low avidity T-cells relates not only to our understanding of autoim-
munity, but also to the potential to target such cells against self-tumor antigens for 
tumor destruction. Therefore, a central question is whether the available repertoire of 
T-cells specific for up-regulated tumor-self antigens is sufficient in number or avidity 
to mount an effective antitumor response. Our group had addressed this fundamental 
question utilizing the Her-2/neu transgenic mice. In order to evaluate the peptide 
specific CD8 T-cell responses to neu antigens in FVB-Her-2/neu transgenic mice, 
we crossed the FVB-Her-2/neu transgenic mice with the A2.1/Kb transgenic mice 
[183] (called A2xneu mice). The F 

1
  animals (A2xneu) allowed us, for the first time, 

to study peptide specific responses in Her-2/neu transgenic mice. In these animals we 
evaluated A2.1-Her-2/neu responses against the p369–377 and p773–782 peptides 
that we have identified previously [91]. As a control, A2.1/Kb transgenic mice were 
crossed with FVB wild type mice (A2xFVB). The application of A2.1-p369 and 
A2.1-p773 soluble tetramers [192, 124] allowed us to quantitatively and qualitatively 
analyze the CD8 T-cell specific responses in these animals. Our results indicated 
that the number and intensity of CD8 + /tetramer +  cells derived from A2xFVB mice 
was significantly higher when compared to A2xneu mice. The CTLs from A2xneu 
mice required at least 100-fold more peptide to achieve comparable lysis than CTLs 
from A2xFVB mice [92]. Taken together, the tetramer binding and cytotoxic activ-
ity showed that there is a correlation demonstrating a difference in the T-cell affinity 
between A2xneu and A2xFVB mice for the recognition of neu antigens, indicating 
that A2xneu mice contain only low affinity T-cells for neu antigens [92]. Later work 
of Ercolini et al. [40] and Singh and Paterson [153] identified H2q-Her-2/neu spe-
cific peptides. Analysis of CD8 T-cell responses in FVB-Her-2/neu transgenic mice 
revealed that CD8 T-cells are of lower avidity when compared to parental FVB/N 
mice. These findings further support our data indicating that tolerance is manifested 
in Her-2/neu transgenic mice by eliminating neu-specific T-cells of high affinity.  

    6    Strategies for the Induction and Enhancement of Tumor 
Immunity in Her-2/neu Transgenic Mice  

   6.    1 Peptide Vaccination  

   Having demonstrated that CTLs from A2xneu (tolerant) mice recognize targe 
T-cells pulsed with peptides or tumor cell lysates [92, 30], a critical question in 
tumor immunology is whether the residual T-cell repertoire for tumor-self-antigens 
would have an antitumor effect. We first evaluated the antitumor effect either by 
adoptive transfer of peptide-specific CTLs or peptide immunization. Animals were 
adoptively transferred, once, twice or three times with p369- or p773 CTLs derived 
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from A2xFVB or A2xneu mice. A single transfer of CTL derived from A2xFVB 
mice rejected the tumor. In contrast, three transfers of the p369- or p773-CTLs from 
A2xneu mice inhibited only 40 % of the tumor growth, while less than three CTL 
transfers demonstrated an even lower efficiency for tumor growth inhibition [92]. 
We also compared animals that were immunized once, twice or three times with the 
p369- or p773- peptides. Animals immunized three times with the peptides showed 
~20- % tumor growth inhibition, while two immunizations induced a ~12–15 % 
tumor growth inhibition and one a ~7–9 % tumor growth inhibition. These results 
indicate that although the residual low affinity repertoire from Her-2/neu mice could 
be activated these CTLs have a minimal effect in controlling the tumor growth. Stud-
ies from other groups indicate as well that peptide vaccination alone is not sufficient 
or effective in preventing the tumor growth in Her-2/neu mice [111]. These results 
are similar to those seen in cancer patients where immunizations with Her-2/neu 
specific-epitopes did not have an effect in controlling the tumor growth [194]. These 
data suggest that tolerance compromised the immune repertoire against self-tumor 
antigens hampering the antitumor immune responses.  

   The identification of immunodominant epitopes is critical for the understanding 
of the immune responses and it is a prerequisite for the design of specific immu-
nomodulatories therapies. However, as we have demonstrated, a major limitation for 
the use of an immunodominant epitope from a tumor-self antigen is tolerance. The 
use of immunodominant peptides such as p369–377 and p773–782 might be optimal 
for the stimulation of high affinity T-cells, but these peptides suboptimally stimulate 
the low affinity T-cells. Considering that the interaction of the TCR with the peptide-
MHC ligand is highly flexible and that the same TCR can recognize many different 
epitopes [196, 157, 34, 167], several laboratories have demonstrated that amino acid 
alterations in T-cell epitopes could enhance stimulation of T-cell populations for the 
nominal epitope [66, 122, 13]. A major goal in tumor immunization is to circumvent 
tolerance. Many groups have attempted to enhance the immunogenicity of the pep-
tide by modifying the amino acid sequence to enhance the binding capacity of the 
peptide to MHC class I molecules [65, 61, 123]. Most of these studies have changed 
a single amino acid corresponding to a substitution in the anchor motif. For example, 
substituting a threonine with a methionine at position 210 of the gp:209–217 peptide 
(heteroclitic peptide) increases the affinity of the peptide fivefold. However, vac-
cination of patients with this peptide showed no objective clinical response [143]. 
This raises the question of whether vaccination with heteroclitic peptides of high 
affinity for a self-antigen best suits the induction of an antitumor response against 
a self-tumor antigen. Most probably, high affinity heteroclitic peptides are not the 
best choice as tumor vaccines because the CTL repertoire against these heteroc-
litic peptides will also be of high avidity, even against the native immunodominant 
peptide. As such, tolerance might have eliminated the CTL repertoire against the 
heteroclitic peptides. Therefore, immunizations with the high affinity heteroclitic 
peptide might not be of clinical value to develop cancer vaccines as demonstrated 
with vaccinations with the gp: 209–217 peptide. We have taken a different approach 
to circumvent tolerance against immunodominant epitopes by identifying crossreac-
tive peptides (CP). If we consider that not all possible CP are naturally processed 
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and presented, the possibility exists that T-cells against these peptides persist in the 
repertoire and can be used as targets to induce a stronger antitumor response against 
these immuno-dominant epitopes present on the tumor cells. An important issue 
becomes which strategy should be used in order to identify the specific amino acid in 
the epitope that must be altered and with which amino acid it should be substituted. 
We have used a novel method called positional scanning synthetic peptide combi-
natorial library (PS-SCL) that allows to identify the most effective residues at each 
position of the T-cell epitope recognized by a T-cell clone [65, 61, 123]. Based on the 
screening of PS-SCL we identified potential amino acids that can be substituted in 
the primary sequences of the p773–782 peptide [94]. Three CP peptides were identi-
fied that induce CTL responses of higher affinity in A2xneu mice when compared 
to the native p773–783 peptide. These CTLs recognize A2 + -Her-2/neu +  tumors with 
high efficiency. Moreover, multiple immunizations with CP significantly prolonged 
the survival of tumor bearing A2xneu mice. These results demonstrate an alternative 
approach where it is possible to circumvent tolerance with the identification of CP 
and that these peptides could be of significant clinical value. Current studies in our 
laboratory are optimizing the use of these CP for tumor vaccination.  

    6 .   2 Dendritic Cell Vaccination  

   Dendritic cells (DC) are the most powerful antigen presenting cells that process and 
present antigens for the stimulation of class I and class II restricted immune responses 
[6, 100]. The use of DC has become a hallmark for tumor vaccination due to their 
capacity to regulate T-cell immunity [5, 103]. Mature or activated DCs express a full 
complement of costimulatory molecules and produce cytokines that are necessary 
and required for the activation, expansion and maintenance of the immune response 
[5, 103]. There is a plethora of information in preclinical and clinical studies examin-
ing the efficacy of DC vaccination. The major advantage of DC vaccination is that 
these cells could be pulsed with peptides [4], proteins [144], cell components [82] and 
viral vectors [59] expressing the antigens present on tumor cells. Our group has com-
pared the antitumor immune responses using DC pulsed with peptides [92], soluble 
neu protein [30] and apoptotic tumors [30] in FVB-Her-2/neu mice. The advantages 
in using DC pulsed with proteins or apoptotic cells are that the immune responses are 
not restricted to single immunodominant epitopes and could stimulate an immune 
response to numerous antigens activating both CD4 +  and CD8 +  T-cell responses 
[5, 103]. Our results indicate that DC-vaccination of Her-2/neu transgenic mice pulsed 
with soluble neu protein and apoptotic tumors induce a stronger immune response 
when compared to DC-peptide vaccination resulting in a significant delay of tumor 
growth [30]. Sakai et al. [142] demonstrated that the DC pulsed with recombinant 
adenovirus expressing truncated neu protein induced a specific anti-neu antibody and 
T-cell response that delayed the onset of mammary carcinomas in BALB-neu T mice. 
Recently, Chan et al. [18] compared the immune and antitumor responses between 
adenovirus (AdVneu)-transfected DC and plasmid DNA expressing neu in Her-2/neu 
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transgenic. They demonstrated that modified DC vaccine is more potent than DNA 
vaccine in both protective and preventive animal tumor models.  

    6.    3 Addition of Costimulation  

   It is generally accepted that T-cell activation requires two signals [86, 182], the first pro-
vided by the TCR and peptide/ major histocompatibility complex interaction (MHC) and 
the second from the antigen-independent interaction between T-cell-expressed CD28 
molecule and the costimulatory B7.1 (CD80) and/or B7.2 (CD86) ligands, expressed 
on the surface of APCs. There is growing evidence that the two-signal model is an over-
simplification of the mechanism for the activation of an immune response and that the 
signaling of other accessory molecules (third signal) might be necessary and important 
to amplify and effectively expand the immune response. Among these other accessory 
molecules, the TNF receptor family, including CD27, CD30, CD40, 4-1BB, and OX40 
have gained importance as co-stimulatory molecules delivering signals that prolong 
and propagate T-cell responses [28, 185]. It has been shown that antibodies against 
OX-40/4-1BB have mitogenic signals for T-cell activation and growth [151, 49], induce 
a vast amplification of T-cell mediated immune responses [85, 186], inhibit apoptotic 
cell death [164, 84] and stimulate long-lived T-cell responses [51, 116]. Furthermore, 
administration of monoclonal antibodies against 4-1BB or OX40 as a single agent 
induces immune responses that significantly reduce the growth of tumor [80, 168]. 
We evaluated whether immunization with a combination of DC pulsed with apoptotic 
tumor cells and anti-OX40/anti-4-1BB mAbs would improve the immunotherapeutic 
efficacy in FVB-Her-2/neu mice. We tested the immunization of DC with each of the 
antibodies alone or with the combination of both anti-OX40 and anti-4-1BB mAbs. 
The rationale for simultaneously using anti-OX40 and anti-4-1BB was that anti-OX40 
predominantly interacts with CD4 T-cells [29], while anti-4-1-BB predominantly inter-
acts with CD8 T-cells, therefore, it might be possible to amplify both T-cell subsets 
resulting in a more effective antitumor response. Our results indicated that DC-immu-
nization plus anti-OX40 or anti-4-1BB mAb further enhanced the antitumor response 
when compared to animals that received DC-immunization alone [29, 92, 30]. Interest-
ingly, DC-immunization plus anti-OX40/anti-4-1BB mAb significantly improved the 
T-cells responses resulting in a ~70 % tumor growth inhibition [30]. Murata et al. [104] 
also demonstrated that anti-OX40 mAb enhanced the antitumor effect of Ag-specific 
GM-CSF-secreting vaccine in FVB-Her-2/neu mice.  

    6.    4 Cytokines  

   A number of studies have revealed the relationship between tumor cells, inflamma-
tory cells and cytokines [22, 166]. Cytokines within the tumor can contribute to the 
progression of tumors or play a role in controlling tumor growth [50, 136]. With the 
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use of cytokines the environment of the hosts’ tumor could be altered to favor or 
facilitate tumor immunity [60]. Dr. Guido Forni pioneered the use of cytokines for 
the treatment of tumors in Her-2/neu mice and his group demonstrated that admin-
istration of recombinant IL-12 slowed the progression of spontaneous mammary 
carcinomas in FVB-Her-2/neu and BALB-neuT mice [11, 23, 36]. The injections of 
IL-12 were associated with inhibition of angiogenesis, infiltration of reactive   cells, 
production of proinflammatory cytokines, and activation of inducible nitric oxide 
synthase (iNOS). Following this seminal study they optimized the use of IL-12 for 
the induction of stronger antitumor immune responses and combined it with DNA-
vaccination or allogenic vaccines [109, 118] as described below. Elizabeth Jaffee’s 
group had evaluated the use of GM-CSF on tumor modified cell vaccines for the 
induction of antitumor responses in Her-2/neu transgenic mice [133, 187]. These 
studies are also discussed below.  

    6.    5 DNA Immunization  

   The ability of DNA vectors to activate cellular and humoral immune responses 
has prompted intensive study into their use for vaccine development and as an 
immunotherapeutic modality. As such, DNA vaccines have emerged as a poten-
tially important form of vaccination in the control of cancers [88]. The efficacy 
of DNA vaccines has been demonstrated in animal tumor models by targeting 
tumor-associated or tumor-specific antigens [172, 170]. The advantage of DNA 
vaccination is that it is a cell free system. Injection of plasmid-DNA into skin or 
muscle results in plasmid DNA uptake by APCs at the site of plasmid injection 
which subsequently induce humoral and cellular responses. The immunogenicity 
of the DNA-vaccines has been enhanced with the use of adjuvants (e.g., alum, 
cytokines, or LPS) or the incorporation of unmethylated CpG motifs that help 
skew the immune response to a Th1 type response [175]. Many groups have 
evaluated intramuscular DNA-plasmid vaccination for controlling tumor growth 
in Her-2/neu mice [20, 3, 139, 121, 128, 140]. Most of these studies used a 
plasmid expressing the neu gene and demonstrated that intramuscular vaccina-
tion with DNA-neu-plasmid could induce cellular and humoral responses result-
ing in tumor growth inhibition [20, 3, 139, 121, 128, 140]. Capello et al. [16] 
demonstrated that DNA-vaccination could be enhanced in BALB-neuT mice if 
costimulation was provided with the administration of soluble mouse LAG-3 
(lymphocyte activation gene-3/CD223). Quaglino et al. [130] showed that vacci-
nation of DNA-plasmid by electroporation at 10 week intervals provided a greater 
and more persistent immune response and kept all 1-year-old BALB-neuT mice 
free of tumors. These results indicate that repeated courses of immunizations are 
required and that in vivo electroporation enhances DNA-vaccination. Addition-
ally, several groups have demonstrated that xenogeneic vaccination with DNA 
induced an immune response in BALB-neuT mice [129]. Recently Smorlesi 
et al. [158] compared intradermic injection, gene gun delivery and intramuscular 
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injection of DNA vaccine alone or with electroporation. They concluded that 
the vaccine delivery methods analyzed elicited diverse immune mechanisms 
that differently prevented the appearance and the development of spontaneous 
mammary carcinomas. In their hands the use of intramuscular injection plus 
electroporation resulted in the best antitumoral effect and in the generation of 
a Th1-type immune response. The combination of DNA vaccine electroporation 
with systemic IL-12 administration,   effectively prevents the onset of carcinomas  

 in most BALB-neuT/p53 172R-H  mice [118].  

    6.  6 Bacterial Vectors  

   Live attenuated mutants of several pathogenic bacteria have been exploited as poten-
tial vaccine vectors for antigen delivery [31]. Attenuated invasive human bacteria, 
such as Listeria, Salmonella and Shigella, have been used as plasmid DNA vaccine 
carriers and their potency has been evaluated in several animal models. This deliv-
ery system allows the administration of DNA vaccines together with associated bac-
terial immunostimulators directly to professional antigen presenting cells. Yvonne 
Paterson pioneered the use of Listeria monocytogenes for vaccination purposes 
and data from her group demonstrated that the delivery of this bacterium express-
ing truncated forms of the neu oncoprotein increased the immunogenicity   of this 
self-antigen, induced CTL responses and they could identify new T-cell epitopes 
[152, 154, 155]. This group, further demonstrated that immunization of Listeria 
monocytogenes expressing Her-2/neu slowed the growth of implanted tumors in 
FVB-Her-2/neu transgenic mice.  

    6.    7 Modified Tumor Cells  

   There is evidence indicating that tumor cells are capable of directly and indi-
rectly activating tumor-specific T lymphocytes [24]. Indirect activation of 
immune responses by tumor cells involves crosspriming of tumor antigens by 
APCs inducing the activation of T-cell responses. In contrast, direct activation of 
immune responses by tumor cells is facilitated when tumors are able to present 
tumor antigens and directly activate T-cell responses. These responses are greatly 
enhanced when tumor cells are genetically engineered to express costimulatory 
ligands, (e.g., CD80), secrete cytokines (e.g., IL2, IL-12, GM-CSF) or used as 
allogeneic vaccines. These modified tumor cells are capable of inducing immune 
responses in naïve animals that could protect against challenge with unmodified 
tumor cells [83]. Several groups have used genetically modified tumor cells to 
evaluate their efficacy in inducing an antitumor response in Her-2/neu transgenic 
mice.  
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   6.    7.1 Modified Cells Expressing Neu and GM-CSF  

   Reilly et al. [133] modified NIH-3T3 cells to express neu and GM-CSF. Their 
study indicated that immunization with 3T3- neu /GM-CSF cells induced antibody 
and T-cell responses in FVB-Her-2/neu mice. In a prophylactic setting immuniza-
tion with 3T3- neu /GM-CSF cells significantly delayed the transplantable tumor or 
delayed the onset of spontaneous tumors in these mice. In subsequent studies, the 
same group demonstrated the importance of both humoral and cellular responses for 
tumor eradication [134]. Animals receiving the combination of neu-specific-CTLs 
and neu-specific-IgG were fully protected, while animals receiving only CTL or 
antibody therapy were partially protected.  

    6.    7.2  Modified Allogeneic Tumor Cells Expressing IL-2, 
IL-12, IL-15, or INF-γ  

   De Giovanni et al. [32] expressed the genes for IL-2, IL-12, IL-15 or INF-γ on 
a tumor cell derived from FVB-neu transgenic mice (N202.1A, H2 q  haplotype). 
Immunization of BALB-neuT mice (H2 d  haplotype) with these modified cells dem-
onstrated that those cells secreting IL-12 had the most powerful immunopreventive 
activity. More than 80 % of BALB-neuT mice were tumor free for 1-year. Cells 
lacking Her-2/neu or allogeneic antigens failed to induce an antitumor response. 
The immune response was dependent on the production of INF-γ and the induction 
of an antibody response.  

     6.     8 Viral Vectors  

   Recombinant viral vaccines have been used in the development of cancer vaccines 
for the past 10 years. The advantage of viral vectors is that it offers the ability to 
express single or multiple tumor antigens [159] along with an array of immune 
costimulatory molecules [46] or immune-enhancing factors [56]. Additionally viral 
vectors could provide a danger signal enhancing the immune responses [191]. There 
are different viral vectors such as the vaccinia virus, adenovirus, canarypox virus, 
fowlpox virus, alphavirus, etc, that have been modified and used in preclinical and 
clinical studies [55, 188]. Each viral vector has advantages and disadvantages like 
immunogenicity, existing immunity, safety, manufacturing, loading gene(s) of inter-
est, efficacy of gene expression, etc. One of the potential ways in which cancer 
vaccines can be optimized is through the use of different viral vectors to deliver 
the same tumor antigen (heterologous prime-boost) [55, 188]. Several laboratories 
have evaluated the use of viral vectors to induce antitumor immune responses in 
Her-2/neu transgenic mice. Schwaninger et al. [145] show that virosomes, which 
consist of reconstituted viral envelopes without viral genetic material, can act as a 
carrier and an adjuvant for the induction of humoral and cytotoxic immune responses 
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delaying tumor formation in Her-2/neu transgenic mice. Several other groups have 
shown that recombinant adenovirus expressing different forms of the neu onco-
protein stimulated the production of specific anti-neu antibodies, T-cell responses 
and prevented or delayed the onset of mammary carcinomas in the BALB-neuT 
mice [142, 44, 119, 18, 45]. Tegerstedt et al. [169] demonstrated that murine polyo-
mavirus (MPyV) VP1 virus-like particles (VLPs)   containing the extracellular   and 
transmembrane domain of Her-2/neu also delayed onset of mammary tumors in 
BALB-neuT mice.  

    6.    9 Nanoparticles  

   Nanotechnology, is defined as the biomedical application of nanosized systems 
which measure 1–1000 nm [17]. Key advantages of many nanoparticles are their 
low toxic effects and biocompatibility. Nanoparticles are considered to have the 
potential as novel cellular probes for both diagnostic (imaging) [184] and therapeu-
tic purposes (drug/gene delivery) [78]. Drug targeting by nanoparticles or nanocap-
sules offers enormous advantages as it reduces the quantities of the required drugs, 
the pharmaceutical effects are achieved, and it also minimizes side-effects; pro-
tects drugs against degradation and enhances drug stability. The group of Dr. Nejat 
Egilmez explored the use of nanoparticles or microspheres for the induction of 
tumor immunity in FVB-Her-2/neu transgenic mice. They generated biodegradable 
microspheres containing IL-12 and GM-CSF. Intratumoral (i.t.) injection of these 
microspheres promotes the suppression of established primary tumors, the develop-
ment of systemic antitumor immunity, and the complete eradication of disseminated 
micrometastatic disease in a transplantable tumor model [107, 108]. However, tumor 
regression was found to be temporary since recurrence of tumors were observed.  

    6.    10 Toll Like Receptor Ligands  

   The innate immune response relies on the recognition of the antigen by receptors 
that recognize specific structures found exclusively in microbial pathogens termed 
pathogen-associated molecular patterns (PAMPs) [8]. Recent studies have dem-
onstrated that recognition of PAMPs by APCs is mediated by a Toll-like recep-
tor (TLR) family [98, 73]. There are currently more than 10 known TLR family 
members capable of sensing bacterial wall components, such as LPS (TLR-2/4), 
CpG-DNA (TLR-9), flagellin (TLR-5), as well as other microbial products [165]. 
Recognition of PAMPs by TLRs triggers maturation and activation of APCs that 
includes upregulation of MHC and co-stimulatory molecules, and secretion of pro-
inflammatory cytokines and chemokines. This maturation of APCs significantly 
increases their ability to prime naïve T-cells. In this way, TLRs link the recognition 
of pathogens with induction of adaptive response. Now that specific ligands have 
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been identified for most of the TLRs, it is finally possible for immunotherapy to 
move away from the nonspecific effects of whole bacterial extracts and determine 
whether the same or even better therapeutic responses may be induced using syn-
thetic TLR ligands. Many studies had demonstrated that injections of TLR-lig-
ands could significantly improve vaccination formulation [173, 177]. Sfondrini 
et al. [147] showed that systemic treatment of CpG-ODN reduced lung metastases 
induced by transplantable tumor in Her-2/neu mice. Recently Nava-Parada et al. 
[111] demonstratedthat peptide vaccination given   in combination with CpG-ODN 
was effective in inducing   CTL responses with antitumor activity in BALB-neuT  

 mice. Our group has compared the antitumor effect of different TLR-ligands such 
as: Poly I:C, LPS, flagellin, imiquimod and CpG-ODN in BALB-neuT mice. Only 
(i.t.) injections of CpG-ODN induced the rejection of primary tumors in ~30 % of 
the BALB-neuT (Sharma et al. submitted for publication). Animals that did not 
reject the tumor significantly delayed the tumor growth. In order to target the CpG-
ODN at the tumor site, we chemically conjugated an anti-Her-2/neu mAb with 
CpG-ODN. Treatment with anti-neu-CpG-ODN induced the rejection of tumors in 
BALB-neuT mice. These results indicate that CpG-ODN-targeted therapy could be 
used as a novel strategy for the induction of antitumor responses.  

    6.    11 Heat Shock Proteins  

   Heat shock proteins (HSPs) help to maintain cell homeostasis under physiological 
and stress conditions, however, some HSPs are potent inducers of immunity and 
have been used as vaccine adjuvants to enhance immune responses [9]. HSPs are 
potent inducers of innate and antigen-specific immunity. They activate DC partly 
through toll-like receptors, increase antigen presentation resulting in the activation 
of T-cell and humoral immune responses [72]. Manjili et al. [96] prepared aheat 
shock complex of HSP110 with the intracellular   domain of human HER-2/ neu  and 
demonstrated that this complex induced IFN-γ CD8 +  producing   T-cells capable of 
delaying the onset of spontaneous mammary tumors on FVB-Her-2/neu transgenic 
mice.  

    6.    12 Depletion of Immunosuppressor Cells  

   There is accumulating evidence indicating that antitumor immune responses could 
be suppressed or inhibited by the presence of immuno-suppressor cells [131]. The 
most characterized suppressor cells are the CD4 + CD25 +  T-cells or Tregs [141]. 
The depletion of CD4 + CD25 +  T-cells by the administration of anti-CD25 mAb has 
been shown to suppress the growth of a variety of different syngeneic tumors in 
mice [114]. The observation that the removal of immunoregulatory CD4 + CD25 +  
T-cells can abrogate unresponsiveness to syngeneic tumors in vivo, leading to the 
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spontaneous development of tumor specific responses, indicates that the mainte-
nance of self-tolerance against tumor-self antigens could potentially be lifted. Sev-
eral groups including our own have evaluated the role of T-regs in regulating the 
immune responses in Her-2/neu mice. Ercolini et al. [41] show that pretreatment 
with cyclophosphamide   which inhibits T-regs allowed the activation of high avidity 
T-cells in Her-2/neu mice. The combination of cyclophosphamide chemotherapy 
with Her-2/neu-specific vaccination results in a stronger antitumor response when 
compared to vaccination alone. Depletion of T-regs by repeated   administrations 
of anti-CD25 mAb prolonged the survival,   reduced carcinoma multiplicity and 
induced an antibody and CTL-mediated reactivity against Her-2/neu in BALB-neuT 
mice [2]. In another study, the combination of peptide vaccination and anti-CD25 
mAb treatment significantly enhanced the CTL responses and a single vaccination 
of peptide+CpG-ODN   given after three daily injections of anti-CD25 mAb com-
pletely   prevented the occurrence of spontaneous tumors in BALB-neuT mice up to 
35 weeks of age [111]. Our results indicate that the number of T-regs keep accumu-
lating over time at the tumor site. We have evaluated the effect of blocking the sup-
pressive activity of T-regs in a therapeutic setting with our CpG-ODN vaccination 
strategy. BALB-neuT tumor bearing mice treated with i.t. injection of CpG-ODN 
or anti-neu-CpG-ODN plus injections of anti-GITR mAb resulted in the complete 
rejection of the primary tumor and induced a long term memory response (Sharma 
et al. submitted for publication).  

   Although T-regs are well known as suppressor cells there are other type of sup-
pressor cells like myeloid suppressor cells (MSC, also know as immature myeloid 
cells, IMC or M2- macrophages). The MSC are characterized by the expression of 
CD11b+ Gr1+ surface markers. MSC can suppress the activation of CD4+ and CD8+ 
T-cells inhibiting the generation of antitumor responses [146]. MSC are though to 
be induced by a variety of cytokines and growth factors (TGF-β, VEGF) which 
are produced within the tumor microenvironment. MSC have poor antigen-present-
ing   capability, produce factors that suppress T-cell prol-iferation   and activity, and 
promote angiogenesis [146]. Melani et al. [99] found a direct correlation between 
tumor multiplicity and increased proportion of CD11b+ Gr1+ cells in BALB-neuT 
mice. Ambrosiano et al. [2] demonstrated that the reduction of T-regs correlate 
with the disappearance of CD11b+ Gr1+ cells in BALB-neuT mice. Taken together, 
these results indicate that immunosuppressor cells heavily influence the immune 
responses in Her-2/neu transgenic mice.  

    6.    13  Combination of Immunotherapy with Antiangiogenic 
or Chemotherapy  

   A number of preclinical and clinical cancer studies demonstrate an increase in anti-
tumor efficacy when combining more that one treatment approach [62]. Significant 
benefits for combinations such as radiation and cytokine therapy [105], radiation and 
biologically targeted agents (antiangiogenic agents, anti-EGFR antibodies) [43], and 
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tyrosine kinase inhibitors and immunotherapy [112] have been shown. For exam-
ple, in Her-2/neu patients the combination of paclitaxel and Hereceptin produced 
higher response rates and longer survival duration than each therapy alone [87]. 
These data support the concept of combination therapies being generally superior to 
monotherapies. Above we illustrated several immunotherapeutic strategies to induce 
antitumor responses. However, the majority of immunotherapies alone are not suf-
ficient to eradicate the tumor in Her-2/neu transgenic mice. Angiogenesis is the abil-
ity of preexisting vasculature to send out capillary sprouts leading to the formation 
of new vasculature [54]. It is now a well-accepted idea that progression of solid 
tumors is intrinsically dependent on angiogenesis for growth of the primary tumor 
and metastatic lesions. To inhibit tumor angiogenesis, we produced a soluble form 
of the Flt-1 (sFlt) molecule secreted by tumor cells in order to block the biological 
activity of the VEGF. Treatment with sFlt, delayed the tumor growth. We tested the 
combination of immunotherapy and antiangiogenic therapy and our results showed 
that the combination of these therapies eradicated tumors in Her-2/neu mice with a 
small tumor burden [29]. Animals with a larger tumor burden and treated with immu-
notherapy and antitangiogenic therapy resulted in a 90 % inhibition of tumor growth 
[29]. Holmgren et al. [63] show that DNA vaccinations encoding for angiomotin and 
Her-2/neu, inhibited angiogenesis and induced anti-neu responses in which 80% of 
the BALB-neuT mice were tumor free for more than 70 weeks.  

   Several groups have demonstrated that the application of chemotherapy at low 
doses increase the potency of immune-mediated cytoxicity or tumor vaccines 
[21]. Machielis et al. [95] showed thatcyclophosphamide, paclitaxel,   and doxoru-
bicin, when given in a defined sequence with modified cells secreting GM-CSF 
and expressing Her-2/neu   enhanced the potency of the vaccine and amplified the 
T helper 1 response thereby, delaying the tumor growth in FVB-Her-2/neu mice. 
The combination of IL-12 and tamoxifen controlled the tumor growth and 80 % of 
the Her-2/neu mice were tumor free [110].  

   Above we summarized most of the strategies used to evaluate immune and anti-
tumor responses in Her-2/neu mice. The knowledge acquired, so far, through the use 
of the different vaccination strategies allows us a better understanding of the require-
ments for the generation of an immune response against Her-2/neu. Future advances 
in the understanding of the mechanisms for action of the immune responses against 
self-tumor antigens will permit the enhancement or development of new vaccination 
strategies.  

     7    Analysis of Immune Responses Against Self-Antigens 
in Aging Tumor Model  

   Cancer statistics show a disproportionately higher burden of tumors in the older 
population [190]. Furthermore, the numbers of older people diagnosed with cancer 
is expected to increase since the average life span within the elderly population has 
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increased. Even though many laboratories are evaluating a variety of vaccination strat-
egies to induce antitumor immune responses, none of these laboratories has taken into 
consideration the effect that aging has on the anti-tumor immune response. Although 
most murine models used for cancer research use young mice, cancer is primarily a 
disease of aging individuals. In the US > 50 % of cancer diagnoses are made after the 
age of 65 years. Since the immune system of the aged is different to that of the young, 
and is in a state of hypo-responsiveness, the conclusions drawn from studies on young 
animals cannot be extrapolated to represent the events taking placed in aged indi-
viduals. We have demonstrated that immunotherapeutic intervention could be effec-
tive in young animals, but that the same therapy is not effective in old animals [93]. 
Our group has previously shown that Balb/c animals are successful in eradicating 
tumor cells expressing Enhanced Green Fluorescent protein (EGFP) as a surrogate 
tumor antigen. These young animals were protected against subsequent challenges 
with either the EGFP-modified or the wild-type tumor. In contrast, aged Balb/c mice 
did not mount a protective response to immunization with EGFP-cells. Long term 
memory responses against wild type tumors were only developed in these old mice 
when EGFP-CD80 expressing tumor cells were administered in combination with 
anti-OX40 and anti-41BB mAb [149]. These data indicate that it is possible to convert 
the immune repertoire in the aged animals from a nonresponder to a responder status 
with the inclusion of additional costimulation. In the presence of anti-OX40 or anti-4-
1BB mAb, T-cells responses were similar in old and young mice [190].  

   Our group recently demonstrated that old Balb/c mice contained twice the 
amount of CD4 + CD25 + Foxp3 +  and CD8 + CD25 + Foxp3 +  populations in spleen and 
lymph nodes when compared to spleens and lymph nodes from young mice [150]. 
Depletion of CD25 +  cells with anti-CD25 mAb in old mice resulted in the rejection 
of BM-185-EGFP tumor cells, resulted in the generation of a protective memory 
response against BM-185-wild type cells and restored antitumor T-cell cytotoxic 
activity [150]. These results indicate that a direct correlation between the expansion 
of T-regs and immune deficiency exists in the old and the depletion or reduction 
of T-regs might be critical to optimally activate an immune response in the aged. 
Taken together, these results have important implications for the development of 
vaccination strategies in the elderly indicating that the aged T-cell repertoire can be 
exploited for the induction of tumor immunity and that additional coactivation and 
or inhibition of the suppressive activity of T-regs might be required for an optimal 
antitumor immune response in aged hosts.  

   We have recently evaluated whether targeting APCs following injection of TLR-
ligands such as Poly I:C, LPS, flagellin, imiquimod and CpG-ODN would induce 
the antitumor responses in the old. Our results indicated that only injections of CpG-
ODN completely rejected the tumor in both young and old mice. Injections of Poly 
I:C also induced the rejection of tumors in the young but not in the old. Treatment 
with injections of LPS, Imiquimod or flagellin did not have any effect in control-
ling the tumor growth in young or old mice (Sharma et al. In Press). These results 
indicate that not all TLR-ligands are able to induce an antitumor response and that 
there are differences among the various TLR-ligands in their capacity to induce an 
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antitumor response in old mice. This information is very important for the selection 
of adjuvants in order to induce or enhance an immune response in the elderly.  

   Even though the data presented above and the evaluation of other antitumor 
responses by several laboratories using different tumor models [127] are very 
encouraging and many lessons can be learned about the behavior of the antitumor 
immune responses in the elderly, through such models, we have to remind ourselves 
that in general the majority of these tumor models rely on immunogenic tumors. As 
such, it will be more difficult to translate the results from these immunogenic tumor 
models into a clinical setting for the treatment of tumors in the old. As described in 
several chapters of this book, the T-cell component of the aged immune system is 
dramatically compromised, i.e., the immune response is impaired and the repertoire 
is constricted. To date very little data exists on the immune responses against self-
tumor antigens in the aging population. So far there are no reports evaluating anti-
tumor immune responses in aged tumor models where tolerance and spontaneous 
tumor progression are present simultaneously. The effect of aging on T-cell tolerance 
remains to be elucidated. Therefore, it is clear that there is a need for relevant animal 
tumor models which include aspects of self-tolerance and development of spontane-
ous primary and metastatic tumors in the elderly. Models like this are critical for the 
development and optimization of more accurate cancer-related immunotherapeutic 
strategies for the elderly. We have observed that one of the consequences of cross-
ing FVB-Her-2/neu mice with HLA-A2 mice (A2xneu) is that spontaneous tumors 
appear in these animals when they are 22–27 months old. Therefore, the A2xneu 
mouse model represents a unique model where aging, tolerance and spontaneous 
tumor progression are present simultaneously. The A2xneu mouse model closely 
reflects the human disease, where the testing of immune responses, vaccination or 
immunological strategies against self-tumor antigens will have a higher chance of 
being relevant in the human situation. There are several reasons as to why there is 
a lack of more studies evaluating antitumor responses in old mice and one critical 
factor is the extended time period which is necessary to age these mice and the costs 
incurred towards this aging. To evaluate antitumor responses in this aged animal 
model, we have utilized cell lines derived from spontaneous tumors to facilitate the 
rapid evaluation of the immune and antitumor responses.  

   The advantage of A2xneu mouse model is that recapitulates the clinical pro-
gression and pathogenesis of the human disease. Additionally, the immunological 
aspects of the A2xneu mouse model closely reflect those of cancer patients whose 
immune systems are not fully competent to reject their tumors. To test the antitumor 
responses, we have developed a tumor model utilizing a tumor cell line derived 
from spontaneous tumors (N202.A2 cell line) that facilitates the rapid evaluation 
of the antitumor responses. We have already started to evaluate the immune and 
antitumor responses in old A2xFVB mice and A2xneu mice. Previously we demon-
strated that N202.A2 cells grow in A2xneu mice as a consequence of immune-toler-
ance, but are rejected by young A2xFVB mice. We evaluated whether aging has an 
effect on the immune system preventing the rejection of N202.A2 cells in old ani-
mals. Young (2 months old) and old (18 months old) A2xFVB mice were implanted 
s.c. with 10 6  N202.A2 cells and tumor growth was evaluated. As expected, young 
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A2xFVB mice rejected the tumor; however, the tumor grew in old mice. N202.A2 
cells formed tumors in young and old A2xneu mice as expected. We also tested 
whether there was a difference in the priming ability of young and old A2xneu 
and A2xFVB mice to induce a CTL response after immunization with the p773 
peptide. We observed that the CTL activity from young A2xFVB or A2xneu mice 
was stronger when compared with the CTL activity of A2xFVB or A2xneu old 
mice (Fig. 1). Interestingly, the CTL from old A2xFVB (non tolerant) mice had a 
similar cytotoxic activity to the CTL from young A2xneu (tolerant) mice. A very 
weak CTL activity was detected in old A2xneu mice (Fig. 1). Taken together, these 
results further support the plethora of evidence indicating that aging suppresses the 
immune system and that old mice do not have the same capacity to prime a T-cell 
response as young mice. In agreement with our previous report, old A2xFVB and 
A2xneu mice have higher numbers of T-regs when compared to young A2xFVB and 
A2xneu mice. We are continuing with our investigations to determine whether the 
attenuated CTL responses observed in A2xneu old mice are due to T-reg mediated 
suppression.  

   Our results suggest that i.t. injections of CpG-ODN could rescue the immune 
responses in the old and promote antitumor responses in Her-2/neu mice. We tested 
the effect of injection of CpG-ODN in old A2xFBV and A2xneu mice. Our results 
indicate that old A2xFVB mice rejected the N202.1A tumors and old A2xneu mice 
significantly delayed the tumor growth prolonging the survival of the animals 
(Dominguez et al. submitted for publication). These results demonstrate that antitu-
mor responses could be promoted in old tolerant hosts. Through the A2xneu mouse 
model we have successfully uncovered some of the cellular basis for the decline 
in immune function in the elderly and have begun to elucidate, the conditions and 
strategies needed to augment the antitumor activity of the aged.  

   The A2xneu mice represent the first animal model through which it is now pos-
sible to evaluate the antitumor immune responses in both old and self-antigen toler-
ant hosts. This model is invaluable and is of great importance because the results 
derived from it will allow us to optimize antitumor immune responses in the old. 
Our group is currently evaluating the immune responses and the strategies to further 
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enhance the antitumor responses in A2xneu mice. The A2xneu mouse model will 
enable us to uncover some of the cellular basis for the decline in immune function 
in the elderly and determine conditions and strategies to augment the antitumor 
activity against self-tumor antigens in the aged. The information generated from 
these animals will more comparable to the aging environment and could be better 
translated for the treatment of cancer in the old.  

       8 Conclusions  

   The use of mouse model like the Her-2/neu transgenic mice have provided valu-
able information to evaluate and establish basic paradigms of tumor immunology 
since they offer the in vivo environment that cannot be reproduced in vitro [115]. 
Although tumor animal models like the Her-2/neu transgenic are not perfect, they 
closely resemble the human situation where it is possible to evaluate the effect of 
self-tolerance on the immune system and develop strategies for inducing tumor 
immunity against a self-tumor antigen. As described in this chapter many groups 
including ours have developed and evaluated different immunological strategies to 
control the tumor growth in Her-2/neu transgenic mice. Although we might be able 
to develop immunotherapeutic protocols that are effective in controlling the tumor 
growth in young Her-2/neu mice, we have to make sure that the same protocols are 
also effective in old animals since the immune system of the aged is associated with 
a dramatic reduction in responsiveness as well as functional dysregulation. Addi-
tionally, there is strong evidence indicating that the immune interventions applied 
for the induction of tumor immunity in the young will not be effective in the old. 
Therefore, the development of animal tumor models where aging and tolerance are 
present at the same time are critical. Only models like this will allow the optimiza-
tion of vaccination strategies to effectively stimulate tumor immune responses in 
both the young and the old. Our A2xneu mouse model provides a unique opportu-
nity to evaluate immune and antitumor responses against a self-tumor antigen where 
aging and tolerance are present at the same time. Hopefully models like the A2xneu 
mice will provide valuable information to customize and optimize vaccination strat-
egies that would be effective in both the young and the old. Then, the final challenge 
is to translate the results of these preclinical models into the clinical setting.  
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Cancer Immunotherapy and Aging: 
Lessons From the Mouse
Claudia Gravekamp

     C. Gravekamp (  ) 
 Albert Einstein College of Medicine 
Department of Microbiology and Immunology               
1300 Morris Park Avenue
Forchheimer building, Room 407A
Bronx, NY 10461    

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218
2 Cancer Vaccines: The Puzzle and the Promise  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219

2.1  Peptide-Based Vaccines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
2.2  Tumor Cell-Dendritic Cell Hybrid Vaccines   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
2.3  DNA-Based Vaccines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221

3  Diminished T-cell Responses in Cancer Patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222
4  Diminished T-cell Responses in Elderly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225
5  Preclinical Mouse Tumor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1228
6  Comparison of Cancer Vaccination in Preclinical Models and Human Clinical Trials   . . 1230
7  Comparison of Cancer Vaccination at Young and Old Age in Preclinical Models  . . . . . . 1230
8  Summary and Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1230

References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237

T. Fulop et al. (eds.), Handbook on Immunosenescence, 
DOI 10.1007/ 978-1-4020-9062-2_59, © Springer Science+Business Media B.V. 2009



1218 C. Gravekamp

     PBMC      peripheral blood mononuclear cells  
     PGE      prostaglandine E  
     PPD      purified protein derivate  
     PRR      pattern recognition receptors  
     PSA      prostate cancer antigen  
     STAT      signal transducer and activator of transcription  
     TAA      tumor-associated antigens  
     TCR      T cell receptor  
     TGF      transforming growth factor  
     TLR      toll-like receptor  
     TNF      tumor necrosis factor  
     Thelp      helper T cells 
 Tregs, regulatory T cells  
     VCAM      vascular cellular adhesion molecules.      

   Abstract:       Cancer is a disease of the elderly. Since demographic trends indicate that 
over the next decades the number of elderly people will increase substantially, strate-
gies for cancer prevention and therapy need to be optimized to older patients. Immu-
notherapy, either through passive or active immunization is a highly targeted type 
of therapy that is potentially less toxic than chemotherapy or radiation and could, 
therefore, be especially effective in older, more frail cancer patients. In particular 
active immunization, i.e., employing patient’s own immune system through vaccina-
tion, offers great promise since it can potentially keep cancer permanently at bay. 
However, it has been shown that older individuals do not respond to vaccine therapy 
as well as younger adults. This has been attributed to diminished T-cell responses, a 
phenomenon also observed in cancer patients per se. To develop cancer vaccines that 
are effective at older age, the availability of preclinical models that can predict age 
effects on cancer vaccination is critically important. In this review, current knowl-
edge of diminished T-cell responses in cancer patients and elderly, the results of 
cancer vaccination in preclinical models and human clinical trials and the impact of 
aging on immunotherapy will be discussed. Finally, experimental approaches will be 
proposed how to make cancer vaccines more effective at older age.     

   Keywords   :    Cancer    •    vaccines    •    Immunosenescence    •    Immunotherapy    •    Aging    • 
   Mouse    •    tumor models   

      1      Introduction  

  Cancer immunotherapy is the manipulation of the immune system against tumor cells. 
This could be manipulation of the patient’s own immune system by active immuniza-
tion, or the use of humanized antibodies or T-cells activated ex vivo, called passive 
immunization. So far, promising results have been obtained with passive immuniza-
tions using monoclonal antibodies directed against growth factor receptors on tumor 
cells, or coupled with a radioisotope or a toxin. However, these therapies often develop 



side effects such as cardiotoxicity, pulmonary complications, and hematological tox-
icity (for a review see Klastersky, 2006). Passive immunization with antigen-specific 
T-cells that have been stimulated ex vivo, so far showed marginal success, is tech-
nically very difficult, time-consuming and labor-intensive (for a review see Xue 
et al., 2005). Adoptive transfer of T-cells that have been genetically manipulated by 
introducing high avidity T-cell receptor (TCR) in cytotoxic T lymphocytes (CTL) 
that recognize tumor-specific antigens with much higher efficacy than the patient’s 
own T-cells, seems more promising because they develop long-lasting therapeutic 
effects, and triggers the production of lymphokines (Xue et al., 2005). Phase I and 
II human clinical trials are ongoing but results are not available yet. In contrast to 
passive immunization, active immunization or vaccination can be used preventively 
and therapeutically. Active immunization against proteins expressed by tumors, called 
tumor-associated antigens (TAA), can induce long-lasting memory T-cell responses, 
while passive immunizations have limited duration. Active immunization has less side 
effects, is technically less difficult to apply, and is less expensive than passive immu-
nizations. Overall, active immunizations are potentially more promising. They are the 
subject of my own research and the main focus of this review.  

    2      Cancer Vaccines: The Puzzle and the Promise  

  The first attempts to develop cancer vaccines on the basis of irradiated tumor cells 
were unsuccessful (for a review see Schreiber et al., 1998). Tumor cells are poor APC 
due to the low expression of MHC and costimulatory molecules and poor processing 
of antigens and presentation of TAA on the membrane. Several decades of research 
into the presence of TAA have shown that many tumors express antigens that are not 
expressed in normal adult tissues such as MAGE, GAGE, BAGE, LAGE, NY-ESO-
1, or overexpressed antigens that are present at low levels in normal tissues such as 
CEA, HER2/neu, MUC1, Survivin, or show altered expression by mutation in cellu-
lar genes such as MUM1, cdk4,  β -catenin (for a review see Gravekamp, 2001). New 
generations of TAA-based cancer vaccines have become available that are much 
more powerful in activating the immune system with less severe side effects than 
irradiated tumor cells. This new generation of vaccines is able to activate differ-
ent T-cells depending on processing of exogenous or endogenous proteins produced 
by the vaccine, and subsequent presentation of the antigen (TAA peptides) by anti-
gen-presenting cells (APC) to the immune system. The conventional dogma is that 
endogenous proteins, for instance delivered into the cytoplasm of an APC by a DNA 
vaccine, are processed by cytoplasmic enzymes resulting in small peptides, then 
transported to the endoplasmic reticulum, where peptides can associate with newly 
synthesized major histocompatibility complex (MHC) class I molecules. These pep-
tide/MHC class I complexes migrate to the membrane of the APC for presentation to 
the immune system and for subsequent activation of naive CTL. Exogenous proteins, 
for instance from purified protein or conjugate vaccines, are internalized by APC via 
endocytosis to an endosomal compartment, where they are digested into peptides 
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and associated with MHC class II molecules. These peptide/MHC class II complexes 
migrate to the membrane of the APC for presentation to the immune system and 
for subsequent activation of naïve T helper cells (T 

help
 ). Recently, this dogma about 

processing of exogenous and endogenous proteins has been changed. It has been 
shown by several research groups (for a review see Cohen et al., 1998) that exog-
enously produced proteins can be taken up by APC and then presented in the context 
of MHC class I molecules. Below, several cancer vaccines will be discussed that are 
particularly powerful in the induction of CTL responses and therefore potentially 
useful in the development of cancer vaccines for the elderly.  

2.1          Peptide-Based Vaccines  

  Use of peptide-based vaccines is an approach to initiate TAA-specific CTL responses. 
Such vaccines obviate the need to digest proteins into peptides, a process that is often 
impaired in tumor cells. Peptide-based vaccines consist of dendritic cells (DC; iso-
lated from the cancer patients themselves) loaded with synthetic peptides derived 
from TAA that are expressed, but inadequately presented by the tumor. These pep-
tides assemble with MHC molecules that are highly expressed at the cell membrane 
of DC. Injection of these peptide-loaded DC into cancer patients leads to presentation 
of TAA-peptide/self-MHC complex to the immune system, activating TAA-specific 
CTL, resulting in the destruction of TAA-expressing tumor cells (Dees et al., 2004; 
Svane et al., 2004). However, a major disadvantage of their use is that the production 
procedures are difficult, expensive and time-consuming. Indeed, the DC need to be 
isolated from the cancer patient, expanded in vitro, then loaded with peptide and then 
re-injected into the patient, all under sterile conditions. It is difficult to obtain suffi-
cient viable DC with this approach. To circumvent these difficulties, several clinical 
trials in patients with melanomas, and breast or prostate cancer, have been performed 
with some success using TAA-peptides without DC but in the presence of granulocyte 
macrophage colony-stimulating factor (GM-CSF; Markovic et al., 2006; Peoples et 
al., 2005, Perambakam et al., 2006). A disadvantage of these latter clinical trials is 
the high (toxic) concentrations of TAA-peptides required to obtain sufficient DC with 
MHC/TAA-peptide complexes in vivo. It is difficult to load DC with peptides in vivo, 
because the injected peptides need to compete with existing peptides associated with 
the MHC molecules at the membrane of DC. In addition, the number of epitopes 
presented by peptide-based vaccines are limited compared to tumor-cell-dendritic 
hybrid- or DNA based vaccines, as discussed below.  

    2.2      Tumor Cell-Dendritic Cell Hybrid Vaccines  

  Generation of hybrids between allogeneic tumor cells and autologous DC, pre-
senting antigens expressed by the tumor in concert with costimulating capacities 
of DC is another approach to activate TAA-specific CTL (Gong et al., 2000). An 
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advantage is that a broad variety known and unknown TAA are included in this 
type of vaccine, and the TAA are now expressed in the presence of high levels of 
self-MHC and co-stimulatory molecules. Also allogeneic DC has been fused with 
autologous tumor cells resulting in the activation of TAA-specific CTL (Kugler 
et al., 2000). Caution must be taken to avoid activating autoimmunity against 
normal cells (Grossman and Paul, 2000; Nair et al., 2000). Human clinical vac-
cine trials with tumor cell-dendritic cell hybrid vaccines showed promising results 
in metastatic breast and renal cancer, but the procedures are as difficult as with 
peptide-based vaccines.  

2.3          DNA-Based Vaccines  

  Use of DNA vaccines allows activation of TAA-specific CTL. Like the above 
described DC-based vaccines, DNA-based vaccines circumvent the poor APC func-
tion of the tumor cells since the antigens delivered by the DNA vaccines will be 
presented by professional APC that do express high levels of MHC and costimula-
tory molecules. A conventional DNA vaccine is a bacterial plasmid (for instance 
pCDNA3.1) containing an eukaryotic promoter (required for transcription), a Kozak 
sequence (required for translation) and the gene of interest, followed by a polyade-
nylation signal (to prevent degradation of mRNA). The gene of interest can be any 
DNA sequence that may activate tumor-specific T-cell responses.  

  Intramuscular or epidermal immunization with a DNA vaccine leads to DNA 
uptake into APC such as bone marrow-derived DC, macrophages, or Langerhans 
cells (Dupuis et al., 2000). CpG-rich motifs (high frequency of unmethylated CG 
sequences) present in bacterial DNA, binds to APC, internalizes via a clathrin-
dependent endocytic pathway, and then rapidly moves into a tubular lysosomal 
compartment, where it binds to Toll-like receptor (TLR-9), initiating signal trans-
duction (Latz et al., 2004), followed by activation and maturation of APC (Jakob et 
al., 1999). Cutaneous bombardment with DNA, using the gene gun is different from 
epidermal or intramuscular immunization (for a review see Boyle and Robinson, 
2000). It results in direct delivery (physically) of the DNA into the cytoplasm of 
Langerhans cells. These DC migrate to regional lymph nodes in order to present 
antigens delivered by the DNA vaccine to naïve CTL. Another promising candidate 
vaccine vector is  Listeria monocytogenes (L. monocytogenes) , because it naturally 
infects professional APC (monocytes), and targets antigen delivery to both the class 
I MHC pathway of endogenous antigen presentation and the class II MHC path-
way of exogenous antigen presentation. This DNA delivery system (containing the 
same antigen as expressed by the tumors) successfully protected mice from renal or 
colorectal tumors (Pan et al., 1995). Advantages of  L. monocytogenes  are the higher 
efficiency of DNA uptake into APC and subsequent processing and antigen pres-
entation compared to the conventional DNA immunizations described above, and 
the possibility of oral administration. Currently, most research in DNA vaccines is 
focused on the improvement of DNA uptake and target specificity.  
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  Of all three types of cancer vaccines discussed in this section, DNA-based vac-
cines are the most promising. DC-based vaccines are difficult to prepare and expen-
sive. In contrast, once developed, DNA-based vaccines are much more attractive 
in this respect, i.e., higher stability, lower costs. The most important advantage of 
DNA-based vaccines is the numerous possibilities to eliminate T-cell unresponsive-
ness. DNA-based vaccines allow inclusion of multiple genes into the DNA vector 
that may lead to enhanced T-cell responses, simultaneously with the TAA-encoding 
gene(s). Examples are genes for IL-2, IFN γ , heat-shock proteins HSP-70, or adju-
vants (Chen et al., 2000; Lusgarten et al., 1999).  

  Before reviewing vaccination in preclinical and clinical trials, I will first discuss 
the single and most important hurdle to successful vaccination against cancer, i.e., 
reduced T-cell unresponsiveness in cancer patient and at older age.  

    3      Diminished T-cell Responses in Cancer Patients  

  CTL are considered to be the most important players in antitumor reactions. The 
TCR of CTL recognizes TAA in association with MHC molecules on the tumor 
cells. As has become evident from in vitro studies, these CTL are activated when 
exposed simultaneously to both TAA/self-MHC complexes and costimulatory mol-
ecules, resulting in CTL-mediated tumor cell cytolysis. In cancer patients, CTL are 
often found at the site of the tumor, but have evidently been unable to destroy the 
tumor cells (Gravekamp et al., 1990).  

  Multiple possible causes have been described for this unresponsiveness of the 
CTL in cancer patients (for a review, see Gravekamp 2001; Schreiber, 1998). For 
example, low expression of the costimulatory molecule B7.1 on human metastatic 
carcinoma cells in gastrointestinal tumors (Koyama et al., 1998) has been suggested 
as a possible cause of T-cell unresponsiveness because the interaction between 
costimulatory molecules and its ligand is an absolute need for T-cell activation. 
Other described costimulatory or adhesion molecules that may play a role in T-cell 
unresponsiveness are intercellular adhesion molecules (ICAM)-1, vascular cellu-
lar adhesion molecules (VCAM)-1 or epidermal lymphocyte adhesion molecules 
(ELAM)-1 (Maurer et al., 1998). In mice, the importance of co-stimulatory mol-
ecules such as 4-1BBL or B7.1, for CTL activation, has been reported as well (Loo 
et al., 1997; Melero et al., 1997).  

  T-cell unresponsiveness could also be due to low expression of self-MHC on 
tumor cells, which is required for recognition of tumor-specific antigens by the 
TCR. Low expression of MHC molecules has been commonly found in human 
metastatic tumor cells, such as metastatic melanoma, breast cancer or colon can-
cer (Garrido et al., 1997). Similarly, low expression of MHC molecules has been 
observed in mouse tumors, such as primary brain tumors (Akbasak et al., 1991), 
fibrosarcoma (Pedrinaci et al., 1999), melanoma (Weber and Rosenburg, 1990), or 
lung carcinoma (Blieden et al., 1991). As discussed later in this article, vaccination 
based on TAA could circumvent both problems. Even then, however, loss of TAA 
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expression will allow tumor cells to escape vaccine-induced T-cell responses (Cor-
ver et al., 2000; Sypniewska et al., 2005). This underlines the need of multi-antigen 
vaccines.  

  T-cell tolerance may be the most important obstacle for successful immuno-
therapy against cancer (for a review, see Zou, 2006). Since most TAA are weakly 
expressed on normal cells, the immune system will recognize them as self. Earlier 
in life T-cells are taught in the primary lymphoid organs not to respond to self-
antigens. Therefore, it is difficult to induce a strong immune response against most 
TAA. Evidence exists in humans and mice that natural regulatory T-cells (T 

regs
 ), 

expressing CD4 + CD25 + , are crucial for maintaining T-cell tolerance to self-antigens. 
More recent studies have shown that transcription factor forkhead box P3 (FOXP3) 
plays a critical role in the development of functional T 

regs 
 (CD4 + CD25 + FOXP3 + ). 

Natural T 
regs

  are different from inducible T 
regs

 . Inducible T 
regs

  arise during inflam-
matory processes such as infections and cancers (for a review see Curiel, 2007). 
Although inducible T 

regs
  express CD4, CD25, and FoxP3 like natural T 

regs
 , they are 

functionally different. In contrast to natural T 
regs

 , inducible T 
regs

  suppress immunity 
through the production of soluble factors such as IL-10 and transforming growth 
factor (TGF) β  or through direct cell-cell contact (Bluestone and Abbas, 2003). It 
has been shown in mice (Shimizu et al., 1999; Tanaka et al, 2002) and man (Chen 
et al., 2007, Manhke et al., 2007) that inducible T 

regs
  inhibits vaccine-induced T-cell 

responses as well as NK cell responses. Many strategies have been discussed and 
tested in animal models that target the inactivation or elimination of inducible T 

regs
 , 

in order to enhance vaccine efficacy. For instance, treatment with a tumor cell-
based vaccine secreting granulocyte-macrophage colony stimulating factor (GM-
CSF), combined with anti-CTLA-4 antibodies (CTLA-4 is constitutively expressed 
in T 

regs
 ) in the B16/B6 melanoma mouse tumor model resulted in eradication of 

primary tumors and prevention of lung metastases. This was accompanied with 
improved anti-tumor responses (van Elsas et al., 1999). However, in humans with 
stage IV melanoma or renal cancer administration of anti-CTLA-4-specific antibod-
ies did not inhibit suppressive activity of T 

regs
  in vitro or in vivo (Maker et al., 2005). 

Recently, it has been reported that also CD4 + CD25 + FOXP3 -  are suppressive and that 
not all CD4 + CD25 + FOXP3 +  are suppressive (Gavin et al., 2007; Wan et al., 2007). 
Inducible T 

regs
  may become an important target for cancer immunotherapy, but more 

research is needed to identify which CD4 + CD25 +  T-cells are suppressive, and how 
inducible T 

regs
  can be targeted without depletion of natural Tregs. Depletion of natu-

ral T regs leads to autoimmune diseases (Sakaguchi et al., 1995).  
  Yet, other factors may play a role in inhibition of vaccine-induced T-cell responses 

in cancer patients. In humans and mice, many tumors secrete lymphokines or factors 
that inhibit vaccine-induced immune responses. Examples are TGF β , IL-6, IL-10, 
cyclooxygenase-2 (COX-2) and its products prostaglandine E2 (PGE 

2
 ), PD1-lig-

and, or indolamine 2,3-dioxygenase (IDO; Gajewski et al., 2006). TGF β  inhibits 
antigen presentation by DC, resulting in inhibition of T-cell function (Kobie et al., 
2003), or facilitates the induction of T 

regs
  resulting in suppression of tumor-specific 

CD8 T-cell cytotoxicity in vivo (Chen et al., 2005). IL-6 is a potent regulator of DC 
differentiation in vivo (Park et al., 2004), and is able to initiate the expression of 
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Fig. 1 Diminished T-cell responses in cancer patients and in mouse tumor models. MHC/TAA, 
B7.1/2, ICAM-1/2, VCAM-1, ELAM-1, and PD-1L-ligand are expressed on the membrane of 
tumors cells
These molecules are often weakly expressed or altered or even absent in cancer patients resulting 
in diminished CTL responses. IL-6, IDO, COX-2, PGE

2
, TGFβ, and IL-10 are lymphokines or fac-

tors produced by tumor cells, inhibiting vaccine- and tumor-induced CTL cell responses. TGFβ, 
COX-2 and its product PGE

2
 facilitate the generation of inducible CD4+CD25+FOXP3± regulatory 

T cells (T
regs

). Inducible T
regs

 can be FOXP3+ or FOXP3-, and inhibits the production of IFNγ and 
IL-2 secreted by CTL and/or T

help
 cells, through the production of TGFβ and IL-10 or through 

cell-cell contact. Inducible T
regs

 express CTLA-4 constitutively. CTLA-4, the alternative ligand 
for B7.1 is an inhibitory receptor limiting T cell activation. PGE

2
 can also down regulate IL-12, a 

lymphokine important for long-term CTL responses after interaction with the IL-12 receptor. IL-6 
may prevent maturation of APC, and subsequent antigen presentation and T-cell activation. IDO 
may inhibit T cell activation through tryptophan degradation. IL-10 inhibits maturation of DC 
and T-cell function through T

regs
. Many of these factors such as IL-6, TGFβ, IL-10 and PGE

2
 can 

also be produced by macrophages and/or dendritic cells, resulting in inhibition of CTL responses. 
However, there are also macrophages that can activate CTL by the production of IFNγ or IL-12, 
or induce Fas-mediated apoptosis of tumor cells by CTL through the production of TNFα, or kill 
tumor cells directly by the production of TNFα and IFNγ
APC, antigen-presenting cells; COX-2, cyclooxygenase-2; CTL, cytotoxic T lymphocytes; DC, 
dendritic cells; ELAM, epidermal lymphocyte adhesion molecule; FoxP3, forkhead box P3; 
ICAM, inter cellular adhesion molecule; IDO, indolamine 2,3-dioxygenase; IFN, interferon; 
IL, interleukin; MHC, major-histocompatibility complex; PGE, prostaglandine E; TAA, tumor-
associated antigens; TGF, transforming growth factor; Thelp, helper T cells; Tregs, regulatory 
T cells; VCAM, vascular cellular adhesion molecule.
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signal transducer and activator of transcription (STAT)3 in DC. However, high lev-
els of STAT3 can prevent the maturation from DC, and subsequent presentation of 
antigens (Park et al., 2004), resulting in T-cell inhibition. IL-10 inhibits maturation 
of DC and T-cell function through T 

regs
  (Jonuleit et al., 2001). COX-2 and its prod-

uct PGE 
2
  induce the expression of T 

reg
  cell-specific transcription factor Foxp3 and 

increase T 
reg

  activity (Sharma et al., 2005). PGE 
2
  also downregulates IL-12 produc-

tion by macrophages and differentiation of Th1 responses (Kuroda and Yamashita 
(2003). Engagement of PD-1 by PD-1 ligand leads to inhibition of T-cell receptor-
mediated lymphocyte proliferation and cytokine secretion (Freeman et al., 2000). 
IDO inhibits T-cell proliferation through tryptophan degradation (Hwu et al., 2000). 
Reduction of these lymphokines or factors may enhance vaccine efficacy.  

  Over the last few years, more attention has been given to macrophages. Macro-
phages in the microenvironment of tumors, may also produce IL-6, TGF β , PGE 

2
 , 

and IL-10, and subsequently inhibit T-cell activation (Kim et al., 2006). However, 
macrophages may also stimulate T-cells through the production of IFN γ  or IL-12 
(Sica et al., 2000), or produce TNF α  facilitating Fas-mediated tumor cell apoptosis 
by CD8 T-cells (Starace et al., 2004), or become so-called “killer macrophages” 
when producing TNF α  and IFN γ  (Baron-Bodo et al., 2005; Ouyang et al., 2006). 
Macrophages play a crucial role in suppression and activation of the immune system 
in cancer patients, and may become an important target for anticancer therapies.  

  A schematic overview of impaired T-cell responses in cancer patients is shown in 
Fig. 1. To develop effective cancer vaccines, many of the above-described obstacles 
have to be overcome. However, an additional problem almost totally ignored in the 
development of cancer vaccines, is ageing of the immune system.  

      4      Diminished T-cell Responses in Elderly  

  Ageing of the immune system leads to impaired T-cell responses in elderly, including 
noncancer patients (Miller et al., 1996). Below, alteration in several immunological 
parameters that may contribute to the age-related decline in T-cell responses is dis-
cussed. In this discussion, human and mouse are compared. For instance, a decrease 
in the number of naive T-cells (capable of reacting to new antigens) and an increase 
in the number of memory T-cells (capable of reacting to previously exposed anti-
gens) in elderly humans as compared to young adults have been reported (Utsuyama 
et al., 1992). It has been suggested that continual activation of the immune system 
by new antigens during the life span would lead to a depletion of naive T-cells from 
the thymus, and a clonal expansion of memory T-cells. With the involution of the 
thymus almost complete at the age of 60 years, new naive T-cells at old age can no 
longer be generated (Grubeck-Loebenstein, 1997). The host is then dependent on the 
pool of naïve T-cells generated earlier in life. Analogous to the situation in humans, a 
decrease of naïve T-cells and an increase of memory T-cells have also been described 
for aging mice (for a review see George and Ritter, 1996). Other possible causes for 
diminished T-cell responses in aged humans and mice have been described, such as 
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defects in TCR/CD3-mediated phosphorylation events or aberrant regulation of tyro-
sine kinases associated with the TCR (Tamir et al., 2000). An age-related decrease in 
the  α  β  repertoire of the human TCR has been described that may lead to diminished 
T-cell responses (Wack et al., 1998). Another molecule important for T-cell activa-
tion is CD28. CD28 is expressed at the cell membrane of T-cells, and is the ligand 
for the co-stimulatory molecule B7, expressed on APC. Clinical studies have docu-
mented that high proportions of CD8 T-cells that lack CD28 are correlated with a 
reduced antibody response to influenza vaccination (for a review, see Effros, 2006). 
Also in mice, CD8 T-cells lacking CD28 expression have been reported (for a review, 
see Effros, 2004). Moreover, it has been shown that CD28-lacking CD8 T-cells can 
suppress antigen-specific CTL responses (Filaci et al., 2004).  

  Studies have been performed in the mouse to evaluate the involvement of natural 
T 

regs
  in age-related decline in T-cell-mediated immune responses. Suggestive evi-

dence exists that age-related decline in immune responses is ascribed to changes 
in the CD4 + CD25 - Fox3 +  T-cell population and not to a functional augmentation of 
suppressive CD4 + CD25 + Fox3 +  T 

regs
  (Nishioka et al., 2006). Others have shown that 

the number of human peripheral blood CD4+CD25 high  T 
regs

  increased with age but 
their function appeared to be unaltered in comparison to young age (Gregg et al., 
2005). The relevance of CD4+CD25 high  T 

regs
  in relation to immune senescence as yet 

remains unclear.  
  In addition to the problems at the level of T-cells and/or tumor cells, defects in 

cytokine production have been observed in aged humans. An example is a human 
vaccine study in which significantly lower IL-2 was produced by T-cells of older 
individuals stimulated with an influenza vaccine in vitro compared to those of young 
individuals (McElhaney et al., 1994). Similarly, significantly lower IFN γ  was pro-
duced by peripheral blood mononuclear cells (PBMC) from elderly individuals 
immunized with an influenza vaccine compared to young individuals (Quyang et al., 
2000). IL-2 promotes T-cell activation and proliferation, as well as release of IFN γ  by 
T-cells. The lower IL-2 production following in vitro stimulation with the influenza 
vaccine may explain the lower IFN γ  production. IFN γ  is involved in activation of 
APC such as macrophages. These macrophages are important for CTL priming.  

  Defects in other cell types than CTL and/or tumor cells may also explain T-cell 
unresponsiveness in aging. Antigen presenting cells (APC), such as DC in blood 
or Langerhans cells in skin, play a central role in T-cell activation. These cells are 
often called “professional’’ APC because they enable efficient processing of foreign 
proteins into peptides, and because they express MHC and costimulatory molecules 
at the high levels required for optimal presentation of the peptides to the immune 
system and subsequent stimulation of T-cells. Tumor cells are poor APC, because 
costimulatory molecules and self-MHC, as well as TAA required for CTL stimu-
lation are often weakly expressed. Therefore, DC loaded with peptides or fused 
with autologous tumor cells are frequently used in clinical trials as an anticancer 
immunotherapy to stimulate T-cells in cancer patients. Since APC play such an 
important role in T-cell activation, one might question whether this cell type could 
be involved in the age-related decline of T-cell responsiveness. Different results 
have been published about the function of DC at older age. For instance, it has been 
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Fig. 2 Diminished T cell responses in elderly and old mice. Ageing of the immune system leads 
to impaired T cell responses in elderly and old mice. Decrease in the number of naïve T cells (capa-
ble of reacting to new antigens) during life is probably the most observed age-related phenomenon 
in human and mice 
However, many ligands and receptors on T cells and APC, and lymphokines produced by T cells 
and APC play an important role in age-related diminished T cell responses as well. Those dis-
cussed in this review are shown here. The TCR is expressed by T cells, and recognizes antigens in 
association with self-MHC. An age-related decrease in the αβ repertoire of the TCR and defects 
in TCR/CD3-mediated phosphorylation events has been observed at older age. Lack of CD28, a 
ligand for co-stimulatory molecules B7.1/2, expression on T cells is associated with diminished 
T cell responses at older age. Decreased production of IL-2 and/or IFNγ, both required for T cell 
stimulation, has been observed at older age in mice and humans. It has been shown in the elderly 
that natural CD4+CD25-FoxP3 but not CD4+CD25+ FoxP3 T

regs 
contributes to T cell inhibition.

 
In 

another study it has been shown that CD4+CD25highT
regs

 increases with age but are functional simi-
lar to natural CD4+CD25highT

regs 
of young individuals. It has been shown that IL-12 is less produced 

by DC of aged compared to young individuals. Phosphorylation of AKT in DC of aged individu-
als, indirectly leads to decreased phagocytosis and migration, and regulates TLR signaling in DC 
and macrophages. TLR signaling activates the innate and adaptive immune system. In contrast 
to DC, macrophages secrete lower levels of IL-6 and TNFα when stimulated with ligands for the 
TLR1/2, TLR2/6, TLR3, TLR4, TLR5, and TLR9 in young compared to old mice. Other ligands, 
receptors and/or lymphokines than presented in this figure may play a role in age-related decline 
of T cell responses as well but have been not reported so far.CD, cluster differentiation; CTL, 
cytotoxic T lymphocyte; DC, dendritic cells; FoxP3, forkhead box P3; IL, interleukin; IFN, inter-
feron; Thelp, helper T cells; TCR, T cell receptor; TLR, Toll-like receptor; TNF, tumor necrosis 
factor; Tregs, regulatory T cells.
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demonstrated that blood DC from old individuals can still function as powerful APC 
when exposed to purified protein derivate (PPD) of  Mycobacterium tuberculosis  
(Lung et al., 2000). Similarly, the responsiveness of blood DC to stimulation with 
influenza vaccine was unimpaired at old age (Sauerwein-Teissl et al., 1998). In 
both cases, expression patterns of MHC molecules and costimulatory molecules 
were found to be similar on blood DC of young and old individuals. However, it 
has been shown in mice and humans that the number of Langerhans cells decreases 
with age, resulting in impaired immune function of the skin (Sprecher et al., 1990; 
Sunderkotter et al., 1997). It has also been shown that DCs from aged individuals 
are more mature and have impaired ability to produce IL-12 (Bella et al., 2007), or 
that secretion of TNF α  and IL-6 significantly increased upon stimulation with LPS 
and ssRNA in DC of aged compared to young individuals (Agrawal et al., 2007). 
Others found reduced phosphorylation of Akt in DCs of aged individual (Agrawal 
et al., 2007), resulting in decreased activation of phosphatidylinositol 3-kinase 
(PI3K) pathway. P13K-signaling regulates phagocytosis, and migration, as well 
as TLR signaling. TLR are pattern recognition receptors that recognize conserved 
molecular patterns on microbes and activate the innate and adaptive immune sys-
tem. In contrast to DC, macrophages appeared to secrete significantly lower levels 
of IL-6 and TNF α  when stimulated with known ligands for the TLR1/2, TLR2/6, 
TLR3, TLR4, TLR5, and TLR9 in old than young mice (Renshaw et al., 2002).  

  Hence, in cancer patients, T-cell functions are not only inhibited by the tumors 
but also impaired as a result of aging. Figure 2 depicts ligands and receptors on 
T-cells and/or APC, as well as factors secreted by T-cells and/or APC involved in 
diminished T-cell responsiveness at old age.          

   5      Preclinical Mouse Tumor Models  

  The mouse is undoubtedly the most suitable preclinical model for testing the 
potential efficacy of cancer vaccines in humans as a function of age. Mice are 
evolutionary close to human and can be economically maintained. Aging-related 
immune responses in the mouse are very similar to that of humans although dis-
tinct differences are also present, such as the organization of MHC, TCR, or 
immune globulin structures (or a review see Davis and Chien, 1998; Margulies, 
1998; Max, 1998). However, there is no organism apart from humans of which 
so much is known immunologically. Mice are also extremely well defined geneti-
cally and like humans their genome is completely sequenced. Indeed, at least 
ten different mouse lab strains and four wild mice have been totally sequenced 
(Callaway, 2007). As much as 99% of all mouse genes, have a human counter-
part. Finally, the mouse is now also increasingly well characterized phenotypi-
cally with computerized databases of all forms of aging-related pathology readily 
available (Calder et al., 2007).  

  Here, I will discuss various types of preclinical mouse tumor models and their 
usefulness for predicting age effects on cancer vaccination. Suitable preclinical 
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models, that adequately reflect human cancer, may teach us how to overcome the 
problems that occur in cancer patients in order to develop effective cancer vac-
cines. Criteria for suitable models are immune competence, developing human-like 
tumors, and expressing self-TAA.  

  Most studies report about the use of syngeneic models. In this type of models, a 
syngeneic tumor cell line (same genetic background as the receiving mouse) is injected 
into the mouse and tumor formation is within 1–4 weeks. Advantages of these models 
are the fast results obtained and the possibility to test vaccines at young and old age. 
An overview of available syngeneic mouse tumor models can be found in Current 
Protocols in Immunology (Ostrand-Rosenberg and Kruisbeek, 2000). However, trans-
genic models reflect human cancer more adequately, since the development of cancer 
in these models is more natural, i.e., they undergo normal-preneoplastic-neoplastic 
stages. These models are more useful to develop preventive vaccines. The Mouse 
Models of Human Cancers Consortium provides an overview of available transgenic 
mouse tumor models at website http://mouse.ncifcrf.gov. Disadvantages are the time 
frame in which the vaccines can be tested, since it takes 3–7 months before tumors 
appear in transgenic mice, which makes it expensive, and vaccines can only be tested 
at a relatively young age. Therefore, transgenic mice are not useful for developing vac-
cines at older age. Inducible conditional mouse tumor models, in which tumor devel-
opment can be induced at young and old age by the administration of antibiotics or 
drugs, are most suitable (for a review see Jonkers and Berns, 2002). Although most of 
these models have been tested for tumor development at young age only, they exhibit 
the potential to develop tumors at old age when the antibiotic or drug is administered 
at old age. The disadvantage of these models is the time frame necessary to induce 
the tumor (3–7 months), which makes it expensive, and technical problems that may 
occur such as leakage (overexpression of tumor-inducing gene without administration 
of antibiotic or drug). An overview of inducible conditional mouse tumor models that 
could be useful to develop cancer vaccines at older age is given in Table 1.  

Table 1 Inducible conditional mouse tumor models

Cancer Model Inducing agent References

Lung Lp-stopLp-K-ras G12D Ad-Cre Jackson et al. 2001

Cervical cancer K14-HPV16 Estrogen Elson et al. 2000

Sarcoma/Epithelial
tumors/ Lymphoma

p53S389A Spontaneous/UV Bruins et al. 2004

Melanoma TyrP-LpCreERLp-
iRasIRES-P1A/Lp-
Ink4A/ARF-Lp

Tamoxifen Huijbers et al. 2007

Liver tumors AlbP-Lp-stopLp-Luc-2A-
GFP/AlbP-Lp-stopLp-
SV40-tag

Ad-Cre Hammerling, 2007

Ad = Adenovirus, AlbP = Albumin promoter, Cre = cre-recombinase, GFP = green fluorescent 
protein, HPV = human papilloma virus, IRES = internal ribosome entry site, Lp = Lox P, Luc =
luciferase, SV = simian virus, TyrP = Tyrosinase promoter.
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    6      Comparison of Cancer Vaccination in Preclinical Models and 
Human Clinical Trials  

  Many studies in preclinical models have become available in the last few years and 
results encourage vaccination as a nontoxic effective therapy against cancer. Table 
2 summarizes the most effective and recent preclinical studies using syngeneic and 
transgenic mouse models. With respect to tumor protection, DNA-based Her2/neu 
vaccines were most effective in transgenic breast tumor model neuT (Quaglino et 
al., 2004, Spadaro et al., 2005). Complete protection was obtained up to 1-year. 
However, to decrease morbidity and mortality prevention or elimination of metas-
tases is crucial. In this respect, Mage-b DNA, GRP94/T41, and mOX40L/GM-CSF, 
proved most effective in metastatic breast tumor models 4TO7cg and 4T1 (Ali et al., 
2004; Liu et al., 2005; Sypniewska et al., 2005).  

  The results of these preclinical studies are promising. However, human clinical 
trials do not reflect these promising results. Table 3 summarizes the results of most 
recent and promising human clinical trials of various types of cancer treated with 
vaccines. The most successful vaccine is human papilloma virus (HPV), capable of 
complete prevention of cervix carcinoma, up to 3.5 years (average; Mao et al., 2006). 
A main reason for this success might be that the HPV-16 vaccine contains a viral anti-
gen and will be recognized as foreign. Important is that HPV-16 vaccination is preven-
tively effective. The potential negative effects of tumors on vaccine-induced immune 
responses that may occur in therapeutic vaccinations can be circumvented in preven-
tive vaccinations. Like in the preclinical models, vaccination with MAGE (against 
metastatic melanoma) again showed regression of metastases (Salcedo et al., 2006). 
Also vaccination with TAA of survivin showed regression of metastases (Wobser et 
al., 2006). Although HER2/neu vaccination was promising, the efficacy was lower 
than in the preclinical models, i.e., some reduction in recurrence and prolonged stable 
disease (Dees et al., 2004; Peoples et al., 2005). Overall, the results from preclini-
cal models were more successful than results from human clinical trials. One reason 
might be that most vaccines in the preclinical models have been tested preventively, 
and therapeutic vaccinations in the preclinical models may have started relatively ear-
lier when tumors were very small or not palpable yet, compared to vaccinations in 
human clinical trials. However, another or additional important reason might be the 
age of cancer patients at the time of vaccination, who were generally over 50 years of 
age. As shown below, the age is an important factor for efficacy of cancer vaccines.  

    7      Comparison of Cancer Vaccination at Young and Old Age in 
Preclinical Models  

  More than 50% of all cancer patients are 65 years or older (Muss, 2001). However, 
as discussed earlier, the immune system at older age is impaired, due to T-cell unre-
sponsiveness. In almost all preclinical studies, cancer vaccines have been tested at 
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young age (Table 3). Very recently, results of a few vaccine studies in preclinical 
models at old age became available, including studies with Mage-b vaccination per-
formed in our laboratory. These are the first studies that show that cancer vaccines 
are less effective at old than at young age.  

  The first reported vaccine study in young and old mice with cancer is from Pro-
vinciali et al. in (2000). A syngeneic mammary adenocarcinoma cell line TS/A 
was genetically engineered to release IL-2 (TS/A-IL-2). Young and old mice were 
immunized with TS/A-IL-2 cells and subsequently challenged with the parental TS/
A cell line. While TS/A-IL-2 protected 90% of the young mice, only 10% was pro-
tected of the old mice. CD8 and CD4 T-cells were detected in tumors of young but 
hardly in tumors of old mice, while macrophages and neutrophils were abundantly 
present in tumors of mice from both ages. Yet, it has not been proven whether these 
CD8 and CD4 T-cells were functionally active.  

  Many vaccine studies have been performed with the Her2/neu DNA vaccine 
in young mice. Provinciali developed a pCMVneuNT DNA vaccine and tested its 
efficacy in young and old mice that were subsequently challenged with syngeneic 
TUBO cells, overexpressing HER2/neu (Proviciali et al., 2003). Young mice were 
completely protected while less than 60% of the old mice were protected against 
TUBO challenge. Anti-neu antibodies, induced by the vaccine, and proliferation 
after restimulation in vitro, was higher at young than at old age.  

  Lusgarten et al., (2004) immunized young and old mice with a syngeneic pre-
B cell lymphoma cell line (BM-185), expressing enhanced Green Fluorescent 
Protein (EGFP) and a costimulatory molecule CD80 (B7.1). While the young 
mice developed a long-lasting memory response capable of rejecting BM-185 
wild type tumors, the old mice did not develop long-lasting memory responses. 
However, when the BM-185-EGFP-CD80 plus agonist anti-OX40 mAb were 
injected in old mice, long-lasting memory responses were capable of rejecting 
BM-185 wild type tumor cells with the same vigor as in young mice. In vivo 
depletion of CD8 T-cells resulted in decreased survival of mice immunized with 
BM-185-EGFP, and challenged with wild type BM-185. However, these studies 
were performed at young age only. They also analyzed the number of CD8 T-cells 
specific for EGFP and found cytotoxic activity against BM-185 wild type tumor 
cells in spleen cultures stimulated with BM-185-EGFP-CD80 in old and young 
mice. However, the spleen cultures were from mice without tumors. In another 
study by the group of Lusgarten, DC vaccination plus rIL-2 protected 60% of 
the young mice from challenge with syngeneic TRAMP-C2 tumor cells (adeno-
carcinoma of the prostate), while only a minimal effect was observed in the old 
mice (Sharma et al., 2006). However, when coadministered with anti-OX-40 or 
anti-4-1BB mAbs (leukocyte differentiation antigen on T and NK cells, and DC) 
a vigorous anti-tumor response in both young (85–90%) and in old (70–75%) 
mice was observed. Cytolytic activity in spleen cultures of young and old mice 
immunized with DC pulsed with apoptotic TRAMP-C2 cells, and anti-OX40 or 
anti-4-1BB antibodies were observed. However, the spleen cultures were from 
mice without tumors.  
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  In our laboratory, we developed a DNA vaccine of Mage-b and tested this vac-
cine at young and old age in a syngeneic mouse tumor model, 4TO7cg. This mouse 
tumor model is moderately metastatic (range: 2–20 metastases per mouse) and 
overexpresses Mage-b in primary tumor and metastases (Sypniewska et al., 2005). 
Preventive vaccination of young and old mice with pcDNA3.1-Mage-b protected 
90% of the young mice from metastases, while only 65% of the old mice remained 
free of metastases (Gravekamp, 2007). Analysis of spleen cells of tumor-bearing 
mice after in vitro restimulation, showed high levels of IL-2 and IFN γ  at young 
age but undetectable levels at old age. We repeated this vaccine study in a much 
more aggressive metastatic model 4T1 (range: 5–300 metastases per mouse), also 
overexpressing Mage-b, but this time we mixed the pcDNA3.1-Mage-b DNA vac-
cine with plasmid DNA secreting GM-CSF. To recruit APC more effectively to the 
peritoneal cavity (pc), thioglycollate was injected into the pc, prior to each vac-
cination (Gravekamp, 2007). Thioglycollate-stimulated macrophages are not fully 
differentiated, highly express MHC class II, and are highly phagocytic (Cook et al., 
2003). Evidence exists that thioglycollate-stimulated macrophages can function as 
APC (Rock et al., 1993). Although the effect in the young mice was stronger than in 
the old, a significant reduction in the frequency of metastases was observed in both 
young and old mice. However, when analyzing the draining lymph nodes of tumor-
bearing mice, moderate levels of IL-2 and IFN γ  were detected after restimulation at 
young age but not at old age. FACS analysis of the draining lymph nodes of Mage-b 
vaccinated tumor-bearing mice at young and old age after restimulation, showed 
CD4 and CD8 responses (intracellular IL-2 and/or IFN γ  production) at young age 
but not at old age. At old age macrophages and NK cells were more active (intracel-
lular production of IFN γ  and IL-2 receptor expression), suggesting that the innate 
immune response may have contributed to the anti-tumor response in the mice.  

  Finally, an interesting article has been published very recently (Daftarian et 
al., 2007), which describes the therapeutic effect of a single immunization with 
HLA-A2-restricted HPV peptides (CTL epitopes and T 

help
  epitopes), combined 

with CpG adjuvant and ISA51 adjuvant encapsulated in liposomes, on HPV-16-
expressing syngeneic TCI/A2 tumors in aged transgenic HLA-A2 mice. Impres-
sive was the fact that they were able to eradicate large tumors of 700 mm 3  after 
a single vaccination, and that the mice were protected from re-challenge with an 
E6/E7-expressing tumor cell line. However, the mice in this study were not really 
old (48–58 weeks old mice with a C57/BL6 background), and the results were not 
compared to young mice. They showed vaccine-induced CD8 T-cell responses in 
naïve mice without tumors, but not in mice with tumors. In addition, HPV pep-
tides are foreign for mice, and induction of an immune response against foreign 
is not the same as developing immune responses against self-antigens. However, 
from clinical point of view this is an interesting study and reflects the human 
situation, since HPV is foreign to human, and patients with cervical cancer are 
relatively young, i.e., women over 50 years of are at very low risk (Saslow et al., 
2002). An overview of preclinical vaccine studies in young and old mice with 
tumors is summarized in Table 4.  
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8          Summary and Future Prospects  

  The main conclusion from studies in preclinical models at young and old age is that 
cancer vaccines are less effective at older than at younger age. These results may 
imply that vaccines may not be very effective in cancer patients, which are usually 
elderly, unless the vaccines are optimized for older age. The studies discussed in 
this chapter show the potential but also the need for tailoring cancer vaccination to 
old age. Below, a number of approaches are proposed that may contribute to further 
improvement of vaccine efficacy of cancer vaccination at older age.  

  Active immunization offers great promise for elderly cancer patients. A first 
immunization at young age, when sufficient naïve T-cells are still present, followed 
by boosting at old age may improve T-cell responses at older age. This approach 
has shown to be effective for improving Ab responses at older age in mice (Stacy et 
al., 2003). However, lack of naïve T-cells is not the only hurdle to overcome, and it 
is clear that the immune system needs help to activate T-cells against cancer cells. 
DNA vaccines are of great value since any DNA sequence can be added to the vac-
cine vector that may improve T-cell activation with minimal toxicity. Activation of 
T-cells at older age could be achieved by expressing IL-2 and IFN γ  from the vaccine 
vector, or GM-CSG or Flt3-ligand to the vaccine vector in order to activate macro-
phages and DC or improve processing and presentation of antigens by APC. Addi-
tion of a DNA sequence encoding IL-7 (Tan et al., 2001) may recruit only those 
naïve T-cells that react with the vaccine antigen. Also, activation of co-stimulatory 
molecules by anti-OX-40 and anti-4-1BB Abs seems to be a promising approach as 
shown by Sharma et al. (2006). Since the adaptive immune system fails or is less 
effective at old age, activation of the innate immune system such as killer macro-
phages may be a useful alternative or addition to activation of the adaptive immune 
system. One way of activating killer macrophages is by a lipophylic glycopeptide 
L-TMP-PE (liposyl muramyl phosphatidylethanolamine; Nardin et al., 2006). 
Elimination of CD4+CD25-FOXP3+ T-cells (Nishioka et al., 2006) or CD8+CD28- 
T-cells (Filaci et al., 2004) may enhance vaccine efficacy at older age.  

  Also approaches that may improve vaccine efficacy in general are important. For 
instance, multi-antigen vaccines may prevent escape of genetically unstable tumor 
cells that have lost antigen expression. Many tumors produce lymphokines or fac-
tors that may inhibit vaccine-induced T-cells responses such as TGF β , IL-6, COX-
2 and its products PGE 

2
 , PD1-ligand, or IDO (Gajewski et al., 2006; Park et al., 

2004). Reduction of these factors may enhance vaccine efficacy as well. Also mac-
rophages may produce these factors such as IL-6, IL-10, PGE 

2
 , or TGB β . Therefore, 

elimination of macrophages that produce IL-6, TGF β , PGE 
2
  or IL-10 may improve 

vaccine efficacy. Improved delivery systems resulting in improved expression of the 
vaccine antigen in vivo, not discussed in this review, will certainly improve vaccine 
efficacy in general.  

  Prevention or elimination of metastases deserves more attention. In most can-
cers, metastases and not primary tumors contribute to morbidity and mortality. In 
contrast to primary tumors, metastases cannot be removed by surgery or radiation, 
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and are usually chemoresistant (Pardal et al., 2003). It is therefore encouraging that 
vaccines, such as Mage and Survivin, proved especially effective against metastases. 
Further improvement of vaccines against metastases may dramatically improve the 
clinical outcome of cancer treatment.  

  Finally, it is obvious that in most of the vaccine studies discussed here, immu-
nological responses were analyzed in old (and young) mice without tumors, while 
the primary tumors are crucial in the development of vaccine-induced immune 
responses. As discussed earlier, primary tumors may inhibit vaccine-induced 
immune responses, may lose antigen expression in vivo and therefore escape vac-
cine-induced immune responses. Tumors may also stimulate macrophages resulting 
in the production of factors that may inhibit vaccine-induced immune responses. It 
is also obvious that none of the vaccine studies in which vaccination was tailored 
to old age, and despite good anti-tumor responses, activation of CD8 T-cells was 
shown in mice with tumors. Our own results with the 4T1 model did not show any 
CD8 response, while a significantly lower number of metastases was observed. Pre-
liminary results suggest that the innate rather than the adaptive immune response 
was activated by vaccination. All together, we have little information about which 
immune cells really may have contributed to reduced tumor growth and improved 
tumor protection at older age. This brings us to the question why preclinical studies 
always look more promising than the eventual human clinical trials. For this reason, 
mice have been criticized as a good model for preclinical testing of cancer vac-
cines. However, analysis of the cancer vaccine studies discussed here demonstrate 
that mouse tumor models are good preclinical models for testing cancer vaccines, 
but that the design of preclinical studies in mouse tumor models in order to obtain 
successful results often do not reflect the situation in cancer patients, and may 
lead to wrong interpretations. Examples are (1) studying vaccine-induced immune 
responses in mice without tumors only, (2) applying vaccination when tumors are 
very small, (3) testing (foreign) human antigens, in mice; and last but not least (4) 
the ignorance of the age factor in human clinical trials.  
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                                              Abstract:        Ageing is associated with an activation of the innate immune system 
which manifests in a chronic, low-grade, inflammatory status common in elderly 
individuals. Age-related inflammatory activity, as measured by increased serum lev-
els of proinflammatory cytokines and activation of inflammatory signalling path-
ways, leads to long-term tissue damage and is thought to contribute to—and occur 
as a consequence of—immunosenescence. In addition to immune system deregula-
tion, this elevated inflammatory status is associated with a number of age-related 
diseases and conditions, including neurodegeneration, atherosclerosis, sarcopenia, 
and diabetes, and is a main contributor to the age-related decline in physical func-
tion and vitality known as frailty. Inflammation is also an important component 
of the insulin resistance syndrome. In addition to age, a major risk factor for the 
development of the insulin resistance syndrome is obesity. Obesity is associated 
with increased proinflammatory cytokine production and altered regulation of both 
pro and antiinflammatory molecules, including a class of adipose-derived signalling 
molecules termed adipocytokines. The increased production of inflammatory mol-
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ecules in obese and nonobese insulin resistant elderly individuals may contribute to 
age-related decline in health, including dysfunction of the immune system. Anti-
inflammatory strategies for the treatment of the insulin resistance syndrome may 
promote remodelling of the immune system thereby contributing to remediation of 
immunity and prevention of frailty in the elderly population.  

         Keywords:        Ageing    •   I nflammation    •     Insulin resistance    • I   mmunosenescence    •     
Frailty    •     Adipocytokines    

         1     Introduction  

   Robust immune and inflammatory responses are critical for survival. According 
to the antagonistic pleiotropy theory of ageing, it is suggested that whilst acute 
responsiveness of the immune system to challenge is required for tissue repair and 
resistance to infection, chronic inflammatory responses, a key feature of the ageing 
immune system, contribute to polarisation of cell-mediated immune responses and 
metabolic deregulation in advancing age. This immune dysfunction manifests in 
insulin resistance and contributes to development of degenerative diseases associ-
ated with ageing including Type 2 diabetes, cardiovascular and neurodegenerative 
diseases, and conditions associated with increased morbidity such as frailty.  

     1.1      Overview of the Immune System  

   The immune system is a complex network of lymphoid organs, cells, and soluble 
mediators, all of which act in a coordinated manner for host defence. The immune 
system is comprised of 2 functional nodes, the innate or native and the acquired or 
adaptive system. Cells acting in innate immunity not only include lymphoid cells 
such as neutrophils, monocytes, macrophages and natural killer cells, but many 
nonimmune cells such as fibroblasts, endothelial cells, and adipocytes also produce 
mediators and/or express surface markers allowing them to play a role in innate 
immunity. In contrast, the adaptive immune response mediates recognition of anti-
gens and formation of antigen-specific memory cells capable of rapid activation and 
proliferation upon reexposure to the antigen. T- and B-lymphocytes are the major 
cellular components of the acquired immune system.  

   One of the major actions of the immune system involves communication by direct 
cell-to-cell contacts involving adhesion and signalling molecules. This is accom-
plished via production of chemical messengers such as cytokines, which modulate 
inflammatory and immune responses produced by a variety of cell types. Cytokines 
are involved in all aspects of the immune response and play a major role in directing 
the type of immunity generated in response to immune challenge. These mediators 
have been divided into several groups including interleukins, growth factors, and 



Insulin Resistance, Chronic Inflammation and the Link with Immunosenescence 1249

chemokines. Cytokines include families such as the tumour necrosis factor (TNF) 
family and interferons.  

   In addition to mediating immune responses to challenge, cytokines also induce 
metabolic responses including induction of fever and loss of appetite. Inflammation is 
an integral part of this response. However, failure to resolve inflammatory responses 
after recovery or following completion of repair can be detrimental for health and has 
been implicated in the aetiology of inflammation-related diseases and conditions such 
as psoriasis, rheumatoid arthritis, atherosclerosis and cardiovascular disease.  

       1.2      Immunosenescence and Inflamm-ageing  

   Deregulation and deterioration of various components of the immune system—or 
immunosenescence—occurs in ageing. This loss of immunity results in increased 
incidence and severity of infectious disease, cancer and autoimmunity and contrib-
utes to enhanced morbidity and mortality in the elderly population (Pawelec and 
Solana 1997; Effros et al. 1997; Lesourd 1999). One important consequence of—
and contributor to- the dysfunctional immune response in ageing is manifestation of 
chronic, low level inflammation, due to deregulation and overexpression of proin-
flammatory cytokines, a condition termed inflamm-aging (Franceschi et al. 2000). 
Since chronic, low-level inflammation is thought to be a risk factor for age-related 
disease and frailty, controlling inflammatory status in elderly individuals may pro-
vide a route to successful ageing. Recent reports have supported this hypothesis 
by demonstrating that individuals who are genetically predisposed to produce low 
levels of pro-inflammatory cytokines or high levels of antiinflammatory cytokines 
have an increased probability to reach extreme longevity (Bonafe et al. 2001; Lio 
et al. 2001; Giacconi et al. 2004; Van Den Biggelaar et al. 2004).  

   Several immune cell types are responsible for secreting cytokines in the inflam-
matory response. Type 1 T-cells (Th1) generate IL-2 and IFN-γ and contribute to 
cell-mediated responses whilst Type 2 cells are responsible for Th2 immunity by 
producing cytokines such as IL-4 and IL-5 leading to antibody responses. Monocytes 
and macrophages also produce Th1 and Th2 cytokines. Data from murine and human 
studies suggest that a switch from Th1 to Th2 immunity in ageing is an important 
contributor to immunosenescence (Cakman et al. 1996; Miller and Stutman 1981; 
Rink, Cakman and Kirchner 1998]. The general age-related decline in Th1 function 
is thought to mediate the shift towards Th2 immunity and may partly contribute to 
the increased incidence of inflammation-related diseases associated with ageing. 
Macrophages are an important contributor to this shift. A significant increase in Th1 
and Th2 cytokines including the proinflammatory molecules TNF-α and IL-6 occurs 
in stimulated macrophages from elderly compared with young donors (Cossarizza 
et al. 1997). Secreted levels of IL-6 in the elderly are often high enough to be detect-
able in serum under unstimulated conditions and in the absence of an inflammatory 
response (Ershler et al. 1993), suggesting that low-level chronic inflammation is 
detectable in elderly humans. This increase in pro-inflammatory mediators such as 
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IL-6 and TNF-α may play a role in development of multiple age-related diseases 
including atherosclerosis, rheumatoid arthritis, fibrosis and dementia.  

    1.3      Inflammation and the Insulin Resistance Syndrome  

   Heightened inflammatory status directly contributes to a variety of poor ageing 
outcomes. In addition to low level inflammation resulting from—and contributing 
to—immunosenescence, chronic activation of innate immunity is a hallmark of the 
insulin resistance syndrome. In fact, current levels of inflammation predict progres-
sion of diabetes and future morbidity (Spranger et al. 2003). Chronic inflammation 
drives age-associated reductions in muscle mass (sarcopenia) which compounds 
insulin resistance (Barbieri et al. 2003). Increased inflammatory status leads to ele-
vations of the antiinflammatory suppressor of cytokine signalling (SOCS) family 
with age (Peralta et al. 2002). These proteins have the potential to directly inhibit 
insulin pathways, contributing to insulin resistance and obesity.  

   Insulin regulates the uptake, oxidation, and storage of fuel in insulin-sensi-
tive tissues such as skeletal muscle, liver, adipose tissue, and macrophages. Obes-
ity is associated with resistance to the effects of insulin and can lead to diseases 
including Type 2 diabetes. Systemic chronic inflammation has been proposed 
to have an important role in the aetiology and pathogenesis of obesity-related 
insulin resistance. Population studies have demonstrated a correlation between 
proinflammatory cytokine production and metabolic deregulation. Bio-markers of 
inflammation including TNF-α, IL-6 and C-reactive protein (CRP) are present at 
increased levels in individuals who are insulin resistant and obese and increased 
production of these cytokines in individuals with the insulin resistance syndrome 
correlates with increased risk of developing type 2 diabetes mellitus and car-
diovascular disease (Spranger et al. 2003; Pischon et al. 2007). In addition, is 
hypothesized that insulin resistance together with associated hyperinsulinemia, 
hyperglycemia, and heightened inflammatory cytokine production, might lead to 
a state of vascular inflammation and promote the development of atherosclerotic 
cardiovascular disease.  

   Hotamisligal and colleagues first reported a link between obesity, increased 
expression of proinflammatory TNF-α and reduced insulin action (Hotamisligal 
et al. 1993). They demonstrated that adipocytes derived from obese rodents directly 
secrete TNFα and hypothesized that inflammation was a contributor to the devel-
opment of obesity. These observations were subsequently confirmed in humans, 
and it was further observed that weight loss in obese subjects corresponded with 
decreased TNF-α production (Kern et al. 1995). Several proinflammatory cytokines 
(including IL-6), suppressor of cytokine signalling proteins (SOCS), endoplas-
mic reticulum (ER) stress, IKKB and JNK signalling pathways have all been all 
been associated with developing insulin resistance (Rui et al. 2002; Croker et al. 
2003). These studies demonstrate a link between adipose-produced cytokines, the 
immune system and insulin resistance. It is hypothesized that insulin resistance may 
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be accelerated—or initiated by—an innate immune response in which increased 
Th1 and Th2 cytokines such as TNF-α and IL-6 and proinflammatory adipose-
derived cytokines such as leptin and resistin are expressed in adipose tissue of obese 
individuals.  

    1.4      Insulin Resistance in Ageing  

   In addition to obesity-induced insulin resistance, age itself is a risk factor for insulin 
resistance syndrome even in the absence of obesity. Compared to young individu-
als, normal weight, healthy elderly people have a marked tendency toward insu-
lin resistance (Petersen et al. 2003). This obesity-independent insulin resistance is 
associated with reduced insulin-stimulated muscle glucose metabolism, impaired 
mitochondrial function, increased fat accumulation in tissues such as muscle and 
liver, and a general increase in adipose mass concomitant with decreased fat-free 
mass. Whilst it is known that a decrease in lean body mass and increase in fat mass 
occurs with ageing (Bosy-Westphal et al. 2003; Bartali et al. 2002) the mechanisms 
by which fat accumulation in peripheral tissues as a function of age results in the 
insulin resistance syndrome are poorly understood. One hypothesis is that insulin 
resistance in elderly individuals may occur as a consequence of altered inflamma-
tory environment produced by redistributed adipose tissue. This is supported by 
the facts that intra-abdominal fat accumulates more rapidly than total fat and mus-
cle mass is lost. Since insulin resistance is associated with altered Th1 and Th2 
responses—which occur as a function of age—it is possible that the age-related 
proinflammatory background impacts on insulin action and peripheral responses. 
 Fig. 1  depicts the balance between acute and chronic inflammatory activation and 
the impact of age, obesity, insulin resistance and immunosenescence on shifting the 
balance from appropriate acute activation and subsequent resolution of inflamma-
tory signalling towards the development of chronic inflammatory conditions.  

                2      Obesity, Insulin Resistance and Inflammation  

   The incidence of obesity and obesity-related conditions and diseases is markedly 
increasing in developed and developing countries alike. Obesity predisposes individu-
als to increased risk of developing diseases such as atherosclerosis, diabetes, nonal-
coholic fatty liver disease, cancers, and immune-mediated disorders such as asthma 
(Wellen and Hotamisligal 2005; Calle and Kaaks 2004; Mannino et al. 2006). In 
addition to these recent associations between obesity, insulin resistance, and disease, 
research in the past several years has identified multiple biological signalling pathways 
that link altered metabolic responses with a deregulated immune system (reviewed 
in Tilg and Moschen 2006). Many of these interactions between the metabolic and 
immune systems are linked via a network of soluble mediators derived from both cells 
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of immune origin—such as macrophages—and cells in adipose tissue (adipocytes). 
These include immune cytokines such as TNFα, IL-6, IL-1, CC-chemokine ligand 2 
(CCL2) and cytokines produced mainly by adipose tissue—termed adipocytokines 
or adipokines—such as adiponectin, leptin, resistin, and visfatin. The roles of these 

   Fig. 1      Inflammatory stimulation and immune cell activation leads to both acute and chronic 
inflammatory responses      
Inflammatory stimulation following injury or exposure to pathogen leads to activation of cell-medi-
ated immunity. This activation leads to production of cytokines such as TNF-α and IL-6 which 
modulate immune responses and manifest in inflammation. Failure to resolve acute inflammatory 
responses after recovery or following completion of repair leads to chronic low level production 
of inflammatory cytokines. In conditions of ageing, obesity, insulin resistance and immunosenes-
cence acute inflammatory processes may not be resolved resulting in chronically elevated inflam-
matory cytokine production.
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cytokines and adipocytokines in obesity, insulin resistance and their impact on chronic 
inflammation will be discussed in the following sections.  

     2.1      Adipose Tissue as a Regulator of Immune Response  

   Obesity is associated with a chronic inflammatory response which is characterized 
by abnormal cytokine production, increased synthesis of acute-phase reactants—
such as C-reactive protein (CRP)—and the activation of proinflammatory signalling 
pathways (Wellen and Hotamisligal 2005). Whilst it is known that proinflammatory 
pathways are activated in adipose tissue of obese individuals, whether the cytokines 
are produced locally by adipocytes or by circulating macrophages or other immune 
cells present in adipose tissue is as yet unclear. In 2003, 2 papers demonstrated 
that diet-induced obesity is associated with infiltration of macrophages into white 
adipose tissue (Weisberg et al. 2003; Xu et al. 2003). Infiltrated macrophages, a 
component of the stromal vascular fraction of adipose tissue, are responsible for 
production of proinflammatory cytokines. Since the adipose tissue of obese individ-
uals is infiltrated with macrophages it is possible that these macrophages account 
for at least some of the soluble mediators in adipose tissue. In fact, macrophages 
appear to be the main source of TNFα in obese individuals, whilst adipocytes con-
tribute almost one third of the circulating IL-6 in obese patients [Fantuzzi et al. 
2005], suggesting that cells of both immune and adipose origin contribute to inflam-
mation and insulin resistance in obesity. Adipose-produced CCL2 (also known as 
MCP-1) has recently been implicated as a potential recruiter of macrophages to 
adipose tissue in states of obesity (Kanda et al. 2006). The interaction between mac-
rophages and adipocytes in adipose tissue may perpetuate a vicious cycle of macro-
phage recruitment and production of proinflammatory cytokines. Importantly, the 
development of adipocyte insulin resistance has been closely linked to infiltration of 
macrophages (Weisberg et al. 2003; Xu et al. 2003). However, if and how the entry 
of macrophages into white adipose tissue might lead to systemic insulin resistance 
remains unclear. However, it is believed that altered secretion of adipocytokines by 
adipose tissue during obesity may play an important part of pathogenesis of insulin 
resistance.  

