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Preface and Introduction

The discipline of statistical genetics is highly computational. Be it exact computa-
tional methods, simulation based, or a hybrid of the two, computational packages are
indispensable tools and constant companions of researchers in the field. This hand-
book is intended to provide human geneticists and other biomedical researchers with
guidance on selections of appropriate computational methods and software pack-
ages for their specific genetic problems. It may also be used by students and other
learners as a reference in conjunction with a more theoretical and/or methodologi-
cally oriented text book. This book tries to strike a balance between methodological
expositions and practical guidelines for software selections. Wherever possible,
comparisons among the competing methods and software are made to highlight the
relative advantages and disadvantages of the approaches, so that the reader can make
informed choices to best match their specific needs.

Human genetics has been undergoing an evolution in the past several years as
new knowledge and technologies are transforming the field, leading to numerous
new discoveries of genes associated with complex traits such as cancer, obesity, and
diabetes. Many recent genome-wide association studies employ the case–control
design, where the study subjects consist of unrelated affected individuals and nor-
mal controls. For each individual, a large number of genetic markers are queried.
A genetic marker refers to a location in the human genome where people may differ
in the genetic material they carry. Genetic markers can come in different forms, with
the single nucleotide polymorphisms (SNPs) most commonly used due to their high
abundance in the genome and the availabilities of reliable and affordable technolo-
gies to genotype them. For a SNP, two different forms (called alleles) generally exist
at a single nucleotide position. Because each person carries two chromosomes, for a
given SNP with two alleles A and a, there are three possible genotypes a person can
have: AA, Aa, and aa. In this setting, a genetic association study amounts to iden-
tifying markers that are associated with disease status. This can be accomplished
by examining whether there is a statistical association between the marker genotype
and the disease status. Although this analysis resembles a standard epidemiologi-
cal study where each marker can be treated as a potential risk factor, there are many
issues that are unique to genetics studies that need to be addressed. For example, one
major concern in these studies is sample heterogeneity in their genetic background,
and ignoring this issue may result in many false positive findings that have nothing
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vi Preface and Introduction

to do with disease etiology. On the other hand, much research has been done to
empirically characterize and theoretically model the distributions and dependencies
of genetic markers, and such knowledge is very beneficial for association analysis.
In fact, a thorough genetic association analysis is not possible without a good under-
standing of the basic principles in population genetics, a field devoted to the study
of the allele frequency distribution and change under various factors that can impact
them, including mutations, random sampling, migrations, and natural selections.
The chapter by Dr. Weir provides an overview of the basic concepts of population
genetics and serves as the starting point of the analysis of human genetics data.

Although current genotyping platforms can genotype up to one million markers,
there are many more markers in the genome that are not queried on these platforms.
The reason that these typed markers can provide a good coverage of the genome
is the dependence among physically close markers, and such dependence is called
linkage disequilibrium. For example, if one SNP has alleles A and a each with allele
frequency 50%, and another marker with alleles B and b each with frequency 50%.
If the two markers are independent of each other, we would expect that 25% of
chromosomes carry both A and B in the population, and similarly for all other three
possible combinations: Ab, aB, and ab. However, it is often the case that if these
two markers are very close to each other on the same chromosome, the two alleles
carried on the same chromosome are not independent. In the most extreme case,
there are only two types of chromosomes, those carrying AB and those carrying
ab, a phenomenon called perfect linkage disequilibrium. Haplotypes refer to the
combination of alleles on the same chromosome, and the presence of such marker
dependency is the key underlying recent successes of genetic association studies
collecting the genotypes from only a small fraction of all known markers. There are
many statistical challenges presented in the analysis of haplotypes, both for popula-
tion genetics studies and for more effective genetic association studies. These topics
are discussed in the chapter by Drs. Zhang and Niu focusing on population genetics
and in the chapter by Drs. Epstein and Kwee in the context of disease association
analysis.

Genetic association studies can be performed on unrelated individuals using
traditional epidemiological designs, for example, case–control design and cohort
design, or designs unique to genetic studies, for example, family-based association
design. Because sample heterogeneity in genetic background is one major concern
in the validity of a genetic association study based on unrelated individuals, var-
ious statistical methods have been proposed to utilize genetic information in the
collected marker genotypes to make appropriate adjustments in association analy-
sis. For example, with enough marker information, it is possible to infer genetic
background for each individual and such inferred background information can be
incorporated in association analysis to make the results less susceptible to sample
heterogeneity. This issue is thoroughly studied and addressed in the chapter by Drs.
Zhu and Zhang.

With data from related individuals, genetic association tests may be conducted
in a manner that is valid (i.e., not subject to bias due to sample heterogeneity) even
without utilizing genetic markers to infer genetic background. The basic principle is
to detect whether there is a departure from random marker segregation at a candidate
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locus. For example, if a study population consists of affected children and their
parents and a marker with two alleles A and a is studied for its potential involvement
in the disease. If the marker has nothing to do with disease phenotype, we expect that
a parent who is heterozygous Aa would have equal chance to transmit allele A or
a to his/her affected offspring. On the other hand, if allele A increases disease risk,
we would expect to observe a preferential transmission of allele A to the affected
offspring. This testing procedure is robust to sample heterogeneity as the inference
is conditional on each parent’s genotype and the only genetic principle tested is
random marker allele transmission from parents to offspring, the Mendel’s first law.
Many statistical developments along this research route are discussed in the chapter
by Drs. Zhang and Zhao.

Both population-based and family-based association studies examine statistical
associations between a phenotype and the genotypes at a marker. One implicit
assumption is that the same marker genotype would exert the same or similar effects
on a phenotype. While this is expected to be the case for most genetic markers that
have direct functional impact, this assumption may well be violated for many mark-
ers. For example, consider a marker with two alleles A and a studied is not functional
but rather is in linkage disequilibrium with a truly functional one with two alleles
D and d. It is possible that A is positively associated with D in one population, that
is, someone carrying A on one chromosome is also more likely to carry D on the
same chromosome, but A is negatively associated with D in another population. In
this case, an analysis using samples from these two populations together may not
even be able to detect a genetic association. More importantly, when the markers
are sparse and not expected to provide a good coverage of the genome, the associ-
ation analysis paradigm discussed above will not be effective as a large proportion
of the genome that likely harbors disease genes may be missed due to poor cover-
age. This was in fact the case only a few years ago when only fewer markers could
be used for genetic analysis. In this scenario, although the markers were not dense
enough to cover the genome for association analysis, they were more than adequate
to allow geneticists to infer whether two relatives in an ascertained pedigree share
a segment in the genome from the same ancestor. For example, if two siblings have
the same marker genotypes across a set of closely linked markers on the same chro-
mosome, then they likely have inherited the same genetic materials from both their
parents. A genetic linkage analysis is to statistically assess whether there is a co-
segregation of genetic materials within a candidate region and the phenotype within
a family. For example, this can be done by studying whether there is a correlation
between trait similarities and inheritance similarities at a candidate region among
a set of individuals from the same family. Consider a study enrolling affected sib
pairs. If majority of them share the same genetic materials from their parents in a
region, then this region is likely involved in disease etiology. Note that in contrast to
association analysis that is performed across all study subjects, linkage analysis is
conducted within families and evidence is then summed over across individual fam-
ilies. Statistical methods for linkage analysis can be conducted for either qualitative
traits (the chapter by Dr. Li and Abecasis) or quantitative traits (the chapter by Drs.
Amos, Peng, Xu, and Ma).



viii Preface and Introduction

Exact inference of inheritance patterns within a pedigree is tractable either for a
small pedigree or for a few markers, but such inference becomes computationally
prohibitive for large pedigree with many genetic markers. In this case, the exact
probabilities may be estimated by Monte Carlo simulations. In the chapter by Drs.
Igo, Luo, and Lin, the principles and implementations underlying the simulation
methods for linkage analysis in large complex pedigrees are discussed.

One central topic in statistical inference is the control of false positive results
so as to minimize any consequences resulting from false leads. This issue has been
well addressed when only one or a small number of statistical hypotheses are tested.
However, hundreds of thousands of markers are tested for their associations with
disease in a genome-wide association study, and false positive control at the indi-
vidual marker levels will not be adequate. For example, if a study considers 500,000
markers and the statistical significance level is set at 0.01, we would expect to see
5,000 false positive results even when there is no association between disease status
and any of the markers. Similar issue exists in the linkage analysis context, although
not to the same great extent as association analysis. The chapter by Drs. Zhang and
Ott presents some recent developments on appropriately controlling overall false
positive results in genetic studies at the genome level.

The identifications of disease genes can lead to biological insights on pathways
involved in disease etiology, and these findings can also be used to predict an
individual’s disease risk. In the chapter by Drs. Gail and Chatterjee, they discuss
statistical methods that can be used to make use of findings from genetic studies to
identify individuals at higher risks for disease.

The book concludes with the last chapter by Drs. Molony, Sieberts, and Schadt,
where they discuss integrating genetics and genomics data to better delineate biolog-
ical pathways underlying complex traits. In addition to disease status and possibly
other clinical outcomes, they consider gene expression data that can now be rou-
tinely gathered to measure the expression levels of tens of thousands of genes
simultaneously for each study subject. These gene expression data add another
whole new dimension of statistical analysis and are very information rich. In prin-
ciple, the expression level of each gene can be thought as a quantitative trait, and
linkage/association analysis can be conducted to identity genes regulating a gene’s
expression level. Therefore, based on this perspective, we would be in a position to
conduct genetic analysis for tens of thousands of traits. Some of these expression
levels may be associated with disease outcome, and so it is natural to investigate
how a genetic variation affects the expression levels as well as disease outcomes.
Many biological questions on the underlying genetic networks relating genetic vari-
ations, expression variations, and phenotype variations can be posed and answered
with these data. This chapter discusses topics falling into the domain of systems
biology where the whole biological system is the focus of a study and genome-level
data of different types are needed to dissect the networks.

We hope that this book will provide an overview of the most important areas in
genetic data analysis methods. We focus on fundamental principles and, when pos-
sible, demonstrate these principles with real data examples. Despite our efforts, this
is not an encyclopedia of statistical methods in human genetics, and some topics
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are not included such as the experimental design of a genetic study, data prepro-
cessing from high-throughput genotyping platforms, and copy number variations.
Most importantly, this is a very rapidly developing field and new technologies are
constantly introduced that demand novel statistical approaches to make the most
use of the data collected. For example, the statistical methods discussed in this book
may not be the most effective for inferring inheritance patterns in a pedigree using
high density SNP data. On the other hand, the availabilities of re-sequencing data
from a large number of study subjects lead to a new set of informatics and statistical
challenges, such as the incorporation of SNP annotation information and the deal-
ing of rare genetic variations. We hope the basic principles and statistical methods
discussed in this book will motivate the readers to develop their own approaches if
necessary to accelerate our progresses in mapping disease genes.
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Gonçalo R. Abecasis Department of Biostatistics, Center for Statistical Genet-
ics, University of Michigan School of Public Health, Ann Arbor, MI, USA,
goncalo@umich.edu

Christopher I. Amos Department of Epidemiology, The University of Texas
M. D. Anderson Cancer Center, 1155 Pressler Blvd, Unit 1340, Houston, TX,
77030, USA, camos@mdanderson.org

Nilanjan Chatterjee Biostatistics Branch, Division of Cancer Epidemiology and
Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD 20852, USA

Michael P. Epstein Department of Human Genetics, Emory University
School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA,
mepstein@genetics.emory.edu

Mitchell H. Gail Biostatistics Branch, Division of Cancer Epidemiology and
Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD 20852, USA

Robert P. Igo Department of Epidemiology and Biostatistics, Division of Genetics
and Molecular Epidemiology, Case Western Reserve University, Cleveland, OH,
USA, rigo@darwin.EPBI.CWRU.edu

Lydia C. Kwee Department of Biostatistics, Emory University, Atlanta, GA, USA

Mingyao Li Department of Biostatistics and Epidemiology, University of
Pennsylvania School of Medicine, Philadelphia, PA, USA,
mingyao@mail.med.upenn.edu

Shili Lin Department of Statistics, The Ohio State University, OH, USA,
shili@stat.osu.edu

Yuqun Luo Department of Epidemiology and Biostatistics, Division of Genetics
and Molecular Epidemiology, Case Western Reserve University, Cleveland, OH,
USA, yuqun.luo@case.edu

Jianzhong Ma Department of Epidemiology, The University of Texas M. D.
Anderson Cancer Center, 1155 Pressler Blvd, Unit 1340, Houston, TX, 77030,
USA, jzma@mdanderson.org

xiii



xiv Contributors

Cliona Molony Rosetta Inpharmatics, LLC, (a wholly owned subsidiary of)
Merck & Co., Inc., Seattle, WA 98109, USA

Tianhua Niu Division of Preventive Medicine, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA

and Program in Molecular and Genetic Epidemiology, Department of Epi-
demiology, Harvard School of Public Health, Boston, MA 02115, USA,
tniu@hsph.harvard.edu

Jurg Ott Beijing Institute of Genomics, Chinese Academy of Sciences,
No. 7 Bei Tu Cheng West Road, Beijing 100029, China, ottjurg@yahoo.com

Bo Peng Department of Epidemiology, The University of Texas M. D. Anderson
Cancer Center, 1155 Pressler Blvd, Unit 1340, Houston, TX, 77030, USA,
bpeng@mdanderson.org

Eric E. Schadt Rosetta Inpharmatics, LLC, a wholly owned subsidiary of
Merck & Co., Inc., Seattle, WA 98109, USA

Solveig K. Sieberts Rosetta Inpharmatics, LLC, (a wholly owned subsidiary of)
Merck & Co., Inc., Seattle, WA 98109, USA

Bruce Weir Department of Biostatistics, University of Washington, Seattle, WA
98185.

Yaji Xu Department of Epidemiology, The University of Texas M. D. Anderson
Cancer Center, 1155 Pressler Blvd, Unit 1340, Houston, TX, 77030, USA,
yajixu@mdanderson.org

Yu Zhang Department of Statistics, the Pennsylvania State University, 422A
Thomas Building, University Park, PA 16802, USA, yuzhang@stat.psu.edu

ShuangLin Zhang Department of Mathematical Science, Michigan Technological
University, Houghton, MI, USA

Kui Zhang Section on Statistical Genetics, Department of Biostatistics University
of Alabama at Birmingham, Birmingham, AL 35294, USA

Qingrun Zhang Chinese Academy of Sciences, Beijing Institute of Genomics,
Beijing, China

Hongyu Zhao Department of Epidemiology and Public Health, Yale University
School of Medicine, New Haven, CT, 06520, USA

Xiaofeng Zhu Department of Epidemiology and Biostatistics, Case Western
Reserve University, Cleveland, OH, USA



Population Genetics

Bruce Weir

Abstract Understanding population genetics is critical to designing and interpret-
ing results for human genetic studies. Much research has been done in this area in the
past century, often involving sophisticated mathematical and computational tools.
However, there has been a detachment between theoretical developments and real
data analyses primarily due to the lack of data for population genetics studies. The
landscape has changed completely due to the recent advances in molecular tech-
nologies allowing high-throughput and affordable sequencing and genotyping of
a large number of samples. For example, the on-going HapMap project can be
considered a very large-scale population genetics study where genetic variation
throughout the genome in diverse populations is thoroughly studied. This chapter
covers basic statistical tests and procedures involved in the analysis of popula-
tion genetics data, such as the tests of Hardy–Weinberg equilibrium and linkage
equilibrium and characterization of population structure.

1 Introduction

Human population genetic studies have entered a new era with substantial amounts
of data being reported on large samples. Early in the twentieth century, data were
emerging on human blood group frequencies, reflecting variation at very few loci
in samples that rarely exceeded 100 individuals. One hundred years later, we have
public access to data at up to one million single nucleotide polymorphisms (SNPs)
for samples in the thousands [1], and the Archon X Prize of $10 million has been
established for the first group to completely sequence 100 individuals in 10 days
(http://genomics.xprize.org). These new data sets offer both challenges and oppor-
tunities. The obvious benefit is the increased precision they allow to characterize
relationships between people, between populations, and between genetic variants
and human disease. On the other hand, large data sets bring problems of data
handling, multiple testing and accommodating interactions among sets of genes.
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2 B. Weir

This chapter describes some of the basic statistical analyses that can be per-
formed on human population genetic data, and illustrates those analyses with data
collected by the FBI for forensic purposes [2]. We will adopt two principal frames of
reference: analyses for data collected from a single population that lead to inferences
for just that population and then analyses for data that allow for variation among
populations. In the first place, the analyses reflect the sampling strategies adopted
by the investigator. Sample size and family relationships among sampled individ-
uals, for example, determine properties of estimates of genetic parameters. In the
second place, the investigator’s strategies may be less important than the sampling
that is inherent in the evolutionary process that has led to the current divergence
among populations. There is less guidance in this situation from standard statistical
theories. In both situations, however, it is convenient to describe many of the anal-
yses in terms of correlations between pairs of alleles, whether the pairs are within
individuals, or within populations or between populations.

2 Within-Population Analyses

2.1 Genotype and Allele Frequencies

Our initial development is for samples of n individuals taken randomly from a sin-
gle population. GenotypesGi are represented ni times in the sample, so

∑
i ni = n.

Sample genotype frequencies are P̃i = ni/n and the corresponding population
frequencies are Pi. Because of the random sampling assumption, the genotype
counts are multinomially distributed so that means, variances and covariances of
the frequencies are:

E(P̃i) = Pi

Var(P̃i) =
1
n
Pi(1 − Pi)

Cov(P̃i, P̃i′) = − 1
n
PiPi′ , i �= i′

If we focus on a specific genotype, say I , then the count nI has a binomial distribu-
tion and it is often appropriate to approximate that by a normal distribution. For the
frequency, then,

P̃I ∼ N

(

PI ,
1
n
PI(1 − PI)

)

and confidence intervals can be constructed for the population genotype frequency.
As 95% of the standard normal distribution lies between ±1.96, the 95% confidence

interval for PI is P̃I ± 1.96
√
P̃I(1 − P̃I)/n.
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When multinomial categories are combined into a smaller number of categories,
the distribution remains multinomial. So, if data are collected for pairs of loci
A and B, each of which has two alleles A, a and B, b there are nine two-locus
genotype classes. The one-locus genotype classes can be found by summation, for
example,

nAA = nAABB + nAABb + nAAbb

Both the two-locus and the one-locus genotype counts are multinomially distributed.
The same preservation does not hold, however, when categories are subdivided.
Consider the allele counts nA, na for two alleles at a single locus:

nA = 2nAA + nAa p̃A = nA
2n p̃A = P̃AA + 1

2 P̃Aa

na = 2naa + nAa p̃a = na
2n p̃a = P̃aa + 1

2 P̃Aa

nA + na = 2n p̃A + p̃a = 1

The heterozygote count nAa contributes to both allele counts, and this means that
the count for any one allele is not binomially distributed. This can be seen most
easily by considering the variance of an allele frequency:

Var(p̃A) =
1

4n2

[
Var(2nAA) + Var(nAa) + 2Cov(2nAA, nAa)

]

=
1
2n
pA(1 − pA) +

1
2n

(PAA − p2
A) (1)

The first term on the right-hand side looks like a binomial variance, but there is an
additional term that reflects possible departures from Hardy–Weinberg equilibrium
(HWE) in the population, PAA �= p2

A. The HWE law states that in the absence of
forces such as genetic drift, selection, mutation and migration, genotype probabil-
ities are products of allelic probabilities. If there is HWE in a population, then a
random sample of n individuals (genotypes) is equivalent to a random sample of 2n
alleles at each locus as the alleles within individuals are independent in that case.

2.2 Maximum Likelihood Estimation

The multinomial probability Pr({ni}|{Pi}) of a set of genotype counts depends on
the population frequencies:

Pr({ni}|{Pi}) =
n!

∏
i ni!

∏

i

(Pi)ni
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and this leads to the likelihood of the frequencies given the counts:

L({Pi}|{ni}) = C
∏

i

(Pi)ni (2)

Here, C is an arbitrary constant. The likelihood contains only the terms in the prob-
ability that involve the parameters Pi. The maximum likelihood estimates (MLE)
P̂i of the parameters are those values that maximize the likelihood and these are
found to be P̂i = ni/n = P̃i. Note that, if there is not HWE, the MLE of an allele
frequency is not generally the sample frequency because the allele counts do not
follow a multinomial distribution. We will see an exception to this rule for the case
of loci with only two alleles.

MLEs have many desirable properties, including sufficiency (they make use of
all information in the data) and efficiency (they have smaller variances than other
estimates), but they need not be unbiased. To show this, consider the estimates of
“heterozygosity.” If this term means the proportion of heterozygotes, as it should,
then things are simple. If H is the probability that a random individual is het-
erozygous, then the sample frequency of heterozygotes H̃ is just the sum of the
frequencies of all heterozygous genotypes and it is the MLE of H . Moreover, it is
unbiased since it has expectation E(H̃) = H . However, the term “heterozygosity” is
often applied to the expression 1−∑

u p
2
u or one minus the sum of squares of allele

frequencies at a locus. This quantity should be referred to as “allele diversity” D,
and it has an MLE of

D̂ = 1 −
∑

u

p̃2
u

To find the expectation of this estimate, we note that E(p̃2
u) = Var(p̃u) + p2

u. This
leads to

E(D̂) = D − 1
2n

(2D −H)

Even if there is HWE, and H = D, the MLE of D has a small bias.

2.3 Inbreeding Coefficient

It is convenient to introduce parameters that measure the departure from HWE in a
population. For a locus with two alleles, a single inbreeding coefficient f can play
this role. This quantity can be defined by the following equations:

PAA = p2
A + fpApa

PAa = 2pApa − 2fpApa

Paa = p2
a + fpApa

These equations preserve the property that pA = PAA+PAa/2, but what is f? In the
first place, we note that it has bounds imposed by the fact that genotype frequencies
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are bounded by zero and allele frequencies: 0 ≤ PAA ≤ pA, 0 ≤ Paa ≤ pa,
0 ≤ PAa ≤ min(2pA, 2pa). These lead to

max
(

−pA

pa
,− pa

pA

)

≤ f ≤ 1.

The best description of f is that it is an intra-class correlation coefficient. For the ith
individual in a sample, replace the two alleles by indicator variables xij , j = 1, 2
that take the values 1 for A alleles and 0 for a alleles. Genotypes AA,Aa, aa are
coded 11, 10, 00. Taking expectations of x’s

E(xij) = pA

E(x2
ij) = pA

Var(xij) = pApa

E(xi1xi2) = PAA

Cov(xi1, xi2) = PAA − p2
A = fpApa

The correlation of the two x’s for the same individual, Corr(xi1, xi2) is the covari-
ance of these two x’s divided by the square root of the product of their variances.
The correlation is f .

The number of A alleles in the sample is the sum of these indicators: nA =∑n
i=1

∑2
j=1 xij . For random samples, the x’s from different individuals are inde-

pendent: E(xijxi′j′) = p2
A, i �= i′, and using this result as well as the expectations

for x’s in the same individual leads to the variance of a sample allele frequency,

Var(p̃A) =
pApa(1 + f)

2n

which is equivalent to the result in (1).
The MLE of f can be found from replacing genotype probabilities in (2) by

expressions involving f and allele frequencies

L(pA, f |nAA, nAa, naa) = C
[
p2

A + fpA(1pA)
]nAA

[
2(1 − f)pA(1 − pA)

]nAa

×[(1 − pA)2 + fpA(1 − pA)
]naa

and then maximizing this expression with respect to f and pA. It is simpler in this
case to note that the degrees of freedom equal the number of parameters and equate
observed and expected genotype proportions. There are three genotypic categories
and therefore two df, and there are two parameters f and pA since pa = (1 − pA).
This provides

p̂A = p̃A

f̂ = 1 − P̃Aa

2p̃Ap̃a
.
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Because f̂ is an MLE it can be regarded as having a normal distribution for large
sample sizes. Because it is a ratio, however, it is difficult to derive its mean and
variance. Appealing to large-sample theory does provide the results [3].

E(f̂) = f

Var(f̂) =
1

2npApa
(1 − f)

[
2(1 − f)(1 − 2f)pApa + f(2 − f)

]
(3)

With multiple alleles, the use of inbreeding coefficients is not quite as simple.
With m alleles at a locus there are m(m + 1)/2 genotypes, so there is a need for
m(m − 1)/2 inbreeding coefficients and it is convenient to define one for each
heterozygote. Genotype frequencies for AuAu homozygotes and AuAu′ , u �= u′

heterozygotes can be re-parameterized as:

Puu = p2
u +

∑

u′ �=u

fuu′pupu′

Puu′ = 2pupu′(1 − fuu′), u′ �= u

HWE holds when all the f ’s are zero. With this parameterization, MLEs are

p̂u = p̃u

f̂uu′ = 1 − P̃uu′

2p̃up̃u′
, u �= u′.

For neutral genetic markers, we are more likely to want to use a single inbreeding
coefficient f . This imposes a constraint on the system sincem allele frequencies and
one inbreeding coefficient are being use to parameterizem(m+ 1)/2 genotype fre-
quencies. It is still possible to find MLEs for the allele frequencies and the single f ,
but none of these now has analytic expressions. Numerical methods are needed to
maximize the likelihood.

2.4 Testing for Hardy–Weinberg Equilibrium

For loci with two alleles there are several equivalent ways of testing the hypothesis
that the sampled population is in Hardy–Weinberg equilibrium. Appealing to the
asymptotic normality of the MLE for the inbreeding coefficient parameter fA, the
hypothesis that fA = 0 can be tested for with the standard normal statistic z =

f̂A/

√

Var(f̂A). Squaring this gives a statistic with a 1 df chi-square distribution:

X2
A = nf̂2

A
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which uses the result that Var(f̂A) = 1/n when fA = 0. The same underlying
assumption of a large sample size leads to this test statistic from a goodness-of-
fit perspective: the three observed counts O : nAA, nAa, naa are compared to the
expected counts E : np̃2

A, 2np̃Ap̃a, np̃
2
a by means of the equation X2 =

∑
(O −

E)2/E.
For small samples, it is usual instead to perform an exact test, where “exact”

refers to calculating the probability of a false rejection. The chi-square tests cal-
culate this significance level from the chi-square distribution, which must be an
approximation since the chi-square is a continuous distribution and the data are dis-
crete. The exact test uses the multinomial distribution of the genotype counts, and
works specifically with the probability of the genotype counts conditional on the
observed allele counts. Because the allele counts are just sums of genotype counts

Pr(nAA, nAa, naa|nA, na) =
Pr(nAA, nAa, naa)

Pr(nA, na)
.

If there is HWE the allele counts are binomially distributed and

Pr(nAA, nAa, naa) =
n!

nAA!nAa!naa!
(p2

A)nAA(2pApa)nAa(p2
a)naa

Pr(nA, na) =
(2n)!
nA!na!

(pA)nA(pa)na

so

Pr(nAA, nAa, naa|nA, na) =
n!2nAanA!na!

(2n)!nAA!nAa!naa!
.

This quantity is evaluated for a dataset to give a probability p. All sets of genotypic
counts with the same allelic counts are then considered and the corresponding prob-
ability is added to p if it is not greater than p. The resulting sum is the significance
level, or p-value, for the test. For loci with multiple alleles the probability is:

Pr({nij}|{ni}) =
n!

∏
i≤j nij !

2H
∏

i ni!
(2n)!

,

where H is the number of heterozygotes in the sample and ni, nij are allelic and
genotypic counts. It may not now be possible to do a complete enumeration of all
genotypic arrays, and a permutation procedure is used instead to give a random
sample of arrays [4]. The 2n alleles in a sample of n genotypes are permuted to
form a new genotype array, and the proportion of a large number of permutations
(say 2,000) that lead to a smaller probability than the data is an estimate of the p
value.

When there is not HWE, the conditional probability of the genotype counts given
the allele counts in the two-allele cases can be written as:
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Pr(nAA, nAa, naa|nA, na) =
CφnAa

nAA!nAa!naa!
(4)

[5], where φ = PAa/
√
PAAPaa and C is a normalizing constant that ensures the

probabilities sum to one over all genotype arrays consistent with the allele counts
nA, na. Note that φ = 2 for HWE. Once the rejection region of the exact test has
been determined, the sum of the probabilities in (4) for that region gives the power
of the test.

2.5 Linkage Disequilibrium

The inbreeding coefficient f was introduced as a means of describing the depen-
dence between the two alleles at a locus carried by an individual. There is an
analogous quantity, linkage disequilibrium, for a pair of alleles at different loci
but transmitted together from one parent to an individual. For alleles A,B at loci
A and B, the frequency of AB gametes (the material transmitted from parent to
child) is written as pAB and (gametic) linkage disequilibriumDAB is defined as:

DAB = pAB − pApB.

If the frequencies on the right-hand side are replaced by sample values, the left-hand
side is the MLE. It has mean and (large-sample) variance of

E(D̂AB) = DAB

Var(D̂AB) =
1
2n

[
pA(1 − pA)pB(1 − pB) + (1 − 2pA)(1 − 2pB)

×DAB −D2
AB

]
, (5)

where 2n is the number of gametes in the sample.
As with the inbreeding coefficient, there are bounds on DAB because gamete

frequencies are bounded by allele frequencies, e.g., 0 ≤ pAB ≤ min(pA, pB).
These lead to

max
[− pApB,−(1 − pA)(1 − pB)

] ≤ DAB ≤ min
[
pA(1 − pB), (1 − pA)pB

]
.

The correlation nature of linkage disequilibrium is demonstrated by considering
two indicator variables, xi, yi, defined as xi = 1 if the A allele on the ith gamete in
a sample is A and yi = 1 if the B allele on the gamete is B. Otherwise, the variables
are zero and the relevant expectations are:

E(xi) = pA E(yi) = pB

E(x2
i ) = pA E(y2

i ) = pB

Var(xi) = pA(1 − pA) Var(yi) = pB(1 − pB)
E(xiyi) = pAB Cov(xi, yi) = DAB
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The correlation between xi and yi is ρAB = DAB/
√
pA(1 − pA)pB(1 − pB).

In the case of no inbreeding at either locus, the estimated inbreeding coefficients
f̂A, f̂B at the two loci are correlated to an extent [5].

Corr(f̂A, f̂B) =
D2

AB

[pA(1 − pA)pB(1 − pB)]
= ρ2

AB.

2.6 Composite Linkage Disequilibrium

Gametic linkage disequilibrium is estimated from sample gametic frequencies,
while data are collected at the genotypic level. Because genotypic phase is gen-
erally unknown, meaning that only the genotype and not the constituent gametes
are observed, double heterozygotes AaBb cannot be partitioned into those that are
formed by the union of AB and ab gametes from those formed by the union of Ab
and aB gametes. If HWE can be assumed at each locus, then there are algorithms
that allow gamete frequencies to be estimated from genotypic frequencies and these
estimates can be used to estimate linkage disequilibrium (e.g., [6]).

We often prefer to avoid the HWE assumption and instead work with a measure
of composite linkage disequilibrium that measures the dependence of alleles A and
B in the same individual whether the alleles were transmitted to the individual on
one or two gametes. If pA,B is the probability with which an individual receives
alleles A and B from different parents, then the composite linkage disequilibrium
ΔAB is the sum of the gametic and the non-gametic disequilibria

ΔAB = (pAB − pApB) + (pA,B − pApB) = DAB +DA,B,

This has an MLE of

Δ̂AB =
1
n

(

2nAABB + nAABb + nAaBB +
1
2
nAaBb

)

− 2p̃Ap̃B

with mean and large-sample variance of

E(Δ̂AB) = ΔAB

Var(Δ̂AB) =
1
n

[pA(1 − pA)(1 + fA)pB(1 − pB)(1 + fB)

+ (1 − 2pA)(1 − 2pB)ΔAB + (1 − 2pA)DABB

+ (1 − 2pB)DAAB + ΔAABB ],

where n is the number of individuals in the sample [7]. The quantities DAAB,
DABB,ΔAABB are higher-order measures of association for three or four alleles.
These are all zero when there is HWE, and then ΔAB = DAB .
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The is also a correlation aspect of composite linkage disequilibrium. If the A and
B indicator variables xij and yij for the jth gamete of the ith sampled individual are
defined earlier, then the sums xi = (xi1 + xi2)/2, yi = (yi1 + yi2)/2 are half the
numbers of A and B alleles in the ith individual. They take the values 0, 0.5, or 1,
and they have expectations

E(xi) = pA E(yi) = pB

E(x2
i ) = pA E(y2

i ) = pB

Var(xi) =
1
2
pA(1 − pA)(1 + fA) Var(yi) =

1
2
pB(1 − pB)(1 + fB)

E(xiyi) =
1
2
(pAB + pA,B) Cov(xi, yi) =

1
2
ΔAB

The correlation between xi and yi is [7].

ρABc = ΔAB/
√
pA(1 − pA)(1 + fA)pB(1 − pB)(1 + fB)

Under HWE, this reduces to the correlation for indicator variables on the same
gamete.

2.7 Testing for Linkage Equilibrium

For loci with two alleles, there are several equivalent ways of testing the hypothesis
that the sampled population is in linkage equilibrium. Appealing to the asymp-
totic normality of the MLE for the linkage disequilibrium coefficient DAB , the
hypothesis that DAB = 0 can be tested for with the standard normal statistic

z = D̂AB/

√

Var(D̂AB). Squaring this gives a statistic with a 1 df chi-square
distribution:

X2
AB = 2nr2AB =

2nD̂2
AB

p̃A(1 − p̃A)p̃B(1 − p̃B)

which uses the result that Var(D̂) = pA(1 − pA)pB(1 − pB)/2n for a sam-
ple of 2n gametes when DAB = 0. The same underlying assumption of a large
sample size leads to this test statistic from a goodness-of-fit perspective: the four
observed counts O : nAB, nAb, naB, nab are compared to the expected counts

E : 2np̃Ap̃B, 2np̃Ap̃B, 2np̃Ap̃B, 2np̃Ap̃B by means of the equation X2
AB =

∑
(O − E)2/E. It is also possible to perform an exact test using gamete counts.
For the composite linkage disequilibrium coefficient, there is the complication

of the higher-order three- and four-allele disequilibria. By analogy to the test for
gametic linkage disequilibrium though, the test statistic

X2
ABc

= 2nr2ABc
=

2nΔ̂2
AB

p̃A(1 − p̃A)(1 + f̂A)p̃B(1 − p̃B)(1 + f̂B)
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can be regarded as having (approximately) a chi-square distribution with 1 df [7].
There is not a goodness-of-fit route to this statistic as there was for HWE and for
gametic linkage equilibrium.

2.8 Application to Data

Although genetic data are widely used throughout human genetics, it may be that the
largest number of published data sets has been produced by forensic scientists. DNA
profiles have proven to be of considerable use in issues of human identity determi-
nation, whether this is the forensic setting of associating a suspect with a crime,
assessing the strength of evidence in a paternity dispute or in identifying remains
after a mass disaster. Although the forensic uses of DNA used minisatellites in the
early 1990s and the use of SNPs is now being investigated, it is microsatellites that
are in common current use. As part of the process of validating these markers, foren-
sic scientists publish analyses of data they collect to establish allele frequencies. On
this occasion they publish the complete data, and one such set is from the FBI [2].
These data can be downloaded from the URL given in the Reference section, and
they are also distributed, in .nex format, with the GDA package [8].

The data consist of genotypes at nine loci from six populations: self-identified as
African-American (FBIA), Caucasian (FBIC), or Hispanic (FBIH) in the US, and
from Bahamas (FBIB), Jamaica (FBIJ) and Trinidad (FBIT) in the Caribbean. The
following results were obtained with GDA, but there are many other packages that
could equally well be used.

Hardy–Weinberg Tests

The p-values shown in Table 1 were obtained by the exact test with 10,000 permuta-
tions. As expected, there is little evidence for departures from HWE although there

Table 1 HWE exact test p-values for FBI data
Population

Locus FBIA FBIC FBIH FBIB FBIJ FBIT

D3S1358 0.794 0.088 0.332 0.759 0.287 0.224
vWA 0.315 0.066 0.921 0.742 0.650 0.235
FGA 0.992 0.258 0.630 0.927 0.300 0.836
D8S1179 0.702 0.791 0.057 0.248 0.269 0.897
D21S11 0.492 0.414 0.647 0.019 0.922 0.915
D18S51 0.918 0.633 0.517 0.297 0.551 0.527
D5S818 0.443 0.576 0.525 0.259 0.770 0.973
D13S317 0.304 0.402 0.992 0.208 0.057 0.070
D7S870 0.487 0.324 0.421 0.192 0.257 0.370
Sample size 210 203 209 160 244 85
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Fig. 1 Q-Q plot of HWE exact −2 ln(p)-values for FBI data

are some values less than the conventional p = 0.05 level. If all nine loci were in
HWE in all six populations, we would expect to get two or three such “significant”
values and we see there is only one. There appears to be no need for any corrections
for multiple testing, although two procedures can be mentioned. The very conser-
vative Bonferroni correction requires each p-value to be multiplied by the number
of tests (with the products truncated at one) and those values used to assess signif-
icance. In this case, no value is anywhere close to being as small as 0.05. A better
procedure (for independent tests) is to recognize that p-values are uniformly dis-
tributed when the hypotheses are true and construct a Q-Q plot of ranked p-values
against their expected values. Because we have most interest in small p-values, we
construct these plots for values of −2 ln(p) which have a chi-square distribution
with 2 df when the hypotheses are true. This transformation accentuates the small
values, and leads to Fig. 1. The largest value of −2 ln(p) is 7.93, for D21S11 in the
FBIB sample, and this is seen to be not all unusual for a set of 54 tests.

Linkage Disequilibrium

To illustrate the similarities between gametic and composite linkage disequilibrium,
we reduce the FBI data to two alleles at each locus: the most common allele vs.
the rest. In Fig. 2, we show the estimated linkage disequilibrium coefficients when
HWE is either assumed or not assumed – it is the composite linkage disequilibrium
in the latter case. There is very little difference between the two estimates over the
set of 216 values (36 pairs of loci for each of the six samples), as was expected
because of the overall agreement with HWE. The composite coefficient requires
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Fig. 2 Linkage disequilibrium estimates for FBI data
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Fig. 3 Linkage disequilibrium test statistics for FBI data

very much less computation. The corresponding test statistics are shown in Fig. 3.
Should any of the 216 test statistics be regarded as significant? The Q-Q plots for
the two linkage disequilibrium test statistics are shown in Figs. 4 and 5, and there
does not seem to be any substantial evidence for disequilibrium in any of the 216
tests.

The GDA package provides another approach to testing for association between
pairs of loci. An exact test is constructed for the hypothesis that two-locus genotype
frequencies are equal to the products of allele frequencies at both loci. For loci
A and B the test statistic is:

Pr({nABijkl}|{nAi}, {nBk}) =
n!

∏
i≤j,k≤l nABijkl!

2HA
∏

i nAi!
(2n)!

2HB
∏

k nBk!
(2n)!

.
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Fig. 4 Q-Q plot for linkage disequilibrium test statistic −2 ln(p) values (assuming HWE) for FBI
data
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Fig. 5 Q-Q plot for linkage disequilibrium test statistic −2 ln(p) values (not assuming HWE) for
FBI data

Here, nABijkl is the count of AiAjBkBl genotypes and nAi, nBk are the sample
counts forAi, Bk alleles. The hypothesis being tested is a composite of HWE at each
locus, LD gametic and nongametic linkage disequilibrium and any other association
between alleles taken three or four at a time. The Q-Q plot for the 216 tests on
the FBI data is shown in Fig. 6. A goodness-of-fit test for this hypothesis would
have 6 df.
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Fig. 6 Q-Q plot for two-locus allelic disequilibria test −2 ln(p) values for FBI data

GDA also tests the hypotheses that multi-locus genotype frequencies are products
of single-locus frequencies. The exact test statistic is:

Pr({nABijkl}|{nAij}, {nBkl}) =
n!

∏
i≤j,k≤l nABijkl !

∏
i≤j nAij !
n!

∏
k≤l nBkl!
n!

.

A goodness-of-fit test for this hypothesis would have 4 df. The Q-Q plot for the
exact test shown in Fig. 7 is the first we have seen that shows the effect of the discrete
nature of these test statistics. With the single-locus genotype counts fixed, there
may be very few possible sets of two-locus genotype counts and therefore very few
possible test statistic values of p-values. The continuous uniform distribution is no
longer valid. The problem is less extreme when allelic counts are marginals, but to
illustrate the problem consider the situation when the alleles are collapsed into the
most frequent A,B vs. the rest a, b for A: D21S11 and B: D18S51 in the African-
American FBI sample. The nine two-locus counts, with one-locus marginals are:

BB Bb bb A− Marginals
AA 0 4 2 6
Aa 2 21 42 65
aa 2 34 72 108

B − Marginals 4 58 117 179

The counts AABB,AaBB, aaBB must each lie between 0 and 4, and there are
only 15 possible values for the trio.
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Fig. 7 Q − Q plot for two-locus genotype disequilibria test −2ln(p) values for FBI data

3 Between-Population and Analyses

3.1 F -statistics

The use of correlation coefficients between pairs of alleles at the same or different
loci is very useful for genetic analyses within populations. No appeal was made to
evolutionary mechanisms in defining these quantities. When data are available from
more than one population, it is possible to take into account the variation among
populations caused by past evolutionary events. The major effect of considering
the past is that individuals can no longer be considered independent – they are all
affected by the history of their population.

The simplest model for analyzing population structure supposes that all popu-
lations have allele frequencies sampled independently from the same distribution.
This sampling refers to the evolutionary process, not to actions of the investigator. It
is sufficient to specify only the mean and variance of this distribution, but specify-
ing the whole distribution allows for MLEs. Once again, it is convenient to develop
statistical procedures by considering indicator variables. If there is random mating
within populations, it may be sufficient to consider only allele frequencies instead
of genotype frequencies, so define xij to be equal to 1 if the jth allele sampled from
the ith population is of type A and is zero otherwise. The expected values of these
variables introduce the population structure parameter θ (also written as FST ):

E(xij) = pA

E(x2
ij) = pA
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E(xijxij′ ) = p2
A + pA(1 − pA)θ, j′ �= j

E(xijxi′j′ ) = p2
A, i

′ �= i

so that alleles drawn from different populations are independent. As Var(xij) =
pA(1 − pA) and Cov(xij , xij′ ) = pA(1 − pA)θ, it is seen that θ is the correla-
tion for alleles in the same population and so is analogous to the within-population
inbreeding coefficient f . The difference between the two is that f refers only to the
single sampled population, whereas θ refers to the average over the collection of
populations of which the current population is but one member.

Allele A has frequency p̃Ai in the sample from the ith population, and if the
sample size is n alleles, p̃Ai =

∑n
j=1 xij/n. This leads to the variance of sample

allele frequencies

Var(p̃Ai) = pA(1 − pA)
(

θ +
1 − θ

n

)

. (6)

Whether or not there is HWE within a population, (1) shows the within-population
variance of sample allele frequencies decreasing as the sample size increases. By
contrast, the total variance in (6) never decreases below pA(1 − pA)θ no matter
how large a sample is taken. The evolutionary variation cannot be reduced by an
investigator.

Manipulating the various expectations for the indicator variables suggests the
use of two mean squares for estimating θ. If ni alleles are sampled from the ith of r
populations, we define mean squares for allele A among and within populations as

MSAA =
1

r − 1

r∑

i=1

ni(x̄i. − x̄..)2 =
1

r − 1

r∑

i=1

ni(p̃Ai − p̄A)2

MSWA =
1

∑r
i=1(ni − 1)

r∑

i=1

ni∑

j=1

ni(xij − x̄i.)2

=
1

∑r
i=1(ni − 1)

r∑

i=1

nip̃Ai(1 − p̃Ai),

where

x̄i. =
1
ni

ni∑

j=1

xij = p̃Ai , x̄.. =
1

∑r
i=1 ni

ni∑

j=1

xij = p̄A.

Taking expectations, and writing nc =
(∑r

i=1 ni −
∑2

i=1 n
2
i /

∑r
i=1 ni

)
/(r − 1),

provides

E(MSAA) = pA(1 − pA)[(1 − θ) + ncθ]
E(MSWA) = pA(1 − pA)(1 − θ)
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and a moment-estimator of θ from allele A is

θ̂A =
MSAA − MSWA

MSAA + (nc − 1)MSWA
. (7)

The large-sample mean and variance of the moment estimate is

E(θ̂A) ≈ θ

Var(θ̂A) ≈ 2θ2(1 − θ)2

r − 1
.

For loci with only two alleles, the estimate of θ is given by (7) since the same
value would be found if sample frequencies of the alternative allele were used
instead. With multiple alleles, assuming that the parameter θ is the same for all
alleles

θ̂ =
∑

A(MSAA − MSWA)
∑

A[MSAA + (nc − 1)MSWA]
.

Assuming that θ is the same for all loci, the same equation can be used if A ranges
over all the alleles at all the loci being considered. There is empirical evidence, how-
ever, [9] that this is not true and certainly natural selection would lead to differences
among loci.

For large sample sizes the moment estimator becomes

θ̂A ≈ r
∑r

i=1 p̃Ai(1 − p̄A)
[
r
∑r

i=1(p̃Ai − p̄A)2 + (r − 1)
∑r

i=1 p̃Ai(1 − p̃Ai)
]

and for a large number of samples it reduces further to

θ̂A ≈
∑r

i=1(p̃Ai − p̄A)2

rp̄A(1 − p̄A)
. (8)

It would be preferable to have a maximum-likelihood estimate of θ as this would
allow more to be said about the properties of the estimate. In general, it is difficult
to derive the distribution of allele frequencies over populations, but a useful approx-
imation is to assume normality. For large sample sizes, where ni can be taken to be
large and equal, we assume

p̃Ai ∼ N [pA, pA(1 − pA)θ].

If the r samples are independent, the likelihood for parameters pA, θ is

L(pA, θ) =
r∏

i=1

e
−
(

(p̃Ai − pA)2
2pA(1 − pA)θ

)

√
2πpA(1 − pA)θ
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and the MLEs are

p̂A =
1
r

∑

i

p̃Ai = p̄A

θ̂ =
∑

i(p̃Ai − p̄A)2

rp̄A(1 − p̄A)
.

The second of these is the same as (8).
The multiple-allele version of the normal-based MLEs is

θ̂l =
1
rml

r∑

i=1

m∑

u=1

(p̃liu − p̄u)2

p̄u

if there are ml alleles at the locus. Combining over loci is just by averaging over
loci. The MLEs are asymptotically chi-square distributed [10]. At a single locus

θ̂l ∼ θ

(r − 1)(ml − 1)
χ2

[(r−1)(ml−1)].

This indicates that θ̂ is unbiased with variance 2θ2/[(r − 1)(ml − 1)]. Averaging
over independent loci retains unbiasedness and decreases the variance to

Var

(
1
L

L∑

l=1

θ̂l

)

=
2θ2

L2(r − 1)

L∑

l=1

1
ml − 1

.

The chi-square result points to the asymmetric distribution of estimates about the
mean unless the df are large and the chi-square tends to become normal. There
is the most uncertainty about true values of θ when estimates are based on SNPs
(m = 2) and small numbers of populations (r = 2, 3, 4).

The analysis of allele frequencies is appropriate when HWE can be assumed, but
otherwise a distinction needs to be made between pairs of alleles within individuals
and pairs of alleles from different individuals. It is then appropriate to define indica-
tor variables xijk for the kth allele (k = 1, 2) in the jth individual (j = 1, 2, . . . , ni)
sampled from the ith population. The expected values of these variables introduce
the total inbreeding coefficient F (also writhen as FIT ) for alleles in the same
individual in addition to θ for alleles in different individuals:

E(xijk) = pA

E(x2
ijk) = pA

E(xijkxijk′ ) = p2
A + pA(1 − pA)F, k′ �= k

E(xijkxij′k′) = p2
A + pA(1 − pA)θ, j′ �= j

E(xijkxi′j′k′) = p2
A, i

′ �= i
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There are now three sources of variation, alleles within individuals, individuals
within populations and among populations. If H̄A = 1 − ∑

i niP̃AAi/
∑r

i=1 ni

is the average over populations of the sample proportion of heterozygotes and
n̄ =

∑r
i=1 ni is the average sample size, the three mean squares have these

expectations

Source d.f. Sum of squares Expected mean square

Populations (r − 1) 2
∑

i ni(p̃Ai − p̄A)2 p(1 − p)[(1 − F ) + 2(F − θ)

= 2(r − 1)n̄s2
A + 2ncθ]

Individuals in
∑r

i=1(ni − 1) 2rn̄p̄A(1 − p̄A) − 1
2
rn̄H̄A p(1 − p)[(1 − F ) + 2(F − θ)]

populations −2(r − 1)n̄s2
A

Alleles in
∑r

i=1 ni
1
2
rn̄H̄A p(1 − p)(1 − F )

individuals

Moment estimates of F and θ can be found from equating the mean squares to
their expectations.

3.2 Application to Data

The GDA package implements the moment estimation procedure for population
structure parameters. The estimates obtained for each allele at D3S1358 in the FBI
data are shown in Table 2, firstly on the basis of genotypic data so that both F
and θ can be estimated and then on the basis of allelic data so that only θ can be
estimated. The within-population inbreeding coefficient f or FIS is calculated as
f = (F − θ)/(1 − θ).

Table 2 Allele-specific F -statistics for D13S1358 in FBI data

Not assuming HWE HWE

Allele A f̂A(FIS) F̂A(FIT ) θ̂A(FST ) θ̂(FST )

15.2 −0.000047 −0.000569 −0.000522 −0.000522
12 −0.001385 0.000860 0.000525 0.000521

<12 −0.001922 −0.000165 0.001754 0.001748
>19 0.000470 −0.000681 −0.001152 −0.001151

19 −0.006650 −0.006138 0.000509 0.000489
13 −0.009375 −0.004967 0.004367 0.004340
16 0.032688 0.037250 0.004716 0.004811
15 −0.026606 −0.009535 0.016628 0.016552
14 −0.035042 −0.024538 0.010149 0.010048
18 −0.053503 −0.027975 0.024231 0.024080
17 −0.045407 −0.039967 0.005204 0.005073

All alleles −0.017504 −0.006497 0.010818 0.010768
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Table 3 Locus-specific F -statistics for FBI data

Not assuming HWE HWE

Locus f̂(FIS) F̂ (FIT ) θ̂(FST ) θ̂(FST )

D3S1358 −0.017504 −0.006497 0.010818 0.010768
vWA 0.001439 0.012150 0.010727 0.010731
FGA −0.010243 −0.005117 0.005074 0.005043
D8S1179 −0.007740 0.006382 0.014013 0.013990
D21S11 0.000726 0.013279 0.012561 0.012563
D18S51 −0.004309 0.009942 0.014190 0.014177
D5S818 −0.004985 0.017716 0.022588 0.022574
D13S317 0.036872 0.062208 0.026306 0.026409
D7S870 0.016383 0.022371 0.006087 0.006132

All loci 0.000891 0.014273 0.013394 0.013396

Lower limit∗ −0.007473 0.003858 0.009390 0.009363
Upper limit∗ 0.011991 0.028134 0.017939 0.017946

∗ 95% confidence interval by bootstrapping over loci

The very large variation among the allele-specific estimates at a locus mean that
they are of little value, and attention is generally restricted to the estimates combined
over alleles as shown in Table 3. Even these values, however, are very variable and
the estimates combined over loci are likely to be of most value. Table 3 shows 95%
confidence intervals generated by bootstrapping over loci and reported by GDA. In
essence, nine loci are sampled with replacement from the data and new estimates are
calculated. This is repeated 1,000 times and the central 95% of these values serve
as a confidence interval. This procedure is computationally intensive and requires
a large number of loci. An alternative is to make use of the chi-square approxi-
mation. The number of alleles at the nine loci are 11, 10, 28, 11, 23, 21, 11, 9,
and 11 so

∑L
l=1 1/[(r − 1)(ml − 1)] = 0.1537 and the confidence interval for θ

is approximately θ̂(1 ± 1.96
√

2(0.1537)/81) = (0.011788, 0.015004) which is a
little narrower than that given by bootstrapping over loci.

Table 3 shows that there is little within-population inbreeding, as was already
indicated by the non-significant HWE test results, but that F and θ are both different
from zero. This is not surprising given the historical separation of the African and
Caucasian populations. The relationship among populations can be explored further
by estimating θ for each pair of populations separately and using the estimates as
measures of genetic distances between the populations. Under a pure drift model
of evolution − ln(1 − θ) is proportional to the time of the most recent common
ancestral population of the populations under study [11]. GDA can calculate the
pairwise estimates (Table 4) and use these to reconstruct the evolutionary history
of the populations (Fig. 8). The African-American and Caribbean samples cluster
together, as do the Caucasian and Hispanic samples.



22 B. Weir

Table 4 Population-pairwise estimates of θ for FBI data (θ above diagonal, − ln(1 − θ) below
diagonal)

FBIA FBIC FBIH FHIB FBIJ FBIT

FBIA 0.014393 0.025581 0.000599 0.000554 0.004754
FBIC 0.014497 0.012169 0.013204 0.020197 0.007395
FBIH 0.025914 0.012243 0.022389 0.030719 0.014028
FBIB 0.000599 0.013292 0.022643 0.000278 0.002644
FBIJ 0.000554 0.020404 0.031201 0.000278 0.006082
FBIT 0.004765 0.007422 0.014127 0.002647 0.006100

+---------------------------------------------FBIC
+----------------------10

HIBF---------------------------------------------+|
|
11 +---FBIA

8-------------+|
BIBF--+|||

+--------------------------------------------------9 +7
| +--FBIJ
|
+-----------------FBIT

|----------------|----------------|----------------|----------------|
0.0093 0.0070 0.0047 0.0023 0.0000

Fig. 8 UPGMA phenogram for FBI data

4 Discussion

This chapter has presented some basic methods in the statistical analysis of popula-
tion genetic data. A much more complete account is given in the two-volume work
edited by Balding et al. [12].
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5 Web Resources

The data discussed in this chapter are available at

http://www.fbi.gov.programs/hq/lab/fsc/backissu/

july1999/budowle.htm

The package GDA which generates the numerical results in this chapter is
available from

http://lewis.eeb.uconn.edu/lewishome/software.html
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The X-prize for DNA sequencing is described at

http://genomics.xprize.org
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Haplotype Structure

Yu Zhang and Tianhua Niu

Abstract This chapter consists of five parts. In the first part, we provide definitions
for important terms and concepts used in studies of population haplotype structures.
In the second part, we introduce the user to valuable publicly available geno-
type/haplotype databases, such as databases generated by the International HapMap
Project. In the third part, we provide concise guides to the user on how to download
genotype data from the HapMap web site, how to use the Haploview program, as
well as how to perform haplotype simulation. In the fourth part, we provide guides
to several widely used haplotype inference Inference methods, including the Clark’s
algorithm, PHASE, HAPLOTYPER, and CHB. In the fifth part, we present to the
user two popular software packages, LDhat and HOTSPOTTER, for estimation of
recombination rates.

1 Population Haplotype Structure

1.1 Haplotype Block Structure in Human Populations

Based on empirical studies, the human genome can be viewed as a series of high
linkage disequilibrium (LD) regions separated by discrete segments of very low LD
[28, 30, 41]. Those genetic markers located within a high LD region are inherited
from generation to generation essentially as a single unit. For example, Daly et al.
[28] found that, a 500-kb region covering 103 single nucleotide polymorphisms
(SNPS) on chromosome 5q31 could be partitioned into 11 haplotype blocks (99
SNPS were within these blocks, and four SNPS were outside the blocks). They
found that within each block, two to four haplotypes account for at least 90% of
haplotype variations in their sample [28]. In another study of SNPs located in a
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216-kb region of the major histocompatibility complex (MHC) II complex in 50
British male sperm samples, Jeffreys et al. [34] revealed that recombination hotspots
had caused block-like LD structures. These results lead to the conceptualization of
haplotype blocks.

Haplotype blocks are defined as long stretches of DNA along a chromosome
that have low recombination rates, which exhibit high LD and are characterized by
relatively few haplotypes [39]. Furthermore, adjacent blocks are presumably sepa-
rated by recombination hotspots, which are short regions with high recombination
rates. Recombination hotspots (or coldspots) are defined as regions of the human
genome with higher (or lower) recombination fractions than would be expected on
the basis of the genome average recombination rate, 1 cM/Mb [27]. However, it
should be noted that recombination hotspots (or coldspots) can also be defined rel-
ative to their local recombination rates. DNA segments that undergo more (or less)
recombinations than their surrounding regions can also be defined as recombination
hotspots (or coldspots). It should also be noted that the term recombination hotspots
(or coldspots) can correspond to chromosomal segments that vary considerably in
size. Popular software packages for identifying haplotype blocks include: HapBlock
[47], HaploBlock [32], and HaploBlockFinder [46].

Although the presence of recombination hotspots can result in discrete haplo-
type blocks [28,30,31,43], a notion which appears to be supported by sperm typing
studies of class II region of MHC [34], coalescent simulations demonstrate that
a model assuming randomly distributed recombinations can also explain haplotype
block-like structures [45]. Furthermore, by using the four-gamete test (FGT [14]) for
defining haplotype blocks, Wang et al. [45] showed that the empirical chromosome
21 SNP dataset [41] is also congruent with a randomly distributed recombina-
tion model (i.e., without hotspots) with a varying recombination rate across the
chromosome.

Fig. 1 shows a schematic diagram for an idealized haplotype block structure.
This structure implies that a disease-causing mutation is often introduced on a spe-
cific haplotype background. Delineation of the haplotype block structure would
help selecting a minimal set of haplotype-tagging SNPs (htSNPs) in searching for
disease-causing mutations [35]. The selection of htSNPs not only ensures that the
majority of haplotypic variations are captured but also dramatically reduces the
genotyping cost in comparison with an exhaustive SNP coverage approach. It should
be cautioned that recombination hotspot intensities vary such that haplotype block
boundaries are often not sharp, and typically each hotspot corresponds to a genomic
region of 1–2 kb in length [34].

1.2 Wright–Fisher Model

In the 1930s, both Ronald A. Fisher [18] and Sewall Wright [19] developed a
stochastic model that allows a mathematical description of population reproduc-
tion. This model has become known as the Wright–Fisher model and is widely used
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32% 
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19% 
16% 
5% 

I
II
III
IV
V

Haplotype ID Frequency

21 SNPs

10 SNPs
6 SNPs

5 SNPs

Hotspot A Hotspot B

Block 1 Block 2 Block 3

Fig. 1 Recombination disrupts the configurations of ancestral haplotypes when they are passed
on from generation to generation. Each square represents a specificallele (white: wild-type allele;
gray: variant allele) at a pahular SNP position. The entire haplotype encompasses 21 SNPs. The
presence of two recombination hotspots (A and B) results in a block-wise structure of this region,
which is composed of three discrete blocks, Blocks 1 (5 SNPs), 2 (10 SNPs), and 3 (6 SNPs),
respectively. Recombination hotspots A and B reshuffle respective sub-haplotypes across the three
blocks to create the overall block-like haplotype structure

in population genetic studies. The Wright–Fisher model is the canonical model of
genetic drift in populations, which has the following assumptions:

1. Constant diploid population of size N (2N alleles)
2. Synchronized and nonoverlapping generations
3. Random mating
4. No recombination
5. No selection
6. No migration to or from other populations and
7. Mutations are neutral and occur at a constant rate μ per generation

A schematic illustration of the Wright–Fisher model and the genealogical tree of
two gene copies of the present generation are shown in Fig. 2.

The Wright–Fisher model is a simple binomial model of the amount of genetic
randomness in a population of alleles created due to sampling. Assuming a haploid
population size 2N , the distribution of alleles can be described by a Markov model
with binomial transition probabilities (for bi-allelic SNPs). More specifically, letXi

denote the number of a particular allele in the ith generation, then the distribution
of the allele number in the next generation,Xi+1, can be expressed as

P (Xi+1 = b|Xi = a) =
(

2N
b

)( a

2N

)b (
1 − a

2N

)2N−b

.
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Time

Present (t= 0)

MRCA (t= 4)

Coalescence TreeGenerations

Fig. 2 The Wright–Fisher population model. Left panel: going backward in time, two randomly
selected gene copies (filled circles) in the sample of the present generation trace back to the most
recent common ancestor (MRCA) four generations ago. Right panel: the coalescence tree of two
gene copies in the present generation

In fact, Xi is a Martingale bounded by 0 and 2N . Mutations in the population
can either become extinct (Xi = 0) or reach fixation (Xi = 2N ) throughout genera-
tions, without the presence of selective forces. The phenomenon of allele frequency
fluctuation under neutral conditions is called genetic drift.

Using the stopping time theorem for bounded Martingales, it can be shown that
the probability that a newly arisen mutation eventually fixes and replaces the ances-
tral allele is 1

2N . In fact, under the Wright–Fisher model, the fixation probability of
any allele is simply the relative frequency of that allele in the population.

The probability that two individuals (each individual denotes a haploid gene
copy) coalesce to a common individual in the parental generation is 1

2N . This can be
easily seen from the fact that the probability of two individuals sharing a particular
parent is 1

(2N)2 and there are 2N individuals in the parental population. Generalizing
this result, we get the distribution of coalescence time t of two individuals as

P (coalescence in generation t) =
(

1 − 1
2N

)t−1 ( 1
2N

)

≈ 1
2N

e−
t

2N .

The mean coalescence time is therefore E(T ) = 2N generations with variance
σ2

T = 4N2.

1.3 Coalescent Theory

In the Wright–Fisher model depicted in Fig. 2, we are considering the simple case
with only two gene copies. Kingman [37, 38] generalized the two gene copies to
n(n ≥ 2) gene copies, realizing that when we look backward in time and change
the discrete time scale to a continuous time scale (using exponential distributions
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instead of geometric distributions), we would have the “Kingman n-coalescent.”
The coalescent model is a standard population genetic model that allows us to con-
struct and analyze random genealogies [42]. The development of coalescent theory
has provided an important theoretical framework for capturing historical relation-
ships among different gene copies, and indeed, over the past two decades, coalescent
theory has revolutionized the field of molecular population genetics [42]. The basic
coalescent operates under several assumptions that include constant population size,
no selection, random mating, and no population structure [33]. Another assumption
of the coalescent is that the sample size (n) is much smaller than the effective hap-
loid population size (2N ) of the population (i.e., n << 2N ). A number of tests of
the coalescent null model have been proposed, among them Tajima’sD [44] and the
statistics of Fu and Li [29].

In “Kingmann-coalescent,” for a constant effective population size, 2N , a genea-
logical tree is created for n gene copies. In any generation, we have

P (n copies coalesce to n− 1 copies per generation) =
n(n− 1)

4N
.

The expected time of a coalescent event is the reciprocal of this probability, that is,

E(Tn→(n−1)) =
4N

n(n− 1)
.

Simple induction reveals the expected time for n lineages to coalescence to their
most recent common ancestor (MRCA) as

E(TMRCA) = 4N
n∑

i=2

1
i(i− 1)

= 4N
(

1 − 1
n

)

.

A special case is the expected coalescence time for two gene copies, which is
4N

2(2−1) = 2N .
Note that in the coalescent process for a sample of size n, after the first coales-

cent event, we are faced with an identical coalescent process for a sample of size
n − 1. This lack of “memory” is called the Markovian property. It indicates that to
follow the fate of lineages back in time all we need to know is the number of lin-
eages currently active in the population. The reason we call coalescent as “Kingman
n-coalescent” is to emphasize the dependence of coalescence time on sample size.

Kingman’s recipe for constructing a genealogical tree of k gene copies is simply:

1. Go back a number of generations drawn from an exponential distribution with
mean 4N

k(k−1) .
2. Combine two randomly chosen lineages from the current sample.
3. Decrease k by 1.
4. If k = 1, construction is done. Otherwise goto step 1.
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Mutations occur randomly at a rate proportional to the product of the time to
coalescence and the mutation rate per generation. Because the genealogical pro-
cess could be separated from the mutational process, we first build a genealogical
tree of coalescence, and then add mutations to the genealogical tree. The results
presented earlier have assumed the infinite-sites model of sequence evolution [36].
Assume that the mutation rate is μ per generation per gene, the number of mutations
occurring during t generations is Poisson distributed with mean μt (the Poisson
nature results directly from the independence of mutations). The expected number
of differences between a pair of sequences for a diploid population of size N is
2μE[TMRCA] = 4Nμ, which is often written as a single parameter: θ = 4Nμ.

The standard coalescent theory does not allow for intragenic recombination. Gen-
eralization of the coalescent theory to include recombination events leads to a graph
of lineages (rather than a tree), called the Ancestral Recombination Graph (ARG).
Effects of recombination depend on the per gene per generation rate of crossing-
over (i.e., genetic map length) and population size. Due to recombination, different
genes located across the human genome may have different genealogies, and k lin-
eages of a gene may split to k + 1 lineages in the parental generation. As a result,
coalescence inference accounting for recombination events is computationally very
complicated.

The strengths of the coalescent theory are (1) the coalescent is an enormously
powerful and efficient way of looking at population genetic data; (2) the coalescent
is fast and easy to simulate from and is very flexible; and (3) full likelihood analysis
based on the coalescent theory uses all possible information in the data, and can be
used to estimate the ages of mutations and the expected time taken to coalescence
to the MRCA for gene copies of the present generation.

One weakness of the coalescent theory occurs when the fates of lineages depend
on their allelic states (i.e., in the presence of selection) [40]. In addition, full likeli-
hood analysis based on coalescence can be very computationally intensive (although
this is an inherent feature for modeling population evolutionary histories), and
devising an efficient algorithm is a challenging task [5, 23].

2 Public Genotype/Haplotype Databases

Large-scale genetic databases of human populations, containing data on genome-
wide SNPs, genotypes, inferred haplotypes, mutation and recombination structures,
have become publicly available. These databases provide rich information for under-
standing genetic variation patterns and for inferring evolutionary histories of human
populations. In the following, we introduce two such resources where the genome-
wide data are freely downloadable to researchers. We further introduce a haplotype
simulation software that can simulate SNP data according to the coalescent theory,
in which the user can specify settings allowing for both mutation and recombination
events.
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2.1 International HapMap Project

The International HapMap Project [25, 26] is a world-wide effort to identify and
catalog genetic variants in human populations. It describes what these variants are,
where they occur in the genome, and how they are distributed among individuals
within and among populations distributed around the world. The web site of the
International HapMap Project is available at http://www.hapmap.org.

The goal of the International HapMap Project is to compare the DNA sequences
among individuals to identify chromosomal regions where genetic variants are
shared. There are approximately ten million SNPs estimated to be present in
the human genome (http://www.hapmap.org/abouthapmap.html). Testing all of
these SNPs in chromosomes of individuals, however, can be extremely expensive
and cost-inefficient. The development of the HapMap enables geneticists to take
the advantage of how SNPs and other genetic variants are organized on the same
chromosome.

The DNA samples for the International HapMap Project come from four popula-
tions with African, Asian, and European ancestries. DNA samples were collected
from a total of 270 people: (1) YRI: the Yoruba population of Ibadan, Nigeria,
provided 30 sets of samples from two parents and an adult child (each such set
is called a trio); (2) JPT: 45 unrelated Japanese individuals from the Tokyo area
provided samples; (3) CHB: 45 unrelated Han Chinese individuals from Beijing
provided samples; and (4) CEU: 30 U.S. trios provided samples, which were col-
lected in 1980 from U.S. residents with Northern and Western European ancestry
by the Centre d’Etude du Polymorphisme Humain (CEPH) [25].

The goal of the International HapMap Project is to identify common haplotypes
and to select so-called tag SNPs that uniquely identify those common haplotypes in
human populations. The number of tag SNPs that capture most of the information
of genetic variation patterns is estimated to be between 300,000 and 600,000, far
fewer than the ten million common SNPs.

In the current phase of the project, approximately six million common SNPs
have been genotyped for each of the four ethnic groups. The number of genotyped
SNPs and the number of genotyped SNPs that passed the quality control (QC+) are
summarized in Table 1 (HapMap Public Release #19):

The International HapMap Project can help researchers find functional regions
that influence human health outcomes as well as responses to therapeutic drugs and
environmental factors. The HapMap itself will not identify such regions directly.
Instead, the HapMap provides a tool that can be used in both population-based and
family-based disease association studies (topics presented in Chaps. 6–8).

Table 1 HapMap genotyping results (HapMap Public Release No. 19)

Populations CEU CHB JPT YRI

Total QC+ SNPs 3,901,408 3,903,524 3,902,623 3,806,910
Total Genotyped SNPs 5,894,684 5,812,990 5,812,990 5,857,466
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Download Genotype Data from HapMap

The HapMap web site, located at http://www.hapmap.org, is an online resource
for the display, retrieval, and analysis of the high-quality and high-throughput data
generated by the International HapMap Project [25,26]. The genome browser at the
HapMap web site provides access to small-to-medium-sized regions of the genome
for interactive exploration. In the following, we provide a step-by-step guide for
downloading genotype data from the HapMap web site:

1. Goto http://www.hapmap.org.
2. Click on the “HapMap Genome Browser (Phase 1 & 2, B36)” link under “Project

Data” on the left-hand side of the web site. This will lead the user to a genome
browser based on the GBrowse package [48].

3. In the “Landmark or Region” field, enter the query term “IL10” which is the
common name for interleukin 10, then click on the “Search” button to the right.
Then, as shown in Fig. 3, the genome browser will display information about the
region of the genome surrounding this gene. There are three panels: (1) an upper
“Overview” panel providing a panoramic display of the whole chromosome with
the region of interest indicated by a vertical yellow line; (2) a middle “Region”

Fig. 3 HapMap Genome Browser displaying IL10 region. The genotyped SNPs track shows pie
charts representing the allele frequency for each of the four genotyped HapMap populations. The
blue wedge of the pie chart indicates the frequency of the allele that appears in the reference
genome sequence. The red wedge is the frequency of the alternative allele
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panel showing distributions of SNPs and copy number variations around the
selected region; and (3) a lower ”Details” panel showing detailed information
of SNPs, genes, and disease associations within the selected region. Under the
three panels, there are several tracks options that, if selected, provide additional
information about the region.

4. Choose the magnification at “Show 4.892 kbp” level. Find the “Reports & Anal-
ysis” menu and select the menu item “Download SNP genotype data.” Next,
click on the “Configure” button. This will open a configuration page that allows
the user to select the desired HapMap population, and whether to save the
data to disk or view it in the web browser. Choose “CEU” for “Population”
parameter, choose “rs” for “Strand” parameter, and choose “Save to Disk” for
“Output format” parameter, and click on the “Go” button, and save the dumped
data file as “dumped region IL10 CEU.txt”. Similarly, choose “YRI” for “Pop-
ulation” parameter, click on the “Go” button, and save the dumped data file
as “dumped region IL10 YRI.txt”. These downloaded files known as “space-
delimited text dumps” can be easily loaded into the Haploview program [49]
for detailed analysis on the researcher’s local computer.

2.2 The HapMap ENCODE Resequencing
and Genotyping Project

Another rich source of genetic information of human populations is provided by the
HapMap ENCODE resequencing and genotyping project, which we will refer to as
the HapMap ENCODE project hereafter. The term ENCODE stands for “ENCyclo-
pedia Of DNA Elements” that aims to identify all functional elements in the human
genome.

A total of 44 ENCODE regions were selected, consisting of 30-millionbase (Mb)
with sizes ranging from 500 kb to 2 Mb each, roughly 1% of the human genome.
These regions serve as a foundation on which to test and to evaluate the effectiveness
and efficiency of a diverse set of methods and technologies for finding functional
elements in human DNA. Half of the ENCODE regions were selected manually to
include well-studied genes and known sequence elements that are located within
conserved regions. The remaining regions were selected randomly based on a wide
range of gene density and nonexonic conservation levels such that the selected
ENCODE regions can be a good representative of the human genome.

Compared to the genotype data available from the International HapMap Project,
the HapMap ENCODE project provides a much denser set of genotypes across large
genomic regions. Ten 500-kb ENCODE regions of the genome were resequenced in
48 unrelated DNA samples from the International HapMap Project (16 YRI, 8 JPT,
8 CHB, and 16 CEU). All identified SNPs, either rare or common, were genotyped
in 269 HapMap DNA samples (90 YRI, 44 JPT, 45 CHB, and 90 CEU). SNPs in
the remaining 34 ENCODE regions in all of the HapMap DNA samples will be
identified and genotyped.
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Thanks to resequencing, genetic variants revealed by the HapMap ENCODE
project are much less subjective to the ascertainment bias. Among the ten rese-
quenced ENCODE regions, a total of 24,828 SNPs from the National Center for
Biotechnology Information (NCBI) dbSNP and 6,256 SNPs outside the NCBI
dbSNP were identified and genotyped in four HapMap ethnic groups. The average
spacing of identified SNPs is less than 200 bp, much denser than that of the common
SNPs provided by the International HapMap Project.

More details can be found at
http://www.hapmap.org/downloads/encode1.html.en

2.2.1 Download ENCODE Genotype Data

The genotype data of the HapMap ENCODE project are distributed in the same way
as the other HapMap genotype data. Readers can refer to the downloading proce-
dures described in the HapMap section for how to download the HapMap ENCODE
genotype data. Instead of entering a gene name or symbol, the user should enter the
ENCODE region ID.

An alternative way to download HapMap ENCODE genotype data is called “bulk
download.” In the following, we demonstrate how to locate and download ENCODE
datasets using “bulk download”:

1. Goto http://www.hapmap.org/downloads/encode1/html.en.
2. Click on the “ENCODE genotype data dumps” link under “ENCODE Links” on

the left-hand side of the web site. The link leads the user to a folder where all
ENCODE genotype data are stored.

3. Click on the “nonredundant” folder and a list of ENCODE data files will appear.
4. Click on a file that the user want to download. For example, a file named

“genotypes ENm010.7p15.2 YRI.txt.gz” contains the ENCODE genotype data
from the region “ENm010” of YRI samples. “7p15.2” indicates the chromosome
location.

5. Save the file in the user’s local machine. The suffix of the data file is “.gz,” which
means the file is zipped. For Unix/Linux users, the file can be unzipped using the
command “gunzip genotypes ENm010.7p15.2 YRI.txt.gz”. For Windows users,
the file can be unzipped by double clicking on it. As these files are in the same
format of other HapMap genotype data files, they can be conveniently loaded
into the Haploview program [49] for further analysis.

2.3 Haplotype Simulation

Stochastic population genetic models, such as the Wright–Fisher model, constitute
an important class of models for the interpretation of molecular variation within
populations. Samples drawn from a particular population contain both evolutionary
variations and sampling variations. Statistical properties of such samples are often
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difficult to obtain from either analytical or numerical methods. A program that is
able to simulate independent samples according to a stochastic population model
can thus be very helpful in terms of studying statistical properties of such samples
and evaluating different statistical methods.

A commonly used program to simulate population haplotypes is called mksam-
ple, developed by Hudson [17]. The program uses Monte Carlo techniques to
draw haplotype samples from a population evolving according to the Wright–Fisher
model. The program assumes an infinite-sites model of mutation and assumes a
constant recombination rate. The program can simulate various evolutionary events
such as gene conversion or symmetric migration among subpopulations.

The program assumes the standard coalescent approximation to the Wright–
Fisher model under neutrality. The approximation works well as long as the sample
sizes are small relative to the population size. For each sample (a set of haplotypes),
the program first generates a random genealogical history for a segment of a chro-
mosome. Conditional on the genealogy, mutations are randomly placed on each
genealogical branch according to a Poisson process. Since the infinite-sites model is
assumed, each mutation event gives rise to a new polymorphic site on the segment
and no recurrent mutation occurs.

The output file of mksample is a sample of haplotypes, with each allele repre-
sented by “0” (ancestral allele) or “1” (mutated allele), respectively. The segment
is mapped in the interval of (0,1), and the physical positions of polymorphic sites,
where mutation events take place, are mapped on this (0,1) interval. The mutation
parameter is 4Nμ, where N denotes the effective diploid population size and μ
denotes the neutral mutation rate for the entire segment being modeled.

The program is freely available for researchers from
http://home.uchicago.edu/∼rhudson1/source/mksamples.html
To simulate samples of haplotypes for a constant population size without cryptic

population substructure, recombination, or gene conversion, one can simply specify
the number of haplotypes to be collected in each sample, the number of samples
to be produced, and the mutation parameter 4Nμ. For example, by typing in the
command line “ms 5 100 -t 3.0,” the program will simulate 100 samples of five
haplotypes with 4Nμ = 3.0.

To incorporate complicated scenarios, such as recombination, gene conversion,
migration, or to change population size, additional options need to be used. We refer
the user to the manual of mksample for details.

The first two lines of the output of mksample consist of the command line and
the random number generator’s seed value. Following these two lines are the sam-
ples of haplotypes. Each sample is preceded by a line containing only “//,” followed
by lines containing the number of simulated segregating sites, the position of each
site on a scale of (0,1), and the configurations of haplotypes within the sample. For
example, by typing in the command line “ms 4 2 -t 5.0,” one will get the following
output:

ms 4 3 -t 5.0
18820382
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//
segsites: 5
positions: 0.0227 0.5520 0.6190 0.9200 0.9459
10001
00010
00000
01100

//
segsites: 4
positions: 0.6760 0.7866 0.9056 0.9606
0101
1000
0101
0110

3 Haploview

Given the enormous amount of public genotype data such as HapMap and other data
genotyped from genetic association studies, software tools for analyzing, interpret-
ing, and visualizing these data are in pressing demand [49]. Here, we introduce a
platform-free software, called Haploview.

3.1 What is Haploview?

Haploview is a software package that provides computation of LD statistics and pop-
ulation haplotype patterns from primary genotype data through a visually appealing
and interactive interface [49]. The following procedures of usage are referring to
Haploview version 4.1.

3.2 How to Download and Install Haploview

1. Download Haploview
Haploview requires the installation of the Java Runtime Environment (JRE). The
user can download the newest version of the JRE at: http://www.java.com/.
After installing the JRE, goto the Haploview download web site:
http://www.broadinstitute.org/haploview/haploview-downloads.

(i) For Windows users, download the executable “hapinstall.exe” by a single
click on the hyperlink “HapInstall.exe,” and save “hapinstall.exe” in a local
directory.

(ii) For Mac and Unix users, download the Haploview JAR file “Haploview.jar.”
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2. Install Haploview

(i) For Windows users, double click on “hapinstall.exe” saved in the user’s local
directory. Follow the installation instructions to install Haploview in the user’s
local computer.

(ii) For Mac and Unix users, the program virtually needs no installation, and
can be run by typing in the command line “java -jar Haploview.jar,” or by
clicking on the jar file.

3.3 How to Run Haploview

We illustrate how Haploview 4.1 can be run on: (1) HapMap Data and (2) non-
HapMap Genotype Data.

3.3.1 How to Use HapMap Data in Haploview

1. Load HapMap Data
Open Haploview. There are six buttons, “Linkage Format,” “Haps Format,”
“HapMap Format,” “HapMap PHASE,” “HapMap Download,” and “PLINK For-
mat” on the left-hand side at the “Welcome to HaploView” window. Click on the
“Load HapMap data” button. Load the file “dumped region IL10 CEU.txt” the
user saved in Sect. 2.1. The user can leave the remaining options as the default.

2. Show LD Plots
There are four tabs of the Hapoview v4.1, “LD Plot” tab, “Haplotypes” tab,
“Check Markers” tab, and “Tagger” tab. The first view of the data is through
the “Check Markers” tab. This provides a summary of the marker data, includ-
ing columns for “#,” “Name,” “Position,” “ObsHET,” “PredHET,” “HWpval,”
“%Geno,” “FamTrio,” “MendErr,” “MAF,” “Alleles,” and “Rating.” Among the
19 SNPs in the “dumped region IL10 CEU.txt” dataset, 7 SNPs had minor allele
frequency (MAF) values shown in red because their values were below the
default 0.0010 for the “Minimum minor allele freq.” parameter.

(i) Show a D’ Plot: Click on the “LD Plot” tab, which presents a visual display
of the LD statistic for the 12 polymorphic IL10 SNPs for the HapMap CEU
population. The default block definition is the “Confidence interval (Gabriel
et al.)” method [30] in the “Define Blocks” of the “Analysis” menu, which
by default ignores marker(s) (in this case, rs3024508) with an MAF <0.05.
The MAF and the confidence interval thresholds can be modified by selecting
“Customize Block Definition” of the “Analysis” menu. The user will see the
D’ plot as shown in Fig. 4. Diamonds without numbers represent D’ values
of 1.0; all numbers represent the D’ value expressed as a percentile. Bright
red color represents LOD score for LD≥ 2 and D′ = 1, shades of pink/red
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Fig. 4 LD (D’) Plot of IL10 Gene SNPs for the HapMap CEU population

represents LOD≥ 2 and D′ < 1, blue color representsD′ = 1 but LOD < 2,
and white squares represent LOD< 2 and D′ < 1.0.

