
The development of the shapes of living organisms and their parts is a field of
science in which there are no generally accepted theoretical principles. What
form these principles are likely to take, when they emerge, is a subject in
which there is a wide gulf of disagreement between physical scientists and
experimental biologists.

This book contains both an extensive philosophical commentary on this
dichotomy in views and an exposition of the type of theory most favoured by
physical scientists. In this theory, living form is a manifestation of the dynam-
ics of chemical change and physical transport or other physics of spatial
communication. The reaction-diffusion theory, as initiated by Turing in 1952
and since elaborated by Prigogine and by Gierer and Meinhardt and others, is
discussed in detail at a level that requires a good knowledge of a first course in
calculus, but no more than that. In some respects this book takes up the theme
that "the things which we see in the cell are less important than the actions
which we recognize in the cell," which was a major theme of D'Arcy W.
Thompson's classic 1917 work On Growth and Form. The rapid growth of the
field of molecular biology has tended to overshadow the increase in our
understanding of the nature of these kinetic processes. This book seeks to
reawaken interest in dynamics in the hope that a better balance between the
importance of things and the importance of actions may gradually emerge in
the field of biology in the twenty-first century.
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Preface

Once upon a time I was a physical chemist working chiefly on the reactivity of
sodium chloride with rather simple gases, and never on a complex organism,
not even anything with a carbon atom in it. This book is the product of a
change of field which started twenty years ago. This Preface must serve both
to acknowledge those people who were most important in bringing about that
change and to argue the case for the possible utility of a classical physical
chemist in biological theory.

In 1971 my colleague Dr. R. E. Pincock gave a seminar on an instance of
spontaneous optical resolution which he had discovered: Supercooled liquid
l,l'-binaphthyl in a sealed vial, when induced to crystallize suddenly, usually
gave an asymmetric product. In some experiments that product contained
more left-handed crystals than right-handed ones; in others, the reverse. He
claimed that this was closer to truly spontaneous resolution than was Pasteur's
crystallization of sodium ammonium tartrate, in which asymmetry was finally
achieved only through the intervention of a biological organism, namely,
Pasteur himself sorting the crystals into two piles.

Pincock's report presented two problems: first, the philosophical meaning
of "spontaneity." How can asymmetry arise with no apparent antecedent,
seeming to defy the precept that asymmetry begets asymmetry? Second, what
kind of mechanism can one envisage for this phenomenon? Given this
provocation, I published (Harrison, 1973) a speculative kinetic mechanism for
the origin of chiral asymmetry in biochemical evolution. This invoked the
cooperation of two molecules in autocatalytic formation of the same mo-
lecular species, and I proposed a territorial separation of systems of opposite
chirality as an intermediate stage.

In 1973,1 acted as chairman for the final oral examination of T. C. Lacalli
for his Ph.D. degree. His thesis, "Morphogenesis in Micrasterias" (Lacalli,
1973), and more particularly his verbal presentation of it, led me to realize
that the kind of kinetic equations I had been using in relation to optical
resolution might be relevant to this much more extensive biological field. This
led me to acquaint myself with the reaction-diffusion theory of pattern forma-
tion, as originated by A. M. Turing in 1952. From a pedagogic viewpoint, it
led me also to recognize that the basic concept of kinetic generation of pattern
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can be more clearly understood in relation to optical resolution than in any
other way. Therefore, I invite the beginner in kinetic theory to take my
discussions of optical resolution not merely as a matter of personal biography,
but as one of the best paths for anyone wishing to approach these concepts. It
is the essence of symmetry-breaking.

My debt is enormous to both Pincock and Lacalli. If, on an afternoon in
1971, I had decided that I had something to do other than attend Pincock's
seminar, or if in the summer of 1973 I had told the Faculty of Graduate
Studies of the University of British Columbia that I had something to do other
than to take the chair at an oral in a field of science quite unknown to me, then
it is almost certain that I would never have worked in this field, nor written
this book. Lacalli and I went on to develop a close collaboration which
continues today.

Each of the three great divisions of physical chemistry - equilibrium,
kinetics, and structure - is founded on a rock which was cemented firmly in
place before I was born (1929): the universally accepted thermodynamics of
Kelvin, Clausius, and Gibbs; the kinetics and statistics of Arrhenius and
Boltzmann; and the quantum mechanics of Schrodinger and Heisenberg. In
developmental biology I found something different, and immensely exciting:
a field with a Great Unknown, and no firmly established conceptual basis. To
pursue it is like trying to account for the rainbow in the fourteenth century, to
do celestial mechanics before Newton, or to pursue quantum theory in the
1890s. There are many ideas around. Some of them are elaborately devel-
oped, and some will eventually be recognized as the correct concepts, but
none has reached that status yet.

More specifically, the unresolved strategic question is whether the forma-
tion of pattern can be adequately described in the language of molecular
biology and biochemistry (both of which deal with a spatial scale much tinier
than that of pattern) or whether it requires description, in mathematical lan-
guage, of the dynamics of interactions on a much larger scale. This book is
concerned with the latter aspect. To me, it is a "scientific belief (Polanyi,
1946, 1949) or "preconception" (Crombie, 1959) (see also the epigraph to
Part III herein) or "paradigm" (Kuhn, 1962) that pattern formation on the
scale of the organism cannot be accounted for without consideration of long-
range dynamics. The kinetic preconception is that living pattern is generated
by movement away from thermodynamic equilibrium, and therefore is expli-
cable only in terms of rates of processes. It has been my experience that most
physical scientists, given the problem of living self-organization, and with no
prior knowledge of its theories, will instantly adopt the kinetic preconception,
because they see nothing else in all our philosophies that seems suitable to this
task. It is difficult to convey to them that most biologists are not envisaging
explanations along kinetic lines: "But what else could do it?"

My primary purpose in writing this book is thus of an evangelical sort: to
encourage adoption of the kinetic preconception, as a very promising working
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hypothesis on the strategic scale, among experimental developmental biolo-
gists. Why should I bother? Often a paradigm is, for a fairly long time, the
preserve of a particular group among scientists, and this one has a good circle
of adherents in the physical sciences. I was, however, brought up to accept as
a credo that statement of the scientific method in which continuous interaction
between theory and experiment is of the essence. That process of science
cannot occur if the theoreticians and experimentalists are living in different
worlds. The theories then become parts of pure mathematics, unrelated to the
science of the physical universe. The experimental data become the dead body
of science. A list of facts is as devoid of the intellectual life which constitutes
science as a pile of assorted molecules, all in the right places, may be devoid
of the life which makes a human being. The essence of both biological life
and true science lies in processes and interactions.

This metaphor is not intended to deny the validity of the microstructural
preconception nor the validity of the impressive living body of modern mo-
lecular biology which has grown out of it. The proper evolution of biological
science needs more than one kind of body, with more than one conceptual
basis. Essentially, the microstructural preconception or paradigm is that deter-
ministic behaviour can stem from a single DNA molecule and extend in
continuous deterministic sequence to larger scales of organization. The kinet-
ic (and also thermodynamic) paradigm is that the single molecule behaves
randomly (stochastically) and that deterministic behaviour on the macroscopic
scale arises only as a statistical property of very many molecules. Work within
this paradigm almost always requires the use of mathematical language in
discussing and interpreting experimental results.

Both kinds of behaviour, deterministic-to-deterministic and stochastic-to-
deterministic, as one goes from the molecular to the macroscopic scale, are
well known from their widespread examples in nature. Surely both must be
essential components of the complex sequences of events in biological devel-
opment. But for the latter type, it is the physical scientist, rather than the
biologist or biochemist, who is generally more accustomed to the type of
discussion needed. In particular, the experimental physical chemist is ac-
customed to using fairly extensive mathematics in the discussion sections of
most experimental publications. To my mind, advances in some large areas of
developmental biology will be accelerated when many more experimentalists
are using this conventional style of the physical chemist. That is why I
presume to enter the field. I am not a theoretician - my theoretician friends
keep reminding me of it.

Therefore, although I began moving into this field of pattern formation by
doing only theoretical work, I was soon led into doing biological experiments
myself. The advantages of using very large single-celled algae as systems for
study were first brought to my attention by Lacalli's thesis on Micrasterias.
This organism had been very carefully chosen in discussions between Lacalli
and his supervisor, Dr. A. Acton, and I am grateful to both of them for
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orienting me toward the Chlorophyta. But in the event, my own experimental
work has been on Acetabularia. This organism was in culture in the 1970s in
the laboratory of Dr. B. R. Green, a plant biochemist whose laboratory in the
Botany Department was just across the road from mine. For some years we
collaborated on culture maintenance, and my first observations on the mor-
phogenesis of whorls were made in her laboratory. Over an extended period
the entire operation was gradually transferred to my own laboratory. I am
greatly indebted to Dr. Green for enabling me to become, step by step, at least
some sort of approximation to an experimental biologist.

An unrelated scientist with the same remarkably appropriate surname for a
botanist, Dr. P. B. Green of Stanford University, has for ten years given me
very substantial encouragement in two enterprises: pursuing experiment and
theory together, and trying to express the theory in language suitable for the
experimental biologist. He is entirely to blame for the existence of this book,
which was his suggestion.

What manner of book is this, and what is its intended readership? When
people ask me whether I am writing a textbook or a monograph, I am unsure
how to answer. The intended readership can be found chiefly among research
workers in developmental biology. But the purpose of the book, as discussed
earlier, is to lend my weight to that of other practitioners of kinetic theory
(reaction-diffusion, or mechanochemical, or other types) in seeking to bring
about a "paradigm shift." The expositions of the mathematical material
needed for those ready to accept the paradigm and go on from there will
necessarily have something of the flavour of a textbook. But I have not sought
to repeat the mathematical expositions of the books by H. Meinhardt (1982),
L. Edelstein-Keshet (1988), and J. D. Murray (1989). A large part of the
content of this book is essentially philosophical commentary on the various
approaches to explanation of large-scale phenomena and their relationships to
molecular phenomena.

Such considerations lie not within the realm of mathematics, but rather that
of physical chemistry. This discipline has for more than a century been con-
cerned primarily with the world immediately around us, a world that is at
ordinary temperatures and therefore consists of large numbers of molecules
organized into solid, liquid, and gaseous phases. This world includes all
living material, and that presents a challenge to the phase approximation
because of its content of a multitude of structures intermediate in size between
the molecule and the macroscopic phase. Certainly the physicochemical con-
cepts appropriate to this material are still at an embryonic stage, and their full
development should give rise to one of the exciting fields of science in the
twenty-first century.

There should be a place in this development for physical chemists and
physicists, and people in those disciplines are also among my intended read-
ership. Many are indeed interested in the theoretical concepts and already
accept the kinetic preconception. But few are actually pursuing the interaction
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between theory and the experimental phenomena of biological development.
The reason for this has to do with a different paradigm. For three hundred
years, since Robert Boyle defined elements as "the ultimate limits of chem-
ical analysis," a principal driving force in chemistry has been the simplifica-
tion of systems by separations and purifications. The chemist likes to handle a
system with very few substances present in it at any one time. Notwithstand-
ing the well-known witticism that a physical chemist is someone who makes
accurate measurements on impure substances, in fact the physical chemist is
just as uncomfortable with an impure system as is any other kind of chemist.

The common denigration of living material as being irreproducible with
respect to physical measurements is quite at variance with the definition of life
in terms of the property of reproduction. Anyone who, like myself, has done
experiments on the catalytic activity of inorganic solid surfaces must be well
aware that they can be irreproducible beyond the limits of any trouble that one
sees in the catalytic processes that support life. The modern surface chemist
usually keeps everything except the one desired reactant away from the sur-
face under investigation by the use of ultra-high vacuum. Anything approach-
ing the multitude of substances present in a living being would quite destroy
not only such ideally clean experimental systems but also the operation of
industrial catalysts, which have to cope with much dirtier systems.

In living systems, unlike inanimate ones, chemical complexity is not syn-
onymous with dirt. This is because the multitudinous substances of life are not
a set of ignorant armies clashing by night, but participants in the most highly
organized type of system in our universe. We may seek to study the processes
of life one at a time because all the other processes interacting with the one of
interest have been self-designed not to interfere, but even to provide as-
sistance. That is the basic meaning of self-organization.

Physical chemistry from the 1920s to the 1950s was largely concerned with
the properties of condensed phases, or gases at fairly high molecular con-
centrations. It has subsequently developed in a number of new directions, but
many of them have involved either very clean conditions or sophisticated
experimental techniques in which the physics of the technique itself occupies
much of the time of the physical chemist. By comparison, remarkably little
has been done to extend the conceptual basis of macroscopic organization
from simple systems to ones which are complex but have acquired the knack
of remaining organized, that is, living material.

Faced with the problem of chemical generation of time-order and space-
order, physical chemists may tend to study, instead of life, the few simple
inanimate systems which produce periodicities and patterns, such as the Be-
lousov-Zhabotinski reaction (cerium-catalyzed oxidation of malonate by bro-
mate). That particular system generates travelling waves which may have
some correspondence to neural and cardiac electrochemical phenomena, but it
does not generate the stationary wave patterns which are the essence of mor-
phogenesis. Such patterns were, however, first produced in vitro in 1990 from
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two chemical reaction systems, and they appear to be in the category of Turing
structures. Perhaps this new evidence will help to point physical chemists in
the direction I would like to see them go: Study life itself! (For further
information on all these chemical systems, see Section 10.3.4.)

The tripartite division (structure, equilibrium, kinetics) which I advocate as
the first stage in classifying developmental mechanisms is also a classification
of preconceptions or paradigms. Different basic attitudes of mind are needed
to envisage the formation of shape as, first, small pieces fitting together to
make larger ones; second, pieces aggregating so as to minimize the total free
energy; or, third, processes acting kinetically to form shape as it is in a
waveform of the surface of flowing water. This last is among a number of
nonliving analogues of biological pattern formation shown by Meinhardt
(1982). Very few biologists have entered into this third way of thinking.
Among those who have encouraged me by doing so and who are not men-
tioned elsewhere in this Preface I must mention F. M. Harold (1990), J.
Frankel (1990a,b), and especially Jay E. Mittenthal, with whom I have had
substantial interactions on this topic over a number of years, including his
comments to me on an early draft of this book.

I do not want this to be known principally as a "reaction-diffusion book."
Although that kind of kinetic theory is quite a broad field - the one which has
been most extensively elaborated in regard to pattern formation, and the one
which I describe in most detail here - nevertheless reaction-diffusion is still
but one example of the triumvirate activation-inhibition-communication
which collectively has the power to generate pattern ab initio. Other examples
are mechanochemical theory, self-electrophoresis, and complex intercellular
interactions such as mutual reinforcement of synapses in a self-assembling
nervous system. It is the fundamental unity of all these kinds of theories which
I most want to convey to the reader under the heading "kinetic theory."

In all my advocacy for this I remain essentially a physical chemist. I must
express my gratitude to the Chemistry Department of the University of British
Columbia and all my colleagues there, especially the Department Head for
many years, Charles A. McDowell, for their tolerance toward (and often
definite interest in and material assistance with) my chemically unconventional
activities. Also, I am grateful to the Natural Sciences and Engineering Research
Council (NSERC), Canada, for continuing financial support of my research
through all stages of my switch of fields, in the face of an astounding diversity
of referees' opinions. (One set of eleven referees assessing a certain grant
application gave numerical box scores on my "originality" and "meth-
odology" ranging all the way from 2/10 to 10/10; such is the range of views on
the value of pursuing the kinetic paradigm and on how one should go about it.)

The "field" of a scientist may be classified in three different ways: (1) by
experimental method, especially for those devoted to a complex time- and
money-consuming machine (e.g., "an NMR imaging group"); (2) by the
natural materials and phenomena studied ("a solid-state physicist," "a natural
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products chemist," "an invertebrate embryologist"); and (3) by the concep-
tual basis of one's thinking ("a physical chemist"). I have changed principally
in the second of these three respects, from studies of inorganic gas-solid
reactions to studies of living organisms. My biological knowledge, such as it
is, has been picked up piecemeal, especially at diverse meetings and semi-
nars, and I am indebted to more people than I can list for bits of my informa-
tion. In addition to the people already acknowledged in this Preface, I would
like to thank Dr. N. Auersperg for organizing many graduate seminars at this
university and various symposia at scientific meetings elsewhere, from which
I have received much factual knowledge and considerable intellectual stimula-
tion.

Of the three bases for classifying one's "field" listed in the preceding
paragraph, the most difficult to change is the conceptual basis of one's think-
ing. I remain a physical chemist, but, paradoxically, I am trying to influence
biologists toward changing to that kind of thinking. To be steadfast in one's
own mind-set while expecting other people to change theirs is the charac-
teristic affliction of the evangelist, but some of them succeed!

At one point in a course on plant development which I attended, one of my
botanical colleagues enquired, "Shouldn't we be talking about rates?" That
query was inadequate to give the rest of the course a kinetic bias. In a
multiple-author book on positional controls in plant development edited by
Barlow and Carr (1984) the first chapter is by Meinhardt. Presumably the
editors asked him to write it because they believed his approach to be impor-
tant. But a conspicuous feature in comparison with the rest of the book is that
although Meinhardt is referenced in several chapters, no one is actually using
his approach. Likewise, in a recent set of papers on mechanisms of segmenta-
tion (French et al., 1988), also containing a Meinhardt contribution, both
Meinhardt and Turing are referenced only very sparsely, and again the refer-
ences do not represent extensive use of kinetic concepts by other authors. The
most striking contrast remains that between Turing's account of "The Chem-
ical Basis of Morphogenesis," which is entirely kinetic, and Lehninger's
(1975) chapter "The Molecular Basis of Morphogenesis," which offers a
completely structural account.

Let us now discuss the rates of processes and how they can work to form
patterns.





PART I

Macroscopics without mathematics

Pour demeurer symetrique et beau, un corps doit se modifier tout entier a la
fois. . . .
[To remain symmetrical and elegant, a body must modify itself all together at
the same time. . . .]

—Pierre Teilhard de Chardin, Le Phenomene Humain (1955)

For Part I, this quotation is the first axiom of macroscopics. But it could also
have been used as epigraph to Chapter 5, which seeks to suggest that the
statement may not be an axiom. The existence of overall control may be
observable if the smoothed symmetry of the whole is superior to statistical
expectation based on the disorder of the parts.





1
Introduction

1.1 Philosophy: lumping, splitting, abstraction, and reality

D'Arcy Thompson (1917) wrote that "the things which we see in the cell are
less important than the actions which we recognize in the cell." He expected
that in the following few decades biology would advance in the direction of
mathematical description of actions or processes. He, and most others at the
time, believed that microscopy had reached the limits of its capacity to reveal
microstructure, and few people believed that determination of the structure of
genes was foreseeable. In the event, as everyone knows, developments that
were not foreseen have made up a great part of the most spectacular advances
in science over the past forty years. Meanwhile, those advances which
Thompson anticipated have not occurred - to such an extent that Bonner
(1961) omitted from his abridgement of Thompson's On Growth and Form
the entire chapter containing the foregoing quotation. Was Thompson wrong?

My thesis is that Thompson erred only in regard to his expectation of the
timing of an advance which would unite mathematical-physical science to
biology in the same way that physics and chemistry had become united in the
late nineteenth and early twentieth centuries. That unfulfilled union must take
place, to my mind, in the twenty-first century if many of the problems of
developmental biology, which today remain as mysterious to us as they were a
hundred years ago, are ever to be solved. I cannot conceive of solutions
excluding the extensive use of mathematical-physical science, and I see such
approaches as being entirely complementary to the existing molecular biology
and in no way antagonistic to it.

This thesis has two parts: first, that developmental biology is now at a
different stage of the scientific method than are most other branches of science
and needs different attitudes; second, that to establish the nature of a process
can be as solid a scientific objective as to discover the nature of a concrete
object, such as a molecule. Sections 1.1.1 and 1.1.2 respectively address
these topics.

Neither of these statements finds ready acceptance among the generality of
experimental developmental biologists today. Quite often, physical scientists
attribute this to a reluctance among biologists to adopt mathematical Ian-
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guage; and, over many decades, some biologists have from time to time
vehemently rejected mathematical explanations. But this is not, I believe, the
main problem. Scientists (like most other people) will do what they find
necessary to reach a highly desired objective, even if this involves activities
which are difficult, time-consuming, and not what they had expected to be
doing. They must be convinced, however, that an unexpected line of approach
is necessary.