   An important adipocytokine produced by adipocytes, skeletal muscle cells, cardiac 
myocytes and endothelial cells, is adiponectin. Adiponectin expression correlates 
inversely with insulin resistance as serum levels are markedly reduced in individu-
als with visceral obesity and insulin resistance (Arita et al. 1999). TNF-α and IL-6 
are major regulators of adiponectin levels as both proinflammatory cytokines sup-
press transcription of adiponectin (Maeda et al. 2002; Fasshauer et al. 2003). Posi-
tive regulators of adiponectin include weight loss [Bruun et al. 2003] and activation 
of the peroxisome proliferator-activated receptor-γ (PPARγ), by either its natural 
ligands, arachidonic acid-metabolites such as 15-deoxy-Δ-12,14,-prostaglandin J2 
(Forman et al. 1995) or pharmacological ligands thiazolidinediones (Maeda et al. 
2001; Iwaki et al. 2003), which are important pharmaceutical drugs for the treat-
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ment of type 2 diabetes mellitus. Adiponectin has been found to suppress inflam-
mation in various animal models and can suppress macrophage activity not only in 
adipose tissue but also in liver.  

   In opposition to the insulin sensitising and antiinflammatory properties of adi-
ponectin, another adipocytokine, leptin, is considered to be a proinflammatory 
cytokine due to its structural similarity to other proinflammatory cytokines such 
as IL-6. The opposing functions of adiponectin and leptin and other adipocy-
tokines on inflammatory responses are summarized in  Table 1 . In addition to their 
roles in inflammation, each of these adipocytokines has also been associated with 
insulin resistance and Type 2 diabetes, providing a link between innate immunity 
and insulin responses. The role of leptin in modulating the immune response and 
inflammation has become increasingly apparent and has been reviewed recently 
(La Cava and Matarese 2004; La Cava et al. 2003). In addition to its role in regu-
lating neuroendocrine function, energy homeostasis and hematopoiesis, leptin has 
also been shown to be an important regulator of immune-mediated diseases and 
inflammatory processes (La Cava and Matarese 2004). Although the main function 
of leptin is in control of appetite, mice with mutations in the gene encoding leptin 
( ob/ob  mice) or the gene encoding the leptin receptor ( db/db  mice) are obese and 
have various defects in cell-mediated and humoral immunity such as altered T-cell 
responses (Mandel and Mahmoud 1978; Lord GM et al. 1998).  

               2.2      Links Between Lipid Metabolism and Inflammation  

   Whilst it is increasingly recognized that obesity is characterized by chronic activa-
tion of inflammatory molecules (Kahn and Flier 2000; Wellen and Hotamisligil 
2003; Wellen and Hotamisligil 2005), the fundamental mechanisms responsible for 
activation of inflammatory pathways in obesity are poorly understood. Elevated 
levels of free fatty acids (FFAs) in obesity have been suggested to cause insulin 
resistance due to increased release of FFAs from adipose and subsequent entry 
into circulation. Release of FFAs in this manner due to deregulated adipose tis-
sue leads to impaired ability of insulin to suppress hepatic glucose production and 
to stimulate glucose uptake into skeletal muscle (Lam et al. 2003; Boden et al. 
2005; Dresner et al. 1999). Intracellular mechanisms by which FFAs cause insulin 

    Table 1       Adipocytokines and their proposed effects on innate immunity      

   Adipocytokine      Downstream signalling targets       Effect on inflammatory 
response   

   Adiponectin      NFκB, TNFα, IL-6, IL-10, 
PPARα, IL-1RA   

   Antiinflammatory   

   Leptin      TNFα, IL-6, IL-12,       Proinflammatory   

   Resistin      NFκB, TNFα, IL-6, IL-12      Proinflammatory   

   Visfatin      IL-6, IL-8      Not determined   
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resistance are starting to emerge and include kinases linked to inflammatory sig-
nalling (protein kinase C, IκKα, and c-Jun N-terminal kinase (JNK)) (Lam et al. 
2003; Boden et al. 2005; Dresner et al. 1999). However, the sensing mechanisms 
by which FFAs activate intracellular inflammatory signalling, which then induce 
insulin resistance, are unclear.  

       2.2.1      Toll-like Receptors (TLRs)  

   Mammals defend themselves against tuberculosis and other microbial diseases in 
part through activation of TLRs which initiate innate immune responses. TLRs are 
a family of pattern-recognition receptors that activate proinflammatory signalling 
pathways in response to microbial pathogens (Medzhitov 2001). TLR4, the best 
characterised TLR, binds to the lipopolysaccharide component of the bacterial cell 
wall and initiates interactions which ultimately result in activation of the nuclear 
factor κB (NFκB) signalling pathway. Activated NFκB transcriptionally regulates 
cytokines, chemokines, and other effectors of the innate immune response (Zuany-
Amorim, Hastewell and Walker 2002). FFAs have been demonstrated to utilise 
the innate immune receptor TLR4 to induce proinflammatory cytokine expression 
in macrophages, adipocytes, and liver [Shi, Kokoeva, Flier et al. 2006]. Shi et al .  
further demonstrated that TLR4 signalling was required for FFA-induced insulin 
resistance in adipocytes suggesting that TLRs are involved in initiating inflamma-
tory responses in response to dietary lipids. These data are the first to provide a link 
between the innate immune system and metabolic responses and suggest that TLR4 
may be at the crossroads of processes that regulate insulin resistance and chronic 
inflammation.  

       2.2.2      Fatty Acid Binding Proteins (FABPs)/Receptors  

   Although insulin resistance in response to lipid infusion was found to be attenu-
ated in TLR4-deficient mice, the effects were not completely abolished and per-
haps only slowed in progression, suggesting that additional mechanisms may be 
involved. One potential mechanism for TLR-independent lipid-induced insulin 
resistance is through regulation of inflammatory responses mediated by FABPs 
and their receptors. FABPs may contribute to the development of insulin resistance 
in response to dietary lipids. In addition to their role in the regulation of energy 
balance and obesity, evidence obtained recently indicates that FABPs may serve 
as master regulators in the control of cellular inflammatory responses through 
regulation of inflammatory mediators JNK and PPARγ (Hirosumi et al. 2002; Gao 
et al. 2002) thereby establishing a relationship between cellular stress responses, 
inflammatory cytokine production and obesity. Firstly, adipose-specific FABP4 
(or a-FABP) may coordinate the lipid-mediated activation of stress kinases such 
as JNK or IκK under immune or metabolic stimuli thus linking lipid signalling 
to proinflammatory signalling and antiinsulin action [Hotamisligal et al. 1996]. It 
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has been hypothesized that the presence of FABP4 in periods of feast and famine 
may have been beneficial to maintain both a strong immune response and adequate 
fuel reserves in adipose tissue in fitting with the concept of “thrifty” phenotype to 
survive [Auwerx et al. 2003]. However, with increasing prevalence of excessive 
caloric intake, decreased energy expenditure and high stress lifestyle, FABPs may 
not be able to maintain inflammatory or metabolic homeostasis and the presence 
of these proteins may actually aid in the formation of obesity, dyslipidemia and 
inflammatory responses [Hotamisligal et al. 1996]. This may also occur as a func-
tion of age. Combined with the prevalent increased proinflammatory IL-6 produc-
tion in elderly individuals, these alterations in inflammatory homeostasis have 
serious and detrimental implications for health in ageing populations.  

       2.2.3      Peroxisome Proliferator-activated Receptors (PPARs)  

   Peroxisome proliferator-activated receptors (PPARs) are ligand-activated tran-
scription factors belonging to the nuclear receptor family. PPARs function pri-
marily as regulators of lipid/lipoprotein metabolism and glucose homeostasis, 
but also influence cellular proliferation, differentiation, and apoptosis. The PPAR 
family members are expressed in a tissue-specific manner: PPARα is highly 
expressed in oxidative tissues such as liver, muscle, kidney and heart and in cells 
involved in the immune responses including endothelial cells, monocytes, mac-
rophages and lymphocytes. In contrast, although PPARγ is expressed in immune 
and endothelial cells, the molecule is predominantly expressed in intestine and 
adipose tissue. In addition to synthetic thiazolidinediones, fatty acids and eicosa-
noids are natural PPAR ligands suggesting not only a metabolic role for PPARs, 
but function also in inflammation control. This hypothesis is supported by the 
facts that (1) PPARα deficient mice display a prolonged inflammatory response 
and (2) PPAR activators have been shown to inhibit the activation of inflamma-
tory response genes by negatively interfering with NFκB, STAT and AP-1 signal-
ling pathways.  

   PPARα is thought to regulate inflammatory pathways mainly through inhibi-
tion of inflammatory gene expression. Hepatic PPARα activation has been repeat-
edly shown to reduce hepatic inflammation in a variety of stress-induced models. 
The immunosuppressive effects of PPARα includes interference with several pro-
inflammatory transcription factors including signal transducer and activator of 
transcription (STAT), activator protein-1 (AP-1), and NFκB (Delerive et al. 1999). 
PPARα can also inhibit cytokine signalling pathways via down-regulation of the 
IL-6 receptor (Gervois et al. 2004) and up-regulation of sIL-1 receptor antagonist 
(Stienstra et al. 2007). Importantly, PPARα expression is known to decrease with 
age in liver, kidney, and heart, suggesting that the beneficial effects of PPARα on 
limiting inflammatory responses are lost in ageing and may contribute to chronic 
inflammation observed in elderly individuals. Ligand-induced activation of PPARα 
or PPARγ in macrophages can effectively inhibit activation-induced inflammatory 
cytokine production (Padhilla et al. 2000; Harris and Phipps 2001). PPARα also 
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functions in other immune cells including T-lymphocytes (Jones, Manning, and 
Daynes 2002).  

   Although PPAR expression is under the control of a wide variety of factors, 
inflammatory cytokines such as TNFα, IL-1, and IL-6 have been shown to decrease 
PPARγ expression in adipocytes (Tanaka et al. 1999). In contrast, in monocytes 
and macrophages, the anti-inflammatory molecule IL-4 induces PPARγ expression 
(Huang, Welch, Ricote et al. 1999).  

   Taken together, it has become quite clear in recent years that PPARs play critical 
roles in the regulation of energy homeostasis (through regulation of lipid and carbo-
hydrate metabolism). Dysregulated PPAR activity has been described in a number 
of pathological states including cancer, inflammation, infertility, demyelination and 
atherosclerosis (Devchand et al. 1996; Mueller et al. 2000; Berger and Moller 2002; 
Takano and Komuro 2002). The expression of PPARs in both myeloid and lymphoid 
cell lines suggests a link between PPARα expression and the immune system. Due 
to the ability of PPARα in particular to act in immune responses and in metabolic 
functions, the ability to regulate PPAR activity may represent a useful therapeutic 
strategy to treat diverse pathological conditions, including inflammation- and obes-
ity-related diseases.  

         3        Impact of Chronic Inflammation and Insulin Resistance
on Frailty and Disability  

   Several recent studies suggest that immunosenescence may contribute to the 
decline of physiological functions that occur in ageing. First, in ageing, the 
immune system becomes less able to respond to cues from the internal and external 
“environment” (Pawelec, Hirokawa and Fulop 2002). Chronic antigenic stress that 
occurs in ageing contribute to clonal expansions of CD4+ memory T-cells which 
fill the “immunological space” leaving relatively few naïve, responsive cells to 
provide defence against challenge. In humans, common, persistent viral infections 
such as CMV contributes markedly to the persistent clonal expansions commonly 
seen in the elderly (Khan et al. 2002; Ouyang et al. 2003; Hadrup et al. 2006). 
Moreover, the absolute number of accumulated cells is an important part of the 
“Immune Risk Profile” (IRP) predicting mortality in longitudinal studies of the 
very elderly (Wikby et al. 2005). These accumulated cells are dysfunctional, and 
may not only be filling the available “immunological space” but may be actively 
suppressive of responses of other clones (Pawelec et al. 2006). These age-related 
changes in the immune system manifest a remodelling of immunity accompanied 
by chronic low level increase in proinflammatory cytokines. These inflammatory 
markers are more prevalent in frail elderly subjects and appear to be caused by both 
chronic antigenic stress and oxidative damage and are associated with increased 
risk of developing multiple age-related degenerative diseases (Franceschi et al. 
2000; Ginaldi 2005).  
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   The frailty syndrome is a complex clinical condition that is somewhat ambiguous 
in definition. Many definitions of frailty have been proposed in the literature. Recently, 
Fried and colleagues have attempted to clarify these definitions are have highlighted 
the importance of several markers of the frail phenotype. These include wasting (mus-
cle, strength, weight loss) and reductions in endurance, balance and mobility (Fried  
et al. 2001). In addition, decreased cognitive performance is generally considered an 
important component of the frailty phenotype. The biological contributors to frailty 
include sarcopenia (loss of muscle mass and strength), neuroendocrine decline, and 
immune dysfunction including heightened production of proinflammatory markers.  

   The involvement of the immune system in the pathogenesis of age-related decline 
and in progression of frailty has been hypothesized for a number of years due to the 
link between increased proinflammatory cytokine production in ageing (particularly 
IL-6) and the relationship between IL-6 with physical function and disability. Sev-
eral studies have consistently demonstrated that increased levels of IL-6 and other 
markers of inflammation are associated with risk of physical disability in late life 
(Cohen et al. 1997; Ferrucci et al. 1999). The catabolic effects of pro-inflammatory 
cytokines on muscle may have a direct effect on loss of muscle mass in ageing, 
thereby contributing to the frailty phenotype. In addition, the synergistic effect of 
hormones, insulin signalling, and immune changes in ageing may also underlie the 
pathogenesis of frailty and physical disability.  

       4      Intervention Strategies Targeted to Reduce Chronic 
Inflammatory Responses  

     4.1      Pharmaceutical Interventions  

   Pharmaceutical interventions aimed to limit chronic inflammatory activation through 
targeting innate immunity have the potential benefits in reducing the risk of age-related 
diseases and conditions including frailty. In animals, the neutralization of TNF-α by 
injected monoclonal antibodies not only reduced inflammatory TNF-α production 
but improved insulin sensitivity (Hotamisligil, Shargill and Spiegelman 1993; Paquot 
2000; Ofei 1996; Shoelson, Lee and Yuan 2003). However, this effect was not observed 
in humans and patients on anti-TNF-α therapy became more susceptible to bacterial 
infections (Estrach et al. 2004) demonstrating the complexity of the innate immune 
system and problems associated with an unbalanced immune response. Therapeutic 
studies demonstrating health benefits using high-dose aspirin and salicylates in Type 
2 diabetes patients support a role for inflammation in metabolic disease (reviewed in 
Shoelson, Lee and Goldfine 2006). In addition to reductions in systemic inflamma-
tion, decreases in CRP levels and reductions in fasting blood glucose and serum trig-
lycerides were also observed following these anti-inflammatory therapies (Shoelson 
et al. 2003). In addition, inhibition of cycloxygenase by NSAIDS (nonsteroidal antiin-
flammatory drugs) constitutes a readily-used clinical approach to treat inflammatory 
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conditions. Certain NSAIDS, including indomethacin and ibuprofen, are activators 
of PPARγ and PPARα in the micromolar range (Lehmann et al. 1997) and as such 
represent important metabolic and inflammatory treatments.  

   Immunotherapy of chronic inflammatory conditions is in the early stages of 
development. Due to the link with nutrition and immunity, leptin is an attractive 
target for immunotherapeutic approaches that reduce its proinflammatory effects. 
Leptin is a relatively new candidate gene target for immune therapies, in partic-
ular the suppression of autoimmune responses. Leptin-based therapies are cur-
rently only administered to individuals with genetically-based leptin deficiency or 
to extremely obese non-leptin deficient patients. In addition to reductions in food 
intake and obesity, leptin-based therapies also restore neuroendocrine, reproductive, 
and immune functions (Farooqi et al. 1999; Farooqi et al. 2002). Immunoregula-
tory functions of leptin treatment include increase in thymic output of T-cells and 
restoration of Th1 responses (Lord et al. 1998), which may provide additional ben-
efits in the context of ageing. Given the strong proinflammatory effects of leptin, 
abrogation of its activity with administration of antibodies to leptin, its receptor or 
soluble recombinant leptin-receptor (which reduces circulating levels of leptin) may 
reduce chronic inflammation. Caloric restriction, diets rich in n-3 polyunsaturated 
fatty acids (fish oils) or low in saturated fatty acids could also decrease circulating 
leptin levels with little effect on body weight, an important consideration in age-
ing individuals. In contrast to promising effects of leptin-based therapies, despite 
optimism and a concerted effort to produce TLR-based pharmaceutical drugs, few 
studies have been conducted demonstrating that attempts to target TLR and the 
innate immune response can successfully treat human conditions (Fasciano and Li 
2006; Ulevitch 2004).  

   Thiazolideinediones (TZDs) such as rosiglitazone and piogliazone are synthetic 
PPAR-γ agonists used clinically to treat Type 2 diabetes due to their insulin sensitiz-
ing properties. In the last several years, PPARγ has been implicated as a regulator 
of the cellular inflammatory response and as such, PPARγ agonists such as TZDs 
may exert their antiinflammatory effects by negatively regulating the expression 
of proinflammatory genes induced during macrophage differentiation or activation 
including IL-1β, IL-6 IL-12, TNFα, and IFNγ (von Knethen and Brune 2003; Jiang, 
Ting, Seed 1998). The therapeutic effects of PPAR-γ ligands exceed their insulin-
sensitising actions and exert multiple beneficial effects in conditions associated with 
insulin resistance and inflammation. Multiple in vivo studies have demonstrated 
that glitazones exert potent antiinflammatory effects in both acute and chronic 
inflammatory settings. However, several recent studies have found that inflamma-
tory stimuli independently induce PPAR-γ expression in immune cells, but not in 
nonactivated monocytes/macrophages (Leininger, Portocarrero, and Houseknecht 
1999; Ricote et al. 1998), suggesting that during inflammatory processes PPAR-γ 
expression may be differently modulated in a cell-type-specific manner depending 
on type of inflammatory challenge and signalling pathway activated. Taken together, 
these data suggest that while PPAR-γ agonists may be useful in the therapy of some 
chronic inflammatory disorders such as psoriasis, the potential impact of PPAR-γ 
agonists on immunosenescence may be more complex.  
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      4.2      Physical Activity  

   It is accepted that macrophage infiltration and inflammation of adipose tissue in 
states of obesity and consequent low grade inflammation is involved in the pathogen-
esis of the metabolic syndrome and Type 2 diabetes. Therefore strategies targeted to 
weight reduction, increase muscle mass, and shrinkage of adipose tissue also focus 
on attenuation of inflammation. The immunomodulatory effects of exercise are well 
documented including a shift in the production of Th1 and Th2 cytokines, enhanced 
NK-cell and T-cell activity, improved antibody responses (reviewed in Moyna et al. 
1996; Venjatraman, Fernandes 1997; Shephard, Shek 1995; Mazzeo 1994; Shinkai, 
Konishi, Shephard 1998). Exercise and weight loss have direct anti-inflammatory 
effects on the innate immune system and on adipose tissue. In addition to weight 
reduction, moderate exercise is associated with many beneficial effects on degener-
ative diseases of ageing including reduced all-cause mortality (Blair and Wei 2000), 
improved metabolic syndrome (Lakka et al. 2003) and cardio-respiratory fitness 
(Dunn et al. 1999; Wei et al. 2000). Furthermore, human exercise intervention stud-
ies show a causal reduction in inflammatory markers including CRP (Church et al. 
2002; Ford 2002). It is widely acknowledged that moderate exercise exerts many 
health benefits with no contraindications if prescription is tailored to an individual’s 
health status.  

       4.3      Nutrition  

   Dietary interventions in old mice have demonstrated that activation of PPARα by 
dietary supplementation including vitamin E in combination with DHEA or molec-
ular activator WY14, 643 resulted in potent in vivo inhibition of inflammation. 
In these studies activated PPARα up-regulates the synthesis of Iκβ and inhibits 
the activity of NFκβ, thereby regulating the inflammatory process (Delerive et al. 
1999, 2000). Not only are DHEA or WY14,643 supplementation strategies effec-
tive at suppressing active NFκβ in lymphoid tissues, they also correct the abnormal 
expression of the various proinflammatory molecules that are over-produced in age-
ing (Poynter and Daynes 1998). When similar experiments were conducted in aged 
PPARα -/- mice, supplementation was found to be ineffective, demonstrating that 
modulation of PPARα is necessary to promote the antiinflammatory properties of 
vitamin E (Spencer et al. 1997).  

   Recent studies have suggested that n-3 fatty acids, a major component of fish 
oil, may protect against high-fat diet-induced insulin resistance, perhaps through 
modulation of the post-prandial inflammatory response. In rats fed dietary fish 
oil instead of safflower oil, protection from fat–induced insulin resistance was 
observed (Jucker et al. 1999; Ikemoto et al. 1996; Storlien et al. 1987). The abil-
ity of fish oil to preserve insulin sensitivity is likely mediated by polyunsaturated 
(omega-3) fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic 
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acid (EPA). The ability of these fish oils to modulate insulin sensitivity is thought 
to occur through modulation of PPARα and subsequent decrease in intracellular 
lipid (Neschen et al. 2007). Studies in humans have shown some beneficial effects 
of n-3 fatty acids on metabolic profiles, including reduced production of inflam-
matory cytokines (Browning 2003; Browning et al. 2007) particularly in the con-
text of drifting chronic inflammation with age (reviewed by Calder 2003; 2006). 
However, differential results were obtained depending on type of n-3 fatty acid 
ingested (eicosapentaenoic acid, docosahexaenoic acid, or linoleic acid). In addi-
tion, reduced lymphocyte proliferative responses and decreased phagocytic activ-
ity associated with increased n-3 consumption may occur in elderly populations 
(Rees et al. 2006). Thus, beneficial effects of n-3 fatty acids on age-related inflam-
mation must be monitored carefully with the potential for reduced immunity.  

   There are clear associations between low serum zinc levels and compromised 
immune function (Rink and Gabriel 2000; Ibs and Rink 2004). Zinc deficiency 
in the elderly is very prevalent. In fact, the Third National Health and Nutrition 
Examination Survey (1988–1994) showed that only 51.1% of 51–71 year-old and 
42.5% of >71 year-old elderly individuals had adequate zinc levels (defined as 
=/> 77% 1989 RDA (Briefel et al. 2000). Despite these figures, studies on zinc 
supplementation in the elderly have been discouraging, with either no benefit 
or even adverse affects reported following supplementation (Bogden et al. 1988; 
Chandra et al. 1993). These studies may be compounded by differential effects 
of dose and the elderly subpopulation studied. Evidence suggests that low (Giro-
don et al. 1999), but not high dose (Provincali et al. 1998) zinc supplementation 
improves vaccine responses in the elderly. It is likely that high doses–resulting 
in >30uM plasma zinc levels–most likely inhibit a range of T-cell functionali-
ties (Cakman et al. 1997; Wellinghausen et al. 1997; reviewed by Ibs and Rink 
2004).We have previously reported that in addition to its essential functions in 
growth and development, maintenance of the immune system, and as a cofactor 
for transcription and replication factors (Rink and Gabriel 2000, 2001) zinc may 
also act as a potent anti-inflammatory molecule by directly effecting the expres-
sion of a range of inflammatory mediators.  Fig. 2  demonstrates the effects of 
zinc supplementation and deprivation on IL-6 and leptin mRNA expression in 
cultured Jurkat (T-cells) and THP-1 cells (monocytes). These data demonstrate 
that zinc deprivation—or corresponding low zinc status in the human ageing con-
dition—may negatively impact on inflammatory gene expression and contribute 
to chronic low-level inflammation. In addition, we have recently obtained data 
suggesting that in selected individuals with elevated IL-6 production, zinc may 
reduce proinflammatory gene expression including modulation of IL-6, leptin, 
and FABP4 mRNA levels (Mazzatti et al. 2007). Taken together, zinc supplemen-
tation in specific sub-populations of zinc-sufficient elderly individuals or zinc-
deficient individuals may restore of immunity and metabolic homeostasis as well 
as provide antiinflammatory benefits.  

      The discovery that the vitamin D receptor (VDR) is expressed by antigen present-
ing cells (APCs) such as macrophages and dendritic cells and also by lymphocytes 
following activation suggest a role for 1,25(OH)2D3 in the immune system [Mathieu 
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et al. 2002]. The enzyme responsible for the rate limiting hydroxylation step in 
the synthesis of 1,25(OH)2D3, 1-α hydroxylase, is expressed by activated macro-
phages. This enzyme is identical to the renal form but its expression is regulated 
differently. Renal 1-α hydroxylase is mainly regulated by mediators of calcium 

   Fig. 2      Zinc supplementation and deprivation alters IL-6 and leptin mRNA expression in lym-
phocytes        
    Relative IL-6 and leptin mRNA expression in Jurkat (a) and THP-1 (b) cells following zinc 
supplementation (grey bars) and deprivation (black bars) compared to cells grown in normal 
growth media. Jurkat and THP-1 cells were plated at a density of 2 × 10 5  per ml in RPMI 1640 
(Cambrex, Germany) supplemented with 10% FCS (PAA, Germany), 100 U/ml penicillin and 
100μg/ml streptomycin. Cells were cultured for 40h at 37°C, 100% humidity and 5% CO2 
either as untreated controls, or in the presence of either 50μM ZnSO4 (zinc supplementation), 
or 2.5μM of the membrane permeant zinc chelator TPEN [N,N,N’,N’- tetrakis-(2-pyridyl-
methyl)ethylenediamine] (zinc deprivation). Total RNA was isolated using the Qiagen RNeasy 
kit (Qiagen, Germany). In vitro transcription was performed with the Superscript III First-Strand 
Synthesis System with random hexamer primers (Invitrogen, UK) and the Bio-rad I-Cycler (Bio-
rad, CA, USA) was used for real time RT-PCR. Reactions were prepared using Platinum qPCR 
supermix with Taqman probes (FAM-490, Applied Biosystems, UK) for IL-6 (Hs00174131_m1), 
leptin (Hs00174877_m1), and GAPDH (Hs99999905_m1). PCR thermocycler conditions were 
50°C for 2 minutes, 90°C for 2 minutes, followed by 45 cycles of 95°C for 15 seconds and 60°C 
for 60 seconds. All samples were run in triplicate with both test probes and the control gene human 
GAPDH to control for differences in amount of starting material. A standard curve was created for 
each PCR reaction. Fold-changes were calculated by normalizing the test crossing threshold (Ct) 
with the housekeeping control Ct (ΔCt) and calculating ΔΔCt by comparing treatment condition 
to untreated control. Values are shown as means from n=3 independent experiments ± S.D., values 
significantly different from the corresponding control (p<0.05, ANOVA) are indicated (*). 
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and bone homeostasis (PTH and 1,25(OH)2D3 itself) while its macrophage version 
is under the control of immune signals such as interferon-γ. A paracrine role of 
vitamin D in the immune system is postulated based on the widespread presence of 
VDR in the different cell types of the immune system and 1-α hydroxylase activity 
regulated by immune signals.  

   Vitamin D affects T-cell function in several ways. Antigen-stimulated T-lym-
phocyte proliferation, cytokine secretion and cell cycle progression are inhibited 
by in vitro addition of 1,25(OH)2D3. Vitamin D directly affects the transcription 
of several key cytokines of Th1 lymphocyte such as IFN-γ and IL-2. By inhibit-
ing IFN-γ transcription, 1,25(OH)2D3 prevents further antigen presentation to and 
recruitment of T-lymphocytes (Cippitelli et al. 1998). By inhibiting transcription of 
pro-inflammatory cytokines or influence Th1/Th2 responses, vitamin D may play 
an important role in the context of age-related chronic inflammation.  

   The link between vitamin D deficiency and type 2 diabetes has been known for 
many years (Gedik 1986). Receptors for 1,25-(OH)2D3 are found in β cells (Lee 
et al. 1994). Pancreatic β cells also contain vitamin D-dependent calcium binding 
protein, called as calbindin-D28k (Sooy et al. 1999). The expression of calbindin-
D28k has been shown to protect β cells from cytokine-mediated cell death (Rab-
inovitch et al. 2001). Elimination of vitamin D deficiency has improved glucose 
tolerance in humans (Kumar et al. 1994; Gedik 1986; Boucher et al. 1995). The 
doses used range from 2000 IU/day to single intramuscular injection of 100,000 
IU. In a recent analysis of Nurses Health Study, the relative risk of Type 2 diabe-
tes was 0.87 comparing the highest with the lowest category of vitamin D intake 
from supplements (Pittas et al. 2006). However, supplementation of vitamin D 
to vitamin D sufficient patients with Type 2 diabetes or with impaired glucose 
tolerance have shown conflicting results. Borissova et al. (2003) have shown 
improvements but Isaia et al. (2001) did not report any effect suggesting that the 
beneficial effects of vitamin D on glycemic regulation may only present in indi-
viduals with vitamin D deficiency. However, further studies are needed to clarify 
these aspects.  

        5     Future Research Prospectus  

   Our understanding of the pathogenic role of inflammation and its contribution to 
age-related disabling conditions such as frailty is rapidly expanding. However, the 
biological mechanisms underlying—and/or contributing to—chronic activation 
of inflammatory pathways including immunosenescence and insulin resistance 
is less well understood. A comprehensive, systemic approach is needed to bridge 
this gap in knowledge. In particular systems biology-based approaches may aid in 
identifying the molecular contributors to the drift in inflammatory status in age-
ing. These may include factors which respond to environmental cues, including—
but not limited to—damage/stress sensors and molecules involved in signalling 
and cell-to-cell communication including chemokines and cytokines. In addition, 
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since many cell types and organs are affected in ageing, it remains important to 
consider the global impact of these deregulated systems. To resolve this issue, 
systems-biology based applications must be used. Critically, in the context of 
chronic activation of inflammatory pathways, one must investigate the physiolog-
ical actions and cross-talk between diverse cell types such as adipocytes, immune 
cells, stromal cells, epithelial cells, and fibroblasts. Understanding how these cells 
become deregulated and communicate differently in the context of ageing or in 
states of insulin resistance or obesity can only be resolved using systems biology 
approaches. Systems-based approaches will enable integration of previously col-
lected data obtained at the organism, gene, protein and metabonome levels and 
will aid in addressing the complex relationships between age-related conditions 
such as frailty and immunosenescence with physiological disturbances such as 
heightened inflammatory status, adipose deregulation and insulin resistance. 
These approaches will also aid in identifying science areas where further targeted 

   Fig. 3      Age-related chronic activation of inflammatory pathways contributes to the development 
of the frailty phenotype      
Conditions such as ageing, obesity, immunosenescence, insulin resistance and states of metabolic 
deregulation contribute progressively towards the development of a chronic inflammatory state. In 
addition to the impact of these conditions on inflammation, elevated inflammatory cytokine pro-
duction can also perpetuate and further exacerbate many of these conditions. Inflammatory status 
is a major risk factor that influences multiple components of the frailty phenotype including loss of 
physical function, cognitive decline, and disability. Physical activity, nutrition, and pharmaceutical 
agents are important modulators of inflammation and as such represent modes of intervention.
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research is necessary to fill gaps in the knowledge base. Strategies to interpret 
these data with a evolutionary-based perspective may be particularly effective, 
according to the hypothesis that ageing—in particular immune ageing—is a proc-
ess of maladaptive remodelling dominated by adaptation and response to inflam-
matory stimuli (Franceschi et al. 2007). This hypothesis is supported by the fact 
that the immune system provides robustness against pathogenic threats through-
out the organism’s lifetime yet it can also adversely affect the organism (as in 
autoimmune disease or in conditions of chronic activation of inflammatory path-
ways). Recent studies have started to emerge in which network-based approaches 
have been utilised to investigate the complexity of human immune and inflamma-
tory responses (Calvano et al. 2005; Kitano and Oda et al. 2006). Taken together, 
these approaches may enable identification of new functional modules or nodes 
that are perturbed in disease states which may represent novel targets for immune 
intervention.  

       6      Concluding Remarks  

   In the last several years, the complex relationship between insulin resistance, age-
ing, and immune dysfunction has begun to evolve. A common mediator in the aeti-
ology of each of these conditions is chronic inflammation ( Fig. 3 ). Understanding 
the mechanisms that contribute to deregulated immune responses in ageing—and as 
a function of insulin resistance—may bring practical benefits in developing immune 
interventions for the elderly aiming to reconstitute appropriate inflammatory 
responses, restore insulin sensitivity, and prevent, delay or reverse the development 
of frailty and multiple age-related diseases. Systems biology-based applications 
will aid in this endeavour.  
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    1   Introduction  

   While the etiopathogenesis of Alzheimer’s disease (AD) still remains unresolved, a 
growing body of evidence indicates the involvement of the immune system. Yet, both 
character and the significance of the observed alterations are matter of dispute.  

   During the seventies and eighties of the 20th century a high amount of literature 
accumulated dealing with the impact of immunological factors on neurobehavioral 
pathology associated with aging and AD (Richartz et al. 2004).  

   The putative relevance of inflammatory processes is shown by over 20 epide-
miological studies suggesting a potential benefit of antiinflammatory intervention 
(Akiyama et al. 2000; McGeer and McGeer 1999). Further indication of a patho-
physiological role of inflammation in AD is given by the presence of inflammatory 
mediators in the AD brain, including proinflammatory cytokines, acute phase pro-
teins and the full complement cascade (Hüll et al. 1996; Mrak et al. 1995; Tarkowski 
et al. 1999). In summary, data available suggest that the AD brain undergoes chronic 
inflammatory process mediated by activated glial cells, targeted on the destruction 
of senile plaques, but lethal to surrounding neurons (McGeer & McGeer 2003).  

  The understanding that the brain is not that immunologically privileged site that 
it has been considered before is the result of modern psychoneuroimmunologi-
cal research. There is an active and highly regulated communication between the 
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brain and the immune system, and consequently, peripheral reactions can influence 
the cerebral immune response. Vice versa, cerebral immune processes can lead to 
peripheral immune alterations.  

   Against this background, numerous studies have been carried out focusing 
peripheral immunological alterations in AD.  

   In particular, the occurrence of brain—reactive autoantibodies in serum of 
patients with AD has raised the question of whether autoimmune processes could 
contribute to the clinical syndrome. Experimental animal studies have suggested 
a relationship between autoimmune status and age-associated cognitive decline 
(Richartz et al. 2004). In demented patients, serum autoantibodies against several 
self-antigens have been observed. However, the increase of autoantibody concentra-
tions in the serum is not specific, but rather reflects age-dependant effects on the 
immune status of the patients (Schott et al. 1996, 1997).  

   Further studies did not confirm the presence of increased antibodies concen-
trations in AD. Antibodies against CD95 are increased in other neurodegenerative 
disease such as ALS or Parkinson’s disease, but are decreased in AD (Appel and 
Sengun 2003). As to organ specific CNS antigens, a decreased incidence of autoan-
tibodies against gm1 gangiliosides in CSF was observed (Richartz et al. 2004]). 
Moreoever, the natural antibodies against amyloid protein supporting the degrada-
tion of cerebral ß-amyloid, are decreased in AD patients (Du et al. 2001; Weksler 
et al. 2002).  

   Taken together, investigations of autoantibodies remained contradictory. The 
results did not sustain the neuroautoimmune model (Aisen and Davies 1994; Singh 
1997) suggesting that neurodegeneration in AD is a consequence of classical 
autoimmune processes.  

   Rather, recent findings point to a decrease instead of an increase of antibody 
concentrations (Richartz et al. 2004).  

   With the development of more sophisticated techniques, the investigation of 
cytokines as essential immune mediators advanced, and studies on cytokine altera-
tions of cytokines seemed more promising.  

   As to their origin, it seemed reasonable to postulate a link between the cytokine 
profile in the blood stream and that in the brain, because there is an active and highly 
regulated communication between the brain and the immune system (Huberman et al. 
1994). On this background, several studies on inflammatory markers in serum and 
CSF in AD patients have been carried out, in attempt to find a premortem diagnostic 
marker for AD. First, it seemed consequent that the local inflammatory processes 
would be associated with systemic inflammatory signs. However, data remained 
inconsistent and, hitherto, do not allow drawing definite conclusions. Guided by 
cerebral findings, numerous studies focused on the peripheral secretion of proin-
flammatory cytokines. In CSF, increased levels of proinflammatory cytokines (Bagli 
et al. 2003; Blum-Degen et al. 1995), unchanged levels (Lanzrein et al. 1998; März 
et al. 1997; Tarkowski et al. 1999) and decreased levels (Singh 1994; Yamada et al. 
1995) have been found in AD. Of similar inconsistence are the findings in serum: 
Some working groups report elevated levels of proinflammatory cytokines (Kalman 
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et al. 1997; Licastro et al. 2000; Lombardi et al. 1999; Singh and Ghutikonda 1997), 
other do not see any changes (Androsova et al. 1995; Esumi et al. 1991; Lanzrein 
et al. 1998), while several find a decrease of proinflammatory cytokine secretion 
(Cacabelos et al. 1994; De Luigi et al. 2001; Paganelli et al. 2002; Sala et al. 2004). 
These discrepancies have mostly been attributed to technically different approaches 
and to different criteria to choose patient groups as well as control groups. Moreo-
ver, most of the studies report very low cytokines levels nearby their detection limit, 
so that statistical evaluation is restricted. However, within the confusing variety of 
systemic findings it is becoming increasingly substantiated that AD patients exhibit 
systemic immunological alterations, which do not just reflect the inflammatory proc-
esses in the brain. It has been stated that the neuroinflammatory events found in the 
brain and CSF of AD patients seem to be limited to the CNS without direct associa-
tion of a peripheral inflammation (Blum-Degen et al. 1995).  

   Own studies were carried out on the hypothesis that AD patients display sys-
temic immunological alterations in terms of a dysregulation or impairment of the 
immune response, which do not only reflect an epiphenomenon, but may causally 
be related to the Alzheimer’s pathology (Richartz et al. 2005). On the assump-
tion that various immune functions, not only of the proinflammatory response, 
are hampered in AD, we investigated the cytokine secretion of TH 1 cells, TH 
2 cells, as well as of the macrophage/moncyte system. In a preliminary study, 
we measured the concentrations of the proinflammatory cytokines IL-1ß, IL-2, 
IL-6, and TNF- α, as well as of the soluble receptors sIL-2r, sIL-6r, and sTNF-
αr in cerebrospinal fluid (CSF) and in serum of Alzheimer patients and controls. 
With respect to the low concentration values, we then stimulated whole blood 
cell cultures with mitogens, leading to higher cytokine levels. After mitogenous 
stimulation, we measured the increase of cytokine levels above basal levels of the 
proinflammatory cytokines IL-6, IL-12, IFN-y and TNF-α, and of the antiinflam-
matory cytokines IL-5 and IL-13.  

    2     Subjects and Methods  

   Recruitment of AD patients was done at the University Clinic for Psychiatry Tue-
bingen, Germany. The diagnosis of probable AD was performed according to the 
NINCDS-ADRDA criteria (McKhann et al. 1984). Control subjects for CSF and 
serum investigations were chosen from the Department of Neurology, Goettingen, 
Germany. Lumbar punction was carried out either in patients with questionable disc 
prolapse, who underwent radiological examination with contrast medium, or in 
patients suspected of having an inflammatory or other CNS disease. Their CSF sta-
tus was normal as regards cell count, albumin and IgG, as were all measured serum 
parameters. Any organic CNS disease was excluded in all of these persons. For cell 
cultures, control blood was gained by healthy aged persons, who were recruited 
through advertisement in the local press.  
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   A comprehensive somatic, psychiatric, and socio-demographic history was 
taken of all persons. All subjects underwent thorough psychiatric and neurological 
examination including EEG and neuroimaging (CT or NMR). Cognitive decline 
was measured by the Mini Mental State Test (MMST, Folstein et al. 1974). Total 
blood count and blood chemistry including C reactive protein, thyroid function, 
vitamin B12, Folic acid, Borrelia and Lues serology was evaluated. Patients with 
a psychiatric, neurological, inflammatory or infectious disease or with a history 
of immunological or malignant disease were excluded, as well as persons with 
abnormal white blood cell count, C reactive protein or signs of malnutrition. 
Further exclusion criteria were the intake of immunologically relevant or psy-
chotropic drugs and a positive family history for dementia. All control subjects 
underwent the same clinical examinations including MMST and laboratory tests 
as the AD patients. The same exclusion criteria were applied. MMST of controls 
had to be normal.  

   In vivo concentrations of cytokines and soluble receptors in CSF and serum 
were determined in twenty patients with probable AD (16 female and 4 male, 
60–88 years, median 72 years). The MMST score was in the range of 10–23, 
with a median of 16. As controls, we investigated CSF and serum samples from 
21 subjects (7 female, 14 male, 59–82 years, median 68 years). For studying 
cytokine production in stimulated blood cell cultures, further 27 patients, 18 of 
them females, 9 males, with probable AD and 23 healthy aged volunteers, 16 
females and 7 males, were included. The median age of the Alzheimer patients 
was 70 years (63–84 years), of the control persons 68 years (59–77 years). The 
MMSE score ranged between 11 and 21 in the patient group (Median: 17.3). 
Mean of Alzheimer disease duration was 2.5 years (1.5–3.4 years). The groups 
for native and stimulated cytokine investigations were comparable with respect to 
age and disease duration.  

   The investigation was carried out in accordance with the Declaration of Helsinki. 
Written informed consent was given from all subjects or their relatives following 
full explanation of the procedure. The study was carried out after approval by the 
local ethics committee.  

   Samples were collected at routine venipuncture between 8:00 and 9:00 am in 
order to take in account the circadian rhythm. For in vivo cytokine measurement, 
blood samples were centrifuged and the serum frozen at–20° C until analysis. CSF 
was obtained by lumbar punction, centrifuged and frozen at–20° C until analy-
sis. For blood cell stimulation, whole blood samples were cultured following the 
Lubeck protocol (Kirchner et al. 1982). Peripheral blood cells were stimulated with 
LPS and PHA, for 48 and 96 h, respectively. After centrifugation supernatants were 
stored at –80° C until measurement. Cytokine concentrations were determined 
using commercially available ELISA kits (IL-1ß, IL-6, TNF-α, IFN-γ, sIL-2r:Mile-
nia, Bad Nauheim, Germany; IL-5, IL-12, IL-13, sIL-6r, sTNF-αr:R&D Systems, 
Wiesbaden, Germany). Based on preliminary experiments, for each cytokine the 
time of stimulation was chosen according to the time of maximal induction. IL-5, 
IL-6, IL-13, and TNF-α were measured after 48 h of stimulation, IL-12 after 72 h, 
IFN-γ after 96 h of stimulation.  
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   For statistical analysis, the differences between the patients and control groups 
were analyzed by Wilcoxon rank sum test and  χ   2  test. The Bonferroni adjustment for 
multiple comparisons was applied.  

    3     Results  

   3.1      In Vivo Concentrations of Cytokines and Soluble Receptors 
in CSF and Serum  

   The data of this study are compiled in Table 1. The concentration of IL-2 in CSF 
as well as serum levels of IL-1ß, IL-2 and TNF-α were too low to reach detection 
limit. Regarding the other values, we found a decrease of all parameters in CSF and 
serum of the AD patients compared with the control group. Considering a p-value 
of less than 0.005 (n=10), Bonferroni adjustment showed a statistically significant 
decrease of TNF-α in CSF ( p  <0.0001) and of IL-6 in serum ( p  <0.0012) of the AD 
patients. There was no effect of gender (Kendall tau b correlation) and age (Pear-
son correlation). The diminished levels were not correlated with disease duration 
(MMST values) or severity.  

    3.2      Production of Cytokines in Stimulated Blood Cell Cultures 
(Figs. 1, 2)  

   We determined the ability of blood cells to produce the proinflammatory cytokines 
IL-6, IL-12, TNF-α and IFN- , and the T-helper (TH)-2-cell derived antiinflam-
matory cytokines IL-5 and IL-13. As illustrated in figs. 1, 2, the AD group shows 
reduced levels of all cytokines after mitogen-induced whole blood stimulation in 
comparison with the control group. On account of Bonferroni adjustment, a p value 

Table 1 Cytokine concentrations in CSF and serum (pg/ml): mean and standard error of the 
mean (S.E.M.) (in parentheses); (*) = p < 0,005 (Bonferroni adjustment); “-“: levels under detec-
tion limit

CSF Serum

AD Controls AD Controls

IL-1ß 19,6 (2,0) 23,3 (2,1) - -

IL-2 - - - -

sIL-2r 47,6 (1,85) 55,6 (2,97) 421 (35,57) 447 (37,55)

IL-6 4,6  (0,48)      10,6 (4,44) 4,7 (2,4)        (*) 16,1 (3,04)

SIL-6r 575  (38,70)   767 (22,43) 21,03 (1,89) 24,08 (1,36)

TNF- α 14,0 (0,37)     (*) 19,3 (0,43) - -

STNF-αr 681 (33,78) 667 (34,04) 1,527 (1,88) 1,94 (0,27)
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   Fig. 1         Release of proinflammatory cytokines (in pg/ml, with SEM) in mitogen-stimulated whole-
blood cell cultures from AD-patients (AD) and controls (Ctrl)     
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   Fig. 2         Release of antiinflammatory cytokines (in pg/ml, with SEM) by mitogen-stimulated 
whole-blood cell cultures from AD-patients (AD) and controls (Ctrl)     
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of less than 0,008 (n=6) was considered statistically significant. Thus, a high sig-
nificance was shown for the decrease of IL-6 ( p <0.001), IFN-  ( p <0.0002), TNF-α 
( p <0.0005) and of IL-5 ( p <0.001). IL-12 was decreased with p<0.019, IL-13 with 
p<0.023. The results remained significant also after stepwise regression control to 
exclude the possible influence of age and sex. No correlation was found between the 
cytokine levels and duration of disease or severity of disease, respectively.  

     4     Discussion  

   The role of the immune system in the pathogenesis of AD has been widely dis-
cussed. Since AD is no longer regarded as a single unified condition but as a complex 
syndrome, it has been postulated that the presence of different clinical subgroups 
may imply a differential involvement of the immune system (Huberman et al. 1994; 
Licastro et al. 2000).  

   4.1     Cytokine Measurement in AD  

   The literature on peripheral cytokine secretion in AD is various, and findings remain 
inconsistent and intricate to interprete. Obvious methodological differences among 
studies, including inclusion criteria and differences in the techniques used to meas-
ure cytokines contribute to the great variability of data. Sample sizes show consid-
erable differences, and the patient groups differ with respect to stage of dementia, 
further pathological conditions and drug intake. Moreover, varying cytokine levels 
may also be due to genetic polymorphisms (Bagli et al. 2003). Therefore, the meas-
urement of a single cytokine does not allow any conclusions on disease dependent 
effects. Rather, an overlapping set of cytokines as presented in this study may give 
more information. Most importantly, cytokine production is highly dependent on 
the health status. Previously reported higher levels of proinflammatory cytokines in 
aged persons as well as in AD might reflect an underlying but undiagnosed disease 
state (Beharka et al. 2001). On this background, in our study we excluded each 
person with the slightest sign of infection or other medical disease, because any 
comorbidity could influence the cytokine production. Moreover, since treatment 
with acetylcholinesterase inhibitors may modulate cytokine expression (Reale et al. 
2004) patients only were included before starting antidementive therapy. The meas-
urement of cytokine secretion was done using stimulated whole blood cell cultures. 
Whole blood cultures resemble more closely the in vivo situation since manipula-
tion, prestimulation, and possible selection of PBMC are minimized, and the role of 
plasma factors is included.  

   We observed diminished levels of proinflammatory cytokines in CSF and serum 
and of the soluble receptors in the AD group compared with healthy, aged controls. 
In summary however, these in vivo concentrations have been shown to be very low. 
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Critical parameters influencing cytokine levels in CSF are, e.g., the relatively large 
volume and the dynamics of the CSF system, the brain CSF barrier as well as the 
distance of the liquor system from the relevant brain regions (März et al. 1994). 
Similarly, some native cytokine concentrations in serum were near or under the 
detection limit. In contrast to our results, other investigators were able to found 
measurable cytokine levels. This discrepancy could be explained by undiagnosed 
comorbidity or intake of drugs leading to altered cytokine secretion. More impor-
tant may be technical differences, particularly concerning origin, structure and sen-
sitivity of the antibodies applied in the different ELISA kits.  

   Findings in stimulated blood cell cultures are much more expressive, since 
cytokine levels are markedly higher, and differences between groups are depicted 
more clearly. Moreover, the relative increase of cytokine levels upon stimula-
tion reflects the functional responsiveness of the particular immune cells on 
inflammatory stimuli. In our study, the increase of all measured cytokines, i.e. 
IL-5, IL-6, IL-12, IL-13, TNF-α and IFN-  in whole-blood cell cultures stimulated 
with mitogens, is significantly lower in AD patients than the increase of cytokine 
levels in the control group. The finding of an unidirectional decrease of all meas-
ured cytokines points to a general dysfunction of the cellular immune response 
to stimulating agents. The main source of IL-6, IL-12, TNF-α and IFN-  is the 
monocyte/macrophage system. Moreover, IFN-y, and to a lower degree TNF- , 
are also expressed by TH-1 cells. TH-1cells play a central role in the activation 
of the monocyte system. Additionally, they induce B-cells to produce opsoniz-
ing antibodies. Opsonizing, again, promotes phagocytosis. Thus, a diminished 
production of these cytokines may be associated with an impaired phagocytic 
activity. As phagocytosis is essential for the removal of foreign bodies, debris 
and dysfunctional proteins, impairment can lead to accumulation also of amyloid 
proteins as is the case in a number of local and systemic amyloid diseases (Linke 
1996). In contrast, IL-5 and IL-13 derive from TH-2 cells and act as antiinflam-
matory immune mediators. Interestingly, their expression has been found to be 
significantly decreased as well. Taken together, we see a generally blunted secre-
tory response of immune cells on activating stimuli in AD. This observation is in 
contrast to the protective effect of antiinflammatory drugs when taken for long 
term before the onset of AD, as seen in several epidemiological studies. However, 
a therapeutic effect of antiinflammatory substances is up to now not proved in 
prospective clinical studies. Moreover, the histopathological evidence of proin-
flammatory molecules in the diseased brain is not necessarily in contrast to the 
assumption of an underlying general immune depression. A decline of phagocytic 
activity as one of the beneficial effects of the immune response may constitute 
an early event in the pathogenetic chain. However, the local overproduction of 
inflammatory markers have been attributed to a secondary reaction to the accu-
mulating amyloid burden (Mc Geer and McGeer 2003) obviously overtaxing the 
phagocytic capacities of the AD brain. Finally, the mechanism of the antiinflam-
matory drug effect in AD is not yet clarified. Possibly, they do not act via inhibi-
tion of the prostaglandinsynthesis, but through reduction of the amyloid burden 
(Cirrito and Holtzmann 2003).  
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       4.2      Consistent Findings Indicating an Immune Dysfunction 
in AD  

   Several studies point to an at least partial impairment of the immune system in 
AD. A decreased production of TNF-α in mild stages of AD was interpreted as a 
sign of defective immune functions (Huberman et al. 1994). Phytohemagglutinin 
(PHA)—stimulated proliferation and IL-2 production of nonadherent monocytes in 
AD patients has been shown to be significantly reduced (Fujiwara 1996). The lack 
of proliferative responsiveness to APP peptides in AD led to the assumption of a 
“T-cell anergy” in AD (Trieb et al. 1996). A generally decreased in vitro T-cell-acti-
vation to a number of stimuli in AD has been reported, and an increase of acute reac-
tants is interpreted as a compensatory reaction to in vivo functional alterations of 
leukocytes (Dickson et al. 1996). Other studies have shown imbalances of cellular 
immunity and immunoregulatory T-cells and a reduced T-cell response to various 
antigenic determinants suggesting a defect of the T-cell mediated immunity in AD 
(Giubilei et al. 2003; Streit 2001). Accordingly, a decrease of proliferation activity 
of AD lymphocytes has been reported, subsequently resulting in the impairment of 
immune functions in AD (Zhang et al. 2003). These functional defects have been 
attributed to oxidative damage of DNA in lymphocytes from AD patients (Mecocci 
et al. 1998) and an altered calcium response of peripheral T-lymphocytes in AD 
(Sulger et al. 1999). Most interestingly, an accelerated telomere shortening in lym-
phocytes has been found as an underlying cause of the impaired lymphocyte func-
tion in AD (Panossian et al. 2003; Zhang et al. 2003).  

       4.3      Putative Causal Role of Immune Dysfunction in AD  

   The question of a pathogenetic role of the immune dysfunction in AD is matter of 
ongoing discussion. One hypothesis suggests that a peripheral immune impairment 
is an epiphenomenon, secondary to the central immune activation seen in AD. Via 
the hypothalamic pituitary axis the cerebral inflammation may lead to an increased 
production of cortisol, resulting in a peripheral immunodepression (Woiciechowsky 
et al. 1999). Indeed, a mild hypercortisolemia has been shown in AD patients (Hart-
mann et al. 1997).  

   On the other hand, a causal role of an underlying general impairment of the 
immune response in AD seems conceivable with respect to three major points of 
view:  

    4.3    . 1 Microglial Dysfunction in AD  

   The role of immunological and inflammatory processes in the pathogenesis of AD 
is widely understood in terms of the “bystander damage hypothesis” (Streit 2002). 



1284 E. Richartz-Salzburger and N. Koehler

Accordingly, the neurodegeneration in AD is caused through bystander damage 
from autoaggressive microglial cells that produce neurotoxins in response to con-
tinue A ß exposure (Akiyama et al. 2000; McGeer and McGeer 2001). However, the 
primary function of microglia is to support neuronal survival and regenerative proc-
esses including phagocytosis (Rogers et al. 2002; Streit 2002). The role of microglia 
in the degradation and clearance of cell debris as well as of amyloid proteins is 
meanwhile well established (Popovic et al. 1998; Streit 2001). Microglia derives 
from the same stem cells as monocytes and have been shown to undergo simi-
lar functional impairment in AD as assumed for the peripheral monocytes of AD 
patients (Streit 2001; Fiala et al. 2002). Histopathological studies on AD microglia 
showd altered morphology indicating a functional impairment (De Witt et al. 1998; 
Sasaki et al. 1997). The long-term presence of activated microglia around ß-amy-
loid plaques has been referred their inability of phagocytosing and clearing senile 
plaque cores (Apelt et al. 2001). Microglial dysfunction may become manifest in 
a number of ways, including a decreased ability to produce neurotrophic factors, 
a decreased phagocytic capacity, as well as increased neurotoxicity (Streit 2002). 
These alterations may be of pathogenetic relevance in AD. It has been shown that 
deficient phagocytosis promotes inflammation and can lead to immune-mediated 
tissue degeneration (Wyss-Coray and Mucke 2002). Presumably, chronic struggle 
of microglia to remove Aß-containing plaque material promotes inflammatory proc-
esses in AD (Lue and Walker 2002). These changes are assumed to be age-related, 
but are pronounced in AD.  

   Taken together, findings of a systemic attenuation of cellular immune response 
may be related to the cerebral pathology in AD in terms of insufficient phagocytosis 
of amyloid proteins and resulting neurotoxic effects.  

    4.3     .2 Decrease of Amyloid Burden Through Immunstimulation  

   The assumption of a causal significance of an immunological impairment in AD is 
even more intriguing in the light of the studies on immunization with ß -amyloid. 
Vaccination of transgenic mice with ß-amyloid leads to an enhanced removal of 
amyloid deposits in the brain (Schenk et al. 1999) by promoting microglial phago-
cytosis. While the exact mechanisms are still point of discussion, also peripheral 
mechanisms have been considered (Lemere et al. 2003). Peripheral immune cells 
have been shown to invade the brain of adult mice as well as AD brain (Eglitis and 
Mezey 1997, Fiala 2002). Possibly, immunization leads to a peripheral immune 
response, which via penetration of T-cells and macrophages into the brain will 
enhance phagocytosis of local Abeta. Furthermore, immunstimulation with LPS 
results in reduction of ß-amyloid plaques in APP PS1 transgenic mice what has 
been shown for direct intrahippocampal injection (DiCarlo et al. 2001) as well as 
for systemic administration of LPS (Quinn et al. 2003).  

   In view of a putatively underlying immune deficit and impaired phagocytotic 
activity in AD, the effect of immunization or immunstimulation leading to a decrease 
of the cerebral amyloid burden seems consistent and conceivable.  
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    4.3.    3 Role of Aging  

   Finally, there seems to be an obvious association between the immune altera-
tions seen in AD and aging processes. Immune-aging phenomena constitute a 
major risk factor for AD (Blasko and Grubeck-Loebenstein 2003; Gasiorowski 
and Leszek 1997). The role of aging in AD development is conspicuous since 
epidemiological studies identified advanced age as the only consistent risk factor 
for AD. The age-dependent decrease of immune functions does not only involve 
the adaptive immunity (Blasko and Grubeck-Loebenstein 2003), but the innate 
immune system as well. T-cell derived cytokine production decreases with aging 
(Esumi et al. 1992; Gillis et al. 1981), and in vitro lymphocyte responsiveness to 
activating agents (e.g., lectins) has been shown to be reduced in elderly humans in 
several studies (DiCarlo et al. 2001). Macrophages, as well, underlie age-associ-
ated functional alterations (Lloberas and Celada 2002).  

   Obviously, the immunological alterations in AD patients are more pronounced 
than the age-related changes in healthy persons. The T-cell observations in 
AD patients are characteristic of T-cells that reach a state of high replicative 
senescence after multiple rounds of antigen-induced cell-division (Effros 1998; 
Panossian et al. 2003).  

   Moreover, AD patients show, in comparison with healthy aged people, increased 
mitochondrial DNA mutations and genomic DNA damage which can lead to dys-
function and decline of PBMC (De la Monte et al. 2000).  

   On this background, the observations of a blunted T-cell–response in AD patients 
finally could be understood as sequel of a premature immunosenescence, presum-
ably being one important factor within the multifactorial etiopathogenesis of AD. 
This assumption is substantiated by the parallels between AD patients and patients 
with Down syndrome (DS). DS patients suffer from progerie and are of high risk 
to develop AD. Interestingly, DS patients show similar signs of advanced immu-
nological senescence as seen in AD, such as telomere shortening (Park et al. 2000; 
Zhang et al. 2003) and altered intracellular calcium responses of T-cells, which 
might negatively influence the T-cell help required to generate an effective antibody 
response to A ß (Grossmann et al. 1993).  

   This study is limited due to the small amount of data and the heterogeneity of 
patients in terms of age, disease duration and severity. However, the present data 
support alternative views to the hypothesis of a mere inflammation-mediated patho-
genesis, particularly since trials with antiinflammatory agents have not yet shown a 
clear benefit in preventing or delaying disease onset. Our hypothesis of a premature 
immunosenescence as a pathogenetically relevant factor in AD is in line with a 
“gerocentered” view rather than a just “amyloidocentered” approach in understand-
ing the etiology of AD (Joseph et al. 2001). Conclusively, the development of thera-
peutic strategies which stimulate the general immune responsiveness seems to be a 
promising challenge for future research.  
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                       Abstract:   As the aging population increases rapidly worldwide, caring for frail 
older adults has become the mandate of modern medicine. As such, frailty has been 
increasingly recognized as an important geriatric syndrome. This is further sup-
ported by the recent development of an operational definition, validation of a set of 
criteria, and evidence for its syndromic nature. Frailty is characterized by decreased 
functional and physiologic reserve, increased vulnerability to stressors, as well as 
high risk for serious adverse health outcomes including disability, dependency, and 
mortality. Although the pathogenesis of this syndrome is far from being elucidated, 
frail older adults demonstrate dysregulations in multiple physiologic systems. As 
discussed elsewhere in this handbook, low grade, chronic systemic inflammation 
manifested in older adults, so-called “inflamm-aging,” is an important feature of 
immunosenescence. Activation of the inflammation system marked by elevated lev-
els of inflammatory markers, above and beyond age-related increases, is considered 
the most prominent pathophysiological feature of frailty. This chapter provides an 
overview of the syndrome of frailty and its relationship with several molecular and 
cellular inflammatory markers, including interleukin-6 (IL-6), C-reactive protein 
(CRP), and white blood cell (WBC) and its specific subpopulations. It also dis-
cusses the potential role of chronic systemic inflammation, directly and/or through 
other intermediary systems, in the pathogenesis of frailty.  
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     1 The Geriatric Syndrome of Frailty  

  The evaluation and treatment of frail older patients constitute a cornerstone of the 
care for older adults. Until recently, frailty has been a term that is used more fre-
quently than it is defined. Geriatricians have long been aware of a syndrome of 
multiple coexisting conditions, weakness, immobility, and poor tolerance to physi-
ologic or psychological stressors. Due to lack of diagnostic criteria, geriatricians 
say, “I know it when I see it. But, what I see may not be the same as everyone 
else sees. “ Given the ever growing of older adult population, particularly the rapid 
expansion of the segment aged 85 years and older (the “oldest old”), searching for 
a standardized definition of frailty and understanding its pathophysiologic basis has 
become paramount.  

  Recent work led by Fried and colleagues suggests that frailty as a syndrome in old 
age and a state of decreased physiologic reserve and high vulnerability for subsequent 
morbidity and mortality [1–4]. Frailty has also been described as a syndrome with a 
loss of complexity in resting dynamics involving multiple organ systems, manifested 
by maladaptive responses to stressors, leading to a vicious cycle toward functional 
decline and other adverse clinical outcomes [5, 6]. The phenotypic characteristics of 
frail older adults is now recognized to be a syndrome consisting of three or more of 
the following: weakness, low physical activity, slowed motor performance, exhaus-
tion, and weight loss [1, 6]. The presence of three or more of these characteristics 
is independently predictive of a number of serious adverse health outcomes, includ-
ing acute illness, falls, hospitalization, disability, dependency, and early mortality, 
adjusting for comorbidities [1]. The estimated prevalence of this syndrome is 7–10% 
among community-dwelling men and women age 65 and older, and up to one-third 
of those aged 80 years and older [1, 6]. The phenotypic characteristics described 
above, of which three appear to be the syndromic critical mass, have been validated 
by many large cohort studies and in various clinical and cultural settings [1, 7–11]. 
This frailty index has also been favorably evaluated and compared with other pro-
posed frailty criteria [12]. A recent American Geriatric Society and National Institute 
on Aging-sponsored national conference in the US on the research agenda on frailty 
has further utilized Fried’s index as the preliminary criteria for frailty [3, 4].  

  Based on the above validated and now widely utilized frailty criteria, the mani-
festations of frailty, as a clinical syndrome, encompass a constellation of symptoms 
including weakness, fatigue, inactivity, unintentional weight loss, and decreased 
food intake. Signs of frailty that are often cited include sarcopenia (loss of muscle 
mass), balance and gait abnormalities, deconditioning and decreased bone mass 
(Fig. 1). Weakness (measured by muscle strength or power) and slowed motor per-
formance (measured by walking speed) appear to be the cardinal signs of the frailty 
syndrome. Consistent with its definition as a syndrome, the symptoms and signs of 
frailty may vary across this constellation of possible manifestations, with multiple 
components present, but not always the same ones from patient to patient.  

       Frailty is recognized as a distinct clinical entity distinguished from comorbid-
ity and disability, two other prevalent conditions in older adults   [1, 6].   All three 
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conditions are predictive, at various degrees, of adverse clinical outcomes; there-
fore, have significant overlap (Fig. 2). However, the main features of frailty (includ-
ing decreased functional reserve, impairment in multiple physiological systems, and 
reduced ability to regain physiological homeostasis after a stressful and destabiliz-
ing event) make the distinction of frailty from disability or comorbility relatively 
easy. Disability suggests chronic limitations or dependency in mobility and/or activ-
ities of daily living (ADLs: eating, bathing, dressing, toileting, and ambulating) 
or instrumental activities of daily living (IADLs: shopping, housekeeping, cook-
ing, driving, taking medications, and handling finance). While many (but not all) 
frail individuals are disabled, not all disabled persons are frail. For example, older 
patients who suffer severe disability secondary to a major cerebral vascular accident 
or stroke may maintain relatively intact function in other physiological systems and 

Fig. 1  Clinical manifestations and consequences of the geriatric syndrome of frailty
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thus, are not frail. As time goes by, these individuals may develop frailty if they 
are not recovered from their disability. Therefore, disability is likely an outcome 
of frailty or a contributor to frailty. Comorbidity indicates the presence of multiple 
chronic diseases. Not surprisingly, comorbidity is associated with increased risk of 
adverse outcomes, as evidenced by higher short-term and long-term mortality and 
significantly increased physical disability compared with those without diseases. 
However, the mere presence of two or more diseases in itself, even if in relatively 
severe forms, may not identify the vulnerable group of older patients or those who 
are frail. Again, if these comorbid conditions are not adequately treated and/or more 
diseases are accumulated, these patients may develop frailty [6].  

       The etiology for the syndrome of frailty is current unknown. Old age is clearly a 
significant risk factor for frailty, as the prevalence of frailty increases with age [6]. 
Older adults can develop frailty in the absence of any clinically evident diseases 
(primary frailty). Frailty can also develop from multiple coexisting diseases, often 
chronic conditions but can be triggered by acute episodes of existing conditions or 
acute new diseases, as a common pathway (secondary frailty) to disability, depend-
ency, and death [2]. Emerging evidence suggests that chronic systemic inflammation 
is the most prominent pathophysiological feature of frailty and may play a critical 
role in the pathogenesis of this syndrome.  

    2 Molecular Inflammatory Markers and Frailty  

  As an important feature of the immunosenescence, aging is characterized by a low 
grade, chronic systemic inflammatory state, so-called “inflamm-aging” [13]. This 
inflammatory phenotype is marked by elevated levels of molecular and cellular 
inflammatory markers and is associated with increased morbidity and mortality in 
older adults [14]. Inflammatory molecules with age-related increase in their levels 
include proinflammatory cytokines and their receptors, such as  tumor necrosis fac-
tor-alpha (TNF-α), interleukin-6 (IL-6), Interluekin-1 receptor antagonist (IL-1Ra), 
and soluble TNF receptors, diverse chemokines, such as CXCL10 (also termed 
interferon-gamma induced protein 10, or IP-10), regulated upon activation normal 
T-cell expressed and secreted (RANTES), macrophage inflammatory protein-1 
alpha (MIP-1a), monocyte chemoattactant protein-1 (MCP-1), and IL-8, as well as 
C-reactive protein (CRP) [15–19]. The following will focus on IL-6 and CRP for 
which recent studies have demonstrated elevated levels in frail older adults, above 
and beyond age-related changes.  

   2.1 IL-6 and Frailty  

  IL-6 is a proinflammatory cytokine with elevated  circulating levels in older adults [20, 
21]. Age-related increases in IL-6 levels are associated with several pathophysiologic 
processes, including atherosclerosis, osteoporosis, and sarcopenia, and with functional 
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decline, disability, and all-cause mortality in older adults [21–26]. In addition, elevated  
IL-6 levels are associated with decreased  muscle mass and strength even in well-func-
tioning older men and women [27, 28]. In a longitudinal study, Ferrucci and colleagues 
reported that elevated IL-6 levels at baseline predict a significantly higher risk for the 
development of physical disability and a steeper decline in muscle strength and walk-
ing performance during a follow-up period of 3.5 years in older women living in the 
community [29]. This study and others have shown that chronic systemic inflammation 
marked by elevated IL-6 levels is associated with decreased muscle strength and power 
and slowed walking speed, two central components of the frailty syndrome. Direct evi-
dence supporting the relationship of this molecular inflammatory marker with frailty 
came first from a pilot study in which community-dwelling frail older adults had sig-
nificantly higher IL-6 levels than nonfrail controls with similar age [30]. A subsequent 
age- race and sex matched pair study has further demonstrated that frail older adults 
living in the community had significantly higher IL-6 production by the peripheral 
blood mononuclear cells (PBMCs), upon stimulation with lipopolysaccharide (LPS), 
compared to the matched nonfrail controls [31]. Furthermore, two recent studies in 
large cohorts of community-dwelling older women have demonstrated that elevated 
IL-6 levels are independently associated with the syndrome of frailty [32, 33]. These 
clinical, laboratory, and population studies have provided strong evidence for the con-
tributory role of this important proinflammatory cytokine to frailty in older adults.  

    2.2 CRP and Frailty  

  CRP, discovered in 1930 as an acute phase reactant, is a classic circulating molecular 
marker of systemic inflammation [34]. Elevated CRP levels are associated with many 
late-life chronic conditions, including Alzheimer’s disease, cardiovascular diseases, 
macular degeneration, and functional decline, disability, as well as all-cause mortality 
in older adults [24, 26, 35]. Clinically, CRP has now been integrated as part of the rou-
tinely measured panel of cardiovascular disease risk factors. Two large cohort stud-
ies have demonstrated the direct association of this molecular inflammatory marker 
with frailty. In the Cardiovascular Health Study (CHS), Walston and colleagues have 
shown that significant association of elevated CRP levels with frailty after excluding 
cardiovascular disease and diabetes and adjusting for basic demographic characteris-
tics [36]. Data from the Longitudinal Aging Study Amsterdam (LASA) have further 
confirmed these findings [37]. These studies suggest that CRP, along with IL-6, is an 
important circulating molecular inflammatory marker for the syndrome of frailty.  

     3 Cellular Inflammatory Markers and Frailty  

  White blood cell (WBC) and its subpopulations are circulating immune cells and 
an important cellular component of the inflammation system. Total WBC count is a 
stable, well-standardized, widely available, and inexpensive cellular inflammatory 
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marker. Clinically, increase in total WBC counts (above the normal range) is 
recognized as a marker of systemic inflammation, primarily secondary to acute 
bacterial infections. Numerous studies, particularly several recent large cohort stud-
ies in older adults, have demonstrated that elevated WBC count is associated with 
cardiovascular and cerebrovascular events, cardiovascular and cancer mortality, as 
well as all-cause mortality [38–40]. The predictive value of elevated baseline total 
WBC counts for all-cause mortality of community-dwelling older women remained 
after excluding those with high WBC counts above normal range and hematologi-
cal malignancies[38]. The relationship of this well-recognized cellular inflamma-
tory marker with frailty has been recently evaluated, demonstrating that total WBC 
counts had independent association with frailty in older women living in the com-
munity [32]. As shown in Fig. 3, results from this study showed significant trend of 
increase in risks for frailty from participants in the bottom tertiles of both total WBC 
counts and IL-6 levels (reference group) to those in the mid tertiles and those in the 
top tertiles, suggesting a potential synergistic interaction between these two com-
mon cellular and molecular inflammatory markers in their associations with frailty 
[32]. This was supported in part by the study cited above in which PBMCs, isolated 
WBC subpopulations, from frail older adults had significantly higher LPS-induced 
IL-6 production than that from matched nonfrail controls [31]. Another study has 
shown direct associations of circulating IL-6 levels and total WBC and differential 
counts in the same cohort of older women living in the community [41].  

Fig. 3 Odds ratios for frailty in each of the five groups of participants from the Women’s Health 
and Aging Studies I:Participants were grouped based on their tertiles of IL-6 and WBC: (B)–bottom 
tertile; (M)–mid tertile and (T)–top tertile. The numbers of participants in each group are indicated 
in parentheses
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       In terms of WBC subpopulations, ongoing studies have shown that counts of 
neutrophils and monocytes are significantly associated with frailty (Leng S, unpub-
lished data). Lymphocytes and their overall effects are difficult to assess as they are 
consisted of heterogeneous subsets with diverse immune regulatory functions (Th1 
and Th2 proinflammatory phenotypes vs. T regulatory or suppressor phenotypes, 
etc.). In addition, drastic and ongoing remodeling, particularly in the T-cell com-
partment, occurs during aging. Although no consistent association between total 
lymphocyte counts and frailty has been demonstrated, specific T-cell subsets have 
been reported to have significant associations with frailty. For instance, it is well 
documented in the immunosenescence literature that CD8+   and CD8+CD28- sub-
sets of T-cells experience most consistent expansion during aging. The post hoc 
analysis in a recent study evaluating the relationships between T-cell subsets and 
mortality suggests that frailty is associated with increased CD8+ and CD8+CD28- 
T-cells in older women [42]. Chemokine CC receptor-5 (CCR5) is a well-known 
coreceptor for macrophage (M) and dual (T-cell and M)—tropic human immuno-
deficiency virus type-1 (HIV-1) infection [43]. CCR5+ T-cells have a proinflam-
matory and type-1 phenotype [44, 45, 47] and contribute significantly to several 
inflammatory conditions [44–48]. In a study of 13 frail and age- race, sex, matched 
nonfrail older adults living in the community (mean age 84 years), frail participants 
had significantly higher percentage of CCR5+ T-cells in the total T-cell pool than 
matched nonfrail controls (Fig. 4) [49]. These studies suggest that frailty is associ-
ated with increased frequencies of CD8+, CD8+CD28-, and CCR5+ T-cell subsets 
above and beyond age-related T-cell remodeling. However, whether these T-cell 
subsets possess proinflammatory function in frail older adults as well as their role 
in the development of frailty remain to be determined.  

Fig. 4  Percentages of 
CCR5+ T-cells in 13 frail 
and matched nonfrail 
older adults: Each 
symbol represents one 
participant. Horizontal 
lines denote the means Non-Frail Frail
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        4 Role of Inflammation in Frailty  

  As discussed above, the associations between frailty and common molecular and cel-
lular inflammatory markers are well documented. The critical question is whether 
chronic systemic inflammation plays a role in the pathogenesis of frailty. As noted ear-
lier, individual inflammatory molecules, such as IL-6, can directly contribute to frailty 
or its central components (such as decreased muscle strength/power and slowed motor 
performance). In addition, frailty involves multiple physiologic organ systems, such 
as muscular (primarily skeletal muscle), hematologic (anemia), cardiovascular (clini-
cal and/or subclinical), and endocrine (decreased insulin-like growth factor-1 [IGF-1], 
decreased DHEA-S, and insulin resistance, etc.) systems [30, 50–54]. It is conceivable 
that systemic inflammation could contribute to frailty through its detrimental effects 
(functional impairment and/or structural damage) to these organ systems. In fact, stud-
ies have shown that circulating IL-6 levels have inverse associations with hemoglobin 
concentration and IGF-1 levels in frail older adults, but not in nonfrail controls; low 
hemoglobin and IGF-1 levels are each independently associated with frailty, as well 
[30, 55]. Therefore, it is proposed that low grade, chronic systemic inflammation plays 
a key role in the pathogenesis of frailty, directly or through other intermediate proc-
esses (Fig. 5).  

      5 Conclusion and Future Direction  

  Frailty is a common geriatric syndrome that affects millions of older adults. The 
clinical presentations of frailty, as currently defined, include fatigue, low mus-
cle strength, poor motor performance, low levels of physical activity, and weight 
loss, emphasizing patient’s physical function and performance. Its cardinal feature 
includes the involvement of multiple physiologic organ systems, decreased physi-
ologic reserve, and increased vulnerability to stressors. Frail older adults have a 
chronic systemic inflammatory phenotype  marked by increased levels of common 
molecular and cellular inflammatory markers, IL-6, CRP, and WBC and its sub-
populations, above and beyond age-related elevation. Emerging evidence suggests 
that this low grade, chronic systemic inflammation is a key pathophysiological fac-

Fig. 5  Hypothetical inflammation model pathway to frailty in older adults

Disability

Dependency

Death

Weakness

Weight loss

Slowed 
performance

Exhaustion

Low activity

Hb or Anemia
Sarcopenia
Atherosclerosis

IGF-1

Molecules:
IL-6, CRP …

OutcomesFrailtyIntermediaryInflammation

+

Cells – WBC:
CD8+CD28-

CCR5+Im
m

un
os

en
es

ce
nc

e



Inflammatory Markers and Frailty 1301

tor, contributing directly or through other intermediary processes to frailty in older 
adults.  

  Given the heterogeneity of the older adult population and complexity of the 
frailty syndrome, additional clinical and translational studies at the population, 
clinical, cellular, molecular, and genetic levels are much needed to further elucidate 
the role of inflammation in the pathogenesis of frailty. Such efforts have begun 
to emerge, such as investigations into monocytic gene expression focusing on the 
inflammatory pathway (Leng S, unpublished and ongoing studies). In the future, 
potential interventional strategies targeted to the inflammatory pathways for the 
prevention (or delay) and treatment of the frailty syndrome could be developed. For 
example, if CCR5+ T-cells prove to play a critical role in the development of frailty, 
anti-CCR5 based therapy, a novel treatment modality for HIV infection currently 
under active research [56], would be a promising candidate for therapeutic devel-
opment. Similarly, anti-IL-6 or IL-6 receptor modulating strategies could also be 
applied. With the global aging at an unprecedented rate, it is critical to advance our 
knowledge in the pathogenesis of frailty and to develop interventional strategies for 
this syndrome. It is equally important to intervene immunosenescence and improve 
immune function in this most vulnerable older adult population.  
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     PBMC    Peripheral blood mononuclear cells 
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         1 Frailty: Brief Overview  

  Frailty is a common geriatric syndrome that has been variously characterized as 
a wasting state of decreased physiologic reserve, loss of physiologic complexity, 
and accumulation of deficits [11, 58, 83], and is an independent risk factor for poor 
outcomes in older adults [7, 30, 113]. A physiologic phenomenon that has been 
consistently observed in frail older individuals is a generalized inflammatory state, 
beyond age-related changes [26, 56, 87, 106]. Frail older adults have higher levels 
of systemic inflammatory markers, including interleukin-6 and C-reactive protein, 
than older adults who are not frail, even when chronic diseases are excluded [106]. 
The chronic activation of inflammatory pathways is known to influence skeletal 
muscle mass decline, the anemia of chronic disease, hypothalamic-pituitary-adre-
nal axis (HPA axis) activity, cognition, and a number of chronic disease states, and 
likely plays an important role in the pathogenesis of frailty through its effects on 
these multiple physiologic systems [28].  

    2 Association between CMV Seropositivity and Frailty  

  Because chronic inflammation appears to be crucial in the development of frailty, 
and because cytomegalovirus (CMV) is known to trigger chronic inflammation, 
investigators recently designed a study to determine the relationship between CMV 
infection and frailty. Using a cross-sectional study design, these investigators dem-
onstrated an association between CMV seropositivity and frailty in older women 
aged 70–79 [87]. The participants in this study were drawn from the Women’s 
Health and Aging Studies (WHAS) I and II, which are two complementary popula-
tion-based, prospective, observational studies involving community-dwelling older 
women in Baltimore, Maryland, who were randomly sampled from the Medicare 
enrollment file [27, 29].  

  Frailty in this study was defined according to validated criteria consisting of 
5 measurable characteristics: shrinking, weakness, poor endurance and energy, 
slowness, and low physical activity level [30]. Older women meeting a critical 
mass of three or more components were defined as frail. Chronic CMV infection 
was defined as the presence of anti-CMV IgG antibodies in the plasma. These 
investigators demonstrated a cross-sectional association between CMV seroposi-
tivity and frailty in older women. After being adjusted for age, history of smok-
ing, body mass index ≥25 kg/m 2 , diabetes mellitus, and congestive heart failure, 
the odds ratio (OR) for frailty in persons with CMV seropositivity was 3.2. Fur-
thermore, serum interleukin (IL)-6 level was an effect modifier, enhancing the 
association between CMV seropositivity and frailty; in persons with high IL-6 
level (≥4.2 pg/mL) and CMV seropositivity, the adjusted OR for frailty was 20.3 
(Table 1).  
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    It should be noted, however, that in this study cohort of older women, race was a 
potential confounder in the relationship between CMV seropositivity and frailty. Of 
the CMV-seropositive older women in this cohort, 75.5% were Caucasian, while of 
the CMV-seronegative older women, 92.8% were Caucasian. Black race is known 
to be associated with frailty [30]. In fact, when race and high school education were 
both adjusted in the study’s regression model, the association between CMV and 
frailty became non-significant (see Table 1). However, in those older women with a 
high IL-6 level, suggesting the presence of inflammation, the association between 
CMV and frailty remained significant (OR = 10,  P =0.04) even when the models 
were race adjusted. Several reasonable interpretations of these results follow. First, 
the study might be underpowered to detect a significant association between CMV 
seropositivity and frailty in those women without a high IL-6 level. Second, the 
possible contribution of CMV to the development of frailty would be most relevant 
and probably only effective, in an inflammatory milieu, caused by CMV infection 
itself or other factors. Third, in those older adults in whom CMV infection either 
was unsuccessful in causing inflammation in the host or did not coexist with other 
inflammation-inducing factors, the host was protected from developing frailty 
despite their CMV seropositivity. Since this was a cross-sectional study, the direc-

   Table 1    The association between CMV seropositivity alone, and stratified by Interleukin-6 (IL-
6) level, and prevalent frailty status in the women’s health and aging studies I and II *  (From ref. 
(9), with permission of the publisher.)    

            Multivariate Models     
            Unadjusted 

(n=724)   
       Adjusted

†
 

(n=706)   
  Adjusted including

‡
 

SES (n=706)   

  Risk Factor     Frailty Status       Odds Ratio (95% Confidence Interval)  P -value  

  1. CMV-positive     Not frail     1.0          1.0          1.0   
         Prefrail   1.5 (0.9–2.4)     .13     1.5 (0.8–2.5)     .17     1.2 (0.7–2.1)   
       Frail     3.2 (1.2–8.9)     .02     3.2 (1.1–9.2)     .03     1.8 (0.6–5.1)   
  2. High IL-6    Not frail     1.0          1.0          1.0   

  Prefrail    1.7 (1.2–2.5)     .006     1.4 (0.9–2.1)     .09     1.4 (0.9–2.0)   
    Frail   2.9 (1.7–4.8)     <.001     2.1 (1.2–3.7)     .01     2.0 (1.1–3.6)   
  3. CMV-positive, stratified by IL-6 level  

  Low IL-6¶     Not frail     1.0          1.0          1.0   
       Prefrail     1.0 (0.5–1.8)     .93     0.9 (0.5–1.7)     .73     0.9 (0.3–2.9)   
       Frail     1.7 (0.5–5.4)     .39     1.5 (0.4–4.9)     .53     0.8 (0.4–1.5)   

  High IL- 6      Not frail     1.0          1.0          1.0   
       Prefrail     4.4 (1.7–11.3)     .002     5.5 (2.0–14.9)     .001     4.2 (1.5–11.3)   
       Frail     14.6 (1.8–116.6)     .01     20.3 (2.3–178.3)     .007     10.0 (1.1–90.8)   

   *Two complementary cohorts of community-dwelling older women, aged 70 to 79.  
  †Adjusted for age, history of smoking, body mass index (BMI) ≥25 kg/m2, diabetes mellitus, and 
congestive heart failure (CHF).
‡Adjusted for age, history of smoking, BMI ≥25 kg/m2, diabetes mellitus, CHF, Caucasian race, 
and high school education; and education used as markers for socioeconomic status (SES).
Top tertile (≥4.2 pg/mL).

¶Bottom two tertiles (<4.2 pg/mL).   
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tion of causality in the relationship between CMV infection and frailty simply can-
not be determined.  

  Other considerations regarding the role of CMV infection in the development 
are also in order. In this cohort, the prevalence of CMV seropositivity was 87.0%, 
and the prevalence of frailty was 14.3% [87]. Since there was not a one-to-one cor-
respondence between CMV seropositivity and frailty, given the wide discrepancy 
between the relatively high prevalence of CMV seropositivity and the prevalence of 
frailty, other additional factors and unaccounted variables most likely play a role in 
the relationship between CMV infection and frailty [87]. Taking another, but similar, 
perspective on this lack of correspondence in the prevalence of CMV seropositivity 
and frailty, the authors of this chapter suggest that intrinsic host and extraneous fac-
tors protect certain humans latently infected with CMV from developing frailty, or, 
conversely, that host and extraneous factors, interacting synergistically with CMV, 
predispose a subset of humans with latent CMV infection to the development of 
frailty through detrimental immune system modulations.  

  In the remaining sections this chapter, attempts will be made to address the ques-
tions raised in the preceding paragraphs regarding the potential role of CMV infec-
tion in the development of frailty. Fig. 1 provides an overview of the proposed 
modal pathway that connects chronic CMV infection to frailty and other adverse 
late-life outcomes. The following sections examine the biology of CMV infection 
and immunologic mechanisms that lead to pathogenesis. This review will provide 
insights into why CMV infection causes frailty in some but not others, and will raise 
further questions regarding the possible role of CMV infection in the pathogenesis 
of frailty and attempt to answer them.  

    3 CMV Infection  

   3.1   Epidemiology  

  Human CMV (HCMV) is a ubiquitous virus of approximately 235 kbp linear 
DNA that has come to be best known by the opportunistic disease it causes in 

  Fig. 1    Hypothesized pathogenic pathway between CMV infection and frailty   
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acquired immunodeficiency syndrome (AIDS) patients and immunosuppressed 
transplant recipients. As with all Herpes viruses, after a generally asymptomatic 
primary infection by CMV, lifelong latency follows, during which the virus 
resides latent in myeloid progenitor cells in the immunocompetent host [80]. In 
epidemiologic studies, the presence of serum immunoglobulin G (IgG) to CMV 
constitutes evidence of prior infection by the virus and, by presumption, of latent 
infection.  

  The virus has a worldwide distribution. Prevalence varies across the world, 
ranging from 40% to 99% of the populations studied [15, 21, 32, 37, 42, 43, 67, 
68, 84, 92, 96, 97], being lowest in Europe and the United States and highest in 
Africa. The prevalence is generally higher and the age of viral acquisition younger 
in developing countries. In studies that examined the prevalence across strata of 
socioeconomic status within the same geographic cohort, prevalence is consist-
ently higher in individuals of lower socioeconomic status [13, 37, 38, 67, 96, 97]. 
For example, in a French cohort, seroprevalence in the low and high socioeco-
nomic strata was 70% and 47%, respectively [37]. In 2 U.S. cohorts, seropreva-
lence in the low- and high-income groups was 77% and 36%, respectively, in one 
cohort, and 71% and 47%, respectively, in the other cohort [96, 97], although in 
the latter study the difference in CMV seroprevalence across income groups could 
be explained by other markers of socioeconomic status that were examined. This 
latter study is one of the largest cross-sectional seroepidemiologic studies of the 
prevalence of CMV infection in the United States, which uses data and samples 
from the National Health and Nutrition Examination Survey III, a nationally rep-
resentative population-based sample [97]. The investigators reported a difference 
in seroprevalence across racial and ethnic groups: The age-adjusted prevalence 
was 51% in the non-Hispanic white, 76% in the non-Hispanic black, and 82% 
in the Mexican American groups. Although such a difference could possibly be 
attributed to socioeconomic status, this difference persisted even after data were 
adjusted for variables that could potentially confound the relationship between 
race/ethnicity and CMV seroprevalence, including age, sex, household income 
level, education, marital status, area of residence, census region, family size, 
country of birth, and type of medical insurance. It is possible that the difference in 
seroprevalence across racial and ethnic groups could be explained by difference 
in sexual behavior [97], although the study did not include data to allow such 
an explanation. This same study also showed that women have a higher sero-
prevalence (60%) than men (52%), and that those with fewer years of education, 
those born outside of the U.S., and those living in the South have higher CMV 
seroprevalence. In consistence with the previously known relationship between 
CMV prevalence and age, this study reported increasing CMV seroprevalence in 
progressively older age groups: 6–11 years, 36%; 12–19 years, 42%; 20–29 years, 
49%; 30–39 years, 54%; 50–59 years, 74%; 60–69 years, 83%; 70–79 years, 89%; 
≥ 80 years, 91%. Although it is possible that the age-prevalence relationship could 
result from the cohort effect in this cross-sectional study, the increasing preva-
lence with age is most plausibly explained by the cumulative exposure to the virus 
throughout life.  
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    3.2   Course of Infection  

   3.2.     1 Methods of Transmission  

  CMV is transmitted through contact with infectious body fluids of persons who 
are shedding virus (see below) but not through the airborne route. The virus can be 
found in milk, urine, saliva, tears, cervical secretions, semen, and blood products 
[4]. Accordingly, contact with young children and sexual activity are common risk 
factors for primary CMV infection [13, 76]. Since the virus is latent in myeloid 
progenitor cells and whence-derived tissue resident macrophages and dendritic 
cells [45, 80], transmission can also occur through transfusion of leukocyte-con-
taining or contaminated blood products and through transplantation of solid organs 
or hematopoietic cells. A prior CMV infection does not prevent reinfection by a dif-
ferent strain of virus, as the coexistence of different strains of virus or shedding of 
new strains in serial examinations has been documented in both immunocompetent 
and immunocompromised hosts [6, 14, 16, 17, 94]. Among those without obvious 
immunodeficient conditions, children and persons with multiple sexual partners are 
more likely to have reinfection [6, 14]. It is important to note that higher levels of 
neutralizing antibodies appear to reduce the rate of reinfection [3]. Vertical trans-
mission of CMV from mother to fetus is common and poses an important public 
health problem, especially since infected infants could shed the virus for years [64]. 
It can be accomplished in utero, intrapartum, and postpartum (through human milk) 
as a result of maternal primary or recurrent infections.  

    3.2.     2 Infection in Immunocompetent Hosts  

  It is traditionally reported that CMV infection does not cause significant illness 
in immunocompetent hosts [18, 64]. Primary infection in otherwise healthy adults 
can lead to a (heterophile negative) infectious mononucleosis syndrome with fever 
lasting 9 to 35 days, lymphadenopathy, and relative lymphocytosis ([49], cited in 
[18]). Despite copious descriptions in the literature of the manifestations of CMV 
infection and disease in immunocompromised individuals, few reports (cited in 
[114]) describe symptoms in immunocompetent adults. In a recent cross-sectional 
study that selected immunocompetent patients based on a list of symptoms, CMV 
infection, defined by a CMV-specific IgM level of > 300 U/mL, in the absence of 
other diagnoses of viral and  T. gondii  infections, was associated with abnormal liver 
enzymes, malaise, sweats, fever, lymphadenopathy, and jaundice [114]. However, 
the prevalence of these symptoms in primary CMV infection in the immunocom-
petent host cannot be determined from this study, since only symptomatic patients 
were recruited. It remains unclear how frequent CMV primary infections remain 
asymptomatic and thus undetected by health care professionals. Other than reports 
of longitudinal outcomes in children with congenital CMV infection, few published 
studies have examined the long-term effects of CMV infection in immunocompe-
tent hosts and its manifestations in older adults.  
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    3.2.  3 Latency  

  After primary infection, CMV, as with all Herpes viruses, remains latent in the host. 
Thus, the presence of serum CMV-specific IgG signifies prior primary infection 
and, by inference, latent CMV infection. A definitive understanding of the range 
of cell types that can harbor latent virus is still lacking [64]. Nevertheless, myeloid 
progenitor cells and whence-derived tissue resident macrophages and dendritic cells 
[45, 80], polymorphonuclear cells, T-lymphocytes, endothelial cells, renal epithelial 
cells, and salivary epithelial cells [18] may all harbor the virus. Whereas myeloid 
lineage progenitor cells harbor latent virus, salivary and renal epithelial cells prob-
ably harbor persistently replicating virus [64]. Although the molecular mechanisms 
that control latency are not well elucidated, a strong and broad T-cell response likely 
plays a key role in suppressing active viral replication [64, 100]. In later sections, 
we will address and speculate on the undesirable consequences that such a virus-
directed T-cell response might have in the host. There is likely a delicate balance 
that needs to be maintained, in order to both suppress viral replication throughout 
the host’s life and avoid overactivation of the immune response that might have 
untoward effects in the host. The disruption of such a balance might underlie the 
role that CMV infection plays in the pathogenesis of frailty and inflammation in 
older adults.  

  One mechanism by which CMV could remain in host cells and avoid immune 
detection is the downregulation of the expression of HLA Class I molecules on the 
surface of infected cells [8], thus crippling the ability of cytotoxic CD8+ T-cells to 
recognize and destroyed infected cells. However, since HLA Class I downregula-
tion leads to increased susceptibility to lysis by natural killer (NK) cells [24], in 
order for CMV to successfully reside in host cells, mechanisms must and do exist 
by which CMV downmodulates NK-cell activity (reviewed in [63]). Whether CMV 
remains latent in a nonreplicating form or replicates at low levels in host cells still 
remains a topic of debate [64]. Of interest, CMV DNA has been detected even in the 
PBMC of seronegative individuals [55].  

    3.2.  4 Reactivation  

  Reactivation of CMV from the latent state is well known to occur after immunosup-
pression or immunodeficiency, such as that in transplant recipients taking immu-
nosuppressive regimens or patients with AIDS. On the other hand, little is known 
about the natural course of CMV infection in immunocompetent individuals, partic-
ularly with regard to the presence and frequency of viral reactivation from latency. 
Nonetheless, the molecular triggers that reactivate lytic replication are still being 
worked out, both in immunosuppressed and immunocompetent hosts. We will focus 
our discussion on mechanisms of reactivation and course of infection in immu-
nocompetent adults, by drawing on current understanding of viral reactivation in 
immunocompromised individuals, and venture to speculate on the role of CMV 
infection in the pathogenesis of frailty.  
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  The nature of CMV latency itself is not completely elucidated [90]. In one sce-
nario, CMV could be truly latent in host cells. Conceivably, reactivation would then 
occur via an unknown stimulus, or a combination of stimuli, that serve to induce 
viral gene expression, leading to viral replication. Such a stimulus or stimuli could 
occur in healthy individuals and cause occasional (presumably asymptomatic or 
mildly symptom-inducing) viral reactivation. In another scenario, CMV could con-
tinuously replicate in infected cells, which are removed by immune surveillance in 
healthy individuals. In this case, reactivation would then result from failure of the 
immune system to remove these infected cells. Current evidence points to the first 
scenario as the likely mechanism of CMV reactivation (reviewed in [44]).  

  Cellular differentiation, such as that of monocytes to macrophages in vitro, has 
been reported to induce immediate-early (IE) gene expression, an important first step 
in viral replication and, thus, reactivation [91, 102]. Ex vivo differentiation of myeloid 
dendritic cell progenitors to mature dendritic cells is associated with IE gene expres-
sion, increased copy number of viral genome, and release of infectious virus [80]. 
Latency of CMV in myeloid lineage progenitor cells enables the virus to periodically 
reactivate and release progeny viruses as these host cells undergo their normal differen-
tiation program, including that occurring during natural infections (see below) [90].  

  From a different perspective, further speculation on the likely nature of the stimulus 
or stimuli that lead to viral reactivation can be informed by examining the allogeneic 
response. In allogeneic transplant recipients, cytokine expression resulting from the 
allogeneic response leads to activation of NF- κ B and AP-1, which have been shown 
to be important transcription factors that induce IE gene expression, a process that 
is likely one of the first steps in CMV reactivation (reviewed in [44]). Specifically, 
TNF-α has been well demonstrated to play an important role in CMV reactivation, 
via the induction of CMV IE gene expression [79]. An allogeneic response to a trans-
planted organ that leads to CMV reactivation closely resembles a natural inflamma-
tory immune response to infection [44]. Thus, in an immunocompetent individual, 
it is conceivable that infections, through eliciting an immune response that includes 
TNF-α and IFN-γ expression, can lead to reactivation of CMV [44]. In addition, the 
differentiation of myeloid lineage cells in response to natural infections allows CMV 
to be reactivated in these cells. From an evolutionary standpoint, it is advantageous 
for CMV to reactivate from a latent state when the host is infected, so that CMV can 
escape from a host who might die from the new infection [44].  

  Little is known about the temporal frequency of CMV reactivation in healthy, 
immunocompetent carriers. Asymptomatic shedding into urine and saliva is said to 
occur periodically in healthy carriers [64, 90], but the authors of this chapter are not 
certain whether CMV shedding into the urine or saliva, as a result of persistent CMV 
replication in epithelial cells [64], has the same immunologic consequences as true 
reactivation from a latent state, such as that in myeloid lineage cells. Few reports in 
the literature address CMV reactivation in immunocompetent adults. Most of these 
reports examined the phenomenon of CMV reactivation at one time point or within a 
very short period of time, not long enough to be considered a longitudinal time frame 
[61, 62, 66, 98]. Although these studies reported detection of “CMV reactivation” in 
healthy individuals, the definitions of CMV reactivation varied, some using serum 
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IgM titers and/or IgG titers (definitions which might not reflect true reactivation) [61, 
66] and some using CMV DNA detection in urine [57, 62, 98]. In one study, CMV 
DNA was detected in the urine of 10 of 11 healthy elderly individuals and none of 31 
young controls over a 6-month period [98]. Another study examined CMV DNA in 
4 urine collections over a 14-month period and, in contrast to the results of the afore-
mentioned study, detected CMV DNA in 4 out of 13 healthy individuals younger than 
40 and none of 17 individuals older than 40 [57]. In both of these studies, it is unclear 
how frequent CMV DNA was detected over the study period mentioned above. In 
another cross-sectional study, urine CMV DNA was detected in a higher percentage 
of healthy astronauts (15 out of 71) than age-matched controls (1 out of 61). Although 
this result could suggest an association between stress, such as that from spaceflight, 
and CMV reactivation, stress hormone levels were similar in those who shed CMV in 
the urine and those who did not [62].  

  To date, there is no long-term study that examines the temporal frequency of 
CMV reactivation in immunocompetent hosts. Given the current understanding of 
CMV latency and reactivation, the detection of CMV DNA in blood samples devoid 
of cellular components, such as plasma or serum, would serve as strong evidence of 
true CMV reactivation from a latent state, capable of eliciting an immune response 
from the host. It is important to understand how frequently true CMV reactiva-
tion occurs in immunocompetent adults, since CMV reactivation could repetitively 
elicit immune responses that, over time, result in deleterious effects on the host. We 
will address this consideration again in later sections when we discuss the effects 
of CMV infection on the immune system and speculate the mechanism by which 
CMV could lead to frailty.  

  Weakened cellular immunity in immunocompromised hosts is associated with 
frequent CMV reactivation. Aging, by producing a diminished cell-mediated 
immunity, could lead to an increased frequency of CMV reactivation. The parallel 
increased rates of reactivation of varicella-zoster virus in both immunocompromised 
persons and apparently immunocompetent older adults support this hypothesis [35]. 
In apparently immunocompetent older adults, there is evidence of decreased cell-
mediated immunity to varicella-zoster with age demonstrated by delayed hyper-
sensitivity skin test [12]. More specifically, therefore, just as latent varicella-zoster 
virus is not reactivated in all older adults [20], frail older adults could represent a 
subset of aged humans who, as a result of intrinsic or extraneous factors, have a 
more profound diminishment in cell-mediated immunity and, thus, are more likely 
than non-frail older adults to experience more frequent CMV reactivation and its 
corresponding consequences.  

     3.3 Immune Responses and Inflammation in CMV Infection  

  CMV has evolved to adapt well to the host immune response in 2 significant ways. 
First, it has developed many strategies to evade the host immune response. Second, 
it turns around and exploits the host immune response to its benefit, facilitating its 
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replication and dissemination [63]. We have already discussed previously that the 
transcription factors, NF- κ B and AP-1, activated in the course of an inflammatory 
response in fact induce IE gene expression and trigger CMV replication. In addi-
tion, chemokines encoded by CMV recruit monocytes to the site of CMV infection, 
which then serve as host cells that enable dissemination of the virus [86].  

  The immune response against CMV plays a very important role in limiting 
reactivation at local sites where it occurs, thus preventing the dissemination of 
CMV and widespread infection [90]. In this section, we discuss immune responses 
observed in HCMV infection and consider the potential pathogenic effects that 
such responses could have in the long term, especially speculating on the case of 
frail older adult.  

  In primary infection, anti-CMV IgG appears 2 to 3 weeks after the onset of 
symptoms, and CMV IgM remains detectable for four to six months [114]. Of note, 
antibody titers increased over time in CMV shedders [62], suggesting that there 
is a persistence of immunogenic stimulus from the CMV possibly from episodic 
reactivation. The observation that CMV antibody titers are higher in individuals of 
older age [61, 98] also suggests that long-term latent infection, through episodic 
reactivation, leads to higher CMV antibody titers.  

  A strong T-cell response plays a crucial role in keeping CMV reactivation in 
check throughout the life of the host [64]. It has been observed that, in CMV 
infection, the frequency of CMV-specific T-cells, often existing as oligoloncal 
expansions, can reach 25% or more of the CD8+ pool [34, 47, 54]. CMV-specific 
CD45RA+CD27-CCR7- effector T-cells expand when stimulated by their cog-
nate peptide in the presence of helper T-cell-derived cytokines [103]. In addition, 
these reactivated effector T-cells change their surface phenotype from CD45RA to 
CD45RO and regain CCR7, but at the same time still maintain their effector func-
tion. Taken together, these data can support a cogent model in which CMV-spe-
cific effector T-cells can maintain latency by killing rare virus-expressing cells. 
When CMV reactivates, these CMV-specific T-cells can carry out cytotoxic func-
tion directly, rapidly change into effector memory cells, and expand to produce an 
abundant number of progeny to meet the challenge of a higher viral load. In fact, it 
has been shown longitudinally in immunosuppressed individuals that CMV reac-
tivation leads to an increase in the percentage of CMV-specific effector CD8+ 
T-cells (or both an increase in percentage and a shift in phenotype dominance 
to a CD27- effector phenotype in individuals who start off with a CMV-specific 
CD27+ memory phenotype) that persists more than six months after viral reac-
tivation [31]. There is also a strong correlation between the percentage of CMV-
specific CD8+ T-cells and the percentage of CD27- cells within these cells [31]. 
This latter observation suggests that in individuals in whom these is a predomi-
nance of CMV-specific CD27- effector T-cells, CMV reactivation was probably a 
recent event, or, more generally, occurs more frequently.  

  This model of understanding of CMV reactivation suggests that, if CMV infec-
tion plays a role in the pathogenesis of frailty, frequent reactivation of CMV could 
lead to an accumulation of expanded CMV-specific effector T-cells and their per-
sistence, which have been associated with poor outcomes in older individuals [39].  
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    3.4    CMV Infection and CMV-Induced Immune Responses 
Associated with Aging  

  Whereas varicella zoster virus reactivation leads to higher frequencies of a clini-
cally apparent disease, shingles, in older age [20], CMV reactivation, if it does 
occur more frequently in older age, does not lead to any currently identifiable dis-
ease or syndrome in immunocompetent, healthy individuals.  

   3.4.  1  Alterations in T-cell Subset Distribution Associated with CMV 
Infection  

  Other chapters of this book detail alterations in the phenotypic distribution of T-cell 
subsets that are observed in older age. In this section, we will discuss the observa-
tions regarding T-cell activation and replicative senescence that have been specifi-
cally associated with CMV infection.  

  Investigators have repeatedly observed that increased numbers of CD28- T-cells 
are found in persons of older age [23] and that clonal expansions of CD8+CD28- 
T-cells accumulate in older adults [78]. For further discussions on CD28- T cells, 
see chapter 17. The fact that these increased numbers of CD8+CD28- T-cells pos-
sessed high anti-CD3 redirected cytotoxic activity suggested that in older humans 
these cells represent armed effector cells targeting self cells harboring intracellular 
pathogens [23]. Many studies have repeatedly demonstrated associations between 
CMV infection and such presence of increased numbers of CD8+CD28- T-cells in 
older individuals [59, 71]. In fact, the CMV-associated alterations in the phenotypic 
distribution of CD8+ T-cell subsets appear to be similar in the very young and the 
very old [51, 71].  

  Age-related changes in the immune system have been examined in the context of 
CMV seropositivity [59]. Using regression analysis, investigators in the cited study 
were able to show that when the concentration of CD4+CD28- or CD8+CD28- T-
cells was adjusted for CMV seropositivity, the number of CD28- T-cells was no 
longer statistically associated with age. That is, when CMV seropositivity was 
taken into account, older age was no longer associated with increased numbers of 
CD4+CD28- or CD8+CD28- T-cells. At the same time, within both the elderly and 
young cohorts, CMV seropositivity was associated with marked increases in the 
concentrations of CD4+CD28- and CD8+CD28- T-cells.  

  In a large cohort of Austrian older adults, of whom 35% were CMV-seronegative, 
latent CMV infection was associated with a significant increase in the percentage of 
CD28- T-cells (defined as effector cells by the authors) within the CD8+ T-cell pool 
(48.4 ± 1.4 in CMV-seropositives vs. 25.2 ± 1.6 in CMV-seronegatives) [108]. This 
increase appeared to derive directly from parallel decreases in the CD28+CD45RA+ 
and CD28+CD45RA- subsets (defined as naïve and memory cells, respectively, by 
the authors) within the CD8+ T-cell pool. Similar changes in the same directions 
were observed in CD4+ T-cell subsets as well. Unfortunately, these observations 
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were not adjusted for age. Therefore, it cannot be determined whether immunologic 
changes driven by or induced during the aging process confound the CMV-associ-
ated changes that were reported in this cohort.  

    3.4.  2 Phenotype and Function of CMV-specific T-cells in Older Persons  

  In older individuals, CMV-specific CD8+ T-cells have a highly polarized surface 
phenotype characteristic of effector memory cells (CD28-, CD57+, CCR7-) [48]. 
In young individuals, a significant portion of CD8+ T-cells specific for HLA-
A2 restricted CMV pp65 peptide has a phenotype characteristic of naïve T-cells 
(CCR7+CD45RA+). In contrast, in old individuals, most of the CMV-specific 
CD8+ T-cells have a phenotype characteristic of effector-memory T-cells (CCR7 null  
CD45RA null  or CCR7 null  CD45RA+) (reviewed in [50]). Thus, the distribution of the 
phenotypes of the cells within the CMV-specific CD8+ T-cell population is signifi-
cantly different in young and old individuals.  

  The number of functional CMV-specific CD8+ T-cells (namely, cells that produce 
IFN-γ when challenged with HLA-restricted CMV peptide) is comparable in young 
and old individuals [72]. However, older individuals have a markedly higher number of 
dysfunctional CMV-specific CD8+ T-cells. These dysfunctional cells are anergic and 
do not respond to stimulation with specific antigen  ex  vivo [73,74]. Thus, the overall 
increase in the number of CMV-specific CD8+ T-cells in older individuals results from 
an accumulation of such dysfunctional CMV-specific CD8+ T-cells.  

  It has been suggested that increased CMV viral load in older age could poten-
tially be the underlying factor that drives an increased number of CMV-specific 
CD8+ T-cells in older persons [50]. However, no direct evidence is currently avail-
able to support this reasonable speculation.  