(ii) Show an r2 Plot: Staying at the “LD Plot” tab, goto “Display” menu, select
“LD color scheme,” and select “R-squared,” and then, in the “Display” menu,
select “Show LD values,” and similarly select “R-squared,” and the user may
remove theD′-based haplotype block structure by selecting “Clear all blocks”
in the “Analysis” menu. The user will see an r2 plot as shown in Fig. 5. The
r2 plot is analogous to the D’ plot shown in Fig. 4. The r2 value is shown on
a gray scale, where white color represents r2 = 0, shades of gray represent
0 < r2 < 1, and black color represents r2 = 1. SNP names and locations are
the same as in Fig. 4.

3.3.2 How to Use Non-HapMap Genotype Data in Haploview

1. Prepare Data Files
Both a “Data File” and a “Locus Information File” are needed for using non-
HapMap Genotype data in Haploview.

(i) Prepare a “Data File” in linkage format
A “Data File” in linkage format is a data file that contains the genotype infor-
mation. This data file should be in the Linkage Pedigree (pre MAKEPED)
format, with columns of pedigree name, individual ID, father’s ID (“0” if
unknown), mother’s ID (“0” if unknown), gender (1 = Male, 2 = Female),
affection status (“0” = unknown, “1” = unaffected, “2” = affected), and geno-
types (one for each allele, separated by a space, and coded either “ACGT ” or
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Fig. 5 LD (r2) Plot of IL10 Gene SNPs for the HapMap CEU population

“1–4” where: “1” =A, “2” =C, “3” =G, “4” =T , and “0” indicates missing
data). The file should not have a header line.
It should be noted that this “linkage format” data file can easily accommodate
nonfamily based data by using a dummy value for the pedigree name and by
filling in “0”s for father and mother IDs.
An input example of “Genotype file” named “Haploview genotype data.txt”
has been generated using the mksample program (described in Sect. 2.3)
under the neutral model and is shown as follows:

1 1001 0 0 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1
2 1002 0 0 2 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1
3 1003 0 0 2 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 2
4 1004 0 0 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1
5 1005 0 0 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2
6 1006 0 0 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1
7 1007 0 0 2 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1
8 1008 0 0 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1
9 1009 0 0 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1

10 1010 0 0 2 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1
11 1011 0 0 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1
12 1012 0 0 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1
13 1013 0 0 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1
14 1014 0 0 1 1 1 1 2 2 2 2 2 2 2 2 1 2 1 1 1 1
15 1015 0 0 2 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1
16 1016 0 0 2 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1
17 1017 0 0 2 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1
18 1018 0 0 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1



40 Y. Zhang and T. Niu

19 1019 0 0 2 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1
20 1020 0 0 2 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1

(ii) Prepare a “Locus Information File”
The “Locus Information File” consists of two columns, the first column des-
ignates “marker name” and the second column designates “position.” The
positions can be either absolute genome coordinates or relative positions
in bp.
An input example of “Locus Information File” named “Haploview locus info.
txt” has been generated under the uniform distribution model, and is shown
as follows:

Marker01 1000
Marker02 1616
Marker03 1926
Marker04 2828
Marker05 3237
Marker06 4003
Marker07 4528
Marker08 5513

2. Load Data Files
In the Haploview program, select “Open new data” in the “File” menu.
Click on the “Linkage Format” button, which is the default setting. Next, the user
will be presented with a dialog window that allows the user to choose input files
and to select some options.
Load “Haploview genotype data.txt” file into the “Data File” field by clicking on
the “Browse” button on the right-hand side and browse to the location of the file
and load the file, and load the “Haploview locus info.txt” file into the “Locus
Information File” field by clicking on the “Browse” button on the right-hand
side and browse to the location of the file and load the file. The user can leave
the remaining options as the default.

3. Check Markers
When the input files were successfully loaded, the first tab that appears is the
“Check Markers” tab. Then, the user can modify the criteria for the inclusion
of markers by changing the corresponding values of the parameters given. The
user can choose “0.05” as the threshold value for “Minimum minor allele freq.,”
and can leave the remaining options as default. When the user can click on the
“Rescore Markers” button, the checkmark to Marker06 in the “Rating” column
would be dropped because the MAF was below the predefined threshold.

4. Show LD Plots
Click on the “LD Plot” tab, and a visual display of the LD statistic as well as
the haplotype block structure for the eight polymorphic SNPs for the 20 subjects
appears as shown in Fig. 6. The default definition for “Define Blocks” in the
“Analysis” menu is the definition based on confidence intervals given by Gabriel
et al. [30]. Similar to what has been described in Fig. 6, the user can generate an
r2 Plot.
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Fig. 6 LD (D′) Plot of the genotype data simulated using the mksample program

5. Tag SNP Selection
Haploview allows the user to select an optimized set of tag SNPs using a variant
of the Tagger algorithm. The configuration page is shown by clicking on the
“Tagger” tab.
In the configuration page, the user may specify which alleles in this dataset to
tag, which markers to “Force Include,” and which markers to “Force Exclude.”
There are three options for tagging: (i) “pairwise tagging only”; (ii) “aggres-
sive tagging: use 2-marker haplotypes”; and (iii) “aggressive tagging: use 2- and
3-marker haplotypes.” The user can use the default setting, and choose the “pair-
wise tagging only” option. Then, the user can click on the “Run Tagger” button.
The program will return a screen summarizing the tagging results.

6. Show Haplotypes
Click on the “Haplotypes” tab, and goto “Display” menu, and select “Show tags
in blocks.” The user is presented with two haplotypes for Block 1 with their
respective frequencies and the tag SNP (i.e., Marker01) indicated by the gray
inverted triangle (Fig. 7).

7. Export Data and Images
The “File” menu contains two options, “Export current tab to text” and “Export
current tab to PNG” for exporting data to both text and PNG formats allowing
the user to export the data contained in the current selected tab.

4 Haplotype Inference Methods

Here, we introduce several widely used haplotype inference methods. For each
method, we first introduce its algorithm in terms of concepts as well as the underly-
ing mathematical theories. We then describe how to prepare the input data file(s) for
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Fig. 7 A display of block-based haplotypes, their recombination(s) (when applicable), and their
respective frequencies

each program, how to run the program, what command options are available, and
how to interpret the output files(s) for each program, through a common dataset A.
The dataset A consists of genotypes at five loci for five individuals:

Locus positions (bp): 100 300 500 700 900
Individual 1 AA TT GC AC AC
Individual 2 AG TA GC CC AC
Individual 3 AA TT CC AA CC
Individual 4 AA TA CC CC CC
Individual 5 AA TT GG AC AA

We attempt to summarize the advantages and disadvantages associated with each
method. All methods described here are available online.

4.1 Clark’s Algorithm

Clark proposed the first computational algorithm [3] in 1990 to reconstruct haplo-
types using multi-locus genotype data. Clark’s approach is to assign the smallest
number of haplotypes to explain the genotype data, based on the principle of
parsimony.

Given a set of multi-locus genotypesG = (g1, . . . , gN) ofN individuals, Clark’s
algorithm works through a convoluted updating procedure as follows:

1. Search for individuals whose genotypes, say gi, can be uniquely resolved by a
pair of haplotypes. In other words, we identify those individuals who either have
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homozygous genotypes at all loci or have a heterozygous genotype at a single
locus. Let H1 denote the obtained pool of haplotypes in the first round.

2. At the kth round, given a haplotype pool Hk, search within the remaining unre-
solved individuals whose genotypes gi can be resolved either by two haplotypes
in Hk or by one haplotype in Hk plus a new haplotype. The haplotype pool
Hk+1 for the (k+ 1)th round is then constructed including bothHk and the new
haplotypes.

3. Repeat step 2 until all individual genotypes are resolved or no more individuals
can be resolved.

Albeit simple in nature, Clark’s algorithm has been very popular and has gener-
ated meritorious results in the delineation of gene-based haplotype variations [6] and
of the genome-wide LD in populations with different histories [4]. The disadvantage
of Clark’s method, however, is that the method may not even start if no individual
genotypes can be unambiguously resolved (without manual intervention,H1 can be
empty). In addition, the phasing result depends on the order of individuals searched,
which leads to undesired inference uncertainty attributed to the order. Motivated by
Clark’s method, many haplotype inference algorithms have been developed in the
past decades that make use of more sophisticated models and theories.

Advantages:

1. Simple to implement.
2. Produces reasonably accurate results for datasets containing a limited number of

common haplotypes.

Disadvantages:

1. The program may not even start when no phase unambiguous individuals are
present.

2. The phasing results depend on the order of individuals scanned.
3. The method may not be practical for datasets genotyped at a large number of loci

with low LD.

4.1.1 Software Usage

Availability:
http://linkage.rockefeller.edu/soft/list2.html#hapinferx

Command:
./hapinferx < input > output

The source code of the Clark’s algorithm is written in FORTRAN 77. Note that
the symbols “<” and “>” in the command line are not brackets, but are redirection
signs in Linux shell.
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Input:
To prepare the input file for hapinferx, the user should convert each single genotype
vector to two haplotype vectors. For example, if the genotype vector of an individual
at five loci is {AA TT GC AC AC}, we can represent this genotype vector by two
haplotype vectors “00000” and “00111.” Here, “0” and “1” represent the major and
the minor alleles, respectively. Since the haplotype information is unknown, the
order that at each locus which allele should be placed in which line is arbitrary. In
addition, missing alleles can be represented by a character other than the two allele
characters, such as “?.”

In the input file, each haplotype vector takes one line, and there should be no
space separating neighboring characters. In addition, each individual’s data need to
be preceded by an unique ID. The input file for the common dataset A is:

#1
00000
00111
#2
11000
00101
#3
00010
00010
#4
01000
00000
#5
00111
00101

The above input file only shows one of several possible representations for the
same genotype data.

Output:
The output file consists of the following information:

1. A summary of input genotype data.
2. A list of individuals (and their haplotypes) whose genotypes are homozygotes at

all loci.
3. A list of individuals (and their haplotypes) whose genotypes are heterozygous at

only one locus.
4. A summary of haplotypes used to explain the genotype data, along with haplo-

type IDs.
5. Phasing results for all individuals. If an individual’s genotype can be resolved

by several alternative haplotype pairs using the Clark’s algorithm, these possible
haplotype pairs are listed.
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The output file corresponding to the example input file is shown as follows:

#1 ———part (1)
00000
00111
#2
11101
00000
#3
00010
00010
#4
00000
01000
#5
00101
00111

Homozygotes: ———part (2)
#3
00010 1
00010 1
The number of homozygotes= 1
The number of distinct homo = 1

Single–site heterozygotes: ———part (3)
#4
00000 2
01000 3
#5
00101 4
00111 5

The number of single hets = 2
Count of unambiguous haplotypes= 5

List of unambiguous haplotypes: ———part (4)

· · · · · ·

#mega
TITLE: test data
#1
00010
#2
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00000
#3
01000
#4
00101
#5
00111
#6
11101
#1 ———part (5)
00010 1 ——Option 1
00101 4 to Phase Individual 1
00000 2 ——Option 2
00111 5 to Phase Individual 1

*
#2
00000 2
11101 6

*
#3
00010 1
00010 1

*
#4
00000 2
01000 3

*
#5
00101 4
00111 5

*

4.2 PHASE

According to the coalescent theory, haplotypes in the current generation are corre-
lated with each other by sharing common ancestors in the past. Haplotype structures
can therefore be clustered according to their configurations, e.g., one haplotype can
be converted to another haplotype through a few steps of mutations and recom-
binations. Distinct from a parsimonious solution, a coalescence-based haplotype
inference algorithm does not attempt to solve the problem using a minimum num-
ber of haplotypes, but to infer the most likely solution based on approximations to
the coalescence process.
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4.2.1 PHASE Algorithm

PHASE [6–8] is the first algorithm to infer haplotypes according to the coales-
cence process. The algorithm is built upon a Bayesian framework, which can be
represented as:

P (H |G) =
P (G|H)P (H)

P (G)
(1)

Here, G and H denote observed genotype data and unobserved haplotype data,
respectively. By default, we use uppercase letters to represent vectors, i.e., the geno-
types or haplotypes of all sampled individuals. The salient feature of the Bayesian
inference is that, it provides a distribution of parameters of interest instead of just
a point estimate, such that the variation of inference can be properly evaluated. In
addition, missing values and model parameters can all be naturally incorporated into
a likelihood model and simultaneously inferred.

Ideally, the relationships among haplotypes, according to the coalescent theory,
can be built into the prior distribution P (H) of haplotypes. Here, H denotes the
parameter of interest, and P (H) is called a prior distribution that captures the pre-
knowledge of H before any observations were made. Coupled with the likelihood
function P (G|H) of genotypes, haplotype phases can then be reconstructed from
the distribution P (H |G), which is called a posterior distribution. The denominator
P (G), an unknown normalizing constant, can be ignored here.

PHASE reconstructs haplotypes fromP (H |G) using Markov Chain Monte Carlo
(MCMC) techniques (see [1, 2]). The first version, PHASE v1.0 [6], only considers
mutation events in the coalescence process, while later versions of PHASE (v2.0 [7]
and v2.1 [8]) incorporated recombination events, and thus could infer haplotypes for
regions with more complicated evolutionary histories across the genome.

Denote the genotype data of n individuals by G = (g1, g2, . . . , gn) and a hap-
lotype solution by H = {(h1a, h1b), (h2a, h2b), . . . , (hna, hnb)}. PHASE starts by
randomly assigning haplotype pairs to individuals such that for individual i, the
assigned pair (hia, hib) can explain the observed genotype gi. The algorithm then
iteratively updates (hia, hib) ∈ H for each individual i from an easy-to-compute
distribution P (hia, hib|H−i, G) conditional on haplotypes of the remaining indi-
viduals. After a sufficient number of iterations, samples of H will converge to
the distribution P (H |G). The algorithm then outputs the most frequently sam-
pled haplotype pair for each individual, which is the most likely solution based
on P (H |G).

The updating scheme described above is called Gibbs sampling, a type of
MCMC, given that P (hia, hib|H−i, G) is derived from the posterior distribution
P (H |G). Instead of employing the canonical version of Gibbs sampling, PHASE
works on P (hia, hib|H−i, G) directly, which does not correspond to any joint
likelihood of H . That is, PHASE defines

P (hia, hib|H−i, G) = π(hia|H−i, G)π(hib|hia, H−i, G) (2)
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where

π(h|H−i, G) =
∑

α∈E

∞∑

s=0

rα
r

(
θ

r + θ
)s r

r + θ
(P s)αh (3)

Here, E denotes the set of all possible haplotypes, rα denotes the number of hap-
lotype α in H−i, r =

∑
α∈E rα denotes the total number of haplotypes in H−i,

θ denotes the normalized mutation rates for the region, and P denotes a transition
matrix for mutation events.

The underlying idea of the function P (hia, hib|H−i, G) is to assume that all
individuals except i are drawn from the parental population of i. Based on the coa-
lescent theory, a modern-day haplotype is either a split (coalescence when looked
backward in time) or a mutant version of its parental lineage. A detailed explanation
of the formula can be found in [5]. Later versions of PHASE modified π to further
incorporate recombination events.

PHASE directly defines the function P (hia, hib|H−i, G) instead of deriving the
function from a joint distribution P (H,G). Although empirically working well,
PHASE’s performance lacks theoretical justifications underlying standard MCMC
methods, such as the chain convergence to a proper posterior distribution. PHASE’s
updating scheme is therefore called pseudo-Gibbs sampling [6].

Advantages:

1. Produces accurate haplotype inference results, especially for datasets conform-
ing to the coalescent theory.

2. Can infer haplotypes for SNP, microsatellite, and variable number of tandem
repeat loci.

3. Can identify recombination hotspots and estimate recombination rates.
4. Can infer missing genotypes.

Disadvantages:

1. Inference may be significantly biased for datasets with complicated population
structures and evolutionary histories [10].

2. The earlier versions of PHASE are computationally slow, particularly when
dealing with a large number of individuals or loci, and when considering recom-
binations. Scheet and Stephens [9] recently developed fastPHASE that can
handle hundreds of thousands of makers and thousands of individuals, at the
cost of slightly reduced inference accuracy.

3. Large-sample theory does not justify the asymptotic consistency of PHASE’s re-
sults, and the results are not formally interpretable from a Bayesian perspective.

4.2.2 Software Usage

Availability:
http://www.stat.washington.edu/stephens/software.html
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Command:
./PHASE [options] input output

Input:
The input file is supplied by the user to specify the number of individuals to be ana-
lyzed, the number of loci genotyped, the type of each locus (SNP or microsatellite),
and the genotype data for each individual. One can optionally specify the phys-
ical position of each locus to obtain an approximate of recombination parameters.
Here, we use PHASE v2.1 [8] for illustration. An example input file for the common
dataset A is shown as follows:

5
5
P 100 300 500 700 900
SSSSS
#1
0 0 0 1 0
0 0 1 0 1
#2
1 1 1 0 0
0 0 0 0 1
#3
0 0 0 1 0
0 0 0 1 0
#4
0 1 0 0 0
0 0 0 0 0
#5
0 0 1 1 1
0 0 1 0 1

The first two lines specify that there are five diploid individuals (first line) and
five genotyped loci (second line). The positions of loci measured in bp are spec-
ified in the third line. The forth line specifies that all loci are SNPs, denoted by
“S.” Microsatellite loci are denoted by “M.” The genotype data for each individ-
ual start from a label of that individual followed by the individual’s genotype data
for all loci. There are two lines per individual for diploid organisms such as Homo
Sapiens. Each line represents one chromosome copy for each individual. Since hap-
lotype information is unknown, the order that at each locus which allele should be
placed in which line is arbitrary. Alleles for both microsatellites and SNPs are repre-
sented by integers, e.g., SNP allele only takes two possible values, “0” and “1.” For
missing alleles, use “−1” for microsatellite loci and “?” for SNP loci, respectively.
Alternative input formats can be found in PHASE’s manual.

Options:
There are three main running options for PHASE v2.1: -MS, -MR, and -MQ.
The -MS option only considers mutation events in coalescence. The -MR option
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considers both mutation and recombination events in coalescence. With more spec-
ified options, -MR0, -MR1, . . . , one can specify various recombination scenarios
assumed in PHASE’s model. The -MQ option is a hybrid of -MS and -MR options,
which uses the faster -MS option for the preliminary computations, and then uses
the -MR option for the final computations. Empirical results suggested that the -MQ
option is roughly as accurate as the -MR option, but runs more quickly. However,
the -MR option generally provides the best results and thus is the default method.

Here are a couple of notes, as stated from PHASE’s manual:

1. In general, the -MR option gives less confident phase calls than those given by
the -MS option, because of less stringent assumptions for coalescence.

2. For small datasets, say <20 individuals and <10 loci, the MR option may
provide unreliable estimates for recombination parameters and may lead to
unreliable inference results.

Output:
PHASE produces several output files. The reconstructed haplotypes are summarized
in the main file, which has the user-specified name. Inference details such as esti-
mated haplotype frequencies and recombination parameters are output to additional
files each of which uses the user-specified name as its prefix.

The format of the main output file consists of the following:

1. A header containing the software version and credits to authors;
2. The command line used to run the program;
3. A list of all output files produced;
4. A summary of the input file;
5. A list of haplotypes included in the “best” haplotype reconstruction, with a

summary of the frequency with which each haplotype occurred in the “best”
reconstruction;

6. A list of the “best” guess of haplotype pair for each individual, where haplotypes
are represented by their IDs presented in the previous haplotype summary list;

7. A detailed list of haplotypes for each individual with “()” at positions where the
phase was difficult to infer, and “[]” at alleles which were difficult to infer (for
missing alleles);

8. The same list of haplotypes for each individual but with those unambiguous loci
masked; and

9. A list of the confidence probabilities associated with each phase call.

The main output file corresponding to the input file presented above is shown as
follows:
************************************************************
*** Output from PHASE v2.1.1 ****
*** Code by M Stephens, with contributions from N Li ****
************************************************************

BEGIN COMMAND LINE
PHASE input output
END COMMAND LINE



Haplotype Structure 51

BEGIN OUTFILE LIST
output freqs : haplotype frequency estimates
output pairs : most likely haplotype pairs for each individual
output recom : estimates of recombination parameters
output monitor : file for monitoring convergence
END OUTFILE LIST

BEGIN INPUT SUMMARY
Number of Individuals: 5
Number of Loci: 5
Positions of loci: 100 300 500 700 900
END INPUT SUMMARY

List of haplotypes found in best reconstruction, with counts. (See file output freqs
for haplotype population frequency estimates)

BEGIN LIST SUMMARY
1 00010 3.000000
2 00000 1.000000
3 00111 1.000000
4 00101 2.000000
5 01000 2.000000
6 10101 1.000000

END LIST SUMMARY

Summary of best reconstruction (numbers refer to the list of haplotypes given above)

BEGIN BESTPAIRS SUMMARY
#1: (1,4)
#2: (6,5)
#3: (1,1)
#4: (2,5)
#5: (3,4)
END BESTPAIRS SUMMARY

Haplotype estimates for each individual, with uncertain phases enclosed in “()” and
uncertain genotypes enclosed in “[]”:

BEGIN BESTPAIRS1
0 #1
0 0 0 (1) 0
0 0 1 (0) 1
0 #2
(1) (0) 1 0 1
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(0) (1) 0 0 0
0 #3
0 0 0 1 0
0 0 0 1 0
0 #4
0 0 0 0 0
0 1 0 0 0
0 #5
0 0 1 1 1
0 0 1 0 1
END BESTPAIRS1

Haplotype estimates for each individual, with uncertain phases enclosed in “()” and
uncertain genotypes enclosed in “[]” with phase known positions indicated by “=”

BEGIN BESTPAIRS2
0 #1
= = 0 (1) 0
= = 1 (0) 1
0 #2
(1) (0) 1 = 1
(0) (1) 0 = 0
0 #3
= = = = =
= = = = =
0 #4
= 0 = = =
= 1 = = =
0 #5
= = = 1 =
= = = 0 =
END BESTPAIRS2

Phase probabilities at each site with phase known positions indicated by “=” and
missing data positions indicated by “?”

BEGIN PHASEPROBS
= = 0.91 0.72 0.91
0.51 0.85 0.90 = 0.90
= = = = =
= 1.00 = = =
= = = 1.00 =
END PHASEPROBS
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4.3 HAPLOTYPER

HAPLOTYPER [10] employs a full Bayesian model to infer multi-locus haplo-
types. Similar to PHASE, HAPLOTYPER utilizes Gibbs sampling to iteratively
update haplotypes H from a posterior distribution. Different from PHASE, HAP-
LOTYPER is built upon a proper joint likelihood function of H and G such that
the results obtained by maximizing the posterior distribution P (H |G) are readily
interpretable. HAPLOTYPER does not assume any a priori population evolution-
ary model, such as the coalescent model. As a result, the method is robust when
applied to populations with diverse evolutionary histories, such as past gene flows,
stratifications, or bottlenecks [10, 50]. To infer haplotypes for a large number of
linked loci, HAPLOTYPER introduces a technique called partition–ligation (PL)
that effectively speeds up the computation for long-range haplotypes.

4.3.1 Bayesian Model

As before, let G = (g1, . . . , gn) and H = {(h11, h12), . . . , (hn1, hn2)} denote
the genotypes and haplotypes for n individuals typed at l loci. We use the notation
g = ha ⊕ hb to represent that a pair of haplotypes (ha, hb) can explain the geno-
type g, called “compatible with g.” Let Θ = (θ1, θ2, . . . , θM ) denote the population
haplotype frequencies, where M denotes the number of all possible haplotypes.
Suppose the Hardy–Weinberg equilibrium (HWE) holds true such that the popula-
tion fraction of individuals with the ordered haplotype pairs (hia, hib) is θhiaθhib

.
Then the likelihood function of G can be expressed as

P (G|Θ) =
n∏

i=1

P (gi|Θ) =
n∏

i=1

∑

(hia,hib):hia⊕hib=gi

θhiaθhib
. (4)

Assuming a Dirichlet prior distribution for Θ with parameters β = (β1, . . . , βM ),
the joint likelihood of (G,H,Θ) is

P (G,H,Θ) ∝
n∏

i=1

θhiaθhib

M∏

j=1

θ
βj−1
j (5)

for a solution H compatible with G, and P (G,H,Θ) = 0 otherwise.
To improve MCMC sampling efficiency, the parameter Θ is integrated out, and

the joint likelihood of both G and H takes the form

P (G,H) ∝
M∏

i=1

Γ(ci + βi), (6)

where ci denotes the count of haplotype hi ∈ H .
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Now, we have derived the full likelihood function P (G,H), and thus the pos-
terior distribution P (H |G) (which only differs from P (G,H) by an unknown
normalizing constant). HAPLOTYPER employs the Gibbs sampling method to
update H . In brief, the method starts from a random assignment of haplotype pairs
for all individuals, and then iteratively updates (hia, hib) ∈ H for each individ-
ual i based on genotypes G and the haplotypes of the remaining individuals. The
haplotype updating step is based on a proper conditional distribution:

P (hia, hib|H−i, G) ∝
{

(chia + βhia)(chib
+ βhib

), hia �= hib

(chia + βhia)(chib
+ βhib

+ 1), hia = hib,
(7)

which is derived from the joint likelihood function P (G,H). Therefore, the haplo-
type samples output by HAPLOTYPER are guaranteed to converge to P (H |G).
The algorithm then outputs the most frequently sampled haplotype pairs for all
individuals.

4.3.2 Partition–Ligation (PL)

The complexity of haplotype inference increases exponentially with respect to the
number of heterozygous loci observed for each individual. To see this, consider a
genotype at five SNP loci as (A/A,B/b, C/c,D/D,E/e). Here, uppercase let-
ters represent major alleles and lowercase letters represent minor alleles. There
are three heterozygous loci: B/b, C/c, and E/e. Without additional informa-
tion, four haplotype solutions are equally likely to explain the observed genotype:
(ABCDE,AbcDe), (ABCDe,AbcDE), (ABcDE,AbCDe), and (AbCDE,
ABcDe). In other words, the number of possible solutions is 2k−1 for genotypes
with k heterozygous loci. The exponential complexity poses a great challenge in
reconstructing haplotypes for a large number of linked loci. In particular, imple-
menting a full Bayesian model accounting for all loci simultaneously can be
difficult.

HAPLOTYPER proposed the PL technique to significantly reduce the computa-
tion complexity for inferring long-range haplotypes without sacrificing much of the
inference accuracy. The PL technique works as follows:

1. Suppose a sequence of l loci are genotyped, choose an “atomistic unit” size d
(typically d ≤ 8), and partition both the genotype data G, and haplotypesH into
� l

d� subsets, each of size d. This is the partition step.
2. In the ligation step, first, reconstruct haplotypes for each “atomistic unit,” and

then ligate the solutions for sub-haplotypes for two adjacent units together.
This is done by concatenating short sub-haplotypes comprising d loci for each
atomistic unit into longer sub-haplotypes covering 2d loci. The M most prob-
able sub-haplotypes are retained as candidates for the next inference step. The
selectedM sub-haplotype candidates are required to be self-sufficient to solveG.
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3. The ligation step results in a new “atomistic unit” of size 2d and a set of M
sub-haplotype candidates. Repeat step 2 until all loci of the region are ligated
together.

An illustration of the PL algorithm is shown in Fig. 8. The underlying assump-
tion is that sub-haplotypes reconstructed locally will be sufficiently close to the
“true” haplotypes, and thus in each ligation step, the “true” answer is most likely
included among the top M candidates. The PL approach can be implemented either
hierarchically or progressively.

The computation time of the PL method is linearly related to the total number of
loci. Coupled with this strategy, HAPLOTYPER is able to reconstruct haplotypes
for a large number of loci. For example, the software can handle 100 individuals
at 256 SNPs. The PL method was also adopted by many other haplotype inference
algorithms, such as PHASE v2.1 [8] and CHB [11] (described in Sect. 4.4), and has
played a pivotal role in large-scale haplotype reconstructions [51].

Advantages:

1. Robust to populations with gene flow, stratifications, and bottleneck effects.
2. The PL strategy enables rapid haplotype reconstruction for a large number of

SNPs.
3. Sampling is based on a full Bayesian likelihood model such that asymptotic

properties of the performance are guaranteed.
4. Can infer missing genotypes.

Disadvantages:

1. Handles SNP data only.
2. Does not take into account of any evolution events, such as mutation and

recombination events.

d

l

Ligation 2

Ligation 3

Ligation 1

Partition

Fig. 8 A schematic illustration of the partition–ligation procedure. Parameter l denotes the total
number of SNPs in the region and d denotes the number of SNPs in the initial atomistic unit.
Modified from Fig. 1 in Niu et al. [10]
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4.3.3 Software Usage

Availability:
http://www.people.fas.harvard.edu/∼junliu/Haplo/docMain.htm

Command:
./htyper input output locs inds iters

There are two programs for HAPLOTYPER: (1) htyper (the maximum number
of SNPs allowed is 256, and the maximum number of individuals allowed is 100)
and (2) htyperv2 (the maximum number of SNPs allowed is 100, and the maximum
number of individuals allowed is 500). Here, htyper is used for illustration of the
usage of HAPLOTYPER.

Input:
The program will take the input genotype data from the input file, and save the
inferred haplotypes in the output file. The user also needs to specify the number of
loci typed (locs), the number of individuals typed (inds), and the total number of
MCMC sampling steps (iters) required to run the program.

The format of the input file is shown as follows:

1. One line for each individual.
2. Each line contains l single digits coding for genotypes of l loci in their physical

order.

The software uses the following coding scheme for all possible genotypes at a locus:
0 = “A/a,” 1 = “A/A,” 2 = “a/a,” 3 = “?/?,” 4 = “A/?,” and 5 = “a/?.” Here,
“A” and “a” represent major and minor alleles, and “?” represents missing alleles.
An example input file for the common dataset A is shown as follows:

11000
00010
11121
10111
11202

To infer haplotypes of this data, type “./htyper input output 5 5 100.” We sug-
gest to run the program for at least 100 iterations for small datasets, and more
iterations for large datasets (e.g., datasets containing 100 individuals typed at >50
loci).

Output:
HAPLOTYPER outputs the inference result to the user-specified output file. The
output file consists of two parts:

1. The “best” haplotype reconstruction. A pair of haplotypes for each individual is
listed, along with their IDs indicated in the haplotypesummary list. The posterior
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probability of each inferred haplotype pair is also listed, which can be used as a
measure of the confidence of phase calls.

2. A summary of haplotypes based on the “best” reconstruction. The frequency and
percentage of each haplotype contained in the “best” haplotype reconstruction
are listed. If the number of loci is less than 20, a unique coding for each haplotype
is assigned to help identify haplotypes of the same length. This feature can be
helpful when one is doing a cross-platform comparison.

The output file corresponding to the above input data is shown as follows:

**************************************
* *
* Haplotyper Result *
* *
**************************************

0, 0.90000 — 1, 2
00010
00101
1, 1.00000 — 2, 3
00101
11000
2, 1.00000 — 1, 1
00010
00010
3, 1.00000 — 4, 5
00000
01000
4, 1.00000 — 2, 6
00101
00111

ID Frequency % Haplotype
1 3 30.00000 00010 (2)
2 3 30.00000 00101 (5)
3 1 10.00000 11000 (24)
4 1 10.00000 00000 (0)
5 1 10.00000 01000 (8)
6 1 10.00000 00111 (7)

Notice that an unique code for each haplotype is included in “(),” which is a
decimal equivalent for the binary string. For example, The decimal equivalent of the
binary string 11101 is 1 × 16 + 1 × 8 + 1 × 4 + 0 × 2 + 1 × 1 = 29.
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4.4 CHB

CHB [11] is a haplotype inference method based on a Coalescence-guided Hierar-
chical Bayes (acronymed as CHB) model. In this model, a hierarchical structure is
imposed on the prior haplotype frequency distributions so as to capture the similar-
ities of modern-day haplotype configurations attributable to their common ancestry.
Empirical results of CHB compared favorably to those of PHASE and HAP-
LOTYPER for both coalescence-simulated and empirical datasets with disparate
evolutionary histories, with or without missing genotypes.

Ostensibly unrelated modern-day haplotypes are correlated through a coales-
cence process, because both mutation and recombination events can diversify the
configurations of their shared ancestral haplotypes. CHB utilizes a hierarchical
model in the prior distribution of modern-day haplotypes, P (H), to capture the
effect of the coalescence process. As demonstrated in several studies [6, 8, 11], the
haplotype phasing accuracy can be substantially improved by incorporating coales-
cence. The model allows distinct modern-day haplotypes to have different a priori
probabilities according to an inferred hierarchical structure, which results in a proper
joint posterior distribution for all the parameters of interest.

4.4.1 CHB Model

As described in Sect. 4.3, when HWE holds true, the probability of a haplotype
solution H compatible with genotypesG given the haplotype frequencies Θ can be
written as:

P (G,H |Θ) =
n∏

i=1

P (gi = hia ⊕ hib|Θ) =
n∏

i=1

θiaθib. (8)

Here, gi = hia⊕hib indicates that genotype gi of individual i can be resolved by the
haplotype pair (hia, hib), and n is the number of sampled individuals. Let cj denote
the number of haplotype hj contained inH and assume a Dirichlet prior distribution
of Θ with parameters β = (β1, . . . , βM ), where M denotes the total number of
possible haplotypes. We can integrate Θ out and obtain the joint distribution of
P (G,H) as:

P (G,H) =

∏M
j=1 Γ(cj + βj)

Γ(
∑M

j=1 cj + βj)
. (9)

The choice of β reflects our preknowledge about the frequency distribution of hap-
lotypes in the modern-day haplotype pool. Without any specific information about
these haplotypes, one (e.g., HAPLOTYPER) can let each parameter βj , ∀j ∈ [1,M ]
be equal to a constant. That is, each haplotype hj is assumed to be equally likely to
occur, a priori.
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In CHB, however, modern-day haplotypes are assumed to be resulted from a coa-
lescence process. CHB assigns different values to βjs, ∀j ∈ [1,M ], corresponding
to inferred ancestral haplotype frequencies. Thus, each haplotype hj has a differ-
ent a priori probability of occurrence. To illustrate the intuition of CHB, assuming
that the modern-day haplotypes are descendants of an ancestral haplotype hA, say,
100 generations back in time, then modern-day haplotypes would resemble hA, i.e.,
differing only at a few loci. If we observe haplotype h1 = 0000 in a majority of
individuals, we would guess that this is the ancestral haplotype and that the proba-
bility of observing h2 = 0010 in a future individual is greater than that of observing
h3 = 0111. Here, “0” and “1” denote the major and minor alleles at each SNP locus,
respectively.

To account for the coalescence effect, let hyper-parameter Θ∗ = (θ∗1 , · · · , θ∗M )
denote the haplotype frequencies in a hypothetical ancestral population, from which
haplotypes of currently sampled individuals are derived. Based on Θ∗, CHB first
computes the expected frequencies E(Θ|Θ∗) of modern-day haplotypes account-
ing for both mutation and recombination events. Then, let β = cE(Θ|Θ∗), which
denote the parameters in the Dirichlet prior distribution for Θ. Here, c denotes
a scaling constant, with a large c indicating more “confidence,” a priori, of the
configuration of haplotypes. The hierarchical structure of the CHB model can be
depicted as

Θ∗ → E(Θ|Θ∗) → β → Θ.

A schematic diagram of the CHB model is given in Fig. 9.
The joint likelihood model of CHB is therefore:

aBCd

ABCD

 
aBcd

ABCd ABCd

ABcd
 

ABcD

AbcD AbCd

Common Ancestors Current Population

Q* ~ P(Q*) Q  ~ P(Q | β) β =  cE(Q/Q*) 

Mutation  Recombination

Fig. 9 A schematic diagram of CHB. Hyper-parameter Θ∗ represents the frequencies of ances-
tral haplotypes from which the current individual samples are descended from. Assuming a robust
“star-like” topology, a prior expectation of the modern-day haplotype frequencies, E(Θ|Θ∗) is
computed, taking into consideration of both mutation and recombination events. Each haplo-
type consists of four SNPs with uppercase letters (white boxes) indicating wild-type alleles, and
lowercase letters (gray boxes), indicating mutant alleles. Modified from Fig. 1 in Zhang et al. [11]
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P (G,H,Θ∗,γ) = P (G,H |Θ∗,γ)P (Θ∗)P (γ), (10)

=

∏M
j=1 Γ(cj + βj)

Γ(
∑M

j=1 cj + βj)
P (Θ∗)P (γ),

where γ = (γ1, . . . , γl−1) denotes the vector for recombination probabilities for all
pairs of adjacent loci.

4.4.2 MCMC Sampling and Convergence

By imposing a hierarchical structure on the prior distribution P (H), we obtain a
joint likelihood function which is very similar to the one used in HAPLOTYPER
[10], with two additional parameters Θ∗ and γ. Starting from random assignments
of parameters H , Θ∗, and γ, CHB first updates the haplotype pair (hia, hib) for
each individual i from the following conditional distribution based on the rest of
parameters:

P (hia, hib|H−i, G) ∝
{

(chia + βhia)(chib
+ βhib

), hia �= hib,

(chia + βhia)(chib
+ βhib

+ 1), hia = hib,
(11)

Assuming H is given, CHB updates Θ∗ and γ using the Metropolis–Hastings
recipe [2]. Through iterations of this procedure, the posterior distributions of H , Θ∗

and γ can be learned through iterative updating.
An important step when using MCMC methods for Bayesian inference is to

check for the convergence of the MCMC sampling. One approach is to compare
samples collected from several parallel chains [12]. CHB runs two chains in parallel
from different starting points. Along with iterations, CHB monitors the ratio of the
within-chain variation over the between-chain variation of log-likelihoods. When
the ratio moves above a predefined threshold, it indicates that two chains may have
converged to a common mode, and would only upon reaching that point, CHB starts
to collect posterior samples.

In addition, CHB employs the PL technique described in Sect. 4.3 to handle those
haplotypes for a large number of loci.

Advantages:

1. Can accurately and robustly infer haplotypes.
2. Can estimate recombination probabilities between adjacent loci.
3. Employs a proper Bayesian model such that asymptotic properties of the perfor-

mance are guaranteed.
4. Can infer missing genotypes as well as frequencies of ancestral haplotypes.

Disadvantages:

1. Handles SNP loci only.
2. Computationally intensive when considering recombinations for a large number

of loci.
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4.4.3 Software Usage

Availability:
http://www.people.fas.harvard.edu/∼junliu/chb/index.htm

Command:
./CHB [options] input

Input:
The user needs to supply an input file that contains the genotype data for the pro-
gram. The current version of CHB only supports datasets containing exclusively
bi-allelic SNP data.

Let “A,” “a,” and “?” denote the major, minor, and missing alleles, respectively.
CHB accepts two alternative input formats for genotype data:

1. For each individual, the genotype data are represented in a single line. Within
each line, each single digit represents the genotype at each locus. No space
separating neighboring digits is allowed. The coding scheme for each possible
genotype is shown as follows:

Genotype A/A a/a A/a A/? a/? ?/?

Code 0 1 2 3 4 5

An example input file for the common dataset A is shown as follows:

00222
22202
00010
02000
00121

2. For each individual, the genotype data are represented in two consecutive lines. In
each line, each single digit represents the allele at each locus without any spaces
separating the neighboring digits. The genotype at each locus is represented at
the same position in the two consecutive lines. Since haplotype information is
unknown, the order that at each locus which allele should be placed in which line
is arbitrary. The same genotype data can then be presented as:

00010
00101
11100
00001
00010
00010
01000
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00000
00111
00101

CHB can automatically distinguish between the above two input formats, given that
there exists at least one heterozygous locus or one missing genotype in the input
dataset.

Options:
The default CHB model only incorporates mutation events into the coalescence pro-
cess, while recombinations are not accounted for. As a result, the default CHB is
proper to infer haplotypes for a set of tightly linked loci where no recombination
hotspots exist. Alternatively, the user can specify the -r option to let the program
incorporate recombination events. When -r is specified, CHB simultaneously esti-
mates the recombination probability for each pair of adjacent loci. The average
performance of CHB under the -r option is better than the default when there are
recombination hotspots present in the dataset. Without prior knowledge regarding
the recombination hotspots a priori, the user can use the -r option to run CHB first,
and check the output posterior means of recombination probabilities for all pairs of
adjacent loci, of which values larger than 0.1 are often indicative of the presence of
recombination hotspots. Note that the running time of CHB under the -r option is
longer than that under the default setting.

Output:
The user can use the -o output option to specify the file name, where the inferred
haplotypes will be output into. Under the default setting of CHB, the output file
comprises two parts:

1. The “best” and alternative haplotype reconstructions, with three consecutive lines
per individual. The first line starts with the individual ID, followed by the geno-
type data, and then the “best” haplotype pair. The posterior probability of the
“best” haplotype pair is also provided, which can be used as a measurement of
the “confidence” of phase calls. The second and the third lines consist of the
inferred haplotype pair, with “0” and “1” coding for the major and minor alleles
at each locus, respectively.
In addition to the “best” haplotype calls, CHB also outputs alternative solutions
if the posterior probabilities of alternatives are at least half of those of the best
call. The “best” pair is enclosed in “[, ]” and the alternative pair(s) are enclosed
in “(, ).”

2. A summary of haplotypes in the “best” or alternative reconstructions. Both the
frequency and the percentage of each haplotype contained in the “best” recon-
struction are listed. The posterior distributions of individual haplotypes are also
included.

If the -r option is specified, CHB also outputs the posterior means and variances
of recombination probabilities for all pairs of adjacent loci at the end of the output
file.
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As an example, the output file by typing in the command line ./CHB -r input for
the above input data is shown as follows:

CHB result

0: 00222 — [0,1]=0.631, (2,3)=0.360
00010
00101

1: 22202 — [4,5]=0.414, (1,6)=0.350
01000
10101

2: 00010 — [0,0]=1.000
00010
00010

3: 02000 — [2,4]=1.000
00000
01000

4: 00121 — [1,3]=1.000
00101
00111

ID Count % Hap Posterior
0: 3 30.0 00010 0.263
1: 2 20.0 00101 0.198
2: 1 10.0 00000 0.148
3: 1 10.0 00111 0.136
4: 2 20.0 01000 0.141
5: 1 10.0 10101 0.041
6: 11000 0.035

−−−−−−−−−−−−−−−−−−−−−− −−−

Recombination Frequencies:

Interval Mean Var
[1, 2]: 0.0090 0.0004
[2, 3]: 0.0235 0.0086
[3, 4]: 0.0452 0.0067
[4, 5]: 0.0091 0.0004

Notice that multiple phase calls for Individuals 1 and 2 are reported along with
their posterior probabilities.
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4.5 Comparison of Phasing Results

Because we used a common dataset for Clark’s algorithm, PHASE, HAPLOTYPER,
and CHB, we can compare the results across these methods. We observed that the
inferred haplotype pairs for Individuals 3, 4, and 5 were the same for all four meth-
ods, because for these individuals, either all loci had homozygous genotypes or only
one locus had heterozygous genotype. For Individual 1, Clark’s algorithm and CHB
provided the same two alternative phase calls, whereas PHASE and HAPLOTYPER
only provided one phase call. In addition, for each individual, PHASE provided
locus-specific posterior probabilities, while HAPLOTYPER and CHB provided pos-
terior probabilities for haplotype pairs. The sole phase calls yielded by PHASE and
HAPLOTYPER agreed to the “best” phase call by CHB. For Individual 2, Clark’s
algorithm provided a different phase call compared to the results of all other meth-
ods. The sole phase call by PHASE agreed with the “best” phase call by CHB,
while HAPLOTYPER provided a different phase call which agreed to the runner-
up yielded by CHB. The difference is attributable to the fact that both PHASE and
CHB share the spirit of coalescence in their models, while HAPLOTYPER ignores
any population structures.

5 Estimation of Recombination Rate

Recombination rate, measured by the expected number of recombination events
occurring per unit length per meiosis, varies considerably across the human genome
[4]. Inference on recombination rates can be achieved using summary statistics. For
example, estimation methods based on the number of pairwise differences [13] or
the minimum number of recombination events required [14] have been developed.
Summary statistics, however, can be inefficient as they ignore some information
contained in the data. Due to strong correlations across closely linked loci, merely
increasing the sample size may not provide substantially more information about
recombination. It is therefore imperative to use as much information contained in
the data as possible. Here, we introduce two statistical methods that can estimate
recombination rates and pinpoint recombination hotspots/coldspots.

A common dataset B containing 19 haplotypes at eight loci is depicted as follows:

Locus Positions (bp): 148 372 432 509 660 775 809 950
Freq. haplotype configuration

1 11010000
1 01010111
1 11110100

14 00000111
2 11110111
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5.1 LDhat

LDhat [20] estimates recombination rates using a composite likelihood approach.
The method is an extension of the Hudson’s approximate-likelihood method [21]
based on the coalescent theory. Hudson’s method only considers the two-locus sce-
nario assuming an infinite-sites model of mutation. By contrast, LDhat considers
multiple loci simultaneously assuming a finite-sites model of mutation, where the
rate of recurrent mutation may be high. In addition, LDhat tests for the presence of
recombination events based on population samples through permutations.

Under the Wright–Fisher model, the coalescent theory provides a statistical
framework for modeling the genealogical history of sequences sampled from a large
population. Within the framework, the effect of recombination is a function of the
product of the recombination rate per unit length per generation, r, and the effec-
tive population size, N [22]. Without knowing one of parameters r or N , it is only
possible to estimate ρ = 4Nr, known as the population recombination rate.

5.1.1 Composite Likelihood Estimation of ρ

LDhat assumes a simple model such that all sites in a sequence has two alternative
alleles under a reversible and symmetric mutation model. According to McVean
et al. [20], the estimation of ρ consists of four steps:

1. Estimate the population mutation rate per site, θ = 4Nμ, from an approximate
finite-sites version of the Watterson estimate:

θ̂ =

(
n−1∑

k=1

1
k

)−1

ln
(

L

L− S

)

, (12)

where n denotes the number of sampled sequences, L denotes the length of
sequence analyzed, and S denotes the number of segregating sites.

2. Classify all pairs of segregating sites in the data into equivalent sets. For example,
consider a sample of n = 4 sequences of length L = 5:

ACGAC
ACTAC
CCTAC
ACTTC.

There are S = 3 segregating sites at positions 1, 3, and 4, respectively. The pair of
sites 1 and 3 consists of the ordered allele combination set {AG,AT,CT,AT }
and the pair of sites 3 and 4 consists of the ordered allele combination set
{GA, TA, TA, TT }. Using “0” and “1” to code for major and minor alleles,
respectively, the two pairs of segregating sites (1,3) and (3,4) can be represented
as {01, 00, 10, 00} and {10, 00, 00, 01}, respectively. These pairs of sites are
called “equivalent” because they all consist of two copies of “00,” one “01,” and
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one “10,” regardless of the order. The frequencies of distinct allele combinations
at each pair of two sites in the sample are the only information used when com-
puting composite likelihoods. By the same taken, the pair of sites (1,4) is also
equivalent to the pairs of sites (1,3) and (3,4).

3. Estimate the likelihood of each equivalent set (of pairs of sites) given the esti-
mated θ̂, under a finite-site, symmetric, reversible mutation model, for a range of
recombination rates (by default, for ρ = 0, 1, . . . , 100).
The likelihood is calculated using the importance sampling method of Fearnhead
and Donnelly [23], which attempts to sample the genealogical tree for a sample
of sequences backward in time towards the MRCA of all sequences.
Although the method of Fearnhead and Donnelly [23] is self-sufficient to esti-
mate recombination rates, it is computationally intensive, even for only a mod-
erate number of samples and multiple segregating sites. As a result, LDhat only
uses their method to compute likelihoods for two-site cases. To improve com-
putation efficiency, LDhat first precomputes a likelihood table for each possible
equivalent set, and then uses the precomputated values to estimate recombination
rates for various datasets of the same sample size. Theoretically speaking, LDhat
is computationally feasible to estimate the recombination rates across the entire
human genome.

4. A point estimate of the population recombination rate for the sampled sequences
is obtained by combining the likelihoods of all pairs of segregating sites. Let
l(Xij |4Nrij) (introduced in [23]) denote the likelihood of the site pair (i,j). The
composite likelihood of the entire sample is given by

lc(4Nr) =
∑

i,j

l(Xij |4Nrij). (13)

Here, rij denotes the recombination rate of the segment between sites i and j,
defined as

rij =
rdij

L− 1
, (14)

where dij is the physical distance separating sites i and j.

5.1.2 Likelihood Permutation Test

LDhat tests the presence of recombination events in a population sample using
a permutation approach. The intuition of the test is that, under a model of no
recombination and assuming a uniform mutation rate, sites are exchangeable. When
recombination occurs, however, the physical ordering of sites matters. As a result,
the likelihood of observing the sequences is dependent on the physical ordering of
sites when recombination events are present in the data.

Based on this principle, the likelihood permutation test for recombination works
as follows:

1. Compute the maximum composite likelihood as defined by Equation (13) for a
sample of sequences. This leads to the estimation of ρ = 4Nr.
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2. Permute segregating sites by their physical locations, and for each permutated
dataset, compute the maximum composite likelihood.

3. The proportion of permutated datasets with a composite likelihood greater than
or equal to that of the original dataset gives the estimated p-value. If the p-value is
smaller than a predefined threshold, we conclude that there is statistical evidence
for recombination in the sampled sequences.

Advantages:

1. Can efficiently estimate recombination rates if the lookup table of two-site
likelihoods is precomputed.

2. Can handle either phased haplotype data or unphased genotype data, and allows
for more than two alleles per site.

Disadvantages:

1. Estimation is often biased and only takes on a predefined set of discrete values.
2. Due to the usage of the composite likelihood, there is no standard statistical

interpretation of the results.

5.1.3 Software Usage

Availability:
http://www.stats.ox.ac.uk/∼mcvean/LDhat/

Command:
./program name input locs [lookup table]

The LDhat package is composed of several programs, two of which are for
estimating recombination rates:

1. pairwise: estimates a constant recombination rate over a region. Either a
crossing-over or a gene conversion model can be specified. Two files are required
as the input, sites that contains the sequence data, and locs that contains the phys-
ical locations of SNPs. A lookup table of precomputed two-locus likelihoods can
be supplied to speed up the program.

2. interval: estimates variable recombination rates over a region, using a Bayesian
reversible jump MCMC scheme under the crossing-over model only. Due to
the usage of the composite likelihood, the results cannot be interpreted from
a Bayesian perspective. The same inputs are also required for the program
pairwise, except that a lookup table is obligatory instead of optional.

Other programs contained in the LDhat package include convert, which converts
sequence alignment data into appropriate formats for both pairwise and interval;
stat, which summarizes the output of interval; complete, which generates lookup
tables; and lkgen, which generates lookup tables from existing tables. These pro-
grams are optional in estimating recombination rates, and thus we refer the user
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to the LDhat manual for more details. In the following, we focus on the usages of
pairwise and interval.

Input:
The user needs to supply the input data consisting of either haplotypes or genotypes
in two separate files: sites and locs. The sites file contains sequence data at segre-
gating sites in the FASTA format, except for the first line specifying the number of
sequences, the number of sites and a flag, 1 or 2, indicating whether the input data
consist of haplotypes or genotypes, respectively. The locs file contains information
of the physical locations of segregating sites. The first line specifies the number
of sites, the total length of the region analyzed, and a flag, “L” or “C,” indicating
whether to fit a crossing-over model or to fit a gene conversion model in the com-
posite likelihood, respectively. The rest of the file contains the physical locations of
sites in an ascending order. Examples of sites and locs files for the common dataset
B are shown as follows:

sites file

19 8 1
> hap1
11010000
> hap2
01010111
> hap3
11110100
> hap4
11110111
> hap5
11110111
> hap6
00000111
. . . . . .
(and other 13 haplotypes of the same type as “hap6”)

locs file

8 1000 L
148 372 432 509 660 775 809 950

Haplotype data can be coded by either DNA letters “A/C/T/G” or numerals
“0/1/2/3,” with the ambiguous nucleotide, missing value, and gap coded by “N ,”
“?,” and “−,” respectively. In the earlier example, we only used “0” and “1” to
describe each haplotype, although “2” and “3” can be used as well. For genotype
data, the convention is to use “0” and “1” to denote the two homozygotes for the
major and minor alleles, respectively, “2” for heterozygote, and “?” for missing
value, respectively.
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Options:
By typing in the command line “./pairwise sites locs [lookup table],” the user will
be prompted for several options, a few of which are listed below:

1. Use an existing likelihood file: If the lookup table is not specified in the command
line, the user will be asked whether or not to use an existing likelihood file to
speed up the computation. Such likelihood files can be generated by programs
complete or lkgen, and results are output into a file called new lk.txt. Since
generating the likelihood file is very time-consuming for large samples, some
precomputed likelihood files are available from LDhat’s web site.

2. Sliding window analysis: An estimation procedure can be carried out in a sliding-
window fashion to estimate variable recombination rates across a region (alth-
ough this option is largely superseded by the interval program). Results are
output into a file called window out.txt.

3. Test for recombination: Nonparametric permutation tests for the presence of
recombination can be performed. Currently, the tests are only available for
phased haplotype data. Results are output into a file called rdist.txt.

The interval program estimates variable recombination rates using a penalized
likelihood within a Bayesian reversible jump MCMC scheme. By typing in the com-
mand line “./interval sites locs lookup table,” the user will again be prompted with
several options, including the following:

1. Block penalty: The method works by fitting piece-wise constant recombination
rates to the data, where a penalty is applied to the number of change-points. The
user should try a series of different penalties ranging from 0 to 50.

2. Number of updates for MCMC: To ensure the convergence of MCMC sam-
pling, the number of updates should be sufficiently large (e.g., one million).
The user should also run the program using multiple starting points to check
for convergence.

3. Number of updates between samples: This is the “thinning” parameter in MCMC
that specifies how frequently we keep an update as one posterior sample. It is
recommended by the authors of LDhat to sample for every 2,000–5,000 MCMC
iterations.

Output:
The pairwise program generates several output files. We only discuss relevant
output files.

1. outfile.txt: contains a point estimate of the constant recombination rate for the
region and the composite likelihood value. An output file corresponding to the
above input example is shown below. Four recombination rates ranging from 0
to 20 are tested, and the mutation rate is fixed at 0.01. The maximum likelihood
is achieved at ρ = 4Nr = 20.

Lk surface
Theta = 0.01000
Maximum at 4Nr = 5.000: Lk = −497.629
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4Nr Pairwise Lk
0.00 −504.130
5.00 −497.629
10.00 −498.652
15.00 −500.092
. . . . . .

2. window out.txt: is generated when the sliding window option is used. “SNP L”:
the physical positions (in bp or in kb) of the leftmost site in the window;
“SNP R”: the position of the rightmost site in the window; “#SNPs”: the num-
ber of sites in the window; “4Nr/bp/kb”: estimated recombination rate per bp or
kb (depending on the unit assumed in the locs file) in the window; “CLR”: log
composite likelihood ratio using the estimated rate within the window and the
average rate over the entire region; “Tajima’s D”: Tajima’s D statistics for the
window. An example output file for the same input data is shown as follows:

Sliding windows analysis – rho for total gene = 0.0500 per bp/kb

SNP L SNP R #SNPs 4Nr/bp/kb CLR Tajima’s D
372.00 509.00 3 0.00000 3.28 0.764
509.00 660.00 2 0.02649 0.07 −0.680
775.00 950.00 3 0.00571 0.59 −1.126

The interval program generates the following two output files:

1. rates.txt: contains the posterior samples of recombination rates for all pairs of
adjacent sites. The first line specifies the number of posterior samples recorded
and the number of sites in the data. Following the first line are the posterior
samples of recombination rates and the corresponding composite likelihoods,
with one sample per line. An example is shown below, where the first column is
the composite likelihoods, followed by recombination rates for 9 intervals for 10
linked sites.

50 8
380.254 0.014 0.031 0.043 0.473 1.445 2.843 0.267
30.330 0.003 0.005 0.022 0.065 0.112 0.091 0.014
. . . . . .

2. bounds.txt: contains values of “1” and “0” indicating whether or not the recom-
bination rate at each interval is different from its neighboring interval to its left.
The format is the same as that of rates.txt, where the total number of rate changes
for one sample is listed at the beginning of each line.

50 8
7 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1
. . . . . .
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The results of interval can be further analyzed by the stat program, available
from the LDhat package. The stat program summarizes the average, median, 2.5th
and 97.5th percentiles of the estimated recombination rate for each pair of adjacent
sites.

5.2 HOTSPOTTER

HOTSPOTTER [15] utilizes a statistical method to estimate recombination rates
from population samples. The method is based on the coalescent theory that directly
relates the patterns of LD of a population sample to the underlying recombi-
nation process. Recombination rates for all pairs of adjacent loci are estimated
simultaneously, and the method can handle large genomic regions.

Recall that PHASE [6] reconstructs haplotypes from genotype data via condi-
tional likelihoods, in which the effects of both mutation and recombination events
are modeled (see Sect. 4.2). A similar approach is used in HOTSPOTTER, but
the haplotypes are given as the input and the interest is to estimate the popula-
tion recombination rate ρ = 4Nr for each pair of adjacent loci. Here, N denotes
the effective diploid population size and r denotes the recombination rate per unit
length per meiosis. According to the coalescent theory, population samples contain
information on the value of the product between N and r but not separately.

5.2.1 PAC Model

HOTSPOTTER relates the distribution of sampled haplotypes (h1, h2, . . . , hn) to
the underlying population recombination rate ρ by the following equation:

P (h1, . . . , hn|ρ) = P (h1|ρ)P (h2|h1, ρ) · · ·P (hn|h1, . . . , hn−1, ρ), (15)

where ρ denotes a vector of parameters because recombination rates can vary
substantially along the genome [15]. The conditional probabilities on the right-
hand side can be approximated by a series of conditionals (i.e., π̂) such that an
approximation of the joint distribution of haplotypes is given by

P (h1, . . . , hn|ρ) ≈ π̂(h1|ρ)π̂(h2|h1, ρ) · · · π̂(hn|h1, . . . , hn−1, ρ). (16)

HOTSPOTTER refers this model as a “Product of Approximate Conditionals (PAC)”
model, and denotes the right-hand side of (16) as the PAC likelihood,LPAC(ρ) [15].
HOTSPOTTER estimates ρ via maximum likelihood estimation (MLE), i.e., the
estimator ρ̂PAC takes a value that maximizes LPAC(ρ):

ρ̂PAC = arcmaxρLPAC(ρ) (17)

= arcmaxρ{π̂(h1|ρ) · · · π̂(hn|h1, . . . , hn−1, ρ)}.
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The validity of the PAC model critically depends on the choice of the approxi-
mate conditional π̂. In a random sample of k haplotypes estimated from a popula-
tion, π̂(hk|h1, . . . , hk−1, ρ) denotes the probability of the next sampled haplotype
hk conditional on the k − 1 previously observed haplotypes h1, . . . , hk−1, and the
recombination rate ρ. According to the coalescence process, π̂ should capture the
following properties:

1. The next haplotype is more likely to match to a frequently observed haplotype
than a rarely observed haplotype.

2. The probability of observing a novel haplotype decreases as the number of
observed haplotypes increases.

3. The probability of observing a novel haplotype increases as the mutation rate
increases.

4. The next haplotype tends to resemble the patterns of the observed haplotypes.

Recombination rates are determined by the patterns of haplotypes through prop-
erty 4. In particular, the next haplotype either matches to one of the observed
haplotypes, or takes a mosaic form of the observed haplotypes with a small number
of mutations. The mosaic structure of the next haplotype is a result of recombina-
tion, such that the size of each small segment of the next haplotype is determined by
the recombination rates of the region. The mosaic haplotype can be imperfect due
to mutations. An illustration of the mosaic haplotype structure is shown in Fig. 10.

Since the mosaic structures of haplotypes are unknown, one needs to sum over all
possible mosaic structures to compute the probability of observinghk conditional on
h1, . . . , hk−1. HOTSPOTTER uses a hidden Markov model (HMM) to efficiently
calculate π̂(hk|h1, . . . , hk−1, ρ).
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Fig. 10 Illustration of how π̂(hk|h1, . . . , hk−1, ρ) builds hk as an imperfect mosaic of
h1, . . . , hk−1. Here, k = 4 and h4 can be deemed as being created by “copying” from segments of
h1, h2, and h3. The arrow signs indicate the origins of segments. Each column of boxes contains
letters representing alleles at that SNP locus, where uppercase and lowercase letters represent the
two alternative alleles, respectively. The imperfect nature of the mosaic structure can be observed
at the fifth locus, where the allele at the locus is mutated although the segment is “copied” from
h1. Modified from Fig. 2 in Li and Stephens [15]
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5.2.2 Computing the Conditional Distribution π̂

Let h1, . . . , hn denote the n sampled haplotypes typed at l SNP loci. Assume that
the distribution of the first haplotype conforms to a uniform distribution, i.e., all
2l possible haplotypes are equally likely, then π̂(h1) = 1/2l. Consider now the
distribution of hk given h1, . . . , hk−1 and ρ. As illustrated in Fig. 10, at each locus,
hk consists of a copy of allele from one of h1, . . . , hk−1, with possible mutations.
Let Xj denote the haplotype from which hk copies the allele at locus j. Thus, Xj

is the hidden state and Xj ∈ {1, 2, . . . , k − 1}. For the example shown in Fig. 10,
we have (X1, X2, X3, X4, X5) = (3, 3, 2, 2, 1). To mimic recombination events,
the distribution of {Xj} can be described by a Markov chain with P (X1 = x) =
1/(k − 1) and

P (Xj+1 = x′|Xj = x) =

{
e−ρjdj/(k−1) + 1−e−ρjdj/(k−1)

k−1 , x′ = x,
1−e−ρjdj/(k−1)

k−1 , x′ �= x.
(18)

Here, dj denotes the physical distance between sites j and j + 1, and ρj = 4Nrj
where rj denotes the average rate of crossing-over per unit physical length per meio-
sis between the pair of adjacent loci j and j+1. The transition probabilities capture
the idea that, with small recombination rates (for a shorter distance or for a small
value of ρj) between loci j and j + 1, Xj+1 is very likely to be the same as Xj .

HOTSPOTTER considers three kinds of recombination models:

1. Constant recombination rate model: ρj = α for all j
2. Single recombination hotspot model: ρj = γα if the region between loci j and
j + 1 is the hotspot region, and ρj = α otherwise and

3. General variable recombination rate model: ρj = γjα

Note that P (Xj+1|Xj) designates the probability of the hidden state from which
the segment of hk at locus j is “copied” from, but not the probability of the observed
alleles. Due to mutations, the probability of observing a particular allele a in hk at
locus j, called the emission probability, can be written as

P (hk,j = a|Xj = x, h1, . . . , hk−1) =

{
k−1

k−1+λ + 1
2

λ
k−1+λ , hk,j = a

1
2

λ
k−1+λ , hk,j �= a

(19)

where λ denotes the prespecified mutation rate per site normalized by the effective
population size N .

Given both the transition probabilities (18) between states and the emission prob-
abilities (19) of alleles, HOTSPOTTER can efficiently compute the conditional
likelihood function π̂(hk+1|h1, . . . , hk, ρ) and thus the PAC likelihood LPAC(ρ)
using the well-known Forward–Backward algorithm for Markov models. For an
introduction to HMM, see [16].
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Advantages:

1. Can estimate recombination rates based on the pattern of haplotypes via the PAC
likelihood model.

2. Accommodates three different recombination models.

Disadvantages:

1. Estimation is biased and the results are empirically adjusted.
2. The PAC likelihood depends on the physical ordering of input haplotypes, and

thus, the estimation may vary if haplotypes are given in different orders.
3. The input data must be phased haplotypes.

5.2.3 Software Usage

Availability:
http://www.biostat.umn.edu/∼nali/SoftwareListing.html

Command:
./program name [options] input

There are three programs in the HOTSPOTTER package. They correspond to the
three models for recombination rates described above, and thus the program name
can be one of the following:

1. rholike: constant recombination rate
2. hotspot: single hotspot and
3. fullopt: general variable recombination rate

To run HOTSPOTTER, two external libraries for C++ must be installed in
advance:

1. Boost: a collection of C++ libraries, available from http://www.boost.org.
2. GSL: GNU Scientific Library, available from http://www.gnu.org/software/gsl/.

If the user does not have these packages preinstalled, these packages should be
downloaded and installed before running HOTSPOTTER.

Input:
HOTSPOTTER requires the user to supply an input file that contains information on
the number of haplotypes, the number of loci, the physical position for each locus,
haplotype frequencies, and the configuration of each haplotype observed.

There are two possible input formats taken by HOTSPOTTER. An example input
file for the common dataset B, in the first input format (i.e., the default format), is
shown as follows:

5 8
0.148 0.372 0.432 0.509 0.660 0.775 0.809 0.950
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1 11010000
1 01010111
1 11110100
14 00000111
2 11110111

The first line specifies that there are five different haplotypes typed at eight loci.
The second line specifies the physical positions of the loci. The rest of the file con-
tains the detailed haplotype information, with each line specifying the frequency and
the configuration of each unique haplotype. The configuration of each haplotype is
represented by a binary string 0’s and 1’s, with “0” and “1” denoting the major and
minor alleles, respectively. HOTSPOTTER can only handle bi-allelic data and no
missing data are allowed.

The second input format is the same format as used in Hudson’s mksample pro-
gram [17]. This can be handy when the user uses mksample to generate simulated
haplotype data.

Options:
Three running options of HOTSPOTTER are often used (applicable to all pro-
grams): (1) the -o outputfile option: to specify where the result is saved into,
otherwise the result will not be saved; (2) the -f3 option: to specify whether the
input file is in the second format (e.g., produced by mksample); and (3) the -a
option: to specify whether to disable the bias correction step; by default, the bias
in estimation is automatically “corrected.” Additional options for each of the three
programs are available, the details of which are skipped here.

Output:
For each program, as shown later, the output format slightly differs from each other.

1. rholike: estimates the background recombination rate. The output file corre-
sponding to the earlier input example is shown as follows:

pop rhobar var logLhat CIlow CIupp
1 4.53531 1.76363 −50.716 −1 −1

Here, “pop” denotes the population ID to distinguish the results if multiple
population data are included in the input file; “rhobar” denotes the estimated
background recombination rate ρ̂; “var” denotes the estimated variance of logρ̂;
“logLhat” denotes the log PAC likelihood at MLE; and “CIlow” and “CIupp”
denote lower and upper bounds of the 95% confidence interval (CI), respectively.

2. hotspot: estimates both the background and the hotspot recombination rates.
Thus, this program can be used to test for the existence of recombination
hotspots, and the output file corresponding to the same input example is shown
as follows:

pop rhobar maxLbar left right hhat vloghat h.low h.upp rhat vlogrhat maxLhot
1 4.54 −50.72 0 0.1 2.72 36227.7 −1 −1 4.54 1.76 −50.72
1 4.54 −50.72 0.1 0.2 0.00 2524.71 −1 −1 4.85 1.81 −50.69
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1 4.54 −50.72 0.2 0.3 0.00 34630.3 −1 −1 5.11 1.89 −50.68
1 4.54 −50.72 0.3 0.4 0.00 16051.3 −1 −1 5.50 1.79 −50.60
1 4.54 −50.72 0.4 0.5 0.00 −18039.6 −1 −1 6.92 1.66 −50.45
1 4.54 −50.72 0.5 0.6 575.61 2.54 4.04 7731.8 0.13 2.51 −50.04
1 4.54 −50.72 0.6 0.7 101.65 3.36 −1 −1 1.12 2.90 −49.83
1 4.54 −50.72 0.7 0.8 183.49 3.96 0.34 −1 0.93 3.39 −49.47
1 4.54 −50.72 0.8 0.9 0.00 4185.43 −1 −1 5.44 1.71 −50.61
1 4.54 −50.72 0.9 1 0.00 11288.6 −1 −1 4.96 1.73 −50.64

Here, “pop” denotes the population ID; “rhobar” denotes the estimated back-
ground recombination rate assuming no recombination hotspots; “maxLbar”
denotes the log PAC likelihood using the value of “rhobar” assuming a con-
stant recombination rate; “left” and “right” specify the physical boundaries of
the region under consideration; “hhat” denotes the estimated “intensity” of the
hotspot; “vloghhat” denotes the estimated variance of log(hhat); “h.low” and
“h.upp” denote lower and upper bounds of the 95% CI for “hhat,” respectively;
“rhat” denotes the estimated recombination rate assuming a hotspot; “vlogrhat”
denotes the variance of “rhat”; and “maxLhot” denotes the log PAC likelihood
using the value of “rhat” assuming the presence of a hotspot.

3. fullopt: estimates recombination rates assuming a general recombination model
such that the recombination rate can vary. The output file corresponding to the
same example is shown as follows:

i position rhobar rhohat
0 0.148 4.5353 4.1299
1 0.372 4.5353 3.7584
2 0.432 4.5353 3.9613
3 0.509 4.5353 6.1379
4 0.660 4.5353 5.7190
5 0.775 4.5353 5.4367
6 0.809 4.5353 3.6570
7 0.950 4.5353 3.6570

Here, “i” denotes the ith inter-locus interval (from 0 to l− 1, where l denotes the
number of loci typed); “position” denotes the position of the ith locus; “rhobar”
denotes the average recombination rate across all intervals; and “rhohat” denotes
the estimated recombination rate for the ith interval.

Overall, both LDhat and HOTSPOTTER identified approximately the same
recombination hotspot region between 0.509 and 0.660 kb, although the scales of
estimated recombination rates were different.

Summary

Spurred by the International HapMap Project, interest in the assignment and anal-
ysis of haplotypes has increased immensely. In this chapter, we have summarized
the key features of some widely used haplotype analysis methods. We have also
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provided terse guides regarding how the user can apply these software programs in
their studies. We think these software programs will add tremendous value to the
user for either disease-gene mapping or molecular evolution studies.

Web Resources

Clark’s algorithm: http://linkage.rockefeller.edu/soft/list2.html#hapinferx
CHB: http://www.people.fas.harvard.edu/∼junliu/chb/index.htm
HAPLOTYPER: http://www.people.fas.harvard.edu/∼junliu/Haplo/
docMain.htm
HAPLOVIEW: http://www.broadinstitute.org/haploview/haploview-downloads
HOTSPOTTER: http://www.biostat.umn.edu/∼nali/SoftwareListing.html
LDHAT: http://www.stats.ox.ac.uk/∼mcvean/LDhat/
MKSAMPLE: http://home.uchicago.edu/∼rhudson1/source/mksamples.html
PHASE: http://www.stat.washington.edu/stephens/software.html
The HapMap ENCODE website: http://www.hapmap.org/downloads/
encode1.html.en
The International HapMap Project website: http://www.hapmap.org
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Linkage Analysis of Qualitative Traits

Mingyao Li and Gonçalo R. Abecasis

Abstract Linkage analysis of pedigree data is a powerful tool for mapping genomic
regions that are likely to contain genes influencing human diseases. In this chap-
ter, we will first introduce concepts and rationale of linkage analysis. Following
this, we will then describe in detail two major types of linkage analysis strategies:
model-based and model-free linkage analysis methods for qualitative traits. We will
illustrate practical issues with linkage analysis by analysis of a real dataset col-
lected from an age-related macular degeneration study. We will also describe how
to identify the single nucleotide polymorphisms (SNPs) that account for linkage sig-
nal after linkage analysis is conducted. Finally, we will compare model-based and
model-free linkage analysis methods and various software packages.

1 Introduction

Linkage analysis is an important step for initial localization of genetic variants that
influence a trait of interest. Linkage refers to the phenomenon where two genetic
loci cosegregate within families. Two loci are called genetically linked if the recom-
bination fraction between them is less than 1/2. The objective of linkage analysis
is to estimate the recombination fraction and to test if it is less than 1/2. In gene
mapping studies of human diseases, the goal is to map a disease locus to a genetic
locus, as represented by one or several genetic markers. Linkage analysis for qual-
itative traits requires (1) pedigrees – sets of individuals of known relationship, (2)
marker genotypes – microsatellites or single nucleotide polymorphisms (SNPs), and
(3) phenotypes – disease affection status.

As an initial step in positional cloning, linkage analysis is solely based on the
known position of genetic markers. It has the advantage that no knowledge of the
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gene function of the disease genes is required. With the availability of a large num-
ber of genetic markers throughout the human genome, linkage analysis has been
successfully applied in identifying genes responsible for many human diseases,
including Huntington’s disease [1], Duchenne muscular dystrophy [2], and cystic
fibrosis [3–5].

There are two major types of linkage analysis strategies: model-based linkage
analysis and model-free linkage analysis. In this chapter, we will discuss each of
these two types of linkage analysis methods in detail. We will also discuss how to
identify which genetic marker explains the linkage signal after linkage analysis is
conducted. Finally, we will present a real data example and illustrate the differences
between model-based and model-free linkage analysis methods.

2 Model-Based Linkage Analysis

Model-based linkage analysis requires specification of the genetic model, as repre-
sented by the pattern of penetrances, i.e., the probability of developing the disease
given genotype at the disease locus. Commonly assumed genetic models include
multiplicative, additive, dominant and recessive models. To illustrate the basic
procedures in model-based linkage analysis, we will first consider phase-known
pedigrees. We will then consider a general case in which the phase may be unknown.
We will also describe an efficient pedigree likelihood calculation algorithm, the
Elston–Stewart algorithm (1971).

2.1 Phase-Known Pedigrees

Linkage phase is a key element in model-based linkage analysis. Linkage phase
refers to the arrangement of alleles of linked loci on the same chromosome. It reveals
which parental gamete is transmitted to the offspring and whether it is a recombinant
or a nonrecombinant. For phase-known pedigrees, linkage analysis can be carried
out by simply counting the number of recombinant and nonrecombinant gametes.
If the majority of the gametes are nonrecombinant, then the two loci are probably
linked.

Consider a simple case where the phase is known (Fig. 1). Individuals in this two-
generation family are genotyped at two genetic markers with alleles A and a at the
first locus and alleles B and b at the second locus. Since the linkage phase is known,
we can easily count the number of recombinant and nonrecombinant gametes.

In this family, the father is doubly heterozygous (i.e., heterozygous at both loci),
whereas the mother is doubly homozygous (i.e., homozygous at both loci). Among
the four children, it is clear that the first two have inherited nonrecombinant gametes
from the father, whereas the other two have inherited recombinant gametes from the
father. Since the mother is doubly homozygous, we cannot tell whether the children
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Fig. 1 Two-generation pedigree to illustrate linkage phase. All individuals are genotyped at the
marker loci with alleles A and a at the first locus and alleles B and b at the second locus. NR means
that the gamete is a nonrecombinant, and R means that the gamete is a recombinant

have inherited recombinant or nonrecombinant gametes from her. Therefore, in this
example, the father is informative for linkage but the mother is not.

In general, let n denote the number of gametes that can be determined as recom-
binants or nonrecombinants, and r denote the number of recombinants. Then the
likelihood function can be written based on the binomial distribution:

L (θ) =
(
n

r

)

θr (1 − θ)n−r
, (1)

where θ is the recombination fraction between the two markers. The maximum
likelihood estimate of the recombination fraction is θ̂ = r/n.

After the recombination fraction is estimated, the next step is to test for linkage.
The two marker loci are linked if the recombination fraction between them, θ, is less
than 1/2. Therefore, the hypothesis to be tested is

H0 : θ = 1/2 vs.H1 : θ < 1/2.

This hypothesis can be tested by a likelihood ratio test. The likelihood ratio is
defined as

LR (θ) =
L (θ)

L (θ) |θ=0.5
=
θr (1 − θ)n−r

0.5n
. (2)

The maximized likelihood ratio statistic is LRT = max{0≤θ≤1/2} 2 logLR (θ).
Since the parameter θ hits the boundary of the parameter space under the null
hypothesis of no linkage, thus the LRT statistic is asymptotically distributed as a
50:50 mixture of a chi-squared distribution with one degree of freedom and a point
mass at 0. The corresponding p-value can be obtained by dividing the p-value from
a full χ2

1 distribution by 2.
For historical reasons, the maximum of the LOD (logarithm of odds) score,

LOD = max{0≤θ≤1/2} log10 LR (θ) , (3)
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is typically reported over the likelihood ratio statistic. The maximum of the LOD
score is often simply called the LOD score. There is a simple relationship between
the LRT and the LOD score: LRT = 2 log (10)LOD ≈ 4.605 LOD and LOD =
LRT/[2 log(10)] ≈ LRT/4.605.

So far, we have only considered linkage analysis between two genetic markers.
In gene mapping studies of human diseases, the interest lies in identifying linkage
between a disease locus and a genetic marker. To conduct linkage analysis in this
case, the disease needs to be fully described with regard to the underlying genetic
model, as specified by penetrances and allele frequencies at the disease locus. Unlike
the analysis for two genetic markers, the genotypes for the disease locus are unob-
served. Therefore, one has to test for linkage between the disease and the marker by
reconceptualizing the disease affection status into a hidden genotype.

Suppose the unknown disease locus has disease allele D and normal allele d,
and the marker locus has alleles M and m. Suppose the disease is autosomal domi-
nant with complete penetrance, that is, an individual develops the disease given the
disease genotype regardless of genotypes in other genes and environmental factors.
For the three-generation pedigree in Fig. 2, we can unambiguously determine the
genotypes of all individuals at the disease locus and figure out the linkage phase for
the disease and marker loci.

In this family, all individuals are genotyped at the marker locus. To conduct link-
age analysis between the unobserved disease locus and the marker locus, we need
to determine the linkage phase first. Since the disease is autosomal dominant with
complete penentrance, and the third generation includes both affected and unaf-
fected individuals, we can tell that the father’s disease locus genotype must be Dd.

Fig. 2 Illustration of linkage analysis between a genetic marker and an autosomal dominant dis-
ease with complete penetrance in a phase-known pedigree. All individuals are genotyped at the
marker locus with alleles M and m. The unobserved disease locus has disease allele D and nor-
mal allele d. NR means that the gamete is a nonrecombinant, and R means that the gamete is a
recombinant
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In addition, the father has inherited the dm gamete from the grandmother, and thus
the DM gamete must have been inherited from the grandfather. Once the father’s
linkage phase is known, the offspring’s linkage phases can be easily determined.
Comparing the linkage phases of the offspring and the father (note that the mother
is doubly homozygous and is not informative), we observe that among the seven
offspring, two of them have inherited recombinant gametes from the father, whereas
the other five have inherited nonrecombinant gametes from the father.

Let θ denote the recombination fraction between the disease and marker loci,
then the likelihood function for this pedigree is

L (θ) =
(

7
2

)

θ2 (1 − θ)5 . (4)

The maximum likelihood estimate for the recombination fraction is θ̂ = 2/7. The
corresponding LOD score is

LOD = log10

[(
2
7

)2 (
1 − 2

7

)5
]/

0.57 = 0.288, (5)

so there is not much evidence of linkage. One important property of the LOD score
is that it can be added across families. This is because LOD scores are logs of
ratios of two likelihoods, and the contributions from different families to the likeli-
hoods are independent. Suppose we observe 12 such families, then the LOD score
is 0.288 × 12 = 3.46, which suggests strong evidence of linkage.

The earlier procedure illustrates how one can test for linkage between one genetic
marker and a disease locus when the disease model is known. In real gene mapping
studies, typically a few hundred markers are genotyped and each of them will be
tested for linkage with the disease locus. Since the entire genome is subject to anal-
ysis, we need to appropriately correct for multiple testing. Based on a sequential
design argument from [6], Newton Morton [7] suggested an LOD score of 3 for
genome-wide significance, which is corrected for multiple testing. He showed that
an LOD score of 3 corresponds to significance level 0.0001 for a single marker.
Although this criterion was originally derived when the analysis is sequential, in
practice, it is often used even when the analysis is not sequential.

2.2 Phase-Unknown Pedigrees

Linkage phase cannot always be determined with certainty. In this section, we
consider the situation where linkage phase is unknown.

Consider the three-generation pedigree shown in Fig. 2 again. Now, we assume
that the grandparental genotypes at the marker locus are missing. In this case, we
know that the father’s genotype is DdMm, however, this corresponds to two possi-
ble linkage phases: DM || dm and Dm || dM , each with equal probability. Figure 3
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Fig. 3 Illustration of linkage analysis between a genetic marker and an autosomal dominant
disease with complete penetrance in a phase-unknown pedigree. All individuals, except for the
grandparents, are genotyped at the marker locus with alleles M and m. The unobserved disease
locus has disease allele D and normal allele d. NR means that the gamete is a nonrecombinant, and
R means that the gamete is a recombinant. Illustrated are two possible phases for the father

displays the recombinants and nonrecombinants in the offspring generation given
different paternal linkage phases.

When the paternal linkage phase is DM || dm, the likelihood function is

L1 (θ) =
(

7
2

)

θ2 (1 − θ)5 , (6)

when the paternal linkage phase is Dm || dM , the likelihood function is.