Mathematics is not essentially different from verbal explanation. Mathe-
matical reasoning is simply the continuation of verbal logic by other means,
when the complexity of the logic makes its expression in words cumbersome
and obscure. (For instance, puzzles of the following kind are designed to
exploit the equivalence between trivially simple algebra and quite obscure
verbiage: "Bill is twice as old as Joe was when Bill was ten years older than
Joe is now; and Bill was thirteen years old when Joe was born. How old is
Bill?") Occasionally, a view is put forward that mathematical reasoning is
qualitatively different from verbal explanation and probably irrelevant to biol-
ogy. I cannot argue against that viewpoint, because I have never even begun to
understand it. The essential equivalence of mathematical logic and verbal
logic is to me an axiom, a credo. My book can cater to readers who are not
fluent in mathematical languages, but it can do nothing for definite un-
believers in this credo. All the words lead toward the equations, and the words
are really useful only to people who are going to follow them that far.

If, then, the philosophical chasm between experimentalist and theoretician
is not just a question of words versus equations as explanations, what is it?

1.1.1 Lumping and splitting

As a physical scientist, I was brought up to believe that the ultimate objective
of science is unifying - that science is a climb toward some minute and distant
shining summit which might turn out to be the one equation that describes
everything. That objective may be far off, but those who have that basic
attitude tend to feel that they have made a step upward whenever they find
some common principle definitely or possibly present in two sets of phe-
nomena which up to that point had appeared quite different. Thus, on my first
encounter with the problem of morphogenesis, I became quite excited at the
idea that something fundamental to it might be the same as something equally
fundamental to the problem of optical resolution. In my writing on the latter
problem, I pointed out that at the very earliest stages of biochemical evolu-
tion, an autocatalysis requiring the assistance of two product molecules was
hardly distinguishable from sexual reproduction, and I indicated a number of
other correspondences between processes which become quite different at
later, more complex stages of organization.

Closer interaction with biologists over the next few years impressed upon
me that many of them do not recite this unifying credo of the physicist's
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beliefs. Indeed, a referee commenting on one of my manuscripts wrote that
several mechanisms might be mathematically similar, but that biologists
would consider them different. The clear implication was that I had better do
the latter if I wanted to publish in biological journals. Much more recently, a
referee of another manuscript wrote that "I don't think the weaknesses of the
paper lie in the mathematical aspects, but rather in the failure of the authors to
appreciate how divorced their abstract entities are from the real entities which
govern early body patterning." (This comment at least makes it clear that the
use of mathematics is not the matter at issue.)

There are, of course, excellent reasons for this tendency of biologists to
concentrate upon the analytical aspect of science as against the synthetic. One
of the most striking features of life is its diversity, and the precise description
of that is a sine qua non of biological science, a task great enough to command
the total attention of large numbers of people. Yet it would be an insult to
biology to suggest that it does not get beyond the first step of the scientific
methods, the gathering of facts. Science has as its essential attribute the
continual reworking of facts through all the steps of the scientific methods.
And in that method, fact and theory are by no means as clearly separable as
they are represented in elementary statements of the scientific method. To-
day's experimental results are commonly set down in the language of yester-
day's theories, which would have been unintelligible a few years or decades
earlier.

Within all the rigour of a definition of science as intellectual process,
modern molecularly based biology is fully a science, and a rapidly advancing
one. But the bias of its practitioners is analytical, and strongly so. They are
splitters, not lumpers. (These succinct equivalents for analytically and syn-
thetically minded scientists are well known in the conversation of physicists.)
Surely, however, any complete scientist needs to give some attention to both
lumping and splitting? The balance here is a matter of historical timing. In a
field which seems just now to have all the unifying concepts it needs, there is
room for the work of a multitude of splitters who want to give very little of
their attention to lumping. For molecularly based biology, the general con-
cepts of the structures of nucleic acids and proteins, as well as the nature of
the genetic code and its transcription and translation, are thoroughly estab-
lished and universally accepted. Secure in these generalities, the modern
biochemical biologist can devote a lifetime to ferreting out what particular
proteins or genes are responsible for a few particular phenomena within a
single species of organism.

By contrast, developmental biology, concerned with the macroscopic orga-
nization of the organism, stands across a gulf from molecular biology, a gulf
which structural concepts have been unable to bridge. Apparently the unifying
concepts have not yet been found; if they are already in the literature, they
have not yet achieved that consensus of recognition which is the foundation on
which many splitters base their work. The lumping is needed first.
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That noted champion of unpopular theories, the astronomer F. Hoyle, has
remarked that when a problem remains unsolved, general opinion must be
wrong. This, to my mind, expresses an important philosophic truth very
relevant to the present state of developmental biology. Yet the neatly epigram-
matic form of Hoyle's statement runs some risk of showing that brevity is the
soul of unmannerliness. It is not my objective to suggest that the philosophic
approaches of molecular biology are wrong. They are obviously right for the
field, and have led to great triumphs of scientific discovery. I wish to assert
merely that development is a different field and needs some additional ap-
proaches, which are likely to be radically different from (but in the end
complementary to) the current microstructural emphasis.

The only opinion which I would call wrong would be one which denies that
there is, in biological development, a Great Unknown, and therefore a new
concept or set of concepts to be established. Surely it is evident that in living
pattern and form, nature has provocatively concealed some essential underly-
ing simplicity in an excess of ornament. There is no lack of diverse and
fascinating experimental data. Yet phenomena which were meticulously de-
scribed by embryologists of the 1880s remain, a century later, without gener-
ally accepted theoretical explanation - which cannot be said of atomic spec-
troscopy, Mendelian genetics, or a host of other century-old experimental
topics.

1.1.2 Abstraction is reality

A few years ago, on giving a seminar in a series entitled "Simulation and
Modelling in Science," I remarked to the organizer that the title was wrong. It
should have been "simulation and modelling is science." The comment de-
lighted him, but many scientists would not, I think, be equally pleased. The
words "simulation" and "modelling" can be interpreted as having something
of a pejorative cast, throwing doubt on their relation to reality. But when I first
heard of the scientific method, neither of these words was being used at all in
relation to it. Surely both are to be seen as parts of theory, the means by which
science seeks to express a vision of the truth or of reality, whichever word one
happens to prefer?

By the same token, the scientific enterprise could also be defined as an
effort to take experimental facts and extract from them increasingly close
approximations to truth by a process of abstraction. This implies, of course,
that I deny totally the distinction between "abstract entities" and "real en-
tities" in the quotation in Section 1.1.1.

The problem here is, I think, that sometimes a group of scientists will
become preoccupied with the virtues of one particular kind of model, which
they have found to be powerful, to such an extent that they come to regard this
model as more "real" than the models used in branches of science less



Introduction 1

familiar to them. In more than one branch of science today the molecule has
acquired such an exalted status. To be sure, the molecule is one of our best
models, but it is in no sense an ultimate truth. For the purposes of the biologist
and biochemist, a molecule often may be viewed in very concrete terms, as a
geometrical object of definite size and shape. But to the chemical physicist,
the reality of a molecule is that it is a solution of the Schrodinger equation.
Many of its properties cannot be understood at all in classical terms, and
the quantum-mechanical equations describing the molecule compose an
altogether higher and more powerful model of reality than the concrete
geometry.

One of my colleagues in chemical physics gave a seminar in which he was
most adamant that he was a pure experimentalist; he sounded as though he
might not even like theoreticians. He then proceeded to present some data in
the form of drawings of molecular orbitals, not in ordinary space but in
momentum space. To most experimental biologists, such a presentation would
seem to belong to one of the most distant reaches of theoretical abstraction.
What one sees as an abstract model, and what one selects as the concise
language for immediate presentation and discussion of one's experimental
data, will depend upon one's preconceptions or paradigms.

What, then, is the kind of "abstract explanation" which I am advocating
that we adopt and regard as a down-to-earth description of the "real entities"
of developmental pattern formation? When I described to a biochemist some
results showing quantitative control of a morphogenetic feature of Acetabu-
laria by some unknown bound state of calcium, he remarked that "it's going
to be difficult to find out what is doing it." This is a problem which confronts
most biologists most of the time: to find out what is doing it. I invite my
readers to take a moment to formulate a conception of the kind of solution
each is usually expecting; I anticipate that most modern biologists, for a very
wide variety of problems, will most commonly be expecting that the nature
and structure of a particular protein will turn out to be "what is doing it." For
my part, I would usually be looking for a process, and I would be happy if I
could measure kinetic rate constants, or diffusivities, or elastic constants, or
conductivities, and show that they were attributes of that process, without
necessarily knowing what molecules might be involved. I would hope that
these things would eventually give some pointers to the biochemists as to
where some kinds of molecules may be found, but only over a long time
scale.

More recently I have found spatial patterns of bound calcium which corre-
spond to my concept of a two-stage hierarchical process. I consider that to be
a scientific step forward toward establishing the nature of the process. But I
am not one step nearer to identifying the molecular species to which the
calcium is bound, and the molecularly devoted scientist might say that I have
made no advance at all.
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1.1.3 Macroscopics and the structure of processes

A hundred years ago, the disputes between the positivist philosophers led by
Ernst Mach and the advocates of molecular reality led by Ludwig Boltzmann
were approaching a climax. Basically, the positivists believed that the su-
premacy in science of observation of macroscopic phenomena was incompati-
ble with a concept of molecules as real entities - they had to be abstractions.
The supporters of Boltzmann believed that macroscopic objects and molecular
objects were both real and that the connection between them could be readily
made provided that one recognized that connection as being statistical and
therefore requiring primarily mathematical discussion. The ultimate victory of
this viewpoint was achieved early in the twentieth century, and that provided
the philosophical foundation on which twentieth-century science has been
built.

Today in biology there is something of a dichotomy between the molecular
biologists and those who believe that the whole organism (or large parts of it)
should be the principal object of study. This division has something of the
flavour of a repetition of that debate of a century ago. What is it going to lead
to as a foundation for the biology of the twenty-first century? The hope, of
course, must be that macroscopic and microscopic studies will advance so as
to complement each other. But, in my opinion, that is very unlikely to happen
by simple extension of the structural approaches which have proved so power-
ful on the molecular scale. In the tripartite division of physicochemical con-
cepts into structure, equilibrium, and kinetics, it is the second and third which
I tend to think of as comprising "macroscopics." I define this term (suggested
to me by my colleague Dr. R. F. Snider) as "the nature of change, and the
organization of matter in states above the molecular." I envisage that the study
of macroscopics for the present purpose is going to need, just as it did in
Boltzmann's day, statistical and mathematical treatment.

In a preliminary outline for this book I mentioned the word "macroscopics"
to Paul Green, the instigator for the writing of the book. His immediate
reaction, in slightly edited version, was as follows:

The issue of "macroscopics" is one I deal with a lot. The puzzle of development can
be likened to a multi-span bridge. One terminus is DNA and the other is a developmen-
tal progression. The first few islands joined are clear enough: RNA, protein, etc.; and
the spans are conversion processes, like transcription and translation. The problem we
both address is, "What's between the last island reached (self-assembly) and develop-
mental progression? Most biologists subconsciously think that some "silver bullet" or
single protein will clear up everything in one stroke. A hard look at developmental
processes, however, shows that one has to account for a myriad of changes over large
distances (many cells). The idea of coupling one developmental change to one section
of the genome is inadequate because there are far too many developmental events. The
solution to this information paradox is that an organism inherits rules that spell out the
progression. The rules are, or are like, time-based differential equations which have
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the ability to encode complex sequences with high efficiency. Thus one has to regard
development as an integration through space and time, the genome providing the
equivalent of the differential equations. Thus there is no escaping the calculus when
studying development.

The difference here is that the molecular scientist, in seeking the explana-
tion of some large-scale phenomenon, goes ever downward in spatial scale,
and usually in time scale also, ending up in nanometres and picoseconds. The
macroscopist, if I may so designate a devotee of macroscopics, goes through
different levels of explanation, including many different concepts, such as
differential equations, force fields, and so forth, but never changes the spatial
scale or time scale, considering always the whole extent of the development.
An analogy by Lacalli (1973), following J. Needham, concerns the study of a
Swiss watch to discover how it functions. One may take the watch apart and
examine, list, and diagram the springs, gears, shafts, and so forth, and how
they fit together. Yet one does not have a full explanation without the applica-
tion of equations of motion to the whole. These involve concepts of mo-
mentum, moments of inertia, and simple harmonic motion arising from a
restoring force proportional to displacement.

If in the light of such a study of one oscillating system one were to set up a
team to examine some other oscillating system of unknown contents, one
might designate some people to take it apart and describe its parts in ever
greater detail, and others to tackle other questions: What is the displacement
that produces a restoring force, and what is the origin of that force? To be
sure, these two parts of the team should exchange information, and the whole
team is needed to produce the whole story. Also, a question of applied science
versus pure science arises here. If one wishes to know how to make a Swiss
watch, the information from the first part of the team will suffice; but if one
wants to know how it works, the second part of the team is vital, with only a
limited amount of the structural information being necessary. This analogy
would seem to give the edge to the molecular biologist for practical utility, in
conformity with current developments and expected advances in so-called
genetic engineering. Yet consider: Suppose that one wishes to design an
oscillatory system other than those already studied. To which part of the team
should one have paid attention?

The relation of the Swiss-watch analogy to Green's comments on biological
development cited earlier is that in a biological system we know that the
genome decrees the manufacture of a number of enzymes, and thereby specifies
the kinetic rate constants for a number of chemical reactions; but one cannot
therefrom predict how much of each reaction product is going to be produced at
various places in the system until one has written down, and solved, the
differential equations containing those rate constants. In the Swiss-watch
analogy, the "genome" would specify the force constant of the balance spring
and the moment of inertia of the balance wheel. From these, we could get the
frequency of oscillation simply by solving equations of motion.
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In Part I of this book I have tried to use as few equations as possible.
Therefore, the full comparison between the activities of molecular biologists
and those of kinetic-theory practitioners will not emerge until Part II, which
will get closer to the daily work of the latter group. There it should become
apparent that these people can be as much splitters as are the molecule hunt-
ers. Equations also have complex details. The theorist will often refer to the
"structure" of a dynamical mechanism and will think of the terms in the
equations as components of that structure, just as the molecular scientist will
think of a carboxyl group as a component of the structure of a molecule. This,
of course, obscures my distinction among structure, equilibrium, and kinetics.
But I hope it tends to make clear that two groups of scientists may be engaged
in essentially parallel enterprises which appear different because the two
groups have different perceptions of the "ultimate realities" they are seeking:
molecule versus process, matter versus motion.

The structure of processes is taken up again in Section 6.4.3, particularly
with regard to the concept of the "structural stability" of equations of motion.
For instance, an equation for oscillations which will continue undiminished
forever may be converted into one for oscillations which, more realistically
for most observed processes, will die away as time goes on. This requires one
additional term in the equation, and the immortal oscillations are destroyed by
that term; the equation is structurally unstable with respect to that addition,
which effectively is a poison for the oscillations. It is, of course, a velocity-
dependent term representing viscous resistance (or friction) in the case of
mechanical oscillations; in more general terms it would be called a relaxation
process, a term well known in magnetic resonance.

Molecularly minded scientists at once want to know the nature of the
viscous substance, or the promoter of relaxation. The kineticist would like to
know that, but not necessarily now. For complex systems, such as biological
material, a magnetic-resonance experiment can establish thoroughly, scien-
tifically, that there are, say, five different relaxation processes for water pro-
tons, with a quantitatively measurable relaxation time for each, and clearly
characterized changes if one takes the system to pieces or makes other distur-
bances. All this can constitute years of good publishable science, throughout
which the chemical nature of the relaxing species remains a puzzle, probably
to be solved much later by someone else.

1.2 Strategies of research

1.2.1 On starting to build a bridge from both ends

In a referee's report on a recent reaction-diffusion paper by T. C. Lacalli, the
following comment appeared: " . . . the paper could be published as a demon-
stration of a strategy for modelling these phenomena. However, at the present
pace of inquiry, such models will soon be supplanted by models that relate in
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detail to molecular processes." This was a favourable report, but nonetheless
this quotation provides another illustration of the conceptual gap in the field.
If I may continue Paul Green's metaphor, one cannot supplant one end of a
bridge by building the other. They are planted in different ground, and neither
will ever occupy the place of the other. But ultimately, one has a bridge when
they meet in the middle. The phenomena referred to in this example were
those of Drosophila segmentation. To be sure, molecular information is being
accumulated at a quite astonishing rate. But how the molecules participate in
processes is an inquiry which is hardly advancing at all. The discoverers of
molecules often postulate some processes, but usually with insufficiently
rigorous descriptions of their dynamics to permit the essential tests, in the
computer, of whether or not the models actually work. Meanwhile, as the
referee quoted earlier pointed out, the modellers who are studying dynamics
with some scientific rigour usually do not have precise and detailed ideas of
which molecules are participating in the processes. There is still a big gap in
the middle of the bridge.

Figure 1.1 is my strategic overview, a surveyor's map of the islands to be
joined by the bridge. The arrowed lines at top and bottom are the engineering
supervisor's notes regarding who is currently doing what in the construction
work. They illustrate the contrasting approaches of physicists and biologists.
They show also a limitation in the analogy. The two groups building from
opposite ends are using quite different materials and ways of joining them
together. There is no resolution for this which can completely save the analo-
gy. But it is partly resolved by my discussion in Chapter 4 of developmental
control of the shapes of crystals. There I indicate that one should enquire in
regard to any shape-generating phenomenon what aspects of it fall into each
of the three divisions - structure, equilibrium, and kinetics - rather than
trying to classify the whole complex phenomenon into one of these categories
exclusively. This means that at island 2 (second from left) in Figure 1.1 the
builders may discover that though their materials are different, there are ways
of fitting them together which make sound engineering to complete the
bridge.

1.2.2 Making the join: bridges versus brains

In the language of the bridge-building analogy, there are two problems to be
addressed: First, how shall the workers from opposite sides go about making
the join in the middle? Second, and not so obvious from the analogy, will they
recognize the join when it has been made? On the latter, my experience has
been (especially in relation to Drosophila segmentation stripes) that when I
have become excited about what has seemed to me to be the first girder in
place linking the two sides, the value, relevance, and methodology of what I
have seen as the linking step have been vehemently denounced by some
prominent experimentalists in the field.
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Physicists and physical chemists

Figure 1.1. Contrasts in strategies of research. All scientists have the ultimate objec-
tive of linking together the contents of all four boxes (1 to 4 from left to right), but
different kinds of scientists differ on, first, the chronological order in which they
expect to build the bridges and, second, which subdivision of box 2 they expect to
become most significant. The illustrations used in boxes 1 and 3 are of the mor-
phogenesis of the mouse submandibular salivary gland, modified from Bernfield et al.
(1984). For this example, see also Figure 4.14 and Table 4.1. In box 3, the possible
alternative locations for crucial pattern-forming events indicated are as follows: E,
extracellular matrix; S, cell surfaces; N, nuclei; M, mobile mesenchyme cells as the
"particles of the system." Chapter 4 explains the meaning of the threefold subdivision
of box 2. Molecules of many different kinds and sizes, from ammonia to glycopro-
teins, have been mentioned in the literature as putative morphogens. One of the most
clearly established is illustrated in box 4: the substance DIF-1, one of a morphogen pair
in the patterning of Dictyosteliwn discoideum; see Section 10.3.1.

The bridge-building work, of course, involves the use, by both physical and
biological scientists, of the scientific method, with its characteristic alterna-
tion of experiment and theory. Both problems raised in the preceding para-
graph require for their resolution an examination of the different ways in
which that alternation may proceed. The scientific process goes most smooth-
ly under the aegis of a universally accepted preconception or paradigm. Two
things are then possible. First, an individual practitioner of the field can be
classified as theoretician or experimentalist, and for most of the time can
pursue activities entirely of the one kind or the other, knowing that the
experiment-theory interaction exists on a social scale. In other words, the
bridge has been built, and it is possible to drive over and talk to the people on
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the other side whenever one wants to. This is the dynamical structure which
obtains in most of modern chemistry, in relation to the preconceptions of
atomic and molecular quantum mechanics established in the 1920s.

Second, the general acceptance of a theoretical paradigm makes possible
for the experimentalists a dynamic in which most of the hard work is done at
the bench, and much less effort needs to be spent on interpreting the data. One
set of experiments can be expected to lead smoothly to the next, with minimal
theoretical linkage. By "smoothly" I mean that the scientist is rarely faced
with the obstacle: "I don't see what the next step is." Rather, a multitude of
next steps can be seen, and the problem becomes to find sufficient grant funds
to assemble the people and equipment to pursue them all at once. This is the
dynamic of modern molecular biology and biochemistry.