  Much less is currently known about the number, phenotype, and function of 
CMV-specific CD4+ T-cells in older individuals and the relationship of these cells 
with the outcome and survival of older persons [50].  

    3.4.  3 Accumulation of CMV-specific T-cells in Older Adults  

  CMV reactivation may drive accumulation of CMV-specific T-cells. Since 
CD8+CD28- T-cells, driven to differentiation from CD8+CD28+ T-cells by 
antigen stimulation, are resistant to apoptosis [77], it is understandable that the 
resultant CD8+CD28- CMV-specific effector T-cells will tend to accumulate with 
time.  

  In immunodeficient persons infected with the HIV, the restoration of immune 
protection against CMV after recovery from CMV disease was characterized by 
a broad and diverse antigenic repertoire and CMV-specific T-cells displaying an 
“early” (CD8+CD27+CD28+) and “intermediate” (CD8+CD27-CD28+) differ-
entiation phenotype [85]. By extension of this observation, the accumulation of 
CMV-specific T-cells with a late differentiation phenotype (CD8+CD28-) in older 
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adults could render them less capable of controlling their CMV infection and, con-
sequently, the pathologic manifestations of the infection.  

  Frail older individuals have an increased number of CD8+CD28- T-cells com-
pared with older individuals who are not frail [88]. It is not known whether the 
increase in the number of CD8+CD28- T-cells in frail older individuals is CMV-
driven. Since not all CMV-seropositive individuals are frail, we can only speculate 
that in those CMV-seropositive individuals who are or become frail, an increased 
number of CMV-specific CD8+CD28- T-cells, which are most likely replicatively 
senescent and apoptosis resistant [77], could potentially underlie or contribute to the 
pathogenesis of frailty.  

  In a study that examined T-cell clone numbers in the context of latent CMV infec-
tion, CMV-seropositive nonagenarians have a higher number of T-cell clones than 
CMV-seronegative nonagenarians (mean clone number 22.6 vs. 7.4) [39]. This associ-
ation was not found in middle-aged individuals. The number of clones in the middle-
aged individuals was similar to the number in CMV-negative nonagenarians. Thus, 
these results imply that long-term latent CMV infection seems to have contributed to 
the higher number of T-cell clones in older adults in this study. A definitively conclu-
sion, of course, can only be obtained from a true longitudinal study.  

  Indeed, there is evidence that CMV reactivation results in higher numbers of 
CMV-specific T-cells. Following allogeneic stem cell transplantation, higher fre-
quencies of CMV-specific CD8+ and CD4+ T-cells were observed in persons with 
CMV reactivation, measured by CMV antigenemia [75]. Thus, the higher frequency 
of CMV-specific CD8+ T-cells observed in nonagenarians compared with middle-
aged adults [39] is likely the result of the cumulative effects of episodic reactivation 
in lifelong latent CMV infection.  

     3.5   CMV, Cardiovascular Disease, and Frailty  

   3.5.  1 CMV Infection and Cardiovascular Disease  

  Multiples lines of evidence have implicated a role for CMV infection in the develop-
ment of cardiovascular diseases (CVD). These include results from epidemiologic 
studies, pathological examinations of atheromatous lesions, in vitro mechanistic 
studies utilizing cell systems, and experimental animal models. Because frailty has 
been demonstrated to be associated with subclinical cardiovascular disease [69], it 
is reasonable to speculate that CMV infection could contribute to the development 
of frailty through the intermediary pathway of subclinical cardiovascular disease, 
a condition characterized by abnormalities on noninvasive testing, such as carotid 
ultrasound, ankle-brachial index, electrocardiogram, and echocardiogram, and lack 
of a diagnosis of clinically manifest CVD [53]. Examples of clinically manifest 
CVD include coronary heart disease (CHD), acute coronary syndrome (ACS), myo-
cardial infarction (MI), congestive heart failure (CHF), transient ischemic attack 
(TIA), stroke, and intermittent claudication.  
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  Epidemiologic studies investigating the role of CMV in CVD utilize differ-
ent clinical outcomes along the spectrum of disease progression, severity, organ 
distribution, and disease context (e.g., native atherosclerosis vs. post-procedural 
restenosis). Thus, caution should be heeded in interpreting the results and com-
paring different studies. Seroepidemiologic studies have demonstrated associations 
between CMV seropositivity and atherosclerosis [1, 9, 70, 93], while other have not 
[2, 60]. Reasons for such discrepancies include inadequate statistical power and het-
erogeneous definitions of clinical outcomes. However, the incremental increase in 
odds of disease with incremental increase in CMV antibody titers reported in some 
studies strengthens the plausibility of the associations. Many of these epidemio-
logic studies examine restenosis after coronary angioplasty or vascular procedures, 
scenarios in which disease pathogenesis might differ from that of native coronary 
atherosclerosis [19]. A strong evidence for a causative role of CMV in native coro-
nary atherosclerosis comes from a prospective study in which the highest titers of 
CMV antibody were associated with the development of incident CHD in those pre-
viously free of the diagnosis [93]. Importantly, in this study lower CMV antibody 
titers were not associated with CHD. This fact is consistent with the conceptual 
framework we are developing in this chapter that more frequent CMV reactiva-
tion, leading to higher antibody titers, contribute to clinically manifest outcomes, 
including frailty and cardiovascular disease, through similar, overlapping, or dis-
tinct pathogenic mechanisms. We have not cited many other studies in which CMV 
infection in atherosclerosis was studied in the context of cardiac transplants, since 
confounding factors, such allogeneic responses, could complicate interpretation of 
the results for the sake of our discussion.  

  Prospective studies on the association between CMV seropositivity and MI 
and CHD death, later stages in the progression of atherosclerotic disease sever-
ity, showed no increased risk for these events in CMV-seropositive middle-aged 
individuals [81, 82] and older adults [89]. It should be noted, however, that these 
studies examined CMV seropositivity solely as a dichotomous variable and did 
not measure CMV antibody titers quantitatively. In fact, in a cross-sectional study 
examining CMV seropositivity and the risk of MI in young persons, CMV sero-
positivity itself was not associated with premature MI, but when CMV antibody 
titers were measured quantitatively in the same population, an anti-CMV IgG titer 
≥ 100 EU/mL was associated with an increased risk of premature MI independently 
of age, sex, smoking status, history of hyperlipidemia or hypertension, educational 
level, and occupation [33].  

  Other types of studies have shed light on the possible pathogenic mechanisms of 
CMV infection in CVD. Pathological examinations of atheromatous lesions show a 
higher likelihood of detecting CMV in atheromatous than normal vessles (reviewed 
in [19]). This finding is more pronounced when a sensitive method, such as detection 
of viral genome by PCR, is employed to detect latent CMV in arterial specimens 
[41]. In murine models, MCMV infection could lead to atherogenesis through 2 
mechanisms, accumulation of inflammatory cells and increased serum low-density 
lipoprotein cholesterol (reviewed in [19]). HCMV can infect arterial smooth muscle 
cells and induce the migration of these cells, promoted by expression of the viral 
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chemokine receptor, US28 [99]. The IE gene products of HCMV could increase 
vascular smooth muscle cell proliferation [101]. In a functional study, CMV-sero-
positive individuals have impaired vascular response to vasodilators consistent 
with endothelial dysfunction [36]. Finally, CMV-seropositive patients with CHD 
have increased numbers of CD8+CD28- T-cells compared with CMV-seropositive 
healthy controls. Interestingly, this finding parallels the increase in the number of 
CD8+CD28- T-cells in frail compared with nonfrail older adults [88] and invites the 
speculation that similar or analogous immunologic mechanisms could underlie the 
pathogenesis of CVD and frailty, at least in a subset of individuals.  

    3.5.     2 Subclinical Cardiovascular Disease and Frailty  

  Frailty has been associated with clinically manifest CVD and, perhaps more impor-
tantly, subclinical CVD. It should be noted that many older adults with clinically 
manifest CVD are not frail, and older adults with subclinical CVD but no clinically 
manifest CVD can be frail [69]. The association of frailty with subclinical cardio-
vascular disease is important because it contributes to the current conceptualization 
of frailty as a clinical syndrome in which physiologic declines and subclinical proc-
esses culminate in a critical mass of physiologic disturbances and loss of physi-
ologic complexity that leads both to the physical manifestations of frailty and to the 
poor outcomes predicted by the diagnosis [58, 83, 105]. In addition to its suggested 
role in the development of manifest cardiovascular disease, CMV infection could 
contribute to the development of subclinical cardiovascular disease; increasing lev-
els of CMV antibody titers have been associated in a graded relation with carotid 
intimal-medial thickening, a measure of subclinical atherosclerosis [70]. Thus, 
it is conceivable that, through periodic reactivation of latent infection, leading to 
higher levels of antibody titers, long-term CMV infection could result in subclinical 
atherosclerosis, which, in turn, could contribute to the development of frailty in the 
older adult.  

      4 Summary: Future Directions in CMV and Frailty Research  

  There is considerable evidence that chronic CMV infection as described above plays 
an important role in immune system modulation later in life. This evidence provides 
important rationale for developing further studies that might help to establish causal-
ity between CMV and late life adverse health outcomes. However, the current evi-
dence showing an association between CMV infection and frailty presented above is 
cross-sectional in nature and can not prove causality. In order to determine if CMV 
plays a role in the pathogenesis of frailty, further studies will be necessary to deter-
mine whether CMV causes the inflammation in frailty or whether the immunologic 
alterations in frailty allow CMV to reactivate and thrive and cause low level disease 
in older adults. In addition, further research regarding the various possible points 
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along the possible pathogenic pathway that connects CMV with frailty are needed, 
as well as population studies with longitudinal measurements establishing temporal 
relationships between CMV infection and frailty as represented in Fig. 1.  
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                       Abstract   :    Osteoporosis is substantially an age-related condition characterized by 
low bone mass and increased bone fragility, putting the patients at risk of fractures, 
which are major causes of morbidity and mortality in older people. Although ageing 
and estrogen deficiency are probably the 2 most important risk factors, osteoporosis 
can occur in any age of life. There are a large number of risk factors for the devel-
opment of senile osteoporosis. Osteoporosis is currently attributed to various endo-
crine, metabolic and mechanical factors. However, recent discoveries suggest that 
these risk factors could exert their effects through immunologically mediated modu-
lation of bone remodelling. Emerging clinical and molecular evidences suggest that 
inflammation exerts significant influence on bone turnover, inducing osteoporosis. 
Currently, growing understanding of bone physiology suggests that factors involved 
in inflammation are linked with those critical for bone remodelling process. Numer-
ous proinflammatory cytokines have been implicated in the regulation of osteob-
lasts and osteoclasts, and a shift towards an activated immune profile has been 
hypothesized as important risk factor. Chronic inflammation and the immune sys-
tem remodelling characteristic of ageing may be determinant pathogenetic factors. 
Inflamm-ageing itself plays a role in bone remodelling through proinflammatory 
cytokines, together with other more recently discovered immunological mediators 
and transcription factors. Senile osteoporosis is an example of the central role of 
immune-mediated inflammation in determining bone resorption.  

   Osteoporosis, Inflammation and Ageing  
  Lia Ginaldi, Lucia P. Mengoli and Massimo De Martinis                     
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        1      Introduction  

  Osteoporosis is a systemic pathology of the skeleton characterized by loss of bone 
mass, decreased bone mineral density and loss of microarchitectural integrity, lead-
ing to increased fragility and consequent risk of fractures. It is commonly consid-
ered an age-related disorder, representing a major cause of morbidity and mortality 
in older people, together with other age-related diseases, such as atherosclerosis 
and neurodegenerative disorders. Actually, in most developed countries, the human 
lifespan is greatly increased and osteoporosis is therefore becoming an emerging 
public health problem. Osteoporosis is fundamentally an asymptomatic condition 
until the appearance of a bone fracture presenting itself as a complication with 
clinical visibility and often lifethreatening, similar to the tip of an iceberg whose 
economic costs regarding public health care and rehabilitation are often incisive. 
Everything before the fracture has remained long unknown and it is only recently 
that the better understanding of bone physiology is clarifying its pathogenesis.  

  Osteoporosis is viewed as a heterogeneous condition which can occur in any age 
of life and its aetiology is attributed to various endocrine, metabolic and mechanical 
factors (abnormalities of parathyroid hormone and calcitonin secretion, insufficient 
vitamin D and calcium intake, postmenopausal hormonal condition, pregnancy, 
nutritional disorders, immobility and consumption of drugs such as cortisone, among 
others) [57]. Ageing and estrogen deficiency are probably the two most important 
risk factors in developing senile osteoporosis. Currently, the emerging discipline of 
osteoimmunology is providing a new reading register of senile osteoporosis in the 
light of immunosenescence and inflamm-ageing. In this chapter we will focus on 
the interaction between bone and immune system, considering osteoporosis as an 
immune mediated disease with a chronic inflammatory background.  

    2      Inflammation and Osteoporosis: Clinical Links  

  Recently, growing understanding of bone physiology suggests that factors involved 
in inflammation are closely linked with those critical for bone remodelling proc-
ess; supporting the theory that immunosenescence significantly contributes to the 
aetiopathogenesis of osteoporosis. But can we really consider senile osteoporosis 
as an immune mediated disease or at least the result of an inflammatory process? 
Daily clinical practice provides the first answers and the new concept of an immune 
mediated mechanism at the basis of osteoporosis is clearly emerging. In particular, 
chronic inflammation and the immune system remodelling characteristic of various 
immunological diseases commonly associated with osteoporosis, may be determi-
nant pathogenetic factors.  

  For example, we can often verify coincidence of systemic osteoporosis with 
periods of systemic inflammation as well as colocalization of regional osteoporo-
sis with areas of regional inflammation [41, 135, 40, 30]. In the postmenopausal 
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period there is coincidence of inflammation with osteoporosis [82]. There is an 
increase in the risk of developing osteoporosis in various inflammatory conditions 
[50, 20, 76]. Immunological dysfunctions, autoimmune and chronic inflammatory 
diseases [120, 74], HIV infection [6, 77], hyper-IgE syndrome [72], inflammatory 
bowel diseases [80], rheumatic disorders, such as rheumatoid arthritis [58], and 
lymphoid neoplastic diseases [1], in particular myeloma for the B lineage and adult 
T-cell leukaemia lymphoma for the T lineage, are associated with osteoporosis.  

  Erosions seen in conditions such as rheumatoid arthritis, ankylosing spondylitis, 
and psoriatic arthritis, are typically associated with inflammation in the joints. Proost-
eoclastic cytokines, such as tumour necrosis factor (TNF)-α, interleukin-1 (IL-1) and 
IL-6, are elevated in these conditions and local cytokine profile is consistent with the 
cytokines that modulate bone resorption [80, 15]. An association between circulating 
high sensitive C reactive protein (hsCRP) level and bone mineral density (BMD) has 
been observed in several immune and inflammatory diseases, as well as in healthy 
individuals, suggesting a relationship between subclinical systemic inflammation 
and osteoporosis [38, 67]. The mechanisms linking hsCRP and bone metabolism are 
not clear, but activated inflammatory cytokines are likely involved. Inflammatory 
processes can up-regulate many cytokines, such as IL-1, IL-6 and TNF-α, which 
strongly stimulate CRP production from the liver [124, 133] as well as induce bone 
resorption and decrease BMD, measured at femoral neck and lumbar spine using 
dual energy X-ray absorptiometry [78] or ultrasonographic densitometry at calcane-
ous or wrist [2]. In support of this hypothesis, the production of IL-1, IL-6 and/or 
TNF-α by peripheral blood monocytes is positively correlated with bone resorption 
or spinal bone loss in healthy pre and postmenopausal [26, 97] women and serum IL-
6 concentration predicts femoral bone loss in healthy postmenopausal women [102]. 
In addition, serum concentrations of IL-6 and TNF-α are positively correlated with 
serum hsCRP levels in healthy subjects [134] and those with myocardial infarction 
[87]. Similarly, there is a significant inverse correlation between erythrocyte sedi-
mentation rate values and T-score, even in the absence of overt diseases. The T-score 
is an evaluation index of bone mineral density representing the difference in standard 
deviations from the mean value for normal young adults [78].  

  Rheumatoid arthritis (RA) is a typical example of the link between inflamma-
tion and osteoporosis. Bone loss in RA occurs both in the joints and throughout the 
skeleton as a result of the release of proteinases (metalloproteinases) and proin-
flammatory cytokines (IL-1, TNF-α), which are responsible for cartilage and bone 
destruction. As a result, disease activity is an independent risk factor for osteoporo-
sis in RA [58, 95].  

  Particularly interesting, although less immediately evident, is the link between 
immunity and osteoporosis in advanced age, in which other well-known causes of 
bone resorption are also present, for example dysmetabolisms, decreased level of sex-
ual hormones, nutritional deficits, decreased physical activity, age-related diseases, 
hyperparathyroidism, consumption of bone resorbing drugs, etc. [29, 113]. However, 
a more careful reading of osteoporosis reveals how the peculiar age-related immune 
system remodelling itself represents the most important pathogenetic factor for 
senile osteoporosis too.  
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  Inflamm-ageing, i.e., the chronic inflammatory status which characterizes age-
ing [35, 39], represents the background underlying a wide range of age-related dis-
eases which share an inflammatory pathogenesis. Numerous studies have shown 
that many cytokines, including IL-6, TNF-α and IL-1, are elevated during senes-
cence, and play direct roles in the pathogenesis of osteoporosis too [18, 81].  

    3      Immune Regulation of Bone Turnover  

  Osteoblasts (OBs), specialized in new bone formation, are the precursors of the 
structural cells of the bone, that is the osteocytes. Osteoblasts in turn derive from 
a mesenchimal stem cell that can also differentiate into bone-marrow stromal cells 
and adipocytes. Osteoclasts (OCs) are on the contrary multinuclear giant cells spe-
cialized in bone resorption by the production of lysosomal enzymes. They stem 
from a myeloid precursor which also gives rise to macrophages and dendritic cells, 
which are antigen presenting cells [105, 113].  

  In the complex scenario of osteoimmunology, that is the immune regulation 
of bone turnover, the T-lymphocyte has the main role [111, 131]. The skeleton is 
physiologically in a state of dynamic equilibrium between new bone formation 
mediated by osteoblasts and resorption mediated by osteoclasts. Both these proc-
esses are finely tuned by cytokines and growth factors. Dendritic cells, special-
ized to present antigens, and osteoclasts, specialized to resorb bone, share the same 
bone-marrow precursors of the monocyte lineage and exhibit parallel lifecycles, 
regulated by a variety of cytokines. Release of cells into the circulation from the 
bone-marrow and homing from the blood stream to peripheral tissues where the 
immature osteoclast precursors (OCPs) differentiate into mature osteoclasts are 
complicated processes involving adhesion molecules, cytokines and chemokines. 
OCPs migrate along chemokine gradients. Stromal cell-derived factor-1 (SDF-1) 
produced by bone-marrow stromal cells and endothelium, has chemotactic effects 
on OCPs. Transforming growth factor-β (TGF-β) down-regulates the expression 
of SDF-1. In chronic inflammatory conditions increased cytokine levels in blood 
may feedback to bone-marrow to stimulate the egress of myeloid/OCPs. A major 
function of OCPs is to serve as a pool of progenitors for downstream effector cells, 
depending upon the cytokines and growth factors implicated. They differentiate into 
CD11c+ dendritic cells in the presence of granulocyte/monocyte-colony stimulating 
factor (GM-CSF) plus IL-4 but form tartrate resistant acid phosphatase (TRAP)+ 
osteoclasts if exposed to RANKL (receptor activator of nuclear factor B ligand) 
and macrophage-colony stimulating factor (M-CSF) [64, 92]. The dendritic cells 
produce cytokines and chemokines directly or activate T-lymphocytes to indirectly 
promote osteoclasts and inflammation.  

  The main signalling pathway in bone resorption is mediated by the stimula-
tion of RANK receptor on osteoclasts and their precursors by its specific ligand 
RANKL, predominantly expressed on osteoblasts and stromal cells. This receptor 
system pertains to TNF-family molecules and is essential for the development and 
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activation of osteoclasts. A central role in this system is also played by the ligand 
osteoprotegerin (OPG), competitive inhibitor of RANKL, also known as osteoclas-
togenesis inhibitory factor, which functions as a soluble decoy receptor to RANKL 
[95, 96]. Inhibition of RANKL function via OPG prevents bone loss. Other cos-
timulatory immune receptors also exist, for example osteoclast-associated receptor 
(OSCAR), triggering receptor expressed in myeloid cells (TREM-2), and others 
[11, 33, 46]. These factors act cooperatively with RANKL in enhancing osteoclas-
togenesis. Intriguingly, immune cells also express RANKL. In the immune system, 
RANKL is expressed by activated T-cells, B-cells and dendritic cells. Therefore 
activated T-lymphocytes could directly induce osteoclastogenesis through RANKL 
[64, 92, 107].  

  Following antigen recognition, T-cells become activated and produce RANKL 
that induces osteoclast differentiation and activation. Both these processes could 
be downregulated by the decoy receptor OPG. In addition, they produce inflamma-
tory cytokines, such as TNF, IL-1, IL-6, which induce osteoblasts to further express 
RANKL. All of these lead to an imbalance between bone formation and resorption, 
with consequent osteoporosis.  

  Osteoblasts not only play a central role in bone formation by synthesizing mul-
tiple bone matrix proteins, but regulate osteoclast maturation by soluble factors and 
cognate interaction, resulting in bone resorption. Osteoclast maturation requires 
stimulation by RANKL expressed on osteoblasts, and cognate interaction medi-
ated by firm adhesion via inter-cellular adhesion molecule (ICAM)-1. Proinflam-
matory cytokines such as IL-1 and TNF-α favour bone resorption via the induction 
of RANKL and ICAM-1 on osteoblasts. These inflammatory signals originate from 
the immune system, and such immunological signals to the bone are transmitted 
primarily via osteoblasts to induce osteoclast maturation, resulting in secondary 
osteoporosis [108]. As a consequence, there is an increased stromal/osteoblastic 
cell-induced osteoclastogenesis during aging. Also stromal/osteoblastic cell expres-
sion of M-CSF, in association with RANKL, regulates osteoclastogenesis. Age-
ing is accompanied by decreased OPG and increased TNF-α, IL-1, RANKL and 
M-CSF expression, increased stromal/osteoblastic cell-induced osteoclastogenesis, 
and expansion of the osteoclast precursors pool. These changes correlate with age-
related alterations in the relationship between osteoblasts and osteoclasts in bone 
[22]. Recently, it has become evident that the activity of immune cells affects the 
balance of bone mineralization and resorption carried out by the opposing actions 
of osteoblasts and osteoclasts. For example, increased bone resorption resulting in 
lytic bone lesions and osteoporosis is observed in many inflammatory and autoim-
mune diseases. Bone destruction is also common in many cancers, both those that 
reside in the bone like leukaemias and multiple myeloma, and those that metasta-
size to the bone such as breast and prostate cancers [64, 89, 110]. Dendritic cells, 
specialized to present antigens, and osteoclasts, specialized to resorb bone, exhibit 
parallel lifecycles. Dendritic cells arise from multipotent precursors of the mono-
cyte lineage and are essential organizers of immune responses. They are highly 
specialized cells that capture antigens in peripheral tissues, migrate to lymphoid 
organs, and organize T-cell responses [13]. Osteoclasts are derived from the same 
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precursors in response to interactions with osteoblasts and other bone stromal cells. 
Upon differentiation into mononuclear osteoclasts and subsequent maturation and 
fusion into multinucleated cells, osteoclasts actively resorb bone [118]. These proc-
esses are dependent on a variety of cytokines, transcription factors and inflamma-
tory mediators. The parallel lifecycles of these myeloid-derived cells has led to the 
observation of many molecular and cellular interactions between the bone and the 
immune system, which has been termed osteoimmunology [10].  

    4      Immunosenescence and Osteoporosis Share Similar 
Immune Profile  

  It is the activated immune profile which, through inflammation and inflammatory 
cytokine production, modulates osteoblast and osteoclast activity leading to oste-
oporosis. In many pathological and paraphysiological conditions, maintenance and 
amplification of inflammatory reactions lead to osteoclastogenesis and increased 
risk of fractures. The inducer cells in this process are immune cells, such as activated 
macrophages and lymphocytes, which produce cytokines and soluble mediators 
able to stimulate osteoclast differentiation and activation. Molecules that regulate 
osteoclastogenesis are in fact key factors in many immunological functions.  

  Immunosenescence is the consequence of the continuous attrition caused by life-
long antigenic load which is responsible for the chronic immune system activation 
and hyperproduction of proinflammatory cytokines. Therefore osteoporosis and 
immunosenescence share the same immunological cell and cytokine mediators.  

  Thymic T-cell production declines rapidly with advancing age, conditioning the 
peripheral immune phenotype of elderly people and subjects with senile osteoporo-
sis. Moreover, multiple mechanisms, including antigen-driven clonal expansion 
and homeostasis-driven autoproliferation of postthymic T-cells, impose replica-
tive stress on T-cells and induce the biological program of cellular senescence with 
characteristic phenotypic changes. T-cell immunosenescence is associated with 
profound changes in T-cell functional profile and leads to accumulation of CD4+T-
cells which have lost CD28 but have gained killer immunoglobulin-like receptors 
(KIRs), markers of natural killer cells. They also exhibit cytolytic capability and 
produce large amounts of proinflammatory cytokines [128].  

  The increased production of proinflammatory cytokines with ageing derives from 
a chronic hyperactivation of macrophages and dendritic cells, as well as memory 
and senescent T-cells. These cytokines induce expansion of OCPs which in turn may 
contribute to the maintenance of inflammation through their capability to produce 
proinflammatory cytokines themselves and recruit other inflammatory cells, ren-
dering the inflammation chronic. Osteoclastogenesis and inflammation are directly 
proportional to OCP levels in the peripheral blood [95]. Characteristic of an aged 
immune profile is the accumulation of activated memory cells expressing RANKL, 
preferentially resident in the bone and secreting osteoclastogenic proinflammatory 
cytokines. Therefore, through inflammation and its mediators the immune system 
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influences not only the immunological defense reactions, but each organ in the 
body, including bone.  

  The immunophenotypical analysis of peripheral blood lymphocyte subsets con-
firms the deep involvement of the immune system in bone remodelling. CD3+ T-
lymphocytes are increased in osteoporotic patients, as well as their CD4+/CD8+ 
ratio [55, 93], whereas CD20+ B lymphocytes are significantly decreased. Moreo-
ver, an expansion of the CD8+CD56+ lymphoid subset has been described [54]. 
These are killer/effector lymphocytes producing large amounts of the inflammatory 
cytokine TNF-α. Finally, in osteoporotic patients there is an increase in CD45RO+ 
memory lymphocytes, whereas the CD45RA+ naive subset is markedly decreased 
[31]. Based upon their homing characteristics, cytokine production, and effector 
functions, memory T-cells have been further subdivided into central memory and 
effector memory T-cells [38, 62, 79, 103]. These subsets are identified by the pres-
ence and absence of a set of cell surface markers. CD8+ effector memory T-cells 
are further subdivided into 2 subsets, T-effector memory CD45RA negative and 
T-effector memory CD45RA positive, whereas CD4+effector memory cells are pri-
marily CD45RA negative and only few cells are CD45RA positive; however they 
are increased in ageing [48]. During ageing the number of central memory CD8+ 
T-cells is significantly reduced, whereas the number of effector memory CD45RA 
positive CD8+ T-cells is increased [47, 100]. These memory cells are mainly senes-
cent and proinflammatory cells, able to secrete large amounts of proinflammatory 
cytokines involved in the regulation of bone turnover. These findings are particularly 
interesting if we consider that the same immune profile (accumulation of activated 
cells and memory/effector lymphocytes secreting proinflammatory cytokines) char-
acterizes not only immunosenescence, but also other peculiar immunological condi-
tions notably associated with osteoporosis, such as chronic viral infections, AIDS, 
rheumatoid arthritis, etc. Another important mechanism which could link inflamm-
ageing and osteoporosis is the regulation of immune functions by T-regulatory cells 
(Tregs). The role of intrathymically generated CD4+CD25+ regulatory T-cells in 
the control of allergy and asthma is well known [3]. Antiinflammatory, antiprolif-
erative and antiautoreactivity Tregs express innate immunity receptors and respond 
to proinflammatory signals and products of inflammation. Such natural regulation 
of Treg by immune responses to nonself may well explain the alarming epidemi-
ology of allergic and autoimmune diseases in wealthy societies, where a variety 
of childhood infections have become rare or absent [19, 27]. Suppression through 
natural or professional CD4+CD25+ Tregs is primary cell-contact-dependent but 
is subsequently followed by cell-contact-indipendent T-cell inhibition mediated by 
second-generation T-regulatory cells (Tr1 and TH3) via the soluble factors IL-10 
and TGF-β [79, 106]. Both these cytokines are able to antagonize immune mediated 
bone resorption. Thymic dysfunction which accompanies ageing could compromise 
Treg generation and maturation, facilitating inflammatory processes and osteoporo-
sis. Some authors described an increase in CD4+CD25high regulatory T-cells dur-
ing ageing [49, 115], which however are quite dysfunctional. Suppressive activity 
of Treg cells declines with age [116] probably because of age-dependent thymic 
atrophy or the senescent peripheral environment. Mature and activated dendritic 
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cells, characteristic of the senescent immune profile, produce proinflammatory 
cytokines, including IL-6, which render responder T-cells refractory to the suppres-
sive effect of Tregs [61].  

    5       Regulatory Immune Mechanisms: The Cytokine Network  

  Changes in the cytokine milieu are major characteristics of ageing process as well 
as of age-related diseases [17]. The remodelling of the cytokine network is the hall-
mark of inflamm-ageing [36]. There is a complex network linking the different 
cytokines involved in immune mediated bone remodelling. Lymphocyte activa-
tion does not always lead to osteoporosis, the final result depending on the specific 
cytokines produced and their reciprocal interactions [130]. There are stimulators 
and inhibitors of bone resorption. These factors may elicit their effects directly, by 
acting on the osteoclast precursor or mature cells, such as RANKL, TNF-α, IL-1 
and prostaglandin E2 (PGE2), or indirectly, via another cell type, in most cases to 
modulate RANKL/OPG expression [7, 16, 21, 63, 70], for example parathyroid 
hormone-related peptide (PTHrP), PGE2, IL-11, IL-17 [7, 21, 70].  

  For example, TNF-α has the potential to regulate osteoclast differentiation 
and function in a number of ways. It may promote osteoclastogenesis indirectly 
through the induction of the expression of RANKL and colony-stimulating factor-
1 (CSF-1) in bone-marrow stromal cells and bone-lining cells [7]. Alternatively 
TNF-α may act directly on the osteoclast precursors to promote osteoclast differ-
entiation. TNF-α may function to increase the CD11b+ osteoclast precursor cell 
population [60].  

  The pro-inflammatory cytokine IL-1 signals through its receptor IL-1R1. This 
interaction is inhibited by the presence of the soluble antagonist IL-1Ra, which 
competes with IL-1 for binding to the IL-1R1. In the presence of CSF-1, IL-1 can 
act directly to promote the fusion of mononuclear osteoclast precursors to form 
osteoclasts [65] and can promote the survival and function of mature osteoclasts. 
Like TNF-α, the capacity of IL-1 to promote immune response in inflammatory 
arthritis has made IL-1 a target for therapeutic blockade. The approved therapeutic 
agent for blockade IL-1 signaling in RA is a recombinant form of IL-1Ra (anakinra) 
[28, 48, 52, 65, 129, 130], and use of anakinra has proved efficacious in the treat-
ment of inflammatory arthritis with retardation of focal bone erosion in a significant 
number of patients.  

  IL-4 is one of the inhibitor cytokines. Moreover, its hyperproduction charac-
terizes an atopic background and stimulates IgE synthesis. Interestingly, in some 
cases, allergy and TH2 immune profile could result protective towards osteoporosis 
and other inflammatory diseases [32]. A TH2-mediated atopic disease protection 
in TH1-mediated diseases such as RA has been described [78]. In an unpublished 
study, bone mineral density in allergic patients who have not undergone cortisone 
therapy resulted higher compared to sex and age-matched healthy controls. An 
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inverse correlation between bone mineral density and total IgE, that are markers of 
atopy, also exists.  

  IL-6 is a key regulator of osteoclast differentiation in response to estrogen defi-
ciency in postmenopausal bone loss. IL-6 is significantly increased during ageing 
and its level strongly correlates with the risk of osteoporotic fractures [78].The 
pleiotrophic proinflammatory cytokine IL-6 has been detected at elevated levels in 
synovial fluid and sera of RA patients with active disease. In addition IL-6 and its 
soluble receptor (sIL-6R) levels in RA patients have been correlated with the degree 
of radiographic damage.  

  IL-7 is a cytokine that stimulates thymic T-cell production and induces the expan-
sion, activation, and differentiation of mature circulating T-cells. IL-7 induces bone 
loss in vivo, presumably by stimulating the differentiation of osteoclast precursor 
cells into osteoclasts. IL-7 also upregulates RANKL production in T-cells. IL-7 
induces proinflammatory and osteoclastogenic cytokine production and the expan-
sion of B220+ IgM- B cell precursors. These cells could lead to bone destruction by 
overexpressing RANKL or, alternatively, by differentiating into OCPs in response 
to M-CSF and/or RANKL.  

  IL-11 regulates the growth and development of hematopoietic stem cells. Like 
IL-6, IL11 has been implicated in mediating osteoclast differentiation through the 
upregulation of RANKL expression in cells of the osteoblast lineage.  

  IL-17 is a proinflammatoy cytokine secreted predominantly by activated 
CD4+CD45RO+ memory T-cells [123]. Through its ubiquitously expressed 
receptor, IL-17R, leads to the activation of the adapter molecule TNF receptor 
associated factor 6 (TRAF6) and subsequent modulation of target gene expression 
via signalling through the NF-kB and mitogen activated protein tyrosine kinase 
pathways [112, 73]. IL-17 induces the production and secretion of IL-1, IL-6, IL-
8, TNF-α, GM-CSF and PGE2. IL-17 also induces the expression of RANKL and 
decreases OPG expression in both RA synoviocytes and cells of the osteoblast 
lineage [111].  

  IL-18, a member of the IL-1 superfamily of cytokines, is present at elevated lev-
els in the synovial membrane, synovial fluid, and serum of RA patients. Originally, 
IL-18 was demonstrated in vivo to inhibit osteoclast differentiation indirectly via 
the induction of GM-CSF expression by both cells of the osteoblast lineage and 
activated T-cells. IL-18 may promote osteoclast differentiation by inducing T-cell 
expression of RANKL.  

  Osteopontin, also known as Eta-1 (early T-lymphocyte activation gene-1), is a 
secreted phosphorylated glycoprotein that functions both in inflammation and bone 
remodelling. Important in mediating T-helper 1 cell immune responses, osteopon-
tin is produced by activated T-cells and macrophages. It interacts with CD44 and 
integrin receptors to promote chemotaxis and migration of monocyte-macrophage 
cells and enhances B-cell proliferation and antibody secretion. It is also produced 
by both osteoclasts and cells of the osteoblast lineage and acts to promote cell-
matrix adhesion via integrin [107]. Interplay between interferon and other cytokine 
systems in bone metabolism.  
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  TRAF6 is a crucial signalling molecule regulating a diverse array of physiologi-
cal processes, including adaptive immunity, innate immunity, bone metabolism and 
the development of several tissues including lymph nodes, mammary glands, skin 
and the central nervous system. It is a member of a group of six closely related 
TRAF proteins, which serve as adapter molecules, coupling the TNF receptor 
(TNFR) superfamily to intracellular signalling events. Among the TRAF proteins, 
TRAF6 is unique in that, in addition to mediating TNFR family signalling, it is 
also essential for signalling downstream of an unrelated family of receptors, the 
IL-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. TRAF6 therefore rep-
resents an important target in the regulation of many disease processes, including 
immunity, inflammation and osteoporosis [131]. There exists an intimate interplay 
between the bone and the immune system. Skeletal bone is more than a frame on 
which to hang flesh and organs, it is also the source of bone-marrow-derived hae-
matopoietic cells. Many myeloid lineage haematopoietic cells express receptors 
such as CD40, RANK and TLRs, which use TRAF6 for signalling and are involved 
in the generation of adaptive and innate immunity. Interferon (INF)-γ interferes with 
the osteoclast differentiation induced by RANKL, and this mechanism is critical for 
the suppression of pathological bone resorption associated with inflammation.  

  Also antigen presenting cells (APC), in addition to stimulate bone resorption, 
could negatively regulate osteoclastogenesis through up-regulation of the RANKL 
decoy receptor OPG. The secretion of IFN-γ, in particular, appears to be crucial and 
multifaceted in immune mediated osteoclastogenesis by shifting myeloid stem cell 
differentiation from OCPs to dendritic cells. During senescence there is an impaired 
OPG production as well as an impaired IFN-γ production [4, 53], contributing to a 
derangement of the global counter-regulatory system.  

  Activated T-cells exert both positive and negative control on osteoclastogene-
sis. In fact, in addition to the osteoclast activator RANKL, they express IFN-γ too, 
which binds to its receptor on osteoclasts. This induces the proteasomal degradation 
of transcription factor TRAF6 leading to an inhibition of the signal transduced by 
RANKL and an inhibition of osteoclast function [113]. This direct inhibitory effect 
of IFN-γ on osteoclasts contrasts with its indirect stimulatory activity through lym-
phocyte activation and cytokine production. In fact IFN-γ is also a potent inducer 
of expression of Class II histocompatibility complex antigens on antigen present-
ing cells. This increases T-cell stimulation mediated by antigen receptor, inducing 
further immune activation, proinflammatory cytokine production and consequent 
osteoclast stimulation.  

  RANKL induces the INF-β gene in osteoclast precursor cells, and this induc-
tion constitutes a critical aspect of the negative feedback regulation mechanisms of 
RANKL signalling to suppress excessive osteoclastogenesis. An important function 
of signal transducer and activator of transcription I (Stat 1), the essential transcrip-
tion factor for both type I and type II IFN responses, is therefore the regulation of 
osteoblast differentiation.  

  The binding of RANKL to its receptor RANK results in the recruitment of TRAF6, 
which activates NF-kB and c-jun N-terminal Kinase (JNK) pathways and induces c-
Fos expression. The effect of T-cells on osteoclastogenesis therefore depends on the 
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balance between RANKL and IFN-γ. IFN-γ signals the cell through activation of the 
transcription factor signal transducer and activator of transcription 1 (Stat 1). The 
active form of Stat 1, termed IFN-γ activated factor (GAF), induces target genes of 
IFN-γ either directly or through the induction of the transcription factor IFN regu-
latory factor-1 (IRF-1 [53]). During acute immune reaction, an enhanced produc-
tion of IFN−γ counterbalances the augmentation of RANKL expression and reduces 
aberrant osteoclast formation.  

        6      Osteoporosis and Immune Mediated Diseases  

  Rheumatoid arthritis, seronegative spondyloarthropathies including psoriatic arthri-
tis [132], and systemic lupus erythematosus (SLE) are all examples of rheumatic dis-
eases in which inflammation is associated with skeletal pathology [20, 71, 120, 121]. 
Although some of the mechanisms of skeletal remodelling are shared among these 
diseases, each disease has a unique impact on articular bone or on the axial or 
appendicular skeleton. RA is the prototype for an inflammatory arthritis, in which 
inflammation is associated with progressive bone resorption. Several immunologi-
cal findings are shared by RA and senescence, suggesting similar immunopathoge-
netic mechanisms for bone resorption in both these conditions [43]. Patients with 
RA have age-inappropriate telomeric shortening of haematopoietic precursor cells. 
Their output of novel T-cells from the thymus is impaired. The peripheral T-cell 
pool is occupied by functionally altered T-cells, which bear the characteristics of 
prematurely aged lymphocytes. Global T-cell defects include a sharp contraction 
in T-cell diversity, the accumulation of expanded clonotypes and preponderance for 
senescent T-cells in the T-cell compartment [42, 128]. This immune phenotype is 
shared by other pathologic conditions characterized by increased incidence of oste-
oporosis, such as HIV infection. The overproduction of proinflammatory cytokines, 
such as TNF-α, further impairs the function of haematopoietic stem cells, aggra-
vating the impact of a genetically determined risk factor. Recently, a new disease 
model for RA has been proposed [128]. Instead of restricting the biological role 
of HLA-DRB1 molecules to the presentation of arthritogenic antigens, these HLA 

Table 1 Cytokines involved in bone remodelling

  Osteoclastogenesis 
Stimulators  

  Osteoclastogenesis 
Inhibitors  

  TNF-α    IL-4  

  IL-1    IL-10  

  IL-6    IL-13  

  IL-7    IL-18  

  IL-11    GM-CSF  

  IL-15    TGF-β  

  IL-17    IFN-γ  
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molecules or genes in linkage disequilibrium to the B1 locus, could regulate hae-
mopoietic stem cell biology. In HLA-DR4+ individuals, stem cells proliferate 
excessively, giving rise to prematurely aged T-cells. If combined with additional 
restrictions in thymic T-cell production, the T-cell pool becomes senescent, with 
restriction in diversity and limited ability for clonal burst. The same phenomenon 
during senescence is triggered by lifelong antigenic burden and thymic atrophy 
[40]. Senescent T-cells express novel regulatory receptors, are proinflammatory and 
are prone to autoreactivity, promoting chronic inflammatory lesions, such as rheu-
matoid synovitis and osteoporosis [127, 128].Three major forms of bone loss have 
been described in RA: focal articular erosions, a hallmark of RA; periarticular bone 
loss, occurring adjacent to inflammed joints; and generalized osteoporosis, leading 
to an increase in fracture risk. The synovium is the major target of the inflamma-
tory process in RA. Activated lymphocytes in the inflammed synovium overexpress 
RANKL and TNF-α which stimulate bone-marrow osteoclast progenitors to pro-
liferate and enter the blood stream. In turn, activated macrophages in inflammed 
joints produce various chemokines, small inflammatory chemotactic cytokines, 
which drive osteoclast progenitor migration and homing in the periarticular bone. 
The elevated concentration of RANKL and TNF-α in the rheumatoid synovial fluid 
stimulates maturation and activation of osteoclasts which resorb bone. Circulating 
OCPs secrete inflammatory cytokines amplifying inflammatory circuits at a sys-
temic level [126]. Circulating osteoclast precursor number has been proposed as a 
marker of osteoporotic risk and therapeutic response.  

  TNF-α also induces osteoblast apoptosis, decreasing bone formation. Histo-
logic examination of the periarticular osteoporotic region in patients with RA 
shows functional Fas expression and apoptosis in osteoblasts. IL-1β and TNF-α 
regulate osteoblast cell number by up-regulating the Fas-mediated apoptosis of 
osteoblasts [117]. The defective clearance of apoptotic cells is associated with 
autoimmunity and inflammation [101]. Under normal conditions, clearance of 
apoptotic cells by phagocytic cells is associated with secretion of antiinflammatory 
cytokines, including IL-10 and TGF-β1, resulting in the inhibition of inflamma-
tion. However, under pathological conditions associated with excessive apoptosis 
and/or decreased clearance of apoptotic cells, apoptotic cells may directly induce 
caspase-1 dependent secretion of IL-1β and IL-8 or under secondary necrosis may 
induce secretion of other proinflammatory cytokines. During ageing a defective 
clearance of apoptotic cells as a result of poor phagocytosis by aged dendritic 
cells results in secondary necrosis and release of endogenous ligands for toll like 
receptors to activate phagocytic cells to differentiate into more mature phenotype 
and secrete proinflammatory cytokines (e.g. TNF-α and IL-6) [47]. In immune 
mediated osteoporosis, in addition to systemic overproduction of bone-resorb-
ing proinflammatory cytokines, nitric oxide and prostaglandin also play a role, 
mainly stimulating osteoblast apoptosis.  

  All these basic immunological mechanisms have important clinical implications. 
In RA and psoriatic arthritis the degree of inflammation and disease activity cor-
relate with focal erosions and systemic osteoporosis. Bisphosphonates are drugs 
widely used in the therapy of osteoporosis, able to improve BMD and decrease the 
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risk of fractures in patients with RA and steroid-induced osteoporosis [78]. They 
are able to regulate cell growth and apoptosis and may inhibit the inflammatory 
response of macrophages. They exert antiinflammatory activity by the inhibition of 
the release of inflammatory mediators from activated macrophages, such as IL-1, 
IL-6 and TNF-α and prevent dexamethasone-induced growth retardation and apop-
tosis both in osteoblasts and chondrocytes [99, 119, 121].  

  Blockade of the RANKL/RANK signalling pathway represents an attractive 
target for therapeutic intervention in the prevention of bone loss in RA. In initial 
human trials, the effects of OPG.Fc were examined in a cohort of postmenopau-
sal females [14]. A single injection of OPG.Fc resulted in a sustained reduction in 
the level of urinary N-telopeptide, a stable collagen breackdown product, consist-
ent with a reduction in bone resorption activity. However, the essential role of the 
RANKL/RANK/OPG pathway in physiological bone remodelling would suggest 
that modulation, rather than complete inhibition, of this pathway may be the desir-
able aim of therapeutic intervention. The development of small molecules (or pep-
tidomimetics) that target the RANKL/RANK signalling pathway (molecules that 
mimic OPG action or modulate endogenous OPG mRNA expression [24, 121]) may 
provide a greater ability to modulate inflammation-induced osteoclast differentia-
tion without complete inhibition of this pathway. Blockade TNF-α activity using 
biologic agents, including recombinant soluble p75TNFR (etanercept), a chimeric 
mouse-human anti-TNF-α antibody (infliximab), and a fully humanized anti-TNF-
α antibody (adalimumab), has demonstrated efficacy in reducing the clinical signs 
and symptoms of RA and in retardating radiographic progression of focal bone ero-
sions [95, 121](78-87 di Walsh). Blockade of TNF-a signalling by infliximab treat-
ment or RANKL signalling by OPG.Fc treatment results in decreased osteoclast 
cell numbers and subsequently reduced bone erosions.  

  Since RANKL is expressed on activated T-cells, and is crucial for T-cell-den-
dritic cell communication, one might expect massive bone resorption under most 
inflammatory conditions. Although RANKL-expressing T-cells in chronic inflam-
matory conditions such as RA and inflamm-ageing, can stimulate osteoclasts lead-
ing to bone destruction, the constant activity of T-cells fighting the universe of 
antigens to which we are exposed does not usually cause extensive bone loss. As 
previously exposed, a crucial counter-regulatory mechanism whereby activated T-
cells can inhibit RANKL mediated osteoclast development and activation is through 
the action of IFN-γ. In mice deficient for the IFN-γ receptor, bone destruction in 
an autoimmune arthritis model is greatly exacerbated. While T-cells involved in 
inflammatory responses express RANKL, they also secrete IFN-γ. IFN-γ can block 
RANKL-mediated osteoclastogenesis, possibly through the activation of the ubiq-
uitin-proteasome pathway leading to TRAF6 degradation [131]. Given the essential 
roles of TRAF6 in immunity and a diverse array of biological processes, it is desir-
able to obtain TRAF6 inhibitors to facilitate the development of therapeutics for 
controlling inflammation and a wide range of diseases, such as osteoporosis and 
other osteolytic conditions[107].  

  Interestingly, despite T-cell infiltration observed in arthritic joints, IFN-γ expres-
sion in these T-cells is suppressed. The paucity of IFN-γ and the enhanced expres-
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sion of RANKL may underlie the activation of osteoclastogenesis in arthritis. 
T-cells which infiltrate rheumatoid synovium have an expression of surface markers 
for memory T-cells, a low production of IFN-γ or IL-2, and hyporesponsiveness to 
in vitro restimulation.  

  Therefore, not always immune activation exerts resorptive effects on bone, prob-
ably explaining the different clinical manifestations of certain immune diseases. For 
example, only 4–6% of patients with SLE develop erosive arthritis, despite the fre-
quent articular involvement on presentation (50%). The hypothesis to explain this 
phenomenon is that systemic interferon-α diverts the bone-marrow-derived myeloid 
precursors away from the osteoclast lineage and stimulates their differentiation into 
dendritic cells. In SLE patients there is an increased interferon production and anti-
TNF-α therapy is scarcely effective (39). Therefore, the innate immune TNF/IFN 
axis in patients with autoimmune disease dictates their erosive phenotype.  

  Although it is well documented that IFN-γ has a bone-protective effect in antigen-
specific autoimmune arthritis, recent studies suggest that IFN-γ may have a causal 
role in the bone loss associated with estrogen deficiency. Pacifici et al. propose that 
IFN-γ activates antigen presentation through Class II transactivator (CIITA) induc-
tion, leading to the accumulation of a TNF-α-producing T-cell populatio[121].  

    7      Immune-mediated Postmenopausal Osteoporosis  

  There is progressive loss of bone tissue after natural or surgical menopause, leading 
to increased fractures within 15–20 yr from the cessation of ovarian function [88]. 
Postmenopausal osteoporosis should be regarded as a product of an inflammatory 
disease triggered by estrogen deficiency. Osteoblast, osteocytes, and osteoclasts 
express functional estrogen receptors. These receptors are also expressed in bone-
marrow stromal cells, the precursors of osteoblasts, which provide physical support 
for nascent osteoclasts, T-cells and B-cells. Estrogen signals through 2 receptors, 
ERα and Erβ. Bone cells contain both receptors.  

  Although estrogen is established to have direct effects on bone cells, recent stud-
ies have identified additional unexpected regulatory effects of estrogen centered at 
the level of the adaptive immune response [125]. Estrogens have important roles 
in the regulation of immune function. Ovariectomy increases the number of TNF-
producing T-cells. Estrogen deficiency results in a marked increase in proinflamma-
tory cytokines, including IL-1, IL-6, TNF-α, M-CSF, IFN-γ and others. Estrogen 
deficiency is also associated with decreased production of OPG and TGF-β, which 
counteract bone resorption. TGF-β is a powerful repressor of T-cell activation. 
Estrogen deficiency upregulates IFN-γ production through TGF-β downregulation. 
Generally, following an innate immune activation, IFN-γ functions as an antiresorp-
tive agent. Conversely, when T-cell activation occurs through an adaptive immune 
response, as in estrogen deficiency, IFN-γ stimulates bone resorption. Estrogens 
also repress the production of IL-7, a potent stimulators of T and B proliferation and 
inducer of bone destruction [125].  
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  Reactive oxygen species (ROS) may play a role in postmenopausal bone loss 
by generating a more oxidized bone microenviroment. The NO donor nitroglyc-
erin is also reported to prevent bone loss in ovariectomized rats. OCs have been 
shown to both generate and be activated by ROS. Glutathione peroxidase, responsi-
ble for intracellular degradation of hydrogen peroxide, is the predominant antioxi-
dant enzyme expressed by OCs and is upregulated by estrogen. ROS are important 
stimulators of antigen presentation by dendritic cell (DC)-induced T cell activation. 
Antioxidants potently inhibit DC differentiation and activation of T-cells in part by 
suppressing expression of MHC Class II and costimulatory molecules in response 
to antigen. ROS are also generated upon DC interaction with T-cells and can reduce 
T-cell lifespan by stimulating T-cell apoptosis. Estrogen deficiency lowers antioxi-
dant levels, thereby increasing ROS. Additionally, estrogen deficiency augments 
TNF expression by enhancing OC-mediated TNF production and by stimulating 
APC-induced expansion of the TNF-producing T-cells that are central to bone 
destruction [68].  

  There are 2 transcription factors, NF-kB and AP-1, which are regulated by estro-
gen and control the expression of IL-12 and IL-18 in macrophages. The stimulation 
of INF-γ secretion through the enhanced production of INF-γ-inducing cytokines 
IL-12 and IL-18 by macrophages is another meccanism by which estrogen defi-
ciency activates immune system [23, 37, 91].  

  In summary, menopause increases T-cell activation and proliferation by increas-
ing APC activity of macrophages through increased MHCII expression and by 
reducing T-cell apoptosis. These actions result in the expansion of the pool of acti-
vated T-cells in the bone-marrow which are responsible for the chronic stimulation 
of osteoclast formation and consequent bone loss. [52, 59, 84, 85, 91, 114]  

    8      The Immune Genetic Background of Osteoporosis  

  Osteoporosis could be considered an inflammatory disorder with a strong genetic 
component. Bone mineral density is largely controlled by genetics. Proinflamma-
tory cytokine polymorphisms are genetic markers of both inflamm-ageing and 
osteoporosis. The genetic background which favours the onset and progression of 
osteoporosis is the same that determines strong inflammatory immune responses 
through the hyperproduction of inflammatory cytokines and/or the decreased secre-
tion of antiinflammatory and regulatory factors. A number of cytokine genes and 
genes involved in inflammatory responses are polymorphic and may be important 
for defining the magnitude of the individual responses to a given environmen-
tal stimulus of cytokine production. The list includes genes that affect cytokine 
expression, binding of cytokines to their receptors, genes involved in the cytokine 
signalling pathways, and many others. There is a growing number of studies that 
have examined the effects of these cytokine polymorphisms on postmenopausal 
bone loss. Tsukamoto et al. investigated an association between a CA-repeat poly-
morphism at the IL-6 gene locus and BMD of radial bone in 472 postmenopausal 
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Japanese women. The 73 women who possessed an A1 allele (134 bp, containing 
18 repeats of CA) had significantly lower BMD than those who did not carry an 
allele of that size. Keen et al. examined the relationship between annual rates of 
change in BMD and an 86-bp variable number tandem-repeat polymorphism of 
the IL-1ra gene in108 women without hormonal replacement therapy within 5yr 
of menopause. They observed that carriage of at least one copy of the A2 allele 
was associated with reduced bone loss at the spine. Lagdahl et al. also showed that 
genotypes associated with a low IL-1ra production (A1A1/A3) were significantly 
more frequent in women with osteoporotic fractures compared with normal indi-
viduals, but this polymorphism had no effect on bone loss in another study of 487 
postmenopausal Danish women. IL-6 polymorphisms are able to influence the risk 
of osteoporosis as well as other chronic disorders involving IL-6 activity [34]. Two 
promoter polymorphisms regulating IL-6 gene expression, -572 and -174 G>C, are 
associated with circulating levels of C-reactive protein and markers of bone resorp-
tion in postmenopausal women.For example, a single nucleotide polymorphism in 
the promoter region of the IL-6 gene at position -174 (G>C) has been reported to be 
associated with a variety of major age-related diseases which share an inflamma-
tory background, as well as with osteoporosis (EVOS study). Individuals with the 
G genotype have significantly higher plasma IL-6 values than do individuals with 
the C genotype. Therefore the -174 G>C single-nucleotide polymorphism in the 
promoter region of the IL-6 gene is functional in vivo with an increased inflamma-
tory response associated with the G allele [15]. Considering the central role of IL-6 
in bone resorption, this finding could have clinical relevance.  

  A relationship between the production of IL-1 and IL-6 by whole blood cells, 
bone mineral density and polymorphisms in IL-1 system and IL-6 gene in post-
menopausal women has also been documented [8, 66]. The loci for the human IL-
1α, IL-1β and Il-1Ra are all linked within the proximal region of the long arm of 
chromosome 2. IL-1β and IL-1Ra are involved in high turnover bone loss after 
menopause [25]. Different polymorphisms have been described in the IL-1β gene 
and at least 2 of them could influence protein production: one is located within the 
promoter region, the other in exon 5 [24, 25, 86]. Polymorphisms in the IL-1β exon 
5 may influence gene transcription and protein production [86]. The Taq I IL-1β 
exon 5 gene polymorphism is one of the candidate genetic markers responsible for 
osteoporosis in postmenopausal women, and this genetic locus may play a central 
role in postmenopausal trabecular bone loss [25]. Five alleles of the IL-1Ra gene 
have been reported, corresponding to 2, 3, 4, 5, and 6 copies of an 86-basepair 
sequence repeat located in intron 2 [110]. Bone metabolism as well as inflammatory 
processes are influenced by the vitamin D receptor gene (VDR). The VDR gene 
may be involved in BMD differences, bone metabolism and inflammatory processes 
in ankylosing spondylitis [83].  

  With respect to TGF-β, a 1-base delection in intron 4 of the TGF-β1 gene has 
been associated with low BMD, increased bone turnover, and an increased rate of 
fragility fractures in osteoporotic Danish and Italian women [5].  
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    9      Conclusion  

  What is the finality of the close relationship between inflammation and bone remod-
elling? One possible explanation could be that bone has not only structural, but also 
storage function for calcium and phosphate salts and defense functions. Postmeno-
pausal osteoporosis should be regarded as the product of an inflammatory disease 
bearing many characteristics of an organ limited autoimmune disorder, triggerd by 
estrogen deficiency and brought about by chronic mild decreases in T-cell tolerance. 
Why such a pathway should have emerged is intriguing. One explanation is sug-
gested by the need to stimulate bone resorption in the immediate postpartum period 
in order to meet the markedly increased maternal demand for calcium brought about 
by milk production. The signal for this event is the drop in estrogen levels early in 
the postpartum. Postmenopausal bone loss should be regarded as an unintended 
recapitulation of this phenomenon. Another response to delively is the restoration 
of normal immune reactivity and the loss of tolerance to the fetus. It is tempting to 
speculate that cessation of ovarian function induces bone loss through an adaptive 
immune response because natural selection has centralized these 2 key adaptations 
to postpartum within the immune system [107, 125].  

  Inflammatory responses require a ready supply of calcium for cellular activa-
tion and signal transmission. Also in this case, as well as in lactation during the 
postpartum, calcium derives from bone resorption. During evolution, T-lymphocyte 
assumed the central role of director of these complex integrated systems. In this 
perspective, osteoporosis may reflect a state of disequilibrium between structural 
demand for calcium and phosphate and their biological demand during metaboli-
cally active states such as inflammation [135]. Therefore inflammation could be 
considered the main force driving osteoporosis.  

  The correct understanding of the complex language existing between immune 
system and bone during ageing is the essential requirement for the individualization 
of new and effective therapeutic targets for both osteoporosis and inflammation.  
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                               Abstract:       Human aging is associated with a loss of function involving organs or 
systems leading to pathologies such as cognitive impairment, macular degeneration, 
sarcopenia, frailty, cancer and increased susceptibility to infections. The erosion of 
the immune system is one of the age-associated failures observed. The delayed time 
for recovery and the increased susceptibility to infections with aging are directly 
associated with immune dysfunctions. Moreover, interventions aiming to protect 
the aged population such as vaccination have a limited efficiency. The eroded innate 
and adaptive immunity are responsible for this phenomenon. Several prophylactic 
and therapeutic approaches could restore immune function of immuno-depressed 
individuals. The nutritional approach is suitable for the aged-population since it 
requires less care than any medical approach and its cost is much lower which is 
an important factor when considering the health burden costs. Nevertheless, it is 
necessary to carefully and critically analyze the recent development in this field. In 
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this review, we will first discuss the age-associated changes in immune functions, 
collectively named immune-senescence then discuss the age-associated changes 
in nutritional intake and metabolism with a particular interest in protein-energy 
malnutrition (PEM) to finally outline some of the candidate interventions to protect 
against PEM and immuno-senescence.  

      1 Introduction  

  The reason why we age is not known however several hypotheses were put forward 
to explain the aging process as well as inter-individual inequalities towards aging. 
Thus, some intrinsic factors such as the genetic background and some extrinsic factors 
such as the socio-economic status or nutritional were shown to influence the aging 
process. Aging is associated with a variety of changes and adaptations. Alterations 
in brain, immune, cardiovascular as well as other metabolic functions were shown 
in the aged individuals (Cutler et al. 2006; El Sohl et al. 2006; Rosano et al. 2006). 
One characteristic of aging is the significant increased susceptibility to infectious 
diseases such as tuberculosis. Aged individuals significantly need a longer period to 
recover from an infection compared to young individuals (Weng 2006). Nowadays 
in developed countries, with the increased medical care, socio-economical status 
and recent progresses in medicine, the aged population is defined as over 65 year, 
of age. Within the aged-population, several classes can be distinguished, i.e., young 
old (65–75 years old), old old (75–95), and very old (over 100 years old). While the 
major cause of death for middle-aged and young old individuals is cancer, the main 
diseases occurring and responsible for death over the age of 75 are infections. This 
shows that the forthcoming increase frequencies of over-75 individuals in devel-
oping countries, concomitantly to their increase in developed countries will need 
much more attention. This means that a better knowledge of age-associated immune 
dysfunctions is needed to be able to propose prophylactic or therapeutic treatments. 
Among the immune dysfunctions known so far it is well-accepted that T-cell func-
tions are the most eroded with age (Fulop et al. 2005).  

    2 T-cells and the Immune Response  

  The immune responses encompass the non-clonotypic innate and the clonotypic 
adaptive immunities. Cells from the innate immune system, such as neutrophils, 
will respond in a nonspecific manner to antigens (Solana et al. 2006) while cells 
from the adaptive immune system such as T-cells will be activated in a specific 
manner. This is because of the presentation of the epitope derived from the antigen 
by the major histocompatibilty complex expressed on the surface antigen present-
ing cells (APC) and recognized by the T-cell receptor which is also called signal 1. 
CD4+ T-cells will recognize epitopes presented on class I MHC while CD8+ T-cells 
recognize epitopes presented on class II MHC. Other co-stimulatory molecules 
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expressed on T-cells, such as CD28, will be ligated: this stands for signal 2, and 
allows further activation of the cell (Nel 2002). Following activation, T-cells will 
secrete factors and proliferate. One of these factors, interleukin-2 (IL-2) will lead 
the clonal expansion of the responding cells. The autocrine and paracrine effect of 
IL-2 is considered as signal 3. Altogether, signals 1-3 will drive the induction, dura-
tion and termination of the immune response. Other cytokines will drive the type of 
the response. At the end of the response, most of the cells will die by a programmed 
cell death, Known as activation-induced cell death. Only a minority of cells will 
survive and belong to the memory population. Memory cells will be circulating and 
will serve for immuno-surveillance. Another encounter with the same antigen will 
lead to a faster and more intense response. Depending on the ability of the immune 
system to respond firmly to pathogen aggression, the individual will have a fast or 
delayed recovery.  

    3 Immune-Senescence  

  Immune-senescence was first characterized by a reduced T-cell proliferative capac-
ity as well as reduced ability to produce IL-2 following stimulation (Pawelec 2003). 
These functional changes are accompanied and somehow explained by changes in 
the phenotype of these cells (Weng 2006). One of the best examples is the sig-
nificant increase of the CD28-negative populations with aging, mostly within the 
CD8+ T-cells (Boucher et al. 1998). Several hypotheses were put forward to explain 
this phenomenon. Among these, we think that cytomegalovirus (CMV) infection 
which is an asymptomatic but chronic infection, is responsible for the expansion 
of CMV-specific cells. These cells belong to  the effector memory CD8+ subsets 
with a CCR7-CD45RA+/-CD27+/-CD28-phenotpye. The reason for the expansion 
of CMV-specific cells is not known and it is unclear whether the immune system 
needs it to control CMV or if this is evidence that CMV is taking advantage over 
the immune system. Anyhow, this expansion is filling the immunological space and 
leaves less space for T-cells specific for other antigens (Pawelec et al. 2005). This 
combined with thymic atrophy could be responsible for the decreased frequency of 
naïve CD8+ T-cells with aging and also in CMV-seropositive young individuals. 
Other hypothesis, i.e., the alteration in signal transduction from the membrane to 
the nucleus could explain why T-cells from old individuals were less able to prolif-
erate (Fulop 1994). Many studies showed that several pathways of T-cell receptor 
signaling cascade following TCR/CD28 triggering are altered (Pawelec et al. 2001). 
More recently, we have shown that a common alteration might be responsible for 
the overall alterations, i.e., membrane rafts (Larbi et al. 2004). Membrane rafts are 
motile domains of the membrane enriched in certain class of lipids such as cho-
lesterol, sphingomyelin and saturated fatty acids. Their composition and structure 
is very peculiar but necessary for the signalosome formation, which includes the 
molecules necessary to reach the full-state of cellular activation (Nunes et al. 2006). 
Thus, one has to be aware that every change in the lipid environment will induce 
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some changes in the membrane lipid and protein composition which in turn influ-
ences T-cell responsiveness (Garcia et al. 2001). Altogether, these alterations might 
explain why the aged individual is more susceptible to infections and why recovery 
is longer.  

    4 Immune-Senescence and Nutrition  

  There is no need to discuss the fact that aged individuals have different nutritional 
needs as well as intake compared to young individuals (Hays et al. 2006). The quan-
titative and qualitative levels of calories needed become different with aging. Nev-
ertheless, it is important to provide a sufficient dietary intake to cover the essential 
needs to ensure a proper functioning of the immune system (Chandra 2003; Lesourd 
2006). Several studies demonstrated that aged individuals lack of certain essential 
elements (Lesourd 2004). Several dietary deficiencies such as zinc, selenium, beta-
carotene, vitamin B6, B12, C, D, E, and folic acid were demonstrated (Flynn et al. 
2003; Vaquero 2002). Such a lack would have a detrimental acute or chronic effect 
on immune functions (Ritz al. 2006; Chandra 2002). Aged individuals display an 
eroded immune system and are most of the time deficient for many essential ele-
ments. These individuals may be at risk of infectious diseases and those with pro-
longed malnutrition can display signs of chronic inflammation (Chung et al. 2006). 
The resulting chronic inflammation, which is also occurring in certain pathological 
cases, will demand a significant amount of energy, which is not always available. 
(Ahluwalia 2004). Therefore, it is common for energy sources which are already 
expended to be solicited again (Richardson et al. 2003), increasing susceptibility to 
other diseases (Stenvinkel 2001). These deficiencies have been associated to several 
immune functions (Chandra 2004; Johnson et al. 1992).  

  It is easy to assess the circulating level of the essential elements and to detect any 
disequilibrium between the intake and the amount used up. However, the metabo-
lism of all the nutritional elements is not fully known despite their importance in 
several processes. This is the case for lipids. Apart from the known increase in 
circulating cholesterol levels with age and its role in the onset and development of 
cardiovascular diseases, very few studies have shown the changes in level of other 
classes of lipids with age. In vitro studies clearly demonstrated that changing the 
lipid composition of culture media modulates immune cell functions, especially 
those of T-cells (High et al. 2003; Ponnappan et al. 1996). The role of individual 
lipids was also analyzed and shown to alter T-cell functions (Calder 2001; Kews 
et al. 2002). Unsaturated fatty acids were shown to be the most potent T-cell mod-
ulators (Zeyda et al. 2003). One consequence of changing lipid compositions is 
the modification of the plasma membrane lipid composition (Wick et al. 1991). 
The surrounding lipids will enter the membrane in a passive or active way which 
both perturb the physico-chemical properties of the membrane. Specialized mem-
brane microdomains called rafts will have a strong influence during lipid exchanges 
(Zeyda et al. 2002). Signaling molecules associated to membrane rafts will dissoci-
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ate when the membrane lipid structure is unbalanced explaining in part the loss of 
T-cell functions. In the case of T-cells, the majority of membrane raft lipids are satu-
rated, compared to the rest of the membrane. The enrichment of T-cell membranes 
in polyunsaturated fatty acids will directly inhibit T-cell responses to stimulation 
(Stulnig et al. 2001). In vivo treatment with a mixture of lipids in humans (Intrali-
pid-20) induced a significantly reduced T-cell proliferative capacity (Larbi et al. 
2005) showing a good correlation between in vitro data and the in vivo situation. 
This clearly shows the critical impact of nutrition in the maintenance of the immune 
fitness. Since aged individuals display some deficiencies and disequilibrium in die-
tary intakes, one could easily estimate their effect on the immune system and in the 
development and maintenance of immune-senescence. More studies are required to 
demonstrate any pro-inflammatory effect of certain lipids and whether some lipids 
may have any efficient anti-inflammatory effect, which could be used to reduce the 
low grade inflammation seen with age and also named inflame-aging. This would 
require to know the effect of each lipid on cellular functions before suggesting any 
beneficial effect.  

    5 Protein-Energy Malnutrition  

  Under-nutrition occurs when nutrient intake does not balance with nutritional needs. 
A moderate under-nutrition can later lead to protein energy malnutrition (PEM; 
Latham 1990). The origin of PEM is in part due to some physiological changes 
such as decreased smell and taste capacities. PEM is often associated with illness. 
While more than a third of the institutionalized population displays signs of PEM, 
less than 5% of the dwelling population shows signs of PEM (Muhlethaler et al. 
1995). First signs of PEM are tiredness and a global low potency which can turn 
into anorexia, weight loss and increased susceptibility to infections as late signs of 
PEM (Morley 1991). The metabolic changes in PEM include water and electrolytes 
imbalance, amino acids and proteins deficiencies, carbohydrates and energy defi-
ciencies, hypolipidaemias, hypolipoproteinaemias, hormonal imbalance, deficiency 
of antioxidant vitamins and enzymes, and decrease in amino acids and trace ele-
ments in skin and hair (Brownie 2006). Any illness would increase the level of PEM 
creating a vicious circle starting with PEM which favors infections which demands 
much more energy which is not available thereafter decreasing even more the ener-
getic stocks responsible in part for weight loss and frailty (Ambrus et al. 2004). The 
last stages of PEM are perturbed glucose metabolism, recurrent infection, dehydra-
tion, impaired wound healing, and calcium bone loss.  

  The age-related changes in T-cell subset surface marker expression (CD3, 
CD45RA) and functions (proliferation) are known to be slimmed when the popu-
lation studied is very healthy (healthy aging). However, these changes are more 
important in malnourished elderly and even more in elderly with PEM. Most of 
immune cell functions including the adaptive and the innate arm are decreased in 
these individuals diagnosed for PEM. Increasing the food intake can partly reverse 
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this process unless an inflammatory process is present (Lesourd 2004). Thus, it is 
important to discriminate between the aging populations. There are different stages 
of ageing (i) the healthy aging population, which is observed in very healthy elderly 
individuals who have no nutritional deficit and generally meet the SENIEUR pro-
tocol for immuno-gerontologic studies. These individuals display a change in T-cell 
subset frequencies mainly due to higher number of pathogen recognition over the 
years but with no change in cellular functions (ii) the unselected aging population, 
which is observed in most elderly individuals with various micronutrient deficits.

These are still on the safe side because of their capacity to recover some of the 
immune functions lost due to nutritional deficiencies (iii) the aging population with 
significant signs of PEM. These individuals have a severely eroded immune system 
with extended recovery periods which need much energy and use of nutritional 
reserve directly responsible for the onset of frailty (Lesourd 2006).  

    6 Nutritional Interventions  

  Several approaches were tested in order to restore or maintain immune functions. 
Since nutrition is playing an important role in the maintenance of a functioning 
immune system, using dietary supplementation is virtually the more interesting 
because of its cost/feasibility (Bengmark 1998; Heuser et al. 1997). One of the 
causes of immune-senescence is the oxidative stress (Das et al. 2007) which can 
chronically damage cell membranes. In order to reduce reactive oxygen species 
(ROS) one can think about using antioxidants (De la Fuente et al. 2005). So far, 
very few studies demonstrated a beneficial effect of antioxidant supplementation 
on immune function of the aged population. Actually, data are still controversial. 
Some studies showed that some antioxidants can have an inhibitory effect on T-cell 
functions (Gao et al. 2004; Kolettas et al. 2006; Watson et al. 2005). The explana-
tion for this can be found in the metabolism of these antioxidants when ingested 
(Aruoma 2003). Scientist must think about the best way to take these agents to be 
efficiently used-up by the organism and thus see an effect in clinical trials. Also, it 
is still unclear how and whether antioxidants interact together to provide an efficient 
protection. Recent work from the Sinclair’s group showed the capacity of a red-
fruit derived polyphenol named resveratrol (of the polyphenols family) to extent the 
lifespan of yeasts and worms, with similar studies performed successfully in mice 
(Baur et al. 2006a; Howitz et al. 2003). Resveratrol is an antioxidant with potent 
anticancer properties. Studies in primates are ongoing to assess its efficiency (Baur 
et al. 2006b). However more recent reports from other groups revealed their inabil-
ity to reproduce these data showing again the discrepancies.  

  The use of animal models were very helpful in testing a myriad of nutritional 
supplements which were however not reproducible when performed in humans 
(Phelan et al. 2005). The most striking example is caloric restriction which is meant 
to extend lifespan et decrease the susceptibility to infections and cancers via the 
maintenance of a fully functional immune system. Caloric restriction can act via 
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ghrelin, a peptide produce in the stomach which stimulate appetite and control the 
production of growth hormones (Muccioli et al. 2004). Ghrelin also control the 
energy expenditure and can influence the immune system (Dixit et al. 2005). The 
expression of ghrelin and its receptor by T-cells suggest a functional role for this 
peptide on immune functions. Dixit et al. showed the ability of ghrelin to inhibit 
the production of pro-inflammatory cytokines such as IL-6 and TNF-α (Dixit 
et al. 2004). Thus, the modulation of ghrelin levels would influence the circulat-
ing cytokine levels. This has its importance when considering the role of inflame-
aging in immune-senescence (Franceschi et al. 2000). Cytokines such as IL-6 play 
a critical role in the age-related low-grade inflammation. It is still unclear how to 
modulate ghrelin levels but this could be an interesting candidate in preventing 
immune-senescence and helping old individuals to recover appetite.  

  Our knowledge of other nutrients, such as lipids, has to increase to find any puta-
tive beneficial role for immunity. The quantitative and more importantly qualita-
tive control of lipid consumption in aged individuals is rarely assessed. Due to the 
effect of lipids, especially those which are saturated, it would be of great interest 
to investigate the ways to improve immunity in immuno-compromised individu-
als. Some studies already demonstrated the ant-iinflammatory effect of omega-3 
polyunsaturated fatty acids (Thies et al. 2001). The use of fish-oil validated the anti-
inflammatory  properties of such lipids, relevant to a variety of pathologies such as 
rheumatoid arthritis, Crohn’s disease, psoriasis or systemic lupus erythematosus 
(Fritsche 2006; Harbige 2003). Whether fish-oil and other lipids decrease the low-
grade inflammation seen with aging is unknown.  

  Recently, the beneficial effect of probiotics in milk-derived products on the 
immune system has been extensively advertised (Del Piano et al. 2004). Even if 
these agents showed in vitro-efficiency, it remains to be proved that it is also true in 
the in vivo situation. To reach this goal, the clinical trials will need to follow-up the 
participants for longer periods. The reasons for this are (i) to differentiate between 
short-term and long-term effects (ii) to determine the best frequency and duration 
of the supplementation (iii) to see any improvement in survival and disease-free 
periods (iv) to assess if it could only be a prophylactic or therapeutic supplementa-
tion (v) to circumvent any false-positive or false-negative results due to season- 
dependant dietary intake.  

    7 Conclusion  

  Preferably, the study of immune functions with aging and every intervention should 
be performed longitudinally (Pawelec et al. 2006). Aging is defined as over 65 years 
of age and nowadays people who retire may expect to live for a further 2 decades. 
Even if some nutritional compounds were proven to have an immunological benefi-
cial effect, because of the increasing lifespan, this effect should be demonstrated as 
long-lasting. Short or mild-term effects are not sufficient anymore to be of interest 
for the young old population. It becomes more and more common to study popula-
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tions over 75 years old (Wikby et al. 1994) while previous studies targeted the 65+ 
population only. The Swedish OCTO/NONA studies identified the Immune Risk 
Profile (IRP) of individuals over 80 years old. This IRP is defined by (i) an inversed 
CD4:CD8 ratio (ii) an increased frequency of CD8+CD28- T-cells (iii) a decreased 
number of B-cells and (iv) CMV seropositivity (Wikby et al. 2002). The next step 
will be to increase this study to other European countries and to longitudinally 
assess (Albers et al. 2005) the nutritional status of the IRP category to investigate 
any correlation between nutrition and the development of the risk profile.  
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                    Abstract   :    Ageing is an inevitable biological process with gradual and spontaneous 
biochemical and physiological changes and increased susceptibility to diseases. 
Some nutritional factors (zinc and selenium) may remodel these changes leading 
to a possible escaping of diseases with subsequent healthy ageing, because they are 
especially involved in improving immune functions as well as antioxidant defense. 
Experiments performed “in vitro” (human lymphocytes exposed to endotoxins) and 
“in vivo” (old mice or young mice fed with low zinc dietary intake) show that zinc 
is important for immune response both innate and adoptive. Selenium provokes zinc 
release by Metallothioneins (MT), via reduction of glutathione peroxidase. This fact 
is crucial in ageing because high MT may be unable to release zinc with subsequent 
low intracellular free zinc ion availability for immune response. Taking into account 
the existence of zinc transporters (ZnT and ZIP family) for cellular zinc efflux and 
influx, respectively, the association between ZnT and MT is important in main-
taining satisfactory intracellular zinc homeostasis in ageing. Improved immune 
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performance occur in elderly after physiological zinc supplementation, which also 
induces prolonged survival in old, nude and neonatal thymectomized mice. The 
association “zinc plus selenium” improves humoral immunity in old subjects after 
influenza vaccination. Therefore, zinc and selenium are relevant for immunosenes-
cence in order to achieve healthy ageing and longevity.  

        1 Introduction  

  Ageing is an inevitable biological process that is accompanied with gradual and 
spontaneous biochemical and physiological changes including increased suscepti-
bility to diseases, adverse environmental conditions and loss of mobility and agility. 
Alterations in the immune functions play a fundamental role in ageing. The inability 
of an organism in remodeling these immune changes may lead to the appearance of 
some degenerative age-related diseases. As a result, the “remodeling theory of age-
ing” has been proposed (Paolisso et al .  2000). Various nutritional factors are directly 
linked with these phenomena as for instance in restoring the immune functions as 
well as in the capacity to respond to oxidative stress (Meydani 2001), which is in 
turn the main cause of the immune derangement in elderly (Pawelec 2000).  

  Approximately, 40 micronutrients (vitamins, essential minerals and other 
compounds required in small amount for normal metabolism) have been reported 
as essential components in the diet (Shenkin 2006). The dietary intake of essential 
macro and micronutrients is usually inadequate in the elderly (Ames 2006). Several 
causes contribute to this gap. First of all, the poor socio-economic condition present 
in a large part of old people may lead to a consumption of inexpensive foods defi-
cient in micronutrients, such as carbohydrates (Kant 2000). The gap is worsened by 
loss of appetite, lack of teeth, intestinal malabsorption and decreased requirement 
of energy that lead to the final result of frailty, disability and mortality (Semba et al. 
2006). Some authors have reported that the deficiency of macro and micronutrients 
in ageing is strictly related to global impairments of the immune functions with sub-
sequent limited defense against external noxae and appearance of age-related dis-
eases (Lesourd 2006). By contrast, recent longitudinal studies in dietary daily intake 
in human nonagenarian/centenarians (successful ageing) have shown that an ade-
quate consumption of micro and macronutrients as well as a satisfactory content of 
some trace elements in the cells lead to good performances in several immune func-
tions, especially in innate immune performances (Chernoff 2001; Mocchegiani et al. 
2003). Therefore, nutritional factors may play a pivotal role for immunosenescence 
in order to reach healthy ageing and longevity. We herein review the role of zinc and 
selenium, taking into account the pivotal role played by these two micronutrients in 
the efficiency of the immune functions (Buttriss 2000). Recent epidemiological and 
clinical evidence have shown that in most developing countries deficiencies of these 
micronutrients are partly responsible for the severity of infectious disease, morbidity 
and mortality in malnourished children (Bhaskaram 2002) as well as in ageing (Mey-
dani 2001). Indeed, these two trace elements form an important pillar in the nutrition 
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of young and elderly persons because also involved in tissue integrity (Enwonwu and 
Sanders 2001). Thus, it is evident that a deficiency of these elements could lead to 
a crucial impairment of the organ and tissue function with subsequent influence on 
many body homeostatic mechanisms, including the immune functions.  

    2 Zinc  

   2.1 Zinc Biology  

  Zinc is one of the most important trace elements in the body, although its presence 
in nature does not exceed 0.02% (Mills 1989). The major characteristics of zinc 
include a highly concentrated charge, a small radius (0.65A), no variable valence 
[low risk of free radical production], ready passage from one symmetry in its sur-
roundings to another without exchange, rapid exchange of ligands (on and off 
reactions), and binding mostly to S- and N-donors in biological systems. These 
properties enable zinc to play a major biological role as a catalyst. Removal of the 
catalytic zinc results in an active apoenzyme that usually retains the native tertiary 
structure (Vallee and Falchuk 1993). Thus, it is not surprising that zinc is essential 
for the activity of more than 300 enzymes influencing the activity of zinc dependent 
antioxidant enzymes, such as superoxide dismutase (SOD) and various organ func-
tions having a secondary effect on the immune system (Rink and Gabriel 2000).  

  Zinc also regulates the balance between the gene expression of metalloprotein-
ases (MMPs) and the tissue inhibitors of matrix metalloproteinases (TIMPs; Nagase 
and Woessner 1999). The main function of MMPs is the removal of extracellular 
matrix (ECM) during tissue resorption and progression of many diseases. However, 
it is notable that MMPs also alter biological function of ECM macromolecules by 
specific proteolysis (Shapiro 1998). Therefore, since MMPs are induced especially 
by proinflammatory cytokines (IL-1 and TNF-alpha), an overexpression of MMPs 
may lead to excessive proteolysis of ECM, as it occurs in chronic inflammation 
(Gueders et al. 2006). As a consequence, degradation of ECM and limited cell–cell 
adhesion may occur, so “trapping” bioactive mediators (Moot and Werb 2004). Thus, 
the expression of MMPs genes are under the control of some inhibitors of MMPs, 
such as TIMPs gene products, α-2 macroglobulin (α-2M) and 13-amyloid precursor 
protein (Nagase and Woessner 1999). As a result, a balance in the expression of the 
metalloproteinases [either as activators (MMPs) or as inhibitors (TIMPs)] is neces-
sary for an optimal function of many biological systems. Examples of altering the 
balance between MMPs and TIMPs or α-2M have been recorded in certain types of 
cancer, infections and ageing (Nagase and Woessner 1999) that are conditions char-
acterized by zinc deficiency (Fabris and Mocchegiani 1995). Zinc also regulates 
G0/G1 phase of cell cycle through Cyclins/CDK complexes in a dose dependent 
manner. Specifically, high doses of zinc (900 μM) result in cell cycle arrest (Para-
manantham et al. 1996), whereas low doses of zinc (150 μM) inhibit apoptosis 
(Fraker 2005). Zinc is present in “zinc finger domains” of many proteins, peptides, 
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enzymes, hormones, transcriptional factors and cytokines, which act in maintaining 
body homeostasis (Coleman 1992; Berg and Shi 1996). Zinc also regulates mRNA 
stability (Taylor and Blackshear 1995) and extracellular matrix (Vallee and Falchuk 
1993). Moreover, zinc binds enzymes, proteins and peptides with different binding 
affinity (kd) ranging from 10 -2  to 10 -14  mol/L ( See  review Mocchegiani et al. 1998). 
These compounds display low biological activity when the zinc-binding doesn’t 
occur, as for instance for thymic hormone named thymulin, which loses its activity 
in absence of zinc (Fabris et al. 1984). Finally, zinc plays a critical role in structure, 
function, stabilization and fluidity of biomembrane due to its binding to sulphydryl 
groups forming mercaptides (Vallee and Falchuk 1993).  

  Zinc also maintains the enzymatic activity of inducible nitric-oxide synthase 
(iNOS; Bodgan et al. 2000), with a binding between zinc and two cysteine resi-
dues, which are part of the structures of the heme domain of iNOS (Li et al. 1999). 
As: (i) Nitric Oxide (NO), via NO synthases, affects the gene expression of metal-
lothioneins (MT) in order to protect the host from oxidative stress (Arizono et al. 
1995) and (ii) NO is involved in zinc release from MT, via s-nitrosylation (Zangger 
et al. 2001), the structural task of zinc in NO production is crucial.  

  In this context, the release of zinc by MT, via s-nytrosilation, contributing to 
raise the intracellular free zinc ions concentration, plays a crucial role in modulat-
ing the production of proinflammatory cytokines and in the activation of immune 
cells (Rink and Haase 2007). Therefore, the interrelationships between zinc and 
MT is crucial in maintaining the immune response especially in ageing where the 
production of proinflammatory cytokines is chronic leading to a constant presence 
of inflammatory status coupled with low intracellular zinc ion bioavailability (Moc-
chegiani et al. 2004). The interrelationship between zinc and MT is also regulated 
by the special proteins named zinc transporters (ZnT), which in turn appear to be 
also specifically involved through regulation of cellular zinc homeostasis via influx, 
efflux, or vesicular sequestration (Cousins and McMahon 2000; Eide 2006). The 
ZnT, some of which are tissue specific, maintain intracellular zinc concentration in 
a narrow physiological range in order to avoid cellular zinc toxicity or deficiency 
when dietary zinc intakes fluctuate. Two families of ZnT have been identified. The 
ZnT family decreases cytoplasmic zinc concentrations by secretion, sequestration, 
or efflux, whereas the ZIP family increases cytoplasmic zinc influx or release of 
stored zinc (Eide 2006). Therefore, the balance of ZnT is fundamental to maintain 
an optimal intracellular zinc homeostasis in ageing, because reduced zinc intake by 
the diet or intestinal zinc malabsorption or loss of zinc through urine by high levels 
of proinflammatory cytokines are usual events in elderly (Prasad et al. 1993b).  

    2.2 Zinc-Metallothioneins and Ageing  

  MT, are a group of low-molecular-weight metal-binding proteins who have high affin-
ity for zinc (kd = 1.4×10 -13  M; Kagi and Schaffer 1998). MT exist in different isoforms 
characterized by the length of aminoacid chain: isoform I, II, III e IV mapped on chro-
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mosome 16 in man and on chromosome 8 in mice with complex polymorphisms (West 
et al. 1990). The more common isoforms are I and II; the isoform III, also called growth 
inhibitory factor (GIF), is a brain-specific member of the MT family and the isoform 
IV is restricted in squamous epithelia. MT contain 20 cysteines, all in reduced form, 
and bind seven zinc atoms through mercaptide bonds that have the spectroscopy char-
acteristics of metal thiolate clusters (Maret and Vallee 1998). The zinc/cysteine clusters 
are of two different types. In the beta-domain cluster, three bridging and six terminal 
cysteine thiolates provide a coordination environment that is identical for each of the 
three zinc atoms. In the alpha-domain clusters, there are two different zinc sites; two of 
them have one terminal ligand and three bridging ligands respectively, while the other 
two have two terminal and two bridging ligands (Maret and Vallee 1998).  

  Following these biochemical characteristics, MT distribute intracellular zinc as 
zinc undergoes rapid inter- and intracluster exchange (Kagi and Schaffer 1998). 
Moreover, MT act as antioxidant since zinc-sulfur cluster is sensitive to changes 
of cellular redox state and oxidizing sites in MT (reduced thiol groups) induce the 
transfer of zinc from its MT binding sites to those of lower affinity in other proteins 
(Kagi and Schaffer 1998). This transfer confers biological activity to antioxidant 
metalloenzymes. Therefore, the redox properties of MT and their effect on zinc in 
the clusters are crucial for the protective role of MT in presence of ionizing and UV 
radiations (Cai et al. 1999), heavy metals (mercury, cadmium), lipid peroxidation, 
reactive oxygen species, oxidative stress caused by anticancer drugs, and conditions 
of hyperoxia (Sato and Kondoh 2002). This protective role of MT has been studied 
especially in young-adult MT knockout mice (null mice) for short periods of expo-
sure to toxic metals, such as cadmium for 10 weeks (Habeebu et al. 2000) or mercury 
(one single injection and the effect of mercury analyzed 3 days after the injection; 
Satoh et al .  1997), or to anticancer agents for 48–72 hrs. (Kondo et al. 1997) or in 
presence of an excess of zinc or zinc deficiency for 3 weeks (Kelly et al. 1996). 
Therefore, the protective role of MT is evident in transient stress condition, as it may 
occur in young adult-age, in which the chronic status (by stress or inflammation) is 
a rare event (Mocchegiani et al. 2006). In contrast, this role may be questionable in 
ageing because the stress-like condition and inflammation by high levels of IL-6 are 
chronic (Ashok and Ali 1999), with also a different response to stress with respect 
to young (DeGroot et al. 2006). Since IL-6 affects the gene expression of MT (Her-
nandez et al.2000), these proteins may turn off from protective to harmful agents in 
ageing following the “antagonistic pleiotropy theory of ageing” (Williams and Day 
2003). In fact, despite MT increase in ageing, a limited release of zinc by MT leading 
to an impaired immune and antioxidant response has been proposed (Mocchegiani et 
al. 2000a, b). In contrast, in presence of lower stress and inflammation, as it occurs in 
centenarians, MT production is low coupled with satisfactory zinc ion bioavailability 
(Mocchegiani et al. 2002a). Indeed, since IL-6 acts on the cells through its subunit 
receptor gp130 (Bravo and Heath 2000), the relative lower gene expression of gp130 
with respect to elderly found in centenarians (Moroni et al. 2005) may imply that a 
quota of IL-6 is inactive in centenarians leading to low gene expression of MT, sat-
isfactory free zinc ion availability and low degree of inflammation (Mocchegiani et 
al. 2002a). As a result, the satisfactory immune performances and antioxidant activi-
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ties lead to a good healthy status in these exceptional individuals (Mecocci et al. 
2000; Mocchegiani et al. 2002a). Therefore, the interrelationships among inflam-
matory status, MT and zinc are pivotal in order to achieve successful ageing, fur-
therly suggesting a different role of MT in ageing that is crucial for immune response 
(Mocchegiani et al.   2000a). Whether MT might play an antagonistic pleiotropic role 
remains however to be clearly demonstrated also taking into account that they may 
play different role in different organs. On this aspect, recent findings in cardiac-spe-
cific Metallothionein transgenic mice suggest that the expression of these proteins 
in cardiocytes may alleviate aging-induced cardiac contractile defects and oxidative 
stress prolonging life span (Yang et al. 2006). In addition, Daf-2 mutant nematodes 
other than a longevity phenotype, display an altered expression of MT which, in turn, 
seems to interact with the insulin signaling pathway (Barsyte et al. 2001). Therefore, 
even if the specific function of MT in ageing is still a matter of discussion, all these 
reports associated to recent findings on the possible role played by MT in modulating 
cellular respiration and energy metabolism (Feng et al. 2005; Ye et al. 2001) strongly 
suggest that these proteins are involved in the maintenance of health status and in 
successful aging. On the other hand, recent findings show a novel polymorphisms of 
MT1A (A/C at position +647 leading to an asparagine/threonine aminoacid substitu-
tion) involved in successful ageing, lower inflammation and satisfactory intracellular 
zinc ion bioavailability (Cipriano et al. 2006).  

    2.3   Zinc Transporter and Ageing  

  With regard to the role played by the ZnT in ageing and immunosenescence, a pau-
city of data exists in literature. After an increase from the birth up to adult age in 
some tissues, pancreas (Clifford and MacDonald 2000) or brain (Nitzan et al .  2002), 
significant decrements of both ZnT and ZIP families in peripheral leukocytes from 
elderly women occur, in particular the subtypes ZnT1 and ZIP1 (Andree et al. 2004). 
Taking into account that ZIP family increases cytoplasmic zinc influx (Eide 2006), 
an intriguing point is that Zip14 expression is up-regulated   through IL-6, and that 
this zinc transporter most likely plays   a major role in the mechanism responsible for 
an excess of intracellular zinc and, at the same time, for hypozincemia that   accom-
panies the acute-phase response to inflammation and infection (Liuzzi et al. 2005). 
Since chronic inflammation by high IL-6, hypozincemia and risk of infections are 
usual events in old age (Mocchegiani et al. 2003), the possible alterations of the 
ZnT in ageing coupled with the inability of high zinc-bound MT in zinc release, 
may thus allow still more synergistic deleterious effects on immune response that 
it may be due or to low or excess of zinc within the cells. This last assumption is 
supported by the discovery that both low and high levels of intracellular zinc lead 
to cell death (Fraker 2005). Therefore, the intracellular zinc ion availability should 
be maintained within a strict range in order to exert beneficial effect, otherwise it 
may trigger pathological pathway cascades possibly contributing to the onset and 
progression of degenerative diseases (Mocchegiani et al. 2006).  
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    2.4 Zinc-MT and Immunosenescence  

  For a prompt immune response against stressor agents and inflammation, macrophages 
produce some cytokines, such as IL-1, IL-6, IFN-α, TNF-α, which, in turn, provoke 
a new synthesis of MT in the liver but, at the same time, an alteration in the zinc 
status (Bui et al. 1994). These findings clearly suggest the existence of interplay 
between MT and the immune system. IL-1 affects MT mRNA in thymic epithelial 
cells (TECs) by means of PKC, which is, in turn, zinc-dependent (Coto et al. 1992) 
and participates in metal-induced MTmRNA (Yu et al. 1997). Moreover, MT are 
donors of zinc for thymulin reactivation in TECs (Coto et al. 1992). MT act both as a 
reservoir of zinc during zinc deficiency and as a zinc buffering protein in presence of 
excessive amount of zinc in order to prevent zinc toxicity (Kelly et al. 1996). Follow-
ing these findings, MT are, out of doubt, protective agents with also the task in pre-
venting zinc deficiency during an inflammatory status. It has been recently reported 
that, under inflammatory conditions, MT in the extracellular environment may sup-
port the beneficial movement of leukocytes to the site of inflammation representing 
a “danger signal” for the immune cells and modifying the character of the immune 
response when cells sense cellular stress. However, high MT produced in chronic 
inflammation, may alter the normal chemotactic responses that regulate leukocyte 
trafficking (Yin et al .  2005). Taking into account that zinc ions attract leukocytes by 
inducing and promoting the chemotactic response (Hujanen et al. 1995), high MT 
production might be dangerous for immune response in presence of chronic inflam-
mation. Moreover, (i) the existence of high MT and low zinc ion bioavailability in 
the atrophic thymus from old mice (Mocchegiani et al. 2004); (ii) the presence of 
high MT in lymphocytes from old people and Down’s syndrome subjects (syndrome 
of accelerated ageing) coupled with impaired innate immunity (Mocchegiani et al. 
2002a) and (iii) the occurrence of atrophic thymus in young stressed mice over-
expressing MT (Mocchegiani et al. 2002b), furtherly suggest this dangerous role 
played by MT in immune function during ageing. Additionally, elevated levels of 
extracellular MT, as it can be found especially in chronic inflammatory sites, can 
cause a dramatic decreases in cytotoxic T lymphocyte (CTL) activity against allo-
geneic target cells, reduces the proliferative response of CTLL-2 cells to cytokines, 
and decreases the level of major histocompatibility complex (MHC) Class I and CD8 
molecules detectable on the surface of lymphocytes (Youn and Lynes 1999). There-
fore, high MT may also have an immunosuppressive effect worsened by the fact they 
are not donors of zinc in ageing but rather sequester zinc. On the other hand, high 
MT induce down-regulation of many other biological functions related to zinc, such 
as metabolism, gene expression and signal transduction (Kagi and Schaffer 1998). 
An unbalance between MT isoforms leads to impairments of zinc-dependent body 
homeostatic mechanisms within the brain, as reported in SAMP10 mice (model of 
accelerated ageing; Wen et al. 2006). Moreover, high MT are an index of unfavorable 
prognosis in cancer (Ebadi and Swanson 1988).  

  However, the limited capability of MT in zinc release is still unresolved problem 
in ageing, especially regarding to the precise mechanism involved. The zinc release 
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from MT under oxidative stress conditions is accompanied by more MT disulfide 
bond formation (Feng et al. 2006). But, an intriguing point is that also NO provokes 
the zinc release by MT, via s-nitrosylation (Zangger et al. 2001). Despite iNOS 
increases in ageing, the release of zinc by MT is very limited. One hypothesis might 
be an unbalance between NO synthases (iNOS and cNOS; Mocchegiani et al. 2000a). 
However, NO donors and zinc fluorescent probes are useful tools in order to study the 
zinc release from MT and to evaluate the intracellular labile zinc in ageing.  

  Using a methodology for testing intracellular free zinc ion availability in PBMC 
recently developed in our laboratory (Malavolta et al. 2006), it has been shown that 
the NO-induced release of zinc can be preserved at least in nonagenarians carry-
ing MT1A polymorphism favorable for successful ageing (Cipriano et al. 2006). 
Moreover, a flow cytometric assay for the measurement of intracellular labile zinc 
was recently developed by Haase et al. (2006) The zinc-sensitive fluorescent probe 
named FluoZin-3 was used to quantify the amount of labile zinc in peripheral blood 
mononuclear cells isolated from human blood. With this method, the intracellular 
concentrations of labile zinc in resting cells were estimated to be 0.17 nM in mono-
cytes and 0.35 nM in lymphocytes (CD4+; Haase et al. 2006). Therefore, the com-
bination of these two novel methodological procedures will permit to study in depth 
the cause of limited zinc release from MT in ageing and, at the same time, to evalu-
ate the intracellular labile zinc. Anyway, a limited zinc release from MT exists in 
ageing provoking a low free zinc ion availability for immune response and antioxi-
dant activity. The recent discovery of another novel polymorphism of MT (-209A/G 
MT2A) may indirectly support this assumption. Indeed, old subjects carrying AA 
genotype display high MT, low zinc ion availability, enhanced IL-6 and impaired 
innate immune response with subsequent possible risk for atherosclerosis and dia-
betes type II (Giacconi et al. 2005). Therefore, MT may have a different role in 
immunosenescence, following the concept that several genes/proteins that increase 
fitness early in life may also have negative effects later in life: named “Antagonistic 
Pleiotropy Theory of Ageing”(Williams and Day 2003).  

    2.5  Rationale for Zinc Supplementation in Ageing: “In Vitro” 
Studies  

  Since the crude zinc balance is negative in old mice (Mocchegiani et al. 1995) and 
in old human (Turnlund et al. 1986), zinc supplementations in old mice and in eld-
erly have been carried out in order to improve the immune response. The scientific 
rationale for the immune supporting role of zinc supplementation “in vivo” finds 
consistent support by data obtained “in vitro” in immune cells.  

  At this regard, many effects of zinc on immune cells have been shown by 
assessing the cytokine concentration in the samples after zinc stimulation. When 
PBMCs are stimulated with zinc, IL-1, IL-6, TNF-α, soluble (s)IL-2 receptor and 
IFN-γ are released (Ibs and Rink 2003). The secretion of IL-1, IL-6 and TNF-α 
is induced directly by zinc in monocytes and is independent by the presence of 
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lymphocytes (Driessen et al. 1994). However, the effect of zinc on monocytes 
may depend upon external stimulation. In fact, zinc inhibits LPS-induced TNF-
α and IL-1β release from primary human monocytes and monocytic cell lines 
through the inhibition of cyclic nucleotide phosphodiesterase activity (von 
Bulow et al. 2005), suggesting that zinc may display also some anti-inflamma-
tory properties.  

  The dose of zinc used is also a critical variable. In serum-free culture medium, 
concentrations >100 μM of zinc/L stimulate monocytes but prevent T-cells from 
activating, perhaps due to the lower intracellular content in T-cells than in mono-
cytes (Ibs and Rink 2003).  

  Treatment with zinc “in vitro” generally displays also beneficial effects on cell 
survival but, the effect largely depends upon the cell type and the dose of zinc 
used. It seems that both apoptosis prevention and induction are mediated by path-
ways involving zinc and/or zinc-dependent enzymes (Clegg et al .  2005; Wiseman 
et al. 2006). Therefore, the modulation of the zinc homeostasis plays a key role 
not only in preventing apoptosis, when oxidative stress is low, but also in induc-
ing apoptosis, when oxidative stress and cellular damage is high, in order to down 
regulate immune responses and to eliminate virally infected or malignant cells 
(Fraker and Lill-Elghanian 2004). Taking into account the strict correlation existing 
between oxidative stress and immune function especially in response to specific 
stimuli through the production of proinflammatory cytokines for a prompt immune 
response (Franceschi et al. 2005), this role of zinc in inducing apoptosis of only 
damaged cells in presence of high oxidative stress is evident in young-adult age and 
with a great surprising in very old age (Ostan et al. 2006), perhaps due to the pres-
ence of satisfactory zinc ion availability (Mocchegiani et al. 2002a) that regulates 
p53 activity for health lifespan (Bauer and Helfand 2006), being p53 a zinc binding 
protein (Hainaut and Mann 2001).  

  Experiments in thymocytes also support this point of view, since media supple-
mented with zinc from 50 up to 150 μM prevents old thymocyte apoptosis induced 
by dexamethasone or serum deprivation (Provinciali etal. 1998), whereas the direct 
introduction of free zinc as zinc-pyrithone inside thymocytes induces apoptosis 
(Mann and Fraker 2005). In this last case, the continuous presence of intracellular 
free zinc ions can advice the cell that permanent oxidative stress and irreversible 
damage are present, thus activating proapoptotic pathways.  

    2.6 Effect of Zinc Supplementation in Ageing  

   2.6.1 Old Mice  

  Old literature reports that a physiological zinc supplementation in the diet through-
out the life span in adult rodents prevents some age-related cell-mediated immune 
modifications, such as the decreased circulating thymic hormone levels (Iwata et 
al. 1979). More recently, a physiological zinc supplementation (18 μg/ml Zn ++  in the 
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drinking water for 1-month) in old mice induces thymus re-growth and functionality 
(Dardenne et al. 1993; Mocchegiani et al. 1995) and restoration of NK cell cytotox-
icity (Mocchegiani et al .  1995). That the benefit of zinc supplementation upon the 
immune functions in old mice is not to consider an epiphenomenon comes by the 
analysis of the rate of survival in old zinc treated mice. Old mice (inbreed Balb/c 
mice) treated with daily zinc at the dose reported above in drinking water from 
the pre-senescent age (12–14 months of age) display a significant increment of the 
rate of survival up to 33th month of age when this strain of mice usually lives up 
to 28–29th month of age. The increment of old survivor zinc treated mice is par-
ticularly significant in the middle age (24–25th month of age; Mocchegiani et al. 
2000b). The increased rate of survival is largely due to significant decrements of 
deaths due to cancer and infection in the middle age (Mocchegiani et al. 2000b). 
Of interest, the crude zinc balance is negative, other than in old mice, also in nude 
and neonatal thymectomized mice (Mocchegiani et al. 1995 2000b 2007). A zinc 
supplementation increases the rate of survival also in nude and neonatal thymect-
omized mice (Mocchegiani et al. 2007), which display a very short survival due to 
thymus absence (Piantanelli and Fabris 1978). Taking into account that the liver 
extrathymic T-cell pathway is prominent in nude, thymectomized and old mice in 
order to compensate the thymic failure (Abo 2000), it is evident the zinc also affects 
the liver extrathymic T-cell pathway with good performances of the immune func-
tions against external noxae (Mocchegiani et al. 1998) coupled with increased rate 
of survival.  

    2.6.     2 Elderly  

  With regard to elderly, undefined data exist on the beneficial effect of zinc supple-
mentation upon the immune efficiency due to different doses of zinc used and to 
the length of the treatment (Bodgen et al. 1990; Boukaiba et al. 1993; Cakman et 
al. 1997; Duchateau et al. 1981; Fortes et al. 1998; Prasad et al. 1993b; Sandstead 
et al. 1982). Although zinc was used at the dose recommended by RDA (from 15 to 
25 mg/day) in the majority of the studies, Prasad et al. (1993b) and Boukaniba et al. 
(1993) have found an increment of thymulin activity and improvements in response 
to skin-test antigens and taste acuity (zinc dose = 15 mg /day for 4 months); Bodgen 
et al .  (1990) have reported no benefit exclusively for increased lymphocyte mitogen 
proliferative response (zinc dose = 15 mg/day for 1-year); Cakman et al. (1997) 
have found enhanced IFN-γ production by leukocytes (zinc dose = 15 mg/day for 45 
days); Fortes et al. (1998) report an increased number of CTLs (zinc dose = 25 mg/
day for 40 days); Duchateau et al. (1981) and Sandstaed et al. (1982) have observed 
an improvement in response to skin-test antigens and taste acuity (zinc dose = 220 
mg/day for 1-month). Thus, it seems evident from these studies that physiological 
dose of zinc for a long period or high doses of zinc for short periods might induce 
limited effects on immune response perhaps due to a zinc accumulation in various 
organs and tissues with subsequent toxic effect of zinc upon the immune functions 
(Fosmire 1990; Sandstead 1995). In this context, it is useful to remind that high 
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doses of zinc trigger apoptosis of the immune cells in presence of high oxidative 
stress, as reported above. Therefore, zinc supplementation has to be used with cau-
tion for short periods and on alternate cycles. Following that, in our experience, 
zinc treatment at the dose of 15 mg Zn ++ /day for 1-month in Down’s syndrome 
subjects, in elderly and in old infected patients restores thymic endocrine activity, 
lymphocyte mitogen proliferative response, CD4+ cell number, peripheral immune 
efficiency (NK cell cytotoxicity), Th1/Th2 paradigm (Franceschi et al. 1988; Kah-
mann et al. 2006; Mocchegiani et al. 2003) and DNA-repair (Chiricolo et al.1993). 
At clinical level, significant reductions of infection relapses occur in Down’s syn-
drome (Licastro et al. 1994) in elderly and in old infected patients with a faster 
outcome from the pathology (Mocchegiani et al. 2003).  

  Physiological zinc supplementation was reported to lead to a decrement in plasma 
lipid peroxide concentrations in elderly people living in a public home (Fortes et al. 
1997). The positive effect of zinc on lipid peroxide could derive from its protective 
effects on sulphydryl groups against oxidation and the fact that zinc is a component 
of superoxide dismutase (SOD; Mills 1989).  

  Zinc supplementation is also useful in reducing the oxidative stress in old patients 
with diabetes type II (Roussel et al .  2003) because it inhibits NF-kB activation and 
decreases inducible NO synthase. As such, the generation of ROS decreases, thus 
zinc provides a protective effect on β cells against death (Ho et al. 2001).  