L2 (θ) =
(

7
5

)

θ5 (1 − θ)2 . (7)

Since the two linkage phases are equally likely, the overall likelihood for this
pedigree is

L (θ) = 0.5L1 (θ) + 0.5L2 (θ) = 0.5
(

7
2

)

θ2 (1 − θ)5 + 0.5
(

7
5

)

θ5 (1 − θ)2 .

(8)
The maximum likelihood estimate of the recombination fraction is θ̂ = 0.333. The
corresponding LOD score is
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LOD = log10

0.5
[
0.3342 (1 − 0.334)5 + (1 − 0.334)5 0.3342

]

0.57
= 0.023. (9)

This LOD score is smaller than the LOD score we calculated earlier when the
father’s linkage phase is known. The decrease of LOD score is due to the loss of
information in the father’s linkage phase. This example suggests that knowing other
family members’ genotypes, such as the grandparental genotypes, can help to infer
the linkage phase. In general, large and extended pedigrees are more informative for
linkage analysis than small pedigrees because additional family members can help
infer linkage phase.

2.3 Linkage Analysis in General Case

In the previous sections, we only considered simple genetic diseases following an
autosomal mode of inheritance with complete penetrance.

However, for many diseases, the penetrance may be incomplete, and there might
be phenocopies, that is, a person develops the disease even if he/she does not carry
the disease genotype. In addition, many families encountered in human genetics
studies may vary in size and family structure. Due to this variability, the likelihood
approach is attractive since the overall likelihood is simply the product of the like-
lihood functions across different families. Below we describe the general form of
likelihood calculation for pedigree data.

Consider a pedigree with n individuals. Let Y = (Y1, . . ., Yn) denote the pheno-
type vector (Yi is 1 if individual i is affected, and is 0 if individual i is unaffected).
The likelihood for the analysis of pedigree data involves iterating the overall pos-
sible haplo-genotypes, Hi, at the disease and marker loci, for all family members.
The overall pedigree likelihood is

L (Y,G)=
∑

H1

· · ·
∑

Hn

n∏

i=1

Pen (Yi|Hi)
∏

j∈O

Prior (Hj)
∏

k∈D

Trans
(
Hk|Hkf

, Hkm

)
,

(10)

where kf represents the father of individual k, km represents the mother of individ-
ual k, O represents all originals or founders in the pedigree, and D represents all
descendents in the pedigree.

There are three components in the pedigree likelihood in (10): (1) the rela-
tionship between phenotype and genotype, Pen (Yi |Hi), which is determined by
the penetrances; (2) genotype distribution for the founders, Prior (Hi), which are
determined by allele frequencies at the disease and marker loci; and (3) transmis-
sion probabilities of genotypes from parents to offspring, which are determined by
Mendelian inheritance. In this pedigree likelihood, we assume that the phenotype
of an individual is conditionally independent of the genotypes of other pedigree
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members, given the individual’s own genotype. The conditional independence
assumption implies that, given the genotypes of all the individuals in a pedigree, the
probability of the joint phenotypes is simply the product of the conditional proba-
bilities of phenotypes of the individuals. This assumption is reasonable when there
is no residual correlation induced by other genetic or environmental factors.

The computation time of the pedigree likelihood in (10) increases exponentially
with the number of individuals in the pedigree.

Therefore, summing the overall possible haplo-genotypes for each individual
can be very time consuming. In Sect. 2.4, we will discuss an efficient computation
algorithm proposed by Elston and Stewart [8], which can significantly improve the
computation speed for pedigree likelihood calculation based on pedigree peeling.

In model-based linkage analysis, we assume that the model describing the disease
locus is correctly specified. For simple Mendelian diseases, one might assume the
disease is due to a single major gene effect with complete penetrance. For diseases
with incomplete penetrance, the genetic effect is difficult to specify with accu-
racy. In addition, an individual may develop the disease due to phenocopies. For
model-based linkage analysis, misspecification of penetrances can lead to a reduc-
tion in power for detecting linkage [9]. Methods that can be used as an alternative to
model-based linkage analysis are model-free linkage analysis methods, which will
be discussed in Sect. 3.

2.4 Elston–Stewart Algorithm

Pedigree likelihood calculation using (10) can be time-consuming if the pedigree
is large. For example, for a pedigree with 20 individuals, even for an autosomal
locus with two alleles and three genotypes, the number of terms involved in the
summation is 320 = 3,486,784,401. Therefore, caution is needed when calculating
the likelihood. To save computing time, we can eliminate those impossible geno-
types, and only sum over possible genotypes for each individual. For example, we
can eliminate genotypes that are not consistent with the disease phenotype and off-
spring genotypes that are not consistent with Mendelian inheritance. However, in
certain situations, even after elimination of impossible genotypes, the number of
summations involved in the calculation might still be large.

Elston and Stewart [8] developed an efficient algorithm for rapid pedigree like-
lihood calculation. The basic idea is to calculate the likelihood iteratively with one
nuclear family at a time. At each step, choose a nuclear family connected to the rest
of the pedigree by only one parent and calculate its contribution to the overall like-
lihood by considering all family members except for the connecting parent. Repeat
this procedure until all nuclear families are considered. In the final step, the over-
all likelihood is obtained by combining results from all nuclear families together.
Figure 4 illustrates the basic procedure of the Elston–Stewart algorithm.

To describe how the Elston–Stewart algorithm operates mathematically, let’s con-
sider a nuclear family connected to the rest of the pedigree only through the father.
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Let R = {r0, r1, . . . , rs} denote the remainder of the nuclear family (where r0
represents the mother and r1, . . . , rs represent the offspring), andE denote everyone
else in the entire pedigree (including the father).

The likelihood in (10) can be rewritten as

L =
∑

HE

∏

E

Pen
∏

E∩O

Prior
∏

E∩D

Trans
∑

HR

Prior (Hr0)
∏

j∈R

Pen (Yj |Hj)

×
s∏

k=1

Trans (Hrk
|Hr0 , Hf )

=
∑

HE

∏

E

Pen
∏

E∩O

Prior
∏

E∩D

Trans
∑

HR

W (Hf , Hr0 , . . . , Hrs), (11)

where

W (Hf , Hr0 , . . . , Hrs) = Prior (Hr0)
∏

j∈R

Pen (Yj |Hj)
s∏

k=1

Trans (Hrk
|Hr0 , Hf ),

(12)
is a function that depends only on the haplo-genotype of the father Hf . Equation
(11) indicates that at each step, we only need to calculate the likelihood for a nuclear
family. After it is calculated, we then choose another such family, and repeat this
procedure until all nuclear families are considered. Using this iterated approach,
there are fewer items involved in the sum, and can therefore dramatically reduce the
amount of computing time. For example, for a marker with three genotypes, if we
do not use this family-by-family iterated approach, and instead calculating the like-
lihood term by term, then there are 3n terms. However, with the iterated approach,
the number of terms need to be evaluated is 3s1+1 +3s2+1 + · · ·+3sq+1, where q is
the number of nuclear families and sj (j = 1, . . . , q) is the number of offspring in
each family. Consider the three-generation pedigree in Fig. 4. Calculation using (10)
involves 314 = 4,782,969 summations, whereas the calculation using the Elston–
Stewart algorithm only involves 33+1+32+1+31+1+33+1+31 = 201 summations,
which is much smaller than the naı̈ve calculation.

1

3

9 10 11 12 13 14

4 5 6 7 8

1 2 1*
likelihood

3* 5* 7*

2

Fig. 4 Illustration of the Elston-Stewart algorithm
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The Elston–Stewart algorithm has been proven effective in practical applications.
In terms of computation time, it increases linearly with the number of people but
exponentially with the number of markers. The algorithm can handle large pedigrees
with simple structures, that is, there are no consanguineous marriages. Since the
original algorithm was developed in 1971, there have been several enhancements.
For example, Ott [10] extended the algorithm to nonlooped complex pedigrees,
Lange and Elston [11] extended the algorithm to general complex pedigrees, Lange
and Boehnke [12] proposed to update the likelihood one individual rather than one
family at a time to save computing time and memory requirements, Lange and
Goradia [13] and O’Connell and Weeks [63] proposed efficient algorithms for gen-
erating lists of potential haplo-genotypes. The first widely used software package
that implemented the Elston–Stewart algorithm is LIPED [14]. With the develop-
ment of enhanced algorithms, more sophisticated computer implementations of the
algorithms have also been developed, including LINKAGE [15], FASTLINK [16],
and VITESSE [17]. These sophisticated computer programs allow the analysis of
multiple markers, and they have played a crucial role in gene mapping of many
Mendelian diseases.

3 Model-Free Linkage Analysis

Although the model-based linkage analysis has been proven successful for the
studying of Mendelian diseases, such analysis is less appropriate for complex and
non-Mendelian diseases in which the mode of inheritance is unclear. Several studies
have shown that misspecification of genetic model parameters can lead to underes-
timation of the evidence for linkage, as well as to a biased estimate of the disease
gene location [9].

For complex diseases, many variations could potentially be involved. However,
there are millions of variations in the genome, and we do not know which variations
are involved. It is costly to investigate each variation individually. Unlike model-
based linkage analysis, model-free linkage analysis does not require a detailed
specification for the mode of inheritance of the disease. Therefore, it is more robust
and realistic for complex diseases. In this section, we will describe model-free link-
age analysis for affected sib pairs (ASPs) and general pedigrees. We will also discuss
an efficient pedigree likelihood calculation algorithm, the Lander–Green algorithm.

3.1 Fundamental Principle of Model-Free Linkage Analysis

Model-free linkage analysis was first proposed by Penrose for sib pairs (1935) [18].
The fundamental principle is that individuals with phenotypic similarity should also
show genotypic similarity. In other words, individuals who are both affected with
the disease should also show a greater similarity than expected at the marker locus
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if the disease and marker loci are linked. This is because if two individuals are
both affected with the disease, then they are more likely to have inherited the same
disease allele from a common ancestor. Furthermore, if the marker locus is linked
to the disease locus, then they are also likely to have inherited the same allele at
the marker locus. Given the relationship between a pair of individuals, the expected
degree of genetic similarity between them can be easily calculated when the marker
locus is unlinked to the disease locus. This suggests that we can detect linkage by
assessing whether there is excess of genetic similarity among affected relative pairs.

3.2 Measure of Genetic Similarity

For qualitative traits, such as disease status, phenotypic similarity can be easily mea-
sured by disease affection status, for example, both affected or both unaffected. For
genotypic similarity, the simplest measure is based on identical by state (IBS). Two
alleles are called IBS if they are the same allele. Another important measure of
genetic similarity is based on identical by descent (IBD). Two alleles are called IBD
if they are physical copies of the same ancestral allele. IBD implies IBS, but not vice
versa. Therefore, IBD contains more information about genetic similarity than IBS.

Consider the example in Fig. 5 in which three nuclear families each with two
offspring are genotyped at a marker with four alleles, denoted by 1, 2, 3, and 4.
Since IBS simply compares the states of the alleles, we can easily see that the three
sib pairs share 2, 1, and 1 alleles IBS, respectively, without considering parental
genotypes. To determine the number of alleles shared IBD, we need to consider the
parental genotypes. For the first sib pair in (A), both siblings have inherited one
copy of allele 1 from the father and one copy of allele 1 from the mother. Since both
parents are heterozygous, the IBD of this sib pair is 2. For the second sib pair in
(B), both siblings have inherited allele 4 from the mother, but the other alleles of
the two siblings are different. Therefore, their IBD is 1. For the third sib pair in (C),
although both siblings have inherited allele 4 from the mother, because the mother
is homozygous for allele 4, we cannot tell whether the grandmaternal allele or the

Fig. 5 Illustration of IBS and IBD. All family members are genotyped at an autosomal marker
with four different alleles, represented by 1, 2, 3, and 4
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grandpaternal allele is transmitted. Therefore, the number of alleles shared IBD for
this sib pair is either 0 or 1.

Based on these measures of genetic similarity, we can construct statistical tests
to test for linkage between the disease and marker loci by comparing the observed
and expected amount of allele sharing at the marker locus. Such analysis does not
require specification of the disease model and is therefore called model-free. Some-
times, they are also called nonparametric analysis methods since no disease model
parameters need to be specified.

Although model-free linkage analysis can be conducted either using IBS or IBD,
methods based on IBD are typically more powerful. This is because IBD can track
which ancestral allele is shared in common between affected relative pairs, and
therefore carries more information on linkage. IBS-based linkage tests are typically
simpler to calculate but carry less information. Since IBD-based tests are more pre-
ferred in modern genetic linkage analysis, in the remaining sections, we will focus
on IBD-based linkage analysis methods.

3.3 Model-Free Linkage Analysis for Affected Sib Pairs

A commonly used study design in gene mapping studies of complex human diseases
is the affected sib pair (ASP) design. In this design, a set of affected sib pairs is
collected and genotyped. This design is particularly popular for late onset diseases
for which parents might not be available for study.

For fully informative data, we can count the number of ASPs that share 0, 1,
or 2 alleles IBD. To conduct model-free linkage analysis using ASPs, we need to
determine what kind of IBD values would be expected for a sib pair if the genetic
marker is unlinked to the disease locus. Under the null hypothesis of no linkage,
according to Mendel’s first law, each sibling receives one copy of paternal allele and
one copy of maternal allele. Since the father has two alleles, the probability that the
two siblings will receive the same copy of the paternal allele is 1/2. Similarly, the
probability of receiving the same copy of the maternal allele is 1/2. Therefore, the
probability of sharing two alleles IBD (one from the father and one from the mother)
is 1/2 × 1/2 = 1/4. Similarly, we can show that the probabilities of sharing 1 and
0 alleles IBD are 1/2 and 1/4, respectively.

If the genetic marker is linked to the disease locus, then the ASP are expected
to have more than expected allele sharing at the marker locus, that is, the ASP are
more likely to share 1 or 2 alleles IBD, and the IBD sharing probabilities will deviate
from (1/4, 1/2, 1/4). Based on this observation, the hypothesis to be tested in ASP
linkage analysis is

H0 : (z0, z1, z2) = (1/4, 1/2, 1/4) vs.H1 : (z0, z1, z2) �= (1/4, 1/2, 1/4) ,

where z0 = P (IBD = 0|ASP), z1 = P (IBD = 1|ASP), z2 = P (IBD = 2|ASP)
denote the probabilities of sharing 0, 1, and 2 alleles IBD.
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A popular method for ASP linkage analysis is the likelihood-based maximum
LOD score (MLS) approach [19]. In a simple case, if IBD could be observed with
certainty, then each ASP can be scored as sharing 0, 1, or 2 alleles IBD, and we can
evaluate the likelihood for the null and the alternative hypotheses, respectively.

Suppose there are n ASPs, and among them nj (j = 0, 1, 2) share j alleles IBD.
The maximum likelihood estimates of the IBD sharing probabilities are ẑj = nj/n.
Under the null hypothesis of no linkage, the likelihood is

L =
(

1
4

)n0 (1
2

)n1 (1
4

)n2

. (13)

Under the alternative hypothesis of linkage, the likelihood is

L = ẑn0
0 ẑn1

1 ẑn2
2 . (14)

The LOD score can be calculated as

LOD = log10

ẑn0
0 ẑn1

1 ẑn2
2(

1
4

)n0 ( 1
2

)n1 ( 1
4

)n2 . (15)

This LOD score is also called the MLS. Since there are only two independent para-
meters involved (due to constraint z0 + z1 + z2 = 1), the corresponding likelihood
ratio statistic LRT = 4.605 LOD is asymptotically distributed as a chi-squared
distribution with two degrees of freedom.

Alternatively, we can conduct a chi-squared goodness-of-fit test to test for
linkage. The chi-squared goodness-of-fit test is of the following form:

χ2 =
2∑

i=0

(ni − ei)2

ei
, (16)

where e0, e1, and e2 are n/4, n/2, and n/4, respectively. This test statistic is
approximately distributed as a chi-squared distribution with two degrees of freedom.

So far, we have discussed a simple case where IBD sharing is known. In real
life, markers are not always fully informative, therefore IBD might not be known
with certainty. To incorporate uncertainty in IBD estimation, we need an alternative
likelihood that allows for partially informative data so that all available data are uti-
lized in the analysis. This likelihood should have the following desirable properties:
(1) depends on parameters z0, z1, and z2; (2) can incorporate partial information
on IBD; (3) for fully informative data, it is equivalent to the previous likelihoods in
(13) and (14).

To incorporate partial information on IBD, Risch [19] introduced the following
likelihood for an ASP:

L (z0, z1, z2) =
2∑

j=0

P (genotypes|IBD = j)P (IBD = j|ASP) =
2∑

j=0

wjzj ,

(17)
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Table 1 Conditional probabilities P (X |IBD) for ordered sibpair genotypes X. a, b, c, and d are
distinct alleles with frequencies pa, pb, pc, and pd, respectively

P(X | IBD) for
X IBD = 0 IBD = 1 IBD = 2

(aa, aa) p4
a p3

a p2
a

(aa, ab) 2p3
apb p2

apb 0

(aa, bb) p2
ap2

b 0 0

(aa, bc) 2p2
apbpc 0 0

(ab, ab) 4p2
ap2

b papb(pa + pb) 2papb

(ab, ac) 4p2
apbpc papbpc 0

(ab, cd) 4papbpcpd 0 0

where wj = P (genotypes|IBD = j) is the joint probability of genotypes for the
sib pair given that they share j alleles IBD. For sibling pairs, the joint probability of
genotypes, wj , can be obtained from Table 1 [20].

For a set of n independent ASPs, the likelihood can be written as

L (z0, z1, z2) =
n∏

i=1

2∑

j=0

wijzj. (18)

The LOD score is

LOD =
n∑

i=1

log10

wi0z0 + wi1z1 + wi2z2
1
4wi0 + 1

2wi1 + 1
4wi2

. (19)

Maximization of the sharing probabilities, z0, z1, and z2 can be performed using
numerical maximization algorithms such as the EM (expectation-maximization)
algorithm [21] subject to constraint z0 + z1 + z2 = 1. The MLS is the LOD score
evaluated at the maximum likelihood estimates of z0, z1, and z2. MLS obtained in
this way is asymptotically distributed as chi-squared distribution with two degrees
of freedom. Clearly, for fully informative data, this MLS is equivalent to the MLS
in (15).

The MLS method depends on the estimated IBD sharing probabilities z0, z1, and
z2, with constraint z0+z1+z2 = 1. However, this constraint does not guarantee that
the estimated parameter values are biologically meaningful. To solve this problem,
Holmans [64] suggested that maximization should be focused on situations where
IBD sharing probabilities are compatible with a genetic model, which is equivalent
to restricting maximization to a possible triangle, defined by z1 ≤ 0.5 and z0 ≤
0.5z1. Restriction to the possible triangle has been shown to increase the power of
the MLS linkage analysis method (Holmans 1993).
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3.4 Multipoint Analysis for Affected Sib Pairs

In Sect. 3.3, we have discussed how to analyze a single marker. Typically, a genome-
wide linkage scan involves hundreds of markers. It is not efficient to analyze each
marker individually, because the methods discussed before will lose information
when a marker is uninformative in a particular family. Multipoint linkage analysis
considers a number of markers simultaneously instead of one marker at a time.
Since IBD states change infrequently along the chromosome, neighboring markers
can therefore help resolve ambiguities about IBD sharing and thus extract more
information on IBD.

Multipoint analysis requires the calculation of the likelihood of genotypes for a
series of consecutive markers. To model marker dependency and to speed up cal-
culation, a hidden Markov model can be utilized. In this model, it is assumed that
IBD sharing at the current marker only depends on IBD sharing at the previous
marker. This assumption is reasonable when there is no genetic interference, that is,
the presence of a recombination event in one region does not affect the occurrence
of recombination events in adjacent regions.

Ingredients for the multipoint likelihood calculation includes: (1) observed geno-
types at each marker for an ASP; (2) possible IBD states at each marker; and (3)
probabilities that connect IBD states along the chromosome. Let Xj denote the
genotypes for an ASP at marker j (j = 1, . . . ,M), and let Ij denote the IBD state
for the ASP at marker j. Then the likelihood of the ASP is

L = P (X1, . . . , XM |ASP)

=
2∑

I1=0

· · ·
2∑

IM=0

P (X1, . . . , XM , I1, . . . , IM |ASP) (20)

=
2∑

I1=0

· · ·
2∑

IM=0

⎧
⎨

⎩
P (I1|ASP)P (X1|I1)

M∏

j=2

P (Ij |Ij−1)P (Xj |Ij)
⎫
⎬

⎭
.

To calculate this likelihood, we need to calculate: (1) IBD prior probability, P
(
I1|

ASP
)
. For an ASP, the IBD prior probabilities are simply 1/4, 1/2, and 1/4, respec-

tively, for sharing 0, 1, and 2 alleles IBD under the null hypothesis of no linkage.
Under the alternative hypothesis of linkage, these probabilities can be estimated
numerically. (2) The probability of observed genotypes at each marker conditional
on IBD, which can be obtained from Table 1. (3) IBD transition probabilities for
adjacent markers.

Later we describe how to calculate the IBD transition probabilities between two
adjacent markers. Let θj denotes the recombination fraction between markers j − 1
and j. The probability of change in IBD states at markers j−1 and j for a sib pair is
Ψj = 2θj (1 − θj). Table 2 gives the IBD transition probabilities for all IBD states
[19].
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Table 2 IBD transition probabilities between markers j − 1 and j. θj denote the recombination
fraction, and Ψj = 2θj (1 − θj) is the probability of change in IBD states between the two markers

IBD state at marker j
0 1 2

IBD state 0 (1 − Ψj)
2 2Ψj (1 − Ψj) Ψ2

j

at marker j − 1 1 Ψj (1 − Ψj) (1 − Ψj)
2 + Ψ2

j Ψj (1 − Ψj)

2 Ψ2
j 2 Ψj (1 − Ψj) (1 − Ψj)

2

Although the calculation of the likelihood in (20) is straightforward, in general,
the calculation is slow unless there are only a few markers. To speed calculations
up, we could reorganize the likelihood using a forward–backward algorithm [22].
This algorithm is based on the hidden Markov model and involves four steps: (1)
evaluate probability at the starting marker, (2) evaluate left chain probability for
markers on the left-hand side of the starting marker, (3) evaluate right chain proba-
bility for markers on the right-hand side of the starting marker, and (4) combine all
probabilities and get the final likelihood.

Let j be the starting marker, and let Xleft = (X1, . . . , Xj−1) and Xright =
(Xj+1, . . . , XM ) denote the genotypes for markers on the left-hand side and right-
hand side of the starting marker, respectively. Then, the original likelihood in (20)
can be rewritten as

L = P (X1, . . . , Xj−1, Xj , Xj+1, . . . , XM |ASP)

=
2∑

Ij=0

P (Xleft, Xj, Xright|Ij)P (Ij |ASP)

=
2∑

Ij=0

P (Xleft|Ij)P (Xright|Ij)P (Xj |Ij)P (Ij |ASP) (21)

=
2∑

Ij=0

Lj (Ij)Rj (Ij)P (Xj |Ij)P (Ij |ASP),

where

Lj (Ij) = P (X1, . . . , Xj−1|Ij) =
2∑

Ij−1=0

Lj−1 (Ij−1)P (Xj−1|Ij−1)P (Ij−1|Ij),

(22)
and

Rj (Ij) = P (Xj+1, . . . , XM |Ij) =
2∑

Ij=0

Rj+1 (Ij+1)P (Xj+1|Ij)P (Ij+1|Ij).

(23)
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Special cases are L1 (I1) = P (X1|I1) and RM (IM ) = P (XM |IM ). Using
Baum’s forward–backward algorithm, the likelihood can be calculated iteratively,
i.e., at each step, we can reuse the results from previous calculations. This type of
recursive algorithm can greatly speed up the calculation especially when a large
number of markers are involved.

Let ẑj0, ẑj1, and ẑj2denote the maximum likelihood estimates of the IBD sharing
probabilities at marker j obtained from the multipoint likelihood in (21). Since the
likelihood incorporates multiple linked markers, the estimates are more accurate
than estimates obtained based on a single marker.

The LOD score for testing linkage at marker j is

LOD = log10

L(ẑj0, ẑj1, ẑj2)
L
(

1
4 ,

1
2 ,

1
4

) . (24)

Since the IBD estimates are obtained based on multiple linked markers, this is called
multipoint LOD score.

3.5 Model-Free Linkage Analysis for General Pedigrees

3.5.1 Inheritance Vector

When only a pair of individuals is considered, genetic similarity can be described
by IBD. When more than two individuals are considered, a single number, such as
IBD, is no longer sufficient to describe the complex inheritance pattern. A direct
extension of IBD to multiple individuals is inheritance vector, which describes the
gene flow in a family. The idea underlying the inheritance vector is that it determines
for every individual in a pedigree which paternal or which maternal allele has been
transmitted to his/her offspring. As a consequence, a meiosis can be described by a
bit where 1 denotes the grand maternally transmitted allele and 0 denotes the grand
paternally transmitted allele. All inheritance bits are collected to a vector, called the
inheritance vector.

Consider a pedigree with n nonfounders. Then there are 2n meioses. Genetic
transmission in a pedigree at a locus can be characterized by the inheritance vector
v = (v1, . . . , v2n). For meiosis i (i = 1, . . . , 2n), the inheritance bit is defined as

vi =
{

0 if grandpaternal allele passed in meiosis i,
1 if grandmaternal allele passed in meiosis i.

Elements in the inheritance vector completely specify, between the two alleles
of a parent, which one is transmitted to the offspring. A priori, under the null
hypothesis of no linkage, all inheritance vectors, v are equally likely, and therefore
P (v) = 2−2n.
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Fig. 6 Three-generation pedigree to illustrate inheritance vector determination. All individuals are
genotyped at a marker with six distinct alleles, denoted by 1, 2, . . . , and 6

Later we will describe how inheritance vector can be determined. Consider the
three-generation pedigree in Fig. 6. In this family, there are f = 3 founders (grand-
father, grandmother, and mother) and n = 2 nonfounders (father and offspring).
Suppose all family members are genotyped at a genetic marker with six different
alleles, represented by 1, 2, . . . , and 6. For this family, the length of the inheri-
tance vector is 2n = 2 × 2 = 4. If we assume each genotype is written with
the paternally derived allele first, then we can determine that the inheritance vec-
tor is v = (0, 1, 0, 1). Note that, prior to typing the marker, we do not have any
information about inheritance pattern, and thus P (v) = 1/24 = 1/16 for all v’s.

In reality, we do not know whether paternally derived allele is listed first or not.
In this case, for the two inheritance bits corresponding to the father, we cannot deter-
mine whether allele 1 is transmitted from his grandfather or grandmother; similarly
for allele 4, we cannot tell whether it is grand paternally or grand maternally derived
either. Therefore, the corresponding two elements in the inheritance vector can-
not be specified with certainty. For the offspring, since we know the grandfather’s
genotype, we can tell with certainty that allele 1 is inherited from the grandfather;
however, for allele 6, we cannot determine whether it is grand paternally or grand
maternally derived. Therefore, the inheritance vector can only be written in the
form of v ∈ {(v1, v2, 0, v4) : v1, v2, v4 = 0, 1} and each possible vector v has
probability 1/8.

3.5.2 NPL Score When the Inheritance Vector Is Known

In Sect. 3, we discussed how to conduct model-free linkage analysis for ASPs. Such
analysis can be extended to other types of relative pairs and to families with a large
number of individuals by enumerating all possible inheritance vectors. For general
pedigrees, the idea is to calculate a score, S, based on IBD sharing in affected rela-
tives. The score should have the following desirable properties: (1) has known mean
and variance under the null hypothesis of no linkage, (2) the value increases under
the alternative hypothesis of linkage, (3) uses all affected relatives in a pedigree, and
(4) implementation is based on inheritance vectors. Based on these considerations,



Linkage Analysis of Qualitative Traits 99

Whittemore and Halpern [23] proposed the following score:

Sall (v) = 2−a
∑

h

[
2f∏

i=1

bi (h)!

]

, (25)

where h is one of the 2a possible set of alleles obtained by choosing one allele from
each affected individual, and bi(h) is the number of times that the founder allele
i (i = 1, 2, . . . , 2f) appears in h. Sall(v) is an average of the terms in the bracket in
(25). It gives sharply increasing weight as the number of affected individuals sharing
a particular allele increases. This is an attractive feature because sharing a common
allele among affected relatives is more appealing that sharing different alleles.

If the inheritance vector for a family is known, then given score Sall (v), we
can calculate Z (v) = [Sall (v) − μ]/σ, where μ and σ are the mean the standard
deviation of Sall (v) under the null hypothesis of no linkage. If there is no link-
age, the mean and variance of Z (v) are 0 and 1, respectively. To combine data
for N families, let Z =

∑N
i=1 γiZi, where Zi is the score for family i and γi is a

weighting factor which is chosen such that
∑N

i=1 γ
2
i = 1. The statistic Z is called

the NPL (nonparametric linkage) statistic. For example, we can take γi = 1/
√
Ni,

where Ni is the number of individuals in family i. If the inheritance vectors can be
observed for each family, then the significance of the observed NPL statistic Z can
be determined by normal approximation. Under the null hypothesis of no linkage,
Z is asymptotically distributed as standard normal.

3.5.3 NPL Score When the Inheritance Vector Is Uncertain

Usually, v is not observed with certainty. In this case, for each family i with
observed marker dataXi, we can calculate S̄i =

∑

v
Si(v)P (v|Xi), where P (v|Xi)

can be estimated from pedigree likelihood. Let Zi = (S̄i − μ)/σ, then the NPL
score can be calculated as Z̄ =

∑N
i=1 γiZi. Since under H0 : E

(
Z̄
)

= 0, but
Var

(
Z̄
) ≤ 1, the “complete data” (v known) approximation will be conservative

for Z̄. However, we can still evaluate significance of Z̄ through simulation of marker
genotypes.

Computer simulations can be time consuming for large pedigrees. To resolve the
conservativeness of the NPL statistic when IBD information is incomplete and to
avoid time-consuming simulations, Kong and Cox [24] proposed a simple analytical
solution. The method is based on the observation that under the null hypothesis of
no linkage, all inheritance vectors are equally likely; under the alternative model of
linkage, increase of allele sharing is proportional to S (v).

The Kong and Cox procedure is the following. Let

P (v|δ) = Puniform (v)
(

1 + δ
S (v) − μ

σ

)

, (26)
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In (26), the signal parameter δ is closely related to linkage. The δ parameter repre-
sents the degree of allele sharing in a pedigree and can be thought of as measuring
the size of the genetic effect, where under the null hypothesis of no linkage, δ = 0,
and under the alternative hypothesis, δ > 0, and it corresponds to excess sharing.
The likelihood is

L (δ) =
N∏

i=1

∑

vi

P (Xi|vi)P (vi|δ) . (27)

The LOD score is calculated by maximizing the single parameter δ in the numerator
based on observed genotype data

LOD = log10

L (δ) |δ=δ̂

L (δ) |δ=0
. (28)

This LOD score is called the Kong and Cox LOD score. Since under the alternative
hypothesis δ > 0, therefore the test is one sided. To evaluate significance of the test,
define

Zlr =
√

2
[
logL (δ) |δ=δ̂ − logL (δ) |δ=0

]
. (29)

When the number of families N is large, the p-value can be approximated by 1 −
Φ (Zlr), where Φ is the cumulative distribution function of the standard normal
distribution.

Equation (26) is called linear model [24]. In addition to this linear model, they
also suggested an exponential model which is more suitable for models with large
deviation from null sharing, especially when there are a small number of families,
or when the information is far from complete. The exponential model is defined as
the following:

P (v|δ) = Puniform (v) exp
(

δ
S (v) − μ

σ

)

. (30)

Note that when δ is small, exp{δ [S (v) − μ] / σ} is approximately 1 + δ[S
(v) − μ]/σ, and these two models become very close to each other.

3.6 Lander–Green Algorithm

In Sect. 3.4, we discussed how to calculate the multipoint likelihood for sib pairs
using Baum’s forward–backward algorithm. In this section, we discuss how to
generalize the calculations for general pedigrees using Lander–Green’s algorithm
(1987) [25]. The Lander–Green algorithm is based on the use of inheritance vectors.

Consider a pedigree with f founders and n nonfounders genotyped for M con-
secutive markers along a chromosome. Assuming no genetic interference and known
marker order, then it can be shown that the inheritance vectors at the M mark-
ers, v1,v2, . . .,vM , constitute a Markov chain, that is, the inheritance vector at the
current marker only depends on the inheritance vector at the previous marker.
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Recall that for sib pair data, the multipoint likelihood is

L = P (X1, . . . , XM |ASP)

=
2∑

I1=0

· · ·
2∑

IM=0

⎧
⎨

⎩
P (I1 |ASP)P (X1 | I1)

M∏

j=2

P (Ij | Ij−1)P (Xj | Ij)
⎫
⎬

⎭
.

(31)

To calculate the likelihood for general pedigrees, we can simply replace IBD states
by inheritance vectors,

L = P (X1, . . . , XM | phenotypes)

=
∑

v1

· · ·
∑

vM

⎧
⎨

⎩
P (v1 | phenotypes)P (X1 |v1)

M∏

j=2

(32)

× P (vj |vj−1)P (Xj |vj)

⎫
⎬

⎭
.

Similar to the previous calculation for ASPs, we need the following ingredients for
the likelihood calculation: (1) Prior probability of inheritance vector at the starting
marker. For a pedigree with n nonfounders, the prior probability of the inheritance
vector is 2−2n under the null hypothesis of no linkage. (2) Probability of marker
genotypes given inheritance vector at a particular marker. This probability depends
on genotype frequencies. (3) Transition probabilities of inheritance vectors.

Later we will describe how to calculate the transition probabilities for adjacent
markers. For marker j, denote its inheritance vector by vj = (vj,1, vj,2, . . ., vj,2n).
The transition probability depends on the recombination fraction θj , between mark-
ers j − 1 and j. To calculate the transition probabilities P (vj−1 |vj), note that
P (vj−1,i = vj,i) = 1 − θj and P (vj−1,I �= vj,i) = θj . Thus, with one meiosis
there are two possible states, no recombination occurs between markers j − 1 and
j (denote the event by 0) and recombination occurs between markers j − 1 and j
(denote the event by 0). The transition probability matrix is

T =
[

1 − θj θj

θj 1 − θj

]

. (33)

With two meioses, there are four possible states (00, 01, 10, 11), and the transition
probability matrix is

T⊗2 =
[

(1 − θj)T θjT

θjT (1 − θj) T

]
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=

⎡

⎢
⎢
⎢
⎣

(1 − θj)
2 (1 − θj) θj θj (1 − θj) θ2j

(1 − θj) θj (1 − θj)
2

θ2j θj (1 − θj)
θj (1 − θj) θ2j (1 − θj)

2 (1 − θj) θj

θ2j θj (1 − θj) (1 − θj) θj (1 − θj)
2

⎤

⎥
⎥
⎥
⎦
, (34)

where ⊗ is Kronecker product. In general, we can write the transition probability
matrix using the recursive formulation as follows:

T⊗(n+1) =
[

(1 − θj)T⊗n θjT
⊗n

θjT
⊗n (1 − θj)T⊗n

]

. (35)

The transition probability matrix is patterned. It depends on the number of meioses
where the outcome changes and the number of meioses where the outcome does not
change. The transition probabilities are powers of θj and 1 − θj .

Computation requirement for the likelihood in (33) is of order M 22n−f [26].
The Lander–Green algorithm is suitable for very large number of markers, but is
limited to relatively small pedigrees because the number of possible inheritance
vectors increases exponentially with the number of individuals in the pedigree.

Similar to the Elston–Stewart algorithm, there have been many extensions and
enhancements of the original Lander–Green algorithm. For example, several res-
earchers noted that there are many redundancies within the inheritance vector
space, therefore the calculation can be sped up by focusing on symmetries result-
ing from the transmission of alleles from single founders [27], or founder couples
[28], or individuals in the pedigree [29]. The Lander–Green algorithm was imple-
mented in several software packages. Popular programs include GENEHUNTER
[25], ALLEGRO [28], and MERLIN [29, 30].

4 Practical Examples

In the previous sections, we have described the model-based and model-free linkage
analysis methods. In this section, we will use a real data example to illustrate how
to carry out linkage analysis in real settings.

The data we consider here is obtained from a linkage study on age-related macu-
lar degeneration (AMD; [31]). AMD is a complex multifactorial disease that affects
the central region of the retina. It is the leading cause of untreatable blindness among
the elderly in Western populations [32–34]. A dramatic increase in the size of the
aging population makes AMD a significant public health problem and a major focus
of research efforts. Various studies have demonstrated a genetic predisposition for
AMD [30,34–36]. The data we consider here is based on a 5-cM genomewide link-
age study in families enriched for late-stage AMD. Families in this study were
primarily ascertained and recruited from the clinical practice at the Kellogg Eye
Center, University of Michigan Hospitals. Since the Retina Clinic serves as a ter-
tiary health care center for the State of Michigan and the surrounding Great Lakes



Linkage Analysis of Qualitative Traits 103

region, the patient population is biased toward late-stage AMD. The patient popu-
lation used for genotyping in this study is white and primarily of Western European
ancestry, reflecting the genetic constitution of the Great Lakes region. In total, the
samples include 117 families, 748 individuals, including 321 founders, and 427 non-
founders. The average family size is 6.39 and the average number of generations is
2.41. In this dataset, there are 369 sibling pairs, 10 half sibling pairs, 92 cousin pairs,
843 parent–offspring pairs, 280 grandparent–grandchild pairs, and 157 avuncular
pairs. A high-resolution 5-cM genomewide screen was performed at the Marsh-
field Clinic Research Foundation (Marshfield, WI). For illustration purpose, here
we focus on the analysis of chromosome 1, where many linkage studies identified
a linkage signal [31, 38–41] and where, more recently, one of the strongest genetic
contributors to AMD susceptibility have been mapped [42–45].

The data of [31] include a total of 67 microsatellite markers genotyped on chro-
mosome 1, with average marker heterozygosity of 73.2%. To illustrate the properties
of the different approaches, we carried out both model-based and model-free linkage
analysis. For model-based linkage analysis, a key step involves selecting param-
eters for the genetic model. In general, the model parameters are obtained from
segregation analysis, which we will not discuss here but instead refer the reader to
other more appropriate sources on segregation analysis (e.g. [46]). Even when there
is linkage, misspecification of penetrances and disease allele frequencies can sig-
nificantly reduce power. For complex diseases, such as AMD, where the mode of
inheritance is unclear and multiple loci contribute to disease susceptibility, a com-
mon strategy is to try multiple genetic models or even to identify a genetic model
that maximizes the observed LOD score (MOD score analysis; [47]).

In a recent case-control association study on AMD with 616 cases and 275 con-
trols, Zareparsi et al. [44] estimated genetic model parameters based on genotypes
for the Y402H coding variant in the CFH gene on chromosome 1 using methods
described in Sect. 5. They fixed the disease prevalence at 20%, and found that a
multiplicative model fits the data well. Table 3 lists the estimated genetic model
parameters.

For the model-based linkage analysis, we analyzed the data using all four genetic
models as specified in Table 3. Figure 7 shows the linkage curves obtained using dif-
ferent genetic models. The command line of running model-based linkage analysis
in MERLIN is the following:

> merlin -d chr1.dat -p chr1.ped -m chr1.map --model model.txt --grid 0.5

Table 3 Estimated genetic models for AMD [43]. Disease prevalence was fixed at 20%. D denotes
the disease allele, and d denotes the normal allele. p is the disease allele frequency. fdd, fDd, and
fDD are penetrances for the three disease genotypes

Model p fdd fDd fDD

Multiplicative 0.39 0.08 0.20 0.49
Additive 0.41 0.07 0.23 0.38
Dominant 0.46 0.09 0.24 0.24
Recessive 0.46 0.16 0.16 0.36
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Fig. 7 Model-based linkage analysis for chromosome 1 data

where chr1.ped is the pedigree file that specifies individual relationships, geno-
types and phenotypes, chr1.map is the map file that provides marker locations,
and chr1.dat is the data file that helps decode the contents of the map file. File
model.txt specifies the genetic model parameters. It includes four fields: affection
status (matching the data file), disease allele frequency, probability of being affected
for individuals with 0, 1, and 2 copies of the disease allele (penetrances), and finally
a label for the analysis model. For example, to evaluate the four genetic models in a
single run, model.txt would look like:

AMD 0.39 0.08,0.21,0.47 Multiplicative
AMD 0.41 0.07,0.23,0.38 Additive
AMD 0.46 0.09,0.24,0.24 Dominant
AMD 0.46 0.16,0.16,0.36 Recessive

The --grid 0.5 option specifies that LOD scores should be calculated at 0.5-
cM intervals.

Consistent with the results reported by Zareparsi et al. [44], the multiplicative
model fits the data the best among the four models we considered because it yields
the strongest evidence of linkage. The peak LOD score gradually decreases for the
additive, dominant, and recessive models, respectively.

In this example, we chose the genetic model parameters based on estimates
obtained from a maximum likelihood approach as described in Sect. 5. The like-
lihood optimization assumes that there is a single disease locus in the region and
that the genetic model is completely specified by the disease allele frequency and
the three penetrances. In general, the investigators may have information on dis-
ease prevalence or other relevant information. It is recommended that the users
choose genetic model parameters that fit the prior information about the disease.
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Fig. 8 Nonparametric linkage analysis of chromosome 1 using Spairs or Sall statistics

For complex diseases, we also recommend the users to conduct model-based linkage
analysis with different genetic models.

A simple and popular alternative to linkage analysis using a parametric model,
are nonparametric analyses. In general, these will be less powerful than a parametric
analysis when the disease model can be specified correctly; on the other hand, they
can be extremely helpful in settings where the disease model is unknown. Next, let
us consider model-free linkage analysis for the chromosome 1 data. As discussed
in Sect. 3.5, we can either use the Spairs statistic or the Sall statistic in the NPL
analysis. Figure 8 displays the linkage curves obtained using the NPL linkage anal-
ysis method. The MERLIN command line for running the Spairs analysis is the
following:

> merlin -d chr1.dat -p chr1.ped -m chr1.map --pairs --grid 0.5

And the MERLIN command line for running the Sall analysis is:

> merlin -d chr1.dat -p chr1.ped -m chr1.map --npl --grid 0.5

By default, MERLIN uses the linear model [24] for the NPL analysis. As pointed
out in MERLIN’s documentation, this model is designed to identify small increases
in allele sharing spread across a large number of families, and this is what one usu-
ally expects for a complex disease. If you are searching for a large increase in allele
sharing in a small number of families, then the exponential model [24] specified by
the --exp option is usually more appropriate. This alternative model is more com-
putationally intensive and requires more memory, but provides a better linkage test
if a large increase in allele sharing among affected individuals is expected.

Since many of the families in the dataset include more than one affected sib pair,
the NPL analysis using the Sall statistic yields slightly stronger evidence of link-
age than the analysis using the Spairs statistic. This is consistent with the expected
relative power of the two statistics [48].
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We note that both the model-based and the model-free linkage analysis yielded
a linkage peak around 239 cM on chromosome 1. However, the evidence of linkage
using the model-free linkage analysis method is much stronger: the LOD score at
the linkage peak using the Sall statistic is 2.92, whereas the LOD score at the linkage
peak using the model-based analysis assuming a multiplicative model is only 1.74.
Although the genetic model parameters are obtained from maximum likelihood in
the model-based linkage analysis, the parameter estimation procedure assumes that
there is only a single disease locus in the region. It is possible that the true genetic
model is different from the four models that we considered in Table 3. In fact, there
is now good evidence that there are multiple disease susceptibility alleles in the
CFH region on chromosome 1 [45,49]. As shown in previous studies [19], when the
genetic model parameters are misspecified, the power of detecting linkage might be
reduced.

5 Identifying SNPs Responsible for a Linkage Signal

Linkage analysis is an important first step in position cloning of complex human dis-
eases. However, linkage analysis often results in candidate region of 10–20 Mb. To
localize the susceptibility allele more precisely, disease-marker association analy-
ses using dense genetic markers, typically SNPs, specific to the linked region can be
carried out. If an SNP shows evidence for association, it is useful to know whether
the linkage result can be explained in part or in full by the candidate SNP.

Population-based association analysis often compares marker allele frequencies
between unrelated case and control subjects (see the chapter “Population-Based
Association Studies”). As alternatives, family-based association methods [50–54]
have been developed and they offer a compromise between traditional linkage stud-
ies and case-control association studies (see the chapter “Family-Based Association
Studies”). A shortcoming of the family-based association methods is that they can-
not distinguish between potentially causal SNPs and other variants showing weaker
evidence of association. In this section, we will describe a statistical method that
identifies candidate SNPs which can explain the observed linkage signal in part or
in full through joint modeling of linkage and association using ASPs [55], sibship
data and nuclear families [45].

5.1 Assumptions and Definitions

Assume a set of ASPs is genotyped for a candidate SNP and M ≥ 0 flanking
markers that help to evaluate evidence for linkage. It is assumed that the candidate
SNP and the flanking markers are in linkage equilibrium. Consider a diallelic dis-
ease locus with disease predisposing allele D (frequency pD) and wild type allele d
(frequency pd = 1 − pD), and a nearby SNP with alleles A (frequency pA) and a
(frequency pa = 1 − pA). Denote the four disease-SNP haplotypes by DA, Da, dA,
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and da (frequencies pDA, pDa, pdA, and pda). The superlocus formed by combining
the disease and SNP loci is assumed to be in Hardy–Weinberg equilibrium in the
general population. Let fg = P (affected | g) be the penetrance for a given genotype
g ∈ {dd,Dd,DD} at the disease locus. By definition, the population prevalence of
the disease K = fddpd

2 + 2fDdpdpD + fDDpD
2.

Let X = (X1, . . ., Xk, XSNP, Xk+1, . . ., XM ) be the observed marker geno-
types for the ASP. Let Im, ISNP, and ID be the possibly unknown number of alleles
shared IBD by an ASP at marker m, at the candidate SNP, and at the putative dis-
ease locus, respectively. It is assumed that there is no recombination between the
candidate SNP and the disease locus so that ISNP = ID . Denote disease locus IBD
sharing probabilities for an ASP by zi = P (ID = i |ASP), i = 0, 1, 2. For ease of
computation, it is assumed that there is no genetic interference so that {Im} forms
a hidden Markov chain.

5.2 Conditional Probability of Marker Data Given ASP

Since the ASPs are sampled according to their disease status, it is natural to consider
the retrospective likelihood P (X |ASP). To calculate this conditional probability,
we can apply Baum’s forward and backward algorithm (1972) so that the probability
can be calculated as

P (X |ASP) =
∑

ID

P (X | ID; ASP)P (ID |ASP)

=
∑

ID

P (X1, . . . , Xk | ID)P (Xk+1, . . . , XM | ID)P (XSNP, ID |ASP) (36)

=
∑

ID

⎧
⎨

⎩

(
∑

Ik

P (Ik | ID)Lk (Ik)

)⎛

⎝
∑

Ik+1

P (Ik+1 | ID)Rk+1 (Ik+1)

⎞

⎠

× P (XSNP, ID |ASP)

}

.

where k and k + 1 are flanking markers on the left- and right-hand side of the
candidate SNP.

At an arbitrary marker m (1 ≤ m ≤M),

Lm (Im) =P (X1, . . . , Xm | Im) =
∑

Im−1

Lm−1 (Im−1)P (Xm | Im)P (Im−1 | Im) ,

(37)
and

Rm (Im)=P (Xm, . . . , XM | Im)=
∑

Im+1

Rm+1 (Im+1)P (Xm | Im)P (Im+1 | Im) .

(38)
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Special cases are L1 (I1) = P (X1 |I1) and RM (IM ) = P (XM |IM ). The con-
ditional probabilities of the genotype data given the number of alleles shared IBD
for the sib pair at markerm, P (Xm | Im), are presented in Table 1 in Sect. 3.3. IBD
transition probabilities, P (Im+1 | Im), are given in Table 2 in Sect. 3.4. Recursive
calculation of Lm (Im) and Rm (Im) allows the rapid evaluation of P (X |ASP) in
a manner linear in the number of markers M .

To calculateP (XSNP, ID |ASP), letGj denote the disease-SNP haplo-genotype
for sib j = 1, 2. Summing over all ordered haplo-genotypes that are consistent with
the observed SNP genotypes,

P (XSNP , ID |ASP) =
∑

(G1,G2)∼XSNP

P (G1, G2, ID |ASP)

=
∑

(G1,G2)∼XSNP

P (ASP |G1, G2)P (G1, G2 | ID)P (ID)
P (ASP)

(39)

=
∑

(G1,G2)∼XSNP

fG1fG2P (G1, G2 | ID)P (ID)
P (ASP)

,

where P (G1, G2 | ID) can be calculated from Table 1 in Sect. 3.3 by regarding each
haplo-genotype as a genotype of the superlocus that has up to four alleles. For a sib
pair, P (ID) takes values (1/4, 1/2, 1/4) in the general population. Similarly, we
can obtain the probability of an ASP, where

P (ASP) =
∑

ID

∑

(G1,G2)

fG1fG2P (G1, G2 | ID)P (ID) . (40)

It is worth noting that the above calculation allows analysis with missing genotypes.
For example, to accommodate ASPs where only one sib is genotyped at the can-
didate SNP, we can sum over all possible SNP genotypes for the sib with missing
genotype.

5.3 Relationship Between Disease Locus and Candidate SNP

A useful measure of LD between two loci is the squared statistical correlation,
defined as r2 = (pDA − pDpA)2 / [pD (1 − pD) pA (1 − pA)] in a sample of phased
haplotypes. r2 measures the degree of linkage disequilibrium (LD) between the can-
didate SNP and the putative disease locus as represented by the observed linkage
signal, and can quantify the degree to which the linkage signal is explained by the
candidate SNP. The candidate SNP and the putative disease locus can be in linkage
equilibrium

(
r2 = 0

)
, in complete LD

(
r2 = 1

)
, or in partial LD

(
0 < r2 < 1

)
.

Under linkage equilibrium, the candidate SNP is not associated with the putative
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disease locus and plays no causal role in the linkage signal. Under complete LD, the
candidate SNP or a marker in complete LD with it can fully account for the linkage
signal; we call this model plausible causality. Given partial LD, the candidate SNP
partially accounts for the linkage signal.

The models can be reparameterized using three penetrances, fdd, fDd, fDD,
and (1) allele frequencies pD and pA for the linkage equilibrium model, (2) sin-
gle allele frequency p = pD = pA for the complete LD model, and (3) haplotype
frequencies pDA, pDa, pdA for the general model. Given only ASPs, each of these
models is identifiable, except the linkage equilibrium model, where parameters
(fdd, fDd, fDD, pD, pA) are not all identifiable since the data contain information
only for pA and (z0, z1, z2), corresponding to a total of three degrees of freedom
since z0 + z1 + z2 = 1. To achieve an identifiable model, note that under link-
age equilibrium, P (XSNP , ID |ASP) = P (XSNP | ID)P (ID |ASP) and that
P (XSNP | ID) depends only on pA. Thus, the linkage equilibrium model can be
reparameterized in terms of (z0, z1, pA), resulting in likelihood similar to the tra-
ditional MLS linkage test [19] but with an additional parameter pA. IBD sharing
probabilities (z0, z1, z2) should satisfy the triangle constraint: 0 ≤ z1 ≤ 0.5, and
0 ≤ z0 ≤ 0.5z1 (Holmans 1993). The previous models assume that the candi-
date SNP is completely linked to the putative disease locus. If the candidate SNP is
unlinked, then IBD sharing probabilities at the SNP should be (1/4, 1/2, 1/4), and
the only estimable parameter is pA.

For a sample of independent ASPs, the retrospective likelihood of the data is

L =
∏

P (X |ASP ), (41)

where the product is taken over all independent ASPs. Here, a retrospective like-
lihood is chosen because the data are ascertained through their disease affection
statuses. Using a retrospective likelihood can avoid the problem of ascertainment
bias so that the parameter estimates are valid for the general population.

To maximize the likelihood in (41), we can use a simplex algorithm [56], an
optimization method that does not require derivatives. In what follows, we represent
the maximum of a particular likelihood subject to its parameter constraints by L̂. In
addition, r2 can be estimated from frequency estimates for disease-SNP haplotype
frequency. The estimate of r2 is of particular interest given partial disease-SNP LD;
it reflects the degree to which a linkage result is explained by the candidate SNP.

5.4 Hypothesis Testing

Given different relationships between the candidate SNP and the disease locus, we
can test for linkage, association, and plausible causality. Let L̂LE, L̂LD, L̂GM, and
L̂UL denote the likelihoods maximized under the models that assume linkage equi-
librium, complete LD, a general model that allows LD to vary freely, and no linkage,
respectively. Then, we can evaluate evidence for linkage with the maximum LOD
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score MLS = log10

(
L̂LE

)
− log10

(
L̂UL

)
. We can evaluate evidence for asso-

ciation by testing whether the candidate SNP is in linkage equilibrium with the

disease locus with the likelihood ratio statistic TLE = 2
[
ln
(
L̂GM

)
− ln

(
L̂LE

)]
.

Rejection of linkage equilibrium between the disease and SNP loci suggests the
candidate SNP is associated with the disease locus and can account (in part) for
the observed linkage signal. We examine plausible causality by testing whether the
candidate SNP is in complete LD with the disease locus with the likelihood ratio

statistic TLD = 2
[
ln
(
L̂GM

)
− ln

(
L̂LD

)]
. Rejection of complete LD for an asso-

ciated SNP suggests that the SNP cannot fully account for the observed linkage
signal. If there is a single disease causal variant in the region, then it must be another
SNP; or there might be other disease causal variants in the region.

The asymptotic distributions of TLE and TLD under the null hypotheses might
in principle be approximated by mixture of chi-squared distributions [57], but the
degrees of freedom and mixing parameters are difficult to derive owing to the com-
plexity of parameter constraints and boundaries. Alternatively, significance of the
tests can be assessed empirically by simulating marker genotypes under the null
hypothesis and comparing the observed statistic with the simulated null distribu-
tion. Below, we describe the simulation procedures to obtain the null distributions.
When linkage equilibrium is assumed under the null, we can sample SNP genotypes
conditional on flanking marker genotypes, which are fixed, and estimated parame-
ters. In contrast, when assuming complete LD between the SNP and the disease
loci, we can sample flanking marker genotypes conditional on the observed SNP
genotypes and estimated parameters.

For the linkage equilibrium model, we use the observed data to obtain the SNP
allele frequency estimate p̂A and the IBD sharing probability estimates (ẑ0, ẑ1, ẑ2)
at the candidate SNP. To obtain a simulated sample under linkage equilibrium, for
each ASP, we retain flanking marker data and simulate the IBD configuration at the
candidate SNP according to

P (ID |X1, . . . , XM ,ASP) ∝ P (X1, . . . , Xk | ID)P (Xk+1, . . . , XM | ID) ẑID ,
(42)

for ID = 0, 1, 2, where P (X1, . . . , Xk | ID) and P (Xk+1, . . . , XM | ID) are the
left- and right-chain probabilities calculated in (37) and (38). Given the IBD con-
figuration at the candidate SNP, the ASPs candidate SNP genotypes can then be
sampled based on the estimated candidate SNP allele frequency p̂A. We obtain the
null distribution of TLE by calculating the statistic for each simulated data set.

The null distribution simulation procedure for the test of complete LD is dif-
ferent. For each ASP, we simulate the IBD configuration at the candidate SNP
conditional on the observed SNP genotypes for the ASP and the estimated param-

eters
(
f̃dd, f̃Dd, f̃DD

)
and p̃ = p̃D = p̃A obtained from the complete LD model

according to

P (ID |XSNP,ASP) ∝ P (XSNP, ID |ASP), (43)
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which can be obtained from (39). We leave the SNP genotypes for the ASP
unchanged from their observed values. To avoid excess IBD sharing explained by
the flanking markers, we resample their genotypes conditional on the IBD con-
figuration at the candidate SNP. Specifically, we sample genotypes at marker k
according to transition probabilities P (Ik | ID) and marker k’s allele frequencies.
Marker k + 1’s genotypes are sampled similarly but with transition probabilities
P (Ik+1 | ID). Moving left and right along the chromosome, we simulate flanking
marker genotypes based on P (Im−1 | Im) and P (Im+1 | Im), respectively. The rest
of the simulation procedure is the same as that for TLE.

5.5 Extension to Sibship Data and Nuclear Families

The methods described earlier for ASPs can be readily extended to general sibship
data using inheritance vectors. Let Y = (Y1, . . ., Ys) denote the phenotypes of all
s siblings in a sibship. The conditional probability of marker genotypes X given
disease phenotypes Y is

P (X |Y ) =
∑

G∼XSNP

P (X1, . . . , XM , G)P (Y |G) / P (Y ), (44)

where the summation is taken over all disease-SNP haplo-genotypes that are con-
sistent with the observed SNP genotypes. Summing over all possible inheritance
vectors at the disease locus and applying Baum’s forward and backward algorithm,

P (X1, . . . , XM , G) =
∑

vD

P (X1, . . . , Xk |vD)P (Xk+1, . . . , XM |vD)P (G,vD)

=
∑

vD

[
∑

vk

Lk (vk)P (vk |vD)

]

×
⎡

⎣
∑

vk+1

Rk+1 (vk+1)P (vk+1 |vD)

⎤

⎦P (G |vD)P (vD) ,

(45)

where k and k+1 are flanking markers on the left- and right-hand side of the candi-
date SNP. The summation over all possible inheritance vectors allows the handling
of incomplete inheritance information and phase ambiguity by incorporating prior
probabilities of the inheritance vectors. At any marker m (1 ≤ m ≤M),

Lm (vm) = P (X1, . . . , Xm |vm)

=
∑

vm−1

Lm−1 (vm−1)P (Xm |vm)P (vm−1 |vm), (46)
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and

Rm (vm) = P (Xm, . . . , XM |vm)

=
∑

vm+1

Rm+1 (vm+1)P (Xm |vm)P (vm+1 |vm). (47)

The calculation of (45) requires three probabilities: (1) the prior probability of
inheritance vector vD . (2) the inheritance vector transition probability between two
consecutive markers, and (3) the conditional probability of marker genotypes given
the inheritance vector at that marker. Clearly, the prior probability P (vD) = 2−2s.
The transition probability between inheritance vectors at markersm and m+ 1 can
be obtained based on derivations in Sect. 3.6.

P (Xm |vm) =
∑

Odad
m

∑

Omom
m

P
(
Xm |Odad

m , Omom
m ,vm

)
P
(
Odad

m

)
P (Omom

m ),

(48)
where P

(
Xm |Odad

m , Omom
m , vm

)
takes value of 1 if the sibship’s genotype data

Xm are consistent with the ordered parental genotypes Odad
m and Omom

m and the
inheritance vector vm, and 0 otherwise. The summation is taken over all ordered
parental genotypes. P (G |vG) can be calculated in a similar fashion by regard-
ing each haplo-genotype as a genotype of the superlocus formed by combining the
disease and SNP loci.

Recursive calculation of Lm (vm) and Rm (vm) using these three probabilities
allows (45) to be evaluated in a manner linear in the number of marker loci M . This
calculation is similar to the Lander–Green algorithm discussed in Sect. 3.6. Equation
(44) is an extension of the retrospective likelihood calculation for ASPs described
in Sects. 4.1–4.3. Here, the sibship size can be >2 and sibs can be either affected or
unaffected.

The above calculation can be readily extended to accommodate parental geno-
types. Following the derivation of (44), the critical part in the calculation is the
conditional probability of marker genotypes for the sibs and their parents given
the inheritance vector at a particular marker. Let Xdad

m and Xmom
m represent the

observed unordered parental genotypes at markerm. Then the conditional probabil-
ity of the observed genotypes given the inheritance vector at marker m is

P
(
Xm, X

dad
m , Xmom

m |vm

)

=
∑

Odad
m ∼Xdad

m

∑

Omom
m ∼Xmom

m

P
(
Xm |Odad

m , Omom
m ,vm

)
P
(
Odad

m

)
P (Omom

m ), (49)

where the summation is taken over all ordered parental genotypes that are consistent
with the observed unordered parental genotypes. This extension enables us to ana-
lyze nuclear families with genotyped parents, including parent-affected offspring
trios, which are the basic sampling units used by the TDT [49].
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Under the assumption that the disease phenotypes are independent given the
genotypes at the disease locus, P (Y |G) is the product of simple functions of
penetrances. An affected sib j (1 ≤ j ≤ s) with disease-SNP haplo-genotype Gj

contributes a term fGj , and an unaffected sib j contributes a term 1 − fGj . By the
law of the total probability, the probability of the disease phenotypes for the sibship

P (Y ) =
∑

G

{

P (Y |G)
∑

vG

[P (G|vG)P (vG)]

}

. (50)

Substituting (45), P (Y |G), and P (Y ) into (44), we can obtain the conditional
probability for the sibship P (X |Y ) as a function of model parameters {fdd, fDd,
fDD, pDA, pDa, pdA}.

For sibship data and nuclear families, the tests of linkage equilibrium and com-
plete LD can be carried out in a similar fashion as those for ASPs described in
Sect. 4.3. A key advantage of this likelihood calculation is that it allows the joint
analysis of different sampling units in a unified statistical framework, leading to
more efficient use of the available data.

5.6 Summary

In this section, we have described a unified likelihood framework to estimate use-
ful genetic parameters and to test for both linkage equilibrium and complete LD
between a candidate SNP and the putative disease locus through joint modeling
of linkage and association. Results from these two tests complement each other in
answering whether the candidate SNP can account in part or in full for the observed
linkage signal. Estimate of the disease-SNP LD provides a measure to quantify the
degree of contribution of the candidate SNP to linkage evidence. Taken together
with the disease locus and the SNP allele frequency estimates, this approach will be
valuable in helping researchers to evaluate the role of a candidate SNP in disease
susceptibility and fine map disease genes. Methods described in this section [45,55]
are implemented in the computer program LAMP.

6 Comparison of Model-Based and Model-Free
Linkage Analysis Methods

Linkage analysis of pedigree data is a powerful tool for mapping genomic regions
that are likely to contain genes influencing human diseases. In this chapter, we
described two types of linkage analysis strategy in detail: model-based linkage
analysis and model-free linkage analysis. There are numerous model-based and
model-free statistics available for the linkage analysis of pedigree data.



114 M. Li and G. R. Abecasis

Model-based linkage analysis was originally developed for mapping Mendelian
diseases using large pedigrees with multiple affected family members. For
Mendelian diseases, it is often assumed that the phenotype arises from a single major
gene effect with full penetrance, that is, it is expressed regardless of other genetic or
environmental factors. Model-based linkage analysis has been successfully applied
in mapping of hundreds of Mendelian diseases including Huntington’s disease and
cystic fibrosis. Model-based linkage analysis is the most powerful linkage analysis
strategy when the parameters of the genetic model are known.

However, Mendelian diseases are generally rare. For many common diseases
with high prevalence, their penetrances are often incomplete and phenocopies may
exist. In this situation, it is difficult to specify the genetic model parameters. For
model-based linkage analysis, misspecification of the model parameters due to
incomplete penetrances and/or phenocopies may lead to reduction in power to
detect linkage [19]. This is also shown in the real data example that we consid-
ered in Sect. 4. The reduction in linkage power is because incomplete penetrances
can reduce evidence for linkage and phenocopies can give false information about
recombination patterns.

Many of the common complex diseases are late onset. For example, the average
age at diagnosis for type 2 diabetes is about 45, and the average age at diagnosis
for AMD is about 70. For such diseases, it is hard to collect large pedigrees with
extended family members. For mapping of complex common diseases, the recent
trend is to focus on small families such as affected sib pairs and their parents when
available. With the rapid development of genotyping technology, a typical linkage
genome scan involves a few hundred microsatellite markers and thousands of SNPs.
To simultaneously incorporate all available data, the model-free linkage anlaysis
methods are more preferred because they are based on the Lander–Green algorithm
which is suitable for small pedigrees with a large number of markers.

Compared to model-based linkage analysis methods, model-free approaches
have several advantages, including conceptual simplicity, no need for specification
of a genetic model, and a tendency to use small pedigrees which are more easily
to obtain than large pedigrees. The traditional mode-free linkage analysis methods
assume that the samples to be analyzed are homogeneous. More recently, exten-
sions of the model-free approaches have been developed which can incorporate
phenotypic heterogeneity by weighting families or individuals based on covariate
information [58] or by incorporating covariates directly into the linkage analysis
[59, 60]. In addition, methods that can account for locus heterogeneity have also
been developed [61].

Although the model-free linkage analysis is attractive, there are some disadvan-
tages as compared to the model-based linkage analysis. For example, the model-free
linkage analysis does not produce estimates of important genetic model parame-
ters. In addition, when the genetic model parameters are correctly specified, the
model-based analysis is more powerful. Therefore, we recommend that researchers
consider both the advantages and disadvantages of different approaches when
determining which linkage analysis methods to choose for a particular disease.
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6.1 Software Packages for Linkage Analysis

Various software packages have been developed for linkage analysis. The first
widely used computer program was LIPED [10], which implemented singlepoint
parametric linkage analysis method for general pedigrees based on the Elston–
Stewart algorithm and its extensions. Later computer programs for parametric
linkage analysis include LINKAGE (Lathrop et al., [68]), MENDEL [62], and
VITESSE [17]. These programs can do multipoint linkage analysis but only for
a few genetic markers.

Exact multipoint linkage calculations involving many markers for general pedi-
grees was first made practical in 1996 with the development of GENEHUNTER
[26]. GENEHUNTER implemented the Lander–Green algorithm, and the comput-
ing time increases linearly with the number markers but exponentially with the
number of individuals per family. Unlike those earlier programs, GENEHUNTER
implemented both model-based and model-free linkage analysis methods. However,
the NPL method implemented in GENEHUNTER is conservative when IBD shar-
ing is incomplete. To solve this issue, a one-degree-of-freedom method introduced
by Kong and Cox [24] was introduced and implemented in a modified version of
GENEHUNTER, GENEHUNTER-PLUS.

Although GENEHUNGER has greatly improved the computing speed as com-
pared to earlier programs, it is still slow when family size is large. In 2000, computer
program ALLEGRO was introduced [28]. ALLEGRO has much of the functional-
ity of GENEHUNTER but improved GENEHUNTER in several ways, including
speed improvement with new computational algorithms, additional scoring func-
tions, improved input and output, and use of disk-swapping to reduce memory
requirements.

Another popular modern linkage analysis software package is MERLIN. In the
real data example that we considered in Sect. 4, we illustrated how to carry out
model-based and model-free linkage analysis using MERLIN. Similar to GENE-
HUNTER and ALLEGRO, MERLIN also uses a hidden Markov model. However,
MERLIN further improves the computational speed of ALLEGRO by representing
patterns of gene flow in pedigrees with sparse binary trees. In addition to model-
based and model-free linkage analysis, MERLIN can also detect genotyping errors
and conduct variance-components based linkage analysis for quantitative traits (see
the chapter “Qualitative Trait Linkage Analysis”).

Web Resources

LIPED: http://linkage.rockefeller.edu/soft/liped.html
LINKAGE: ftp://linkage.rockefeller.edu/software/linkage
VITESSE: http://linkage.rockefeller.edu/soft/vitesse
MENDEL: http://www.genetics.ucla.edu/software/mendel
ALLEGRO: http://www.decode.com/software
GENEHUNTER: http://www.broad.mit.edu/ftp/distribution/software/genehunter
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GENEHUNTER-PLUS: http://www.stat.uchicago.edu/genehunterplus
LAMP: http:// www.sph.umich.edu/csg/abecasis/lamp
MERLIN: http://www.sph.umich.edu/csg/abecasis/merlin
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Linkage Analysis of Quantitative Traits

Christopher I. Amos, Bo Peng, Yaji Xu, and Jianzhong Ma

Abstract Nearly three quarters of a century of statistical innovations have resulted
from the development of methods to perform genetic linkage analysis in humans
and other outbred organisms. Lionel Penrose was among the first investigators to
develop methods that could be used to identify genetic linkages for quantitative
traits. His methods predated the development of modern likelihood methods or wide
acceptance of analysis of variance techniques. He initially sought to partition vari-
ance among sibs according to marker similarity [73], assuming particular modes
of inheritance. His later publications provided approaches that could be applied for
a range of potential inheritance patterns [74]. Oscar Kempthorne [52, 53] devel-
oped analysis of variance methods that form a basis for some linkage analytical
approaches, building on the earlier work of Sir Ronald Fisher [37]. Fisher developed
u-scores which form a basis for efficient score statistics for linkage analysis [38].
Many of the methods developed by these pioneers remain in use, with some modi-
fications to allow their application in a modern era in which thousands of markers
are available for analysis in extended families.

This chapter reviews the statistical approaches that are now in use for linkage
analysis of quantitative data. We first describe the data that we used to demonstrate
methods of analysis. Then, we provide a statement of the genetic model and typical
likelihood formulation that are applicable for pedigrees. Next, we discuss a vari-
ety of linkage methods that have been developed for model-free linkage analysis.
Finally, we describe models for multivariate analysis.

1 Introduction and Description of Data

Genetic loci that influence a trait may either be linked or unlinked to marker loci,
which have known chromosomal locations and for which the genotype can be
readily deduced from the observable phenotype. When two loci are tightly linked,
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typically residing within a few megabase pairs of each other, alleles that arose from
a common ancestor on a chromosome will be coinherited in passage through a fam-
ily. The further apart the two loci are located on a chromosome the more likely
they are to show independent assortment during meiosis. If a trait locus is linked
to a marker locus, then within families individuals with similar marker alleles will
show trait values that are more similar than other similarly related members of the
same family. When performing linkage studies, it is important to note that familial
membership induces correlation in relatives, and the correlation structure depends
upon the effects of the trait loci on the quantitative trait. Often in linkage analysis
we assume that the marker and trait alleles in the general population do not show
any correlation, a condition called dilocus equilibrium but which is often denoted
as linkage equilibrium. The term “linkage equilibrium” should more properly be
reserved for alleles at two loci that are closely located upon the same chromosome
and that are not correlated in the population.

Human traits (such as height, weight, blood pressure, and cholesterol level) and
diseases (such as cystic fibrosis and Alzheimer’s disease) are most frequently stud-
ied because they have direct influence on public health. Other types of quantitative
traits such as the level of RNA expression may also vary among individuals and have
a genetic component. In this chapter, we analyze these expression values, treating
them as quantitative traits. We use data from recent studies of the genetic basis
of variation in human gene expression [23, 24, 65]. Because the impact of DNA
sequences is manifested through transcription, variations in transcript level can be
considered an intermediate stage between DNA sequence differences and complex
human traits and diseases. For many RNA transcripts, interindividual variations in
expression level of genes are smaller in monozygotic twins than among individuals
of other relationships, thus suggesting a genetic component to this variation [23].

The dataset we use to demonstrate methods of analysis consists of RNA expres-
sion levels of lymphoblastoid cell lines using Human Focus Affymetrix arrays con-
taining probes from 8,500 transcripts. RNA expression levels of specific genes are
obtained by averaging results obtained by multiple probes, which are called probe
sets, within the gene. The expression studies were performed on 14 three-generation
Centre d’Etude du Polymorphisme Humain (CEPH) Utah families (approximately
14 individuals per family including grandparents, parents, and about eight children
per family). For 3,554 of the 8,500 genes tested, [65] greater variation was observed
among individuals than between replicate determinations on the same individuals.
These 3,554 expression phenotypes (expressed genes) have been made available as
a part of the Genetic Analysis Workshop (GAW) XV and are available by request to
the organizers of the workshops (see Web Resources). These data were extensively
analyzed as a part of the workshops [72, 92].

Like many studies of quantitative traits, such as the NHLBI Family Heart Study,
which collect not a single observation on each subject but rather dozens of quantita-
tive traits (e.g., height, weight, cholesterol fractions, blood pressure, fasting glucose,
and insulin), the dataset used as an example here includes information from a large
number of quantitative traits. Unlike other studies in which quantitative traits are
often considered independent, however, expression values of many different probe
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Fig. 1 Histogram of RNA expression levels at probes 210891 s at and 209785 s at

sets, which measure RNA transcript levels, are expected to be correlated with each
other, and specific pathways through which genes interact have been described, for
example by the Kyoto Encyclopedia of Genes and Genomes or Gene Ontology (see
Web Resources). Statistical methods that can efficiently incorporate data from mul-
tiple phenotypes, and correlations between them can increase the power to detect
linkages [8, 62].

Expression values at different probe sets vary greatly in distributional form.
Although many of these traits display approximate normality, the majority show
variable departures from normality. Figure 1 plots the histogram of expression val-
ues at two probe sets, 210891 s at and 209785 s at. These two probe sets are not
closely linked and are not on chromosome 5, so are not expected to show link-
age. Probe set 210891 s at has skewness and kurtosis close to zero, while probe set
209785 s at has significant skewness (−1.171) and kurtosis (1.537). We will use
these two probe sets to demonstrate all quantitative trait linkage analysis methods,
using 160 markers on chromosome 5.

2 Methods

Many genetic linkage analytical methods have been developed for the study of qual-
itative rather than quantitative traits. Many of the initially studied severe genetic
syndromes such as phenylketonuria or hypercholesterolemia due to LDL receptor
defects represent one or a collection of extreme phenotypes for which the develop-
ment of a model to capture variation along this continuum would not be particularly
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useful, given a lack of individuals with intermediate phenotypes. When studying
more common conditions such as high blood pressure or body mass index, how-
ever, incorporating information from the quantitative trait distribution can improve
the power to detect linkages and increase the precision of estimates. Quantitative
variation in a trait often occurs because there are a number of factors influencing
its expression. For a few quantitative phenotypes such as apolipoprotein(a) levels
(a major risk factor for heart disease), quantitative variation results from the effects
of a large number of alleles at a single locus that determine the trait levels [18, 46].
For many traits, a few genetic loci, along with environmental exposures and mea-
surement error, can explain the trait’s continuous interindividual variation. For traits
that are influenced by environmental or demographic factors, adjustment for these
factors as a part of the linkage process is analytically efficient, but some existing pro-
cedures cannot jointly allow for covariates while performing linkage analysis. When
using these less sophisticated methods, analyses to adjust for covariate effects must
precede analysis of the residuals.

Many models used to map genes responsible for quantitative traits assume nor-
mality of the studied quantitative traits. They perform optimally when the trait
values of family members follow a multivariate normal distribution. Violation of
this assumption can have detrimental effects on the type I error and power, par-
ticularly for variance components (VC) methods [2, 11]. Various methods have
been proposed to transform trait values, including simple transformations such as
square root and logarithmic transformations; more advanced transformations such
as Box–Cox; and rank-based transformations. The choice of transformation is often
arbitrary, however, and different choices can lead to conflicting results. [31] pro-
posed a method that treats the transformation as part of the parameter space and
estimates the transformation along with other parameters. The resulting transfor-
mation is rank based and is asymptotically efficient among all order-preserving
transformations. However, existing implementations are computationally intensive.

A computationally rapid and simple approach to normalizing data is to apply
an inverse probit transformation to the ranked trait data (ENQT) [72]. This method
ranks the trait values and scales the ranks to (0, 1). It then transforms the scaled
ranks to a normal distribution using an inverse normal transformation. This method
is computationally efficient and can be applied to most quantitative traits, result-
ing in perfectly normal trait values. It is especially suitable, therefore, for studies
with a large number of quantitative traits, when manual, customized transforma-
tions are not feasible (such as this dataset, although we only described analyses of
two traits). Although ENQT is usually an efficient approach for transforming data,
it will not result in adequately normal data when many values are tied, for exam-
ple when values above or below a threshold are truncated [31]. For most of the
statistical methods described in this chapter, we will plot the p-values or logarithm
of odds (LOD) scores of untransformed data using solid lines, and the p-values
or LOD scores of data transformed by ENQT using dashed lines. The impact of
normalization is reviewed in the discussion section.
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2.1 Classical Model-Based Linkage Analysis

Let Xip denote the trait observation on the ith individual for the pth trait. Let
Mi denote the marker phenotype for the ith individual. For this individual, we let
gis denote the sth major genotype at a trait-affecting locus, and mir denote the
rth marker genotype at the marker locus. Generally, the marker locus has simple
Mendelian codominant expression, so that P (Mi|mir) = 1 for one genotype and
0 for all other genotypes. At the trait locus, the genotype–phenotype relationship
f(Xip|gis) is the distribution of phenotypes for a given genotype. This genotype–
phenotype relation depends on parameters such as the genotype-specific mean μs,
nongenetic variance σ2

e , and covariate effects β. Decomposition of the major genetic
interindividual variability, σ2

g , into additive (σ2
a) and dominance (σ2

d) components of
variance is possible for both diallelic and multiallelic systems [27, 37]. For a dial-
lelic locus, the major gene variance components are σ2

a = 2pq[a − (p − q)d]2 and
σ2

d = 4p2q2d2 where a = 1
2 the displacement of the two homozygous means and

d = the difference between the upper homozygous mean and the heterozygous mean
(see the chapter “Population Genetics” for more details).

For univariate phenotypes, we omit the trait-specific indices in the interest of
clarity. Let

Xi = μ+
∑

k

βkzik + gis +Gi + ei, (1)

where μ is the average of the genotype-specific means; βk the kth regression coef-
ficient; zik the kth covariate observation; ei the residual variation from the model,
Cov(e) = Iσ2

e ; Gi is a polygenic source of variation, Cov(G) = Rσ2
G, where R

is the coefficient of relationship between pairs of individuals, Rij = 1 if i = j,
and (1

2 )k otherwise, and where k is the degree of relationship between the relative
pair (with E(Gi) = E(ei) = 0). Ordinarily, we assume that gis is an unobservable
effect from the sth genotype. Because gis is unobservable, we have, without loss
of generality, E(Xi) = μ +

∑
βz. The case in which specific allelic effects are

directly observable has been called the measured genotype approach [16, 17] and is
subsumed by (1). We denote the total variance by σ2

T . Total heritability (assuming
no gene–environment interactions), h2, is σ2

g + σ2
G = σ2

T .
The fitting of VC models that do not include linked genetic markers has been

extensively reviewed previously [49]. Here, we assumed that Cov(ei, ej) = 0,
although this assumption can easily be relaxed to estimate parent–parent, parent–
offspring, and shared sibling environments. Finally, we usually assume no covari-
ances between unobservable variables such as Cov(gis, ei) = Cov(Gi, ei) =
Cov(Gi, gis) = 0. These restrictions might be relaxed, but large sample sizes
or specialized sampling schemes would be needed to assess the relevant param-
eters. To identify the Cov(gis, ei), for example, one could study identical twins
reared either together or reared separately so that some of the twin pairs would
experience different familial environments and others would experience similar
environments [66].
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Mendelian segregation of a single major locus imposes a dependence structure
that can be exploited to create efficient algorithms for evaluating the likelihood of
the data [34, 70]. The general approach consists of a sequential conditioning of
the data, which is efficiently accomplished by conditioning children’s phenotypes
on their parents’ phenotypes. The Elston–Stewart algorithm [34] further assumes
that the probability of an individual’s phenotype conditional on his genotype (the
genotype–phenotype relationship) is independent of other pedigree members’ phe-
notypes and that the probability of an individual’s genotype depends only on the
genotypes of that individual’s parents. This algorithm is efficient for analysis of
extended pedigrees but is computationally intensive when more than a few markers
are being studied jointly. The Lander–Green algorithm [56] is an alternative proce-
dure that uses a hidden Markov model (see Chap. 7) to more efficiently incorporate
data from multiple markers, but is limited to computation for fewer than about 20
individuals. A third approach, implemented in Merlin [1], uses a graph theoretical
approach to eliminate impossible marker genotypes, and is therefore able to study
larger families than the Lander–Green algorithm when multiple relatives have been
genotyped.

When performing linkage analysis using a quantitative trait, modeling the
genotype–phenotype relationship requires specifying a fixed number of alleles and
treating the major gene component, gi in 1, as a fixed but unobservable effect. We
call this modeling approach as fixed effects maximum likelihood (FEML) analysis.
The usual FEML approach consists of segregation analysis in which the trait-related
parameters are estimated by using only the trait data. The parameter estimates are
then typically fixed, and evidence for linkage is then assessed in a separate anal-
ysis. For this analysis, the evidence for linkage is evaluated by fitting a dilocus
or multilocus model in which the phenotype data of the pedigree members and
genotype–phenotype relation are used to infer probabilities of the trait genotypes,
and the marker data are used to infer probabilities of marker phenotypes in the pedi-
gree members. Evidence for linkage is assessed by evaluating whether the alleles of
the trait and marker loci are co-inherited; evidence for co-inheritance is provided by
the estimated recombination fraction θ.