When, as in the matter of pattern formation, there is no generally accepted
preconception, the dynamic of the field is altogether different. There may still
be groups of people who may be described as theoreticians or experimen-
talists. But there is no bridge between them. This has, for the present discus-
sion, two consequences. First, the field needs some people who cannot be
neatly classified as belonging to the one group or the other, to try to bring
them together. It is because I believe that the classical physical chemist is this
kind of person that I presume to consider myself potentially useful in this
enterprise, and persist in trying to pursue it. E. A. Moelwyn-Hughes wrote in
the first chapter of his textbook of physical chemistry that "the complete
physical chemist [glassblows] his own apparatus and solves his own equa-
tions." That balance, in which one is as likely to spend a few days of concen-
trated effort at the bench, or with paper and pencil immersed in algebra, is to
my mind the principal feature missing from this field of biology, the absence
of which is limiting its dynamic.

Second, the bridge analogy, though useful to a certain point, has a serious
inadequacy for this philosophical analysis. No one is in any doubt about when
the girder is placed and rivetted which at last joins the two sides of a bridge
together. Everyone knows when it is time to throw a party celebrating the
junction. That is not so for the experiment-theory junction in biology. Differ-
ent people have quite different perceptions of whether or not a join has been
made. This arises from their differing conceptions of the scales of time,
number of workers, and complexity of data and theories which should prop-
erly be the nature of the scientific experiment-theory alternation.

Should one, for instance, expect to think mainly in terms of minor hypoth-
eses relevant in the first instance to a particular month's data on a particular
developmental phenomenon in one organism, and capable of being confirmed
or rejected by the next month's crucial experiment? Or should one expect that
if a crucial experiment is somewhere performed, it will be seen as such only in
a historical perspective from at least fifty years later? For instance, in the
complex and difficult subject of thermodynamics, one thing which nowadays
seems comparatively simple and straightforward is the first law, the conserva-
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tion of energy. Historical accounts commonly give the credit for the crucial
experiment to Benjamin Thompson, Count Rumford, in 1799; but, as W. J.
Moore (1972) has written, "the times were not scientifically ready for a
mechanical theory of heat." The concept was still being aggressively put
forward to a generally unreceptive scientific community in the 1840s by such
as J. R. Mayer. Its general acceptance is dated from J. P. Joule's 1849 paper,
which, among other things, showed that Rumford had performed a remark-
ably good first determination of the mechanical equivalent of heat.

Another famous half-century gap was that between the statement of
Avogadro's law in 1811 and the publicity given to it by Cannizzaro at the
Karlsruhe Conference in 1860; here again, the times were not ready at the
earlier date. Scientists simply were not prepared to distinguish between an
atom and a molecule of an element and to recognize that two atoms of the
same kind could combine. The instance best known to biologists probably is
the thirty-five-year gap between Mendel's work in 1865 and the publicity
given to it independently by three people in 1900. Here, it is not clear to me to
what extent the delay was caused by lack of the appropriate Zeitgeist and to
what extent it was due simply to poor publicity at the earlier date. The
generalization from all of this is that major conceptual advances commonly
take thirty, forty, fifty years or more to be assimilated by the scientific com-
munity; but once they are assimilated, the writers of brief historical para-
graphs in textbooks are careful to give credit to the originator, thereby pro-
mulgating an impression that the whole thing was clearly established and
generally accepted decades before it really was.

What perspective should one seek to have in the midst of such a period of
conceptual uncertainty? To my mind, at such a time it is quite premature to
expect that the first contacts between experiment and theory can be put to the
test of fine-tuning the fit between the theory and all the known data. Rather,
one should see a theory as being promising enough to deserve extensive
follow-up efforts if it does a fair job of accounting for some rather general
features of the phenomena. Perhaps this is the best test at this stage: With how
many different specific examples of pattern formation is the theory making a
promising initial contact? My answer here to the matter of perspective is that
it should be an overview of very much more than just one organism. I make
this statement for both of the well-known sequential steps in scientific theoriz-
ing: the establishment of generalizations from data, and the devising of mod-
els to explain the existence of these generalizations.

For the former, a good example is the evidence that various living structures
of more or less cylindrical shape have a system of "positional information"
which corresponds to a set of polar coordinates. It is impressive that the work
of French, Bryant, and Bryant (1976) embraced both insects and amphibians.
It is more impressive that work on ciliates (Frankel 1989) points to a similar
system in these single-celled organisms. For the latter, kinetic theory of the
reaction-diffusion type has shown definite promise in relation to the follow-
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ing: formation of complex shape in single-celled algae (Acetabularia whorls,
repeated dichotomous branching in Micrasterias); morphogenesis of cellular
slime moulds (patterns of differentiation in Dictyostelium, whorl formation in
PolysphondyHum)', grafting and regeneration in Hydra; mammalian coat pat-
terns and lepidopteran wing markings; patterns of activation of pair-rule seg-
mentation genes in Drosophila; and many others. See Chapter 10 for refer-
ences, and see Meinhardt (1982) for some of these and other examples.

In a few instances, more than one kind of kinetic theory has been suggested
for the same phenomenon. In his original formulation of reaction-diffusion
theory, Turing (1952) envisaged it as accounting for gastrulation; but Odell
et al. (1981) proposed a mechanochemical theory for this. Likewise, for
Acetabularia whorls, I have used reaction-diffusion theory (Harrison and
Hillier, 1985; Harrison, Graham, and Lakowski, 1988), whereas Goodwin
and Trainor (1985) have used mechanochemical theory. Both types of theories
are within the general scope of kinetic theory (Harrison, 1987); see Section
8.1 and especially Table 8.1. A few controversies between advocates of
different models within the kinetic paradigm could be quite good for the
paradigm itself. It might escape people's attention that in following the con-
troversies they have tacitly accepted the paradigm.

Controversy is much more serious when it concerns the applicability of the
paradigm in any form. For instance, Drosophila segmentation has been treat-
ed by reaction-diffusion modelling by several workers. Such theories involve
communication by diffusion between nuclei in the syncytial blastoderm. But
many drosophilologists believe that the phenomenon can be explained by the
"reading" by each nucleus separately of positional information in preexisting
gradients. Such a concept of "no crosstalk" between nuclei of course denies
totally the applicability of the kinetic preconception to this phenomenon.

Among the numerous phenomena of pattern formation for which attempts
are made to apply various types of kinetic theory, surely some will ultimately
be found to be properly described by one or another of the available models,
others perhaps by none of them. For the dynamic of a field in which numerous
contacts are made, some to be broken, some to be strengthened and made
permanent, the bridge-building metaphor is quite inappropriate. Rather, the
scientific process has its analogues in biological development itself, as, for
instance, in the establishment of connection between the optic nerve and the
brain (at the optic tectum, in the lower vertebrates). Here, the brain and
the eye are two separate structures. I envisage the brain as the analogue of the
body of experimental biologists, and the eye as the theoreticians, because of
the greater number and diversity of the former, and also because it is the
theoreticians who are trying to make contact with the experimentalists, just as
the optic nerve grows out to make contact with the brain, whereas the experi-
mentalists are largely a self-interacting group.

In this metaphor, I see each current attempt to apply kinetic theory to
biological pattern formation represented as the formation of a synapse be-
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tween a branch of a retinal axon and a tectal cell. The synapse is at first weak.
Some of them go on to strengthen and become permanent. Others are in the
wrong place, and the contact breaks. For the properly patterned eye-brain
junction to be established, there must be very many tries at synapse forma-
tion, many of them eventually successful, many unsuccessful. The attempt to
unite biological experiment and theory needs to be seen in the same way.
There needs to be a lot more going on than there is today for the proper union
to be formed in the twenty-first century.

A body of theoreticians and a body of experimentalists may each be seen as
a remarkable structure, in some ways complete within itself, as is an eye or a
brain. But, as for everything in the history of science, until the two are firmly
and correctly joined together, something essential is totally lacking: vision.

1.2.3 Visions of the invisible

Scientific explanation involves a continual tension between the concrete and
the abstract in which, on a long historical perspective, the abstract is usually
the deepest and most precise level. Thinking in concrete terms, however, is
often simpler, very useful because it can be done quickly, and quite legitimate
provided that the ultimate justification of the concrete in terms of the abstract
is always appreciated, so that the abstract can be appealed to whenever the
concrete may mislead. To most modern scientists, the most obvious example
of this is the quantum-mechanical description of electrons in atoms and mole-
cules. The Schrodinger equation (or its mathematical equivalent, Heisenberg
matrix mechanics) is quite necessary to show, for instance, that an O2 mole-
cule is held together with the strength of a double bond, and yet contains two
unpaired electrons. Many chemists of the molecule-making majority, how-
ever, do not spend their time maintaining fluency in the language of the
Schrodinger equation, with its full panoply of spherical harmonics, Legendre
polynomials, orthogonal sets, Hermitian operators, and so on. Rather, they
would "prove" the foregoing statement about O2 pictorially, by drawing an
energy-level diagram and putting electrons into the levels. Such diagrams are
powerful, permitting one to conduct many correct derivations without having
to resort to equations. But in the end, the equations have led to the diagrams,
and are the only justification for them. Much the same applies to the drawing
of the so-called shapes of, for instance, px, py, and pz orbitals and the use of
such pictures to show how they can combine into molecular orbitals. The
pictorial representation is again a powerful way of approximating some essen-
tials of the mathematical treatment so that it can be done much more easily.
But such a picture, though it looks like the shape of an object, is in fact a
graph of a "wave function," which is by definition not an observable proper-
ty. They are visions of the intrinsically invisible.

The hope that drives me in writing this book is that the same kind of
relationship which has been established between 1920s quantum theory and
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experimental chemistry will eventually be set up between the equations for the
dynamics of biological molecules and experimental developmental biology.
We are not there yet, but in Chapter 3 I attempt a preliminary discussion on
the use of pictorial reasoning in the kinetic theory of pattern.

The dynamics of molecules, comprising the movements and changes of
individual molecules envisaged as accounting for rates of reaction and trans-
port processes, may seem a much more concrete matter than the mathematics
of quantum theory. After all, individual molecules are potentially (and some-
times actually) observable, unlike wave functions. This apparently different
kind of reality for the single molecule, as compared with the mathematical
"abstraction," does not, however, imply that one no longer needs visions of
the invisible. First, the macroscopic properties of matter, which are essen-
tially Boltzmann-statistical, are dependent for their explanation on the proper-
ties of an assembly of molecules all of the same kind in which, in fact,
individual molecules are indistinguishable from each other. This is very im-
portant, philosophically, in regard to the preconceptions or paradigms of
biochemists versus those of classical physical chemists. It is therefore taken
up again in Section 1.3.1.

Second, even macroscopic motions, for which there is no doubt that direct
observation would be possible with sufficiently sophisticated machinery, have
sometimes been inferred from indirect evidence. The classic example is the
concept of circulation of the blood, established by William Harvey (1578—
1657) [Crombie, 1959, vol. II, sect. 11(3)]. The way this concept was estab-
lished, in relation to the ideas of preceding centuries, is a type for the scien-
tific enterprise. I call attention here to two aspects only. First, Harvey was a
strong advocate of the comparative approach: "Had anatomists only been as
conversant with the dissection of lower animals as they are with that of the
human body, the matters that have hitherto kept them in a perplexity of doubt
would, in my opinion, have met them freed from every kind of difficulty."
Second, the dynamics remained for centuries unknown, although the anatom-
ical information on structure was profuse, down to a spatial scale quite ade-
quate for correlation with the dynamics: For example, the valves in the veins
were known, but it had not been appreciated that their structure betrays their
function and hence the direction of flow of the blood. How many unappreci-
ated structure-function relationships may there be in the wealth of structural
information in modern molecular genetics?

1.2.4 Preconceptions and experimental programs

Though I call myself a lumper, I do not believe in a unique path toward the
ultimate lump. At the levels of partial truth at which we must continually
work, there is no uniquely correct way of describing some piece of the
universe in which we have a scientific interest. Many apparently different
descriptions and explanations might have equal validity. Science is in human
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minds, individually and collectively. A different concept established at some
time in the past might have led us to be describing things very differently
today; science is a product of its history.

(In my own high-school education in England, I was led toward this view
especially by the accounts given of the phlogiston theory. As it was told,
English scientists in the seventeenth century had been well on the way toward
discovering oxygen and its role in combining with metals. Then the concept
arose that a metal, when heated in air and converted to what was called a calx,
had not gained anything, but had lost, to the air, something called phlogiston.
That concept dominated chemistry through the eighteenth century. Priestley
discovered the substance that Lavoisier would later name "oxygen," but
Priestley called it dephlogisticated air. This was taught as being a delay in the
progress of science because of the introduction of a misleading concept. It
was a comfortable idea in England because it made the English look better
than the Continentals who devised the phlogiston concept. What nobody
pointed out in the 1940s was that chemists were increasingly adopting a more
general description of oxidation as a loss of electrons. Was phlogiston the
electron concept ahead of its time?)

Different concepts will lead to different interpretations of data and thence to
different designs for future experimental programs. This can lead to serious
difficulty when two groups of scientists try to interact but start from different
preconceptions or paradigms. Neither group will like the experimental pro-
grams which the other devises. If one group is working theoretically with a
new paradigm, it helps if they can do their own experiments. An experimen-
talist with a different paradigm is unlikely to want to put a lot of effort into the
theoreticians' suggestions, because the experimentalist most probably will not
like the shape of the experimental program suggested.

What does this imply, specifically, for the interaction between empirical
developmental biology and kinetic theory? Here I shall describe a few things
which have happened in my own attempts to do both experiment and theory,
and how my ideas on experiments seem to differ from those of many biolo-
gists, without claiming that I am giving a very general answer to the question.

First, as a physical chemist thinking about kinetics, I want to do experi-
ments on the kinetics of processes as they happen. That, for the living system,
means working on it while it is still alive - mostly in vivo experiments. To be
sure, many experimental developmental biologists like to do that. But the
field is becoming increasingly molecular, and that implies increasing fractions
of experimental time spent processing dead material.

Second, it is a commonplace that the classical physical chemist wants to
turn everything in the world into a straight-line plot. This is not merely
jocular. It means that the physical chemist, studying macroscopic properties,
wants to make changes in variables which will produce quantitative responses
as continuous functions of the change. The contrast here is that biologists
commonly are much more concerned with discontinuous responses, on-ofif
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switchings. In my work, for instance, I inflict much experimental drudgery on
people in my group by getting them to measure, quantitatively, the spacings
between adjacent hairs in an Acetabularia whorl, in numbers of cells large
enough to give reliable averages. This property shows continuous variations
with temperature, with the calcium concentration in the culture medium, and
with the presence of the calcium chelator EGTA. Beyond certain limits,
further changes in these variables cause cessation or gross abnormalities of the
morphogenesis. I am interested in those threshold values only to keep well
away from them in most of my experiments.

This work has recently been attracting increasing numbers of citations and
quotations, which is gratifying. But I do not yet find that biologists interested
in this work express their interest in a form such as the following: "Harrison
and Hillier (1985) found that the spacing between hairs in an Acetabularia
whorl change linearly with l/[Ca2 + ]. This linear variation presents a chal-
lenge which any theory of the morphogenesis must seek to explain." I believe
that that thought would be uppermost in the minds of most physical chemists
reading the same material.

Third, and perhaps most important, is the question of what kinds of entities
the experimental program is designed to characterize. There are many kinds of
entities around, and different programs will disclose the nature of different
ones. (The phlogistonists were postulating an entity which could not be
tracked by weighing, and they were therefore at the beginning of a road which
has at the end of it the electron, but not the nucleus. Lavoisier changed the
emphasis to tracking by weight, and thereby discovered the chemical ele-
ments. The modern theory of atoms and molecules embodies both kinds of
entities. In the oxidation of a metal, it gains the weight of oxygen nuclei, but
the metal atoms lose electrons. Theories of both loss and gain were in some
sense correct. But this could not have been anticipated at the end of the
eighteenth century, and there could have been different paths to where we are
today - or to somewhere else.)

My approach to the study of pattern formation is that each pattern is an
entity in its own right, with certain properties to be discovered and charac-
terized. To this end, the most interesting patterns to me are those which are
most clearly formed all at once, that is, in a single simultaneous event over the
whole spatial region occupied by the pattern. In Acetabularia, the hair initials
(or ray initials, for the reproductive cap) are all first seen simultaneously.
There is no hint of the sequential formation of parts that one sees in the
segmentation of vertebrates and some insects and in phyllotaxis, and less
markedly in Drosophila segmentation and in flower formation. Therefore I
find Acetabularia an ideal system in which to study a pattern as a thing, an
entity.

Does the kind of fit between experiment and theory which I find in
Acetabularia have any relevance to Drosophila segmentation? Several people
(including me) have applied reaction-diffusion theory to the latter phe-
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nomenon, and such work is currently receiving a very mixed reception.
(Meinhardt, 1977, 1982, 1988; Harrison and Tan, 1988; Lacalli, Wilkinson,
and Harrison, 1988; Nagorcka, 1988; Lacalli, 1990; Lyons et al., 1990). In
brief, the controversy involves the following two attitudes. Normal Drosophi-
la development features, as the first clear indication of the segmented body
plan, seven stripes of expression of certain genes - see the cover picture on
the book by Scott F. Gilbert (1988). This pattern can be disturbed by muta-
tions in numerous other genes. On the one hand, the theorists generally start
by envisaging the seven-stripe pattern as an entity, and try to account in
general terms for its formation, using a minimal number of chemical sub-
stances and interactions between them to do the job, on the assumption that
the pattern is an interacting whole, with communication by transport of sub-
stances. Extension to account for the details of the normal pattern formation
and its disturbance in mutants should be done by gradual minimal additions,
in which the number of substances used in the theory will at first be many
fewer than the known genes and their products. The full detailed match is a
long way down the road. On the other hand, many of the experimentalists,
however, now maintain that there is increasing evidence that each stripe is
autonomous from a very early stage and should be thought of as a separate
entity, that any theory must show a good match to a large fraction of the
current wealth of detailed information, and that interaction across the pattern-
forming region is not necessary. (They envisage the pattern as having its
origin in known monotonic gradients of certain gene products along the egg.
Nuclei in different positions could independently read the levels of concentra-
tion in such gradients and respond by on-off switching of the segmentation
genes in a manner very critically governed by the primary gradients.)

I cannot here resolve a controversy which is likely to continue for some
years and in which I am definitely committed to one side. Two rather general
considerations strike me as worthy of reflection and further work:

1. In gradient-reading models, two adjacent nuclei on opposite sides of a
stripe boundary and only about 10 |xm apart must respond quite differently to
the level of a primary gradient. Over that distance, the change in concentra-
tion in one known gradient in Drosophila (bicoid protein) (Driever and
Niisslein-Volhard, 1988) corresponds, in free-energy terms, to an energy
thousands of times smaller than the energy of most chemical bonds - in fact,
less than thermal energy, which is commonly capable of randomizing any-
thing that does not have much greater binding energy. My conclusion from
this is that the local-gradient-reading models, with no interaction between
nuclei, need testing in carefully designed computations (with random input
added to mimic thermal "noise"), just as much as reaction-diffusion models
need testing in a computer. To do the job properly and show that the
qualitative suggestions about what is going on actually work needs the ap-
proach of the theorist. This is a neglected field at the moment, because most
theorists are attracted to the other kind of model.
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2. Reaction-diffusion mechanisms sometimes are ruled out on grounds
which are spurious - because they fail to take into account the possible
complexity of control of such a pattern mechanism by the inputs to it. It is
well known experimentally that Drosophila segmentation patterns are hier-
archically controlled by patterned inputs from genes which have been acti-
vated earlier. If I make a Brusselator reaction-diffusion model produce seven
stripes, I can make any of them appear or disappear independently of the
others, and so make each appear autonomous, simply by suitably patterning
the inputs. In this regard, often it is also not realized that a given input to such
a mechanism may fail to produce pattern when its concentration is either too
high or too low. Thus, a given substance can produce positive or negative
regulation. The advocate of kinetic theory would tend to avoid the use of these
terms as qualitative attributes of a chemical substance: The concentration
range must be specified. Perhaps a good test for whether or not a biologist has
been converted to the kinetic paradigm (upon reading the rest of this book, or
in any other way) might be whether or not the person has stopped using the
terms "positive regulator" and "negative regulator."

1.3 Mixing and unmixing: molecules versus large objects

To this point this book has been a philosophical commentary on the kinetic
paradigm, and hence on why (or whether) the reader may see a sufficient
degree of promise in the paradigm to justify reading on. Here I begin the
elaboration of the paradigm. In what follows, we must often consider assem-
blies of two kinds of objects, perhaps represented simply as A and B, and the
processes which we might characterize as "chaos-out-of-order" (mixing) and
"order-out-of-chaos" (unmixing, sorting out, pattern formation). Sometimes
one may legitimately consider such processes without first deciding whether A
and B represent molecules or large objects, but not always. Molecules are
"real," but their quantum-mechanical nature still sets them apart from large
objects in ways which are sometimes significant. To what extent is it legiti-
mate sometimes to think of a biological cell as if it were a huge molecule, and
the sorting out of an assembly of two kinds of cells as being like the separation
of two liquid layers when a binary solution has been taken past an immis-
cibility threshold? If one takes an interest in the computer models called
"cellular automata," does the adjective have its biological meaning, or could
each "cell" represent a molecule?