  An intriguing point of the zinc supplementation is the increment of ZnT. Elderly 
women treated for 27 days with 22mg of zinc gluconate /day display significant 
increments of ZnT1 gene expression in peripheral leukocytes (Andree, et al. 2004), 
even if the gene expression of the ZnT is sensitive in relation to the immune cells 
considered (Whitney et al. 2003). Such increments of ZnT1 have been also observed 
in human lymphoblastoid cells adding in vitro 50 or 100 μmol/L of zinc (Andree et 
al. 2004), furtherly suggesting the relevance of zinc supplementation also in affect-
ing the gene expression of ZnT and, consequently, the correct maintenance of intra-
cellular zinc homeostasis.  

  That the beneficial effects of zinc supplementation are not to be considered as 
epiphenomena, it comes by the increased survival also in nude and neonatal thymec-
tomized (nTx) mice treated with physiological zinc (18 μg Zn++/day for 1-month) 
in the drinking water, taking into account that they display a very short survival due 
to thymic absence and negative crude zinc balance (Mocchegiani et al. 1995, 2002b, 
2007). The prolonged survival is largely due to mortality reduction (about 50%) by 
infections because zinc also affects the extrathymic T-cell pathway that is prominent 
in old, nude and nTx mice for T-cell maturation and host defense (Abo et al .  2000). 
Indeed, in vivo and in vitro studies have shown that zinc is a key trace element for 
liver T-cell maturation and function, particularly for liver NKT cells bearing TCR γδ 
with high production of IFN-γ (Mocchegiani et al. 2004). Of interest, the increment 
and function of NKT cells (Miyaji et al. 2000) and Tγδ cells (Colonna-Romano et 
al. 2002) also occur in human centenarians, who in turn display satisfactory zinc ion 
bioavailability and good immune response (Mocchegiani et al. 2002a).  

  All these “in vitro” and “in vivo” studies in ageing, some age-related diseases, 
and syndrome of accelerated ageing (nude mice, nTx mice, Down’s Syndrome) 
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demonstrate the pivotal role played by zinc supplementation in maintaining or 
improving global immune response and in fighting the oxidative stress, strengthen 
by findings observed in human centenarians.  

  However, since zinc also affects MT gene expression (Maret 2003), the ques-
tion arises whether zinc supplementation in old age may furtherly increase MT 
causing possible major harmful effects. Old zinc treated mice exhibit no further 
significant increments of liver MT mRNA, suggesting that MT in ageing may be 
already over-expressed before supplementation (Mocchegiani et al. 2002b). Moreo-
ver, the effects observed during zinc supplementation on the immune system, such 
as reduced inflammation and restored Th1/Th2 paradigm (Prasad 2000), suggest 
that intracellular zinc may return available despite over-expressed MT (Mocche-
giani et al. 2002b) with a maintenance of their original protective role. Therefore, 
the possible harmful effect of MT in ageing seems to not constitute a problem dur-
ing physiological zinc supplementation.  

     2.7 Zinc Interaction with Other Micronutrients and Zinc Toxicity  

  The beneficial effect of physiological zinc supplementation must be, however, 
related to the levels of other cations such as cadmium, lead, calcium, iron, manga-
nese and copper. The beneficial effects of zinc on ameliorating toxicity of cadmium 
and lead, accentuation of zinc deficiency by administration of calcium and phytate, 
and production of hypocupremia by excessive zinc intake in humans and animals, 
are some examples of competition phenomena between these cations (Hill 1976). 
Such a competition occurs because these ions have similar valence shell electronic 
structure and, therefore could be antagonist to each other. For instance, the competi-
tion between zinc and iron (Fe++) occurs at the level of cysteine-histidine ligands 
for the formation of iron or zinc “fingers” proteins (Prasad 1993a). If iron is excess, 
a preferential binding of iron than zinc to the metal free-protein occurs. Excess of 
zinc or zinc deficiency impairs DNA-protein interactions of zinc-fingers domains 
with their cognate DNA target sites. In these conditions the production of some 
transcriptional factors like SP1 or TFIIIA is impaired (Thiesen and Bach 1991). 
The same impairment of zinc fingers DNA domains occurs in excess or deficiency 
of copper (Prasad 1993a). This reinforces the notion of the relevance of interactions 
between zinc and copper as well as with other metals in the immune efficiency 
(Sandstead 1995). Thus a limited range of bioavailability exists for each metal. As 
such, immune responses are optimum. Indeed, the beneficial effect of zinc is strictly 
dependent by the dose and the length of treatment. Zinc accumulation or imbal-
ance zinc-to-copper ratio may occur despite low doses of zinc (Fosmire 1990). As 
such, harmful side effects in the cardiovascular system and in the brain may appear 
with increased low-density lipoprotein and cholesterol (Fosmire 1990) and neural 
cell-death (Kim et al. 1999), respectively. Therefore, caution in zinc supplemen-
tation is necessary for avoiding undesirable and harmful unexpected side effects. 
Zinc supplementation must not exceed 2–3 times the RDA/day, for short periods 
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(1–2 months) and on alternate cycles. This treatment doesn’t interfere in copper 
absorption (Faillet-Coudray et al. 2006; Licastro et al. 1994). Zinc picolinate form 
may be the best supplement (Wapnir et al. 1983).  

     3 Selenium  

   3.1 Selenium Biology  

  Selenium (Se) is an essential dietary element for the prevention of some diseases, 
including cancer and infections (Schwarz 1976). Such an assumption has been sub-
sequently confirmed in animals with a selenium deficiency in the diet and concom-
itant treatment with various carcinogens, such as 1,2-dimethylhydrazine (DMH) 
or dimethylbenz(a)anthracene (DMBA), compared with animals fed with higher 
content of selenium in the diet. In this context, although Se deficiency appears to 
affect DMH toxicity with however no inhibition of tumor development by nutri-
tional Se (0.1 ppm Se; Pence and Buddingh 1985), three relevant papers report a 
greater development of carcinoma by DHM or DMBA in various organs (colon 
and mammary gland) in rats fed with selenium deficiency in the diet in comparison 
with rats treated with 5 ppm of Se (Jacobs 1983; Liu and Milner 1992; McGarrity 
and Peiffer 1993). These findings further suggest the ability of dietary selenium 
to inhibit the in vivo metabolism of carcinogens DMBA or DMH with subsequent 
less development of the tumor. With regard to infection, decreased dietary selenium 
can change a normally avirulent B3 coxsackievirus (CBV3/0) into a virulent virus 
(CBV3/20) by inducing changes in viral genoma, especially in viral RNA polymer-
ase mutations (Duarte et al. 1994) that infect heart muscle and cause myocarditis 
with subsequent possible development of dilated cardiomyopathy and death (Beck 
and Levander 2000). In food, selenium derives from vegetables and animal products 
and in particular from the consumption of seafood, liver, and cereals. However, in 
vegetables and cereals the amount of selenium varies in soil in different countries 
and geographical regions (Wasowicz et al. 2003). Indeed, selenium deficiency and 
related diseases have been well documented in geographic regions where the soil 
content is low, such as the Chinese province of Keshan (Li et al. 1985). From this 
Region of China, in fact, Keshan disease is named the pathology characterized by 
selenium deficiency and presence of substantial number of virulent viruses, includ-
ing coxsackieviruses (Li et al. 1995).  

  Mammals can use both inorganic and organic selenium as a nutrient. Most of 
the biological functions of selenium are attributed to selenoproteins, which contain 
selenocysteine residues responsible for their specific activity. Selenoproteins are 
present in every cell type. The human selenoproteome consists of 25 selenoproteins, 
mostly involved in antioxidant defence systems (Kryukov et al. 2003).  

  Glutathione peroxidases (GPxs), a family of the selenoproteins, protect cells 
against oxidative damage by catalysing the reduction of hydrogen peroxide and other 
hydroperoxides (Brigelius-Flohe 1999; Hall et al. 1998). Five selenium dependent 
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GPx isoforms exist in humans and four isoforms in mice. GPx1 is found in the 
cytosol of almost all cells and catalyses the reduction of free hydroperoxides. GPx2 
is expressed in the gastro-intestinal tract and has a substrate specificity similar to 
GPx1; GPx3 is an extracellular enzyme found in plasma and reduces membrane-
bound phospholipid hydroperoxides (Brigelius-Flohe 1999). GPx4 is expressed in 
various tissues, and reduces phospholipid hydroperoxide and hydrogen peroxide 
using also thiols, such as 2-mercaptoethanol, cysteine and homocysteine, other than 
GSH as reductant agents (Roveri et al. 1994). The isoform GPx6 seems to be spe-
cifically expressed in embryonic tissues and olfactory epithelium (Kryukov et al. 
2003). It also exist a selenium independent isoform, GPx5, which is an epididymis 
isoenzyme present in mice and humans (Hall et al. 1998), but its mRNA was found 
to be not translated into functional protein in human epididymis (Ghyselinck et 
al. 1993). Selenium is also involved in the thioredoxin system, a major enzymatic 
system that plays an important role in maintaining the redox state of the cell (Holm-
gren 1985). This system is highly complementary to the GSH system in protecting 
against oxidative stress (Watson et al. 2004). It comprises basically of thioredoxin 
(Trx) and the selenoprotein thioredoxin reductase (TR) and uses the reducing power 
of NADPH to act as a potent antioxidant system as well as a general disulfide redox 
system (Rundolf et al. 2004). Mammalian TR maintains Trx in a reduced state (Hol-
mgren 1985) and reduces a variety of other substrates including nondisulphides. 
The thioredoxin system protects the cell against oxidative stress through a vari-
ety of mechanisms. Trx can directly quench singlet oxygen and scavange hydroxyl 
radicals (Das and Das 2000), or reduced Trx can indirectly serves as an electron 
donor for Trx peroxidase. In addition, human TR is directly capable to efficiently 
reduce lipid hydroperoxides, hydrogen peroxide and organic hydroperoxides using 
NADPH, especially in the presence of catalytic amount of selenocysteine, thus serv-
ing as an important alternative to the Gpx pathway for the elimination of harmful 
hydroperoxides (Bjornstedt et al. 1995). Trx system is also critical for signal trans-
duction (Arner and Holmgren 2000) and in the restoration of the reduced form of 
several antioxidant compounds, including ascorbic acid, lipoic acid, and ubiquinone 
(Nordberg and Arner 2001). In this context, selenomethionine, a potent catalytic 
antioxidant in biological system and an aminoacid occurring in proteins in place of 
methionine (Walter and Roy 1971), reacts more efficiently than methionine (Pad-
maja et al. 1996) with oxidants forming methionine selenoxide which, in turn, is 
effectively and rapidly reduced to seleniomethionine by glutathione (Assmann et 
al. 1998). In contrast, methionine sulphoxide that it is produced by the oxidation of 
methionine in presence of oxidants, is not simply reduced by GSH, but it requires a 
specific enzymatic reaction catalyzed by methionine sulphoxide reductase (Levine 
et al. 1996). Since selenomethionine can occur in proteins such as haemoglobin 
(Beilstein and Whanger 1986), these residues may play a defensive role against 
peroxinitite.  

  Another selenoprotein, which reduces phospholipid hydroperoxides in the 
presence of thiols, is the Selenoprotein P (SeP; Burk et al. 2003). SeP is expressed 
in many tissues and represents the major plasma selenoprotein, which contains 50% 
of the total plasma selenium in the form of selenocysteine. SeP protects endothelial 
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cells against damage from peroxynitrite and transports selenium from the liver to 
peripheral tissues (Burk et al. 2003).  

  Last, but not the least in order of importance, is a class of selenoproteins 
(iodothyronine deiodinase enzymes), which catalyse the peripheral deiodination of 
thyroxin (T4) to 3,3’5-triiodothyronine (T3). These enzymes play crucial roles in 
determining the circulating and intracellular levels of T3 and, consequently, the 
control of growth, development, differentiation, metabolism and finally also the 
immune response (Kohrle 2000; Beckett and Arthur 2005).  

  Immunologically, the ability of selenoproteins to protect the host from oxidative 
stress is vitally important, since many host defence systems rely on the microbio-
cidal effects of macrophage- or neutrophil-generated free-radical species. Oxida-
tive species are generated through general metabolism, during the metabolism of 
xenobiotics and during exposure to ultraviolet radiation (UV) in sunlight. Inflam-
mation as a process to clear infection and damaged tissue also generates great oxi-
dative stress. If antioxidant systems are not functioning correctly, host cells will 
be damaged (McKenzie et al. 1998). Taking into account that the inflammation 
is chronic in ageing as well as oxidative stress (Franceschi et al. 2000), the role 
played by selenium through the selenopreoteins in immune response is therefore 
vital in elderly.  

    3.2 Selenium and Immune Function  

  The influence of selenium on the immune function can be, in part, attributed to the 
same selenoproteins involved in the protection against oxidative damage and, in part, 
to still undefined biochemical pathways. The antioxidant GPxs have probably a role 
in protecting neutrophils from ROS that are produced during inflammation (Arthur et 
al. 2003a, b). Selenium supplementation, in mice, increases the expression of subunits 
alpha (p55) and/or beta (p70/75) of IL-2 receptor (IL-2R) from activated lymphocytes 
and NK cells, thereby enhancing proliferation and clone expansion of cytotoxic pre-
cursor cells. In vitro, selenium enhances the release of tumor necrosis factor (TNF), 
IL-1 and IL-6 from LPS stimulated macrophages ( See  review Beckett et al. 2003). 
However one of the most widely investigated associations between selenium and the 
immune system is the effect of the micronutrient on neutrophil function. Neutrophils 
produce superoxide-derived radicals to take part in killing of microbes. This type of 
process is a balance between the production of sufficient radicals to kill invading 
organisms and the systems that protect the neutrophils themselves from the radicals. 
Thus, although selenium deficiency does not affect neutrophil numbers in a range 
of species, certain aspects of their function are defective (Turner and Finch 1991). 
Neutrophils from selenium-deficient mice, rats and cattle are able to ingest pathogens 
in vitro but are less able to kill them than are neutrophils from selenium-sufficient 
animals. This defective function has been associated with decreased cytosolic GPx 
(GPx1) activity in the neutrophils, which allows the free radicals that are produced in 
the respiratory burst to kill the neutrophils themselves (Arthur et al. 2003b).  
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  Therefore, taking into account all these mechanisms, selenium deficiency has 
been mainly studied in relation to ageing/mortality and in some age-related dis-
eases, whose pathogenesis is related to preservation of membrane integrity and to 
oxidative damage of biomolecules, such as lipids, lipoproteins and DNA.  

    3.3   Selenium, Ageing and Age-related Diseases  

  Selenium deficiency is a condition, mainly attributed to low selenium content in 
the soil or to long-term parenteral nutrition. Selenium is essential for several bio-
chemical mechanisms and selenium blood decline concentrations relate to chronic 
age-related disease such as cancer, cardiovascular disease and immune dysfunc-
tions (Seiler 2001). During ageing, selenium deficiency may occur in relation to 
intestinal malabsorption. However, few data report a marked selenium deficiency 
in old subjects (Seiler 2001). More recently, a paper has explored the relationships  

 between plasma selenium and mortality in an elderly population for a long period of 
observation (9 years):   the EVA (Etude du Vieillissement Artériel) study (Akbaraly et 
al. 2005). The authors have observed during this long period that the mortality rates 
were significantly higher   in individuals with low selenium [1.01 μmol/L: a value 
below the cutoff considered as optimal (1.25–1.50 μmol/L; Thomson 2004; Combs 
2001)]. When the underlying causes of death were considered, an association with 
low selenium and cancer-related mortality was found. The same authors suggest 
that plasma selenium could be an indicator   of longevity in a preaging, independently 
living population   not specifically at risk for cancer and cardiovascular diseases.   Sur-
vival curves illustrate that the relationship between   plasma selenium and mortality 
remained pertinent during the entire   9-year period (Akbaraly et al. 2005). However, 
the mechanism of this potential relationship   is still under debate and further research 
needed especially on the role played by selenoproteins on this phenomenon. Other 
authors demonstrate selenium deficiency in elderly people in relation to hypothy-
roidism (Oliveri et al. 1996). Interestingly, human healthy centenarians display sele-
nium values quite similar to normal elderly (Savarino et al. 2001). As few trials have 
been carried out up to date in elderly, it is difficult to report a specific beneficial 
effect of selenium in immunosenescence, even if beneficial effects of selenium sup-
plementation on lymphocyte mitogen responsiveness have been reported in insti-
tutionalized elderly individuals (Peretz et al .  1991) and in old animals (Roy et al. 
1995). Moreover, a Finnish study adding selenium to fertilizer has shown only an 
increased selenium status in the general population (young, adult, old; Aro et al. 
1995), but not on its possible beneficial effects. The major evidence of the beneficial 
effects of selenium relate to age-associated diseases. Many studies have investigated 
the effects of selenium in carcinogen-exposed animals showing a reduction in tumor 
incidence and/or preneoplastic endpoints (Reid et al. 2002). A supplementation with 
200 μg/day of organic selenium in randomized subjects showed preventive effects 
in the incidence and the mortality from various types of cancer (prostate, colorectal 
and lung cancer; Clark et al. 1998; Reid et al .  2002). Another large supplementation 
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trial in which a physiological amount of selenium (50 μg) was recently performed 
in Lixian (North China) in order to test its possible beneficial effect in preventing 
cancer. A small but significant reduction in total and cancer mortality was observed 
in subjects receiving selenium supplement. The reduction were shown to be greater 
in women than men and interestingly more pronounced in persons under the age of 
55 years compared to individuals older than 55 years (Blot et al. 1995). Consider-
ing these results, it can be assumed that younger persons might be more amenable 
to a protective effect of selenium supplementation with thus a role of selenium in 
preventing age-related diseases or in enhancing the innate immune defenses in the 
course of the pathology, as observed in selenium supplemented cancer patients (200 
mg/d of sodium selenite; Kiremidjian-Schumacher et al. 2000).  

  The relevance of selenium in the etiology of cardiovascular diseases has been also 
studied. Selenium metabolism is potentially involved in several protective biochem-
ical pathways related to cardiovascular disease, such as reduction of LDL levels and 
lipoprotein oxidation, inhibition of foam-cell formation and shift in prostaglandin 
production from prostacyclin to tromboxane (Alissa et al. 2003). However, Wei et 
al. (2004) found no association between death for cardiovascular diseases   and base-
line selenium status in a cohort with a mean serum concentration   of 0.93 μmol/L in 
younger individuals (mean age, 57 years). The major studies on the incidence of car-
diovascular diseases in these last 5 years have been performed in adult people using 
a combinations of multivitamins and some trace elements, including selenium, as 
possible prevention of cardiovascular diseases (atherosclerosis, myocardial infarc-
tion, thrombosis). All these studies have shown a less incidence of cardiovascular 
diseases after supplementation with these combinations in comparison to placebo 
groups (Czernichow et al. 2005; Shenoy et al. 2006). Therefore, the existence of a 
clear link between selenium deficiency “in se” and cardiovascular disease remains 
to be clearly defined.  

  Finally, an intriguing point is the association between selenium deficiency, 
immune response and increased incidence of infections in adults and elderly. Patients 
with systemic inflammatory response syndrome display a strong impairment in 
immune efficiency, a decrease of 40% in plasma selenium concentrations coupled 
with increased morbidity and mortality rates (Forceville et al. 1998). The interrela-
tionships between selenium deficiency, impaired immune response and infections 
have been clearly shown in experimental animals. An inoculated avirulent virus in 
selenium deficient animals turns into a virulent one due to genomic changes within 
the virus, provoking an impaired humoral immune defence (Beck 1999). In humans, 
a relevant clinical trial with multivitamins and selenium has shown an increment 
of CD4+ counts over the baseline levels (Coodley 1995) and enhanced GPx and 
GSH activity (Delmas-Beauvieux et al. 2006) in HIV infected patients This find-
ing suggests that cysteine/GSH are effective natural inhibitors/combaters of (AIDS) 
viruses and thereby capable in preventing the development of chronic virus diseases 
that can lead to AIDS (Rayman 2000). Moreover, supplementation with multivita-
mins and trace elements, including Se, during treatment of pulmonary Tuberculosis 
may reduce mortality in subjects co-infected with HIV (Range et al. 2006). There-
fore, an enhanced oxidative stress, caused by selenium deficiency, is the reason of 
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possible viral genetic changes (Beck et al. 2003) and increased progression of viral 
infections with subsequent impaired immune defense (Daniels 2004).  

  Additionally, it is also of interest for the role played by selenium deficiency in 
viral infections the following points: (i) the emergence during these last 4 years 
(from 2003) of a newly recognized human disease agent (coronavirus) that causes 
SARS from Guangdong Province of China (Lashley 2006) as well as from Northern 
Vietnam (Reynolds et al. 2006), where significant areas of overt selenium deficiency 
exist (Xia et al. 2005); ii) the increased risk of enhanced virulence of influenza virus 
in elderly (Ellis et al. 2003) associated with a possible selenium deficiency (Seiler 
2001). Therefore, the selenium deficiency may be considered as a relevant risk fac-
tor for the appearance of age-related diseases (cancer, cardiovascular diseases and 
infections by viruses, which may become more virulent or mutated). Such a risk is 
of relevance in elderly because accumulating data suggest that persistent infection 
with Varicella-zoster virus (VZV; Arvin 1996), Epstein-Barr virus (EBV; Stowe et 
al. 2007) and particularly CMV (McVoy and Adler 1989) impacts upon the immune 
system in aging and may contribute to the immune risk phenotype (IRP), which pre-
dicts remaining longevity in the very elderly (Pawelec et al.   2005). Specific study 
on these aspects should be encouraged taking into account the possible relevant 
implications for public health.  

    3.4  Interrelationship Between Zinc and Selenium: Implications 
for Healthy Ageing  

  Dietary zinc and selenium are important nutritional factors for the immune response 
in protecting against the appearance of age-related diseases. The regulation of zinc 
ion bioavailability by selenium and selenoproteins has been recently investigated 
(Maret 2003). Zinc/thiolate coordination occurs in MT affecting the binding and 
release of zinc from MT. Zinc/thiolate cluster of MT can be oxidized by glutath-
ion disulfide (GSSG) or other disulphides in order to release zinc. However, the 
efficiency of this chemical reaction seems very low even at high concentrations of 
GSSG in the absence of selenium. In contrast, the release of zinc from MT occur 
very rapidly following the addition of selenium compounds that has the capacity 
to form a catalytic selenol(ate), releases zinc (Maret 2003). The mechanism of the 
reaction was suggested to proceed through an activated selenenyl sulphide R-Se-
S-G intermediate which, in turn, oxidizes the zinc-thiolate cluster of MT to form 
R-Se-S-MT with the concomitant release of zinc during the oxidation (Chen and 
Maret 2001). The selenol group is subsequently released by the attack of a nearby 
thiol group of MT that convert R-Se-S-MT into thionein generating a catalytic cycle 
of oxidative zinc release from MT. Other oxidized selenium compound, such as 
selenoxide and selenic acid may be directly reduced by MT through the formation 
of a R-Se-S-MT intermediates and the concomitant release of zinc, followed by 
the formation of an inter- or intramolecular disulfide bond (Chen and Maret 2001; 
Jacob et al. 1999; Klotz et al. 2003).  
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  Selenium compounds also catalyze the release of zinc from MT in peroxidation 
and thiol/disulfide-interchange reactions. In presence of t-butylhydroperoxide, GPx 
catalyses the MT oxidation with subsequent zinc release, suggesting that MT may 
serve as reducing agents for GPx (or at least some GPx isoforms) in alternative to 
GSH (Jacob et al. 1999).Therefore, the assessment of zinc ion bioavailability, MT 
and selenium concentrations could represent useful tools for studying the physiol-
ogy of successful ageing. Indeed, a recent study shows that 84.4% of the ‘healthy’ 
nonagenarian/centenarians display both zinc and selenium levels equal or greater 
than the lowest values in the elderly (Savarino et al. 2001). Moreover, healthy nona-
genarians display low MT, good zinc ion bioavailability (Mocchegiani et al. 2002a) 
and satisfactory GPx activity (Mecocci et al. 2000). These findings suggest that an 
adequate zinc and selenium content in cells and tissues are crucial to achieve health 
ageing and longevity. In this context, Girodon et al. (1999) determined the effects 
of a long-term (for 2 years) daily supplementation with zinc (20 mg) plus selenium 
(100 μg) on immunity and the incidence of infections in a large number (n.725) 
institutionalized elderly people (> 65 years). The main results of the study were: 
(1) selenium deficient patients decreased from about 80% to 5–10% in the selenium 
supplemented group after 6 months of supplementation with respect to placebo 
group; (2) antibody titres after influenza vaccine were higher in groups that receive 
trace elements; (3) trace element supplemented patients were those who remained 
most free of respiratory tract infections than placebo group. These findings suggest 
that low dose supplementation of zinc and selenium provides significant improve-
ment in elderly patients by increasing the humoral response after vaccination and 
decreased influenza compliances (respiratory tract infections) with thus possible 
achievement of health longevity.  

     4 Conclusions and Future Remarks  

  Beneficial effects obtained by zinc and selenium supplementation alone or associ-
ated on immune response and at clinical level are summarized in Table 1. Therefore, 
even if some controversial finding exists on the “real” necessity of micronutrient sup-
plementation (Dangouret al.2004), the huge amount of data reported associated to 
observational data, clearly suggests that zinc and selenium play a pivotal role for 
immunosenescence in order to achieve healthy ageing and longevity. However, zinc 
seems to plays the major role because some biochemical mechanisms involved in the 
action of selenium are under the control of zinc ion bioavailability, which in turn is 
affected by MT and ZnT expression. One of the most relevant biochemical pathways is 
the release of zinc by MT through interactions with GPx and intracellular disulphides. 
However, some points require further investigations. First of all, the reason of a possi-
ble limited zinc release in ageing and the biochemical mechanism involved, in partic-
ular addressing NO-related intracellular pathways. Such an investigation is relevant 
taking into account the double face of NO action: or as antioxidant or as inducer of 
cell death (Colasanti and Suzuki 2000). Although useful tools are now available, such 
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as NO donors and zinc fluorescent probes (zinpyr-1 and fluozin-3), in order to test the 
capacity of the cells in the zinc release by MT, the quantity of labile intracellular zinc 
in old age remains to be furtherly explored. This last point is also crucial because a 
fine modulation of intracellular labile zinc is fundamental in order to avoid an exces-
sive zinc release by MT that can result toxic for the cell with subsequent cell-death. 
Moreover, the association of these studies with the role played by ZnT in ageing may 
give a more exhaustive picture of the role played by zinc in ageing. The results may 

  Micronutrients    Possible causes of micronutri-
ent deficiency in ageing  

  Immune and clinical/biochemical positive 
effects of micronutrient/s supplementation  

  Zinc    Frequent deficiency due to low 
dietary intake, enhanced 
urinary excretion, intestinal 
malabsorption. A limited 
zinc release from MT has 
been also proposed.  

   1.  Enhanced NK cell cytotoxicity, cell-medi-
ated immune response and thymulin activ-
ity; increased IFN-γ production, reduced 
levels of activated T helper cells; improved 
response to skin-test antigens and taste 
acuity  

 2. Lowering of plasma lipid peroxide levels  
 3. Restoration of TH1/TH2 paradigm 
  4.  Increased ZnT1 and ZnT expression in 

lymphocytes 
  5.  Reduced incidence of infection relapses in 

elderly, old infected patients and Down’s 
syndrome subjects

   6. Marginal effects on copper levels
   7.  Increased rate of survival in old, nude and 

thymectomized mice 
  8.  Preservation of liver NKT γδ cells in old 

mice
   9.  Preservation of liver NKT cell cytotoxicity 

in old mice 
 10.  Inducing apoptosis of only damaged cells in 

presence of high oxidative stress  

  Selenium    Decline with age mainly due to 
intestinal malabsorption  

   1. Increased lymphocyte mitogen response
   2. Increased IL-2 receptor expression 
  3. Increased neutrophil function 
  4. Increased NK cell cytotoxicity 
  5. Decreased lung, colorectal and prostate 

cancer incidence 
  6. Lowering of cancer mortality 
  7. Less incidence of cardiovascular diseases 
  8. Decreased virulence of ECV, CBV and 

CMV  

  Selenium plus 
zinc  

        1.  Improvements of antibody titres after influ-
enza vaccination 

  2.  Decreased influenza compliances (respira-
tory tract infections)  

   Table 1      Possible causes of zinc and selenium deficiency in ageing and the main positive immune 
and clinical/biochemical effects of the related supplementation in experimental animals, in elderly 
and in syndrome of premature ageing (Down’s syndrome)    
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form a rationale to select old individuals who effectively need zinc supplementation 
because zinc, in a some extent, may be also toxic for the immune system leading to a 
further worsening of the already dysfunctional immune functions in ageing. In fact, 
many clinical trials of zinc supplementation in elderly report contradictory data on 
the benefit of zinc supplementation upon the immune functions. Thus, it is necessary 
to have many useful tools to screen real zinc-deficient old subjects. Among these 
tools, the genetic screening for some polymorphisms of MT, such as MT1A, might 
constitute a useful additional value in screening old subjects healthy ageing and lon-
gevity. Indeed, old subjects noncarriers of the C allele for MT1A +647 polymorphism 
display a better preservation of intracellular zinc homeostasis at advanced age, less 
inflammation, and are predisposed to the longevity with respect to old subjects car-
rying the C allele for the same MT polymorphism. This finding further suggests that 
only a certain number of old subjects are prone to zinc supplementation, and not all 
old population. In the case herein reported, a simple genotype screening might be use-
ful to check the old subjects who should more frequently assess their zinc status for 
a possible zinc supplementation. In this context, genetic studies and the effect of zinc 
supplementation exclusively in old subjects with determinate polymorphisms for MT 
and IL-6 are studied in ZINCAGE project (www.zincage.org) funded by European 
Commission (EC) in FP6. Another project funded by EC in FP5 (ZENITH) confirms 
the presence of defects in zinc status and immune response in elderly. However, the 
biology of zinc is very complex and further studies are necessary in ageing especially 
addressed to the zinc-binding proteins strictly related to the inflammation and oxida-
tive stress because both these conditions are the basis for the onset of a possible zinc 
dyshomeostasis in elderly (Mocchegiani et al. 2006).  

  With regard to selenium, the mechanisms of action of Se through selenopro-
teins against oxidative damage have been clear established, even if some aspects 
at genetic level especially regarding to the glutatione peroxidases require further 
studies. Indeed, while on one hand the genomic sequence of all GPxs isoforms 
has been established, the evolutionary reasons of an incorrect splicing of the sele-
nium-independent GPx5 in humans is still to investigate. Anyway, selenium through 
selenoproteins has a wide range of action affecting the antioxidant system, the 
thyroid hormones turnover and the immune functions with a special focus on innate 
immune response. On the other hand, a correct thyroid hormone turnover affects 
the immune performances (Mocchegiani et al. 2006). As such, selenium treatment 
has been performed in various pathologies characterized by selenium deficiency, 
high oxidative stress and impaired immune function, such as cancer, infections, 
cardiovascular diseases as well as ageing. In this context, the more intriguing 
finding is the discovery that selenium deficiency in the diet or in soil is implicated 
in the mutation of a normally avirulent B3 coxsackievirus (CBV3/0) into a viru-
lent virus (CBV3/20) by inducing changes in viral genoma. Moreover, a marginal 
selenium deficiency (1.10 μmol/L) causes a higher rate of mortality (by cancer) 
in old people with respect to old individuals with baseline selenium values (1.25 
μmol/L). Therefore from the review data herein reported, zinc and selenium in the 
daily diet during ageing may be relevant in order to preserve immune and anti-
oxidant functions, which can lead to healthy ageing and longevity. Alternatively, a 
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combined oral supplementation of these micronutrients can be recommended taking 
into account the beneficial effects of zinc and selenium in improving the humoral 
immune response in old vaccinated individuals (Duchateau et al. 2004; Girodon et 
al. 1999). However, the gap between the estimated average requirement of zinc and 
the upper limit of safe intake is relatively narrow, because excessive zinc may be 
toxic (Fosmire 1990). Concerning to selenium, even if few reported cases have been 
associated with an excessive intake of selenium, it has to be taken into account that 
the Institute of Medicine of the National Academy of Sciences has set a tolerable 
upper intake level for selenium at 400 micrograms per day for adults to prevent the 
risk of developing selenosis (Johnson et al. 2003). Therefore, supplementation with 
zinc and selenium can be recommended in old people who effectively need zinc 
and/or selenium supplementation after a careful evaluation of the “zinc/selenium 
status” through plasma measurement, clinical features and possibly evaluating the 
intracellular content of zinc and selenium. The usefulness of MT polymorphisms in 
identifying subjects at risk for zinc deficiency might be an additional tool. As such, 
the impaired immune functions in elderly, through these two trace elements, may be 
restored with subsequent healthy ageing and longevity.  
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LFA leukocyte functional antigen
LT leukotrienes
LXR liver X receptors
MAPK mitogen-activated protein kinases
MHC major histocompatibility complex
PAG phosphoprotein associated with glycosphingolipid-enriched microdomains
PG prostaglandin
PIP

2
 phosphatidylinositol(4,5)-bisphosphate

PKC protein kinase C
PLC/D phospholipase C/D
PPAR peroxisome-proliferator-activated receptor
PUFA polyunsaturated fatty acid
SMAC supramolecular activation cluster
STAT signal transducer and activators of transcription
TCR T cell antigen receptor
TX thromboxane

                                        Abstract:        Long chain polyunsaturated fatty acids (PUFAs) are   well-known for 
their beneficial immunomodulatory effects in a variety of   autoimmune and inflam-
matory disorders. The underlying molecular   mechanisms are manifold, but are still 
elusive to a large extent. Several cell types are target of PUFA action. In this chapter, 
the effects of PUFAs on T-cell activation and function are discussed. PUFAs directly 
affect T-cell signaling and thus activation as well as T-cell interactions with antigen-
presenting cells (APCs). The mainstream of publications in the field describes alter-
ations of the lateral membrane organization as crucial for PUFA action on T-cells. 
Therefore, this chapter includes a brief overview over the current understanding 
of membrane microdomains, so-called “lipid rafts,” and their role in T-cell signal 
transduction.  

         Keywords   :     Immunological synapse    •     Lipid rafts    •     Omega-3 fatty acids    •    Signal 
transduction    •     T-lymphocytes    

     1 Introduction  

   Long chain polyunsaturated fatty acids (PUFAs) are   well-known for their benefi-
cial effects in a variety of   autoimmune and inflammatory disorders. The under-
lying molecular   mechanisms are manifold but are still elusive to a large extent 
(Stulnig 2003). Here, we discuss the effects of PUFAs on T-cell activation by 
directly affecting T-cell signaling as well as T-cell interactions with antigen-pre-
senting cells (APCs). The mainstream of publications in the field describes altera-
tions of the lateral membrane organization as crucial for PUFA action on T-cells. 
Therefore, this chapter includes a brief overview over the current understanding 
of “lipid rafts” and their role in T-cell signal transduction. Figure 1 gives a basic 
overview over these mechanisms as discussed in this chapter. PUFA-mediated 
alterations and their relation to immunosenescence are discussed elsewhere in 
this book.  
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   1.1 PUFAs–a Short Introduction  

   Vertebrate animals lack desaturases that introduce double bonds methyl-terminal of 
Δ9 of the fatty acid chain. Therefore, fatty acids containing double bonds at the n-6 
or n-3 position (counted from the methyl terminus) such as linoleic acid (18:2 (n-6)) 
and α-linolenic acid (18:3 (n-3)) are essential to them. The mentioned C18 essential 
fatty acids can undergo a series of elongations and desaturation steps that result 
in the formation of longer-chain n-6 and n-3 PUFAs but with varying efficiency. 
Most prominent long-chain PUFAs are arachidonic acid (20:4 (n-6), AA), eicos-
apentaenoic acid (20:5 (n-3), EPA) and docosahexaenoic acid (22:6 (n-3), DHA; 
Jump 2002). The most common dietary sources of n-6 PUFAs are corn, safflower, 
soybean, and sunflower oils. Sources for n-3 PUFAs are green leafy vegetables, 
walnuts, and rapeseed and flaxseed oils, but most of the long chain n-3 PUFAs are 
obtained directly from dietary intake of marine fish oils (Burdge and Calder 2005; 
Calder 2002). The observation that populations with high marine fish consumption, 
have a very low incidence of inflammatory and autoimmune disorders provided a 
basis for the hypothesis that n-3 PUFA possess immunoregulatory and antiinflam-
matory activities (Calder 1998).  

         1.2 PUFAs as Immunomodulatory Agents  

   PUFA effects are often modest in clinical studies and the results are not unequivocal. 
n-3 PUFAs have been shown to evoke clinically significant beneficial effects in 
patients   with chronic inflammatory diseases such as Crohn’s disease (Belluzzi 
et al. 1996), atherosclerosis (Thies et al. 2003; Zampolli et al. 2006), colitis (Mills 
et al. 2005), graft-versus-host disease (Takatsuka et al. 2002), psoriasis (Mayser 

Fig. 1 Overview on mecha-
nisms underlying PUFA 
effects on T-cell signaling 
and activation. Black arrows 
indicate metabolic conver-
sions, gray arrows indicate 
possible effects on the 
designated items. For details 
see main text
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et al. 2002a), atopic dermatitis (Mayser et al. 2002b), multiple sclerosis (Gallai 
et al. 1995), asthma (Broughton et al. 1997), and systemic lupus erythematosus 
(Leiba et al. 2001). Probably the best evidence of PUFA effects is available for 
treatment of patients with rheumatoid arthritis (Fortin et al. 1995; Stamp et al. 
2005). In addition to reducing morning stiffness and the number of tender joints, 
n-3 PUFA may be beneficial for rheumatoid arthritis patients since it decreases 
the need for antiinflammatory drugs (Calder 2006). Most strikingly, dietary sup-
plementation with n-3 PUFA leads to a statistically significant reduction of fatal 
cardiovascular events in patients with prior myocardial infarction (GISSI Study 
Group 1999). PUFA effects have also described for other clinical issues related 
to dysregulated inflammation such as aging (Pepe 2005; SanGiovanni and Chew 
2005; Yehuda et al. 2002) and insulin resistance (Suresh and Das 2006; Todoric 
et al. 2006; Winzell et al. 2006; Xiao et al. 2006). Possible anticancer properties of 
PUFAs are discussed controversially (Chapkin et al. 2007; MacLean et al. 2006).  

    1.3 Cellular Targets of PUFA Effects  

   Immunomodulatory effects of PUFAs, in particular n-3 PUFAs, in animal studies 
and different cell types in culture are well accepted (Calder 2006; K Fritsche 2006; 
Stulnig 2003). PUFAs inhibit monocyte/macrophage functions including cytokine 
production, phagocytosis, and expression of T-cell stimulatory molecules (Calder 
et al. 1990; Hughes et al. 1996; Lokesh et al. 1990). Furthermore, natural killer 
(NK) cell activity has been shown to be affected by PUFA (Meydani et al. 1988). 
On the other hand, PUFAs (n-6 and n-3) have been shown to induce a respiratory 
response and degranulation of cord blood neutrophils possibly counteracting anti-
inflammatory actions (Ferrante et al. 1996). As a basis for further considerations in 
this chapter, it has been known for several years that PUFAs potently affect T-cells 
by inhibiting proliferation, surface activation marker expression, and cytokine 
production (Chapkin et al. 2002; Costabile et al. 2001; Fowler et al. 1993; Meydani 
et al. 1991; Pompos and Fritsche 2002; P. Zhang et al. 2006; Zurier et al. 1999).  

        1.4  General Mechanisms of Immunomodulatory PUFA Effects  

   PUFAs are precursors of immunologically active lipid mediators, i.e. eicosanoid 
messenger molecules such as prostaglandins (PG), leukotrienes (LTs) and throm-
boxanes (TXs). LTs and TXs are usually derived from AA that is liberated from 
membrane phospholipids by phospholipase A. Metabolism of AA by cyclooxyge-
nases (COX) leads to generation of PG and TX of the 2-series, whereas metaboli-
sation via 5-lipoxygenases gives rise to, e.g., LT of the 4-series. PUFA of the n-3 
series interfere with the biosynthesis of AA-derived molecules and by themselves 
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give rise to chemically different mediator molecules. When EPA is metabolized 
instead of AA by COX, PG and TX of the 3-series are produced that exert attenuated 
or partially different biological effects (Calder 2002; Calder et al. 2002). Moreover, 
although the affinity of COX for EPA is low, EPA inhibits COX activity, in particular 
COX-1 activity, for AA oxygenation (Wada et al. 2007). In addition to directly inter-
fering with enzymes of eicosanoid synthesis, PUFA can also affect protein levels of 
involved enzymes by altering gene expression as shown for COX-2 in monocytes 
(JY Lee et al. 2003a). Though n-6 and n-3 PUFA differently affect eicosanoid syn-
thesis, the functional outcome of these changes with respect to immunomodulation 
are often not predictable. For instance, AA, but not EPA has been shown to inhibit 
IL-2-induced T-cell proliferation in vitro (Santoli et al. 1990). Moreover, in vivo 
interactions of the generated messenger molecules are hardly predictable. Differ-
ences of in vitro and in vivo eicosanoid production may occur (Knapp et al. 1986; 
Saito et al. 1997) and species differences in eicosanoid effects, as shown, e.g., in 
humans compared to rats (Morita et al. 1983). Hence, extrapolations of in vitro data 
to the in vivo situation have turned out to be extremely difficult.  

   Recent research has characterized endogenous mediators of resolution, the 
actively regulated program of returning from inflammation to a healthy state 
(Gilroy et al. 2004). These resolving lipid mediators, named resolvins and pro-
tectins, are synthesized in several enzymatic steps from EPA, DHA, and also n-6 
AA (Serhan 2004, 2007) additionally disproving the paradigm that n-3 PUFAs act 
via simple replacement of n-6-derived inflammatory mediators. The contribution 
of these novel classes of PUFA-derived lipid mediators to the beneficial and antiin-
flammatory effects remains to be elucidated, but since they potently drive the pro-
gram of resolution in nanomolar concentrations (Bannenberg et al. 2005; Schwab et 
al. 2007), the therapeutic potential of these lipid mediators appears promising.  

   Another principal mechanism for modulation of immune responses by PUFAs 
is through direct alteration of gene expression by binding and activation nuclear 
receptors, i.e. ligand-binding transcription factors. Peroxisome-proliferator-activated 
receptor (PPAR)γ preferentially binds a variety of PUFA and their derivatives and has 
been shown to be involved in lymphocyte activation and macrophage differentiation 
(Clark et al. 2000; Marx et al. 1998; Yang et al. 2000). Activation of PPARγ could be a 
mechanism of PUFA-mediated immunomodulation also by directly affecting T-cells 
(Clark et al. 2000; Deckelbaum et al. 2006; Yang et al. 2000). However, PPARγ is 
also activated by much more abundant monounsaturated fatty acids. In addition to 
PPARγ, PPARα and PPARδ can bind fatty acids, but with even less specificity for 
PUFA. Liver X receptors (LXR) α and β are inhibited by monounsaturated and 
PUFAs (Desvergne and Wahli 1999). Retinoid X receptors, the heterodimer partner 
for a variety of nuclear receptors including those mentioned above, is activated by 
DHA with some selectivity of AA (de Urquiza et al. 2000; Lengqvist et al. 2004). 
However, nuclear receptors generally lack adequate specificity for PUFA to explain 
their immunomodulatory effects. Moreover, suppressive effects in vitro have mostly 
been found with rather unselective nuclear receptor ligands so that the impact of 
nuclear receptors in general and PPARγ in particular on PUFA-mediated immu-
nomodulation is doubtful (Jump 2002; Stulnig and Zeyda 2004).  
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         2 Mechanisms of PUFA Effects on T-cell Signaling  

       2.1 T-cell Signal Transduction–The Conventional Concept  

   Activation of T-cells requires stimulation of the T-cell antigen receptor (TCR)/CD3 
complex and costimulatory receptors. Triggering CD3 leads to rapid autophospho-
rylation of Src-family protein tyrosine kinases and phosphorylation of immunore-
ceptor tyrosine-based activation motifs (ITAMs) in the cytoplasmic domains of the 
CD3 complex, thereby facilitating SH2 domain-mediated binding of other signaling 
molecules such as Syk-family kinases ZAP-70 and Syk (Kane et al. 2000; Wange 
and Samelson 1996). ZAP-70 associates with phosphorylated CD3ζ-ITAMs and 
is subsequently activated by Lck. Following phosphorylation by ZAP-70, the cen-
tral adaptor protein linker for activation of T-cells (LAT) recruits phospholipase C 
(PLC)γ to the cell membrane (WG Zhang et al. 1998a). PLCγ1 is also activated by 
ZAP-70 to liberate inositol[1,4,5]-trisphosphate (IP

3
) from the plasma membrane 

lipid phosphatidylinositol[4,5]-bisphosphate (PIP
2
) thereby eliciting an increase in 

cytoplasmic calcium concentration, a key event for promoting downstream activa-
tion (Berridge et al. 2000). Activation of further signaling mediators is partially 
dependent on costimulatory signals that are triggered via costimulatory cell surface 
receptors such as CD28 (Schwartz 1992). In consequence to early protein phospho-
rylation steps and calcium response, mitogen-activated protein kinases (MAPKs) 
are activated by phosphorylation. The three major families of MAPKs, extracel-
lular signal-regulated kinases (ERK), c-Jun NH2-terminal kinases (JNK), and p38 
MAPK, are regulated by distinct but cross-talking signaling cascades (Garrington 
and Johnson 1999). Such signals culminate in the activation of transcription factors 
such as NF-AT, AP-1, and NF-κB (Baeuerle and Henkel 1994; Karin et al. 1997; 
Masuda et al. 1998). These transcription factors bind recognition sites within pro-
moter sequences to induce transcription of cytokines including interleukin-2 (IL-2), 
the major T-lymphocyte growth factor (Cantrell 2002). Thus, T-cell stimulation 
leads to interleukin production and proliferation, thereby promoting the adaptive 
immune response.  

        2.2 PUFA Effects on T-cell Signaling and Activation  

   The most upstream T-cell signaling events affected by PUFA treatment are phospho-
rylation of LAT and PLCγ and calcium signaling (Chow et al. 1991; Stulnig et al. 
1998; Zeyda et al. 2002). Further downstream at the level of MAPK, PUFA highly 
selectively inhibit JNK phosphorylation and activation, whereas phosphorylation of 
p38 MAPK and ERK-1 and-2 remain essentially unaltered by PUFA treatment of 
Jurkat and peripheral blood T-cells (Zeyda et al. 2003). Analyses of transcription 
factor activation revealed an inhibition of NF-AT activity, while activation of AP-1 
and NF-κB are not affected by PUFA-treatment. However, at least in Jurkat cells, 
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an involvement of distinct protein kinase C (PKC) isoforms and NF-κB has been 
reported (Denys et al. 2005), and PUFA-mediated inhibition of NF-κB activation 
has been confirmed in rats (J. Wang et al. 2007b).  

   On level of cytokine expression, PUFA were found to inhibit IL-2 and IL-13, but 
not interferon (IFN)-γ, IL-4, IL-9, or IL-10 further indicating selectivity of PUFA 
effects rather than general T-cell inhibition (Zeyda et al. 2003). Half-maximal 
effects for inhibition of IL-2 occurred at about 5 μM suggesting significance also 
for in vivo PUFA treatment. In addition, expression of the cell surface activation 
markers CD25, but not of CD69 was strikingly inhibited by PUFA treatment. Thus 
PUFA inhibit T-cell downstream signaling in a highly selective manner (Zeyda 
et al. 2003).  

   In contrast to these in vitro data, in vivo data on PUFA effects on T-cell driven 
immune esponses have not shown such high selectivity in inhibition but more gen-
eral effects e.g., including reduction of serum concentrations of IFN-γ (KL Fritsche 
et al. 2000; J Wang et al. 2007b). These differences could be due to different ways 
of T-cell activation in vivo compared to in vitro. In vivo, T helper cells that drive 
immune responses are stimulated via APCs. For efficient T-cell stimulation, the 
contact site between T-cell and APC requires a complex organization known as 
“immunological synapse.” A study shows that formation of the immunological syn-
apse is altered when T-cells have been treated with PUFA (Geyeregger et al. 2005). 
Such alterations (discussed in detail below) could lead to diminished activation of 
pathways that are not intrinsically altered in PUFA-treated T-cells when stimulated 
via antibodies to cell surface receptors. Hence PUFA-mediated alterations in IS 
formation could underlie the more general deficiency in T-cell activation found in 
vivo. On the other hand a recent in vivo study suggests increased expression of the 
downregulatory coreceptor CTLA-4 to be responsible for the PUFA-mediated block 
in CD4+ T-cell activation (Ly et al. 2006). Hence, PUFA effects and mechanisms 
are manifold and an estimation of the relative contribution of different mechanisms 
to PUFA-mediated alterations of T-cell activation in vivo is extremely difficult. 
According to the availability of convincing experimental data, this book chapter 
focuses on PUFA-mediated alterations of the cell membrane and their functional 
consequences.  

    2.3 Lipid Rafts and Their Role of in T-cell Signaling  

   The lipid raft model is based on the observation that cholesterol and sphingolipids 
are not distributed evenly in the plasma membrane as suggested by the classical 
fluid mosaic model (Singer and Nicolson 1972), but rather assemble to microdo-
mains (“rafts”) in an so-called “liquid ordered” state that float within the rest of 
the membrane (DA Brown and Rose 1992; RE Brown 1998; Rietveld and Simons 
1998). The formation of lipid domains within the cell membrane facilitates a spa-
tial sequestration of membrane proteins. The most common biochemical method 
to analyze lipid rafts is based on the partial insolubility of membranes in nonionic 
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detergents such as Triton X-100 at 4°C. As a consequence, when such membrane or 
cell lysates are subjected to density gradient ultracentrifugation, the detergent-insol-
uble membranes float to low density fractions and can be separated from soluble 
and nonmembrane fractions. Together with lipid components, membrane proteins 
are also separated into detergent soluble and insoluble fractions. Proteins found in 
detergent-insoluble fractions fulfill specific roles in cellular processes, particularly 
in cell signaling, suggesting a functional role of rafts in these processes (Simons and 
Ikonen 1997). Of note, the nature and even the existence of lipid rafts is a matter of 
debate (Munro 2003). Novel experimental data of determination of single molecule 
movements (Dietrich et al. 2002; Drbal et al. 2007; Fujiwara et al. 2002; Kusumi 
et al. 2005; Kusumi and Suzuki 2005; Schutz et al. 2000; Wieser et al. 2007) as well 
as the role of protein protein interactions have to be integrated into the model of 
membrane compartmentalization (Zeyda and Stulnig 2006). But in spite of modifi-
cations to be made on the concept of lipid rafts, the lipid raft model definitely help-
ful for the understanding of T-cell signal transduction as well as PUFA effects.  

   Several mechanisms target proteins to detergent insoluble membrane domains. 
For instance, glycosylinositolphasphatidyl (GPI)-anchored proteins are generally 
targeted to lipid rafts and have frequently been used as lipid raft markers (Cinek and 
Horejsi 1992). GPI anchors consist of a phosphatidylinositol typically containing 
two long-chain acyl moieties (Roberts et al. 1988) that insert into the exoplasmic 
leaflet of the membrane and a head group linked via an amide bond to the C-ter-
minal residue of the protein, which usually has no other direct connection to the 
membrane. Another type of lipid modification that targets proteins to lipid rafts 
is acylation such as myristoylation and palmitoylation (Shenoy-Scaria et al. 1993; 
Zacharias et al. 2002). In general, two saturated acyl moieties target proteins to lipid 
rafts, independent of whether a protein spans the membrane or is linked to the mem-
brane merely by the lipid (Moffett et al. 2000). Prenylated proteins do not generally 
associate with rafts. Ras proteins may be prenylated and additionally palmitoylated 
allowing differential targeting to raft and nonraft fractions due to variations of lipid 
modifications (Melkonian et al. 1999; Roy et al. 2005). Of note, acylated proteins 
are attached to the inner leaflet of the cell membrane, in contrast to GPI-anchored 
proteins, which are located at the cell surface.  

   Targeting specific proteins to rafts enables a spatial organization of membrane 
proteins that preferentially reside in, or are excluded from rafts. In consequence, 
confined zones with specialized functions due to particular protein composition are 
created. Moreover, a fine-tuning of protein affinity for distinct lipid environment, 
possibly supported by protein-protein interactions (McConville and Menon 2000; 
Shogomori et al. 2005) may be a basis for lipid raft heterogeneity. Raft heterogeneity 
is indicated by experimental data and could not only include the existence of differ-
ent subsets of rafts, but also zones within one raft (McCabe and Berthiaume 2001).  

   Strikingly, many cytosolic proteins that are linked to the membrane by lipid 
anchors are crucial signaling mediators. Accordingly, Src family kinases such as Lck 
and Fyn (Arreaza et al. 1994) and GTPases such as H-Ras (Prior and Hancock 2001) 
are enriched in rafts. In contrast, most transmembrane proteins, e.g., the phosphatase 
CD45, are generally excluded from rafts unless they are acylated such as the TCR 
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coreceptors CD4 and CD8b (Cerny et al. 1996) and adaptor proteins including LAT 
(WG Zhang et al. 1998b) and phosphoprotein associated with glycosphingolipid-
enriched microdomains (PAG, also named Cbp; Brdicka et al. 2000; Kawabuchi et al. 
2000), both of which are important molecules of the T-cell signaling machinery.  

   Alike most transmembrane proteins, components of the TCR, i.e., the clonally 
specific heterodimer noncovalently associated with the invariant CD3 adapter com-
plex, are found outside of lipid rafts and thus spatially separated from raft resident 
molecules that mediate the cytosolic signaling processes. The decisive clue for the 
common model how ligand binding to TCR mediates intracellular signaling was the 
observation that, depending on the Src family kinase activity, phosphorylated CD3 ζ 
chains can be found within lipid rafts upon TCR stimulation together with phospho-
rylation-activated ZAP-70 (Montixi et al. 1998). Hence, it appeared plausible that 
upon ligand binding the TCR/CD3 complex is recruited to membrane rafts and thus 
moves from an environment containing inhibitory phosphatases such as CD45 to con-
fined zones with enhanced signaling activity. However, the CD45 phosphatase has 
recently been found to predominantly activate Lck activity by inducing conforma-
tional changes, and small amounts of CD45 are targeted to rafts as assessed by Triton 
X-100 extraction. An interpretation of the role of CD45 is to keep Lck activation 
balanced by counteracting the Lck-deactivating kinase Csk (Davidson et al. 2003; 
Irles et al. 2003). Other findings point towards another interpretation, namely that raft-
excluded CD45 positively regulates T-cell activation (M Zhang et al. 2005).  

   The notion of lipid rafts as functional signaling microdomains was corroborated 
by experimental disintegration of lipid rafts by cholesterol depletion with methyl-
β-cyclodextrin and polyene antifungal agents filipin and nystatin, which impair TCR-
mediated signaling (Xavier et al. 1998). Since only phosphorylated CD3ζ is recruited 
to lipid rafts and CD3 phosphorylation is supposed to occur only inside rafts according 
to the raft localization of Lck, it remained unclear which mechanisms could mediate 
the induced translocation of TCR components to rafts. A possible solution for this 
problem may be the finding that TCR components can be recovered from isolated rafts 
constitutively and independent of Src-family kinase activity when raft were isolated 
at physiological temperature using Brij 98, a detergent characterized by its relatively 
bulky polyoxyethylene headgroup and monounsaturated ether moieties (Drevot et al. 
2002). According to this finding, CD3 tyrosine phosphorylation has been suggested to 
be initiated upon ligand-induced conformational changes of the TCR complex rather 
than by translocation of the TCR into lipid rafts (Drevot et al. 2002).  

   Lipid rafts are not only involved in the initiation of the most upstream signal-
ing events, but also stabilize and amplify existing signals. This function is enabled 
by aggregation of rafts to larger complexes accompanied by further recruitment 
of important signaling mediators such as LAT and associated molecules (Janes 
et al. 1999) as well as TCR components (Valensin et al. 2002). These raft com-
plexes were given the sounding term “signaling platforms” (Hoessli et al. 2000). 
Importantly, rafts and filamentous actin (F-actin) were found to colocalize (Harder 
and Simons 1999) whereby the actin cytoskeleton drives the lipid raft aggrega-
tion (Rodgers and Zavzavadjian 2001; Valensin et al. 2002; Villalba et al. 2001). 
Moreover, the cytoskeleton-driven movement of membrane molecules leads to an 
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increase of the overall amplitude and duration of T-cell signaling (Wulfing and 
Davis 1998). Such molecular movements induce an accumulation of molecules at 
the interface of the T-cell and the APC (Wulfing and Davis 1998), underlying the 
concept of the immunological synapse ( See  below). The most prominent TCR-
induced signaling pathway driving the activation of the cytoskeleton functions via 
Vav, a 95 kDa nucleotide exchange factor that is activated by tyrosine phosphor-
ylation (Crespo et al. 1997; Fischer et al. 1998) and associated to the LAT signa-
losome (Clements et al. 1999). Conversely to the function of the cytoskeleton in 
driving lipid raft aggregation, rafts are necessary for activation of the actin skeleton 
and GPI-anchored proteins provide costimulatory signals leading to reorganization 
of the cytoskeleton (Moran and Miceli 1998).  

    2.4  PUFA-Mediated Alterations of Lipid Rafts 
and Consequences in Signaling  

   Upon dietary intake PUFAs are distributed throughout the body like other fatty acids 
and can be taken up by basically every cell type (Jump 2002). Dietary consumption 
of PUFA can significantly increase the relative PUFA content of cell membranes. 
This is particularly true for n-3 PUFAs whose abundance in western diets and T-cell 
membranes is generally rather low (Fowler et al. 1993). PUFAs are predominately  

 esterified to the  sn -2 position of phosphatidylcholine and phosphatidylethanolamine 
phospholipids. Unsaturated, particularly polyunsaturated acyl chains, do not pack 
well with cholesterol molecules. Therefore, PUFAs   avoid liquid ordered phases (i.e., 
lipid rafts) in lipid bilayers, which may contribute to phase separation (Shaikh et al. 
2003). Uptake of PUFAs by T-cells leads to their incorporation into detergent-resistant 
domains as shown in vitro by T-cell treatment with PUFAs (Stulnig et al. 2001) as 
well as in vivo by fish oil feeding of mice (Fan et al. 2003; Switzer et al. 2003). PUFA 
incorporation into raft lipids not only alters their unsaturation index but most probably 
also their biophysical properties such as the tightness of lipid packaging.  

   Importantly, PUFA-mediated alterations of raft lipid composition are associated 
with altered protein composition. Treatment of Jurkat T-cells with linoleic acid, 
EPA, and DHA leads to a potent reduction of lipid raft localization of the Src-fam-
ily kinases Lck and Fyn (Stulnig et al. 1998). Strikingly, these alterations in raft 
protein content directly correlated with the observed inhibition of calcium signaling 
(Stulnig et al. 1998). Moreover, in Jurkat as well as peripheral blood T-cells, PUFAs 
displace LAT from rafts (Zeyda et al. 2002). For this effect, two principal but not 
mutually exclusive mechanistic explanations exist: palmitoyl transferases are nonse-
lective and can   covalently attach PUFAs to proteins. Accordingly, Src family kinases 
may be acylated with PUFAs such as EPA and AA when these are overabundantly 
present leading to diminished targeting of these proteins to lipid rafts (Liang et al. 
2001; Webb et al. 2000). On the other hand, the described alterations of raft lipid 
composition may alter the affinity of palmitoylated proteins to these microdomains. 
Notably, PUFA treatment leads to enrichment of typical inner leaflet phospholipids 
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such as phosphatidylethanolamine with PUFAs (Stulnig et al. 2001). The occurrence 
of [ 3 H]-palmitoyl labeled proteins in nonraft fractions strongly suggests, that PUFA 
alterations of raft lipid rather than PUFA acylation of proteins is the predominant 
mechanism of PUFA-mediated displacement of acylated proteins from rafts (Stulnig 
et al. 2001).  

   Irrespective of the relative contribution of the mentioned principal mechanisms 
for the alterations of the lipid raft protein composition, the adapter LAT has been 
shown to be a central target of PUFA-mediated inhibition of early T-cell signal trans-
duction (Zeyda et al. 2002). As mentioned above, PUFA treatment of T-cells inhibits 
TCR-induced phosphorylation   of LAT and PLCγ, whereas tyrosine phosphorylation 
of CD3, binding of ZAP-70, and subsequent phosphorylation of   ZAP-70 remains 
unaffected. Strikingly, a genetically modified chimeric LAT protein that contained 
the transmembrane and extracellular domain of PAG, which remained within rafts 
upon PUFA treatment, restored tyrosine phosphorylation   of PLCγ and calcium 
response after PUFA treatment. Notably, other signaling proteins, e.g., Lck, are still 
displaced from rafts in PAG-LAT reconstituted T-cells demonstrating the crucial 
role of LAT raft localization for efficient transduction of the TCR signal (Zeyda 
et al. 2002). In looking for a suitable partner molecule for LAT, PAG’s localization 
in lipid rafts turned out to be resistant to PUFA-mediated alterations. The reason 
for this special behaviour is still unknown. However, elucidating the underlying 
molecular characteristics could open a new view on the true mechanisms of PUFA-
medited lipid raft alterations and/or on mechanisms by which proteins are targeted 
to lipid rafts. In a further study it has been shown that the displacement of LAT from 
lipid rafts is also directly responsible for diminished tyrosine phosphorylation of 
Vav (Geyeregger et al. 2005). This effect probably causes diminished cytoskeletal 
activation and hence protein translocations that are necessary for T-cell activation by 
APCs, as discussed below. A similar, but different mechanism of PUFA action was 
described in T-cells of fish oil-DHA-fed mice, which show a reduced recruitment 
PKCθ to lipid rafts upon stimulation and accordingly diminished activation and 
effector functions of PKCθ (Fan et al. 2004).  

   Another mechanism of PUFA action on T-cells that involves alterations of lipid 
rafts is derived from the finding in Jurkat Tcells that lipid raft disintegration activates 
phospholipase D (PLD), which negatively regulates cell proliferation (Diaz et al. 
2005). Indeed, also DHA treatment of peripheral blood   mononuclear cells, which 
inhibited concanavalin A-induced proliferation, shifted PLD to nonraft fraction 
where it was activated by ADP-ribosylation factor (Diaz et al. 2002). Additionally, 
PUFA-mediated lipid raft alterations could affect T-cell responses via activation-
induced cell death, a form of apoptosis resulting from chronic antigen stimula-
tion and necessray for the deletion of activated T-cells. Interestingly, n-3 PUFAs 
enhanced activation induced   cell death (Switzer et al. 2003; Switzer et al. 2004a), 
which may be due to altered submembrane distribution of the Fas death receptor and 
components of the death-inducing signaling complex (Switzer et al. 2004b).  

   Lipid raft modifications by PUFAs not only affect the antigen/TCR-mediated 
activation of T-cells as discussed so far, but may also underlie inhibition of IL-2-
induced proliferation and IL-2 receptor (IL-2R) signaling as shown for AA and 
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DHA, respectively (Li et al. 2005; Santoli et al. 1990). Activation of IL-2R leads 
to phosphorylation of   Janus kinases, which activate signal transducer and activators  

 of transcription (STAT) proteins. Activated STATs are then recruited   to the nucleus, 
where they induce gene transcription.   PUFA-mediated raft lipid alterations corre-
late with a reduction   in IL-2Rα surface expression and displacement of IL-2Rα, β, 
and γ 

c
  chains as well as STAT5a and b from lipid rafts (Li et al. 2005). However, it 

should be mentioned that these results are not in line with a prior description of the 
raft/nonraft distribution of the components of IL-2R and proposed models for the 
role of lipid rafts in IL-2R signaling (Marmor and Julius 2001).  

     3 PUFA Effects on T-cell/APC Interactions  

       3.1  T-cell Stimulation by APC and the Immunological Synapse  

   T-cell activation via the TCR not only depends on mere ligation of the TCR and 
costimulatory receptors, but also on a complex interaction of T-cells with APCs. 
Due to some similarities to the neural synapse the interface between T-cell and 
APC has been named “immunological synapse” (Dustin and Colman 2002). When 
a T-cell encounters an APC, T-cell cytoskeletal, adhesion, and signaling proteins 
aggregate at the contact site to the APC, building “supramolecular activation clus-
ters” (SMACs; Monks et al. 1998). SMACs are spatially and temporally organized 
structures crucial for controlling and balancing signals, the strength and nature of 
which depend on the abundance of antigen as well as on the type of APC (Huppa; 
KH Lee et al. 2003b). During synapse maturation, i.e., the complex relocalization 
of cell surface molecules that takes about 15 min, some proteins including the TCR 
complex accumulate at the center of the immunological synapse, named c-SMAC, 
whereas others such as the integrin leukocyte functional antigen (LFA)-1 become 
located at its periphery ( p -SMAC; Monks et al. 1998; Montoya et al. 2002). Since the 
LFA/intercellular adhesion molecule (ICAM) binding pair requires a larger intercel-
lular distance than a TCR/major histocompatibility complex (MHC) pair, the larger 
binding pairs in intercellular junction between T-cell and APC are displaced to the 
periphery whereas shorter ones are concentrated in its center. The phosphatase 
CD45 was found to segregate to the cSMACs at early stages of synapse formation 
and to be displaced to outer regions after synapse maturation later on (Freiberg et al. 
2002). Also CD28 accumulates at the immunological synapse (Andres et al. 2004; 
Wetzel et al. 2002). Although results from theoretical studies have hypothesized that 
the immunological synapse could form in the absence of active, energy-expending 
processes (Qi et al. 2001), accumulation of molecules at the immunological synapse 
is an active process, driven by the cytoskeleton and depending on distinct signals 
provided by the APC (Andres et al. 2004; Villalba et al. 2001; Wetzel et al. 2002; 
Wulfing and Davis 1998; Wulfing et al. 2002).  

   Briefly summarizing the complex data reviewed in detail elsewhere (Zeyda and 
Stulnig 2006), the process of T-cell stimulation by APC could be described, very con-
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cisely, as follows: In unstimulated T-cells the membrane is compartmentalized in a 
temporally and spatially very dynamic manner by lipid-based molecule interactions. 
Immediately after contact with an APC, costimulatory receptors including adhesion 
molecules, GPI-anchored receptors, CD28, and CD2, possibly together with stimula-
tion of few TCR molecules mediate reorganization of the cell membrane by recep-
tor-mediated raft stabilization, induction of tyrosine phosphorylation, and nucleation 
of large signaling protein complexes (signalosomes) leading to activation of the actin 
cytoskeleton and formation of an immature immunological synapse. Thereby, the sig-
naling machinery located in distinct lipid rafts is translocated to the APC contact site 
and induce cell–cell adhesion providing an enviroment that facilites T-cell stimula-
tion. Due to TCR stimulation, lipid raft aggregation occurs and LAT-nucleated signa-
losomes associate with TCR complexes, forming TCR/LAT signalosomes that induce 
further cytoskeletal reorganization and formation of a mature immunological synapse. 
Finally, activation signals are transduced to the nucleus to induce gene transcription 
and promote T-cell-mediated immune responses (Zeyda and Stulnig 2006).  

        3.2  PUFA Effects on Immunological Synapse and T-cell/APC 
Conjugate Formation  

   Disintegration of the immunological synapse results in diminshed T-cell activa-
tion (Huppa et al. 2003) and interference with synapse formation appears to be a 
potential mode of action of immunosuppressive and antiinflammatory chemokines 
(Bromley et al. 2000), in orally induced systemic immune hyporesponsiveness (Ise 
et al. 2005), and could represent a promising target for immunosuppressive and 
antirheumatic drugs (Zeyda et al. 2005a, 2007) including PUFA.  

   Consequently, our group thoroughly analyzed PUFA effects on immunological 
synapse formation (Geyeregger et al. 2005). PUFA treatment affects superantigen-
induced formation of the mature (after 15 min of stimulation) but not immature (after 
1min) immunological synapse, particularly by inhibiting the relocalization of adhe-
sion (LFA-1), cytoskeletal (F-actin and talin) and signaling molecules (CD3 and LAT) 
with the exception of PKCθ. The selectivity for inhibition of the mature but not the 
immature IS was associated with diminished sustained (after 15 min of stimulation) 
but not early (after 1 min) phosphorylation of Vav in PUFA-treated T-cells (Geyereg-
ger et al. 2005). Vav activity drives cytoskeletal rearrangements (Ardouin et al. 2003; 
Krawczyk and Penninger 2001) necessary for relocalization to the immunological 
synapse of, e.g., LFA-1, which is crucial for the formation of high affinity T-cell/
APC interaction (Morgan et al. 2001). Accordingly, beyond qualitative changes in 
IS formation, PUFA treatment also markedly reduces the efficiency of conjugate for-
mation between T-cells and APCs in an antigen-specific manner (Geyeregger et al. 
2005). As a consequence, diminished conjugate and altered IS formation could extend 
PUFA defects in T-cell activation to signaling pathways that are not intrinsically 
altered in PUFA-treated T-cells as assessed by antibody-mediated T-cell stimulation. 
Accordingly, stimulated expression of CD69 that is unchanged in antibody-stimu-
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lated T-cells is inhibited in PUFA-treated T-cells stimulated with antigen presented 
on APCs (Geyeregger et al. 2005). To investigate the underlying mechanisms of these 
effects, we focused on LAT due to its central role in lipid raft-controlled early T-cell 
signal transduction (Zeyda and Stulnig 2006) as well as in PUFA-mediated effects on 
T-cell signaling (Zeyda et al. 2002). We found that LAT displacement from lipid rafts 
underlies PUFA-mediated inhibition of CD3 capping, which is an active cytoskel-
etal-induced process mimicking molecule rearrangements during IS formation. CD3 
capping in LAT-deficient cells reconstituted with chimeric LAT protein that retains 
lipid raft localization in presence of PUFA rrremained unaltered by PUFA treatment 
in contrast to cells reconstituted with wild-type LAT (Geyeregger et al. 2005). Hence, 
inhibition of Vav downstream signaling leading to defective immunological synapse 
formation probably originates from modification of T-cell lipid rafts resulting in dis-
placement of LAT from rafts. Further evidence for this model is provided by the fact 
that PUFA treatment of Jurkat T-cells primarily affect the second wave of Vav phos-
phorylation (Geyeregger et al. 2005) that was shown to critically depend on lipid 
rafts (Valensin et al. 2002). Moreover, raft disruption by methyl-β-cyclodextrin treat-
ment causes a pattern of disturbed immunological synapse formation similar to that 
obtained by PUFA treatment (Geyeregger et al. 2005).  

    3.3  The Other Side of T-cell-Mediated Immune Responses: 
PUFA Effects on APC Functions  

   In addition to the above discussed direct effects on T-cells, it has to be taken in 
account that PUFAs also affect APCs and thus T-cell mediated immune responses. 
Beyond blocking ativation of APCs such as dendritic cells (H Wang et al. 2007a; 
Weatherill et al. 2005; Zeyda et al. 2005b) or macrophages (JY Lee et al. 2003a) as 
assessed by Toll-like receptor induced signaling, surface molecule expression, and 
cytokine production, PUFAs also affect the antigen-presenting activity of APC, as 
reviewed in detail in (Shaikh and Edidin 2006).  

   PUFAs interfere with antigen-presentation on several levels. They have been 
shown to downregulate expression of MHC class I and II (Hughes and Pinder 1997; 
H Wang et al. 2007a; Weatherill et al. 2005), even though not in all studies (Erick-
son et al. 1997; Zeyda et al. 2005b). MHC molecules are concentrated in lipid rafts 
(Anderson et al. 2000) and pertubation of lipid rafts affects the antigen-presenting 
capacity of macrophages (Chakraborty et al. 2005). Hence it may be speculated 
that PUFA-mediated lipid raft alterations also affect antigen presentation. Indeed, 
PUFAs have recently been shown to lower B-lymphoblast susceptibility to lysis by 
alloreactive CD8+ T-cells, an effect depending on antigen presentation by MHC I 
(Shaikh and Edidin 2007) but a potential link to lipid raft alterations remains to be 
elucidated. In contrast to this study, PUFA-modified mouse tumor cells revealed 
increased sensitivity to cytotoxic T-cells in an earlier experiment (Jenski et al. 
1993). These differences may be due to an overlay of different effects. For instance, 
PUFAs may differentially modulate MHC conformation and thus affinity to different 
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antigens (Jenski et al. 2000; Roof et al. 1990). Altogether, detailed mechanisms and 
effects of PUFA action on antigen presentation are largely unexplored yet.  

     4 Conclusions, Outlook  

   A plethora of studies exists on PUFA effects on inflammatory and autoimmune 
diseases and many of them have found effects on T-cell functions and signaling. 
However, many of the clinical studies are underpowered and effects often are mod-
est. There is hence still a need for appropriately powered clinical studies evaluating 
PUFA effects including elucidation of the underlying molecular mechanisms. The 
discovery of mechanisms underlying the beneficial effects of PUFA in a variety of 
disorders could open novel strategies for direct and/or more efficient targeting by 
pharmaceutical compounds. For instance, the understanding of PUFAs on T-cell 
membrane organization is growing and a specific targeting of LAT localization in 
lipid rafts could be an approach to efficiently and selectively block T-cell activation. 
On the other hand, relatively little is known about membrane modulation of APCs 
including MHC conformation, spatial organization, and trafficking. Also PUFA 
effects on interleukin-induced signaling are not sufficiently clarified yet. Thus, 
research on mechanisms of PUFA action on T-cells is warranted yet.  
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                                  Abstract   :     It is well known that omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are 
considered anti-inflammatory while omega-6 polyunsaturated fatty acids are proinflam-
matory. Research elucidating the mechanisms of ω-3 PUFA actions has focused largely 
on the T-cell. ω-3 PUFA have been shown to regulate the balance of T-cell subsets as well 
as the intracellular signaling pathways regulating T-cell proliferation. This results in the 
suppression of proinflammatory cytokines like interleukin-2 and interferon gamma in 
models of increased inflammation. ω-3 PUFA have also been shown to modulate T-cell 
function indirectly by influencing the ability of key antigen presenting cells like macro-
phages and dendritic cells to provide the necessary activating signals to T-cells and other 
immune cells. Interestingly, in the few models of immunosuppression that have been 
studied, ω-3 PUFA seems to increase immune function bringing the response to near 
normal levels. One key area where very few studies have been performed is the impact of 
ω-3 PUFA on the aging immune system. The important point to keep in mind in general 
is that regardless of the mechanisms, ω-3 PUFA feeding or supplementation has not been 
shown to have any clear deleterious effects in short-term (less than 6 months) studies.  

         Keywords   :    Omega-3   fatty   acid    •    T-cell·inflammation    •    Rodent Diet    

         1      Introduction  

   Polyunsaturated fatty acids (PUFAs) can be divided into two major classes. First, 
omega-3 (ω-3) or n-3 PUFAs are well known for their anti-inflammatory properties 
(Calder, 2003). The other major class, the omega-6 PUFAs, are considered proin-
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flammatory. The ω-3 and omega-6 PUFA differ structurally because of the posi-
tion of their double bonds on the carbon chain. Omega-6 PUFA have double bonds 
starting six carbons from the methyl end of the carbon chain while ω-3 PUFA have 
double bonds starting three carbons from the methyl end. The two major omega-6 
PUFAs that are typically consumed in the diet are linoleic acid (18:2; n-6; LA) and 
arachidonic acid (20:4; n-6; AA). Western diets are overwhelming composed of 
omega-6 PUFA with only small amounts of ω-3 PUFA being consumed. The three 
major ω-3 PUFAs are α–linolenic acid (18:3; n-3; α-LNA), eicosapentaenoic acid 
(20:5; n-3; EPA) and docosahexaenoic acid (22:6; n-3; DHA). It is important to note 
the alpha in front of linolenic acid (18:3; n-3) so as not to be confused with γ–lino-
lenic acid which also is 18:3 but is an n-6 fatty acid. The PUFAs LA and α-LNA 
are considered essential fatty acids because they cannot be synthesized in mammals. 
Starting with LA humans can sequentially synthesize γ–LNA then AA. Starting 
with α–LNA humans can synthesize EPA then DHA. However, the major concern 
is whether or not humans can synthesize enough EPA and DHA from α–LNA.  

   Data clearly shows that when mammals are fed diets enriched in LA there is 
a dramatic increase in AA in tissues. This indicates that LA is fairly efficiently 
converted to AA in tissues, which is important since the LA rich corn oil is com-
monly used in Western diets. On the other hand, if mammals are fed diets enriched 
in α–LNA there is very little change in EPA or DHA which indicates that EPA and 
DHA must be consumed directly to significantly increase their tissue levels. An 
important point needs to be made here. Studies examining the conversion rate of LA 
or α–LNA to their subsequent longer chain metabolites are carried out in relatively 
short term studies lasting weeks to a few months. The question still remains as to 
whether or not long term (years) consumption of α-LNA from rich sources like 
flaxseed oil may lead to the gradual build up and maintenance of EPA and DHA 
in tissues. This has lead to the marketing of fish oil supplements derived from cold 
water marine fish, which are the richest direct source of EPA and DHA.  

   We and others have shown in rodent models that EPA and DHA are more potent in 
terms of their anti-inflammatory properties than α–LNA (Collison et al. 2005). In fact, 
it is suggested that DHA may be more potent than EPA as shown by studies in rodents 
comparing purified EPA and DHA feeding. This is why research on n-3 PUFAs now 
focuses more on the mechanisms of action of DHA. When comparing the impact of 
EPA and DHA feeding on inflammatory diseases in rodent and human studies it is 
quite clear that the n-3 PUFAs are more potent in the rodent studies. This is primarily 
due to the fact that EPA and DHA feeding are often started before or at the same 
time as the start of the inflammatory disease. In contrast, in human clinical trials the 
inflammatory disease is already in progress when n-3 PUFA supplementation begins. 
Even though n-3 PUFA supplementation does have beneficial anti-inflamatory effects 
in clinical trials, it is quite clear that to obtain the maximum beneficial effects of n-3 
PUFAs it should be used as a prophylactic agent (Chapkin et al. 2000).  

   In the last few years, it has become clear that inflammation plays a pivotal role 
in many major diseases including heart disease, certain types of cancer and obes-
ity. When thinking about which immune cell type to study to gain insight into the 
anti-inflamatory mechanisms of n-3 PUFAs, the first to come to mind is the T-cell. 
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Indeed, the T-cell is by far the most heavily studied immune cell when examining 
n-3 PUFA effects. This is because the T-cell can easily be isolated from rodents and 
human peripheral blood in significant numbers, is extensively studied for cell sig-
naling and gene expression mechanisms and is pivotal in determining the type and 
extent of immune response. The macrophage comes in second with a few studies 
in other immune cells like the neutrophil and natural killer cells. The macrophage, 
similar to the T-cell can be isolated in significant amounts from human peripheral 
blood and rodents while it is difficult to get significant numbers of other immune 
cell types for extensive experimental analysis. Therefore, the bulk of reviews and 
discussions on the anti-inflammatory mechanisms of n-3 PUFAs center around the 
T-cell and to a lesser extent the macrophage. The mechanisms by which n-3 PUFAs 
impact T-cell function can be divided into two major categories: direct versus indi-
rect effects. Direct effects include regulating events within the individual T-cell like 
membrane structure and signal transduction which are discussed in detail in other 
chapters and therefore we will only briefly discuss here. This may lead to shifts in 
the proportions of T-cell subsets which will have a dramatic impact on the type and 
magnitude of an inflammatory response. Indirect effects include regulating eicosa-
noid production and accessory cell function that can impact T-cell function.  

       2   Omega-3 PUFA Anti-inflammatory Effects in Disease States  

   The potent anti-inflammatory effects of dietary fish oil has lead to several studies 
in humans and rodent models examining the role of EPA and DHA to improve 
other disease states or situations in which a strong inflammatory response may be 
detrimental through regulating the immune response (Sijben and Calder, 2007). In 
fact, results have been promising enough that supplementation of total parenteral 
nutrition (TPN) formulas with ω-3 PUFAs may be beneficial in patients susceptible 
to deleterious hyperinflammatory responses like surgical or critically ill patients or 
those with sepsis (Calder, 2006). However, this may not prove to be true in all clini-
cal situations of TPN as a recent study in rats showed that fish oil supplementation 
to TPN formulas administered to at the time of total gastrectomy and for 3 addi-
tional days afterwards actually enhanced macrophage phagocytic activity and T-cell 
IFN-γ production (Lin et al. 2006). This may be due to the impact of the altered 
physiological condition (type of procedure, disease type) on the immune system. 
For example, it was recently shown that T-lymphocyte proliferation was suppressed 
to the same extent by ω-3 PUFAs cultured in vitro with peripheral blood mononu-
clear cells from healthy and diabetic subjects. In contrast, the T-lymphocytes from 
diabetic patients exhibited only half the reduction of IL-2 production as seen in 
the healthy subjects (Alnajjar et al. 2006). Similarly, ω-3 PUFA feeding decreased 
T-cell IL-2 production and NF-κB activation in a small intestine rat transplant 
model (Wang et al. 2007b). Two cancer studies examining the impact of ω-3 PUFA 
supplementation in humans and rats also show promising results. First, ω-3 PUFA 
supplementation starting 5 days before surgery in patients undergoing colorectal 
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cancer surgery showed that the postoperative state exhibited a decreased Th-1/Th-2 
T-cell ratio while ω-3 PUFA maintain the preoperative Th-1/Th-2 ratio (Matsuda et 
al. 2006). In a rat tumor transplant model, it was shown that feeding ω-3 PUFA for 
8 weeks prior to injecting the cancer cells for tumor development showed decreased 
T-cell proliferation while macrophage function (hydrogen peroxide production) 
was increased. The association in this model with increased survival and decreased 
tumor burden suggests that enhance macrophage activation may play a key role in 
the anti-tumor effects of ω-3 PUFA (Pizato et al. 2006).  

   Interestingly, in a rat model of gestational type I diabetes found a differential 
effect of ω-3 PUFA feeding during pregnancy between the mothers and offspring. 
The mothers had elevated expression of IL-4 and IL-10 (Th-2 cytokines) while the 
offspring had elevated IL-2 and IFN-γ expression (Khan et al. 2006). Similarly, dia-
betes induced during pregnancy in rats showed that the obese offspring had reduced 
T-cell proliferation while ω-3 PUFA feeding to the mothers restored T-cell prolif-
eration to normal levels (Guermouche et al. 2004). Similarly, in a rat sepsis model 
using colon ligation, it was shown that ω-3 PUFA feeding enhanced immune func-
tion as noted by increased IL-4 production and increased IgA levels suggesting the 
skewing of the immune response towards a Th-2 phenotype (Lin et al. 2007). An 
increased Th-2 phenotype (IL-10 levels), but T-cell proliferation was decreased, 
was also shown in neonatal piglets receiving DHA supplemented formula followed 
by influenza-virus immunization (Bassaganya-Riera et al. 2007). Several studies 
in aged mice show that ω-3 PUFA increase Th-1 cytokine production and inhibit 
Th-2 cytokine production (Watson et al. 2005). This is quite interesting because 
aged mouse Th-1 cytokine production is decreased while Th-2 cytokine production 
is increased. Not all studies show a significant effect of ω-3 PUFA supplementa-
tion feeding on the immune system. For example, in subjects following exercise, 
the beneficial effects of ω-3 PUFA feeding was not clear as it was recently shown 
to not have an effect following 12 weeks of walking three times per week and con-
suming DHA (Hill et al. 2007). In nonsurgical patients receiving enteral nutrition, 
adding ω-3 PUFAs slightly increased (nonsignificantly) natural killer cell activity 
and CD4/CD8 ratios (Sakurai et al. 2006). This suggests that unless there is a spe-
cific challenge or insult to stimulate the immune system, then the effects of ω-3 
PUFA feeding are minimal. It is evident from these recent studies that the affects 
of ω-3 PUFA feeding can be quite variable depending on the physiologic condition 
being examined. However, the majority of the studies favor an anti-inflammatory 
effect and, most importantly, there has not been any evidence of a deleterious effect 
caused by the ω-3 PUFA. It is clear that in order to optimize the potential beneficial 
effects of ω-3 PUFAs, it is imperative to determine which immune cells are prima-
rily impacted and how events within these cells are altered.  

   Another exciting area that is beginning to be examined in depth is the association 
between major depression and decreased ω-3 PUFA levels? Recently, it was found 
that decreased ω-3 PUFA and increased omega-6 PUFA levels in chronic fatigue 
syndrome was associated with decreased T-cell activation markers like the expres-
sion of the CD69 receptor. Even more interesting was the positive correlation 
between increased disease severity and increased ω-3 PUFA levels (Maes et al. 
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2005). This study reinforces that ω-3 PUFA effects can also involve indirect actions 
via reducing omega-6 PUFA tissue levels.  

       3      Omega-3 PUFA Affects Within the T-cell  

   The most difficult aspect of research on ω-3 PUFAs is elucidating the direct target 
of the immunomodulatory actions in key immune cells like T-cells. ω-3 PUFAs 
are well known to increase membrane fluidity due to their highly unsaturated 
carbon chains but this is a very general effect and cannot easily explain the differ-
ences observed physiologically between other PUFAs like AA and LA that also 
have unsaturated carbon chains(Chapkin et al. 2000). The discovery and isolation 
of lipid rafts has proven to be a very excited new area of research that gives a 
defined target within membranes that ω-3 PUFAs, especially DHA, may target? 
Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids 
and are thought to serve as the platform for cells, T-cells being a good example, 
to recruit and organize plasma membrane receptors and intracellular signaling 
components for cellular responses to external stimuli. Indeed several key immune 
receptors have been shown to aggregate into lipid rafts like T-cell receptors (TCR) 
and B-cell receptors (BCR). We will briefly discuss the impact of ω-3 PUFAs on 
lipid rafts, which have primarily been done in T-cells, because indepth discussions 
of fatty acid and lipid signaling effects on immune cells can be found in other 
chapters of this book.  

   Most of the work attempting to elucidate the biochemical and molecular mecha-
nisms of how ω-3 PUFAs regulate inflammation have focused on the T-cell using 
diet studies in young healthy adult rodents or in some cases adding fatty acids in 
vitro to cell lines with the Jurkat human T-cell line being one of the most common 
cell culture models. The key events required for a proper T-cell response is stimula-
tion of the T-cell antigen receptor (TCR) and CD28 costimulatory receptor. This 
leads to IL-2 production, which is a potent autocrine and paracrine growth factor 
driving T-cell proliferation. Thus T-cell proliferation (i.e. function) can be inhibited 
by altering TCR signaling and/or IL-2 signaling. The bulk of studies use polyclonal 
mitogens like anti-CD3 antibody to stimulate T-cells ex vivo or in vitro. Polyclonal 
mitogens will activate most all the T-cells in culture whether they belong to a subset 
of the CD4 or CD8 lineages. Some of the more recent studies are moving into models 
of antigenic stimulation which leads to the activation of a specific subset of T-cells 
but is better representative of an in vivo immune response. It is important to keep in 
mind that both types of stimulation protocols are important because the polyclonal 
activation provides a strong enough signal with enough T-cells responding in order 
to dissect the signaling mechanisms being regulated.  

   Indeed, ω-3 PUFAs added in vitro inhibit IL-2 receptor expression and subse-
quent signal transduction via the JAK-STAT pathways in both human cell lines (Li 
et al. 2005) and peripheral blood (Gorjao et al. 2007). The ω-3 PUFAs are thought 
to exert their inhibitory effects by changes membrane structure via incorporation into 
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individual phospholipid species (Li et al. 2005). This, in turn, may impact the ability 
of lipid rafts to form or impact the rafts’ ability to recruit in or keep out key pro and 
antiproliferative signaling molecules. An important aspect of in vitro fatty acid work 
that is often debated is the fatty acid concentration used. As in these studies a 20–50 
μM range is typical. However, doses up to 100–200 μM have also been reported in 
other studies. Indeed, fatty acid concentrations like this can be obtained at specific 
sites of inflammation but ω-3 PUFA blood content typically will increase to a maxi-
mum of about 10 μM following fish oil consumption (Chapkin et al. 2000). This is 
important to keep in mind to explain why the dramatic effects seen in vitro are often 
not as strong in vivo. It does raise the intriguing question of whether long term fish oil 
consumption could actually lead to the accumulation of ω-3 PUFAs in tissues such 
that the magnitude of the in vivo effects would be more similar to the in vitro effects. 
This does not mean that the in vitro studies lack value, in fact they are highly valuable 
for elucidating mechanisms and thus higher fatty acid concentrations are used in order 
to clearly identify alterations in membrane structure and signal transduction. The in 
vitro studies are also important to help gain insight into what fatty acid ranges are 
tolerated by T-cells and what cellular ω-3 PUFA levels are the most beneficial.  

   Some of the best studies to date for elucidating the mechanism(s) by which ω-
3 PUFA feeding modulate T-cell function were conducted by Chapkin’s group in 
young healthy mice. They have shown that feeding highly purified DHA can sup-
press splenic T-cell diacylglycerol and ceramide production and subsequent prolif-
eration? They have followed this up with studies determining which T-cell subset is 
primarily impacted. The data in fish oil fed mice clearly show that Th-1 polarization 
in vitro is suppressed while having very little impact on Th-2 polarization (Zhang 
et al. 2005). The previous study used polyclonal stimuli (cytokines to skew T-cell 
polarization) to induce proliferation of T-cell subsets and recently have confirmed 
the inhibition of Th-1 subset proliferation in vitro and in vivo models of antigen 
specific stimulation (Zhang et al. 2006). In IL-10 knockout mice, feeding fish oil led 
to enhanced IFN-γ production while IFN-γ production was suppressed in wild type 
mice (Ly et al. 2005). This data suggests that part of the down-regulation of ω-3 
PUFA on the Th-1 phenotype is due indicectly to enhanced Th-2 phenotype which 
can then suppress Th-1 function. In another group of studies in a mouse model 
that show ω-3 PUFA reduce the ability of the host to fight  Listeria Monocytogenes  
infection they found that effector and memory T-cells were not altered and could 
still induce resistance following adoptive transfer (Irons et al. 2005). Similarly, anti-
gen specific CD8 T-cell proliferation was not impacted (Irons and Fritsche, 2006). 
The lack of effect on T-cell function is quite surprising since there was a dramatic 
decrease in resistance to infection. One explanation may be that Chapkin’s group 
used C57BL/6 mice while the infection studies were performed in BALB/c mice. 
The C57BL/6 mice, immunologically, have a strong Th-1 response while BALB/c 
mice are the opposite having a strong Th-2 response and weaker Th-1 response. 
Therefore, the differences in the effects of ω-3 PUFA may be due to the immu-
nologic background of the mice. Alternatively, the differences could be related to 
amount of ω-3 PUFA in the diet. The Chapkin group fed 5% ω-3 PUFA by weight 
while the other studies used 50% ω-3 PUFA by weight. Therefore, the infection 
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studies may show a negative effect of ω-3 PUFA feeding because it is an extremely 
high fat diet.  

   The mechanism by which ω-3 PUFA, especially DHA, regulates T-cell subset 
function directly is thought to involve disruption of proper lipid raft formation. It 
has recently been shown that DHA feeding to young healthy mice can significantly 
alter the fatty acid content of lipid rafts and most notably a dramatic decrease in 
sphingomyelin content (Fan et al. 2004). This DHA induced change in lipid raft 
composition was associated with decreased recruitment of PKC-θ to the lipid raft 
and decreased AP-1 and NF-κB activation (Fan et al. 2004). Similar results add-
ing DHA and EPA in vitro have shown decreased the translocation of PKC-α and 
–ε to the plasma membrane which is followed by decreased NF-κB activation in 
Jurkat T-cells (Denys et al. 2005). The translocation of PKC from the cytoplasm to 
the plasma membrane is used as a marker of activation since PKCs must interact 
with membrane lipids to be activated. These findings are very significant because 
PKC-θ is considered to be the key PKC isoform for T-cell activation and NF-κB is 
thought to be the key proinflammatory transcription factor. The importance of the 
lipid raft may be its role in the proper formation of the immune synapse which is 
the sight of contact between the T-cell and the antigen presenting cell. Indeed ω-3 
PUFA have been shown to inhibit appropriate immune synapse formation in vitro 
(Geyeregger et al. 2005) which may be due in part to alterations in the organization 
of key cytoskeletal components like L-selectin at the immune synapse (Leid and 
Jutila, 2004).  

   One line of studies as examined an intriguing question in that could the anti-
inflammatory properties of ω-3 PUFAs be enhanced combining them with other 
dietary regimens. For example, calorie restriction, similar to fish oil feeding, has 
potent anti-inflammatory effects. Calorie restriction is defined as a 40% reduction 
in food intake while maintaining proper vitamin and mineral intake and is also a 
potent antiaging strategy (Jolly, 2004). There have been several studies in autoim-
mune prone mice showing that a combination of calorie restriction and fish oil sup-
plementation can have additive benefits (Jolly, 2005). The mice used in these studies 
develop severe autoimmune kidney disease and succumb to this disease at approxi-
mately 10 months of age. For example, fish oil plus calorie restriction was more 
effective than either dietary regimen alone at delaying the onset of autoimmune 
disease and therefore increased lifespan (Jolly et al. 2001a). This was associated 
with dramatic impacts on the immune system, especially the T-cell, because the 
dramatic rise in activation induced apoptosis and proinflammatory cytokine produc-
tion caused by disease were all blunted (Jolly et al. 2001b). Similarly, the disease 
induced increase in proinflammatory cytokines and NF-κB activation in the kidneys 
was also reduced (Jolly et al. 2001a). The mice were put on the diets prior to devel-
oping autoimmune disease which highlights that ω-3 PUFA supplementation is the 
most beneficial when started prior to disease onset.  

   The effects described above were observed in studies using either fish oil (contain-
ing both EPA and DHA) or DHA alone. It is correct that, as mentioned previously, 
DHA is considered to be more potent than EPA however there have been several 
studies in which EPA was also shown to have potent anti-inflammatory effects. It 
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is worth talking about EPA because the possibility exists that perhaps EPA’s effects 
on the immune system are different or unique from DHA. For example, both DHA 
and EPA (fed separately) were shown to suppress murine T-cell proliferation to a 
similar extent but EPA and not DHA could decrease CTLA-4 expression (Ly et al. 
2006). CTLA-4 is an important adhesion receptor on T-cells and thus EPA may help 
to increase the potency of DHA’s effects. This is supported by evidence in Jurkat 
T-cells supplemented in vitro with either EPA or DHA. Gene microarray analysis of 
these cells showed that DHA and EPA have both unique effects and some overlap-
ping effects on the expression of a wide array of genes important in inflammation 
(Verlengia et al. 2004). However, the limited effects of EPA on basic responses 
like T-cell proliferation in humans (Miles et al. 2004; Miles et al. 2006) and T-cell 
antigen specific responses in mice (Barber et al. 2005) have kept EPA from being 
as intensely investigated as DHA. Since EPA has been shown to have some benefits 
in certain disease conditions like tumor growth (Kimura and Sumiyoshi, 2005), it 
is possible that EPA may have unique, as yet unidentified, effects in select disease 
conditions where the effect is more on nonimmune cells.  

       4      Omega-3 PUFA Affects on Accessory Cells  

   Omega-3 PUFAs have also been shown to indirectly inhibit T-cell function by alter-
ing the ability of the T-cell to be properly stimulated by accessory cells. The two 
best known accessory (antigen presenting) cells (APC) are the macrophage and 
the dendritic cell. PUFAs have been shown to alter MHC I and II expression on 
APCs and the expression of TCR and T-cell expressed adhesion molecules like 
intercellular adhesion molecule-1 (ICAM-1) and leukocyte function associated 
antigen–1 (LFA-1; Shaikh and Edidin, 2006). The altered expression can be due to 
either decreased plasma membrane expression of the receptor or the inappropriate 
assembly of the receptors at points of T-cell:APC contact. All these receptors are 
important in forming the interaction between the APC and T-cell for an appropriate 
immune response.  

   A key new mechanism that has been shown to explain ω-3 PUFA inhibition of T-
cell function is the inhibition of toll like receptors (TLRs) found on dendritic cells. 
TLRs are a group of receptors that recognize lipopolysaccharides (LPS) and are, 
therefore, important for activating naïve T-cells in response to microbial infections. 
In vitro evidence shows that saturated fatty acids increase dendritic cell function 
while DHA inhibits dendritic cell function. For example, saturated fatty acids added 
in vitro increase the expression of key costimulatory receptors on dendritic cells 
like CD86 and CD40 and increase the production of the important proinflammatory 
cytokines IL-12 and IL-6, which is inhibited by DHA (Weatherill et al. 2005). These 
results were corroborated in vitro by showing that both EPA and DHA also had 
inhibitory effects on human dendritic cell function (IL-12 and IFN-γ production; 
Wang et al. 2007a). This is especially important because the dendritic cell is consid-
ered to be an important cell in bridging the innate and adaptive immune response via 
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converting a general recognition of microbial cell wall components into a specific 
T-cell response (Barton and Medzhitov, 2002).  

   It is important that when thinking about accessory cell impacts on immune func-
tion, we also think about the contribution of nonimmune cell types. It is now clear 
that cytokines and other immunomodulatory molecules can be produced by nonim-
mune cells/tissues and since ω-3 PUFAs consumed in the diet can be incorporated 
into all tissues (albeit to varying degrees) there can be more indirect effects on 
immune function in vivo. For example, cytokine (IL-8, RANTES) and PGE 

2
  pro-

duction by respiratory airway cells is decreased by DHA feeding which could have 
a dramatic anti-inflammatory effect on airway diseases like allergy (Bryan et al. 
2006). The role of eicosanoids is discussed in more detail below.  

       5      Omega-3 PUFA and the New Eicosanoids  

   The first known mechanism elucidated in the 1970s to explain, in part, the anti-
inflamatory properties of the n-3 PUFAs EPA and DHA were by decreasing the pro-
duction of prostaglandin E 

2
  (PGE 

2
 ) and leukotriene B 

4
  (LtB 

4
 ). There are two major 

mechanisms by which EPA and DHA can decrease PGE 
2
  and LtB 

4
  production. 

First, both EPA and DHA will compete with AA in membranes thus decreasing the 
amount of the parent fatty acid (AA) for eicosanoid production in membrane phos-
pholipids. Second, EPA but not DHA can lead to less biologically potent forms of 
PGE 

2
  and LtB 

4
  called PGE 

3
  and LtB 

5
 , respectively. This is significant because both 

PGE 
2
  and LtB 

4
  are potent pro-inflammatory eicosanoids helping to recruit immune 

cells like the T-cell to sites of inflammation. There is one interesting caveat with 
PGE 

2
  in that the pro-inflammatory properties are attributed to effects on nonT-cell 

cells like increasing vascular permeability, however, PGE 
2
  will directly inhibit T-cell 

proliferation if allowed to directly bind to T-cell PGE 
2
  receptors. Thus, changes in 

PGE 
2
  production by tissues can explain decreased inflammation in vivo but cannot 

explain reduced T-cell proliferation directly which is typically seen ex vivo follow-
ing EPA and DHA feeding/supplementation (Chapkin et al. 2000). Therefore, both 
PGE 

2
  and LtB 

4
  are important at initiating and enhancing inflammation and recent 

new exciting evidence suggests that n-3 PUFAs can also inhibit inflammation/T-cell 
function by producing eicosanoid metabolites that will turn off the inflammation 
by inhibiting T-cell function (i.e. promote resolution of the inflammatory response; 
Ariel and Serhan, 2007).  

   Eicosanoids, by definition, are derived from twenty carbon fatty acids like AA 
and EPA but not DHA since it is 22 carbons long. Recently, it has been discovered 
that DHA can also be converted to a docosanoid (metabolite of 22 carbon fatty 
acids) via the lipooxygenase pathway. This docosatriene is termed protectin D1 
(PD1) and has been shown to be produced under conditions in which peripheral 
blood mononuclear cells were skewed towards a Th-2 phenotype. PD1 was shown 
to inhibit T-cell migration and TNF-α and IFN-γ secretion (Ariel et al. 2005). Work 
in both humans and mice, supports the anti-inflammatory functions of PD1. A recent 
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study showed that human asthmatics had low PD1 levels in lung exudates when the 
disease was exacerbated and that PD1 administration inhibited T-cell recruitment 
and proinflammatory cytokine production was decreased in a mouse model of air-
way inflammation (Levy et al. 2007).  

       6      Conclusions  

   In general, ω-3 PUFAs are considered anti-inflammatory while omega-6 PUFAs are 
considered proinflammatory. This leads one to assume that ω-3 PUFAs are strictly 
associated with suppressing immune cell function. It is quite clear that there are 
many examples in healthy young rodents and disease models that ω-3 PUFA inhibit 
T-cell, macrophage and dendritic cell function. However, under certain circum-
stances like exercise or in cases where the immune system is suppressed you may 
see no effect or an actual increase in immune cell function. This gives promise for 
ω-3 PUFA supplementation in the elderly however there are few studies to indicate 
what impact, if any, ω-3 PUFA supplementation will have in this population. The 
varying effects of ω-3 PUFA seems somewhat confusing which may due to the fact 
that we do not completely understand the cellular and molecular mechanisms by 
which ω-3 PUFAs exert their effects. The regulatory role of ω-3 PUFAs is complex 
in vivo in that there are effects on immune cells (T-cells, macrophages, dendritic 
cells) and nonimmune cells in tissues in and around the site of infection or insult 
that together exert their anti-inflammatory properties (Calder, 2007). The potential 
importance of ω-3 PUFA supplementation has reached a higher level since it is now 
clear that inflammation and inflammatory cytokines may play a pivotal role in many 
major diseases like heart disease, obesity and certain types of cancer. In order to 
maximize the use of ω-3 PUFAs in disease treatment it is imperative that the mecha-
nisms by which inflammation is regulated be understood in order to determine the 
disease conditions that can be improved and optimize the dose or amount of ω-3 
PUFAs needed for optimum health benefits. However, regardless of the mechanism 
or whether a specific cell type is being inhibited or stimulated, ω-3 PUFA will typi-
cally correct the dysfunction or in the very least have no effect at all.  
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                                                  Abstract:        T-cell activation is dependent on activating and inhibitory signals and 
cell fate is influenced by the interplay between different these different signalling 
pathways. Because proximal events are relayed through the membrane via specific 
membrane microdomains called rafts, the lipid composition of the plasma membrane 
critically influences signal transduction and thus cellular functions. Rafts are highly 
motile domains, enriched in cholesterol compared to the rest of the membrane. Their 
specific lipid composition makes these domains very sensitive to external changes 
such as variations in the cholesterol, saturated and unsaturated fatty acid content of 
the immediate environment. Immune cells, and in particular T-cells, depend on mem-
brane raft integrity for initiating signalling, so dysregulation of the processes involved 
in the maintenance of an adequate lipid environment is likely is to be a significant 
modulator of immune functions. In this chapter, we will review the modulation of 
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TcR-dependent signalling events by lipids in in vitro and in vivo models focusing 
on the involvement of membrane rafts. Clinical cases such as autoimmune diseases, 
aging and Alzheimer’s disease will be used to illustrate recent findings in this field.  

         Keywords:   T-cell Signalling    •      Membrane rafts    •      Cholesterol    •      Lipoproteins    •     
T-cell dysfunction    •      Immune senescence    

     1   T-cell Signalling  

   T-cell activation is dependent on complex signalling events: some signalling 
pathways act independently while others cross-talk to form a very intricate sig-
nalling map. Signal transduction starts at the plasma membrane, where very dis-
crete domains enriched in cholesterol, the membrane rafts, drive the first steps of 
signalling molecule interaction and activation (He et al. 2005; Harder 2004). The 

Fig. 1 T cell receptor signalling
T cell receptor ligation induces the phosphorylation of immuno-tyrosine based activation motifs 
(ITAMs) which are recognized by the CD45-activated protein tyrosine kinase, Lck which in turn 
activates the Zeta associated protein of 70 kDa (ZAP-70). The recruitment of the Syk family member, 
ZAP-70 induces the phosphorylation of the Linker of Activated T cells (LAT). LAT has no intrinsic 
activity but is an adaptor protein associated to many other molecules. This is the scaffolding role 
of LAT. The resulting signalling is inducing the translocation of transcription factors to the nucleus 
which allows the regulation of IL-2 gene. T cell activation is then achieved. GADS is an adaptor pro-
tein while SOS is a guanine exchange factor working with GrB2. ITK: inducible tyrosine kinase, 
DAG: diacylglycerol, PKC: protein kinase C, PIP2: phosphatidylinositol-4,5-bisphosphate, SLP-
76: SH2 domain containing leukocyte phosphoprotein of 76 kDa, IKK: inhibitor of kappa B factor 
kinase, ERK: extracellular signal−regulated kinase.
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subsequent formation of the immune synapse is required for sustained signalling 
resulting in activation (Dustin et al. 2005). The phosphorylation of cytoplasmic sig-
nalling molecules induced by membrane raft activation is regulated by many protein 
tyrosine kinases, which ultimately leads to the translocation of transcription factors 
to the nucleus, where they influence gene expression (Cannons et al. 2004). All 
these events of T-cell receptor (TcR) signalling are detailed in Fig 1.  