This approach is called “classical,” or “traditional linkage analysis,” but a more
precise name for this type of analysis is maximum pseudolikelihood analysis
(MPLA), since all parameters of the entire likelihood are not jointly modeled.
Quantitative traits are often influenced by several loci, but most segregation ana-
lytic approaches model only a single locus so that the correct genetic model cannot
be obtained. If the trait model is not accurate, then biases will occur in the esti-
mates from MPLA. For qualitative traits, which have been well studied, the most
serious of these biases occurs in the recombination fraction (θ), which tends to be
overestimated [25,51]. In the study of a quantitative trait, if the interindividual vari-
ance is underestimated, then the recombination fraction is overestimated and vice
versa [7]. If preliminary segregation analysis does provide an accurate description
of the genetic sources of variability of a trait, then MPLA is statistically more effi-
cient than the model-free methods described later in this chapter. Hence in those
situations in which a simple genetic mechanism explains interindividual variability,
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MPLA could be a preferred method of analysis. In the context of studying variabil-
ity of RNA expression levels, MPLA would be a preferred approach for analysis if,
for example, all variabilities were due to effects of DNA variation within the coding
sequence of the gene.

To perform MPLA, we first used the SEGREG module of the software package
SAGE (see Web Resources). For this analysis, we had to assume that an unknown
single locus with two genotypes is influencing the trait levels of probe sets in pedi-
grees. To reduce the parameters to estimate, we further assumed that all genotypes
have the same variance. We then used maximum likelihood methods to estimate
genotypic means that best fitted the data. The models on how genotype at an
unknown gene modulates RNA expression values at probe sets 209785 s at and
210901 s at are listed in Table 1. For example, an individual with genotype AA at
this marker is expected to have expression value 5.23 for probe set 209785 s at.

A number of software applications can be used to estimate the location of this
unknown marker, given a model. As shown in Fig. 2, we scanned the 160 mark-
ers on chromosome 5 and plotted the − log10 (p− value) at each marker. We use
the LODLINK module of SAGE to perform the analyses, although other programs

Table 1 Segregation analyses of two traits

Trait Mean of AA Mean of Aa Mean of aa Residual Variance

209785 s at 5.23 3.74 6.32 0.6
210891 s at 10.94 10.93 10.49 0.05

Fig. 2 Result of parametric linkage analyses
− log10 (p-value) of the parametric linkage analyses of two traits, 210891 s at (top) and
209785 s at (bottom), at 160 markers on chromosome 5. Note that, although the markers are
equally spaced in the figure, they are not actually unevenly distributed
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such as Fastlink [26] also can be used. LODLINK requires that the trait locus has
only two alleles but can jointly adjust for covariate effects, while Linkage (see Web
Resources) can perform analysis assuming multiple alleles at the trait locus but can-
not adjust for covariate effects. Compared with results obtained from nonparametric
linkage analyses (see below), the signals obtained in the parametric linkage analysis
show less evidence for linkage than model-free results.

Many existing software programs are not equipped for analysis of quantitative
data using multiple marker data (called multipoint analysis in the genetic literature).
The Elston–Stewart algorithm implementations in the Linkage [58] and Fastlink
[26] programs are efficient for analysis of extended pedigrees but can manage only
five or six markers jointly. To analyze the markers on chromosome 5 requires inter-
leaving results from multiple separate analyses. As an alternative, [80] showed how
existing software applications (such as Merlin and GeneHunter) that have been
developed for analysis of qualitative data using liability classes can be applied for
the analysis of quantitative data using a FEML approach. For each subject, the
genotype-specific value of the probability density function is used to model the
probability of observing a phenotype given each of the possible genotypes for an
individual. This approach to modeling was also shown to adjust adequately for
effects of nongenetic cofactors.

Rather than performing segregation analysis followed by linkage analysis, segre-
gation and linkage analyses can be performed jointly by using a variety of analytical
methods. Using Linkage [58] or Fastlink [26], one can optimize a likelihood expres-
sion that models the recombination fraction between a single trait locus and a marker
locus. Application of these procedures for joint segregation and linkage analysis is
not well described in the accompanying software manuals, but is permitted by using
the optimization program Gemini, specifying a string of 0’s and 1’s in the last line of
the parameter file, in which the 1’s represent those parameters to be estimated. The
order of estimated parameters consists of the recombination fraction, followed by
parameters for each locus. If a trait parameter is indicated, then the parameters that
will be estimated include the allele frequencies, trait means, and residual variance,
and if specified, a parameter allowing the heterozygote residual variance to deviate
from the homozygote residual variance. While Gemini is computationally rapid, it
is sensitive to initial conditions and may not converge well if too many parameters
are estimated jointly. Practically, therefore, analysis using this software should be
performed by first estimating marker allele frequencies in a first step. Subsequent
steps would be estimating the trait means and variances along with the recombina-
tion fraction holding marker allele frequencies fixed. Provided dilocus equilibrium
holds, estimating the marker allele frequencies first in a separate step would lead
to only a minimal decrease in efficiency in estimating the recombination fraction or
trait-related parameters.

As an alternative, model-based joint segregation and linkage analysis can be
accomplished by implementations of Monte-Carlo Markov Chain (MCMC) pro-
cedures (see the chapter “Markov Chain Monte Carlo Linkage Analysis Methods”).
The most widely used method is implemented in the program Loki [48]. This
program uses the Metropolis-Hastings algorithm to perform joint segregation and
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linkage analysis. The program requires that effects from unmeasured genetic fac-
tors affect the trait in an additive fashion and requires that each locus be diallelic.
It uses a reversible-jump algorithm to modify the likelihood, allowing for a variable
number of loci influencing the trait. [82] recently studied the behavior of an MCMC
approach to joint segregation and linkage analysis. [60] provided a Bayesian frame-
work for analysis of selected samples and extended the Loki program to allow for
selection.

2.2 Model-Free Haseman–Elston Regression Approach

To circumvent these issues in modeling, a variety of model-free tests for genetic
linkage have been developed. Model-free methods evaluate the similarity among
pairs of individuals for both the marker and trait phenotypes. In contrast to FEML,
which usually fixes the genotype–phenotype relationship and then evaluates genetic
relationships, model-free methods estimate the genetic relationships among individ-
uals in a first step and then evaluate the evidence for a trait-influencing locus at the
specified location.

The model-free methods described here are based on identity-by-descent (IBD)
sharing, conditional on pedigree marker information. IBD measures genetic simi-
larity among pairs of relatives from their common inheritance of particular marker
alleles. We say that a pair of relatives shares an allele IBD if that allele can be traced
to a common ancestor. Often not all family members are available for study (typ-
ically one or both parents are missing). In this case, the probabilities that pairs of
individuals share zero, one, or two alleles IBD are calculated by using the available
family members and population genotype frequencies. These proportions can then
be used to create an estimated proportion of alleles IBD. Algorithms for evaluat-
ing IBD sharing for pedigree data conditional on marker data have been extensively
developed [5, 8, 9, 28, 29, 54, 55, 88]. Similarity in IBD sharing is then used to eval-
uate trait similarity by using either regression or VC analyses, as discussed later.
The model-free methods require specifying forms describing measured covariates
affecting the first moments, and they estimate genetic and environmental factors
affecting interindividual variance and the covariances among pairs of relatives.
Thus, the modeling strategy depends only upon observable quantities, unlike model-
dependent strategies, which must infer unmeasured genotypes, and this inference
is conditional upon correct knowledge of additional unobservable and often con-
founded elements of the model, such as the number of alleles, the allele effects, and
the within-genotype variances.

One of the most popular model-free tests for linkage is the Haseman–Elston
regression approach. The approach is conceptually simple and provides a rapid test
for linkage. For a particular family, we let Yij = (Xi −Xj)2. Then a linear regres-
sion relationship has been established under linkage [8,47] between the squared pair
differences between pairs of relatives, Yij , and the estimated proportion of marker
alleles IBD. The regression coefficient, β, for all pairs of relatives is a function of
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−2(1 − 2θ)2σ2
a with additional terms involving (1 − θ) depending upon the rel-

ative pair type [8]. Thus when θ = 0 (complete linkage), − 1
2β estimates σ2

a for
all relative pairs. [35] and [32] developed a revised version of the Haseman–Elston
test, which we call covariance Haseman–Elston (CH-E). This procedure consists
of regressing the sib-pair covariance on to IBD sharing. [36] further developed the
CH-E to allow for correlation among the sib-pairs. Allowing for the intrasibship
correlation considerably improves the power and efficiency of the CH-E when there
is positive correlation among the sib-pairs. [81] proposed optimal weighting proce-
dures that weight sums and differences of trait values according to the correlation
in trait values among relatives. The Haseman–Elston approach has been extended
to permit analysis of arbitrarily related individuals [5, 69], which is implemented in
the LODPAL module of SAGE.

Figure 3 plots the − log10 p− values of probe sets 210901 s at and 209785 s at
at the 160 markers on chromosome 5, using basic and weighted Haseman–Elston
regression analyses. For this particular dataset, the two methods yield almost identi-
cal results. In all figures, dotted red lines represent results for ENQT-transformed
trait values. It is clear that ENQT has no impact on normal trait 210901 s at,
but changes the signal of nonnormal trait 209785 s at significantly. We used the
SIBPAL module of SAGE to perform the analyses.

2.3 Variance-Components Approaches

Although tests for genetic linkage can be developed by considering the squared pair
differences for the trait values, this transformation can lead to a reduction of power
to detect linkage [91]. An alternative to the Haseman–Elston approach consists of
directly modeling the covariance structure of the data, conditional on the IBD shar-
ing of the relative pairs. This approach can jointly model covariate effects along with
VC. The VC are decomposed into the major genetic component, which is linked to a
genetic marker; polygenic or major genes unlinked to the genetic marker; and non-
genetic sources of variability. If we let πij be the proportion of marker alleles IBD
and vij be the probability of sharing two alleles IBD, then

Cov(Xi, Xj | πij , vij) =

{
σ2

a + σ2
d + σ2

G + σ2
e if i = j

bij(θ, πij)σ2
a + cij(θ, πij , vij)σ2

d +Rijσ
2
G otherwise

For sib-pairs, bij(θ, πij) = 1
2 + (1 − 2θ)2(πij − 1

2 ) and cij(θ, πij , vij) = 4θ2(1 −
θ)2+(1−2θ)2πij +(1−2θ)4vij . When π is estimated from marker data, we use the
estimate in this expression [42]. Table 1 of [6] provides these values for other relative
pairs and [3] provide algorithms for studying extended pedigrees. The effects of all
unlinked genetic factors are captured in the term σ2

G, which denotes the polygenic
component of variance. If multiple marker loci are available for study, however, the
variance component expression can be further partitioned into components for each
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Fig. 3 Basic and weighted Haseman–Elston regression
− log10 p-values of the basic (top two) and weighted (bottom two) Haseman–Elston regression
analyses. Dotted lines are the results for ENQT-transformed data. Results obtained from basic and
weighted Haseman–Elston analyses are numerically, but not visually, different

of the marker loci. When multiple relative pair types are considered, the recombina-
tion fraction can be estimated. An interval-mapping approach [39] usually is used,
however, in which evidence for a genetic effect is studied at multiple markers, and
the strongest evidence for a major locus is taken to be the point where the major
gene heritability, σ2

a, is largest (see the multipoint mapping section below). Gener-
alized estimating equation (GEE) methods [68, 75] can be adapted for the purposes
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Table 2 Bivariate and univariate analyses

Component Estimate Standard error Wald p-value

Bivariate analysis: LRT = 8.48 (rs879253)

Mean 1 10.9182 0.0306 0
Mean 2 6.1513 0.1093 0
Major gene variance 1 0.0150 0.0101 0.0686
Major gene variance 2 0.2420 0.1543 0.0584
Major gene covariance −0.0220 0.0272 0.7906
Polygene variance 1 0.0101 0.0147 0.2463
Polygene variance 2 0.0399 0.2078 0.4238
Polygene covariance 0.0200 0.0285 0.2406
Residual variance 1 0.0371 0.0084 4.8643E-06
Residual variance 2 0.6114 0.1221 2.7825E-07

Univariate analysis for trait 1 only: LRT = 3.54695 (rs879253)

Mean 1 10.9204 0.0304 0
Major gene variance 1 0.0164 0.0104 0.0586
Polygene variance 1 0.0080 0.0148 0.2951
Residual variance 1 0.0378 0.0084 3.5294E-06

Univariate analysis for trait 2 only: LRT = 4.381593 (rs879253)

Mean 1 6.1673 0.1080 0
Major gene variance 1 0.2523 0.1576 0.1107
Polygene variance 1 0.0168 0.2084 0.3977
Residual variance 1 0.6216 0.1221 9.3191E-07

of fitting expressions given by expressions (1) and (2) [10], and robust variance
estimation can be used to provide robust estimates of the variance of each variance
component [10,21,59]. Gessler and Xu [42] found virtually identical results for VC
methods that use IBD sharing expressed either as probabilities of sharing zero, one,
or two alleles or as the proportion of alleles shared.

We have previously used simulation studies to evaluate the power and efficiency
of the Haseman–Elston and VC procedures for varying sample sizes, sibship sizes,
and deviations from the assumptions that the residual nongenetic source of vari-
ance is normally distributed. Table 2 [10] compared the power of Haseman–Elston,
a GEE method, and maximum likelihood estimation assuming normality of the trait.
The GEE method was generally less biased than maximum likelihood, but also had
a higher median squared error. [21] further developed GEE methods for variance
components analysis and derived an approach that is nearly as efficient as maximum
likelihood, but does not require normality.

Power for univariate VC analyses has been studied by simulation studies [6, 10,
40,43,71,76]. Numerous researchers also applied Haseman–Elston and VC methods
in the simulated data as a part of the GAW X [89]. Together, results show similar
power of the VC and FEML methods [44], and both methods are more powerful in
general than the Haseman–Elston method.
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Sample size requirements for linkage analysis depend most heavily on the major
gene heritability of the trait, and effects of less than 10% require a generally pro-
hibitively large sample size. Several investigations have provided analytical power
and sample size by describing noncentrality parameters for univariate VC analy-
sis [83, 90, 91]. For evaluating the effect from a linked genetic factor, [90] find the
noncentrality parameter from a chi-square distribution to be

Λ =
q4

2(4 − h4)2
(4 + h2),

where q2 is the major genetic heritability, σ2
a/σ

2
T . Additional forms, including the

contributions from additional sibs and parents, are given by [15]. These forms
show rather dramatic increases in power for increasing sibship size and particu-
larly for extended families. [20] provided analytical power approximations that can
be applied for large pedigrees.

Although VC methods are generally more powerful than regression methods,
such as the Haseman–Elston or covariance Haseman–Elston methods, they can be
sensitive to normality assumptions. [2] showed that for sib-pairs, when multivariate
normality is assumed but the data are skewed or kurtotic, VC methods have exces-
sively large type I error rates whenever there is correlation among the sib-pairs. As
a particularly bad example, using a Laplace distribution that had a skewness of 0
but a standardized kurtosis of 3, the observed empirical 5% power corresponding
to a theoretical significance of 5% (i.e., the size of the test) was 17% when the
residual sibling correlation was 50%. These results indicate the need to evaluate
distributional assumptions when applying VC methods, the need to develop diag-
nostic tools, and the need for robust VC tools such as least squares estimation [12],
GEE [10, 21, 87], permutation testing [46] and M-estimation [86]. Inferences using
the likelihood ratio test and inappropriately assuming multivariate normality can be
inaccurate when the underlying trait data display either skewness or kurtosis.

As a part of GAW XI, data were distributed for a quantitative trait, MAO-B,
which is correlated with alcoholic behavior and was studied by several groups for
possible linkages. The distribution of the data did not significantly deviate from a
normal distribution, but one family included three individuals with extremely high
values (over ten standard errors beyond the mean) along with two individuals hav-
ing normal levels. Analyses were extremely sensitive to this family [14], and LOD
scores for some genomic regions were much larger when this family was included
than when it was excluded. This finding underscores the need for methods to iden-
tify families that contribute greatly to LOD scores during analysis and also the
potential need to routinely use a robust method in VC analyses. [85] proposed a
data-trimming approach in which extreme observations are replaced by a specified
quantile. For instance, if the data are trimmed to the 99th percentile, then any obser-
vations more extreme than the 99th percentile are replaced by the 99th quantile
of the data. This approach was shown to be more powerful than usual maximum
likelihood VC when the data were influenced by unusual families having extreme
values [22].
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As an alternative approach, [31] proposed replacing the trait observations with
a semiparametric transformation in which the same VC model is assumed, but the
trait that is analyzed is that inverse normal transformation of the data that maximize
the likelihood. This procedure, applied to the GAW XI data, showed only minimal
evidence for linkage and so appears to have provided an accurate assessment of link-
age for this unusually distributed trait. While the approach that they developed was
effective for this situation, it is highly computationally intensive. Therefore, [72]
proposed an alternative approach in which the trait is transformed via a probit trans-
formation to normality as a first step and then the transformed data are analyzed. In
principle, this approach should provide less power than the method of [31], since the
method does not seek to jointly maximize the likelihood with the transformation; in
practice, however, [72] observed little loss in power using their approach compared
to that of [31].

Multilocus methods have been extensively developed for VC methods. Analyt-
ical formulas for epistatic effects of trait loci were provided by [83]. Analytical
procedures for multilocus analysis are available in ACT (see Web Resources), but
have been more extensively developed in the software package SOLAR [3]. When
studying a trait influenced by multiple trait-affecting loci, joint modeling of the
effects will lead to an improvement of power [15]. Although the SOLAR package
is somewhat cumbersome to install and maintain because it uses TCL to integrate
analysis from multiple programs it has a great degree of flexibility in analytical and
modeling schemes. In particular, the user can specify various types of joint effects
of the genotypes of the different loci that are to be modeled. The implementations of
VC procedures vary somewhat among packages. ACT and Merlin do not constrain
VC (other than to assume they are nonnegative). SOLAR requires that the overall
trait heritability be specified and then partitions the linked and unlinked components
of variance to equal the total heritability. A usual approach would be to assume
that the traits have independent effects upon the trait, but various forms of epis-
tasis can also be modeled. Modeling each of these additional epistatic terms will
introduce another variance component. [21] introduced similar multilocus models
using GEE methods that are relatively less sensitive to nonnormality than maximum
likelihood-based methods.

We used Merlin [1] to run VC analyses on the two probe sets, using 160 mark-
ers on chromosome 5. Figure 4 plots the − log10p-values of these two traits. The
dotted lines represent results for the ENQT-transformed dataset. It is clear that
normalization has a strong impact on VC analyses when considering the trait
209785 s at.

In genetic analyses, we often analyze selected samples. For traits that are influ-
enced by uncommon or rare alleles that confer an extreme phenotype, sampling
through individuals with extreme phenotypes (a process named “ascertainment” by
Sir Ronald Fisher) increases the proportion of subjects with the uncommon alleles
in the sample, thus improving the ability to observe segregation within families and
to identify linkages. When samples have been selected for study on the basis of
the phenotypes of one or more individuals, an ascertainment correction is needed
to adequately describe the data. [30] reported results from VC analyses of selected
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Fig. 4 Results of VC method
− log10 p-values of two probe sets of 160 markers on chromosome 5, using VC analyses. The
dotted red lines represent results for the ENQT-transformed dataset

samples when various ascertainment approaches were applied. Failing to perform
any ascertainment correction caused little effect on the linked component of vari-
ance and minimal bias in its estimate, but caused profound biases in the estimates
of the unlinked genetic and residual VC estimates. This finding suggests that requir-
ing the user to specify an overall heritability of the trait (as required by SOLAR)
is not optimal when studying nonrandomly selected pedigrees. Alternative choices
for ascertainment correction include conditioning on the trait values exceeding a
threshold, which is statistically efficient if the threshold has been defined and fol-
lowed carefully, or conditioning on the trait values of the probands. Results obtained
by [30] showed little difference in results between these two corrections if sampling
probands from the tail of the distribution (e.g., upper 5% of trait values), and either
method greatly reduced biases in the nongenetic and unlinked genetic VC estimates.
Ascertainment correction procedures are available in ACT. Ascertainment correc-
tions that are available include correcting for selection of one or two individuals per
family.

An alternative procedure for ascertained samples groups the individuals accord-
ing to whether they exceed user-specified thresholds, and then performs linkage
analysis on the dichotomized data to evaluate whether concordantly extreme relates
show similar marker IBD and discordantly extreme individuals show dissimilar IBD
[93]. Since much of the genetic information useful for a linkage study is indicated
by those subjects with extreme values, this approach to analysis was a reason-
able approach for a preliminary assessment of linkage when marker genotyping
was expensive. An alternative procedure [79] described in the Sect. 2.4 regresses
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IBD sharing onto trait variation and therefore conditions on the ascertainment pro-
cess. This method can be applied effectively when studying samples that have been
collected following complex ascertainment procedures, but requires that the user
specify population parameters such as the overall population mean, variance, and
heritability.

2.4 Model-Free Variance Regression

A different procedure was proposed by [79] in which the proportion of alleles shared
identical by descent among relatives is regressed onto a trait similarity and dissim-
ilarity matrix. Because the trait is conditioned upon, this approach should be less
affected by departures from normality than procedures that condition the trait on
marker similarity. Furthermore, the procedure can in principle be applied to sam-
ples that have been selected because of extreme phenotypes, provided that a valid
population mean, variance, and heritability of the trait are all available.

The regression equation proposed by [79] is

Π̂c = Σ
′

YΠ̂
Σ−1

Y Yc + e,

where Π̂c is the mean-centered vector of pairwise IBD sharing proportions calcu-
lated as Π̂c = Π̂− E(Π), and Yc is the mean-centered vector of stacked pairwise
squared sums and squared differences of standardized traits (Sij = (Xi + Xj)2,
(Dij = (Xi − Xj)2 for i �= j. The vector of squared sums, S, and the vector of
squared differences, D, are collinear for families containing more than two sibs,
since each element of S and D is a linear combination of two squares and a cross-
product, and there are n squares and n(n−1)/2 cross-products (overall n(n+1)/2
elements), whereas there are m = n (n− 1) /2 elements in each of the vectors S
and D (corresponding to the number of pairs among n individuals) [79]. To remove
this collinearity between the vectors S and D, the latter are trimmed by remov-
ing the last n(n−3)/2 elements from it, retaining exactly n elements. This ensures
that collinearity is removed, while each individual is represented at least once. The
trimmed vector D is denoted d. Thus, vector Y, defined as Y = [S,d]

′
, has m+n

elements, instead of 2m, because of the trimming of D; Yc = Y−E(Y). ΣY is the
variance–covariance matrix of the vector Y, and ΣYΠ̂is the covariance matrix of
stacked ΣSΠ̂and ΣdΠ̂. The statistic used in the final linkage testing is denoted as T,

T = Q̂
k∑

i=1

[B′Π̂c]i = Q̂2

k∑

i=1

[B′ΣΠ̂B]i,

where k is the number of pedigrees and Q̂ is the phenotypic variance explained
by the additive effects of the QTL, a scalar weighted across all pedigrees and
calculated as
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Q̂ =

∑k
i=1

[
B′Π̂c

]

i
∑k

i=1

[
B′ΣΠ̂B

]
i

,

where B = HΣ−1
Y Yc, and H constitutes a matrix composed of two blocks stacked

horizontally, the first block being an m×m square matrix with diagonal elements 2
and off-diagonal elements 0, the second block being an m×n matrix subtracted from
a similar square matrix with diagonal elements –2. ΣΠ̂is the variance–covariance
matrix of the IBD sharing proportion vector Π̂.

Simulation studies conducted by [79] showed that, when the trait mean and vari-
ance are correctly specified, this procedure has power equivalent to VC methods and
performs better than VC procedures for nonnormal data. [45] studied an extension
of this method that allows for genetic imprinting (alleles transmitted from one par-
ent are not expressed in the child) and showed that in general the method is very
sensitive to accurate mean and variance specification, but relatively insensitive to
the specified heritability. Another issue in the application of this method as it has
to date been derived is that it does not allow the analyst to jointly adjust for covari-
ates, so that these effects would have to be removed statistically before analysis can
proceed. A procedure for model-free regression analysis is available in Merlin [1],
and analysis can be performed efficiently using multipoint data. Application of this
approach is shown in Fig. 5.

Fig. 5 Result of variance regression
− log10 p-values of two probe sets of 160 markers on chromosome 5, using variance regression
analyses. The dotted red lines represent results for the ENQT-transformed dataset
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2.5 Multivariate Models

FEML methods have been difficult to apply for multivariate phenotypes because of
the large number of parameters that need to be modeled. However, model-free meth-
ods are readily modified for multivariate data. LetXf = (X11, . . . , X1n, . . . , Xmn)′

be a vector of m multivariate trait values for n members of the f th family. Let N
be the total number of families, β a vector of dimension mk of the regression coef-
ficients for the k covariates; Zf = Im ⊗ Zn×m an mn × mk known matrix of
covariate values for the f th family; Vf a variance–covariance matrix of dimension
mn ×mn, with Vf = A ⊗ Gf + B ⊗ πf + C ⊗ If ; Gf the n × n matrix of the
coefficients of relationship for the family; πf an n× n matrix of the estimated pro-
portion of alleles IBD for pairs of related individuals for the f th family; If the n×n
identity matrix; and A, B, and C, respectively, polygenic, major gene, and residual
variance–covariance matrices each of dimensionm×m. The log likelihood for the
data, then, assuming that it arises from a multivariate normal distribution, is

Lf =
N∑

f=1

−
{

1
2

ln(Vf ) − k

2
ln(2π) − 1

2
(Xf − Zfβ)′V −1

f (Xf − Zf )
}

.

Simulations to evaluate the characteristics of multivariate VC procedures have
been completed [13, 33, 63]. These simulations document improvement in power
for most configurations of genetic covariances by using multivariate phenotypes,
and particularly when covariances are oppositely signed because of linked and
unlinked genetic factors. Programs that can perform multivariate analysis using
VC approaches include Mendel [57], ACT [6, 30], and SOLAR [3]. [84] pro-
vided an elegant development of multivariate models for application to structural
equations modeling, with an emphasis on twins or sib-pairs. Structural equation
models have been extensively developed for analysis of twin pairs [19, 67], and
these approaches can assess evidence for linkage while providing very intricate
partitioning of variance.

A regression expression can be formulated to develop a multivariate Haseman–
Elston test, as follows:

E

(
p∑

k=1

(ck(Xik −Xjk))2|πij

)

= α+ βπij .

Estimation of the coefficients c must be subject to constraints to ensure that total
variance of the expression is constant. A conservative test statistic can be formed in
the usual manner for multivariate regression by comparing the ratio of the hypoth-
esis and error sums of squares to an F-distribution having m − 1 and n − m − 1
degrees of freedom. Comparisons that were performed by simulation of multivariate
tests are discussed later. [35] suggested performing a preliminary principal compo-
nents analysis when applying a similar procedure to the covariances among sib-pairs
instead of the sib-pair differences. The purpose of principal components analysis is
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to create variables that are pairwise independent and so simplify the constraints
on the parameters c. However, principal components analysis could also be effec-
tive in eliminating collinearity in the data. To assess collinearity of the data, the
value of each of the eigenvalues from the variance–covariance matrix is assessed.
Collinear variables are extracted in the first few principal components (eigenvec-
tors) and can be retained for analysis, while the last principal components might
be discarded. [61] proposed an alternative approach for modeling multivariate data,
in which they first perform principal components analysis of the traits. The derived
principal components are independent, and these can be tested separately.

One issue in modeling multivariate data is how to perform hypothesis testing.
As suggested by the statistical literature [77], the VC parameters are routinely
constrained to be nonnegative. However, this introduces complexities for hypoth-
esis testing [78]. In the univariate case, the distribution of the likelihood ratio
under the null hypothesis is a 1:1 mixture of χ2

1 and χ2
1 distributions, so that the

p-value can be obtained by simply multiplying the p-value from comparison with a
χ2

1 distribution by 1
2 . For bivariate data, however, the mixing distribution becomes

complex mixtures of chi-square distributions. For principal components analysis
applied to multivariate data from model organisms [61] or from application of the
Haseman–Elston test [36], there are no random components, and the distribution
of test statistics follows a binomial expansion of the number of parameters times
chi-square distributions with the appropriate degrees of freedom. In the bivariate
case, for example, the distribution of the sum of test statistics for principal compo-
nents is given by a 1:2:1 mixture of χ2

2, χ2
1, and χ2

0 distributions. When studying
bivariate data from humans that include random effects, the mixture distribution has
not been derived but has an upper bound described by a 1:2:1 mixture of χ2

3, χ2
1,

and χ2
0 distributions. [4] suggested constraining the major gene covariance to ±1 to

reflect the pleiotropic effects of a major gene. Theoretically, this constraint results in
a 1:1 mixture of chi-squared distributions having, respectively, one and two degrees
of freedom (B. Mangin, 2008, personal communication).

Simulation studies comparing multivariate Haseman–Elston and VC methods
are available in [7]. These results show that the unconstrained and constrained
(pleiotropic) VC models have similar power that is superior to that of the multi-
variate Haseman–Elston and univariate tests for most models. Although the power
of the multivariate Haseman–Elston method was less than that of the VC method, it
was still greater for most models than the univariate VC test and also is computa-
tionally rapid. Power was greatest when the polygenic and major genic correlations
in traits were opposite in sign, as was previously noted for multivariate mapping
studies of inbred mouse lines [50]. Interestingly, when the correlations are equal
and opposite, the marginal correlation between traits is zero. Thus, the naive inves-
tigator cannot rely on the observed correlation among traits to choose traits for study
using multivariate tests. Because the multivariate Haseman–Elston test is computa-
tionally rapid and more powerful than univariate VC tests when the major gene and
polygenic effects have opposite signs, it can still be used as a rapid screen of traits to
identify those warranting further study with multivariate VC tests. Multivariate VC
analysis was applied to the two traits under study in Fig. 6. As the two traits being
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Fig. 6 Result of multivariate VC
Likelihood ratio test of two probe sets of 160 markers on chromosome 5, using multivariate VC
analysis

studied in this example do not have known biological relationships, the results from
this analysis do not increase evidence for linkage, as can be seen in Table 2 which
shows no increase in Wald test for linkage and major gene variance components.

2.6 Joint Linkage and Association Analysis

The statistical methods for linkage analysis discussed so far assume linkage equi-
librium between the trait and marker loci. If linkage disequilibrium is conjectured
with one or several of the marker loci and the trait locus, then specialized proce-
dures are required to partition variance among the main effects due to the marker
locus and residual effects of the genetic locus in the region on interindividual vari-
ability, which is reflected by effects on the VC. [6] provided a framework by which
variability could be partitioned according to effects from the marker on the trait
and effects not associated with a marker locus due to top linkage disequilibrium on
interindividual variability. [41] developed an approach that performed association
analysis by partitioning variability to within sibship and among sibship variabil-
ity. This approach allows identification of associations conditional on the parental
genotypes and performance of association analysis in families allowing for potential
confounding due to population stratification. The approach has been further devel-
oped and implemented in Merlin [1]. Versions of the transmission disequilibrium
test for quantitative traits, in which association due to a marker locus is performed
conditionally on the marker genotypes of the parents, were developed further by [2]
and are reviewed further in the chapter “Family-Based Association Studies”.

3 Discussion

A wide variety of analytical approaches have been described in this chapter for
linkage analysis in humans and other outbred animals. As shown by their applica-
tion to data from probe sets, results from applying different approaches can yield
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somewhat contradictory results, according to the requirements and assumptions of
each method. Therefore, we suggest a hierarchy to the analysis of data. In our experi-
ence, the first step in the analysis of quantitative data should consist of a preliminary
descriptive evaluation of the distribution of the data. Are there extreme outliers? If
so, a first step is to check that these outliers do not reflect coding errors or other
causes for unreliable data. If extreme outliers do exist in the data, do they clus-
ter within a few families? If so, these families may become highly influential in
the analysis unless transformations are effected, such as the ENQT transformation
described here. While ENQT is simple to apply, it should be remembered that in
genetic studies it is occasionally the most extreme subjects who are informative,
and further studies of such extreme subjects may be warranted.

[30] have developed procedures and tools for identifying and characterizing the
origin of linkage signal for quantitative traits, so that influential families, if they
exist, can be identified. In family studies, incorrect assignment of familial relation-
ships can lead to invalid linkage inferences. For example, if a large sibship is studied
and one unrelated individual having different trait values from the rest of the family
is specified as a sibling, then strong false evidence for linkage will occur at all loca-
tions in which the indentity is inferred by descent information suggests no alleles
IBD with the other siblings (which could be much of the genome for a multiallelic
marker). Thus, an additional safeguard against false inference is to preliminarily
check that the reported relationships among subjects are accurately specified, using
available software programs like PREST [64] or RelCheck (see Web Resources).

Another preliminary assessment that should be considered is characterization of
the heritability of the trait being studied. Standard VC programs like ACT, SOLAR,
or MERLIN will provide estimates of heritability. Traits showing low heritability
(e.g., less than 10%) are difficult to map using linkage analysis procedures unless
very large samples or very extensive pedigrees are studied. If nongenetic covariates
have been studied, do these affect interindividual covariation? If so, either they must
be adjusted for prior to analysis or a program that jointly adjusts for these effects
should be used. It is also useful to check whether sex affects the trait of interest
(and it can be treated as a covariate in analyses of autosomes). In analysis of CEPH
cell lines, as another example, it has been noted that samples from Yorubans show
generally higher expression levels of probe sets than samples from Utah, perhaps
reflecting the older derivation of the Utah samples.

Once quality control procedures are completed, further studies may proceed. If
sampling of the families was not based upon any particular phenotype and the data
are approximately normally distributed, VC analysis might be done next, without
transformation. Analyses could be conducted either by using a maximum-likelihood
based approach or by applying score-based approaches. Results of such approaches
will be similar for normally distributed data, but the score-based approaches are
generally not well developed for general pedigrees. If the data are nonnormally dis-
tributed, then the analyst should consider performing more robust analyses first,
such as the Haseman–Elston approach or a score-based procedure or variance
regression, provided data are restricted to nuclear families. If the data comprise
extended pedigrees and the distribution is nonnormal, then a transformation of the
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data such as ENQT can be considered. While this transformation ensures normal-
ity and protects against an excess of false-positive inferences, it may lead to a loss
of information for linkage if those extreme individuals are segregating uncommon
alleles that influence the trait. For approximately normal data, VC procedures can
be applied to identify one or more loci influencing the trait. If multiple loci appear
to be influencing the trait of interest, then analyses to characterize the relationships
among the traits can be conducted. MCMC procedures such as those implemented
in LOKI can be applied to characterize effects from multiple loci.

If the data arise from a selected sample, then VC procedures that allow for ascer-
tainment can be applied, provided the selection process uses at most two individuals
in the families. If more than two subjects per family were used in the selection
process, then the variance regression approach must be used. Implementing variance
regression requires that population means and variances for the trait be specified,
and so the analyst must request this information from the data provider.

If multivariate data are available, the analyst may consider performing multi-
variate analysis. The easiest way to perform preliminary multivariate analysis is to
first perform principal component analysis and then to conduct individual univariate
analyses on the principal components. Once a genetic region of interest is identified,
subsequent multivariate VC analysis can be conducted to characterize the linked and
unlinked components of variance. The multivariate version of the Haseman–Elston
procedure permits a more robust analysis to be conducted to check that results are
not unduly influenced by extreme observations and to narrow analysis, if multiple
traits are being analyzed to a few traits that show higher loadings during the analysis.
Once one or more genetic regions have been identified, further studies can be con-
sidered using multivariate linkage analysis to estimate the components of variance
due to linkage of each trait and the covariance.

4 Web Resources

ACT:

• http://www.epigenetic.org/Linkage/act.html
• http://www.epigenetic.org/Linkage/act.tar.gz

LOKI:

• http://www.stat.washington.edu/thompson/Genepi/Loki.shtml
• http://loki.homeunix.net

LINKAGE:

• ftp://linkage.rockefeller.edu/software/linkage

MERLIN:

• http://www.sph.umich.edu/csg/abecasis/merlin
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SAGE:

• http://darwin.cwru.edu

SOLAR:

• http://solar.sfbrgenetics.org

PREST:

• http://www.stat.uchicago.edu/˜mcpeek/software/prest

RelCheck:

• http://www.biostat.wisc.edu/˜kbroman/software/#relcheck

Genetic Power Calculator:

• http://pngu.mgh.harvard.edu/˜purcell/gpc

Genetic Analysis Workshop:

• http://www.gaworkshop.org, (supported by R01 GM031575)

Kyoto Encyclopedia of Genes and Genomes:

• http://www.genome.jp/kegg

Gene Ontology:

• http://www.geneontology.org
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Markov Chain Monte Carlo Linkage
Analysis Methods

Robert P. Igo, Jr., Yuqun Luo, and Shili Lin

Abstract As alluded to in the chapter “Linkage Analysis of Qualitative Traits”,
neither the Elston–Stewart algorithm nor the Lander–Green approach is amenable
to genetic data from large complex pedigrees and a large number of markers. In such
cases, Monte Carlo estimation methods provide a viable alternative to the exact solu-
tions. Two types of Monte Carlo methods have been developed for linkage analysis,
haplotype inference, and other kinds of genetic analysis. They are Markov chain
Monte Carlo (MCMC) methods and Monte Carlo methods that are based on inde-
pendent samples. Approaches based on Markov chain Monte Carlo methods are
more widely applicable; there is practically no limit on the size or complexity of the
pedigrees, nor on the number of markers to be considered simultaneously. In this
chapter, we will review the basic principles of MCMC methods for multipoint link-
age analysis with extended pedigrees. Both simulations and application to data from
the Framingham study will be used to compare three MCMC software packages:
LOKI, MORGAN, and SIMWALK.

1 Introduction

The search for genetic risk factors of human diseases has focused squarely on com-
plex traits, which run in families but which are not inherited in simple Mendelian
fashion. It has been a decade-long notion, since being foreseen by Risch and
Merikangas [38], that genetic association analysis offers the best hope of map-
ping common genetic variants with small effects. Although genomewide association
scans have indeed surged recently to popularity as technological advances have
made large-scale genotyping more feasible, linkage analysis remains an important
tool. It can be used to identify broad genomic regions that harbor genetic variants
contributing to the genetic influence on the trait. Such information may be used in
follow-up candidate region association mapping or in providing a corroborating line
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of evidence to confirm the existence of genetic influences from genomewide associ-
ation scans. Moreover, linkage analysis offers better power than association analysis
to detect rare disease-causing variants with relatively large effect, which may also
play a role in complex diseases.

To detect loci contributing to complex traits by linkage analysis, it is crucial to
collect and efficiently analyze data that contain maximum information on inheri-
tance. In practice, this entails the use of extended pedigrees, when available, and
analysis of multiple markers simultaneously [50]. There are two main categories of
approaches to linkage analysis: model-based or Identity-by-Descent (IBD) based,
with the former requiring specification of the mode of inheritance and the latter
free of this requirement. When the penetrance model can be specified correctly,
model-based methods are more powerful and offer greater resolution in localizing
disease genes [2]. IBD-based methods, on the other hand, are more robust to model
misspecification, but usually at the expense of reduced power [27]. Computational
demands, however, limit either the size of pedigrees or the number of markers that
can be incorporated into a multipoint linkage analysis with exact computation of
model-based LOD scores, IBD sharing statistics, or IBD-based likelihoods. In this
chapter, we focus on model-based methods and related issues.

The two widely used approaches for exact calculation of multipoint likelihoods
on pedigrees (leading to LOD scores) are the Elston–Stewart algorithm [11] and its
extensions, first implemented in the program LINKAGE [30] for multipoint analysis
and refined in FASTLINK [7] and VITESSE [36], and the Lander–Green algo-
rithm [28], implemented in GENEHUNTER [27]. In recent years, MERLIN [1]
has emerged as the package of choice for many past GENEHUNTER users, partly
due to its versatility and its computational efficiency, as discussed later. The compu-
tational complexity of Elston–Stewart algorithm increases in a linear fashion with
the number of pedigree members, but exponentially with the number of markers.
Multiallelic markers, such as microsatellites, require a vast amount of memory to
allow for all possible haplotypes. Hence, on the one hand, the Elston–Stewart algo-
rithm is usually restricted to analyzing only a few microsatellite markers jointly. The
Lander–Green algorithm, on the other hand, is efficient in the number of markers but
not in pedigree size: the computational demand is linear in the number of markers
but exponential in the number of inheritance bits (defined as twice the number of
non-founders minus the number of founders). GENEHUNTER was originally not
recommended for use on pedigrees larger than 16 bits [27]. MERLIN uses a dif-
ferent algorithm, incorporating sparse gene flow trees, but faces similar limitations
for pedigrees: memory requirement is still exponential in the number of inheritance
bits, limiting the maximum pedigree size to 24 inheritance bits as its default in its
latest release (MERLIN-1.1.1).

The program SUPERLINK, another exact method developed more recently, uses
a Bayesian Networks representation and various tactics to optimize elimination
order [12]. Consequently, it can often accommodate data of greater complexity
and/or size than the above programs. But many real data sets are still too complex to
be analyzed intact by any of the exact algorithms, especially when there are many
markers and a high proportion of untyped individuals [9, 12].
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When the size and/or the complexity of the data become prohibitive for exact cal-
culations, Monte Carlo approaches provide viable alternatives. In a nutshell, Monte
Carlo methods provide consistent estimates of quantities of interest through averag-
ing over samples from some underlying distributions. There are two main classes
of Monte Carlo methods employed in linkage analysis, depending on whether the
samples are independently drawn or whether the samples form a Markov chain
(dependent samples). The latter is usually referred to more specifically as Markov
chain Monte Carlo (MCMC) rather than simply Monte Carlo.

Early Monte Carlo approaches such as gene dropping [35] take independent sam-
ples from a distribution that is not conditioned on observed phenotypic data, and as
such, are rather inefficient. A brief account of the history of Monte Carlo meth-
ods (based on independent samples) in linkage analysis up to the early 1990s can
be found elsewhere [31]. Sequential imputation is another Monte Carlo approach
that does take observed data into account in the sampling distribution [24, 26]. In
addition to LOD score computation, it has been extended to IBD-based linkage
analysis [43] and haplotype analysis on pedigrees [32]. Many MCMC methods for
both model-based and IBD-based linkage analysis have also been developed over
the last decade; see Thompson [48, 49] for reviews and many references therein. In
this chapter, we focus on comparing several MCMC methods on their performance
in estimating LOD scores and drawing inferences based on them.

2 Test Data

2.1 Data from the Framingham study

Permission to use the Genetic Analysis Workshop (GAW) 13 Problem 1 data
was obtained from the Framingham Heart Study (http://www.nhlbi.nih.gov/about/
framingham/index.html). The Problem 1 sample comprises 330 multiplex pedi-
grees, including 2,464 individuals from Cohorts I and II for whom phenotype data
were available [8]. Genome-wide short tandem repeat (STR) marker data on roughly
400 markers (Marshfield screening set 9) were available for 1,702 individuals. This
sample includes numerous large families: the number of inheritance vector bits is
greater than 32 for twelve pedigrees in the sample, and greater than 64 for one pedi-
gree. In addition, two pedigrees contain marriage loops. Hence, linkage analysis on
this data set poses a considerable computational challenge.

A continuous measure of lipid level, TH, was derived from the data on serum
triglyceride (TG) and HDL-cholesterol (HDL) levels. Specifically, TH is the residual
of linear regression of log(TG/HDL) on age, age2, age3, BMI, smoking, and alcohol
use. High values of log(TG/HDL) are associated with the metabolic syndrome [18].
Shearman et al. [41] performed linkage analysis on log(TG/HDL) adjusted for a
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slightly different set of covariates. Although the adjustment for covariates was done
differently, we refer to the trait used in Shearman et al.[41] also as “TH” in dis-
cussions hereafter for ease of reference. TH roughly follows a normal distribution.
The two largest, outlying values were Winsorized downward to be equal to the third
largest.

A binary trait, bTH, was also derived from TH by classifying the top quartile of
TH values as “affected” and the remainder as “unaffected,” following George et al.
[13].

In a genomewide scan of 332 Framingham pedigrees (including the 330 pedi-
grees in our analysis) using variance-components methods, Shearman et al. [41]
reported some evidence for linkage to TH near the q terminus of chromosome 7
(max. LOD score = 2.5 near marker D7S2195, 155 Kosambi cM). Two groups
participating in GAW13, who studied a similar phenotype on the 330 Framingham
pedigrees, also identified regions on chromosome 7q with suggestive evidence for
linkage [15, 20]. Thus, we based the comparison of the MCMC methods on multi-
point linkage analysis performed on chromosome 7 (220 Haldane cM), where data
on 22 microsatellite markers are available.

2.2 Simulated data

To explore in greater depth the similarities and differences, performances of the
MCMC approaches were also compared through analysis of simulated data.
A quantitative trait was simulated with one or two underlying QTLs of known loca-
tions and properties. These artificial data sets were patterned after the Framingham
pedigrees, the 22 chromosome 7 microsatellite markers (locations and allele fre-
quencies), and the TH phenotype. Trait values, together with marker genotypes,
were generated for the 330 Framingham pedigrees, using the genedrop program in
the MORGAN package. The pattern of missing data followed that in the real data.
The trait models were those identified using the Loki package on the Framingham
data, as detailed in Sect. 4.1. Specifically, for one-QTL simulated data, a recessive
QTL situated at 190 cM accounted for 20% of the total variance, and 10% of the
variance was assigned to an additive polygenic component. For two-QTL simulated
data, two QTLs situated at 51.7 cM (QTL1, additive) and 190 cM (QTL2, recessive)
accounted for 20% and 15% of the total variance, respectively, with an additive
polygenic component accounting for 10% of the variance. The remaining 70% and
55% of the trait variability, for the one-QTL and the two-QTL models, respectively,
was assumed to be due to non-genetic factors. Details of the QTL models are given
in Table 1, including the allele frequency for the low-risk allele A (pA), the mean
values of the three genotypes (μAA, μAB, μBB), the QTL genetic variance (σ2

g), the
additive polygenic variance (σ2

poly), and residual variance (σ2
e ).

Some of the MCMC approaches were also applied to simulated binary traits. The
binary indicators of affection status were derived from the simulated quantitative
trait values by designating persons whose measurements fall on the top 25% as
affected, following the same protocol as in the real data analysis.
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Table 1 Quantitative trait simulation models
Genotype Means Var. Comp.

Model pA μAA μAB μBB σ2
g σ2

poly σ2
e

One-QTL
0.6 −0.195 −0.195 1.025 0.2 0.1 0.7

(190 cM)

Two-QTL
QTL1 (51.7 cM) 0.25 −1.095 −0.365 0.365 0.2

0.1 0.55
QTL2 (190 cM) 0.6 −0.169 −0.169 0.888 0.15

3 MCMC Methods and Packages

The MCMC methodology is frequently employed in statistical applications in which
exact calculations are infeasible. In MCMC, dependent samples forming a Markov
chain are generated with the property that the sampling distribution will converge
to the desired target distribution, which may be known only up to a constant. This
limiting property is guaranteed if the Markov chain constructed is aperiodic and irre-
ducible [39]. After discarding realizations in the initial, “burn-in”, period to allow
the Markov chain to converge to the target distribution, the remaining samples can
then be used to make inference about the quantities of interest. This general MCMC
methodology has been adapted and tailored to linkage analysis. In this section,
we provide a brief description of three publicly available MCMC linkage analysis
packages: MORGAN (version 2.8.2), SimWalk2, and Loki (version 2.5.4).

The MORGAN suite of programs for pedigree analysis includes two MCMC
linkage analysis programs: lm markers and lm bayes [16, 47–49]. Both approaches
compute LOD scores from a sample of inheritance vectors conditional on the marker
data or all available data. Sampling of inheritance vectors is through an “LM sam-
pler,” a block Gibbs sampler that consists of both an L-sampler (updating all meioses
at one locus) and an M-sampler (updating all loci for one meiosis) [19, 51]. In
lm markers, the sampling is conditioned only on the marker data, and likelihoods
are computed by the technique of Lange and Sobel [14, 29]. The LOD score is
obtained in the usual fashion by comparing the likelihood at each proposed trait
location to that of an unlinked trait locus. Either binary or quantitative trait data
may be analyzed using lm markers. The inheritance model for continuous traits
accommodates an additive polygenic component in addition to a single diallelic
quantitative trait locus (QTL). This approach has been extended to simultaneous
mapping of two trait loci [46], but the implementation of the two-locus scheme
was not officially released in the most current version of MORGAN. The pseudo-
Bayesian approach of lm bayes estimates LOD scores for a binary trait with a fully
specified model through two rounds of MCMC sampling [13]. A pseudo-prior distri-
bution is constructed in an initial phase of MCMC sampling, and in a second round
of sampling from the posterior distribution, the LOD score is then estimated using
the inverse of the pseudo-prior. George et al. [16] provide a concise summary of the
two-phase MCMC procedure. As both the lm markers and lm bayes programs are
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based on the LM sampler, which requires each pedigree to be single-locus peelable,
the applicability of the programs are limited to not-too-complex pedigrees.

SimWalk2, another model-based LOD-score method, calculates the likelihood
in a fashion similar to lm markers. It differs in using a random-walk algorithm to
sample the inheritance vectors conditional on the marker data [29, 44, 45], which
employs different types of transition matrices between nodes of the Markov chain.
Unlike the LM sampler, this sampler is not restricted to single-locus-peelable
pedigrees, hence it can deal with pedigrees of greater complexities. However,
the trade-off is its slow convergence to the limit distribution, especially in “near
reducibility” situations. SimWalk2 also provides heterogeneity LOD scores and the
fraction α of linked pedigrees in addition to standard LOD scores. SimWalk2, like
lm bayes, applies only to binary trait data and inheritance models with only a single
diallelic trait locus.

The Bayesian oligogenic MCMC program Loki carries out combined oligogenic
segregation and linkage analysis on quantitative traits and employs an approach dis-
tinct from those of the LOD-score methods [19]. No prior specification of the mode
of inheritance is required, as segregation analysis is conducted concurrently to, or
in the absence of, linkage analysis. Reversible-jump MCMC [17] enables the num-
ber of QTLs in the overall model to change during the Loki MCMC run. Hence,
estimation of the number of QTLs is possible as well as their locations – a distinct
advantage in studying complex traits. Loki also uses the LM-sampler for drawing
realizations from the Markov chain, and as such requires the pedigrees to be single-
locus peelable. Although the Bayesian oligogenic approach is highly versatile, it has
unique limitations. Prior distributions must be supplied for some parameters, such
as the number of QTLs, and in general the quantity of data will not be sufficient
to overwhelm their influence on the posterior distribution [52]. Because the dimen-
sionality of the sample space is very high and continually changing, it is difficult to
assess whether a representative sample from the parameter space has been obtained.
Finally, inference under the Bayesian paradigm complicates interpretation and com-
parisons of results with other software, as no LOD scores or frequentist p values are
available.

4 Comparison of Methods

4.1 Analysis Strategies

Among the programs considered, MORGAN and SimWalk2 require the prespeci-
fication of single-locus trait models to compute multipoint LOD scores. SimWalk2
and lm bayes analyze only binary traits, while lm markers can be applied to both
quantitative and binary traits. In what follows, the same binary or quantitative trait
models were applied to all the programs that require them. The penetrances of each
of the three trait genotypes for the binary trait from the Framingham data, bTH, were
derived from applying the same 75% trait value cutoff for affection status to TH as
in Sect. 2.1 and the genotype means of the corresponding continuous trait models.
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For simulated data, penetrances for binary trait data were similarly obtained from
the true models used to generate the simulated continuous trait. These trait models
were supplied to the linkage analysis software for simulated data. In what follows,
we first provide some details on the estimation of the continuous trait models for
TH, and then describe linkage anlayses performed by the three software packages.

4.1.1 Estimation of Segregation Models for TH

Two different approaches, in the absence of any marker data, were employed to
estimate a segregation model for TH. One of them was based on Bonney’s Class D
regressive model [5], as implemented in the program SEGREG in the S.A.G.E.
package, version 5.4 [40]. The two pedigrees containing marriage loops had to be
omitted because they could not be handled by SEGREG.

The other approach was Bayesian oligogenic segregation analysis, which was
performed using Loki [19]. Inference was based on the posterior distribution of the
parameters. The effects of priors on the outcome have been investigated empirically
[52] and the understanding is still evolving [22]. Furthermore, given the complexity
of the Loki model, meaningful summarization of the output requires some thought
on the part of the user. In our analysis, we specified the priors and summarized the
outputs according to the recommendations contained in the above two references.
The number of QTLs, k, was treated as a random variable, and the prior was set
to be a Poisson distribution with mean 2 in our analysis. Each QTL was assumed
to be diallelic, with the genotype effects εAB and εBB parametrized as the differ-
ence between mean trait values for the AB and the AA genotypes (μAB − μAA),
and between those for the BB and the AA genotypes (μBB − μAA), respectively.
Note that in this parametrization,AA is treated as the reference genotype. The allele
A frequency, pA, was assigned a prior Uniform [0,1] distribution. In summarizing
the output from Loki, the high-risk allele was assigned label B. We specified inde-
pendent normal prior distributions for εAB and εBB with mean 0 and variance τβ .
Wijsman and Yu [52] found that a poor selection of τβ would result in slower con-
vergence of the Markov chain. They suggested performing several short MCMC
runs for a grid of values of τβ , and to select for the prior the τβ value that provided
the greatest genetic variance for the QTLs. We followed this suggestion and used
τβ = 1 for the Loki segregation analysis.

The estimates of (pA, εAB, εBB) were obtained from the modes of the joint
trivariate posterior density surface. Genotype effects were then converted to geno-
type means, with the constraint that the overall trait mean be 0. Specifically, in every
iteration of the MCMC run, Loki reports a realization of (pA, εAB, εBB) for each
QTL in the current model. The aggregate of these realizations, pooled across all
QTL models in all iterations, forms the posterior density for the model parameters.
Because the segregation model from a given iteration may contain more than one
QTL, or none at all, the posterior density is not a true probability distribution. Hence,
standard Bayesian estimation from the posterior distribution is not possible. Instead,
a graphical method is used. A surface or contour plot of (εAB, εBB) displays peaks
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of posterior density where major QTLs with similar parameter values were accepted
in the model with high frequency. Estimates of (εAB, εBB) are obtained from each
peak as the pair of genotype effects corresponding to the peak location, or posterior
mode, and pA for each of these models was obtained from the distribution of allele
frequency realizations corresponding to these models in the MCMC runs. Loki pro-
vides, via the loki ext.pl script included with the program, estimates of the total
QTL variance σ2

g and residual variance σ2
e . Specifically, σ2

g is estimated using the
posterior means of the total genetic variance, summed over all QTLs, while σ2

e is
estimated as the total trait variance minus the total genetic variance.

4.1.2 Linkage Analysis Based on Loki

Combined segregation and linkage analysis for quantitative traits was conducted
using Loki for each of the data sets (real or simulated). Priors were chosen as
described earlier. To gauge the evidence against the null model of no linkage,
Bayes Factors (BF) were calculated over 2-cM segments of chromosome 7 from
the posterior distribution of indicator of QTL presence. Bayes Factor is the ratio
of the posterior odds of two competing models vs. the corresponding prior odds.
According to Kass and Raftery [25], the range 1 → 3.2, 3.2 → 10, 10 → 100,
>100 provides evidence against the null model that is scant, substantial, strong, and
decisive, respectively.

4.1.3 Linkage Analysis Based on MORGAN

LOD scores were estimated at the markers and at approximately 2-cM inter-
vals between markers, using both lm bayes and lm markers in MORGAN. Modes
of inheritance were obtained from SEGREG and Loki segregation analysis as
described earlier for the real data. For the simulated data, the generating (true)
model (for one-QTL models) or the marginal model of each QTL (for two-QTL
models) were utilized. Both programs require initial configuration of inheritance
vectors to start the Markov chain sampling. This is obtained via sequential imputa-
tion (SI) method [14] because it has been found to yield “more accurate results” with
lm markers than the alternative independent-locus setup [53]. In addition, lm bayes
conducts an initial MCMC run to estimate the pseudo-prior distribution. The ratio
of run length for finding initial configurations via SI for estimating pseudo-prior
and for burn-in to that for main analysis were specified following the recommended
(default) settings (Table 2).

4.1.4 Linkage Analysis Based on SimWalk2

Similarly, LOD scores were obtained using SimWalk2, using default settings of the
software (see footnote of Table 2). The authors of SimWalk [44] do not recommend
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Table 2 Run length and computational time of the MCMC pedigree analyses

Method No. of Iterations Trait Timea

for inference (burn-in) (hh:mm)

Loki, segregation 50,000 (1,000) Quant. 2:50b

analysis only
Loki, segregation 200,000 (1,000) Quant. 9:44b

and linkage analysis
lm markers 100,000 (10,000) Quant. 18:09c

plus 30,000 SI setup Binary 17:20d

lm bayes 50,000 (5,000) Binary 30:31d

plus 15,000 SI setup
plus 25,000 pseudo-prior

SimWalk2 Defaulte Binary 22:25d

aTotal run time on a 2.9-GHz AMD64 processor, running Linux with job management under a Sun
Grid Engine
bTotal CPU time including nine similar Loki segregation scans for optimizing τβ
cMean of four chromosome 7 scans, run with inheritance models S1, L1, L2, and L3, respectively
dMean of four chromosome 7 scans, run with inheritance models S1-bin, L1-bin, L2-bin, and L3-
bin, respectively
eThe default setting in SimWalk2 is cumbersome to describe in the table format. It involves various
specifications, including the run length, the number of simulated annealing iterations, and the sub-
sampling frequency. Details can be found in the cited references and the software

deviating from these settings, and no comparison of the effects of the choices of
different settings has been published [53].

4.2 Comparison of the Three Linkage Analysis Software

4.2.1 Framingham Data

Segregation Analysis

SEGREG identified a recessive model with a single QTL for TH, with high-risk
allele frequency being 0.27 and the genotype mean for BB being 1.07 (Table 3,
model S1). For the binary trait, bTH, the likelihood surface was very flat near
the maximum, and hence inheritance parameters could not be estimated using
SEGREG. Instead, we used the strategy as described in Sect. 4.1 to derive the corre-
sponding binary trait model, S1-bin, whose detailed specifications are given in the
second segment of Table 3.

From Loki analysis on TH, three major QTLs were identified through visual
inspection of the genotype effects distribution (Fig. 1). The marginal genetic models
for each of these QTLs are given as L1, L2, and L3 in Table 3, together with the
penetrances of their corresponding binary trait models, L1-bin, L2-bin, and L3-bin.
Each of these models was supplied as the sole segregation model to MORGAN and
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Fig. 1 Posterior density of genotype effects from Loki segregation analysis on TH. The relative
posterior density of QTLs fitted into the oligogenic inheritance model (vertical axis, arbitrary scale)
throughout the MCMC run is plotted as function of the genotype effects of genotypes AB and BB

relative to AA, with B denoting the high risk allele. The peaks marked L1, L2, and L3 correspond
to the QTL models in Table 3. (a) surface plot; (b) corresponding contour plot

Table 3 Estimated inheritance models
QTL Modela

Parameter S1 L1 L2 L3

pA 0.728 0.870 0.580 0.240
μAA −0.083 −0.097 −0.232 −0.825
μAB −0.122 0.203 −0.092 −0.144
μBB 1.068 1.643 0.698 0.175
σ2

g 0.094 0.062 0.108 0.067
σ2

e 0.341 0.380 0.334 0.375
Binary Trait Modelb

Penetrancec S1-bin L1-bin L2-bin L3-bin
AA 0.205 0.196 0.138 0.021
AB 0.186 0.367 0.198 0.188
BB 0.874 0.984 0.698 0.357

aS1, model from SEGREG; L1, L2, L3: models 1, 2 and 3 from Loki segregation analysis
bBinary counterparts of the QTL models
cPenetrance is the probability of having the disease, given the genotype at the trait locus

SimWalk2 in subsequent linkage analysis, given that these two programs currently
only accept single-locus trait models. However, it is worth noting that the three
modes of inheritance are interdependent, as they are in fact the effects of the three
QTLs in a single segregation model. These three distinct QTLs are visible as peaks
in the posterior density plot of genotype effects (Fig. 1).

Linkage Analysis

We conducted linkage analysis on the continuous trait TH, using Loki, on the
derived binary trait bTH using lm bayes and SimWalk2, and on both using
lm markers. Loki, lm bayes, and SimWalk2 all detected evidence for linkage to
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line) and SimWalk2 (dashed line), and log10 BF from Loki (heavy solid line) are plotted against
map position in Haldane cM. Tick marks at the top show the locations of the 22 chromosome 7
markers. A thin dotted line indicates the scores expected in the absence of linkage

a region of chromosome 7q (Fig. 2), the former applied to TH (no model specifica-
tion needed) and the latter two applied to bTH (with each of S1-bin, L1-bin, L2-bin,
and L3-bin specified). SimWalk2 gave results nearly identical to lm markers for
binary traits (data not shown), and very similar to lm bayes, both here (Fig. 2) and
in later analyses. For this reason, we present only results from Loki and lm markers
applied to continuous traits, and from SimWalk2 applied to continuous traits. Com-
bined segregation and linkage analysis using Loki yielded substantial evidence for
linkage in two regions of chromosome 7: a broad peak on 7p (max. BF = 8.2 at
57 cM) and a slightly weaker signal on 7q (max. BF = 6.5 at 209 cM). The signal
on 7q resembles a linkage peak previously reported for the TH trait, in both location
and strength [15], and the 7p peak overlaps a signal at 71 cM reported from a vari-
ance component s(VC) linkage scan [41], albeit not extensively. Both lm bayes and
SimWalk2, in analysis of the dichotomized bTH trait, found suggestive evidence for
linkage on chromosome 7q between markers D7S2195 and D7S1805 (Fig. 2; max.
LOD scores = 1.91 at 190 cM and 2.00 at 189 cM, respectively) when L2-bin was
specified as the segregation model. This linkage peak overlaps with the strongest
VC LOD score for TH [41]. Surprisingly, LOD scores from analyzing the contin-
uous TH trait using lm markers remained below zero across all but the q-terminal
10 cM of chromosome 7 (data not shown). Not only did this diverge widely from
the results obtained from the binary trait, it also indicated that the continuous trait
provided less linkage evidence.

Linkage results from SimWalk2 and lm bayes were, in general, robust to the
choice of inheritance model, although strength of linkage signals did vary some-
what (Fig. 3). While model L2-bin yielded the strongest LOD scores (1.9–2.0) in
the 7q linkage region, LOD scores between 1.5 and 1.7 were obtained at the same
location under models S1-bin and L1-bin. However, under model L3-bin, which
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Fig. 3 LOD scores obtained from lm bayes (a) and SimWalk2 (b) under four inheritance models.
Each plot displays the LOD scores under each of these four models (Table 3): S1 (thin solid line),
L1 (thin dashed line), L2 (heavy solid line), and L3 (heavy dashed line)

was markedly different from the others in having a highly negative AA genotype
mean, the peak LOD score in the 190-cM region was only around 0.8. In analysis
of the continuous trait, LOD scores from lm markers remained near or below zero
in the vicinity of the 7q linkage region, regardless of the trait model. However, the
lm markers scan under model L3 found moderate evidence for linkage on chro-
mosome 7p (LOD = 1.33 at 58 cM) near the 7p peak detected by Loki (data not
shown).

Of the four MCMC programs, Loki required the least CPU time to complete a full
analysis of chromosome 7 (Table 2). lm markers needed nearly twice as much time,
whether given binary or quantitative trait data, to conduct the same analysis; and
SimWalk 2 needed more than twice as much as Loki. Slowest of all was lm bayes,
whose analysis under the recommended run length of 100,000 MCMC iterations
lasted roughly 60 h. A run of 50,000 iterations is listed in Table 2 because we found
that halving the run length did not substantially alter the results.
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4.2.2 Simulated Data

As described earlier, we observed intriguing commonalities, as well as stark con-
trasts, in the linkage analysis results from the four MCMC programs on the
Framingham data. To obtain generalizable conclusions, we further carried out simi-
lar analysis on simulated data sets. Simulation was based on the same 330 pedigree
structures as in the real data. Genotype and continuous trait data were simulated for
trait loci (one or two linked QTLs) of known positions and effects, details of which
can be found in Sect. 2.2 and Table 1. The continuous trait was dichotomized in the
same way as that done with the real data to obtain a binary trait. Genotypes for 22
microsatellite markers, with characteristics similar to those on chromosome 7 in the
real data, were then simulated conditional on the genotypes at the trait loci. Because
the samples were generated de novo (i.e., not conditioning on existing trait values),
the information for linkage varied among replicates. This had the advantage of pro-
viding us with linkage signals with a range of strengths, but complicated our efforts
to assess power.

Loki and lm markers were run on the simulated continuous trait, while SimWalk2
and lm bayes run on the derived binary trait. For data simulated from the one-QTL
model, the true QTL model including the correct additive polygenic variance was
given to lm markers, and the corresponding genotype penetrances were given to
SimWalk2, for LOD score computation. For data generated from two-QTL models,
each of the two marginal QTL models was supplied in turn to two separate analyses
carried out using each of the two programs that require mode of inheritance. Con-
sequently, the results from analysis on the simulated replicates represent a best-case
scenario. In what follows, comparison of the performance of the three programs
will be roughly structured into three categories: (1) Consistency among programs
on the overall pattern of LOD score (BF) across the chromosome; (2) Agreement in
magnitude of LOD score (BF); and (3) Ability in detecting the true QTL location.

Linkage Analysis on Data Generated from the One-QTL Model

Figure 4 presents results from five independently simulated data sets with one linked
QTL at 190 cM. The patterns of rises and falls of the LOD score (Bayes Factor)
across the chromosome were similar for all programs, though lm markers exhib-
ited wilder oscillation, with dramatically negative LOD scores in most unlinked
regions. SimWalk2 was least able to locate the true trait locus, failing to detect any
linkage in replicates C and D, whereas both Loki and lm markers provide strong
linkage signals in replicate D and some evidence of linkage in replicate C. Similarly,
although all three programs show some evidence of linkage around the trait locus in
replicate A, SimWalk2 shows a higher linkage peak around 100 cM away from the
true locus. This might reflect that the binary trait contains less information than the
continuous trait, but other unknown factors may also play a role.

It is difficult to compare linkage evidence based on Bayes Factor and that based
on LOD score directly. But overall Loki and lm markers seem to be able to detect
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Fig. 4 Linkage analysis on data simulated from the one-QTL model. Each of the five panels (a–e)
represents results from one simulated data set. Plotted are log(BF) values (heavy solid lines) from
Loki, LOD scores from lm markers for the quantitative trait (thin solid lines), and from SimWalk2
(dashed lines). For clarity, the entire range of negative LOD scores from lm markers is not shown
except for in replicate E. The vertical dotted line marks the position of the QTL

true linkage with good fidelity with the quantitative trait. Loki was able to local-
ize the QTL within 15 cM of the actual position, with the location at maximum
chromosome-wide BF ranging from 177 to 201 cM, regardless of the signal strength.
On the other hand, the peak BF varied from 3.4 (Fig. 4, replicate B) to 135.8
(replicate E). lm markers, despite its much wider range of LOD scores across the
chromosome, seems best in detecting true linkage. It reported LOD scores of at least
1.0 near the QTL in all replicates except in C, and found highly significant evidence
for linkage in replicate E (LOD = 5.11 at 175 cM). Remarkably, all programs agreed
very well in the location of the major linkage signal when substantial evidence for
linkage was obtained (replicate E).
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Fig. 5 Linkage analysis on data simulated from the two-QTL model. The marginal model for
QTL1 (51.7 cM) was supplied. Each of the five panels (a–e) represents results from one simulated
data set. Plotted are log(BF) values (heavy solid lines) from Loki, LOD scores from lm markers
for the quantitative trait (thin solid lines), and from SimWalk2 (dashed lines). Locations of the
QTLs at 51.7 cM and 190.4 cM, are marked with a vertical solid line and a vertical dotted line,
respectively

Linkage Analysis on Data Generated from the Two-QTL Model

Results from linkage analysis on data simulated from the two-QTL model are pre-
sented in Figs. 5 and 6, the former from using the marginal trait model at 51.7 cM
and the latter from that at 190.4 cM. The Loki results in Fig. 6 are identical to those
in Fig. 5, and are shown for clarity. Although the comparison is more complex, now
that there are two regions that house true trait loci, there is remarkable similar-
ity between the conclusions here and those drawn from the one-QTL simulation.
Again, SimWalk2 is least able to detect true linkage, with the LOD scores greater
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Fig. 6 Linkage analysis on data simulated from the two-QTL model. The marginal model for
QTL2 (190.4 cM) was supplied. Each of the five panels (a–e) represents results from one simulated
data set. Plotted are log(BF) values (heavy solid lines) from Loki, LOD scores from lm markers
for the quantitative trait (thin solid lines), and from SimWalk2 (dashed lines). Locations of the
QTLs at 51.7 cM and 190.4 cM, are marked with a vertical dotted line and a vertical solid line,
respectively

near QTL1 than near the QTL2 (replicates A, C, and D) when the QTL1 trait model
was supplied, whereas lm markers shows some evidence of linkage at QTL1 for
replicates B and E. Except for the peak near QTL2 in replicates A and E (Fig. 6),
LOD scores from SimWalk2 never exceeded 1.5. However, note that because these
analyses are marginal ones in the sense that disease loci are searched one at a time,
one may identify a “ghost” QTL in between two real QTLs, especially if the effects
of the two loci are similar. This phenomenon is seen in the results from replicates
C and D (Figs. 5 and 6).

Loki performs well in detecting true linkage. Except for replicate D (where
lm markers also has difficulty), Loki BF profiles from all replicates were domi-
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nated by two prominent peaks corresponding to the two QTLs. Overall, addition of
the second QTL to the simulation model strengthened the linkage signals obtained
from Loki as compared to the single-QTL simulated replicates, due to the greater
proportion of major-gene variance relative to polygenic and residual variance in the
two-QTL samples (Table 1). Nonetheless, Loki was not successful, by and large, in
estimating inheritance parameters accurately in the presence of two QTLs (data not
shown).

Lastly, lm markers, applied to the quantitative trait, also performed well in
detecting true linkage. It was able to find some evidence for linkage (peak LOD> 1)
from most replicates at the generating trait locus. It was able to provide an exceed-
ingly strong linkage signal near QTL2 in replicate E, under both marginal models,
whereas SimWalk2 only provided weak evidence of linkage at locations intermedi-
ate to the two true trait loci. The increase of LOD score from lm markers relative to
that from SimWalk2 at the true trait loci may be due, in part, to the greater informa-
tion available from the original quantitative trait relative to the dichotomized trait,
and the ability of lm markers to accommodate polygenic variance in the inheritance
model. Moreover, only lm markers detected either locus in replicate D, although
Loki provided weak evidence for linkage near QTL1.

5 Conclusions, Recommendations, and Other Considerations

We have compared four MCMC-based programs from three software packages
for model-based multipoint linkage scans of genetic data on complex pedigrees:
Loki, MORGAN (lm bayes, lm markers), and SimWalk2. Comparisons were done
in terms of computational burden, power, and sensitivity to model specification.

The total computational burden was the smallest for Loki. It should be noted,
however, that Loki is highly output-intensive during program execution. Running
Loki on a shared cluster can cause system-wide slowdowns, as Loki frequently
writes output to the user’s account over a network. Scans reported here were per-
formed on a shared cluster, but during low-use periods. The LOD-score programs
do not share this drawback.

Overall, lm bayes and SimWalk2 produced very similar results. In both the
real and simulated data examples, SimWalk2 required less CPU time to run than
lm bayes, even when the MCMC run for the latter was halved compared to the
recommended length. However, it is important to note that there is no built-in
convergence diagnostic tools within either of the program, and as such the rec-
ommended run length may not be appropriate, as the required number of MCMC
iterations to reach convergence may vary among programs with the particulars of
the data and of the specified inheritance model. SimWalk2 and lm markers run on
dichotomized traits returned nearly identical results, but lm markers completed its
analysis in about three-fourths the time required by SimWalk2. The similarity of the
results from SimWalk2, lm markers, and lm bayes, when run on the same binary
trait, are not surprising; they share either the sampling method (lm markers and
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lm bayes) or the inference method (SimWalk2 and lm markers). However, differ-
ences can, and are expected to, occur when the sampling space is more difficult
to explore thoroughly (due to single-locus reducibility or near-reducibility) and/or
when one inference model is more appropriate to capture information contained in
the data.

While lm bayes, lm markers, and SimWalk2 are all methods that can handle
single-gene models (marginal analysis), Loki employs a joint search strategy for
the potential existence of multiple (interacting) loci. This feature distinguishes Loki
from the rest of the methods compared, as it is more powerful when the underlying
genetic model does have multiple loci linked and/or interacting epistatically. This
is indeed a very important feature as it is known that a “ghost” QTL between two
linked true QTLs may result if a marginal analysis strategy (using single-locus mod-
els) is employed. However, Loki has its own limitations, with the greatest being that
the significance of the reported Bayes Factors is poorly understood. A simulation-
based approach for estimating significance levels for Loki linkage peaks has been
developed [23]. The simulation studies conducted there suggested that the loga-
rithm of the Bayes Factor has a roughly linear relationship with the LOD score
from variance-components linkage analysis under an additive model. However, the
procedure is highly computationally demanding and has not been tested extensively.

By the same token, how to interpret evidence from LOD score summaries is just
as important. Although there are many more discussions in the literature on LOD
scores, there does not exist a single consensus, partly due to many complicating
issues, including multiple testing and heterogeneity. As the goal of this chapter is
on comparing and contrasting several MCMC approaches and programs, we did not
make any attempt to set a threshold for linkage declaration. Instead, we reported on
the general behavior of the LOD score (and BF) curves, and compare the maximum
(positive) LOD scores and locations where the maximum occur. In doing so, we
hope to guide the reader to a better understanding of the process of interpreting the
MCMC outputs.

The availability of convergence diagnostics is another important issue. Loki’s
MCMC output is more transparent to diagnostic examination of MCMC mixing.
Various diagnostic plots may be constructed from the raw MCMC output [52].
MCMC convergence in lm bayes was assessed in an earlier study by determining
run length required to stabilize LOD scores and by examining the sensitivity of LOD
scores to different starting conditions [16]. Here, we did examine consistency of the
results under a range of running length, but did not thoroughly test sensitivity to
initial conditions (data not shown).

From our analyses, it appears that lm markers is very powerful under the right
circumstances: specifically, when continuous trait is analyzed and when the mode
of inheritance is correctly specified. lm markers allows an additive polygenic vari-
ance component to be specified in the inheritance model. When such a variance is
present, including the polygenic component has the potential of greatly enhancing
power through accounting for some of the variability (“noise”) beyond that caused
by major genes. However, in complex traits, polygenic variance may be difficult to
estimate in a segregation analysis, and attributing genetic variance from major genes
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to a polygenic variance component may cost power due to model misspecification.
Note that neither SEGREG nor Loki provides an estimate of the polygenic variance,
which is being absorbed by the residual variance. The lower power of the other
two LOD-score methods, and their improved robustness to model misspecification,
may be partly ascribed to the differences in analyzing a continuous phenotype and
a dichotomized version of the same trait.

We started out with quantitative traits for all our data (real or simulated) so
that we can bring Loki into the mix as it is only applicable to continuous data.
Although lm markers can analyze both quantitative and binary traits, lm bayes and
SimWalk2 are only amenable to binary ones, and thus the continuous trait data were
dichotomized. As we have seen in the outcomes and discussed in the previous para-
graph, this process may result in unfair advantage for Loki and lm markers (when
it is applied to the original quantitative trait directly), and thus caution needs to be
exercised in interpreting the relative powers of the various programs. In fact, loss of
power in analyzing a dichotomized trait derived from a continuous trait is well doc-
umented in the literature, and is not a unique phenomenon with MCMC approaches.
However, it is also worth pointing out that exceptions do exist, especially when the
underlying quantitative trait model may be incorrectly specified, as we saw in the
analysis of the real data and as discussed earlier.

Which MCMC program to use is problem- and data-type-dependent, but some
basic analysis strategies are still advisable. If the original trait is quantitative, we
recommend analyzing it as a quantitative trait using Loki and/or lm markers, rather
than dichotomizing it, to retain greater power. However, if the original data are
binary, then any one of the three, lm markers, lm bayes, or SimWalk2, can be used,
which would likely give similar results for many types of data. And as such, the
choice may boil down to ease of program usage and computational intensity. For
an analysis using any of these three programs, a disease model needs to be speci-
fied. If the trait is quantitative, then Loki segregation analysis may be performed to
identify the marginal models. As currently implemented, Loki does not perform any
ascertainment correction. Nonetheless, segregation analysis using Loki is still valid
for population-based samples such as the Framingham pedigrees. For a binary trait,
programs such as SEGREG are needed to obtain an approximation model. As any
model obtained from a segregation analysis is only an approximation, sensitivity
analysis of the results to changes in the model is advisable. Also, as lm markers,
lm bayes, and SimWalk2 are currently only applicable to single-locus models, if
marginal analysis leads to interesting regions, then an analysis that allows for mul-
tiple disease loci clearly needs to be carried out. Finally, it is important to note that
if the data can be analyzed with an exact calculation program, then MCMC should
not be attempted.

Some comparisons of these MCMC methods have been carried out previously.
Loki and lm bayes were compared in GAW13 [15] using traits similar to TH. While
this previous study found stronger evidence from Loki than we did, our inheritance
model L2-bin yielded greater maximum LOD scores from lm bayes. These contrasts
could be explained by difference ways in adjusting the phenotype for covariates,
and by difference in selection of parameters for the Loki analysis (for instance, τβ).
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Loki and lm markers reported similar results in a chromosomal region with strong
suggestive evidence for linkage to a real-word reading phenotype associated with
dyslexia [21].

As an aside, we also attempted an exact LOD-score analysis of the real, bTH, data
using SUPERLINK, but the program was unable to complete the calculations when
more than two markers were included. When genotypes were supplied for the two
markers flanking the LOD-score peak on chromosome 7q, D7S2195 (187.4 cM) and
D7S1805 (194.8 cM), SUPERLINK reported a LOD score of 1.48 at D7S2195 (data
not shown), slightly lower than the peak LOD scores from lm bayes and SimWalk2.

Genotyping for genomewide linkage scans has shifted toward panels of single-
nucleotide polymorphisms (SNPs), including the Illumina IVb and the Affymetrix
Mapping panels, as inexpensive, high-throughput techniques for SNP genotyping
have become available. Relatively much less is known as to how these dense marker
maps will affect MCMC-based linkage analysis. In the case of Loki, one report has
suggested that dense arrays of SNP markers may cause difficulties in MCMC mix-
ing, and in consequence, inconsistent results across analyses [42]. In a comparison
between lm markers and SimWalk2, lm markers was considerably more efficient
and provided more accurate LOD scores, while these differences were largely absent
with microsatellite markers [53].

Throughout this chapter, we have mainly focused on comparing MCMC meth-
ods for model-based linkage analysis, and the programs selected are those that have
been most tested and deemed most reliable. However, this focus is extremely nar-
row in light of a wealth of other Monte Carlo approaches and programs in linkage
analysis. Also, as alluded to earlier, Loki, lm bayes, and lm markers all require that
the pedigrees be single-locus peelable, which limits their applicability to extremely
complex pedigrees. In such cases, even finding a starting point for the Markov chain
can be extremely challenging and special algorithms are needed for such a task [34].

Other than Loki, all the other programs tested are applicable only to models that
specify the mode of inheritance of a single major gene locus. However, for complex
traits, there are usually multiple genes in action, and an explicit multilocus analysis
(either a joint or a conditional approach) would be more powerful. Readers who
are interested in various MCMC approaches for two-locus analysis are referred to
discussions elsewhere [4, 31, 33, 46].

In the same vein, correct specification, or even just good approximation, of the
model of a complex trait is usually extremely difficult, and as such, IBD-based meth-
ods may be preferred. Monte Carlo methods for IBD-based linkage analysis can be
found in the literature (e.g., [43, 49]). Another complication for analyzing complex
traits is locus heterogeneity, which is one of the causes for poor replicability of
positive linkage results, and has been treated in various ways, including Bayesian
approaches (e.g., [3]). For the four programs compared, only SimWalk2 has a pro-
vision for detecting and accounting for heterogeneity. Finally, it is worth noting
that the above by no means provides an exhaustive list of Monte Carlo approaches
to linkage analysis. There are also many Monte Carlo approaches for tackling other
topics in genetic mapping related problems, including, but not limited to, population
structure inference [37] and association mapping [6, 10].
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6 Web Resources

S.A.G.E. http://darwin.cwru.edu/sage
MORGAN and Loki.
http://www.stat.washington.edu/thompson/Genepi/Pangaea
SimWalk2. http://www.genetics.ucla.edu/software/Simwalk
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Population-Based Association Studies

Xiaofeng Zhu and ShuangLin Zhang

Abstract Population-based association studies have been playing a major role in
mapping genes affected complex diseases. The advantages of population based asso-
ciation studies include greater efficiency in sample recruitment and more power than
family-based studies. However, population-based association mapping may lead to
false positive findings if population stratification is not properly considered. In this
chapter, we will review population-based association mapping methods that can
control false positive rate due to population stratification. These methods include
logistic regression, genomic control, structure association, and semi-parametric
approaches. We will apply these methods to a simulated data set and illustrate the
advantages and limitations of these methods.