1.3.1 Molecules and individual identity: classical physical
chemistry versus modern molecular biology

In the education of the chemist and biochemist, an impression is often given
of the solid establishment of the atomic theory in the early years of the
nineteenth century, and its continuous progress ever since. In this view, the
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structural organic chemists of the 1860s already saw the molecule and its
constituent atoms as objective realities, and have never changed their outlook
since.

But if one looks toward the physics of the very late nineteenth century, one
sees a quite different view. The reality of molecules and atoms was being
seriously questioned by an influential group of physicists, foremost among
them Ernst Mach. Their philosophy, known as "positivism," saw objective
reality only in the macroscopic behaviour of matter. Explanation in terms of
atoms and molecules was seen as explanation in terms of abstractions which
were in no sense themselves concrete objective realities. By the 1890s, some
prominent scientists who had earlier believed in the capacity of the kinetic
molecular theory to account for thermodynamic properties no longer did so
(Fenby, 1981).

What was seen in the 1890s as the imminent demise of the atomic theory
appears today as a brief illness in the adolescence of a concept which went on
to healthy adulthood after the 1910s. Its recovery was brought about in part by
union of experiment and theory in relation to Brownian motion, especially by
Einstein and Perrin during the years 1905-13 (Fenby, 1981; Lavenda, 1985).
But earlier, the conceptual foundation had been laid by the statistical mechan-
ics of Boltzmann and his persistent advocacy of it, culminating in the Liibeck
Conference of 1895 (Moore, 1972). Ninety years later, most biologists are
fully convinced of molecular reality and of its overwhelming importance to
their field, but they are not yet sure that mathematics has a significant role in
biology.

To such, it may be interesting that Boltzmann's supporters in the cause of
molecular reality were the young mathematicians of the day. Mathematics,
and plenty of it, is needed to handle the concept that the transition from chaos
to order, and from random to deterministic behaviour, is statistical and coin-
cides spatially with the transition from molecular to macroscopic scale. This
concept of "molecular randomness, macroscopic determinism" provided the
basis for acceptance of both molecules and large objects as concrete realities.
It became an essential element of the philosophy of physical chemists, and
remains so today.

If the physical scientist and the biologist are to build bridges between their
territories, it behooves them both to contemplate the different kinds of bed-
rock at the two ends. The modern molecular biologist recites a credo in which
it is asserted that a single DNA molecule can produce deterministic mac-
roscopic consequences through a continuous chain of deterministic steps. This
contrasts strikingly with the Boltzmann-statistical view described earlier. Yet,
without Boltzmann and his supporters, molecular science might have re-
mained longer in disarray and today be less advanced than it is.

How may the concept of randomly acting molecules producing order out of
chaos only through action in great numbers be reconciled with that of the
deterministic single molecule? First, one must recognize that in a certain
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restricted sense the positivists were right: A water molecule in the body of a
dog is not an individual in the same sense that the dog is an individual. If
we have two dogs named Rover and Fido, there are always differences be-
tween them which allow us to distinguish them. If they are separated and
one is later selected at random and shown to us, we can give it the correct
name. In a study of population dynamics, they might be regarded as identi-
cal items in a count of the population. But they are never quite identical.
The same applies to objects which are smaller, but still macroscopic. The
developmental biologist knows that the fate-mapping of cells in an early
embryonic stage to show to what tissue or organ each will give rise may be
difficult, but the biologist always believes this to be possible, and sometimes
succeeds in doing it.

A part of the problem for Boltzmann and others in securing acceptance for
classical statistical mechanics was that if one similarly treats molecules as
distinguishable individuals, calling one H2O molecule Rover and another
Fido, one gets a wrong count of the number of their arrangements and cannot
calculate a statistical entropy which is an extensive property of the system;
that is, if one doubles the size of the system, the statistical entropy does not
double. To resolve this, the classical statisticians had to assert the individual
indistinguishability of molecules and divide their calculated numbers of states
by the rearrangements of all molecules of the same species. The entropy and
other thermodynamic properties then played the game according to the rules.
But particles moving in the manner of Newtonian mechanics are not funda-
mentally indistinguishable. Given the present location and motion of each
molecule in a gas or liquid, one can in principle fate-map back through the
equations of motion to where each of them was at any earlier time.

The methods of classical statistical mechanics, therefore, were not put on a
proper foundation until the quantum mechanics of the twentieth century arose,
including the Heisenberg uncertainty principle. This established the approxi-
mate nature of position and motion. When a water molecule comes back to us,
the information as to whether it is Rover or Fido may be forever lost. The
question of what its name is has in fact no meaning. Molecules of H2O have
no individual identities and thus lack one essential ingredient of the nature of
large objects.

If, however, two molecules are not of exactly the same species, but have
some difference, albeit a minor one, in atomic composition, then they have
two separate individual identities. Two DNA molecules, even of the same
molecular weight and with the same overall base composition, but with a
minor difference in sequence, can be securely identified as Rover or Fido, no
matter how often they are removed, randomly interchanged, and returned to
the observer. Thus the worlds of Boltzmann and of Watson and Crick are
different places, far apart; but the former was at least an essential staging point
on the way to the latter.

I note in passing that the foregoing account obviously raises the question
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whether or not one can use analogues of thermodynamic variables in discuss-
ing assemblies of cells, or populations of organisms. The concept is attractive
a priori, especially in relation to evolution, but the route to its development is
full of extremely dangerous pitfalls, especially in relation to the distinction
between molecular identity and macroscopic identity. For a rigorously treated
concept of entropy in relation to populations and evolution, see the writings of
Demetrius and co-workers: Demetrius (1985), Demetrius and Ziehe (1984),
and earlier work there cited.

My topic remains, however, morphogenesis of the organism and its parts. It
is a commonplace that every living organism consists principally of liquid
water. A marine alga, such as the Acetabularia on which I have done experi-
mental work, may be contemplated philosophically as a picture sketched out
in three dimensions by a variety of organic substances, but with the water of
the ocean as its three-dimensional canvas, passing right through it and very
little impeded in molecular motion. Water exchanges between the inside and
outside of most cells much more rapidly than does anything else. To the other
molecules, constituting most of what we perceive as the living organism, that
water is a gusty hurricane of overwhelming force and erraticism. The great
question of developmental theory is this: Do the self-organizing structures of
living organisms paint themselves into three-dimensional pictures by joining
together structurally, bit by bit in building-block or jigsaw-puzzle fashion, in
sufficient strength to overcome the hurricane, or does development at some
stage make use of the hurricane and produce order out of chaos in the
Boltzmann-statistical manner? This book is for anyone who feels that the
latter is sufficiently probable to be worth thinking about.

1.3.2 Arrangements, aggregations, amplifiers, automata

BAABABBBABAABBABAA ±̂ BBBBBBBBBAAAAAAAAA (1.1)

Here we have two kinds of hypothetical objects in a disorderly arrangement and
in an ordered one, with transitions between the two in either direction: left to
right, order out of chaos; right to left, chaos out of order. Both kinds of changes
occur in natural systems. What is it, in the initial state of a system, which
determines its destiny: being ordered, to stay ordered; being chaotic, to stay
chaotic; to go from order to chaos; to go from chaos to order? In the first two of
these four possibilities, a major feature of the initial arrangement is stable; in
the other two, some minor feature has been amplified. When either of those
drastic changes in structure occurs, the thing one must search for in the initial
state is the amplifier. This sort of amplification has the essential attributes of
catalysis. It is the acceleration of certain processes, brought about by some-
thing which is not usually an obvious major feature of the gross structure of the
starting configuration. Like catalysis, it never violates the laws of ther-
modynamics by producing thermodynamically impossible changes in equi-
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librium states. But it can sometimes act to take a system away from equi-
librium, and to hold it out of equilibrium, provided that there is sufficient
linkage between what is going on in the system and the continuous changes in
its surroundings to satisfy the laws of thermodynamics.

A well-known example in which the dynamics of a system make an ex-
tremely effective amplifier of chaos is the idealized set of perfectly elastic
billiard balls on a perfectly frictionless table with perfectly elastic ends and
sides with which the balls can collide. If a number of these balls are moving in
parallel paths exactly perpendicular to the ends of the table, they may continue
to bounce back and forth in unchanging order forever. But clearly, introduc-
tion of the slightest error into the path of one of the balls will lead very soon to
collisions, and a total breakup of the parallel paths into a system of motions in
random directions at a distribution of assorted speeds. In a currently active
branch of mathematical physics, the word "chaos" is used in a precise sense
to mean the kind of disorder produced by such an amplifier. For an account at
the level of the nonexpert, see Crutchfield et al. (1986). Of the idealized
billiard game, they write as follows: "For how long could a player with
perfect control over his or her stroke predict the cue ball's trajectory? If the
player ignored an effect even as minuscule as the gravitational attraction of an
electron at the edge of the galaxy, the prediction would become wrong after
one minute!"

Thus, in this system, the presence of the amplifier of chaos in the dynamic
properties of the system is overwhelming. It can take as its starting distur-
bance the minutest irregularity in the initial state and deliver the system to the
same ultimate chaos. This implies that the ultimate state is an equilibrium one;
it will be the same, regardless of initial state and disturbances thereto, given
the same set of balls and the same total kinetic energy. This model, of course,
is intended, in its commonest usage, as an analogue to the behaviour of
molecules in a gas, and the final state is the Maxwell distribution.

A question thereby arises: Are the billiard balls in this model, or the A's and
ZTs at the beginning of this section, analogous to molecules only, or mac-
roscopic objects only, or both? Are the uncertainties which lead to final chaos
quantum-mechanical properties, related to the Heisenberg principle, and
therefore relevant to molecular and smaller scales only, or are they properties
of large objects? These philosophical questions are raised here not in an
attempt at final resolution of them, but to warn readers from different
branches of science that they may look at things like the sets of A's and ZTs
and have quite different concepts in mind, according to their backgrounds.

Crutchfield and associates devote some space to this matter and conclude
that "some large-scale phenomena are predictable and others are not. The
distinction has nothing to do with quantum mechanics." That is, in a system
of large-scale objects, "chaos," or "exponential amplification of errors due to
chaotic dynamics," "ensures that the uncertainties will quickly overwhelm
the ability to make predictions."
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In this context, the modern biologist who would like to look at my arrange-
ments of A's and ZTs and think of them in much the same way, whether each
letter represents a molecule, or a cell in some particular differentiation state,
or an organism in a population, may be closer to being in step with some of
the thinking of modern physicists than is the classical physical chemist. The
cell-as-molecule concept is indeed an important one in morphogenesis, and is
addressed in several places in this book (see Sections 4.4.1, 4.4.4, 4.5, and
5.4). The essential message to the biologist is one of reassurance. Order-out-
of-chaos unmixing processes, such as the forward direction in equation (1.1),
may be thought of in much the same terms for molecular units or for large
units provided that one avoids a certain pitfall. Assemblies of large units have
essentially no entropy of mixing (otherwise called "configurational en-
tropy"). For them, it is not useful to try to distinguish the left- and right-hand
sides of equation (1.1) in terms of an entropy. But for molecules, that entropy
is very important. Generally, a big interaction between system and environ-
ment must provide a driving force beyond some threshold value for the un-
mixing to occur, if A and B are molecules. This kind of threshold is discussed
in Section 6.4 and is there distinguished from various other thresholds which
arise in morphogenetic theory but are not concerned with satisfying the laws
of thermodynamics.

In the preceding paragraph I have switched from discussing chaos-out-of-
order to the reverse, that is, from the backward to the forward sense of
equation (1.1). (The backward sense is just the idealized billiard-ball dynam-
ics with a starting configuration of two kinds of balls, differently coloured and
at first spatially separated; it is diffusion.) The forward, order-creating, pro-
cess also involves amplifiers. An amplifier is something within a system
which selectively exaggerates certain of its initial features, so that the system
develops to express the properties of the amplifier much more than the main
properties of either external interactions or the initial state of the system,
except that the initial state contains the amplifier.

This definition is sufficiently broad that any morphogenetic mechanism can
be called an amplifier, and that is legitimate, and perhaps useful. But if one
seeks to classify mechanisms, another question arises: Does the amplifier act
essentially statically or dynamically? The answer "statically" leads toward a
picture of geometric fitting, for which one is more likely to adopt the word
"assembly," as in the most restricted sense of the term "self-assembly." The
alternative "amplifier" can reasonably be given a restricted sense, for mecha-
nisms in which the dynamics govern the outcome. Such amplifiers lie within
the scope of classical physical chemistry and the perspective of "molecular
chaos, macroscopic order." They are made of randomly moving molecules,
and their deterministic properties are such statistical properties as concentra-
tions in solution and rates of reaction as functions of concentration. In relation
to a seemingly chaotic initial state, what a kinetic amplifier of order perceives
is not, as in the case of the chaotic amplifier, some tiny detail of the system,
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but some long-range order, often deeply hidden. What it is, for instance, in
the left-hand side of equation (1.1) is discussed in Section 5.3.2, especially
Figure 5.6. But again, as in the case of the chaotic amplifier, what is finally
expressed is much more a property of the amplifier than a property of the
initial state.

Does the observed microstructure of organisms suggest, a priori, static or
dynamic amplifiers? To many biologists it has seemed to be the former; to me,
the latter. I have long and consistently been impressed by the fact that both the
organism and the protein molecule have precise geometries, but that as one
goes down from the organism to microstructures such as the cytoskeleton one
sees structures with some general order but a lot of detailed disorder. Good
geometric fitting of small parts, sufficient to explain the larger-scale reg-
ularity, seems to be absent. This topic, especially in relation to symmetry, is
taken up in Chapter 5. The account focuses attention on the approximations
which one makes in describing the shape of an object. It is related to the
currently popular topic of fractal geometry, as discussed and publicized by
Mandelbrot (1977, 1982). Early in his later book he raises the question of the
true shape, and more particularly the length, of a coastline as one takes one's
degree of approximation downward from that of a small-scale map to that of
individual sand grains. The same perspective is much more important in the
shapes of living things and how they are formed, without excessive accumula-
tion of error in form, in the reverse order of those degrees of approximation.

That reverse order is aggregation. In the inanimate world, much is known
of the geometry of crystal growth, in both simple forms and complex, variable
forms such as the stellate snowflake, as well as the much more irregular
dendritic growth in such things as colloidal aggregates and deposits on elec-
trode surfaces. What do these tell us of order, chaos, and amplifiers in the
mechanisms of their formation? In brief, what one might call "sticks-where-
it-touches" aggregation, with no subsequent movement of the particles, pro-
duces irregular, irreproducible dendritic growth matching the randomness of
the diffusion which produces it. Therefore, it is usually known as diffusion-
limited aggregation (Ramsay, 1986; Sander, 1987). Everything else requires
movement of particles within or upon the surfaces of the aggregates. In
Section 4.21 discuss crystal growth and show that some simple shapes may be
equilibrium shapes, needing motion only so that the shape can find its way to
equilibrium. But complex shapes are carved out by molecular kinetics and
must be explained kinetically. Thus, the bridge between the molecular and the
macroscopic must be built with the classical physical chemist's resources of a
Boltzmann-statistical world.

If the statement that ends the preceding paragraph is accepted as at least a
promising possibility, the need for mathematics in pursuing that possibility
should be at once evident. This topic is taken up at greater length in Section
6.1, in which some attempt is made to set the kind of mathematics required
into the framework of the general philosophical strategy of the approach. This
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kind of mathematics is of the seventeenth and eighteenth centuries, and
Boltzmann's advocacy of microscopic-to-macroscopic-via-mathematics is of
the nineteenth. But in recent years, a new means of expression for formal
logic has become accessible to everybody: the computer program. In particu-
lar, a kind of model known as a "cellular automaton" has been indicated as
relevant to problems of biological development and evolution. There is clearly
some kind of relationship between automata and the forward direction of
equation (1.1). The automata commonly produce patterned distributions of
two symbols. Three general questions arise, and they are addressed at various
points in this book (e.g., Sections 3.2.1, 5.2, and 5.3). First, what is the
correspondence between such computer programs and the equations earlier
published for kinetic models of morphogenesis, especially reaction-diffusion
theory? Second, can such computer modelling be used effectively without full
mathematical analysis as a component of the scientific method, leading to
prediction and further experiment, and the linking together of a priori appar-
ently different concepts? Third, when the word "cellular" is used to describe
these automata, should the biologist take it to mean cellular in the biological
sense, or can the models represent patterning on the molecular scale? This is
just a new slant on the matter of whether the A's and ZTs in equation (1.1)
represent molecules or large objects, or possibly either. In brief, my attitude is
that most automaton programs do not include a random choice at any place
where it could represent a diffusion process. Without such a step, the automa-
ton does not represent reaction-diffusion at the molecular level, but its cells
could be biological cells.

1.3.3 The kinetic preconception

Aristotle's universe was, as the world immediately around us appears, full of
matter. The stars and planets moved by being carried on rotating spheres, and
each sphere derived its motion from that of the one outside it. An object
moved up or down to find its right place, which was a function of its material
environment.

In the realm of physics, especially in relation to astronomy, that kind of
thinking was being replaced by less concrete, more abstract ideas from the
fourteenth century onward, culminating in the Scientific Revolution of the
seventeenth century. Planetary motion became thoroughly understood as ki-
netic process, although its explanation involved forces between widely sepa-
rated objects seemingly unconnected to each other, a concept previously seen
as having an air of total unreality. Likewise, light was understood for centuries
as a vibration, in a fully scientific interplay of theory and experiment, without
any notion of what the vibrating medium might be. At one point, those who
yearned for a more concrete Aristotelian concept tried to postulate a "lumi-
niferous ether," but that idea has long been dead.

Physicists (with whom I include physical chemists) are socially conditioned
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by this historical perspective to accept strategies of research in the sense of the
upper arrow in Figure 1.1. They are prepared to study process and motion as a
scientific objective, with the question of what material is undergoing the
process as a secondary consideration, perhaps far enough away that it may
occupy the efforts of different people even in later decades.

Such thinking has been slower to enter biology because the biological
world appears to be Aristotle's. Every part of space in a living organism is full
of something. When speaking, for instance, of a pore in a desmid cell wall, I
often have to point out that a pore is not an empty hole. It is just a region full
of something different from that in the surrounding region. For a proper
description, one should know what the filling substance is. By the same
token, Aristotle's law of motion, that velocity is proportional to force, is quite
correct for motion in a viscous medium. It is used today, as Stoke's law, often
without the recognition that it is Aristotle's and that he remains correct for a
material-filled world. Micron-sized objects such as bacteria, in a liquid medi-
um, have in fact no recognizable acceleratory motion at all when acted on by a
force; Newton is irrelevant.

Why, therefore, can one not deal with all phenomena within living organ-
isms in a concrete, Aristotelian way? Indeed, one can get much further with
this kind of thinking in biology than in physics, and that is why so much of
biological theorizing is concrete. The main theme of this book is that some
parts of the explanation of development require the more abstract, and thus
usually more mathematical, thinking associated with motion as the ultimate
reality. As the first theme of classical thermodynamics was that heat is a mode
of motion, so the present theme is that biological form is a mode of motion.
D'Arcy Thompson (1917) gave instances of a great variety of transient shapes
assumed by rapidly flowing water. Meinhardt (1982) drew attention to a stable
periodic pattern produced by a continual flow of water, and the seemingly
stable forms assumed by water issuing from a sluice-gate, flowing over rocks,
or rounding a bend in a river are well enough known. For Whitewater rafting,
particular water structures can be marked on charts and given names as if they
were objects. As if? The whole point is that they are objects, and living
organisms must sometimes be appreciated as objects in the same sense. This
is not easy to visualize; nor, applied to our own bodies, is it congenial, for it
uncomfortably stresses our transience.

A major obstacle to recognition of the great question which kinetic theory
seeks to answer is the very static appearance of the microstructural informa-
tion in electron micrographs. To be sure, many structures in a cell are firmly
secured. But much material is not; and for untethered protein molecules, the
sea within a cell rages beyond anything experienced by a small boat trying to
round Cape Horn. For undergraduate classes, I like to point out that a 40-foot
boat driven 75 miles off course in a storm is the analogue of a 30-kd globular
protein, diameter 40 A, randomly moving 40 |xm (i.e., the length of a large
cell). At normal diffusivity for such a molecule, this would take an average of
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3 seconds. How can any spatial control be maintained in such a storm? The
general answer is that molecules, in large numbers, have statistical properties
which are deterministic. The randomness disappears when the numbers are
large enough.