       2   Membrane Rafts, Lipids, and T-cell Signalling  

   The mammalian cell membrane consists of a lipid bilayer, composed primarily 
of phospholipids and cholesterol (Spector 1985). The main phospholipids present 
in the mammalian cell are phosphatidylcholine (PC), phosphatidylethanolamine 
(PE), phosphatidylserine (PS) and sphingomyelin (SM) (31%, 29%, 13%, 26% 
respectively), accompanied by low amounts of phosphatidylinositol (PI) (Yawata 
et al. 1984). Sphingomyelin, the only phospholipid not derived from glycerol, is 
composed of a sphingosine, a fatty acid, a phosphate group and a choline. It is 
located, along with PC in the exoplasmic (outer) leaflet, while PE, PS and PI are 
located to the cytoplasmic (inner) leaflet, a distribution at the heart of the compo-
sitional asymmetry of the plasma membrane. While phospholipids can display a 
rapid lateral diffusion across a given layer, their movement from layer to layer is 
limited and enabled only by the enzymes phospholipid flippase/floppase/scram-
blase (Dolis et al. 1997; Bevers et al. 1999; Daleke and Lyles 2000; Sims and 
Wiedmer 2001). Cholesterol fits between the gaps created by the sphingomyelin 
molecules, resulting in membrane regions rich in sphingomyelin and cholesterol, 
which can be termed lipid rafts, the formation of which is the result of different 
affinity between lipid molecules, or lipid and membrane proteins (Wassall et al. 
2004). Several extracellular proteins with either a GPI anchor or a myristoylated 
or palmitoylated tail are associated with lipid rafts, which have an important role 
in signal transduction.  

   Since the first selective isolation of lipids by treatment with Triton X-100 in 1974 
many experimental protocols have been adjusted to the different cellular models 
studied (Kirkpatrick et al. 1974). The floating fraction resulting form gradient cen-
trifugation is easily harvested and is highly enriched in lipid-anchored proteins such 
as glycosylphosphatidylinositol-anchored proteins (located at the outer face of the 
plasma membrane) and proteins with post-translational  modifications such as acyla-
tion or palmitoylation (located at the inner face of the plasma membrane) (Blank 
et al. 2002). Sphyngomyelin, cholesterol, saturated phospholipids, glycolipids, 
glycerophospholipids (choline, ethalonamine, serine, phosphatidylserine, phos-
phatidylcholine), diacylglycerol, palmitic acid and stearic acid are preferentially 
targeted to membrane rafts (Rouquette-Jazdanian et al. 2002). The maintenance 
and functionality of membrane rafts is dependent on the sphyngomyelin:choles-
terol ratio, explaining why cholesterol extraction, which will be described later, may 
influence cellular signalling and processes (Helms et al. 2004).  
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   Cellular cholesterol metabolism is tightly regulated and although no clear 
mechanisms have been demonstrated in T-cells, studies suggested that cholesterol 
influx, efflux, synthesis, use and degradation are the same in all mammalian cells 
(Fielding et al. 2001). Most of the cholesterol (up to 95%) is targeted to the mem-
brane; T-cell proliferation triggers a need for cholesterol, explaining the increase in 
the cholesterol synthesis rate at that time. The membrane raft marker, ganglioside 
M1 (GM1) was also shown to be highly synthesized following proliferation induced 
by TcR triggering (Tuosto et al. 2001). Thus, cholesterol and ganglioside synthesis 
rates are correlated and associated with cell cycle progression induced by positive 
signalling.  

   Lipid metabolism is highly relevant to cell cycle regulation and these downstream 
events are strongly influenced by upstream events (signalling) which are easily influ-
enced by the lipid environment (Eyster 2007). Glycerophospholipids, major struc-
tural components of the cell membrane, “contain 2 fatty acid” chains attached to a 
glycerol backbone; the unsaturated fatty acids are usually incorporated in position 
sn-2, while saturated fatty acids are incorporated in position sn-1 (Anderson and 
Sperling 1971). The length and saturation level of the fatty acid acyl chain affects the 
biophysical properties of the membrane bilayer, including membrane stability, per-
meability, fluidity and curvature. The occurrence of n-6 polyunsaturated fatty acids 
in the phospholipids of human mononuclear cells is approximately 6–10% linoleic 
acid (18:2, n-6), 1–2% di-homo-1,2,gamma-linolenic acid (DHGLA 20:3, n-6) and 
15–25% arachidonic acid (20:4, n-6). n-3 polyunsaturated fatty acids are relatively 
rare, with traces of α-linolenic acid (ALA, 18:3, n-3), 0.1–0.8% of eicosapentaenoic 
acid (EPA, 20:5, n-3) and 2–4% of docosahexaenoic acid (DHA, 22:6, n-3) (Yawata 
et al. 1984; Calder 1998; Yaqoob et al. 2000; Calder 2001; Thies et al. 2001).  

   The fatty acid composition of the lipid membrane can be readily modified 
through dietary supplementation with fatty acids. Supplementation with fish oils 
resulted in an increased incorporation of DHA and EPA into the phospholipids 
of inflammatory cells, neutrophils, monocytes and lymphocytes, at the expense 
of arachidonic acid (Gibney and Hunter 1993; Marangoni et al. 1993; Yaqoob 
et al. 2000; Thies et al. 2001; Kew et al. 2003). The composition of lipid rafts and their 
environment was also modified following EPA supplementation, potentially affecting 
their function in signal transduction through displacement of acylated signalling pro-
teins from the membrane lipid rafts, with EPA incorporated in both cytoplasmic (PS, 
PE, PI) and exoplasmic leaflets (SM, PC) (Stulnig et al. 2001; Li et al. 2006).  

   Twenty-carbon polyunsaturated fatty acids act as substrates for the synthesis of 
eicosanoids, a group of bioactive mediators including prostanglandins, prostacyc-
lins, thromboxanes and leukotrienes (Calder 2001). Due to its predominance in the 
cell membrane phospholipids, arachidonic acid is the main substrate for eicosanoic 
production. Mobilisation of free arachidonic acid is achieved through the action of 
phospholipases on the membrane phospholipids. Phospholipase A2, the rate limit-
ing step in the production of proinflammatory lipid mediators, cleaves phospholi-
pids at the sn-2 position, liberating the fatty acid molecule, which can then act 
as a substrate for the synthesis of the eicosanoid mediators (Glaser et al. 1993; 
Spiteller 2002). The arachidonic acid produced is then metabolized via three major 
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pathways (Moncada et al. 1986; Belton et al. 2003) The enzyme cyclooxygenase 
(COX) is responsible for prostaglandin synthesis, with the COX-1 (constitutive) 
isoform responsible for basal synthesis, and the COX-2 isoform responsible for 
induced prostaglandin synthesis. The pathway leads to the formation of throm-
boxane A2 and the prostaglandin (PG) family (PGD2, PGE2, PGF2, PGI2). The 
enzyme lipoxygenase (LOX), including the 5, 12, and 15-lipoxygenases, converts 
the twenty-carbon polyunsaturated fatty acid to a labile hydroperoxy intermediate, 
leading to the formation of leukotriene (LT) A4-derived compounds such as LTC4, 
LTD4. LTE4, LTB4 and lipoxins. The final pathway involves the less-documented 
cytochrome P450 epoxygenase, and leads to the formation of epoxyeicosatrienoic 
acids (EETs), along with conjugated dienol and alcohol derivatives (Calder 2001; 
Zeldin 2001; Fleming, 2007).  

   All these lipid mediators derived from membrane phospholipids may lead to a 
broad range of effects on T-cells and surrounding cells. Following the inflammatory 
response, the level of prostanoid is increased and influences T-cell responses (Tilley 
et al. 2001). PGD2 was shown to be a chemoattractant, since T-cells, especially 
of Th2-type, express its receptor, CRTH2 (Nagata et al. 2003). Moreover, T-cells 
express the PGE2 receptors, EP1-4, which suggests that the broad receptor reper-
toire expressed by immune cells differently influences cell fate depending on the 
prostanoids present in the local environment (Tilley et al. 2001). PGD2 and PGE2 
(via EP2 and EP4) induce the elevation of cAMP, which is associated with inhibi-
tion of effector cell functions while PDF2 and PGE2 (via EP1) induce calcium 
mobilization and T-cell activation (Sugimoto et al. 2007). The effect of prostanoids 
produced during an inflammatory response is determined by the array of receptors 
expressed and the intracellular pathways to which they are coupled. Further studies 
are needed to increase our knowledge of prostanoid signalling, cross-talk and bal-
ance, which provides either activating or inhibitory signals to T-cells. This has 
practical consequences; asthma is an example of the role of prostanoids controlling 
pro- and anti-inflammatory signals to T-cells in a clinically important context 
(Kostenis et al. 2006).  

   Modulation of inflammation can be achieved through n-3 Fatty acid supple-
mentation: EPA inhibits the release of arachidonic acid by phospholipase A2, as 
well as its oxidation by COX, resulting in a reduced ability to synthesize arachi-
donic-derived eicosanoids (Obata et al. 1999). Fish oil supplementation resulted 
in a 50–60% decrease in PGE2 synthesis by mononuclear cells (Meydani et al. 
1993; Caughey et al. 1996). Moreover, EPA-derived eicosanoids are considered 
less potent than those synthesised from arachidonic acid. n-3 Fatty acids, such 
as EPA and DHA, may alter T-cell functions through inhibition of the expres-
sion of cell surface molecules required for antigen presentation (Fujikawa et al. 
1992; Hughes and Pinder 2000). Recent in vivo studies confirmed previous in 
vitro experiments showing that changes in serum lipid composition influence cell 
behaviour (Stulnig et al. 2004). Several groups reported the suppressive effects 
of polyunsaturated fatty acids (PUFAs) on T-cell proliferation, and we tested 
the hypothesis that this effect is the result of altered T-cell membrane properties 
and impaired TcR signalling (Larbi et al. 2005). The functionality of peripheral 
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T-cells before and 2 h after an intravenous infusion of heparin plus a polyun-
saturated fatty acid (PUFA)-rich lipid emulsion were tested. We demonstrated a 
reduced peripheral T-cell membrane fluidity and altered lipid raft organization, 
both of which were associated with reduced T-cell proliferation after stimulation 
via CD3/CD28. Tyrosine phosphorylation of linker of activated T-cells (LAT) and 
activation of Akt in T-cells was also impaired (Larbi et al. 2005). Acute PUFA ele-
vation was associated with a reduction in T-cell membrane cholesterol exchange 
with the cellular milieu ex vivo (Larbi et al. 2005). More information concerning 
PUFA and other fatty acids on T-cell function and signalling is given in detail by 
Stulnig et al. in this book.  

       3      Lipoproteins and Cholesterol Transport  

   A physiological process involved in the elimination of excess oxidized lipids is 
high-density lipoprotein (HDL) transport. HDL is highly abundant in the blood 
(between 1 and 1.5 mM) and functions as a cholesterol transporter from the tissue 
to the liver. HDL is composed of phospholipids and apolipoprotein A-1 (apoA-1) 
(Davidson et al. 2007). A kinetic model suggests that cholesterol efflux via apoA-1 
is a two-step process (Gaus et al. 2001). In the first step, some of the plasma mem-
brane cholesterol contributes to a fast initial efflux (over the first hour) and leads to 
a progressive and slow efflux pool over several hours. The rapid and slow choles-
terol efflux pools represent cholesterol derived from raft and nonraft domains of the 
membrane, respectively, and are dependent on the association between ApoA-1 and 
the ATP-binding cassette A1 (ABCA1). This model is derived from experiments 
on macrophages, but no data are available on T-cells. These studies demonstrate 
the association of ApoA-1 to raft and nonraft domains of the macrophage plasma 
membrane. Cholesterol depletion, induced by 7-ketocholesterol and treatment with 
cyclodextrins, blocks apoA-1 binding to membrane rafts and inhibits cholesterol 
efflux from the slow pool (Gaus et al. 2004). This model is very attractive but must 
be critically demonstrated since apoA-1 does not exist in a free state in the periphery 
but is always associated with HDL, which may influence its binding to the discrete 
membrane rafts. This physiological approach is nonetheless very promising (Singh 
et al. 2007).  

   The physiological process of cholesterol transport via HDL and its associated 
protein apoA-1 is of major importance when considering the role of cholesterol in 
the maintenance of membrane integrity and fluidity. Any change in the biochemi-
cal properties of the plasma membrane will influence cell fate. To explore reduced
T-cell function in aged individuals, we analyzed membrane raft properties and were 
able to demonstrate several deficiencies (Fulop et al. 2005; Larbi et al. 2004a; Larbi 
et al. 2006). The first data set suggests that changing the plasma membrane choles-
terol content can influence the T-cell proliferative response to stimulation (Douz-
iech et al. 2002). Reducing cholesterol content of T-cells from elderly individuals 
using methyl-β-cyclodextrin (an accepted cholesterol extractor) provided a partial 
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restoration of T-cell proliferative capacity. However, more detailed investigations 
failed to support the use of cyclodextrin to restore T-cell function, despite a restora-
tion of membrane fluidity, because several side effects such as altered raft proper-
ties, and changes in signalling molecule association with rafts, where found (Larbi 
et al. 2004b). Other studies also suggested that cholesterol enrichment in T-cells had 
a suppressive effect on basic functions such as calcium mobilization, chemotaxis 
and proliferation (Nguyen et al. 2004).  

       4      Cholesterol-lowering Drugs and Immunity  

   While T-cell function was not restored in experimental models when the choles-
terol level was restored, clinical studies have demonstrated an effect of cholesterol-
lowering drugs (statins) on immunity. The statin drug family is used to prevent 
cardio-vascular diseases through inhibition of HMG-CoA reductase, the rate-limit-
ing enzyme of the mevalonate pathway of cholesterol synthesis. Atorvastatin, Flu-
vastatin, Lovastatin and Simvastatin also known as Lipitor®, Lescol®, Mevacor® 
(the first to be marketed), and Zocor®, respectively are the best known and most 
often used statins (Shepherd et al. 2003). Statins prevent cardio-vascular diseases by 
improving endothelial function, modulating inflammatory responses, maintaining 
plaque stability and preventing thrombus formation (Furberg 1999). Some favora-
ble effects of statins were observed in demented (Wolozin et al. 2007) and cancer 
patients (Khurana et al. 2007).  

     4.1      Neutrophils  

   Immune modulation by statins has also been recently reported. Atorvastatin was 
shown to reduce the risk of ischemia/reperfusion injury after renal transplantation 
(Gottmann et al. 2007). The improvement of endothelial function by increased nitric 
oxide synthase activity induced by statins is accompanied by a reduction in adhe-
sion molecule expression, which might explain the reduced ischemia/reperfusion 
injury in a rat model (Cowled et al. 2007). Moreover, statin therapy prior to cardio-
pulmonary bypass reduced the level of circulating markers of inflammation and 
increased neutrophil apoptosis (Chello et al. 2007). In humans, clinical studies dem-
onstrated the inhibitory effect of statins on neutrophil functions. A 6-week intake 
of Atorvastatin significantly reduced superoxide anion generation by resting and 
stimulated neutrophils (Kowalski et al. 2006). A longitudinal study also confirmed 
the above data, showing reduced IL-8 production and chemotactic activity follow-
ing statin therapy (Guasti et al. 2006). However, there is still no clear evidence 
supporting the mechanism of action of statin in neutrophils.  
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       4.2      T-cells  

   Another effect of statins is to block the production of isoprenoids required for 
post-translational  modification of signalling molecules involved in immune cell 
activation. Globally, immune system activities are suppressed by statins which are 
thus considered as anti-inflammatory drugs interfering with the activation of proin-
flammatory cells such as macrophages and endothelial cells (Ghittoni et al. 2007). 
It is worth noting that during activation, the activity of HMG-CoA reductase is 
also enhanced, probably via protein kinase C (Chakrabarti et al. 1991). The role of 
HMG-CoA reductase and mevalonate production in T-cell activation and metabo-
lism was shown with the use of Lovastatin which inhibited anti-CD3-induced T-cell 
mitogenesis in a dose-dependent manner (Chakrabarti et al. 1991). Interestingly, 
Lovastatin had no effect on T-cell proliferation in the first 12 h of culture, sug-
gesting that mevalonate is required from mid-G1 into the late G1 phase of the cell 
cycle. Early and late events of TcR signalling including intracellular calcium mobi-
lization, inositol phosphate production, and tyrosine phosphorylation of phospholi-
pase Cgamma1, where shown to be inhibited by Lovastatin (Goldman et al. 1996). 
Moreover, post-translational  processing of ras was disrupted, which influenced the 
ras-signalling pathway involving mitogen-associated protein kinase (MAPK).  

   The statin-induced prenylation of signalling molecules is one major fac-
tor influencing T-cell activation and function. The Ras- and Rho-dependent 
signalling pathways including extracellular signal-regulated kinases (ERK) and 
p38 activation, respectively, are both diminished by statins (Greenwood et al. 
2003). A recent article suggested statin-induced T-cell anergy mediated by early 
and sustained phosphorylation of ERK1 involving the accumulation of the nega-
tive regulator p27 (Kip1) (Waiczies et al. 2005) The first study to describe changes 
in post-translational modifications of protein due to statins and membrane rafts 
was described by Gubina et al., showing the link between CD43 exclusion from 
membrane rafts and Lovastatin treatment of CD4+ T-cells (Gubina et al. 2002). 
Although the raft markers GM1 and GM3 where not altered in localisation at the 
uropod and leading edge, respectively, CD43 was not associated with membrane 
rafts (Gomez-Mouton et al. 2001).  

   The clinical applications of statin use have to be reconsidered following the recent 
discovery of their broad effects. Because of their anti-inflammatory properties, statins 
can be useful in patients with cardio-vascular risks (Casserly et al. 2004). This is the 
case also with Alzheimer patients who often suffer cardio-vascular problems (Crisby 
et al. 2002). Moreover, several autoimmune diseases were shown to be controllable 
by statin therapy. This is the case for chronic and relapsing experimental autoimmune 
encephalomyelitis and is now being tested in multiple sclerosis clinical trials (Weber 
et al. 2006). This anti-inflammatory effect was associated with reduced migration of 
leukocytes into the central nervous system, inhibition of MHC Class II expression and 
blockade of costimulatory signals required for activation of proinflammatory T-cells, 
induction of a Th2 phenotype in T-cells, and reduction in the expression of inflam-
matory mediators in the central nervous system (Stuve et al. 2003). Patients with 
systemic lupus erythematosus (SLE) also display dysregulation of T-cell signalling, 
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including the reduced expression of the protein tyrosine kinase Lck at the cellular 
level but its increased basal activation in membrane rafts (Jury et al. 2004). Atorvasta-
tin treatment resulted in the reduction of the active form of Lck in resting T-cells and 
in the inhibition of Lck recruitment to the immunological synapse (Jury et al. 2006). 
Moreover, the production of IL-10 and IL-6 by T-cells (involved in SLE pathogen-
esis) was reduced when Atorvastatin was used. One peculiar characteristic of statins 
is their binding to an allosteric site on the LFA-1 alpha chain (Schramm et al. 2007). 
LFA-1 is involved in T-cell migration via the activation of the cytoskeletal machinery 
and activation of two transcription factors, c-Jun and c-Fos induced by MKK4/7 and 
MKK 3/6, respectively. Together, these data strongly suggest an immuno-modulatory 
role for statins in vitro and in vivo and future longitudinal studies will provide more 
accurate information on their suppressive effects in clinical use.  

     5     Lipids as Antigens  

   T-cell signalling complexity and specificity make it very sensitive to extrinsic fac-
tors. The first events of T-cell receptor (TcR) signalling rely on cholesterol-enriched 
membrane rafts and thus the lipid environment will have a major influence on 
this process. Lipids can enter passively through the membrane or can be actively 
bound by transporters such as lipoproteins. Therefore, the expression and function 
of receptors has an important role in the regulation of intracellular lipid composi-
tion. However, there is limited information on lipid-specific receptors in T-cells. 
Only the scavenger receptor CD36 (Lubick et al. 2006), which is expressed on 
most leukocytes, is known to facilitate the uptake of lipids either in their active 
form or after some modifications such as oxidation. In this respect, the accumula-
tion of oxidized low density lipoproteins (oxLDL) may influence T-cell activa-
tion. Incubation of monocytes with oxLDL induced autologous T-cell proliferation 
while direct contact between T-cells and oxLDL induced their apoptosis (Fortun 
et al. 2001). Professional antigen presenting cells, dendritic cells (DC), were also 
recently shown to synthesize lipid antigens in response to bacterial stimulation 
and induce CD1-restricted T-cell activation through antigenic mimicry (Thurnher 
2007). Thus, lipids derived from antigens such as viruses may have a potent immu-
nomodulatory function and influence the induction, intensity, type and duration of 
the immune response.  

    6      The Place of Lipids in Age-related Changes 
in T-cell Signalling  

   Changing the extracellular and intracellular lipid composition influences cellular 
activation in many ways. The signalling events induced by lipids acting as antigens 
or as lipid mediators, are still under investigation. Nevertheless, there are several 
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pathological cases where T-cell dysfunctions are clearly associated with T-cell signal-
ling defects, through the direct or indirect action of lipids. T-cell dysfunctions con-
tribute to age-related immune dysfunction (immunosenescence). Altered TcR signal 
transduction is likely to play a role in this state of affairs (Pawelec et al. 2001; Fulop 
et al. 2005). Many signalling events, including the activation of the tyrosine kinase 
Lck, the adapter protein LAT, and the MAPKinase pathway are impaired in T-cells 
from elderly individuals. The final outcome of these alterations is a decrease in tran-
scription factor translocation to the nucleus, reduced IL-2 production and reduced 
proliferative capacity, together contributing to age-related T-cell dysfunction and the 
global erosion adaptive immunity (Effros et al. 1997). Recent findings suggest that 
alterations of membrane raft properties and function are partly responsible for these 
defects (Larbi et al. 2004a). The cholesterol content, which is a critical parameter in 
membrane fluidity and the maintenance of raft structure and functionality, is increased 
in T-cells from normolipidemic elderly individuals. This may be an explanation for 
the impaired raft polarization at the stimulation site as well as decreased association 
of signalling molecules with rafts. The increased cholesterol content might be caused 
by alterations in cholesterol efflux or by the accumulation of oxidized cholesterol 
(Fielding et al. 2001). The free radical theory of aging postulates that increased pro-
duction of reactive oxygen species (ROS) and reduced anti-oxidant machinery are 
critical factors in age-asssociated dysfunction (Harman 1969). Oxidized lipid levels 
are increased with age while anti-oxidant properties are decreased, helping to explain 
changes in membrane lipid composition, reduced T-cell signalling and increased dys-
function in immunosenescence (Stulnig et al. 1996; Jaouad et al. 2006).  

   As shown by the in vivo studies mentioned above, the intravenous infusion of 
lipids directly influences T-cell functions (Larbi et al. 2005). These experimental 
protocols aimed to mimic the effect of diet on immune function. Nutrition is an 
important factor in age-related immune dysfunction and in the regulation of T-cell 
signalling. As described above, lipids can influence T-cell signalling and func-
tions and nutritional intake is the major source of circulating lipids. These effects 
are true for neonates as well as aged individuals (Calder et al. 2006; Field et al. 
2006). Many clinical trials have aimed to assess the effect of nutrition on immune 
functions; however, these studies generally only investigated the effect of one nutri-
ent. Because of the existence of nutrient to nutrient interactions as well as differ-
ences in the metabolism of different classes of lipids, entire nutritional intake must 
be considered (Garry et al. 2007). Further studies will be needed to establish the role 
of each lipid in the modulation of TcR signalling, T-cell functions and the global 
immune response.  

    7      Conclusions  

   T-cell function and signalling rely on membrane-dependent early events. Because 
the immediate environment lipid composition is directly influencing membrane 
composition this results in the modulation of T-cell signalling, function and the 
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immune response. Cholesterol is of major importance in this phenomenon because 
of its abundance in cell membranes as well as in the serum. Statins have signifi-
cant protective effects against cardio-vascular diseases but also some unexpected 
effects on T-cell functions. One should consider this aspect when statin treatment 
is provided to immunocompromised individuals but would be beneficial to patient 
with autoimmune disease where T-cell hyperactivation is shown. There are some 
correlations between food intake and immune functions but more clinical studies 
will be needed to clearly identify candidates to improve immunity or to prevent 
senescence.  
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                       Abstract   :    Prophylaxis with vaccines is of great importance in geriatrics as, apart 
from specific protection, it reduces the incidence of potentially fatal infectious com-
plications and exacerbations of existing medical conditions. The level of postvac-
cination protection strongly depends on immune system and therefore markers of 
its condition may be used to predict the efficiency of vaccination. From the practical 
point of view, a link between some clinical features of the health status and condi-
tion of immune system are desirable as they allow to find the patients who may need 
additional care necessary to avoid possible complications, in case the vaccination 
did not protect them against the infection. This chapter reviews immune phenom-
ena associated with anti-influenza vaccination. Humoral and cellular markers of the 
immunization efficiency are discussed in respect of health status of the elderly.     

   Keywords:       Anti-influenza vaccination    •    The Senieur Protocol    •    Humoral response    • 
   T-cells    •    Antigen Presenting Cells   

     1   Introduction  

  There is consistent view among researchers and clinicians on the importance of 
vaccination against influenza in the elderly. Growing awareness of the benefits from 
the vaccination has recently resulted in the decrease of vaccination age threshold, 
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behind which the immunization is recommended for the entire population regard-
less of health status, from ≥ 65 to ≥ 50 years. In this age group the virus does not 
only cause influenza but, more important, it is responsible for secondary pneumonia 
and severe exacerbation of preexisting chronic conditions which in many cases may 
prove fatal. A meta-analysis of epidemiological studies revealed that the vaccina-
tion in this age group reduces the rate of hospitalization for influenza by 27–38% 
and reduces all-cause mortality by 45–56% (Vu T 2002; Nichol KL 2003). Impor-
tantly, the reduction in the rate of hospitalizations and deaths is comparable between 
healthy and frail elderly (Hak E 2002). Bearing in mind that around 80–90% of 
the mortality related to influenza and its complications occurs in the elderly, these 
results proof necessity for repeated annually prophylactic vaccination. The results 
also suggest that the vaccine might be a safe tool boosting immune system in the 
elderly.  

  Response of immune system to the challenge with anti-influenza vaccine depends 
on several variables. The most important are:  

    •     Viral antigens in the vaccine (which directly reflects types of viral strains emerg-
ing in particular epidemic season)  

    •     Type of vaccine administered  
    •     Health status of immunized individuals.     

  Introducing the readers to the subject, it has to be stated that different, some-
times mutually exclusive, results of studies in the field may come from the fact that 
they were performed in different seasons, with different preparations of the vaccine 
available in particular seasons, and that the cohorts examined in different studies 
could be recruited and classified with the use of various criteria (Beyer WE 2006).  

    2   Virus and Vaccines  

  Influenza virus is RNA virus that belongs to  Orthomyxoviridae  family. Epidemic 
influenza in humans is caused by A and B types of viruses. Importantly, there is a 
possibility that human subjects may suffer from influenza caused by simultaneous 
infection with few types of the virus at the same time (Edwin D. Kilbourne 1951). 
Infection is the most severe in small children and in persons aged ≥ 65 years, which 
is the most dependent on immature immunity in the childhood and compromised 
immunity in the elderly (Couch RB 1994). Clinical efficiency of the vaccination 
defined as the percentage of subjects protected from the infection is strongly depend-
ent on extreme variability of the virus. It is the reason why antigenicity of the vaccine 
has to be changed every season. New variants of influenza virus differing in their 
immunogenicity emerge as a result of antigenic “drift” and “shift”. “Antigenic drift” 
is a gradual change of the viral genome dependent on point mutations which results 
in small antigenic modifications. This type of antigenic variability is relatively easy 
to follow by immune system primed with anti-influenza vaccine. On the other hand, 
“antigenic shift” is a substantial change in viral genome caused by exchange of 
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DNA fragments between animal and human strains of influenza virus. The “shift” is 
less common than “drift” but it results in radical change of viral antigenicity giving 
the virus potency to escape from efficient immune response. It makes the “shift” an 
important factor contributing to pandemic influenza. Interestingly, these completely 
modified viruses that cause pandemics are also capable of changing pattern of age-
specific susceptibility to influenza. For example, second wave of the infection dur-
ing the biggest pandemic in XX century, that is, during ‘Spanish’ influenza in 1918, 
was associated with the highest rate of mortality among young persons aged 20–34 
years. In contrast, the lowest rate of deaths was noted among very elderly aged ≥ 
70 years (HMSO 1920). To some extent, similar reversed pattern of mortality was 
also noted during 2 other severe pandemics in 1957–1958 and 1968–1969 (Payne 
AMM 1958; Schenbaum SC 1976). It is believed that the protection in the elderly 
was dependent on prior exposure to antigenically equivalent viruses earlier during 
ontogeny which left immune memory in the elderly. This is consistent with hypoth-
esis of “antigenic recycling” which states that antigenic content of influenza viruses 
reemerges and the strains causing epidemics in particular seasons might be similar 
to those which circulated in previous era (Schenbaum SC 1976; Nguyen-Van-Tam 
JS 2003). Nowadays, WHO-based surveillance network of laboratories covering the 
entire globe identifies new potentially aggressive strains and updates the content of 
the vaccine to influenza strains challenging immune system in particular seasons. It 
also coordinates other necessary sanitary restrictions in order to prevent influenza 
pandemic. For example, first outbreak of avian influenza with previously unknown 
A/H5N1 virus took place in Hong Kong in 1997 but thanks to strict surveillance it 
has not caused pandemic as yet.  

  From the clinical point of view, there are 2 important viral proteins: neuramini-
dase and hemagglutinin. Immune response and therefore design of anti-influenza 
vaccines are based mainly on these 2 proteins. Currently, anti-influenza vaccine 
preparations contain antigens of three different strains that cover antigenicity of 
strains causing influenza in particular season. There are 2 main types of the vaccine 
available commercially: inactivated (intramuscular injection) and live attenuated 
(intranasal spray). However, only inactivated one is recommended for the elderly as 
it contains killed viruses. Inactivated vaccine is produced as split or subunit prepara-
tions. Split vaccine consists of whole disrupted viruses while subunit vaccine con-
tains mainly 2 the most immunogenic proteins, neuraminidase and hemagglutinin, 
bound to a carrier.  

  Immunization with the vaccine as a source of alien antigens may produce 
mild symptoms of immune response which constitute majority of postvaccina-
tion adverse effects. Fever, malaise, myalgia, headache, etc. starting around 6-12h 
after immunization and lasting less than 2 days may occur in a small proportion of 
patients. More common effects are local soreness and swelling at the vaccination 
site (10-64% of patients). This type of effects is mainly related to the route of vac-
cine administration.  

  Quality of the vaccines has been continuously improving in order to satisfy rig-
orous criteria of efficiency and safety. Nowadays, inactivated vaccines are com-
posed of only subvirion and purified surface antigens of the virus without its highly 



1458  P. Trzonkowski 

pyrogenic lipid components. This way substantial decrease in systemic adverse 
effects after immunization was achieved. Severe adverse effects noted previously, 
such as increased rate of Guillain-Barre syndrome reported in the season 1976/1977 
after administration of swine influenza vaccine (Schonberger LB 1979; Safranek TJ 
1991), are nowadays much more limited with changed procedure of vaccine produc-
tion. Currently, the vaccine is produced from viruses which are cultured in embryo-
nated hens eggs and subsequently killed and purified (Gerdil C 2003). Unfortunately, 
it causes that persons hypersensitive to egg proteins can be immunized with these 
preparations only after desensitisation therapy and under physician’s care. Apart 
from hen egg proteins, vaccines may be also contaminated with trace amounts of 
antibiotics used during vaccine manufacturing. Thus, although hypersensitive reac-
tions occur rarely after influenza vaccination (Bierman CW 1977), the administra-
tion of the vaccine has to be always preceded by obtaining the history of existing 
allergies, in particular egg and drugs allergies. Also the possibility that mercury-
containing vaccine preservative thiomersal might be allergic or toxic caused that 
the amount of this agent has been significantly reduced in modern vaccines and in 
some U.S. states thiomersal is completely banned (Centres for Disease Control and 
Prevention 2006). All these examples prove that not only influenza virus antigens 
but also other components of the vaccine are able to challenge immune system. 
Importantly, like in Guillain-Barre syndrome case, some components of the vac-
cines can substantially modify immune responses to viral antigens.         

Table 1 Virus and Vaccines

• Influenza—  virus depends on:
– antigenic drift—a gradual change of the viral genome dependent on point mutations
–  antigenic shift—(responsible for pandemics) a substantial change in viral genome caused 

by exchange of DNA fragments between animal and human strains

• Antigenic recycling—reemerging of the antigenic content of influenza virus strains which 
gives the elderly advantage of having immune memory during reexposure

• Neuraminidase—surface protein of influenza virus responsible for increased secretion and 
liquefaction of mucus covering epithelium of the respiratory tract; it allows for easier penetra-
tion of the virus within the respiratory tract; the protein also takes a part in budding of newly-
synthesized virions from the surface of host cells and decreases innate immune response of 
the host to infected cells; applied as a content of anti-influenza vaccines due to high immuno-
genicity, it is also a target for the IInd generation of anti-influenza drugs

• Hemagglutinin—surface protein of influenza virus that binds its particles to sialic part of 
receptors expressed on the surface of respiratory tract epithelium which results in pinocytosis 
of the virus; it is also responsible for the generation of conglomerates of newly-synthesized 
virions underneath plasma membrane of host cells immediately before budding; used as a 
content of anti-influenza vaccines due to high immunogenicity

• Anti-influenza vaccine—trivalent vaccine containing antigens of three influenza virus strains 
recommended by WHO for particular epidemic season: 2 strains of Type A (H1N1 and H3N2) 
and 1 Type of strain B; 2 kinds of vaccine are routinely used:
–  inactivated—intramuscular injections produced as split or subunit preparations, the only 

type recommended currently for the elderly
– live attenuated—produced as intranasal spray
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    There are few important practical aspects which have to be highlighted here. First, 
as the vaccine contains killed viruses, it cannot cause influenza. Neither systemic 
nor local postvaccination symptoms can be considered as influenza infection but 
only as symptoms of immune response to exogenous antigens administered in the 
vaccine (in fact, these symptoms prove the vaccination works). It has to be explicitly 

   Table 2      Practical recommendations for anti-influenza vaccination in the elderly    

  • All adults age ≥ 50 years should be vaccinated regardless of their health status
–    egg allergy—patient must be desensitised first; in patients hypersensitive to egg prophy-

lactic use of antiviral drugs should be considered instead  
–  history of hypersensitivity after previous vaccinations—if patient is at high risk of influ-

enza complications (aged ≥ 65 years), vaccination may be considered after appropriate 
allergy evaluation and desensitization; vaccine administration always under care of medi-
cal staff  

–  allergy to antibiotics (also hypersensitivity to other components of the vaccine)—special 
attention should be taken, it is recommended to administer the vaccine under care of medi-
cal staff

–    patients with fever due to acute illness—immunization must be delayed 1–2 weeks since 
complete recovery  

–  patients with the history of Guillain-Barre syndrome—should be vaccinated if aged ≥ 65 
years; those 50–65 years old should be vaccinated only if at high risk group (suffer from 
chronic disorders of the pulmonary or cardiovascular systems; or require regular medical 
follow-up or hospitalization during the preceding year; or suffer from any condition that 
can compromise respiratory function in any way; or residents of nursing homes and other 
facilities that house patients who have chronic medical conditions)  

  • Single dose of trivalent inactivated vaccine, either split or subunit, is the only anti-influenza 
vaccine preparation recommended in the elderly  

    [the preparation for particular season must be used, even though the antigenic content of 
the vaccine from previous season is the same); multi-dose vials may be used for vaccina-
tion in nursing homes and other long-term elderly-care facilities]  

  • The intramuscular route (in the deltoid muscle) is recommended; a needle length ≥2cm (1 
inch) should be applied.     

• Vaccine preparation should be stored and transported in +4°C until use  

  • Vaccination should take place in October–November, i.e., before epidemic season, in order to 
provide adequate serologic protection  

• Earlier immunization (in September) should be avoided as post-vaccination specific immunity 
against influenza at this age may decrease below protection level before the peak of epidemic 
season  

• Vaccination is still recommended after November for unvaccinated uninfected persons until 
the end of epidemic season (April)

  • Treatment with IInd generation antiviral drugs* should be considered for infected patients:  
–  zanamivir: 10mg (two inhalations) b.d. or  
–  oseltamivir: 75mg b.d.  

*Ist generation drugs are currently not recommended  

  • Inactivated vaccine can be administered within 4 weeks of any live or inactivated vaccines and 
vice versa, other vaccines can be administered after inactivated anti-influenza vaccine (the 
vaccine does not interfere with other vaccines)  

• Inactivated vaccine can be administered simultaneously with pneumococcal polysaccharide 
vaccine  

  • Caregivers, medical staff, and any household contacts of the elderly should be also vaccinated   
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explained to the patients who very often identify these symptoms as “influenza” 
and neglect necessity of further annual vaccinations. Of note, several studies proved 
that those symptoms might be very much related to patient’s perception of the vac-
cination and not to real health postvaccination problems. In blinded trials the rate of 
adverse effects after anti-influenza immunization was equal to the rate of adverse 
effects after placebo injections (Margolis KL 1990; Govaert TM 1993). In our stud-
ies, patients, who reported side effects immediately after vaccination but were com-
prehensively informed about the procedure, did not remember these side effects six 
month later and were very positive to further vaccinations (Trzonkowski P 2003a). 
It proves both, mildness of the symptoms and necessity of proper education as a 
substantial part of vaccination prophylaxis. In many cases patients also report that 
they suffered from influenza despite the immunization. Nevertheless, not so often 
patients and their doctors verify the diagnosis with laboratory confirmation of the 
presence of influenza virus which is indispensable condition of such diagnosis (cur-
rently, commercially available rapid diagnostic tests can detect influenza viruses as 
quickly as in 30 minutes). It is known that more than one hundred viruses are able 
to produce symptoms of respiratory illnesses that, to great extent, may resemble 
influenza. Medical staff should inform the patient that anti-influenza vaccine pro-
tects from influenza virus and not from other respiratory viruses. The vaccine may 
increase general immunity but there is no guarantee that patients will not suffer 
from infections of respiratory tract other than influenza. Practically, good argument 
in favour of vaccination, which persuades patients to be immunized annually, is that 
although they still may be infected with other respiratory viruses, they are protected 
from often fatal complications of their chronic diseases. The argument for a very 
small proportion of those, who suffered from confirmed influenza infection despite 
vaccination, is that the symptoms of influenza are much milder after vaccination. 
Moreover, it has been proved that even unsuccessful first vaccination still increases 
the level of protection which will be gained with subsequent doses of the vaccine 
repeated annually in the future seasons (Keitel WA 1997).           

    3    Background of Immune Response to the Vaccine
in the Elderly—from Clinic to Basic and Back  

    Understanding of immune response to anti-influenza vaccine in the elderly requires 
brief summary of some distinctive features of immune system in this age group. First 
of all, the elderly are very heterogeneous in their responses. Medical staff immu-
nizing persons aged ≥ 65 years faces patients whose health histories are extremely 
diverse. The vast majority of these patients are frail elderly with a burden of multi-
ple medical conditions and polypragmasy which are not neutral to immune system 
(Table 3). The other pole constitutes a small proportion of healthy elderly including 
those with limited number of relatively mild conditions. No doubt, immune system 
differs between these 2 groups and proof for that are centenarians whose immunity 
is now known to be different from “younger elderly” in many aspects (Franceschi C 



  Fig. 1    Influenza vaccination affects differently the elderly differing in health status   
   Antigens of the killed viruses administrated in the vaccine are processed and presented via APC-
cells. This presentation primes both naïve T-cells and naïve B-cells. Generation of memory cells 
is easy in „Senieurs“ (healthy individuals) whose naïve compartment is relatively big and few 
memory clones do not interfere with this process. „Non-Senieurs“ (unhealthy individuals) are 
characterized by much more limited number of naïve cells and expanded memory clones occu-
pying immune space additionally prevent from the generation of immune memory to the vaccine 
antigens. Increased level of proinflammatory cytokines and increased activity of T-regulatory 
cells also contribute to the attrition of immune responses to the vaccine in these individuals. As 
a result, effective cellular and humoral responses to the infection with influenza virus are noted 
predominantly in „Senieurs“ who are capable of rapid and efficient expansion of virus-specific 
effector cells. These cells and their products fight against the virus in the body fluids thanks to 
the specific antibodies and within infected cells thanks to the cytotoxic effect. „Non-Senieurs“ 
are usually characterized by significantly reduced response during influenza infection which is 
too low to be effective enough. In addition, the negative effects present during the generation of 
immune memory to the vaccine in „Non-Senieurs“ are also present during the infection, which 
additionally limits the activity of already reduced number of virus-specific memory cells. Thus, 
despite immunization, „Non-Senieurs“ may suffer from the symptoms and signs of influenza .
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1995). Thus, initial predictions of efficiency of the vaccination can be based on care-
ful assessment of health status of particular patients. Classical approach in experi-
mental immunosenescence studies on humans was initially offered by the “Senieur 
Protocol” criteria with some further amendments (Ligthart GJ 1984; Ligthart GJ 
1994; My liwska J 1999; Castle S 2001). According to this concept it is possible to 
divide elderly population into frail “Non-Senieurs” and healthy and almost-healthy 
“Senieurs”. Importantly, the majority of information necessary for the classifica-
tion can be easily obtained based on physical examination, patient’s history and 
very basic laboratory data. As it comes from original criteria, also confirmed by 
our results, the classification is more reliable when the patients are under continu-
ous routine care and their records are systematically updated, rather than when the 
assessment is performed accidentally only for the needs of particular study. Apply-
ing the “Senieur Protocol” into clinical routine proved to be helpful in distinguish-
ing between potentially good and bad elderly responders to anti-influenza vaccine, 
as “Senieurs” were mainly responders, while “Non-Senieurs” belonged mainly to 
nonresponders (Trzonkowski P 2003).  

  Interestingly, more recent concepts of immune health criteria based on recent 
achievements of basic science may somehow correspond to the “Senieur Protocol”. 
It is important from the practical point of view, as relatively simple methods of the 
evaluation of immune system can be widely applied and serve every practitioner 
to distinguish patients at risk of poor response to the vaccination. Additional care, 
necessary to avoid possible complications, would be then given to such patients, 
should the vaccination did not protect them against the infection. Good exam-
ple of such novel theory, which is a nice “bridge” merging clinical assessment of 
the “Senieur Protocol” with concepts of immunosenescence, is the hypothesis of 
“immune risk phenotype” (IRP), which, in brief, states that high CD8+ and low 
CD4+ T-cell numbers and poor T-cell proliferative responses are associated with 
increased morbidity and mortality in the elderly (Ferguson FG 1995; Wikby A 
2005; Hadrup SR 2006). As the efficiency of vaccination is still routinely meas-
ured mainly as the titre of specific antibodies, it has to be noted that “risk” aging is 
also associated with impaired humoral immunity (Paganelli R 1992). Hypotheses 
of “inflammaging”, infectious ageing, “telomere” aging, “shrunk immune space” 
may also well contribute to IRP and its clinical consequences. Namely, it has been 
known that some pathogens, with cytomegalovirus (CMV) as the most important 
among them, are able to drive continuously the activity of immune system in a 
very subtle level called sometimes “abortive infection” (Speir E 1994; Khaiboullina 
SF 2004). Effects of such continuous activation accumulate over years resulting 
in protracted proinflammatory status, so-called “inflammaging” (Franceschi C 
2003). Inflammaging has been found mainly in frail elderly, therefore it is con-
sidered highly detrimental (My liwska J 1999; Franceschi C 2003). The activation 
of immune system driven primarily by CMV is substantially enhanced by inflam-
matory cytokines, which altogether results in the generation of expanded clones 
of CD8+ T-cells recognizing CMV-like antigens, often referred as CD28-CD8+ 
T-cells (Pawelec G 2005). Despite effector phenotype, these CD8+ T-cells are aner-
gic, unproliferating, and terminally differentiated, which makes them functionally 
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ineffective (Boucher N 1998). Expansion of oligoclonal CD28-CD8+ T-cells under 
conditions of continuous stimulation, together with the involution of the thymus, 
results in so-called “shrinkage of the immune space” for new clones (Franceschi C 
2000; Ouyang Q 2004). Oversimplifying, enlarged CD28-CD8+ T clones and low 
thymic output of naïve cells preclude substantially generation of new immunocom-
petent lymphocytes in response to the challenges with new antigens. This is also 
valid for the antigens administered in vaccines (Effros RB 2007). Importantly, sub-
jects characterised by CMV carrier status, increased proinflammatory activity, and 
expansion of CD8+ T clones possess characteristics of IRP and usually are classi-
fied as “Non-Senieurs” (Trzonkowski P 2003a). Thus, careful clinical evaluation 
of health status using predefined criteria, like those in the “Senieur Protocol”, may 
be an important source of information about the condition of immune system and 
possible reactivity to the challenge with anti-influenza vaccine. Table 3 is an exam-
ple of some traits of the “lifestyle” and some medical conditions which are more 
likely to place elderly subjects in the group of “Non-Senieurs” and, at the same 
time, highly probably make them nonresponders to anti-influenza immunization. 
Nonresponsiveness not only refers to the serological responses but also to those 
cellular. Moreover, “Non-Senieurs” are significantly more susceptible to all-cause 
respiratory tract infections during epidemic season than their healthy counterparts 
(Trzonkowski P 2003; Trzonkowski P 2003a; Trzonkowski P 2004). At this point, it 
should be stated that potentially low response to the vaccine predicted on the basis 
of clinical examination is not a reason for disqualifying from the immunization. 
Contrariwise, as the same conditions make those patients more susceptible to influ-
enza infection and its complications, it is yet another argument for their immuniza-
tion and additional care during the epidemic season. Moreover, in our experience, 
impairment in serological response could be improved in some “Non-Senieurs” with 
repetitive vaccination in subsequent seasons. Interestingly, patients, who improved 
their serological responses during second or third immunization with the vaccine 
were characterized by relatively well-preserved markers of cellular immunity such 
as high cytotoxicity of NK-cells, relatively high levels of Th1 cytokines (IL2 and 
IL15) and low proportion of CD28-CD8+ T-cells. In contrast to the first-vaccina-
tion responders, the second-vaccination responders were CMV carriers character-
ized by moderately elevated levels of proinflammatory cytokines (IL6 and TNFα) 
(Trzonkowski P 2003; Mysliwska J 2004).         

    The possibility that some subjects may improve their responses and escape from 
the ‘frail’ part of particular criteria was also found by the others. The problem is the 
fact that the groups distinguished within particular classification are still heteroge-
neous. For example, IRP was found to possess reversible characteristic as some aged 
individuals were proved to be able to move out from it (Wikby A 2006). In addition, 
in some studies health status did not prove to be associated with IRP (Nilsson BO 
2003). Centenarians are also a good example of heterogeneity. It was found that 
environmental pressure selects more strictly men than women. Thus, centenarian 
men consists the minority of people aged ≥ 100 years but they are healthier than cen-
tenarian women, whose high proportion has suffer from many medical conditions 
since relatively young age and yet achieve this exceptional lifespan (Franceschi C 
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2000; Franceschi C 2003). The insight into genome is probably the way to systema-
tize the classification. No doubt, selection for longevity and threshold for frailty 
are associated with genes. For example, there is underrepresentation of -174GG 
polymorphism of IL6 gene among centenarians (Bonafe M 2001). Bearing in mind 
that -174GG homozygotes are high IL6 producers and IL6 is one of the main rea-
sons of inflammaging (Ferrucci L 1999; Harris TB 1999), it seems to be obvious 
that -174GG polymorphic variant is associated with early onset of frailty during 
ageing. Nevertheless, genomic approach is also far from clarity. For example, while 

   Table 3    Factors affecting response to anti-influenza vaccination in the elderly based on postvac-
cination titres of antihemagglutinins and antineuraminidases [142 elderly followed in 3 consecutive 
seasons 1999/2000, 2000/2001, and 2001/2002] [Trzonkowski P 2003a]    

  Increased response    Decreased response  

   Lifestyle    

  •  High education 
•  Independent life
•   History of physical activity (≥ 12 months, 

regardless sport discipline) 
    •   Smoking [higher titres correlated with 

longer time of smoking and higher number 
of cigarettes smoked per day (!)]  

  •  Life in long-term care facility  
•   Sleep disturbances—often symptoms of 

depression (difficulties in falling asleep, 
early rousing from sleep, frequent rousing 
from sleep during the night, inverted wake/
sleep rhythm, nightmares)  

   Diet    

  Normal BMI, fatty and/or protein-enriched 
diet   

  Increased BMI (regardless hip/waist ratio), 
carbohydrate-enriched diet  

   Commonly used drugs administered in the elderly and found to affect response
to the vaccine   

  nitrates, ACE inhibitors, methyloxantins,
antidepressants (SSRI),   

  β-adrenergic blockers, calcium channel block-
ers, neuroleptics, nonsteroid antiinflam-
matory drugs, statins, glicocorticosteroids, 
posttransplant immunosuppression, oncology 
drugs (various types)  

   Medical conditions found to affect response to the vaccine   

  cholelithiasis,     coronary heart disease, chronic congestive heart 
insufficiency, arterial hypertension, diabetes 
mellitus type II, hypothyroidism, active 
peptic ulcer, chronic renal insufficiency, 
rheumatoid arthritis, spondyloarthritis, 
prostatic hyperplasia, neoplasms (also in 
remission), depression, dementia (regardless 
of etiology), anaemia (regardless of etiology 
but the most common anaemia affecting the 
results was microcytic one caused by iron 
deficiency), immunosuppression (HIV carri-
ers, post-transplant immunosuppression)  

   Clinical characteristics according to the Senieur Protocol   

  Senieurs     Non-Senieurs   

   Immune markers associated with aging   

       Immune Risk Phenotype (IRP), Status of CMV 
carrier, Increased level of proinflammatory 
factors  
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these genotypic data corresponds with occurrence of severe chronic conditions in 
the elderly, such as three-artery coronary stenosis (My liwska J 2006), it is not so 
well correlated with serological response to anti-influenza vaccine (Trzonkowski 
P, unpublished data). Nevertheless, despite the lack of serological correlation, vac-
cination against influenza was found to decrease the level of complications after 
coronary bypass grafting in -174GG homozygotes (My liwska J 2006a).  

    4   Humoral Response to Anti-influenza Vaccine  

  It is a long time since the disturbances in humoral response during aging were 
described for the first time (Thomsen O 1929). This compartment in the elderly not 
only is inefficient in response to the challenges with new foreign antigens but it is 
also dysfunctional generating increased responses to own antigens. Like in T-cells, 
oligoclonality may be an important reason of this dysfunctionality as the shrinkage 
of repertoire of lymphocyte B-cell receptor (BCR) and clonal expansions of B-cells 
responsible for various gammapathies were described during aging (LeMaoult J 
1999; Li F 2001; My liwska J 2002; Weksler ME 2002). Paradoxical decrease in the 
number of circulating B-cells with concomitant increase in the level of IgG and IgA 
found in the elderly (Paganelli R 1992) can be easily explained by increased ratio of 
B1a CD5+ cells to B2 CD5- cells and oligoclonality of the latter (Weksler ME 2002). 
It is B1a subset that produces autoantibodies, while B2-cells are responsible for 
the production of high-affinity alloantibodies including those after immunization 
with vaccines. Thus, decreased number and reduced clonality of B2-cells can be the 
reason of poor responsiveness to anti-influenza vaccine in the elderly. Moreover, 
half time of mature B2-cells increases with age concomitantly with reduced output 
of recent bone marrow emigrants, which may explain increased ratio of IgG and 
IgA to IgM in the elderly (Kline GH 1999). Apart from alterations in B-cells, some 
data from animal models suggest that decreased humoral responses with age may 
be attributed to altered activity of naïve CD4+ T-cells from aged subjects (Eaton SM 
2004). This impairment is mainly dependent on prolonged exposure of naïve T-cells 
to environmental agents at the periphery throughout life (Haynes L 2005). The most 
detrimental defect, which affects the function of this subset, is diminished produc-
tion of IL2 (Linton PJ 1996).  

  Humoral response to anti-influenza vaccine, measured as the titre of antibodies 
directed against strain-specific hemagglutinins included in the vaccine, became the 
most common way of laboratory checking approved for the evaluation of the immu-
nization efficiency (Pereira MS 1972; Potter CW 1979; Ligthart GJ 1998). While 
wide variety of parameters can be set based on specific antihemagglutinin (HI) anti-
body titres, the “gold standard” was introduced and accepted worldwide in order to 
unify inter-laboratory comparisons. In 1992, EU Committee for Proprietary Medici-
nal Products published officially guidelines on harmonization of requirements for 
influenza vaccines (Committee for Proprietary Medicinal Products 1992). Based on 
that, three the best parameters were chosen for the evaluation of vaccine efficiency 
on a population level:  
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    •      Mean fold increase —the postvaccination geometric mean titre (GMT) of spe-
cific HI antibodies  

    •      Seroprotection rate —the percentage of patients with HI antibody titres ≥ 1:40 
postvaccination  

    •      Seroconversion rate —the percentage of patients with a fourfold increase in HI 
titres postvaccination     

  Without question such unification is welcomed, but one should remember that 
there are still some drawbacks behind it. The main limitation seems to be incom-
plete control of prevaccination state (Beyer WE 2004).  

  Similar evaluation of the efficiency of immunization on the level of particular 
subject should be based on  seroprotection  (HI titre ≥ 1:40—suggested in patients 
seronegative before vaccination) or  seroconversion  (fourfold increase in HI titre—
more useful in patients seropositive before vaccination). As nowadays vaccines are 
trivalent, complete protection is achieved when the titres of all three antihemagglu-
tinins reach this threshold (Trzonkowski P 2003), but in many studies response to 1 
or 2 strains is treated as protection (Gardner EM 2001). Obviously, clinical protec-
tion measured as reduction in influenza morbidity depends on the strain which is 
predominant in particular epidemic season, therefore some discrepancies between 
laboratory and clinical results are possible (Keitel WA 1997). For example, a review 
of 31 experimental studies revealed that, as compared to 70–90% reduction in mor-
bidity in younger subjects, the vaccination was efficient only in around 50% of 
immunized elderly (Goodwin K 2006). At the same time, protective titre of antibod-
ies in the elderly can be as low as 28% versus 74% in younger groups (Bernstein 
ED 1998). Surprisingly, despite low level of specific antibodies, old patients may be 
still free from the infection. Odelin and colleagues described a group of 285 vacci-
nated elderly residents of long-term care facility among whose only 21% developed 
seroconversion but only one 95-years-old patient experienced influenza infection 
during epidemic (Odelin MF 1993). On the other hand, Gravenstein and colleagues 
described a cohort of 72 vaccinated elderly with confirmed influenza infection 
despite the fact that 60% of them were seroprotected and 31% achieved the titres as 
high as ≥1:640 (Gravenstein S 1994).  

  Protective titre of HI antibodies in general population is generated in the body 
around 7-14 days post-immunization and it is kept up to 12 months after adminis-
tration of the vaccine (World Health Organisation 1993; Gross PA 1997; Brydak L 
2002). The process is slightly delayed and protection does not cover 12 months in 
aged individuals. In Levine’s studies protective response occurred in as many as 
70% of immunized elderly patients but 28% of seroconversions was noted later than 
4 weeks after vaccination. Moreover, protective titres disappeared in 68% of pro-
tected elderly within 6 months after vaccination (Levine M 1987). Similar delay and 
weaker humoral responses after anti-influenza vaccination in the elderly were noted 
when the level of local secretory IgA in the wash from nasal cavity was measured 
(Powers DC 1992). Despite continuous improvement in the vaccine manufacturing, 
these serological results seem to be still valid as they were confirmed with the use 
of modern trivalent inactivated vaccines (Trzonkowski P 2003a). Some studies sug-
gest that improvement may be achieved with combined use of trivalent inactivated 
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vaccine with live, attenuated influenza vaccine administered 1 month later (Nakhin 
AN 1998). Two doses of anti-influenza vaccine administered ≥ 1month apart are 
already routine practice, mainly in children (Centres for Disease Control and Preven-
tion 2006). The strategy of increased dose of the vaccine was also found effective in 
patients from risk groups (Palache AM 1993). Nevertheless, it has to be mentioned 
that some authors did not find any benefit from increased doses of the vaccine in gen-
eral population of the elderly (Gross PA 1987; Levine M 1987; Palache AM 1993).  

  Diminished antibody response to the first anti-influenza vaccination in aged indi-
viduals can be explained by low availability of naïve B-cells that maintain primary 
response (De Bruijn IA 1999; Ikematsu H 2000; Mysliwska J 2004). On the other 
hand, some recall responses may be exaggerated as a result of molecular mimicry, 
that is, structural similarities between the structure of viral antigens in the vac-
cine and those which had challenged immune system in the past and left immune 
memory detected as antibodies. Thanks to the mimicry, these preexisting antibodies 
can cross-react with influenza virus antigens from the vaccine (Powers DC 1992). 
The mimicry seems to be of special importance when frail elderly population faces 
pandemic caused by influenza virus modified by “antigenic shift” (see: “antigenic 
recycling”). This way, B-cell memory may compensate for immune impairment 
and aged individuals can be surprisingly well protected during pandemic (Nguyen-
Van-Tam JS 2003). To some extent, the same mechanism may improve humoral 
efficiency of repeated annual immunization including patients from risk groups, 
notably, when the same influenza strains are recommended as a vaccine content 
during subsequent epidemic seasons (Beyer WE 1996; Ikematsu H 1997; De Bruijn 
IA 1999; Ikematsu H 2000; Brydak LB 2000a; Mysliwska J 2004). Repeated annual 
immunization not only increases the titre of generated specific antibodies in con-
secutive seasons, but also improves their avidity (De Bruijn IA 1999). However, 
some studies question effectiveness of repeated vaccination showing that humoral 
response may be diminished if the immunized subject has preexisting titre of anti-
hemagglutinins to viral strains administered in particular vaccine. This questionable 
effect, known as “Hoskins Paradox”, may be age-specific as it was described in 
toddlers (Hoskins TW 1979) but excluded in the elderly (Beyer WE 1998; Beyer 
WE 1999; Gardner EM 2001). Despite these serological discrepancies, repeated 
annual vaccination is nowadays highly recommended as morbidity and mortality 
from influenza and its complications is substantially reduced in repeatedly immu-
nized elderly, including those with low titre of postvaccination antibodies (Govaert 
TM 1994; Ahmed AE 1995).  

5       Cellular Immunity to Anti-influenza Vaccine  

  Discrepancy between serological and clinical protection rates may be explained by 
simple fact that the immunization has to induce not only humoral but also cellular 
immune response to be effective. It is of special importance as the repopulation of 
influenza virus takes place inside infected cells and this stage of the disease is not 
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available to the antibodies. Otherwise, T- and NK-cells may still approach the virus 
inside infected cells. Both subsets are able to directly kill infected cells or stop 
replication of the virus by secreted interferons which inhibit synthesis of the viral 
proteins by host cells. Importance of cellular immunity during influenza infection 
in aged subjects was confirmed in many independent studies in humans and animals 
(Bender BS 1991; Mbawuike IN 1993), also with adoptive transfer of influenza-
specific cytotoxic T-lymphocytes (CTL) to infected animals which resulted in com-
plete eradication of the infection (Yap KL 1978).  

  There is growing evidence for cellular responses to the vaccine in humans. It has 
been revealed that anti-influenza vaccines are able to activate both T- and NK-cells 
(Gorse GJ 1997). The awareness of the contribution of cellular responses to post-
vaccination immunity in the clinic raised not so long ago when the vaccination with 
interleukin 2 (IL2) as adjuvant in the vaccine gave promising results (Provinciali 
M 1994). As deficiency of IL2 is recognized as a one of the most important fac-
tors contributing to age-related immune impairment, its application in the elderly 
is of special interest (Effros RB 1983). The link between T-cells and vaccination 
was revealed in the research on Th1/Th2 cytokines after vaccination. Some strains 
were found to prime preferentially Th1 responses suggesting activation of cellular 
response, while the others stimulated mainly Th2 responses suggesting activation 
of humoral immunity (McElhaney JE 1998). Some studies in the elderly highlight 
the importance of Th1/Th2 paradigm, i.e. the theory that Th1 and Th2 responses are 
mutually exclusive and only one of them is leading when the body faces particular 
infection (Allen J 1997). Namely, Th1/Th2 imbalance towards Th2 cytokines was 
reported by many authors at this age (Huang YP 1992; Castle S 1997; Glaser R 
2001; Haynes L 2002). Specifically during anti-influenza vaccination in the eld-
erly, Th2 bias results in low activity of CTL (McElhaney JE 1998b). There are also 
reports showing reciprocal influence of both cellular and humoral axes of immunity. 
Namely, good cellular response after vaccination, measured as the activity of CTL 
to vaccine antigens, was concomitant with low titres of specific antibodies and vice 
versa, high titres of antibodies were associated with low CTL activity (Powers DC 
1993). Interestingly, the direction of response after the vaccination may be modu-
lated with the dose of the vaccine. Subjects who received single dose of the vac-
cine generated mainly Th1 response with high level of specific CTL, while those 
who received two doses were characterized by Th2-dependent immunity with pre-
dominant antibody response (McElhaney JE 2005). However, some experimental 
data proved that simultaneous boosting of Th1 and Th2 responses with vaccine 
antigens is required for efficient serological responses to the vaccine in humans 
(Bernstein ED 1998). Bearing in mind that nowadays vaccines are trivalent, it is 
highly probable that both humoral and cellular components of immune response 
may be triggered and detected at the same time after vaccination (McElhaney JE 
1998; Mysliwska J 2004). It has been only recently confirmed in animal model that 
CD4+ T-cells, main producers of Th1 and Th2 cytokines, are prerequisite for both 
antibody and cytotoxic responses to influenza virus antigens (Brown DM 2006). 
Initially, CD4+ T-cells primed with viral antigens cooperate with B-cells in the gen-
eration of specific antibodies and, in the later stage of response, those primed CD4+ 
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T-cells acquire capability of perforin-dependent cytotoxic effect and become a part 
of effector arm of cellular immunity against the virus. These experiments proved 
possibility that humoral and cellular responses may occur together and both con-
tribute to the protection against influenza. The balance between different parts of 
immune system is believed to be kept by “third subset” of CD4+ T-cells, so-called 
T-regulatory cells (Treg cells—reviewed elsewhere in this book). These highly sup-
pressive cells, rather than quench, regulate immune responses protecting the body 
against self-damage in autoimmune reactions. However, their accumulation with 
age might be responsible for oversuppression manifested as decreased efficiency 
of vaccines in the elderly. Indeed, the accumulation of Treg cells was revealed to 
be associated with poor humoral and cellular responses to the immunization with 
anti-influenza vaccine. The suppressive effect was even wider as Treg cells inhib-
ited the cytotoxic activity of NK-cells stimulated with influenza vaccine antigens 
(Trzonkowski P 2003a).  

  There is growing evidence for superiority of cellular markers above those humoral 
in prediction of vaccine efficiency. Some studies in humans revealed that, apart from 
the above mentioned perforin content, also production of granzymes after stimula-
tion with vaccine antigens is associated with clinical protection to influenza infec-
tion. It was found that secretion of this marker of cytotoxic response was a better 
predictor of vaccine efficiency than the titre of specific antibodies (McElhaney JE 
1998a; McElhaney JE 2006). Apart from granzymes, IFNγ secretion and number of 
influenza-specific memory T-cells were found to be better postvaccination predic-
tors of protection against influenza infection than production of specific antibodies 
(Trzonkowski P 2003a; Deng Y 2004). While these results are promising, it has to 
be highlighted that the majority of them were obtained in small, not controlled stud-
ies. Thus, their importance must be confirmed in larger blinded trials before markers 
of cellular immunity may be applied routinely.  

  To some extent, the reason why cellular markers are not routine parameters 
of vaccine efficiency may come from the fact that sensitive methods of measure-
ment of cellular responses, which might be applied in the clinical routine, have 
been available for around last ten years only. Among them, ELISPOT assay seems 
to be of special interest. It is the assay that allows for the measurement of exact 
number of cells producing particular protein (Altman JD 1996). In the studies of 
cellular response after the vaccination, the application of ELISPOT measuring IFNγ 
production after the stimulation with vaccine antigens is probably the most common 
(Deng Y 2004; McElhaney JE 2006). Sensitivity of the method is higher than flow 
cytometric analysis of intracellular cytokines or methods analyzing extracellular 
concentration of the cytokines in blood, supernatants, urine etc. For example, the 
method allows for detection of antigen-specific cells in samples taken from patients 
after peripheral depletion of mature lymphocytes. The frequency of lymphocytes 
in such individuals is often as low as below 1 cell/μL and yet the ELISPOT allows 
for detection of antigen-specific cells (Trzonkowski P 2006). Another interesting 
method on the clinical horizon is the tetramer staining, which is the measurement 
of CD8+ T-cells with a given specificity. The tetramer is a complex of soluble MHC 
Class I receptors conjugated with a given peptide, for example, viral antigen from 
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the vaccine. Tetramer is also conjugated with fluorescent dye in order to be visual-
ized. While incubated with blood, the complex is bound only by CD8+ T-cells that 
express TCR receptors recognizing the peptide conjugated to the tetramer (Doherty 
P 1998; Murali-Krishna K 1998). Thus, the tetramer “stains” antigen-specific cells 
which can be subsequently counted using sensitive fluorescence reader, usually 
flow cytometer. Sensitivity of the method is very high as it is possible to detect 
specific cells in the mixtures where they consist less than 0.1% of cells. It means 
that, in theory, it is possible to detect as few as a single antigen-specific cell in the 
sample. The main disadvantage of the method is that it requires typing of MHC as 
particular tetramers may be applied only if they are matched with MHC molecules 
of particular patient. The new perspectives of this method are recently introduced 
MHC soluble complexes Class II which allow for the studies with CD4+ T-cells.  

  It seems that CD8+ T-cells are central and the most essential cells for cellular 
immunity after anti-influenza immunization. Their activity as CTL—secretion of 
granzymes, perforin and IFNγ—is crucial during effector stage of immune response, 
i.e., during elimination/killing of virus-infected cells and therefore for the clinical 
outcome of the immunization (McElhaney JE 2001). However, the repertoire of 
naïve CD8+ T-cells is severely restricted with age due to decreasing thymic output. 
In addition, impaired function of CD4+ T-cells, in particular their shift towards Th2 
responses associated with frail aging (Castle S 1997), additionally contributes to 
weak cellular immunity in the elderly (Effros RB 2003).  

  Important part of response after immunization is the generation of T-cell immune 
memory. Like the switch from IgM to IgG in case of humoral immunity, efficient 
immunization is also associated with the transition from naïve to memory T-cells. 
As compared to animal studies, reports on this phenomenon in aged human subjects 
after anti-influenza vaccination are surprisingly scarce. Phenotypic analysis of the 
percentage changes in isoforms of CD45 receptor on T-cells revealed that the vac-
cination is associated with a decrease in the proportion of naïve CD45RA+CD45RO- 
T-cells (McElhaney JE 1993). Deficit in the number of naïve T-cells might be the 
most important reason of inefficiency of the vaccination with age as Murasko 
proved in animal model that per-cell activity of influenza-specific T-cells does not 
differ between young and old subjects (Po JL 2002). With decreasing number of 
naïve CD45RA+CD45RO- T-cells, the level of double-negative CD45RA-CD45RO- 
T-cells was found to be increased in the peripheral blood of vaccinated subjects 
(McElhaney JE 1993). The CD45RA-CD45RO- phenotype was described as atypi-
cal memory T cells, most probably because naïve CD45RA+ / memory CD45RO+ 
paradigm was still valid these days. It is now known that the expression of CD45RO 
receptor is unstable and it is more a marker of activation than memory as memory 
cells may not express it (Wills MR 1999). Thus, phenotypic definition of memory 
T-cells is more reliable when based on the absence of CD45RA receptor rather than 
on the expression of CD45RO receptor. Current understanding of naïve and mem-
ory compartments is that naïve T-cells transform upon challenge into 2 memory 
subsets, central memory and effector memory (Sallusto F 1999). Such discernment 
is of special interest among the elderly as the proportion of memory cells increases 
with age at the expense of naïve cells and the level of particular subsets of memory 
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cells might be associated with health status (Saule P 2006). T central memory cells 
(Tcm) express 2 important receptors, CCR7 and CD62L, which enable them to traf-
fic into peripheral lymphoid tissue. Tcm are characterized by intermediate effector 
function and still possess capability of proliferation. On the other hand, T-effec-
tor memory cells (Tem) are triple-negative CCR7-CD62L-CD45RA- cells which 
makes their trafficking into lymphoid tissue impossible. Thus, they are predominant 
in peripheral blood and traffic to nonlymphoid tissues. Tem possess high effector 
potential and usually they are close to terminal differentiation with extreme CCR7-

CD62L-CD45RA+ T subset present mainly in CD28-CD8+ T-cells (Saule P 2006; 
Trzonkowski P 2006). CD3+CD28-CD8+CCR7-CD62L-CD45RA+ phenotype, often 
called TemRA cells, might be treated as detailed phenotype of CD28-CD8+ T-cells, 
that is, the subset accused of compromised immunity in the elderly (Pawelec G 
2005; Effros RB 2007).  

  Accumulation of CD28-CD8+ T-cells, which “shrank immune space” for new 
antigenic challenges, was revealed to be associated with low responsiveness to anti-
influenza immunization in the elderly (Goronzy JJ 2001) Their clonal expansions 
were then widely recognized as a burden associated with poor outcome of anti-
influenza vaccination (Saurwein-Teissl M 2002; Trzonkowski P 2003). Neverthe-
less, some reports have revised our understanding of this population. It appears that 
homeostasis of CD8+ T-cells, including CD28-CD8+ T-cells, is highly dependent 
on cytokines (Ku C 2001). Weng’s study confirmed that it is possible to restore 
activity of CD28-CD8+ T-cells in the presence of IL15 (Chiu WK 2006). Of note, 
poor outcome of anti-influenza vaccination in the elderly was associated with low 
availability of IL15 and accumulation of anergic CD28-CD8+ T-cells (Trzonkowski 
P 2003a; Mysliwska J 2004). Thus, like in the case of IL2, IL15 supplementation 
might be considered as an adjuvant therapy during immunization of frail elderly. It 
might be also possible that CD28-CD8+ T-cells are heterogeneous and a proportion 
of them is characterized by reversible anergy. Indeed, it is possible to distinguish 
some subsets within this phenotype (Filaci G 2002). At this point, it has to be men-
tioned that healthy elderly, qualified as the “Senieurs” according to the “Senieur 
Protocol”, are usually characterized by relatively high level of CD8+ T-memory 
cells with less differentiated CD62L+ Tcm phenotype and it corresponds with their 
good response to anti-influenza vaccine (Trzonkowski P 2003a). Interestingly, such 
T-memory cells expressing CD62L receptor may maintain not only cellular but also 
humoral memory responses (Schwaiger S 2003). It seems that accurate ratio of cen-
tral to effector memory cells is prerequisite for the maintenance of anti-influenza 
memory response within CD4+ T-cells after vaccination. Capability of transforma-
tion from Tcm into Tem cells in CD4+ T subset was found to be a condition for long-
term immune memory after anti-influenza immunization (Kang I 2004; Roberts AD 
2005). Unfortunately, the transition is dependent on IL7, which level decreases with 
age concomitantly with thymus involution (Andrew D 2001). Thus, high proportion 
of the elderly is characterized by the accumulation of Tcm and deficit of Tem due to 
low availability of IL7. As a result, regardless of good initial responses immediately 
after the vaccination, CD4+ T-cell recall responses three months after the exposure 
to vaccine antigens are much lower than those noted in the young (Kang I 2004).  
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  As already mentioned, important difference between B- and T-cell responses, 
which suggests deeper impairment of cellular response with age, is that repeated 
annually vaccination corrects for low effectiveness of humoral response but not 
for cellular one. It was found in several studies that some cellular responses do not 
improve (Trzonkowski P 2003a), or may even worsen (McElhaney JE 1996), in 
consecutive vaccination seasons.           

  Apart from T-cell responses, NK-cells also contribute to cellular immune surveil-
lance. High activity of these cells with age has been recognized as a compensation 
for “immune attrition” of T-cells in the elderly (My liwska J 1992; Franceschi C 
2000). When T-cells are compromised, NK-cells are the last line of defense against 
intracellular pathogens. A fall in their number or activity predicts increased morbid-
ity and mortality in the elderly (Levy SM 1991; Ogata K 2001). Their activation 
was also described after anti-influenza vaccination (Shapiro JM 1990; My liwski A 
2001). Importance of this effect should not be neglected as NK-mediated cytotoxic-
ity was confirmed to be essential for clearance of the virus in animal studies (Bot 
A 1996). The most important mechanism of NK-dependent clearance is associated 
with recognition of viral proteins by NK-cell activating receptor NKp46. The recep-
tor is recognized as crucial in signalling that eventually triggers NK-dependent lysis 
of host cells infected by influenza virus (Arnon TI 2001; Mandelboim O 2001). 
Lack of this signal was found to cause lethal influenza in animal model (Gazit 
R 2006). In addition, during respiratory tract infections NK-cells secret copious 
amounts of IFNγ which augment CD8+ T-cell responses (Hussell T 1998). Impor-
tant feature of NK-cells is that once activated by viral antigens or vaccine, they 
can keep the activation state for a long time, up to 20–30 days (Hussell T 1998; 
Mysliwska J 2004). As the clearance of the virus usually takes not so long, it raises 
the question on the reasons of this prolonged overactivity of NK-cells. The explana-

   Table 4       Immune response to anti-influenza vaccine    

   Humoral response      Cellular response   

   Parameters   

  - titer of specific antihemagglutinin (HI) 
antibodies 

- mean fold increase of HI antibodies 
- seroprotection (HI titre ≥ 1:40)
- seroconversion (4-fold increase in HI titre)  

- level of perforin 
- level of granzymes
- secretion of IFNγ
- number of influenza-specific T-cells

   Disturbances in aging that affect efficiency of the vaccination   

  - Increased B1/B2 cells ratio
- Increased ratio of IgG and IgA to IgM
- Impaired primary response and oligoclonal 

recall response
- Impaired function of Th cells  

  - Th1/Th2 imbalance towards Th2 cytokines 
- Decreased thymic output of T-cells
- Low level of naïve CD8+ T-cells
- Oligoclonality and terminal differentiation 

of CD8+ T-cells (high level of CD28-CD8+ 
effector memory T-cells) 

- Low activity of NK-cells 
- Accumulation of T-regulatory cells  

   Repeated annually vaccination   

  – improves the response   –   does not  improve the response  
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tion may come from recent report that proves involvement of NK-cells in immune 
memory and questions “handbook dogma” that these cells belong exclusively to 
innate immunity (O’Leary JG 2006). The other explanation is linked to cytokine 
milieu. Namely, it has been found that successful anti-influenza vaccination was 
associated with secretion of cytokines that induce NK-cell activity. Elevated levels 
of Th1 cytokines, such as IL2, IL12 and, IL15, were detected in “Senieurs” as long 
as one month postvaccination (Mysliwska J 2004). Thus, correlation between good 
outcomes of the immunization and high activity of NK-cells might be treated as yet 
another example of the importance of NK-cells in healthy ageing. Like the activity 
of T-cells, the activity of NK-cells does not improve with repeated vaccinations and 
can be attributed to health status of particular subject (Mysliwska J 2004).  

    6    Antigen Presentation—Missing Part
of Immunization Strategy  

  Surprisingly, little is known about antigen presenting cells (APC) in successful 
anti-influenza vaccination in aged individuals. Some reports suggested that low 
number of alveolar macrophages in aged individuals might be a risk factor for res-
piratory tract infections (Zissel G 1999). On the other hand, the presence of macro-
phages was recognized as an obstacle in effective immunization and their depletion 
improved the results (Garg M 1996). However, it seems that the number differences 
might be less important than altered function of monocytes and macrophages. It has 
been revealed that several levels of the process of antigen presentation are affected 
in macrophages from aged individuals. Their capability of “sensing of danger” was 
found to be diminished in the elderly due to decreased expression of TLR recep-
tors—the most important group of receptors responsible for sensing of microbes 
(Renshaw M 2002). Macrophages from aged mice were also revealed to possess 
decreased phagocytic and endocytic activities (De La Fuente M 1985; De la Fuente 
M 2000; Videla LA 2001) and their capability of migration to the site of inflamma-
tion was also reduced (Fietta A 1993; Ashcroft GS 1998). Apart from impairment in 
antigen capturing and chemotaxis, also antigen presentation might be affected dur-
ing ageing. Macrophages from the elderly, as compared to the young, were found 
to express lower levels of CD80 receptor—an important element of second signal 
during antigen presentation to T-cells. There was also a correlation between the per-
centage of cells expressing CD80 receptor and effectiveness of anti-influenza vacci-
nation (van Duin D 2007). The majority of those dysfunctionalities might be linked 
to hyperactivation of macrophages, a part of wider phenomenon of inflammaging. 
These cells are well-known source of proinflammatory agents and, at the same time, 
their production of chemokines is substantially reduced in the elderly (Ershler WB 
1993; O’Mahony L 1998; Swift ME 2001). Altogether, inflammageing resembles 
chronic infections with intracellular pathogens, where macrophages are highly acti-
vated but anergic in a prolonged way (Chacon-Salinas R 2005; Lay G 2007). Apart 
from compromised immunity, including insufficient vaccination outcomes, such 
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chronic activation of macrophages may have an impact on wider range of aspects 
of frailty in aging. For example, in 3-years-lasting follow-up, patients classified as 
“Non-Senieurs”, were in many cases found to be characterized by monocytosis and 
finally their response to anti-influenza vaccination was insufficient (Trzonkowski P 
2003a). Of note, monocytosis in this study was associated with idiopathic micro-
cytic anemia. Some previous studies explained association between low effective-
ness of anti-influenza vaccination, anaemia and low level of iron by nutritional 
status of the elderly (Fulop T Jr 1999). Nevertheless, this phenomenon might be 
also explained by the fact that activated monocytes and macrophages present in 
inflammageing are overefficient stores of iron, which makes this microelement una-
vailable for erythropoiesis. The overactivity of macrophages might be also respon-
sible for failed attempts of improvement of anti-influenza vaccination with iron 
supplementation (Crogan NL 2005). Complexity of the links between monocyte 
activity, health status and final outcome of anti-influenza vaccination proves neces-
sity of further investigation in this area. Nevertheless, some basic knowledge, such 
as monocytosis or features of microcytic anemia in the blood count, can be obtained 
as simply as in a family doctor clinic and might help in presumptive prediction of 
the immunization results.  

  Dendritic cells (DC) are the most potent subset of APC. This population seems 
to be especially valuable in the generation of immunity after anti-influenza vaccina-
tion. DC were found to be superior to monocytes in the presentation of influenza 
antigens from the vaccine as they were the only APC capable of elucidating robust 
proliferative and effector responses of senescent T-cells (Lunga TL 2000). The same 
group showed that the generation and maturation of myeloid DC in vitro did not 
differ between young and elderly and responsiveness of DC, specifically to anti-
influenza vaccine, was unimpaired in old age (Saurwein-Teissl M 1998a). Studies 
on currently recommended in the elderly inactivated vaccine revealed that the vac-
cine was capable of efficient stimulation of DC maturation. In addition, the vac-
cine antigens triggered secretion of cytokines in both DC and subsequently primed 
T-cells (Saurwein-Teissl M 1998). Indeed, other authors also confirmed relatively 
good condition of DC in aging. The proportion of DC and their expression of pat-
tern recognition receptors (PRRs—the group of surface receptors that sense micro-
bial antigens) including TLR receptors were found to be almost unaffected in the 
elderly (Agrawal A 2007b). Altogether, this data implied that boosting of DC in 
vivo should be one of the targets of anti-influenza vaccination. However, some other 
reports suggested that some features of DC are different between young and elderly 
individuals. The impairments found in DC subsets seem to be more profound in 
frail elderly. First of all, it is possible that density of DC in nonlymphoid tissues, 
such as skin and oral mucosa, is decreased in the elderly (Thiers BH 1984; Choi 
KL 1987; Rittman BR 1987). Lymphoid tissue is also affected as follicular DC in 
the elderly were revealed to induce fewer and smaller germinal centres (Szakal AK 
1988). There are also reports on their impaired function in the elderly (Villadsen JH 
1987). Like in the case of monocytes, altered function of DC was described in the 
elderly on many levels. DC from the elderly are less efficient in antigen trapping, 
its processing and transport. Thus, their ability to present antigens is diminished. 
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Known reasons of this impairment are low surface expression of FcR  receptors 
on DC and decreased activation of the PI3K-signalling pathway in their cytoplasm 
(Szakal AK 1988; Wick G 1997; Sato H 1998; Aydar Y 2004; Agrawal A 2007). To 
some extent, impaired antigen presentation might be also dependent on apoptosis of 
myeloid cells at this age. Namely, it is widely accepted that apoptotic bodies from 
monocytes and macrophages, which died upon stimulation with influenza antigens, 
can be caught by DC and then vaccine antigens from those macrophages may be 
effectively presented by DC. General view on apoptosis is that the cells in the eld-
erly are prone to undergo this process easier than their counterparts in the young 
(Aggarwal S 1998; Aggarwal S 1999). However, detailed analysis revealed that this 
is only valid for the group of healthy elderly, while cells from those frail are resistant 
to apoptosis (Szmit E 2002; Trzonkowski P 2003a). Altogether, it clearly suggests 
that the antigenic load of DC dependent on decreased antigen trapping, impaired 
antigen transport, processing and low intake of apoptotic bodies might be impaired 
in elderly nonresponders. It means that each and every patient receives the same 
dose of the vaccine but the amount of vaccine antigens which is presented and takes 
part in priming of T and B cells is diminished in nonresponders and therefore the 
response of nonresponders is insufficient. Obvious solution to that problem would 
be increased amount of influenza antigens administered in the vaccine or multiple 
doses of vaccine given to nonresponders. While these manipulations are currently 
applied in children, they have not found approval in the elderly due to conflicting 
results of experimental trials (Gross PA 1987; Levine M 1987; Palache AM 1993).           

   Table 5    Presentation of influenza vaccine antigens *) **)    

   Monocytes/Macrophages      Dendritic cells (DC)   

   Parameters   

- number in peripheral blood and tissues
- phagocytic activity
- antigen presentation
- secretion of cytokines
- chemotaxis
- oxidative burst 
- expression of surface markers

- number and proportion of myeloid/lyphoid 
DC in peripheral blood and tissues 

- chemotaxis
- antigen uptake
- antigen presentation
- secretion of cytokines
- stimulation of T-cells 
- expression of pattern recognition receptors 

(PRR)

   Disturbances in aging that affect efficiency of the vaccination   

- decreased phagocytic and endocytic activities
- decreased expression of TLR receptors
- increased secretion of proinflammatory agents
- impaired secretion of chemokines
- impaired apoptosis

- relatively well preserved function
- decreased density of DC in peripheral 

tissues
- decreased capability of antigen presentation

   * for B-cells please refer to Table 4  
  ** during influenza infection antigens of influenza virus are also presented by nonprofessional 

APC; epithelial cells lining upper respiratory tract and, mainly in case of complications, epi-
thelium of lower respiratory tract, neurons, heart and, skeletal muscle fibers   
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7       Perspectives  

  Currently, there are several approaches to increase effectiveness of anti-influenza 
vaccination. Increased immunogenicity of the vaccine can be achieved by adding 
adjuvants. For example, promising results with dehydroepiandrosterone (DHEA) in 
animals prompted clinicians for its application in humans. Surprisingly, the results 
were inconsistent and some of the studies revealed that DHEA may even decrease 
the efficiency of vaccination (Araneo B 1995; Danenberg HD 1997; Ben-Yehuda A 
1998). Melatonin, another hormone which level decreases with age, was also sug-
gested as efficient adjuvant of the vaccine (Pierpaoli W 1987). Bearing in mind that 
melatonin is responsible for circadian rhythms and sleep disturbances are associated 
with low effectiveness of the vaccination (Trzonkowski P 2003a), further studies 
with this hormone should be granted. Another approach is based on simultaneous 
administration of cytokines, such as IL2 or GM-CSF, in combination with vac-
cines (Provinciali M 1994; Babai I 2001). Cyclooxygenase inhibitors (NSAID), 
commonly used drugs, were also suggested as adjuvants. Nevertheless, simultane-
ous administration of NSAID with anti-influenza vaccine gave inconsistent results. 
Some studies proved their effectiveness, while other works did not find any differ-
ences or revealed low efficiency of the vaccination in NSAID treated group (Gross 
PA 1994; Hsia J 1994; Trzonkowski P 2003a). Supplementation with trace elements 
was also postulated as a tool of vaccination improvement (Girodon F 1999). Recent 
reports on the role of zinc in immune responses in the elderly seem to be the most 
promising gate in this area (DelaRosa O 2006). Synthetic adjuvants are also in the 
clinical use. Licensed in Europe FluAD® vaccine is the preparation based on MF59 
emulsion (contains squalene, Tween 80, sorbitan oleate) which, as compared to the 
conventional trivalent inactivated vaccine, generated 1.5 fold higher titres of spe-
cific HI antibodies in the elderly (Podda A 2001). However, it caused more adverse 
effects. ISCOM technology is another strategy. It is based on the use of virosomes, 
viral envelopes without genetic material, which were proved to prime cellular 
immunity (Rimmelzwaan GF et al. 2001). Inflexal-V® is the first preparation of 
virosome-based vaccine licensed in Europe. Immunostimulating complexes called 
iscoms are very much close to virosomes. These are mixtures of viral antigens with 
cholesterol, saponine and phosphatidyl choline which structure resembles virion 
envelope with viral antigens. The complexes were found to induce both humoral 
and cellular immunity in animal models. However, their use in humans is still ques-
tionable as high titres of specific antibodies detected 1 week postvaccination disap-
peared quickly and 4 weeks after the vaccination no difference with conventional 
vaccines was noted (Rimmelzwaan GF et al. 2000).  

  Apart from adjuvants, other vaccine antigens are tried to be applied in order to 
increase vaccine immunogenicity. NP and M2 proteins, which in theory are much 
more conservative than hemaglutinin or neuraminidase, were found to generate 
protection against wide variety of viruses in animal models (Neirynck S 1999). 
Their disadvantage was that they did not protect from influenza B virus (Ulmer JB 
2002). There are attempts to deliver NP and M2 by DNA immunization, in order to 
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increase their immunogenicity. Surprisingly, although such vaccine was proved to 
elicit both humoral and cellular responses, animals immunized with this protocol 
developed fatal influenza (Heinen PP 2002).  

  Alternative routes of vaccine delivery are also tested. A natural target is the skin, 
which strong immunogenicity is dependent on the presence of specific subset of 
dendritic cells, so-called Langerhans cells. A kind of revolver that shoots a powder 
containing viral antigens was designed to deliver the antigens to these cells (Chen D 
et al. 2001). Another approach is to deliver the vaccine directly to mucosa. Intrana-
sal spray containing live attenuated virus FluMist® is currently licensed in USA for 
patients aged 5–49 years. Similar technique using novel preparations of inactivated 
vaccine is tested in several studies but the results are not yet convincing (Boyce TG 
2000; Plante M 2001). For example, already licensed intranasal virosome-based 
preparation NasalFlu® was withdrawn as its administration was associated with 
increased number of neurological complication—Bell’s palsy (Palese G 2002).  
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                                  Abstract:        A decline in immune function is a hallmark of aging that leads to 
complicated illness from a variety of infectious diseases, cancer and other 
immune-mediated disorders, and may limit the ability to appropriately respond 
to vaccination. How vaccines might alter the senescent immune response and 
what are the immune correlates of protection will be addressed from the perspec-
tive of 1) stimulating a previously primed response as in the case of vaccines for 
seasonal influenza and herpes zoster, 2) priming the response to novel antigens 
such as pandemic influenza or other viruses, 3) vaccination against bacterial 
pathogens such as pneumococcus, and 4) altering the immune response to an 
endogenous protein as in the case of a vaccine against Alzheimer’s disease. In 
spite of the often limited efficacy of vaccines for older adults, influenza vac-
cination remains the only cost-saving medical intervention in this population. 
Thus, considerable opportunity exists to improve current vaccines and develop 
new vaccines as a preventive approach to a variety of diseases in older adults. 
Strategies for selecting appropriate immunologic targets for new vaccine devel-
opment and evaluating how vaccines may alter the senescent immune response 
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in terms of potential benefits and risks in the preclinical and clinical trial phases 
of vaccine development will be discussed.  

         Keywords   :     Vaccination    •      Correlates of protection    •      Helper T-cells    •      
Cytotoxic T-lymphocytes    •      Antibodies    •      Cytokines    •      Granzyme B    •      
Influenza    •      Herpes zoster    •      Pneumococcus    •      Alzheimer’s disease    

     1      Introduction  

   This review will focus on vaccine preventable diseases and the effect of vac-
cination on the senescent immune response to specific pathogens, observed in 
community-dwelling older adults and relevant experiments in animal models. 
It is important to distinguish these studies from those in older people in the 
nursing home setting who represent a small minority of the population age 65 
years and older; multiple chronic diseases have already impacted on morbid-
ity and disability and immune function may no longer be representative of the 
senescent phenotype. As a population, the majority of older adults experience 
“usual aging” where independence is maintained in the community but risk for 
complicated illness is associated with one or more underlying chronic diseases. 
From a public health perspective, usual aging older adults are the largest segment 
of the population age 65 years and older and should be the target population for 
new vaccine development; the goal is to compress morbidity to the extremes of 
life—“adding life to years”.  

   A second focus of this review is to highlight the challenges in vaccine develop-
ment for older adults and how vaccines may interact with the senescent immune 
response in ways that are not predictable using standard techniques such as anti-
body titres to evaluate potential efficacy. The goal of vaccination in this population 
should be clinical protection rather than sterilizing immunity; sterilizing immunity 
is predicted by antibody titres whereas estimates of vaccine efficacy with respect to 
clinical protection require an evaluation of both humoral and cell-mediated immune 
responses to a vaccine or the relevant pathogen. In addition, vaccines need to be 
tested in usual aging older adults who experience a variety of common medical 
conditions and related medications, and mental and psychosocial health issues, all 
of which may interact with functional independence. While studies of healthy older 
adults will help us to understand the effect of aging on the immune response, trans-
lating this research to vaccine preventable disease and improved health outcomes 
in the 65 and older population requires the identification of “modifiable risk” at all 
levels of innate and adaptive immune function.  
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    2      Immune Senescence: Stimulating a Primed Response  

   2.1      Influenza Vaccination  

   2.1.  1  Influenza, the Most Vaccine Preventable Disease in Older Adults  

   Influenza is foremost among all infectious diseases in terms of risk for serious com-
plications and death in older adults and is the most vaccine preventable disease in 
this population. At least 36, 000 deaths and more than 100, 000 hospitalizations 
from respiratory and cardiovascular complications of influenza occur annually in 
the United States [1, 2]. In spite of only 40–60% efficacy in older adults [3], cur-
rent influenza vaccination programs are cost-effective in older people and even cost 
saving in developed countries due to the 30–40% reduction in influenza-related 
hospitalizations [4, 5]. The fact that these vaccines also prevent complications of 
influenza (pneumonia, heart attacks, strokes and exacerbations of congestive heart 
failure) provides an even greater incentive to increase the use of existing vaccines and 
develop new vaccines that are targeted to improve the senescent immune response 
[6, 7]. However, a limited understanding of the immune mechanisms that underlie 
the increased risk for complicated illness and decline in the response to vaccination 
in this population, pose a significant challenge to new vaccine development.  

    2.1.     2  Influenza Virus Stimulates both Humoral and Cell-mediated 
Immunity  

   The effect of influenza vaccination on the senescent immune response is best under-
stood from the perspective of the adaptive immune response to influenza and how 
this may be altered through vaccination. Influenza vaccine is the most studied vac-
cine in older adults and well understood in terms of the potential immunologic 
determinants of clinical protection in this population. Thus, the response to this 
virus in the context of age-related changes in the adaptive immune system, will be 
discussed in significant detail as an example of what we might anticipate in terms of 
other potentially vaccine preventable diseases in older people.  

   Influenza virus stimulates an antiviral response in bone-marrow-derived lym-
phocytes (B-cells), monocytes and thymus-derived lymphocytes (T-cells) resulting 
in humoral and cell-mediated immunity, respectively. However, the effectiveness 
of this stimulus depends on the presentation of viral peptides to the T-lymphocytes 
There are two main cell types within the T-lymphocyte population, helper T-cells and 
cytotoxic T-cells. Helper T-cells are further sub-typed (according to the cytokines 
they produce) as T helper type 1 (T

h
1), T helper type 2 (T

h
2), T helper type 3 or regu-

latory T-cells (T
h
3/Treg), and T helper type 17 (T

h
17) cells. The response to influ-

enza virus in adult populations is the result of restimulation of a previously primed 
response through exposure to natural infection or prior vaccination. Virus-activated 
T-cells, through a variety of cytokine mediators, stimulate B-cells to differentiate and 
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produce antibodies that are specific for the strains of virus contained in the vaccine 
[8]. These specific antibodies bind to the surface glycoproteins (haemagglutinin [HA] 
and neuraminidase [NA]), to neutralize the viral particle. The peptide sequences on 
the outer surfaces of HA and NA change as a result of high mutation rates in the 
influenza virus and selective pressure by the immune system against the native virus, 
a phenomenon known as antigenic drift. Influenza vaccines are updated annually 
to ensure that antibody-mediated immunity is stimulated to the relevant predicted 
strains of the H3N2 and H1N1 subtypes of influenza A, and influenza B.  

   Haemagglutination inhibition assays are the current industry standard for meas-
uring antibody responses to influenza vaccination as a proxy for vaccine efficacy. 
There is significant literature reporting a decline in antibody titres with aging sum-
marized in a recent metanalysis of these studies [9]. However, many of these studies 
have not defined the health status of study participants, their vaccination status, or 
the setting in which they live. Studies of the antibody response to influenza vaccina-
tion over multiple influenza seasons comparing healthy young adults to relatively 
healthy adults (probably representing “usual aging”) have shown no difference 
between these two groups [10, 11]. These results suggest that aging alone does 
not affect the antibody response to influenza vaccination as measured in hemag-
glutination inhibition assays, and thus do not explain the differences in vaccine 
efficacy between young and older adults. Furthermore, even though the antibody 
response to vaccination might be predicted to decrease with repeated vaccination in 
older adults, annual repeated vaccination, in fact, improves protection against influ-
enza [12–14]. Another postulate for the differences in vaccine-mediated protection 
in young and older adults has been that the duration of the antibody response to 
influenza vaccination may be shortened in older persons and not provide protection 
through the influenza season. However, a recent review found no evidence in the 
published literature of a premature decline in antibody titres during the influenza 
season in community-dwelling older adults [15].  

   There has been a paradigm shift in understanding the limitations of antibody titres 
as a sole measure of influenza efficacy [16]. As a correlate of protection against 
influenza, our studies have shown that serum antibody titres are similar and do not 
distinguish between older adults who will go on to develop influenza illness from 
those who do not [17]; and (McElhaney, submitted for publication). This is not to say 
that antibodies are not an important defense mechanism, but emphasizes the point 
that both humoral and cell-mediated immunity are important for clinical protection 
in older adults [18]. Thus, the evaluation of antibody titres alone as a surrogate of 
vaccine efficacy may fail to correlate with estimates of vaccine effectiveness from 
epidemiologic studies .    

       2.1.     3  T-Cell Responses to Influenza are Conserved Across Different Strains  

   In contrast to B-cells that mount a subtype and strain-specific response, the anti-
genic determinants of the T-cell response are more conserved across the different 
strains of influenza. Thus, T-cell recognition and the response to influenza does not 
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degrade with antigenic drift [19–21]. Internal peptide sequences of hemagglutinin 
and neuraminidase are similar within the subtypes of influenza A (e.g., A/H3N2 vs. 
A/H1N1). Internal viral proteins (matrix and nucleoproteins) are conserved within 
the types of influenza (e.g., influenza A vs. B) [22]. Thus, peptides derived from 
surface glycoproteins and internal viral proteins stimulate helper T-cell and CTL 
responses that are cross-reactive within the strains of influenza A or influenza B. In 
other words, antibody responses are relatively strain-specific, while T-cell responses 
are cross-reactive across strains within influenza A or B.  

   Previous studies have shown that exposure of the entire respiratory tract to 
live influenza virus is the most effective method of inducing cross-reactive T-cell 
responses to influenza virus infections [23]. A direct comparison between different 
routes of infection showed that protection correlated with the size of the virus-spe-
cific CTL (CD8+) response in the lungs and associated lymphoid organs. Although 
self-renewing populations of virus-specific CD8 T-cells are maintained in the lym-
phoid organs for many years after influenza and other respiratory virus infections, 
protective cellular immunity is short-lived and disappears within about 6 months 
[23]. However, this CTL memory response can be recalled by vaccination with 
split-virus influenza vaccines in older adults especially when the vaccine has been 
recently exposed to natural infection with influenza (McElhaney et al., submitted 
for publication).  

    2.1.    4  Effective Stimulation of Helper T-cells and CTL  

   Virus is taken up and processed by antigen-presenting cells such as macrophages 
and dendritic cells, and the resulting peptides are presented with the major histo-
compatability complex to activate T-cells [24]. Helper T-cells (T 

h
 ) recognize anti-

gens presented by the major histocompatibility complex Class II (MHC II); MHC 
II is expressed almost exclusively on antigen-presenting cells, B-cells and T-cells 
[25]. In contrast, CTLs recognize viral peptides in combination with MHC I; MHC 
I is expressed on most cells in the body [26]. Structural viral proteins and both 
live and inactivated viruses are phagocytosed by macrophages and dendritic cells. 
The virus is processed within the antigen-presenting cell and presented in combi-
nation with MHC II to helper T-cells [27]. In contrast, viral peptides presented in 
combination with MHC I, are generally the products of viral replication within the 
antigen-presenting cell, although antigen cross-presentation in dendritic cells does 
occur (discussed below). Thus, the form of the viral antigen, and the interaction 
with a specific MHC and its cellular location independently determine T 

h
  and CTL 

responses to vaccination [28, 29].  
   Antigen cross-presentation is the process by which antigens including killed 

virus or viral proteins are taken up by the dendritic cells, undergo proteasomal 
degradation, and are processed for presentation on MHC I. Because killed virus 
(contained current parenteral influenza vaccines) is effectively presented on 
MHC II and not MHC I, T 

h
  and B-cells are stimulated to produce good antibody 

responses, but only weak CTL responses are seen in adults; this CTL response 
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that is not seen in influenza-naïve individuals, results from restimulation of a 
previously primed response to influenza through natural infection [28–31]. This 
process is postulated to be the mechanism by which inactivated viruses including 
split-virus influenza vaccines can stimulate CTLs in populations primed by a pre-
vious influenza infection [30]. The relevance of antigen cross-presentation to new 
vaccine development is that Toll-like receptor (TLR) ligands [32], virosomes [33], 
virus-like particles [34], and potentially adjuvants [35] can be used to activate 
APC and enhance expression of MHC I-viral peptide complexes and improve the 
poor CTL responses elicited by the current killed virus vaccines in older adults. 
Boosting T-cell responses is an important priority for vaccine development, in 
general, due to broader protection against serologically distinct strains of virus 
[23, 36, 37]. Because immunosenescence alters several aspects of cell-mediated 
immune function, vaccine design can include independent strategies for effec-
tively stimulating T 

h
  and CTL responses.  

       2.1.  5  Effect of T-helper Cell Function on the Response to Influenza  

   The T 
h
  -mediated immune response to influenza virus plays a key role in the gen-

eration of both humoral and CTL responses to influenza vaccination. Previously, 
T 

h
 1 and T 

h
 2 were defined by their cytokine products such that the T 

h
 1 cytokine, 

IFN-γ, down-regulated T 
h
 2, and IL-10 downregulated T

h
1 [38–40]. While this par-

adigm is generally applicable in the mouse model, recent studies have questioned 
the validity of the T 

h
 1/ T 

h
 2 paradigm in humans, and the contributions of regula-

tory T-cells (Treg or T 
h
 3) and T 

h
 17 subsets to cytokine regulation are only begin-

ning to be understood [41]. Under a revised model, naïve CD4+ helper T-cells 
are stimulated by IL-12 to produce IFN-γ (i.e. become T 

h
 1); IL-4 stimulates T 

h
 2 

to produce IL-4, IL-5, IL-13; and IL-1, IL-6 and IL-23 stimulate T 
h
 17 to produce 

IL-17, IL-22 and IL-26. These T 
h
  subsets have counter-regulatory interactions 

between each other [42]. Our data showed that the IFN-γ:IL-10 ratio correlates 
with risk for influenza illness [17] but characteristics of the vaccine recipient and 
PBMC culture conditions may alter this relationship [43–46]. The apparent down-
regulation of IFN-γ by IL-10 may be T 

h
 3-mediated rather than a shift from a T 

h
 1 to 

a T 
h
 2 response [47], and the interaction with T 

h
 17 has not been studied at all.  

   T 
h
 17 appear to have developed as part of the adaptive immune response to 

combat extracellular pathogens not covered by T 
h
 1 or T 

h
 2 immunity based on 

studies in mice [48]. Studies in human PBMC sharply contrast with the results 
in mouse models. T 

h
 17 promotes the recruitment of IFN-γ producing T-cells and 

as such, is regulated by the tissue level of IFN-γ [49]. Recent studies in human 
PBMC have shown that T 

h
 17 can simultaneously produce IL-17 and IFN-γ sug-

gesting that the two cytokines may work synergistically in the adaptive immune 
response[50]. Given the centrality of the T 

h
 17 subset in immune regulation, T 

h
 17 

may have an important role in determining the cytokine response to influenza and 
responses to influenza vaccination.  
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       2.1.    6  Potential Cytokine-associated Correlates of Protection Against 
Influenza  

   Aging leads to a reduction in IL-2 synthesis [51, 52], an increase in IL-4 produc-
tion [53], dysregulation of T

h
1 and T

h
2 cytokine responses and a decline in the CTL 

responses to influenza [54]. However, a recent review of the application of the T 
h
 1/ 

T 
h
 2 paradigm in older adults highlights the discrepancies of results across a number 

of studies in older people [47]. In light of an evolving understanding of interaction 
of multiple T-cell subsets in humans, the response to influenza and influenza vac-
cination may be more complicated than predicted by these earlier studies. A reduc-
tion in the ratio of IFN-γ to IL-10 levels in response to ex vivo challenge of PBMC 
with live influenza virus, is associated with increased risk for influenza illness [17]. 
However, the source of IL-10 may be from multiple different T-cell subsets in these 
cultures including T 

h
 3/Treg. Also, absolute cytokine levels are less likely to predict 

risk for influenza illness suggesting that it is the regulation of the different T-cell 
subsets that determines the response to influenza and clinical protection from ill-
ness. It may be the balance and regulation of T 

h
 1/ T 

h
 2/ T 

h
 3/ T 

h
 17 responses that is 

important for a protective response to vaccination in older adults and recovery from 
influenza illness [55–57].  

   Recently, it has been shown in mice that with aging, antigen-presenting cells 
including monocyte/macrophages and dendritic cells produce lower levels of proin-
flammatory cytokines in response to ligation of Toll-like receptors [58]. The addi-
tion of these cytokines (IL-1, IL-6 and TNF-α) to spleen cells can reverse these 
age-related defects in T helper type 1 cytokine production [59]. The paradox is that 
IL-6 levels increase with age, chronic disease and stressors of the immune system 
and contribute to a proinflammatory state with increased production of IL-6 [60] 
and thus should stimulate rather than suppress T 

h
 1. These results reflect conflicting 

postulates as to the determinants of influenza risk in older people based on cytokine 
levels. The recent identification of T 

h
 17 cells and their regulation through TGF-β 

and IL-6 production and T 
h
 3/Treg [61, 62], may shed further light on differences in 

cytokine regulation, susceptibility and health outcomes, and the relationship with 
acute illnesses versus chronic diseases.  

    2.1.    7  Potential CTL-associated Correlates of Protection Against Influenza 
in Older Adults  

   Human studies have shown that CTL activity is important for recovery from influ-
enza infection even in the absence of protective antibodies to the infecting virus 
strain [63]. CTLs combat influenza viral infections by recognizing and destroying 
virus-infected host cells that become the factories for viral replication. Infected cells 
expressing on their surfaces the MHC I-viral peptide complex are recognized by 
and activate virus-specific CTL [26]. Two mechanisms by which CTL activation 
leads to lysis of virus-infected cells include perforin- or granule-mediated killing 
[64–66], and fas-mediated killing [67, 68]. Granule-mediated killing is particularly 
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important for the control of respiratory viral infections although fas-mediated kill-
ing may provide an alternative but less specific mechanism [69].  

   A direct comparison showed that protection correlates with the virus-specific 
CTL (CD8+) response in the lungs and associated lymphoid organs. Although self-
renewing populations of virus-specific CD8 T-cells are maintained for many years 
after influenza infection, protective cellular immunity is short-lived and disappears 
within 6 months [23, 36, 70]. Even though current inactivated influenza vaccines 
stimulate a CTL response in older and even chronically ill older adults [71], this 
response is diminished compared to young adults [72–74] and is not as robust as 
the response to natural infection [75]. As well, the degree of cross-reactivity of CTL 
responses for different subtypes of influenza may decrease in chronically ill com-
pared to healthy older adults [71, 72].  

   Virus-specific killing is mediated by granzymes contained in granules within CTL. 
Granules migrate to the “immune synapse” between the activated CTL and the virus-
infected target cell, are transported across the cell membrane into the cytoplasm of 
the target cell, and are involved in an enzymatic cascade that leads to apoptotic cell 
death [76]. Granzyme B (GrzB) is a key element of the T-cell response to influenza 
in the lung [77–79]. An assay of GrzB activity in lysates of influenza virus-stimulated 
PBMC correlates with cytolytic activity by standard  51 Cr-release assays [80, 81] but 
has the advantage of being a more sensitive measure of cytolytic activity that is detect-
able in ex vivo virus-activated PBMC. Ex vivo levels of GrzB in lysates of influenza-
stimulated PBMC correlate with risk for influenza illness in older adults [17]. Other 
ex vivo studies have shown no difference in influenza-specific CTL frequencies in 
older compared to young adults [82]. Taken together, these studies suggest that in 
influenza susceptible older persons, there is defect in the amount of GrzB produced 
on a per CTL basis.  