1 Introduction

Population-based association studies have been considered more powerful than
family-based linkage studies in the genetic dissection of complex diseases [1, 2].
Population association between genotype at a locus and disease can arise in three
ways: (1) the genotype at the locus directly causes the disease; (2) the locus itself
is not causal, but is in linkage disequilibrium with a causal locus; (3) population
stratification or admixture [3]. In genetic epidemiology, we are interested in the
association aroused in the first two cases, but try to avoid the third association,
which has little scientific interest. When the studied samples come from an admixed
population and cases and controls have different ancestry distribution, the third asso-
ciation can be created between a genetic marker and the disease [4,5]. For example,
a well-known study of type II diabetes mellitus and Gm3;5,13,14 in American Indi-
ans suggested the association when analysis was performed in whole sample, but no
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association when analysis was restricted to subjects of full Indian heritage, suggest-
ing the confounding of the disparities of the European ancestry in diabetes group
and controls [4]. Even in a relatively homogenous population such as European
Americans, subtle population stratification can still result false positive findings, as
demonstrated by the association of human adult height and a SNP in lactose gene
that is due to the admixture of southern and Northern Europeans [6]. The effect of
population stratification becomes even more problematic in whole genome associa-
tion studies in which a large sample size is usually required to have enough power
[7]. To overcome such a problem, alternative statistical methods have been sug-
gested, including family-based designs that utilize family members as controls [8,9].
Although it is immune to population stratification, a disadvantage of family-based
designs is the difficulty to recruit enough desired families, therefore limits the sta-
tistical power. The case–control design is widely used in epidemiology studies and
recently this design is also favored in studying the association between disease and
a locus. Statistical methods such as comparing the allele frequencies between cases
and controls or logistic regression can be applied. However, these methods will also
detect the third kind of association arose by population stratification. Thus, methods
using a set of unlinked genetic markers typed in the same samples to control for the
effect of the population stratification have been proposed. There are three kinds of
approaches: (1) The “genomic control” (GC) method [10]; (2) Structure Association
[11–13]; (3) Principal component approaches [14–17]. In this chapter, we will use
a simulated data to illustrate the three methods.

2 The Data

We will use a simulated data set throughout the chapter. To provide a reasonable
framework for the simulations, we accessed a panel of SNPs that are ancestry infor-
mative for African American population across the genome reported by Smith et al.
[18]. The allele frequencies of the SNPs and the marker map for both the African and
European populations were downloaded from www.journals.uchicago.edu. Briefly,
at the first generation the marker genotypes of 10,000 unrelated people were sim-
ulated according to the marker allele frequencies in African population assuming
HWE and independence of the markers. An admixed population was then formed
by taking a proportion λ randomly selected from African population to marry with
people generated according to the marker allele frequencies in European popula-
tion, with the remaining proportion 1 − λ randomly mating among them. We let
λ be drawn from a uniform distribution between 0 and 0.08. The number of chil-
dren produced by each marriage was assumed to follow a Poisson distribution with
mean size 2. The number of crossovers between two marker loci at a distance
d cM was assumed to follow a Poisson distribution with mean d/100. This pro-
cess was repeated in the following generations. All the samples were drawn from
the fifth generation. To simulate which individuals are affected, we selected a dis-
ease marker (SNP1) located at the middle of chromosome 1. The penetrances of
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Table 1 Distribution of the simulated two SNPs in cases and controls. SNP1 is the disease locus
and SNP2 is associated with disease because of population stratification

SNP1

Genotype Cases Controls Odd ratio p-value Allele Cases Controls Odd ratio P-value
d/d 148 221 d 542 657
d/D 246 215 1.71 0.00015 D 458 343 1.62 1.53×10−7

D/D 106 64 2.47 1.53 × 10−6

Total 500 500 – 1,000 1,000
SNP2
0/0 32 47 0 259 312
0/1 195 218 1.31 0.273 1 741 688 1.30 0.0087
1/1 273 135 1.71 0.029
Total 500 500 – 1,000 1,000

the disease genotypes were 0.2, 0.15, and 0.1 for carrying genotype DD, Dd, and
dd, respectively. For the association analysis, we also examined an SNP located on
a different chromosome from SNP1. We selected 500 cases and controls, respec-
tively. Table 1 presented the genotype and allele frequencies for these two SNPs. In
addition, we also simulated 1,000 SNPs using for control population stratification.

2.1 Association of a Genetic Marker and a Disease

Considering a widely used case–control design, assume there are two alleles at
the disease locus with risk allele D and normal allele d, and allele frequencies
PD and Pd. Denote π(1)

DD, π
(1)
Dd, and π(1)

dd be the frequencies of genotype DD, Dd,
and dd in cases, respectively. Similarly, the frequencies of the genotype in con-
trols are π(0)

DD, π
(0)
Dd, and π(0)

dd . The genotype frequencies in cases and controls are
summarized in Table 2. Let f0, f1, and f2 denote the penetrances of genotypes
dd, Dd, and DD. That is f0 = Pr (Disease|dd) , f1 = Pr (Disease|Dd), and
f2 = Pr (Disease|DD) with f2 ≥ f1 ≥ f0. The association between the disease
and the genotype can be measured in terms of odds ratios [19], which are

θDd =
π

(1)
Ddπ

(0)
dd

π
(0)
Ddπ

(1)
dd

and θDD =
π

(1)
DDπ

(0)
dd

π
(0)
DDπ

(1)
dd

.

These odds ratios are measured relative to genotype dd. When θDd = θDD = 1,
there is no association between the locus and disease. We should notice that each
individual carries two alleles. When a population is in Hardy–Weinberg equilibrium
(HWE), that is, an individual’s two alleles are independent, we can also measure
the association through the alleles, as illustrated in Table 3. Allelic association can

be estimated by the odd ratio: θD = P
(1)
D P

(0)
d

P
(0)
D P

(1)
d

. As an example of the data simulated
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Table 2 Contingence genotype of a case-control study

Genotype Cases Controls Odds ratio

Freq Count Freq Count

dd π
(1)
dd n

(1)
dd π

(0)
dd n

(0)
dd

Dd π
(1)
Dd n

(1)
Dd π

(0)
Dd n

(0)
Dd θDd

DD π
(1)
DD n

(1)
DD π

(0)
DD n

(0)
DD θDD

Total 1 n(1) 1 n(0)

Table 3 Contingence table of allele frequency table of a case–control study

Allele Cases Control Odds ratio

Freq Count Freq Count

d P
(1)
d 2n

(1)
dd + n

(1)
Dd P

(0)
d 2n

(0)
dd + n

(0)
Dd

D P
(1)
D 2n

(1)
DD + n

(1)
Dd P

(0)
D 2n

(0)
DD + n

(0)
Dd θD

Total 1 2n(1) 1 2n(0)

in Table 1 for SNP1, we estimate the odds ratios θDd = 1.71, θDD = 2.47, and
θD = 1.62, respectively.

When a marker locus M with alleles A and a locates closely to the disease locus,
the association between locus M and the disease locus can be aroused through link-
age disequilibrium (LD). LD refers to the nonrandom association of alleles between
nearby loci and is the basis of association mapping for complex traits [20–22].
Denoting the allele frequencies of A and a in the population as PA and Pa. Denoting
the frequencies of four haplotypes DA, Da, dA, and da as PDA, PDa, PdA, and Pda,
respectively. One of the commonly used measures of LD is Δ [22]:

Δ = PDA − PDPA.

For the marker locus M , we can lay a similar Tables 2 and 3 through replacing D
and d by A and a, respectively. Similarly, we denote θAa and θAA the odds ratios
relative to genotype aa, and θA the odds ratio of A to a. Association may also be
present when the disease and marker loci are in different chromosomes because
of population admixture. For example, the simulated SNP2 in Table 1 has θAa =
1.31, θAA = 1.71, and θA = 1.30 although it is not on the chromosome SNP1
located. When θAa = θAA = 1 or θA = 1, we say there is no association between
locus M and the disease. The odds ratios of marker locus M can be expressed as the
function of the odds ratios at disease locus and linkage disequilibrium coefficient
Δ. To illustrate this, we have

θA − 1 =
P

(1)
A P

(0)
a

P
(0)
A P

(1)
a

− 1 =
P

(1)
A − P

(0)
A

P
(0)
A P

(1)
a
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=
Pr (DA|disease) + Pr (dA|disease)−Pr (DA|normal) − Pr (dA|normal)

P
(0)
A P

(1)
a

× 1

P
(0)
A P

(1)
a

[
Pr (disease|D)P (DA) + Pr (disease|d)P (dA)

P (disease)

−Pr (normal|D)P (DA) + Pr (normal|d)P (dA)
P (normal)

]

.

By using P (DA) = Δ +P (D)P (A) and P (dA) = −Δ +P (d)P (A), we have

θA − 1 =
Δ

P
(0)
A P

(1)
a

[
Pr (D|disease) − Pr (D|normal)

PD

−Pr (d|disease)− Pr (d|normal)
Pd

]

=
Δ

P
(0)
A P

(1)
a

[
P

(1)
D − P

(0)
D

PD
− P

(1)
d − P

(0)
d

Pd

]

=
Δ
(
P

(1)
D − P

(0)
D

)

P
(0)
A P

(1)
a

[
1
PD

+
1
Pd

]

= Δ(θD − 1)
P

(0)
D P

(1)
d

P
(0)
A P

(1)
a PDPd

= (θD − 1)
Δ

√

P
(0)
A P

(1)
a PDPd

P
(0)
D P

(1)
d√

P
(0)
A P

(1)
a PDPd

(1)

It implies that θA = 1 is equivalent to Δ = 0 because of θD �= 1. It also suggests that
testing association of contingence Tables 2 or 3 between a marker locus and disease
locus is equivalent to testing for the linkage disequilibrium between a marker locus
and the disease locus. For a common disease, the middle part of (1) approximates to
the correlation between a marker and disease locus.

2.2 Testing for Association When No Population
Stratification Is Present

Section 2.1 suggests that we can test the association between a marker and disease
using the contingence Tables 2 and 3. However, for the association test to be valid
for Table 3, HWE at marker locus is also required [23]. In general, we can view the
columns of cases and controls in Tables 2 or 3 as two multinomial distributions. We
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can then test the association by testing for the equivalence of the two distributions
under the null hypothesis. The log-likelihood of Table 2 for the observed genotype
counts is

L =
3∑

i=1

n
(1)
i log π(1)

i +
3∑

i=1

n
(0)
i log π(0)

i ,

where π
(1)
1 , π

(1)
2 , π

(1)
3

(
π

(0)
1 , π

(0)
2 , π

(0)
3

)
and n

(1)
1 , n

(1)
2 , n

(1)
3

(
n

(0)
1 , n

(0)
2 , n

(0)
3

)

denote the frequencies and counts of the three genotypes in cases (controls). The
null hypothesis of no association is π(1)

i = π
(0)
i for all i, which is equivalent to

θAa = θAA = 1. Either maximum likelihood ratio test or score test (Pearson Chi-
square test) can be applied for testing the null hypothesis [19]. The corresponding
two test statistics for the null hypothesis are

LRT = 2
∑

i

n
(1)
i log

(
n

(1)
i /n̂

(1)
i

)
+ 2

∑

i

ni
(0) log

(
n

(0)
i / n(0)

i

)
, (2)

X2
2 =

∑

i

⎡

⎢
⎣

(
n

(1)
i − n̂

(1)
i

)2

n̂
(1)
i

+

(
n

(0)
i − n̂

(0)
i

)2

n̂
(0)
i

⎤

⎥
⎦ , (3)

where n̂(1)
i and n̂(0)

i are the expected frequencies under the null hypothesis and can

be calculated by n̂(1)
i =

n(1)
(

n
(1)
i +n

(0)
i

)

n(1)+n(0) and n̂(0)
i =

n(0)
(

n
(1)
i +n

(0)
i

)

n(1)+n(0) , respectively.

Both test statistics asymptotically follow a chi-square distribution with two degrees
of freedom. For the SNP1 in Table 1, we calculated LRT = 27.11 andX2

2 = 26.90,
corresponding to p-values 1.3 × 10−6 and 1.44 × 10−6, respectively. Similarly, we
calculated LRT = 6.99 andX2

2 = 6.97 for SNP2, corresponding to p-values 0.0303
and 0.0306, respectively.

When the genotypes satisfy HWE, we can test the association by testing the inde-
pendence of Table 2, which is the same as to test the equivalence of two binomial
distributions between cases and controls. The one degree of freedom chi-square test
for association is

X2 =
2
(
n(1)+n(0)

) [(
n(1)+n(0)

) (
2n

(1)
DD+n

(1)
Dd

)
− n(1)

(
2n

(1)
DD + n

(1)
Dd + 2n

(0)
DD + n

(0)
Dd

)]

2n(1)n(0)
(
2n

(1)
DD + n

(1)
Dd + 2n

(0)
DD + n

(0)
Dd

) (
2n

(1)
dd + n

(1)
Dd + 2n

(0)
dd + n

(0)
Dd

) .

(4)

Under the null hypothesis, this statistic approximately equals to the Armitage’s
trend test statistic obtained from Table 1 [23,24]. For the SNP1 and 2 in Table 1, we
first tested the HWE for both SNPs in pooled cases and controls by a chi-square test
and did not observe any departure from HWE (SNP1, p = 0.206, SNP2, 0.694).
We then calculated the X2 values 27.54 and 6.89, corresponding to p-values 1.54×
10−7, and 0.0087 for SNP1 and SNP2, respectively.
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2.3 False Positive Can Be Aroused When Population
Stratification Is Present

Consider a case–control design, in which each sampled individual is actually a mem-
ber of one of two subpopulations, but ignored the individual’s origin in the analysis.
Assume a marker locus with two allele A and a and not associated with a trait.
Let ri, νi, and pAi be the probability of sampling an individual, the disease preva-
lence, and A allele frequency from ith subpopulation, respectively. The probability
of sampling an affected individual from subpopulation i is νiri

ν1r1+ν2r2
. Similarly, the

probability of sampling a normal individual from subpopulation i is (1−νi)ri

1−ν1r1−ν2r2
.

Under the assumption of the independence of the marker locus and disease, the A
allele frequency difference between cases and controls is

Pr (A|Disease)− Pr (A|Normal)

=
2∑

i=1

[
Pr (A|subpop i) Pr (subpop i|Disease)

−Pr (A|subpop i) Pr (subpop i|Normal)
]

=
r1r2 (pA1 − pA2) (ν1 − ν2)

(ν1r1 + ν2r1) (1 − ν1r1 − ν2r)
.

Thus, as long as pA1 �= pA2 and ν1 �= ν2, the A allele frequency between cases and
controls is different, resulting in false positive finding in association studies even the
marker is independent of disease. When the sample size is increased, the problem
is even worse [7]. In practice, association studies in populations such as African-
Americans or Hispanics may be particular to pay attention to population structure.
In our simulated data, SNP2 is not associated in the trait in European and African
ancestral populations, however, we observed the association in the sample from the
admixed population.

3 Genome-Control Approach

One approach to control for population stratification is the genome-control approach
(GC) approach proposed by Devlin and Roeder [10] and was further investigated
by other investigators [25–28]. This approach requires additional genotypes at M
unlinked biallelic markers to control the effect of population stratification. In current
whole genome association studies, the markers for controlling population stratifica-
tion can be selected from the available markers because such kinds of studies will
often genotype 100 K or more SNPs. In the presence of population stratification, the
test statistics presented so far may not follow chi-square distributions under the null
hypothesis of no association. For example, theX2 test, given by (4), may not follow
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a chi-square distribution with one degree of freedom when population structure is
present. The GC approach simply rescales the statistic by a multiplicative factor λ,
and the recalled statistic X2/λ follows a chi-square distribution with one degree of
freedom. The unlinked marker genotype data can be used to estimate the factor λ.
LetX2

1 . . . X
2
M be the values for theX2 statistic atM unlinked markers. Devlin and

Roeder [10] proposed to use the median of {X2
1 . . .X

2
M}/0.456 as an estimate of

λ. Alternatively, Reich and Goldstein [27] proposed to use the mean of X2
1 . . .X

2
M

to estimate λ. The GC approach is computationally simple, and it allows for a large
number of potential subgroups (i.e., it works well with very fine-scale substructures
[10]). It can be undertaken with pooled DNA samples, which can be substantially
less expensive than the individual genotyping. An investigation of power indicates
that the GC approach can generally be more powerful than the TDT when the same
sample sizes are the same [25].

We simulated 1,000 unlinked SNPs using the same method in the data section.
The mean and median of X2 statistic values of the 1,000 SNPs is 1.17 and 0.52.
The rescaling parameter λ estimated using median and mean is similar. Using the
estimate by the mean of the X2 values, the rescaled X2 statistic value for SNP1
and SNP2 are 23.6 and 5.9, corresponding to p-values 1.19 × 10−6 and 0.015,
respectively.

4 Structured Association Approach

Pritchard et al. [12] proposed an approach called “structured association” (SA),
which contrasts with the GC method [11]. SA uses a set of independent genetic
markers to estimate the number of subpopulations based on a Markov chain Monte
Carlo (MCMC) method and the ancestry probabilities of individuals from puta-
tive “unstructured” subpopulations [12]. This information is then used to test for
association. When the number of subpopulations is large, the simulation-based test
statistic becomes computationally intensive, especially for genome-wide associa-
tion analysis. Satten et al. [13] extended it by applying latent-class analysis to
infer the population structure while simultaneously estimating the model parame-
ters and testing for association. Other similar approaches including the extension to
quantitative traits were also discussed by Zhang et al. [28, 29] and Hoggart et al.
[30]. There are two approaches to infer the population structure; one is Bayesian
approach that uses Markov Chain Monte Carlo (MCMC) to estimate the parameters
[12,30], the other is the maximum likelihood likelihood approach based on mixture
models [13,17,29]. We introduce STRuctured population Association Test (STRAT)
proposed by Pritchard et al. [12] here.

We assume a case–control study and M unlinked markers are genotyped. The
STRAT includes two steps. First, a Bayesian clustering method is used to deter-
mine both the number of subpopulations and the fraction of the sampled individual’s
ancestry in each subpopulation. Specifically, assume that sampled individuals inherit
their marker alleles from a pool of K unstructured subpopulations (where K may
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be unknown). The allele frequencies at each locus within each subpopulation are
assumed to be unknown and need to be estimated. Let qik denote the proportion
of the i th individual’s genome originated from subpopulation k. Using the geno-
types of n sampled individuals at M unlinked markers, Pritchard et al. and Falush
et al. [31] proposed an MCMC approach to estimate the parameters: the number
of subpopulations K , and Q = {qik : i = 1, . . . ,M ; k = 1, . . . ,K}, the allele
frequencies at each locus within each subpopulation. The method can be applied
to most of the commonly used genetic markers, including microsatellite markers
and SNPs, and can produce accurate results using modest numbers of markers. The
accuracy of the inference depends on the sample size, the number of markers used,
and the magnitude of allele-frequency differences between the subpopulations. In
the second step, a likelihood ratio test, based upon the detailed population struc-
ture, is used to test a null hypothesis H0 that subpopulation allele frequencies at
the candidate locus are independent of phenotype, against an alternative hypothesis
H1; where the subpopulation allele frequencies at the candidate locus are associ-
ated with phenotype. Let G denote the list of genotypes of all sampled individuals
at the candidate locus, and P0 and P1 denote subpopulation allele frequencies at the
candidate locus under H0 and H1, respectively. The statistic is the likelihood ratio

Λ (G) =
Pr1

(
G; P̂1, Q̂

)

Pr0
(
G; P̂0, Q̂

) ,

where Pr0
(
G; P̂0, Q̂

)
and Pr1

(
G; P̂1, Q̂

)
are the distributions ofG underH0 and

H1, respectively, and P̂0, P̂1, and Q̂ are the estimates of P0, P1, and Q, and the
values of P̂0, P̂1, and Q̂ can be obtained from the MCMC procedure in the first
step.

The p-value of this test is evaluated by the following simulation procedure: Gen-
erate new genotypes at candidate locus underH0 for each individual as independent

random draws from Pr0
(
·|; P̂0, Q̂

)
. Repeat this procedure B times, and obtain

genotype data set G(1), . . . , G(B). The empirical p-value is given by

p− value =
1
B

#{b : Λ
(
G(b)

)
> Λ (G)}

where #A denotes the number of members in set A. Simulation studies show
that this method can control the population stratification provided the number
of unlinked markers is large enough, and it is more powerful than TDT test in
most of the cases. One of the difficult problems is the estimation of the num-
ber of subpopulations K; especially when there are a large number of potential
subgroups [11].

We performed the SA analysis for the data in Table 1. We first estimated the
number of subpopulations using the simulated 1,000 SNPs. We chose 100,000 repli-
cations after burnin length 100,000 in analysis using STRUCTURE. We obtained
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the log probabilities of the data given numbers of subpopulations 1, 2, and 3 are
−1735367.3, −1534082, and −1535688.0, respectively. Thus, the posterior proba-
bility of 2 subpopulations model is close to 1 assuming a uniform prior on 1, 2, and
3 subpopulations, suggesting a model with 2 subpopulations has the best fit. Using
the information obtained from STRUCTURE we performed the association test for
both SNP1 and 2, and we obtained the corresponding p-values <10−6 and 0.048
based on 1000,000 permutations, respectively.

5 Methods Based on Principal Components (PC)

The principal components of genetic marker data have been used for characterizing
population differences [32] and recently have been applied to correcting population
stratification in genetic association studies. The central idea is that an individual’s
genetic background can be represented by his/her genetic markers, which can be
summarized using the principal components of marker data. The principal compo-
nents can then be incorporated into a statistical model in analysis. For instance, we
can model the association between a trait Y and genetic marker g using a generalized
linear model

f (E (Y )) = βg + μ (T ) + ε,

where f (E (Y )) is a link function, μ (T ) a function of principal components
obtained from marker data, and ε is a random error. Several methods have been
proposed to control for population stratification by using the principal compo-
nents obtained from a set of unlinked markers. Zhu et al. [17] modeled μ (T ) in
a mixture model incorporated in the logistic regression, while Chen et al. [14]
and Zhang et al. [16] proposed semi-parametric approach using kernel smoothers,
and Price et al. [15] directly considered a linear function of T , which is a spe-
cial case of Chen et al. [14] and Zhang et al. [16]. Consider a case control study
with n(1) cases and n(0) controls. The M unlinked markers for controlling popula-

tion stratification are represented by a matrix X =
(
X1, . . . , Xn(0)+n(1)

)T
, where

Xi = (xi1, . . . xiM )T
, i = 1, . . . , n(0) + n(1), xim is the genotype value of the

mth marker for the ith individual and its values are 0, 1, and 2 for marker geno-
types 11, 12, and 22, respectively and the superscript T represents a transpose of a
vector or matrix. The sample covariance matrix of marker data is Σ = Cov (X) =
n(0)+n(1)

∑

i=1

(
Xi − X̄

) (
Xi − X̄

)T
, which is anM×M matrix. Let ej be the jth eigen-

vector corresponding to the jth largest eigenvalue of Σ. The corresponding PC for

the ith individual is tij =
(
Xi − X̄

)T
ej . Let Ti = (ti1, . . . , tis) be the first few

PCs, where s ≤ M . All the PC-based approaches are based on Ti. In the following
sections, we discuss the PC-based approaches in detail.
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5.1 Mixture Model

Consider the case–control design mentioned earlier. Let yi represent the disease
value for the ith individual, with yi = 1 if affected and 0 if unaffected, and gi the
genotypic value for a candidate locus which we wish to test for association with the
trait. Zhu et al. [17] suggested using Ti to infer an individual’s genetic background
and correct the effect of population stratification. For example, considering a data
set consisting of samples simulated from two different populations. Figure 1 demon-
strates the histograms of the first and second principal components. It can be seen
that the individuals from two different populations are clustered into two groups.
When individuals are sampled from the simulation we mentioned at the beginning,
where an individual is sampled from an admixed population simulated by contin-
uous gene flow model, the distribution of the first two principal components are
shown in Figure 2. The first principal component can fit an admixture distribution
of two normal distributions well, suggesting each individual is admixed from the
gene pools of two ancestral populations. The correlation between the first princi-
pal component and the true ancestry is extremely high, reaching to 0.987. But the
second principal component still follows a normal distribution (p value of the two-
sample Komogorov–Smirnov test is 0.33) and the correlation with the true ancestry
is 0.025. Thus, Zhu et al. suggested using a mixture model of the principal com-
ponents of marker data to infer an individual’s genetic background. If there are K
subpopulations, the principal components are assumed to follow approximately a
mixture of K normal distributions. Because the principal components are indepen-
dent, conditional on the kth subpopulation we can assume that the distribution of Ti

is the product of M normal distributions: f (Ti|k) =
s∏

j=1

N
(
tij |μkj , σ

2
kj

)
, where

N
(
tij |μkj , σ

2
kj

)
= 1√

2πσ2
kj

exp
[
− (tij−μkj)

2

2σ2
kj

]
is a normal density function. The

distribution of Ti is

f (Ti) =
K∑

k=1

λk

s∏

j=1

N
(
tij |μkj , σ

2
kj

)
,

where λk is the probability that an individual originates from the kth subpopulation,
with the restriction

∑
λk = 1.

Given an individual is from the kth subpopulation, a logistic regression model is
applied to model the association between a candidate gene and a trait:

log
[

Pr [yi = 1|gi,k]
Pr [yi = 0|gi, k]

]

= μ+ βgi + δk, (5)

where δk indicates the effect of the kth subpopulation subject to the restriction that
δK = 0, and β represents the effect of the candidate gene. It is assumed that the
effect of the candidate gene is the same across subpopulations, but this is not a
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Fig. 1 The histograms of the first two principal components when data consisting of samples
simulated from two different populations
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Fig. 2 The histograms of the first two principal components when data consisting of samples
simulated from an admixed population with two parental populations
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necessary assumption because we can use a population specific β. The likelihood of
the observed data is then

LLOGISTIC =
N∏

i=1

K∑

k=1

λk Pr [yi|gi, k] f (Ti|k) /f (Ti). (6)

To test the null hypothesis β = 0, a score statistic can be applied. To infer the num-
ber of subpopulations, Zhu et al. [17] suggested use Bayesian Information Criterion
(BIC) to estimate the number of subpopulations. To estimate the BIC value given
K , the E-M algorithm for a mixture of normal distributions as described by Celeus
and Govaert [33] is used. For the simulated data in Table 1 with 1,000 SNPs adjust-
ing for population structure, the BIC values corresponding to K = 1, 2, 3, and 4
are 9695.1, 9531.8, 9570.3, and 9585.5, suggesting 2 subpopulations best fits the
data. Further association test resulted p = 9.75× 10−7 and 0.027 for SNPs 1 and 2,
respectively.

A question that arose from the principal components analysis is how many prin-
cipal components should be used in controlling for population stratification. This
question can also be modified as which principal component will contribute ances-
try information. From the analysis of the second principal component, we observed
that a principal component will distribute as a normal distribution if it does not con-
tribute any ancestry information. We can thus test weather a principal component
deviates from a normal distribution by the Kolmogorov–Smirnov test. In the exam-
ple of the simulated data, we only identified that the first principal component is
significantly deviated from normal distribution

(
p = 9.2 × 10−8

)
. The p-values of

the rest of the principal components are greater than 0.34. This result suggests that
only the first principal component should be used in controlling for population strat-
ification. However, it should also be cautioned that such a test is not very powerful,
and a likelihood ratio test of a mixture model against a normal distribution may be
favored.

5.2 Semi-Parametric Approach

We consider a case–control design and use the notation given in the previous section.
The ith individual’s principal components Ti is also called the genetic background
value of the ith individual. Chen et al. [14] proposed a QualSPT method to model
the relationship between a trait and candidate gene loci and genetic background by
a semi-parametric logistic model:

log
P (yi = 1|Xi, Ti)

1 − P (yi = 1|Xi, Ti)
= XT

i β + μ (Ti) ,

where μ (T ) is an unknown smoothing function of genetic background variable T
and is not parameterized. The advantage of this model is that the effect of population



184 X. Zhu and S. Zhang

stratification to a phenotype is assumed to be taken care by the function μ (T ) in the
logistic regression model. μ (T ) can either be a linear or nonlinear function, there-
fore, with great flexibility in modeling the relationship between genetic background
and phenotype. Under this model, the association test is to test the null hypothesis
H0 : β = 0. The log-likelihood function is

L (β, μ) =
n∑

i=1

l (β, μ (Ti) ;Xi, yi)

=
n∑

i=1

{yi

[
XT

i β + μ (Ti)
]− log

[
1 + exp

(
XT

i β + μ (Ti)
)]}.

The QualSPT statistic is a likelihood ratio test statistic

Λ =
L
(
β̂, μ̂1 (Ti)

)

L (0, μ̂0 (Ti))

where μ̂0 (Ti) and μ̂1 (Ti) are the maximum likelihood estimators (MLE) of μ (·)
under the null and alternative, respectively, and β̂ is the MLE of β under alter-
native. Under the null hypothesis H0, the QualSPT statistic follows a chi-squared
distribution with degrees of freedom equals to the dimension of β. The estimation
of parameter β and nonparameter function μ (T ) under semi-parametric logistic
models has been developed [34–36]. Chen et al. [14] proposed to follow the local
likelihood approach [35]. For a known smoothing parameter h and a given ker-
nel function K (·); the estimation method is an iterative procedure that follows two
steps:

Step 1. For a given β, η is obtained by solving the following equation:

n(0)+n(1)
∑

i=1

K

(
Ti − T

h

)
∂

∂η
l (βm, η,Xi, yi) = 0.

Denote μ̂m (T1), μ̂m (T2) , . . . , μ̂m (Tn) be the solutions of η for T = T1, T =
T2, . . . , T = Tn, respectively. Here, βm is the current estimated value of β.

Step 2. Solving the equation for β by
n(0)+n(1)

∑

i=1

∂
∂β l (β, μ̂m (Ti) , Xi, yi) = 0

results the updated parameter estimate βm+1.
We then repeat this two-step process until convergence occurs.
To choose Smoothing Parameter h, Chen et al. [14] and Zhang et al. [16] sug-

gested to choose h that minimizes a Kolmorgorov test statistic. Specifically, for a
given h; we perform QualSPT to all theM unlinked markers and obtain the p-values
p1, . . . , pM . These p-values follow a uniform distribution if population stratification
is well controlled. Let Fn be the empirical distribution function of the p-values
p1, . . . , pM and F be the uniform distribution function. To test the null hypothesis
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H0: p-values p1, . . . , pM follow a uniform distribution, the test statistic of the Kol-
morgorov test is L (h) = maxx |Fn (x) − F (x) |, and we reject the null hypothesis
when L (h) is large. The Kolmorgorov test statistic L (h) is a function of h. Zhang
et al. and Chen et al. [14, 16] proposed to choose h such that

h∗ = arg min
h
L (h) .

This procedure also provides a method to check if the population stratification
has been well controlled by the set of unlinked markers. If the p-value of the Kol-
morgorov test (h = h∗) is greater than a prespecified significance level, e.g. 0.05,
we may consider that the population stratification has been well controlled. Oth-
erwise, these M unlinked markers cannot well control the population stratification,
and additional markers might be required.

As an application of SPT approach to the data, we first check if the markers
are enough to control the population stratification. With 1,000 SNPs, we found that
population can be well controlled (Komogorrov test statistics = 0.785). We then
performed association tests and found SNP1 is significant and 2 is not based on
1000,000 permutations (SNP1, p = 4 × 10−6 SNP2, p = 0.485).

5.3 Linear Model Approach

Using the principal components of genetic marker data to account for the popula-
tion stratification has also been further proposed by Price et al. [15], although the
method is conceptually the same as the methods described before. This method first
performs a regression analysis by regressing both the phenotype and marker geno-
type values on the principal components for unrelated data. Association between the
phenotype and marker is then tested using the residual correlation. This approach
is simple and easily applied to the data with testing a large amount of markers. In
detail, this method first calculates the residual after regressing the first L principal
components for both trait value and genotypic value by

yi = β0 + β1ti1 + . . .+ βLtiL + εi

and
gi = α0 + α1ti1 + . . .+ αLtiL + τi,

where εi and τi are random errors. Let β̂0, β̂1, . . . β̂L, α̂0, α̂1, . . . , α̂L be the
least-squares estimators of β0, β1, . . . βL, α0, α1, . . . , αL, respectively. Since the
principal components are orthogonal, β̂0, β̂1, . . . β̂L, α̂0, α̂1, . . . , α̂L can be easily
calculated by
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β̂l =

N∑

i=1

yitil

N∑

i=1

t2il

and α̂l =

N∑

i=1

gitil

N∑

i=1

t2il

.

The phenotype and genotype residuals for each individual are calculated by

y∗i = yi − β̂0 − β̂1ti1 − . . .− β̂LtiL

and
g∗i = gi − α̂0 − α̂1ti1 − . . .− α̂LtiL.

The test statistic of testing association between the phenotype and marker is defined
by T = (N − L− 1) r2, where r is the correlation between y∗i and g∗i , which
follows a chi-square distribution with one degree of freedom. Because of its sim-
plification and easily programming, this method has also been extended to combine
family and unrelated samples [37]. Intuitively, y∗i and g∗i can be viewed as the trait
and marker values after removing the effect of population structure. In other words,
we can consider y∗i and g∗i as if they are from a homogenous population. Any associ-
ation test based on y∗i and g∗i will not be affected by population structure, including
testing gene–gene interaction. This method can be applied to both quantitative and
qualitative traits. We used the first ten principal components to control for popula-
tion stratification in the simulated data and obtained the p-values 1.29 × 10−6 and
0.115 for SNP1 and 2, respectively.

6 Discussion

Since the traditional linkage analysis has low power to detect common variants with
small odds ratio, association studies have been waged to search for the genetic vari-
ants of complex traits [1]. With the rapid technological advances, large scale testing
of thousands of SNPs across the genome in large sample size will become routine.
The first genome-wide association studies have been published recently and several
new genetic variants have been detected to be associated with macular degeneration,
obesity, types 1 and 2 diabetes, prostate cancer and multiple sclerosis, among others,
suggest promise for association studies [38–46]. However, false positive findings
have also been concerned because of a large scale tests. In addition, population strat-
ification is another source contributing false positive in association studies and the
problem can worsen when sample size is increased [1]. Genome-control approach
is a computationally simple and fast method, and therefore is appareling in the
genome-wide association study when thousands of SNPs are tested. With a large
number of SNPs available, the performance of GC can be very well, although the
power of GC is dependent on the markers chosen for controlling population struc-
ture. For example, GC will reduce the power if only ancestry informative markers
are used because such kinds of markers are more likely to be associated with a trait
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in admixed populations. Therefore, the factor to adjust for population may be over-
estimated. In comparison, Structure Association method based on MCMC approach
is computationally intense. When a large number of markers are available such as in
whole genome association studies, it is almost impossible for STRUCTURE to use
all the markers unless a subset of ancestry informative markers (AIMs) are selected.
One way to search the AIMs is by selecting the unlinked markers with large Fst

values or large allele frequency differences between ancestral populations. How-
ever, the selection of AIMs may be biased to known population structure, resulting
inadequately treatment of unknown subtle population structure. The principal com-
ponent methods can be computational fast and is favorable in current genome-wide
association studies. The principal component methods work well with a large num-
ber of random markers and even with some markers in linkage disequilibrium, and
are superior to STRUCTURE. To account for multiple comparisons, Bonferroni cor-
rection is often too conservative because the linkage disequilibrium among markers.
Permutation test by randomly shifting the disease status accounts for the LD among
SNPs, therefore, leads to a much accurate estimate of type I error rate with the cost
of more computation. Since the axes of principal components of the marker data
are unchanged when the disease status is shifted, the principal components-based
approaches are still fast to calculate the empirical p-value through permutations.
However, a challenge of principal components-based methods is how many princi-
pal components we should use in order to well control the population stratification.
It has been suggested that the first ten principal components are usually adequate
for samples from most populations [15]. However, it may be not enough for sam-
ples coming from a population admixed by many subpopulations. Including too
many principal components in a model will result in loss of statistical power and
complexity of the statistical model. We suggest to test if a principal component fits
a normal distribution vs. a mixture of normal distributions. In practice, we can also
select principal components by stepwise selection in the regression analysis. When
population stratification is caused by the additive effect of both natural selection
and admixture process acted locally, using the genome-wide markers may not well
eliminate the effect of population stratification. How to eliminate the effect of popu-
lation stratification of a local region and maintain the statistical power needs further
investigations.

Web Resources

http://pritch.bsd.uchicago.edu/software.html (for Structure 2.1 and STRAT pro-
grams)
http://bioinformatics.med.yale.edu (for semi-parametric program)

The software of mixture model approach and principal component method are
available upon request to xzhu1@darwin.case.edu
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Family-Based Association Studies

Kui Zhang and Hongyu Zhao

Abstract Over the past decade, association studies based on linkage disequilib-
rium have become increasingly popular for detecting genetic variations underlying
complex human diseases because association-based methods have been shown to
have more power than traditional linkage-based methods in theoretical and empirical
studies. There are two general designs in association studies: family-based designs
that use pedigrees and population-based designs that use unrelated individuals.
Although population-based designs are generally more powerful than family-based
designs, and the recruitment of unrelated individuals is easier than the recruitment
of families, they are subject to bias in the presence of population stratification.
As a compromise between linkage studies and population-based association stud-
ies, family-based association designs can have similar power with population-based
designs and are robust in the presence of population stratification. Therefore, family-
based association designs have received great attention recently. In this chapter,
we first review methods that can analyze the simplest family-based association
design with one affected offspring with its two parents, all genotyped at a bi-allelic
marker locus. We then discuss its various extensions that can increase power and
utilize multi-allelic markers, families with multiple siblings, families with incom-
plete parental genotypes, quantitative traits, and multiple tightly linked markers.
The association methods using family-based designs can be broadly classified into
two groups: nonparametric methods based on the allele counting and parametric
methods based on the likelihood function. Although these methods result in simi-
lar test statistics for the simplest family-based association design with one affected
offspring with its two parents, their extensions on more complex situations vary
greatly. Further developments of statistical methods to utilize general pedigrees and
to detect gene–environment interactions are also discussed. Finally, we conclude
this review by listing the available software packages that can carry out the analysis
of family-based association designs and illustrating some of them based on a real
data set.
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1 Introduction

Over the past decade, many complex human diseases such as hypertension, dia-
betes, and obesity [1–3], have increased in incidence both in the United Sates and in
developed countries, and pose a striking threat to human health. During this period,
considerable efforts were expended to dissect the genetic etiology of such diseases
to help us better understand their pathogenesis with the intent of yielding improved
strategies for prevention, diagnosis, and treatment [4]. The first step toward this
ultimate goal is to determine genetic variations underlying these diseases. Linkage
analysis and association analysis are the two main strategies used by researchers
in this context and both have been successfully applied to dissect genes responsi-
ble for simple Mendelian diseases in which only one or two genes have a major
impact, including Huntington diseases [5], cystic fibrosis [6], Fanconi anemia [7],
and breast cancer [8, 9]. However, both strategies have been less successful so far
until very recently for identifying genes responsible for complex diseases, including
hypertension, diabetes, obesity, schizophrenia, alcoholism, etc., that likely originate
from the small effects of many genes, as well as gene–gene and gene–environment
interactions.

The underlying principle is the same for linkage analysis and association anal-
ysis: both are based on LD, which refers to the nonrandom association between
alleles at different tightly linked loci in the population [10]. In linkage analysis data
are collected on pedigrees enriched with affected members. If a marker is close to
the disease locus, the alleles at the marker locus and the disease locus will tend to
co-segregate together. The genomic regions between them will be shared among
many affected individuals within a pedigree. However, because only a small num-
ber of observed recombinants occur within a pedigree, genes cannot be localized by
this approach to a small interval, generally on the order of one megabases to several
megabases, making identification of the causal genetic variants difficult [11, 12]. A
commonly used population-based association design is the case–control design, in
which data are collected on unrelated, affected, and unaffected individuals. Because
of the very large number of recombination events over the past generations, the
genomic regions shared by the unrelated, affected individuals will be much shorter
than those shared by affected individuals in an extended pedigree. Thus, the inter-
val containing the causal genetic variants can be narrowed up to several kilobases
[6,13]. Therefore, association studies for both genome-wide mapping and fine map-
ping based on LD have become increasingly popular as they offer a potentially
more cost effective and powerful approach for gene mapping than linkage analysis
[14–18]; Botstein and Risch, 2003.

Recently, genome wide association (GWA) studies, which aim to genotype hun-
dreds of thousands of single nucleotide polymorphisms (SNPs) across the human
genome for a large number of samples, have been proposed and offer great promise
to detect genes underlying complex human diseases. GWA studies based on a large
number of unrelated individuals have already shown great success and there are
more and more genes found to be association with several complex human dis-
eases [19–21]. However, one of the major limitations of case–control association
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studies is that they are subject to bias in the presence of population stratification. In
case–control studies, population stratification arises when samples are selected from
several genetically different populations with different proportions in cases and con-
trols. Population stratification can generate suspicious association between markers
and the disease susceptibility locus (DSL). That means a positive association can
occur even neither is the allele itself a cause of the disease nor is the allele in link-
age disequilibrium with a susceptible allele at the disease gene in the presence of
population stratification. Thus, it is always a concern for association studies in het-
erogeneous populations, such as populations in major cities in the United States. In
contrast, appropriate analyses of family-based association studies are not affected
by population stratification. In addition, significant findings in family-based associ-
ation studies indicate that the marker locus is not only associated but also linked
with the DSL. Although the family-based design can be less powerful than the
case–control design, the power difference between these two types of designs is
generally small, especially when case–parent trios are used [17, 22, 23]. Therefore,
family-based designs will continue to play important roles in association studies.

In this chapter, we review methods for the case–parent design and discuss its var-
ious extensions that can increase power and utilize families with various structures
(e.g., families with multiple siblings, families with incomplete parental genotypes,
general pedigrees), quantitative traits, and multiple tightly linked markers. We also
list available software packages that can carry out such analysis and illustrate some
of them using the Oxford Angiotensin converting enzyme (ACE) data set [24].

2 Basic Notations

In this review, we will mainly focus on nuclear families with a pair of parents and
one or more offspring, and introduce the following notations. We assume a total
of n nuclear families are collected. In the ith family, there are ni offspring. The
genotype at a multi-allelic locus of the jth offspring in the ith family is denoted by:
gij (i = 1, . . . , n; j = 1, . . . , ni). The corresponding genotypes of the mother and
the father in the ith family are denoted by gim and gif , respectively. The genotypes
of offspring and parents in the ith family are denoted by gio = (gi1, . . . , gini) and
gip = (gim, gif ), respectively. For a multi-allelic marker with k alleles, the alleles
are denoted by A1, . . . , Ak. Sometimes, we need to work on coded genotypes and
denote them asXio = (Xi1, . . . , Xini) andXip = (Xim, Xif ), which are functions
of gio and gip. The definition of X depends on the context. For example, Xij can
be defined as the number of copies of allele A1 at a maker locus. We further use
Yio = (Yi1, . . . , Yini) and Yip = (Yim, Yif ) to denote the phenotypic values of
offspring and parents in the ith family. Y can either be qualitative or quantitative
phenotypes. For qualitative phenotypes with two status of affected and unaffected,
we use Y = 1 to represent the affected individual and Y = 0 to represent the
unaffected individual. If we do not specifically refer to the ith family in some of
formulas, we omit the subscript i for simplification.
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3 Qualitative Traits, Trios, Bi-Allelic Markers

The simplest family-based design for association studies is the case–parent design,
in which an affected individual and its parents are collected and genotyped at bi-
allelic markers. The alleles transmitted from parents to the affected offspring and
the alleles of not transmitted can be determined based on the observed genotype
data. Thus, a 2 by 2 transmission/nontransmission table for a bi-allelic marker with
alleles A1 and A2 from n case–parent trios can be constructed:

Nontransmitted
Transmitted A1 A2 Total
A1 t11 t12 t1+
A2 t21 t22 t2+
Total t+1 t+2 4n

In this table, tij (i = 1, 2; j = 1, 2) represents the number of parents who have geno-
type AiAj and transmit allele Ai to the affected offspring. An appropriate analysis
for the data presented in this table is the McNemar test, named (in this context) the
Transmission/Disequilibrium Test (TDT) by [25]: TDT = (t12 − t21)

2
/(t12 + t21),

which compares the number of A1 alleles transmitted to the offspring from theirs
parents and the number of A1 alleles not transmitted.

The TDT has several advantages. First, it only assumes the first Mendel’s law of
inheritance. The specification of the disease model and the distribution of the dis-
ease in the general population are not required and will not affect its validity. Thus,
the TDT is not only robust to the population stratification but also robust to any
misspecification of the disease model and the distribution of the disease. Second,
the TDT test statistic has an asymptotic chi-square distribution with one degree of
freedom if either θ = 1

2 or δ = 0, where θ and δ are the recombination fraction
and the linkage disequilibrium between the marker locus and the DSL, respectively.
Therefore, it is clear that the TDT is a test for both linkage and association [26].
Initially, the TDT was proposed by Spielman et al. [25] to test the linkage between
a marker locus and the DSL in the presence of association. Instead, it is now more
often used to test the association in the presence of linkage. Actually, we can have
three types of null hypotheses: no linkage and no association, no linkage in the
presence of association, and no association in the presence of linkage, but only one
alternative hypothesis: the maker is in both linkage and association with the DSL. In
most situations, it is not important to distinguish these null hypotheses because the
TDT statistic and many of its extensions are valid under any one of these three null
hypotheses. However, some extensions of the original TDT are only valid under the
null hypothesis of no linkage between the marker locus and the DSL [26], because
the distribution of those test statistics is derived under the null hypothesis of no link-
age. In such situation, it is important to explicitly state the null hypothesis that will
be tested.
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3.1 Qualitative Traits, Trios, Multi-Allelic Markers

In this subsection, we first describe the extensions of the original TDT for multi-
allelic markers. Similar with the transmission/nontransmission table from a bi-
allelic marker, we can construct an m by m transmission/nontransmission table for
a multi-allelic marker with k alleles A1, . . . , Am from n case–parent trios:

Nontransmitted
Transmitted A1 · · · Ak Total
A1 t11 · · · t1k t1+
· · · · · · · · · · · · · · ·
Ak t21 · · · tkk tk+

Total t+1 · · · t+k 4n

In this table, tij (i = 1, . . . , k; j = 1, . . . , k) represents the number of parents who
have genotype AiAj and transmit allele Ai to the affected offspring. Several test
statistics have been constructed from this table. A direct generalization of the
TDT is to test if the table of transmission/nontransmission is symmetry: TDTc =∑

i<j (tij − tji)
2
/ (tij + tji), which has an asymptotic chi-square distribution with

k (k − 1) /2 degrees of freedom [27–29]. Clerget-Darpoux [27] proposed a statistic
to test the marginal homogeneity: TDTm =

∑k
i=1 (ti+ − t+i)

2
/

(ti+ + t+i). Spielman and Ewens [30] proposed a similar statistic to test the
marginal homogeneity: TDTSE = k−1

k

∑k
i=1 (ti+ − t+i)

2
/ (ti+ + t+i − tii). As

noted by Sham [31] and Schaid [32], TDTm and TDTSE may not have a chi-
square distribution with k − 1 degrees of freedom and tend to be anticonservative.
Cleves et al. [33] derived the exact calculation of p-values for these statistics. In
addition, the permutation procedure can be and has been widely used to assess their
significance appropriately [34, 35].

In addition to the nonparametric tests based on the contingency table, retrospec-
tive likelihood-based methods have been developed to analyze multi-allelic markers.
For a case–parent design, the conditional probability of parental genotypes and
offspring’s genotype, gm, gf , and go given the disease status of offspring,D, is

L(F ) = P (gm, gf , go|D) = P (gm, gf |D)P (go|gm, gf , D) = L(P )L(O).

In this formula, L(P ) is the conditional probability of parental genotypes given the
disease status of offspring and L(O) is the conditional probability of offspring’s
genotype given the parental genotypes and the disease status of offspring [36].
Although the use of the full conditional likelihood

(
L(F ) = L(P )L(O)

)
may be

more powerful, they may yield biased results in the presence of population stratifica-
tion [32, 36]. Therefore, most of likelihood-based methods model the probability of
an offspring’s genotype conditioning on parental genotypes and the disease status
of offspring

(
L(O)

)
. Since the probability of offspring’s genotype is conditioning

on parental genotypes, these methods are robust to population stratification. Sham
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and Curtis [29] proposed a conditional logistic regression model with the likelihood
function of log (L) =

∑
i<j [nij log (pij) + nji log (pji)], where pij is the proba-

bility of transmitting alleleAi given that the parent has the genotypingAiAj and nij

is the number of parents who have the genotype AiAj but transmit the allele Ai to
the offspring. They assumed that the logarithm of the odds has the following form:
log pij

pji
= bi − bj , where bi and bj are parameters associated with alleles Ai andAj .

Then, the likelihood ratio test can be constructed to test for linkage and association.
Conditional logistic models and their extensions have also been discussed by many
other researchers [37–40]. Sinsheimer et al. [41] developed the gamete-competition
model that is applicable to general pedigrees, and their method is identical to the
Sham and Curtis model for case–parent trios.

Instead of modeling the probability that a particular marker allele is transmit-
ted by a heterozygous parent, Weinberg et al. [42] developed a log-linear model
for the probability of mating types. Their log likelihood function has the form of
L =

∑
(O,M,F ) nO,M,F log

(
p(O,M,F )|D

)
, where (O,M,F ) is the mating type of

case–parent trios defined by Weinberg et al. [42], nO,M,F is the number of trios
with the mating type (O,M,F ) and p(O,M,F )|D is the conditional probability of
mating type (O,M,F ) given the disease status of offspring. Assuming mating sym-
metry, Weinberg et al. [42] defined six mating types and modeled p(O,M,F )|D as:
log

(
p(O,M,F )|D

)
= γ(O,M,F ) + βO +αM,F , where β and α are parameters associ-

ated with the number of copies of A1 allele for offspring’s and parental genotypes.
The model can be easily modified to accommodate different disease models and
parent-of-origin effects [43].

Schaid [32] proposed another conditional logistic regression approach, where the
probability of offspring genotype is calculated conditional on the parental genotypes
and offspring disease status as follows by assuming P (D|go, gm, gf ) = P (D|go):

P (go|gm, gf , D) =
P (D|go)P (go|gm, gf )

∑
g∗

o∈G P (D|g∗o)P (g∗o |gm, gf )
=

r (go)∑
g∗

o∈G r (g∗o)
.

In the above expression, D represents the affection status of the offspring, g∗o one
of the four possible genotypes of the offspring conditional on parental genotypes,
and r (g) is the relative risk of disease for genotype g, which consists of two alleles
AiAj . As pointed out by Schaid [32] and Baksh et al. [44], other than P (D|go),
only r (g) can be directly estimated from the log likelihood function. The logistic
model presented by Schaid [32] provides a general framework to test the associa-
tion and linkage, this model and its extensions and their similarities and differences
between the score test and the TDT have been widely discussed and used (e.g.,
[39, 40, 45, 46]).

In general, r (g) can be modeled as follows according to the disease model:
r (g) = X ′β, where X is the coded vector for the observed genotype g. For exam-
ple, r (g) can be written as log [r (g)] = log [r (AiAj)] = βi + βj for the simple
multiplicative model [32]. Clayton and Jones [47] proposed a more general multi-
plicative model with the following form: h [r (g)] = h [r (Ai, Aj)] = βi + βj =
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1
2 {h [r (Ai, Ai)] + h [r (Aj , Aj)]}, where h is an unspecified monotone increasing
function. In all these aforementioned models, the null hypothesis of no association,
i.e., β = 0, can be tested using the likelihood ratio test.

Other than the conditional likelihood proposed by Clayton and Jones [47] and
Schaid [32], Lunetta et al. [48] used the prospective likelihood of the phenotype
given offspring’s genotype to test the association models for an arbitrary phe-
notype and a maker locus. Lunetta et al. [48] assumed the mean value of Yij ,
μij = E (Yij) has a linear relationship with Xij , the coded genotypes of offspring.
Specifically, through a link function l used in the generalized linear model, we have
lij = l (μij) = β0 + β1Xij . With the dichotomous phenotype, the natural link
function is the logit function, lij = l (μij) = logit (μij) = log [μij/ (1 − μij)] =
β0 +β1Xij . For a continuous phenotype with the normal distribution, the link func-
tion is lij = l (μij) = μij = β0 + β1Xij . Lunetta et al. [48] then computed the
prospective likelihood of phenotype Yij conditioning on the genotype Xij assum-
ing that all the offspring are independent given their genotypes: log [L (β0, β1)] =∑n

i=1

∑ni

j=1 [Yij lij − a (lij))], where lij = l (μij) = β0 + β1Xij and a (lij) is
a function of lij with the property of ∂a (lij) /∂lij = μij . Then, the score statis-
tic U is U =

∑n
i=1

∑ni

j=1Xij (Yij − μ), where μ is an nuisance parameter that
only affects the power but not the validity of S. To adjust for the population strati-
fication, Lunetta et al. [48] proposed to use appropriate permutation distributions
for the offspring allele values and computed the distribution of Uas a function
of offspring’s genotypes, conditioning on parental genotypes and trait values for
offspring and parents. For a bi-allelic marker with alleles A1 and A2, when only
one affected offspring is used and Xij is defined as the number of copies of
allele A1 for genotype gij , the score statistic proposed by Lunetta et al. [48] is
U =

∑n
i=1

∑ni

j=1Xij (Yij − μ) = tA, which is just the total number of A1 alleles
transmitted to the affected offspring.

There are at least two advantages for general likelihood-based methods proposed
by Schaid [32] and Lunetta et al. [48]. First, these methods tend to be more power-
ful if the disease model is appropriately specified while the misspecification of the
disease model generally does not affect the validity of tests. Second, these meth-
ods are easily extended to handle families with multiple affected and unaffected
offspring, families with missing parental genotypes, and complex phenotypes. The
inclusion of environmental covariates and the detection of interaction between genes
and environmental covariates can also be incorporated into the model without much
difficulty. We will introduce these extensions in the corresponding sections.

Other than methods based on allele counting and likelihood function, Rabinowitz
and Laird [49] provided a general framework to test the linage and association
between the maker and the DSL with arbitrary pedigree structure and arbitrary
missing marker information based on the correlation of phenotypes and marker
genotypes. The proposed family-based association test (FBAT) statistic, has a sim-
ilar formula with the statistic proposed by Lunetta et al. [48]: U =

∑n
i=1

∑ni

j=1

(Yij − μ) (Xij − E (Xij |Si)). The parameter μ is a pre-specified constant that
depends on the nature of the trait. The choice of μ generally does not affect the valid-
ity but will affect the power of the test [49, 50]. The conditional expected value of
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Xij ,E (Xij |Si), is computed conditional on the sufficient statistic Si [49] under the
null hypothesis. For the FBAT statistic, the genotype Xij is treated as random con-
ditioning on the sufficient statistic Si, but the trait Yij is treated as fixed. Under the
null hypothesis of no linkage or no association, Xij is centered around E (Xij |Si),
thus the FBAT statistic, U , has an expected value of 0. If the variance of FBAT
statistic can be computed, Z = U√

V ar(U)
or Z2 = U2

V ar(U) , can be used as the test

statistic. For large samples, Z is approximately distributed as the standard normal
distribution and Z2 is approximately distributed as the chi-square distribution with
one degree of freedom. If it is difficult to compute the variance of U , an empiri-
cal variance can be estimated from the data [51–53]. The FBAT statistic provides a
general framework to test the association for an arbitrary phenotype Y and maker
loci. For case–parent trios genotyped at a bi-allelic locus, the sufficient statistic is
the parental genotypes, Yij is equal to 1, μ is taken to 0, and Xij is the number of
copies in the offspring genotype for an allele. In this situation, Z2 is the same as
the TDT statistic proposed by Spielman et al. (1993). Actually, many extensions of
TDT-based methods have similar formula as the FBAT statistic (e.g., [50,54]). For a
multi-allelic maker with k alleles, U becomes a vector with k elements and the test
statistic UTCov (U)U has an approximate chi-square distribution with the degree
of freedom equal to the rank of Cov(U), which is the covariance matrix of U . In the
FBAT statistic, it does not need to specify the disease model, thus it is robust for the
misspecification of the distribution of Yij . It is also easy to extend the FBAT statistic
to handle families with multiple offspring, complex phenotypes, and environmental
covariates, which will be described in the corresponding sections.

4 Family with Multiple Siblings

When multiple affected and/or unaffected offspring are available within a nuclear
family, each case–parent can be considered independently if there is no linkage
between the maker locus and the DSL, because the transmission of alleles to an
offspring is independent of the transmission of alleles to another offspring in the
absence of linkage between the marker locus and the DSL. Therefore, the TDT and
its extensions for multi-allelic markers are still valid for testing linkage in the pres-
ence of association. However, the TDT is not a valid test for testing association in the
presence of linkage, because transmissions of an allele from a parent to the affected
offspring are correlated. One strategy is to randomly choose one affected offspring
from each family and then perform the TDT. However, this strategy sacrifices the
available data and tends to be less powerful. Martin et al. [54] proposed tests that can
use all affected offspring and multi-allelic markers. They also developed methods
that can analyze families with an arbitrary number of affected offspring together.
Here, we only outline their test based on the affected sib pairs and bi-allelic mark-
ers and point out its relationship with the TDT statistic. Denote tj as the number
of heterozygous parents with genotype A1A2 who transmit allele A1 to j affected
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offspring, the test statistic for sib pairs is Tsp = (t0−t2)
2

t0+t2
, which has an approximate

chi-square distribution with one degree of freedom. Using their notations, the TDT

statistic for affected sib pairs is TDT = (t0−t1)2

(t0+t1+t2)/2 . The two statistics, the TDT

and Tsp have the following relationship: TDT = Tsp
t0+t2

(t0+t1+t2)/2 . Wicks [55]
argued that the TDT is more powerful than Tsp to test for linkage because the
TDT utilizes excess sharing, that is, the tendency for t0 + t2 to exceed t1 in the
presence of linkage. Based on this observation, Wicks [55] proposed a family of
TDT-like statistics for affected pairs to test linkage in the absence of association:

TDT (α) = (t0−t2)2

(1−α)(t0+t2)+αt1
. Under the null hypothesis of no linkage, TDT (α)

has a chi-square destitution with one degree of freedom, and TDT (α = 1) is the
most powerful test in this class. However, as we have pointed out, the TDT and
TDT (α) may not be used to test association in the presence of linkage.

For a bi-allelic marker with two alleles A1 and A2, heterozygous parents who
are more likely to transmit A1 to affected offspring, are also more likely to trans-
mit A2 to unaffected offspring when there is linkage and association between the
marker and the DSL. Therefore, unaffected offspring contain information about
linkage and association, and can be included in the analysis to increase power.
Guo et al. [56] developed a method, called the informative-transmission disequi-
librium test (i-TDT), which can utilize transmission information from heterozygous
parents to their affected offspring as well as the unaffected offspring from fami-
lies with at least one affected offspring. As for TDT, only the heterozygous parents

are included in the analysis. Denote tmi1
(
tfi1

)
, tmi2

(
tfi2

)
, sm

i1

(
sf

i1

)
, and sm

i2

(
sf

i2

)

as the number of affected offspring who inherit A1 but not A2, the number of
affected offspring who inherit A2 but not A1, the number of unaffected offspring
who inherit A1 but not A2, and the number of unaffected offspring who inherit
A2 but not A1 from a heterozygous mother (father) in the ith family, respectively.

Define dm
i = (tmi1 + sm

i2) − (tmi2 + sm
i1) and df

i =
(
tfi1 + sf

i2

)
−
(
tfi2 + sf

i1

)
, then

dm
i > 0 (or df

i > 0) indicates the mother (or father) in the ith family are informa-
tive for allele A1 and dm

i < 0 (or df
i < 0) indicates the mother (or father) in the ith

family are informative for allele A2. The i-TDT statistic of Guo et al. [56] has the

following formula: i − TDT =
[∑n

i=1

(
dm

i + df
i

)]2

/

[
∑n

i=1 ( (dm
i )2 +

(
df

i

)2
]

.

i-TDT has an approximate chi-square distribution with one degree of freedom under
the null hypothesis of no linkage or no association. When all families contain only
one affected offspring, i-TDT is identical to the TDT of Spielman et al. [25]. Guo
et al. [56] demonstrated that i-TDT can increase power when all offspring are
included in the analysis through simulation studies.

As we have mentioned in Sect. 3.1, the conditional likelihood-based methods,
the FBAT method and those methods similar to FBAT can be easily extended to
accommodate families with multiple affected and unaffected offspring. Many meth-
ods have been developed under these frameworks. The FBAT statistic can be written
as U =

∑n
i=1

∑ni

j=1 (Yij − μ) (Xij − E (Xij |Si)), where the sufficient statistic Si

is the parental genotypes, gim and gif for family i. Under the null of hypothesis
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of no linkage or no association, the expected value of U is equal to zero. Because
the variance of U can be difficult to calculate in the presence of linkage, it was
suggested to use its empirical variance to construct the test [52]. For each nuclear
family i, E (Ui) = 0, thus

∑n
i=1 [(Yij − μ) (Xij − E (Xij |Si))]

2 =
∑n

i=1 U
2
i is

an unbiased estimation of V ar (U). The test Z = U√
V ar(U)

has an approximate

standard normal distribution for large samples. If we let Yij = 1 to represent the
affected offspring, Yij = 0 to represent the unaffected offspring, Si and Xij to be
the number of copies of alleleA1 carried by this offspring, the statistic U is identical
to the statistic derived by Lunetta et al. [48] based on the prospective likelihood and
the generalized linear model: U = (1 − μ) tA − μtU , where tA is the total num-
ber of A1 alleles transmitted to the affected offspring and tU is the total number
of A1 alleles transmitted to the unaffected offspring. If μ is set to be 0, then only
the affected offspring are used, and it is more powerful for the rare disease because
most information is contained in the genotypes of affected individuals. On the other
hand, including the unaffected offspring may increase the power when the disease
is common. Many methods have the identical or similar formula with the statistic
U . For example, if μ is set to the population prevalence of the disease, it is identical
to the test statistics proposed by Whittaker and Lewis [57].

When there are multiple offspring, the conditional probability of offspring’s
genotypes given parental genotypes and offspring’s traits for the ith family with
ni offspring is

P (gi1, . . . , gini | gim, gif , Yi1, . . . , Yini)

=
P (Yi1, . . . , Yini | gi1, . . . , gini , gim.gif )P (gi1, . . . , gini | gim, gif )

∑
g∗

io
P (Yi1, . . . , Yini | g∗io, gim, gif )P (g∗io | gim, gif )

,

where g∗io is one possible genotypes of the offspring conditional on the parental
genotypes. When there is no linkage between the marker and the DSL, the con-
ditional probability of disease given offspring’s genotypes does not depend on
the parental genotypes, and is independent of their sibling’s disease status and
marker genotype. Therefore, the conditional probability P

(
Yi1, . . . , Yini | gi1, . . . ,

gini , gm, gf

)
can be computed as

∏ni

j=1 P (Yij | gij). The likelihood function can be

written as L =
∏ni

j=1 P (Yij | gij)
∑

g∗
io

∏ni
j=1 P(Yij | g∗

ij)
=

∏ni
j=1 r(gij)

∑
g∗

io

∏ni
j=1 r(g∗

ij)
, where r (g) is the relative

risk of disease for genotype g. In the presence of linkage, the joint probability of
disease status of offspring, P (Y1, . . . , Yni | g1, . . . , gni , gm, gf), will vary depend-
ing on the number of marker alleles shared identical by descent (IBD) among the
sibling pairs. In this situation, Siegmund and Gauderman [58] proposed to calculate
the conditional probability of the disease status given parental genotypes, offspring’s
genotypes, and IBD matrix among siblings. As a result, this conditional probabil-
ity of the disease status of any offspring given its genotype is independent of their
siblings’ disease status and genotypes. Denote the IBD matrix among offspring as
π, the likelihood function reduces to P (gi1, . . . , gini | gim, gif , Yi1, . . . , Yini , π) =

∏ni
j=1 r(gij)

∑
g∗

io
| π

∏ni
j=1 r(g∗

ij)
, where g∗io is all possible genotypes of the offspring that are
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compatible with parental genotypes and IBD matrix for the ith family. Then, the
likelihood ratio test and the score test can be derived. Martin et al. [59] used a similar
method to calculate the conditional probability of reconstructed parental genotypes
when the parental genotypes are missing. However, one drawback of the method
proposed by Siegmund and Guaderman (2001) [58] is that the implementation is
difficult using standard statistical packages such as SAS or R, due to the calculation
of IBD matrix. Therefore, Cordell and Clayton [60] assumed that the conditional
probability of disease given offspring’s genotypes does not depend on the parental
genotypes, and is independent of their sibling’s disease status and marker geno-
types, even in the presence of linkage. Then, the likelihood can be easily calculated

as L =
∏ni

j=1 r(gij)
∑

g∗
io

∏ni
j=1 r(g∗

ij)
. Instead of the likelihood ratio test, the Wald score test

should be used [37, 60–62]. A robust “information-sandwich” estimate of the vari-
ance/covariance matrix (e.g., [63]) can be obtained to account for the correlation in
offspring’s disease status. Simulation results showed the Wald test can give the cor-
rect type I error rate [62]. Similarly, Zou [64] discussed how to use the retrospective
logistic regression with the sandwich variance estimator to analyze family-based
association studies.

Millstein et al. [65] developed another conditional logistic regression model for
jointly testing linkage and association for families with two affected offspring. Their
model contains two covariates, one is used to quantify association and the other is
used to quantify linkage between the marker and the DSL. Specifically, the likeli-
hood of the genotypes g1 and g2 for two affected offspring, conditioning on their
phenotypes, Y1 and Y2 and their parental genotypes, gm gand gf , has the following
formula: P (g1, g2 | gf , gm, Y1, Y2) = P (g1 | gf , gm, Y1)P (g2 | g1, gf , gm, Y1, Y2).
As usual, the first part can be modeled using a conditional logistic likelihood with
parameter β(e.g., [32]) P (g1 | gm, gf , Y1) = exp(βg1)/[

∑
g∗
1
exp(βg∗1)], where g∗1

is one of four possible genotypes of offspring 1 conditional on the parental geno-
types. Under some reasonable assumptions, the second part can be modeled as a
conditional logistic likelihood with two parameters β and γ: P (g2 | g1, gm, gf , Y1,
Y2) = exp(βg2 + γπ12)/[

∑
g∗
2
exp(βg∗2 + γπ∗

12)], where g∗2 is one of four possible
genotypes of offspring 1 conditional on the parental genotypes, π12 the number of
alleles shared IBD between g1 and g2, and π∗

12 is the number of alleles shared IBD
between g1 and g∗2 . Thus, this method can be easily implemented with a standard
conditional logistic regression approach using available statistical packages (e.g.,
SAS or R). The simulations showed that their method can be more powerful than
some standard tests for linkage and association.

5 Families with Missing Parental Genotypes

Unobservable parental genotypes present difficulties for the TDT and are indeed
common in studying diseases that have a late onset age. In this section, we review
methods that can analyze data from two different types of nuclear families: nuclear
families with only one parent missing and nuclear families with both parents missing
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but with multiple siblings. For both types of families, although parental genotypes
are unavailable, information about their genotypes may be contained in the geno-
types of their offspring and available spouse. Therefore, parental genotypes may
be constructed from their offspring’s genotypes for some families. In the context
of the TDT, we may treat families with reconstructed genotypes as they have been
genotyped and only include these families in the analysis, as suggested by Speil-
man and Ewens (1996, 1999). However, Curtis, Curtis and Sham, Spielman and
Ewens, and Knapp [66–69] noticed that this procedure can introduce bias and cor-
recting such bias may require the knowledge of population frequency of marker
alleles. Knapp [69] proposed a statistical procedure called RC-TDT (reconstruc-
tion combined TDT) to analyze four types of families together: (1) families with
both parents genotyped; (2) families with one or two missing parental genotypes
and missing parental genotypes can be constructed; and (3) families with miss-
ing parental genotypes that cannot be reconstructed but the condition for the sib
TDT [70] is satisfied. Knapp [69] provided necessary and sufficient conditions for
the observed genotypes in the offspring to allow for the reconstruction of parental
genotypes and mating types and derived the appropriate mean and variance of the
test statistic conditioning on parental mating types under the null hypothesis. Curtis
[66] also presented similar conditions but used them for a slightly different purpose.
The simulation studies showed that the RC-TDT has the correct type error rate and
is more powerful than the sib TDT proposed by Spielman and Ewens [70] for the
test of linkage [69, 71].

The TDT type of methods based on the allele counting have been developed
for nuclear families with both parental genotypes missing and with genotypes of
multiple siblings. These methods do not use the parental genotypes but require
that families must contain at least one affected sibling and one unaffected sibling.
For a sibling pair consisting of one affected sib and one unaffected sib, Curtis and
Sham [29] proposed to compare each marker allele in the affected individual and
in the unaffected sibling and use the following statistics for a bi-allelic marker:
Zc =

[
t12 −

(
s1
2 + s2

)]
/
√

s1
4 + s2, where si (i = 1, 2) is the number of sibships

that increase the test statistic of t12 or t21 by allele Ai and tij is increased by 1/2
only if maker allele Ai in the affected sibling and marker allele Aj in the unaf-
fected sibling. Under the null hypothesis, Zc has an approximate standard normal
distribution. If there are multiple siblings within a family, Curtis and Sham [29]
proposed to randomly select one affected offspring and then select one unaffected
offspring whose marker genotype is maximally different from that of the affected
offspring. This approach is unbiased although the procedure selects the most differ-
ent unaffected sibling and the test statistic is therefore valid to test the association
in the presence of linkage. Curtis [66] extended their method to handle multi-allelic
makers using a likelihood model similar to that of Sham and Curtis [29], but its
performance may be poor [72].

For multi-allelic markers, Boehnke and Langefeld [73] developed several family-
based tests of association that can only use a pair of one affected sibling and one
unaffected sibling. For a marker with k alleles, the data can be arranged in a 2 × k
contingency table in which the rows represent the disease status and the columns
represent marker alleles. There are many ways to construct the contingency table,
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and here we outline one counting scheme that is most powerful. For an allele, it
is counted only if it is not in both the affected sibling and the unaffected sib-
ling. Then, the discordant sib pair (DSP) test statistic based from the table is

TDSP =
∑k

j=1
(t1j−t2j)

2

t1j+t2j
, where t1j is the number of counted allele Aj in the

affected siblings and t2j is the number of counted allele Aj in the unaffected sib-
lings. The permutation procedure that randomly permuted the affection statuses of
the sibs was proposed to evaluate the significance level of TDSP .

Spielman and Ewens [70] developed the sib TDT (S-TDT) method to analyze
multiple affected and unaffected siblings if they satisfy two criteria: (1) there are at
least one affected sibling and one unaffected sibling within each family and (2) the
siblings must not have the same genotype. For each marker allele Ai, the S-TDT
statistic is defined as S − TDTi = ti−E(ti)√

V ar(Ti)
, where ti is the number of allele Ai

presented in the affected siblings from all families and E (ti) and V ar (ti) are the
mean and variance of ti respectively. For a bi-allelic marker, the statistic S−TDT1

can be used, whereas for a multi-allelic marker with k alleles, the test statistic S −
TDTmax = max |S − TDTi| can be used. In addition, due to the calculation of
E (ti) and V ar (ti) discussed by Spielman and Ewens [70], the S-TDT statistic
has an approximate standard normal distribution under the null hypothesis of no
linkage. More importantly, the S-TDT statistic can be combined with the TDT to
analyze different types of families [70]. Schaid and Rowland [74] noted that the
S-TDT is equivalent to the conditional likelihood having log-additive effects of the
marker alleles. The similarities and differences between the S-TDT and the Mantel
–Haenszel test were discussed by Laird et al. [75] and Ewens and Spielman (1998).

For families with multiple affected and unaffected siblings, some methods dis-
cussed earlier can only use one pair of affected and unaffected sibling from each
family while others are only valid to test linkage in the presence of association. To
include all available siblings from the same family, Horvath and Laird [76] devel-
oped sibship disequilibrium test (SDT), for testing association in the presence of
linkage. Their test procedure can be outlined as follows. For a multi-allelic marker
with k alleles and a set of siblings, denote tA and tU as the number of affected sib-
lings and unaffected siblings and define:

tiA =
(
Total number of alleleAi among the affected

)
/ tA and

tiU = (Total number of alleleAi among the unaffected) / tU .

Let di = tiA − tiU , bi be the number of sibships for which di > 0 and ci be the
number if sibships for which di < 0. Then for a bi-allelic marker, the SDT statistic

can be defined as SDT = (b1−c1)
2

b1+c1
. The extension of SDT to multi-allelic markers

and the combined analysis of families with or without parental genotypes have been
discussed in the literature (Curtis et al., 1999; [76]). Guo et al. [56] extended their
i-TDT method to handle families with multiple affected and unaffected offspring in
the presence of missing parental genotypes.

To make use of case–parent trios with only one available parent, Sun et al.
[50] proposed two unbiased test statistics for linkage and association based on
an accurate method of estimating the risk ratio for case–parental control design
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studies [77]. Suppose there are two alleles A1 and A2 at the marker locus. Let
tij (i, j = 0, 1, 2) be the number of affected offspring whose genotype has i copies
of allele A1 and whose one available parent has j copies of allele A1, then the
first test statistic, called 1-TDT [50] is 1 − TDT = (t01+t12)− (t10+t21)√

(t01+t12) + (t10+t21)
. From

1-TDT, we can see that it only uses the offspring–parent with genotypes (A1A2,
A1A1), (A1A2, A2A2), (A1A1, A1A2), and (A2A2, A1A2). In other words, one of
genotypes has to be heterozygous and the other is homozygous. The 1-TDT has an
approximate standard normal distribution if either of the two following assumptions
holds: (1) males and females with the same genotype have the same mating prefer-
ence and (2) father and mother are missing with the same probability given that one
of them is missing. Sample sizes required to detect the association for the S-TDT
and 1-TDT were investigated by Wang and Sun [78]. Under a variety of genetic
models, the sample size needed for the 1-TDT is roughly the same as that needed
for the S-TDT with one affected and one unaffected sibs, and is about twice of that
needed for the TDT.

Sun et al. [50] also proposed a second test statistic which is valid even when
both assumptions fail. The same approach has been extended to analyze quantitative
traits and families with multiple siblings [79]. Denote the coded genotype Xij = 1
if the offspring–parent genotype is (A1A2, A1A1) or (A2A2, A1A2) andXij = −1
if the offspring–parent genotype is (A1A2, A2A2) or (A1A1, A1A2), then the test

statistic is 1−TDT =
∑n

i=1
∑ni

k=1 (Yij−μ)Xij
∑n

i=1 [∑ni
k=1 (Yij−μ)Xij]2

, where μ is a constant that can affect

its power but not its validity. This test statistic is valid for testing association in the
presence of linkage and has an approximate standard normal distribution if either of
the above two assumptions holds.

In additional to the nonparametric tests based on allele counting, likelihood-
based methods have been developed to analyze families with missing parental
genotypes. For nuclear family i with ni offspring, the conditional probability of
parental genotypes and offspring’s genotypes, gif , gim, and gi0 = (gi1, . . . , gini),
given the phenotypes of offspring, Yio = (Yi1, . . . , Yini), can be written as

Li = P (gim, gif , gio|Yio) = P (gim, gif |Yio)P (gio|gim, gif , Yio) = L
(P )
i L

(O)
i .

When both parental genotypes are available, only L(O)
i = P (gio|gim, gif , Yio)

are needed and tests based L(O) are robust to the population stratification [32, 36].
When parental genotypes are missing, L(P )

i should be used, depending on the miss-
ing genotypes. In this situation, the likelihood function is summed over all possible
genotypes of parents that are compatible with the observed parental and offspring’s
genotypes and it has the following form:

Li =
∑

gim,gif

P (gim, gif , gio|Yio) =
∑

gim,gif

P (gim, gif |Yio)

×P (gio|gim, gif , Yio) .
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Many methods have been proposed using the full likelihood function,Li, to analyze
families with missing parental genotypes. One should be cautious when applying
these methods. Because the calculation of L(P )

i = P (gim, gif |Yio) generally
depends on population models and assumptions such as Hardy–Weinberg equilib-
rium, the proposed tests may lead to biased results in the presence of population
stratification.

Schaid and Li [80] extended the likelihood-based method of Schaid [32] to allow
for missing parental genotypes and multiple siblings. The likelihood function for
family i is

L =
∑

gim,gif

I (gim, gif )

P (gim, gif )P (Yio|gio, gim, gif )P (gio|gim, gif )
∑

gim,gif
I (gim, gif )P (gim, gif )

∑
g∗

io
P (Yio|g∗io, gim, gif )P (g∗io|gim, gif )

,

where I (gim, gif ) is an indicator function and takes the values of 1 if the parental
genotypes gim and gif are compatible with observed parental and offspring’s
genotypes and 0 otherwise. Schaid and Li [80] proposed to use the Expectation-
Maximization (EM) algorithm to evaluate the likelihood function and estimate
genotype relative risks. Since they assumed random mating and Hardy–Weinberg
equilibrium when evaluating P (gim, gif ), this method is biased for stratified pop-
ulations. In addition, they assumed the conditional probability of the trait of any
offspring given its genotype is independent of their siblings’ traits and genotypes.
Thus, the proposed test is only valid for testing linkage in the presence of associ-
ation. Such method and its extensions that can handle missing parental genotypes
have also been discussed by Cordell et al. [37].

Martin et al. [81] developed a parental genotype reconstruction (PGR) method
to analyze families with missing parental genotypes. In the first step of PGR, the
posterior probability of each possible genotypes of parents is calculated based
on the observed parental and offspring’s genotypes with the assumption of link-
age disequilibrium. Specifically, the following posterior probability was evaluated:

P
(
g∗im, g

∗
if |gio, gim, gif

)
, where g∗im and g∗if are hypothetical genotypes of par-

ents and (gio, gim, gif ) are observed parental and offspring’s genotypes. Since this
posterior probability is not conditioning on the traits of offspring, the calculation
can be greatly simplified. In the second step of PGR, the possible configurations
of parental genotypes and their posterior probabilities can be used to analyze the
genotype or haplotype relative risk. Again, this method assumed random mating
and Hardy–Weinberg equilibrium and may be biased for stratified populations.

Weinberg [82] generalized the log-linear model developed in their earlier work
[42] to analyze families with missing parental genotypes. Instead of modeling the
posterior probability of parental genotypes, Weinberg [82] proposed to estimate
the posterior probability of parental mating types using the EM algorithm. Denote
(O,M,F )i as the mating type of family i, the likelihood function for this family
is summed over all possible mating types that are compatible with the observed
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parental and offspring genotypes: Li =
∑

(O,M,F )i
p [(O,M,F )i] p(O,M,F )i|D,

where p [(O,M,F )i] is the posterior probability of mating type to be estimated
by the EM algorithm and p(O,M,F )|D is the conditional probability of mating
type given the disease status of offspring. As described in Weinberg et al. [42],
log

(
p(O,M,F )

)
= γ(O,M,F ) + βO + αM,F , where β and α are parameters associ-

ated with the number of copies of A1 alleles for offspring’s and parental genotypes.
Since the model does not assume random mating and Hardy–Weinberg equilibrium,
it is robust to population stratification.

Whittemore and Tu [83] generalized the likelihood-based score statistic of Schaid
(1996) and Schaid and Li [80] to combine data from case–control and family-based
designs. The score statistic has two components: the nonfounder statistic that eval-
uates disequilibrium in the transmission of marker alleles from parents to offspring
and the founder statistic that compares the observed or inferred founder genotypes
with those of controls or those of some reference population. This method is fur-
ther generalized by Shih and Whittemore [84] to (1) accommodate other types of
phenotypes, such as censored times to failure and quantitative traits; (2) account for
within family correlation in phenotypes; and (3) allow for missing parental geno-
types. Although their method can analyze data with families with arbitrary structures
and arbitrary patterns of missing data, the inappropriate specifications on the distri-
bution of founder genotypes can lower the power and introduce bias for stratified
populations.