(One might ask, Why does the molecular approach work at all? Surely a
large fraction of these boats must get smashed up in the storm. The point here
is that, in relation to the intensity of the storm, the internal structure of a
molecule is held together about 10 million times more strongly than the boat
in the analogy. Without that strength, there would be no structural chemistry.)

In biological evidence, one does not easily see either the raging storm or the
deterministic flows and transformations of material which overcome it. The
electron micrograph is like a mariner's chart or a map in an atlas. A famous
story among opera lovers is that the conductor Franz Lachner, while rehears-
ing Wagner's The Flying Dutchman in 1864, complained about "the wind that
blows out at you wherever you open the score." Anyone can feel this wind on
hearing the remarkably evocative music played. Only a fully trained musician
can feel it when looking silently at the printed score. When one contemplates
an electron micrograph, and then a diagram of chemical changes in bio-
chemical cycles, one should feel first the storm which raises the question and
then the great determined flows through it which shape the organism.



2
Morphogen: one word for at least two concepts

William of Ockham's name is known to most scientists only for the principle
of economy in theoretical explanations - Ockham's razor - most succinctly
stated as follows: A plurality must not be asserted without necessity. It is less
well known that three centuries before Newton, Ockham asserted that there
was no objection to the concept of action at a distance (Crombie, 1959).

Kinetic theory of living pattern and form is essentially concerned with both
of these preoccupations of Ockham. It stems from a recognition that a kind of
action at a distance must be operating whenever, in biological development, a
shape appears in the absence of any antecedent of the same shape or of a
precise geometrical fitting together of parts. The action must be some form of
communication over the entire scale of the new pattern at, or slightly before,
the time of its first morphological appearance. The scale of the morphogenetic
field may be the size of a single cell, or even part of a large cell, or the span of
many cells in a tissue. In very diverse examples, pattern often becomes visible
at a size of tens of micrometres. Kinetic theory can readily accommodate at
least the range from 1 jxm to 1 mm.

Of the various possible kinds of communication, molecular diffusion is
given the most prominence in this book because reaction-diffusion theory is
the most extensively developed branch of kinetic theory. This part of the
general theory well exemplifies the whole, because other communication
systems (such as mechanical stress) usually will have to be combined with
feedback loops (negative and positive, inhibition and activation) of similar
nature to those in reaction-diffusion theory to give a complete account of
pattern generation.

It should be recognized, then, that diffusibility may not be a sine qua non
for the intimate involvement of a substance in a morphogenetic mechanism.
Diffusion may sometimes be the actual means of communication, and some-
times, at the present early stage of attempts to correlate theory and experi-
ment, a metaphor for other means of long-range communication.

Many biologists seem to regard the use of differential equations as a com-
plex, difficult, and obscure manner of setting up a theoretical explanation. I
maintain that they usually represent, rather, the vigorous use of a well-honed
Ockham's razor which has shorn away all the complexity not demanded by
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necessity. The equations themselves usually express, in concise form, fairly
direct and simple postulates. Difficulties arise in solving the equations. Surely
this is to be expected if the equations indeed express an intrinsic simplicity
which is capable of explaining a number of the complexities of biological
development.

In devising theories for the production of pattern and form, one must be
careful to put in at least the minimum that will have the capacity to do the job.
Ockham's razor must be used to shave the theory's whiskers, not to chop off
its head. Many well-known theoretical concepts, such as "a diffusible mor-
phogen," fall short of pattern-forming ability. They may be significant parts
of a complete mechanism, but gain that significance only within the context of
the whole. In this chapter, I try to take some of these pieces of the body of
kinetic theory and show what part of the explanation each represents and what
is missing. This discussion is intended to lead to a view of the countenance of
a clean-shaven pattern-forming theory and to take the reader as far into it as
one can go without using the calculus.

The word "morphogen" appears rather frequently in the following account.
It has, just now, at least two usages which appear, superficially, to be conso-
nant, but which actually are conflicting. The account develops this point and
also indicates a change from my earlier viewpoint (Harrison, 1987), in which I
argued for restriction of the term "morphogen" to one of these meanings. The
use of the word by experimental biologists for the other meaning is now so
prevalent that I suggest drawing a distinction between two types of mor-
phogens, which may be called I and II.

A type I morphogen might otherwise be called a Wolpert positional sig-
naller, and it is the kind of substance that experimental biologists usually are
postulating when they use the phrase "a diffusible morphogen." The sub-
stance is envisaged as being distributed in a monotonic gradient from local
sources which it does not itself control by any kind of feedback. Because its
concentration is a single-valued function of position, such a substance is
appropriate for conveying positional information. But the essential topology
or symmetry of the pattern is already present in the arrangement of sources of
a positional signaller. Therefore, it does not have the form-generating proper-
ty which, etymologically, is surely the most precise significance of the term
"morphogen." By the same token, the type I morphogen is not the right kind
of thing to be a central feature of any answer to the great question of how
pattern is formed ab initio.

A type II morphogen, or Turing morphogen, is one of at least two diffusible
substances (X and Y, or Gierer and Meinhardt's A and H) taking part in
interactions of "activator-inhibitor" character (Turing, 1952; Prigogine,
1967; Gierer and Meinhardt, 1972). These interactions confer on the pair of
substances the ability to set up, for instance, patterns of repeated concentra-
tion peaks which become the effective sources of X and Y. Thus they control
the positions of their own sources and are prime movers in the generation of
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pattern. Anyone thinking in terms of this kind of theory, and having found
some evidence for the presence of one substance which may play a role in
such a mechanism, will always be thinking next about the other substance.
The pair interaction is of the essence.

2.1 Type I morphogens: Wolpert positional signallers

The concept that a cell somehow knows its position within a developing
assembly of cells, and differentiates or regulates its functions in response to
that knowledge, is more than a century old and has been discussed for both
plants and animals. The botanist Hermann Vochting (1877, 1878) seems to
have priority for the concept; see a number of references to his work in the
volume edited by Barlow and Carr (1984). Lewis Wolpert (1970, 1981) has
promulgated the concept strongly, with particular reference to phenomena of
the animal kingdom.

How does a cell measure its position in a developing system? In other
words, what specifies the coordinate system? It is most usual nowadays to
postulate a gradient of some diffusible substance. One must further suppose
that a cell located somewhere in this gradient is able to respond differently to
different concentrations of the diffusing messenger. Interaction between cell
and messenger might take a variety of forms, but could readily be of the
known kind between a hormone and a cell, involving binding of the mes-
senger to a receptor on the cell surface. The postulated messenger in fact falls
within the definition of a hormone as a substance produced in one place and
transported to another where it initiates a change, provided only that one is
prepared to envisage a much shorter scale of distance for the transport than
one normally does in relation to hormones. Consequently, the transport may
be by the slow means of diffusion, rather than by fast bulk transport, as, for
instance, through a bloodstream.

This kind of messenger may be envisaged as operating in morphogenetic
fields of one, two, or three spatial dimensions. Usually, some more or less
localized source is envisaged for the messenger, together with either a lo-
calized sink or destruction of the messenger everywhere at a rate proportional
to its concentration. Such models lead to steady-state concentration profiles of
simple form for the messenger, such as those sketched in Figure 2.1. The
curve of Figure 2.1b may, according to the spatial dimensionality of the
system and the distribution of sinks for the messenger, assume a variety of
detailed shapes, not all exactly the same as the exponential falloff with dis-
tance shown here. But all these shapes must, if the model has only the features
just specified, have one feature in common: The concentration of the mes-
senger, in the steady state, must fall off monotonically with distance from the
source.

This is the essential requirement for a substance which must specify a
spatial coordinate without ambiguity. A distribution with peaks or troughs in it
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Figure 2.1. (a) For a one-dimensional system, the steady-state distribution of a diffus-
ing material between a localized source and a localized sink.(fr) For a diffusing mate-
rial with a localized source, no localized sink, but decay everywhere at a rate propor-
tional to its concentration (first-order decay constant k), steady-state distribution; Q) is
diffusivity. (c) A distribution which could not occur in the steady state for diffusion
alone or diffusion combined with first-order decay. The peak at P must be dropping
because material is being removed by both diffusion (in both directions) and decay, and
is not being supplied by any means. This distribution is unsuitable to specify a
positional coordinate in the morphogenetic field extending from source to sink, be-
cause concentration is not a single-valued function of position (e.g., the concentration
Cl specifies both position A and position B). For the proof that gradient (b) is exponen-
tial in distance, see Problem 6.5.6. For a gradient of this form in a known substance
(bicoid protein in Drosophila), see Section 10.2. For a similar (but not yet so precisely
quantitated) gradient of retinoic acid in the chick limb bud, see Eichele and Thaller
(1987), following the discovery of retinoic acid as a Wolpert positional signaller or
type I morphogen (Tickle et al., 1982). For a review contrasting monotonic gradients
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fails to do this (Figure 2.1c); but this cannot arise in the steady state by
diffusion and first-order decay alone, except for the single peak corresponding
to the source position. This is normally envisaged as being at one extremity of
the morphogenetic field, and therefore causes no ambiguity.

By the same token, however, the diffusible signaller of this kind is a passive
messenger which conveys unaltered the information of how far away the
source is. It does not play an active role in converting one kind of information
(genetic) into another (morphological), because it cannot create sources and
sinks. Consider, for analogy, an artist who has designed a large mural and is
employing a number of art students to paint in some of the areas he has
mapped. If one observes the work in progress, seeing only these assistants and
what they are doing, one sees a number of people who clearly have some of
the attributes of an artist (e.g., they have acquired the technique of painting).
But there is no evidence that any of them yet have the ability to create a good
design; and it might not be easy, from observation only of the work in
progress, to find out who is the designer.

Although I would much prefer to see the word "morphogen" reserved for
substances which have an active role in generating form, I now bow to the
increasing usage of the word for Wolpert signallers by suggesting the classifi-
cation into two types. What did Turing mean when he introduced the word?
He wrote that the word was "intended to convey the idea of a form producer.
It is not intended to have any very exact meaning, but is simply the kind of
substance concerned in this theory" (italics added). This is read in different
ways by different people. I take "very exact" to refer to chemical structure,
and the italicized words to tie the definition to his mathematics (i.e., to my
"type II").

Living organisms have a remarkable capacity to generate quantitative mea-
sures of distance within themselves as they develop. They can, so to speak,
not only draw coordinate systems but also put numbers on the axes. Any
respectable mechanism proposed to describe morphogenesis should address
explicitly the problem of how a physicochemical system can do this. A great
strength of kinetic theory is that it is the only extensive part of the literature of
developmental biology which has so far done this.

The passive diffusible messenger which sets up a monotonic gradient be-
tween a localized source and a localized sink can partition the distance be-
tween them, but does not determine its magnitude. If, however, there is a
source only, and removal of the messenger is by its decay everywhere, then
the messenger itself can set up a quantitative scale of distance from the source.
To see this most clearly, it would be nice (though not essential to the argu-
ment) to see this scale as a linear one, that is, somehow to convert the curve in
Figure 2.1b into a straight line. This is easily done, simply by plotting In C

Caption to Figure 2.1 (cont.) and patterns of repeating parts, with much the same
attitude as mine regarding the problems of their formation, see Nagorcka (1989).
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Figure 2.2. Steady-state distribution of a diffusible messenger with first-order decay
(Figure 2.1b) replotted with a logarithmic scale of concentration, which may also be
taken as a linear scale of free energy of the messenger, in the approximation of ideal
behaviour.

instead of C versus distance s (Figure 2.2). Every change of one unit in the
natural logarithm of the concentration corresponds to a movement of a dis-
tance (2)/&)1/2 along the system; this quantity can be regarded as the effective
unit of distance.

Physicists who believe that everything significant can be described on the
back of an envelope are commonly addicted to dimensional analysis. In those
terms, if one notes that a diffusivity 2) has dimensions of (distance)2 (time) ~ l

(e.g., cm2 sec"1) and that a first-order decay constant has dimensions
(time)"1 (e.g., sec"1), then the obvious combination giving a measure
of distance is (2)/£)1/2. All quantitative measures of distance in reaction-
diffusion theory are more or less complicated variations on that theme.

If the messenger is a substance in solution which behaves as an ideal solute
in the thermodynamic sense, then its free energy per mole (chemical poten-
tial) changes linearly with InC. The distance scale is then marked out as a
free-energy scale; equal intervals of free energy correspond to equal intervals
of distance.

This is the simplest example of a reaction-diffusion model. In lacking the
capacity to generate sources, it is very far from a complete morphogenetic
model, for, as set out in this and later chapters, what remains to be added is
rather a lot. The model, however, besides representing fully the properties of
substances which may exist as positional messengers (type I morphogens),
exemplifies two matters of strategic importance: (1) An active role for the
messenger, quantitation of spatial scale without external reference, appeared
only when reaction (as decay or self-destruction) was added to diffusion; both
properties are essential for an active role. (2) The reader is being asked to take
my word for the exponential shape of the curve in Figure 2.1b and the
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expression (2)/&)1/2 for the distance unit. Even this simplest case cannot be
discussed fully without calculus (see Chapter 6 for details).

2.2 Activators versus morphogens

The missing component in the foregoing model is an origin for the source, or
for the difference between source and sink. The relative positions of these
regions are manifestations of polarities in the developing organism. Some of
these may be traceable back to the beginning of development (e.g., to the
animal-vegetal polarity of an oocyte). This cannot, however, be the case for
every polarity which is seen during development, for if all of these could be
found at the outset, in proper spatial relationship, then, first, all development
would be attributable to the inheritance of macroscopic templates, and there
would be no role left for the genome, and, second, the initial state would
contain a miniature of the developed form. This would be equivalent to the
long-discarded concept of the homunculus in the sperm.

Morphogenetic mechanisms, therefore, though they may in some instances
build upon existing polarities which are macroscopic templates, must in many
instances be capable of generating polarities ab initio with the aid of sub-
stances specified in their chemical nature, but not directly assigned to spatial
positions, by the genome. Even where a rudimentary polarity exists at the
outset, it usually needs great amplification. The mechanisms which can act as
sufficiently good amplifiers usually turn out to be the same ones which have
the capacity to produce a polarity ab initio. These concepts are further dis-
cussed in relation to the making and breaking of symmetry in Chapter 5.

The obvious way for a localized region to become markedly different from
surrounding regions is by what has variously been termed positive feedback,
self-enhancement, or autocatalysis. Of these three terms, the last would com-
monly be taken to imply action on the molecular scale, that is, a feedback
loop indicated by a single step in a chemical reaction mechanism. But the
other two terms have no specific implication of a uniquely defined spatial
scale. They could include action above the molecular scale, by which, for
instance, (1) differentiated cells could cause adjacent ones to differentiate in
the same way (homeogenetic induction) and (2) in a developing nervous
system, the conduction of impulses across a newly formed synapse could
cause neighbouring synapses to become stronger - the theory of Willshaw and
von der Malsburg (1976) for retinotectal specificity.

Self-enhancement is an essential feature of most kinetic theories of mor-
phogenesis which are complete in the sense I defined earlier. A substance
possessing this property on the molecular scale of its formation reactions can
grow in concentration at differential rates which reflect and amplify initial
irregularities in its distribution. Thus, concentration peaks, such as P in
Figure 2.1c, can build up. The property of self-enhancement, however, by
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itself confers no control on the positions of these concentration maxima. If the
input to the mechanism consists of those random fluctuations of concentration
which are everywhere in chemical systems, this "concentration noise" will
simply be amplified without increase in order. The result will not look much
like Figure 2.1c. That diagram, taken in the context of the discussion in this
section and the preceding one, suggests that a combination of diffusion, decay
or destruction, and self-enhancement may be necessary for full mor-
phogenetic potential.

This is indeed the drift of my argument. But it will turn out that something
more usually will be needed for proper control of pattern formation: more than
one substance with this combination of properties. It is by no means obvious a
priori, that such an increase in the complexity of the theory is a necessary head
which Ockham's razor is not permitted to chop off. To see this, it is necessary
to go into some detail regarding the behaviour of a single substance with this
combination of three properties.

To this end, as indicated in Chapter 1, my favourite example, for both
autobiographical and pedagogical reasons, is spontaneous optical resolution
by stereospecific autocatalysis. Even this instance could be argued to concern
more than one substance, if the two enantiomers are counted separately. But,
as will emerge later in this chapter and in the more extensive account in
Chapter 5, their mutual interaction is insufficient for full control of a pattern,
and they essentially exemplify the capacities of a single substance.

Any elementary account of chemical kinetics starts with the examples of
first- and second-order reactions, that is, those in which the rate of reaction is
proportional to the concentration of a reactant or to its square. The discussion
of feedback, or autocatalysis, involves the recognition that reaction rates may
depend also upon the concentrations of the products. An elementary discus-
sion must start in like manner by assuming that two probable dependences of
the reaction rate are upon the concentration of the product or upon its square.
The latter, second-order autocatalysis, turns out to be the one which confers
substantial morphogenetic power upon the reaction product (the "activator").
It has been used in almost all extensive elaborations of the kinetic theory of
pattern formation (e.g., Prigogine, 1967; Gierer and Meinhardt, 1972). In
terms of mechanism, second-order autocatalysis is likely to arise if a potential
catalytic site requires the attachment of two product molecules as ligands to
activate it.

A reader who already has some acquaintance with Turing's (1952) sug-
gestion which is the original source of reaction-diffusion theory may at this
point be suspicious, because Turing's equations do not contain squared con-
centrations. This is a false appearance in relation to the mechanistic implica-
tions of the equations. They involve departure from equilibrium in both direc-
tions, and for this to be symmetrical and first-order in the displacement is
most easily achieved by a mechanism which contains second-order auto-
catalyses. This statement may be quite mysterious to the mathematically
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uninitiated reader. Its exposition is a major theme of the introduction to
mathematical formulations in Chapters 6 and 7. But we may make a start
here, with the instance of optical resolution, which well exemplifies the point.

W. H. Mills (1932) seems to have been the first to indicate clearly, in
relation to this example, how chemical kinetics may act to take a system away
from equilibrium; in this case, the movement is from the racemic equilibrium
of equal concentrations of D- and L-enantiomers. Mills pointed out that if a
system is already displaced from that ratio, say, for example, such that there is
twice as much D as L, then a second-order stereospecific autocatalysis would
lead to D being produced four times as fast as L. Thus the system is moving
away from racemic composition toward resolution as D. One need only add a
removal process, such as a flow system in which a solution passes through a
catalyst bed bringing fresh reactant and removing product not attached to the
catalyst, to see that progress to complete resolution, with total loss of one
enantiomer, is possible by this mechanism. It is not required that the enan-
tiomers be diffusible; the system can, in fact, be taken as well stirred. Also,
the starting imbalance could be much less than the 2-to-l ratio that Mills
assumed for the sake of simple numerical illustration. He discussed statistical
fluctuations as a starting point and concluded that they would be sufficient to
start a system at least as large as a modern eukaryotic cell on the road to
resolution.

This model illustrates well the basic kinetic behaviour needed for a sub-
stance to be an autocatalytic activator. Among the important aspects of this
behaviour is the relation of squared terms in the catalysis to linear departure
from equilibrium, which the model very easily shows. The rate of formation
of D is proportional to D2; the rate of formation of L is proportional to L2 , and
with the same constant of proportionality, because of the symmetrical rela-
tionship between enantiomers. Hence the optical asymmetry (D - L) is grow-
ing at a rate proportional to (D2 - L2); and by the familiar formula for the
difference of two squares, this is (D - L)(D + L). The washout of all excess
production ensures that (D + L) is constant on the catalyst surface. Hence the
optical asymmetry (D - L) is growing at a rate proportional to (D - L).
Suppose we call this asymmetry U. Then U, in the rate equations, has dimen-
sions of concentration and looks as if it were the concentration of a single
chemical substance designated by the same symbol. But, unlike an ordinary
concentration, U can be either positive or negative, according as there is an
excess of D or of L in the system. If U is positive, its growth is proceeding in
the positive direction; if U is negative, its growth is proceeding in the negative
direction. (Throughout this book, the symbol for a hypothetical substance is
used, without square brackets, for its concentration.)