    2.1.    8  Interaction of Antibody and Cell-mediated Immune Response 
to Influenza Vaccination  

   Current killed virus vaccines effectively stimulate T helper cells and vaccination 
of healthy older people increases IL-2 to levels comparable to that of young adults 
[83–85]. Other studies have reported heterogeneous cytokine responses to influenza 
vaccination in healthy older people that are related to characteristics of the vaccine 
recipient and the vaccine [43–45]. The in vitro proliferative response to influenza 
vaccine is associated with protection from influenza illness in ambulatory older 
adults [18]while antibody titres, tested in different settings, have not been consist-
ently associated with risk for influenza illness in older people [17, 86]. In insti-
tutionalized older adults, IL-2 and IFN-γ responses to influenza are significantly 
associated with the level of independence in activities of daily living but do not 
predict protection against influenza illness [46]. Current killed virus vaccines have 
been shown to decrease the IL-10 (T 

h
 3/Treg) response to influenza for an overall 

increase in the T 
h
 1 (IFN-γ) relative to the T 

h
 3 response [87], but the short duration of 

the response is not effectively re-stimulated with a booster vaccination [88]. Further 
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the ratio of IFN-γ:IL-10 has been shown to predict a protective response to influenza 
vaccination [17].  

   Killed virus vaccines stimulate a weak cytotoxic T-cell response and have limited 
efficacy in older adults. New developments in vaccine technology that improve the 
regulation of T 

h
  cytokines and potentially increase the CTL response look prom-

ising .  Live-attenuated intranasal vaccines were developed to provide more effec-
tive stimulation of CTL. However, these vaccines have shown minimal additional 
benefit for preventing influenza in older adults when combined with the standard 
inactivated parenteral vaccines, although some improvements in symptoms [89] and 
immunogenicity [90] have been reported. Thus, the currently available killed virus 
vaccine given by injection is still the recommended vaccine for those aged 50 years 
and older.  

    2.1.    9  The Effect of Replicative Senescence on Immune Function 
and Responses to Vaccination  

   With aging and the multiple immune responses that have been stimulated through-
out one’s lifetime, there is a gradual shift from predominantly naïve T-cells to 
increasing proportions of memory T-cells. Thymic involution and the loss of naïve 
T-cells with aging may thus exhaust the capacity to respond to new antigens. Recent 
studies have further delineated central and effector memory helper T-cells, and have 
shown that healthy older adults have T 

h
  responses to influenza vaccination similar to 

young adults. However, an age-related decline in IL-7 levels corresponds to failure 
to maintain or expand the effector memory helper T-cell response to influenza [91]. 
The importance of memory T-cells in recalling the response to the many cross-
reactive influenza epitopes may be a key element of both T 

h
  and CTL responses to 

split-virus vaccines.  
   Features of ‘successful aging’ have been associated with well-preserved immune 

function while poor survival is predicted by high CTL counts, low helper T-cell 
counts, low numbers of B-cells and poor responses by T-cells to polyclonal stimula-
tion [92, 93]. The phenomenon of replicative senescence has been associated with 
these changes and relates to the finite number of doublings (25–30 cycles) after 
which cell cycle arrest occurs [94]. In CTLs, this growth arrest is associated with 
increased production of several proinflammatory cytokines, resistance to apoptosis 
[95], and loss of the costimulatory molecule, CD28, required for optimal stimula-
tion of CTLs [96, 97]. CTL that do not express CD28 (CD28- CTL) have little or no 
cytolytic activity [98] and an increased proportion of CD28- CTLs is associated with 
a decline in antibody responses to influenza vaccination [99, 100] and a reduction 
influenza-specific memory CTL [101]. These changes have been associated with 
chronic cytomegalovirus infection driving the T-cell response to terminal differ-
entiation and expressing this senescent phenotype [102, 103]. However, it remains 
uncertain the extent to which this change may affect the T 

h
  and CTL responses to 

influenza and influenza vaccination.  
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    2.1.    10  Summary  

   Influenza is a serious illness in older adults and largely accounts for rising hospi-
talization and death rates from acute cardiac and respiratory illnesses in older peo-
ple despite widespread influenza vaccination programs. While current vaccines 
are cost-saving, new influenza vaccines will be needed to avoid the anticipated 
crisis in health care related to the aging of the population. Recent studies suggest 
that there is a significant opportunity to exploit the reserve capacity of T-cells to 
respond to influenza antigens through enhanced antigen presentation, appropriate 
costimulation, and regulation of cytokine responses. Targeting identified immu-
nologic mediators that modulate influenza risk in older people, and screening 
candidate vaccines for clinical trials using appropriate correlates of protection in 
this population, is critical to development of more effective influenza vaccines 
for an aging population. Since the early phases of vaccine development often rely 
on antibody titres as a surrogate of protection, this measure may fail to detect a 
more robust T-cell response and thus, a more effective vaccine for the 65 and older 
population.  

     2.2    New Vaccines for Herpes Zoster  

   2.2.    1   Risk for Herpes Zoster and Aging  

   Herpes zoster (or Shingles) is a painful blistering rash resulting from the reactiva-
tion of latent varicella-zoster virus (VZV), the agent that causes of chickenpox. 
Prior to routine vaccination for VZV, approximately 90% of people in the USA 
were infected with this virus and the chance of developing shingles during one’s 
lifetime was 25–30%. The risk of developing shingles dramatically increases with 
age.  

   Older persons bear the greatest burden of illness related to shingles, the clini-
cal condition that results from reactivation of latent varicella-zoster virus (VZV). 
Each year between 600, 000 and 1 million Americans develop shingles and the 
risk dramatically increases with age—50% of persons over age 85 will suffer from 
disabling post-herpetic neuralgia (PHN) as a complication of shingles. Despite 
extensive epidemiologic studies of risk, little is known about the immunologic 
determinants of risk for shingles. The age-related decline in T-cell function is well 
documented but there is only limited data on how T-cell responses to VZV change 
with aging. Further, as shingles is exclusively a human herpes virus, animal mod-
els are very limited and may not be helpful in identifying the mechanism by which 
aging precipitates shingles. Particularly due to the aging of the “Baby Boomers” 
the age 65 and older population will grow to represent 20% of the US population 
over the next three decades. Identifying the immunologic changes in the response 
to VZV that occur with aging, is the first step in a mechanistic approach to target-
ing vaccines for this important human disease.  
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       2.2.    2  Shingles is an Important and Disabling Disease in Older Adults  

   Varicella-zoster virus presents as chickenpox in childhood and becomes a latent 
infection in the dorsal root ganglion of the spinal cord. The increased risk of shin-
gles with age has been well-documented with an annual incidence of 14/1000 in 
those age 75 years and older leads and an astonishing prevalence of up to 50% of 
those over age 85 years old [104–106]. Reactivation causes a painful dermatomal 
rash called shingles that is often followed by PHN, a chronic pain syndrome asso-
ciated with significant disability in older people. The incidence of PHN is almost 
negligible before age 50, but 21% of patients older than 60 years and 29% beyond 
age 70 become affected following an attack of shingles. This contrasts with shingles 
in children where the rash generally follows a mild case of chicken pox and is of 
little clinical significance [107]. Antiviral therapy is available but older people often 
do not present within the 48–72 hour window of onset of the rash necessary for ini-
tiation of effective treatment. In addition, 20% of older people who receive therapy 
within the therapeutic window still experience pain six months after the onset of 
the rash [108]. Particularly given the number of people who do not seek or receive 
timely and effective treatment of shingles, the prevalence of disability related to 
PHN is a major public health concern.  

   There is a significant literature on the impact of shingles on the quality of life in 
older people and on various therapeutic strategies for the management of PHN, the 
review of which is beyond the scope of this review that focuses on the prevention 
of shingles. However, the importance of perceived quality of life and psychological 
conditions that have been identified from epidemiologic studies as risk factors for 
the development of shingles, are relevant due to their potential impact on immune 
function. A recent review of these studies suggests that in addition to age, poor self-
perceived health, psychological stress and/or lack of social support and mechanical 
trauma may lead to loss of cell-mediated immunity to VZV and increased risk of 
shingles [109].  

       2.2.    3  Studies of the Link Between Risk for Shingles and Immunosenescence 
are Limited  

   Because VZV is exclusively a human Herpes virus [110], there are limited animal 
models that study only some aspects of VZV infection and reactivation [111]. From 
the studies to date, it appears that with the resolution of chickenpox, VZV-specific 
CTL access the dorsal root ganglion where VZV lives, to keep viral replication in 
check [111, 112]. At some point the virus escapes to replicate in nerves and skin to 
cause a very painful condition that continues even after the rash resolves. Whether or 
not reactivation of VZV is due to a general decline in CTL-mediated immunity or due 
to changes in VZV-specific CTL is unknown. These findings have not been studied as 
a potential mechanism for reactivation of VZV in older people. Further, the mecha-
nism that keeps virus restricted to the dorsal root ganglion is unknown and it may be 
postulated that reactivation of VZV in older people is due to an increased number 
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of CD8+CD28- VZV-specific CTL that produce IFN-γ but do not contain cytolytic 
mediators such as Grz B. This hypothesis would be consistent with the extensive liter-
ature on the age-associated loss of CD28 expression, telomerase activity and telomere 
length affecting both CD4+ and CD8+ T-cells that is also associated with repeated 
antigenic stimulation (Reviewed in [94]).  

   Reactivation of VZV is associated with marked inflammation of the dorsal root 
ganglion leading to nerve cell damage and the pain associated with PHN that often 
precedes the onset of the dermatomal rash. Inflammatory cytokines produced by 
a stressful event and in the early stages of VZV reactivation may further suppress 
CTL function. With aging, there is a loss of ability to downregulate the inflammatory 
response and probably leads to excess nerve damage in the dorsal root ganglion and 
increased pain that persists as PHN for greater than one year in more than 50% of 
adults age 70 years and older who experience PHN. Even appropriate antiviral treat-
ment initiated within 72 hours of onset of the rash fails to prevent this complication. 
Clearly, re-establishing the normal immune response to this virus requires the stimu-
lation of VZV-specific CTL and regulation of the appropriate cytokine response to 
suppress viral replication without causing inflammation.  

    2.2.    4  The Loss of the Costimulatory Molecule, CD28, Affects Immune 
Function  

   Age-related changes in T-cell function have been associated with terminal differentia-
tion of memory T cell and replicative senescence (previously discussed in Section 
2.1.9 and Reference [93, 94, 96, 98]) and an overall age-related decline in VZV-
specific T cells.  These changes lead to an increased risk of reactivation of VZV and 
the development and probably severity of PHN in older adults.  Although suppression 
of VZV is unlikely to drive the general process of terminal differentiation of T cells as 
is the case with CMV, the loss of CD28 on VZV-specific T cells and co-stimulatory 
function, is a likely contributor to the risk for shingles and PHN. Effective vaccines 
against shingles may therefore need to stimulate T-cell subsets that express CD28 cos-
timulatory molecules [113] and respond to novel strategies for antigen presentation.  

    2.2.    5  The Development of a Shingles Vaccine  

   A large randomized double-blind placebo-controlled of a shingles vaccine enrolling 
over 38, 000 subjects showed in the vaccinated compared to the placebo group, a 61.1% 
reduction in burden of illness, a 51.3% reduction in shingles cases, and 66.5% reduc-
tion in those shingles cases complicated by post-herpetic neuralgia [114]. Futhermore, 
there was a reduction in the overall burden of illness in vaccinated subjects showing 
statistical significance for the primary endpoint in the trial. The vaccine strain of VZV 
is a previously attenuated live virus (Oka strain) that is predicted to stimulate humoral, 
T 

h
  and CTL responses. Importantly for this disease, antibody titers do not predict pro-

tection from reactivating the virus to cause shingles. The postulated mechanism of 
protection is stimulation of the VZV-specific T-cell response to vaccination and meas-
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ured by the IFN-γ enzyme-linked spot (ELISpot) assay [115, 116]. Given that this a 
live attenuated vaccine, safety testing included isolation of virus from all shingles cases 
following vaccination. Specimens collected from skin lesions in shingles cases in the 
post-vaccination period showed wild-type strains; the vaccine Oka zoster strain was 
not identified in any of the isolated specimens suggesting that this attenuated virus can 
be safely and effectively used to stimulate the senescent immune response. Since this 
clinical trial had relatively few exclusion criteria, the results of this clinical trial should 
be applicable to most adults age 60 or older who are not immunocompromised due to 
underlying diseases or medications.  

    2.2.6  Summary  

   Shingles is a major debilitating disease in the older adult population. Both age-related 
and age-associated changes in the cell-mediated immune response to VZV are clearly 
associated with increased risk of reactivating the virus to cause shingles and persist 
as PHN. The fact that antiviral therapy has limited effectiveness in the treatment of 
zoster in older adults points to the need for strategies to prevent the disease and it disa-
bling complications. However, the development of a vaccine against Herpes zoster 
depended on a very large clinical trial to determine vaccine efficacy based on clinical 
outcomes. In the absence of reliable immunologic markers of vaccine efficacy, there 
was significant risk that the vaccine would fail to show an improvement. If the vaccine 
had failed in this trial, there may have been limited interest from industry in moving 
forward with alternate plans to develop an improved vaccine. This again points to the 
need for more reliable surrogates of vaccine efficacy to test new vaccines in the early 
phases of clinical development and select for subsequent clinical trials, the vaccines 
that are most likely to improve outcomes in the 65 and older population.  

     2.3    Implications of Effective Vaccines Against Respiratory 
Syncytial Virus  

   2.3.    1  Respiratory Syncytial Virus Causes Serious Respiratorty Illness 
in Older Adults  

   RSV is a commonly circulating virus during the winter months and accounts for 
2–5% of pneumonias in community-dwelling older adults (reviewed in [117]). The 
importance of this respiratory illness, particularly in older adults is increasingly 
recognized; it was recently reported that RSV causes 10,000 excess deaths in the 
United States and is second only to the A/H3N2 strains of influenza as a cause of 
death due to viral respiratory illness in the age 65 and older population [2, 118]. 
Although the virus is genetically stable over time (in contrast to influenza), repeat 
infections throughout adult life are common suggesting that immunity to this virus 
wanes over time. Those older adults with increased risk for severe disease are those 
with congestive heart failure and chronic lung disease, the severely immunocompro-
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mised, and those living in long-term care facilities [119]. Estimates of RSV disease 
in this setting range from 5–10% of residents per year with pneumonia and death in 
10–20% and 2–5% of cases, respectively. As with influenza illness in older adults, 
RSV results in prolonged lengths of hospital stay, significant disability and loss of 
independence in basic activities of daily living, and the need for a higher level of 
care at hospital discharge [120].  

   Studies of the immune response to RSV have shown that high levels of serum 
and/or nasal antibodies have been correlated with relative resistance to experimen-
tal challenge. Similarly, low serum and nasal antibody levels are risk factors for 
infection and disease severity in older adults but this is not an age-specific change 
[121, 122]. More importantly, older adults have a greater rise in antibody titres 
postinfection than do their younger counterparts [122]. Since the RSV virus does 
not undergo antigenic drift over time, one would predict better protection against 
recurrent RSV illness in older adults but instead there is a relative increased risk 
of RSV infection with aging. This observation may be explained by an age-related 
shift from a T

h
1 to a T

h
2 response to RSV, which has been shown to cause significant 

pathology in people. In the aged mouse model, diminished CD8+ CTL responses 
associated with decreased IFN-γ (T

h
1) and increased IL-4 (T

h
2), and higher RSV 

titres in lungs [123]. However, recent studies in human PBMC show no age-related 
changes in cytokine levels produced in response to RSV although the regulatory 
balance between inflammatory (IFN-γ and antiinflammatory (IL-10) cytokine lev-
els may be altered [124].  

    2.3.  2  The Development of a Respiratory Syncytial Virus (RSV) Vaccine  

   RSV circulates through much of the winter and often cocirculates with influenza 
during the mid-winter months. This presents a diagnostic challenge to clinicians as 
the symptoms of RSV illness completing overlap with those related to influenza ill-
ness [125]. Thus, treatment approaches would be particularly problematic as a strat-
egy for limiting the complications of RSV and none are currently available for use 
in adults. The development of a vaccine against RSV has proven to be a significant 
challenge, perhaps due to the reliability of antibody titers as correlate protection 
in these trials. Deaths were observed in RSV-naïve children in whom RSV infec-
tion restimulated the immune response to vaccination and resulted in a significant 
inflammatory response to RSV infection. The challenge to developing an RSV vac-
cine for older adults is that RSV illness in older adults has not been well-studied, 
the virus circulates over a larger proportion of the winter months compared to influ-
enza, and the symptomatology overlaps with influenza.  

   In summary, older adults experience significant complications of RSV illness 
but these complications are difficult to distinguish those related to influenza. Based 
on attack rates and impact of hospitalization in older adults, RSV is likely to cause 
significant disability in older adults. Immunologic correlates of clinical protection 
are not available and this presents a significant challenge to the development of the 
much needed vaccines against RSV for older adults.  
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      3      Immune Senescence: Stimulating a Naïve Response  

   3.1      Pandemic Influenza Vaccines for Older Adults  

   The threat of pandemic influenza has increased with the direct transmission of 
highly pathogenic avian H5N1 viruses to humans and many countries are in the 
process of or have completed plans to manage an anticipated influenza pandemic. 
While animals have transmitted H5N1 influenza to people in close contact with 
livestock, additional mutations or reassortment events will be required for wide-
spread human-to-human transmission. Current research is focused on predicting the 
strains that are likely to evolve so that new influenza vaccines can be developed to 
protect against these new strains. The development of effective pandemic influenza 
vaccines is likely but continued reliance on killed virus or subunit vaccine technol-
ogy will leave older adults at significantly higher risk of illness, disability and death 
in the event of an influenza pandemic.  

   Targeting improvements in T-cell responses and thus protection against a number 
of strains will be particularly helpful for stimulating the senescent immune system 
against both seasonal and pandemic strains. In the case of H5N1, vaccines will not 
only have to stimulate an antibody response to the new vaccine strain but will also 
have to prime the T-cell response to influenza peptides derived from H5; age-related 
changes in naïve T-cells would result in decreased production of IL-2 and hence, the 
proliferative response to the vaccine in both B- and T-cells. This has implications 
for both prepandemic and pandemic vaccines. Pre-pandemic vaccines if formulated 
to more potently stimulate T-cells could offer cross-protective immunity and would  
enhance the production of strain-specific antibodies against the pandemic strain. 
Although this strategy may offer enhanced protection in older adults, prepandemic 
and pandemic vaccines will need to be tested for their ability to stimulate adequate 
antibody responses and cross-protective cell-mediated immunity. In the absence of 
improvements in the current split-virus vaccine technology, an influenza pandemic 
could have a significant impact on older people with overwhelming consequences 
for the health care system.  

    3.2      Other Viruses  

   As individuals age, infectious diseases cause increasing morbidity and mortality. 
This is especially evident when older adults contract newly emerging diseases such 
as severe acute respiratory syndrome (SARS), which killed 50% of infected indi-
viduals over the age of 50 [126]. The rapid human-to-human transmission of SARS 
exposed the entire age spectrum to a novel virus and highlighted the changes in the 
immune system that lead to increased morbidity and mortality rates with aging. For-
tunately the outbreak was controlled without a vaccine and before it could reach epi-
demic proportions. Older adults may also be naïve to viruses such as West Nile Virus 
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(WNV) and Human Immunodeficiency Virus (HIV) and appear to be at increased 
risk of serious complications. When these viruses are contracted by an aged host, the 
senescent immune system may produce a less effective response compared to young 
adults. Evidence for this decline is from epidemiologic studies showing much higher 
mortality rates in older compared to young adults with WNV [127].  

   HIV prevalence is increasing and with aging of the population, HIV-infected 
patients age 50 years and older now represent10–13% of the HIV-infected popula-
tion in the United States [128]. Both HIV and aging have been associated with the 
development of replicative senescence of T-lymphocytes and increased risk of infec-
tion [129]. Replicative senescence results from chronic stimulation of the immune 
system by the HIV virus and is associated with telomere shortening and loss of 
CD28 expression on CD8 T-cells [130]. These changes will need to be considered 
in the development of new therapies to improve the immune response to viral infec-
tions and vaccination [131].  

     4      Immune Senescence: Vaccines Against Bacterial Pathogens  

   4.1      Pneumococcal Vaccination  

     Streptococcus pneumoniae  is an important cause of morbidity and mortality as a lead-
ing cause of community acquired infections including bacterial pneumonia, men-
ingitis, and bacteremia. Amongst the highest risk groups and who bear the greatest 
burden of disease in the developed world, are adults age 65 years and older. The 
current 23-valent vaccine containing pneumococcal capsular polysaccharide (PPS) 
is cost-effective in this population [132, 133], but its efficacy may be limited by 
age-associated changes in the immune response to these vaccines. Although there 
is no age-related decline in the antibody response to pneumococal vaccination when 
healthy young and older adults are compared, consistent antibody responses to all 23-
serotypes contained in vaccine may not be achieved in older adults [134]. In addition, 
opsonophagocytic activity, the major effector mechanism for clearing pneumococcus 
appears to decline with aging [135]. Further, there is a significant decline in antibody 
titres to PPS at six years following pneumococcal vaccination [136]. Repeat vaccina-
tion at least every 6 years in older adults may be needed to maintain protection against 
pneumococcal disease and can be safely administered in older adults.  

   Current vaccines containing PPS stimulate antibody production through a T-
independent type 2 (TI-2) response (one not requiring T-cell help and lacking mem-
ory) [137]. Given that it is primarily cell-mediated, rather than humoral immunity 
that declines with the normal aging process, the efficacy of pneumococcal vaccines 
in older adults may also depend on how the cell-mediated immune response to the 
whole pneumococcus is stimulated. A Finnish study of older adults, showed that 
serotype-related differences in the serum antibody response following vaccination 
with 23-valent capsular polysaccharide vaccine, suggesting that some serotypes 
are weak immunogens in older adults [138]. Protein-conjugated PPS vaccines have 
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been developed to facilitate T-cell cooperation [139] and are effective in children. 
Fewer serotypes are represented in these vaccines and their benefit over traditional 
polysaccharide vaccines, have not been demonstrated in older adults.  

   Cytokine responses to pneumococcal antigens have been shown to regulate 
responses to protein and polysaccharide-specific antibody responses [140] and 
may be important in the pathogenesis of pneumococcal diseases [141]. Cytokine 
responses to the whole pneumococcus could explain changes in the virulence of 
different serotypes in older adults [142] and in comparison to cytokine responses in 
younger adults [143]. TNF-α, a macrophage product, is associated with an initial 
inflammatory response to pneumococcal invasion [139, 143] and has been found 
to be important in the development of antibodies to pneumococcal surface proteins 
[140, 145]. T 

h
 2 cytokines including IL-4, although classically involved in stimu-

lating B-cells to produce antigen-specific antibodies, may downregulate antibody 
responses to pneumococcus due to inhibitory effects on antigen-presenting cells 
[140]. IL-10, a product of both macrophages and T 

h
 3 lymphocytes, is an antiin-

flammatory cytokine that also skews the in vivo immune response toward a T 
h
 2 

(humoral) by inhibiting a T 
h
 1 (cell-mediated) response [146]. Increased IL-10 lev-

els in animal models have been associated with increased risk for pneumococcal 
infection [142]. IL-12, a product of both phagocytic and antigen presenting cells, is 
a potent proinflammatory cytokine with a key role in resistance to bacterial infec-
tions. IL-12 upregulates the T 

h
 1-mediated responses (IFN-γ) which recruits neu-

trophils to the lungs and thus has a protective role in the response to pneumococcus 
[147, 148]. Dysregulation of T 

h
 -mediated cytokine responses with aging may thus 

contribute to the increased risk for pneumococcal infection in older adults. A greater 
understanding of the interactions between cytokine and antibody responses to pneu-
mococcus and the immunologic determinants of risk for pneumococcal diseases are 
needed if improved vaccines are to be developed in older adults.  

     5      Immune Senescence: Altering Responses to Endogenous 
Proteins  

     5.1      Vaccines for Alzheimer’s Disease  

   Alzheimer’s Disease (AD) is caused by the deposition of β-amyloid protein (Aβ) in 
the brain with toxic effects leading to neuronal cell death, amyloid plaque formation 
and the development of neurofibrillary tangles. Based upon studies in mice, a vac-
cine containing the Aβ 

1-42
  peptide was shown to stimulate antibody production and 

improved cognitive function in mouse models of AD. This vaccine was advanced to 
a Phase II clinical trial based on the demonstration of no significant adverse effects 
of vaccination in a Phase I trial that included 200 subjects. The Phase II trial was 
halted due to the development of aseptic meningoencephilitis in 6% of the 300 vac-
cinated subjects. Analysis of the antibody response to Aβ showed a trend toward 
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cognitive enhancement in the “responders” to vaccination (antibody titre to Aβ 
1-42

  
≥ 1:2200) but 22% of “responders” compared to 2% of “nonresponders” developed 
aseptic meningoencephilitis [149]. These results suggested that adverse effects of 
the vaccine were related to the immune response to the vaccine rather than toxicity 
of the Aβ 

1-42
 . Postmortem studies of the meningoencephilitis cases showed substan-

tial clearing of Aβ from the brain but with marked T-cell infiltration in brain tissue.  
   The postulated age-related defect that leads to the pathology of AD related to 

APC uptake of Aβ and stimulation of T
h
1 cytokines, is an inflammatory response to 

Aβ. This defect is associated with inefficient phagocytosis of Aβ and the production 
of inflammatory cytokines (IL-1β, TNF-α) and chemokines, and nitric oxide lead-
ing to complement activation and T-cell apoptosis [150]. The immune mechanism 
being targeted by the vaccine was T-cell-dependent antibody production against Aβ 
to form Aβ-antibody complexes for more efficient clearing of the Aβ. Earlier stud-
ies had shown that Aβ 

1-42
  effectively stimulated a proliferative response in human 

peripheral blood mononuclear cells. This response was increased in older compared 
to young adult subjects and a further significant increase was observed in older 
adult subjects with AD [151]. It had been shown that Aβ 

1-15
  was responsible for 

B-cell stimulation and the production of antibodies to Aβ,   and Aβ 
15-42

  most effec-
tively stimulated T-cell proliferation and the production of both T 

h
 1 (IFN-γ) and T 

h
 2 

(IL-13) cytokines. Because a T 
h
 1 (vs. T 

h
 2) response in the AD mouse model was 

associated with more effective clearance of Aβ in the mouse model, QS21 adjuvant 
was added to the Aβ vaccine used in human trials to stimulate a Th1 response to the 
vaccine. It is postulated that the adjuvanted vaccine activated Aβ-specific memory 
T-cells that migrated to the sites of Aβ deposition in the brain and produced Th1 
cytokines. Although the antibody response appeared to effectively clear Aβ, the 
inflammatory cytokine response of the T-cell infiltrate lead to meningoencephalitis. 
Since the Aβ 

15-42
  stimulated both Th1 and Th2 cytokines, it appears that the addition 

of the QS21 adjuvant may have been responsible for the serious adverse effects of 
the Aβ vaccine [150]. While efforts continue to develop immunologic-based thera-
pies for AD, the results of this clinical trial will have significant consequences for 
future vaccine development. Lessons learned from the Alzheimer vaccine trial sug-
gest that targeting the aged immune system through vaccination to produce a more 
effective response may be a “double-edged vaccine”[152].  

         6      Summary  

   Age-related changes in the immune system have been associated with increased risk 
for infectious diseases. These are largely attributed age-related changes in T-cell-medi-
ated immunity and defects in defense mechanisms mediated by Th1 (IFN-γ) and CTL. 
This would suggest that more potent vaccines for older adults should stimulate Th1 
and CTL to a particular pathogen. However, the underlying mechanism for defective 
immune responses in older people remains poorly understood including the potential 
negative impact of elevated levels of inflammatory cytokines (including IFN-γ). In 
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spite of our limited understanding, a number of available vaccines have been shown 
to cost-effective and even cost-saving in older adults. Future research to better under-
stand the immunologic targets for the prevention or treatment of a variety of acute and 
chronic diseases will make a significant contributions to “adding life to years”.  
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                       Population ageing is one of humanity’s greatest triumphs. It is 
also one of our greatest challenges. As we have entered the 21st 
century, global ageing will put increased economic and social 
demands on all countries. At the same time, older people pro-
vide a precious, often-ignored resource that makes an important 
contribution to the socioeconomic fabric of our lives. Popula-
tion ageing raises some worrisome questions for policy-makers. 
Now that people are living longer, how can we improve the 
quality of life in old age? 

‘Advocacy on active ageing’ from World Health Organization

       Interleukin -7 and Immunorejuvenation  
  Wayne A. Mitchell and Richard Aspinall                     
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       With the global population experiencing increases in life expectancy, predictions 
suggest that nearly 50 % of the Western society will be composed of individuals 
over the age of 60 years by 2,050 (Steel and Maggi 1993). The challenge to us all 
is how to ensure that the prolonged life is free from illness and disease. It is well 
recognized that old age is associated with higher incidences of cancers, autoim-
munity disorders and susceptibility to acute infections. This is further precipitated 
by the reduced ability to combat these illnesses and a decline in the responsive-
ness to the protective effects of vaccination. Taken together these factors indicate 
a major deleterious impact on the effectiveness of the functional immune system 
with advancing age. In this review we will examine the current scientific strate-
gies and ideas for rejuvenating of the ageing immune system, with a particular 
interest in the potential role for interleukin 7, as we try to meet the challenges 
posed by the ageing population. The review will focus on four main areas. First, 
the impact of aging on the T-cell arm of the immune systems; second, the impact 
of cellular interactions on rejuvenation the age thymus; third, methods for gener-
ating functional T-cells ex vivo and fourth, adoptive transfer of T-cells as applied 
in the clinical setting.  

1 Section I:         Impact of Ageing on the Immune System  

  In order to better understand how the immune system can be rejuvenated we first 
need to appreciate the changes experienced by the immune system as we age. In 
particular, how the involution of the thymus alters the production and composition 
of the peripheral T-cell pool as a resulting from the reduced ability to generate of 
naïve T-cells necessary to orchestrate the immune response.  

    1.1      The Thymus and T-cell Component of the Immune System  

  The thymus is a primary lymphoid organ located in the anterior mediastinum 
and produces T-cells throughout life although the number of T-cells it produces 
declines with age (Hirokawa 1992; Makinodan and Kay 1980). Functionality of 
the thymus relies on, [1] an adequate supply of bone marrow derived precur-
sor cells; [2] a number of extrinsic (endocrine) signals and [3] a thymic stroma 
that provides developing T-cells with a suitable microenvironment (Garcia-Sua-
rez et al. 2003). Histologically the thymus is composed of two key components; 
[1] Thymic epithelial space in which thymopoiesis occurs and [2] Nonepithelial 
perivascular space (Haynes et al. 2000). The organ reaches a maximum size of 
approximately 25 cm 3  within the first 12 months of life (George and Ritter 1996). 
From this point thymopoietic thymic space has been observed to begin to atrophy 
shrinking in volume by 3 % per year until middle age and then by less than 1 % 
per year for the remaining years of life thereby reducing the capacity to develop 
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thymocytes (Steinmann 1986; Steinmann et al. 1985). At this rate it is estimated 
that total loss of thymic tissue will occur by 105 years of age. In a young healthy 
adult (less than 30 years old) there are approximately 2 × 10 11  T-cells of which 
1–2 % can be found within the blood, approximately 50 % of these cells are con-
tained within the “antigen naïve” population. These T-cells have not interacted 
with their cognate antigen. Their activation requires a number of steps including 
recognition of the specific antigen presented in the appropriate MHC molecule 
in conjunction with the necessary costimulatory molecules by an antigen pre-
senting cell. Age-related changes to the histological composition of the thymus 
culminating in a reduction in the number of naïve T-cell capable of responding to 
new antigenic assaults. These cells are required to provide a homeostatic balance 
between memory and naïve cells located within the T-cell pool. The resultant 
effect of thymic involution is that the composition of the T-cell pool is skewed 
toward memory T-cells (Fry and Mackall 2002a).  

    1.2      Generation of T-cells  

  Production of αβ+ T-cells in the thymus is a progressive step-wise differential proc-
ess, in which a small population of multipotential stem cells give rise to progeny 
populations. Stem cells migrating to the thymus are contained within the CD4-CD8- 
double negative (DN) population, a population which has been further subdivided 
on the basis of expression of CD44 and CD25. Progress from the most immature 
stage, CD44+CD25- (DN-1) requires the transient acquisition of CD25 so the cell 
first becomes CD44+CD25+ (DN-2) before becoming CD44-CD25+ (DN-3) and then 
the loss of CD25 when the population is CD44-CD25- (DN-4; Godfrey et al. 1993, 
1994; Wu et al. 1991). Cells within the DN-1 population are multipotential, whilst 
those at DN-2 have lost the capacity to form B cells, but can still produce either 
T-cells or dendritic cells (Shortman and Wu 1996; Wu et al. 1996). By the time 
the cells are within the DN-3 population they are committed to becoming T-cells 
and have undergone extensive rearrangement of the TCRβ chain genes (Capone 
et al. 1998). Expression of the TCRβ chain at the thymocyte surface requires a 
TCRα chain equivalent (Fehling and von Boehmer 1997; the preTCRα) and these 
cells then undergo expansion and differentiation so that they become CD4+CD8+ 
thymocytes. These immature thymocytes are the largest subpopulation in the thy-
mus and are located in the densely packed cortical region of each thymic lobule. It is 
in the double positive stage when the TCRα chain undergoes rearrangement (Petrie 
et al. 1993) after which there is TCR αβ -dependant selection. Many of these double 
positive cells fail to mature further, but a small percentage develops into mature thy-
mocytes expressing either CD4 or CD8 alone and is located in the medullary region 
of each thymic lobe. Only a fraction of these cells are exported to the periphery as 
naive or virgin T lymphocytes.  

  In a successful immune response, activation of these antigen naïve T-cells leads to 
their clonal expansion, the generation of effector cells and the subsequent reduction 
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in the amount and source of the antigen. This is followed by a period of cell death 
since the immune system no longer requires large numbers of T-cells bearing that 
specific receptor. However some cells with this antigenic specificity remain to 
become memory T-cells and subsequently enter the memory T-cell pool. Repeated 
exposure of the immune system to the same pathogen will be met by these memory 
T-cells and will lead to a response that is more rapid and of greater magnitude than 
the response following the initial exposure. This immunological memory provides 
the rational basis for protection by vaccination.  

    1.3      The Role of the Immune System  

  Since there are few completely sterile environments, each of us is confronted on 
a daily basis with different organisms, some of which could be pathogenic if we 
were not protected by our immune system. Our survival therefore depends upon the 
immune system recognizing and responding successfully to a broad range of poten-
tial pathogens. Provided these pathogens do not result in death, the immunological 
memory should increase, and analysis shows that this is indeed the case and that 
ageing is indeed associated with an increase in the number of memory T-cells.  

    1.4      Age-Related Effects on the Immune System  

  Theoretically then we should be able to cope with more infections as we get older; 
the immune system of a 90-year-old should be more experienced and therefore 
much better equipped to cope with infection than the immune system, of a 20-
year-old. Unfortunately this does not seem to be the case, evidence from epidemio-
logical, clinical and laboratory studies suggest an age related defect in the immune 
system. In reality, epidemiological evidence reveals a reduced ability to combat 
recurrent infection and that older individuals are often the first to be affected by new 
or emerging pathogens. For example, in the first outbreak of West Nile Virus in the 
USA in 1999 the median age of the 59 patients was 71 years, with 73 % of infected 
individuals aged 60 years or greater (Nash et al. 2001). In Israel, in 2000, all of the 
victims of West Nile Virus were more than 78 years of age (Berner et al. 2002).  

  Clinicians recognize that in addition to this susceptibility to new pathogens, 
older individuals often have difficulties in dealing with pathogens which they have 
previously overcome. Common problems include reactivation of herpes zoster virus 
(Schmader 2001) or the increased immune response to cytomegalovirus (Pawelec 
et al. 2004), as well as the problems associated with the yearly return of influ-
enza and respiratory syncytial virus (RSV). For example in the USA from 1990 
to 1999, influenza and RSV accounted for 51,203 and 17,358 deaths annually, 
respectively (Thompson et al. 2003). Vaccination trials also reveal problems with 
inducing protection in the elderly. Observation during a recent trial in which 45 
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healthy elderly (average age 74) and 37 healthy young controls (average age 28) 
were vaccinated with hepatitis B demonstrated that a protective titre was developed 
in all of the young individuals compared to only 42 % of the elderly cohort (Looney 
et al. 2001). A similar problem with vaccine cover occurs with influenza. Efficacy 
for influenza vaccine is between 70 % and 90 % in those under 65 but is reduced to 
30–40 % in those over 65 (Hannoun et al. 2004).  

  Although several attempts have been made in the past to modify vaccines, either 
through alterations in their route of administration, or changes to their formula-
tion by the inclusion of different adjuvants, the overall result has been a failure to 
improve the efficacy of vaccines in elderly individuals (Belshe et al. 2004; Looney 
et al. 2001). These trials would indicate that defects in the immune system rather 
than the deficiencies in the vaccine formulation are at the root of the problem.  

  Attempts to link these epidemiological and clinical results with laboratory stud-
ies has shown that T-cells from elderly individuals produce poorer proliferative 
responses in vitro to stimuli which are normally mitogenic for T-cell from younger 
individuals (Pawelec et al. 1997). Moreover phenotypic analysis of T lymphocytes 
from older individuals reveals that they have a different profile of cytokine gene 
expression (Bui et al. 1994) and there may be increased numbers of senescent 
T-cells than younger individuals (Effros et al. 2005). Like most somatic cells, T-cells 
have a limited replicative capacity and ageing is often accompanied by the increase 
in the number of T-cells present in the blood which have reached this replicative 
limit (Effros and Pawelec 1997). As we noted above, a successful immune response 
requires clonal expansion of antigen specific cells and the accumulation of T-cells 
without the capacity to divide can only lead to a dysfunctional immune response 
and failure to protect the individual.  

    1.5      Effects of Microenvironment on the Thymic Function: 
Young versus Old  

  Loss of thymic function associated with ageing significantly reduces thymic mass 
and impairs the ability to regenerate normal T-cell numbers after T-cell depletion. It is 
unclear whether these affects are the result of intrinsic (local thymic milieu) or extrin-
sic (host environment) thymic factors. Recent studies by Nobori et al. (2006) provide 
evidence to support the idea that thymic function may be more dependent on extrinsic 
factors. Using miniature swine model, Nobori and colleagues transplanted thymi from 
old animals (20–21 months of age) into MHC matched juvenile recipients (4 months 
old) thymectomized three weeks earlier. Measures of the cortex to medulla ratio (c/m 
ratio) highlighted a significant difference between aged and juvenile thymi. Following 
engraftment the c/m ratio improved from initial measurements of 1± 0.3 to 3.1± 0.8 
and 4.1± 0.5 at 60 and 100 days posttransplantation, respectively. By day 180 rein-
volution was noted with the thymic architecture progressed to resemble that of naïve 
animal by 240 days. Furthermore, flow cytometric profiles of the thymus from the 
aged thymic engraftments on day 60 revealed that a majority of the cells were of CD4/
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CD8 double positive, CD1 highly positive cells that expressed CD3 poorly. These pro-
files indicate that these cells are derived from the host-type thymocytes and not graft 
infiltrating cells. Mackall and coworkers demonstrated that aged mice when given 
bone marrow transplantation retained the ability to peripherally expand the mature 
T-cell population at the expense of T-cell receptor diversity. Regarding the regenera-
tive capacity of the thymi approximately 50 % of the peripheral T-cells regenerated 
post-BMT seen in young mice post-BMT was observed in the aged mice despite a 
reduction in the overall thymic mass. It further noted that these thymi maintained the 
ability to negatively select autoreactive T-cell clones (Mackall et al. 1998).  

  These studies demonstrate that when old thymi are; [1] engrafted into young 
animals or [2] seeded with bone marrow progenitor cells from young, they can 
become fully functional. This leads to the question of what age-related changes 
have occurred to result in the involution of the thymus?  

    1.6   Age-Related Changes to the Thymus  

  Age-related thymic involution has a profound effect on naïve T-cell production 
which ultimately alters the repertoire diversity and composition of the T-cell pool. 
The underlying cause of thymic atrophy is unknown. Several physiological and 
pathological factors are known to interfere with the normal function of the thymus 
which in turn causes the thymus to experience atrophy, these include; infection, 
disease, ageing, pregnancy, puberty, physical and emotional stress, environmen-
tal conditions, alterations in hormonal and cytokine levels as well as deficiency of 
nutritional factors such as Zinc. A recent publication by Taub and Longo (2005) 
has reviewed in detailed the contribution made by these factors. Conceivably if 
the mechanism(s) underlying these changes can be fully elucidated, it may pro-
vide strategies whereby the thymus could be rejuvenated with the potential to then 
increase the immune function in the elderly.  

     2     Section II:  The Impact of Cellular Interactions on 
Rejuvenation the Age Thymus  

   2.1   Thymic Rejuvenation  

  The underlying mechanism(s) that initiate the process of thymic involution are 
unknown although several physiological and pathological factors, as mentioned above, 
are known to interfere with the normal function of the thymus and results in atrophy. 
Unlike age-related thymic atrophy many of the factors are associated with transient or 
reversible atrophy. This may indicated the extent to which factors within the thymic 
microenvironment influence the regulation of cellular immunity. Where physiological 
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resources become limited, for example in the case of Zinc deficiency, the immune 
system may prioritise first line defense function above more luxurious functions i.e. 
increasing the T-cell repertoire (Fraker and King 2004; Fraker et al. 2000). Therefore 
increasing the likelihood of thymic atrophy unless additional signals are received which 
prevent this process. An alternative point of view regarding the differences between the 
transient thymic atrophy resulting from these physiological factor and that observed 
with ageing could be attributed to an accumulation of several of these factors.  

  Considering the overwhelming impact that thymic involution has on the immune 
system it is reasonable to hypothesize that if ways can be found to rejuvenate the 
thymus, thereby increasing its overall function, it may be possible to prevent many 
of the deleterious effects associated with ageing. Potential factors have been reported 
to prevent or reverse the thymic atrophy, these include; [1] the action of interleukin 
7 (IL-7; Andrew and Aspinall 2001, 2002; Henson et al. 2005; Imami et al. 2000; 
Phillips et al. 2004; Virts et al. 2006); [2] administration of dietary supplements 
such as Zinc (Bogden et al. 1990; Fraker et al. 2000; Mocchegiani and Fabris 1995; 
Prasad 1998), herbal remedies like Ginkgo biloba leaf extract EGb 761 (Tian et al. 
2003) and Melatonin (Tian et al. 2001); and (3) the activity of steroidal hormones 
(Heng et al. 2005; Sutherland et al. 2005). The ability to rejuvenate thymic out-
put is not only beneficial in the context of ageing but also to individuals requiring 
reconstitution of their T-cell repertoire due to infections (HIV) or following medical 
intervention (cancer therapies). The major findings of some of the factors currently 
being studied for thymic regeneration will be discussed (summarized in Fig. 1).  

  Fig. 1      Factors affecting thymic function and potential methods for thymic rejuvenation  (a)  Factors 
including age, sex steroid production and reactive oxygen species implicated thymic involution 
 (b ) Administration of a variety of factors associated with a rejuvenation of the thymus   
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    2.2     The Role of IL-7 in the Immune System  

  IL-7 is a pleiotropic cytokine with a central role in the development and main-
tenance of T-cells. IL-7 is classified as a type 1 cytokine of the hematopoietin 
family. The protein can be detected in several tissues including epithelial cells in 
the thymus (Grassi et al. 2004) and gut (Hansen et al. 2006), stromal cells in the 
spleen and bone marrow (van et al. 2005), keratinocytes (Moore et al. 1993), fetal 
(van et al. 2005) and adult liver (Madrigal-Estebas et al. 1997), activated dendritic 
cells (Gutierrez-Ramos et al. 1992), follicular dendritic cells (Heufler et al. 1993) 
and also astrocytes (Golden-Mason et al. 2001). In humans and in mice the size of 
the peripheral T-cell pool is notably constrained between defined limits despite age 
related changes in thymic output (Michaelson et al. 1996). Such control is achieved 
partly by IL-7 through homeostatic mechanisms which regulate cell survival and 
expansion (Roifman et al. 2000). To date, the predicted structure of IL-7 suggests 
four helices (A–D) are involved in the binding to the heterodimeric IL-7 receptor 
(Cosenza et al. 2000; Kroemer et al. 1996, 1998; Kroemer and Richards 1996). 
The IL-7 receptor consists of 2 chains, α (CD127) and a common γ (CD132) which 
is shared with other cytokines including IL-2 and IL-4 (Kondo et al. 1993, 1994; 
Noguchi et al. 1993; Russell et al. 1993). Helices A-C binding to the α chain, 
whereas loop D binds the γ chain. The interaction of helix D with γ chain is vital 
for the proliferation of T-cells (Page et al. 1993, 1997). Since CD132 is common 
to many cytokines it is conceivable that the specificity for the IL-7 binding activ-
ity resides within the α chain (Kroncke et al. 1996; Sorg et al. 1998) interaction. 
It is also worthwhile noting that several isoforms of the IL-7 have been describes 
with slight differences in activity (Kroemer et al. 1998). Reports indicate that the 
changes to the peptide sequence of the isoforms results in alterations in the struc-
tural conformation of the protein due to loss of critical disulphide bonds (Cosenza 
et al. 2000). The interaction between the IL-7 and IL-7Rα results in the dimeriza-
tion with the common γ chain, this initiate the phosphorylation of tyrosine residues 
on IL-7Rα by Jak3 and the recruitment of Jak1 and STAT molecules. The cascade 
of downstream signaling events results in the survival, proliferation or differentia-
tion of the cell (Fry and Mackall 2002c; Olosz and Malek 2000; Ziegler et al. 1995) 
See Fig. 2.  

  IL-7 is critical for the development and function of several components the 
immune system including; B and T-cell development (Andrew and Aspinall 2001; 
Bhatia et al. 1995; Goodwin et al. 1989; Namen et al. 1988a, b; Rodewald and Feh-
ling 1998); modulation of T-cell maturation (Gringhuis et al. 1997) partly through 
the up-regulation of bcl-2 family of molecules (Boise et al. 1995; Fry et al. 2001; 
Vella et al. 1998) and dendritic cell development (Varas et al. 1998). In-depth review 
of IL-7 role contribution to the immune system can be found elsewhere (Aspinall 
2006; Aspinall et al. 2004; Fry and Mackall 2002c). A role for IL-7 as a potential 
therapeutic agent to increase the T-cell numbers has been suggested following bone 
marrow transplantation (Bolotin et al. 1996), in HIV infections (Fry and Mackall 
2002b) and rejuvenation of immune system in the elderly (Aspinall et al. 2007).  
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    2.3      Methods of Thymic Regenerations  

   2.3.    1 Rejuvenation of the Immune Function by IL-7: Studies in Animals  

  IL-7 is produced in the thymus and bone marrow where normal T-cell precursors 
develop and studies suggest that the level of IL-7 production may be a critical mod-
ulator of T-cell development. Initial studies by Bhatia et al. (1995), on young mice 
treated with anti-IL-7 showed that severe thymic atrophy occurred with greater than 
99 % decrease in thymic cellularity after prolong administration. The similarity 
between the atrophy seen following treatment with antibodies to IL-7 and that seen 
in ageing prompted an analysis of IL-7 expression with age in the thymic stromal 
cells. In the mouse MHC Class II+ epithelial cells have been shown to be the site 
of IL-7 synthesis within the thymus (Moore et al. 1993). Using quantitative PCR 
one study has shown that IL-7 levels decreased 15-fold by 22 months of age within 
the thymus, but that keratin-8, a molecule whose expression is associated primarily 

  Fig. 2      IL-7 signal transduction pathway. Interaction of the IL-7 and the IL-7 receptor initials a 
cascade of downstream signaling pathways which results in cell survival or proliferation. IL-7 inter-
actions are thought to be critical for T-cell production and maintenance of the thymic function   
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with cortical epithelial cells only showed a sixfold decline by 22 months of age 
(Ortman et al. 2002). These results echoed an earlier study (Andrew and Aspinall 
2002) which showed that the age-associated decline in intrathymic expression of 
IL-7 was not matched by a similar decline in expression of connexin 43 a molecule 
associated with gap junction formation in thymic epithelial cells (TEC; Alves et al. 
1995). In situations where IL-7 production is absent or reduced thymic atrophy is 
induced, resulting in normal levels of DN1 population but a reduction in all other 
developmental stages. This effect is reversed with the addition of IL-7. Conversely, 
where IL-7 is expressed at excessive levels a similar bottleneck in at the DN1-DN2 
developmental stages occurs. In a report by Abdul-Hai, IL-7 administered after syn-
geneic bone marrow transplantation resulted in a 12-fold increase in thymic cel-
lularity. In addition, RAG-1 expression and V-D-J recombination were increased 
in IL-7 treated animals (Abdul-Hai et al. 1996). Bolotonin and colleagues showed 
that the administration of IL-7 after BMT resulted in a more rapid normalization in 
thymic cellularity and thymic subsets (Bolotin et al. 1996). Furthermore, increased 
numbers of thymus derived mature T-cells were seen following BMT with IL-7 
treatment. Thus, exogenous IL-7 enhances thymopoiesis after radiation induced 
lymphopenia (Bolotin et al. 1996; Fry and Mackall 2002c).  

  Work undertaken by Aspinall et al on aged mice has shown that stimulation by 
IL-7 can reverse age-related atrophy of the thymus, leading to a restoration of thymic 
output (Andrew and Aspinall 2001; Henson et al. 2005). Phillips et al. (2004) and 
Virts et al. (2006) have demonstrated that intrathymic injection of IL-7 secreting 
S17 cells was also capable of preserving high levels of DN2-DN3 thymocytes in old 
age compared to age-matched controls with an additional observed increase in the 
expression of bcl-2 levels (Phillips et al. 2004; Virts et al. 2006). These authors also 
suggest that despite these findings the thymic involution was not diminished with 
age. One striking features associated with the lack of IL-7 production is the reduced 
thymopoiesis and export into the periphery. These events may fuel additional com-
plications within the T-cell pool due to the disproportional relationship between 
the naïve and memory T-cell fractions. Additional studies undertaken in mouse 
and primates have investigated the rejuvenating effects of IL-7 on immune func-
tion. Initial studies by Melchionda et al. (2005) demonstrated that by administering 
recombinant human IL-7 to mice during immunization against the male antigen HY 
resulted in an increase in effector cells against subdominant antigens (Melchionda 
et al. 2005). In a study by Aspinall et al. (2007), it was shown that when old female 
rhesus macaques aged between 18–24 years (equivalent to greater than 60 years 
in humans) were treated with recombinant simian IL-7 prior to vaccination with 
A/PR/8/34, an increase was seen in thymic output as measured by TREC assay 
( See  Fig. 3). It was also observed that haemaggluttin titre was higher in the animals 
treated with IL-7 compared to those treated with saline indicating administration of 
IL-7 had enhanced the immune response (Aspinall et al. 2007).  

  Snyder et al. (2006) has recently discussed the possibility of using IL-7 therapy 
in the allogeneic transplantation setting. A major complication associated with 
hematopoietic stem cell transplantation is obtaining the balance between graft ver-
sus tumor effect as opposed to graft versus host diseases (GVHD). While T-cell 
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depletion can effectively prevent GVHD this increases the risk of graft rejection 
and along with prolonged lymphopenia and immunosuppressive agents results 
increases the susceptibility to infection and relapse of malignant disease (Sehn 
et al. 1999). The ability to reconstitute the T-cell either by generation of new T-cells 
through the thymus or by the expansion of existing T-cell present from the host 
or contained in the graft would improve the outcome of the treatment. Therefore 
pleiotropic nature of IL-7 may provide a promising means of improving transplant 
outcome by enhancing homeostatic peripheral expansion and perhaps by enhanc-
ing reactivity to weak tumor antigens. Initial murine studies have demonstrated a 
fine balance exists in IL-7 requirement, if too much is given this appears to exac-
erbate GVHD (Sinha et al. 2002) whereas too little results in no beneficial effect 
(Alpdogan et al. 2001, 2003).  

    2.3.     2 Studies in Human  

  The vast majority of IL-7 studies in the literature have been conducted on murine 
disease models. However, Rosenberg et al. (2006) recently published the finding 
of a clinical trial in which examined the therapeutic effects of IL-7 administered 

  Fig. 3   (  a ) Schematic of the vaccination strategy in female primate following adjuvant therapy 
using IL-7 or saline (indicated by shaded box) ( b)  T-cell numbers as measured by CD3 levels cor-
responding to week of study  (c ) Haemagglutination inhibition assay (HAI) demonstrating higher 
haemaggluttin titre levels in the primates treated with IL-7 (closed circles) compared to saline 
treated (open circle) ( d ) Increase in thymic output as measured by T-cell receptor rearrangement 
excision circle (TREC) assay after IL-7 treatment. Adapted from Aspinall et al. (2007)   
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to humans with metastatic cancer. Patients were subdivided into four cohorts and 
each received a total of eight subcutaneous injections at 3-day intervals for 21-day 
at a given dose of IL-7. The dosage given was 3, 10, 30, or, 60 μg/kg. Increases 
were noted in the CD4/CD8 lymphocyte ratio at 10, 30 and 60 μg/kg. Interest-
ingly this increase was maintained above baseline values 7 days after the last injec-
tion was given at the highest concentration. The immunophenotype indicated an 
increasing trend towards a higher proportion of naïve relative to memory cell at 60 
μg/kg. Analysis of the CD4+ regulatory T-cells as defined by CD4 + CD25 + FoxP3 
demonstrated a decrease in expression of these cells both before and after IL-7 
administration indicating that the observed IL-7 mediated expansion in the CD4+ 
and CD8+ T-cells was restricted to selective population of T-cells. A noteworthy 
observation was that a proportion of these cells did not express the IL-7 receptor 
(CD127) which may account for the nonresponsiveness to IL-7 therapy (Rosenberg 
et al. 2006). The IL-7 formulation used in this study was nonglycosylated which 
therefore had the potential to generate immunological side effect at higher doses, 
further highlighting the need for safer alternative therapeutic agents. In addition 
this study clearly identifies the potential therapeutic benefits to be achieved using 
compounds that mimic the function of IL-7.  

  Taken together these results may have implication on the methods used for regen-
erating the thymus or suggest that additional factors may be required to truly reverse 
age-related these changes. It may also reflect a deeper level of complexity in the 
development of thymocytes than simply replacement of a single factor.  

     2.4      Growth Factors, Hormones and Sex Steroids  

   2.4.    1 Growth Factors  

  Growth factors are an enormous group of diffusible molecules involved in regulat-
ing cell survival, differentiation, and proliferation. Each growth factor binds spe-
cific cell surface receptors, activates them, and induces intracellular signal cascades 
ultimately leading to characteristic cellular responses (Garcia-Suarez et al. 2003; 
James and Bradshaw 1984; Sporn and Roberts 1992; Yarden and Ullrich 1988). 
Among them, some have proven necessary to some extent to sustain thymic func-
tion, these include; Keratinocyte growth factor (KGF), nerve growth factor (NGF) 
and insulin growth factor I (IGF-I).  

    2.4.    2 KGF  

  KGF is a member of the acidic fibroblast growth factor receptor 2 family and 
is produced by fibroblasts and many mesenchymal cells (Rubin et al. 1989). Its 
mitogenic effects have been shown to stimulate proliferation and differentiation in a 
variety of tissues and functions as a growth factor for epithelial protection and repair 
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in various forms of injury and tissue damage (Adamson and Bakowska 1999; Baskin 
et al. 1997; Ichimura et al. 1996; Marchese et al. 1995). Several studies have dem-
onstrated KGF is necessary for fetal and postnatal thymic epithelial development 
(Alpdogan et al. 2006; Jenkinson et al. 2003). Alpdogan et al. 2006 demonstrated 
that the administration of KGF enhanced T-cell development and reconstitution fol-
lowing irradiation induced thymic damage and in mice as old as 18 months. Inter-
estingly, thymic involution was not accelerated in KGF deficiency mice, despite its 
effects on thymopoiesis (Alpdogan et al. 2006). Rossi and colleagues investigated 
the cellular mechanism whereby KGF stimulates thymic T-lymphopoiesis in adult 
mice, their findings indicated that the KGF- specific receptor, FgfR2IIIb (fibroblast 
growth factor receptor 2IIIb) is expressed on mature cortical and medullary as well 
as immature TEC. Exogenous exposure to KGF results in proliferation and expres-
sion of several growth factors including Wnt5b, Wnt10b, along with BMP2 and 4. 
Consequently, an increase in thymopoiesis commencing with the most immature T-
cell precursors and leads to an increase in thymic cellularity and enhanced export of 
mature T-cells to the periphery (Rossi et al. 2007). Rossi et al. suggest that treatment 
with KGF affects the microenvironment allowing for larger developmental niches 
in which to accommodate increased amounts of early stage thymocytes required 
for thymopoiesis. A transient decline in the number of T-cell precursor homing and 
entering into the thymus is seen by a decreased CCL25 expression within the TEC. 
This may be associated with a qualitative maturation process, as the thymocyte 
undergo a transition from TN1 to mature thymocytes. By preventing T-cell precur-
sors entry this provides the time necessary for this process (approximately 15-day; 
Rossi et al. 2007).  

  Interestingly, a controversial connection between IL-7 and KGF has been 
proposed by Min et al. 2002, who have suggested that increased thymopoiesis by 
KGF expression is dependent on IL-7 (Min et al. 2002). Observation by Alpdogan et 
al. 2006, makes the case that these increases are due to phosphorylation of STAT-3 
and not IL-7 related STAT-5 possibly indicating that thymocyte development via 
KGF expression is through an alternative pathway (Alpdogan et al. 2006).  

    2.4.    3 NGF  

  NGF is produced by medullar TEC and binds to the high affinity neutrophin receptor, 
tyrosine kinase receptor A (TrkA; Kaplan et al. 1991). NGF is involved in mecha-
nisms related to the modulation and regulation of immune cell proliferation, devel-
opment, differentiation and activation (Aloe et al. 1997; Lee et al. 2007; Vega et al. 
2003). Interestingly, it has been demonstrated that in rats during thymic regeneration 
following acute thymic involution induced by cyclophosphamide, TrkA is upregu-
lated in the thymic subcapsular, paraseptal, perivascular, cortical epithelial cells and 
medullary epithelial cells including the Hassall’s corpuscles (Lee et al. 2007; Yoon 
et al. 2003). Additionally, NGF mRNA and protein were expressed in unstimulated 
thymocytes, with the expression increasing during thymic regeneration. The involve-
ment of NGF-TrkA interactions in thymic regeneration following acute involution 



1528  W. A. Mitchell and R. Aspinall                 

is clearly evident, but is the same true for age-related involution. Previous studies 
have found that decreasing levels of NGF and TrkA with increasing age providing a 
possible link to the changes in appearances observed in the thymus (Garcia-Suarez 
et al. 2000). Turrini et al. (2001) observed that aged mice treated with NGF caused a 
significant increase in the number of thymocytes and prevention of thymic cell death 
suggesting a role of NGF in maintaining thymocyte viability (Turrini et al. 2001). 
Finally, a recent study by Park et al. 2007 has demonstrated a link between NGF/
TrkA levels and reparative angiogenesis through vascular epithelial growth factor. 
VEGF was shown to colocalize in the TrkA positive TEC. When subcapsular nurse 
epithelial cells were directly stimulated in vitro with NGF, VEGF mRNA and protein 
levels were shown to increase. In vivo injection of NGF also caused an increase in 
VEGF protein and elevated thymic blood vessel. These results indicate that NGF 
promotes the production of thymic VEGF in vitro and in vivo (Park et al. 2007).  

    2.4.     4 IGF-I  

  IGF-I plays an important role in thymocyte proliferation and survival. The IGF-I 
receptor is located on thymocytes, whereas IGF-I is secreted from macrophages 
with expression levels of IGF-I steadily declining with age in rodents and humans 
(D’Costa et al. 1993; Lamberts et al. 1997). Administration of IGF-I to cyclosporine 
treated or diabetic rats and mice results in an increase in cellularity and thymic size 
(Beschorner et al. 1991; Dorup and Flyvbjerg 1993; Montecino-Rodriguez et al. 
1998; Tian et al. 1998). Given the mitogen and anti-apoptotic effects, shortage of 
IGF-I could contribute to the thymic involution and therefore may potentially be 
used to rejuvenate the thymus. A limiting factor to the effectiveness of IGF-I to 
rejuvenate the thymus is that thymocyte production is never restored to levels of the 
young animal. Furthermore, IGF-I treatment does not significantly altered single 
positive distribution in mice or primate studies (LeRoith et al. 1996).  

    2.5 Growth Hormones and Sex Steroids  

  It has been a long established view that alterations in the ratio of growth hormones 
to sex steroids are important factors in thymic atrophy. The presence of increasing 
levels of sex steroids, marking the onset of puberty, has been linked with thymic atro-
phy (Hirokawa et al. 1994; Utsuyama et al. 1995). When chemical or surgical castra-
tion is performed on aged animals, regeneration of the thymus is observed. These 
effects can be reversed by the administration of synthetic sex steroids (Fitzpatrick 
and Greenstein 1987; Fitzpatrick et al. 1985; Greenstein et al. 1986, 1987; Kendall et 
al. 1990). Sex steroids act on early thymocyte differentiation, specifically blocking 
the triple negative stages 1 to 2 (TN1 to TN2 stage; Aspinall 1997; Heng et al. 2005; 
Thoman 1995). Progression through the TN development stages is IL-7 dependent 
and therefore suggests that the castration affects may be mediated by IL-7 (Heng et 



     Interleukin -7 and Immunorejuvenation  1529

al. 2005). A recent report by Min and colleagues (Min et al. 2006), investigated the 
validity of the hypothesis that low levels of growth hormones (GH) and high sex ster-
oid production accelerate thymic involution. The authors used mice with mutations 
in the genes encoding for the growth-hormone-releasing factor receptor or gona-
dotropin-releasing hormone, which leads to a reduction of GH and diminished sex 
steroid production (Min et al. 2006). The results indicated that changes in the produc-
tion of GH or sex steroids were not required to initiate or sustain thymic involution. 
In addition by blocking the sex steroid production did not delay thymic involution. 
These results are contrary to the finding of other groups which have shown increase 
in thymic cellularity following castration. It is suggested by Min et al. that these cel-
lular effects are transient and that the thymus still undergoes involution.  

  An interesting development in recent years is the discovery of a class of synthetic 
nonpeptidyl compounds known as Growth Hormone secretagogues (GHS). These 
compounds have the ability to synergize with natural GH-releasing factor and have 
been shown to induce calcium flux within rat pituitary cells which causes the release 
of GH. The full description of the discovery process and development of GHS can 
be found elsewhere (Smith 2005; Smith et al. 2005). Koo et al. demonstrated that 
when 5-6 week old B6 mice were given 5mg/kg of GHS orally for 3 weeks they 
experienced a 30 % increase in lymphoid cells in the peripheral blood compared to 
control mice. Further experiment on 20–24-month-old BALB/c or B6 mice given 
oral doses of GHS old mice did not show an increase in white blood cell numbers 
or have any affects on T- or B cell proliferation. However, a significant increase 
was observed in thymic cellularity in the treated animals that was consistent across 
all thymic subsets. Similar observation was seen when 16-month-old mice were 
treated with 1mg/kg i.p. from Monday to Friday for 3 weeks. In order to determine 
the effect of GHS in a disease model the authors examined the effects of GHS in 
resistance to a transplantable tumor, EL4 (H-2 b , derived from B6 mice). EL4 is an 
aggressive tumor in syngeneic B6 mice, causing mortality in 3–5 weeks. All ani-
mals treated with GHS for 3 week prior to inoculation showed a significant decrease 
in metastases associated with EL4 tumor development compared the untreated con-
trols demonstrating an enhanced host mediate response. This observation was seen 
in all ages of mice tested (16–24 months). The overall findings indicate an enhance-
ment of immune function by the regeneration of thymic cellularity and also the 
increased resistance to tumor metastasis in mice (Koo et al. 2001).  

  The potential for using GHS in humans has clear advantages as demonstrated 
from data regarding the treatment of individual with growth hormone deficiency. 
When GH is used, particularly in the elderly it is reported to result in an increase in 
the IGF-I levels, lean body mass and spinal bone density and a decrease in fat mass 
in men older than 60 years (Marcus et al. 1990; Papadakis et al. 1996; Rudman et al. 
1990). With these beneficial effects associated with GH treatment in the elderly and 
other groups including individuals with HIV and cancer sufferers (Mackall and Gress 
1997), GHS offers several advantages. For example, physiological GH release in the 
elderly is pulsatile which can lead to supraphysiological levels being experienced 
from high doses of GH; dependent on the pharmacodynamic and pharmacokinetic 
properties of the GHS being used this can be overcome. Studies performed with an 
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orally active nonpeptidergic GHS (MK0677) resulted in a significant increase in 
IGF-I in individuals over 60 years old compared to placebo groups after 4 weeks 
treatment (Chapman et al. 1996; Nass et al. 2007). Overall, GHS were well tolerated 
and their use was safe (Bach et al. 2004).  

  Similarities between the effects of GH and IGF-I is likely to result from the close 
interaction between them. GH induces IGF-I and is thought to mediate a number 
of GH actions, therefore despite the obvious involvements of IGF-I and GH, treat-
ment with either alone is unlikely to be sufficient to rejuvenate the involuted thymus 
(Olivia García-Suárez 2003; Taub and Longo 2005).  

     2.6      Dietary Supplements  

   2.6.    1 Zinc  

  Several dietary supplements have been suggested as potential boosters for the immune 
system. Zinc deficiency has been identified in a number of disorders the most notable 
including sickle cell anaemia and acrodermatitis enteropathica. Individuals suffer-
ing from Acrodermatitis enteropathica, an autosomal recessive disease caused by a 
defect in zinc metabolism, experience thymic atrophy and impaired cell-mediated 
immunity resulting in increased susceptibility to infection and disease (Oleske et al. 
1979). These symptoms are effectively corrected by supplementation with zinc.  

  There are several interesting factors associated with Zinc which warrant further 
investigation to elucidate its contribution to cellular immunity. Firstly, a hallmark 
of zinc deficiency in animal models is the development of age-independent thymic 
atrophy (Prasad 1985). Secondly, individuals with zinc deficiency are known to suf-
fer from increase susceptibility to infection and disease indicative of poor immune 
function. Third with increasing age there is a decreased ability to absorb Zinc in 
the gut therefore increasing the likely of individuals become deficient of Zinc 
(Fraker and King 2004). Fourth, studies in aged mice have shown that drinking 
water supplementation with zinc sulphate can increase thymic mass and possibly 
thymopoiesis (Fraker and King 2004). Fifth, Zinc deficiency has been noted as a 
secondary condition in disorders such as diabetes, AIDS, Down’s Syndrome and 
select cancers (Keen and Gershwin 1990). Sixth, Zinc supplementation has been 
shown to increase thymulin secretions in aged mice (Mocchegiani and Fabris 1995) 
and human (Prasad et al. 1988) suggesting a beneficial role for thymic function. 
Collectively these factors provide compelling reasons for investigating the potential 
impact to be made by Zinc on the immune system of free living old people.  

    2.6.     2 Ginkgo Biloba Leaf Extract EGb 761  

  Ginko biloba leaves have been used as part of traditional Chinese medicine for 
several thousand years. EGb761 is the complex chemical mixture extracted from 
the Ginko biloba leaf and has been shown to have protective and rescue effects 
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on a variety of medical conditions including neurodegenerative disorders (Ramas-
samy et al. 1999), cardiovascular disease (Pietri et al. 1997) and ageing (Winter 
1998). The functional properties of EGb761 have been attributed to its antioxidant 
and free radical scavenging activities. Tian and colleagues demonstrated that by 
administration of EGb761 both in vitro and in vivo was capable of protecting thy-
mocytes against the reactive oxygen species. Oral dosage of EGb761 was given for 
60 days at 1,600 μg/day/mouse to 22 month old C57BL animals. After this time, the 
mice were sacrificed and the size of their thymus and spleen were assessed. It was 
found their organs had significantly increased in mass compared to untreated age-
matched controls. These mice were also observed to have significant responsiveness 
to mitogens (Tian et al. 2003). Similar results were obtained when investigating the 
effects of melatonin which also known to act on reactive oxygen species (Tian et al. 
2001). This suggests that compounds which antioxidants may also be important for 
the rejuvenation of the thymus.  

  These findings highlight the complexity facing those investigating the restora-
tion/ rejuvenation of thymic function. It is unlikely that any single factor will be 
found capable of restoring thymic function but more conceivable that a combination 
of the mechanisms describe will all be required to make a functional contribution. 
So far, we have examined physiological and dietary factors as the means of under-
standing the triggers of thymic involution and how by using our understanding of 
these systems we can devise potential strategies for immunorejuventation. Aside 
from these factors, alternative approaches aimed at utilizing the current knowledge 
of the cellular interactions are emerging and are providing interesting data high-
lighting the potential of generating and targeting of specific T-cells to bolster the 
immune response. Several of these will be discussed.  

      3   Section III:    Methods for Generating Functional 
T-Cells Ex Vivo  

   3.1     Thymus Independent T-Cell Development  

  The majority of T-cell development is known to occur within the thymus, and 
although recent description of extrathymic T-cell have been reported in oncosta-
tin M (OM)- transgenic mouse, it is generally considered that these T-cells do not 
function in the same way as their thymus derived counterparts ( See  review by Blais 
et al. 2006). The question therefore remains, ‘Can functional T-cell be developed 
anywhere other than the thymus?’  

  Over the past decade studies focused on addressing this question have provided 
encouraging results in favor of in vitro T-cell development. In vitro systems includ-
ing fetal thymic organ cultures (FTOC) and reaggregate thymic organ cultures 
(RTOC) have been devised and studied, and are providing valuable contribution 
to our understanding of T-cell differentiation, and positive and negative selection 
processes (Hare et al. 1999). Both systems are able to support the development of all 
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T-cell subsets. However, drawbacks included time-consuming nature of the proce-
dure and expense for a relatively low cellular yield. The alternative in vitro approach 
using thymic stromal cell monolayer (TSMC) also had a major problem in that 
these system originally displayed an inability to progress beyond the DN1 (CD4 -

 CD8 - CD44 + CD25 - ) stage of development. So, on the one hand, FTOC and RTOC 
can sustain T-cell development whereas TSMC could support limited progression. 
These differences between the two approaches were initially attributed to a require-
ment for a 3-dimensional architecture as a means of providing the microenviron-
ment needed to resemble that within the thymus. Two crucial studies provided vital 
insight into T-cell development. First was the observation that Notch 1 deficient 
hematopoietic progenitor cells fails to give rise to T-cells and instead developed into 
B cells in thymus of mice and secondly that BM cells transduced with a portion of 
intracellular Notch domain developed into double positive T-cells in the bone mar-
row clearly implicating Notch signaling with a central role in T-cell development 
(Pui et al. 1999; Radtke et al. 1999). With the critical discovery of Notch signal 
involvement in T-cell development, Zuniga-Pflucker and coworker generated the 
OP9-DL1 coculture system ( See  de Pooter and Zuniga-Pflucker for a review of the 
OP9-DL1 approach (de Pooter and Zuniga-Pflucker 2007)). The OP9 cell line, is 
derived from a macrophage colony stimulating factor (m-CSF) deficient mouse, m-
CSF is required for myeloid lineage proliferation, therefore making OP9 cells par-
ticularly suited for studying lymphocyte development. The OP9 cell line transduced 
with Notch ligand Delta like-1 (DLL1) or Delta like ligand 4 (DLL4) resulted in 
the OP9-DL1 and OP9-DL4 cell lines. The OP9-DL1 cell line could support T-cell 
development in a monolayer culture due to the expression of the Notch ligand delta 
like ligands (DLL1 or DLL4; Schmitt and Zuniga-Pflucker 2006) when seeded with 
numerous progenitor cell populations (De Smedt et al. 2004; Hoflinger et al. 2004; 
La Motte-Mohs et al. 2005; Porritt et al. 2004; Schmitt et al. 2004a, b). These data 
suggest that the delta-like family of Notch ligands collectively acts to induce T-cell 
commitment and differentiation in the thymus (Schmitt and Zuniga-Pflucker 2006). 
Mohtashami and Zuniga-Pflucker further demonstrated that the essential difference 
between FTOC, RTOC and TSMC was the ability to maintain expression of DLL1 
and DLL4 (Mohtashami and Zuniga-Pflucker 2006). Ectopic expression of DLL1 
and DLL4 in TSMC was capable of restoring T-cell development in the absence of a 
3D microenvironment. The OP9-DL1 system has altered the original view that mon-
olayer cultures were incapable of generating T-cell and provided a simple method 
for studying the molecular mechanisms that control early T-cell development. A 
limitation to the OP9-DL1 systems is the inability to mediate positive and negative 
selection and therefore will require the development of additional systems.  

  An alternative approach to answer the question of, in vitro T-cell development 
has been the use of 3-dimensional matrix structures to recreate the cellular micro-
environment of the thymus. Originally devised by Poznansky et al. 2000, they dem-
onstrated using murine thymic stroma seeding with human stem cells that within 14 
days fully functional CD3 +  T-cells could be reproducibly generated (Poznansky et al. 
2000; Robertson and Poznansky 2003). The study by Clarke et al. 2005 extended 
this work further. By focusing on the similarities that exists between the constituent 
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components found within the thymus and that of the skin, Clarke determined to 
test the hypothesis that cellular elements of the skin, reconfigured in a different 3-
dimensional (3D) arrangement can support the differentiation of T-cells from hemat-
opoietic precursor cells (HPC; Clark et al. 2005). Using Cellform, which is a 3D 
tantalum-coated carbon matrix originally designed as an artificial bone matrix ( See  
Fig. 4), Clarke proceeded to recreate the thymic microenvironment by combining 
individually cultured fibroblast and keratinocytes cells on the 3D matrix. After 5-
6 days, the established keratinocyte/ fibroblast coculture was seeded with isolated 
AC133 +  hematopoietic precursors derived from human bone marrow in the presence 
of a cocktail of cytokines including IL-7, IL-15 and Flt-3 ligand. T-cells were gener-
ated from the 3D thymic construct when keratinocyte only or keratinocyte/fibroblasts 
were seeded with AC133 cells. The most robust production was observed with the 
keratinocyte/fibroblast combination. In addition to T-cells, CD14 lo HLA-DR hi  DCs, 

  Fig. 4      Cellfoam 3 -dimen-
sional tantalum-coated 
carbon matrix used for the 
generation of T-cells ex vivo 
as described by Clark et al. 
(2005)   
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CD14 +  myeloid cells and variable numbers of CD56 +  cells were also produced. The 
T-cells generated were shown to consist of 95 % CD3 +  αβ-TCR, from which T-cell 
receptor rearrangement excision circles (TREC) could be measured, therefore con-
firming that the T-cell had arisen from newly generated T-cells and not as a result 
of expansion of contaminating T-cell from the original seeding process. Positive 
and negative selection are critical for T-cell maturation and function therefore the 
appearance of double positive CD4 + /CD8 +  T-cell precursors before the mature single 
positive CD4 and CD8 T-cells, supported the notion that the T-cell construct was 
capable of positive selection. Mixed leukocytes reactions using autologous and allo-
geneic derive DC further demonstrated that the construct derived T-cells responded 
in the allogeneic but not autologous DC. These results suggested the existence of 
the negative selection of autoreactive T-cells. Importantly the analysis of the T-cell 
repertoire provided additional evidence of newly generated T-cells as the spectratype 
profile was different from the donors. Finally to address the question of whether 
the construct derive T-cells were functional and capable of proliferation, they were 
stimulated with mitogens and alloantigens and proliferated in response to phytohe-
magglutinin. These T-cells were found to express robust levels of CD69 (an early 
activation marker) in response to stimulation with concanavalin A (Clark et al. 2005). 
A Notch delta-like ligands, which is vital for T-cell production was expressed on the 
keratinocyte of the skin culture and may partially explain the ability of the culture to 
support T-cell development. In addition, the skin culture also expressed  Foxn1  and 
 Hoxa3  which are required for the differentiation of epidermal keratinocytes and pro-
mote migration of cell required for the development of the thymus.  

4        Section IV: A   doptive Transfer of T-Cells as Applied 
in the Clinic  

  As described previously, the decline in T-cell numbers is associated with ageing and 
affects the immune competency of the individuals due to infections and disease. 
The ultimate aim is to provide a means of bolstering the T-cell mediated immune 
response to restore a fully functional immune system. Currently we have discussed 
a range of factors that effect the thymus and also two different approaches to address 
the challenge of ex vivo T-cell development. However, as a consequence of our 
increased levels of knowledge, more exciting new questions arise. In the final sec-
tion we will examine the potential benefits offered by adoptive transfer of T-cells 
as applied to combating Cytomegalovirus (CMV) infections. Adoptive transfer is 
based on the principle of isolation and infusion of antigen specific or nonspecific 
lymphocytes with the aim of replacing, repairing or enhancing immune function 
primarily in the stem cell transplantation setting (Porter and June 2005). For reviews 
examining the adoptive T-cell therapy for cancer the readers is referred to recent 
papers by Carl June (June 2007a, b). Parallels exist between the immunological state 
of the SCT patient and elderly individuals which render both at increased suscep-
tibility to infection; adoptive transfer in the SCT arena has proven to be beneficial 
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in reducing treatment related morbidity and mortality. Therefore can an adoptive 
transfer approach be employed to aid the capacity of the ageing immune system to 
combat CMV?  

   4.1      CMV in the Elderly  

  The CMV is a member of the Herpes viruses and belongs in the subfamily of beta 
herpes viruses and is known to display, among other characteristics, the ability 
to undergo periods of latency before reactivation resulting in persistent recurrent 
infections. In healthy adults CMV infection is mostly asymptomatic although it 
can result in malaise, fever, sweats and abnormal liver function (Wreghitt et al. 
2003). It is generally recognized that CMV infection results in life long infection 
which is kept under control by immunosurveillance from rapidly established mem-
ory T-cells. An increasing body of literature has emerged reporting on the impact 
of infection by CMV on the ageing immune system (Looney et al. 1999). Data 
from the Swedish longitudinal studies, OCTO and NONA, examined a variety of 
immunological parameters in 80–90-year-old individuals to determine whether pre-
dictive changes associated with between 2 and 4-year survival could be identified. 
An increase in seropositivity for CMV was included as a “high risk” predictive fac-
tor. Collectively the identified factors are defined as the “Immune Risk Phenotype 
(IRP)” (Olsson et al. 2000; Wikby et al. 2002, 2005). Akbar and Fletcher postulate 
that the impact of CMV on the elderly may arise from a competition for space 
within the T-cell pool with an increase of CMV specific T-cell at the expensive of 
other memory T-cells. Therefore the IRP associated increases in CMV seropositiv-
ity, may correlate to the loss in repertoire diversity and hence reduced ability to 
combat other infections (Akbar and Fletcher 2005). This argument is supported by 
evidence that CMV seropositivity correlates to a reduction in EBV-specific (Khan 
et al. 2004), Influenza-specific (Trzonkowski et al. 2003), T-cells and an increase 
in CMV CD8 specific T-cell clonality (Khan et al. 2002). Furthermore, it has been 
shown to accelerate the decline in the naïve T-cell composition and increase the 
number of cells of CD28 -  cells in CMV-infected individuals of all ages (Almanzar 
et al. 2005). In addition cognitive decline has also been over in elderly individuals 
with high levels of CMV antibodies (Aiello et al. 2006). In light of these findings, 
strategies that can reduce the CMV burden on the ageing immune system may prove 
useful in reducing the susceptibility to other infectious agents.  

  Besides the effects noted above affecting elderly populations, CMV status is an 
influential factor for treatment related complications in immunocompromized indi-
viduals such as stem cell transplant recipients. Within this setting, CMV positive 
recipients who received donation from CMV negative donor required increased 
levels of ganciclovir treatment as the CMV-specific CD8 responses were delayed 
compared to when both donor and recipient were CMV positive (Aubert et al. 2001). 
In 2005, Cobbold et al. used adoptive transfer of donor derived CMV-specific CD8 +  
T-cells isolated from the blood as a means of combating reactivation of CMV in SCT 
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patients. Previous studies had shown that the isolation of CMV-specific CD8 +  T-cell 
clones from the donor that were cultured ex vivo and then transferred to the recipi-
ent were effective in the prevention of reactivation by CMV in those individuals 
unresponsive to antiviral therapy (Einsele et al. 2002; Peggs et al. 2001; Riddell et al. 
1992; Walter et al. 1995). In the Cobbold study CMV-specific CD8 +  T-cells were iso-
lated using magnetic beads conjugated to HLA-peptide tetramers designed to one of 
the viral epitope from the pp65 protein (a virion tegument protein and the main com-
ponent of the envelop particle). This enabled the isolation of the CMV-specific CD8 +  
T-cells in a “closed” system without the need for ex vivo manipulation (Cobbold et 
al. 2005). Of the nine patients in the study, no adverse effects were reported and it 
was found that doses between 1.2 × 10 4  and 2 ´ 10 6  were sufficient to control and 
thereby prevent viral reactivation (Cobbold et al. 2005). These results are encourag-
ing as they demonstrate an approach that could be utilized in elderly individuals to 
combat CMV reactivation. It is conceivable that intervention by infusion of CMV-
specific CD8 +  T-cells at the point where IRP linked increases in CMV seropositivity 
is evident may prolong the immunological competence of the elderly.  

  Akin to the T-cell adoptive transfer approach is the option of using “suicide” 
genes in which the infused T-cells are modified, to enable effective functional con-
trol thus improving the safety and efficacy of the therapy. Suicide genes code for 
enzymes that render cells sensitive to otherwise nontoxic prodrugs (Cohen et al. 
1999; Moolten 1994). An example of this approach is the use of Herpes Simplex 
virus–thymidine kinase gene (HSV–TK) in T-cell clones, although other including 
caspase-9 have also been reported (Straathof et al. 2005). HSV-TK converts nucleo-
side analags such as ganciclovir into monophosphate form, the resultant conversion 
into triphosphate metabolite causes an inhibition of the DNA elongation leading 
to cell death (St Clair et al. 1987). Several studies have employed this method as a 
means of preserving anti-infectious capacity of transferred T-cells while preventing 
the development of GVHD. The results suggest that this approach when used in the 
correct way can provide a means of preventing a broader pathogen spectrum com-
pared to antigen-specific T-cell transfers (Andre-Schmutz et al. 2004; Bonini et al. 
1997; Bordignon et al. 1995; Marktel et al. 2003; Tiberghien et al. 2001).  

     5      Concluding Remarks  

  In conclusion the age-related decline in immunological function provides many 
challenges for societies in which life expectancy is steadily increasing. In try-
ing to understand ways of rejuvenating the immune systems in older individuals 
it is becoming clearer that the physiological changes in the levels of cytokines, 
growth factors and pathological changes such as CMV in status, dietary intake and 
environmental exposure all contribute to how effectively the immune system func-
tions. Several factors including IL-7, KGF and sex steroid ablation are currently tak-
ing centre stage as potential immune rejuvenators. The current strategy of bolstering 
the immune response by altering the microenvironment in which thymocytes can 
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develop using the individual factors stated has been beneficial but may provide only 
limited success; as the interplay and regulation that exist between them becomes 
more apparent. Strategies that combine two or more of these factors will impart 
greater insight into the best way of promoting thymic rejuvenation.  

  A critical feature of immunosurveillance, in the elderly, is the composition and 
diversity that exist within the T-cell pool. CMV infection is known to affect the 
dynamics and reduce the number of pathogen-specific memory T-cells thereby 
resulting in an increased susceptibility to infection by opportunistic pathogens. 
Every effort is being made to generate fully functional T-cells ex vivo. It will be 
interesting to see whether ex vivo generated T-cells primed with antigen-specific 
peptides, for example CMV, will provide the regulatory control needed to enable 
the maintenance of diversity in the T-cell pool. If ex vivo generated T-cells both 
primed and naive can be infused into immunocompromised individuals it may then 
be possible to control the infectious agent (i.e., CMV, EBV) sufficiently to enable 
an expansion in the number of naïve T-cell assisted by the cocktail of thymic rejuve-
nating factors. Many challenges questions must still be answered before successful 
rejuvenation of the immune system can be achieved.  
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                                              Abstract:        The immune system plays an important role in protection against 
infection and in the maintenance of the internal environment of the body. However, 
such important immune functions are known to decline with age in many mammals, 
including humans. It is a matter of clinical importance that the incidence of various 
age-associated diseases such as infections, cancer and vascular disorders increases 
with a decrease in immunological vigor. The extent of immunologic decline is vari-
able and exhibits wide inter-individual variations. Thus, it is important to assess the 
extent of immunologic decline in both patients suffering from various diseases and 
in healthy people in order to maintain healthy conditions. To this end, we have devel-
oped a scoring system that analyzes immune parameters according to a database of 
known age-associated immune changes obtained from a healthy population. Using 
this scoring system, we can combine several different immunological parameters 
and express the immune status of individuals as a simple numeral.  
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     After determining immunological vigor for individuals, it is necessary to replenish 
immune defects and restore them to normalcy for individuals with depressed immu-
nological scores. This chapter provides methods of immunological restoration in 
animal models and introduces some similar attempts in humans. The effect of any 
immunological restoration varies with the individual and must therefore verified. Cur-
rently, the proposed immune scoring system proposed is useful to determine whether 
the methods employed are effective for the restoration of immune functions.  

      1 Introduction  

   A decade ago, centenarians used to appear mainly in fairy stories. Nowadays cente-
narians are not uncommon and there are more than 30,000 centenarians in Japan. In 
1900 when Soseki Natsume, a Japanese writer, was in London, the mean life span of 
the male population in England was 44 years old and that in Japan was 45 years old. 
In many countries, the mean life span has increased steadily during the first half of the 
20 th  century, however, this has not been the case in Japan. The increase in the mean 
lifespan was outstanding in the second half of the 20 th  century (after the Second World 
War) in Japan. This pronounced improvement is attributed to rapid progress of medi-
cine including antibiotics and sufficient food supply including the supply of proteins.  

   WHO reports that a “healthy” life span is generally 6–10 years shorter than the 
mean lifespan. This means that many elderly people suffer from some diseases for 
several years before death.  

   It is well known that the incidence of cancer, cardiovascular disease, neurovas-
cular disease and infection increases with age. Autopsy examinations have revealed 
that the largest cause of death in the elderly is infections such as bronchopneumonia 
and urinary tract infection (Table 1a and 1b). The occurrence of severe acute res-
piratory syndrome (SARS) in south Asia and China in the winter of 2003 clearly 
indicated that the fatality rate was high, approximately 50%, in people over 65 years 
of age (Table 1c) (Hirokawa et al. 2006). With regard to infection, Pawelec et al. 
(2004) suggested that chronic antigenic stimulation could lead to an increased prev-

Table 1a  Causes of death in a hospitalized geriatric population: an autopsy study of 3000 
patients

Bronchopneumonia 42.9%
Malignant neoplasms 28.1%
Pulmonary thrombo-embolism 21.2%
Acute myocardial infarction 19.6%
Urinary tract infection 12.3%
Acute cerebrovascular disease  6.5%
Internal hemorrhage  5.5%
Congestive cardiac failure  3.3%

The data, based on 3000 consecutive autopsies (1758 females/1242 males: mean age 80.3 years) 
performed from 1972 to 1992 in Geneva Geriatric Institutions (Mac Gee W).
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alence of senescent dysfunctional T-cells, and therefore contribute to more general 
alterations in the immune system.  

  Furthermore, elderly people face an indefinite number of problems such as pain 
in the shoulder, arm or leg, dizziness, staggering and headaches. In addition, chronic 
inflammatory symptoms such as bronchitis, laryngitis or adenoiditis are very com-
mon in the elderly.  

   An age-related increase in various diseases is causally related with the age-related 
decline of immune functions (Hirokawa et al. 2006). Indefinite problems are attribut-
able to variable causes including various diseases and psychological stress, but one 
of the major causes is inadequate adaptation to variable stresses from the external 
environment. Nervous, endocrine and immune systems work together to maintain 
the internal environment, when the body is exposed to the stresses from physical, 
psychological and biological surroundings. In the elderly, however, the function of 
all these three systems declines with age, resulting in improper adaptation to stress.  

   Therefore, restoration of immunological function would be quite helpful for the 
elderly not only to prevent infection, but also maintain their internal environment at 
the time of exposure to stress. In other words, immunological restoration is expected 
to be effective for the improvement of the QOL in the elderly.  

   Immunological restoration requires 2 steps. The first is to assess immunological 
parameters or functions to determine the extent of the age-related decline of immune 
functions of each individual. To this end, we require a measuring method to express 
the level of immunological vigor as a simple numeral that anybody can understand. 
The second is to select adequate methods to restore immunological functions and to 
check the effectiveness of the selected immunological restoration by the measure-

Table 1b  Major causes of death in autopsy cases of elderly persons at Tokyo Metropolitan 
Geriatric Hospital

 People over 60 years People over 70 years   

Infections 39.2% 27.6%

Vascular diseases in 
brain and heart

29.7% 43.1%

Malignancies 18.7% 22.4%

Others 12.4%  6.9%

The data are based on 923 autopsy cases (570 females/353 males) of people over 60 years of age.

Table 1c Fatality rate of SARS in Hong Kong

Age Fatality rate (%)

24 years and below 0% 
25–44 years 6% 
45–64 years 15% 
65 years and above 52% 
Total 14–15%

WHO report. Consensus document on the epidemiology of severe acute respiratory syndrome 
(SARS). 17 October 2003, http://www.who.int/csr/sars/guidelines/en/
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ment method mentioned above, because the effectiveness of immunological resto-
ration differs based on the individual and the method of restoration (Fig. 1). Thus, 
this chapter deals with the following; (1) the measurement method to assess the 
immunological level of individuals, (2) causes of immunological suppression, (3) 
possible methods of immunological restoration in elderly people.  

    2 Assessment of Immunological Level as a Whole  

   The immune system comprises various functions and consists of many types of cells 
that perform various functions, and it is difficult to select immunological parameters 
that are suitable for the assessment of immune functions in healthy people and 
patients suffering from various diseases.  

   From a functional viewpoint, there exist parameters such as cell mediated 
immunity, humoral immunity, cytokine production, proliferative activity of T-cell 
and B-cells, antigen presentation of dendritic cells and so on. Cells comprising the 
immune system are T-cells and their subpopulations, B-cells and their subpopula-
tions, NK-cells, NKT-cells, macrophages and dendritic cells. None of these may be 
excluded for the assessment of the immunological level as a whole.  

   Another important aspect is to determine which immune cells or parameters play 
a key role in the age-related decline of immune function. We have been studying 
the immunological aspect of aging for many years and have confirmed that immune 
functions are susceptible to aging, diseases and stress. For the past 30 years, many 
studies including ours have shown that the age-related decline mainly occurs in T-
cell-dependent immune functions and is relatively small in functions of other cells 
such as B-cells, macrophages and NK-cells (Makinodan and Kay 1980; Hirokawa 
1992; Linton and Dorshkind 2004; Hirokawa et al. 2006). Therefore, when con-
sidering the age-related change of immunological functions, the immunological 
assessment can be focused on parameters that are related to T-cell-dependent func-
tions. We have reported that the age-related change in the T-cell-dependent immune 
system is observed in a decrease in the T-cells number, a change in the T-cell sub-
populations and a qualitative change in T-cells such as a decline in proliferative 
capacity and a change in cytokine production (Fig. 2).  

         Therefore, the number of whole T-cells and their subpopulations, and 
the proliferative activity of T-cells are useful parameters to assess the extent 

Fig. 1 Proper assessment of 
immunological functions is 
essential to verify the effec-
tiveness of immunological 
restoration

Immunological restoration

Immune
Deficient
Patients

Immunological restoration 
& Improvement of QOL

Proper assessment of 
immunological functions
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of the age-related decline of immune functions. Hence, we performed flow 
cytometric analysis for 7 parameters reflecting T-cells and their subpopulations; 
number of T-cell (CD3+ cells), number of CD4+ cells, number of CD8+ cells, 
the ratio of CD4+ cells to CD8+ cells (CD4/CD8 ratio), number of naïve T-cells 

Fig. 2 Age-related 
decline in T-cell-related 
immune parameters
(a)  A significant decline 

is observed between 
the 2nd and 3rd dec-
ades. The number 
stays at almost the 
same level through 
the 6th decade and 
declines after the 7th 
decade

(b)  The age-related 
decrease in the 
number of naïve T-
cells (open columns) 
with a concomitant 
increase in the 
number of memory 
T-cells (grey 
columns)

(c)  Proliferative 
response of 
lymphocytes to 
varicella-zoster 
virus (VZV) peaks 
in the 1st decade 
and gradual decline 
thereafter. (The 
graph was originally 
made by Prof. S. 
Kishimoto)
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(CD4+CD45RA+ cells), number of memory T-cells (CD4+CD45RO+ cells), and 
the ratio of naïve T-cells to memory T-cells (N/M ratio). The proliferative activ-
ity of T-cells was measured by nonspecific stimulation of T-cells by anti-CD3 
monoclonal antibody.  

   We defined a new indicator, T-cell proliferation index (TCPI) using the number 
and proliferative activity of T-cells, as described later.  

   In addition to T-cells, the number of B-cells and NK-cells was included for this 
assessment, since these cells are counterparts of immune functions.  

   Cytokine production is another important aspect of immunological function. 
Among many cytokines, information on Th1/Th2 balance is helpful for understand-
ing health and disease condition. Therefore, we employed 3 interleukins; IL-2 and 
IFNg as the Th1 group, and IL-4 as the Th2 group.  

   Here, we have ten parameters to assess the extent of age-related decline in 
immunological functions (hereafter referred to as the scoring of immunological 
vigor: SIV) of individuals as shown in Fig. 3. Since it is difficult to imagine the 
immunological level of each individual by merely looking at the numbers of the 10 
parameters, we have tried to represent the immunological level of each individual 

Fig. 3  Process of scoring and grading immunological parameters. Values of immunological 
parameters are given a score from 1 to 3. Sum total of 10 scores is named scoring of immunologi-
cal vigor (SIV-10). SIV-10 is then classified into 5 grades as shown in Table 2. It is generally dif-
ficult to determine immunological status of individuals by a mere list of figures of 10 parameters. 
By the scoring system, 10 parameters can be grouped and expressed numerically as immunological 
score or grade

Immunological parameters

--------------------------------------------------------
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2) T cell proliferation index 0.57
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in a plain style. The value of each immunological parameter falls within a range 
specified in a database and each parameter was scored into 3 grades based on its 
value. In particular, values in the range of a cumulative frequency less than 10% of 
values observed for healthy subject were scored 1, which indicates a low immunity 
level; those between 10% and 40% were scored 2, which indicates a moderate 
immunity level; and those with 40% or higher were scored 3, which indicates a 
sufficiently high immunity level. Since higher scores of CD4/CD8 ratios are fre-
quently observed in very old people and patients suffering from diseases, values 
greater than 80% of the cumulative frequency were scored 2, which indicates a 
moderate immunity level.  

     We employed 3 options to assess SIV; the first using 10 parameters, named SIV-
10; the second using 7 parameters excluding cytokine production, named SIV-7 and 
the third using 5 parameters composed of T-cell-related functions, named SIV-5 or 
T-cell immune score.  

   Values of SIV-10, SIV-7 and SIV-5 were then classified to 5 grades (V∼I) accord-
ing to the total score. V: sufficiently high, IV: safety zone, III: observation zone, II: 
warning zone, I: critical zone (Table 2). The observation zone indicates that the level 
of SIV is average, but needs attention to move up into the safety zone. The warning 
zone indicates that the level of SIV is not sufficient to maintain health and consider-
able effort is required to increase the level of SIV. The critical zone indicates that 
the susceptibility to infection is so high that the individual needs to be admitted to 
an aseptic isolator.  

    3  T-cell Proliferation Index and Assessment 
of Immunological Age  

   We defined a new parameter, T-cell proliferation index (TCPI) which was calculated 
by using the number and proliferation activity of  T-cells. The number of T-cells is 
essential for the maintenance of immune function. In addition, T-cell proliferation 
is the most essential function of T-cell immunity, including the process of antigen 
recognition and sequential division of T-cells. There are 4 types of number and 
proliferative capacity of T-cells. (1) both are sufficient; (2) number is sufficient, 

Table 2 Scoring of immunological vigor (SIV) and grading

Scoring

SIV-10 SIV-7   SIV-5  

10 parameters 7-parameters (without 
cytokines)  

5parameters                
(T-cell related)

Grading

30 ~ 29 21  15 Grade V  sufficiently high
28 ~ 26 20 ~ 18  14 ~ 13 Grade IV  safety zone
25 ~ 22 17 ~ 13  12 ~ 10 Grade III  observation zone 
21 ~ 17 12 ~ 10   9~ 7 Grade II  warning zone
16 ~ 10 9 ~  7   6 ~  5 Grade I critical zone
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but proliferative capacity is insufficient; (3) number is insufficient and proliferative 
capacity is sufficient; (4) both are insufficient. Therefore, we arrived at the conclusion 
that we needed a new parameter which reflected both the number and proliferative 
capacity of T-cells. The new parameter was TCPI and was calculated by the following 
equation.  

   TCPI = T-cell proliferation activity x (T-cell number per μL/1000)  

   Figure. 4 indicates the distribution of TCPI according to age. Although, there is 
a wide individual variation, the age-related decline of TCPI is obvious and the fol-
lowing equation was obtained.  

         TCPI = − 0.0174 x (Age) + 2.5348  

     In other words, we can determine age of individual by the value of TCPI using 
the following equation. Since the age is calculated from the number of T-cells and 
their proliferative activity, the age obtained by this equation is hereafter referred to 
as the immunological age (IA).  

         IA = (2.5348 – TCPI)/0.0174      

    4    Scoring of Immunological Vigor (SIV) Shows Wide Range of 
Individual Variation  

   Immunological vigor of 400 healthy people and 300 cancer patients were assessed 
using the method mentioned above (Fig. 5a). Age-related related decline as observed 
in SIV-7 was apparent in the healthy population. However, there was a wide individual 

Fig. 4 Distribution 
of TCPI against age. 
Approximate values of 400 
people are displayed
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variation. The level of SIV-7 ranged between 21 and 14 in the 3 rd  decade and between 
21 and 12 in the 7 th  decade, indicating that individual variation is greater than the dif-
ference between young and old people. But when observing SIV-7 in cancer patients, 
we found that the distribution of values was apparently different from that in healthy 
people and the age-related decline in cancer patients was much steeper than in healthy 
people. However, it is again apparent that the SIV-7 level of cancer patients showed a 
wide range of individual variation, although the values were lower as compared with 
those for healthy people (Hirokawa et al. 2007a, 2007b).  

   Based on the SIV-7 grade, the difference in SIV-7 between healthy people and 
cancer patients was much obvious (Fig. 5b). Most healthy people belonged to Grade 
IV and III, while cancer patients belonged to Grade III and II, indicating that the 
immunological deficient state is more serious in cancer patients. Thus, considerable 
attention should be given to the immunological state of cancer patients during treat-
ment (Hirokawa et al. 2008).  

       Figure. 6 shows radar graphs of 3 example cases showing the 10 immunological 
parameters, IA, SIG-10, immunological grade and immunological zone. This figure 
shows how the immune status of individuals can be understood.  

    5 Variable Causes Suppress Immunological Functions  

   As presumed from the wide individual variation of immunological vigor, immuno-
logical functions are changeable by variable causes: i.e., aging, stress, diseases, life 
style, food, genetic background etc.  

   Aging is unavoidable cause of immunological decline. However, the rate of 
immunological decline by aging might be accelerated or decelerated by surround-
ing environmental factors which can be controlled by appropriate intervention. For 

Fig. 5  Comparison of SIV-10 (a) and grade (b) between healthy people (400 cases) and cancer 
patients (300 cases)
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instance, caloric restriction extended the life span of animal models and enhanced the 
immunological function of old animals (Heilbronn and Ravussin 2003; Utsuyama 
et al. 1996).  

   Stress is the major cause of immunological decline. Any forces that disturb home-
ostasis can be stressors. In other words, stress is life and life is stress (Chrousos GP 
et al. eds; Stress 1995).  

   Various diseases including minor ones are also factors suppressing immunologi-
cal functions. Incidence of cancer is known to increase with the advancement of age 
and this is partly caused by a decrease in immune surveillance (Dunn et al. 2002). 
In fact, a patient with colonic cancer has a low level of SIV (Hirokawa et al. 2008). 
But it is obvious that SIV generally recovers in a certain interval after the removal of 
cancer lesion. Thus, it is likely that the presence of cancer suppress the immunologi-
cal function of the individual. It is also well known that diabetes mellitus suppresses 
immunological function. Various therapies for many kinds of diseases can down-regu-
late immunological functions. One example is surgical operation. Chemotherapy for 
cancer and steroid therapy for autoimmune diseases suppress immune functions.  

    6 Possible Methods of Immunological Restoration  

   Now we can assess the immunological level by SIV, as mentioned above. As 
observed in Fig. 5, there is a wide individual variation in the SIV levels. We pre-
sume that individuals with high SIV can live longer and those with low SIV are 
susceptible to diseases. Further longitudinal studies are necessary to say something 
for the prognosis of people with high or low SIV. Roberts-Thomson et al. reported 
that individuals with reduced immune functions had significantly greater mortality 
than those whose immune functions were within the normal range. Centenarians 
in Okinawa have significantly high immune functions as compared with controls. 
Considering these data, it may be inferred that it is desirable to enhance SIV level 
of individuals with a lower SIV level.  

Fig. 6  Radar graph shows 3 examples assessed by immunological age, SIV and grade
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   Here we would like to present our preliminary experience of immunological res-
toration in humans and its possible methods as determined from experiments using 
animal models (Hirokawa et al. 2002).  

   6.1 Coping with Stress  

   In daily life, a variety of stresses down-regulate immune functions and in fact, the 
stresses are the major cause of immunological suppression in our life. Stresses orig-
inate from communication problems at home, office and school, from diseases or 
injury, from treatment of diseases or from natural disasters. There are 2 solutions for 
stress: (a) avoid stress. (b) alleviate the effect of stress.  

   (a) Avoid stress.  
   Needless to say, it is best to avoid stress if possible. Unfortunately, however, 

most stresses are unavoidable. But it is worthwhile to reconsider the cause of stress 
and analyze whether or not it is avoidable.  

   (b) Alleviate stress.  
   It is interesting to note that the same level of stress has very serious effects in 

some people, but not in others. This means that the magnitude of stress is dependent 
on the response of individuals. For instances, an academic examination would not 
be as serious for students who have studied beforehand as it would be for those who 
have not studied.  

   Singing, running and chattering with friends are mood-altering activities. Sleeping, 
if possible, is another good activity. A good way to alleviate stress is to devote time to 
some hobby. In this respect, we studied the effect of music in humans and we found 
that playing the drums in a group could enhance NK activity (Wachi et al. 2006).  

    6.2 Improvement of Life Style  

   Habits indicative of an improper life style are poor sleep, overwork, smoking, 
excessive drinking, irregular meals, deviated food habits and insufficient physical 
exercise. We interviewed more than 50 of young people who showed a lower level 
of SIV and over 50% of them had improper work habits.  

   Nutrition is an important factor for immunological restoration. For the last 50 
years, the mean life span of Japanese people has extended from 50 to over 80 years. 
This rapid increase in life span is partly due to the improvement of food intake, 
especially, protein. Today, people are worried about metabolic syndromes and are 
making an effort to not eat too much. But too much of anything is harmful.  

   More than 70 years ago, MaCay (1935) reported the elongation of life span in 
rats by caloric restriction. Many studies have since shown that caloric restriction is 
effective on several counts; i.e., elongation of lifespan, enhancement of immuno-
logical function and alleviation of autoimmune diseases.  
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   One argument about food restriction or caloric restriction is that it only appears 
to be effective in animals that are reared in an artificial environment such as a labo-
ratory animal colony (Utsuyama et al.1996). Most laboratory animals are fed highly 
nutritional chow without being given enough space or tools for physical exercise. 
In other words, immunological improvement by food restriction might be seen 
only in overfed animals that do not perform physical exercise. In order to test this 
conjecture, we employed an automatic feeding device that was electrically inter-
locked with a running wheel: the device provided constant running exercise to the 
animal and fed a determined amount of diet to each rat (lchikawa et a1. 2000).  

   Rats were individually reared in this automatic feeding device for 18 months 
from 2 to 20 months of age. At the age of 20 months, the rats were sacrificed and 
examined for various indices including immunological functions. The body weight 
was almost the same between rats fed ad libitum and those given 80%-restricted diet. 
Their body weight was significantly greater than that of rats given 60%-restricted 
diet. The body weight of those given 80%-restricted diet together with physical 
exercise was almost the same as that of rats given 60%-restricted diet without physi-
cal exercise. High proliferative response of T-cells was observed in some of rats 
given 80%-restricted diet together with physical exercise (Fig. 7).  

     Meanwhile, studies are ongoing to observe the effect of caloric restriction on 
various physiological parameters in monkeys (Roth et al. 2002). A report provided 
evidence that CR can delay immune senescence in nonhuman primates, potentially 
contributing to an extended lifespan by reducing susceptibility to infectious disease 
(Messaoudi et al. 2006).  