Instead of using the conditional likelihood proposed by Schaid and Clayton
[32, 36], Siegmund et al. [62] proposed to use the conditional probability of traits
given the siblings’ genotypes to test the association in the presence of linkage.

The conditional likelihood function for n sibships is L =
∏n

i=1

∏ni
j=1 r(gij)

∑
g∗

o

∏ni
j=1 r(g∗

ij)
,

where r (gij) is the conditional probability of trait given its genotype and g∗o is all
possible genotypes of the offspring. It can be seen that they assumed that the con-
ditional probability of traits given offspring’s genotypes does not depend on the
parental genotypes, and is independent of their siblings’ trait and genotypes. Thus,
this method can use all siblings and does not require the specification of exact corre-
lation between siblings. The test can be easily performed using available statistical
packages such as SAS or R, and a robust variance estimate can be used to compute
a Wald test that is still valid for testing association in the presence of linkage. This
model has been further discussed by Cordell et al. [37] for more complex family
structures. Similarly, Jonasdottir et al. [85] proposed a mixed effects model to test
association in the presence of linkage for families with missing parental genotypes.
In their model, the population level association is modeled using a fixed effect and
the correlation of traits among siblings is characterized using log-gamma random
effects. Therefore, their method is still valid in the presence of linkage.

Although statistical methods from traditional statistical packages such as SAS
or R that can analyze family-based association studies have been proposed (e.g.,
Cordell and Clayton (2002); [37]), it is difficult for these packages to handle miss-
ing data. Therefore, Croiseau et al. [86] proposed a multiple imputation method
as a solution. Their procedure can be outlined as follows. In the first step, the com-
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plete phase-known data are generated based current parameter values for population
haplotype frequencies and genotype frequencies using a multiple imputation via
data augmentation. The initial haplotype frequencies can be estimated from the EM
algorithm. In the second step, the population haplotype frequencies are updated by
sampling them from their posterior distribution given the current complete data.
These two steps are repeated for a large number of times to reach a stationary distri-
bution. In the last step,m data sets at intervals (e.g., every 1,000 repeats) are selected
to perform the analysis. Croiseau et al. [86] showed that their method is more pow-
erful than the method that only uses the families without missing data and is robust
in the presence of population stratification with moderate amount of missing data
(missing rate ≤30%).

The aforementioned likelihood-based methods that can handle missing parental
genotypes are valid only when the parental genotypes are missing at random, i.e., the
probability of having missing parental genotypes does not depend on the phenotypes
of their offspring, their genotypes, and genotypes of their offspring. Allen et al. [87]
illustrated that parental missingness can depend on parental genotypes in some situ-
ations, i.e., the missingness is informative. Even with a slightly informative missing-
ness for parental genotypes, the methods based on missing at random can perform
very poorly [87]. To account for the informative missingness of parental genotypes,
Allen et al. [88] proposed a testing procedure based on the conditional likelihood
of observed parental and offspring genotypes given the offspring’s phenotypes and
parental missing patterns. Specifically, the conditional likelihood function for fam-
ily i is Li = P (gio, gim,gif |Yi, Ri) = P (gio|gim,gif , Yi)P (gim,gif |Yi, Ri) under
the assumption of that the parental missingness is independent of the offspring’s
genotypes given the parental genotypes and the offspring’s phenotype across all
populations, where Ri is the parental missing pattern. For example, we can use
Ri = (1, 0) to represent the case where only father’s genotype is missing whereas
Ri = (0, 0) for the case when both parental genotypes are missing. In general,
the term P (gim,gif |Yi, Ri) involves models on parental missing pattern R and on
parental mating types. However, correct specification of missingness model is not so
straightforward and misspecification of the missingness model can lead to bias for
stratified populations. Chen [88] proposed new family-based association test that are
robust for stratified populations in the presence of informative missing. Chen [88]
used the conditional probability of offspring’s genotypes given the observed parental
genotypes, parental missing pattern, and offspring’s phenotypes. For complete data,
this method is identical to the conditional likelihood of Schaid and Sommer [89]. For
families with missing parental genotypes, this method depends on parental missing
patterns and mating types. However, Chen [88] treated them as nuisance parameters
and did not require to directly modeling them. Therefore, such method is easier to
be implemented and more robust.

Sebastiani et al. [90] proposed a nonparametric method, the robust TDT (rTDT)
that does not assume any missing pattern, to handle missing parental genotypes in
case–parent designs. In rTDT, the possible genotypes of missing parents are first
constructed based on genotypes of offspring and available parents. Then, the usual
TDT statistics are obtained on each of possible genotypes of missing parents. In
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the final step, the minimum TDT statistic is used to test the association and linkage
between the marker and the DSL. Sebastiani et al. [90] derived an efficient algorithm
to calculate rTDT, since the simple enumeration calculation over all combinations
of possible genotypes over all missing parents would be very time consuming.
Their simulation results showed that rTDT can achieve higher power and greater
significance than the popular TDT method in some situations.

6 Quantitative Phenotypes

We have so far focused on the analysis of qualitative phenotypes, especially binary
phenotypes. However, many phenotypes are measured quantitatively and quantita-
tive phenotypes generally contain more information than qualitative phenotypes. For
family-based designs with binary phenotypes, families having at least one affected
offspring are generally collected. For quantitative phenotypes, although collect-
ing families with extreme values of quantitative phenotypes can increase statistical
power, random families are commonly recruited in genetic studies. Therefore, anal-
ysis methods that handle quantitative phenotypes have similarities and differences
to those that analyze qualitative phenotypes.

Many approaches have been developed in the last several years to analyze quanti-
tative phenotypes using family-based designs. Allison [91] developed five statistics
to analyze quantitative traits using family-based designs, and TDTQ5 was found to
be the most flexible and most powerful under a variety of genetic models in his sim-
ulation studies. Here, we describe TDTQ5 as follows. In TDTQ5, the quantitative
phenotype is regressed on offspring genotypes while controlling for parental mat-
ing types, which is determined by parental genotypes. For a bi-allelic maker with
alleles A1 and A2, there are only three informative mating types (A1A1 × A1A2,
A1A2 × A1A2, and A1A2 × A2A2). Then they are coded as two dummy vari-
ables and entered into the regression model. A F -test with two degrees of freedom
can be used to assess the significance if the marker locus is in linkage and asso-
ciation with the DSL. Therefore, TDTQ5 corresponds to the ordinary regression
analysis. Thus, the analysis using TDTQ5 can be carried out using commonly avail-
able and well-tested statistical software such SAS or R. In addition, it can be easily
generalized to analyze data with multi-allelic loci and families with multiple sib-
lings. Allison and Neale [92] discussed how TDTQ5 can be generalized to more
complex situations. For a multi-allelic locus, more dummy variables can be used
to code the parental mating types and entered into the regression model. If one
can use additional dummy variables to indicate if the father is heterozygous or the
mother is heterozygous, TDTQ5 can be generalized to test imprinting effects. For
families with multiple siblings, the weighted generalized least-square regression or
mixed model can be used to estimate the residual correlation among siblings [93].
To analyze quantitative phenotypes using families with missing parental genotypes,
Allison et al. [94] developed a mixed model coupling with the permutation proce-
dure to test the null hypothesis of no linkage between the marker and the trait locus.
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The mixed model has the following form: Yij = μ+αgijgij +βi +(αβ)giji +εgiji,
where αg is the fixed effect for genotypes, βi is the random effect to model the
correlation between the sibship i, and the interaction effect of α and β is modeled
as the random effect. The mixed effects model allows the straightforward inclu-
sion of covariates and other genes. Based on the mixed model, Allison et al. [93]
proposed a permutation procedure to test the null hypothesis of no linkage. Simula-
tion results showed that the permutation procedure generally has greater power and,
furthermore, it has the advantage of being distribution free.

Since it is relatively easy to carry out the regression analysis, many regression-
based methods have been developed to analyze quantitative phenotypes using family
based designs after the development of TDTQ5. In George et al. [94], the phenotype,
Y , was assumed to be continuous and as the dependent variable. The transmis-
sion status of the associated allele, X , was considered as the primary independent
variable. Other covariates C were considered independent variables and incorpo-
rated into the regression model. The correlations among family members were also
incorporated. For an individual j in the ith family, George et al. [94] defined their
regression model as Yij = β0 + βcCij + βXXij + εij , where Xij takes the value
of 1 if the allele A1 is transmitted from a heterozygous parent and 0 otherwise.
George et al. [94] showed that testing the null hypothesis βX = 0. is equivalent to
test the null hypothesis of no linkage or no association. Zhu and Elston [95] pro-
posed an alternative regression model in which the transmission status was defined
in a different way. Simulation studies have shown that a variant of Zhu and Elston’s
method is more powerful in most situations [96]. Zhu et al. [97] further extended this
parametric method to accommodate data with missing parental genotypes. With the
assumption of a random sample of individuals, Yang et al. [98] developed a similar
regression model with additional regressors.

Many researchers have proposed generalized linear models to analyze qualita-
tive and quantitative phenotypes (Cordell and Clayton (2002); [44, 99]). One of the
advantages of generalized linear models is that the environmental covariates and
gene–environment interactions can be easily incorporated into the analysis. In the
generalized linear model, it is assumed that the transformation of the mean value of
Yij , μij = E (Yij) has a linear relationship with Xij , which is coded genotype of
gij conditional on the parental genotypes gim and gif . Specifically, through a link
function l used in the generalized linear model, we have lij = l (μij) = β0+β1Xij .
Under the assumption of normality, the conditional probability of offspring’s geno-
types, gio = (gi1, . . . , gini), given offspring’s phenotypes, Yio = (Yi1, . . . , Yini),
and parental genotypes, (gim, gif ), for family i is Li = P (gio|gim, gif , Yio) =

P (Yio|gio,gim·gif )P(gi1,...,gini
|gim,gif)

∑
g∗

io
P(Y1,...,Yn|g∗

io,gim,gif)P(g∗
io|gim,gif) . Liu et al. [99] proposed a score test for

the association between the marker locus and the trait locus. To construct the score
statistic, some unknown parameters must be specified or estimated under the null
hypothesis. For quantitative phenotypes, it involves the estimation of parameter β0,
which cannot be estimated from the likelihood function under the null hypothesis
of no association. Therefore, Liu et al. [99] suggested to use the mean of pheno-
types as an estimate of β0 and further adjusted its bias in the ascertainment by the
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addition of an offset term that is assumed to be known. Although this procedure will
not affect the validity of the score test, it may reduce the power of the test. Baksh
et al. [44] modeled the joint probability of offspring genotypes and phenotypes con-
ditioning on the parental genotypes and the ascertainment in family-based designs.
In this situation, the nuisance parameters (e.g., β0) can be estimated directly from
the likelihood function and a likelihood ratio test statistic can be constructed.

Another group of methods to analyze quantitative phenotypes is based on the
likelihood framework. Clayton and Jones [47] assumed that the trait, Yij , for a
given individual has a normal distribution conditional on his/her genotypes, gij ,
i.e., Yij ∼ n

(
μgij , σ

2
)
. Then, the conditional probability of genotype gij given the

trait value and the parental genotypes is P (gij |Yij , gm, gif ) =
φ((Yij−μgij )/σ)
∑

g φ((Yij−μg)/σ) ,

where φ is the probability density function of standard normal distribution and the
sum in the denominator is over all possible transmissions from the parents to the
offspring. If we re-parameterize the mean value μg=AiAj for the genotypeAiAj as
h
(
μg=AiAj

)
= h (μ0) + βi + βj , then a score statistic can be used to test the null

hypothesis of β = 0, which is equivalent to test the null hypothesis of no linkage or
no association between the marker locus and the trait locus.

Kistner and Weinberg [100] extended the log-linear model of Weinburg et al.
(1998) for quantitative phenotypes. Denote (O,M,F ) as the mating type of case–
parent trios, Kistner and Weinberg [100] modeled the probability of O conditioning
on M , F , and the phenotype, Y , based on a multinomial distribution. Specifically,
p(O|M,F,Y ) = exp (βCY + αOMF ). The null hypothesis of no linkage or no asso-
ciation between the DSL and the phenotype can be tested by setting βO = 0 for
all O. Kistner and Weinberg [101] further extended this model to allow for missing
parental genotypes. If we allow different βO for different mating types, the model
can be used to test parent-of-origin effects.

To allow for a simultaneous test of allelic association and linkage using only sib-
lings, Fulker et al. [102] generalized variance components models in quantitative
trait (QTL) mapping and Cardon [103] developed a regression based method which
is an extension of Fulker’s method. Fulker’s method has further been generalized to
handle families with an arbitrary number of siblings, general pedigrees, and genome
wide association studies [104–106]. In the variance components model, the associ-
ation is partitioned into between- and within- siblings components, and a robust
test is constructed only on the basis of the within siblings component. Specifically,
Abecasis et al. [104] assumed that the mean of Yij satisfies: E (Yij) = μ+ βbbi +
βwwij , where βb and βw are between and within siblings effects and bi and wij are
orthogonal between- and within-family components of genotype gij . For a marker
locus with two alleles A1 and A2, we define gij as the number copies of allele

A1 minus one, then bi =
(∑

j gij

)
/ni if parental genotypes are unknown and

bi = (gim + gif ) /2 if parental genotypes are available and wij = gij − bi. Thus,
bi is the expectation of each gij conditional on family data and wij is the deviation
from this expectation for offspring j. For each family, the ni×ni covariance matrix,
Ωi, has the elements: Ωijk = σ2

a +σ2
g +σ2

e for j = k and Ωijk = πijkσ
2
a +2ϕijkσ

2
g

for j �= k, where σ2
a is the additive genetic variance of the QTL, σ2

g is the variance
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attributable to polygenes, σ2
e is the residual environmental variance, and πijk is the

proportion of alleles shared IBD at the marker locus between individuals j and k
in family i. Under the assumption of normality, the likelihood of the data for fam-
ily i is Li = (2π)−ni/2 |Ωi|−1/2 exp

[− 1
2 (Yi − μi)

′ |Ωi|−1/2 (Yi − μi)
]
. Abecasis

et al. [104] showed that the test of null hypothesis of βw = 0 is equivalent to test
the association between the maker locus and the trait locus. In this situation, the log
likelihood ratio test statistic, 2 log ((

∏
i Li) / (

∏
i Li (βw = 0)) has an asymptotic

chi-square distribution with one degree of freedom.
Purcell et al. [107] generalized the methods of Fulker et al. [102] and Abecasis

et al. (2000a) to incorporate parental phenotypes. For quantitative phenotypes and
offspring’s phenotypes, the mean of Yij satisfies: E (Yij) = μ + βbbi + βwwij ,
which is exactly the same as the model of Abecasis et al. [104] . For the parental
phenotypes, the mean of Yim and Yif satisfies: E (Yim) = μp + βpbbi + βpwwim

and E (Yif ) = μp + βpbbi + βpwwif where wim = gim − bi (or wif = gif − bi )
is the deviation from the expectation of offspring’s genotypes for the parents. For
each family, the (ni + 2)× (ni + 2) covariance matrix, Ωi, can also be constructed.
Therefore, up to four main parameters, (βb, βw, βpb, βpw) with other nuisance
parameters define the association between the marker and the phenotype and the cor-
responding likelihood ratio tests can be constructed. Simulation studies have shown
that the incorporation of parental phenotypes can be considerably more powerful
than equivalent quantitative tests that do not use parental phenotypes.

For analysis methods of quantitative based on generalized linear models and like-
lihood function, it is generally assumed that the quantitative phenotype of interest
has a normal distribution. A departure from normality can inflate their type I error
rates [108]. A general solution is to transform the trait values using methods such
as Box–Cox transformation [109]. However, it is difficult to identity an appropriate
transformation and different transformations can generate conflicting results. Inap-
propriate transformation can also affect the type I error rates and power. Diao and
Lin [108] extended previous analysis methods for quantitative traits such as QTDT
[104] to allow for a completely unspecified transformation function for the trait
values. Their generalized model of Abecasis et al. [104] assumes the mean of trans-
formed trait value satisfies: E (T (Yij)) = μ + βbbi + βwwij , where βb and βw

are between- and within-siblings effects and bi and wij are orthogonal between-
and within-family components of genotype gij . Based on this assumption, Diao and
Lin [108] constructed a nonparametric likelihood function and proposed a method
to estimate the transformation function T by assuming that T is step-wise function
from the data. Since the estimates of parameters are based on the rank of Yij , their
method is robust to outliers. Their simulation results showed that their method had
the appropriate type I error rate and was more powerful than the existing methods.

Other than the parametric methods based on generalized regression and likeli-
hood function, nonparametric methods have been proposed to analyze quantitative
using family data. One advantage of such methods is that no assumption is made
about the distribution of phenotypes. The tests are therefore valid for any type of
sampling schemes based on the phenotypes of the individuals. Xiong et al. [110]
compared the average trait values of offspring inheriting one allele versus the other
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to test the linkage for the marker locus and the trait locus. For a maker locus with k
allelesA1, . . . , Ak, denote Ȳi. as the average trait value of offspring inheriting allele
Ai from the parental genotype containing the allele Ai, Ȳ.i as the average trait value
of offspring not inheriting allele Ai from the parental genotype containing the allele
Ai, and V 2

i as the estimated variance of Ȳi. − Ȳ.i. Under the null hypothesis of no
linkage or no association, Ȳi. − Ȳ.i has the expected value of 0. Therefore, Xiong et

al. [110] proposed the statistic TDTQ = k−1
k

∑k
i=1

(Ȳi.−Ȳ.i)2

V 2
i

and TDTQ asymp-

totically follows a chi-square distribution with k − 1 degrees of freedom under the
null hypothesis of no linkage or no association. It is worth emphasizing that TDTQ

is not a valid test for association in the presence of linkage due to the way that V 2
i

was estimated [110]. This method has been further generalized by Fan et al. [111]
for multi-allelic markers.

Rabinowitz [112] proposed to assess the correlation between the offspring’s phe-
notypes and genotypes conditioning on the parental genotypes. The method has
been generalized to test the association with arbitrary pedigree structure and arbi-
trary missing marker information and implemented in the software package FBAT
[49]. As we have mentioned, the test statistic of Rabinowitz [112] can be expressed
as Z = U/

√
V ar (U), where U =

∑n
i=1

∑ni

j=1 (Yij − μ) (Xij − E (Xij |Si))
and Z has an asymptotic standard normal distribution under the null hypothe-
sis of no linkage or no association. The constant μ affects the power of Z but
not its validity. The variance of U , can be conveniently estimated by V ar (U) =
∑n

i=1

[∑ni

j=1 (Yij − μ) (Xij − E (Xij |Si))
]2

. Such approach has also been gen-

eralized to include families with missing parental information by Sun et al. [79] and
Monks and Kaplan [113]. To use information from all available offspring, Monks
and Kaplan [113] proposed three statistical tests for quantitative traits: TQP , TQS ,
and TQPS , where TQP requires the parental genotypes and is identical to the test
proposed by Rabinowitz [112], TQS is based on siblings, and TQPS is a combination
of TQP and TQS.

7 Joint Analysis of Multiple Markers

In association studies, many tightly linked markers other than a single marker are
generally genotyped. One strategy is to analyze each marker separately and then
adjust for multiple comparisons by the Bonferroni correction. Such analysis ignores
the linkage disequilibrium among markers and tends to be conservative. Methods
based multiple tightly linked markers may provide more power than methods based
on single markers because the former exploits LD information with the DSL from
multiple markers. The methods using multiple markers can be generally classified
into two groups: those based on unphased genotypes and those based on known or
inferred haplotypes. Both types of methods have shown to be more powerful than
single marker-based methods in simulation and empirical studies [114–119]. As we
can see from the formula of the TDT statistic, only the parents with heterozygous
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genotypes will contribute to the TDT statistic. These parents are called informative
parents. Thus, haplotypes across several markers have an addition advantage over
single markers for family based association studies: haplotypes can increase the het-
erozygosity of parents and provide more informative parents in most situations. In
addition, haplotype-based methods can be more powerful when multiple disease-
susceptibility alleles occur within a single gene [120] and can potentially capture
cis-interactions between two or more causal variants. However, it is also worth not-
ing that the methods based on multiple markers may not always be more powerful
than single marker-based methods, and the haplotype-based methods are not always
more powerful than the methods based on genotypes at either a single marker locus
or multiple marker loci [115–117]. Actually, relative efficiencies of these methods
depend on many factors and it is still not clear which method is optimal in many
situations.

Liang et al. [121] developed a multipoint, parametric approach for gene mapping
using case–parent trios. Their test is based on an expression of expected preferential-
allele-transmission statistics for transmission. Suppose L bi-allelic markers are
genotyped at t1, t2, . . . , tL and the position of DSL is at τ along the chromosome.
For the mother in the ith family, we define its preferential-allele-transmission at the
locus l (l = 1, . . . , L)Mil, as 1 if she transmits allele A1 but not A2 to the affected
offspring, −1 if she transmits allele A2 but not A1, and 0 otherwise. Similarly, the
preferential-allele-transmission for the father, Fil, can also be defined. Under the
null hypothesis of no linkage or no association between the marker and the DSL,Mil

and Fil have the expected value of 0 conditioning on the disease status of offspring.
Liang et al. [121] derived that the expected Mil and Fil conditional on the disease
status of offspring, which is a function of marker position, tl, the DSL location,
τ , and other parameters: E (Mil) = E (Fil) = μ (tl; τ, C,N, πl). Given observed
tl,Mil, and Fil (i = 1, . . . , n; l = 1, . . . , L), Liang et al. [121] proposed to use the
generalized-estimating-equation (GEE) [122] approach to jointly analyze Mil and
Fil and proposed a chi-square test with one degree of freedom to estimate the DSL
location, τ . Comparing with the TDT, this method has two advantages. First, fami-
lies with homozygous parents are included in the analysis, which may increase the
power. Second, a chi-square test with one degree of freedom was proposed to avoid
the correction of multiple testing problems for multiple markers. Hsu et al. [123]
further generalized this method for quantitative phenotypes.

Fan and Xiong [124] extended the regression model for QTL mapping to jointly
test linkage and association using multiple markers. Denote the coded genotypes
of individual j in the ith family at marker A and B as Xij,A, Zij,A, Xij,B , and
Zij,B , respectively. Fan and Xiong [124] proposed the following regression model:
Yij = β +wijγ +Xij,AαA +Xij,BαB +Zij,AβA +Zij,BβB + ei, where wij are
other covariates. For each family, the covariance matrix is same as that defined by
Abecasis et al. [104]. The advantages of this method include the joint analysis of two
tightly markers, the combined analysis of population and family data, and the use
of parental phenotypes. The method has been further extended to analyze sibship
and general pedigrees [125, 126]. However, the construction of coded genotypes,
Xij,A, Zij,A, Xij,B , and Zij,B , is solely based their own genotypes without the use
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of their parental genotypes [124] (Fan et al., 2005b). Therefore, this method may be
biased in the presence of population stratification.

To simultaneously analyze genotypes or haplotypes across multiple markers,
Fan et al. [127] generalized the Hotelling’s T 2 test for population data [117] to
case–parent trios. Their method for genotypes across L bi-allelic markers and n
case–parent trios can be outlined as following. Denote Xio,l and Xip,l as the num-
ber of copies of an allele at the lth marker (l = 1, . . . , L) for offspring and parents,
respectively. Define X̄o,l and X̄p,l as the average of Xio,l and Xip,l across n trios,
respectively. For a single marker locus, Fan et al. (2005a) used the statistic: Tl =√
n
(
X̄o,l − X̄p,l

)
/
√
Vl, where Vl =

∑n
i=1

[
(Xio,l −Xip,l) −

(
X̄o,l − X̄p,l

)]
/

(n− 1). Tl has an approximate t−distribution under the null hypothesis for the
larger sample size. For L tightly linked markers, Tl (l = 1, . . . , L) are not inde-
pendent but the T 2 statistic can be constructed: T 2 = n

(
X̄o,1 − X̄p,1, . . . , X̄o,1−

X̄p,1

)τ
V −1

(
X̄o,L − X̄p,L, . . . , X̄o,L − X̄p,L

)
, where V is the covariance matrix

of X̄o,l − X̄p,l (l = 1, . . . , L) , . . . , . . . , X̄o,L − X̄p,L ) and can be empirically esti-
mated from Xio,l and Xip,l (i = 1, . . . , n; l = 1, . . . , L) [127]. Under the null
hypothesis of no association, T 2 has an approximate chi-square distribution with
L degrees of freedom. Fan et al. [127] further extended this method to handle multi-
allelic markers and haplotypes and genotypes across several haplotype blocks. They
applied the T 2 statistic to a real data and obtained the smaller p-values than those
obtained from the single marker analysis, indicating the proposed T 2 statistic tests
are potentially more powerful.

Xu et al. [128, 129] proposed a multi-marker family-based association test that
linearly combines the single-marker test statistics using weights. Suppose there are
L markers and the FBAT statistic obtained from each marker locus is denoted by
zl (l = 1, . . ., L), Xu et al. [128, 129] proposed a class of test statistics that lin-
early combine the single-marker statistics: S = WTZ , where W = (w1, . . . , wL)
are weights and Z = (z1, . . . , zL). If W is fixed with regard to Z , then S has an
approximate multinomial distribution, N

(
0,WT ΣW

)
, under the null hypothesis

of no linkage or no association, where
∑

is the estimated covariance matrix of Z .
To obtain the weights, W, Xu et al. [129] proposed to use the statistics obtained
from the “conditional mean model” [130]. For the lth marker of the jth offspring in
the ith family, the conditional mean model uses E (Yij) = α + βE (Xij,l), where
E (Xij,l) is the expected genotypic value for the ith family. Let ẑlβ denote the stan-
dardized least-square estimator of β in the conditional mean model β in (4), then
ẑlβ can be used as the weight to construct the following global test over L mark-

ers: ZLC =
(
ẐT

β Z
)
/
√
ẐT

β ΣẐβ , where ẐT
β = (ẑ1β , . . . , ẑLβ) and ZLC has an

approximate standard normal distribution under the null hypothesis of no linkage
or no association. There are several advantages of this approach. First, it uses the
same data set for the FBAT test. Second, ẑlβ is independent to zk under the null
hypothesis. Third, ẑlβ is positively correlated with zk under the alternative hypoth-
esis. Similar idea has been used to develop a two-stage approach that performs the
screening and association tests using the same sample [131]. Simulation studies
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have shown that their method using the data-driven weights has the valid type I
error rate and is more powerful than the Hotelling-T2 test.

Rakovski et al. [132] extended the genotypic analysis of Chapman et al. [115]
for multiple markers for case–control studies to family-based studies. The proposed
method has formula similar to the T 2 test proposed by Fan et al. [127] and is iden-
tical with FBAT statistic for the single marker case [49]. Let L denote the number
of markers and Ui,k =

∑ni

j=1 (Yij − μ) (Xij,k − E (Xij,k|Si,k)) denote the statis-
tic for the ith family at the lth marker (l = 1, . . . , L). We denote V ar (Ui,k) =∑

j,k (Yij − μ) (Xij,k − E (Xij,k|Si,k)) (Yil − μ) (Xil,k − E (Xil,k|Si,k)) as the
variance of Ui,k, which is calculated under the null hypothesis of no linkage or
no association. Then, FBAT score across L markers can be written as
FBATMM = (

∑n
i=1 Ui,1, . . . ,

∑n
i=1 Ui,L)τ

V (
∑n

i=1 Ui,1, . . . ,
∑n

i=1 Ui,L),
where V is the covariance matrix of

∑n
i=1 Ui,l (l = 1, . . . , L) and can be empiri-

cally estimated from
∑n

i=1 Ui,l (l = 1, . . . , L) (Rakovski et al., 2007). For a large
number of families, FBATMM has an approximate chi-square distribution with
the degrees of freedom equal to the rank of V . Similar to FBAT, FBATMM can
handle quantitative traits, arbitrary family structure, and arbitrary missing patterns.
Rakovski et al. (2007) showed that FBATMM can be more powerful than the single
marker-based FBAT in their simulation studies.

Other than methods based on genotypes of multiple markers, many methods
based on known haplotypes or inferred haplotypes across several markers have also
been developed. For tightly linked markers, recombinants are unlikely events. Thus,
it is reasonable to assume the haplotype configurations obtained do not contain
recombinants in most situations. Then, haplotypes can be considered as alleles at
a multi-allelic marker and the transmission of haplotypes follows the Mendelian
Law of inheritance. Thus, virtually all the extended TDT methods that can han-
dle multi-allelic markers can be directly applied to phase known haplotype data.
Clayton and Jones [47] discussed the generalization of the TDT to detect associa-
tion between haplotypes and the DSL based on a generalized haplotype risk model.
When there are many haplotypes, the proposed test to have low power due to the
large degrees of freedom. Therefore, Clayton and Jones [47] assumed that similar
haplotypes tend to have similar effects and modeled the haplotype effects with a
multivariate normal distribution with variance-covariance matrix of vS, where S is
a known matrix expressing haplotype “similarity” between pairs of haplotypes and
v is a single parameter that represents the haplotype association. A natural way to
determine the element sij in S is to classify two haplotypes hi and hj either as
similar (sij = 1) or dissimilar (sij = 1). Another nature measure of the similarity
between two haplotypes is Shi,hj (l), the length of the contiguous region over which
the two haplotypes, hi and hj , are identical by state, as was also used by Van der
Meulen and te Meerman [133] and Bourgain et al. [134] .

If haplotypes are known, one can also consider transmitted haplotypes as case
haplotypes and the un-transmitted haplotypes as control haplotypes and directly
apply haplotypes-based methods for case–control studies to family data. Both Van
der Meulen and te Meerman [133] and Bourgain et al. [134] proposed haplotype
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sharing-based methods. The idea behind this type of methods is that two haplotypes
containing the disease allele are more closely related than two haplotypes without
the disease allele and two haplotypes with one having the disease allele and one
not having the disease allele. Therefore, if the marker is in the region flanking the
disease gene, we expect to observe an excess length of shared haplotypes. Suppose
there are n transmitted haplotypes (case haplotypes) and n un-transmitted haplo-
types (control haplotypes) and that L tightly linked SNP markers are genotyped in
a region of interest. The transmitted haplotypes are denoted as h1, . . . , hn, the un-
transmitted haplotypes are denoted hn+1, . . . , h2n, and Shi,hj (l) is the length of
the contiguous region around the lth marker over which the two haplotypes, hi and
hj , are identical by state. Van der Meulen and te Meerman [133] proposed the HHS
at the lth marker for the transmitted haplotypes:

HSS (l) =

√
√
√
√

∑
i�=j

(
Shi,hj (l)

)2 −
(∑

i�=j Shi,hj (l)
)2

/ (n (n− 1))

n (n− 1) − 1
.

They used a randomization procedure to estimate its mean and variance under the
null hypothesis of no association. Under the assumption of normality, the p−value
can be calculated for each HHS (l). Bourgain et al. (2000) defined A (l) =

2
n(n−1)

n∑

i=1

n∑

j=i+1

Shi,hj (l) and U (l) = 2
m(m−1)

n+m∑

i=n+1

n+m∑

j=i+1

Shi,hj (l) for trans-

mitted haplotypes and un-transmitted haplotypes and used ILCS = max1≤l≤L

(A (l) − U (l)) as the test statistic. Its significance can be assessed by a simple
permutation test [134]. The simulation studies showed that this method is more
powerful than the TDT for tingly linked markers [134, 135]. Bourgain et al. [136]
further extended the MILC method to handle missing data and ambiguous haplo-
types. For haplotype data, Lange and Boehnke [137] developed the Haplotype Runs
Test (HRT) based on haplotype sharing. In contrast to the other proposed haplotype
sharing methods, the HRT test statistic is only based on transmitted haplotypes and
Shi,hj (l) is weighted by allele frequencies at makers. For missing data and ambigu-
ous haplotypes, Lange and Boehnke [137] used the same strategies proposed by
Bourgain et al. [136] to define Shi,hj (l). Their simulations results showed the HRT
is more powerful than the method of Bourgain et al. [134, 136].

In most situations, the haplotypes are unknown and they cannot be completely
determined even using family data. One strategy is to identify the most likely hap-
lotype configuration without recombinants and treat them as phase known data.
But such strategy ignores the uncertainty in haplotype inference, which can result
in a loss of power. Another way is to identify all compatible haplotype configu-
rations with their posterior probabilities and analyze them together. However, the
identification of the most likely haplotype configuration and all compatible haplo-
type configurations often involves the estimate of haplotype frequencies based on
likelihood function, which may not be robust for stratified populations. Therefore,
many methods that can use multiple haplotype configurations to account for the
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uncertainty in haplotype inference but are still rubout for stratified populations have
been proposed.

Several methods have been proposed based the full or the partial of the following
likelihood function ([37, 138]; Clayton, 1999; Seltman et al., 2001) to construct a
likelihood-ratio test. When there are ambiguities:

L(F ) = P (gm, gf , go|D) = P (gm, gf |D)P (go|gm, gf , D) = L(P )L(O),

whereD represents the affected status of the offspring, go, gm, and gf are the geno-
types (or paired haplotypes if they are known) of the offspring, mother, and father,
respectively. The first component, L(P ), depends on the haplotype relative risks
and haplotype frequencies in the population. The second component, L(O), only
depends on the haplotype relative risks. Both L(F ) and L(O) can be used to test
if the haplotype relative risks equal one. The inclusion of L(P ) can increase the
power but introduce bias for stratified populations. Clayton [36] proposed a score
test based on the partial-likelihood to reduce the influence of population stratifica-
tion as much as possible. The test statistic is derived either based on L(F ) for those
trios with ambiguous haplotypes or L(O) for those trios with determined haplotypes.
Cordell et al. (2002) proposed a unified stepwise regression procedure for associa-
tion mapping using family data based on L(O) only:L(O) = P (Gc|Gm, Gf , D) =

P (D|Gc,Gm,Gf )∑
G∗∈G P (D|G∗,Gm,Gf)P (G∗|Gm,Gf )P (Gm,Gf ) , where P (G∗|Gm, Gf ) are functions

of underlying population haplotype frequencies and recombination fractions and
generally take different values. Seltman et al. [139] adapted the partial likelihood
approach [36] to simultaneously test linkage and association between haplotypes
and the disease. To reduce the number of degrees of freedom required for test-
ing a large number of haplotypes and improve power, Seltman (2001) proposed
the “evolutionary tree” (ET)–TDT. Simulation results have shown that the ET–TDT
can be more powerful than other proposed methods under reasonable conditions
[139]. Cordell et al. (2002) proposed to use some event ξ in the family such that
P (G ∗ |ξ) will not depend on the underlying haplotype frequencies and the recom-
bination fractions. Then, L(O) can be expressed in a conditional logistic regression
framework. They proposed several strategies to choose the event ξ. For example,
we can use all families that the parental haplotypes can be unambiguously deduced
without recombinants or all families that the haplotypes are “inferable” (Cordell et
al., 2002). However, this method may discard many families and results in loss of
power. Dudbridge [138] used the full likelihood functionL(F ) and the EM algorithm
to maximize L(F ) under the null hypothesis as well as under the alternative hypoth-
esis in the presence of ambiguous haplotypes. Although they assumed the one single
population with HWE, population stratification will only lead to a conservative test
[138].

Other than likelihood-based methods, Zhao et al. [119] developed a method
to construct the transmission/nontransmission table based on the estimated hap-
lotype frequencies and proposed a test that is similar to TDTSE. Specifically,
the contribution of a compatible haplotype assignment {Gm, Gf , GO} of a trios
to the transmission/nontransmission table is weighted by P (Gm)P (Gf ) /



218 K. Zhang and H. Zhao

∑
{G∗

m,G∗
f} P (G∗

m)P (G∗
f ), where

{
G∗

m, G
∗
f

}
are all possible haplotype assign-

ments for this trios. Under the null hypothesis of no linkage, Zhao et al. [119]
proved the table is symmetric and such symmetry is not affected by the choice of
haplotype frequencies. Thus, the test proposed by Zhao et al. [119] does not suffer
from inflated type I error rates due to population stratification. Knapp and Becker
[140] observed that the symmetry of the transmission/nontransmission table is not
essential for the validity of the test proposed by Zhao et al. [119]. Based on this
observation, Knapp and Becker [140] proposed several intuitive modifications for
Zhao’s method that can potentially increase its power but not affect its validity, and
extended Zhao’s method to handle general nuclear families with arbitrary number
of affected and unaffected offspring.

Lin et al. [141] proposed the exhaustive allelic transmission disequilibrium test
(EATDT) to test the linkage and association from case–parent data. The underlying
idea of EATDT is that either methods based on single markers or methods based on
haplotypes are optimal in all situations and it is difficult to know which method is
optimal in a given data. But we may gain additional power by exhaustively searching
all alleles including single markers as well as all haplotypes with lengths less than
a pre-specified threshold within a window. For n families and any given window
containingL bi-allelic markers, a transmission/nontransmission table is constructed
and then the corresponding p-value is calculated based on either a specific allele
at a single makers or a specific haplotype across multiple markers within the win-
dow in EATDT. The p-values are calculated over all combinations of markers within
the window and the minimum p-value among them is chosen as the p-value for the
window. Instead of using the Bonferroni correction, Lin et al. [141] proposed a per-
mutation procedure to adjust its significance in EATDT. Simulation results showed
that EATDT can detect both common and rare DSLs in GWA studies.

Zhang et al. [53] proposed a HS-TDT method to evaluate linkage and associa-
tion between a maker and the DSL by assessing the correlation between the trait
value and the difference of haplotype-sharing scores between the parental haplo-
types that are transmitted and not transmitted to their offspring. The MILC method
proposed by Bourgain et al. [134–136] is a special case of the HS-TDT. Let Xij (l)
denote the difference of the haplotype-sharing scores between the parental haplo-
types that are transmitted and not transmitted to the jth offspring in the ith family
at the lth marker [53], then the proposed score for the ith family can be expressed
as: Ui (l) =

∑ni

j=1 (Yij − μ)Xij (l). Under the null hypothesis of no linkage or no
association, the trait values are independent of Xij (l), thus E (Ui (l)) = 0. The
test statistic across all L markers is defined as U = maxl=1,...,L (U (l)), where
U (l) =

∑n
i=1 wiUi (l) and the summation is over all families and wi is a con-

stant. The significance of U can be assessed using a permutation procedure. For
phase unknown data, the haplotype configurations with their corresponding poste-
rior probabilities can be estimated using the EM algorithm with the assumption of
a single population with HWE and Xij (l) can be defined accordingly. Zhang et al.
[53] proved that the choice of μ in Ui (l), wi in the U (l), and the haplotype fre-
quencies will only affect the power but not the validity of HS-TDT. Thus, HS-TDT
is still valid in the presence of population stratification. The optimal values of μ and
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wi to achieve the maximum power is unclear. In practice, μ can be set as 0 for the
qualitative trait and as mean over all children in all families for the quantitative trait.
wi can be set as 1/ni according to the number of offspring in the family [113] or 1
to all families [50]. HS-TDT is applicable to arbitrary nuclear families and can han-
dle both qualitative and quantitative traits. The simulation results also showed that
HS-TDT is more powerful than existing single-marker TDTs and haplotype-based
TDTs. However, the haplotype sharing based methods are not robust to genotyping
errors, missing data, and recent marker mutations. Knapp and Becker [142] found
that the haplotype sharing used in HS-TDT [53] can result in an inflated type I error
rate in the presence of genotyping errors.

Several methods have been proposed to define robust haplotype sharing based
statistics with genotyping errors and missing data (Bourgain et al., 2002; [143–
145]), readers are referred to these papers for more details. In this book, Epstein
and Kwee [146] reviewed two haplotype based approaches in details. One is the
approach of Horvath et al. [147], which is the extension of the FBAT approach to
haplotypes and is applicable for arbitrary family structures and missing parental
genotypes. The other is a robust approach recently developed by Allen and Satten
[148], which can perform haplotype and haplotype–environment interaction analy-
sis within case–parent triads. Readers can refer to this chapter for more details about
these two methods. In addition, the development of haplotype-based methods is an
active research area and many different methods have been proposed ([149–157];
Onkamo et al., 2002).

8 Other Association Methods Using Family-Based Designs

8.1 General Pedigrees

Although some aforementioned methods, such as FBAT, have been generalized to
handle large pedigrees with multiple generations, most of them are only applica-
ble to nuclear families. A large number of large pedigrees with multiple gener-
ations have been collected and are continually being collected in practice. Thus,
it is important to develop methods that can analyze data from general pedigrees.
Martin et al. [51] developed a valid test of association using general pedigrees and
Zhang et al. [156] generalized this method for quantitative phenotypes. Abecasis
et al. [105] also proposed a similar test tests for qualitative phenotypes using general
pedigrees. Martin et al. [157] further extended such allele based tests to genotype-
based tests that are applicable to general pedigrees. The basic idea of these methods
is to collect all informative nuclear families and all informative sibships in a single
pedigree as a unit in the test statistic. We can at least consider three types of infor-
mative nuclear families within a pedigree: (1) the parental genotypes are completely
available; (2) only one parent has the genotype and the family satisfies the condition
specified by Sun et al. [50] ; (3) the parental genotypes are not available but the fam-
ily has at least one affected sibling and one unaffected sibling. For these three types
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of families, we can construct three statisticsU1,U2, andU3, which have the expected
value of 0 under the null hypothesis of no linkage or no association [50, 51, 54].
Denote U = U1 + U2 + U3 as the summary statistic, the estimated variance of U
is just U2 under the null hypothesis and it is unbiased in the presence of linkage.
More generally, we can use a weighted statistic U = w1U1 +w2U2 +w3U3, where
wi (i = 1, 2, 3) is the weight for Ui. In general, the weights are calculated accord-
ing to the number of informative nuclear families and Martin et al. [158] provided
a weighting scheme to avoid potential bias in their test. Liu and Gordon [159] con-
sidered a set of weights that can achieve more power. However, the optimal weights
that can achieve the maximum power are still unclear. Suppose we have n pedigrees
and Ui is the summary statistic for pedigree i, then Z =

∑
i Ui√∑

i U2
i

has an asymptotic

standard normal distribution.
Cantor et al. [160] proposed a likelihood-based association test in a linked region

using large pedigree, which is an extension of method by Xiong and Jin [161] . For
a pedigree with n individuals, the prospective likelihood function can be written as:
L =

∑
g1,...,gn

∏
i Pentrance (Yi|gi)

∏
j Prior (gj)

∏
(k,l,m) Transmission (gm|

gk, gl) . Here, person i has the phenotype Yi and possible genotype gi, the product
on j is over all founders, and the product on (k, l,m) is over all parent–offspring
trios. The likelihood can be parameterized as a function of recombination rate and
linkage disequilibrium between the marker locus and trait locus. Thus, the likelihood
ratio test can be constructed to test the association and linkage. However, the calcu-
lation of the prior probability of founder’s genotypes requires the good estimate of
haplotype frequencies, this method may be biased for structured populations.

Chen and Abecasis [106] developed tests that are applicable to general pedigrees
and GWA studies. Due to the high cost in GWA studies, not all samples with phe-
notypes will be genotyped. In this situation, Chen and Abecasis [106] developed
a method to impute genotypes of ungenotyped individuals based on genotypes of
their genotyped relatives. The model used in Chen and Abecasis [106] is similar
to the model used in QTDT [105]. Specifically, they assumed that the mean of Yij

satisfies: E (Yij) = μ + βggij + βcCij , where βg and βc are genetic effect and
covariate effect, and gij is the number of copies of allele A1 for biallelic markers.
For each family, the ni × ni covariance matrix, Ωi, has the identical elements with
the covariance matrix in QTDT. For individuals without genotypes, the genotypic
score, gij , is replaced by ḡij , the estimated genotypic score based on its genotyped
relatives. Chen and Abecasis [106] showed that their methods have appropriate type
I error rates and more power when phenotype information for ungenotyped individ-
uals is included in analysis. However, their methods did not distinguish between
and within family effects thus may not be robust in the presence of population
stratification.
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8.2 Gene–Gene (G × G) interaction and Gene–Environment
(G × E) Interaction

It is generally believed that gene–gene interactions and gene–environment interac-
tions play an important role in many human complex diseases. Many methods have
been developed to detect statistical interactions. Statistical interactions between
genes and environmental variables may not correspond to biological interactions.
They generally mean that the joint effects of genetic and environmental variables
can not be added, if the additive model is assumed, or cannot be multiplied, if a
multiplicative model is assumed. Umbach and Weinberg [162] adopted such sta-
tistical definition of interaction and extended the log-likelihood model to study the
interaction of gene and a binary environmental variable. Denote (O,M,F ) as the
mating type, E as the binary environmental variable, and p(O,M,F,E)|D is the con-
ditional probability of mating type (O,M,F ) and E given the disease status of
offspring, then the model proposed by Umbach and Weinberg [162] is

log
(
p(O,M,F,E)|D

)
= μ(M,F ) + δ(M,F )I{E=1} + βO + ηOI{E=1}

+ log (2) I{(O,M,F )=(1,1,1)}.

The null hypothesis of no interaction between O and E can be tested by setting
η1 = η2 = 0. This test is equivalent to a test studied by Schaid [46]. In this model,
one implicit assumption is that, conditional on the parental genotypes, the off-
spring’s environmental status is independent of its genotype at the candidate locus.
Cordell et al. [37] extended the conditional logistic regression to model gene–gene
interactions and gene–environment interactions.

Hsu et al. [163] extended the multipoint approach of by Liang et al. [120] and
developed a new method to detect gene–gene interactions in two unlinked regions.
The method is based on the preferential-allele-transmission statistic and can be out-
lined as follows. Suppose two regions I and II are unlinked and there is no more than
one DSL in each region. Suppose that are L1 markers in region I and L2 markers
in region 2, Hus et al. (2003) defined preferential-allele-transmission statistic for
these two region as M1

il and F 1
il and M2

il and F 2
il, respectively [121]. Liang et al.

[121] have derived that the expected M1
il and F 1

il (or M2
il and F 2

il) conditional on
the disease status of offspring, is a function of marker position in region I, t1l (or in
region II, t2l ), the DSL location in region I, τ1 (or in region II, τ2), and other param-
eters: E

(
M1

il

)
= E

(
F 1

il

)
= μ1

(
t1l ; τ1, C1, N1, π

1
l

) (
E
(
M2

il

)
= E

(
F 2

il

)
= μ2

(
t2l ;

τ2, C2, N2, π
2
l

))
, Hus et al. (2003) further derived that the expected M2

il and F 2
il

conditioning on M1
il and F 1

il and the disease status of offspring, which is a func-
tion of marker position in region II, t2l , the DSL location in region 2, τ2, and other
parameters: E

(
M2

il|M1
il

)
= E

(
F 2

il|F 1
l

)
= μ3

(
t2l ; τ2, C3, N3, π

2
l

)
. Based on these

equations, GEE approach can be used to estimate all parameters and test gene-gene
interaction in two unlinked regions. The method can utilize multiple markers into
the analysis and only assumes that the two regions are completely unlinked and that
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there is no more than one DSL in each region but does not assume any particular
mode of inheritance.

Lake and Laird [164] proposed a method to study gene–environment interac-
tions based on correlation of genotypes and environmental covariates and parental
mating types. Specifically, the proposed FBAT-I statistic has the following formula:
T =

∑n
i=1

(
Xij − X̄OMF

) (
Eij − ĒOMF

)
, where Xij and Eij are the genotype

and the measure of environmental covariate for the jth offspring in the ith family,
X̄OMF and ĒOMF are the parental mating type specific mean of the genotype and
the environmental covariate for the mating type (O,M,F ). Under the null hypoth-
esis of no gene–environment interactions, T has an expected value of 0. However,
the usual method for calculating the variance of T in standard FBAT methods is not
applicable due to the possible main effects of the gene under the null hypothesis.
Thus, Lake and Laird [164] proposed to permute the residuals of Xij − X̄OMF

and Eij − ĒOMF within each mating type to obtain the empirical distribution of
T and calculate its empirical p-value. Since FBAT-I is based on the parental mating
type, the method is robust to population stratification and can easily extended to test
parent-of-origin effects.

Martin et al. [165] proposed the MDR-TDT, which combines the multifactor
dimensionality reduction (MDR) [166] and the genotype-TDT [157], to detect
gene–gene interaction based on family data. The MDR method was initially devel-
oped to detect gene–gene interactions based on case–control samples, while the
genotype-PDT was developed to test for association between the DSL and geno-
types at a locus or multiple loci. In the MDR-TDT, the genotype-PDT statistic other
than the test statistic of multiple marker loci from case–control samples is used to
identify high-risk multilocus genotypes.

9 Software Packages and Power Consideration

Due to the complexity of implementing analysis methods for family-based associa-
tion designs, there is a generally need for special software to perform such analysis.
Fortunately, a large number of software packages have been developed by the origi-
nal authors of the methods and many of them have been widely used in the analysis
of family-based association studies. We have compiled a list of several commonly
used programs and described their functions in Table 1. We also include several
packages that can calculate power and sample sizes for family-based association
designs because these software packages are helpful for designing family-based
association studies. We also suggest users to choose their program upon their anal-
ysis compatibility of pedigree structures, phenotypes, and genotypes. For a detailed
description of these software packages, please refer to corresponding manuals. For
a more complete list of software packages that can analyze family-based association
studies, please refer to http://linkage.rockefeller.edu/soft/.
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Table 2 The description of the original Oxford ACE data and three testing data sets

Data set

Original First testing Second testing Third testing
data data data data

Family types General pedigrees General pedigrees Nuclear family Trios

# of families 83 69 57 41

# of individuals 666 553 280 123

# of individuals
without
genotype

111 91 14 9

# of founders
without
genotype

107 87 14 9

# of individuals
without
phenotype

261 148 33 23

To illustrate these software packages, we use the Oxford ACE data set. The
Oxford ACE data is from a study of the functional mutation in the angiotensin-I
converting enzyme (ACE) gene [24]. This data has been used to illustrate several
newly developed methods for TDT for quantitative traits (Abecasis et al., (2000b);
[126]) and for haplotype inference from general pedigrees (O’Connell 2000; [179]).
The Oxford ACE data contains 666 individuals from 83 extended pedigrees. Pedi-
grees range in size from two to three generations, including 4–18 individuals each.
Genotypes are available for 555 individuals at ten bi-allelic markers in strong LD,
spanning a very short region (26 kb) within the ACE gene. The overall percentage of
missing data is about 20.0%. The phenotype, circulating ACE level is available for
only 405 individuals. We remove 14 families without circulating ACE levels and use
genotype and phenotype data of 553 individuals from 69 families as our first test-
ing data. We also created pseudo disease status for each individual based on his/her
circulating ACE level. Specifically, we assign the affected status to an individual
if his/her circulating ACE level is greater than the median of observed circulating
ACE levels. Since some software packages are only applicable to nuclear families or
case–parent trios, we choose one nuclear family and one case–parent trios from each
extended family to form our second and third testing data sets. A brief description
of the original data set and three testing data sets can be found in Table 2.

We apply several commonly used software packages to these testing data sets.
First, we apply FBAT and QPDT (see Table 1 for more details about these soft-
ware) to the first and second testing data sets with the circulating ACE level. For
both methods, we conduct the analysis based on single markers. For FBAT, we also
conduct haplotype analysis based on two adjacent makers. The results are listed in
Table 3. We can see that all makers at the ACE locus are strongly linked to ACE
levels and evidence for association is strongest at the I/D marker locus because the
p-values based on single maker analysis from both FBAT and QPDT are smallest.
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We then test the association between the ACE locus and the pseudo disease sta-
tus using FBAT, TRANSMIT, and MultipleTDT (see Table 1 for more details about
these software) and the results listed in Table 4. For FBAT, we perform both single
marker and haplotype based analysis. For TRANSMIT and MultipleTDT, we only
conduct haplotype based analysis. All haplotype analysis is based on twp adjacent
markers.

10 Discussion

Mapping genes underlying complex human diseases presents great challenges for
human geneticists. Theoretical and empirical studies have shown linkage analysis
as a tool for mapping disease genes is less powerful than association based analy-
sis. On the other hand, traditional case–control association designs using unrelated
samples may be biased in the presence of population stratification. Family-based
association designs, which are robust to the population stratification, provide a com-
promise between the above two approaches. In addition, family-based association
studies offer a solution to detect genomic imprinting. Imprinting, also known as
“parent-of-origin effects,” are referred to different effects of an allele on the off-
spring that depend on the parental source of that allele. Parent-of-origin effects have
been found in many genes and diseases (e.g., [182, 183]). Several methods have
been proposed to detect parent-of-origin effects based on family-based association
designs. Weinberg et al. [42] and Weinberg (1999) extended their log-likelihood
method to detect genomic imprinting. Cordell et al. [37] described how to use a gen-
eralized linear model to detect genomic imprinting. Whittaker et al. [184] illustrated
how to use simple linear models to estimate parent-of-origin effects for quantitative
phenotypes. Hu et al. [185] extended 1-TDT method of Sun et al. [50] and their
method can incorporate families with only parent available to detect imprinting.

Recently, GWA studies, which aim to genotype hundreds of thousands SNPs
across the human genome for a large number of samples, have proved to be a pow-
erful approach to detect genes underlying complex human diseases (e.g., [19–21]).
Since hundreds of thousands of markers are genotyped in GWA studies, the statis-
tical power of such studies can be diluted due to the correction of multiple-testing
problem. To avoid this problem, multiple-stage designs have been proposed in GWA
studies (e.g., [186]). In such designs, multiple independent sets of samples are col-
lected. One of them is genotyped at all SNPs and used to select a small set of
candidate SNP markers. Other sets of samples are only genotyped and analyzed at
this small set of SNP markers. Since only a small set of SNP markers is tested in the
final stage, the number of association tests is reduced and the correction of multiple-
testing problem is less severe. However, such deigns need to collect multiple sets of
samples. Family-based association designs potentially provide a solution to achieve
the power of multiple-stage designs using a single set of samples. Van Steen et al.
[132] proposed a two-stage approach that performs the screening and association
tests using the same sample. In the first stage, the markers are selected based on
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phenotypes of offspring and between-family genotype scores. In the second stage,
the selected markers are tested using phenotypes of offspring and within-family
genotype scores. The idea of Van Steen’s method is that the screening test in the
first stage is statistically independent of the association test in the second stage. In
addition, the method is robust to population stratification, since only FBAT statistic
is used in the final stage [132]. Feng et al. [187] further extended this approach that
can utilize general pedigree with an arbitrary structure and phenotypes of founders
and parents in families.

In this chapter, we have reviewed methods that can analyze data from family-
based association studies. We first focused on methods that can analyze the simplest
family based association design with one affected offspring with its two parents,
all genotyped at a bi-allelic marker locus. We then discussed its various extensions
that can increase power and utilize multi-allelic markers, families with multiple sib-
lings, families with incomplete parental genotypes, quantitative traits, and multiple
tightly linked markers. There are many other available methods not reviewed in
this book chapter and it is beyond the capacity to review all available methods in a
single book chapter. Readers are referred to other review papers for more details
(e.g., Laird and Lange, 2006; [188–190]) However, we still would like to men-
tion several types of analysis methods for family-based association designs. Ho
and Bailey-Wilson [191] extended the TDT methods to test for linkage between
X-linked markers and diseases that affect either males only or both genders. Simi-
larly, Horvath et al. [192] proposed two procedures: the XS-TDT and the XRC-TDT
that extended the S-TDT [70] and RC-TDT (Knapp, 1999a), respectively. For age
of disease onset, Ghosh and Reich [193] extended the S-TDT [70] with the adjust-
ment for age of onset. The FBAT methods have been extended to incorporate age
of onset information with various phenotype coding [194,195]. Both unrelated case
and controls samples and family samples can be available from a single study or
multiple studies. Joint analysis of them can improve the power and increase the
opportunity to detect the DSL. Several methods have been proposed to jointly ana-
lyze data from families and unrelated samples [63, 196–198]. Simulation results
showed these methods can provide more power than methods using only one type
of data. Readers are referred to those papers for more details. In GWA studies for
complex human diseases, a set of phenotypes would be used to characterize diseases
and measured at the same time. These phenotypes may be correlated due to the same
pathway or shared environmental factors. In such situation, joint analysis of multiple
phenotypes tends to be more powerful than the analysis of all phenotypes individ-
ually with corrections of multiple-testing problem. In addition, the association tests
for different phenotypes will be correlated, thus the correction of multiple-testing
problem will tend to be conservative. Lange et al. [199] generalized the FBAT to
tests all phenotypes simultaneously. The proposed test, FBAT-GEE test, is flexible
to test phenotypes from different types (e.g., continuous phenotypes, discrete phe-
notypes, etc.). Another challenge to analyze multiple phenotypes is how to choose
phenotypes that should be included in the analysis. One way is to use the variance
component analysis but results can be difficult to interpret. Thus, Lange et al. [200]
proposed a two-stage approach to select phenotypes that will be tested in the final
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stage to reduce the burden of multiple-testing problem. However, developments of
more advanced methods to analyze multiple phenotypes are still warranted.

Given that many statistical methods have been proposed in the last several
years for family-based association studies, the performance of these methods is of
great interest to human geneticists who study complex traits. Many studies have
been done to compare various methods (e.g., [201–204]) Lange et al., 2002. In a
recent study, Nicodemus et al. [204] assessed the type I error rate and compared
the performance of several commonly used methods for family-based association
designs, including FBAT [44,52], PDT [46], SDT [74], TDT (Spielman et al., 1993),
TRANSMIT [37], and several other methods. Through extensive simulations, they
found that nearly every method can maintain appropriate type I error rates under all
conditions. Although no single method is uniformly more powerful than the other
methods, their power varied greatly and the difference in terms of power between
the most powerful method and the least powerful method can be as large as 50%.
Nicodemus et al. [204] found that the relative performance of different methods
clearly depends on many factors, including pedigree structure, missing patterns of
parental genotypes, population structures, and genetic models. Because the mode
of inheritance for complex diseases is usually unknown, methods that perform well
under a wide range of models are certainly desirable. As more and more approaches
are introduced in the literature, systematic comparisons are always needed to give
guidelines to human geneticists.

Although we have outlined several attractive features that make family-based
association useful in GWA studies of common human diseases, they have been crit-
icized for several limitations. First, GWA studies require to genotype a large number
of samples at hundred of thousands of markers. Compared with case–control stud-
ies, family-based association studies need to recruit a large number of samples with
their relatives, which is more difficult than recruiting a large number of unrelated
individuals. Second, case–control association study designs are more powerful than
family-based association designs, especially for common human diseases. It is a
general belief that gene–environment interactions, as well as gene–gene interac-
tions play an important role in many complex human diseases. In terms of power,
case–control designs are superior to family-based association tests for detecting
gene–gene and gene–environment interactions. Case–control association designs
have often been criticized for inducing false positives due to population stratifi-
cation. Several methods have been proposed to use genomic markers to control
population stratification in the analysis of case–control data (Devlin and Roeder,
1999; [205–207]). Third, family-based association designs are more sensitive geno-
type errors. In case–control studies, random genotyping errors will only make tests
conservative under the null hypothesis. But with family-based association designs,
random genotyping error can lead to inflated type I error rates [141, 179, 208, 209].
For this reason, several methods have been proposed to incorporate genotyping
errors (Cheng and Chen et al., 2007; [143, 179, 180]). Nonetheless, family-based
association designs will still plan an important role in GWA studies, given that a
large number of family data have already been collected in linkage studies and are
now available for association studies. The great challenges facing statistical geneti-
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cists in the coming years are to develop statistically powerful and computationally
feasible methods to fully utilize such data, and to search for optimal study strategies
to map complex disease genes in the post-genome era.
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Haplotype Association Analysis

Michael P. Epstein and Lydia C. Kwee

Abstract Haplotypes serve many useful roles in the design and implementation of
genetic studies of complex traits. In this chapter, we focus on the use of haplotypes
as variables of interest for detecting association between a genomic region and a
complex trait. Such haplotype analyses are appealing because, in certain instances,
they can be more powerful for association mapping compared to traditional methods
based on the analysis of individual SNPs. At the same time, haplotype analyses are
more complicated to implement than single-SNP analyses since the sample genetic
data often consist of unphased genotypes (which often lead to haplotype ambigu-
ity). However, statisticians have developed many innovative methods for haplotype
analysis that accommodate such haplotype ambiguity using existing missing-data
algorithms. In this section, we describe a variety of such statistical methods for hap-
lotype mapping, which are applicable to genetic datasets collected under traditional
population-based and family-based study designs. We further describe software
packages that are publicly available for implementing these haplotype approaches.
Finally, we illustrate many of these statistical methods and related software pack-
ages using unphased genotype data from the Finland-United States Investigation of
NIDDM Genetics (FUSION) study.

1 Introduction

A haplotype commonly refers to a set of alleles at tightly linked marker loci
that are transmitted as a unit from parent to child (see Fig. 1). As noted in other
chapters, haplotypes are valuable for genetic analysis as they help summarize
genetic variation and linkage-disequilibrum (LD) patterns throughout the human
genome [12].0pt In addition, haplotypes assist in the selection of single-nucleotide
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Fig. 1 Visual display of 3-SNP haplotypes in an offspring

Fig. 2 Demonstration of potential haplotype ambiguity in 3-SNP (unphased) genotype data

polymorphisms (SNPs) that tag such genetic variation for association studies of
complex traits [5, 62]. In this chapter, we consider another important role for hap-
lotypes in genetic studies: their use as variables of interest for detecting association
between a chromosomal region and a disease or trait of interest. As demonstrated
by simulation studies [1, 40, 50], multi-marker association analyses based on hap-
lotypes can be more powerful than single-marker association methods for mapping
trait-influencing variants. Moreover, only haplotype-based methods inherently can
model the trait-influencing effects of cis-acting variants, which have known to arise
in disorders such as neural tube defects [25] and prostate cancer [64].

Although haplotype methods are valuable for genetic analysis, they are more
complicated to implement compared to single-marker approaches due to the likely
haplotype ambiguity within the observed genotype data. As shown in Fig. 1, a sub-
ject inherits two haplotypes (one of maternal descent and the other of paternal
descent), and this haplotype pair automatically determines the person’s multilocus
genotype. However, the converse relationship that a multilocus genotype corre-
sponds to a specific haplotype pair is false whenever the multilocus genotype is
heterozygous at more than one locus (as demonstrated in Fig. 2). As the observed
genetic data will often consist of only the multilocus genotype, the phase (allelic
arrangement) of the underlying haplotypes of a subject may be unknown. To resolve
the haplotype ambiguity, one could determine haplotypes directly using expensive
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molecular techniques [14,17,38]. However, a more cost-effective, yet still accurate,
approach is to infer haplotypes from the observed genotype data by using one of
the many existing missing-data algorithms [19, 41, 61, 76] . As we will show, we
can use such missing-data algorithms in a variety of ways to construct valid tests of
association between haplotypes and various phenotypes of interest.

In this chapter, we discuss methods and software for haplotype-based associa-
tion analysis of both discrete and continuous phenotypes under a variety of study
designs (including popular population-based and family-based designs for gene
mapping). To help illustrate these methods, we will apply a subset of the approaches
to unphased SNP genotype data from the Finland-United States Investigation of
NIDDM Genetics (FUSION) study [68]. The remainder of this chapter proceeds
as follows: we first provide a brief description of the FUSION study, followed by
some general notation that we will use throughout this work. Next, we describe hap-
lotype methods and software for analysis of unrelated subjects from cross-sectional,
cohort, and case–control study designs. Finally, we describe similar haplotype meth-
ods and software for analysis of related samples from both case–parent triad and
more general family-based study designs.

1.1 The FUSION Study

The FUSION study [68] is a long-term effort to identify susceptibility genes for
type 2 diabetes and related quantitative traits. The study involves the phenotyping
and genotyping of over 5,000 individuals living in Finland, utilizing a study design
initially based on affected sib pairs for linkage analysis. Phenotypes include diabetes
outcome, as well as diabetes-related quantitative traits such as fasting insulin, fasting
glucose, body-mass index, high-density lipoprotein cholesterol, and blood pressure.
The FUSION family-based sample consists of 737 familes ascertained based on an
affected sib pair and has a total of 1,709 affected subjects [59]. In recent years, the
FUSION study used this family-based sample to develop a case–control sample.
For such case–control analysis, the FUSION study chose cases by selecting a single
affected individual from each family and adding additional affected individuals from
families excluded from linkage analysis for failing to have a genotyped affected
sibling in the study. For controls, the FUSION study chose elderly subjects who had
normal glucose tolerance at ages 65 and 70, and normoglycemic spouses of affected
subjects. The FUSION case–control sample that we analyze here consists of 796
cases and 415 controls (225 elderly and 190 spouses).

Based on previous linkage and association analyses, the FUSION study has iden-
tified several regions linked to disease and quantitative traits [21, 59, 70]. Here, we
focus haplotype analysis on five SNPs (distance between adjacent SNPs <300 kb)
within a region along chromosome 22 that may harbor diabetes-susceptibility loci.
Missing genotype rates for the five SNPs ranged between 2.4% and 5.6% with
17.1% of cases and 19.8% of controls missing genotype data at one or more SNP.
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1.2 General Notation

We let Y denote the subject’s phenotype of interest. Y can be a discrete outcome
(e.g., 1 or 0 denoting the presence or absence of disease, respectively) or a con-
tinuous outcome (e.g., body-mass index). Also, we let E denote a subject’s set of
environmental covariates (e.g., age, gender) for the subject whom we wish to include
in the genetic analysis of Y . For genetic data, we assume information from L bial-
lelic SNPs within a chromosomal region of interest. Letting 0 and 1 denote the two
alleles at each SNP, we can represent an L-SNP haplotype as a sequence of L
numbers that take values of 0 or 1. For example, when L = 2, the possible 2-SNP
haplotypes are 00, 01, 10, and 11.When L = 3, the possible 3-SNP haplotypes are
000, 001, 010, 011, 100, 101, 110, and 111. From these examples, it is straightfor-
ward to show that the total number of possible haplotypes for L SNPs is 2L. We
index these haplotypes by k (k = 1, . . . , 2L) and let hk denote the kth haplotype.

For a given study participant, we define H = (hk, hk′) as the subject’s hap-
lotype pair consisting of unordered haplotypes hk and hk′ . Next, we define G =
hk +hk′ as the subject’s multi-SNP genotype, which we can represent as a sequence
of L numbers that takes values of 0, 1, or 2. As mentioned earlier, while the
haplotype-pair H determines the multi-SNP genotype G, the converse relation-
ship is not necessarily true. Therefore, we let S(G) denote the set of haplotype
pairs {H = (hk, hk′)} consistent with G. We define S(G) such that (hk, hk′) ∈
S(G) implies that (hk′ , hk) ∈ S(G) when hk �= hk′ . It is important to note that G
itself may include missing data (e.g., missing genotype at a specific SNP). In this
situation, we can accommodate the missing data in G by including all haplotype
pairs in S(G) that are consistent with the known genotype information. We assume
in this chapter that missing genotype data are missing at random, although we can
relax this assumption in certain analyses [34].

2 Haplotype Analysis of Unrelated Samples

2.1 Cross-Sectional Studies

Under the cross-sectional study design, one collects phenotype, genotype, and
covariate data from a random sample of n subjects from the population. We let
Yi, Gi, and Ei denote the phenotype, genotypes, and covariates, respectively, for
the ith subject in the sample (i = 1, . . . , n). Further, we let Hi denote the haplotype
pair of the subject.

2.1.1 Analyses Using Phased Haplotypes

Within the sample, the goal of the analysis is to assess the relationship between
the haplotype H and phenotype Y , adjusting for the potential covariate effects in
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E. If we knew the phase of the haplotypes for all subjects, we simply could con-
duct the association analysis using the popular generalized-linear-model (GLM)
regression framework [36]. GLM analysis requires the construction of an appro-
priate likelihood that models the probability of the phenotype data Y conditional on
the haplotype data H and the environmental data E within the sample. Assuming
all subjects are unrelated (i.e., independent), we can write this likelihood as

LOBS =
n∏

i=1

P
[
Yi|Hi, Ei

]
. (1)

The specific form of P
[
Yi|Hi, Ei

]
will depend on the distribution of Y . For

continuous Y , P
[
Yi|Hi, Ei

]
often follows a probability-density function for a nor-

mal random variable with mean μ=E[Y |H,E] and variance σ2. For binary Y ,
P
[
Yi|Hi, Ei

]
follows a probability-density function for a Bernoulli random variable

with mean μ = E[Y |H,E] = P [Y = 1|H,E].
To assess the effects of H and E on Y , the GLM framework relates the mean

μ = E[Y |H,E] described in the previous paragraph to a linear predictor of effects
due to H and E. We can express this relationship using the following link function:

g(μ) = α+XH · β +XE · γ. (2)

Here,XH denotes a design vector that models the effects of a subject’s haplotype
pair H on μ and β denotes the related vector of regression coefficients. Likewise,
XE denotes a design vector for modeling the subject’s environmental effects with
respective coefficient vector γ. Finally, α denotes a scalar intercept parameter.

The choice of the link function g(·) depends on the distribution of the pheno-
type Y . For a continuous (and normally distributed) outcome, we typically apply
the identity link g(μ) = μ such that the resulting analysis is analogous to multi-
ple linear regression. For a binary outcome, we typically assume the logistic link
g(μ) = log

[
μ/ (1 − μ)

]
, which leads to a logistic-regression analysis. In either sce-

nario, we can then use the relationship in (2) to rewrite the likelihood in (1) as a
function of the unknown parameters of interest (α, β, γ). We can then maximize
the likelihood in (1) with respect to these parameters using standard maximum-
likelihood procedures. After estimation, we can then construct test statistics with
particular interest on assessing the effects of the haplotype-related parameters β on
the phenotype Y , adjusting for the effects of environmental covariates. We can test
null hypotheses regarding haplotype–phenotype associations by considering tests
of the form H0 :β = 0 vs. HA : β �= 0 using appropriate likelihood-based test
statistics (e.g., likelihood-ratio statistics, Wald statistics, or score statistics) that
asymptotically follow a χ2 distribution with degrees of freedom equivalent to the
dimension of β.

Prior to haplotype analysis, we must specify the form of the haplotype design
vector XH in (2). In general, the form of XH can be quite flexible. As an example,
suppose we were interested in assessing the effects of a specific haplotypeh∗relative
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to all remaining haplotypes. Then, XH typically reduces to a scalar function whose
form would depend on the assumed genetic mechanism for h∗. Define I(A) as an
indicator function that takes the value 1 or 0 depending on whether the event A
is true or false, respectively. For a subject with H = (hk, hk′), we can model a
recessive effect for h∗ using XH = I(hk = hk′ = h∗), a dominant effect for h∗

using XH = I(hk = h∗) + I(hk′ = h∗) − I(hk = hk′ = h∗), and an additive
effect for h∗ using XH = I(hk = h∗) + I(hk′ = h∗). We can also consider a
co-dominant model for h∗ by making XH a two-dimensional vector with elements
[I(hk = h∗) + I(hk′ = h∗) − I(hk = hk′ = h∗), I(hk = hk′ = h∗)] .

While we considered the modeling of a specific target haplotype in the previ-
ous paragraph, we note that we can easily extend XH to model the simultaneous
effects of multiple haplotypes together and consider composite tests of haplotype–
phenotype association. Such modeling simply requires the addition of the appropri-
ate haplotype elements to the design vector. In theory, we can model the effects of all
observed sample haplotypes within XH , although we need one specific haplotype
to serve as the baseline category.

2.1.2 Analyses Using Unphased Haplotypes

In the previous section, we made the unlikely assumption that we directly observed
the phased haplotypes for all subjects. However, given data typically consist of
unphased genotypes, we must consider a different observed-data likelihood for
inference that allows for haplotype ambiguity. Here, we use a observed-data like-
lihood that we base on the joint probability of phenotype Y and genotype G condi-
tional on environmentE within the sample. We can write this likelihood as

LOBS =
n∏

i=1

P
[
Yi, Gi|Ei

]
. (3)

We next express this likelihood in (3) as a function of the underlying haplotypes
by writing P

[
Yi, Gi|Ei

]
as the sum of the haplotype pairs Hi consistent with Gi.

Assuming that haplotypes are independent of environment within the sample, we
can then write the likelihood as

LOBS =
n∏

i=1

P
[
Yi, Gi|Ei

]
=

n∏

i=1

∑

Hi∈S(Gi)

P
[
Yi|Hi, Ei

]
P
[
Hi

]
. (4)

P
[
Yi|Hi, Ei

]
denotes the probability of the phenotype Y given haplotypes H

and environment E, which we can model using the GLM procedure described in
the previous section. P [Hi] denotes the probability of the subject’s haplotype pairH
within the sample, which we can model in a variety of different ways. Letting Hi =
(hk, hk′), we could model P [Hi] under the popular assumption of Hardy–Weinberg
Equilibrium (HWE) such that
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P [Hi = (hk, hk′)] = pkpk′ , (5)

where pk denotes the frequency of the kth possible haplotype. While the HWE
assumption typically holds in a cross-sectional study sample, substantial amounts
of inbreeding or population stratification within the sample may cause Hardy–
Weinberg departure (HWD) that leads to increased amounts of homozygosity or
heterozygosity. In this situation, we can implement a model for P [Hi] that allows
for HWD by modifying the HWE model in (5) to include an additional parameter F
(defined as a fixation index) that allows for excessive/reduced homozygosity within
the sample. We write this HWD model for P [Hi] as

P [Hi = (hk, hk′ )] =

{
p2

k + Fpk(1 − pk) k = k′

(1 − F )pkpk′, k �= k′.
(6)

Comparison of the HWD model (6) with the HWE model (5) shows that an F
value greater than 0 corresponds to excess homozygosity relative to HWE, while an
F value less than 0 corresponds to excess heterozygosity.

On the basis of (2) and (5), it is straightforward to show that the observed-data
likelihood LOBS in (4) is a function of the earlier unknown parameters (α, β, γ)
as well as the unknown haplotype frequencies p =

{
pk; k = 1, . . . , 2L

}
and (if

modeled) the fixation-index F. In the presence of haplotype ambiguity within the
genotype data, we estimate these parameters by maximizing LOBS in (4) indirectly
using an Expectation–Maximization (EM) algorithm [11]. In this context, the EM
algorithm obtains maximum-likelihood estimates of model parameters by iteratively
maximizing the expectation of the natural log of the full-data likelihoodLFULL =∏n

i=1 P
[
Yi, Hi|Ei

]
, conditional on the observed data

{
Yi, Gi, Ei; i = 1, . . . , n

}
.

For a more detailed description of the EM algorithm for cross-sectional studies,
please see Appendix A of [33]. Once estimated, we can evaluate the variance–
covariance matrix of the parameters using the formulas of [35] and [37], which
account for the haplotype ambiguity within the observed genotype data.

After estimating the model parameters using the EM algorithm, we can use the
fitted version of LOBS in (4) to construct tests of haplotype effects on the phenotype
Y

(
H0 : β = 0 vs. HA : β �= 0

)
. [55] developed score statistics for this purpose

while [29] developed Wald statistics. In either situation, resulting statistics should
asymptotically follow a χ2 distribution with degrees of freedom equivalent to the
dimension of β.

2.1.3 Stability Issues in Haplotype Analysis

Haplotype-association analysis using the likelihood framework in (4) requires the
simultaneous estimation of the GLM model parameters (α, β, γ) as well as the
haplotype-frequency parameters p =

{
pk; k = 1, . . . , 2L

}
. It is straightforward to

show that the size of p increases exponentially with the number of SNPs within the
haplotype analysis. As the number of haplotype-frequency parameters increases,
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there is an increased chance of numerical instability using the EM algorithm to
maximize (4). To improve stability in this situation, one can instead conduct haplo-
type analysis under a “sliding window” design that sequentially examines smaller
sets of SNPs within the region. For example, using a 4-SNP overlapping sliding-
window, one would first conduct a haplotype analysis of SNPs 1–4, followed by
SNPs 2– 5, followed by SNPs 3–6, and so on until the last SNP in the region
is reached. We can then evaluate the empirical significance of the statistics using
permutation procedures or efficient Monte-Carlo methods [24? ].

2.1.4 Modeling Interaction Effects

In addition to examining main haplotype and environmental effects on a particular
phenotype, interest may also focus on modeling and testing haplotype–environment
interaction effects. Using the GLM framework, modeling such interaction effects is
straightforward as it requires only the following alteration to the relationship shown
in (2):

g(μ) = α+XH · β +XE · γ +XH·E · ν, (7)

where XH·E is a design vector that codes the haplotype–environment interaction
(each element of the vector is generally the product of the respective elements ofXH

and XE) with respective coefficient vector ν. Based on this relationship, the likeli-
hoodLOBS in (4) is now a function of ν as well. We can then estimate this parameter
using a variation of the EM algorithm described earlier and consider hypothesis tests
of interaction effects using Wald statistics similar to those described in [29].

2.1.5 Haplotype Clustering

For rare haplotypes, the estimates of pk and related effects in β for rare haplotypes
often demonstrate large variability due to sampling variation and phase uncertainty,
which potentially can lead to model instability [54] or invalid test statistics [18]. In
addition, the modeling of rare haplotypes increases the number of model parameters
in β, which increases the degrees of freedom of the resulting haplotype statistics
that then leads to weakened power of global tests for detecting association with the
phenotype.

To avoid these problems, one can pool rare haplotypes (defined by a frequency
less than some threshold; typically 0.01–0.05) into a single haplotype category.
While this resolves model instability, the resulting haplotype category is hetero-
geneous, which makes inference of its related effect on the trait difficult to interpret.
A more appealing solution to this issue is to cluster rare haplotypes with their more
common ancestral haplotypes using a model based on some evolutionary framework
[16, 39, 58, 65]. Assuming haplotypes contained within each ancestral haplotype
group have similar impact on the phenotype, one can use the haplotype clusters
(rather than the individual haplotypes) to assess association with the phenotype.
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Fig. 3 (a) Cladogram of 3-SNP haplotypes. (b) Assignment of haplotypes to closest cluster base
(shown in grey shadow). (c) Resulting three haplotype clusters from (b). (d) Haplotype clustering
using a probabilistic algorithm

This haplotype clustering reduces the degrees of freedom in the resulting haplotype
test and, therefore, should increase the power to detect trait-influencing variants.

We illustrate the process of haplotype clustering using an example based on [65]
and detailed in Fig. 3. Within a particular genetic region, suppose we focus on three
SNPs such that there are eight possible haplotypes consisting of

{
000, 001, 010,

100, 110, 101, 011, 111
}

. Suppose these haplotypes evolved as shown in the clado-
gram of Fig. 3a. Further, assume haplotypes 010, 000, and 100 are common enough
such that they account for the majority of the haplotypes within the sample. We then
let these three haplotypes form distinct cluster bases (shown in blue within Fig. 3b)
and assign the remaining rarer haplotypes to their closest cluster base. This results
in the formation of three haplotype clusters (Fig. 3c), which we can use as a surro-
gate for the eight distinct haplotypes within our haplotype analysis. As the number
of parameters required for the haplotype clusters ((2), assuming one cluster serves
as baseline) is smaller than the number required using distinct haplotypes (7), the
former test statistic should be more powerful than the latter statistic for haplotype
analysis.

Figure 3a–3c assume that the haplotype genealogy is unambiguous, which is
unlikely in practice. Therefore, one instead uses a probabilistic approach for hap-
lotype clustering, such as the one described in [65]. After determining the set of
haplotype cluster bases H(0), the approach identifies the set of haplotypes H(1) that
differ from H(0) by one SNP allele (i.e., one mutation), the set of haplotypes H(2)
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that differ from H(0) by two SNP alleles (i.e., two mutations), and so forth until all
haplotypes are assigned to a set H(j) (j = 0, . . . , J). Starting with H(J), we then
assign each haplotype in the set to a particular (ancestral) haplotype in H(J−1) with
a specific probability that depends primarily on the estimated frequencies of the
haplotypes in H(J−1)(offspring haplotypes are more likely derived from a common
ancestral haplotype than a rarer one). We then assign each haplotype in H(J−1) to
a haplotype in H(J−2) in similar fashion and repeat the process over and over until
each haplotype in H(1) is assigned to one of the haplotype cluster bases in H(0).
Figure 3d shows such a probabilistic model for cluster assignment, with haplotype
111 being assigned to haplotype 101 with probability τ1, to haplotype 011 with
probability τ2, and to haplotype 110 with probability 1− τ1− τ2. Haplotype 110, in
turn, is assigned to haplotype cluster 010 with probability ρ and haplotype cluster
100 with probability 1 − ρ. To determine cluster allocation for haplotypes that dif-
fer by >1 SNP, one simply takes the product of the relevant single-step allocation
probabilities. For example, it is straightforward to show that haplotype 111 will be
assigned to haplotype cluster 010 with probability τ2 + (1 − τ1 − τ2) · ρ, haplotype
cluster 100 with probability τ1 + (1 − τ1 − τ2) · (1 − ρ), and haplotype cluster 000
with probability 0.