The preceding paragraph has a concealed philosophical purpose. It con-
forms, at least approximately, to my promise not to use mathematics in Part I.
But several of the sentences are the exact logical equivalents of equations, and
could be written as such (Chapter 6). I maintain that mathematical theories
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Figure 2.3. A simple geometry for theoretical discussion of kinetic models for pattern
formation. Reactants flow upward in a tube which is envisaged as narrow in the
direction perpendicular to the plane of the page. Thus the catalyst bed has one dimen-
sion much longer than the other two, and if pattern is formed at all it probably will be
only in that direction - coordinate s. The pattern-forming reactions and diffusion take
place within the region of the catalyst bed. Product concentrations in solution in the
region of the catalyst bed are always sufficient to keep all sites on the catalyst saturated
with product. Thus the total amount of adsorbed product is constant. Product made in
excess over this amount is continually being washed away in the upward flow, an
equivalent to first-order decay. Rapid exchange between product in solution and adsor-
bate is assumed, so that the product attached to the catalyst has a composition reflect-
ing changes in production. For the optical-resolution model discussed in this chapter,
(D + L) is constant over the catalyst bed; the possible pattern is of variable (D - L).

and logical arguments expressed in words are not different in kind. One
resorts to equations when the logic has become too cumbersome for conve-
nient verbal expression. The preceding paragraph approaches this threshold.
Because I tend to think of an equation as a sentence, I am always puzzled
when some biologists argue that mathematical explanations may not be appro-
priate in their fields. They all use words, and logic.

A kinetic model has no pattern-forming ability across a morphogenetic field
in the absence of a communication system extending throughout the field. If
the optical-resolution model is to generate a pattern or regions resolved as D
contrasted with others resolved as L, those two species must be diffusible.
Figure 2.3 shows a suitable geometry for a simple discussion of this pos-
sibility. The problem is reduced to one spatial dimension by making the
catalyst bed much longer in one direction than in the other two, and the inflow
of reactants and washout of products are at right angles to that direction. The
catalyst is always saturated with D and L at a total concentration Cs.
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Suppose that the system is initially racemic, with adsorbed D and L both
Cy/2, and that a small disturbance is somehow introduced in the form of a sine
wave, of small amplitude, with one full cycle across the width of the system
(Figure 2.4a). The total amounts of D and L in the system are unaltered; only
the spatial distribution has changed. If one has a Mills mechanism at work in
the catalyst bed, then, in the absence of diffusion, every displacement above
or below the equilibrium line at CJ2 will grow at a rate proportional to its
current value, that is, it will grow exponentially in time, a familiar growth law
in biological systems. This converts Figure 2.4a into Figure 2.4b. On the
latter diagram, the diffusion of D is suggested by arrows along the curves.
Clearly, if this is occurring, it must slow down the rate of upward movement
of the peak P and the rate of downward movement of the trough T. As always,
diffusion tends to ensure that every valley shall be exalted and every mountain
and hill made low.

I cannot, short of the mathematical discussion, conveniently show that for a
pattern which is a sine function of the distance, the rate of this smoothing by
diffusion is also proportional to the displacement from equilibrium at every
point. But in fact it is, and the sine wave remains a sine wave, but with
changing amplitude.

At this point the reader may well wonder why I have chosen to discuss a
sine wave as the initial disturbance. Its presence imposes a defined pattern on
the system. As it grows in amplitude, its form (e.g., the symmetry of the
concentration distribution) does not change. Thus, in this growth of amplitude
the pattern may have become more obvious, but there has been no pattern
formation, no symmetry-breaking. How does this example help us toward the
objective of showing how living things extract orderly form from chaos?

First, this discussion of a diffusible activator is intended only as a second
step along the road toward that distant objective. A diffusible activator, even
in the form of two enantiomers, does not have all the required attributes for
getting order out of chaos that a complete pattern-forming mechanism must
have, and we must start with something orderly to see in any simple way what
it can do. Second, although pattern is here amplified from an existing rudi-
ment rather than formed ab initio, what is done by the mechanism is in fact a
very significant generation of order. As the amplitude of the sine wave in-
creases, the enantiomers are unmixing. One is increasingly becoming stacked
up in the left-hand half of the system, and the other in the right-hand half.
Anyone with an elementary knowledge of thermodynamics will recognize this
as the type species of a nonspontaneous process, which cannot occur without
some interaction with the rest of the universe outside the system.

Third, and most important for the exposition of how reaction-diffusion
works, the sine wave is a very special pattern with which to measure pattern-
forming ability. When we have gone the next few steps along the road and
arrived at the Turing equations, we shall find that the dynamics specified by
them are still incapable of distorting a sine wave into anything else. That
property is unique to the sinusoidal disturbance. Anything else will be changed
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Figure 2.4. Pattern formation in the optical-resolution model, along the long dimen-
sion of the catalyst bed in Figure 2.3. (a) A small initial disturbance in the form of a
sine-wave pattern of partial resolution, (b) The same disturbance some time later, as it
would grow in the Mills autocatalytic mechanism without diffusion or with insufficient
diffusion to stop the growth. The diffusive flow of D from peak P and toward trough T
is shown by arrows on the curve, (c) "Nonlinear" distortion of the sine wave at the
limit of complete resolution. For clarity, (b) has been drawn as sine waves, although
the amplitude is quite close to CJ2. At so large an amplitude, distortion from si-
nusoidal form toward the final square-wave shape of (c) would in fact already be
evident. For clarity of presentation, the boundary condition used in these diagrams is
that equilibrium is maintained at both ends of the system. This means that the ends, or
regions beyond them, are working actively to equilibrate the system at those points,
since D and L are leaving or arriving by diffusion at unequal rates, but the boundaries
are morphogenetically passive in the sense of not defining any polarity for the system.
The same end conditions would remain appropriate if the diagrams were all turned
upside down.
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in shape as it is amplified. The essence of the matter is that more complex, more
chaotic, and therefore more realistic inputs can be resolved into a sum of sine
waves of a variety of wavelengths. At least in the early stages of pattern growth
the amplifying mechanism treats each of these separately, as if the others were
not there. And because components of different wavelengths are amplified or
suppressed at different rates, the shape of their sum changes qualitatively.
Examples are given later in this chapter (Figures 2.5, 2.6, and 2.7).

Meanwhile, however, if the reader stays with one sine wave and considers
the later stages of its increase in amplitude, it can be seen that there is some
trouble ahead. The concentration of D or L can nowhere rise above Cs nor fall
below zero. That is, the exponential growth of amplitude must somehow stop.
It was not evident from my verbal argument for the occurrence of the expo-
nential growth that the argument contained an approximation which must
break down at large amplitudes. If one casts the argument in equations,
it is evident enough, and it involves what the mathematician calls nonlin-
earity. It is, however, pictorially quite clear that the symmetry of the initial
disturbance in Figure 2.4a must lead to two oppositely resolved patches, as in
Figure 2.4c.

The Mills mechanism is thus capable of amplifying a rudimentary pattern to
a pattern of fully resolved patches. Because it does this most quickly in the
absence of diffusion, it may not be obvious why I have mentioned diffusion at
all. The problem lies in the total lack of discrimination of the autocatalytic
amplifier per se. Without diffusion, the wavelength of the initial disturbance
in Figure 2.4a would be quite irrelevant to the exponential growth rate of the
pattern. Every disturbance would be amplified at the same rate. Therefore,
concentration noise, containing a mixture of many wavelengths, would be
amplified as noise. The nondiffusing activator is not a pattern generator; it is
not a morphogen.

By contrast, consider the three waveforms in Figure 2.5 (left-hand side) if
the substance diffuses. The peak P has the same height in all cases and is
therefore growing by autocatalysis at the same rate in all. But diffusion rate
depends upon concentration gradient, and therefore, for the same amplitude,
rates are different at different wavelengths. Specifically, the diffusion rate
becomes faster as the wavelength is shortened. Hence, as the resultant of
catalysis and diffusion, short-wave patterns grow more slowly than long-wave
patterns. Indeed, at a sufficiently short wavelength, diffusion will win, and the
pattern will decay exponentially instead of growing. Figure 2.5 (right) shows
what might have happened, at the same later time, to each of the three
waveforms; the middle one is taken to be at the threshold at which diffusion
just counterbalances catalysis, and the pattern neither grows nor decays.

Figure 2.6a shows some irregular-looking "concentration noise" and its
analysis into the sum of three sinusoidal waves. An autocatalytic activator
which did not diffuse would simply convert this chaos into a larger-amplitude



44 Macroscopics without mathematics

Short wave

DecayA A ,
\J \J

Medium wave No change

Growth
Long wave

Figure 2.5. Illustration of the wavelength dependence of amplification of a spatial-
concentration waveform by a diffusible activator. The three changes shown all refer to
the same time interval, which is called t = 2 in Figure 2.6. The initial concentration
noise in Figure 2.6 is the superposition of the three initial waveforms shown here.

version of the same. But a diffusible activator, having the same wavelength
discrimination as that in Figure 2.5, would produce the sequence of changes
shown in Figure 2.6b-d. Evidently, as time goes on, different components of
the initial noise arise to transient dominance of the pattern; but the final
destiny of the system is dominance of the longest-wavelength pattern in the
input. In fact, as discussed in more detail in Chapter 6, the system must
eventually become uniform, as exemplified in nature by the universality of L-
amino acids and D-sugars and the absence of the opposite enantiomers.

The fundamental properties of a diffusible activator are, then, that it grows
and spreads; and because the spreading diminishes concentration gradients
and hence diminishes the adverse effects of diffusion on the growth rate, the
widest patches of activator grow most rapidly, for comparable peak concentra-
tions. Pattern arises transiently and then vanishes. The activator which gave
early promise of being a morphogen shows that it is not quite that; something
else is still needed for pattern generation. These simple conclusions could
have been reached by considering a single activator without the complications
of the relation between a symmetrical pair that arise in the optical-resolution
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Figure 2.6. Amplification and smoothing of concentration noise across a one-dimen-
sional system by a kinetic model of the optical-resolution type which gives greater
exponential growth rates for longer waves, without limit. The left-hand column shows
overall concentration, the horizontal line being the equilibrium value, and the right-
hand column shows its sine-wave components. The rate constant for exponential
growth of each component is A:[l - (Xo/X)2], where Xo is the wavelength of the
component which neither grows nor decays. The time unit is kl3. See Chapter 6,
especially equation (6.45) and Figure 6.5, for mathematical details. Compare Poly-
sphondyliwn data (Section 10.3.2, Figure 10.9a,b).

model. But the latter has an advantage in that it exemplifies very clearly the
symmetrical two-way departure from equilibrium which, as we shall see later,
remains a feature of kinetic systems lacking the symmetrical relationship in
molecular geometry.
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2.3 Inhibitors, such as chalones, versus morphogens

The rather obvious lack in the model of the preceding section is something to
put the brakes on the indefinitely wide spread of the activator peak. One may
expect any such additional feature to bear some relationship to the discussion of
establishment of a spatial scale, in Section 2.1. There, we see that addition of
decay, or destruction, to the properties of a diffusible messenger confers upon it
the ability to quantitate spatial scale. To the specific end of limiting the size of
an activated region, however, there is a better model set of properties, involving
inhibition. The common feature between this and the previous example of
Section 2.1 is that delimitation of spatial scale by kinetic action within the
system seems always to require a negative aspect to the kinetic activity.

The point may be exemplified by the simplest version of the essential
property of the postulated mitotic inhibitors known as chalones. These are
tissue-specific inhibitors of mitosis in the same tissue which produces them.
The two words "hormone" (Starling, 1905) and "chalone" were coined early
in this century to designate, respectively, stimulatory and inhibitory chemical
messengers. [E. A. Schafer coined the word "chalone" at the Seventeenth
International Medical Congress in 1913; see the extract from the British
Medical Journal of that year reproduced by Houck (1976).] While the word
"hormone" soon passed into general use, the other did not, but it was revived
by Bullough (1962) with a more restricted definition as a mitotic inhibitor
"produced by a tissue with the primary function of controlling the growth of
that same tissue." There remain doubts in the minds of some biochemists
about the existence of chalones. They have resisted chemical purification and
identification, although biological assays have shown the requisite activity in
extracts and the possibility of carrying out concentration procedures to aug-
ment that activity. Of this situation, Bullough (1983) has written that "from
time to time biochemists and cell physiologists have complained that no
reality should be accorded to the chalones until they have been chemically
characterized, which is a point of view that will not impress anyone who
knows anything of the history of hormone research and usage. Biological
evidence can be fully as impressive as biochemical evidence."

The following is a much oversimplified view of the action of a chalone in
regulating homeostatically the size of a tissue. But it contains the gist of the
matter, both for that function and for the relationship of chalones to mor-
phogens. The cells in a tissue are initially in an activated state in that they all
undergo mitosis at regular intervals. In that state, as well as in the later
inhibited state in which they have ceased to divide, they all produce a chalone
at a constant rate per cell. The chalone diffuses throughout the tissue at a rate
that is rapid compared with the rate of mitosis, and so it can be regarded as
uniformly distributed. It can also escape across the surface of the tissue at a
rate proportional to its concentration inside the tissue and to the surface area.
(Every one of these assumptions can be substantially modified in a variety of
ways without removing the essential property to which they lead.)
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If we suppose the tissue to be three-dimensional (e.g., a sphere in the
simplest visualization), the rate of inhibitor production will be proportional to
the volume, that is, to r3 (r = radius), while the rate of escape will be
proportional to Cr2 (concentration times surface area). Hence, if the rate of
adjustment of the inhibitor concentration is fast compared with the rate of
change of r due to mitosis and cell growth, the inhibitor will always be at a
steady-state concentration, increasing in direct proportion to the radius. The
final assumption needed is that a particular threshold concentration of the
inhibitor will switch off mitosis in any cell exposed to it. It is then clear that
the tissue must stop growing when it reaches a definite radius, which we could
express in terms of kinetic constants if we turned all the foregoing statements
into equations. Further, if cell loss later diminishes the size of the tissue, the
steady-state inhibitor concentration will drop, and mitosis will begin again,
until the former size is restored. Thus the size of the tissue is stable against
disturbance, or is homeostatically controlled.

Nothing in this argument is specific to three-dimensional geometry. For a
single-layer epithelial sheet in the form of a circular disc, the chalone produc-
tion rate would vary with r2, and the escape rate with r, and again the balance
of these terms would leave steady-state C proportional to r - and likewise if
the system were a one-dimensional filament, the rates then being proportional
to length r and to C.

There also is nothing in the foregoing argument which is specific to a
spherical or circular shape. The proportionalities to r, r2, and r3 remain
correct if any tissue, as it grows, develops into a shape which is, in the strict
geometric sense, similar to the original shape. If, however, a tissue grew by
cell division and subsequent growth, with indiscriminate close packing of the
cells, its shape could not be other than a sphere. The chalone could determine
its radius, but could not govern its shape or form. A chalone is not a mor-
phogen.

2.4 Type II morphogens: Turing morphogen pairs

In each of the three preceding sections, hypothetical substances have been
discussed which would have properties appearing, a priori, likely to be useful
in the matter of pattern formation or morphogenesis: first, the communication
necessary to organize the activity of a morphogenetic field; second, activation
of some kind of chemical behaviour; third, inhibition to limit the size of the
activated regions. But in each case the postulated set of properties fell short of
the requirements for the substance to generate form or pattern.

The essential postulate of the kinetic theory of living pattern and form is
that for pattern-generating activity, the substances possessing the sets of prop-
erties which I have discussed separately must interact with each other. It then
becomes rather obvious why it is so difficult to identify any one substance as a
morphogen. The word is akin to the words "twin," and "husband" and
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"wife." To identify a person as such, one must know of the existence of
another person. To identify a chemical substance as a type II morphogen, one
must know its relationship to at least one other chemical substance.

Suppose that a substance has the activator property discussed in Section 2.2
and illustrated in Figure 2.4. A peak such as that shown on the left-hand half
of that diagram is a system in which growth is occurring. But this growth,
being in the total amount of a chemical substance, is somewhat different
spatially from the case of growth in the number of cells in a tissue discussed in
Section 2.3. Because a chemical substance can exist over a range of con-
centrations in solution, the total amount can increase without the need to
occupy extra territory, at least until the saturation condition of Figure 2.4c is
reached. The diffusibility of the substance, however, gives it the power to spill
over into adjacent regions, and as explained and illustrated in Figures 2.5 and
2.6, extra spatial size leads to faster growth, just as it does for the tissue of
close-packed cells all undergoing mitosis at regular intervals. In this sense,
the optical-resolution mechanism of Section 2.2, in which the largest and
therefore fastest-growing region finally takes over the whole system, is akin
to Bullough's (1983) concept of cancerous tumours as being tissues lacking
the homeostatic control of a mitosis-inhibiting chalone.

Suppose now that the activator assists catalytically in the production of a
substance which acts back on the activator to inhibit its production. This is not
much different from the chalone mechanism for homeostasis, except that the
activator and inhibitor are now both envisaged on the molecular scale, rather
than the former being cells and the latter molecules. The essence of the action
of the inhibitor remains the same: Instead of the growth rate of the activated
region increasing indefinitely with its size, there will come a point beyond
which increasing size will give slower growth.

In the mechanism for tissue homeostasis, this point is reached because the
cells move slowly, defining a slowly increasing region of space through which
the inhibitor can move rapidly, and from which it can escape rapidly by
continuation of its diffusion across the boundary of the tissue. The same
feature is necessary for the two molecular species now envisaged as a mor-
phogenetic control mechanism, and for essentially the same reason. The
adjustments of inhibitor concentration which permit it to control the growth of
the activator can be properly made only if the inhibitor moves much faster
than the activator.

Theories of pattern, form, and morphogenesis must, however, cope with
phenomena which have no precise parallel in the homeostatic control of a
single tissue, particularly the formation of complex patterns with a number of
repeats of the same kind of unit. In some instances such development occurs
in a time sequence (e.g., vertebrate somites, spiral phyllotaxis), but in others
the repeated parts appear all to be specified in a single pattern-forming event
(e.g., whorls, and segmentation in insects at the cellular blastoderm stage).
For the latter type of event, to apply kinetic theory one must envisage a
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number of complete cycles of the concentration waves occupying the whole
system. The actions of activator and inhibitor must extend throughout this
region. This is a contrast to the chalone theory, in which the inhibitor is tissue-
specific and has no effects beyond the limits of the single activated region.

To secure this proper organization of a complex pattern, it is also necessary
that both activation and inhibition be continuous functions of the concentra-
tions of the two substances causing them. In the tissue homeostasis model, the
growth rate of a cell mass in which all cells are dividing is proportional to the
number of cells, and hence exponential; but the postulated inhibitory effect of
the chalone has a simple switching character (i.e., it is a discontinuous func-
tion of the concentration). This is good enough when the inhibitor has nothing
to do after escaping from the activated region. But if the situation is like that
of Figure 2.4, an inhibitor which has escaped from the left-hand half of the
system into the right is there going to have to play a role which is in some
sense a mirror image of what it did in the left-hand half. This requires the
inhibitor to produce effects when it is at low concentrations, as well as when it
is at high concentrations.

In the preceding four paragraphs I have presented a model having five
features: a self-enhancing activator; an inhibitor produced at a rate controlled
catalytically by the activator; the inhibitory effect of this back upon the ac-
tivator; slow diffusion of the activator; and rapid diffusion of the inhibitor.
These are five of the six terms in the pair of differential equations published
by Turing (1952) under the title "The Chemical Basis of Morphogenesis."
The sixth term is a self-decay of the inhibitor; the model will work without it,
and the advantages which it confers are not easily seen without the mathe-
matical analysis of the equations.

Provided that all biosynthetic pathways are in action to provide the ac-
tivator and inhibitor with the substrates they need for their catalytic activities,
their mutual interactions are capable of generating pattern and form. Together,
as a pair, they are morphogens. If one of them is lacking, the other also ceases
to be a morphogen, though it may remain an important substance in one of the
categories of positional messenger, activator or inhibitor, hormone or chal-
one. In kinetic theory, morphogenetic character is conferred upon substances
by a kind of espousal between them.

2.5 The two-morphogen interaction

The essence of any kinetic theory of pattern formation is that initial input is
always to be found everywhere in the form of a chaotic jumble of small
disturbances containing rudiments for pattern of any spatial dimension, or
wavelength. The job of a pattern-forming mechanism is to amplify or suppress
these rudiments selectively. Both the shortest and the longest must decay,
while those in a narrow intermediate range are amplified. In this sense, a
pattern-forming mechanism is a kind of band-pass filter for the random input.
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In two-morphogen reaction-diffusion models, the following occur: the ac-
tivator amplifies indiscriminately; diffusive spreading is fastest at short wave-
lengths, and converts the amplification into attenuation of these; and the
inhibitor does the same for long activated regions, because its diffusive escape
is then slower and it builds up within the activated regions.

As qualitative generalizations, these aspects of the working of a reaction-
diffusion mechanism are, I hope, obvious enough in the context of the earlier
parts of this chapter. Quantitatively, there are many different reaction-
diffusion models showing substantially different behaviours in detail. All the
well-known two-morphogen models, however, reduce to the same one when
the amplification of pattern is just beginning, out of small-amplitude rudi-
ments. That one is the linear Turing model. To my mind, the novice in this
field is well advised to understand the working of the linear model as a basis
for approaching the nonlinear models, such as the Brusselator of Prigogine
(1967) and the model of Gierer and Meinhardt (1972).