   In humans, the effects of CR on life extension are actually present; it is esti-
mated that CR extends life by 3–13 years. This extension is much smaller than 
those achieved by medical and public health intervention, which have been known 
to extend life by about 30 years in developed countries of the 20 th  century (Everitt 
and Le Couteur, 2007).  

Fig. 7  Effect of long-term 
exercise and caloric restric-
tion on lymphocyte prolifera-
tion in rats
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    6.3 Anti-oxidant Chemicals  

   It is now commonly believed that oxidative stress, such as that caused by reactive 
oxygen species and free radicals, is the major cause of aging phenomena and 
various diseases (Harman 1956; Ames et al. 1993; Wakikawa et al. 1999). The 
decline of immune function is one of major aging phenomena and constitutes the 
background of various diseases occurring in the elderly people (Hirokawa 1998). 
Many investigators assume that oxidative stresses play an important role in the 
progression of immunological decline during the course of aging (Martin et al. 
1996; Meydani et al. 1998). Thus, it has been expected that enzymes or substances 
that compete with oxidative stress are candidates for antiaging medicines. Anti-
oxidant enzymes are present in our body, e.g., SOD and catalase. It is possible 
to enhance the production of these antioxidant enzymes by appropriate physical 
exercise. In addition, there are many kinds of supplements that are commercially 
available as antioxidant chemicals, although effectiveness of most of them has not 
been proved scientifically.  

   Flavonoids or polyphenols are representative antioxidants contained in many 
kinds of vegetables, fruits and other foods. Extracted or enriched flavonoids and 
polyphenols are commercially available as supplements. The effectiveness of these 
supplements requires further study.  

   Vitamin E (VE) works as an antioxidants. Research groups have found con-
flicting effects of VE. In our experiment using aging mice, we confirmed that VE 
enhances the immune functions of young, but not old mice (Wakikawa et al. 1999) 
(Fig. 8). Other reports indicated that VE supplementation was not effective in 
humoral immune response modulation in young, middle-aged and elderly women 
(Park et al. 2003). On the other hand, Meydani’s group reported the positive effect 
of VE in both human and animal experiments (Meydani et al. 1998; Marko et al. 
2007). These reports suggest that the effectiveness of supplements is not uniform, 
but differs with the individual and the genetic background.  

       The effectiveness of any antioxidants and related supplements usually varies with 
the individual. Therefore, immunological assessment as performed in an objective 

Fig. 8  Effect of vitamin 
E on splenic T-cells (a) and 
Con A response (b) of young 
and old mice
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manner, such as determining SIV, is always necessary to verify the effectiveness of 
chemicals and supplements on the immune system.  

    6.4   Vaccine  

   Vaccines are very useful to protect children who are susceptible to various infec-
tious diseases due to immaturity of the immune system. The same effect could 
be expected for the elderly people with impaired immune functions. However, 
vaccination in very old people may not work due to depressed immune functions. 
Thus, vaccination should be started latest before the age of 60, so that the individ-
ual still have sufficient capacity to respond to pathogenic organisms. Alternatively, 
attempts should be made to enhance or stimulate the depressed immune capacity of 
elderly people at the time of vaccination.  

   Susceptibility of old mice to infection is clearly observed in experimental 
infection with influenza virus. Old mice died of infection at a 10-fold lesser dose 
of influenza virus. 01d mice that survived after exposure to low doses showed 
strong immunity to the same virus and became resistant to the second infection 
with a high dose of influenza virus (Hirokawa and Utsuyama 2002). These data 
suggest that vaccination is useful to protect the elderly people from various kinds 
of infection.  

   In humans, vaccination against pneumococcus and influenza virus is already 
clinically conducted for elderly people. As stated in the earlier section, there is indi-
vidual variation even in elderly people. Those having higher SIV can respond to 
vaccination and show sufficient immunity against bacteria and virus. Problem is in 
finding a way to enhance immunological functions of the elderly people with lower 
SIV so that they can effectively respond to vaccination.  

   Another point to be considered is the route of vaccination. Since the nose and 
mouth are the major entries for respiratory infection, their mucosal immunity is 
important. Using a mouse model, we found that the route of vaccination is impor-
tant. Vaccination through the intranasal route provides high level of IgA production 
in nasal mucosa, but that through the intravenous and intraperitoneal routes does 
not. (Table 3). (Asanuma et al. 2001).  

Table 3  Difference in the levels of IgA antibody specific to influenza virus (ng/mouse) between 
vaccination route and age

 3 months old 18 months old

1) i.n. → i.n. 172 ± 42 54 ± 50 
2) i.v. → i.p. 2 ± 2 2 ± 2

1) Mice were administered intranasally (i.n.) with A/PR/8/34 vaccine (10mg) and boosted 3 weeks 
later i.n. with the same vaccine. Antibody was assessed 1 week after the boosting 
2) Mice were administered intravenously (i.v.) with A/PR/8/34 vaccine (10mg) and boosted 
3 weeks later intraperitoneally (i.p.) with the same vaccine. Antibody was assessed 1 week after 
the boosting
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    6.5 Japanese Herbal Medicines  

   A group of Japanese herbal medicines, called ‘Kampo-Hozai’ have been used to 
improve the physical condition of patients suffering from various diseases (Utsuyama 
et al. 2001). Among more than 100 kinds of Kampo-Hozais, Hochuekki-to(TJ-41) 
is a drug used to recover immune function and has been reported to be useful in 
healing infections (Yamaoka et al. 2000; Mori et a1. 1999), oncostatics-induced 
leukopenia (Kaneko et al. 1999), and allergies (Suzuki et a1. 1999). Juzen-taiho-to 
(TJ-48) is useful not only for the recovery of immune function (Abe et a1. 1998), 
but also for the enhancement of antitumor effects (Saiki et al. 1999; Onishi et al. 
1998; Utsuyama et al. 2001).  

   We tested the effectiveness of Japanese herbal medicines in young and aged 
mice. The data indicated that Hochu-ekki-to (TJ-41) was effective in the restora-
tion of impaired immune functions of aged mice, in terms of the number of T-cells 
and NK-cells, and anti-SRBC antibody response. However, it was not effective in 
enhancing the immune functions of young mice (Fig. 9).  

  Juzen-taiho-to was also effective in increasing the number of T-cells and NK-cells 
in aged mice, although a significant increase was not observed in young mice. Func-
tionally, however, NK activity increased both in young and old mice. A signifi-
cant decrease was also observed in the number of metastatic pulmonary colonies of 
B16 melanoma cells both in young and old mice treated with Juzen-taiho-to for 16 
weeks (Fig. 10).  

     These results suggested that some Japanese herbal medicines are useful in the 
restoration of impaired immune functions of old mice and could be recommended 
for the elderly people with immunological problems.  

   We performed preliminary clinical trial of TJ-41 to observe its effect on 
immunological function in humans. The results showed that the effect varied with 
the individual. Approximately half of the people who were given TJ41 showed a 
positive effect, but another half did not show any effect. Fig. 11 shows an example 
case of the positive effect of TJ41. Therefore, in these cases also, the assessment of 
immunological parameters is necessary to verify the effectiveness of herbal medi-
cines for immunological restoration.  

Fig. 9  Effect of Japanese 
herbal medicine (TJ-41) on 
splenic T-cells (a) and anti-
SRBC response in young 
and old mice
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      6.6 Hormones  

After gonadectomy, hypertrophy of the thymus   was observed in aging C57BL/6 
mice, ranging in age from 4 to 20 months. The mice had been gonadectomized 
1 month before the sacrifice, and the magnitude of thymic regeneration was more 
pronounced in males than in females (Fig. 12). However, enhancement of anti-
SRBC antibody response was observed only in females, but not in males regard-
less of age. Gonadectomy brought about not only thymic hypertrophy but also an 
increase in T-cells and B-cells in the spleen. An increase in T-cell subpopulations 
was proportional in female mice, but disproportional in male. The disproportional 
increase of T-cell subpopulations could account for the failure to enhance the anti-
SRBC antibody response in male mice (Utsuyama and Hirokawa 1989).  

     Gonadectomy also resulted in the thymic hypertrophy in male and female young 
Wistar rats, but not in those that had been previously hypophysectomized (Utsuyama 
and Hirokawa 1989).  

Fig. 10 Effect of Japanese 
herbal medicine (TJ-48) on 
tumor metastases to lungs 
in young and old mice. Top 
figure shows experimental 
protocol. TJ-5 is another 
Japanese herbal medicine, 
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   Elderly males undergoing orchidectomy for prostatic carcinoma demonstrated an 
increase in circulating T-cell numbers, particularly naive (TREC+) T-cells. Chemi-
cal castration by administration of LHRH antagonist was also effective in activation 
of thymic regeneration in mice and humans (Sutherland et al. 2005).  

   In females, hormone replacement therapy (HRT) by estrogen has been pre-
scribed to postmenopausal women for prevention of a variety of medical conditions 
including osteoporosis, cardiovascular diseases, stroke and Alzheimer’s disease; 
yet HRT is often associated with altered immune parameters (Fahlman et al. 2000; 
Stopinska-Gluszak et al. 2006). HRT is now going to be reconsidered, since estro-
gen is closely related with carcinogenesis of mammary cancer.  

   Growth hormone plays a key role in the development and aging of the thymus 
and T-cell-dependent immune system (Hirokawa et al. 1998, 2001). Activation of the 
immune functions occurred in both males and females by administration of GHRH 
(Khorram et al. 1997; Koo et al. 2001). Since elderly people frequently have occult 
carcinoma in thyroid, prostate and other organs, we need to consider the possibility 
that an increased level of growth hormone may stimulate proliferation of tumor cells, 
giving rise to the clinical manifestation of the occult carcinoma (Perry JK 2006).  

    6.7    Immunological Enhancement by a Low Dose 
of Anti-cancer Drug  

   Cyclophosphamide (CY) is an antitumor drugs commonly used for the chemotherapy 
of human cancer. It is also known to be a potent immunosuppressive drug in human 
and experimental animals. It is interesting how CY influences the impaired immu-
nological function in aged mice (Ishiyama et al. 1999).  

   Aged mice treated with a low dose of CY showed significantly enhanced immune 
capacity in terms of T-cell proliferation and T-cell-dependent antibody response 
(Fig. 13). In these mice, the total cell numbers of T-cells increased in both in the 
thymus and spleen, as compared with those in nontreated mice. Treatment with a 
low dose of CY induced apoptosis of thymocytes in the atrophic thymus of aged 
mice and this was followed by an increase in proliferation of thymocytes and an 
increase in thymocytes and splenic T-cells. Treatment with a high dose of CY also 

Fig. 12 Effect of ovariec-
tomy (a) and orchidectomy 
(b) on the weight of the 
thymus at various ages. All 
mice were sacrificed 1 month 
after the gonadectomy and 
the wet weight of the thymus 
was measured
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induced apoptosis in the thymus, but suppressed the proliferative capacity, thereby, 
not leading to an enhancement of immune capacity.  

     CY in young mice, however, suppressed immune capacity regardless of the dose. 
Thymocytes and splenic T-cells of young mice were more susceptible to CY than 
those of aged mice and decreased in number after treatment with even a low dose 
of CY.  

   For human application, Berd et al. (1984) reported that a low dose of CY 
enhanced cell-mediated and humoral immunity in patients with advanced cancer. 
We examined SIV in patients with colorectal cancer before and after chemotherapy 
and found that 8 out of 13 patients showed a trend of increased SIV 8 weeks after 
the start of chemotherapy (Fig. 14).  

      6.8 Grafting of Cells and Tissues  

   In animal experiments, the level of immune functions of aged mice can be restored 
to a level approaching that of young adult mice by grafting both newborn thymus 
and bone-marrow from young donors (Hirokawa et al. 1976, 1982; Hirokawa and 
Utsuyama 1989). The results suggest that intrinsic cellular change of the immune 
system is more responsible for the immune deficiencies in the aged than the envi-
ronmental or structural tissue changes including connective tissues and humoral fac-
tors. In thymus grafting, however, thymic stromal tissues rather than thymocytes are 
important for the restoration of T-cell-dependent immune system. For human appli-
cation, the transplantation of bone-marrow cells is becoming easier, but it is almost 
impossible to find donors of young thymuses. Further, donors need to have the same 
MHC type as the recipients. Thymus transplantation may be performed, if an autolo-
gous thymus can be partially removed at a young age and stored in liquid nitrogen.  

   Meanwhile, researchers have been accumulating data on molecules of thymic 
epithelial cells that are essential for T-cell differentiation (Zuniga-Pfucker 2004; 
Utsuyama et al. 2003). Accordingly, in the near future it may be possible to recon-
struct an artificial thymus using easily available cells of individuals.  

Fig. 13 Restoration of anti-
SRBC response of old mice 
by administration of low 
dose (50mg) of cyclophos-
phamide, but not by a high 
dose (150mg). In young 
mice, the suppressive effect 
was obvious
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    6.9 Infusion of Activated Autologous T-cells  

   Cell transfer method using young and old mice showed that 10% of the age-related 
decline can be attributed to cellular environment and 90% to changes intrinsic to the 
old cells (Price and Makinodan 1972). Many studies including ours (Hirokawa et al. 
2006) have revealed that the intrinsic cellular changes are mainly observed in T-cells; 
i.e., decrease in number, changes in composition of subpopulations and qualitative 
changes such as proliferative activity and cytokine production.  

   In fact, T-cells from old individuals do not proliferate efficiently in vitro, but the 
proliferation can be promoted in the presence of anti-CD3 and IL-2. Thus, activated 
T-cells in vitro are expected to restore the declined immune functions of aged mice 
and humans. This treatment was already employed for cancer treatment as an immu-
notherapy, e.g., lymphokine activated killer cells (LAK) (Rosenberg 2001).  

   6.9.     1 Animal Models  

   We tested the effect of infusing activated T-cells using young and old mice 
(Hirokawa et al. 2007). In this study we employed a congenic combination of 
B10.Thy1.1 mice (young and old) as donors and C57BL/6 Thy1.2 mice (young 
and old) as recipients, to determine how many activated T-cells survived in the 
recipients. The mice were sacrificed 11 days and 25 days after the infusion of 
activated T-cells and used for immunological assessment. For the infusion of acti-
vated T-cells, splenic lymphocytes were expanded 10- to 15-folds in the presence 

Fig. 14  Patients with 
colorectal cancer, (13 cases), 
treated by chemotherapy.  
Eleven out of 13 cases 
showed a trend of increase in 
SIV-7, 8 weeks after the onset 
of chemotherapy
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of immobilized anti-CD3 monoclonal antibody and IL-2. Lymphocytes activated 
in this way were composed of mostly T-cells in which approximately 70 to 80% 
were CD8 +  T-cells and 7 to 14% were CD4 +  T-cells. The activated T-cells prepared 
from old mice donors contained many more CD8 T-cells. Although CD4+ T-cells 
were smaller in number than CD8+ T-cells, most of them expressed a phenotype 
of naïve T-cells. After infusion of activated T-cells, the absolute number of T-cells 
significantly increased in the spleen of the recipient mice, especially of old mice. 
In the peripheral blood and spleen, donor-type Thy-1.1 T-cells were significantly 
more numerous in old recipients than in young ones. In addition, the number of 
donor-type T-cells that survived was significantly high in the spleen than in the 
peripheral blood in both young and old recipients.  

   The magnitude of antibody formation against SRBC did not change significantly 
in young recipients. About half of the old recipients, however, showed a signifi-
cant enhancement of antibody formation. It is of importance to note that such an 
enhanced antibody formation was observed in old recipients infused with activated 
T-cells either from young or old donors.   

    6.9.     2 Trials in Human Cancer Patients  

   T-cells from peripheral blood of healthy people can be easily expanded more than 
1000-fold in vitro in the presence of immobilized anti-CD3 monoclonal antibody 
(MoAb) and IL-2. The infusion of activated autologous T-cells has been widely 
used for cancer patients as a form of immunotherapy (Rosenberg 2001), but with-
out significant impact on cancer treatment in many cases. However, it can be 
expected that activated T-cells expanded in vitro in a nonspecific manner may 
improve the immune deficient status of elderly people and cancer patients. T-cells 
expanded in a nonspecific manner may contain harmful T-cells exhibiting autoim-
mune activity. In this respect, a recent paper reported that the infusion of activated 
autologous T-cells did not enhance or promote autoimmune activity (Yamaguchi 
et al. 2004).  

   In the next step, we examined cancer patients in the advanced stage; patients with 
tongue cancer (1 case), esophageal cancer (2 cases), lung cancer (4 cases), gastric 
cancer, pancreatic cancer (3 cases), colon cancer, appendical cancer and ovarian 
cancer. All the patients were in the advanced stages of cancer, with multiple metas-
tases, and they underwent an infusion of autologous activated T-cells (so-called 
LAK cells).  

   The activated autologous T-cells prepared in the study comprised T-cells (99%), 
and the CD4/CD8 ratio was approximately 2–3. The proportion of NK-cells was 
less than 1% in the activated T-cells.  

   The number of cell per infusion was approximately 5×10 9 , and the infusion was 
repeated 5–6 times for 10 weeks. Various parameters were examined before and 
after the infusion of activated autologous T-cells.  

   Figure15 shows the immunological parameters before and after the infusion of 
activated autologous T-cells in an advanced cancer patient. Most of the immuno-
logical parameters that were examined improved after the infusion, except for the 
ratio of T-cell subpopulations.  
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       We examined the effect of the infusion of activated autologous T-cells in 14 
cases and found that the most pronounced improvement was observed in the T-cell 
proliferation index (TCPI). The values varied across cases and were unsuitable for 
statistical analysis. After the infusion of activated autologous T-cells, an improve-
ment in TCPI was observed in 11 out of 14 cases. The average value of TCPI before 
the infusion was 1.02, which is apparently lower than that observed in colonic can-
cer stages I to IV (1.21). After the infusion, the average TCPI was increased to 1.49, 
although it was definitely lower than that of healthy controls (1.70). It was not obvi-
ous whether the infusion of activated autologous T-cells was effective in reducing 
the tumor size, but most of the patients revealed that in general, they experienced an 
improvement in their health status after the infusion.  

   Improvement of immunological function can not be expected in cancer patients 
whose T-cell expansion in vitro is less efficient. Thus, we have to consider the 
source of T-cells. A good technique is to obtain T-cells not from patients suffering 
from cancer, but from individuals in healthy condition. For this purpose we need to 
obtain peripheral blood lymphocytes from healthy peoples and these lymphocytes 
should be kept in the frozen state. The process can be named as T-cell-bank and the 
system to establish T-cells bank is now under way.  

Fig. 15  Two cases of cancer patients, treated with infusion of activated autologous T-cells 
(a) Improvement of immunological parameters was observed in 60-years-old male with lung cancer. 
Improvement was observed in most parameters except for the ratios of T-cell subpopulations such as 
the CD4/CD8 ratio and N/M ratio (b) Infusion of activated autologous T-cells gradually improved 
radar graph patterns and immunological year (IY) in 78-years-old female with lung cancer
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                                                                      Abstract   :     The thymus is the cradle of T-cell-mediated immunity. Normal thymic 
development ensures the export of a diverse repertoire of T-cells reactive against 
pathogens, foreign matter and tumours, and its role as the sole generator of αβT-
cells makes it a unique organ, indispensable for health.

Although the thymus continues to produce T-cells throughout life, it undergoes 
progressive atrophy with age, restricting both the number and diversity of newly 
derived T-cells within the peripheral T-cell pool and compromising their ability to 
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detect and respond efficiently to pathogens. This involution is most obvious from 
the onset of puberty and, accordingly, can be reversed with sex steroid ablation 
(SSA) therapy. Clinically, this is of paramount importance for patients with acquired 
immunodeficiencies, since the atrophied thymus cannot quickly export sufficient 
numbers of new T-cells to repopulate a depleted peripheral pool. Instead, patients 
are left dangerously susceptible to infection for extended periods. Reversible SSA 
promises to speed the time taken to immune recovery by rejuvenating the aged 
thymus and increasing T-cell output, with the potential to transform the clinical 
management of many major diseases with T-cell based aetiology.

      Keywords:       Thymus    •     T-cells    •     regeneration    •     Sex steroids    •    Bone marrow 
transplantation    

           1   The Thymus  

   The thymus is mainly composed of haemopoietic-derived tissue, including develop-
ing T-cells, antigen-presenting dendritic cells (DC) and phagocytic macrophages. 
The nonhaemopoietic thymic stromal compartment of epithelial and connective tis-
sue comprises about 0.5% of total thymic cellularity and forms a framework or 
niche through which thymocytes migrate, interact and develop before export to the 
periphery as mature, self-tolerant T-cells (Boyd et al. 1991; Anderson et al. 2001; 
Schmitt et al. 2005; Takahama, 2006).  

   Each lobe of the thymus contains continuous lobules, further delineated into 
5 zones: subcapsule, cortex, cortico-medullary junction, medulla and perivascu-
lar space (Fig. 1). (Godfrey et al. 1990; van Vliet et al. 1984; Boyd et al. 1991; 
Anderson et al. 2001). Far from a static support, distinct stromal subpopulations 
provide a unique combination of direct ligand/receptor interactions, chemok-
ines, cytokines and growth factors, fundamental to the migration, differentia-
tion and development of the thymocytes. Mature, antigen-naïve thymocytes that 
are exported to the periphery have been selected by thymic stromal cells and 
dendritic cells for their ability to bind self-MHC, and their low reactivity for 
self-peptide (for reviews, see Page et al. 1996; Anderson et al. 2001; Gatzka 
et al. 2007).  

               1.1      Classical αβ T-cell Development  

During thymopoiesis, haemopoietic precursors sequentially acquire and lose distinct 
surface markers, undergo somatic rearrangement of their TCR genes in the shaping 
of their TCR repertoire, and gain specific T-cell functions (Fig. 1). Throughout this 
process of differentiation via distinct stages of development, thymocytes migrate 
between microniches in a directed fashion, assisted by chemokines produced by 
specific stromal cell subsets.
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The lymphoid compartment of the thymus does not contain long-term self-
renewing haemopoietic stem cells (HSC) and therefore must be continually seeded 
by the bone marrow (BM). Heterogeneous BM progenitors have been found to 
circulate in the blood, including LSK Flt3+ multipotential progenitors (MPP), ELP 
and circulating T-cell progenitors (Lin-Thy-1+CD25+; CTP) (Wright et al. 2001; 
Schwarz et al. 2004; Perry et al. 2006; Krueger et al. 2007), however, the precise 
phenotype of thymic immigrants and their level of extrathymic commitment to the 
T-cell lineage remains complex and controversial. It seems likely that a degree of 
redundancy exists, such that seeding of the thymus may occur via multiple alter-
native T-cell progenitors (see reviews by Bhandoola et al. 2007, Heinzel et al. 
2007).

Fig. 1 T-cell development involves interaction with characteristic stromal cells in various 
microniches
Bone-marrow derived T-cell progenitors enter the thymus via endothelium at the cortico-medul-
lary junction (CMJ); a carefully-regulated process involving interactions with CD44, α4 and β2 
integrins, P-selectin glycoprotein ligand-1 (PSGL1) and the chemokine CCL9 (Lesley et al. 1985; 
Wu et al. 1993; Rossi et al. 2005; Schwarz et al. 2007). DN1 cells are CD44+CD25- and lose 
expression of ckit in early developmental events before upregulating CD25 (DN2) as they migrate 
through the cortex. Cells undergo positive selection at the DN3 stage (CD44-CD25+) through 
interactions with MHC expressed by cTEC, which, if successful, induce downregulation of CD25 
(DN4) followed by proliferation and expression of CD8 and CD4 (DP). DP thymocytes express 
a complete abTCR and interact with MHC/peptide expressed by DC and TEC. Cells with TCR 
affinity for MHC Class I down-regulate CD4 and acquire CTL potential, while MHC Class II-reac-
tive cells lose expression of CD8 and become helper T-cells. Negative selection occurs when the 
T-cell interacts strongly with self-MHC/peptide on DC or Aire-expressing mTEC, and is induced 
to apoptose to prevent autoimmunity.  Mature CD4+ or CD8+ T-cells exit the thymus at the CMJ.
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Despite their heterogeneity, extrathymic progenitors that have acquired the com-
petence to migrate into the thymus do so in a specific and regulated manner. From 
the time of vascularisation (late in embryonic development), progenitors enter the 
thymus at the cortico-medullary junction and interactions with stromal cells enable 
Notch signalling, which is essential for T-cell commitment and loss of alternative 
lineage potential (Radtke et al. 1999).

Thymocytes have traditionally been described according to their levels of CD4 
and CD8 expression with thymocytes negative for both markers (double negative; 
DN) differentiating into the CD4+CD8+ double positive (DP) stage before acquir-
ing functional differences as CD4+ T-helper or CD8+ cytotoxic single positive 
(SP) lineages.  CD44 and CD25 expression separates the DN subset into DN1 
(CD44+CD25-), DN2 (CD44+CD25+), DN3 (CD44+CD25+) and DN4 (CD44-
CD25-) subtypes, through which progression is regulated by an interplay of Notch1 
and interleukin 7 (IL7) receptor signalling. More recently the DN1 population has 
been found to be quite heterogenous when subdivided according to CD117 (c-kit) 
and CD24 expression (DN1a-e), and whilst all can develop into T-cells, they differ 
in their kinetics, proliferative ability and lineage potential (Porritt et al. 2004). The 
earliest described precursors resident in the thymus and committed to the T lineage 
reside in the perimedullary cortical zone and are termed early thymic progenitors 
(ETPs) or DN1a cells. These are also quite heterogenous in their expression of Flt3 
(CD135) (Sambandam et al. 2005) and CCR9 expression (Heinzel et al. 2007).

ETPs differentiate into DN2 cells, which are mainly T-lineage specified, but 
retain a limited potential to develop into natural killer (NK) and dendritic cell (DC) 
lineages (Wu et al. 1996; Shen et al. 2003), and migrate out through the inner cor-
tex to the outer cortex. Here αβ or γδ divergence occurs, as αβ-destined DN3 cells 
undergo TCRβ chain selection which combines with the pre-Tα-chain to allow res-
cue from programmed cell death (death by neglect) and leads to blockade of fur-
ther TCRβ chain rearrangement (allelic exclusion), enhancement of TCRα chain 
rearrangement, intense proliferation and differentiation into DN4 cells, and subse-
quently DP thymocytes.
DP cells in the deep cortex rearrange one TCRα allele to replace the pre-Tα chain 
in the TCR complex. If this new αβTCR cannot interact with major histocompat-
ibility complexes (MHC) on cortical epithelial cells (cTEC), the cell will apoptose. 
This process is termed MHC restriction, and imposes a low degree of self-reactivity 
across the T-cell repertoire, to ensure peripheral T-cells will recognise antigen pre-
sented in the context of self MHC. To ensure that the T-cells will be nonresponsive 
to selfpeptides, they are exposed to both ubiquitously expressed selfantigens pre-
sented by DC and a special set of tissue restricted antigens transcribed by medullary 
epithelium (mTEC). αβTCR specificity for MHC Class I or II expressed on TECs 
and strength or duration of signalling dictates the divergence of CD4+ T-helper 
or CD8+ T-cytolytic cell lineages. Further lineage-specific factors such as Runx3 
and cKrox and other as yet unidentified factors are involved in establishing the 
gene expression associated with cytolytic CD8 or helper CD4 lineages (reviewed in 
Aliahmad and Kaye 2006). Mature CD4+ and CD8+ T-cells exit into the periphery 
as naïve T-cells.
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       1.2      Thymic Development of NKT and CD4+CD25+ Tregs  

In addition to production of αβT-cells, the thymus also regulates development of 
lymphocytes responsible for the regulation of immune responses—most notably 
natural killer (NK)T-cells, which can produce pro or antiinflammatory cytokines, 
and the antiinflammatory Tregs, defined by coexpression of CD4, CD25 and the 
FoxP3 transcription factor.

NKT-cells develop in the thymus alongside conventional T-cells and share the 
earlier stages of thymic development, but they do not undergo the same manner of 
positive selection. Instead, the invariant NKT-cell TCR (Vα14-Jα18 in mice and 
Vα 24-Jα 18 in humans) binds to as-yet undefined glycolipid antigens presented by 
the MHC Class I-like molecule CD1d on surrounding double positive thymocytes 
instead of classical MHC molecules expressed on cortical epithelial cells (Bendelac 
1995; Coles et al. 2000; Gapin et al. 2001; Speak et al. 2007; Porubsky et al. 2007). 
Newly selected NKT-cells continue their maturation and upregulation of NK1.1 fol-
lowing activation in the spleen and liver (Pellicci et al. 2002). A population of NKT-
cells appear to remain as thymic residents, presumably influencing thymopoiesis 
through their broad range of cytokines.

Tregs follow the normal path of thymic development and are selected as part of 
the natural CD4+ T-cell repertoire as cells with moderate affinity for self. Unlike 
conventional T-cells, where a high affinity TCR interaction with MHC/peptide leads 
to clonal deletion, Tregs with sufficient self-affinity are positively selected and con-
tinue development (Jordan et al. 2001; Kim et al. 2006). In humans, production of 
thymic stromal lymphopoietin (TSLP) by the epithelial whorls known as Hassall’s 
corpuscles induces DC to instruct CD4+ SP-cells to become FoxP3+ Tregs through 
interactions involving MHC class II, costimulatory molecules and IL-2 (Watanabe 
et al. 2005).

     1.3  Thymic Stromal Cells: Support and Selection  

   Until recently, thymic stromal cells (TSC) were considered a static, resident pop-
ulation, but have since been revealed as a heterogeneous population capable of 
undergoing extensive remodelling and regeneration (Gray et al. 2006). The thymic 
microenvironment is a three dimensional network of interconnecting stromal cells 
divided into regions through which thymocytes migrate and develop. These niche 
stromal cells include epithelium (TEC); mesodermal fibroblasts; endothelial cells 
and a proportion derived from other tissues including neural cells, myocytes and 
adipocytes (Boyd et al. 1991; van Ewijk et al. 1991; Gray et al. 2002; Anderson et al. 
2001; Anderson et al. 2006). Just as the stroma directs thymocyte development, sig-
nals from the developing thymocytes also function to maintain these thymic stromal 
compartments in a dynamic codependence known as thymic cross-talk (van Ewijk 
et al. 2000; Anderson et al. 2001; Klug et al. 2002).
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Demonstrating their important function as antigen presenting cells (APC) to 
developing thymocytes, all TEC express MHC Class II and can be further divided 
on the basis of MHCII expression levels (e.g., mTEC-high). The Autoimmune Reg-
ulator, Aire, is a transcription factor expressed by a subset of mTEC-high cells, 
which directs intrathymic expression of a set of peripheral antigens, resulting in a 
T-cell repertoire purged of clones reactive to organ-specific, late-onset and seques-
tered antigens (Anderson et al. 2002; reviewed by Anderson et al. 2006). An Aire 
deficiency results in autoimmunity in several models, associated with reduced 
expression of peripheral antigens. However, the role of Aire is likely to extend to 
chemokine expression. A recent study by Gillard et al. (2007) also showed reduced 
numbers and altered phenotypes of mTEC subsets in Aire-deficient mice, which 
may indicate an additional role for Aire, or may occur as a result of perturbed thy-
mocyte migration and selection.

Although T-cell production throughout life is maintained by constant immigra-
tion of blood-borne progenitor cells, the maintenance of the epithelial microenviron-
ment is not well understood. Fibroblasts are known to stimulate TEC differentiation 
and proliferation through provision of growth factors including fibroblast growth 
factor 10 (FGF10) and keratinocyte growth factor (KGF; also called FGF7) (Jenkin-
son 2003; Gray 2007). However, if the adult thymus contains epithelial stem cells as 
described in the embryonic (Gill et al. 2002; Bennett et al. 2002; Rossi et al. 2006) 
and early post-natal thymus (Bleul et al. 2006), as well as other adult tissues (Young 
et al. 2005), this is yet to be clearly demonstrated.

More recently we have shown that the progenitor capacity of TEC defined by 
expression of the MTS24 antigen is lost late in embryogenesis, and that high cell 
numbers of MTS24– cells (~100 fold that of MTS24+ cells) have the ability to form 
a thymus after in vitro aggregation (Rossi et al. 2007a). These data are consistent 
with the presence of multiple TEC progenitor cells, the MTS24+ cells being more 
efficient earlier in development. Accordingly, the swift regeneration of thymic epi-
thelium in young adult mice after chemotherapy-induced involution certainly sug-
gests the presence of one or many TEC populations readily able to replace damaged 
TEC subsets.

           2      The Clinical Relevance of Thymic Atrophy  

   Long before the function of the thymus was known, it was observed at autopsy 
to be profoundly smaller in adults compared to children. Later studies confirm 
changes in cellular organization and composition with age, and describe in 
humans a strong inverse correlation between the rate of T-cell export and age 
(Mackall et al. 1995; Aspinall et al. 2000; Flores et al. 1999). Reasons for this loss 
of thymic mass and function are unknown, but this phenomenon is highly con-
served amongst mammals, and it seems likely that evolutionary pressures shaped 
our physiology to reduce the energy cost of a T-cell production line at unneces-
sarily high level, or to reduce the likelihood of aberrant T-cell production once the 
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peripheral repertoire has been established. The atrophied thymus does maintain 
some activity; however, T-cell output is greatly reduced (Bertho et al. 1997). This 
incompletely understood phenomenon results in reduced numbers of naïve T-cells 
in the peripheral T-cell pool.

Immunosenescence is the state of impaired immune responsiveness that contrib-
utes to the increased susceptibility to infection, cancer and autoimmune diseases 
observed in the aged (Pawelec et al. 1997). Thymic involution precedes age-related 
impairment of peripheral T-cells, which contribute heavily to a progressive loss of 
cell-mediated immunity (Hirokawa et al. 1984; Ginaldi et al. 1999; Aspinall et al. 
2000). Whilst thymic function is still evident in the aged, there is a large decrease 
in TCR-excision circle (TREC) levels; a measure of TCR gene rearrangement, and 
therefore of naïve T-cell output (Douek et al. 1998; Jamieson et al. 1999; Douek 
and Koup 2000).

In adults, the thymic contribution to the lymphocyte pool is dwarfed by the 
homeostatic, clonal expansion of preexisting memory T-cells (Berzins et al. 1998; 
Scollay et al. 1980; Haynes et al. 2000; Wack et al. 1998). These cells prolifer-
ate in response to infections throughout life and are retained at the expense of 
other mature polyclonal T-cells (Khan et al. 2002; Sansoni et al. 2007; Colonna-
Romano et al. 2007). Remnant thymic function is important, even in the aged, 
since newly generated CD4 T-cells can function well in aged mice, while memory 
T-cells generally do not (Haynes et al. 2005); in aged patients, memory T-cells 
commonly show severe functional deficiencies (Haynes et al. 2003; Sansoni 
et al. 2007).

As a consequence of this homeostatic proliferation to maintain the T-cell pool in 
the aged, there is restriction of the peripheral TCR Vβ repertoire and CDR3 length 
distribution in old mice and elderly humans, indicating a reduction in the diversity 
of the T-cell pool (Schwab et al. 1997; Mosley et al. 1998; LeMaoult et al. 2000). 
Since the TCR has been randomly generated in each naïve T-cell, their overwhelm-
ing lack in the elderly translates to a reduced likelihood that the body will be able to 
respond to new pathogenic challenge.

T-cell anergy or exhaustion is a demonstrated outcome following prolonged acti-
vation or lymphopenia-induced T-cell proliferation, particularly relevant in chronic 
viral infections such as HIV, Hepatitis C and CMV (Day et al. 2006; Urbani et al. 
2006; Sansoni et al. 2007). With age, there is evidence of decreased T-cell depend-
ent antibody production, generation of allospecific cytolytic T-cells, and T-cell 
responses to mitogen or Ag stimulation (Hertogh-Huijbregts et al. 1990; Bloom 
et al. 1994; Nicoletti 1994).

Continued peripheral turnover of memory T-cells also increases the chance of 
incorporation of errors during division, which could plausibly result in cancer, or 
autoimmunity. Both are associated with defective immune function and lympho-
penia, and both increase in frequency with age (DePinho 2000; Prelog 2006). The 
output from the atrophic thymus can potentially compound these risks, since the 
disrupted thymic microenvironment may no longer permit sufficient interaction 
between TSC and thymocytes, resulting in defective negative selection and a break-
down in T-cell tolerance.
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       2.1      Acquired Immunodeficiencies and Atypical T-cells: 
the Atrophic Thymus Fails to Meet Peripheral Demand  

The most clinically significant insults to T-cells and the immune system in general 
are HIV/AIDS, causing death from overwhelming infection, and chemotherapy or 
radiation therapy, which form the standard of care for cancer patients. In the USA 
alone, there are over one million patients receiving chemotherapy annually and over 
40,000 patients requiring either autologous or allogeneic HSC transplantation fol-
lowing high-dose cytoreductive myeloablation. These treatments would be applied 
still more broadly if not for the time taken to restore immunity in the adult, and the 
inherent risk of life-threatening infection.

Under adverse circumstances where peripheral T-cells are depleted, a functioning 
thymus is still absolutely required for the generation of new αβ T-cells (reviewed by 
Mackall and Gress, 1997; Haynes et al. 2000; Berzins et al. 2002). The rate of export 
of mature, naïve T-cells from the thymus is indexed to thymus size (Scollay et al. 
1980) and studies by Berzins et al. (1998) demonstrated that the rate of thymocyte 
export is not regulated by the size of the peripheral T-cell pool. Thus, a reduction in 
peripheral T-cells does not trigger increased T-cell production, and the subsequent 
reconstitution from an aged, atrophied thymus will take many times longer than 
from a young thymus. Adults that show low levels of thymic export have markedly 
delayed peripheral T-cell regeneration after BMT, which is associated with a greater 
incidence of opportunistic infections compared to their younger counterparts whose 
thymus may be up to 10 times more effective (Scollay et al. 1980; Heitger et al. 
2000). There is also a strong correlation between age and the recovery of pheno-
typically naïve T-cells and TREC levels following chemotherapy and BMT; and 
between age and viral load in HIV+ patients (Douek et al. 1998; Heitger et al. 2000; 
Douek et al. 2000; Weinberg et al. 2001). The robust link between the rate of T-cell 
recovery, age and survival in these patients (Mackall et al. 1995; Fassas et al. 2002) 
emphasises the relevance of thymic regeneration, and is the driving force behind 
several promising therapeutic approaches to increase the thymus size, its rate of 
function, and therefore T-cell export.

A study of parameters indicative of thymic function (SjTREC, CD45RA+ and 
Vβ repertoire profiles) after HSCT in patients over 30 years of age highlighted 
the importance of thymic-dependent regeneration in restoring CD4 T-cells (Hakim 
et al. 2005). In this study, the capacity to restore thymopoiesis was inversely propor-
tional to age, and patients lacking evidence of thymic activity were still CD4 T-cell 
deficient up to 5 years posttransplant. Thus, although the atrophied thymus retains 
some minor function under normal conditions, with age, there are limits to the dam-
age it can sustain, which makes it a valid and important candidate for regenerative 
therapy.

Postimmunodepletion, CD8 T-cells from aged mice and patients recover as an 
atypical population as a consequence of peripheral expansion. This homeostatic 
process generates CD8+ cells that are CD28- and CD57+, have restricted TCR 
repertoires, and are probably derived from a limited number of oligoclonal cells 
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(Posnett et al. 1994; Gorochov et al. 1994; Mackall et al. 1996). The lack of CD28 
is important, as it denotes a state of functional anergy in these cells resulting in 
increased susceptibility to antigen-induced cell death if repeatedly stimulated (Pos-
nett et al. 1999; Borthwick et al. 2000). The expansion of CD8+CD28- cells is seen 
in a number of clinical settings associated with impaired thymic function including: 
BMT or HSCT (Mackall et al. 1997; Muraro et al. 2005), GVHD (Fukuda et al. 
1994), HIV infection (Brinchmann et al. 1994) and even simply as a consequence 
of ageing (Sansoni et al. 1993; Posnett et al. 1994; Fagnoni et al. 1996; Nociari 
et al. 1999; Brzezinska et al. 2004; Sansoni et al. 2007). Painstaking studies in aged 
patients have convincingly shown that the expansion of severely restricted oligo-
clonal memory T-cells probably occurs in response to chronic viral infection, and 
that the severity of age-related immune defects correlates with low life expectancy 
(Khan et al. 2002; Wayne et al. 1990).

Collectively, these changes have an enormously detrimental impact on the ability 
of the peripheral T-cell pool to combat pathogens. Thus, any mechanism by which 
thymic function could be improved would be of overwhelming clinical importance 
to the growing numbers of immunosuppressed patients, with the potential to effect 
a real difference in survival rates due to improved immune restoration.

           3      Sex Steroid Ablation (SSA) as an Immunoregenerative 
Therapy  

3.1 Sex Steroids Drive Thymic Atrophy

In both rodents and primates, the thymus is at its largest prior to adolescence. 
Although evidence suggests that atrophy is initiated earlier in humans (Steinmann 
et al. 1985; Bertho et al. 1997), increased circulation of sex steroids at puberty marks 
the beginning of a profound and steady degeneration (Hirokawa et al. 1994; Tosi 
et al. 1982; Windmill and Lee 1999), resulting in reduced lymphoid and stromal 
tissue, with progressive loss of structural integrity and organisation. The thymus 
also undergoes a transient involution in response to stress or pregnancy, induced by 
an increase in glucocorticoids or sex hormones respectively. Thymic recovery after 
stress and postpartum is rapid, unlike age-related involution, which is chronic (Luz 
et al. 1969; Nabarra and Andrianarison, 1996).

Animal castration studies demonstrate a profound hypertrophy of the aged thymus 
relative to bodyweight (see Fig. 2), which is reversible by testosterone injection; results 
confirming the causal link between onset of puberty and thymic atrophy (Grossman 
1984; Greenstein et al. 1986; Utsuyama et al. 1989). Later studies showed that the thy-
mus is also enlarged in mice with defects in androgen action (Olsen and Kovacs,1989), 
so-calledandrogen-resistant testicular feminization (TFM)mice. These observations 
suggested that androgen exposure inhibits thymopoiesis, but the effect of hormone 
production on the immune system is anything but simple, governed by both positive 
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and negative feedback loops operating between the hypothalamus, pituitary gland, 
gonads, adrenal glands, thymus and bone-marrow (Fig. 3).

       Sex steroid production begins with the hypothalamus, which releases luteinizing 
hormone-releasing hormone (LHRH, also referred to as GnRH), which acts on the 
LHRH-receptors (LHRH-R) in the anterior pituitary gland (Fig. 3a). The pituitary 
subsequently produces luteinizing hormone (LH) and follicle stimulating hormone 
(FSH), which act on the gonads to produce testosterone or estrogen (Moghissi, 
1990). Sex hormones then feed back to directly halt LHRH, LH and FSH secretion. 
Sex steroids dampen thymic activity, thymopoiesis and B lymphopoiesis, while 
LHRH imposes a direct stimulatory effect on lymphocytes (Grasso et al. 1998; Tan-
riverdi et al. 2005). Thus, the effect of surgical castration is to both remove the nega-
tive feedback from the sex steroids, while increasing the effect of LHRH due to the 
lack of testosterone feedback from the gonads (Belvisi et al. 1993).  

   Surgical castration reduces serum testosterone to approximately 1% of normal 
levels within six hours in male rodents (Kyprianou et al. 1988) and this allows for a 
more defined analysis of the early effects of SSA, compared to chemical castration 
by LHRH receptor agonists. A significant increase in thymic cellularity was evident 

Fig. 2 Thymic regeneration reverses age-related narrowing of the T-cell repertoire. In young 
mice and humans, naïve recent thymic emigrants (RTEs) with a broad range of specificities for 
antigen (designated A-J) exit the thymus and are incorporated into the peripheral T-cell pool. In 
the aged, slow clonal expansion of memory T-cells with limited diversity (A, B) occurs as a likely 
response to chronic virus exposure. Since thymic output is limited, the T-cell repertoire narrows 
considerably. Following thymic regeneration, however, the output of new, naïve T-cells restores the 
breadth of the repertoire without affecting the capacity of remaining memory T-cells to respond 
upon antigen encounter
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within three-five days of androgen blockade by surgical castration and a return to 
young levels was reached by around seven days with expansion continuing beyond 
young levels by ten days (Sutherland et al. 2005; Heng et al. 2005). In terms of the 
kinetics of regeneration, a proportional increase in the TN compartment was initially 
evident by day three-five followed by a proportional increase in DPs, significant by 
day seven. All TN subsets showed an increase in cell number at day five and impor-
tantly, the age-induced reduction in proportion and absolute cell number of ETPs 
was rapidly restored following castration, consistent with the evident increase in pro-
liferation and reduction in apoptosis of these cells. CD4+ and CD8+ mature SP cells 
also showed an increase in proliferation although the absolute number of these cells 
was relatively constant, due possibly to migration of these cells into the periphery.  

Fig. 3 The neuro-immune-endocrine axis and LHRH-agonist treatment. Throughout reproduc-
tive life, LHRH is produced in pulses from the hypothalamus, binding to the LHRH-receptor on 
the pituitary gland (panel a). The pituitary releases FSH and LH, which signal to the gonads to 
produce sex steroids, which are involved in negative feedback loops to the hypothalamus and 
pituitary, thus regulating the levels of hormones produced. Sex steroids also chronically inhibit 
lymphopoiesis in the bone marrow and thymus. Following administration of an LHRH-agonist 
(LHRH-A) (panel b), the LHRH receptor on the pituitary is continuously stimulated, leading to an 
initial surge in FSH and LH, and subsequent increase in sex steroid production. This effect is short-
lived (panel c), as the continuous administration causes desensitisation of the LHRH-receptors and 
a cessation of sex steroid production. A lack of sex steroids results in regeneration of the thymus 
and bone marrow lymphopoietic activity to pre-pubertal levels
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     3.2   SSA  Rejuvenates Thymic Stromal 
Cells (TSC)  

Whilst many studies assess the effects of sex-steroid ablation upon thymocyte 
recovery and consequent peripheral T-cell recovery, few have focused on the effects 
upon the thymic stroma.

SSA restores both the morphological and numerical TSC defects seen in aged 
C57B6 mice. A significant reorganization of the TSC microenvironment can be seen 
at 2 weeks post castration, rendering aged stroma indistinguishable from the young 
adult thymus (Sutherland et al. 2005). Castration of 10 month-old mice results in 
marked stromal cell expansion, with significantly higher numbers of TECs after 7 
days compared to sham-castrated controls (Gray et al. 2006). TEC exhibited sig-
nificant increases in proliferation seven days post castration compared to sham-cas-
trated mice, resulting in substantial cell increases in both the medullary and cortical 
epithelial compartment. Castration also reversed age-related changes in proportions 
of TEC subsets, resulting in expansion of the medulla and leading to the restoration 
of mTEC/cTEC and mTEC-high/mTEC-low ratios to normal young levels (Gray 
et al. 2006). TEC regeneration was reliant on cross-talk with thymocytes, as castra-
tion of RAG-/- mice in the same study showed that the removal of sex steroids is 
insufficient to drive TEC proliferation in the absence of the appropriate thymocyte 
subsets. There is some indication that early changes in the production of growth 
factors such as IL-7 and Growth Hormone by stromal cells postcastration contribute 
to initial thymocyte expansion (Ann Chidgey, unpublished observations). Interest-
ingly, although the thymocyte numbers from aged mice reach normal young levels 
seven days after castration, TEC numbers increased 2-fold, but did not return to 
young levels (Gray et al. 2006).

Adult TEC subsets may be maintained by low level persistent self-renewal in nor-
mal homeostasis, but when destroyed by drugs or irradiation, it is possible that an 
additional progenitor compartment contributes to the epithelial restoration, driven 
in part by signals from mesenchymal cells. It is very likely that sex steroids initiate 
thymic atrophy through suppression of these TEC subsets. Whilst the beneficial 
effects of SSA can be seen in mouse TSC, effects upon the human TSC microenvi-
ronment have yet to be ascertained.

         3.3   SSA Speeds Thymic Recovery After Chemotherapy, 
Beginning with the Earliest Thymocyte Subsets   

Cyclophosphamide (Cy) is an alkylating agent used clinically to kill rapidly divid-
ing cells in the treatment of cancer and as a preconditioning regime prior to BMT. 
Cy treatment of young mice kills the majority of leukocytes in blood and secondary 
lymphoid organs, causing immunosuppression. The thymus is greatly damaged, and 
in young mice, thymic cellularity drops 50-fold within 3 days of treatment (Heng 
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et al. 2005). Restoration of peripheral T-cells must therefore begin with thymic 
regeneration; SSA provides a dual stimulus to immune recovery postchemotherapy 
by inducing faster thymic growth followed by sustained, increased T-cell output 
(Heng et al. 2005).

DP and TN thymocytes are most strongly affected by Cy treatment. We have 
shown that at the time of greatest involution, 3 days post-Cy treatment, mice cas-
trated one day prior to injection have significantly higher numbers of TN-cells, and 
an overall increased thymus size, which reaches almost double the size of sham 
castrated control mice by 5 days post-treatment but is significantly higher at all 
timepoints assessed in the study (Heng et al. 2005).

Further dissection of the TN subset, which contributed solely to the increased 
thymic cellularity in castrated mice until 5 days post-Cy treatment, showed that 
the numbers of TN2, TN3 and TN4 cells were all increased at day three, and that 
a wave of development in the castrated mice drove increased TN2 cells at day 3, 
creating increased TN3 cells at their highest on days 4 and 5, and TN4 cells peaking 
at days 5 and 6 compared to sham-castrated mice. It was not possible to tell from 
this study whether the TN1 subset had been increased prior to day three leading 
to the increase in TN2 cells; whether the increases in TN2-4 subsets were due to 
proliferation alone, independent of TN1 seeding; or whether cells in castrated ani-
mals progressed faster through TN1 to TN2-4 in this model of thymic damage. The 
TN1 subset, like all TN cells, showed increased proliferation in the castrated group 
(Heng et al. 2005).

Hence, thymi from castrated mice recovered significantly faster than sham-cas-
trated mice, the overall pattern of recovery mimicking that of normal thymocyte 
development, with a wave of increased TN cells (highest at day 4 in both castrated 
and sham-castrated mice) giving rise to increased DP cells (days 6 and 7), followed 
by increased SP thymocytes at 2 weeks post-treatment (Heng et al. 2005).

         3.4      Enhanced Thymic Epithelial Cell Recovery after SSA 
Therapy  

   Treatment of young mice with cyclophosphamide not only decreases thymocyte 
numbers but causes profound loss of thymic stroma. Microscopy studies show that, 
in young rats, the reticulo-epithelial network recovers four weeks after cyclophos-
phamide-induced acute thymic involution (Yoon et al. 2003), with noticeable altera-
tions in RER and Golgi apparatus consistent with high synthetic activity (Yoon et al. 
1997).

Although young animals have the inherent ability to recover thymus function, 
castration is able to enhance this further. When young mice were castrated con-
comitantly with cyclophosphamide treatment, resulting in acute involution of the 
thymus, TEC were equally affected in both castrated and sham-castrated mice, but 
in all cases, TEC recovery was faster in castrated mice (Daniel Gray, Natalie Seach, 
unpublished data).
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Significantly, cyclophosphamide treatment causes a profound loss of mTEChi 
cells and Aire expression (Anne Fletcher, Natalie Seach unpublished data). Given 
the recent studies by Rossi et al. (2007c) demonstrating the importance of RANK 
signalling in maintenance of Aire expression, the upregulation of RANKL expres-
sion by subcapsular, paratrabecular, perivascular and medullary TEC which occurs 
during thymic regeneration after cyclophosphamide treatment (Lee et al. 2005) 
conceivably serves to restore Aire expression, as well as supporting increased dif-
ferentiation of early thymocytes. In castrated animals, mTEChi cells recover sig-
nificantly faster compared to sham-castrated controls, suggesting normal negative 
selection is restored faster, in parallel with faster recovery of medullary thymocyte 
populations (Natalie Seach, unpublished data).

           4      Clinical Removal of Sex Steroids for Thymic Regeneration

       4.1      Reversibly Reducing Sex Steroids     

To be clinically indicated as an immune recovery therapy, studies performed to 
date suggest that the relevant agent must be capable of reducing sex steroids to 
castrate levels; whether subcastrate levels can be effective remains to be tested. The 
treatment must also be fully reversible. Drugs currently licensed for clinical use to 
reduce sex steroids include those blocking normal LHRH activity (LHRH agonist or 
antagonist), and sex steroid blocking agents including flutamide and bicalutamide 
(which competitively bind to androgen receptors) or tamoxifen (a selective estrogen 
receptor modulator).

Chemical castration involves either reversible desensitisation or blockade of the 
LHRH-R by long-term administration of an LHRH agonist (LHRH-A) or antago-
nist respectively. LHRH is usually produced in pulses from the hypothalamus, due 
to feedback from the gonadal sex steroids. Constant administration of an LHRH-A 
overrides the cyclic signalling, causing an initial surge of sex steroid production 
(Fig. 3b) before effectively down-regulating the LHRH-R on the anterior pitui-
tary, and subsequently blocking secretion of LH and FSH (see Fig. 3c). Circulating 
sex steroids fall to castrate levels in approximately 3 weeks using the LHRH-A 
(Haisenleder et al. 1987; Filicori and Flamigni, 1988). The antagonist simply blocks 
the LHRH binding site and prevents signalling. LHRH-A are commonly used to 
treat a variety of conditions, including sex steroid-sensitive malignancies such as 
breast and prostate cancers; precocious puberty and endometriosis (Huben, 1992; 
Neely et al. 1992; Waller et al. 1993). Both LHRH agonists and antagonists dramati-
cally rejuvenate the thymus in rodents and also in humans (Greenstein et al. 1986; 
Windmill et al. 1993; Sutherland et al. 2005).

Low levels of sex steroids, particularly estrogen in females, are also produced by 
the adrenal glands; this process increases with age and is unaffected by LHRH-A 
administration. Ovariectomised rats show a gradual increase in levels of androgens 
produced by the adrenal cortex. These are converted to estrogens by aromatase 
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at extragonadal sites including adipose tissue, bone, muscle and brain, resulting 
in an increase in serum estradiol, compared to intact rates, from 7% immediately 
postsurgery, to 50% (Zhao et al. 2005). Although LHRH-A administration does 
not affect this process, androgen or estrogen receptor blockade can overcome any 
effects of these ectopically produced steroids, and could be coupled to the use 
of LHRH-A. The use of androgen or estrogen blockers alone would not have the 
added direct stimulatory benefit to the immune system that LHRH-A seems likely 
to mediate.

An important clinical consideration is the requirement for remnant thymic func-
tion as a basis for regeneration. Studies in mice have shown that although castration 
increases thymus size and output in mice as old as 2 years, with effects persisting 
for at least 12 months (Sutherland et al. 2005), the thymus of castrated 24 month 
old mice is still smaller than castrated nine or 18 month old mice (Reiseger et al. 
manuscript in preparation). This finding demonstrates the complex mechanisms 
governing thymic atrophy and regeneration, suggesting that sex steroids are not 
solely responsible for age-induced thymic involution. Quantitative and qualitative 
changes in lymphoid progenitors are also likely to be involved.

         4.2   Sex Steroid Receptors and Mechanisms of Thymic 
Regeneration   

The thymus expresses many hypothalamic and pituitary hormones and hormone 
receptors (Table 1). The neuro-thymic-endocrine axis is complex and poorly under-
stood, with the expression of a hormone or its receptor potentially able to mediate 
either inhibitory or stimulatory processes. Administration of an estrogen receptor 
blocker in the neonate results in reduced thymic development (Staples et al. 1999), 
although this effect could clearly be indirect with many growth patterns affected by 
estrogen. In addition, sex steroid receptors in immune cells differ in their intracel-
lular location (cell-surface; nuclear), expression pattern and signalling pathways, 
making prediction of their precise intrathymic function difficult. However, studies 
of hormone and receptor expression patterns can certainly identify cell types most 
likely to be affected by SSA and LHRH-A administration, and PCR studies of sex 
steroid and LHRH-receptors on specific stromal cell subsets can help to further 
identify early effector populations during thymic regeneration.            

The target cells of sex steroids have been identified through expression patterns 
of androgen receptors (AR). Early studies found AR expression on thymocytes and 
TEC (Olsen et al. 2001) with the latter showing 6-fold higher expression (Kumar 
et al. 1995). Unpublished data from our laboratory shows that AR are expressed by 
all subsets of thymic stromal cells, including DCs and CD31+ endothelial cells, and 
that although TEC expressed high levels of AR, mesenchymal fibroblasts showed 2-
fold higher expression (Tomoo Ueno, unpublished observations). The broad expres-
sion pattern of AR immediately suggests that the mechanisms of thymic regeneration 
are unlikely to be confined to one driving cell type nor a simple mechanism. We are 
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thus currently performing gene chip analysis on purified stromal cell subsets to 
identify some of the main pathways for thymic regeneration.

Chimeric experiments using testicular feminization (Tfm/y) mice demonstrated 
that androgen receptor signalling in nonhaemopoietic stromal cells most affected 
thymic involution (Olsen et al. 2001).Tfm/y mice express a defective AR in both 
lymphoid and nonlymphoid thymic compartments and show significant thymic 
enlargement, which was not decreased by androgen administration. Chimeric studies 
showed that mice with AR+ haemopoietic compartment but AR- stromal cells were 
also resistant to thymic atrophy, suggesting a role for TSC in initiation of this process. 
Conversely, thymi expressing the AR on stromal cells but not thymocytes involuted 
following testosterone administration. However, castration only modestly increased 

Table 1 Intrathymic expression of hypothalamic, pituitary and gonadal hormones and receptors

 Thymocytes Thymic stroma

LHRHa + TEC

LHRH-Ra + ?

LHa + ?

GHa, b + TEC

GH-Ra, b DN >> DP > CD4, CD8 SP TEC

ARa + Fibroblasts > TEC > endothe-
lium, DC

ER c, d +
lower levels than TEC

Subcapsular TEC and cortico-
medullary junction mTEC

PRd  Subcapsular TEC and cortico-
medullary junction mTEC

ACTH e + TEC

PRLe + -

PRL-Re, f DN >> CD8+SP > DP, 
CD4+SP

TEC

OT e, g - Subcapsular TEC, cTEC

OT-Re, g DN, DP, CD4+SP, CD8+SP TEC

VP e, g - Subcapsular TEC, cTEC

VP-Re, g Only V3R is expressed, and 
only in DP and CD8+SP

TEC

LHRH: luteinizing hormone releasing hormone (GnRH). LHRH-R: LHRH receptor. LH: lutein-
izing hormone. GH(-R): growth hormone (receptor). AR: androgen receptor. ER: estrogen recep-
tor. ACTH: corticotropin. PRL (-R): prolactin (receptor). OT (-R): preprooxytocin (receptor). 
VP(-R): preprovasopressin (receptor). 
a determined by q-PCR; unpublished data, Boyd laboratory
b de Mello-Coelho et al. 1998 Kawashima et al. 1995
d reviewed by Li et al. 2002
e reviewed by Savino et al. 1999
f Gagnerault et al. 1993
g reviewed by Hansenne (2005)
+ expressed; - not expressed; ? unknown
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thymic size in these AR deficient mice, suggesting that although atrophy is initiated 
by the stromal cells, regeneration also requires some direct effect on thymocytes or 
BM precursors, most likely a positive feedback loop which requires expansion of 
progenitors and downstream thymocytes in order to expand stromal cells.

Mechanisms of thymic regeneration in female mice have not been extensively 
studied, however, 2 distinct forms of the estrogen receptor (ER), ERa and ERb, 
seem likely to play opposing roles. Experiments using selective agonists for each 
receptor indicate that signalling through the ERa not the ERb causes thymic atro-
phy. ERa agonist administration also altered the CD4/8 profile in the thymus, while 
the ERb agonist, when administered together with ERa agonist appeared to partially 
offset the atrophic effect of ERa signalling (Li et al. 2006).

Growth hormone (GH) and IGF-I are strong candidates for mediating thymic 
regeneration post-SSA, as they decrease in production with age and injection of 
recombinant human GH regenerates the thymus and results in increased IGF-I 
secretion (Taub and Longo 2005), possibly through stimulation of the TEC-pro-
duced growth factor thymulin. Other feasible candidates include proproliferative 
and antiapoptotic molecules such as IL-7 and keratinocyte growth factor (KGF), 
which have both been shown to induce thymic regrowth in mice (Min et al. 2002; 
Pido-Lopez et al. 2002), or reductions in proapoptotic molecules such as TGF-β. 
However, in thymic regeneration post-castration and BMT, a preliminary study 
using whole thymic stromal preparations found no alterations in IL-7, TGF- , or 
KGF mRNA (Sutherland et al. 2005). Furthermore, administration of IL-7 does 
not reverse age-related thymic atrophy (Sempowski et al. 2002; Pido-Lopez et al. 
2002) and thymic regeneration occurs after castration of KGF-/- mice (Gabrielle 
Goldberg, unpublished observations).

Nerve growth factor (NGF) induces angiogenesis via expression of VEGF in 
TEC, but does not appear to be causative in thymic involution. Levels of nerve 
growth factor NGF receptors p75LNGR and TrkA were reduced with age in TEC, 
but administration of NGF did not prevent thymic involution (Garcia-Suarez et al. 
2000).

Based on current evidence, it is only possible to speculate on the molecular 
mechanisms of thymic regrowth after SSA, and further more detailed analyses are 
clearly required.

           5      The Effect of SSA on Recovery of Peripheral Immune 
Function in Mice and Humans  

     5.1      Reversal of Age-related Changes in T-cell Proportions  

   The peripheral CD4+/CD8+ T-cell ratio undergoes profound alterations during 
chronic immune responses: allograft rejection; graft-versus-host disease; hemophilia 
(Menitove et al. 1983; Zander et al. 1985); and chronic infections such as cytomega-
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lovirus, Epstein-Barr virus, and influenza virus (Carney et al. 1981; Crawford et al. 
1981; Maher et al. 1985). There are varied reports on changes in CD4+ and CD8+ 
T-cell numbers with age that depend on species, strain, age and organs examined. In 
mice there are reported decreases in the CD4/CD8 T-cell ratio (Boersma et al. 1985; 
Grossmann et al. 1990; Callahan et al. 1993; Toichi et al. 1997; Berzins et al. 1999) 
and other studies which show no change (Sidman et al. 1987; Komuro et al. 1990; 
Kischmann and Murasko 1992), whilst in humans, both increases (Utsuyama et al. 
1992; Schwab et al. 1997) and decreases (Pawelec et al. 1999) in the CD4/CD8 ratio 
have been reported with age.

Studies from our laboratory reported a reduction in the proportion of CD4+ 
T-cells with age, and found that SSA normalises the CD4:CD8 T-cell ratio in 
mice and humans by increasing the proportion of naïve T-cells at the expense of 
memory T-cells (Sutherland et al. 2005). Immune changes are not entirely thy-
mus-dependent, however. Numerous studies in mice and humans have shown that 
androgens signal directly through AR on peripheral T-cells, decreasing prolifera-
tion and increasing apoptosis (Samy et al. 2000; Benten et al. 2002; Araneo et 
al. 1991; McMurray et al. 2001). In mice, SSA—whether via surgical castra-
tion or LHRH-A administration—has been shown to expand secondary lymphoid 
organs and improve T-cell function, including proliferation in response to mitogen 
(Windmill and Lee 1999), specific antigen and TCR/costimulation (Roden et al. 
2004) and the CTL response to influenza (Reiseger et al. manuscript in prepara-
tion). Although the changes, if any, in the CD4/8 ratio with age remain conten-
tious it is clear that the numbers of naïve T-cells in the periphery do decrease. 
SSA is able to reverse these changes and increase naïve T-cells. This is evident in 
prostate cancer patients, who following treatment with LHRH-A or AR blockade 
show increased naïve CD4+TREC+ levels (Sutherland 2005). SSA also results 
in enhanced proliferation in response to mitogen in endometriosis patients (Hsu 
et al. 1997) and reduced immunosuppression after haemorrhage or burn injury 
(Messingham et al. 2001).

Increased peripheral lymphocyte numbers are largely responsible for improved 
immune function following LHRH-A treatment (Garzetti et al. 1996; Oliver et al. 
1995; Umesaki et al. 1999). Sutherland et al. (2005) showed that this increase was 
predominantly due to increases in T-cells linked to increased thymic output, but 
may, in part, be due to direct stimulation of peripheral T-cells by LHRH-A (Jacob-
son et al. 2004), This may be a temporary effect of the initial surge in sex steroids, 
which occurs soon after treatment with the LHRH-A, since expression of LHRH-R 
mRNA in peripheral lymphoid organs mirrors both LHRH and LHRH-R mRNA 
expression in the hypothalamus and pituitary (Jacobson et al. 1998), and therefore 
it is likely that these receptors on lymphocytes are down-regulated and desensitised 
after prolonged exposure to LHRH-A.

Castro (1974) showed that castration increased immune reactivity to sheep red 
blood cells and enhanced skin graft rejection, which was reversed by androgen 
administration. When mice were thymectomised and castrated, however, the skin 
grafts were accepted, indicating that the effects of sex steroids are linked to thymic 
output. Castro (1974) also showed delayed development and decreased incidence 
of methylcholanthrene-induced tumour following castration, which was abrogated 



Thymic Regeneration in Mice and Humans Following Sex Steroid Ablation 1589

by thymectomy. Together with research demonstrating that speed of regeneration 
of peripheral T-cells following immunodepletion in humans is directly related to 
thymic size and output (Douek et al. 2000; Hakim et al. 2005), these findings have 
lead to the postulation that the observed effects on peripheral T-cell immunity after 
castration are predominantly due to alterations in the thymus, especially the increase 
in naïve T-cell output.

         5.2      LHRH has Direct Stimulatory Effects on T-cells  

Through removal of negative feedback on the hypothalamus and pituitary, and due 
to the broad expression pattern of neuroendocrine receptors on immune cells, the 
removal of sex steroids has multiple effects. Androgens suppress LHRH produc-
tion and responsiveness within the hypothalamus and pituitary (Jennes et al. 1995) 
and androgen deprivation (AD) increases circulating levels of prolactin, LH and 
estradiol (Verhelst et al. 1994). LHRH directly increases T-cell proliferation and 
cytokine production in both men and women (Grasso et al. 1998; Tanriverdi et al. 
2005). Thus, the ability of SSA to enhance T-cell levels and responses may be medi-
ated in part by changes in the levels of other hormones such as LHRH and prolactin, 
rather than simply due to the lack of stimulation of sex steroid receptors (Marchetti 
et al. 1989; Jacobson et al. 2004; Buckley, 2001).

Production of LHRH in the thymus and spleen mirrors hypothalamic LHRH and is 
regulated by the same sex-steroid feedback mechanisms (Jacobson et al. 1998). Studies 
in rats showed that administration of an LHRH-A to middle-aged animals decreased 
the binding capacity of LHRH-R for LHRH-A in the thymus by 50%, including a 65% 
reduction in the number of receptors, while in aged rats, thymic binding of LHRH-A 
was completely abrogated (Marchetti et al. 1989), suggesting that any direct effect of 
LHRH-A administration on the thymus is likely to be short-lived. These authors also 
found that castration increased LHRH-A binding in the thymus, suggesting increased 
receptor expression. Jacobson et al. (1999) showed that administration of exogenous 
LHRH (rather than an agonist) did not change LHRH-R expression in immune organs 
of castrated male autoimmune-prone mice, but did affect their responsiveness to this 
hormone through increased G-protein signal transduction.

         5.3      SSA Rejuvenates Bone Marrow and B Lymphocytes  

Although not a focus of this review, in addition to its clinically promising effects 
on the thymus and T-cell immunity, SSA results in striking alterations to the bone 
marrow and B-cell development.

Similarly to T-cells, the production of B-cells is regulated in part by physiological 
levels of androgens and estrogens. Sex hormones suppress B-lymphopoiesis and aug-
mentation occurs when their levels are decreased (reviewed by Kincade et al. 2000). 
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As such, SSA augments B-cell production and function, through direct effects on B-
cells themselves as well as increasing the number of LSK-cells post-BMT (Sutherland 
et al. 2005) and early B-cell precursors (Goldberg et al. manuscript in preparation).

AR have been reported on BM stromal cell lines (Sakagami et al. 1993) and 
pro-B-cell lines and thus the effects of androgens on B-lymphopoiesis may be medi-
ated directly on the B-cells or indirectly via the stroma (Viselli et al. 1997). Treat-
ment with dihydrotestosterone (DHT) leads to a reduction in the numbers of IL7 
responsive B-cell precursors (Smithson et al. 1998). Removal of androgen on the 
other hand results in significant increases in B-lymphopoiesis, as shown in cas-
trated mice, mice with mutations in the AR (Tfm) and in mice with deficiencies in 
sex steroid production (Smithson et al. 1994, Viselli et al. 1997). Castration also 
improves B-cell function, by significantly increasing the specific antibody titre to 
Hepatitis B virus (Jessica Reiseger, manuscript in preparation).

Although the mechanisms by which sex steroid ablation improves B-lymphopoi-
esis are still unclear, the consequences for peripheral B-cells are significant and, as 
with T-cells, likely to speed recovery from chemotherapy in a clinical setting.

         5.4      SSA, Tolerance and Autoimmunity  

   While restoration of T-cell function is clearly desirable, there will be a major pro-
pensity towards autoimmunity if normal tolerance mechanisms are not also rein-
stated. The high incidence of autoimmunity in Western society (over 3%, and rising) 
makes it a very real consideration when manipulating the immune system in any 
way (Jacobson et al. 1997). However, despite over 25 years’ clinical experience with 
LHRH-A, there has been no link to increased levels of autoimmunity, suggesting that 
normal tolerance mechanisms are restored. Accordingly, in the thymus, the increases 
in thymocytes after castration are accompanied by proportional increases in DCs 
and mTECs (Sutherland et al. 2005; Gray et al. 2007) responsible for negative selec-
tion of autoreactive cells and positive selection of regulatory T-cells. In addition, 
wildtype mouse strains do not develop autoimmunity or GVHD following castration 
and HSCT, which is one indication that the immune system can regenerate normally 
after androgen depletion (Goldberg et al. 2007). However, numerous studies have 
shown increased peripheral T-cell function after SSA (Goldberg et al. 2005; Viselli 
et al. 1995; Viselli et al. 1997; Ellis et al. 2001; Olsen and Kovacs 2001; Wilson et 
al. 1995; Castro, 1974; Roden et al. 2004; Sutherland et al. 2005), which makes it 
important to ensure regulatory cells increase proportionally with effector T-cells.

The increase in the frequency of immune disorders and autoimmune diseases with 
age has been linked closely with quantitative and/or qualitative defects of cells within 
the regulatory arm of the immune response. Key players of immune regulation include 
CD4+CD25+FoxP3+ Tregs, IL-10-producing CD4+ Treg cells-1 (Tr1), TGF-β-secret-
ing T-helper-3 cells (Th3), CD4+CD45RBlow T-cells, CD8+CD25+ Treg cells, γδ T-cells 
and natural killer T-cells (NKT) (Powrie et al. 1994; Thornton 2005; Hoglund 2006). 
The best studied of these are the thymus-derived CD4+CD25+ Tregs and NKT-cells.
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       5.4.1      CD4+CD25+FoxP3+ Regulatory T-cells (Tregs)  

   Naturally occurring Tregs exert active control over a variety of physiological and 
pathological immune responses (Sakaguchi 2004) and studies have shown that neo-
natal thymectomy at day 3 leads to a substantial reduction of Tregs in the periphery 
resulting in autoimmunity (Asano et al. 1996; Itoh et al. 1999).  

   Although thymic involution is conceivably expected to affect Treg generation 
similarly to other CD4 T cells, there is very little, variable evidence on the effects of 
immunosenescence on Tregs, and many studies have not employed FoxP3 staining 
to definitively identify this population. It is also unknown whether Tregs express 
AR, although indirect evidence suggests that they possess ER (Aluvihare et al. 
2004; Polanczyk et al. 2004; Polanczyk et al. 2005; Arruvito et al. 2007) and a 
more recent study detected ER α  in resting human Treg lysates (Prieto & Rosenstein 
2006). Despite these limitations, in several studies, Treg prevalence and age appear 
to correlate (Brusko et al. 2005; Gottenberg et al. 2005; Gregg et al. 2005). Tregs 
are driven to expand in response to IL-2 (Almeida et al. 2006) and also proliferate 
in response to self-antigen (Cozzo et al. 2003; Walker et al. 2003) which makes it 
likely that although increased in number, the aged Treg TCR repertoire could be 
severely restricted due to homeostatic proliferation of pre-existing Treg cells.  

   Importantly, using intrathymic FITC injection, we have shown that increased 
peripheral Treg numbers post-SSA are due to increased thymic output in both male 
and female mice, showing that SSA acts on this cell type indirectly through thymic 
regeneration (Katerina Vlahos, manuscript in preparation). These findings are in 
contrast to a study in healthy male volunteers, which found that treatment with an 
LHRH antagonist decreased the percentage of CD4+CD25+ and CD4+CD25 bright  
T cells. However, this study did not report any effects on cell numbers and did not 
assess FoxP3 expression (Page et al. 2006).  

       5.4.2      Natural Killer T-cells  

NKT cells are potent regulators of the immune system (Benlagha & Bendelac 
2000) that influence diverse immune responses including the onset of autoimmune 
diseases such as type 1 diabetes, multiple sclerosis, SLE and rheumatoid arthritis 
(Hong et al. 2001; Jahng et al. 2001; Hammond et al. 1998; Lehuen et al. 1998) 
and the control of tumour growth (Cui et al. 1997; Smyth et al. 2000; Ambrosino et 
al. 2007). Functionally distinct subsets exist in humans and mice, and most CD4+ 
and DN NKT cells are thymic-dependent, while CD8+ NKT cells are only found 
in humans and develop extrathymically (Hammond et al. 1999; Kameyama et al. 
2001; Pellicci et al. 2002). Resident populations in different organs can share a 
surface phenotype yet differ in function (Crowe et al. 2005).

Preliminary SSA studies on wild type (C57Bl/6) and autoimmune prone (NODLt 
and NZB) mice show that ovariectomy of wild type or NOD mice results in either 
no change or a decrease in peripheral thymic derived NKT cells respectively (Anne 
Fletcher, Samy Sakkal, Katerina Vlahos, unpublished observations) while castra-
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tion results in either an increase or no change in NKT cells in wild type and NZB 
mice respectively (Katerina Vlahos, Anne Fletcher, manuscript in preparation). 

The role of these cells in promoting tolerance, particularly in studies involving 
autoimmune models, is contentious and appears to vary depending on the genetic 
background and the inflammatory phenotype of the mice. Transfer or activation of 
NKT cells reportedly mediates protection in the NOD and EAE models of diabetes 
and multiple sclerosis respectively (Hammond et al. 1998, Leheun et al. 1998; Singh 
et al. 2001; Forestier et al. 2007) but endogenous NKT cells exacerbate disease in 
models of lupus (Forestier et al. 2005). In addition, there was no difference in the 
number or IL-4 producing capacity of blood NKT cells from type I diabetes patients 
(Lee et al. 2002). The significance of these findings with regard to the likely impact 
on tolerance restoration or continued anti-cancer immunosurveillance in humans 
recovering from immunosuppression is unclear. Certainly, evidence from both mice 
and humans exists to suggest that caution must be exercised when using the NKT 
cell levels in the blood as sole representative data, since limited correlation exists 
between blood and major organs (Berzins et al. 2004; Berzins et al. 2005)

         5.4.3      Sex Steroids and Autoimmunity  

The lower incidence of autoimmune disease in males compared to females is sug-
gested to be due, in part, to host androgens (Grossman 1985; Whitacre et al. 1999), a 
theory supported by studies showing that androgens suppress the immune responses 
of vertebrates (for reviews, see Schuurs and Verheul 1990; Paavonen 1994; Olsen 
and Kovacs 1996). Conversely, exposure increases the susceptibility toward numer-
ous infectious diseases (reviewed by Roberts et al. 1996). Exogenous androgen 
administration reverses the female-biased predisposition of NOD or NZB/W mice 
to developing diabetes and SLE-like autoimmune diseases respectively (Fox 1992; 
Roubinian et al. 1979; Roubinian et al. 1978; Fitzpatrick et al. 1991) and can abro-
gate immune responses against pathogen, allograft, or traumatised host tissue 
(Wichmann et al. 1996; Graff et al. 1969; Angele et al. 2000).

In accordance with these findings, androgen withdrawal in male mice can exac-
erbate the severity of various autoimmune disorders including EAE, SLE and insu-
litis and has been shown to potentiate a variety of host immune responses in various 
animal models (Fox 1992; Fitzpatrick et al. 1991; Bebo et al. 1999; Angele et al. 
2000; Samy et al. 2000; Samy et al. 2001; Bellido et al. 1995; Keller et al. 1996; 
Messingham et al. 2001).

These findings are indicative of a risk for male patients with familial history of 
autoimmunity, and these patients may not be suitable for AD. The links between 
loss of testosterone and increased incidence of autoimmune disease in suscep-
tible individuals are particularly pertinent given the huge interest in developing 
a milder preconditioning regime and faster immune regeneration so that HSCT 
can be safely used to treat severe autoimmunity. Any risks or benefits of loss of 
testosterone on the desirable graft-versus-autoimmunity effect are also yet to be 
assessed.
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             6      Androgen Blockade Compared with Other Methods of 
Thymic Regeneration: Risks and Advantages  

Growth factors such as FGF7 (KGF), IL7, IGF-1 and Growth Hormone play 
an important role in thymic biology and, similarly to SSA, have been shown to 
improve immune reconstitution when administered to animals and humans (Min 
et al. 2002; Alpdogan et al. 2001; Napolitano et al. 2003; French et al. 2002; Fahy 
et al. 2003).  

     6.1      Keratinocyte Growth Factor (KGF)  

KGF is produced by thymic fibroblasts as an essential growth factor for TEC devel-
opment. The KGF receptor is expressed on all TEC subsets, but on a minority of cells 
by histology (Rossi et al. 2007b). When administered prior to BMT, KGF increased 
all donor-derived thymocyte subsets, regardless of the radiation dosage used to pre-
condition the recipients (Min et al. 2002) and showed the added benefit of reducing 
the incidence of graft-versus-host disease (Rossi et al. 2002). The effect on the thy-
mus appeared to be long-lived and resulted in increased peripheral T-cell function 
(Min et al. 2002). To date, there is no evidence that KGF is effective in humans, 
although primate studies appear extremely promising (Seggewiss et al. 2007).

Since KGF is not essential for castration-mediated thymic regrowth (Gabrielle 
Goldberg, unpublished observations), it is possible that coadministration of KGF 
and LHRH-A may result in a synergistic effect or widen the proportion of respond-
ents for immune regeneration.

         6.2      Growth Hormone  

   Growth hormone is a highly pleiotropic growth factor; which, in the thymus, acts 
indirectly on both thymocytes and TECs to stimulate proliferation (Mello-Coelho 
et al. 1998; Ferone et al. 1999) and in the bone marrow drives expansion of T- and 
B-cell progenitors (Knyszynski et al. 1992; Tian et al. 1998; Sumita et al. 2005).

Numerous studies have demonstrated its ability to induce thymus and bone mar-
row rejuvenation in aged animals and humans (Weigent, 1996; French et al. 2002; 
Fahy et al. 2003; LeRoith et al. 1996); however, the increased immune response 
never reaches normal young levels. After immunoablation and BMT, GH adminis-
tration did, however, increase the numbers of bone marrow progenitors to normal 
young levels (Tian et al. 1998; Carlo-Stella et al. 2004), which translated to increased 
numbers of peripheral CD4 and CD8 T-cells and B-cells as well as increased thy-
mus cellularity (Chen et al. 2003). Recombinant human GH has been assessed for 
its ability to improve immune function in HIV-infected patients, who showed sig-
nificant increases in thymic mass and numbers of circulating naïve CD4+ and CD8+ 
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T-cells (Napolitano et al. 2002; Pires et al. 2004). The dosage required to induce 
these effects (daily injections for one year) results in significant side effects such as 
myalgia, lethargy, headaches, and insulin insensitivity.

GH is likely to act at least partially through inducing transcription of IGF-I, 
which, when administered alone, is able to increase the proportion and number of 
T- and B-cells after immunoablation (Napolitano et al. 2003). Both GH and IGF-I 
treatment were shown to alter CD4:CD8 ratios in various organs in rhesus monkeys 
(LeRoith et al. 1996), with unknown long-term effect.

GH and sex steroid feedback pathways intersect (Chowen et al. 2004) such that 
serum GH levels are increased after administration of testosterone and reduced after 
castration, complicating the potential to utilise both therapies together for a syner-
gistic effect. However, preliminary studies from this laboratory show that castration 
increases thymic-derived GH (Maree Hammett, Ann Chidgey, unpublished obser-
vations), and a combination approach for GH treatment is attractive since it may 
allow a reduction in the necessary dose, which would reduce its side effects.

         6.3      SSA: Risks and Sequelae  

   Although there is an extensive safety profile on LHRH usage, with no major clinical 
side effects, it is not without adverse effects and it does impact upon the quality of 
life for patients.

The early sex steroid flare which occurs following LHRH-A treatment is a 
significant side-effect which in prostate cancer patients can reportedly result in 
increased proliferation of cancer cells leading to pain, uremia, the development of 
neurologic sequelae, including paralysis, and very rarely, death (Thompson 2001). 
This flare can be entirely prevented by treating the patient with sex steroid receptor 
blockers, including flutamide and bicalutamide, beginning prior to treatment. Stud-
ies suggest this therapy should be considered for all prostate cancer patients treated 
with LHRH-A (reviewed by Thompson 2001) and presumably Tamoxifen treatment 
would abrogate similar risks for women. Treatment with an LHRH-A does not harm 
future reproductive function in women (Heger et al. 2006). However, osteopenia is a 
distinct risk in all patients, since estrogens in both males and females are involved in 
bone metabolism (Lupoli et al. 1997; Smith et al. 2003). Many therapies have been 
proposed to reduce the risk of osteoporosis (reviewed by Moyad 2002) including 
treatment with Tamoxifen and other estrogen-receptor binding agents, calcitonin 
and fluoride, as well as complementary treatments such as calcium and vitamin D 
supplements. Men treated with an androgen blocker do not show signs of impaired 
bone mineral density (Smith et al. 2003). Future development of therapies with 
fewer side effects require full understanding of the mechanisms involved in thymic 
involution and regeneration to perhaps develop an immune-specific regenerative 
therapy.

One risk inherent in removing any cell-suppressive factor is predisposition 
towards the development of cancer (in this case, thymoma or lymphoma). Oyan and 
colleagues (2004) linked the development of thymic cancer after treatment of pro-
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gesterone-receptor positive breast cancer with the ER blocker Tamoxifen (as well as 
chemotherapy and radiotherapy), which is the first such published occurrence; the 
frequency of this effect remains to be determined. In the BUF/Mna rat model of thy-
moma, estrogen decreases tumour incidence despite genetic predisposition (Ezaki 
et al. 1992) suggesting that SSA in females may increase its incidence. Long-term 
studies following patients once treated with Tamoxifen (for example, Rutqvist et al. 
2007) have not revealed increased thymoma incidence, but this may be due to insuf-
ficient statistical power. However, the possible increased risk, if any, of thymoma 
must be weighed against the increased risk of cancer developing due to the absence 
of tumour immunosurveillance in the immunodepleted patient. For example, mice 
with the severe combined immunodeficiency (SCID) mutation develop thymic lym-
phomas after exposure to low levels of ionising radiation (Fulop et al. 1990; Lie-
berman et al. 1992). It is also now interesting that with continual improvement of 
antiretroviral therapy, AIDS patients have extended lifespans, which has exposed a 
predisposition to cancer onset. The very likely explanation for this is their lack of 
T-cell based immunosurveillance and there is thus additional cause and urgency to 
restore thymic function in these patients.

Despite the sex steroid-dependent ability of LHRH-A treatment or castration to 
either increase or decrease autoimmune disease in mice and humans, there is no 
evidence of increased risk of autoimmunity in patients who have received LHRH-
A treatment. However, this may be a pertinent consideration for patients with a 
strong family history of autoimmunity. Such results highlight the incredibly com-
plex basis to autoimmunity and again demonstrate the care that will be necessary 
when formulating clinical trial protocols, such that inhibition of ongoing autoim-
munity is matched with the need to restore immunity with an actively self-tolerant 
system.

With any form of treatment that serves to modulate the immune system it is vital 
to maintain the natural homeostatic balance of the various immune players or risk 
increased susceptibility to infection, cancer and autoimmune diseases, as well as 
hampering the effectiveness of the immunotherapy being used. This is an important 
benefit of SSA-mediated immune regeneration. It is also vital to weigh the potential 
risks and benefits to the target patient group. In over 2 decades, there have been 
no reports of increased, abnormal incidence of immunologically-based disease or 
cancer with LHRH-A use.

             7      Summary and Conclusions    

   The immunosuppressive properties of sex steroids have long been reported. While 
peaks in corticosteroid production are invariably transient, sex steroid production 
occurs throughout life, thus driving progressive thymic atrophy and a decline in 
immune function.

Sex steroid ablation increases thymus size and function in both mice and humans, 
resulting in the export of self-tolerant, antigen-reactive naïve T-cells. Both mice and 
humans treated with an LHRH-A exhibit faster recovery from immunodepletion, 
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reducing the risk of death from life-threatening infection. SSA improves immune 
function through direct effects on peripheral T-cells, and indirectly by increasing 
thymic output. The naïve T-cells produced can replace oligoclonal memory T-cell 
clones which can often be defective or of irrelevant specificity.

The improvement in thymic, bone-marrow and immune system function induced 
by temporary LHRH-A treatment have been studied long-term, and appear to 
impose no immune dysregulation. This treatment shows very little risk compared to 
other immunomodulatory therapies, and side-effects such as the early flare in sex 
steroids are generally manageable with combination sex steroid receptor blockade 
treatment.

The development of an immune-regenerative therapy is of paramount clinical 
importance, given the number of patients with acquired immunodeficiencies. 
Reversible sex steroid ablation therapy promises to reversibly restore immune com-
petence faster, through safely and quickly rejuvenating the thymus. When combined 
with other adjuvants, this therapy is likely to provide a new paradigm for the treat-
ment of T-cell-based disorders.

Acknowledgments The authors would like to thank Melanie Hince and Marie Fletcher for their 
thoughtful comments on the text, and Samy Sakkal, Dr. Tomoo Ueno, and Dr. Gabrielle Goldberg 
for provision of unpublished data.

             References  

       Adolfsson J, Borge OJ, Bryder D, Theilgaard-Monch K, Astrand-Grundstrom I, Sitnicka E, 
Sasaki Y, Jacobsen SE (2001) Up-regulation of Flt3 expression within the bone marrow 
Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity 
Immunity 15(4):659–669

Adolfsson J, Mansson R, Buza-Vidas N Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, 
Borge OK, Thoren LA, Anderson K, Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SE (2005) 
Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a 
revised road map for adult blood lineage commitment. Cell 121:295–306

Aliahmad P, Kaye J (2006) Commitment issues: linking positive selection signals and lineage 
diversification in the thymus. Immunol Rev 209:253–273

Almeida ARM, Zaragoza B, Freitas AA (2006) Indexation as a Novel Mechanism of Lymphocyte 
Homeostasis: The Number of CD4+CD25+ Regulatory T Cells Is Indexed to the Number of 
IL-2-Producing Cells. J Immunol 177(1):192–200

Alpdogan O, Schmaltz C, Muriglan SJ, Kappel BJ, Perales MA, Rotolo JA, Halm JA, Rich BE, van 
den Brink MR (2001). Administration of interleukin-7 after allogeneic bone marrow transplan-
tation improves immune reconstitution without aggravating graft-versus-host disease. Blood 
98(7):2256–2265

Aluvihare VR, Kallikourdis M, Betz AG (2004) Regulatory T cells mediate maternal tolerance to 
the fetus. Nat Immunol 5(3):266–271

Ambrosino E, Terabe M, Halder RC, Peng J, Takaku S, Miyake S, Yamamura T, Kumar V, Berzof-
sky JA (2007) Cross-Regulation between Type I and Type II NKT Cells in Regulating Tumor 
Immunity: A New Immunoregulatory Axis. J Immunol 179(8):5126–5136

Anderson G, Jenkinson EJ (2001) Lymphostromal interactions in thymic development and func-
tion. Nat Rev Immunol 1(1):31–40



Thymic Regeneration in Mice and Humans Following Sex Steroid Ablation 1597

Anderson G, Jenkinson WE, Jones T, Parnell SM, Kinsella FAM, White AJ, Pongrac’z JE, Rossi 
SW, Jenkinson, EJ (2006) Establishment and functioning of intrathymic microenvironments. 
Immunol Rev 209:10–27

Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, 
Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the 
thymus by the aire protein. Science 298(5597):1395–1401

Angele MK, Schwacha MG, Ayala A, Chaudry IH (2000) Effect of gender and sex hormones on 
immune responses following shock. Shock 14(2):81–90

Araneo BA, Dowell T, Diegel M, Daynes RA (1991) Dihydrotestosterone exerts a depressive influ-
ence on the production of interleukin-4 (IL-4), IL-5, and gamma-interferon, but not IL-2 by 
activated murine T cells. Blood 78(3):688–699

Arruvito L, Sanz M, Banham AH, Fainboim L (2007) Expansion of CD4+CD25+and FOXP3+ 
Regulatory T Cells during the Follicular Phase of the Menstrual Cycle: Implications for Human 
Reproduction. J Immunol 178(4):2572–2578

Asano M, Toda M, Sakaguchi N, Sakaguchi S (1996) Autoimmune disease as a consequence of 
developmental abnormality of a T cell subpopulation. J Exp Med 184(2):387–396

Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20:250–256
Belvisi L, Bombelli F, Sironi L, Doldi N (1993) Organ-specific autoimmunity in patients with 

premature ovarian failure. J Endocrinol Invest 16:889–892
Bendelac A (1995). Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymo-

cytes. J Exp Med 182(6):2091–2996
Benlagha K, Bendelac A. (2000). CD1d-restricted mouse V alpha 14 and human V alpha 24 T 

cells: lymphocytes of innate immunity. Semin Immunol 12(6):537–542
Bennett AR, Farley A, Blair NF, Gordon J, Sharp L, Blackburn CC (2002) Identification and char-

acterisation of thymic epithelial progenitor cells. Immunity 16(6):803–814
Benten WP, Becker A, Schmitt-Wrede HP, Wunderlich F (2002) Developmental regulation of 

intracellular and surface androgen receptors in T cells. Steroids 67(11):925–931
Bertho J, Demarquay C, Moulian N, Van der Meeren A, Berrih-Aknin S, Gourmelon P (1997) Phe-

notypic and immunohistological analyses of the human adult thymus: evidence for an active 
thymus during adult life. Cell Immunol 179:30–40

Berzins SP, Boyd RL, Miller JF (1998) The role of the thymus and recent thymic migrants in the 
maintenance of the adult peripheral lymphocyte pool. J Exp Med 187:1839–1848

Berzins SP, Godfrey DI, Miller JF, Boyd RL (1999) A central role for thymic emigrants in periph-
eral T cell homeostasis. Proc Natl Acad Sci U S A 96(17):9787–9791

Berzins SP, Uldrich AP, Sutherland JS, Gill J, Miller JF, Godfrey DI, Boyd RL (2002) Thymic 
regeneration: teaching an old immune system new tricks. Trends Mol Med 8(10):469–476

Berzins SP, Kyparissoudis K, Pellicci DG, Hammond KJ, Sidobre S, Baxter A, Smyth MJ, Kro-
nenberg M, Godfrey DI (2004). Systemic NKT cell deficiency in NOD mice is not detected in 
peripheral blood: implications for human studies. Immunol Cell Biol 82(3):247–252

Berzins SP, Cochrane AD, Pellicci DG, Smyth MJ, Godfrey DI (2005) Limited correlation between 
human thymus and blood NKT cell content revealed by an ontogeny study of patiepaired tissue 
samples. Eur J Immuno 35(5):1399–1407

Bhandoola A, von Boehmer H, Petrie HT, Zuniga-Pflucker JC (2007) Commitment and devel-
opmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. 
Immunity 26(6):678–689

Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional 
thymus initiated by a postnatal epithelial progenitor cell. Nature 441(7096):992–996

Bloom ET, Mostowski HS, Horvath JA (1994) Does the age-related change in CD44-defined T-
cell subsets have functional significance for cytotoxic T lymphocyte generation? Immunol Lett 
40(3):251–258

Boersma WJ, Steinmeier FA, Haaijman JJ (1985) Age-related changes in the relative numbers of 
Thy-1- and Lyt-2-bearing peripheral blood lymphocytes in mice: a longitudinal approach. Cell 
Immunol 93(2):417–430



1598 A. Fletcher et al.

Borthwick NJ, Lowdell M, Salmon M, Akbar AN (2000) Loss of CD28 expression on CD8(+) 
T cells is induced by IL-2 receptor gamma chain signalling cytokines and type I IFN, and 
increases susceptibility to activation-induced apoptosis. Int Immunol 12(7):1005–1013

Boyd RL, Hugo P (1991) Towards an integrated view of thymopoiesis. Immunol Today 
12(2):71–79

Brinchmann JE, Dobloug JH, Heger BH, Haaheim LL, Sannes M, Egeland T (1994) Expression of 
costimulatory molecule CD28 on T cells in human immunodeficiency virus type 1 infection: 
functional and clinical correlations. J Infect Dis 169(4):730–738

Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA (2005) Functional Defects 
and the Influence of Age on the Frequency of CD4+CD25+ T-Cells in Type 1 Diabetes. Dia-
betes 54(5):1407–1414

Brzezinska A, Magalska A, Szybinska A, Sikora E (2004) Proliferation and apoptosis of 
human CD8(+)CD28(+) and CD8(+)CD28(-) lymphocytes during aging. Exp Gerontol 
39(4):539–544

Callahan JE, Kappler JW, Marrack P (1993) Unexpected expansions of CD8-bearing cells in old 
mice. J Immunol 151(12):6657–6669

Carlo-Stella C, Nicola M, Milani R, Longoni P, Milanesi M, Bifulco C, Stucchi C, Guidetti A, 
Cleris L, Formelli F, Garotta G, Gianni AM (2004) Age and irradiation associated loss of bone 
marrow haemopoietic function in mice is reversed by recombinant human growth hormone. 
Exp Hematol 32:171–178

Carney WP, Rubin RH, Hoffman RA, Hansen WP, Healey K, Hirsch MS (1981) Analysis of T 
lymphocyte subsets in cytomegalovirus mononucleosis. J Immunol 126(6):2114–2116

Castro JE (1974) Orchidectomy and the immune response I and II. Proc R Soc Lond B Biol Sci  
185(81):425–451

Castro JE (1975) Immunological effects of orchidectomy. Br J Urol  47(1):89–95
Chen BJ, Cui X, Sempowski GD, Chao NJ (2003) Growth hormone accelerates immune recov-

ery following allogeneic T cell depleted bone marrow transplantation in mice. Exp Hematol 
31:953–958

Chen HF, Jeung EB, Stephenson M, Leung PC (1999) Human peripheral blood mononuclear cells 
express gonadotropin-releasing hormone (GnRH), GnRH receptor, and interleukin-2 receptor 
gamma-chain messenger ribonucleic acids that are regulated by GnRH in vitro. J Clin Endo-
crinol Metab 84(2):743–750

Chowen JA, Frago LM, Argente J (2004) The regulation of GH secretion by sex steroids. Eur J 
Endocrinol 151:U95–U100

Coles MC, Raulet DH (2000) NK1.1+ T cells in the liver arise in the thymus and are selected by 
interactions with class I molecules on CD4+CD8+ cells. J Immunol 164(5): 2412–2418

Colonna-Romano G, Akbar AN, Aquino A, Bulati M, Candore G, Lio D, Ammatuna P, Fletcher 
JM, Caruso C, Pawelec G (2007) Impact of CMV and EBV seropositivity on CD8 T lym-
phocytes in an old population from West-Sicily. Exp Gerontol 42(10) 995–1002

Cozzo C, Larkin J 3rd, Caton AJ (2003) Cutting edge: self-peptides drive the peripheral expansion 
of CD4+CD25+ regulatory T cells. J Immunol 171(11): 5678–5682

Crawford DH, Edwards JM, Sweny P, Hoffbrand AV, Janossy G (1981) Studies on long-term T-
cell-mediated immunity to Epstein-BArr virus in immunosuppressed renal allograft recipients. 
Int J Cancer 28(6):705–709

Crowe NY, Coquet JM, Berzins SP, Kyparissoudis K, Keating R, Pellicci DG, Hayakawa Y, God-
frey DI, Smyth MJ (2005) Differential antitumor immunity mediated by NKT cell subsets in 
vivo. J Exp Med 202(9):1279–1288

Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, Koseki H, Kanno M, Taniguchi M 
(1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 
278(5343):1623–1626

Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, 
Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, 
Coovadia HM, Goulder PJ, Klenerman P, Ahmed Rm Freeman GJ, Walker BD (2006) PD-1 
expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. 
Nature 443(7109):350–354



Thymic Regeneration in Mice and Humans Following Sex Steroid Ablation 1599

de Mello-Coelho  V, Gagnerault MC, Souberbielle JC, Strasburger CJ, Savino W, Dardenne M, 
Postel-Vinal MC (1998) Growth Hormone and its receptor are expressed in human thymic 
cells. Endocrinology 139(9):3837–3842

DePinho RA (2000) The age of cancer. Nature 408:248–254
Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, Polis MA, Haase AT, 

Feinberg MB, Sullivan JL, Jamieson BD, Zack JA, Picker LJ, Koup RA (1998) Changes in thymic 
function with age and during the treatment of HIV infection. Nature 396(6712):690–695

Douek DC, Koup RA (2000) Evidence for thymic function in the elderly. Vaccine 
18(16):1638–1641

Douek DC, Vescio RA, Betts MR, Brenchley JM, Hill BJ, Zhang L, Berenson JR, Collins RH, 
Koup RA (2000) Assessment of thymic output in adults after haematopoietic stem-cell trans-
plantation and prediction of T-cell reconstitution. Lancet 355(9218):1875–1881

Ezaki T, Fujii H, Matsuna KC, Kawatsu Rm Kotani M (1992) Oestrogen retards the development 
of spontaneous thymomas in BUF/Mna rats. Virchows Arch 421:505–511

Fahy GM (2003) Apparent induction of partial thymic regeneration in a normal human subject: a 
case report. J Anti-aging Med  6(3):219–227

Fagnoni FF, Vescovini R, Mazzola M, Bologna G, Nigro E, Lavagetto G, Franceschi C, Passeri 
M, Sansoni P (1996) Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, 
including centenarians. Immunology 88(4):501–507

Fassas, AS, Passweg JR, Anagnostopoulos A, Kazis A, Kozak T, Havrdova E, Carreras E, Graus 
F, Kashyap A, Openshaw H, Schipperus M, Deconinck E, Mancardi G, Marmont A, Hansz J, 
Rabusin M, Zuazu Nagore FJ, Besalduch J, Dentamaro11 T, Fouillard L, Hertenstein B, La 
Nasa G, Musso M, Papineschi F, Rowe JM, Saccardi R, Steck A, Kappos L, Gratwohl A, Tyn-
dall A, Samijn J (2002) Autoimmune disease working party of the European Group for Blood 
and Marrow Transplantation. Haemopoietic stem cell transplantation for multiple sclerosis. J 
Neurol 249(8) 1088–1097

Ferone D, van Hagen PM, van Koetsveld PM, Zuijderwijk J, Mooy DM, Lichtenauer-Kaligis EG, 
Colao A, Bogers AJ, Lombardi G, Lamberts SW, Hofland LJ (1999) In vitro characterization 
of somatostatin receptors in the human thymus and effects of somatostatin and octreotide on 
cultured thymic epithelial cells. J. Endocrinol 140:373–380

Filicori M, Flamigni C (1988) GnRH agonists and antagonisis. Current clinical status. Drugs 
35(1):63–82

Fitzpatrick F, Lepault F, Homo-Delarche F, Bach JF, Dardenne M (1991) Influence of castration, 
alone or combined with thymectomy, on the development of diabetes in the nonobese diabetic 
mouse. Endocrinology 129(3):1382–1390

Flores KG, Li J, Sempowski GD, Haynes BF, Hale LP (1999) Analysis of the human thymic 
perivascular space during aging. J Clin Invest 104:1031–1039

Forestier C, Molano A, Im JS, Dutronc Y, Diamond B, Davidson A, Illarionov PA, Besra GS, Por-
celli SA (2005) Expansion and hyperactivity of CD1d-restricted NT cells during the progres-
sion of systemic lupus erythematosus in (New Zealand Black x New Zealand White) F1 mice. 
J Immunol 175(2):763–770

Forestier C, Takaki T, Molano A, Im JS, Baine I, Jerud ES, Illarionov P, Ndonye R, Howell AR, 
Santamaria P, Besra GS, Dilorenzo TP, Porcelli SA (2007) Improved outcomes in NOD mice 
treated with a novel Th2 cytokine biasing NKT cell activator. J Immunol 178(3):1415–1425

Fox HS (1992) Androgen treatment prevents diabetes in nonobese diabetic mice. J Exp Med 
175(5):1409–1412

French RA, Broussard SR, Meier WA, Minshall C, Arkins S, Zachary JF, Dantzer R, Kelley KW 
(2002) Age-associated loss of bone marrow haemopoietic cells is reversed by GH and accom-
panies thymic reconstitution. J. Endocrinol  143(2):690–699

Fukuda H, Nakamura H, Tominaga N, Teshima H, Hiraoka A, Shibata H, Masaoka T (1994) 
Marked increase of CD8+S6F1+ and CD8+CD57+ cells in patients with graft-versus-host dis-
ease after allogeneic bone marrow transplantation. Bone Marrow Transplant 13(2):181–185

Fulop GM, Philips RA (1990) The scid mutation in mice causes a general defect in DNA repair. 
Nature 347:479–482



1600 A. Fletcher et al.

Gagnerault MC, Touraine P, Savino W, Kelly PA, Dardenne M (1993) Expression of prolac-
tin receptors in murine lymphoid cells in normal and autoimmune situations. J Immunol 
150(12):5673–5681

Gapin L, Matsuda JL, Surh CD, Kronenberg M (2001) NKT cells derive from double-positive 
thymocytes that are positively selected by CD1d. Nat Immunol 2(10):971–978

Garcia-Suarez O, Germana A, Hannestad J, Perez-Perez M, Esteban I, Naves FJ Vega JA (2000) 
Changes in the expression of nerve growth factor receptors TrkA and p75LNGR in the rat 
thymus with ageing and increased nerve growth factor plasma levels. Cell Tissue Res 301(2) 
225–234

Garzetti GG, Ciavattini A, Provinciali M, Muzzioli M, Di Stefano G, Fabris N (1996) Natural 
cytotoxicity and GnRH agonist administration in advanced endometriosis: positive modulation 
on natural killer activity. Obstet Gynecol 88(2):234–240

Gatzka M, Walsh CM (2007) Apoptotic signal transduction and T cell tolerance. Autoimmunity 
40(6):442–452

Gill J, Malin M, Hollander GA, Boyd R (2002) Generation of a complete thymic microenviron-
ment by MTS24+ thymic epithelial cells. Nat Immunol 3(7):635–642

Gillard GO, Dooley J, Erickson M, Peltonen L, Farr AG (2007) Aire-dependent alterations in med-
ullary thymic epithelium indicate a role for Aire in thymic epithelial differentiation. J Immunol 
178(5):3007–3015

Ginaldi L, De Martinis M, D’Ostilio A, Marini L, Loreto MF, Martorelli V, Quaglino D (1999) The 
immune system in the elderly: II. Specific cellular immunity. Immunol Res 20(2):109–15

Godfrey DI, Izon DJ, Tucek CL, Wilson TJ, Boyd RL (1990) The phenotypic heterogeneity of 
mouse thymic stromal cells. Immunology 70: p 66–74

Goldberg GL, Sutherland JS, Hammett MV, Milton MK, Heng TS, Chidgey AP, Boyd RL (2005) 
Sex steroid ablation enhances lymphoid recovery following autologous haemopoietic stem cell 
transplantation. Transplantation 80(11):1604–1613

Goldberg GL, Alpdogan O, Muriglan SJ, Hammett MV, Milton MK, Eng JM, Hubbard VM, Koch-
man A, Willis LM, Greenberg AS, Tjoe KH, Sutherland JS, Chidgey A, van den Brink MRM, 
Boyd RL (2007) Enhanced immune reconstituation by sex steroid ablation following alloge-
neic hemopoietic stem cell transplanation. J Immunol 178:7473–7484

Gorochov G, Debré P, Leblond V, Sadat-Sowti B, Sigaux F, Autran B (1994) Oligoclonal expan-
sion of CD8+ CD57+ T cells with restricted T-cell receptor beta chain variability after bone 
marrow transplantation. Blood 83(2):587–595

Gottenberg, JE, Lavie F, Abbed K, Gasnault J, Le Nevot E, Delfraissy JF, Taoufik T, Mariette X 
(2005) CD4 CD25high regulatory T cells are not impaired in patients with primary Sjogren’s 
syndrome. J Autoimmun 24(3):235–242

Graff RJ, Lappe MA, Snell GD (1969) The influence of the gonads and adrenal glands on the 
immune response to skin grafts. Transplantation 7(2):105–111

Grasso G, Massai L, De Leo V, Muscettola M (1998) The effect of LHRH and TRH on human 
interferon-gamma production in vivo and in vitro. Life Sci 62(22):2005–2014

Gray DHD, Chidgey AP, Boyd RL (2002) Analysis of thymic stromal cell populations using flow 
cytometry. J Immunol Methods 260:15–28

Gray, DHD, Seach N, Ueno T, Milton MK, Liston A, Lew AM, Goodnow CC, Boyd RL (2006) 
Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 
108(12): p 3777–3785