Using this probabilistic algorithm, [67] proposed an association method using
haplotype clusters based on a modified version of the GLM framework in (2). The
approach replaces the haplotype-design vector XH in (2) with a modified vec-
tor XCH that models the clustered haplotypes (typically coded under an additive
model). In particular, one can write XCH = XHB, where B is an allocation
matrix that probabilistically assigns each subject’s pair of distinct haplotypes to
the appropriate haplotype clusters (note that the elements of B are a function of
the underlying haplotype frequencies). The resulting GLM model then takes the
following form:

g(μ) = α+XCH · βC +XE · γ, (8)

where βC denotes a vector of regression coefficients that model the haplotype–
cluster effects. Relating this GLM model to the likelihood in (4), Tzeng et al. applied
an EM algorithm for parameter estimation and then constructed score statistics for
testing the null hypotheses of the form H0 : βC = 0 vs. HA : βC �= 0. Such score
statistics asymptotically follow a χ2 distribution with degrees of freedom equiva-
lent to the dimension of βC . Extensions of this clustering framework to allow for
interaction effects is currently under study (Tzeng, personal communication).

2.1.6 Software Packages

Many software packages exist for conducting a haplotype-based association analy-
sis of subjects collected under a cross-sectional study. Many such packages run on
common operating systems (OS), including Windows (2000 and XP), Macintosh
OSX, Solaris, and Linux. Some packages may consist of a suite of routines that can
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be installed within a general analysis system like S-Plus or R, whereas other pack-
ages function as a self-contained executable. In the former category, [55] and [29]
developed a suite of S-Plus/R routines for haplotype analysis called haplo.stats that,
once installed, implements a haplotype-based association analysis within the GLM
framework. The package actually consists of two separate procedures: haplo.score
and haplo.glm. On the one hand, haplo.score constructs GLM-based score statis-
tics [55] for testing global and individual haplotype effects on the outcome of
interest (using either asymptotic or permutation-based p-values), adjusting for the
effects of covariates. On the other hand, haplo.glm uses GLM regression to model,
estimate, and test main haplotype and environmental effects, as well as haplotype–
environment interaction effects. In addition, the software deals with rare haplotypes
by pooling all such haplotypes (defined as those whose frequencies are below a user-
specified threshold) into a single haplotype category. haplo.glm does not provide an
option for permutation-based inference. However, one can obtain permutation-based
p-values for the haplotype and environmental effects simply by creating a for loop
within S-Plus or R that repeatedly permutes the outcome data (using the sample
command).

Self-contained software executables also exist for haplotype analysis in cross-
sectional studies. One such package is PLINK, which is a terminal-based application
that runs on Windows, Macintosh OSX, and Linux platforms. PLINK shares many
of the same features as haplo.stats; both software packages can model, estimate, and
test the effects of haplotype and environment on the outcome of interest. PLINK
also has an internal feature that allows for permutation-based testing of these vari-
ous effects. Further, PLINK allows for haplotype analysis using sliding windows of
various size. Many of these features are also implemented in the software package
whap (Purcell et al. 2007b) , which was the predecessor to PLINK but is no longer
supported.

HAPSTAT is another self-contained executable for haplotype analysis in cross-
sectional studies. The software runs on Windows OS and utilizes a graphic-user-
interface (GUI), rather than a terminal interface, to facilitate analysis using a
“point-and-click” strategy. The application provides a flexible framework as it can
model, estimate, and test haplotype effects (under additive, dominant, or reces-
sive mechanisms), environmental effects, and haplotype–environmental interactions
effects on traits of interest. Finally, the software has the appealing feature of
allowing for HWD among haplotypes using the model shown in (6).

The above software packages model the effects of discrete haplotypes only. For
analysis using haplotype clusters, one can use a set of R routines called Hap-
clustering [67] that initially identifies the haplotype cluster bases (using a modified
version of the Shannon Information Criterion described in [65]) and then derives
the allocation matrix B using estimated haplotype frequencies (calculated using
an EM algorithm contained within the program). For both binary and continuous
outcomes, the software provides score statistics and corresponding p-values for
testing global hypotheses of haplotype effect on the trait. The routines also allow
for the modeling of covariates, although they provide neither parameter estimates
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nor test statistics of the covariate effects. Also, the routines do not accommodate
haplotype–environment interaction effects.

2.1.7 Software Application to FUSION Data

We applied a couple of the software packages described earlier to the data from the
FUSION study consisting of five tightly linked SNPs found along chromosome 22.
Here, we examined associations between the SNP-based haplotypes and a contin-
uous outcome consisting of body-mass index (BMI). We note that the FUSION
dataset is based on a case–control design rather than a cross-sectional design, which
likely affects the distribution of BMI within the sample. In attempts to make the
sample as close to a cross-sectional sample as possible, we analyze only the 415
control subjects from the study.

We first performed haplotype analyses on BMI in the FUSION sample using
the haplo.score procedure [55] in the haplo.stats package. Using an EM algorithm,
the procedure estimated 14 haplotypes with nonzero frequency within the FUSION
sample. However, of these 14 haplotypes, only five had an estimated frequency
greater than 0.05. We show the haplotypes and their respective frequencies below:

Haplotype Frequency
00110 0.002
10011 0.357
10110 0.032
11111 0.002
01111 0.002
01011 0.129
01100 0.251
10000 0.014
11100 0.011
11011 0.139
10100 0.052
00011 0.004
01101 0.001
00100 0.004

Next, haplo.score constructed a global score statistic with 13 degrees of freedom
for testing association between the haplotypes and BMI in the FUSION sample.
The value of the score statistic was 17.07 (p = 0.196) indicating no significant
association between the haplotypes within the region of interest and BMI. Infer-
ence using permutation procedures yielded similar results (p = 0.189 using 10,000
permutations of the data) .

Finally, haplo.score constructed separate score statistics for testing the effects of
each of the 14 haplotypes on BMI. Using either asymptotic or permutation-based
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inference, results again suggest little evidence of association between the individual
haplotypes and BMI assuming a Bonferroni-corrected p-value of 0.004.

Haplotype Frequency Asymptotic p-value Permutation p-value
00110 0.002 0.173 0.132
10011 0.357 0.192 0.196
10110 0.032 0.296 0.292
11111 0.002 0.356 0.316
01111 0.002 0.836 0.826
01011 0.129 0.989 0.989
01100 0.251 0.920 0.921
10000 0.014 0.808 0.803
11100 0.011 0.486 0.462
11011 0.139 0.343 0.349
10100 0.052 0.274 0.262
00011 0.004 0.211 0.191
01101 0.001 0.171 0.130
00100 0.004 0.006 0.015

Since only five of the 14 haplotypes have an estimated sample frequency greater
than 0.05, the global score statistic described earlier expends many degrees of free-
dom to model rare haplotypes in the sample, which could decrease power. Therefore,
to reduce the dimension of the global haplotype association test with BMI, we next
applied the haplotype-clustering procedure of [67] implemented in Hap-clustering
to the FUSION data. Using the default settings within the program, the software
clustered the 14 observed haplotypes shown above into six distinct cluster bases
with respective frequencies

Haplotype cluster Frequency
01011 0.132
01100 0.265
10011 0.360
10100 0.068
10110 0.033
11011 0.141

Note that these six haplotype clusters are based on the six most common haplo-
types found in the FUSION sample.

As a result of the clustering, the global association test between the haplotypes
and BMI now has only five degrees of freedom compared to the 13 degrees of
freedom of the original global test. Nevertheless, the clustered global test yields a
p-value of 0.439, which still indicates no significant evidence of association between
the 5-SNP haplotypes and BMI in the FUSION sample. Subsequent examination of
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individual haplotype-cluster effects on BMI (shown below) further suggest that none
of the haplotype clusters are associated with BMI

Haplotype cluster p-value
01011 0.989
01100 0.556
10011 0.193
10100 0.249
10110 0.152
11011 0.432

2.2 Cohort Studies

Under a cohort study design, we assume that one collects a random sample of n
subjects who are at risk for a particular outcome (e.g., disease) and then follows such
subjects over time to determine the age-of-onset (AOO) for the outcome. Subjects
who drop out of the study prior to completion or who fail to manifest the outcome by
the end of the study will have censored outcomes, in that AOO is only known to be
later than the censored time point. For the ith subject in the sample (i = 1, . . . , n),
we let Ti denote AOO and let Ci denote the censoring time. The AOO phenotypic
data is then Yi = min(Ti, Ci) and Δi = I (Ti ≤ Ci) ,with the latter datum being an
indicator function that identifies whether the AOO observation is censored (equal to
0) or not (equal to 1). As described previously, we let Gi denote the subject’s multi-
SNP genotype and let Ei denote the subject’s environmental covariates (which can
be time-dependent).

Lin [31] used the popular proportional-hazards model [10] to assess associations
between AOO and the underlying haplotypes H . This approach models the hazard
function of AOO as a function of the haplotypesH and the environmental covariates
E. We can write this hazard function as

λ (Ti = t|Hi, Xi) = λ0 (t) exp
(
XH · β +XE(t) · γ

)
, (9)

where XH denotes the haplotype design vector with log hazard-ratios β, XE(t)
denotes the design vector for the (possibly time-varying) covariates, and λ0(t)
denotes the arbitrary baseline hazard function. Note that the hazard function could
also incorporate haplotype–environment interactions, if desired.

Based on this hazard function, one can write the likelihood of the observed data{
Yi,Δi, Gi, Ei; i = 1, . . . , n

}
as [31, 33]

LOBS =
n∏

i=1

∑

Hi∈S(Gi)

P [Yi,Δi|Hi, Ei] · P [Hi],
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=
n∏

i=1

∑

Hi∈S(Gi)

λ (Yi|Hi, Xi)
Δi exp

{
−λ(Yi|Hi, Ei)

}
· P [Hi]. (10)

Here, λ(y|Hi, Ei) =
∫ y

0 exp
(
XH · β + XE(t) · γ

)
dλ0(t), where λ0(t) =

∫ t

0
λ0 (s) ds. We can model the haplotype-pair frequencies P [Hi] as shown pre-

viously in (5) and (6).
Using an EM algorithm described in [31], we can maximize LOBS in (10) and

obtain maximum-likelihood estimates (MLEs) of β and γ. We can estimate the vari-
ances of the MLEs using the observed information matrix or by a profile-likelihood
approach described in [32]. For inference, we can easily construct likelihood-ratio
statistics based on (10) or Wald statistics for testing H0 : β = 0 vs. HA : β �= 0.

As an alternative to the cohort design, one can also implement a case–cohort
design that studies subjects who have manifested the outcome of interest (e.g., dis-
ease) plus a random subcohort of subjects from the entire cohort. For rare outcomes,
the efficiency of statistical inference using this case–cohort design is similar to that
of the cohort design. However, by reducing the sample size and thereby reducing
genotyping cost, the case–cohort design can be far more economical than the stan-
dard cohort design for genetic analysis. The likelihood for haplotype analysis in a
case–cohort design is similar to LOBS in (10), but includes an additional term to
model the AOO data of the non-genotyped subjects within the cohort. For more
details of the approach, please see [33] and [75].

2.2.1 Software Packages

The only software package currently available for haplotype analysis in both cohort
and case–cohort designs is the previously described HAPSTAT package. The
application allows for estimation and testing of haplotype effects (under additive,
dominant, or recessive mechanisms), environmental effects, and haplotype–
environmental interactions effects on censored outcomes.

2.3 Case–Control Studies

Under the popular case–control design, we assume that one collects genetic and
environmental data from a sample of n subjects consisting of c controls and d cases
(c + d = n). For the ith subject (i = 1, . . . , n), we let Yi denote disease outcome
(1 = affected, 0 = unaffected), Gi denote the multi-SNP genotype, and Ei denote
environmental covariates.

A simple approach for testing an overall association between haplotype H and
disease Y is to apply an omnibus test that compares the estimated haplotype fre-
quencies within the case and control samples [20, 79, 80]. A popular omnibus
haplotype test first applies the EM algorithm to genotype data to estimate the
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haplotype frequencies within the control sample (denoted by p(0)), the case sam-
ple (denoted by p(1)), and the pooled sample of cases and controls (denoted by
p(0+1)). Next, one constructs the observed-data likelihood of the genotypes within
the controls only, the cases only, and the pooled sample. For controls, this likelihood
takes the form Lcontrol =

∏c
i=1 P [Gi|Yi = 0] =

∏c
i=1

∑
(hk,hk′ )∈S(Gi)

p
(0)
k · p(0)

k′ ,

where p(0)
k denotes the frequency of the kth haplotype in the controls. We define

the likelihoods Lcase and Lpooled in similar fashion using p(1) and p(0+1), respec-
tively. Using these three likelihoods, we can then construct the omnibus test statistic
as

S = 2 loge

((
Lcontrol Lcase

)
/Lpooled

)

Under the null hypothesis of no association between any of the haplotypes and
disease, the omnibus test S should asymptotically follow a χ2 distribution with
K − 1 degrees of freedom, where K denotes the number of observed haplotypes in
the sample. In the likely occurrence of rare haplotypes, the asymptotic distribution
of S may not hold and so analysts often rely on permutation-based approaches to
assess significance of the omnibus statistic.

The omnibus test S suffers from two serious limitations. First, S cannot eas-
ily model the effects of any influential covariates E. Second, S does not provide
inference on the effects of specific haplotypes or haplotype features. Such inference
may be valuable, especially for identifying specific chromosomal segments that
harbor disease-influencing variants [26]. Therefore, many analysts instead rely
on more flexible approaches for case-control haplotype analysis. One common
approach is to apply the logistic-regression framework previously described for
cross-sectional studies to the case–control data. In this context, we consider the
prospective likelihood

LOBS =
n∏

i=1

P
[
Yi, Gi|Ei

]
=

n∏

i=1

∑

Hi∈S(Gi)

P
[
Yi|Hi, Ei

]
P
[
Hi

]
, (11)

where P
[
H
]

denotes the frequency of haplotype pair H in the pooled sample of
cases and controls. Typically, one models P

[
H
]

under HWE using (5) or HWD
using (6). Such a model for P

[
H
]
ignores the fact that the sample contains an over-

sampling of cases such that disease-susceptibilty haplotypes will be overrepresented
in the data. While this may lead to bias in the estimation of haplotype effects, [63]
noted that this situation arises only in practical situations when there is substantial
haplotype ambiguity within the genotype data.
P
[
Y |H,E] in (11) denotes the probability of the disease outcome conditional

on haplotypes H and environmentE, which can be modeled under a Bernoulli dis-
tribution with success probability μ = E[Y |H,E] = P [Y = 1|H,E]. Letting
θH,E = P [Y =1|H,E]

P [Y =0|H,E] = μ
1−μ denote the odds of disease given haplotype pair H and

environmental covariates E, we can use the logistic link in GLM to write

loge

(
θH,E

)
= α+XH · β +XE · γ (12)
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Note that we can also amend (12) to model haplotype-environment interaction
effects by adding the additional predictor vector XH·E with corresponding regres-
sion coefficient ν.

By applying an EM algorithm to the likelihood in (11), [55] and [74] constructed
statistics for testing either global or specific haplotype effects on disease, adjusting
for environmental covariates. Such statistics asymptotically follow a χ2 distribu-
tion with degrees of freedom equal to the dimension of β (for global tests). For
testing global haplotype effects, [67] proposed to improve the power of the score
statistic of [55] by using haplotype clusters. Within (12), Tzeng et al. replaced
XH with XCH = XHB (B is the allocation matrix described previously that
probabilistically assigns discrete haplotypes to specific haplotype clusters) and
replaced the disease-risk parameters β for discrete haplotypes with disease-risk
parameters βC for the haplotype clusters. In addition to testing, other investiga-
tors considered the estimation of haplotype effects on disease. Lake et al. [29]
estimated main haplotype effects and haplotype–environment interactions using the
prospective likelihood in (11), while [81] estimated these effects using a prospective
estimating-equation framework that yields similar inference under a rare-disease
assumption.

We refer to the likelihood in (11) as prospective because it models the prob-
ability of disease conditional on the haplotypes and environment. However, we
note that this model does not reflect the manner by which one collects data in a
case–control study. Rather, a case–control association study retrospectively samples
genetic and environmental data conditional on disease status. Therefore, given the
nature of case–control sampling, a retrospective likelihood that considers the prob-
ability of haplotype and environmental conditional on the disease outcome is likely
more appropriate for case–control association analysis. However, most analysts still
typically rely on the prospective likelihood in (11) for inference. This choice is due
mainly to the theoretical work of [26], which demonstrated that general analysis of
case–control data using the easy-to-implement prospective likelihood yields iden-
tical inference compared to analysis using the retrospective likelihood. However,
this theoretical result only holds under the assumption of a saturated distribution for
the model predictors. For case–control haplotype analysis, the critical assumption
of [26] is violated because one cannot estimate a saturated haplotype-pair distri-
bution from unphased genotype data. When the assumption is violated in general,
[6] noted that retrospective analysis of case–control data can be much more pow-
erful than prospective analysis. For haplotype analysis, [51] confirmed this finding
using simulation studies that showed that retrospective approaches for case–control
haplotype analysis generally are more powerful than prospective approaches for
detecting main haplotype effects on disease. Kwee et al. [28] noted similar power
improvements of retrospective methods over prospective methods for detecting
haplotype–environment interaction effects.

A variety of retrospective likelihood and profile-likelihood approaches exist for
investigating haplotype and haplotype–environment interaction effects on disease
[18, 28, 32, 33, 51, 60]. Here, we consider the approach of [28] and construct the
observed-data retrospective likelihood for haplotype analysis by considering the
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probability of the genotype data G and the environmental data E conditional on
the disease data Y . We can then write the retrospective likelihood as a function of
the underlying haplotype data H as

LOBS =
n∏

i=1

P [Gi, Ei|Yi] =
n∏

i=1

∑

Hi∈S(Gi)

P [Hi|Ei, Yi] · P [Ei|Yi]. (13)

To model P [Hi|Ei, Yi] in (13), we make the reasonable assumptions that the
disease is rare (i.e., prevalence less than 0.10 in the target population) and that haplo-
type and environment are independent in the population. For control subjects, these
two assumptions imply that P [Hi|Ei, Yi = 0] = P [Hi|Yi = 0]. We can model
P [Hi|Yi = 0] under HWE using (5) or under HWD using (6).

For case subjects, we can write P [Hi|Ei, Yi = 1] as [52]

P [Hi|Ei, Yi = 1] =
θHi,Ei · P [Hi|Yi = 0]

∑
H∗ θH∗,Ei · P [H∗|Yi = 0]

. (14)

Here, θH,E denotes the odds of disease given H and E, which we can model using
the logistic model shown in (12). Note that the intercept parameter α and γ in (12)
cancels from numerator and denominator of P [Hi|Ei, Yi = 1] in (14).

To complete the construction of the retrospective likelihood, we must develop
an appropriate model for P [Ei|Yi] in (13). The derivation of such a model is
challenging, particularly when E is either continuous or categorical with many
possible outcomes. However, if we assume a saturated distribution for E in the
population, we can use the work of [26] to rewrite P [Ei|Yi] as being simply propor-
tional to P [Yi|Ei], which is much easier to specify. In particular, one can write this
probability as

P [Ei|Yi = y] ∝ P [Yi = y|Ei] =
(
∑

H∗ θH∗,EiP [H∗|Yi = 0])y

1 +
∑

H∗ θH∗,EiP [H∗|Yi = 0]
. (15)

Using (14) and (15), we can construct the retrospective observed-data likelihood
in (13) and estimate (α,β, γ, ν) and the haplotype frequencies using a variation of
the EM algorithm (see [28] for details).

2.3.1 Related Study Designs

Genetic association studies of complex disease sometimes employ specific varia-
tions of the case–control design for analysis. For example, some studies employ
a finely stratified design that matches cases and controls on particular covariates
(e.g., age, gender) to remove their confounding effects from the analyses. For such
a matched case–control design, [27] developed a conditional logistic-regression
framework for detecting associations between haplotypes and disease, but this pro-
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cedure ignores the case–control sampling design in haplotype-frequency estimation
and, as well, ignores the uncertainty of such frequency estimates within the asso-
ciation analysis. Zhang et al. [77, 78] proposed improvements to the procedure of
Kraft et al., which effectively resolved these issues. However, to avoid dealing with
the ascertainment bias in haplotype-frequency estimation, the authors performed
estimation using genotype data from controls only. By not using all the genotype
data available, this procedure is then likely inefficient relative to a retrospective
procedure that uses genotype data from both controls and cases while simultane-
ously accommodating the sampling design within the analysis. Kwee et al. [28]
recently developed such a retrospective approach for haplotype analysis of such
matched data. Power and efficiency improvements of this novel approach relative to
the approach of Zhang et al. still need to be investigated.

Researchers can also employ a case-only study design [42, 73] to investigate the
effects of haplotype–environment interactions on disease. Under specific assump-
tions of a rare disease, independence between haplotype and environment in the
population, and multiplicative effects of haplotypes on disease risk, we can show
that a case-only analysis is as efficient for detecting interaction effects as a full ret-
rospective case–control analysis, but at substantially reduced cost as no controls
are required to be genotyped. Kwee et al. [28] developed a case-only approach for
estimating and testing haplotype–environment effects by showing that a likelihood
based on P [G|E, Y = 1] =

∑
H∈S(G) P [H |E, Y = 1] contains all essential infor-

mation for testing the effects of interaction parameters. Using simulated data, the
authors demonstrated that the case-only approach had near-identical power and effi-
ciency for interaction effects relative to a full retrospective analysis of case–control
data under multiplicative models of haplotype effect.

Lin and Zeng [32] noted that a more efficient approach for case-control haplo-
type analysis may be possible if one has knowledge of the total number of cases and
controls within the population of interest [56]. Such information may be available
from databases, such as hospital records or cancer registries. In this scenario, one
can perform haplotype analysis by multiplying the observed-data prospective likeli-
hood in (11) by a likelihood that models the outcome data of the cases and controls
that were not selected and genotyped for analysis. Please see [33] and [32] for more
details about analysis under this modified study design.

2.3.2 Haplotype Similarity Analyses

The majority of haplotype-based methods for association mapping of disease exam-
ines differences in haplotype frequencies among cases and controls within the
chromosomal region of interest. While this is a valid manner by which to map sus-
ceptibility variants, it is not the only viable strategy. A second and increasingly
popular approach for haplotype mapping of disease is based on the idea that, for a
disease mutation of recent origin, a set of haplotypes from a sample of case sub-
jects should share longer stretches of identical sequence around the disease locus
compared to a set of haplotypes from a control sample [69]. This difference in the
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length of haplotype sharing between the two samples results from the shorter coa-
lescence time of the recent mutation in the case sample relative to the normal allele
in the control sample. As a result, we can use haplotype-based methods to identify
chromosomal regions, where the average haplotype similarity among the pairwise
combinations of case haplotypes is significantly greater than the average similarity
among the pairwise combinations of control haplotypes.

Using the concepts described in [9] and [4], [66] developed an approach for dis-
ease mapping based on haplotype similarity. The approach requires the definition of
a measure Mhkhk′ , which quantifies the similarity between haplotypes hk and hk′ .
A variety of possible measures exists, including a matching measure that equals 1 if
all SNP alleles of the two haplotypes are shared identical by state (IBS) and 0 oth-
erwise. Also, one can implement a counting measure that equals the total number of
SNP alleles of the two haplotypes shared IBS, as well as a length measure that equals
the maximum number of adjacent SNP alleles of the two haplotypes shared IBS.

To illustrate these various similarity measures, suppose we consider two haplo-
types that are each comprised of six SNPs. Let hk = 001011 and hk′ = 001111.
If we assume a matching measure, then Mhkhk′ = 0, as the two haplotypes are not
IBS at each SNP. If we assume a counting measure, then Mhkhk′ = 5, as the two
haplotypes share five SNP alleles IBS. Finally, if we assume a length measure, then
Mhkhk′ = 3 because the longest stretch of adjacent marker alleles shared IBS by
the two haplotypes consist of SNPs 1–3 within the haplotype.

Given a specific similarity measure M , [66] constructed a nonparametric statis-
tic that tested for excessive haplotype similarity in the case sample relative to the
control sample. Let S1 and S0 denote the mean value of M in the case and control
sample, respectively. We can write S1 and S0 as the sum of M over all pairwise
haplotype combinations weighted by the frequency of the haplotype pair in the
respective sample (with such haplotype frequencies estimated using a missing-data
algorithm like the EM algorithm). Assuming that the frequencies of any two com-
pared haplotypes within a specific sample are independent of one another (which is
analogous to the HWE assumption), we can express S1 and S0 as

S1 =
∑

hk

∑

hk′

Mhkhk′πkπk′ S0 =
∑

hk

∑

hk′

Mhkhk′ρkρk′ , (16)

where πk and ρk denote the estimated frequency of haplotype hk in the case and
control sample, respectively.

Once we evaluate S1 and S0, we construct the test of [66] as the normalized
difference between the two values:

T =
S1 − S0

√
V ar(S1) + V ar (S0)

. (17)

We calculate Var(S1) and Var(S0) using the expressions in Appendix B of [66].
Under the null hypothesis of no difference in haplotype similarity between the two
samples, T should follow a standard normal distribution. As a disease mutation
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should induce excessive similarity in cases relative to controls, one only typically
examines the hypothesis H0 : S0 = S1 vs. HA : S0 < S1 for fine mapping and
therefore constructs only one-sided tests for inference. For length and match similar-
ity measures, the authors note that the variance of T fails to accommodate the extra
variability due to unknown haplotype phase in genotype data (this extra variability
is not an issue when using the counting measure for reasons discussed in Tzeng
et al). Therefore, in this setting, the authors recommend establishing empirical sig-
nificance of results using bootstrap sampling that randomly draws case and control
haplotypes based on estimated haplotype frequencies from the pooled sample.

An appealing feature of the haplotype-similarity approach of Tzeng et al. is
that the resulting test statistic has reduced degrees of freedom relative to statis-
tics based on comparing haplotype frequencies among cases and controls (like
the omnibus test). Using evolutionary simulations, [66] demonstrated that their
haplotype-similarity statistic was often more powerful than a typical omnibus test,
particularly in the likely situation where the disease mutation occurred on a common
haplotype. However, this similarity approach does have some drawbacks for analy-
sis: it can neither accommodate nor test the effects of environmental covariates and
interactions.

2.3.3 Software Packages

For case–control haplotype analysis, we can use many of the software packages
described previously for cross-sectional haplotype analysis of binary data. For
omnibus tests of haplotype association with disease, one can easily apply PLINK or
haplo.stats for inference using asymptotic-based or permutation-based procedures.
In addition to omnibus tests, both PLINK and haplo.stats can also conduct general
haplotype inference using the prospective likelihood in (11) and the logistic model
in (12). Each software package can test and estimate the effects of specific haplo-
types, environmental factors, and haplotype–environment interactions on disease.
Using the same likelihood and framework, one can also perform haplotype-cluster
analysis of case–control data using the R routines in Hap-clustering. As mentioned
previously, this software package tests only global hypotheses of haplotype effect on
disease risk. The routines also allow for the modeling (but not testing or estimation)
of covariates.

As a retrospective likelihood will likely have improved power for detecting
haplotype and haplotype–environment interaction effects on disease relative to a
prospective likelihood, several software packages exist for implementing analyses
based on the former type of likelihood. The previously described software pack-
age HAPSTAT uses a variation of a retrospective likelihood described in [33] and
[32] for case–control haplotype inference that allows for covariates and permits
testing of haplotype–environment interactions. Another useful software package is
CHAPLIN, which utilizes the retrospective likelihood shown in [28] for inference.
CHAPLIN is a self-contained executable that currently runs on various Windows,
Linux, and Unix OS and will soon run on Macintosh OSX. CHAPLIN can run either
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via a graphic-user interface or a terminal-user interface (with the latter interface
facilitating permutation-based analyses). Like HAPSTAT, CHAPLIN can model
haplotype frequencies under HWD using a fixation index as shown in (6). The pro-
gram can currently can accommodate only main haplotype effects, but will soon be
extended to model and test both environmental effects and haplotype–environment
interactions. In addition, the package will soon allow for haplotype analysis in
case-only and matched case–control studies.

To implement a haplotype-similarity approach for analysis, one can use a set
of R routines called QSHS (Quadratic Statistics of Haplotype Similarity) devel-
oped by [66]. The software constructs the statistic shown in (16) and (17) under
length, counting, and matching measures of haplotype similarity and establishes
the asymptotic significance of the results. The software also considers both full-
dimensional and reduced-dimensional analyses (using a user-defined threshold for
haplotype frequencies to include in analysis). One thing that QSHS does not do
is estimate the necessary haplotype frequencies in the case and control samples
necessary for haplotype-similarity analysis. A user must estimate these quantities
separately (using independent software packages like PHASE), save them to a file,
and then input them directly into the program. Another thing that QSHS does not
automatically do is establish empirical significance of results based on the matching
and length measures of haplotype similarity, as suggested in [66]. However, we can
conduct a bootstrap analysis for this purpose in R by constructing a for loop that,
within each of the many iterations,

1. Applies the sample command to randomly assign haplotypes based on the
haplotype frequencies in the pooled sample to the case and control samples.

2. Estimates the (phase-known) haplotype frequencies in the bootstrap sample
using gene-counting techniques.

3. Inputs these haplotype estimates into QSHS for subsequent analysis.
4. Saves the bootstrap values of the resulting QSHS test statistics into a vector or

file.

2.3.4 Software Application to FUSION Data

We conducted a case–control haplotype analysis of the five SNPs from the FUSION
dataset using a variety of the software packages available for this purpose. First,
we constructed an omnibus goodness-of-fit statistic between the FUSION sample
haplotypes and disease using the PLINK package. Using this software, we identi-
fied 17 haplotypes with nonzero frequency in the sample. PLINK then produced an
omnibus statistic value of S = 32.628, which yields an asymptotic p-value of 0.008
(based on a χ2 distribution with 16 degrees of freedom). For robust inference, we
next established the empirical significance of the omnibus statistic using permuta-
tion procedures and obtained a robust p-value of 0.007, which closely matches the
asymptotic result. Collectively, these results suggest a significant overall association
between the 5-SNP haplotypes and disease within the FUSION sample.
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We next used PLINK to construct individual association tests of each specific
haplotype found in the FUSION sample against all other haplotypes. Such analyses
assume the specific haplotype of interest has a log-additive effect on disease risk. We
present the results of these individual haplotype tests from PLINK in the following
table. We show p-values smaller than a Bonferroni-corrected significance level of
0.003 in bold.

Haplotype Frequency Asymptotic p-value
10011 0.311 0.00042
01100 0.296 0.00034
11011 0.133 0.362
01011 0.132 0.647
10100 0.057 0.602
10110 0.032 0.795
10000 0.012 0.683
11100 0.009 0.892
00011 0.006 0.588
00100 0.003 0.918
00100 0.003 0.0647

10010 0.001 0.266
00110 0.001 0.642
11110 0.001 0.241
01111 0.001 0.0662
11111 0.001 0.0576
01101 <0.001 0.145

Examination of the PLINK results reveal that only haplotypes 01100 and 10011
within the region are significantly associated with disease. We then conducted
refined analyses on these two haplotypes using CHAPLIN. In particular, we con-
sidered models that regressed the joint effects of these two haplotypes on disease
under different genetic models of haplotype effect. We then chose the best model
to be the one that yielded the smallest value of the Akaike Information Criterion
(AIC), which CHAPLIN provides. After examining a variety of models, we found
the model that yielded the smallest AIC was the one that assumed a multiplicative
effect of both haplotype 01100 and 10011. Based on this model, we show estimates
and tests of the two haplotypes below.

Haplotype β̂ (SE) Asymptotic p-value (Wald statistic)
01100 0.239 (0.114) 0.037
10011 −0.216 (0.110) 0.049

These results suggest that haplotype 01100 is associated with an increased risk in
disease while haplotype 10011 is a protective haplotype. Curiously, it is interesting
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to note that these two haplotypes share no SNP alleles in common. CHAPLIN also
constructed a joint test of the effects of the two haplotypes and obtained a p-value
of 0.0003 using either a likelihood-ratio test or a robust-score test.

Finally, we analyzed the FUSION data using the haplotype-similarity approach
implemented in QSHS. We considered matching, length, and counting measures of
haplotype similarity within the analysis. We show results of the analyses below.

Similarity measure T statistic Asymptotic p-value
Matching −0.350 0.637
Length −3.316 1.0
Counting −4.491 1.0

Somewhat surprisingly, these results suggest no evidence of association between
the genetic region of interest and disease, which conflicts with the earlier significant
results from PLINK and CHAPLIN. However, examination of the T statistics under
length and counting measures suggest that there is increased haplotype similarity
in controls compared to cases (note that the haplotype-similarity tests are one-sided
tests and only look for excessive haplotype similarity in cases compared to con-
trols). While this result is unusual, it could be explained by the presence of a recent
protective allele of recent origin that originated in control subjects.

3 Haplotype Analysis of Family-based Samples

In addition to using unrelated samples for association mapping of complex traits,
investigators may also use family-based study designs for such analyses. Implemen-
tation of a family-based design might be attractive for economic reasons (e.g., using
families previously collected for a linkage study). More importantly, family-based
association studies are attractive as resulting tests of association between SNPs and
phenotype are typically robust to the confounding effects of population stratifica-
tion. Association tests in unrelated samples are susceptible to such confounding
(resulting in inflated type-I error and bias) without some additional corrections (see
[7, 13, 44]).

The most common family-based study design collects units defined as a case–
parent triad, which consist of an affected proband and the proband’s parents.
However, studies can also consider nuclear pedigrees for analysis, such as those
used in linkage studies. Such designs could collect samples consisting of affected
proband(s) and a various number of the proband’s relatives (including parents as
well as affected and unaffected siblings). One can also collect and analyze more
distant relatives like grandparents, although we will not discuss such family designs
here (see [71] for more details). For case–parent triads and nuclear pedigrees, statis-
tics for testing association generally are based on a framework that evaluates the
distribution of offspring genotypes within a family conditional on the parental geno-
types as well as the phenotypic data within the family. The use of such a framework
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is popular for evaluating genotype risks because parental allele frequencies and
familial phenotypes are sufficient statistics for nuisance parameters corresponding
to parameters related to population stratification and the trait distribution, respec-
tively [23]. By conditioning on these sufficient statistics, the framework produces
test statistics that are robust to population stratification and misspecification of the
phenotype distribution.

Under a null hypothesis of no linkage and no association with the phenotype, the
above framework suggests that the distribution of SNP alleles in offspring condi-
tional on the parental genotypes follow Mendelian segregation patterns independent
of the phenotypic data within the family [30]. Given this result, we would ideally
construct a family-based test for haplotype analysis by considering an approach that
compares the observed segregation patterns of haplotypes within offspring to the
expected segregation patterns under the null hypothesis of no linkage and no asso-
ciation. In essence, this ideally would require us to develop a test of the offspring
haplotype data that is conditional on the parental haplotype data and the pheno-
typic trait data of the family. However, in practice, such tests must deal with the
likely haplotype ambiguity within the familial genotype data. While missing haplo-
type data can be inferred probabilistically from the sample of observed genotypes
(using a missing-data algorithm like the EM algorithm), such inference is sensitive
to misspecification of the haplotype distribution. Such misspecification can arise in
the presence of population stratification and hence may lead to invalid results (which
defeats the primary rationale behind using a family-based design for gene mapping).
Valid test statistics for haplotype analysis must be able to circumvent this issue. In
addition, such test statistics must also be able to handle missing parental genotype
data; a common occurrence in family-based association studies.

While a variety of statistical methods exist for family-based association mapping
using haplotypes [8, 15, 79, 80], few approaches are both generally robust to popu-
lation stratification and able to accommodate missing genotype data. We describe
two such approaches in the remainder of this section. First, we describe the haplo-
type approach of [23], which is applicable for association mapping within nuclear
pedigrees. Second, we describe a robust approach recently developed by [2] for
haplotype and haplotype–environment interaction analysis within case–parent tri-
ads. After these descriptions, we then discuss the software packages that implement
these two approaches.

3.1 Haplotype Approach of Horvath et al. [23]

We assume a collection of n nuclear pedigrees. For the ith pedigree (i = 1, . . . n)
that consists of two parents and ni offspring, we let YP,i =

(
YP,1,i, YP,2,i

)
denote

a trait vector for parents and let YO,i =
(
YO,1,i, YO,2,i, . . . ., YO,ni,i

)
denote a trait

vector for the offspring. Similarly, we define GP,i

(
HP,i

)
and GO,i

(
HO,i

)
as vec-

tors of genotypes (haplotype pairs) for the parents and offspring, respectively, in the
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ith pedigree. Although not explicitly shown, we note that we can generalize these
phenotypic and genotypic vectors to accommodate missing parental data.

The family-based haplotype association test of [23] is an extension of the popular
collection of family-based association tests (FBATs) originally developed in [49]
and [22]. In general, the FBAT approach constructs a test statistic under the null
hypothesis of no linkage and no association that is based on the distribution of GO,i

conditional on sufficient statistics for nuisance parameters that could potentially
invalidate inference (e.g., population stratification, misspecification of distribution
for continuous phenotypes). For haplotype analysis, [23] used sufficient statistics
based on the genotype-based FBAT, which (under the likely scenario of missing
parental data) consists of all observed genotype and trait data within the family.
Using this finding, the authors then developed a conditioning algorithm that, for the
ith pedigree, determines the set GO,i of possible offspring genotype vectors that have
the same value of the minimal-sufficient statistic as the observed genotype vector.
Then, for each genotype vectorG∗

O,i ∈ GO,i, one determines the vector’s probability
conditional on GO,i and the minimal-sufficient statistic. Under the null hypothesis,
this conditional probability is a simple function of Mendelian proportions.

For the ith pedigree, [23] next defined a function Si of the offspring geno-
types GO,i and phenotypes YO,i to be used in the evaluation of a test statistic for
haplotype–disease association. In their paper, the authors initially chose the function
to be Si =

∑ni

j=1 YO,j,i ·XG0,j,i , where XG0,j,i is a vector that denotes the specific
coding of allelic effects for the genotype of the jth offspring. Since the interest on
modeling and testing haplotype effects, the authors then rewrote Si to be a function
of the underlying haplotype data as follows:

Si =
ni∑

j=1

YO,j,i ·
⎛

⎝
∑

HO,j,i∈GO,j,i

XH0,j,i ·
P [HO,j,i]∑

H∗
O,j,i∈GO,j,i

P [H∗
O,j,i]

⎞

⎠ , (18)

where XH0,j,i denotes the design vector of the haplotype effects for the jth off-
spring. We can model this design vector using similar approaches as described
earlier for haplotype analysis using GLM models. Also, P [HO,j,i] denotes the fre-
quency of the haplotype pair of the jth offspring. To estimate P [HO,j,i], the authors
used haplotype frequencies estimated via an EM algorithm to the unphased geno-
type data across pedigrees. While the presence of population stratification in the
sample could yield biased estimates of such haplotype frequencies, the authors noted
that inference should still be valid under the null hypothesis of no linkage and no
association as one estimatesP [HO,j,i] conditional on the minimal-sufficient statistic
consisting of the observed parental and offspring genotypes. The authors confirmed
the validity of this assertion using simulations under a population-stratification
model.

Under the null hypothesis, [23] then calculated the expected value E[Si] and
variance Var [Si] of Si using the conditional probability of offspring genotype vec-
tors G∗

O,i ∈ GO,i conditional on the minimal-sufficient statistic (described earlier).
The authors then calculated the haplotype FBAT as a Mantel–Haenszel statistic of
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the form T = U
′
V −1U , where U =

∑
i{Si−E[Si]} and V =

∑
i V ar(Si), which

asymptotically follows a χ2 distribution with degrees of freedom equal to the rank
of V .

Occasionally, interest may focus on a genetic region previously identified via
a linkage study. In this situation, it may be more appropriate to use the haplo-
type FBAT to test a null hypothesis of linkage but no association. Under this
particular null hypothesis, the linkage will induce additional correlation among
offspring genotypes within the same pedigree. This additional correlation is not
accommodated by the variance estimate shown above in V . To accommodate this
phenomenon, [23] suggested the use of a robust variance estimator VR =

∑
i{Si −

E[Si]}{Si − E[Si]} and subsequently construct the haplotype FBAT statistic as
TR = U

′
V −1

R U .

3.2 Haplotype Approach of Allen and Satten [2]

For haplotype mapping of disease in case–parent triads, [2] developed an alterna-
tive method that appeared to have improved power relative to the FBAT approach
of [23]. In addition, unlike FBAT, this proposed method permitted robust estimation
of haplotype effects on disease. The authors based this method on the framework
of [47, 48] and [72], who developed a valid family-based association test by ensur-
ing a family’s contribution to an asymptotically normal test statistic had a mean
value of zero conditional on any pattern of parental genotype data. As a result,
such an approach is robust to misspecification of the parental–genotype distribution
and hence robust to population stratification. Allen et al. [3] extended the general
approach of Rabinowitz to the area of haplotype analysis by identifying an efficient
score function whose family-specific contributions to a test statistic under the null
hypothesis had a mean value of zero conditional on any pattern of parental haplo-
type data. The approach of [2] described in this section is a further modification of
[3] to accommodate missing parental genotype data and also to allow for the testing
and estimation of interaction effects between haplotypes and environment.

Given the focus on case–parent triads, some of the notations used in the previous
section for haplotype FBAT can be simplified for this section. For the ith triad (i =
1, . . . , n), YO,i, GO,i, andHO,i are now scalar variables that denote the phenotype,
genotype, and haplotype pair, respectively, of the lone offspring in the triad. On
the basis of the triad sample design, it obviously follows that YO,i = 1 for each
of the n triads. Further, to consider haplotype–environment interactions, we now
additionally define a vector of environmental variables EO,i for the offspring of the
ith triad. Such environmental variables can be either categorical or continuous in
nature.

To examine haplotype and haplotype–environment interaction effects on disease,
[2] used a log-linear model for the relative risk (RR) of disease in a triad offspring.
Suppressing the triad index i, we can write the general RR model as
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log
(
P [YO = 1|HO, EO]
P [YO = 1|H∗, EO]

)

= α+XH0 · β +XE0 · γ +XH0 ·XE0 · ν, (19)

where H∗ denotes a baseline haplotype pair category. Within (19), XH0 and XE0

denote design vectors for haplotype and environmental effects, respectively, while
(β, γ, ν) denote parameter vectors for haplotype, environment, and haplotype–
environmental interaction effects.

Allen and Satten [2] performed inference on these parameters by constructing a
likelihood of the genotype data in a triad conditional on the environmental expo-
sure in the offspring. Again suppressing the triad index, we can write the likelihood
contribution for a triad as

P [GO, GP |EO, YO = 1]

=
∑

HO∈GO

∑

HP ∈GP

P [HO|HP , EO, YO = 1] · P [HP |EO, YO = 1]. (20)

Using the RR model in (19), one can write P [HO|HP , EO, YO = 1] in (20) as

P [HO|HP , EO, YO = 1] =
exp

(
XH0 ·β+XH0 ·XE0 · ν

)
·P [HO|HP , EO]

∑
H

′
O

exp
(
XH′

0
·β+XH′

0
·XE0 ·ν

)
· P [H ′

O|HP , EO]
,

(21)
where P [HO|HP , EO] denotes the probability of the offspring’s haplotype pair
conditional on the parental haplotypes and the offspring’s environmental variable.
Assuming no recombination within the haplotype region and further assuming
that the environmental variables do not influence segregation, one can show that
P [HO|HP , EO] = P [HO|HP ] is a simple function of Mendelian transmission
probabilities.

Also, we should note that this probability in (21) is not a function of main envi-
ronmental effects γ (which cancel from both numerator and denominator of the
probability). In general, estimates of γ are nonidentifiable in case–parent triad anal-
yses [53, 57] and thus will not be considered further in this section. For simplicity,
we define the set of estimable parameters as θ = (β, ν).
P [HP |EO, YO = 1] in (21) denotes the frequency of the parental haplotype pairs

conditional on the offspring environmental variables in the triad. Specification of
this probability is unappealing as it depends on a set of nuisance parameters (related
to population stratification) that is likely difficult to model in practice. Worse, mis-
specification of this probability (i.e., not properly modeling the stratification) can
yield biased inference [3]. Because of this, [2] developed estimating equations for
θ that were unbiased for any possible distribution of the parental haplotypes and,
hence, robust to stratification.

Allen and Satten [2] developed estimating equations based on the finding that
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P [GO, GP |HP ,EO, YO = 1]=
∑

HO∈S(GO)

P [HO|HP , EO, YO=1] ·I(HP∈S(GP )
)

(22)
is independent of P [HP |EO, YO = 1]. Therefore, an estimating function Uθ(GO ,
GP ) with the property

E
[
Uθ(GO, GP )|HP , EO, YO = 1

]
= 0 for all HP (23)

leads to E
[
Uθ(GO, GP )|EO, YO = 1

]
= 0. Such an estimating equation is then

robust to misspecification of P [HP |EO, YO = 1] and, hence, robust to population
stratification. The goal then is to find an estimating function with the properties
shown in (23).

To find an appropriate function Uθ(GO, GP ), [2] first considered a matrix Ψ of
conditional probabilities P

[
GO, GP |HP , EO, YO = 1

]
with the rows indexing all

possible combinations of offspring and parental genotype outcomes (including out-
comes that denote missing data) and the columns indexing all possible outcomes
of the parental haplotypes. Therefore, the (j, k)th element of Ψ corresponds to
P
[
(GO, GP ) = j |HP = k,EO, YO = 1

]
(which can be evaluated using (21)

and (22)).
Next, Allen and Satten [2] considered the vector Uθ with jth element correspond-

ing to Uθ

(
(GO,i, GP,i) = j

)
. The authors then noted that the required condition in

(23) holds whenUθ is orthogonal to the columns of Ψ. Therefore, the authors applied
a projection approach to construct the estimating equation

Ũθ = Uθ − Ψ(Ψ
′
Ψ)−1Ψ

′Uθ,

which is the portion of Uθ that is orthogonal to the columns of Ψ. Therefore,
Ũθ satisfies the necessary properties in (23) and can be used for inference that is
robust to misspecification of parental haplotype frequencies that can arise due to
stratification. Given the nature of their approach, the authors named the method
the projection-conditional-on-parental-haplotypes (PCPH) approach for haplotype
inference in case–parent triads.

Based on the above derivation, its important to note that the PCPH approach
will lead to valid inference and unbiased estimators of θ regardless of the choice of
Uθ(GO, GP ) used in Uθ. However, the choice of the estimating equation can affect
the efficiency and power of PCPH under alternative models. Allen and Satten [2]
noted that the optimal choice for Uθ(GO, GP ) is the score vector Sθ(GO, GP ) for
P [GO, GP |EO, YO = 1] in (20) assuming correct specification of P [HP |EO, YO =
1]. Therefore, the authors chose the estimating-equation vector Uθ to be Sθ with
jth element corresponding to Sθ

(
(GO, GP ) = j) and assuming a working model

for P [HP |EO, YO = 1] that uses parental haplotype frequencies (estimated via an
EM algorithm from parental genotype data) under the assumptions of HWE and
random mating. Based on this model, it is straightforward to show that S̃θ = Sθ −
Ψ(Ψ

′
Ψ)−1Ψ

′
Sθ is the portion of Sθ orthogonal to the columns of Ψ.
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Using the PCPH approach, one can estimate the haplotype and haplotype–
environment interaction effects in θ by solving S̃θ = 0 using an iterative algorithm
described in [2]. Further, one can also use the PCPH approach to construct robust
score statistics for testing haplotype and haplotype–environment interaction effects
on disease. Define S̃θ,i as the estimating-equation contribution for the ith triad (i =
1, . . . , n). One can then construct the robust score statistic as T = nS ′

θ0
Vθ0Sθ0 ,

where

Sθ0 =
1
n

n∑

i=1

S̃θ0,i; Vθ0 =
1
n

n∑

i=1

(S̃θ0,i − Sθ0

)(S̃θ0,i − Sθ0

)′

and θ0 denotes the vector of parameter estimates evaluated under the null hypothe-
sis. The score statistic T should asymptotically follow a χ2 distribution with degrees
of freedom equivalent to the rank of Vθ0 .

As the PCPH approach derives from the RR model in (19) and further allows for
estimation of haplotype effects, the procedure permits more flexible modeling and
testing of haplotype effects relative to haplotype FBAT. In particular, PCPH permits
the testing of composite null hypotheses, where one is interested in assessing the
effects of a specific haplotype while allowing the effects of the other haplotypes
to be unconstrained and freely estimated. This is as opposed to haplotype FBAT
which, in testing the effects of a specific haplotype, assumes the remaining hap-
lotypes have no effect on disease risk. Such an assumption may be unappealing,
particularly if multiple susceptibility haplotypes exist within the region of interest
[2].

3.3 Software Packages

The haplotype approach developed by [23] for analysis of qualitative and quanti-
tative outcomes is implemented in the popular FBAT software package. FBAT is
a self-contained executable that runs via a terminal interface on a variety of OS,
including Windows, Macintosh OSX, Linux, and Solaris. The software has many
appealing features for general haplotype analyses in families. FBAT estimates hap-
lotype frequencies using an internal EM algorithm and deals with the issue of rare
haplotypes in association testing by removing those haplotypes with an estimated
frequency less than a user-defined threshold (default setting of 0.05). The software
also permits testing the null hypothesis of linkage, but no association (for families
with more than 1 offspring) using the robust variance VR have been noted earlier. In
addition, the software can perform permutations to establish significance, such that
one can obtain exact p-values for both global and single-haplotype test statistics.
For single-haplotype analyses, note that resulting tests assume that the remaining
haplotypes have no effect on disease risk.

The PCPH approach of [2] for haplotype analysis of qualitative outcomes in
case–parent triads is implemented in the PCPH package, which is a set of
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self-contained executables that runs on a terminal interface on the Windows OS.
Using estimated haplotype frequencies (computed using one of program’s executa-
bles), the software constructs both individual and global score tests of haplotype
effect of disease, as well as similar tests for detecting haplotype–environment
interactions. Further, the software provides estimates of haplotype and haplotype–
environment interaction effects with corresponding variances. For tests of individual
haplotypes, PCPH allows the effects of the other haplotypes to be unconstrained in
analysis. Unlike FBAT, PCPH does not provide permutation-based inference for
calculation of exact p-values.

4 Summary

Haplotype analyses provides a complementary (and potentially more powerful) pro-
cedure for association mapping relative to traditional approaches that consider each
SNP in a separate analysis. In this chapter, we have presented statistical methods for
haplotype mapping of complex traits under many traditional population-based and
family-based study designs and further described many public software packages
that implement these approaches. While the majority of the methods presented here
were developed to investigate the main effects of genetic factors on trait outcome,
we showed that many of these methods can be extended to examine interaction
effects between gene and environment. Unless otherwise noted, analyses using these
haplotype methods are generally computationally efficient and can run on a single
processor on a standard desktop computer in a matter of minutes.

We described the use of haplotype-based statistical methods for association
mapping primarily in the context of the analysis of a small genomic region that
one might investigate as part of a candidate-gene study. However, the recent
arrival of improved high-throughput genotyping technology has facilitated the use
of genomewide-association scans (see Chapter 11) for identifying loci that influ-
ence a complex trait of interest. Huang et al. (2007) investigated the applica-
tion of haplotype-based methods to genomewide data by employing a sliding-
window design and adjusting for the multiple testing of windows using an efficient
Monte-Carlo procedure. PLINK implements a similar sliding-window procedure
for haplotype analysis in genomewide scans, although the package appears to use
computationally-intensive permutations to adjust for multiple testing. Nevertheless,
there remains some open issues regarding the most powerful manner by which to
employ haplotypes for association mapping across the human genome. While the
use of sliding-windows of haplotypes across the genome is simple and easy to imple-
ment, it ignores the underlying LD structure in the human genome and therefore
may result in the analysis of windows where there is little correlation among SNPs
(and hence little LD information contained within the haplotypes). To rectify this
problem, studies may want to define windows based on underlying haplotype-block
structure, which one can assess by applying block algorithms implemented in soft-
ware like Haploview (Barrett et al. 2005) to appropriate reference samples from the
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International HapMap Project (2005). Further investigation of this strategy may be
warranted.

Overall Software Recommendations: While our advice regarding software for
haplotype analysis depends on the study design, our recommendations also sub-
stantially depend on the computational background of the analyst conducting the
study. We feel that naive users of haplotype software with little computational exper-
tise would likely prefer a software package with features that provide an intuitive
platform for haplotype analysis, such as point-and-click capabilities and a friendly
graphic-user interface. On the other hand, we feel that analysts with substantial
computational and statistical background would likely prefer software that is flex-
ible, easily assimilated into other software and scripts (e.g. software written using
R code), can be run in batch, and is portable across different operating systems.
With that in mind, we stratify our recommendations for haplotype software based
not only on the study design, but also on the computational expertise of the user.
Our recommendations follow below:
I. Cross-Sectional Study: HAPSTAT (naive user)

PLINK or haplo.stats (advanced user)

II. Cohort Study: HAPSTAT (naive and advanced users)
III. Case-Control Study: CHAPLIN or HAPSTAT (naive user)

PLINK or haplo.stats (advanced user)

IV. Family-based Study: PCPH (naive user)

FBAT (advanced user)

Electronic-Database Information

CHAPLIN (http://www.genetics.emory.edu/labs/epstein/software)
FBAT (http://www.biostat.harvard.edu/∼fbat/default.html)
Hap-Clustering (http://www4.stat.ncsu.edu/∼jytzeng/Softwares/Hap-Clustering/R/)
haplo.stats (http://mayoresearch.mayo.edu/mayo/research/schaid lab/software.cfm)
HAPSTAT (http://www.bios.unc.edu/∼lin/hapstat/)
PCPH (http://www.duke.edu/∼asallen/Software.html)
PLINK (http://pngu.mgh.harvard.edu/∼purcell/plink)
QSHS (http://www4.stat.ncsu.edu/∼jytzeng/Softwares/QSHS/)
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Multiple Comparisons/Testing Issues

Qingrun Zhang and Jurg Ott

Abstract The statistical testing of multiple genetic markers in genetic linkage
and association studies is discussed and shown to lead to a multiple-testing prob-
lem. Various solutions are discussed and demonstrated on published data. The
false discovery rate (FDR) and several approaches of estimating it, are mentioned.
Randomization (permutation) testing is highly recommended.

1 Introduction

At one of the early Genetic Analysis Workshops, a participant asked whether trying
different inheritance models and phenotype definitions in linkage analysis would
lead to an increase in the rate of false positive results. There seemed to be uncer-
tainty about this point and the reason for it soon became clear: Shortly before the
workshop, a statistical investigation was published showing that “when misspecify-
ing the genetic parameter values, neither linkage nor heterogeneity can be falsely
concluded” [1]. Whereas, this result is undoubtedly true it was widely misinter-
preted to mean that no matter how many parameter values and disease models were
tried, the rate of false positive results would not be increased. For example, lod
scores for schizophrenia linkage of 6.5 corresponding to odds for linkage exceeding
3,000,000 were reported [2]. Let’s consider in detail what is going on here.

A statistical test lets researchers come to a conclusion regarding two hypotheses,
in this case, whether there is linkage (H1 = alternative hypothesis) or not (H0 =
null hypothesis) between two loci, for example, a hypothesized disease locus and a
marker locus. The result of such a test is a p-value, the empirical significance level,
which indicates the probability that a result as extreme or more extreme than the one
observed may occur by chance alone, that is, when in fact there is no linkage (H0 is
true). Small values of p (<0.01, say) convince researchers that the result is unlikely
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to be due to chance and they accept it as real, in this case, the actual existence of
linkage.

Generally, each of a large number of markers is tested for genetic linkage or
association to a disease phenotype. As genetic association studies are becoming
more and more important, they will be the focus of our discussion here rather than
linkage studies. In case–control association studies, 100,000s of SNP markers are
subjected to a chi-square test based on a contingency table, with the two rows cor-
responding to case and control individuals and the columns referring to either the
three genotypes or the two alleles at a given SNP. Each test result is considered
“significant” (a true finding is inferred) if p falls below a threshold α. With a large
number,m, of tests being carried out, rather than focusing on one test at a time, one
may be interested in the more general question, how many of these tests could be
due to chance alone? Or, similarly, what is the probability, α, that one or more of
these tests show an extreme result by chance? The α probability is known as the
experiment-wise (or global or overall) significance level, whereas p is the point-
wise significance level. In many situations, the former is much larger than the latter,
α >> p, so that steps must be taken to keep α below a prescribed level such as
0.01. This situation is referred to as the multiple testing problem, and steps taken to
adjust α to a proper level are multiple testing corrections.

Later, we outline various methods that have been proposed to overcome the mul-
tiple testing problem. Most of these methods have been developed in the statistical
framework of significance testing, which is also how the multiple testing problem
has been introduced and will be handled here.

2 Bonferroni Correction

Consider the situation that multiple association tests are independent. Each of m
tests is carried out at the significance level, p. That is, with each test one runs
the risk p of declaring the result significant in the absence of any true associa-
tion. Still assuming no real association, we want to know the probability, P(≥ 1
test significant), that at least one of these tests is significant. This is equal to
1 − P(no test significant) or 1 − P(all tests nonsignificant). For any individual
test, the probability of it not being significant is given by 1 − p and, since they
are all independent, we find that P(all tests nonsignificant) = (1 − p)m. There-
fore, α ≡ P (≥ 1 test significant) = 1 – (1 –p)m, and this is approximately equal
to mp if p is small. For example, if any one of 20 tests is declared significant when
it results in p ≤ 0.01, then the probability of one or more tests being (falsely!)
declared significant is 0.182 or approximately 20×0.01 = 0.20. Thus, for the over-
all significance level to be small, for example, α = 0.05, each individual test must
be carried out at the more stringent significance level of p = α/m, which is referred
to as the [3] correction. It is known to be conservative, that is, the correction is too
stringent so that power is lost. This is particularly true when tests are dependent,
which is easy to see for tests that are perfectly correlated – each gives the same
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result, so they may be represented by a single test and no correction is necessary.
Some researchers seem to misunderstand this situation. In response to a review of
a manuscript, an author claimed that no multiple testing correction was required
because his tests were all independent. It is with independent tests that corrections
for multiple testing are most needed!

An interesting concept is due to [4]. For m dependent tests, he proposed a pro-
cedure to compute an equivalent number, meff , of independent tests. Bonferroni
corrections could then be carried out with meff instead of m, which is beneficial
because meff < m. Cheverud’s procedure involves the computation of eigenvalues
of them×m correlation matrix of genotype codes (for example, AA = 0, AB = 1,
BB = 2) and may not be practical for large numbers m of markers. Permutation
testing (see section on single test statistic) allows the derivation of meff but also
computes significance levels directly thus circumventing the need for invoking the
Bonferroni correction.

3 False Discovery Rate

Recall that the significance level is the probability of obtaining a positive (signifi-
cant) result when in fact there is no true effect such as linkage or association (null
hypothesis is true). This is also why the significance level is called the rate of false
positive results, or the false positive rate. Conditioning on whether the null hypothe-
sis is true or false is not very intuitive and is often misunderstood by nonstatisticians.
A more plausible concept focuses on all positive (significant) test results and asks,
among these, what is the proportion that is real (true positives) and what propor-
tion is false positives? The latter proportion is called the false discovery rate (FDR),
and methods have been developed to keep it to a low level such as 0.05 [5–7]. The
QVALUE program [6] provides an easy way to estimate the FDR associated with a
given test result and its p-value.

Various approaches have been implemented in statistical packages to identify
“significant” test results, that is, those tests associated with an FDR no larger
than a given small value. The simplest and best known method is probably the
Benjamini-Hochberg (BH) method [8]. It works as follows: Order the p-values asso-
ciated with each test by size from the smallest (most significant) to the largest,
p[1] < p[2] < . . . p[i] . . . < p[m]. For each test, also compute qi = i × (0.05/m).
Then, one starts with the largest p-value, p[m], and compares it and successively
smaller ones with the corresponding q values. Let k be the first test found in this
manner for which p[k] < qk. Then all tests with p-values ranked i ≤ k are associ-
ated with an FDR of no more than 0.05 and are declared significant. This and other
FDR approaches are adaptive in the sense that the decision criterion changes as one
gradually eliminates one after the other hypothesis as not being significant. Thus,
the largest p-value is compared with m× (0.05/m); if it is not significant then the
next smallest p-value is compared with (m – 1) × (0.05/m), and so on. Once a test
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Table 1 The Benjamini-Hochberg (BH) procedure applied to the five smallest significance levels
in a study on AMD (Klein et al. 2005) compared with Bonferroni-corrected p-values, pBon

Rank,i p[i] i × (0.05/103, 611) pBon = p[i] × 103, 611

1 4.02 ×10−8 48.3 ×10−8 0.0043
2 7.58 ×10−8 96.5 ×10−8 0.0080
3 1.36 ×10−6 1.45 ×10−6 0.1409
4 2.60 ×10−5 0.193 ×10−5 (2.69)
5 3.01 ×10−5 0.241 ×10−5 (3.12)
– – – –
103,611 0.05

has been eliminated as nonsignificant, there are fewer tests remaining that need to
be examined, which is one way of seeing the rationale for the BH procedure [8].

The BH approach is known as a step-up procedure as it starts with the largest
p-values at the bottom of the list and gradually steps up to the smallest one. Alterna-
tive (step-down) approaches go in the other direction. For example, starting with
the smallest significance level, p[1], the BL procedure compares each p[i] with

hi = min
[
0.05, 0.05×m/ (m+ 1 – i)2

]
until it finds p[k] > hk. Then, the small-

est k – 1 p-values are declared significant [8]. For large values of tests, h does not
change much initially while the q criterion in the BH procedure does not change
much for large p-values but does so for small p-values. BH may thus be more
appropriate for large numbers of tests and is also generally better known as the
BL approach.

As an example for the BH procedure, consider a well-known study of age-related
macular degeneration (AMD) [9]. In their allele-specific association tests, these
authors found SNPs with the five smallest significance levels shown in Table 1.
According to the Bonferroni criterion, with m = 103, 611, only the two smallest
p-values are significant at the overall 0.05 level (Table 1). The BH procedure, how-
ever, also declares the third-smallest p-value significant (indeed, that SNP turned
out to be important). Assuming that none of the p-values larger than those in the
table have an FDR<0.05, one would then declare these three markers significant.

4 Randomization Testing

For small sample sizes and two groups of observations, Fisher [10] introduced the
idea of a randomization test (often also called permutation test). For example, con-
sider n1 case and n2 control individuals, and assume that a statistical test has been
carried out to see whether there is a significant difference in genotype frequencies
between cases and controls, where So is the observed test statistic and large values
of So are considered indicative of a difference. Under the null hypothesis of no dif-
ference, a given genotype is equally likely to have occurred in a case or a control
individual. Therefore, all possible permutations of “case” and “control” labels are
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equally likely. For such a randomization (permutation) sample of randomly assigned
labels, one may compute the test statistic S and determine the proportion of S values
obtained in all permutation samples that are at least as large as So. This proportion
is the empirical significance level, p, associated with So. Many authors include So

in the formation of p but this is not universally done.
Just as different conventional statistical tests yield different results when applied

to the same data, may permutation tests furnish different significance levels depend-
ing on the specific test statistic used. Also, some test statistics may be more
appropriate and more powerful than others to detect a given hypothesis. In the exam-
ple provided in Chap. 6.1 of [11], for the same data two different test statistics
resulted in p-values of 0.0263 and 0.0037, a sevenfold difference in significance
levels!

With sample sizes of n1 and n2, the total number of permutations is given by
Np = (n1 + n2)!/ (n1!n2!), which may be a very large number. For example,
for n1 = n2 = 15, Np already exceeds 115 million. Therefore, one generally
works with a random sample of size N obtained from all possible permutations
and carries out a Monte Carlo randomization test. Efficient algorithms for gener-
ating sequences of random permutations are available [12]. In human case–control
studies, computer-based randomization tests have been proposed [13]. Empirical
significance levels so obtained are estimates whose precision increases with N .
Ideally, in addition to the estimated significance level one should also supply the
associated confidence interval for the true but unknown significance level, which
may be carried out with the BINOM program [1], which furnishes exact confidence
intervals based on the binomial distribution. For example, assume that on the basis
of N = 10,000 randomization samples, a significance level of p = 0.04 was esti-
mated. Then the 2-sided 95% confidence interval is (0.036, 0.044). In practice, with
a sufficient number of permutations, estimated significance levels are rather accurate
so that usually no confidence intervals are reported.

The beauty of randomization samples is that they permit to construct the sam-
pling distribution under the null hypothesis for an arbitrary test statistic, which
often is impossible with classical statistical approaches. However, the test statistic
must be computed for each randomization sample. If this is time-consuming then
a randomization test can be very computationally intensive. In addition, because
the total number Np of permutations tends to be extremely high, the number N of
permutation samples should be comparatively high in order for the sample space
of permutations to be adequately represented in the randomization samples. Thus,
values of N ≈ 10,000 or higher should preferably be used.

A recent publication proposes permutation testing by importance sampling [14],
that is, instead of sampling from the whole parameter space of permutations only
those are sampled leading to an interesting result. Whereas, this approach reduces
sampling effort dramatically it is based on some assumptions that are not required
with general sampling. Furthermore, genome-wide significance levels in human
case–control association studies don’t tend to be extremely small (the focus of these
authors’ publication) so that moderate values ofN should be sufficient to accurately
estimate significance levels.
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As mentioned earlier, significance levels obtained from randomization samples
permit the determination of a number meff of effectively independent markers. For
example, in our study on age-related macular degeneration (AMD), each of a total
of m = 103, 611 SNPs were tested for association with AMD [9]. In the com-
parison of allele frequencies between case and control individuals, the best SNP
showed a Bonferroni-corrected significance level of pBon = 0.0043 (Table 1). On
the other hand, permutation testing with our SUMSTAT program based on 30,000
randomization samples [2] resulted in prand = 0.0035. Now, the Bonferroni correc-
tion was obtained by multiplying the uncorrected significance level p by m, that is,
pBon = p ×m, and we want to ask, what number meff of independent tests would
have to be postulated so that a Bonferroni correction applied to p would lead to
prand? That is, we require p×meff = prand or meff = prand/p. With p = pBon/m
from above, we can now write

meff/m = prand/pBon,

which, in our case, furnishes 0.0035/0.0043 = 81%. Carrying out these calcula-
tions with 3,000,000 permutations each in a few other SNPs, we found values of
meff/m between 73 and 94%. Evidently, these calculations are not very reliable but
they give us an idea of how much correlation exists among test results for the 100 K
SNP chip. These results are not really useful in practice because we have already
obtained the proper significance levels from permutation samples, but knowing the
effective number of SNPs may help in power calculations that assume independent
tests, for example, with the CaTS program for power calculations in two-stage asso-
ciation studies [15]. Like in most such computations, independence of marker tests
is assumed, where working with m instead of meff would require a much too strin-
gent significance level resulting in an artificially low power. For 300 and 500 K SNP
chips, we don’t yet have many results but ratios of meff/m of around 50% or less
may well be expected.

5 Single Experiment-Wise Test Statistic

So far, we have discussed several means of correcting results from multiple tests,
where each test furnished a result, for example, a p-value. Now, we turn to an alto-
gether different principle. Rather than correcting the p-values for large numbers
of tests, an alternative approach is to define a single test statistic for all markers
and derive its associated p-value, which by definition is an experiment-wise signif-
icance level as only one test is carried out [16, 17]. Because the null distribution
of this statistic may be unknown, its associated significance level is preferably
estimated from randomization samples. For example, for a number of markers,
the largest of the transmission-disequilibrium test statistics, TDTmax, over all the
markers has been proposed as an experiment-wise test statistic [18]. Because of
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nonindependence among markers, the p-value associated with TDTmax is best
obtained from computer-based randomization samples.

For the genome-wide AMD study mentioned earlier [9], one may also con-
sider the largest marker-specific test statistic as the single test statistic repre-
sentative for the whole experiment. In 30,000 randomization samples, 105 of
these samples showed a maximum chi-square at least as large as the one in the
observed data (Table 1). Thus, the overall significance level turned out to be equal
to 105/30, 000 = 0.0035.

A special genome-wide test statistic has been proposed as follows [17]. To eval-
uate the joint association of a number m of SNPs (irrespective of their genomic
positions), one forms the sum, Sm, of the m largest test statistics and evaluates
the empirical significance level, pm, associated with Sm via permutation sampling.
This is done for each of the values, m = 1, 2, . . .,mmax, where mmax is a suitable
upper limit such as 20 (the same set ofNp permutation samples is used for eachm).
The smallest of the mmax values of pm is then chosen as the experiment-wise test
statistic, and its associated significance level is obtained from the randomization
samples. Technical details of this procedure are given in [2]; see also [19]. Another
somewhat related statistic, the scan statistic, is the largest sum of test statistics for
m consecutive SNPs over the genome [20]; see also [3].

Now, let us return to the question of which test statistic is most appropriate for a
given situation. As we will see, this is not always easy to answer. Consider a genetic
case–control association study with a large number of SNP markers, each with two
alleles, A and B, which for convenience may be coded as 0 and 1, respectively.
For each marker, an allele test may be carried out by computing χ2 for a 2 × 2
table, whose rows correspond to case and control individuals, with columns rep-
resenting the two alleles at the SNP. One may then designate the largest observed
χ2 value as the single, genome-wide test statistic and evaluate its associated sig-
nificance level by permutation testing. The χ2 statistic is equivalent to the absolute
difference, |fcase – fcontrol|, divided by the square root of its variance, where f is the
frequency of B alleles in case or control individuals. Because the variance is small
for small f values, differences are weighted more for rare alleles than for com-
mon alleles. For example, the difference between 0.07 and 0.05 is weighted twice
as much as the difference between 0.36 and 0.34. However, we may want to con-
sider these two differences the same. If so, we would choose as our SNP specific test
statistic |fcase – fcontrol|, not weighted by any variance. Which of these two statistics
is more powerful or more appropriate has not been thoroughly investigated but their
statistical properties are likely to be different. Various test statistics have recently
been proposed and shown to have different power in different situations [21–23].

6 Example Dataset: Parkinson Disease

Few case–control datasets are currently available to statistically minded researchers
as test beds for their analysis methods. We chose the Parkinson disease (PD) dataset
with 270 case and 271 control individuals [24], each genotyped for over 400,000
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SNPs [4]. To minimize the amount of computing necessary we picked the chro-
mosome 11 data, which contain 19,539 SNPs. An increasing number of analysis
programs are available to data analysts, but we prefer to keep as close to the data as
possible and write our own analysis programs.

All works were carried out on a desktop PC running Windows XP with 3.00 GB
of RAM and 3.59 GHz clock speed. Programs were written in Free Pascal [5], and
all chi-square statistics were calculated as likelihood ratio rather than Pearson chi-
squares. A small number of SNPs had a large number of missing observations. We
wanted to retain only those SNPs with no more than 25% missing observations.
This eliminated three SNPs: rs4756052 (170 missing), rs6591003 (392 missing),
and rs7110392 (169 missing), so we were left with 19,536 SNPs. In addition, it
appears useful to eliminate those SNPs whose genotype frequencies are severely
out of Hardy–Weinberg equilibrium (HWE) because this is indicative of genotyping
errors. We used a Bonferroni-corrected significance threshold of 0.05/400, 000 =
1.25×10−7, corresponding to a Hardy–Weinberg disequilibrium (HWD) χ2 of 27.9.
This step eliminated an additional seven SNPs so that we were left withm = 19, 529
SNPs. Figure 1 demonstrates that indeed exactly seven SNPs exhibit unusually high
HWD values.

The following calculations refer to multiple testing on chromosome 11. With a
whole-genome analysis, of course, one would need to correct for many more tests
than done for this example. Testing for allelic associations, we found a largest chi-
square (1 df) of 17.53 corresponding to an uncorrected empirical significance level
of 0.000,028,28. Bonferroni correction leads to pBon = 0.55228 while randomiza-
tion testing with 20,000 permutation samples resulted in prand = 0.34615. Thus, for
the given marker density on chromosome 11, the effective proportion of indepen-
dent SNPs is prand/pBon = 63%. As expected, this is somewhat smaller than the
values we found in our AMD study. In the genotype test, the largest chi-square (2
df) turned out to be 33.36 with a (chromosome-wide) Bonferroni-corrected signif-
icance level of 0.001,113. In 20,000 randomization samples, the significance level

Fig. 1 Hardy–Weinberg disequilibrium chi-square values (y-axis) versus ranks (x-axis) of 30
SNPs with highest values. Outliers (eight largest chi-squares) show a deviation from the smooth
curve of smaller chi-square values
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was essentially the same as the one resulting from Bonferroni correction, for which
we don’t have a good explanation.

7 Discussion

Multiple testing corrections are not without controversy. Some authors argue that no
corrections are needed but this does not seem quite right. However, valid questions
remain. In particular, should corrections be applied to all experiments ever done in
a given problem area? Clearly not. Should corrections be applied to the experiments
described in a single publication? This is what the current consensus seems to be, but
then one might argue that the best “strategy” would be to publish as few experiments
in any single paper and distribute results over many papers. Although this argument
sounds contrived, it does point out a dilemma that is difficult to overcome. I don’t see
a universally good answer except that the problem is self-regulating – editors will
prevent people from publishing every minor advance in their research. Additional
aspects of multiple testing have been briefly discussed by Balding [25]. As pointed
out by that author, the problem is not only the number of tests carried out by one
researcher but there are many other researchers who work on the same problem and
thus contribute to the multiplicity of tests.

As is well known, effects of linkage may be detected over wide genomic regions,
certainly over several centi-Morgans away from a disease locus, that is, several MB
of sequence. On the other hand, loci tend to be in linkage disequilibrium (show
genetic association) only when they are at most about 0.1 MB apart. Lander and
Kruglyak [26] showed that for linkage analysis, a saturation point is eventually
reached when markers become more and more dense. That is, the correction for
multiple testing is not increased by much when a researcher increases the number
of microsatellite markers from 600 to 800 in a genome-wide study, and a critical lod
score limit of 3.3 ensures an experiment-wise significance level of 0.05 in standard
linkage analysis for any number of markers. For genome-wide association testing, it
has recently been proposed that in the limit of very dense maps, the multiple testing
burden is equivalent to 1 mio. independent tests in Europeans and twice this number
in Africans [27].

Many “significant” association studies have been published, but subsequently
could not be replicated. Several possible reasons have been quoted for these failures
[28]. While insufficient power is certainly one of them, a major reason must be
that until recently little attention has been paid to rigorous corrections for multiple
testing. It is understandable that researchers resist these efforts. After all, they want
to get their papers published and editors are reluctant to publish work that is not
significant. This has led to some play with words that might not be easy to recognize
as such by nonstatisticians. Clearly, what we need is experiment-wise significance.
Some authors have started using the term “point-wise significant” when one of many
experiments or tests exhibits a significance level p < 0.05. While this is formally
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correct, editors could easily be misled as they see “significant” and don’t realize that
“point-wise significant” is another way of saying nonsignificant.

We would like to close with a quote: “Significant results in abstracts are common
but should generally be disbelieved” [29].

Web Resources

1. http://www.genemapping.cn/util.htm
2. http://www.genemapping.cn/sumstat.htm
3. http://www.genemapping.cn/scanstat.html
4. http://ccr.coriell.org/ninds/
5. http://www.FreePascal.org/
6. http://genomics.princeton.edu/storeylab/qvalue/

References

1. Clerget-Darpoux F, Babron MC, Bonaiti-Pellie C (1987) Power and robustness of the linkage
homogeneity test in genetic analysis of common disorders. J Psychiatr Res 21:625–630

2. Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B,
Wasmuth J, Dobbs M, Gurling H (1988) Localization of a susceptibility locus for schizophrenia
on chromosome 5. Nature 336:164–167

3. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni
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Estimating the Absolute Risk of Disease
Associated with Identified Mutations

Mitchell H. Gail and Nilanjan Chatterjee

Abstract For a given mutation status, we define the absolute risk as the chance
that disease develops in a defined age interval, given that the person is well at the
beginning of the interval. Absolute risk is reduced by competing risks of mortality,
that may cause the person to die before the disease of interest develops. We distin-
guish absolute risk from the pure cumulative risk of disease that is often estimated
in the genetic epidemiologic literature, and we concentrate on estimating marginal
risks for members selected at random from the population, rather than family spe-
cific risks. We review cohort, population-based case–control, case–control family,
and kin-cohort designs for estimating absolute and pure cumulative risks associated
with a measurable genetic mutation.

1 Introduction

Once a disease-causing mutation has been identified and can be measured, it is use-
ful to characterize the risk associated with the mutation. Although relative risk is a
useful quantity for etiologic studies and can be estimated from case–control designs,
absolute risk is more useful for clinical applications. For example, the concept of
absolute risk is helpful in answering such questions as: “Given that I am carrying
a mutation in the BRCA1 gene and am 20 years old, what is the chance that I will
develop breast cancer before age 50?” or “How many BRCA1 carriers need to be
enrolled in this prevention trial to have good statistical power to detect a fifty percent
reduction in breast cancer risk from prophylactic treatment with tamoxifen?” or “If
there were a treatment that reduced the risk of breast cancer by fifty percent, both
for carriers and noncarriers of BRCA mutations, how many breast cancers could
be prevented in a population of Ashkenazi women that had a prevalence of BRCA
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mutation carriers of 2.5%?” These examples illustrate some of the many uses of
absolute risk. Other applications, such as weighing the risks and benefits of taking
tamoxifen to prevent breast cancer have been discussed elsewhere [15].

For chronic diseases, such as cancer, we are interested in the distribution of age
at disease onset, and we define absolute risk to be the probability that a person who
is disease-free at age a will be diagnosed with the disease in a subsequent interval
[a, a + τ ] of duration τ , given the person’s genetic status and perhaps some other
covariates. This probability is influenced by competing causes of death, which can
reduce the chance that the individual will be diagnosed with the disease of interest.
For simplicity, we ignore other risk factors apart from age and mutation status, and
let g = 1 denote a mutation carrier and g = 0 the homozygous wild type. If hg(t) is
the age-specific incidence rate of the disease of interest in those with carrier status
g, and if h2(t) is the age-specific mortality rate of dying from causes of death except
the disease of interest, then the absolute risk (sometimes called “crude” risk in the
competing risks literature) is given by

P (a, a+ τ |g) =
∫ a+τ

a

hg(t) exp
[

−
∫ t

a

{hg(u) + h2(u)} du
]

dt. (1)

The need to take competing risks into account is especially important when pro-
jecting risks over long time intervals, such as risks from age 30 to 70. Yet it is
common in genetic epidemiology to ignore competing risks and present estimates
of the cumulative “pure” probabilities

1 − exp
{

−
∫ a+τ

a

hg(u) du
}

. (2)

Such “pure” cumulative probabilities represent the risk that would be observed
hypothetically if all other causes of death could be eliminated without altering the
cause-specific hazard hg(t). Pure cumulative probabilities can be estimated as 1
minus the ratio of the Kaplan–Meier estimate of survival from age 0 to a+τ , divided
by the Kaplan–Meier estimate of survival from age 0 to a. Hereafter, we call (2) the
“pure cumulative risk .”

To estimate the absolute risk, however, more specialized software is needed
[1, 3, 14]. Once good estimates of hg(t) have been obtained, the absolute risks can
be computed from (1) by substituting appropriate national estimates of mortality
rates for h2(t). Although it is preferable to use absolute risk in consulting, we shall
discuss pure cumulative risk in the following, in keeping with much of the genetic
epidemiologic literature. Frequently, the pure cumulative risk from age 0 to t for car-
riers is termed the disease “penetrance” to age t. These concepts can be generalized
for disease models in which g = 2, 1, 0 denote homozygous mutant, heterozygous,
and homozygous wild types, each with its own hazard of disease. In what follows,
however, we shall emphasize dominant models and use the previous notation for
carrier status.
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Some investigators have questioned the usefulness of estimating penetrance
because many factors, apart from competing risks, can modify the absolute risk
caused by a mutation. These may be host factors or environmental factors. For exam-
ple, a person who is homozygous for a recessive mutation that causes phenylke-
tonuria can be protected from mental retardation by controlling the diet. Thus, the
risk from this mutation depends on the environment. Estimates of breast cancer risk
from mutations in the BRCA1 and BRCA2 genes are often much higher in sub-
jects who are enrolled because they are members of families with many affected
members than in subjects from the general population [12, 20, 31]. This fact sug-
gests that other familial factors, either behavioral or genetic, can modify the risk
from these mutations. Another issue that complicates the concept of penetrance is
the very definition of mutation. A large gene like BRCA1 is subject to mutations
at many different loci, and there are seldom sufficient data to characterize the risks
from mutations at each locus. Thus, risk is often ascribed to any mutation in a gene
that alters its function substantially, and the penetrance represents an average of the
penetrances of the various possible mutations. Despite these potential limitations on
the usefulness of the concept of penetrance, we shall discuss some of the strengths
and weakness of designs that are commonly used to estimate it.