The meanings of "linear" and "nonlinear" are illustrated in Section 2.2,
especially in relation to Figure 2.4. There, the growth rate of a quantity U,
which happened to be a measure of displacement from equilibrium in that
case, is indicated as being proportional to U. This is a linear term in the
growth equations; any other function of U, such as U2, or U3, or \IU, or \nlU,
would be a nonlinear term. For reasons which require the calculus for their
exposition, and which are therefore deferred to Chapters 6 and 7, reaction-
diffusion models in which all terms in the growth equations are linear have the
general property that they cannot distort the shape of a pattern which is a pure
sine wave in the distance variable. The dynamics of the model can lead only to
an increase or decrease in the amplitude of the sine wave, as between Figures
2.4a and 2.4b, and the three changes shown in Figure 2.5.

Those diagrams are for an activator only. The inhibitor in the linear Turing
model gives similar kinetic terms, linear in its displacement from equilibrium
both ways, often called V. We may now alter Figures 2.4, 2.5, and 2.6 to the
equivalent representations of behaviour when the inhibitor is also present. The
assumed starting disturbance, Figure 2.7a, has activator and inhibitor dis-

Figure 2.7. (opposite) Some morphogen distributions and their evolution in time.
Vertical distance is concentration; horizontal distance is position along the system, (a)
Putative initial state, a sine-wave distribution with X (solid line) and Y (broken line) in
phase with each other, (b) Evolution of such patterns (X only shown) according to
wavelength; both short and long waves decay, but a wave of intermediate length grows,
(c) A somewhat chaotic initial state evolves to a more orderly pattern, because the
initial state is a sum of three patterns of different wavelengths like those in (b), and
only the one of intermediate wavelength grows, (d) Typical steady state of a Gierer-
Meinhardt pattern; the inhibited region is very long and flat compared with the acti-
vated region. The wavelength selection shown in (c) is a closer match than is Figure
2.6 to the Polysphondylium data (Section 10.3.2, Figure 10.9a,b).





52 Macroscopics without mathematics

tributed in sine-wave patterns of the same wavelength and in phase with each
other. Let us now consider the model hypothetically as a machine in which we
can switch on each of the important processes separately, in sequence:

1. The activator starts to depart from equilibrium in proportion to the value of
U at each point. The U wave grows in amplitude exponentially, without
distortion from the sine-wave shape.

2. The activator starts to diffuse. The rate of growth of its amplitude is
slowed down, but it remains exponential growth, without distortion of the
sine-wave shape.

3. The activator, in proportion to U at each point, starts to catalyze the
growth of V (upward and downward, two-way departure from equilibrium,
just as it catalyzes its own growth). The V wave now grows exponentially,
but at a different rate from the U wave. Thus both will stay sinusoidal, but
the ratio of their amplitudes will change as time goes on.

4. The inhibitor starts to diffuse, faster than the activator. The rate of growth
of the V amplitude is slowed, perhaps quite drastically.

5. The inhibitor starts to inhibit the growth of the activator, in proportion to
the value of V at each point. The growth of U is slowed down, and both U
and V remain distributed in undistorted sine-wave form. Without mathe-
matical discussion, however, it is not at all obvious what is now going to
happen to the relative amplitudes of U and V waves. A clearly plausible
statement, which turns out to be correct within certain quantitative limits
upon relative rates, is that U and V are now so locked together by mutual
interaction that their amplitudes must settle down to a constant ratio. Both
then grow together, so that if in a certain time the U wave doubles in
height, so does the V wave.

Consider now how the system will behave at a variety of wavelengths: the
analogue of Figures 2.5 and 2.6, but with the inhibitor added. At very short
wavelengths, diffusion will be sufficient to swamp out all possible growth,
and the system will decay, just as did the activator alone. At longer wave-
lengths, the effect of diffusion is smaller, and the system may be able to grow.
(Whether it will grow or not depends on quantitative considerations which
need the mathematical analysis; short of that, one can see qualitatively that at
least the rate of decay is going to become smaller as the wavelength increases,
and the reader will have to take my word for it that the decay can change sign
and become growth.)

But because the inhibitor diffuses faster, an increase in wavelength gives
more advantage to the inhibitor than to the activator. Thus, as wavelength
increases, the steady-state ratio of inhibitor to activator increases. This must
bring about an effect of wavelength on growth rate in the direction opposite to
that of diffusion. As wavelength increases, the inhibitor becomes more and
more capable of putting the brakes on activator growth because there is more
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and more of the inhibitor in relation to activator. Here, we are looking at a
more complicated version, with continuous variables, of the way in which a
chalone can switch off tissue growth at some critical size. Thus, if the increase
in wavelength is pursued far enough, growth will turn back into decay. This is
the band-pass aspect which gives the model the power to select a medium
wavelength out of initial chaos containing both longer and shorter ones (Fig-
ure 2.7b,c).

The reader may at this point have some suspicions about the assumptions
that have been made regarding the chaotic input. It is plausible enough that the
total of U disturbances can be Fourier-analyzed into a sum of sinusoidal
components of various wavelengths, as shown in Figure 2.6a, and, likewise,
that the V disturbance can be similarly analyzed. But my discussion has
depended upon an assumption that the components of the same wavelength in
the U and V disturbances are exactly in phase with each other. This seems, to
say the least of it, improbable for a chaotic input in which there is no reason
for U and V disturbances to be correlated at all, because no correlating
mechanism has yet started to operate.

For linear waves, the solution to this problem is suggested by an illustration
due to Maynard Smith (1968) of how the Turing model works. I defer the
detailed presentation of this illustration to the reintroduction of this model in
Chapter 7 (Figure 7.1). But the gist of it is that if one takes a system at
equilibrium and introduces a local U disturbance only, with no initial V
disturbance, the U disturbance will spread and itself generate a V disturbance
which soon will adjust into phase with the U waveform. The in-phase char-
acter of these two disturbances is, in short, something which is soon com-
manded by the strong kinetic locking-together of U and V whether it exists in
the input or not.

Investigation by computation of the properties of some of the nonlinear
models (Chapter 9) gives even more striking results. For the Brusselator
model, if a single peak is generated and the system is then doubled in length to
see if the model will turn one peak into two and thus give some account of
dichotomous branching, indeed it occurs. But the time sequence is that the U
pattern splits into two peaks, while the V pattern looks essentially unchanged.
Then, slowly, the V pattern also begins to readjust into two peaks. It is not at
all easy to understand, from study of the algebra of the models, how the U and
V waves seem somehow to "know" their ultimate joint destiny while they are
so far out of kilter with each other at intermediate stages. But it is fortunate for
ready comprehension of what is going to happen that they do.

2.6 Activation and inhibition versus activated
and inhibited regions

Figure 2.7a may be described as showing an activated region as the left-hand
half and an inhibited region as the right-hand half. Commonly, when reaction-
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diffusion theory is applied to generate a chemical concentration pattern of this
kind, it is then assumed that some kind of developmental activity is associated
with a high concentration of activator, such as a high growth rate of tissue or
of cell surface, or differentiation of cells in a particular way, or formation of a
specialized structure such as the preprophase band which seems often to
determine where a plant cell is going to divide.

The part of a morphogenetic field which is activated for a particular spe-
cialized activity often is much smaller in extent than the half of its length which
is suggested by the positive half-wave in Figure 2.7a. But the sine wave does
not give a very clear boundary to any smaller activated region, because it is
rather flat at the peak. Some nonlinear models easily distort the waveform to
give much more "spiky" peaks; to this end, the Gierer-Meinhardt model is
outstandingly good (Figure 2.1 d). Because of this special property of pro-
ducing, in effect, isolated mountains in the midst of a vast plain, the
Gierer-Meinhardt model has given rise to the slogan "short-range activation,
long-range inhibition," which is sometimes transferred to the entire body of
reaction-diffusion theory.

I am very much in two minds about the value of the slogan. On the one
hand, it describes succinctly a property of one particular reaction-diffusion
model, and it is an important property. On the other hand, it can mislead in
regard to the general workings of reaction-diffusion. The problem is that the
word "inhibition" is attached to what is going on in the vast plain. But in any
reaction-diffusion model of the two-morphogen type, the primary function of
inhibition is to limit the size of the activated regions, and it is within those
regions that the inhibitor is most concentrated and most actively at work. The
precipitous slopes of the mountains are not buttressed and shored up from
outside; they are glued and cemented from within, by the inhibitor-activator
interaction. A more precisely correct phrase, which is unfortunately a little
cumbersome for a slogan, is "short high-interaction regions, long low-
interaction regions." The interaction has to be understood as involving both
activator and inhibitor.

Demographic analogies spring to mind, in which, instead of mountains and
plains, cities and rural areas are used for the high- and low-interaction regions.
One may, for example, think of the police force as an inhibitor of lawless
activity and recognize that its strong inhibitory effect is within the cities. The
rural areas are more law-abiding, not because of stronger inhibition but be-
cause of a generally lower level of the interactions that tend to lead to law-
breaking. Analogies of this kind, however, generally fail if pursued too far,
as, for instance, into the precise details of the activator-inhibitor ratio, an
important feature of the Gierer-Meinhardt model, as discussed in Chapters 3
and 9.

If we return to Figure 2.7a, we see that the inhibited region looks just like
the activated region upside down. This diagram was presented as a putative
initial state, before the reaction-diffusion dynamics had had a chance to work
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on it. But there are certain mechanisms in which, as the pattern develops
through reaction-diffusion dynamics, the upper and lower parts of the pattern
always remain the same shape. It can then be seen that the processes going on
in an inhibited region and an activated region are not necessarily different
from each other in any qualitative sense, but are in fact two versions of exactly
the same thing, symmetry-related through a change of an arbitrary algebraic
sign. The obvious instance is optical resolution, as in Figure 2.4. A region
inhibited for formation of D is activated for formation of L, and vice versa.

Some types of reaction-diffusion models have a particular kind of non-
linearity which maintains this property - that the inhibited regions are just like
the activated regions upside down - even when they contain everything
needed to stabilize pattern in a Turing-like manner (which the simple optical-
resolution mechanism discussed earlier does not). One of these is the "hyper-
chirality" model we have devised (Harrison and Lacalli, 1978). Models
with this property have a particularly interesting feature in regard to two-
dimensional pattern: They tend to produce stripes rather than spots. This may
be quite significant in relation to such morphogenetic processes as Drosophila
segmentation (see Section 9.2 for further discussion).



3
Pictorial reasoning in kinetic theory of pattern and form

Practitioners of reaction-diffusion theory are frequently presented - off the
cuff, in some informal discussion - with some example of morphogenesis and
asked whether that type of theory can explain it. On an epithelial sheet, can it
account for the arrangement of feather follicles, or bristles, or whatever, in a
regular hexagonal array? Can it account for periodically repeated structures
only 1-2 |xm apart, such as xylem rings? Can it account for instances of
unequal division of plant cells? If so, what about the more numerous instances
of unequal division? Can it account for morphallactic regulation, in which a
chopped-off piece reproduces in miniature the former pattern of the whole, as
in the differentiation of a slime-mould slug? If so, what about epimorphic
regulation, in which a structure with a piece removed grows out to restore it,
as in many phenomena of insect development.

(This last question is very important and can be expressed much less poly-
syllabically: Can reaction-diffusion both measure and count? Experimentally,
both clearly happen, even in normal development. The whorls of hairs pro-
duced by the alga Acetabularia have variable numbers of hairs, but constant
spacing between adjacent hairs: Morphogenesis measures. The cellular
blastoderm of Drosophila always has 14 parasegments in normal develop-
ment, though the length of the egg can vary by at least 30%: Morphogenesis
counts. The answer needs mathematics; see Section 10.4.)

The theorist, so questioned, tends to feel somewhat like the Delphic sibyl;
and the questioner often goes away as unsatisfied with the answer as many
pilgrims were with the signal-to-noise ratio of the supposed transmissions
from Apollo. To the theorist, the answer must be equivocal because the
question is too broad. It contains the name of a vast field, reaction-diffusion
theory. Various specific versions of this theory are capable, taken together, of
accounting for most of the phenomena of development. But any one version is
much more restricted in its scope.

Perhaps a biochemical analogy may help. A cell biologist may suspect that
some behaviour of a cell is caused by actin, and thus may ask the question:
Could actin do it? Upon seeking an answer by immunoflourescence and
finding that there is no actin present in the significant regions, the biologist
must abandon that idea, but is quite unlikely to abandon the question: Could a

56



Pictorial reasoning in kinetic theory 57

protein do it? That question has hardly even been formulated in the biologist's
mind. It is too vast. The answer is almost always in the affirmative, but that
by itself doesn't tell anyone very much.

Much the same is true of reaction-diffusion theory. It is a generic term
covering a broad range of possible explanations. The detailed form-generating
properties of two different reaction-diffusion models can be as different as the
properties of two proteins. The general features which most reaction-diffusion
models have in common, in the scheme of mutual interactions and transport of
two substances, are analogous to the general concepts of protein structure,
such as the amino acid residue, the peptide link, and the various concepts of
secondary, tertiary, and quaternary structure. And reaction-diffusion per se is
only part of the more general field of kinetic theory. Thus, I am asking the
reader to accept Chapters 2 and 3 of this book in the same spirit as one accepts
the early chapters of many biochemical texts, in which the general structures
of proteins, nucleic acids,and suchlike are set forth - not, that is, in the spirit
of reading a specialized monograph about actin and myosin and their rela-
tives.

For example, in the matter of formation of regular hexagonal arrays on a
surface, Meinhardt (1982) indicated some considerable difficulty in persuad-
ing his model to do this. But this doesn't mean that there is trouble persuading
reaction-diffusion to do it. Lacalli (1981) found the same trouble with the
Gierer-Meinhardt model, but showed that the Brusselator (Prigogine, 1967),
in a modification by Tyson and co-workers (Tyson and Light, 1973; Tyson and
Kauffman, 1975), produced hexagonal arrays out of random input with no
difficulty.

The various questions posed in the first paragraph of this chapter are a very
mixed bag in regard to the levels of theoretical treatment needed to answer
them. Several of them require the mathematical treatment which is ap-
proached gradually in the next few chapters and finally given in Chapter 7.
Some of these questions are discussed in that context in Chapters 7-10. For
instance:

1. The question of the reasonable limits of spacings which can be produced
by a reaction-diffusion mechanism requires the algebraic solutions of the
Turing equations (see Section 7.3.2).

2. The measuring-versus-counting question, which is quite crucial to a grasp
of the broad scope of the theory, requires not only the algebra but also
some consideration of what kind of chemical mechanism may give rise to
the rate equations (Section 10.4).

3. The matter of the hexagonal arrays has to be gone after with a computer
programmed to solve the kinetic equations (Section 9.1.5).

But there are many features of the applicability of reaction-diffusion which
are not like this. In regard to the effects of chopping a developing system into
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pieces, whether it is done artificially with the scalpel or naturally by the
appearance of the cell plate in a dividing plant cell, much can be done
pictorially. One needs some appreciation that different mechanisms respond
differently, but only in a very general way. This chapter discusses this feature
of development in some detail. The intent is to show the experimentalist how
to think usefully about whether reaction-diffusion might account for the phe-
nomenon of immediate interest. Thus, the oracle circumvents the question by
putting the pilgrim in the oracle's seat, for in the matter of equivocal proph-
ecy, it is much more satisfying to give than to receive.

In the preceding chapter the basic workings of reaction-diffusion models
were discussed. A few things were lacking from that account, however, things
one must know about to start upon detailed application of the theory. The most
important of these is the fit of pattern to the size, shape, and boundary
conditions of the morphogenetic region. But also, the dynamics of pattern
development were treated in Chapter 2 largely as a matter of unrestricted
exponential growth of amplitude. There are only two indications, in relation
to Figures 2.4c and 2.7d, that, like most exponential growth, this must in
practice always come to an end at some point, and that the system then enters
a regime of substantially different behaviour. It is there, in the nonlinear
regime, to use the mathematicians' adjective, that the diversity of different
reaction-diffusion models arises.

The remainder of this chapter is divided into three parts. The first gives the
rest of the theory needed before one can start about application. The other two
parts are designed for a double contrast: between the plant and animal king-
doms, and between linear and nonlinear regimes of the mechanisms. The
account of cell division in plants is of my own devising, and not previously
published. The account of a few features of insect development gives what I
consider to be the gist of the important specific behaviour of the Gierer-
Meinhardt model. The contrast between the two corresponds to my present
view that a number of significant features of plant development can be ac-
counted for without going outside the linear regime, whereas Meinhardt
(1982) is correct, at least for such examples as insects and Hydra, in laying
stress on the strong nonlinearity of their dynamics and hence almost ignoring
the linear regime. Pedagogically, this leads to a problem which I have made
some attempt to solve by the balance of material in this chapter and this book.
One cannot understand the theory of nonlinear dynamics without first spend-
ing a lot of time thinking about linear dynamics.

3.1 The fit of pattern to boundaries and the dynamics
of pattern growth

We continue to be concerned with the mutual interaction of two substances,
often referred to as activator and inhibitor, or X and Y, or A and H in the
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writings of Gierer and Meinhardt. For the reasons set forth in Chapter 2, these
substances must have positive and negative catalytic influences, enhance-
ments and inhibitions, upon themselves and upon each other, of the kinds
there specified. All these catalytic influences share a feature which may look
peculiar to the beginner in this type of theory, in relation to anything that one
commonly learns in elementary chemical kinetics. This is, as explained in
Chapter 2, the two-way departure from equilibrium. If Xo represents an equi-
librium value of X, or a spatially uniform steady state which is not true
equilibrium because it is maintained by supply, production, destruction, and
removal of X, we may write U = X — Xo; and similarly for the other
morphogen, V = Y — Yo. Linear self-enhancement of X is growth of U at a
rate everywhere proportional to its current value, which may be positive or
negative, so that peaks in a concentration waveform move upward, and
troughs move downward. Diagrams of these waveforms are sometimes la-
belled with the variables U and V, and sometimes with the true concentrations
X and y, or A and H, which can only be positive. When reading any account,
one must be careful to check that one has understood which kind of variable is
being used. There is no generally accepted convention on terminology. In my
own earlier writings I used X and Y for what I am now calling U and V.

The apparent peculiarity of the catalytic interactions, thus baldly stated, in
which the catalytic effect appears to be proportional to only a part of the
concentration of the catalyst, is in fact quite a normal feature of relatively
simple chemical reaction mechanisms. It is illustrated in Chapter 2 by the
example of stereospecific catalysis in a matched pair of enantiomers, because
this is the easiest example to present without plunging into equations. Mathe-
matical analysis later in this book shows that the property is very far from being
uniquely attached to that example. X can quite well be a single molecular
species, and still display the same dynamics for its self-enhancement. This
term, or autocatalysis, or positive feedback loop, should also be recognized as
not far from synonymity with the two most fundamental properties of life:
reproduction and assimilation, which imply feedback on a grand scale, in-
volving thousands of chemical reactions. The equations of reaction-diffusion
should be understood in that spirit. A self-enhancement written simply as

2X + Y -* 3X

may represent a single step in a reaction mechanism, or a feedback going right
round one of those multistep cycles which are so commonly written in bio-
chemical schemes.

3.1.1 The fit of pattern to boundaries

Once again, it is assumed for simplicity that the system is elongated and is
producing pattern only along its long axis, an essentially one-dimensional
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u=v=0

\TV
Figure 3.1. Examples of linear (i.e., sine-wave) two-morphogen patterns along an
elongated system, with various ratios of wavelength to system length, and two kinds of
boundary conditions; k, wavelength.

situation. Figure 3.1 shows a few patterns which might occupy the length of
the system. These are all sine waves (i.e., they would arise in the linear region
of behaviour). They differ in the number of wavelengths occupying the com-
plete system and in the conditions satisfied at the ends: nodes (U = V = 0), or
crests or troughs. In no case has a waveform been depicted which has, at the
ends of the system, anything other than those three special points on the
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waveform. Therefore, a full cycle of the wave may be fitted to the length of
the system, as in (a), or three-quarters of a cycle, as in (b), or half a cycle, as
in (c); but nothing intermediate between these three special cases is shown.