Gray DH, Tull D, Ueno T, Seach N, Classon BJ, Chidgey A, McConville MJ, Boyd RL (2007) A 
unique thymic fibroblast population revealed by the monoclonal antibody MTS-15. J Immunol 
178(8):4956–65

Greenstein BD, Fitzpatrick FT, Adcock MD, Kendall MD, Wheeler MJ (1986) Reappearance of 
the thymus in old rats after orchidectomy: inhibition of regeneration by testosterone. J Endo-
crinol 110:417–422

Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, Nayak L, Moss PA (2005) The 
number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin 
Exp Immunol 140(3):540–546



Thymic Regeneration in Mice and Humans Following Sex Steroid Ablation 1601

Grossmann A, Maggio-Price L, Jinneman JC, Wolf NS, Rabinovitch PS (1990) The effect 
of long-term caloric restriction on function of T-cell subsets in old mice. Cell Immunol 
131(1):191–204

Grossman CJ (1984) Regulation of the immune system by sex steroids. Endocr Rev 5:435–455
Haisenleder, DJ, Khoury S, Zmeili S, Papavasilious S, Ortolano G,A, Dee C, Duncan JA, Marshall 

JC (1987) The frequency of gonadotropic-releasing hormone secretion regulates expression 
of alpha and luteinizing hormone beta subunit messenger ribonucleic acids in male rats. Mol 
Endocrinol 1(11):834–838

Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, Kasten-Sportes C, Odom J, Vance BA, 
Christensen BL, Mackall CL, Gress RE (2005) Age-dependent incidence, time course, and 
consequences of thymic renewal in adults. J Clin Invest 115(4):930–939

Hammond KJ, Poulton LD, Palmisano LJ, Silveira PA, Godfrey DI, Baxter AG (1998) Alpha/beta 
T cell receptor (TCR)+ CD4-CD8-(NKT) thymocytes prevent insulin-dependent diabetes mel-
litus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. 
J Exp Med 187(7):1047–1056

Hammond KJ, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M, Smyth MJ, 
van Driel IR, Scollay R, Baxter AG, Godfrey DI (1999) NKT cells are phenotypically and 
functionally diverse. Eur J Immunol 29(11):3768–3781

Hansenne I (2005) Thymic transcription of neurohypophyseal and insulin-related genes: impact 
upon T cell differentiation and self-tolerance. J Neuroendocrinol 17(5):321–327

Harman BC, Jenkinson WE, Parnell SM, Rossi SW, Jenkinson EJ, Anderson G (2005) T/B lineage 
choice occurs prior to intrathymic Notch signaling. Blood 106(3):886–892

Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP (2000) The role of the thymus in 
immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev 
Immunol 18:529–560

Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL (2003) CD4 T cell memory derived from 
young naive cells functions well into old age, but memory generated from aged naive cells 
functions poorly. Proc Natl Acad Sci U S A 100(25):15053–15058

Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL (2005) Newly generated CD4 T 
cells in aged animals do not exhibit age-related defects in response to antigen. J Exp Med 
201(6):845–851

Heger S, Muller M, Ranke M, Schwarz HP, Waldhauser F, Partsch CJ, Sippell WG (2006) Long-
term GnRH agonist treatment for female central precocious puberty does not impair reproduc-
tive function. Mol Cell Endocrinol 254–255:217–229

Heinzel K, Benz C, Martins VC, Haidl ID, Bleul CC (2007) Bone marrow-derived hemopoietic 
precursors commit to the T cell lineage only after arrival in the thymic microenvironment. J 
Immunol 178(2):858–868

Heitger A, Greinix H, Mannhalter C, Mayerl D, Kern H, Eder J, Fink FM, Niederwieser D, Pan-
zer-Grumayer ER (2000) Requirement of residual thymus to restore normal T-cell subsets after 
human allogeneic bone marrow transplantation. Transplantation 69(11):2366–2373

Heng TS, Goldberg GL, Gray DH, Sutherland JS, Chidgey AP, Boyd RL (2005) Effects of cas-
tration on thymocyte development in two different models of thymic involution. J Immunol 
175(5):2982–2993

Hertogh-Huijbregts A, Vissinga C, Rozing J, Nagelkerken L (1990) Impairment of CD3-dependent 
and CD3-independent activation pathways in CD4+ and in CD8+ T cells from old CBA/RIJ 
mice. Mech Ageing Dev 53(2):141–155

Hirokawa K, Utsuyama M, Goto H, Kuramoto K (1984) Differential rate of age-related decline 
in immune functions in genetically defined mice with different tumor incidence and life span. 
Gerontology 30(4):223–233

Hirokawa, K., Utsuyama, Kasai, M, Jurashima C, Ishijima S, Zeng YX (1994) Understanding the 
mechanism of the age-change of thymic function to promote T cell differentiation. Immunol 
Lett 40:269–277

Hoglund P (2006) Induced peripheral regulatory T cells: the family grows larger. Eur J Immunol 
36(2):264–266



1602 A. Fletcher et al.

Hong S, Wilson MT, Serizawa I, Wu L, Singh N, Naidenko OV, Miura T, Haba T, Scherer DC, 
Wei J, Kronenberg M, Koezuka Y, van Kaer L (2001) The natural killer T-cell ligand alpha-
galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 
7(9):1052–1056

Hsu CC, Lin YS, Wang ST, Huang KE (1997) Immunomodulation in women with endometriosis 
receiving GnRH agonist. Obstet Gynecol 89(6):993–998

Huben RP (1992) Hormone therapy of prostatic bone metastases. Adv Exp Med Biol 324:305–316
Itoh, M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, Sakaguchi S (1999) Thy-

mus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T 
cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 
162(9):5317–5326

Jacobson DL, Gange SK, Rose NR, Graham NM (1997) Epidemiology and estimated popula-
tion burden of selected autoimmune diseases in the united states. Clin Immunol Immunop 
84:223–243

Jacobson JD, Crofford LJ, Sun L, Wilder RL (1998) Cyclical expression of GnRH and GnRH 
receptor mRNA in lymphoid organs. Neuroendocrinol 67(2):117–125

Jacobson JD, Ansari AA, Kinealy M, Vekateswari M (1999) Gender-specific exacerbation of 
murine lupus by gonadotropin-releasing hormone: potential role of G q/11 J Endocrinol 
:140:3429–3437

Jacobson JD, Ansari MA (2004) Immunomodulatory actions of gonadal steroids may be mediated 
by gonadotropin-releasing hormone. J Endocrinol 145(1):330-6

Jahng AW, Maricic I, Pedersen B, Burdin N, Naidenko O, Kronenberg M, Koezuka Y, Kumar V 
(2001) Activation of natural killer T cells potentiates or prevents experimental autoimmune 
encephalomyelitis. J Exp Med 194(12):1789–1799

Jameson SC (2002) Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2(8):547–556
Jamieson BD, Douek DC, Killian S, Hultin LE, Scripture-Adams DD, Giorgi JV, Marelli D, 

Koup RA, Zack JA (1999) Generation of functional thymocytes in the human adult. Immunity 
10(5):569–575

Jenkinson WE, Jenkinson EJ, Anderson G (2003) Differential requirement for mesenchyme in the 
proliferation and maturation of thymic epithelial progenitors. J Exp Med 198(2):325–332

Jennes L, Brame B, Centers A, Janovick JA, Conn PM (1995) Regulation of hippocampal gona-
dotropin releasing hormone (GnRH) receptor mRNA and GnRH-stimulated inositol phosphate 
production by gonadal steroid hormones. Brain Res Mol Brain Res  33(1):104–110

Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ 
(2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. 
Nat Immunol 2(4):301–306

Kameyama H, Kawamura T, Naito T, Bannai M, Shimamura K, Hatakeyama K, Abo T (2001) Size 
of the population of CD4+ natural killer T cells in the liver is maintained without supply by the 
thymus during adult life. Immunology 104(2):135–141

Kawashima I, Sakabe A, Akatsuka A, Seiki K (1995) Effects of estrogen on female mouse thymus, 
with special reference to ER_mRNA and T cell subpopulations. Pathophysiology 2:235–241

Keller ET, Chang C, Ershler WB (1996) Inhibition of NFkappaB activity through maintenance of 
IkappaBalpha levels contributes to dihydrotestosterone-mediated repression of the interleukin-
6 promoter. J Biol Chem 271(42):26267–26275

Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, Nayak L, Moss PA (2002) 
Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in 
healthy elderly individuals. J Immunol 169(4):1984–1992

Kim I, Saunders TL, Morrison SJ (2007) Sox17 dependence distinguishes the transcriptional regu-
lation of fetal from adult haemopoietic stem cells. Cell 130(3):470–483

Kim JM, Rudensky A (2006) The role of the transcription factor Foxp3 in the development of 
regulatory T cells. Immunol Rev 212:86–98

Kincade PW, Medina KL, Payne KJ, Rossi MI, Tudor KS, Yamashita Y, Kouro T (2000) Early B-
lymphocyte precursors and their regulation by sex steroids. Immunol Rev 175:128–137



Thymic Regeneration in Mice and Humans Following Sex Steroid Ablation 1603

Kirschmann DA, Murasko DM (1992) Splenic and inguinal lymph node T cells of aged mice 
respond differently to polyclonal and antigen-specific stimuli. Cell Immunol 139(2):426–437

Klug DB, Carter C, Gimenez-Conti IB, Richie ER (2002) Thymocyte-independent and thymocyte-
dependent phases of epithelial patterning in the fetal thymus. J Immunol 169(6):2842–2845

Knyszynski A, Adeler-Kunin S, Globerson A (1992) Effects of growth hormone on thymocyte 
development from progenitor cells in the bone marrow. Brain Behav Immun 6:327–340

Komuro T, Sano K, Asano Y, Tada T (1990) Analysis of age-related degeneracy of T-cell reper-
toire: localized functional failure in CD8+ T cells. Scand J Immunol 32(5):545–553

Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progeni-
tors in mouse bone marrow. Cell 91:661–672

Krueger A, von Boehmer H (2007) Identification of a T lineage-committed progenitor in adult 
blood. Immunity 26:105–116

Kumar N, Shan LX, Hardy MP, Bardin CW, Sundaram K (1995) Mechanism of androgen-induced 
thymolysis in rats. J Endocrinol 136(11):4887–4893

Kyprianou N, Isaacs JT (1988) Activation of programmed cell death in the rat ventral prostate after 
castration. J Endocrinol 122:552–562

Lee HW, Kim BS, Kim HJ, Lee CW, Yoo HJ, Kim JB, Yoon S (2005) Upregulation of receptor 
activator of nuclear factor kappa B ligand expression in the htymic subcapsular, paraseptal, 
perivascular and medullary epithelial cells during thymus regeneration. Histochem Cell Biol 
123(4–5):491–500

Lee PT, Putnam A, Benlagha K, Teyton L, Gottlieb PA, Bendelac A (2002) Testing the NKT cell 
hypothesis of human IDDM pathogenesis. J Clin Invest 110(6):793–800

Lehuen A, Lantz O, Beaudoin L, Laloux V, Carnaud C, Bendelac A, Bach JF, Monteiro RC (1998) 
Overexpression of natural killer T cells protects Valpha14-Jalpha281 transgenic nonobese dia-
betic mice against diabetes. J Exp Med 188(10):1831–1839

LeMaoult J, Messaoudi I, Manavalan JS, Potvin H, Nikolich-Zugich D, Dyall R, Szabo P, Weksler 
ME, Nikolich-Zugich J (2000) Age-related dysregulation in CD8 T cell homeostasis: kinetics 
of a diversity loss. J Immunol 165(5):2367–2373

LeRoith D, Yanowski J, Kaldjian EP, Jaffe ES, LeRoith T, Purdue K, Cooper BD, Pyle R, Adler W 
(1996) The effects of growth hormone and insulin-like growth factor I on the immune system 
of aged female monkeys. J Endocrinol 137(3):1071–1079

Lesley J, Hyman R, Schulte K (1985) Evidence that the Pgp-1 glycoprotein is expressed on thy-
mus-homing progenitor cells of the thymus. Cell Immunol 9:397–403

Li CL, Toda K, Saibara T, Zhang T, Ono M, Iwasaki S, Maeda T, Okada T, Hayashi Y, Enzan H, 
Shizuta Y, Onishi S (2002) Estrogen deficiency results in enhanced expression of Smoothened 
of the Hedgehog signaling in the thymus and affects thymocyte development. Int Immunop-
harmacol 2(6):823–833

Li J, McMurray RW (2006) Effects of estrogen receptor subtype-selective agonists on immune 
functions in ovariectomized mice. Int Immunopharmacol 6(9):1413–1423

Lieberman M, Hansteen GA, Waller EK, Weissnman IL, Sen-Majumdar A (1992) Unexpected 
effects of the severe combined immunodeficiency mutation on murine lymphomagenesis. J 
Exp Med 176:399–405

Lupoli G, Di Carlo C, Nuzzo V, Vitale G, Russo D, Palomba S, Nappi C (1997) Gonadotropin-
releasing hormone agonists administration in polycystic ovary syndrome. Effects on bone 
mass. J Endocrinol Invest 20(8):493–496

Luz NP, Marques M, Ayub AC, Correa PR (1969) Effects of estradiol upon the thymus and lym-
phoid organs of immature female rats. Am J Obstet Gynecol 15:105(4):525–528

Mackall CL, Fleisher TA, Brown BS, Andrich MP, Chen CC, Feuerstein IM, Horowitz ME, Magrath 
IT, Shad AT, Steinberg SM, Wexler MD, Gress RE (1995) Age, thymopoiesis and CD4+ T-
Lymphocyte regeneration after intensive chemotherapy. N Engl J Med 332(3) 143–149

Mackall CL, Bare CV, Granger LA, Sharrow SO, Titus JA, Gress, RE (1996) Thymic independ-
ent T cell regeneration occurs via antigen driven expansion of peripheral T cells resulting in a 
repertoire that is limited in diversity and prone to skewing. J Immunol 156:4609–4616



1604 A. Fletcher et al.

Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, Magrath IT, Wexler 
LH, Dimitrov DS, Gress RE (1997) Distinctions between CD8+ and CD4+ T-cell regenera-
tive pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 
89(10):3700–3707

Mackall CL, Gress RE (1997) Thymic aging and T-cell regeneration. Immunol Rev 160:91–102
Maher P, O’Toole CM, Wreghitt TG, Spiegelhalter DJ, English TA (1985) Cytomegalovirus infec-

tion in cardiac transplant recipients associated with chronic T cell subset ratio inversion with 
expansion of a Leu-7+ TS-C+ subset. Clin Exp Immunol 62(3):515–524

Marchetti B, Guarcello V, Morale MC, Bartoloni G, Raiti F, Palumbo G Jr, Farinella Z, Cordaro S, 
Scapagnini U (1989) Luteinizing hormone-releasing hormone (LHRH) agonist restoration of 
age-associated decline of thymus weight, thymic LHRH receptors, and thymocyte proliferative 
capacity. J Endocrinol 125(2):1037–1045

McMurray RW, Suwannaroj S, Ndebele K, Jenkins JK. (2001). Differential effects of sex steroids 
on T and B cells: modulation of cell cycle phase distribution, apoptosis and bcl-2 protein levels. 
Pathobiology 69(1):44–58

Menitove JE, Aster RH, Casper JT, Lauer SJ, Gottschall JL, Williams JE, Gill JC, Wheeler DV, 
Piaskowski V, Kirchner P, Montgomery RR (1983) T-lymphocyte subpopulations in patients 
with classic hemophilia treated with cryoprecipitate and lyophilized concentrates. N Engl J 
Med 308(2):83–86

Messingham KA, Messingham KA, Shirazi M, Duffner LA, Duffner LA, Emanuele MA, Kovacs 
EJ, Kovacs EJ, Kovacs EJ, Kovacs EJ (2001) Testosterone receptor blockade restores cellular 
immunity in male mice after burn injury. J Endocrinol 169(2):299–308

Min D, Panoskaltsis-Motari TP, Chung B, Danilenko D, Farrell C, Lacey D, Blazar B (2002) 
Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to 
improve thymic and peripheral T cell reconstitution after bone marrow transplantation. Blood 
99(12):4592–4600

Moghissi KS (1990) Gonadotropin releasing hormones. Clinical applications on gynaecology. J 
Reprod Med 35:1097–1107

Mosley RL, Koker MM, Miller RA (1998) Idiosyncratic alterations of TCR size distributions 
affecting both CD4 and CD8 T cell subsets in aging mice. Cell Immunol 189(1):10–18

Motecino-Rodriguez E, Dorshkind K (2003) To T or not to T: reassessing the common lymphoid 
progenitor. Nat Immunol 4:100–101

Moyad MA (2002) Complementary therapies for reducing the risk of osteoporisis in patients 
receiving luteinizing hormone-releasing hormone treatment/orchiectomy for prostate cancer: a 
review and assessment of the need for more research. Urology 59(4 Suppl 1):34–40

Muraro PA, Douek DC, Packer A, Chung K, Guenaga FJ, Cassiani-Ingoni R, Campbell C, Memon 
S, Nagle JW, Hakim FT, Gress RE, McFarland HF, Burt RK, Martin R (2005) Thymic output 
generates a new and diverse TCR repertoire after autologous stem cell transplantation in mul-
tiple sclerosis patients. J Exp Med 201(5):805–816

Nabarra B, Andrianarison I (1996) Ultrastructural study of thymic microenvironment involution in 
aging mice. Exp Gerontol 31:489–506

Napolitano LA, Lo JC, Gotway MB, Mulligan K, Barbour JD, Schmidt D, Grant RM, Halvorsen 
RA, Schambelan M, McCune JM (2002) Increased thymic mass and circulating CD4 T cells in 
HIV-1 infected adults treated with growth hormone. AIDS 16(8):1103–1111

Napolitano LA (2003) Approaches to immune reconstitution in HIV infection. Top HIV Med 
11(5):160–163

Neely EK, Hintz RL, Parker B, Bachrach LK, Cohen P, Olney R, Wilson DM (1992) Two year 
results of treatment with depot leuprolide acetate for central precocious puberty. J Pediatr 
121:634–640

Nicoletti C. (1994) Antibody response in aged C57BL/6 mice: T helper cells are responsible for 
the decline of the primary antibody response to a bacterial antigen in aging. Immunobiology 
190(1–2):127–137

Nociari MM, Telford W, Russo C (1999) Postthymic development of CD28-CD8+ T cell sub-
set: age-associated expansion and shift from memory to naive phenotype. J Immunol 
162(6):3327–3335



Thymic Regeneration in Mice and Humans Following Sex Steroid Ablation 1605

Olsen NJ, Kovacs WJ (1989) Increased thymic size and thymocyte interleukin 2 production in 
androgen-resistant mice. Scand J Immunol 29(6):733–738

Olsen NJ, Kovacs WJ (1996) Gonadal steroids and immunity. Endocr Rev 17(4):369–384
Olsen NJ, Olson G, Viselli SM, Gu X, Kovacs WJ (2001) Androgen receptors in thymic epithelium 

modulate thymus size and thymocyte development. J Endocrinol 142(3):1278–1283
Oyan, B. Aksoy S, Yavas O, Kars A, Turker A, Barista I (2004) Thymic malignancy in a breast 

cancer patient. Acta Oncol 43(1):115–116
Paavonen T (1994) Hormonal regulation of immune responses. Ann Med 26(4):255–258
Page DM, Kane LP, Onami TM, Hedrick SM (1996) Cellular and biochemical requirements for 

thymocyte negative selection. Semin Immunol 8(2):69–82
Page ST, Plymate SR, Bremner WJ, Matsumoto AM, Hess DL, Lin DW, Amory JK, Nelson PS, 

Wu JD (2006) Effect of medical castration on CD4+CD25+ T cells, CD8+ T cell IFNg expres-
sion, and NK cells: a physiological role for testosterone and/or its metabolites. Am J Physiol 
Endocrinol Metab 290:E856–E863

Papavasiliou S, Zmeili S, Herbon L, Duncan-Weldon J, Marcshall J, Landefeld T (1986) Alpha 
and luteinizing hormone beta messenger ribonucleic acid (RNA) of male and female rats after 
castration: quantitation using an optimised RNA dot blot hybridisation assay. J Endocrinol 
119:691–698

Pawelec G, Adibzadeh M, Solana R, Beckman I (1997) The T cell in the ageing individual. Mech 
Ageing Dev 93(1–3):35–45

Pawelec G, Solana R (1999) Immunosenescence Immunology Today 18(11):514–516
Pellicci DG, Hammond KJ, Uldrich AP, Baxter AG, Smyth MJ, Godfrey DI (2002) A natural killer 

T (NKT) cell developmental pathway involving a thymus-dependent NK1.1(-)CD4(+) CD1d-
dependent precursor stage. J Exp Med 195(7):835–844

Perry SS, Welner RS, Kouro T, Kinkade PW, Sun XH. (2006) Primitive lymphoid progenitors in 
bone marrow with T lineage reconstituting potential. J Immunol 177:2880–28807

Pido-Lopez J, Imami N, Andrew D, Aspinall R (2002) Molecular quantitation of thymic output in 
mice and the effect of IL-7. Eur J Immunol 32(10):2827–2836

Pires A, Pido-Lopez J, Moyle G, Gazzard B, Gotch F, Imami N (2004) Enhanced T cell maturation, 
differentiation and function in HIV-1 infected individuals after growth hormone and highly 
active antiretroviral therapy. Antivir Ther 9(1):67–75

Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA, Ziegler SF, Offner H 
(2004) Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compart-
ment. J Immunol 173(4):2227–2230

Polanczyk MJ, Hopke C, Huan J, Vandenbark AA, Offner H (2005) Enhanced FoxP3 expression and 
Treg cell function in pregnant and estrogen-treated mice. J Neuroimmunol 170(1–2):85–92

Porritt HE, Rumfelt LL, Tabrizifard S, Schmitt TM, Zuniga-Pflucker JC, Petrie HT (2004) Het-
erogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to 
generate T cell and non-T cell lineages. Immunity 20:735–745

Porubsky S, Speak AO, Luckow B, Cerundolo V, Platt FM, Grone HJ (2007) Normal development 
and function of invariant natural killer T cells in mice with isoglobotrihecosylceramide (iGb3) 
deficiency. Proc Natl Acad Sci U S A 104(14):5977–5982

Posnett DN, Sinha R, Kabak S, Russo C (1994) Clonal populations of T cells in normal eld-
erly humans: the T cell equivalent to “benign monoclonal gammapathy” J Exp Med 
179(2):609–618

Posnett DN, Edinger JW, Manavalan JS, Irwin C, Marodon G (1999) Differentiation of human 
CD8 T cells: implications for in vivo persistence of CD8+ CD28- cytotoxic effector clones. Int 
Immunol 11(2):229–241

Powrie F, Correa-Oliveira R, Mauze S, Coffman RL (1994) Regulatory interactions between 
CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective 
and pathogenic cell-mediated immunity. J Exp Med 179(2):589–600

Prelog M (2006) Aging of the immune system: a risk factor for autoimmunity? Autoimmun Rev 
5(2):136–139

Prieto GA, Rosenstein Y (2006) Oestradiol potentiates the suppressive function of human CD4 
CD25 regulatory T cells by promoting their proliferation. Immunology 118(1):58–65



1606 A. Fletcher et al.

Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR, Aguet M (1999) Deficient 
T cell fate specification in mice with an induced activation of Notch1. Immunity 10:547–558

Roberts CW, Satoskar A, Alexander J (1996) Sex steroids, pregnancy-associated hormones and 
immunity to parasitic infection. Parasitol Today 12(10):382–388

Roden AC, Moser MT, Tri SD, Mercader M, Kuntz SM, Dong H, Hurwitz AA, McKean DJ, Celis 
E, Leibovich BC, Allison JP, Kwon ED (2004) Augmentation of T cell levels and responses 
induced by androgen deprivation. J Immunol 173(10):6098–6108

Rossi FM, Corbel SY, Merzaban JS, Carlow DA, Gossens K, Duenas J, So L, Yi L, Ziltener HJ 
(2005) Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-
1. Nat Immunol 6:626–634

Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common 
progenitor for thymic cortical and medullary epitheliu. Nature 441(7096):988–991

Rossi SW, Chidgey AP, Parnell SM, Jenkinson WE, Scott HS, Jenkinson EJ, Anderson G 
(2007a) Redefining epithelial progenitor potential in the developing thymus. Eur J Immunol 
37(9):2411–2418

Rossi SW, Jeker LT, Ueno T, Kuse S, Keller MP, Zuklys S, Gudkov AV, Takahama Y, Krenger W, 
Blazar BR, Holländer GA (2007b) Keratinocyte growth factor (KGF) enhances postnatal T-cell 
development via enhancements in proliferation and function of thymic epithelial cells. Blood 
109(9):3803–3811

Rossi SW, Kim MY, Leibbrandt A, Parnell SM, Jenkinson WE, Glanville SH, McConnell FM, 
Scott HS, Penninger JM, Jenkinson EJ, Lane PJ, Anderson G (2007c) RANK signals from 
CD4+30 inducer cells regulate development of Aire-expressing epithelial cells in the thymic 
medulla. J Exp Med 204(6):1267–1272

Roubinian JR, Talal N, Greenspan JS, Goodman JR, Siiteri PK (1978) Effect of castration and sex 
hormone treatment on survival, anti-nucleic acid antibodies, and glomerulonephritis in NZB/
NZW F1 mice. J Exp Med 147(6):1568–1583

Roubinian JR, Talal N, Greenspan JS, Goodman JR, Nussenzweig V (1979) Danazol’s failure to 
suppress autoimmunity in NZB/NZW F1 mice. Arthritis Rheum 22(12):1399–1402

Rutqvist LE, Johansson H, Stockholm Breast Cancer Study Group (2007) Long-term follow–up of 
the randomised Stockholm trial on adjuvant tamoxifen among post-menopausal patients with 
early stage breast cancer. Acta Oncol 46(2):133–45

Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and 
negative control of immune responses. Annu Rev Immunol 22:531–562

Sambandam A, Maillard I, Zediak VP, Xu L, Gerstein RM, Aster JC, Pear WS, Bhandoola A 
(2005) Notch signaling controls the generation and differentiation of early T lineage progeni-
tors. Nat Immunol 6(7):663–670

Samy TS, Schwacha MG, Cioffi WG, Bland KI, Chaudry IH (2000) Androgen and estrogen 
receptors in splenic T lymphocytes: effects of flutamide and trauma-hemorrhage. Shock 
14(4):465–470

Samy TS, Knoferl MW, Zheng R, Schwacha MG, Bland KI, Chaudry IH (2001) Divergent immune 
responses in male and female mice after trauma-hemorrhage: dimorphic alterations in T lym-
phocyte steroidogenic enzyme activities. J Endocrinol 142(8):3519–3529

Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, Marcato A, Passeri G, Ortolani 
C, Forti E, Fagiolo U, Passeri M, Franceschi C (1993) Lymphocyte subsets and natural killer 
cell activity in healthy old people and centenarians. Blood 82(9):2767–2773

Sansoni P, Vescovini R, Fagnoni F, Biasini C, Zanni F, Zanlari L, Telera A, Lucchini G, Passeri 
G, Monti D, Franceschi C, Passeri M (2007) The immune system in extreme longevity. Exp 
Gerontol In press 

Savino W, Arzt E, Dardenne M (1999) Immunoneuroendocrine connectivity: the paradigm of the 
thymus-hypothalamus/pituitary axis. Neuroimmunomodulation 6:126–136

Schmitt TM, Zuniga-Pflucker JC (2005) Thymus-derived signals regulated early T-cell develop-
ment. Crit Rev Immunol 25(2):141–159

Schuurs AH, Verheul HA (1990) Effects of gender and sex steroids on the immune response. J 
Steroid Biochem 35(2):157–172

Schwab R, Szabo P, Manavalan JS, Weksler ME, Posnett DN, Pannetier C, Kourilsky P, Even J (1997) 
Expanded CD4+ and CD8+ T cell clones in elderly humans. J Immunol 158(9):4493–4499



Thymic Regeneration in Mice and Humans Following Sex Steroid Ablation 1607

Schwarz BA, Bhandoola A (2004) Circulating haemopoietic progenitors with T lineage potential. 
Nat Immunol 5:953–960

Schwarz BA, Sambandam A, Maillard I, Harman BC, Love PE, Bhandoola A (2007) Selective 
thymus settling regulated by cytokine and chemokine receptors. J Immunol 178:2008–2017

Scollay RG, Butcher EC, Weissman IL (1980) Thymus cell migration. Quantitative aspects of cel-
lular traffic from the thymus to the periphery in mice. Eur J Immunol 10:210–218

Seggewiss R, Lore K, Guenaga FJ, Pittaluga S, Mattapallil J, Chow CK, Koup RA, Camphausen K, 
Nason MC, Meier-Schellersheim M, Donahue RE, Blazar BR, Dunbar CE, Douek DC (2007) 
Keratinocyte growth factor augments immune reconstitution after autologous haemopoietic 
progenitor cell transplantation in rhesus macaques. Blood 110(1):441–449

Shen HQ, Lu M, Ikawa T, Masuda K, Ohmura K, Minato N, Katsura Y, Kawamoto H (2003) T/NK 
bipotent progenitors in the thymus retain the potential to generate dendritic cells. Immunol 
171:3401–3406

Sempowski GD, Gooding ME, Liao HX, Le PT, Haynes BF (2002) T cell receptor excision circle 
assessment of thymopoiesis in aging mice. Mol Immunol 38:841–848

Sidman CL, Luther EA, Marshall JD, Nguyen KA, Roopenian DC, Worthen SM (1987) Increased 
expression of major histocompatibility complex antigens on lymphocytes from aged mice. 
Proc Natl Acad Sci U S A (21):7624–7628

Singh AK, Wilson MT, Hong S, Olivares-Villagomez D, Du C, Stanic AK, Joyce S, Sriram S, Koe-
zuka Y, Van Kaer, L (2001) Natural killer T cell activation protects mice against experimental 
autoimmune encephalomyelitis. J Exp Med 194(12):1801–1811

Smith MR, Fallon MA, Goode MJ (2003) Cross-sectional study of bone turnover during bicaluta-
mide monotherapy for prostate cancer. Urology 61(1):127–131

Smithson G, Beamer WG, Shultz KL, Christianson SW, Shultz LD, Kincade PW (1994) Increased 
B lymphopoiesis in genetically sex steroid-deficient hypogonadal (hpg) mice. J Exp Med 
180(2):717–720

Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M, Kawano T, Pelikan SB, 
Crowe NY, Godfrey DI (2000) Differential tumor surveillance by natural killer (NK) and NKT 
cells. J Exp Med 191(4):661–668

Speak AO, Salio M, Neville DC, Fontaine J, Priestman DA, Platt N, Heare T, Mutters TD, Dwek 
RA, Trottein F, Exley MA, Cerundolo V, Platt FM (2007) Implications for invariant natural 
killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. 
Proc Natl Acad Sci U S A 104(14):5971–5976

Staples JE, Gasiewicz TA, Fiore NC, Lubahn DB, Korach KS, Silverstone AE (1999) Estrogen 
receptor is necessary in thymic developmnent and estrodiol-induced thymic alterations. J 
Immunol 163:4168–4174

Steinmann GG, Klaus B, Muller-Hermelink HK (1985) The involution of the ageing human thymic 
epithelium is independent of puberty. A morphometric study. Scand J Immunol 22:563–575

Sumita K, Hattori N, Inagaki C (2005) Effects of growth hormone in the differentiation of mouse 
B lymphoid precursors. J Pharmacol Sci 97:408–416

Sutherland JS, Goldberg, GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS, Blazar BR, Millar 
JL, Malin MA, Chidgey AP, Boyd RL (2005) Activation of thymic regeneration in mice and 
humans following androgen blockade. J Immunol 175:2741–2753

Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selec-
tion. Nat Rev Immunol 6:127–135

Taub DD, Longo DL (2005) Insights into thymic aging and regeneration. Immunol Rev 205:72–78
Thompson IM (2001) Flare associated with LHRH-Agonist Therapy. Rev Urol  3 Suppl 3:S10–S14
Thornton AM (2005) T regulatory cells. Curr Biol 15(15):R582
Tian ZG, Woody MA, Sun R, Welniak LA, Raziuddin A, Funakoshi S, Tsarfaty G, Longo DL, 

Murphy WJ (1998) Recombinant human growth hormone promotes haemopoietic reconstitu-
tion after syngeneic bone marrow transplantation in mice. Stem Cells 16:193–199

Toichi E, Hanada K, Hosokawa T, Higuchi K, Hosokawa M, Imamura S, Hosono M (1997) Age-
related decline in humoral immunity caused by the selective loss of TH cells and decline in 
cellular immunity caused by the impaired migration of inflammatory cells without a loss of 
TDTH cells in SAMP1 mice Mech Ageing Dev 99(3):199–217



1608 A. Fletcher et al.

Urbani S, Amadei B, Tola D, Massari M, Schivazappa S, Missale G, Ferrari C (2006) PD-1 expres-
sion in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaus-
tion. J Virol 80(22):11398–11403

Utsuyama M, Hirokawa K (1989) Hypertrophy of the thymus and restoration of immune functions 
in mice and rats by gonadectomy. Mech Ageing Dev 47:175–185

Utsuyama M, Hirokawa K, Kurashima C, Fukayama M, Inamatsu T, Suzuki K, Hashimoto W, Sato 
K (1992) Differential age-change in the numbers of CD4+CD45RA+ and CD4+CD29+ T cell 
subsets in human peripheral blood. Mech Ageing Dev 63(1):57–68

van Ewijk W (1991) T cell differentiation is influenced by thymic microenvironments. Annu Rev 
Immunol 9:591–615

van Ewijk W, Hollander G, Terhorst C, Wang B (2000) Stepwise development of thymic microen-
vironments in vivo is regulated by thymocyte subsets. Development 127(8):1583–1591

van Vliet E, Melis M, van Ewijk W (1984) Monoclonal antibodies to stromal cell types of the 
mouse thymus. Eur J Immunol 14(6): p 524–529

Verhelst J, Denis L, Van Vliet P, Van Poppel H, Braeckman J, Van Cangh P, Mattelaer J, D’Hulster 
D, Mahler C (1994) Endocrine profiles during administration of the new non-steroidal anti-
androgen Casodex in prostate cancer. Clin Endocrinol 41(4):525–530

Viselli SM, Reese KR, Fan J, Kovacs WJ, Olsen NJ (1997) Androgens alter B cell development in 
normal male mice. Cell Immunol 182(2):99–104

Viselli SM, Stanziale S, Shults K, Kovacs WJ, Olsen NJ (1995) Castration alters peripheral immune 
function in normal male mice. Immunology 84(2):337–342

Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, van Landeghen M, Buckner JH, Ziegler 
SF (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human 
CD4+CD25- T cells. J Clin Invest 112(9):1437–1443

Waller KG, Shaw RW (1993) Gonadotropin-releasing hormone analogues for the treatment of 
endometriousis: long-term follow up. Fertil Steril 59:511–515

Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W, Liu YJ (2005) Hassall’s corpuscles 
instruct dendritic cells to induce CD4+CD25+ regulatory T cells in the human thymus. Nature 
436(7054):1181–1185

Wayne SJ, Rhyne RL, Garry PJ, Goodwin JS (1990) Cell-mediated immunity as a predictor of 
morbidity and mortality in subjects over 60. J Gerontol 45(2):M45–M48

Weigent DA (1996) Immunoregulatory properties of growth hormone and prolactin. Pharmacol 
Ther 69(3):237–257

Weinberg K, Blazar BR, Wagner JE, Agura E, Hill BJ, Smogorzewska M, Koup RA, Betts MR, 
Collins RH, Douek DC (2001) Factors affecting thymic function after allogeneic haemopoietic 
stem cell transplantation. Blood 97(5):1458–1466

Whitacre CC, Reingold SC, O’Looney PA (1999) A gender gap in autoimmunity. Science 
283(5406):1277–1278

Wichmann MW, Zellweger R, DeMaso CM, Ayala A, Chaudry IH (1996) Mechanism of immu-
nosuppression in males following trauma-hemorrhage. Critical role of testosterone. Arch Surg 
131(11):1186–1191

Windmill KF, Meade BJ, Lee VW (1993) Effect of prepubertal gonadectomy and sex steroid treat-
ment on the growth and lymphocyte populations of the thymus. Reprod Fertil Dev 5:73–81

Windmill KF, Lee VW (1999) Influences of surgical castration on the thymus of male rats. J 
Reprod Immunol 44(1–2):29–39

Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL (2001) Physiological migration of 
haemopoietic stem and progenitor cells. Science 294:1933–1936

Wu L, Kincade PW, Shortman K (1993) The CD44 expressed on the earliest intrathymic precursor 
population functions as a thymus homing molecule but does not bind to hyaluronate. Immunol 
Lett 38:69–75

Wu L, Li CL, Shortman K (1996) Thymic dendritic cell precursors: relationship to the T lym-
phocyte lineage and phenotype of the dendritic cell progeny. J Exp Med 184:903–911

Yoon S, Yoo YH, Kim BS, Kim JJ (1997) Ultrastructural alterations of the cortical epithelial cells 
of the rat thymus after cyclophosphamide treatment. Histol Histopathol 12:401–413



Thymic Regeneration in Mice and Humans Following Sex Steroid Ablation 1609

Yoon S, Lee HW, Baek SY, Kim BS, Kim JB, Lee SA (2003) Upregulation of TrkA neurotrophin 
receptor expression in the thymic subcapsular, paraseptal, perivascular and cortical epithelial 
cells during thymus regeneration. Histochem Cell Biol 119(1):55–68

Young HE, Duplaa C, Katz R, Thompson T, Hawkins KC, Boev AN, Henson NL, Heaton M, Sood 
R, Ashley D, Stout C, Morgan JH 3rd, Uchakin PN, Rimando M, Long GF, Thomas C, Yoon 
JI, Park JE, Hunt DJ, Walsh NM, Davis JC, Lightner JE, Hutchings AM, Murphy ML, Boswell 
E, McAbee JA, Gray BM, Piskurich J, Blake L, Collins JA, Moreau C, Hixson D, Bowyer FP 
3rd, Black AC Jr, (2005) Adult-derived stem cells and their potential for use in tissue repair and 
molecular medicine. J Cell Mol Med 9(3):p 753–769

Zander AR, Reuben JM, Johnston D, Vellekoop L, Dicke KA, Yau JC, Hersh EM (1985) Immune 
recovery following allogeneic bone marrow transplantation. Transplantation 40(2):177–183

Zhao H, Zhanzhuang T, Hao J, Chen B (2005) Extragonadal aromatization increases with time 
after ovariectomy. Reprod Biol Endocrin  3:6      





1611

                                        Abstract:      Nutraceuticals, including dietary supplements and functional foods, are 
a $152 billion world market. The percentage of those aged 65 years and older using 
nutraceutical products is higher than for any other age group and has doubled in 
recent years. Aging is associated with decreased immunity, increased morbidity and 
mortality resulting from infectious agents, and poor nutritional status. Deficiencies 
in vitamin E, vitamin B 

6
 , folate, zinc, and selenium, for example, are particularly 

common, and deficits in these micronutrients have been reported to negatively influ-
ence immunity. Thus, if nutraceutical products can improve micronutrient status, the 
regular use of nutraceuticals by the elderly population may provide an opportunity 
to enhance immunity in this at-risk population. Results from human clinical  trials 
evaluating the use of nutraceuticals to support immune restoration in the elderly, 
however, have been largely inconsistent. Additional clinical trials using consistent 
outcome measures are needed, which will require a cooperative commitment from 
the nutraceutical industry and academia.      
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    1 Introduction

It has been postulated and highly substantiated throughout this text that decreased 
immunity is at least partially responsible for the observed increase in morbidity 
and mortality resulting from infectious agents in the elderly. However, it has also 
been emphasized that the effects of aging on immunity are highly heterogene-
ous, including among the healthy elderly, suggesting that additional factors might 
influence susceptibility to infectious disease in the aged. Nutritional status has 
been proposed as one such variable that may explain differences in both the inci-
dence and the pathology of infection. For example, the elderly are at an increased 
risk for micronutrient deficiencies due to a variety of factors, including social, 
physical, economic, and emotional obstacles to eating [20, 41, 50]. Deficiencies 
in vitamin E, vitamin B 

6
 , folate, zinc, and selenium are common in the elderly 

and deficits in these micronutrients have been reported to negatively influence 
immunity [1, 5, 44, 50]. Supplementation with these and other nutrients as poten-
tial nutraceuticals to restore immunity in the elderly will be discussed in detail in 
this chapter.  

2    Nutraceuticals  

   The term  nutraceutical  encompasses a broad spectrum of commercially-
available products in which a food or part of a food (nutrient) is intended to pro-
vide medical or health benefits, including the prevention and treatment of disease 
(pharmaceutical) [17, 18]. Nutraceuticals have no formal regulatory definition, 
so a variety of alternative definitions have emerged that largely debate whether 
the nutrient or pharmaceutical characteristics of nutraceuticals should be empha-
sized. Here, we broadly define nutraceuticals to include functional foods, dietary 
supplements, and medical foods (Table 1). Like nutraceuticals,  functional foods  
have no legal definition, but are generally distinguishable from other types of 
nutraceuticals, because they are recognizable as conventional food products. In 
contrast,  dietary supplements  were legally defined in the Dietary Supplement 
Health and Education Act (DSHEA) of 1994, which expressly states, among 
other requirements, that products labeled as dietary supplements may not be rep-
resented as conventional foodstuffs [69]. A final category,  medical foods , is dis-
tinguishable from functional foods and dietary supplements by the requirement 
that medical foods meet “distinctive nutritional requirements of a disease or con-
dition.” [69] Defined according to the U.S. Orphan Drug Act, medical foods 
must be a food for oral or tube feeding, be labeled for the dietary management 
of a specific medical disorder, disease, or condition for which there are estab-
lished nutritional requirements, and be intended for use under medical supervi-
sion. However, like all foods and dietary supplements, medical foods do not 
require premarket approval or registration with the United States Food and Drug 
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 Administration (FDA). The regulation of nutraceutical products is described in 
more detail at the end of this chapter.             

      3  Aging, Malnutrition, and Micronutrient Deficiency  

   As summarized in Table 2, the effects of aging, malnutrition, and micronutrient defi-
ciencies on various parameters of immunity are complementary, if not cumulative 
[40, 60, 64]. As in aging, malnutrition and nutrient deficiencies are generally charac-
terized by decreased delayed-type hypersensitivity (DTH) reactions, lymphopenia, 
reduced lymphocyte proliferation in response to mitogenic or antigenic stimulation, 
altered cytokine production, decreased antibody response to vaccination, reduced 
cytotoxic T lymphocyte (CTL) activity, impaired phagocytic function, and a loss in 
inducible natural killer (NK) cell activity. Thus, nutritional status and advanced age 
are independent but confounding factors that both have primary effects on innate 
and cell-mediated immunity, increasing the risk of infection.           

Term Definition Appearance Examples

Nutraceuticals Any substance that may be 
considered a food or part of a 
food that provides medical or 
health benefits, including the 
prevention and treatment of 
disease. (DeFelice, DeFelice)

Foods, pills, 
tablets, 
capsules, 
powders, 
meal plans

Functional foods, dietary 
supplements, 
medical foods, 
genetically engineered 
foods

Functional
foods

Those foods that encompass 
potentially healthful products, 
including any modified food 
or food ingredient that may 
provide a health benefit beyond 
that of the traditional nutrients 
it contains. (Milner, Thomas)

Foods Fortified breads and cere-
als, calcium-enriched 
orange juice, energy 
drinks, energy bars

Dietary
supplements

Any products which contain one 
or more dietary ingredients, 
such as vitamins, minerals, 
herbs or other botanicals, 
amino acids, or other ingre-
dients used to supplement the 
diet. (CFSAN)

Pills, tablets, 
capsules, 
liquids, 
powders

Multivitamins, multimin-
erals, isolated nutrients, 
functional foods 
labeled as dietary 
supplements 
(e.g., bars)

Medical foods A food which is formulated to 
be consumed or administered 
enterally under the supervision 
of a physician and for which 
distinctive nutritional require-
ments, based on recognized 
scientific principles, are estab-
lished by medical evaluation. 
(CFSAN)

Liquids 
or powders

Nutrient-modified 
products for patients 
with kidney/renal 
disease, diabetes, 
AIDS, cancer, cystic 
fibrosis, malabsorption, 
or metabolic disorders 
(phenylketonuria); oral 
rehydration solutions

Table 1 Distinguishing characteristics of nutraceuticals and related product categories
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     4       Nutritional Status in the Elderly  

   In controlled experimental conditions, nearly any nutritional deficiency, if severe 
enough, will result in impaired immunity and an increase in infectious disease; like-
wise, addressing the specific nutrient deficiency will restore immunity. This was 
elegantly demonstrated in a study by Meydani et al. [46] in which healthy elderly 
subjects were depleted of vitamin B 

6
  over a period of under 3 weeks. Vitamin B 

6
  

repletion was then initiated in three, 3-week periods of increasing B 
6
  intake, fol-

lowed by 4 days of supplementation at 50 mg/d. Vitamin B 
6
  depletion resulted in a 

decreased percentage and number of total lymphocytes, reduced lymphocyte prolif-
eration in response to both B- and T-cell mitogens, and decreased IL-2 production. 
Following repletion, all parameters returned to baseline levels. Further, the authors 
demonstrated a significant correlation between plasma vitamin B 

6
  and mitogen-

stimulated lymphocyte proliferation.  
   It is much more difficult to ascertain the effectiveness of nutritional supplemen-

tation on immune restoration among the highly heterogeneous, healthy elderly. 
First, while it is generally accepted that nutritional deficiencies increase with age, 
not all studies that have investigated the effects of micronutrient supplementation 
on immune parameters in the elderly have reported decreased micronutrient status 
at baseline [2, 6, 31]. Further, while some studies have demonstrated an associa-
tion between decreased micronutrient status in the elderly and impaired immunity, 
such as decreased mitogen-stimulated lymphocyte proliferation [51] or a reduced 
protective antibody response to influenza vaccination [25, 33], other studies disa-
gree [26, 30]. For example, in a study of 61 ambulatory elderly with a mean age 
of 81 years, 54 % of elderly participants regularly consumed micronutrient supple-
ments compared to 33 % of young controls [26]. Elderly participants had plasma 
concentrations of beta-carotene, retinol, alpha-tocopherol, and zinc that were 
equal to or greater than those of young. However, despite adequate micronutrient 

Table 2 Reported effects of aging, malnutrition, and micronutrient deficiency on immune functiona,b

Parameter Aging Malnutrition Deficiency

Lifespan NA ↓ ↓
Infection ↑ ↑ ↑
DTH reactions ↓ ↓ ↓
Lymphocyte number or percentage ↓ or = ↓ ↓
Lymphocyte proliferation ↓ ↓ ↓
Cytokine production Altered (↓ IL-2) Altered (↓ IL-2) Altered (↓ IL-2)
Antibody response to vaccination ↓ ↓ ↓
CTL activity ↓ ↓ ↓
Phagocytic function ↓ ↓ ↓
Inducible NK cell activity ↓ or = ↓ ↓
a Adapted from [60], used with permission
b Reported in animal studies and/or human trials
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status, mitogen-stimulated lymphocyte proliferation was  significantly reduced in 
the elderly participants. Therefore, it appears that some degree of immunosenes-
cence occurs in the healthy elderly, independent of nutritional status.  

   Specific micronutrient intake requirements have been established for elderly 
men and women by the Food and Nutrition Board, Institute of Medicine, National 
Academies of Science (Table 3). These Dietary Reference Intakes (DRIs) are 
intended to meet the daily needs of most healthy men and women aged 70 years 
or greater and serve as a reference for this population in both the US and Canada. 
In the elderly with low micronutrient status, supplementation with a multivitamin/
multimineral at or near the DRI can successfully increase serum concentrations to 
target levels [7, 43].  

Table 3 Dietary reference intakes (DRIs) for men and women aged 70 yearsa

 Vitamin A 
(μg/d)

Vitamin C 
(mg/d)

Vitamin D 
(μg/d)

Vitamin E 
(mg/d)

Vitamin K 
(μg/d)

Thiamin 
(mg/d)

Riboflavin 
(mg/d)

Men 900 90 15 15 120 1.2 1.3

Women 700 75 15 15 90 1.1 1.1

ULb 3,000 2,000 50 1,000 NDc ND ND

 Niacin 
(mg/d)

Vitamin B
6
 

(mg/d)
Folate 
(μg/d)

Vitamin 
B

12
(μg/d)

Pantothenic 
Acid (mg/d)

Biotin 
(μg/d)

Choline 
(μg/d)

Men 16 1.7 400 2.4 5 30 550

Women 14 1.5 400 2.4 5 30 425

UL 35 100 1,000 ND ND ND 3.5 g/d

 Calcium 
(mg/d)

Chromium 
(μg/d)

Copper 
(μg/d)

Iodine 
(μg/d)

Iron (mg/d) Magnesium 
(mg/d)

Manganese 
(mg/d)

Men 1,200 30 900 150 8 420 2.3

Women 1,200 20 900 150 8 320 1.8

UL 2.5 g/d ND 10,000 1,100 45 350 11

 Molybdenum 
(μg/d)

Phosphorus 
(mg/d)

Selenium 
(μg/d)

Zinc 
(mg/d)

Potassium 
(g/d)

Sodium 
(g/d)

Chloride 
(g/d)

Men 45 700 55 11 4.7 1.2 1.8

Women 45 700 55 8 4.7 1.2 1.8

UL 2,000 3 g/d 400 40 ND 2.3 3.6
a These values are set forth by the Food and Nutrition Board, Institute of Medicine, National Acad-
emies of Science; original reports available at www.nap.edu. These values represent a combination 
of Recommended Dietary Allowances (RDAs) and Adequate Intakes (AIs). The RDA is the average 
daily intake that will meet the requirements of nearly all (97–98 %) healthy individuals in the group. 
The AI is similar but is based on a limited amount of data, such that an RDA cannot be calculated. 
An AI for fluoride has also been determined for elderly men (4 mg/d) and women (3 mg/d). Fluo-
ride is rarely found in multivitamin/multimineral products
b The Tolerable Upper Intake Level (UL) is the highest level of daily intake that is likely to pose 
no health risk to almost all individuals in the group. Additional ULs have been determined for 
boron (20 mg/d), fluoride (10 mg/d), nickel (1 mg/d), and vanadium (1.8 mg/d). The elderly 
should be cautioned against intakes above the DRI when a UL has not been determined
c ND, not determined
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        5  Nutraceutical Use in the Elderly  

   Dietary supplements and functional foods are a $152 billion world market (Fig. 1) 
[54]. According to the  Nutrition Business Journal , dietary supplement sales in the 
U.S. alone account for an estimated $22.5 billion and growing, including $7.5 bil-
lion in vitamin products and $4.6 billion in herbals (2006 data). Dietary supplement 
use is increasing among the nation’s elderly and may provide an opportunity to 
correct nutrient deficiencies in this at-risk population. The percentage of those over 
the age of 65 using dietary supplements is higher than for any other age group in the 
U.S. and has nearly doubled in recent years [13, 36]. Although estimates vary by 
study criteria, it is clear from multiple reports that over 50 % of those over the age 
of 65 currently use dietary supplements [3, 13, 26, 38, 53].  

  In a large, cross-sectional study of free-living adults across 13 states, dietary 
supplement use significantly increased with age and was positively associated with 
other healthy behaviors [3]. Dietary supplement use is generally higher in women, 
and use appears to peak in both men and women at ages 71–75 years, in terms of 
both the total percentage of the population utilizing supplements and total supple-
ment intake [38, 66]. Multiple surveys have concluded that the nutraceuticals most 
frequently consumed by the elderly are multivitamins, followed by vitamins E and 
C [23, 35, 38]. Calcium supplementation is also high, especially in women, and is 
increasing [35, 38]. According to one recent study, approximately 23 % of elderly 
men and 26 % of elderly women report current use of herbal products [36].  

   The majority of nutraceuticals used by the elderly include dietary supplements 
in the form of multivitamins/multiminerals or individual vitamins and minerals, 
such as vitamin A, beta-carotene, vitamin B 

6
 , vitamin E, and zinc. Studies support-

ing and detracting from their use in restoring immunity are summarized in Table 4 
and discussed below. The use of probiotics is also discussed. Some traditional-use 
herbal/botanical products and specialty nutraceutical products, such as mushroom 
preparations, have demonstrated promising immunomodulatory effects in in vitro 
and animal studies, but clinical trials in the healthy elderly are unavailable.    

Global Functional Food Sales*

38%

29%

1%

23%

3%
0%

1%3% 1% 1%

0% USA $31,400
Western Europe $24,955
Eastern Europe/Russia $970
Japan $19,439
Canada $2,533
China 
Asia $2,960
Latin America $727
Australia/New Zealand $1,146
Middle East $477
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Global Supplement Sales*

32%

20%3%

16%

3%

10%

8%
4%

2% 1%
1% USA $22,460

Western Europe $13,518
Eastern Europe /Russia $1908
Japan $11,185
Canada $1825
China $6657
Asia $5445
Latin America $2703
Australia /New Zealand $1528
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*Sales in Millions of US Dollars
Data from Nutrition Business Journal, used with permission.
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Refer-
ences

Age N Duration Form, dose/d Results

Multivitamin/multimineral
[8] 59–85 56 1-year Multi or multi + 

100 mg/d Zn
↑ DTH (higher in multi group 

without Zn)
↑ lymphocyte proliferation
↑ NK cell activity 

[56] 83 30 28 days 8,000 IU vitamin 
A, 50 mg vita-
min E, 100 mg 
vitamin C

↑ lymphocyte proliferation
↑ T-cell number

[7] 59–85 56 1-year Multi ↑ DTH
[29] 65–102 81 2 years 20 mg Zn, 100 μg 

Se or 20 mg Zn, 
100 μg Se, 6 mg 
beta-carotene, 
120 mg vitamin 
C, 15 mg vita-
min E

↓ respiratory and urogenital 
infections

[10] 60–89 72 10 weeks Multi ↑ DTH
= lymphocyte proliferation
= lymphocyte number

[6] 78 31 f 10 weeks Multi = lymphocyte proliferation
= lymphocyte number

[43] 50–87 80 8 weeks Multi ↑ micronutrient status
= IL-2, 6, 10 production
= PGE2

[31] ≥60 652 15 months Multi = rate of infection
[4] 45–64 or 

≥65
130 1-year Multi ↓ rate of infection

↓ work absenteeism
*Type 2 diabetics, high prevalence 

of subclinical micronutrient 
deficiency

[39] ≥65 34 183 days Multi (8oz/d liquid) ↓ upper respiratory tract infections 
(days of symptoms)

↑ antibody response
↑ lymphocyte proliferation

[2]  65 910 1-year Multi = rate of infection
[42] 85 748 18 months Multi = rate of infection overall

↓ rate of infection in nondemented 
elderly

*Institutionalized, high prevalence 
of micronutrient deficiency

Vitamin A
[52] 76 129 90 days eval., 

4,498 days 
follow up

200,000 IU (60,000 
μg RE) + 40 IU 
vitamin E (single 
dose)

= bacterial infections
*Institutionalized, low prevalence 

of suboptimal vitamin A status
**High dose supplement did not 

result in toxicity

Table 4  Clinical trials evaluating the effects of nutraceuticals on parameters of immunity in the 
elderly
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Refer-
ences

Age N Duration Form, dose/d Results

[24] 80 118 3 months 800 μg = lymphocyte proliferation
↓ CD3+, CD4+ T cells

Beta-carotene
[71] 56 20 2 months 30 or 40 mg ↑ CD4+ T cell percentage

↑ NK cell percentage
↑ IL-2R expression

[61] 51–64 or 
65–86

59 m 10–12 years 50 mg (alternate 
days)

↑ NK cell activity
= NK cell percentage
= IL-2 production

[62] 60–80 23 f 3 weeks 90 mg = DTH
= lymphocyte proliferation
= IL-2, PGE

2
 production

[62] 50–86 54 m 10–12 years 50 mg (alternate 
days)

= DTH
= lymphocyte proliferation
= IL-2, PGE

2
 production

[61] 65–88 34 m 12 years 50 mg (alternate 
days)

↑ NK cell activity
= NK cell percentage
= IL-12, IFN-α, IFN-γ

Vitamin B6
[68] 65–81 15(14 

m)
2 months 50 mg ↑ lymphocyte proliferation

[46] 64 8 4 days (after 
3 weeks 
depletion)

50 mg ↑ lymphocyte proliferation
↑ lymphocyte number
↑ IL-2 production

Vitamin C
[14] ≥65 15 3 weeks 2 g = DTH

= lymphocyte proliferation
*Most subjects on cardiovascular 

medications
Vitamin E
[47] ≥65 32 30 days 800 mg ↑ DTH

↑ lymphocyte proliferation
↑ IL-2 production
↓ PGE2

 production
[45] ≥65 88 235 days 200 mg ↑ DTH

↑ antibody response
    800 mg ↑ antibody response

*60mg 
= no effects

[19] 67–85 83 3 months 100 mg = lymphocyte proliferation
= IgG and IgA levels

[15] 72 30 f 16 weeks 200 mg + 1 g vita-
min C

↑ lymphocyte proliferation
↑ phagocytic function
↓ lipid peroxidation
↓ cortisol

[55] 65–80 161 6 months 100 mg ↑ DTH= lymphocyte proliferation
= IL-2, IL-4, IFN-γ
*50 mg 
= no effects

Table 4 (  continued)
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Refer-
ences

Age N Duration Form, dose/d Results

[16] ≥60 37 m 3 months 200 mg ↑ lymphocyte proliferation
[34] 50–69 21,796 

m
4 years 50 mg 5 % ↓ in the incidence of com-

mon colds (nonsmokers)*No 
association with vitamin C or 
beta-carotene

Mey-
dani 
2004

≥65 617 1-year 200 mg ↓ upper respiratory tract infections

[72] ≥ 40 3 months 200 mg + 5 g fish 
oil

= DTH
= lymphocyte proliferation
*Increases in plasma level of 

α-tocopherol and T cell function 
may have been blunted by fish 
oil intake

Zinc
[21] 81 30 1 mo 220 mg ZnSO

4
↑ DTH
↑ T cell number
↑ IgG antibody response
= lymphocyte proliferation
= lymphocyte number
*Institutionalized, healthy elderly, 

no baseline Zn status reported
[12] 65–78 8 m 4.5 months 60 mg ↑ DTH

= lymphocyte number
*Zn-deficient at baseline

[57] 50–80 13 6 months 30 mg ↑ DTH
↑ IL-1
↑ plasma thymus hormone activity
*Zn-deficient at baseline

[24] 80 118 3 months 25 mg ZnSO
4

↑ CD4+ T cell number
↑ CTL number
↓ lipid peroxidation

[59] 64–100 384 60 days 400 mg = antibody response
[28] 65–103 725 2 years 20 mg Zn +100 

μg Se
= DTH
↑ antibody response
↓ respiratory infection (p=0.06)

[58] 55–87 50 12 months 45 mg ↓ rate of infection
*Elderly had lower Zn status at 

baseline than young controls
Probiotics
[27] 63–84 30 3 weeks Bifidobacterium 

lactis HN019 (5 
× 1010 CFU)

↑ CD4+ and CD25+ T cell 
percentage

↑ NK cell percentage
↑ NK cell activity
↑ phagocytic function

[65] 44–80 52 3 weeks Lactobacillus 
rhamnosus 
HN001 (2.5 × 
1010 CFU)

↑ NK cell activity
↑ phagocytic function

Table 4 (  continued)
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6     “Multis”  

   Results of randomized controlled trials on the effects of multivitamin/multimineral 
supplements on immune outcomes in the elderly have been greatly inconsistent. Mul-
tiple reports have shown no benefits [2, 6, 31, 43], while others have demonstrated 
positive effects on immunity, including decreased rates of infection, in specific elderly 
populations, such as the nondemented, institutionalized elderly [42] and those with 
comorbidities and confirmed micronutrient deficiencies [4]. The two largest rand-
omized, double-blind, placebo-controlled trials investigating the effects of multivita-
min/multimineral supplementation on rates of infection in free-living elderly showed 
no effect on the incidence or severity of infection [2, 31]. Notably, these two studies 
enrolled healthy, mostly free-living elderly who were reported to be well-nourished.  

7          Vitamin A and Beta-Carotene  

   Although the role of vitamin A in immunity has been well-studied in malnour-
ished children and, more recently, in HIV+ adults [70], few studies have examined 
vitamin A as a potential nutraceutical for immune restoration in the elderly. In a 
double-blind, placebo-controlled trial in 129 institutionalized elderly, a single dose 
of vitamin A (200,000 IU) did not reduce the incidence of bacterial infections, as 
assessed over an initial evaluation period of 90 days and a total follow up of 4,498 
days [52]. Notably, only approximately 12 % of the study population was deficient 
in vitamin A at baseline. Further, this single, high dose of vitamin A did not result 
in toxicity symptoms. Animal studies suggest that excess vitamin A suppresses both 
humoral and cell-mediated immunity [70].  

   Beta-carotene is a plant-derived carotenoid that serves as a provitamin, converted 
in vivo to vitamin A. While supplementation of the elderly has resulted in no consist-
ent influence on T-cell-mediated immunity [62, 71], beta-carotene supplementation 
may mediate the age-associated decline in NK cell activity [61, 63]. It has been sug-
gested that these effects might be better aligned to beta-carotene’s role as a source 
of antioxidant-rich carotenoids than as a precursor to vitamin A. Studies evaluating 
clinical outcomes in the elderly, i.e., rates of infection, are not available.  

8     B Vitamins  

   Deficiencies in vitamins B 
6
 , B 

12
 , and folate are common among the elderly, yet 

clinical trials to assess the direct effects of B vitamin supplementation on immune 
status are virtually nonexistent. In one study of 65 healthy, free-living men and 
women with a mean age of 70 years, serum vitamin B 

6
  status was positively associ-

ated with IL-2R expression, and both vitamin B 
6
  and folate were associated with 
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NK cell number [37]. In the same study, vitamins A, C, E, beta-carotene, and zinc 
were not associated with these parameters. It should be noted that most elderly sup-
plement users will obtain B vitamins as part of a multivitamin.  

9     Vitamin E  

   Vitamin E status has been negatively related to rates of infection in the elderly [11], 
and numerous clinical trials have demonstrated positive effects of vitamin E sup-
plementation on immunity in the healthy elderly [16, 34, 45, 47, 48, 55]. Reported 
benefits include increased DTH reactions, increased lymphocyte proliferation, 
increased antibody response to vaccination, and decreased rates of infection. Ani-
mal data suggest that vitamin E may mitigate age-related changes in the plasma 
membrane, as well as gene expression associated with T-cell survival, transcrip-
tional regulation, signal transduction, and cytokine production [72]. Not all clinical 
trials have been positive, however. In a large randomized, double-blind, placebo-
controlled, 2 × 2 factorial study of 652 community-dwelling elders aged 60 years 
or older, supplementation with 200 mg of vitamin E demonstrated no effect on the 
incidence of acute respiratory tract infections [31]. Instead, supplementation was 
associated with a small but significant increase in the severity of infections.  

10     Zinc  

   A number of studies have documented poor zinc status in the elderly and improved 
immunity upon supplementation [12, 57, 58]. A randomized, double-blind, placebo-
controlled trial of 50 healthy elderly subjects aged 55–87 years and representative 
of multiple ethnic groups revealed a low plasma zinc status at baseline and a signifi-
cant reduction in total infections when supplemented with 45 mg of elemental zinc 
as zinc gluconate over a period of 1-year [58].  

       11 Probiotics  

   Probiotics are nonpathogenic microorganisms commonly consumed in fermented 
dairy products, such as yogurt or kefir. Probiotic research has primarily focused on 
their positive effects on digestion, as well as potential therapeutic applications in 
the treatment of diarrhea and gastrointestinal disorders. However, results from ani-
mal studies have demonstrated positive effects on immunity, as well [9]. Two small 
human clinical trials suggest a potential for various probiotic strains to increase NK 
cell activity and phagocytic function in the elderly [27, 65].  
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       12 Regulation of Nutraceutical Products  

   Across the world, governments differ in their definition and regulation of nutraceu-
tical products. Although nutraceuticals are not regulated like pharmaceuticals in the 
U.S. or Canada, they are indeed regulated. The FDA and Health Canada are princi-
pally responsible for the regulation of nutraceutical products in the U.S. and Canada, 
respectively, and these agencies appear to collaborate. In the U.S., nutraceuticals and 
functional foods have no legal definitions and, therefore, must be placed in one of a 
number of existing categories, including conventional foods, food additives, dietary 
supplements, medical foods, or foods for special dietary use (infant formulas or 
hypo-allergenic foods). Most nutraceutical products used by the elderly are dietary 
supplements, which are regulated as a subcategory of foods, not as drugs. Unlike 
drugs, dietary supplements composed of ingredients in use prior to the passage of 
DSHEA in 1994 do not require premarket approval by FDA. New dietary ingredi-
ents, however, must be the subject of a 75-day premarket notification submitted to 
FDA before use. Under DSHEA, dietary supplement manufacturers are responsible 
for ensuring that label information is truthful and not misleading and that a product 
is safe before it is marketed. The FDA is then responsible for taking action against 
any unsafe or mislabeled dietary supplement after it reaches the market. While FDA 
oversees dietary supplement labeling and the proper use of label claims ( See Inset ), 
the Federal Trade Commission (FTC) regulates truth in dietary supplement adver-
tising. Thus, while dietary supplements do not require efficacy studies prior to going 
to market, manufacturers making claims about a product’s health benefits may be 
asked for substantiation by federal or state agencies.  

   As part of DSHEA, Congress authorized FDA to establish current good manu-
facturing practices (CGMPs) for dietary supplements. In June of 2007, FDA issued 
its final rule to: 

      (1)       require standards in manufacturing, packaging, labeling, and holding of dietary 
supplements to ensure that a dietary supplement contains what it is labeled to 
contain and is not contaminated with harmful or undesirable substances, such 
as pesticides, heavy metals, or other impurities, and,  

Nutraceutical products labeled as dietary supplements may bear label claims 
that describe the role of a nutrient or dietary ingredient intended to affect the 
structure or function of the body. Examples include “calcium builds strong 
bones” or “antioxidants maintain lymphocyte function.” The legal use of such 
structure/function claims was set forth by DSHEA. These claims utilize lan-
guage distinctly different from drug or disease claims and must be accompa-
nied by the following disclaimer: “These products have not been evaluated by 
the FDA. These products are not intended to diagnose, cure, mitigate, treat, 
or prevent any disease.”
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         (2)          require certain activities that will ensure the identity, purity, quality, strength, and 
composition of dietary supplements, which is a significant step in assuring con-
sumers they are purchasing the type and amount of ingredients declared [69].          

    These regulations will be fully implemented by 2010.  

     13      Safety of Nutraceutical Use in the Elderly  

   According to Dr. Pamela Haines at the Department of Nutrition, School of Pub-
lic Health, University of North Carolina at Chapel Hill, “elderly supplement users 
appear to fall into four categories: (1) those who are dissatisfied with current medical 
care, (2) those who prefer to follow the growing movement for health promotion and 
greater selfcare, (3) those treating either real or perceived symptoms of aging, and (4) 
those with chronic diseases.” [13] Overall, the elderly appear to consume vitamins 
and other nutraceutical products for their perceived health benefits, including the 
restoration of immunity. Notably, in one recent study, only about 5–6 % of the elderly 
reported using nutraceutical products at the recommendation of a physician [36].  

   Without adequate oversight by health care practitioners, the safe use of nutraceu-
ticals by the elder consumer remains a concern. It is important to recall, as noted at 
the beginning of this chapter, that the elderly are a highly heterogeneous group. At 
the  Conference on Dietary Supplement Use in the Elderly  held at the NIH in Janu-
ary, 2003, Dr. Tamara Harris noted in her comments that “while the elderly are often 
grouped into one category, in reality they present on a continuum from healthy to 
frail.” [13] Thus, additional data are needed to define nutritional requirements in 
the diverse elderly, including the determination of how micronutrient requirements 
change with age, how comorbidities associated with advanced age affect micro-
nutrient status, and which subpopulations of the elderly would most benefit from 
nutritional interventions. Further, the altered absorption, metabolism, and excre-
tion of nutraceutical products in this diverse age group must be considered. Finally, 
increased age may elevate the potential for drug-nutrient interactions due to physi-
ological changes that occur with age, altered drug metabolism, or an increase in 
polypharmacy (concurrent use of multiple prescription drugs) [13, 32].  

14     Summary  

   Nutraceuticals empower the elderly individual to make personalized health care 
decisions believed to promote healthy aging and provide a practical means to meet 
micronutrient requirements. The efficacy of nutraceuticals to promote immune 
restoration requires further study, however, as some clinical trials support the use 
of multivitamins/multiminerals, individual nutrients, like vitamin E, and specialty 
products, while other studies show no benefits or, in rare instances, harm. Further, 
despite an increased risk of micronutrient deficiencies, the routine use of multi-
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vitamin/multimineral products by the healthy elderly is not recommended at this 
time, pending additional clinical trials using consistent outcome measures [22, 67]. 
Such studies will require a cooperative commitment from industry and academia. 
Nonetheless, the reality is that the majority of those over the age of 65 already 
use nutraceutical products regularly, and rates of usage continue to rise. Although 
nutraceuticals are indeed regulated, the safety of nutraceutical products is deter-
mined by the manufacturer and nutraceuticals do not have to be proven efficacious 
prior to sale. Therefore, elderly consumers should exercise caution in choosing 
appropriate nutraceutical products.  
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                          1     Principles of Gene Therapy  

  Gene therapy can be classified according to the vector used for gene therapy and the 
transgene that will be expressed as a result of the gene therapy. One consideration 
for gene therapy is that certain vectors have larger capacities than others to incor-
porate genes. The second consideration is the duration of therapy, which depends 
upon the immune response after delivery of the therapy. Therapy duration usually 
exhibits a reciprocal relationship to therapy immunogenicity. A third consideration 
is safety. This is related both to the immunogenicity and adverse effects of potential 
integration. These factors are shown in Table 1. Advances to enable gene integration 
with safety have been carried out using a “suicide” gene, such as thymidine kinase 
(TK) that can be upregulated to eliminate cells in which the transgene has integrated 
into an adverse position in the genome.  
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        1.1       Gene Therapy Production and Delivery Considerations; 
Lesions from Human Trials  

   1.1.    1 Gene Therapy with Adenovirus to Correct Immune Senescence  

  Since 1990, Adenovirus (Ad) vectors have been the vectors of choice for gene therapy 
application because of many favorable features [1]. These features include the ability 
to grow recombinant viruses to high titers, a relatively high capacity for transgene 
insertion, and efficient transduction of both quiescent and actively dividing cells, 
usually without incorporation of viral DNA into the host cell genome. However, its 
application is limited by the toxicity associated with the use of Ad vectors, which is 
complex involving both the innate and adaptive immune response [2, 3]. The initial 
response to Ad vectors administered intravascularly occurs within minutes, peaks at 
6 hrs, and occurs in the absence of viral gene expression. This response has been 
attributed to the innate response characterized by the release and/or production of 
several proinflammatory cytokines including IL-6, TNF-α, IL-8, IL-12, IFN-γ, 
RANTES, and GM-CSF [4–6]. The cells that participate in the innate immune 
response are macrophages, dendritic cells (DCs), so-called professional antigen pre-
senting cells (APCs), and also NK cells that serve as a functional bridge between the 
innate and acquired immune response. Immature APCs are activated, resulting in 
the upregulation of MHC antigens as well as costimulatory and adhesion molecules, 
via an NF-κΒ-dependent pathway [7, 8]. Mature DCs, loaded with antigenic pep-
tides, migrate to draining lymph nodes, where they deliver “signal 1” to naïve T-cells 
through the interaction of peptide-MHC complex with T-cell receptor (TCR). B7-
1/B7-2 (CD80/CD86) molecules on APC interact with CD28 on T-cells, delivering 
“signal 2, ” which is critical for cytotoxic T-lymphocyte (CTL) cross-priming by acti-
vated APC. In addition, vector interaction with epithelial cells results in the release of 
C-X-C chemokines, especially IP-10, which is a potent chemoattractant for activated 
T-lymphocytes and polarize the reaction towards a Th-1 type response [9, 10].  

  Generation of Ad viral antigen or transgene product-specific CTL response plays 
a major role in limiting transgene expression by eradiation of transduced cell [11, 
12]. Previous studies of CTL response against Ad focused on the activation and the 

Table 1 Gene therapy delivery vectors applicable for immune senescence reversal

Viral vector Vector capacity Immunogenicity Therapy duration Safety and gene 
integration

Adenovirus 36 kb High Weeks Toxic immune 
response

Adeno-associated 
virus

6.5 kb Medium Months Highest safety

Retrovirus 10 kb Low Years Integration risk
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effector function of CD8 T-cells. The importance of CD4 T-cell help for primary 
CD8 T-cell responses remains controversial. Early observation of in vivo ablation of 
CD4 +  cells or interferon IFN-γ was sufficient to prevent the elimination of Ad-trans-
duced hepatocytes, despite the induction of a measurable CTL response prolonged 
indicated that CD4 T +  cells may be necessary for a fully competent CTL response 
[13]. The presence of CD4 cells during the priming phase is critical for generating 
functional CD8 memory, and direct CD40-CD40L interaction between CD4 and 
CD8 cells might be involved in this process [14]. Further studies, however, have 
shown that the primary CTL response to infectious agents, including to Ad, is often 
independent of T 

H
  [15, 16], and it was hypothesized that recognition of microbial 

products by Toll-like receptors can license DCs to prime an effective CTL and thus 
bypasses the need for CD4 help [15, 17].  

  Previous studies using replication-defective Ad (RDAd) indicated that FasL-Fas 
and TNF-TNFR pathways, but not perforin/granzymes pathways mediated the cyto-
toxic effector function of Ad specific CTL [18, 19]. However, direct analysis of 
the specific CTL response to Ad had been difficult due to the lack of reagents that 
recognize the rearranged TCR expressed on Ad-specific CTLs. To overcome this 
problem, we have recently generated an MHC class I tetramer and used an in vivo 
killing assay to enable direct quantitate the AdE1Bp-specific CTL response [3]. 
Our results reveal that during the primary response, there was a significant defect 
in both the generation and in vivo effector function of Ad-specific CTLs in CD28 -/-  
mice, but not in CD4 +  T-cell-depleted mice or CD4 -/-  mice. The relative role of CTL 
effector molecules was assayed by an in vivo CTL assay in perforin- or FasL-mutant 
mice, using donor cells from Fas-deficient or TNFR1/TNFR2-deficient mice. The 
results indicated that the in vivo CTL activity is mediated mainly by perforin. In 
the absence of perforin, production of FasL, but not TNF-alpha, provided the major 
effector mechanism to induce Ad-specific killing of target cells [2].  

  We have applied the same strategy to determine the age-related changes in CTL 
to Ad in aged mice. Despite the immune response to Ad vectors, their use in older 
individuals may be safer than in younger individuals due to a decreased immune 
response. Administration of an AdE1b resulted in a lower E1b tetramer specific 
response in aged mice compared to young mice (Fig. 1). The adenovirus exhibits 
liver tropism, but encounters a lower immune response in the liver of aged mice. 
Thus adenovirus gene therapy is more feasible in aged animals, and possible in aged 
individuals, compared to younger animals.  

         1.1.    2 Gene Therapy with AAV to Correct Immune Senescence  

  Recombinant adeno-associated virus (rAAV) vectors are unique among the vector 
classes currently available for human gene therapy in that they are based upon a 
class of viruses that commonly inhabits a human host without causing any detect-
able pathology. These vectors and their transgene product can be present for years 
after administration and may be the safest option for long term correction of immune 
senescence by supplementation with a cytokine or growth factor. Thus, in spite of 
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their small capacity for the transgenes, there is a rapid increase in the study and 
application of AAV gene therapy. However, recent findings by us and others have 
indicated that AAV vectors cannot only induce strong humoral response marked 
by production of anti-AAV antibodies, but also induce a CTL response [20–23]. 
Together, these results indicate that AAV plus transgene can induce a potent CTL 
response that can lead to elimination of the vector and prevent transgene expression. 
Furthermore, this can occur after administration into nondendritic cells, including 
muscle cells, using a tissue-specific promoter. A recent fatality using AAV gene 
therapy in an immune suppressed patient with rheumatoid arthritis raises a  possible 
warning that AAV gene therapy, in combination with other treatments, or in an 
immune compromised state such as ageing, may have unknown toxicities [24].  

  Fig. 1    Decreased E1b CTL response in aged mice. Young (2-month-old) and aged (15-month-
old) B6 (H2D b ) mice were infected IV with wild type Ad5 (1×10 9  iu). The percentage of E1Bp 
specific CD8 T-cells in the spleen and liver of infected mice at day 8 was determined using an Ad 
E1Bp specific tetramer (circled population). There was a 58% reduction in the% of D b -E1Bp spe-
cific CD8 T-cells from 18-month-old compared to that from 2-month-old mice, in both the spleen 
and liver (mean ± SEM;  N =3 in each group)   . Adapted from the work of Chen et al. with permission  
from molecular Therapy (99)
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    1.1.    3  Gene Therapy with Retrovirus to Correct Immune Senescence  

  Correction of immune senescence, by definition, will require long term delivery of 
a therapeutic gene. Retroviral gene delivery offers the best option for long delivery 
of a gene therapy with minimal immune response leading to elimination of the gene 
therapy vector and its product. The risk of gene integration limits systemic use of ret-
roviral vectors. However localized use of retroviral gene therapy has been success-
fully used in human to deliver anti-inflammatory gene for rheumatoid arthritis [25], 
and this is a feasible approach for potential correction of immune senescence.  

      2     Specific Transgene Expression and Promoter Considerations  

  Transgenes that are strong candidates for gene therapy to prevent cell senescence 
include transgenes for both maintenance of development or capacity of cells, and 
transgenes that can promote strong lymphocyte responses after activation. This chap-
ter is largely devoted to discussion of potential transgene of gene therapy that can be 
used for reversal of immune senescence, and includes specific examples when these 
approaches have been successful, and when they have not been successful.  

  Transcriptional targeting facilitates spatially controlled, inducible, or physi-
ologically regulated therapy by utilizing regulatory DNA sequences—promoters, 
enhancers, and/or silencers—to drive targeted expression of the therapeutic gene. 
Cell-specific promoters may be especially useful. T-cell specific promoters include 
the CD2 promoter, the Lck promoter and the CD4 promoter [26–28] (Table 2). 
For B-cells, a CD19 gene promoter in combination with a retroviral vector, or a 
lentiviral vector, in combination with an Ig kappa (Igk) light chain promoter and 
enhancer has previously been described as a useful B-cell-specific promoter in mice 
or humans [29–32]. Macrophage-specific promoters induce expression of cytokines 
and enzymes, include CD68 and c-fms [33, 34].  

            3      Stem Cells as a Potential Target for Age-Related 
Gene Therapy  

  Regenerative medicine endeavors to discover novel approaches to engineer 
through tissues of revitalized older tissues in an effort to “rejuvenate” failing and 
ageing components [35–41]. Kassem et al. [42] has recently reviewed that ageing 
is associated with the progressive failure of tissue and organs in the human body 
leading to a large number of age-related diseases. One of the most promising 
of future avenues is the use of embryonic and adult (somatic) stem cells. In this 
context, the use of gene therapy to modulate tissue differentiation or enhance the 
longevity or the replacement potential of such stem cells is receiving increased 
emphasis. This plays a role in many areas of human ageing including the heart, 
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lung, joint tissue including osteoblasts and osteoclasts, endothelial cells, neuronal 
cells, and immune cells.  

  With regard to immune cell and stem cell therapy, gene therapy has been used 
to modify CD34 +  stem cells. CD34 +  long-term repopulating hematopoietic stem 
cells can be employed to regenerate the hematopoietic system and therefore, lead 
to rejuvenation of the immune system. The question of whether hematopoietic stem 
cells age has raised considerable controversy, and has been re-opened recently, as 
a result of the growing interest in stem cells for transplantation and gene therapy 
[43]. Studies have focused on the generation of different blood cell elements and 
the capacity for selfrenewal; properties that characterize stem cells. Taken together, 
it appears that basal haematopoiesis is maintained throughout life, yet, the capacity 
to cope with hematological stress is decreased in advanced age. In principle, stem 
cells derived from aged donors can be used for autologous transplantation, when 
needed to recover basic haematopoiesis. However, patterns of T-cell development 
are altered in ageing, and intervention to augment T-cell response still needs to be 
considered. Current methods for expansion and maintenance of stem cells in vitro 
enable examination of stem cell potential for long-term expansion and function. A 
critical evaluation of the possible risks of replicative senescence and developmental 
changes in stem cells has become feasible. Ageing effects may relate to cell replica-
tion, cell migration and lymphoid differentiation. Understanding of the mechanisms 
underlying these processes will enable the fidelity of stem cell expansion and main-
tenance of their potential for long-term function.  

  Matsuoka et al. [44] have used the CD34 +  stem cells for potential long-term 
repopulation of bone marrow (BM) cells that then lead to further differentiation into 
the thymus and peripheral T- and B-cells. CD34 +  lin -  C-kit +  cells have been studied 
by Gary Van Zant et al. [45–48] in the BXD recombinant inbred strain of mice. They 
have found that adult stem cells normally replenish tissue cells lost through the wear 
and tear of ageing or damage from injury or disease. With the proper coaxing in 

   Table 2    Lymphocyte and macrophage—specific promoter    

  Cell specific 
expression  

  Promoter    References  

  T-cells    CD2    [28]  

  Lck    [27]  

  CD4    [26]  

  B-cells    CD19 gene promoter in combination of a retroviral 
vector to express in mouse B-cells  

  [29]  

  CD19 gene promoter in combination of a lentiviral 
vector to express in human B-cells  

  [31]  

  Ig kappa (Igk) light chain promoter and enhancer    [30, 32]  

  Macrophage    Human CD68     [33]  

  c-fms    [34]  
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tissue culture and when transplanted, these stem cells may regenerate the full 
repertoire of organotypic cells and thus may therapeutically regenerate tissues in 
vivo in much the same way as embryonic stem cells do. For several reasons, the 
best-studied stem cells are those of the blood-forming system. Mature blood cells 
generally have short functional life spans, usually measured in days, and therefore 
require replenishment at a steady pace throughout one’s lifetime. Stem cells are 
intimately involved in this renewal and, because of the relative ease of access to 
the BM, stem cells have been well studied. Second, BM transplantation following 
radiation or high-dose chemotherapy in the treatment of cancer has fostered 
research on the basic biology and therapeutic uses of hematopoietic stem cells. 
Stem cells accumulate cellular damage during ageing that diminishes their 
developmental potency and ability to replenish blood cells, particularly after hemat-
opoietic stress. In this view, the impaired function of stem cells in  hematopoietic 
and in other self-renewing tissues limits the longevity of animals, and perhaps 
of humans. Identifying, and ultimately manipulating, the genes that regulate 
stem cell number, replication rate, and self-renewal capacity may have important 
clinical benefits.  

  Human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) are 
expected to serve as an excellent alternative to BM-derived human mesenchymal 
stem cells [49]. However, it is difficult to study them because of their limited life 
span. To overcome this problem, we attempted to produce a strain of UCBMSCs 
with a long life span and to investigate whether the strain could maintain phenotypes 
in vitro. UCBMSCs were infected with retrovirus carrying the human telomerase 
reverse transcriptase (hTERT) to prolong their life span. The UCBMSCs underwent 
30 population doublings (PDs) and stopped dividing at PD 37. Whereas the UCBM-
SCs newly established with hTERT (UCBTERTs) proliferated for >120 PDs. The 
p16INK4a/RB braking pathway leading to senescence can be inhibited by introduc-
tion of Bmi-1, a polycomb-group gene, and human papillomavirus type 16 E7, but 
the extension of the life span of the UCBMSCs with hTERT did not require inhibi-
tion of the p16INK4a/RB pathway. The characteristics of the UCBTERTs remained 
unchanged during the prolongation of life span. Therefore UCBTERTs provide a 
powerful model for further study of cellular senescence and for future application 
to cell-based therapy by using umbilical cord blood cells.  

  With regard to gene therapy, Effros and Globerson have found that ageing 
hematopoietic stem cells play an important role in immune ageing [50]. This has 
been traced to defects in the development of T-cells that are altered with ageing, 
which may be related to replicative senescence as well as development of changes 
in stem cells. These can be reversed to some extent by gene therapy that can inhibit 
senescence by targeting telomerase and telomerase reverse transcriptase [51]. 
Therapeutic strategies for inhibiting telomerase activity have included both targeting 
components of telomerase (the protein component, TERT, or the RNA component, 
TERC) or by directly targeting telomere DNA structures. Recently a combination 
telomerase inhibition therapy has been studied also. The TERT promoter has been 
used to selectively express cytotoxic gene(s) in cancer cells and a TERT vaccine for 
immunization against telomerase has been tested.  
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    4     Gene Therapy to Prevent Thymic Involution  

  Thymic involution begins in early adult life and leads to progressive loss of genera-
tion of naïve T-cells. This can be assessed by the thymocytes recombination incision 
circle (TREC). In this regard, Sempowski et al. [52] has shown that there is senes-
cence of CD8 T-cells with decreased CD8 T-cell TREC before CD4 T-cells. How-
ever, the thymic involution has the most profound effect of ageing on the immune 
system resulting in a greatly decreased number of both CD4 and CD8 T-cell in the 
peripheral pool.  

  The effect of ageing on thymocyte progenitors in the BM was studied in an in 
vitro experimental model that permits T-lymphocyte development. The model is 
based on coculture of BM cells from young and old mice with lymphoid depleted 
fetal thymus explants. Globerson and coworkers [53] applied different strategies of 
thymic colonization, including competitive colonization by BM cells from different 
donor age groups and MHC backgrounds. Our data reveal intrinsic changes in the 
BM that lead to manifestation of immunosenescence in the T-lymphocyte compart-
ment. Certain factors can be used to prevent thymic involution, including an exten-
sively studied IL-7 [54] and long-term β-adrenergic receptor blockade [55]. These 
cytokines and growth factors affect thymocyte involution and T-cell development 
within the thymus. All of these may be potential targets for gene therapy.  

   4.1     Factors Associated with Thymic Involution  

  Factors related to thymic involution include soluble mediators are produced by 
thymic stromal cells, which are a source of a variety of growth, differentiation and 
survival factors. IL-7 has been shown to play a critical role in both mouse and 
human thymopoiesis, but the central role for a declining IL-7 and its contribution to 
thymic involution is controversial. Natural systemic factors that regulate thymopoi-
esis include changes in the endocrine system including sex steroids and growth 
hormone (GH) that are altered at puberty [56, 57]. Administration of testosterone 
or estrogen results in a decline and thymus size in experimental systems. As sex 
steroids rise at puberty, there is a decline in the production of GH, whose effect is 
mediated by local tissue induction of IGF1. The decreased production of GH and 
IGF1 during senescence contributes to thymic involution. Therefore, gene therapy 
targeted to these changes in the endocrine system may be valuable in preventing 
thymic involution or may play a role in the restoration of thymic function after 
involution.  

  Taub and Longo have extensively reviewed factors associated with thymus invo-
lution [58, 59]. With thymus involution, there is decreased expression of genes that 
are involved with thymus involution including leukemia inhibitor factor (LIF), as 
well as several thymus neurotropic family members, including TRKA and BDNF. 
Several neurotrophines, such as nerve growth factor (NGF) and brain-derived 
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neurotrophic factor (BDNF) decrease with age in the thymus. There are also changes 
in glucocorticoids which have both proapoptotic effects, as well as survival effects 
[60, 61]. Inflammatory cytokines are increased in older human thymus including 
IL-6, SEF, LIF, CNTF, and OSN. Reduced levels of zinc have been associated with 
thymocyte death. Supplementation of drinking water in aged mice with zinc sul-
fate has been reported to increase thymic mass and possibly thymopoiesis [62]. 
Age-related increase in adipocytes in the thymus is associated with thymic invo-
lution [63]. Adipocytes produce factors that reduce thymus size including IL-6, 
LIF, and leptin. Leptin further produces inflammatory cytokines including IL-6, 
IL-1β, TNFα, and IFN-γ. Adipogenic factors, such as LIF, insulin, glucocorticoids, 
and thyroid-stimulating hormone, are expressed at increased levels in the involuting 
thymus and can also induce fibroblasts to undergo adipocyte differentiation [64]. 
Therefore, further understanding of thymus involution is required to identify 
potential targets of gene therapy to prevent thymic involution.  

  By combining the mouse TREC assay with T-cell phenotypic analysis, we have 
demonstrated that rapid-involution strains of mice exhibited a developmental block 
at the DN1 to DN2 and CD4 - CD8 -  (DN) to CD4 + CD8 +  (double positive, DP) tran-
sition stages. There was also increased susceptibility to H

2
O

2
-induced apoptosis, 

decreased thymic expression of IL-7, decreased expression of an IL-7 receptor 
downstream anti-apoptosis gene, Bcl-2, and increased expression of a proapop-
totic gene, Bad. In contrast, IL-7R expression was higher on DN thymocytes of 
rapid-involution strains. The increased expression of IL-7R was associated with an 
increased thymocyte proliferation in response to anti-CD3 + IL-7 or anti-CD3 + 
IL-12 + IL-7. IL-7 administration to young mice induced both increased thymopoi-
esis and peripheral T-cell proliferation [65].  

  Thoman et al has expressed IL-7 long term using the cell-gene therapy approach 
[66, 67]. Thoman has produced stromal cells that exhibit constitutive expression 
of IL-7 and has transplanted these stromal cells into the thymus. Increased local 
concentrations of IL-7 maintain the first stage of thymopoiesis and overcome their 
well-described block of DN1-to-DN2 transition. However, there is no decrease 
in thymic involution or increase in T-cell output. Therefore, these results suggest 
that in addition to prevention of the DN1/DN2 age-related transition block, blocks 
between other subsequent stages of double-negative CD4 - CD8 -  T-cell development 
in the thymus need to be corrected to prevent thymic involution. Gene therapy in 
other thymopoietic factors as described above may be promising in this regard.  

  In addition to IL-7, we have previously shown that IL-12 is another important 
cytokine that can maintain thymic integrity and function during the ageing process 
[68]. IL-12b knockout ( Il-12b   -/-  ) mice exhibited accelerated thymic involution com-
pared with wild-type (WT) B6 mice. This is characterized by an increase in thymo-
cytes with the early development stage phenotype of CD25 - CD44 + CD4 - CD8 -  in aged 
 Il-12b  -/- mice. Histologically, there were accelerated degeneration of thymic extra-
cellular matrix and blood vessels, a significantly decreased thymic cortex/medulla 
ratio, and increased apoptotic cells in aged  Il-12b   -/-  mice compared with WT mice. 
There was, however, no apparent defect in thymic structure and thymocyte develop-
ment in young  Il-12b   -/-   mice. Surprisingly, in WT B6 mice, there was no age-related 
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decrease in the levels of IL-12 produced by thymic DCs. Stimulation of thymo-
cytes with IL-12 alone also did not enhance the thymocyte proliferative response in 
vitro. IL-12, however, provided a strong synergistic effect to augment the IL-7 or 
IL-2 induced thymocyte proliferative response, especially in aged WT and  Il-12b   -/-
  mice. Our data strongly support the role of IL-12 as an enhancement cytokine, 
which acts through its interactions with other cytokines to maintain thymic T-cell 
function and development during ageing.  

     5   Gene Therapy for B-Cell Responses  

  For B-cells, the first consideration is maintaining the CD4 helper T-cell response. 
This involves chemokines including IL-4 and IL-10 to promote a Th2 response. 
IL-4 is an important B-cell cytokine to promote entry into the GC where the B-
cells contact with CD4 T-cells and DCs, and undergo rapid proliferation, class 
switch recombination and somatic hypermutation. These B-cells then develop into 
a plasma blast and finally, a plasma cell that migrates to the BM as a long-lived 
high-affinity antibody secreting B-cell. Other mediators necessary for this process 
include CD40L produced by CD4 T-cells to interact with CD40 on B-cells, as well 
as cell surface costimulatory signals including CD80/CD86 that interact with CD28 
on T-cells. More recently, other B-cell surface molecules including ICOS ligand and 
CTLA-4 have been found to be important [69, 70]. Of these molecules, IL-4 may be 
a target for maintenance of a B-cell response.  

  Although both the number and responsiveness of peripheral B-cells in aged mice 
remain relatively intact, there are dramatic changes in B-cell generation [71, 72]. 
Alterations in B-cell development include both a skewing of V-gene utilization, 
especially in cells responsive to phosphorylcholine, and a decrease in the genera-
tion of various developmental B-cell subsets [73, 74]. The altered representation of 
these subsets appears to be the consequence of two developmental blocks. The first 
developmental block occurs during the maturation of proB-cells and is evidenced 
by a decrease in the number of preB-cells. The second developmental block occurs 
at the earliest stage of sIg(+)-cell maturation (sIgM lo ). Because of this block in B-
cell maturation, in spite of a decrease in incoming preB-cells, the number of sIgM lo  
cells appears to increase in aged mice. Additionally, the time of residence of cells 
within this maturational stage increases dramatically, while the proportion of cells 
in more mature (sIgM hi ) stages of BM development are decreased. In addition to the 
decreased number of maturing BM B-cells, the population of splenic B-cells that 
represent recent BM emigrants (HAS  hi ) is markedly decreased. In the face of this 
decrease in newly emerging cells from the BM, the population of mature splenic 
B-cells is maintained by their increased longevity.  

  B lymphopoiesis in senescent mice is typically diminished and characterized by 
low preB-cell numbers. The transcription factors E2A, Pax-5, and STAT5 have been 
implicated in the differentiation, proliferation, and survival of B-cell precursors 
[75–77]. The impairment of B lymphopoiesis during old age is related at the molec-



Gene Therapy and Immune Senescence 1639

ular level to the handling and turnover of these key transcriptional proteins. Altera-
tions in the expression of E2A, Pax-5, and STAT5 may affect multiple stages of 
B-cell development, contribute to reduced B lymphopoiesis, and preface changes in 
the “read-out” of the BCR repertoire during immune senescence.  

    6    Gene Therapy to Improve the Age-Related Decline in T-cell 
Response  

  IL-2 family members, IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 are important for 
T-cell survival. IL-2, IL-7 and IL-15 signal through a common gamma chain (Fig. 
2). IL-2, IL-7 and IL-15, have promise for prevention of immune senescence and 
regeneration of T-cells. For maintenance of T-cells, IL-7 plays a key role to pre-
vent thymic involution and to maintain the naïve T-cell repertoire. IL-7 also plays a 
key role in acting through the CD127 (IL-7R) to maintain the CD8 memory T-cell 
pool [78]. IL-15 is also important in the maintenance of memory CD8 T-cells, and 
together with IL-7, they appear to be important to a varying degree for homeostasis 
of memory CD4 cells [79]. Therefore, the IL-2, IL-7, and IL-15 family is the most 
likely candidate for T-cell gene therapy.  

       The ability of IL-2 to restore response to virus or tumor cells has been ana-
lyzed. Fayad et al. [80] utilized a papilloma virus (PV) pseudo-virus (PSVs) as a 
model for vaccine and gene delivery vector to investigate if increased IL-2 could 
enhance the immune response to vaccination. One-year-old mice orally immunized 
with PSV-LCMV exhibited a decreased sera IgA response and a decreased mucosal 

  Fig. 2     IL-2R common gamma chain family. The γ 
c
  cytokine family comprises interleukin-2 (IL-2),

 IL-4, IL-7, IL-9, IL-15 and IL-21, named after the γ 
c
  subunit (CD132) shared by receptor com-

plexes for these cytokines. IL-4, IL-7, IL-9, and IL-21 bind a heterodimeric receptor comprised 
of the γ 

c
  and the specific receptor subunits, IL-4Rα, IL-7Rα (CD127), IL-9Rα, and IL-21Rα 

chain, respectively. IL-2 and IL-15 bind a heterotrimeric receptor composed of the specific IL-2Rα 
(CD25) or IL-15Rα chain, and the shared IL-2/15Rβ (CD122) and γ 

c
  chains   
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and systemic LCMV-specific CTL response. However, oral administration of a PSV 
expressing IL-2 augmented the generation of specific T-helper cells and protected 
aged mice, at least in mucosal viral challenge. This study demonstrated a novel 
approach to induce mucosal and systemic immune response in aged mice using 
PSV producing IL-2.  

  IL-2 could also enhance the age-related decline in response to tumor cells. Many 
studies have previously demonstrated that the injection of tumor cells genetically 
modified for the constitutive expression of cytokine into syngeneic immuno-com-
plement mice resulted in enhanced activation of host-dependent antitumor responses 
[81–84].  

  The TS/A adenocarcinoma cell lines were engineered to express low, intermedi-
ate, or high levels of IL-2 [85]. TS/A cell lines expressing intermediate and high 
levels of IL-2 restored both the proliferative response of spleen T-cells in aged 
mice and the CTL response of aged mice. However, importantly, the TS/A IL-2 
clones were not able to induce a tumor-specific immune memory response in aged 
mice suggesting that additional factors are necessary to confer an adequate tumor 
immune response.  

    7    IL-12 Gene Therapy to Improve the Age-Related Decrease 
in the CTL Response  

  Gene therapy for maintenance of the immune system has been thought to be poten-
tially deleterious since normal immune senescence may be necessary to prevent 
increased states of inflammation at older age, or increased tendency for autoim-
munity with age, or potentially increased development of lymphomas or leukemias. 
Therefore, as in other proliferative organs, the age-related decrease in cell cycle and 
proliferation may be difficult to safely reverse. An alternative strategy is to supply 
gene therapy for specific antigens and for limited periods of time to enhance the 
immune response in vivo. For example, for viral vaccination or for peptide antibody 
responses, in addition to better adjuvants, gene therapy may be necessary to tempo-
rarily replenish or rebuild the immune system prior to and after vaccination. IL-12 
is an ideal candidate for such gene therapy.  

  Preclinical studies investigating new therapeutic principles against melanoma are 
presently being carried out in mouse models. Heinzerling et al. [86] have provided a 
different model using gray horses. These animals spontaneously develop metastatic 
melanoma that resembles human disease and is thus highly relevant for preclinical 
studies testing new immunotherapy protocols. Injection of plasmid DNA coding for 
the human cytokine IL-12 into established metastases induced significant regres-
sion in all 12 treated lesions in a total of seven horses. Complete disappearance was 
observed in one treated lesion, with no recurrence after 6 months. No adverse events 
have been observed in any of the animals during and after treatment. These results 
demonstrate the effectiveness and safety of IL-12 encoding plasmid DNA therapy 
against established metastatic disease in a large animal model and serve as a basis 
for a clinical trial.  
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  We have carried out an AdIL-12 therapy to determine if this can correct age-related 
decline in CTL in aged mice. CD8 T-cells undergo rapid age-related senescence, 
with an attenuated capability to mount an effective CTL response in the ageing host, 
leading to a decreased ability to suppress viral growth and cancer [87]. Therefore, 
augmenting the CTL response is essential in ageing hosts. Our recent study showed 
that rapid successive administration of AdIL-12 vector and a subsequent injection of 
the wild-type Ad carrying the dominant antigenic peptide E1Bp can augment CTL 
activity in aged mice. Not only was the CTL activity increased, but the CTL activity 
was especially high at organ-specific sites to which the adenovirus exhibits high tro-
pism. The CTL response in the sites of natural tropism for adenovirus, the liver and 
lung, was two to threefold increased relative to the CTL response in the spleen.  

  Aged mice exhibited higher serum levels of IL-12 and IFN-γ on days 3 and 
7 after AdIL-12 administration compared to those of young mice. Also, a lower 
titer of anti-Ad antibodies in aged mice relative to that of young mice on day 3 
after AdIL-12 administration may contribute to decreased viral clearance. However, 
there was no significant difference in the time of onset of detectable antibodies in 
aged mice compared to that of young mice which occurred on day 7 after AdIL-12 
administration. We propose that the decline in both the innate response and adaptive 
immune response in the aged mice decreased viral clearance and therefore facili-
tated IL-12 production at specific target organs and augment CTL activity in these 
organs. In this way, our novel method of rapid successive administration made use 
of the decreased anti-viral immunity in aged mice to augment and expand the CTL 
response in these aged hosts.  

  Other investigators noted that IL-12 Rβ2 expression was deficient in CD8 +  CTL 
from old mice [88, 89] and the IL-12 ability to enhance T-cell functions is com-
promised with age as a consequence of changes in postreceptorial IL-12 signaling 
events involving signal transducer and activator of transcription 4 (STAT4) activa-
tion [90]. Our results suggest that increased IL-12 can overcome the defect. Fur-
thermore, we observed an increase in antigen-driven proliferation of CD8 T-cells of 
virus-immunized aged mice after pretreated with AdIL-12. These results are con-
sistent with previous findings that IL-12 promotes CD8 T-cell proliferation and such 
response was compromised in the absence/deficiency of IL-12 [91–93] indicating 
that in vivo delivery of IL-12 gene by an adenovirus vector can create a microenvi-
ronment that favorable to CTL response.  

    8     Chronic Inflammation as a Target for Gene Therapy  

  In addition to gene therapy for cytokines that are diminished with age, it is well known 
that certain proinflammatory cytokines have increased with age of deleterious effect. 
These cytokines include IL-1, IL-6, TNFα, and possibly IL-17. The gene therapy for 
inhibitors of IL-1 and TNFa has been extensively explored as treatments for arthritis. 
Such gene therapies include IL-1 receptor (IL-1Rα) expressed by both adenovirus 
and AAV, and soluble TNFR expressed by both adenovirus and retrovirus. In humans, 
Robbins and Evans have used retrovirus expressing IL-1Rα and TNFR for gene ther-
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apy of arthritis in humans [25, 94]. Combined AAV gene therapy expressing sTNFR 
and IL-1RA has been used in mouse models of arthritis [95, 96].  

    9     Targeting Longevity Genes to Prevent Immune Senescence  

  Certain genes such as TERT can affect the rate of replicative cell senescence, 
including immune senescence. Such genes are candidate genes for prevention of 
immune senescence. Westin et al. [97] evaluated whether retroviral expression of 
TER and/or TERT, the catalytic component of telomerase, could extend telomere 
length and rescue autosomal dominant (AD) DC cells from a phenotype character-
istic of early senescence caused by mutations in the telomerase RNA component 
(TER). Exogenous TER expression, without TERT, could not activate telomerase 
in AD DC skin fibroblasts. Transduction of TERT alone, however, provided AD 
DC cells with sufficient telomerase activity to extend average telomere length and 
proliferative capacity. Interestingly, we found that expression of TER and TERT 
together resulted in extension of lifespan and higher levels of telomerase and longer 
telomeres than expression of TERT alone in both AD DC and normal cells. These 
results provide evidence that AD DC cells can be rescued from defects in telomere 
maintenance and proliferation, and that coexpression of TERT and TER together 
provides a more efficient means to elongate telomeres than expression of TERT 
alone. Similar strategies may be useful for ameliorating the detrimental effects 
of telomere shortening in other diseases associated with telomerase or telomere 
defects [98]. Such proof-of-principle studies have led to screening for pharmaco-
logical approaches that might mimic the gene therapy effects, in a more clinically 
suitable formulation.  
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                                  Having read this book one can legitimately ask the question is immunosenescence 
clinically relevant and if it is so, what can be done for prevention, intervention and 
cure.  

   There is a large corpus of experimental data suggesting that the adaptive immune 
response, mainly the T-cell response, is deregulated with aging. Evidence is also 
accumulating to suggest that the innate immune response is altered as well. The 
exact causes of this deregulation are not known but for T-cells, thymic involution, 
changes in the distribution of subpopulations, and defective T-cell signal transduc-
tion are likely to be major contributors. The latter two alterations are likely to be the 
consequences of T-cell clonal exhaustion either by chronic antigenic stimulation or 
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by metabolic alterations. It is of note that despite a wealth of data, the exact changes 
in the immune system with aging are still controversial because of the confounding 
influence of the physiological aging process and genetic as well as epigenetic fac-
tors, such as nutrition, neuroendocrine changes, chronic diseases, frailty. Thus, the 
field urgently needs to agree upon a set of biomarkers of immunosenescence to be 
applied preferably in careful longitudinal studies.  

   However, what we do know is that the changes in the immune response lead to 
various diseases and the book deliver a huge wealth of evidence for supporting this 
contention. The incidence of disease is dramatically increased with aging. These 
diseases are primarily of an infectious nature, but probably also include cancer, 
autoimmunity, and chronic inflammatory diseases. The definition and clinical use 
of an IRP to predict those at risk of incipient mortality could facilitate a major 
breakthrough in the prevention and modulation of immune-related morbidity and 
mortality.  

   Knowing the importance of the immunosenescence in diseases, some means to 
intervene in compensating for immune deregulation which could be applied in the 
elderly without ethical or regulatory problems do already exist. These include bal-
anced nutrition in macro and micronutrients, including functional foods such as 
vegetables and fruit, functional foods such as probiotic-containing yoghurt, sus-
tained moderate aerobic exercise regimens, and could be relatively easily extended 
to include better vaccines and vaccination strategies against different pathogens 
especially against influenza, pneumococcus pneumoniae, herpes zoster and in the 
near future against CMV, and possibly application of certain antiviral drugs and 
low-dose cytokines.  

   Nevertheless, there is still a long way to go to implement more specific and effec-
tive safe immunorestorative therapies, as suggested in this book, even at the level 
of specific nutrients or drugs. Thus, a better understanding of immunosenescence 
by intensive basic and clinical research and the development of new methods and 
strategies to intervene in its evolution are essential for improving the quality of life 
of the increasingly large elderly population.  

   We thank all the authors who contributed to this book for finally answering 
to this burning question and indicating hope and directions for the future of the 
immunosenescence.  
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