Some of the most efficient designs to estimate penetrance are based on sampling
families. This gives rise to an important definitional issue that we previously alluded
to. Suppose the hazard for a member of a randomly selected family is hg(t)b, where
b is a positive random variable, sometimes called a “frailty,” that characterizes the
residual familial effect apart from the gene under study. Conditional on b, one could
calculate an individual’s absolute risk from (1) or pure cumulative risk from (2) by
replacing hg(t) by hg(t)b. However, b will not be observed. If G is the distribution
of b in the general population and if b is independent of g, then the pure probability
that a randomly selected member of the population would survive to age t is

∫

exp
{

−b
∫ t

0

hg(u) du
}

dG(b). (3)

The corresponding hazard is

h†g(t) =
hg(t)

∫
exp

{
−b ∫ t

0
hg(u) du

}
b dG(b)

∫
exp

{
−b ∫ t

0
hg(u) du

}
dG(b)

(4)

What we are really estimating when studying random samples of individuals
from the population is the “marginal” hazard h†g(t) and corresponding survival func-
tion (3). Of course, if residual familial effects are small, so that the variance of b is
small, hg(t) will nearly equal h†g(t). Unless stated otherwise, we will let hg(t) stand
for the marginal hazard h†g(t) in what follows.

A cohort study of a random sample of individuals naturally yields an estimate
of the marginal genotype-specific hazards in the population (Sect. 2). A population-
based case–control study of unrelated individuals, coupled with information on the
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overall age-specific disease rates in the population, also gives rise to such estimates,
as we discuss in Sect. 3. When, however, sampling is based on membership in a
family, one must take both the ascertainment scheme and the familial correlations
into account to obtain estimates of the marginal genotype-specific hazard rates, pure
marginal cumulative risks, and marginal absolute risks in the general population
(Sects. 4 and 5).

Our discussion assumes that the mutation has been identified and can be mea-
sured. Methods like those in segregation analysis have been used to estimate the
penetrance of a putative mutation, even before the mutation has been identified. For
example, Claus et al. [9] estimated the penetrance of a putative dominant breast
cancer gene from data on the dates of onset of breast cancer in mothers and sisters
of women with breast cancer (cases) and of controls in a population-based case–
control study. The likelihoods they used were similar to those found in segregation
analysis but allowed for estimation of survival distributions corresponding to car-
riers and noncarriers. These calculations are the basis of widely used tables used
for estimating pure cumulative breast cancer risk based on a woman’s age and the
history of breast cancer in her relatives [8]. We focus instead on designs in which
at least some members of the study population are genotyped. Here, we use the
term “mutation” to denote any genetic variant that is associated with increased dis-
ease risk. Sometimes “mutation” is reserved for highly penetrant variants that tend
to be rare, such as mutations in BRCA1. The concepts in this paper also apply to
more common genetic variants, such as a particular single nucleotide polymorphism
(SNP) that may be associated with increased disease risk, even if the SNP itself is
only a marker and does not cause the functional genetic defect. It may still be useful
to characterize the risk associated with such a genetic marker for purposes of risk
projection. Typically, it is easier to estimate the absolute risk for a marker with a
prevalence of 5% or greater than for a rare mutation, because it can be difficult to
assemble a study population with a sufficient number of rare mutations.

2 Population-Based Cohort Studies

If a random or representative sample of individuals is available for prospective
follow-up, then standard survival methods can be used to estimate absolute risk and
pure cumulative risk from (1) and (2), with hg(t) interpreted as a marginal hazard.
A potential complication arises if the hazard from competing causes of death also
depend on g, denoted by h2(t; g). In principle, if the cohort is large enough, both
hg(t) and h2(t; g) can be estimated using standard methods [28], and the absolute
risk can be calculated without any special assumptions on the “independence” of
the competing risks. In this context, it would usually be misleading to use national
mortality rates for competing causes in calculating (1), because the national rates
would represent an average of the rates for carriers and noncarriers, and, for rare
mutations, would correspond mainly to noncarriers. Suppose, for example, that car-
riers of BRCA mutations also have higher mortality from causes of death other than
breast cancer. Then, national mortality rates would be smaller than the true compet-
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ing hazard rates for carriers, and application of (1) would overestimate the absolute
risk of breast cancer in carriers.

Estimates of hg(t) and of the pure cumulative risk depend on the assumption that
censoring by death from other causes is independent of the development of breast
cancer, conditional on genotype g. Thus, provided each member of the cohort is
genotyped and conditional independence holds, unbiased estimates of hg(t) and of
the pure cumulative risk can still be obtained, even if h2(t; g) depends on g.

In addition to its simplicity in concept and analysis, the cohort design offers
the possibility of obtaining baseline materials and information on covariates that
affect risk before the disease process has influenced these measurements. Efficient
sampling of the cohort through case–cohort or nested case–control designs captures
most of the information on baseline covariates by analyzing only the cases that
develop disease and a comparable number of controls.

The main disadvantages to the cohort design are the large sample sizes and
long follow-up times that are typically needed to estimate genetic relative risks or
absolute risks with required precision. Long follow-up times and large cohorts are
required because hg(t) is usually quite small, especially at younger ages. In addi-
tion, if interest centers on a rare genetic factor, such as a mutation in a BRCA gene,
huge numbers of women in the general population would need to be screened to
obtain an adequate number of randomly sampled carriers. A further complication is
that medical practice may change and affect the risk of disease during a long study.
For example, breast cancer incidence rates in a cohort of women may be altered
by preventive measures such as the use of tamoxifen, or by changes in screening
practices.

One approach to overcome these difficulties is to combine information from
several cohorts from general populations. Such cohort consortia could potentially
provide information needed to estimate penetrance precisely, even for a rather
uncommon genetic variant. A second approach is to recruit women from “high-
risk clinics.” Women recruited from such clinics often have a strong family history
of disease, however. Although estimates of absolute risk or pure cumulative risk
obtained from such women may be appropriate for a high risk population, they may
overestimate the penetrance for women in the general population. A third approach
to shortening such studies is to use a retrospective cohort design. In an ideal ret-
rospective cohort study, one can define the cohort at an earlier time, for example,
from a roster of all persons working in a given plant on a specified previous date.
Further, one can obtain complete and accurate disease ascertainment on all cohort
members, irrespective of exposure status, and one can obtain accurate exposure data
on all cohort members or on a properly sampled nested case–control or case–cohort
subsample. Attempts to apply this paradigm to genetic studies pose difficulties that
can lead to serious bias. Although one may find women with breast cancer and their
relatives from lists of current clinic patients, it may be difficult to reconstruct a list of
all the women in a defined cohort at risk at an earlier time, let alone assure complete
follow-up and exhaustive or appropriately sampled genotyping from this cohort.
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3 Case–Control Designs

Population-based case–control studies compare the genotypes of randomly sampled
cases with those of controls to estimate relative risks, and, by coupling this infor-
mation with data on the age-specific composite risk of disease in the population,
genotype-specific pure cumulative risks (and absolute risks) can be estimated. To
illustrate, suppose we have a random sample of cases (Y = 1) aged 50–54 and
corresponding controls (Y = 0). From these data we can estimate P (g|Y ), and, if
we also know the probability of getting disease from age 50 to 54 from population
data, then, from Bayes’ Theorem, we can compute the genotype-specific disease
probabilities

P (Y = 1|g) =
P (Y = 1)P (g|Y = 1)

∑1
y=0 P (Y = y)P (g|Y = y)

. (5)

The fact that population-based case–control data can yield estimates of exposure-
specific disease risk has been known since the path-breaking paper of Cornfield [11].
Examples of the use of this idea for piecewise constant hazard models are found in
Gail et al. [14]. Langholz [22] and Benichou and Gail [4] provide analytical methods
for absolute risk for the survival setting in which cases and controls are selected from
nested case–control designs, and Self and Prentice [29] provide such techniques for
the case–cohort design.

For rare mutations, genetic epidemiologists often compute a relative risk from the
case–control data and multiply this relative risk times the population age-specific
hazard to obtain the hazard in for a mutation carrier, hg=1(t). This strategy works if
the mutation is rare because the population hazard then corresponds to the baseline
hazard hg=0(t). For more common variants, however, (5) or its survival analysis
equivalents must be used.

The population-based case–control design has several potential advantages.
Because it is retrospective, there is no need to wait for disease to develop, as in
a cohort study. If one is interested in the “natural history” associated with a muta-
tion, such retrospective data from an era when preventive strategies were seldom
used, may be more useful than a prospective cohort study. If the mutation is com-
mon, the required sample size for a case–control design is much smaller than for a
corresponding cohort study.

A potential disadvantage of the population-based case–control design is the pos-
sibility of bias in the information on some risk factors, because cases may recall
antecedent events in a different manner from controls. Provided samples from con-
trols and cases are handled comparably, such differential errors do not typically
affect the germ line genotype itself, however, because the genotype is stable. A sec-
ond potential problem is difficulty obtaining representative samples of cases and
controls, because a substantial proportion of those invited to participate and give a
DNA sample may refuse. If the tendency for a case to participate is increased if that
case has a strong family history, but the chance that a control will participate is not
influenced by family history, differential nonresponse bias may result.



Estimating the Absolute Risk of Disease Associated with Identified Mutations 295

Some of these difficulties may be overcome by using a hospital-based, rather
than a population-based case–control design. In the hospital based design, cases
diagnosed at a hospital are compared to patients from that hospital with other dis-
eases that are not thought to be affected by the gene under study. An advantage of
this design is that hospitalized patients are more likely to participate in the study and
give blood or other material for a DNA sample. A disadvantage is that the control
diseases may be associated with the gene under study, distorting the association.
Relative risks obtained from such studies can be multiplied by population-based
estimates of hg=0(t) to yield an estimate of hg=1(t).

Even though case–control designs are generally thought to require comparatively
small sample sizes, this is not the case for studies of rare mutations. For example,
to estimate the lifetime cumulative pure risk of a rare mutation such as a muta-
tion in BRCA1 with a precision ±0.05, Gail et al. [16] calculated that over 17,030
genotypes would be required, based on an optimal control to case ratio with 15,506
controls and 1,524 cases. Many more controls than cases were needed for an effi-
cient design because the mutation was so much more common in cases than in
controls for this hypothetical mutation with lifetime penetrance 0.92 and mutant
allele frequency 0.0033.

Family-based case–control studies, such as discordant sib-pair designs in which
one sib is a case and another nondiseased sib a control, can be used to estimate rela-
tive risks, rr = hg=1(t)/hg=0(t), but not the hazards hg(t) themselves. In a typical
discordant sib-pair analysis, conditional logistic regression will be used, and any
random familial effect b, will cancel from the conditional likelihood. The resulting
relative hazard is therefore a family-specific relative hazard rather than a ratio of
marginal hazards. If the mutation is rare, one can multiply this family-specific rela-
tive hazard by the age-specific population rates to approximate the marginal hazard
for a carrier, and thereby estimate pure cumulative marginal risks and absolute risks.
This approximation may not work well if the marginal and family-specific genetic
relative risks are very different. To show that the differences between marginal rel-
ative risks and family-specific relative risks can be substantial, we considered the
case of exponential survival and family-specific genetic relative risk 3.0. Assuming
30% of families had b = 0.5, 50% had b = 1, and 20% had b = 1.75, we calcu-
lated from (4) that the marginal genetic relative hazard was as low as 2.22 for some
parts of the age range, which is 26% lower than the family-specific relative hazard.
Hence, family-based estimates of relative risk could lead to overestimates of pure
marginal cumulative risk. In practice, the familial frailties may have less variation,
and the differences between family-specific relative hazards and marginal relative
hazards may be smaller.

4 Case–Control Family Study Design

The case–control family study design involves the recruitment of population-based
families through an index sample of case–control subjects. Consider a study design
where N0 cases and N1 controls have been randomly sampled from the healthy
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and diseased subjects, respectively, in an underlying population. Let Yi0 and Gi0,
i = 1, . . . , N0 +N1, denote the disease status and the mutation status, respectively,
for the N0 +N1 case–control subjects (probands). Here, if the ith subject is a case,
Yi0 = 1 and if the ith subject is a control Yi0 = 0. Assume ri relatives are recruited
for the ith proband. Let Y i = (Yi1, . . . , Yiri) and Gi = (Gi1, . . . , Giri) denote the
vector of disease outcome and mutation status, respectively, for the ri relatives of
proband i. The likelihood for case–control family data is given by

LFBCC =
N0+N1∏

i=1

Pr(Y R
i ,Gi, Gi0|Yi0),

where one conditions on the event Yi0 to reflect the fact that families are sampled
conditional on the disease status of the probands. Whittemore [33] considered infer-
ence based onLFBCC under “reproducible” multivariate models for the distribution
of disease-risk in families. Reproducible risk models imply that the marginal distri-
bution of the disease status for any subset of subjects in a family depends only
on their own covariates, but not on those for the other members of the same fam-
ily. In particular, the marginal distribution of disease outcome for an individual
subject given his/her own covariate cannot depend on the covariate status of the
relatives of the subject. Many standard multivariate models for disease risk, includ-
ing “marginal”[24] and “random effect” models, are reproducible. Whittemore
points out that, “reproducibility” although desirable and mathematically convenient,
requires an assumption of a certain type of independence between the covariates and
the sources of familial correlation of disease.

Assuming reproducibility, Whittemore factorized LFBCC as

LFBCC =
N0+N1∏

i=1

L1i × L2i × L3i,

=
N0+N1∏

i=1

Pr(Gi0|Yi0) × Pr(Y i|Gi, Gi0, Yi0) × Pr(Gi|Gi). (6)

Further, under marginally specified multivariate distributions that assume a logistic
model for the disease outcome of an individual subject, Whittemore used calcula-
tions analogous to Prentice and Pyke [27] to show that the estimate of the regression
parameters that maximizesLFBCC can be obtained from a “prospective” likelihood
of the form

L∗
FBCC =

N0+N1∏

i=1

L1i × L2i,

=
N0+N1∏

i=1

Pr(Yi0|Gi0) × Pr(Y i|Gi, Gi0, Yi0),
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where the intercept parameter of the marginal logistic model involved in the com-
putation of L1i needs to be distinguished from that involved in L2i. Zhao et al.
[34] considered an estimating equation based approach for inference on marginal
models from family-based case–control studies, avoiding specification of the full
multivariate distribution for families.

Hsu et al. [21] considered inference for case–control family data incorporating
age-at-onset information. In this setting, the phenotype information for a subject
can be summarized as Y = (T,Δ), where Δ denotes the indicator of whether the
subject had the disease (Δ = 1) or not (Δ = 0) and T = min(T ∗, C) denotes the
minimum of age-at-onset (T ∗) of the disease or censoring (C). In the following, we
will assume both T and C are continuous with absolutely continuous distribution
functions. If no covariates were present, the hazard function for the age-at-onset of
the disease for a relative, given the outcome information of the proband, could be
written as

h(t|t0, δ0) = h(t|t0, δ0 = 0)ψ(t, t0)δ0 , (7)

where

ψ(t, t0) =
Stt0(t, t0)S(t, t0)
St(t, t0)St0(t, t0)

,

where S(t, t0) = pr(T ∗ > t, T ∗
0 > t0) denotes the joint “survivor” function for the

relative and the proband, St(t, t0) = ∂S(t, t0)/∂t, St0(t, t0) = ∂S(t, t0)/∂t0 and
Stt0(t, t0) = ∂S(t, t0)/∂(tt0). Clayton [10] introduced the “cross-ratio” function
ψ(t, t0) as a measure of dependence between correlated failure times. Motivated by
(7), Hsu et al. [21] proposed modeling disease incidence data of the relatives given
their covariate information, such as mutation status (g), and the phenotype status of
the index proband using a stratified Cox proportional hazard model of the form

h(t|g, t0, δ0) = h0t0 exp [βg + δ0 log {ψ(t, t0; θ)}] , (8)

where t0, the proband’s age, is considered to be the stratifying variable and the
ψ(t, t0; θ) is a parametric model for the cross-ratio function ψ(t, t0). The simplest
model for the cross-ratio function [10] is to assume ψ(t, t0) = θ, i.e., it is con-
stant for all values of (t, t0). Oakes [26] described various other parametric forms
for the cross-ratio function which could be generated by alternative copula distribu-
tions for bivariate failure times. Hsu et al. described an elegant and computationally
simple approach for estimating the parameters β and θ of the model (8) based on a
“pseudo-partial likelihood” of the data that essentially involves comparing the risk-
score exp [βg + δ0 log {ψ(t, t0; θ)}] between pairs of relatives from independent
families within “matched” sets defined by the proband’s age. They showed that the
resulting estimator is consistent and developed a “sandwitch” approach for estimat-
ing the asymptotic variance of the estimator that accounts for the correlation in the
partial-likelihood scores among the different relatives from the same family.

The approach of Hsu et al., however, has some limitations. First, interpretation
of the parameter β in model (8) is defined conditional on the proband’s dis-
ease outcome. It is not clear how β would define the genetic-risk of a randomly
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selected person from the population. Second, it is also not clear how to incorporate
information on the covariates of the proband in model (8). Third, the pseudo-partial-
likelihood approach may be inefficient because comparisons between cases and
controls are restricted to be within highly stratified matched sets.

Shih and Chatterjee [30] considered an alternative approach. They proposed
inference under a marginal Cox proportional hazard model of the form

h1(t) = h0(t) exp(β), (9)

where hg(t) is defined to be the hazard function of the disease for a randomly
selected person from the population with mutation status g. Let

Fg(t) = 1 − exp
{

−
∫ t

0

hg(s) ds
}

be the corresponding pure cumulative-risk function and Sg(t) = 1 − Fg(t) be the
survivor function. Shih and Chatterjee proposed specifying the multivariate age-
at-onset distribution for families using copula models [19, 26] with the marginal
distributions for individual members being specified by the Cox model (9). Let
T ∗

0 ,T ∗
1 , . . . , T ∗

r denote the random variables associated with the ages at onset of
the disease for a family with r + 1 subjects where the index “0” corresponds to
the proband. The copula model corresponds to a specification of the multivariate
survivor function

Sg0,g1,...,gr(t0, t1, . . . , tr) = Pr(T ∗
0 > t0, T

∗
1 > t1, . . . , T

∗
r > tr|g0, g1, . . . , gr)

of the form

Sg0,g1,...,gr (t0, t1, . . . , tr) = Cθ {Sg0(t0), Sg1(t1), . . . , Sgr(tr)} , (10)

where Cθ(u1, . . . , um), θ ∈ Θ is any parametric class of multivariate distribution
functions, defined on the product space of [0, 1]r+1, that has uniform marginals.
The parameter θ can be interpreted as a measure of “residual familial aggregation”
that characterizes familial correlation of the disease that cannot be explained by the
gene under study. Clayton’s model [10] of constant cross-ratio function corresponds
to the copula function

Cθ(u0, u1, . . . , ur) =

[
r∑

m=0

um
1−θ − r + 1

]1/(1−θ)

. (11)

The value of θ = 1 corresponds to independence and θ > 1 corresponds to positive
dependence. Although in a restricted range, values θ < 1 can be allowed to model
negative correlation, in this article we only allow for positive dependence (θ ≥ 1)
for modeling familial aggregation. Oakes [26] described several classes of copula
models induced by frailties.
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Copula models are “reproducible.” If ir1 , . . . , irk
denote the indices for a subset

of the subjects for r + 1 relatives in a family, then

Pr(T ∗
i1 > ti1 , . . . , T

∗
ik
>tik

|g0, g1, . . . , gr) = Pr(T ∗
i1>ti1 . . . , T

∗
ik
>tik

|gi1 , . . . , gik
)

and
Sgi1 ,...,gik

(ti1 , . . . , tik
) = Cθ

{
Sgi1

(ti1), . . . , Sgik
(tik

)
}
,

where Cθ(ui1 , . . . , uir ) is the same class of parametric function as
Cθ(u0, u1, . . . , ur) except that it is defined on the space [0, 1]k instead of [0, 1]r+1,
with the interpretation of θ remaining unchanged. For the special case k = 1,

Pr(T ∗
i1 > ti1 |g0, g1, . . . , gr) = Cθ

{
Sgi1

(ti1 )
}

= Sgi1
(ti1),

where the last equality follows because of the uniform marginals of copula distribu-
tions.

Shih and Chatterjee showed that under copula models one can write the hazard
of the age-at-onset of disease for a relative given his/her mutation status (g) and the
index proband’s outcome y0 = (t0, δ0) and mutation status (g0), as

λ(t|g, t0, δ0, g0) = λ0(t) exp [βg + δ0 log {ψ(t, t0; θ)}]φθ {Sg(t), Sg0 (t0)} ,
(12)

where

φθ(u, v) = u
∂Cθ(u, v)

∂u
/Cθ(u, v).

There are several important differences between the specification of the conditional
hazard function given in (12) from that in (8). First, (12) incorporates the genotype
information of the proband as well as that for the relatives. Second, in (12), the
age information from the proband is incorporated through the semiparametrically
specified cross-ratio functions ψ(t, t0) and its derivatives. In contrast, in (8), age of
the proband is treated as a stratifying variable. Third, the genetic-risk parameter in
(12), unlike that in (8) has the desired marginal interpretation.

Shih and Chatterjee proposed estimation of β and θ using a likelihood decom-
position similar to (6). They, however, considered several modifications. First they
proposed replacingL1, the “retrospective” likelihood for the case–control probands,
by LC

1 , a conditional likelihood similar to that proposed by Li et al. [23], so that the
resulting method can handle age-matched case–control sampling. Second, they sug-
gested replacingL2, the full likelihood of the relatives, by a composite likelihoodL∗

2

that treats the different relative-proband pairs from a family as independent units.
This composite-likelihood approach is asymptotically unbiased for estimation of
the parameters of the marginal model, although it may lose some information due to
ignoring the full correlation structure in the families. It is also computationally sim-
pler and less sensitive to model miss-specification compared to the full-likelihood
approach. Both likelihoods L2 and L∗

2 involve the unknown baseline nonparamet-
ric baseline hazard function λ0(t). Shih and Chatterjee exploited the proportional



300 M. H. Gail and N. Chatterjee

hazard structure of the model (12) to propose an iterative estimation scheme. Each
iteration yields estimates of β and θ by maximizing L = Lc

1 × L2 or L = Lc
1 × L∗

2

with fixed λ0(t), and then estimating λ0(t) by a closed form Nelson–Aalen type
estimator for fixed β and θ. Simulation studies suggested that this approach can
produce estimates of the regression (β) and correlation parameters (θ) that are much
more precise than those obtained by the partial-pseudo-likelihood method consid-
ered by Hsu et al. [21]. Moreover, it produces an estimate of the baseline hazard
function λ0(t) that is essential for estimation of pure cumulative-risk and absolute
risk.

In summary, the case–control family design has some advantages over a standard
case–control design for estimation of genetic risk. Additional information from the
relatives can substantially improve the efficiency of estimates of relative-risk param-
eters. Moreover, disease incidence data of the relatives also allows estimation of
cumulative- and absolute risks associated with a genetic variant via internal esti-
mation of the baseline hazard function. The application of this design, however,
has been limited, as recruitment of relatives in a case–control study may difficult
for a number of practical reasons, and it may not be feasible to obtain covariate
information and genotypes on relatives. In Sect. 5, we will review an alternative
more practical design that does not require recruitment of the relatives themselves,
but relies instead on obtaining the relatives’ disease history information from an
interview of the proband.

5 Kin–Cohort Design

The kin–cohort design is based on probands who agree to be genotyped and to pro-
vide a history of the ages at onset of the disease of interest in their first-degree
relatives. These relatives constitute a retrospective cohort, whose genotype distri-
butions can be inferred from the probands’ genotypes and Mendelian principles.
Hence, pure cumulative risk and absolute risk can be estimated. Struewing et al.
[31] used this design to estimate the risks of breast cancer and other cancers from
BRCA1 and BRCA2 mutations in a population of Ashkenzi men and women in the
Washington DC area. Letting F1(t) and F0(t) denote the pure cumulative risk in
carriers and noncarriers respectively, they noted for this rare mutation that the cumu-
lative risk in first-degree relatives of carrier probands was 0.5 F1(t) + 0.5F0(t),
because about half the first-degree relatives of carrier probands are expected to
be carriers. Likewise, the cumulative risk in first-degree relatives of noncarrier
probands is very nearly F0(t). Hence, F1(t) and F0(t) can be estimated from
empirical estimates of the pure cumulative risks in first-degree relatives of car-
rier and noncarrier probands. Using this technique, Struewing et al. estimated the
pure cumulative risk to age 70 as 56%, which is considerably less than the esti-
mate of 84% obtained from a consortium of high risk families [12], but closer to the
population-based estimate of 40% found in New South Wales, Australia [20].
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Before describing likelihood-based approaches to estimation, we discuss some
of the strengths and weaknesses of the kin–cohort design. A kin–cohort study can
be completed quickly, because probands are sampled cross-sectionally and the dis-
ease histories of relatives are collected retrospectively from the proband. Morever,
it is possible to estimate the risks from several disease outcomes from a single kin–
cohort study simply by asking the probands to provide each relative’s history for
several disease outcomes. The kin–cohort design usually requires slightly smaller
samples than corresponding cohort or case–control studies to estimate absolute
risk [16].

Kin–cohort studies are subject to some potential biases. If subjects tend to vol-
unteer to be probands more readily if they have affected relatives, estimates of
penetrance will be upwardly biased [16, 17, 31, 32]. If probands mistakenly report
disease that is not present in relatives, penetrance can be seriously overestimated,
whereas if probands fail to report disease, penetrance will be underestimated [16–
18]. For rare mutations, very large sample sizes may be needed to assure that
Wald-type confidence intervals have proper coverage [17, 18].

We now consider how the ascertainment of probands affects the likelihood anal-
ysis and how biases can result, unless residual familial correlation is taken into
account. For subject i, let Yi = (Ti, δi) be the vector whose first component is
the age at end of follow-up, Ti, and whose second component is an indicator, δi, of
whether or not the disease was diagnosed at Ti. Let Y0 denote the proband’s disease
history (or phenotype) and let Y = (Y1, Y2, . . . Yr) be the vector of disease histories
for the relatives of the proband. First we assume that probands are sampled at ran-
dom from the population; later we consider “case-enriched ascertainment” in which
case probands (δ = 1) are sampled at a higher rate than control probands (δ = 0).
With randomly sampled probands, the likelihood is the product over probands of

P (g0)P (Y0|g0)P (Y|g0, Y0). (13)

The quantity P (g0) can be estimated directly from the genotypes of probands,
with or without the assumption of Hardy–Weinberg equilibrium, and P (Y0|g0)
is obtained from standard survival methods. Under the strong assumption that
outcomes within a family are conditionally independent given the corresponding
genotypes g0 and g = (g1, g2, . . . gr)′,

P (Y|Y0, g0) = Σg

r∏

i=1

P (Yi|gi)P (g|g0). (14)

The conditional distribution P (g|g0) of the vector of genotypes of the relatives, g,
given the proband’s genotype can be computed using standard Mendelian meth-
ods. If there are residual familial effects that influence phenotype in addition to
the genotypes under study, however, then (14) is incorrect. The correlations among
components of Y and between components of Y and Y0 need to be taken into
account. For example, if there is a random familial effect b, such that conditional
on genotypes and b the familial phenotypes are independent, then
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P (Y|Y0, g0) = Σg

{∫ r∏

i=1

P (Yi|gi, b)dG(b)

}

P (g|g0). (15)

Ignoring residual familial correlation leads to overestimates of F1(t), underesti-
mates of F0(t), and overestimates of P (g = 1) [5, 16–18].

Chatterjee and Wacholder [5] developed a simple and elegant approach to cir-
cumvent this problem when probands are sampled at random. In this case, each
pair (Yi, Y0) can be regarded as sampled at random from the population, and, under
model (15), P (Yi|g0) =

∑
gi
P (Yi|gi)P (gi|g0), as can be seen by integrating (15)

over b. Using this idea, Chatterjee and Wacholder pretended that the r doublets were
independent to produce a composite likelihood

P (g0)P (Y0|g0)
r∏

i=1

∑

gi

P (Yi|gi)P (gi|g0). (16)

Even though the doublets are not independent, consistent estimates of the pene-
trance can be obtained from (16), and the estimated variances can be corrected for
correlations among the doublets by using “sandwich” estimates [5].

The approach of Chatterjee and Wacholder depends on two key assumptions.
First, the probands are sampled at random. Second, as in the random effects model
(15), P (Yi|gi, g0) = P (Yi|gi). This is a special case of the “reproducibility assump-
tion” that is discussed by Whittemore [33] and by Gail and Chatterjee [13]. It can
be violated, for example, if the allele under study is in linkage disequilibrium with
another nearby disease-producing allele at a separate locus. Then, knowing g0 pro-
vides additional information about Yi to that provided by gi. Another example is in
Gail and Chatterjee [13].

For rare mutations it is more efficient to over-sample case probands. For such
case-enriched ascertainment, one is sampling conditional on the proband’s
phenotype, and the appropriate conditional likelihood that takes ascertainment into
account is

P (g0|Y0)P (Y|g0, Y0) = P (g0|Y0)
∑

g

P (Y|g, g0, Y0)P (g|g0, Y0),

= P (g0|Y0)
∑

g

P (Y|g, Y0)P (g|g0), (17)

where the last equality follows from the assumption that g is conditionally inde-
pendent of Y0 given g0, as is reasonable for Mendelian transmission, and from the
reproducibility assumption [13, 33] that Y is conditionally independent of g0 given
g and Y0.

The term P (g0|Y0) in (17) can be computed from Bayes’ Theorem in terms of
the marginal hazards hg(t) without the need to take into account residual familial
correlations among family members’ survival information, Y0 and the vector Y,
given genotypes. For computingP (Y|g, Y0) in (17), one needs to make some model
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assumption about the nature of residual familial aggregation. If one assumes no
residual familial aggregation, then one can write

P (Y|g, Y0) = P (Y|g) =
r∏

i=1

P (Yi|gi),

which can be computed in terms of marginal hazards [16,25]. Ignoring residual cor-
relations, however, can lead to overestimates of penetrance of the disease-producing
mutation [5, 16–18]. Begg [2] points out the possibility of such bias in the extreme
case where all probands are diseased.

Chatterjee et al. [7] considered use of copula models to account for residual
familial aggregation in “kin–cohort” analysis of relatives’ data from a case-enriched
sample of probands. They observed that the likelihood (17) has similar structure
as that for case–control family design (see 6) except that (17) needs to account
for the missing genotypes for the relatives. Thus, they developed an expectation-
maximization type algorithm to extend the maximum-likelihood and maximum-
composite-likelihood techniques described in Shih and Chatterjee [30] to estimate
relative-risk parameters, cumulative risks and residual familial aggregation. They
considered a variation of the method that allows analysis of studies with case-only
probands.

Chatterjee et al. conducted extensive simulation studies to arrive at several impor-
tant conclusions. They observed that accounting for residual familial aggregation,
even with a mis-specified model, eliminates or reduces the bias in estimates of
cumulative risk parameters from kin–cohort data that may be incurred with case-
enriched sampling of the probands. However, the studies showed that if only case
probands were used, the analysis was sensitive to mis-specification of the model
for residual correlation. They further observed that the disease incidence data for
the relatives adds substantial information for estimation of the genetic relative-risk
parameters, even though the relatives are not genotyped.

Another source of bias that may affect the kin–cohort design arises when the gene
under study influences competing risks of mortality or survival following cancer
onset [13,16]. If the hazard from competing causes of death is increased in carriers,
but not in noncarriers, the estimate of F1(t) will be too small [13]. This dependence
of competing risks on genotype will reduce the number of case-probands who are
carriers in the study, because many of them would have died of other causes between
the time they developed the disease of interest and the time the cross-sectional sur-
vey for probands was conducted. A more severe downward bias in estimates of
F1(t) results if the hazard of death following onset of the disease of interest is
greater in carriers than in noncarriers [13]. Biases can also result if cases who are
carriers tend to volunteer for the study more readily than cases who are noncarriers,
as might happen if a potential proband knows he or she is in a family with carriers.
It can be difficult to model the dependence on carrier status of competing hazards
of death, hazard of death from the cause of interest following disease incidence, and
tendency to volunteer. Nonetheless, Chatterjee et al. [6] modeled the dependence
of competing risks on carrier status to account for the joint effects of BRCA1/2
mutations on ovarian and breast cancer risk.
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6 Discussion

We have reviewed how cohort, population-based case–control, case–control family
and kin–cohort designs can be used to estimate pure cumulative risks for carriers of
a mutation. These pure risks can be adapted by taking competing causes of mortality
into account to estimate absolute (or “crude”) risks. These ideas extend readily to
computation of genotype-specific risks for nondominant genetic diseases.

We have emphasized that for counseling and many other applications, we are
interested in the genotype-specific risk for a randomly selected member with that
genotype from the target population. Studies in which relative risks are estimated by
comparing affected with unaffected family members yield family-specific genetic
relative risks that may exceed the marginal relative risks of interest, in the pres-
ence of substantial random familial effects. Nonetheless, multiplying estimates of
relative risk times population-based estimates of baseline age-specific disease haz-
ard, as in the population-based case–control design, can provide a robust approach
to estimation of genotype-specific hazards, pure cumulative risk, and absolute risk.
If the disease-conferring genotypes are rare, age-specific disease hazards from the
general population can usually be taken as baseline age-specific hazard rates. When
the disease genotypes under study are not rare, the population hazards need to be
muliplied by 1−AR(t), where 1−AR(t) is an estimate of age-specific population
attributable risk to obtain the needed baseline hazard.
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Processing Large-Scale, High-Dimension
Genetic and Gene Expression Data

Cliona Molony, Solveig K. Sieberts, and Eric E. Schadt

Abstract The now routine generation of large-scale, high-throughput data in mul-
tiple dimensions (genotype, gene expression, and so on) provides a significant
challenge to researchers who desire to integrate data across these dimensions in
hopes of painting a more comprehensive picture of complex system behavior. This
type of integration promises to elucidate networks that drive disease traits associated
with common human diseases like obesity, diabetes, and atherosclerosis. However,
to effectively carry out this type of research not only requires the generation of
large-scale genotype and molecular profiling data but also requires the development
and application of methods and software in addition to a computing infrastructure
capable of processing the large-scale data sets. Mastery of the methods and tools
and having access to an appropriate computing environment capable of process-
ing large-scale data will be critical to maintaining a competitive advantage, given
future successes in biomedical research will likely demand a more comprehen-
sive view of the complex array of interactions in biological systems and how such
interactions are influenced by genetic background, infection, environmental states,
life-style choices, and social structures more generally. In this chapter, we detail
the methodological and computing issues associated with carrying out large-scale
genome-wide association studies on tens of thousands of phenotypes, where the aim
is to identify those phenotypes that are intermediate to DNA variations and disease
phenotypes. This type of analysis can provide insights into the molecular networks
that are perturbed by DNA and environmental variations, and as a result, induce
changes in disease associated traits, providing a path to interpret genome-wide
association study data as well as uncover networks that drive disease processes.

1 Introduction

The availability of low-cost, high-throughput technologies for genotyping hundreds
of thousands of DNA markers has led to unprecedented success in human genetics
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over the past 2 years, with highly replicable associations identified for a number
of common human diseases, including age-related macular degeneration [1–3], dia-
betes [4, 5], and obesity [6]. While these and the coming discoveries from a slew
of genome-wide association studies currently under way provide a peek into path-
ways that underlie disease, they are usually devoid of context, so that elucidating the
functional role such genes play in disease can linger for years, or even decades, as
has been the case for genes like ApoE, an Alzheimer’s susceptibility gene identified
nearly 15 years ago [7]. Even in cases where an association to disease has been well
localized to a given locus representing just a single gene, in the absence of experi-
mental support the gene cannot be definitively claimed as the disease susceptibility
gene. This problem is exacerbated in experimental murine cross populations derived
from inbred mouse strains, where in addition to the problem of inferring the function
of positionally cloned genes and of determining the mechanistic underpinnings of
disease from the genetic data alone, the extent of LD operating in such populations
makes positional cloning a difficult and time consuming process.

An alternative to the forward genetics approach to dissecting complex traits like
disease is the construction of molecular networks that drive disease, where such
networks are constructed from molecular phenotype data scored in populations that
manifest disease. The information that defines how variations in DNA lead to varia-
tions in complex traits of interest flows through molecular networks that actually
define the complex traits. Therefore, characterizing the molecular networks that
underlie complex traits like disease can provide a more comprehensive view of dis-
ease, and this in turn can lead to the direct identification of key genes underlying
disease processes, as well as providing a rich biological context within which to
infer the functional roles played by these key genes. Recent studies characterizing
gene expression networks have not only demonstrated that gene expression traits
are significantly heritable, they have also demonstrated how genetic loci associated
with gene expression traits can be combined with clinical trait data to infer causal
associations between genes and disease traits [8–14]. Because complex biological
processes that lead to disease are often system and context dependent, leveraging
DNA variations as a systematic source of perturbations on molecular networks and
clinical traits facilitates studying complex biological processes at the systems level,
in addition to studying gene function at the level of individual pathways [15, 16].

However, carrying out studies to uncover sub-networks that drive disease traits
associated with obesity, diabetes, and atherosclerosis in human populations involve
a number the generation of large-scale genotype and molecular profiling data, novel
methods and software to integrate these types of data with clinical data to elu-
cidate networks driving disease, and then a computing infrastructure capable of
processing the massive amounts of data being generated today. Mastery of the
methods and tools and having access to a computing environment capable of pro-
cessing large-scale data will be critical to maintain a competitive advantage, given
future successes in biomedical research will likely demand a more comprehen-
sive view of the complex array of interactions in biological systems and how such
interactions are influenced by genetic background, infection, environmental states,
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life-style choices, and social structures more generally [17, 18]. This holistic view
requires embracing complexity in its entirety, so that complex biological systems
are beginning to be seen as dynamic, fluid systems able to reconfigure themselves
as conditions demand [19–21]. An alternative to these artificial, more simplistic per-
turbations are naturally occurring genetic variations that segregate in populations
such as those obtained from experimental crosses or that occur naturally. Not only
are these types of perturbations naturally occurring, possibly making them more rel-
evant for identifying key nodes in networks that drive disease, but they also occur
in a multi-factorial context that enables the study of additive effects and epistatic
interactions. Because most common human diseases are thought to manifest them-
selves as a result of many weak contributors rather than a few dominant factors, it is
important to study complex traits in this more realistic setting.

In this chapter, we detail the methodological and computing issues associated
with carrying out large-scale genome-wide association studies on tens of thousands
of phenotypes, where the aim is to identify those phenotypes that are intermediate
to DNA variations and disease phenotypes.

2 Data Management, Access and Workflow

While the primary purpose of a genome-wide association study (GWAS) is biomed-
ical discovery, along with all of the long-term effort that goes into collecting
phenotype data and pedigrees or subject information, and in addition to the effort
required for genotyping and final statistical analyses, data management issues are
one aspect of a genetic study that are often overlooked. When large-scale data is
stored in spreadsheets or files, keeping it organized, documented, and ensuring that
data integrity is maintained, can require significant resources. Efficient and safe
sharing of data within a research group is often difficult, and preparing data for
genetic analysis programs requires significant manual intervention that is tedious
and, as a result, highly error prone.

Human genetics researchers will also be required to plan for and manage an
efficient flow of data and information in a scale not typically encountered in most
biomedical research settings. It is likely that individuals with expertise in informat-
ics, large-scale data management, and possibly software and/or web development
skills will be needed for a GWA study or genetics of gene expression (GOGE)
program. Point-to-point transfer of genotype and/or gene expression data can be
managed efficiently by a Laboratory Information Management System (LIMS) or by
establishing shared access points. However, the actual storage and ability to access
large-scale, raw data efficiently can be a complicated task. A relational database
management system (RDBMS) is a system that manages data using a relational
data model via a collection of relations (generally called tables). For example, an
RDBMS is an efficient way to retain and access the meta-data of individual studies
along with the annotation for individual samples and markers, as well as the individ-
ual data points for genotype and gene expression data. Almost all RDBMS employ
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Structured Query Language (SQL) as their query language (primary user interface
to manipulate the data). While SQL-compliant RDBM systems are designed to be
inherently efficient, the design and execution of an RDBMS in many biomedical
research settings is usually performed by a temporary member of a research group
who has some technical experience but does not have the required level of exper-
tise to design an optimal system. In some cases, researchers may even find that they
require many more people to manage the data than to analyze it.

For genotype and phenotype data management, a number of supported SQL-
based public [22] and commercial options do exist (http://www.progenygenetics.
com), and over the long term these types of solutions may be more sustainable
and allow for better use of the biomedical researcher’s time. In practice, even
when data management solutions are designed and executed by technical experts,
researchers with multiple large-scale high-dimensional data sets may eventually
encounter difficulties in managing and manipulating the files on which they wish
to perform analysis. Researchers should also consider using alternative data for-
mat structures for both storage and analytical solutions that require a fraction of
the disk space, RAM, and processing time for manipulation. For example, a num-
ber of customized binary formats have been employed in commonly used analysis
packages such as PLINK [23] and HelixTree (GHD) [24]. Additionally, plug-in
technologies can be incorporated into genotype provider software to actually cre-
ate the compatible binary formats from the very start [24]. Standardized binary
structure libraries exist and use of a common format will permit the sharing of
data across a wide variety of computational platforms using applications writ-
ten in different programming languages. For example, Hierarchical Data Format,
http://hdfgroup.org/index.html (HDF) is a library and multi-object file format for
the transfer of graphical and numerical data between computers. HDF is freely
available and commonly used by organizations in the public and private sectors
when the data challenges being faced push the limits of what can be addressed by
traditional database systems, XML documents, or in-house data formats. Analysis
tools such as R and Matlab R© can easily handle this format. HDF also supports sev-
eral different data models, including multi-dimensional arrays or tables, holding a
mixture of related objects that can be accessed as a group or as individual objects.
Combining the compact and efficient binary formats with a streamlined RDBMS
to manage multiple data sets is an attractive path forward that will permit efficient
exploration within and between complex data sets. A number of groups are pursu-
ing this approach as a long-term strategy and some of these integrated tools, like
Syllego (http://www.rosettabio.com/products/syllego) are already available.

Carrying out quality control (QC) on large-scale data may occur at many points
in the execution of a GWA study. Here, we highlight a couple of these points with
technical considerations. Genotype calling algorithms need to be robust and effi-
cient, and many are undergoing rapid development and improvement as high-density
genotyping becomes more accessible [25–30]. While it is not plausible to inter-
rogate each SNP on a manual basis to ensure quality, identify single anomalies,
or systematic biases, researchers should regularly refer to current literature on this
subject and be prepared for QC investigations that may extend beyond the technol-
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ogy provider’s software and lead to novel genotype calling algorithms. CHIAMO
(www.stats.ox.ac.uk/∼ marchini/software/gwas/chiamo.html) is one such example
developed during the WTCCC study [31]. Large-scale GOGE population studies
permit researchers to identify inconsistencies based on an even broader panel of
information. Some examples include using large panels of marker data to infer pop-
ulation substructure [24] or even IBS mapping between individuals to identify more
closely related individuals available in PLINK [23]. Small panels of gene expression
and sex-linked markers can be used to confirm gender identity, ethnicity, or high-
light sample swapping. It is also important to plan for seamless comparison of data
generated across platforms. This may require instituting mechanisms that normalize
data to some common reference set of ideals before loading into a central repository.
For example, markers genotyped on different platforms may use different reference
strands to call the same SNP marker, and in some cases the base-pairing and ref-
erence alleles for the SNP may result in spurious inferences when results from
different data sets differ. While this example is well known, technical safeguards
should be put in place to permit one to look across large data/results repositories
and be certain that data is represented in a uniform fashion in all cases.

3 Analysis Issues with High-Dimensional Data

3.1 Power

Estimating power is a tricky proposition even for a single trait. Add to that the high
dimensionality realized when analyzing tens of thousands of traits, and the task of
estimating power becomes downright daunting. For studies involving the genetics
of gene expression there are two relevant dimensions to consider: (1) the genomics
dimension, where power is affected by the number and characteristics of the markers
chosen and (2) the trait dimension, where, conditional on the marker set, the power
is affected by the number of traits considered as well as the number of samples.
For discussion on marker set properties, see Chapter “Population-Based Association
Studies”.

Perhaps, the biggest challenge to estimating the power of a high-dimensional
study is identifying the appropriate significance threshold given the multiplicity of
markers and traits, accounting for the correlation structure among both the markers
and traits. When available, prior information can be used to help guess at an appro-
priate significance threshold for a given type I error rate. Use of HapMap data gives
an empirical distribution from which genotype data can be simulated. Simulating
from the real marker data maintains the correlation structure observed in human
populations. It is important to note that since these correlation structures differ from
population to population, the HapMap population most closely resembling those
in your study should be used in simulation. For example, in a study of primarily
Caucasian Americans, the Utah CEPH HapMap population would be most appro-
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priate. In cases where the population cannot be matched exactly, it is sufficient that
the distribution of allele frequencies and patterns of LD be appropriate.

Prior data is also useful in accounting for correlation among traits. The ideal
situation is when a dataset is available on the same platform, assay (gene set), tis-
sue, and ascertainment (e.g. disease), which might be the case if a pilot profiling
effort had been done. In the absence of a pilot dataset, sometimes an appropri-
ate publicly available dataset can be identified (http://www.ncbi.nlm.nih.gov/geo/
or http://www.ebi.ac.uk/arrayexpress/). Given a well-matched dataset, simulations
may be performed directly from the empirical distribution of the data, keeping
the correlation structure fixed. In other words, the sampling should not be done
independently across traits as this would increase the effective number of traits sim-
ulated. It is precisely the correlation among traits that reduces the effective number
of independent traits and reduces the stringency by which we have to adjust for
multiplicity.

To identify an appropriate significance level cutoff, data can be simulated under
the null distribution. At this point, some consideration of the amount of errors tol-
erated should be taken into consideration. For a large scale study, restricting to an
expected number of false positives of 0.05 over the entire study will be quite strin-
gent. Likewise, a pointwise expected number of false positives of 0.05 is too loose.
The typical approach to controlling error in large data sets is through the false dis-
covery rate (FDR). In other words, the FDR is the expected proportion of false
discoveries. This not only depends on the number of false discoveries but also on
the number and effect size of (and ultimately the power to detect) the true signals in
the dataset, on which speculation is difficult. For the purposes of calculating power,
setting a criteria based on the family-wise error rate (FWER) is a viable approach to
identifying a reasonable significance cutoff. The FWER represents the probability
of realizing more than a given number of false positives, m. While it is common
to consider the FWER when m is zero, given the dimensionality in the context
large-scale gene expression data, choosing a larger m is prudent.

Another strategy to identify power (and analyze data) in the context of gene
expression data might involve distinguishing between cis and trans regulation. In
genetics of gene expression studies it is of interest to distinguish between DNA
variation within a gene region that associates with the expression of that gene (cis
effects) and DNA variation significantly outside a gene region that associates with
the expression of that gene (trans effects) [32]. By restricting attention to the cis reg-
ulatory effects, the number of marker-trait pairs examined is significantly reduced,
which in turn reduces the stringency required for these discoveries. This will reduce
the required sample sizes to detect cis effects, but at the cost of reducing your ability
to discover trans effects.

In the absence of any appropriate prior data, a good strategy might be to power
the study for a GWA of a single disease phenotype. If a study is not minimally
designed to detect genes contributing to the primary clinical phenotype of interest,
its usefulness is questionable. Since in many cases, the effect sizes for gene expres-
sion traits are larger than those for complex disease traits, due to the fewer number
of contributing factors, these effects may be captured even after adjusting for multi-
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plicity. In all cases, a comprehensive power calculation package such as QUANTO
may be useful for computing power for various study designs. For more flexibility,
basic power functions are available in the R package Powerpkg.

3.2 Data Trends and Unaccounted for Heterogeneity

Many factors can affect gene expression levels and patterns including genetics, envi-
ronment, demography, and technical factors. Some technical factors like dye bias
and primer distance are well known and typically de-trended from the raw data by
the processing software [33]. However, other factors may exist that are not well
modeled or characterized, and many other nontechnical factors may be unknown or
unmeasured. When these unknown factors are confounded or associated at random
with the primary scientific hypothesis (genetic association), spurious associations
may be seen, resulting in a loss of power to detect real associations. One approach
to removing such trends from expression data is called surrogate variable analysis
(SVA) [34]. In this approach, linear transformations of sets gene expression traits
are used as surrogates for unobserved predictors. Typically, this approach is applied
conditional on a primary predictor of interest, however, in the case of genetic stud-
ies, there are potentially hundreds of thousands to millions of predictors of interest.
Therefore, this approach would have to be applied separately for each marker-gene
pair. In this situation, SVA could be applied in the absence of any one predictor
of interest, although it would then be important to perform the association analysis
both with and without the SVA adjustment, since the adjustment could potentially
wipe out real trends like hotspots or gene-set enrichments.

3.3 Outliers and Transformations

When employing parametric models, outliers can violate model assumptions, alter
power and type I error, and, especially in the case of markers with relatively rare
minor allele frequencies, lead to spurious associations. Therefore, it is important
to include a strategy to deal with outliers by either removing them, “normalizing”
them or employing models that minimize their influence. When tens of thousands
of traits are involved, removing outliers by hand is not feasible. In the case of gene
expression data, high-quality algorithms for the processing and QC of raw results
will minimize trends and outliers caused by known technical factors. However, occa-
sionally outliers remain. Standard statistical approaches to detecting outliers may be
applied to flag potentially affected traits. Failing that, ad hoc criteria like identifying
traits with gaps of greater than some arbitrary number (say 3) of standard devia-
tions between ordered values can be used to identify potentially problematic traits.
Other strategies for dealing with outliers or heavy tails include normalizing traits
using the inverse-normal distribution, or employing nonparametric models such as
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Kruskal–Wallace or robust regression methods that minimize the influence of heavy
tails.

4 Implementing a Standard First-Pass Analysis Pipeline

The utility of high-throughput technologies like gene expression microarrays is the
ability to simultaneously measure thousands of traits, which in turn allows us to look
at patterns created by the traits, instead of just the individual traits themselves. More
advanced approaches such as multivariate analyses and expression networks can
incorporate multiple traits simultaneously. These approaches can be powerful, but
they are computationally costly. Some of these will be treated later in this chapter.
Another approach to identifying patterns in data is to, instead of focusing on patterns
in the raw data, focus on patterns that arise in the results of the individual trait
analyses. While this does disregard some information, the approach does have the
advantage of simplicity and can yield valuable and meaningful information as a first
pass.

Previous chapters have provided thorough details regarding approaches and
computational resources for association analyses. The type of analysis and soft-
ware chosen should, of course, be appropriate to the data design. Given a high-
dimensional data set, computational tractability should be taken into consideration.
For regression-based analyses, statistical packages such as R, SAS, and Matlab are
convenient, user-friendly platforms; however, this convenience comes at a signifi-
cant computational cost over more specialized code written in a more fundamental
programming language like C or FORTRAN. The overhead realized from the use
of packages like R, SAS, and Matlab can be a factor of more than 15 times greater
than what can be achieved using C or FORTRAN. Access to powerful comput-
ing resources like large clusters of processors can reduce the criticalness of having
highly optimized code, but to assess significance via permutation methods, com-
putation will need to be efficient enough to be repeated. With the availability of
software packages such as PLINK which have been specifically designed for whole-
genome analysis, including functionality to deal with all aspects of analyses from
basic QC to advanced issues like stratification and haplotype analysis, there are
good-quality options for stand-alone analysis packages.

4.1 The Model – Common vs. Individual

When analyzing thousands of traits, it is not possible to choose an individual model
for each, at least not by hand. Some expression traits might have sex, age, or
environmental-factor specific patterns [35,36], while others may be relatively robust
across conditions. While a failure to model these factors can lead to spurious associ-
ations if there is correlation between the unmodeled covariate and any of the marker
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genotypes, it is more likely to reduce power to detect true associations [37]. Includ-
ing nonsignificant covariates, can add additional noise which in turn can reduce
power to detect true signals. This effect, however, is typically small compared to the
power lost by not including appropriate covariates. In some instances, sex-specific
QTLs have been identified [35, 36]. To appropriately model QTL that are mediated
by covariates, like sex, require including an interaction term in the genetic model.
This increases the degrees of freedom required for the test of association, and in this
case, falsely including the interaction term can reduce power [37].

Another approach to modeling covariates in a large number of traits is to employ
an automatic model selection procedure using AIC, BIC, or p-value criteria. Two
algorithms are available in R to perform stepwise regression: step and stepAIC in
the MASS package. One caveat to remember when using model selection is that
without the use of cross-validation, the resulting nominal p-values can be inaccurate
due to the potential to overfit data. In this case, permutation is critical to assess the
adjusted significance.

4.2 Estimating Heritability

Gene expression traits have been shown to be heritable [11, 12, 35], although the
degree to which expression is heritable may differ from tissue to tissue [35]. Given
a study design that incorporates phenotypic measurements on related individuals
like case-parent-trios, sib-pairs, and pedigree-based studies, heritabilities can be
estimated. For a more simple study, designs such as case-parent-trios and sib-pair
designs, in which pairs (or trios) of related individuals are all related in the same
way (e.g., all siblings or all parent-offspring), regression using any statistical pack-
age can be used. For example, the slope of the offspring’s trait value regressed on
the mean of the two parents’ trait value is an accepted estimate of heritability (in
the narrow sense). Alternately, when only one parent is available, twice the slope
of the parent–offspring regression should be used. For full sibs, the estimate is also
twice the slope of the regression of one sib on the other, or alternatively, 2Cov(sib
pairs)/Var(trait). However, it should be noted that due to additional correlation aris-
ing from shared environmental factors, this is typically an upwardly biased estimate
of heritability.

For more general pedigrees, where estimating heritability requires more involved
modeling than simple linear regression, genetics packages are available. Linkage
analysis software employing variance component methods (Almasy and Blangero,
1998) such as SOLAR can be used to estimate the polygenic component in the
absence of a major gene. In other words, the same methodology used for linkage
analysis can be used in the absence of marker data to estimate heritability. Many of
the same principles apply to the estimation of heritability as apply to other genetic
models. Covariates should be modeled when appropriate and available. Adjustments
should be made for multiplicity just as it is in association analysis. Since heritability
analysis is done in the absence of marker data (i.e., only once per trait), it is more
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computationally tractable and permutation (of trait values) can be used to assess
significance and adjust for multiplicity.

4.3 Ethnicity and Substructure

Even after adjustment for demographic and environmental variables, some genes
exhibit differential expression with respect to ethnicity. Failure to account for eth-
nicity can cause spurious associations for these traits at markers whose allele
frequencies differ between populations. As with any association study, strategies
to minimize the effects of substructure should be employed either through design
(case-parent-trio or use of an isolated population) or appropriate analysis. Tools
such as STRUCTURE [24] can identify population structure existing in a given
sample, and various methods for structured association and genomic control can be
used to adjust for it. These methods are discussed in detail in the chapter “Markov
Chain Monte Carlo Linkage Analysis Methods”. Principle component analysis
based methods are a technically easier alternative to MCMC methods with reduced
computation requirements and little cost in accuracy (Price et al. 2006).

4.4 Multiplicity

Genomewide association analysis of gene expression data requires testing tens of
thousands of genes at hundreds of thousands to millions of markers. Failure to
adjust for multiplicity can result in billions of false positives. On the other hand,
simple Bonferroni p-value correction is too stringent to retain any power to detect
true associations. For high-dimensional data, false discovery rate (FDR) is a less
conservative approach to controlling false positives [38]. It allows some expected
number of false positives, as long as that number is low compared to the number
of true positives. For further discussion of general issues surrounding FDR analy-
sis see the chapter “Multiple Comparisons and Multiple Testing Issues”, though we
will discuss strategies specific to the analysis of expression data.

The choice of FDR method depends on whether storage or computation is more
limiting. The asymptotic approach implemented in the qvalue package [39] of R
requires that the p-values from all tests be saved, which may not be possible with-
out significant storage space and significant modification to the existing package to
accommodate large data sets. For example, in a recent study we tested greater than
one million SNPs for association to roughly 40,000 gene expression traits, resulting
in 40 billion tests. In this instance, even if only the p-values, SNP ids, and trait ids
for each test were saved, nearly one terabyte of storage would be required, and even
with such storage capacity the scale of data would be beyond R’s current capability
to handle. A final drawback to the asymptotic approach is that, because of depar-
tures from model assumptions, often the null distribution is not actually uniform as
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the asymptotic approach assumes. Therefore, while permutation analysis carried out
to evaluate the FDR requires more computation, it saves on storage by only storing
results for tests significant at a more liberal significance level.

Because some of the known mediators of gene expression, like transcription fac-
tor binding sites, enhancers, and silencers, are known to reside proximal to the
coding gene, we might hypothesize that eQTL are more likely to be near the gene
than elsewhere in the genome [14]. Whether or not this is true on an absolute scale,
when considering the relative size of the proximal region we might be more inclined
to believe a marginal result near the gene than one of the same size residing in a ran-
dom location in the genome. For this reason, it is reasonable to apply a more liberal
threshold to identify eQTL near genes (putative cis-acting eQTL) than those that are
far away or unlinked with the gene itself (trans-acting eQTL). However, the degree
to which the threshold is loosened should be data-driven. In other words, the FDR
criteria should remain constant between the proximal and distal sets. If, in fact, the
density of eQTL is higher near the gene, the p-value corresponding to the fixed FDR
will be less stringent.

The procedure for multiplicity adjustment based on this approach is as follows:
(1) carry out the association analysis on all traits over all markers storing only results
at a liberal significance threshold (e.g., 0.1); (2) perform a reasonable number of
permutations by permuting the individual ids that link the individual genotype data
to the individual gene expression data such that the marker–marker and trait–trait
correlation structures are preserved, again storing only results that meet a liberal
significance threshold; (3) for both the observed and permuted data results, identify
the proximal and distal trait–marker pairs; (4) separately in the proximal and distal
sets, identify the p-value that corresponds to a set ratio of false positives to total
positives, where the false positives are estimated from the permuted set, adjusting
for the number of permutations. Unlike studies of single traits where many permu-
tations must be carried out to get a handle on the FDR, in the context of tens of
thousands of traits the number of p-values computed under the null hypothesis of no
association is extreme (in the earlier example greater than one billion p-values are
computed), so that even for a small number of permutations the p-value distribution
will be very stable. Therefore, as few as five permutations may result in stable FDR
estimates as we have shown earlier [40].

5 High-Performance Computing

High-performance computing (HPC) resources have long been used in a number of
different research and development settings such as aerospace design, climatology,
transportation systems, commerce, particle physics, and protein structure determi-
nation. In biological research, the need for large-scale HPC resources accelerated
with studies centered on assembling and deciphering various genomes over the past
15 years. Human genetics, however, is now at a similar point where the ability to
generate terabytes of data in single experiments is now possible. There are a multi-
tude of open-source, public, and commercial software available for genetic analysis



318 C. Molony et al.

with one or a handful of traits such as R (http://R-project.org), SAS/GeneticsTM,
HelixTree R©, and PLINK [23]. Each of these programs permits varying degrees of
customization and optimization in an HPC setting. For studies on GOGE, the num-
ber of single point tests can easily exceed 40 billion [40], thus requiring considerable
forethought on the execution strategy for even a single pass of association testing,
not to mention the execution of genome-wide empirical testing to determine sig-
nificance which may need to be derived for each trait separately. To increase the
computational efficiency of these study types, access to an HPC cluster is ideal.

A cluster is simply two or more computers, usually called nodes, that work
together to perform a particular task or set of tasks. In general, there are four major
categories of clusters:

• Storage clusters: Designed with a common image of the file system across mul-
tiple servers. This allows the servers to read/write to a single shared file system
and eliminates redundant files and applications.

• High availability clusters: Designed to provide continuous availability of ser-
vice, even in the case of a node failing mid-operation.

• Load balancing clusters: Designed to match the number of nodes according to
cluster job load.

• High-performance cluster: Designed to permit jobs to work in parallel over
some number of the nodes, usually to perform concurrent calculations. This
enhancement of an analytical application is ideal for large-scale analyses, espe-
cially those approaches requiring exhaustive search such as in the analysis of
epistatic interactions.

While a single cluster may be designed with one of these categories as its primary
focus, most clusters are now designed to reflect some combination of these functions
in greater or lesser degrees.

The key component of a cluster is a set of multiple standalone computers,
generally UNIX boxes, PCs, or servers. However, additional requirements include
cluster-specific operating systems, high-performance interconnects and lots of cable,
middleware, parallel programming environments, and applications suited to a partic-
ular cluster instance. While there are a number of resources that can provide much
greater detail with respect to the appropriate design and components of a cluster
[41] and the guiding principles behind some of the different flavors of cluster design
(http://www.beowulf.org,http://now.cs.berkeley.edu/,http://hpvm.sourceforge.net/),
it is worth making mention here of a least one type of software that when incor-
porated into the analytical techniques used in large-scale genetic mapping efforts
can provide tremendous improvements in the performance for both computational
calculation management and speed.

Along with the emergence of the cluster as a viable parallel computing platform,
with many HPC clusters now competing directly in the supercomputer space, leaps
in efficiencies and performance have been enabled by the simultaneous emergence
of message passing libraries. These libraries, such as Message Passing Interface
(MPI) [42, 43] and Parallel Virtual Machine (PVM) [44], enable the mapping of
parallel algorithms onto large clusters in a portable way. It is generally accepted
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that these two libraries provide different solutions to the same problem (mapping
of parallel algorithms), however, much investigation and discussion has occurred
in the computational sciences field as to what each of these libraries actually do
and how [45]. Understanding the subtleties that have been uncovered may influ-
ence the choice of one software over the other. In the end, these libraries permit a
programmer to divide a task, usually a large number of computations or a very com-
plex computation, among a group of networked computers, and then assemble the
results of this processing into a coherent set of results. A common misconception
is that arbitrary software will run faster on a cluster. Standard analytical programs
speed-up will generally scale linearly with batching of jobs and the number of nodes
utilized, unless the analytical software is modified to take advantage of the cluster.
Specifically, by making direct use of MPI or PVM libraries, modified software can
perform multiple independent parallel operations (including the implementation of
computationally intensive statistical methodologies) that can be distributed among
the available processors, for super-linear gains in speed.

Leveraging HPC resources and code optimization has been explored for QTL
mapping in mice, recognizing increases in efficiencies and speed for advanced anal-
yses [46, 47]. Parallelized approaches have allowed for the simultaneous search for
multiple QTL in mouse studies [46], while in human GWA studies involving the
genetics of gene expression studies, distributing calculations across multiple pro-
cessors and improving the way in which calculations and data are distributed over
multiple processors, have been employed to run large-scale association testing as
well as obtain empirical significance thresholds via permutation [40]. Adaptation
of available technologies to a framework for large-scale GWAS is necessary, in
particular for genetics of gene expression studies, where reconstruction of compre-
hensive genetic regulatory networks must incorporate the identification of genetic
interactions.

6 Further Recommendations for Efficiency Gains
in GOGE Studies

Recent large-scale GWAS initiatives have made gains by employing economies of
scale in instituting centralized SNP genotyping, data coordination and control cen-
ters (http://www.hapmap.org, http://www.wtccc.org.uk/) [48], providing data sets
that have undergone common quality control checks and standardized annotation to
multiple researchers for individual analysis [31, 49]. Additionally, one of the most
recent operational advances is the use of a single large common control population
for multiple case–control GWAS studies [31]. The WTCCC effort demonstrates that
this is a viable option analytically, and leveraging a common resource for controls,
such as Illumina Inc.’s iControlDB (http://www.illumina.com/pages.ilmn?ID = 231)
or Affymetrix Inc.’s Control Cohort Initiative (http:///www.affymetrix.com) is cer-
tainly an attractive option for financial reasons.

While it is beyond the scope of this chapter to detail a complete roadmap for
executing a GWAS, we stress the need to carry out the meticulous capture of the
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complete data flow, quality checks, and analyses in a tracked, if not automated,
fashion. Even on an individual GWA study scale, there are numerous benefits to
instituting the approaches discussed herein. Active capture of the complete process
will not only aid in the accurate interpretation of the individual study results but will
also permit the interpretation of results in a more comprehensive fashion through the
integration multiple data sets and results.

7 Constructing Gene Networks to Enhance GWAS
and GOGE Results

As discussed, generating a GOGE data set and performing a first-pass analysis on
this scale of data is a major undertaking. The identification of or other DNA markers
that associate with the expression of one or more genes is a primary goal of a GOGE
study. However, if analysis of GOGE data stopped at the identification of SNPs
that associate with expression, the true value of these data would not be realized.
Genes do not carry out their functions in isolation of other genes, but instead oper-
ate in complex networks that together, in a context-specific way, define the complex
behavior that emerges from biological systems. Therefore, understanding gene net-
works in a diversity of contexts will lead to an increased understanding of complex
system behavior, including disease.

The reductionist approach to elucidating the complexity of biological systems
has motivated straightforward genetic association approaches, where the identifi-
cation of single genes associated with disease has served as the primary means of
getting a foot into pathways for complex phenotypes like disease. However, even
in cases where genes are involved in pathways that are well known, it is unclear
whether the gene causes disease via the known pathway or whether the gene is
involved in other pathways or more complex networks that lead to disease. One
example of this is TGFBR2, a recently identified and validated obesity suscepti-
bility gene [13]. While TGFBR2 plays a central role in the well studied TGF-β
signaling pathway [50], TGFBR2 and other genes in this signaling pathway are cor-
related with hundreds of other genes [13,16], so that it is possible that perturbations
in these other genes or in TGFBR2 itself may drive diseases like obesity by influ-
encing other parts of the network beyond the TGF-β signaling pathway. Therefore,
considering single genes in the context of a whole gene network may provide the
necessary context within which to interpret the disease role a given gene may play.

Constructing gene networks can provide a convenient framework for exploring
the context within which single genes operate. A network is simply a graphical
model comprised of nodes and edges. For gene networks associated with biological
systems, the nodes in the network typically represent genes, gene products, or other
important molecular entities like metabolites, and edges (links) between any two
nodes indicate a relationship between the two corresponding genes. For example, an
edge between two genes may indicate that the corresponding expression traits are
correlated in a given population of interest [51–53], that the corresponding proteins
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interact [54], or that changes in the activity of one gene lead to changes in the activity
of the other gene [13]. Interaction or association networks have recently gained more
wide-spread use in the biological community, where networks are formed by con-
sidering only pair-wise relationships between genes, including protein interaction
relationships [19], co-expression relationships [55, 56], as well as other straight-
forward measures that may indicate association between two genes. In all cases,
these networks have been demonstrated to exhibit a scale-free and hierarchical con-
nectivity structures [17, 56, 57], providing higher-level insights into how biological
networks may be ordered. The scale-free property exhibited by most biological net-
works implies that, like the Internet, most genes in a biological system are strongly
connected to a small number of genes, while a smaller set of genes (often referred to
as hub nodes) are connected to many other genes. The hierarchical property implies
that biological networks are highly modular, with genes clustering into groups that
are highly interconnected with each other, but not as highly connected with genes in
other groups.

7.1 Constructing Weighted and Unweighted
Co-Expression Networks

In constructing co-expression networks based on gene–gene interaction strengths,
there are two basic approaches: (1) an unweighted network reconstruction approach
that involves setting hard thresholds on the significance of the interactions between
genes and (2) a weighted network reconstruction approach that avoids hard thresh-
olding. For unweighted gene co-expression networks, gene–gene relationships are
encoded in a binary form. That is, two genes in the network are connected by an
edge if the correlation coefficient or the significance level of the correlation mea-
sure meets some predetermined threshold [57–61]. The drawback of the unweighted
approach is that the determination of the hard threshold is somewhat arbitrary and
the resulting networks may be sensitive to the threshold selected. More importantly,
the binary encoding actually destroys information regarding the interaction strength
between two genes, resulting in a loss of power to establish higher-order relation-
ships among the genes in the network. In contrast, the weighted gene co-expression
network analysis assigns a connection weight to all pairs of genes by employing
soft-thresholding functions whose parameters are estimated based on a biologically
motivated scale-free topology criterion [13]. Weighted gene co-expression networks
preserve the continuous nature of gene–gene interaction at the transcriptional level
and are robust to parameter selection. However, constructing these networks is
more computationally intensive as all pairs of nodes are simultaneously consid-
ered, so that as the number of nodes grows, the number of pairs to consider grows
quadratically.
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7.2 Using Genetics in Constructing Co-Expression Networks

Multiple traits driven by common QTL is a central idea that can be leveraged to
construct networks. The construction of co-expression networks can be aided by
the introduction of genetic data, which at the very least can serve as a filter to help
reduce artifactual correlations between expression traits. Significant artifactual cor-
relations can arise in larger-scale gene expression studies because of correlated noise
structures between the array-based experiments in such studies. Therefore, one of
the more straightforward ways to leverage the eQTL data in this setting is to sim-
ply filter out gene–gene correlations in which the expression traits are not at least
partially explained by common genetic effects [57]. For example, we can connect
two genes with an edge in an unweighted co-expression network if (1) the p-value
for the Pearson correlation coefficient between the two genes is less than some pre-
specified threshold and (2) the two genes have at least one common eQTL. This can
be taken a step further by formally assessing whether two expression traits driven
by a common QTL are related in a causal or reactive fashion, filtering out correla-
tions driven by expression traits that are independently driven by common or closely
linked QTL [13, 62].

One intuitive way to establish whether two genes share at least one eQTL, is
to carry out single trait eQTL mapping for each expression trait and then consider
eQTL for each trait overlapping if the corresponding LOD for the eQTLs are above
some threshold and if the eQTL are in close proximity to one another. The signifi-
cance of the statistic corresponding to the strength of association between two genes
in the co-expression networks is then chosen such that the resulting network exhibits
the scale-free property [56, 57, 63] and the false discovery rate for the gene–gene
pairs represented in the network is constrained. Beyond this simple, albeit intuitively
appealing, eQTL overlap method, we can formally test whether two overlapping
eQTL represent a single eQTL or closely linked eQTL by employing a pleiotropy
effects test (PET), such as that originally described by Jiang and Zeng [64, 65]. The
formation of gene clusters by simultaneously considering gene–gene and marker–
gene correlations also promises to provide a more comprehensive characterization
of shared genetic effects [66].

7.3 Identifying Modules of Highly Interconnected Genes
in Co-Expression Networks

Given the scale-free and hierarchical nature of co-expression networks [17, 56, 57],
one of the key problems is to identify the network modules, or functional units, in
the network that represent those hub nodes (nodes that are significantly correlated
with many other nodes) that are highly interconnected with one another, but that
are not as highly connected with other hub nodes. Figure 1 illustrates a topologi-
cal connectivity map for the most highly connected genes in the liver tissue of a
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previously described human liver cohort [40]. After hierarchically clustering both
dimensions of this plot, the network is seen to break out into clearly identifiable
modules. Gene–gene co-expression networks are highly connected, and the cluster-
ing results shown in Fig. 1 illustrate there are gene modules arranged hierarchically
within these networks.

Ravasz et al. [67] used manually selected height cutoff to separate tree branches
after hierarchical clustering, in contrast to Lee et al. [68] who formed maximally
coherent gene modules with respect to GO functional categories. Another strat-
egy is to employ a measure similar to that used by Lee et al. [68], but without
the dependence on the GO functional annotations, given it is of interest to deter-
mine independently whether co-expression modules are enriched for GO functional
annotations [57]. An emerging trend for module identification is to uncover alterna-
tive network structures such as cores and cliques and high-level organization forms
like overlapping modules (communities) [69, 70]. The modules identified in this

Fig. 1 A co-expression network and corresponding functional modules constructed from a previ-
ously described human liver tissue cohort (HLC) [40]. (a) The hierarchically clustered topological
overlap matrix along with the identified functional modules in the gene co-expression network
comprised of the top 25% (10,025) most differentially expressed genes in the HLC. Genes in the
rows and columns are sorted by an agglomerative hierarchical clustering algorithm. The different
shades of color signify the strength of the connections between the nodes (from white signifying
not significantly correlated to red signifying highly significantly correlated). The hierarchical clus-
tering and the topological overlap matrix strongly indicate highly interconnected subsets of genes
(modules). Modules identified are colored along both column and row. (b) The corresponding
graph of the HLC co-expression network. The colors of the nodes represent their module assign-
ments as described in (a). The functional categories denoted for some of the modules represent the
most enriched GO Biological Process category for the module
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way are informative for identifying the functional components of the network that
are associated with disease [57]. It has been demonstrated that the types of mod-
ules depicted in Fig. 1 are enriched for known biological pathways, for genes that
associate with disease traits, and for genes that are linked to common genetic loci
[56, 57]. In this way, one can identify those key groups of genes that are perturbed
by genetic loci that lead to disease, and that therefore define the intermediate steps
that actually define disease states.

8 Looking Toward the Future: Probabilistic Causal Networks

The co-expression networks are a useful construct for understanding the overall
connectivity structure of networks that drive complex phenotypes like disease. How-
ever, they are still interaction based and so do not provide the detailed resolution
needed to understand how any particular gene can induce changes in other genes,
and, more generally, get at models that actually predict complex system behav-
ior. The present day challenge is to study the biological functions driven by the
different regions of the genome, determining whether such regions encode for a
protein or noncoding RNA, the functional role played by a given protein or RNA,
the biological processes related to this function, and so on. There are continu-
ally growing numbers of systematically generated data, including gene expression
(transcriptomics); protein–protein interaction assessed by yeast two-hybrid; pro-
tein identification, quantification and post-translation modification identification by
mass-spectrometry (proteomics), and more recently metabolite levels measured by
NMR or mass-spectrometry (metabolomics). To assess the function of individual
genes, compendiums of yeast gene knockout [71] and mouse gene knockout (e.g.,
DeltaBase) have been constructed, in addition to global synthetic fitness or lethality
(epistatic interaction) screens [72]. Further, there are efforts to systematically collect
and manually curate knowledge and to represent such data into easily accessi-
ble databases, such as KEGG [73], BioCarta (http://www.biocarta.com), MetaCore
(http://www.genego.com), and Ingenuity (http://www.ingenuity.com). With all of
these efforts, integrating these types of high-throughput data is critical if we hope to
construct models that are predictive of complex biological systems. Ideker et al. [74]
integrated genomics, gene expression, and proteomics data to study small networks,
refining such networks in a trial-and-error manner using experimental approaches.
Systematically integrating different types of data into probabilistic networks using
Bayesian networks has been proposed and applied for the purpose of predicting
protein–protein interactions [75] and protein function [68]. However, these Bayesian
networks are still based on association between nodes in the network as opposed to
causal relationships. From these types of networks, we cannot infer whether a spe-
cific perturbation will affect a complex disease trait or not. To make such predictions
we need networks capable of representing causal relationships. Probabilistic causal
networks are one way to model such relationships, where causality in this context
reflects a probabilistic belief that one node in the network affects the behavior of
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another. We anticipate these types of networks becoming increasingly important in
the human genetics space to gain a mechanistic understanding of how a given DNA
perturbation induces changes in one or more genes that go on to affect networks
that cause disease. The integration of genotypic and expression and other data have
recently been shown, in a Bayesian network framework [76], to enhance the overall
accuracy of predictive networks [40, 51–53]. We have also recently demonstrated
how this class of network can be used to inform associations identified in GWA
studies [40].

9 Summary

The significant challenge we face in the post-genome era is deciphering the bio-
logical function of individual genes, pathways, and networks that drive complex
phenotypes like disease. The availability of low-cost, high-throughput technologies
for genotyping hundreds of thousands of DNA markers has led to a number of suc-
cesses in identifying associations between these markers and complex traits like
age-related macular degeneration [1–3], diabetes [4, 5], and obesity [6], validating
the GWAS approach as the best human genetics approach for identifying genetic
loci that associate with disease. However, while this approach has now delivered
and will continue to deliver loci for almost all common human disease, GWA stud-
ies on their own cannot typically elucidate the functional role the underlying gene
or genes play in disease, and, in fact, cannot usually lead to a definitive identifica-
tion of the susceptibility gene or genes, given a lack of experimental support for the
functional consequences of a given DNA variation on gene function.

The genetics of gene expression studies discussed herein provides an alterna-
tive to the forward genetics approach to dissecting complex traits like disease. The
information that defines how variations in DNA lead to variations in complex traits
of interest flows through molecular networks that actually define the complex traits.
Therefore, characterizing the molecular networks that underlie complex traits like
disease can provide a more comprehensive view of disease, and this in turn can lead
to the direct identification of key genes underlying disease processes, as well as pro-
viding a rich biological context within which to infer the functional roles played by
these key genes. Because complex biological processes that lead to disease are often
system and context dependent, leveraging DNA variations as a systematic source
of perturbations on molecular networks and clinical traits facilitates studying com-
plex biological processes at the systems level, in addition to studying gene function
at the level of individual pathways [15, 16]. However, genetics of gene expression
studies can involve levels of data management and analysis that go beyond the cur-
rent capabilities of most human genetics groups. We have discussed a number of
issues related to effectively carrying out this type of study and leveraging the results
to inform more standard human genetic association studies, including data manage-
ment, data QC, the need for high-performance computing, analysis issues related
to simple associations between SNPs and expression traits, and the construction of
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gene networks to identify whole networks that associate with disease. These rep-
resent the beginning steps that can be taken to leverage GOGE data, and certainly
much of the future of human genetic studies will involve more integrative analyses
that seek to inform how variations in DNA impact networks that go on to cause
disease.

With large-scale molecular profiling, genotypic and clinical data collected from
large-scale human and experimental populations, focusing on how a single protein
or RNA impacts disease will ultimately give way to how a network of gene interac-
tions impacts disease. The integration of genetic, molecular profiling, and clinical
data has the potential to paint a more detailed picture of the particular network states
that drive disease, and this in turn has the potential to lead to more progressive treat-
ments of disease that may ultimately involve targeting of whole networks as opposed
to current therapeutic strategies focused on targeting one or two genes [77].

Web Resources

Here, we list a number of software resources we have found useful in the analysis
of large-scale GWAS and GOGE data. This list is not intended to be exhaustive, but
instead offers a handful of starting points to help guide the interested reader. There
are many other tools in each of the areas mentioned below that are not listed but that
are extremely useful depending on the specific study and/or problem. Therefore, we
encourage the reader to use this list only as a jumping off point.

Resources for carrying out genetic analyses (described in the text):

• PLINK: http://pngu.mgh.harvard.edu/∼purcell/plink/
• QUANTO: http://hydra.usc.edu/gxe
• SOLAR: http://www.sfbr.org/solar/index.html
• STRUCTURE: http://pritch.bsd.uchicago.edu/software.html
• SVA package for R: http://www.genomine.org/sva/

Resources for accessing raw data and results from GWAS and GOGE studies:

• WTCCC: http://www.wtccc.org.uk
• GAIN: http://www.fnih.org/GAIN2/Overview description.shtmldb
• GAP: http://www.ncbi.nlm.nih.gov/sites/entrez?db = gap
• Illumina: http://www.illumina.com/pages.ilmn?ID = 231Can
• webQTL: http://www.genenetwork.org/

Resources for gene expression data:

• The Gene Expression Omnibus (GEO) houses many of the gene expression
data sets from published studies and provides tools to facilitate mining of these
data: http://www.ncbi.nlm.nih.gov/geo/

• ArrayExpress is similar to GEO in serving as a warehouse for gene expression
and associated data: http://www.ebi.ac.uk/microarray-as/aer/
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• SAGEmap provides tools to carry out differential gene expression analyses on
SAGE (Serial Analysis of Gene Expression) data: http://www.ncbi.nlm.nih.gov/
sage/

• The Cancer Genome Anatomy Project (CGAP) provides access to extensive
gene expression data in normal, precancerous, and malignant cells from a number
of tissues: http://www.ncbi.nlm.nih.gov/ncicgap/

Resources for annotating gene sets:

• Kyoto Encyclopedia of Genes and Genomes (KEGG) provides extensive path-
way and gene function information: http://www.genome.jp/kegg/

• BioCart: http://www.biocarta.com
• MetaCore: http://www.genego.com
• Ingenuity: http://www.ingenuity.com
• The Gene Ontology (GO) provides a controlled vocabulary for describing genes

and the processes in which they are involved: http://www.geneontology.org/
• The Database for Annotation, Visualization and Integrated Discovery

(DAVID) provides a number of tools for functionally annotating and classifying
experimentally derived gene sets: http://david.abcc.ncifcrf.gov/

• Cytoscape is a tool to visualize molecular interaction data and to integrate
interaction data with molecular profiling data: http://www.cytoscape.org/

BioCarta (http://www.biocarta.com),MetaCore (http://www.genego.com), and Inge-
nuity (http://www.ingenuity.com).
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