This limited discrete set of choices has arisen because it has been assumed
that each boundary of the system demands one or other of only two boundary
conditions. The first is that diffusion of the morphogens ceases at the ends of
the system; that is, the ends are impermeable barriers. This is called a no-flux
boundary condition (or, in the jargon of the trade, a Neumann boundary
condition). It is mechanistically simple, and very plausible in many systems,
and hence is widely used in theoretical studies. When there is such a diffusion
barrier at the ends, the concentration profile always adjusts so that there is no
delivery of material to the boundary by diffusion, and no removal of material
from the boundary by diffusion. Because the rate of diffusive flow is propor-
tional to the concentration gradient, which is the slope at any point of any of
the curves in Figure 3.1, that slope must be zero at a no-flux boundary (i.e.,
there is a crest or a trough at the boundary). This is shown only at the right-
hand end of (b) and both ends of (d).

Figure 3.Id, variously modified in detail by nonlinearities which distort it
from the pure sine-wave form, is a widely discussed type of pattern. It shows
the establishment of a simple head-to-tail gradient in a elongated organism. It
has been applied, for instance, to the hypostome-to-basal-disc gradient in
Hydra (Gierer and Meinhardt, 1972), to the differentiation of a slime-mould
(Dictyostelium) slug into pre-spore cells at one end and pre-stalk cells at the
other (Lacalli and Harrison, 1978), and to the head-to-abdomen gradient as set
up at the cellular blastoderm stage in insect embryogenesis (Meinhardt, 1977,
1982). For this kind of pattern, which end is "up" and which is "down"
might be specified by some preexisting polarity. But if L represents the length
of an entire free-living embryo in which we are looking at the first significant
gradient-forming event and it is immaterial which end happens to become
head, then the pattern can arise with no antecedent of specific polarity.

Figure 3.1b, on the other hand, shows a polarity arising from preexisting
asymmetry between the two ends of the system. The right-hand end is a no-
flux boundary, but the left-hand end is something else. It is a point at which
departure from equilibrium is not permitted (i.e., U = V = 0), or, in other
words, X and Y are held at their equilibrium concentrations Xo and yo at all
times. Although in most accounts this is acknowledged as the most likely
alternative to no-flux boundaries, it has not been as widely used for specific
biological examples. The reader who approaches this topic from a background
of classical elementary courses in chemical kinetics and thermodynamics is
entitled to be surprised. In all that has been described of these models in this
and the preceding chapter, this boundary seems to be the only point which is
behaving in a chemically "normal" fashion, that is, getting to equilibrium and
then staying there. But there are snags. First, the so-called point at the end of
the system cannot be a point. The slopes of the U and V curves just within the
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system are such as to indicate either rapid delivery of material to the end of the
system from within [left-hand ends of (a), (b), and (e); both ends of (c)] or
withdrawal of material into the system from the end [right-hand ends of (a)
and (e)]. Thus the end of the system must be an effective supplier or remover
of rapidly transferred material, and this activity must extend into a finite
region beyond the marked end of the system. Second, what is going on is
mechanistically more complicated than the no-flux barrier. Why should out-
of-equilibrium behaviour be permitted up to some point and forbidden beyond
it?

I defer the discussion of this mechanism to Part III. For the nonce, my
principal reason for paying attention to this boundary condition myself is that
as an experimental scientist working on plant cell surfaces, I find it forced
upon me by evidence. Especially in the phenomenon of tip growth, in which a
cylindrical cell elongates by action principally at a dome on one end of it,
there can be a complex pattern of high growth rates over the dome, sometimes
leading to branching morphogenesis (in the single-celled algae Micrasterias
and Acetabularia, for instance). But at the equator of the dome, where it joins
the cylinder, the growth rate usually sinks to a minimum which is not zero,
and which is continued down the cylinder. The concept that new cell surface
supports out-of-equilibrium activity, while old cell surface displays growth
corresponding to equilibrium concentrations of catalysts, is clearly an attrac-
tive a priori postulate in such situations.

The constant-concentration boundary condition goes under the name of
Dirichlet, to mathematicians. The constant value need not actually be the
equilibrium value; but other values become mechanistically more complicated
to justify, and I do not use them in this book.

The next question in regard to Figure 3.1 is, What determines the number
of cycles of the waveform fitted between the boundaries? Diagrams (a), (c),
and (e) all have the same Dirichlet condition at both ends, but the numbers of
cycles of the pattern between the ends are, respectively, 1,2, and 3. How does
the pattern-forming mechanism decide which one to produce? The answer lies
in the property of the mechanism as a band-pass filter for concentration
waves, as discussed in Chapter 2 and illustrated in Figure 2.7. If it happens,
for instance, that a wavelength equal to the length of the system, as in Figure
3.1a, is close to the condition of maximum growth rate, then it may readily
occur that both the long wave of (c) and the short wave of (e) will be unable to
grow and in fact will decay away.

A proper understanding of how pattern is fitted to system size needs a
somewhat more detailed account of how the Turing mechanism works as a
band-pass filter. Waddington (1956) scornfully characterized Turing models as
"inherently chancy" and likely to "play a part only in the quasi-periodic
dapplings and mottlings which often fill up relatively unimportant spaces."
He thought that the model required an exact fit of a fixed "chemical wave-
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length" to the size of the system. If that were so, it would indeed severely
limit the applicability of the model; but the Turing dynamics are in fact the
much more versatile band-pass effect discussed in the next section.

3.1.2 The dynamics of pattern growth

In the linear regime, the amplitude of a morphogen waveform grows as
exp(£gO. The growth rate constant is kg; if it is negative, the pattern is
decaying rather than growing. Now kg is a continuous function of wavelength.
Figure 3.2 shows one form that it can take. The shape of this curve, showing
decay of both short and long waves, and positive growth, or amplification,
only of the intermediate range of wavelengths between Xo and \ f , was antici-
pated qualitatively in Chapter 2. The so-called chemical wavelength, Xm, is
that of the pattern which will grow most rapidly; but it is not the only pattern
which can grow. Suppose that the length L of a system is somewhat offset
from that maximum, as shown in the diagram. A Dirichlet boundary condition
constrains the possible patterns to a discrete set with wavelengths
2L, L, (2/4)L, (2/5)L, (2/6)L, . . . , (2/n)L. Several of these are marked in
Figure 3.2, and it is evident that all except one lie outside the band-pass and
have negative growth rates. That one, with a full wavelength filling the
system as in Figure 3.1a, will easily become established as the pattern despite
the offset from the "chemical wavelength."

As a pattern of chemical concentrations grows, it eventually approaches the
limits of exponential growth. Mathematically, this means that rather compli-
cated terms in the growth equations, of the kind called "nonlinear," become
dominant. In relation to the biological relevance of the models, the significant
generalization is that models which were essentially all the same through the
linear region become individually different in the nonlinear region. A model
which is very appropriate to explain one developmental phenomenon may be
quite useless for another (again, my analogy to individually different pro-
teins).

Nonlinearity always involves some distortion of the chemical pattern from
the sine-wave shape, though again the distortion may be much more marked
for some models than for others. Rather obviously, one may classify the
distortions into two categories: ones which make the peaks or troughs of the
pattern "spikier," like the Gierer-Meinhardt activator peak in Figure 2.7,
3.13, or 10.11, and ones which involve flattening, like the optical-resolution
regions in Figure 2.4c or the flat, low-lying "long-range inhibition" region of
the pattern in Figure 2.7. Evidently, the Gierer-Meinhardt model produces
one of these kinds of distortion for the peaks and the other for the troughs.

By contrast, the Brusselator model manages to stop the growth of pattern
amplitude and bring it to a steady state without nearly such striking distortions
from the sine-wave shape. In consequence, for reasons discussed in the next
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Band-Pass: Patterns
Grow In This Range
Of Wavelengths

Figure 3.2. A possible variation of the exponential growth rate of pattern amplitude
(kg) with wavelength X. Patterns with wavelengths between \ 0 and \ f will grow; this is
the band-pass character of the model. The wavelength marked Xm has the maximum
growth rate. Multiples and fractions of L represent patterns of various complexity, with
nodes at the ends, fitting a system of length L. Three of these correspond to Figure 3.1
(a, c, and e), and are marked with those letters. The curve is adapted from Harrison,
Snell, and Verdi (1984) and is for a particular numerical choice of constants in the
linear Turing model.

section, that model retains most of the important dynamic features of the
linear Turing model while getting rid of the unrealistic one, the unrestricted
exponential growth.

The contrasts in dynamics between the linear and nonlinear regimes, and
between different nonlinear models, become particularly important when a
pattern is already established and some natural or unnatural disturbance inter-
feres with it. The kinds of responses, known in experimental biology as
"regulation" whenever they are substantially effective in overcoming the
disturbance, are discussed in the next section.
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3.1.3 The guests of Procrustes: responses to chopping
and stretching

Procrustes, in the Greek myth, had a guest bed of standard length and was in
the habit of adjusting his guests to it by chopping pieces off or stretching them
out. His standard fit and procedure for dealing with misfits were as restrictive
as Waddington believed the Turing wavelength to be. The Procrustean inter-
vention is a common kind of experiment in developmental biology. But in
quite normal development, a pattern may effectively suffer Procrustes' atten-
tion. In the division of plant cells, the new cell plate can give as effective a
chop to the system as anything done with a scalpel. And because a pattern-
forming region often grows in size during development, stretching of patterns
is also very common.

If one is a prospective guest of Procrustes, then to stand any chance of
surviving the night, it is important that one know one's height. Does a devel-
oping pattern in any sense "know" how long it is? Thus stated, the question is
not very useful, for a pattern does not have a "height" but rather a discrete set
of heights; it can attempt to fit the Procrustean bed with half a wavelength, or
one wavelength, or f wavelengths, and so on. The significant question is
whether a pattern, in its passage through the linear and nonlinear regimes,
retains "knowledge" of its original linear wavelength, acquires a new wave-
length in the nonlinear region, or totally loses track of its original wavelength.
Even more precisely, because different parts of a nonlinear pattern behave
rather differently, if one examines some small local region of a pattern, can
one from this information find the wavelength?

In this respect, the extreme contrast is between a square wave and a sine
wave (Figure 3.3a,b). For the former, either of two local regions such as A and
B will give exactly the same information (the same value of U and no change
of U with position s), but nothing to indicate that one of them is closer to the
middle of the wave than the other. This pattern does not "know" what its
wavelength is. But for the sine wave, different values of U and different
curvatures can be measured in two different regions, such as C and D. Here, I
can no longer avoid one brief reference to the calculus. The property of
interest is not actually the curvature but a closely related property, the second
derivative of U with respect to s. It is a well-known formula of elementary
differential calculus that the second derivative of a sine function is propor-
tional to the function itself: d^Ulds2 = —(4T: 2/\2)U. Thus, if one measures,
for any one small region of the pattern, both U and its second derivative, one
can calculate the wavelength. This information is carried everywhere in the
pattern.

What is the significance of this contrast in relation to chopping and stretch-
ing? Essentially, if a developed pattern which still retains strong and variable
curvatures somewhat like those of a sine wave is chopped or stretched, it
readjusts to the pattern which would have arisen ab initio at the new length. A
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Figure 3.3. Parts of (top) a square-wave pattern and (bottom) a sine-wave pattern, to
illustrate that local regions of the latter contain information about its wavelength,
whereas local regions of the former do not.

linear Turing pattern is, in short, very labile. (I am here, as often in this book,
writing of a macroscopic pattern as an entity, and applying to it a word for
which the common chemical usage is in relation to a molecular entity.) But if
the pattern has flat regions which represent loss of "knowledge" of its wave-
length, various quite different things may happen. One of these is the estab-
lishment of an additional peak at the wrong end of the system for normal
development, leading to teratogenesis.

This linear/nonlinear contrast is presented in the following two sections in
such a way as to combine it with the contrasts plant/animal and single
cell/multicellular organism. The nonlinear behaviour can by no means be
fully understood merely from the shape of the distribution of one of the
morphogens. As always in kinetic models, the interactions between the two
must be considered. This is exemplified as simply as possible in Section 3.3.
There it becomes evident that the activator/inhibitor ratio is an extremely
important determinant of the local behaviour of parts of a Gierer-Meinhardt
pattern, and also that this kind of pattern does show some local behaviour, and
hence does not always behave as a single entity.

As a preliminary to understanding these aspects, one should understand two
further attributes of a long, low-lying flat region in a morphogen distribution.
First, it breaks communication across the pattern, because communication is
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by diffusion, and there is none where the concentration profile is flat. Second,
because concentrations are low, they cannot be decreased very much at all.
This means that nothing can "dig a pit" beside an existing "mountain." But
short of digging a pit, for diffusion to do the work of shovelling the mountain
into it, one can never get rid of a mountain in a reaction-diffusion pattern. This
is at least one reason why Gierer-Meinhardt patterns cannot easily readjust by
the destruction of existing peaks, to be replaced by new ones elsewhere. Thus
it cannot find its way from an initial disorderly array of peaks on a plain to a
regular hexagonal array. This is not the whole story. The rest of it has to do
with the stabilization of the peaks from within. Much of the detailed be-
haviour still has to be found out by computation, and no model has yet been
studied exhaustively in this way. Even the mathematicians cannot yet arrive
analytically at accounts of all the biologically significant properties of non-
linear models.

3.2 Modes of cell division in plants

The mechanisms of development of multicellular systems are determined both
by what each individual cell can do and by what it cannot do. In this respect
the plant and animal kingdoms are sharply distinguished. Animal cells have
flexible surfaces. Hence, on the one hand, they are capable of locomotion and
can change their relative positions in an assembly, but on the other hand, their
surfaces often cannot hold developmental information in the form of precise
geometric shape or orientation of division. Plant cells do not change their
relative positions, but the rigid cell wall which deprives them of locomotion
also confers on them the ability to hold geometrical and directional informa-
tion.

Thus the geometrical niceties of how individual cells divide are of great
importance in plants. There are two general aspects to this topic, from the
viewpoint of developmental controls. First, on the multicellular scale there
must be long-range processes commanding some cells to divide in one direc-
tion and others in another; such control is fundamental to organogenesis
(Green, 1980). Second, on the scale of the single cell there must be a control
process determining the position of the plane of division. Both scales are quite
possible ones for the operation of kinetic controls in general and reaction-
diffusion in particular; the latter is quite appropriate to wavelengths from
about 1 |xm up to at least 1 mm or so (Section 7.3.2).

3.2.1 One dimension: filaments

In this section, attention will be given chiefly to events within the single cell.
The first examples to be discussed concern the extension of filaments by equal
or unequal division of cells, and especially the sequences observed in the
latter case. These observations overlap the plant and bacterial kingdoms, via
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Figure 3.4. Anabaena division sequence and morphogen model.

those denizens of a border state, the blue-greens. In that group, Anabaena
catenula was found by Mitchison and Wilcox (1972) to show an interesting
sequence of unequal divisions (Figure 3.4). It is not a very complicated
sequence, but the rule for its formation has been expressed in a formidable
variety of ways (Luck and Luck, 1976; Lindenmayer, 1982). The algorithms
of Lindenmayer are written in terms of polarities of the cells (arrows),
changes of polarity (plus and minus signs), states of the walls (numerals 1, 2,
and 3), and states of the cells {a and b). Such complexity becomes useful when
one wishes to go to more complex examples, such as two-dimensional sheets
or three-dimensional stacks of cells, and test whether or not a rule is operating
consistently throughout what often ends up looking like a rather irregular set
of successive divisions. These algorithms are closely related to the currently
fashionable computing devices known as "cellular automata" (Lindenmayer
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and Rozenberg, 1976; Wolfram, 1984). Among these, the systems which have
been applied to plant development are becoming known, after Lindenmayer,
as L-systems (Prusinkiewicz and Hanan, 1989). They have a certain com-
pleteness in themselves in showing the presence of orderly behaviour where it
was not at first apparent. But they do not seem to me to lead very readily
toward the question of what chemical mechanisms may be operating to pro-
duce the rules. To this end, the very simple statements in Mitchison and
Wilcox's (1972) account are more pertinent. First: "if a given cell has arisen
as the left (right) daughter of a division, then, at its own division, its left
(right) daughter will be the smaller daughter. . . . we can assign an arrow to
each of the two daughters . . . pointing away from the newly formed septum.
A cell retains this arrow until it divides." Second: ". . . a new septum site
always appears further from the most recently formed septum and we might
conjecture that this is because the latter is surrounded by an area of disor-
ganization or inhibition."

For reaction-diffusion as a possible mechanism, this suggests a simple
interpretation. Consider a morphogen distribution along the filament axis, and
suppose that the peak of this distribution determines the plane of the next
division of a cell. This division will be asymmetric if the morphogen distribu-
tion is like that shown in Figure 3.1b. The asymmetry of this distribution is
the reality, in chemical terms, of the polarity-indicating arrow (Figure 3.4b).
This asymmetry must arise from a difference in chemical interaction with the
morphogens between new and old cell end-walls. Suppose that old end-wall
acts to bring the morphogens to equilibrium (Dirichlet boundary condition),
but that new end-wall is first formed without morphogen and, immediately
after division, defines a new minimum where the morphogen maximum exist-
ed just before division. This pattern of boundary interactions requires the
morphogen distribution in the two daughter cells to change from that of Figure
3.4b (divided at its peak) to those of Figure 3.4c. These correspond to polarity
arrows both pointing away from the new plate, in accord with the experimen-
tally known rule for division.

The effect of the new cell plate might be simply to act as a morphogen sink.
Alternatively, one might follow the suggestion of Mitchison and Wilcox and
take the plate to be an instantaneous source of a large amount of the inhibitor
Y. Although X and Y are ultimately in phase with each other, sudden introduc-
tion of a high concentration of Y at any point would lead to a quick decrease in
X, commanding the same polarity change as a morphogen sink. Thus the
reaction-diffusion description puts some flesh on the bones of the inhibitor
concept. But it must be relatively easy to destroy a peak. Reaction-diffusion
models are not all alike in this regard. The Gierer-Meinhardt model, as dis-
cussed in Section 3.3.1, does not behave appropriately to explain this division
sequence.

Mitchison and Wilcox indicate that the division pattern of Anabaena seems
to be unique. For contrast, the green algae Ulothrix and Chaetomorpha (the
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Figure 3.5. Chaetomorpha division sequences.

latter under slow-growing conditions) show the opposite pattern of polarity
changes: The new cell plate is near to the younger end (Figure 3.5a) (Luck and
Luck, 1976). In fast growth, Chaetomorpha divides as if the same polarity
were maintained for all cells (Figure 3.5b). Of course, unequal division is in
general something of a curiosity, equal division being quite common.

Such a range of behaviours imposes no strain upon an algorithmic or
"cellular automaton" representation. An algorithm can be written for any
division sequence which is meticulously following some rule, whatever that
rule may be. But variety in behaviour severely tests any attempt at mechanistic
explanation; some variants are going to be much more easily explicable than
others. There is, for example, no difficulty in accommodating the sequence of
Figure 3.5a within a reaction-diffusion explanation. In both daughter cells, the
morphogen maximum remains close to where it was before division. This



Pictorial reasoning in kinetic theory 71

implies that the new cell plate is only a weak sink for morphogen, and doesn't
bring its concentration down nearly so markedly as in the case of Anabaena,
or, on the basis of inhibitor production, that the Ulothrix and Chaetomorpha
cell plates don't produce one. They are morphogenetically neutral, simply
chopping the morphogen distribution into two parts, which are unaffected by
the cell plate until it becomes old enough to establish the equilibrium bound-
ary condition (Figure 3.5c).

In this connection, for the examples in Figures 3.4 and 3.5 it is immaterial
whether, by the time of the next division, the morphogen concentration at the
end remote from the event has (1) remained low or (2) already relaxed back to
equilibrium (Figure 3.5d). Of course, for an ideal sine wave, (1) implies that a
cell will divide at one-third of its length from one end, and (2) implies that it
will divide at one-quarter of cell length (Figure 3.5d, left and right, respec-
tively). I am not at this point trying to quantitate the inequality of division.
Deviations from the sinusoidal form caused by nonlinearities (in the mathe-
matical sense) in the reaction-diffusion mechanism could easily make quite
large changes in the position of the division plane.

Equal division is not at all difficult to account for in the same mechanistic
context. If the relation of morphogen wavelength to cell length is somewhat
different from that envisaged for the preceding two examples, a cell may not
be able to accommodate more than half a wavelength. If one boundary, the
older end-wall, already requires this, there is no way that a morphogen pattern
can establish itself until the other end-wall permits the same boundary condi-
tion [Figure 3.5: (ii) just after division; (i) and (iii) both fit Dirichlet condi-
tions at both ends, but (iii) has too short a wavelength to grow].

The division sequence which seems to be a misfit to this mechanism is that
of the optimally cultured and fast-growing Chaetomorpha (Figure 3.5b). Re-
tention of polarity in the same sense for all cells of a filament does not
correspond either to the asymmetry of the sequence of new end-walls or to the
asymmetry of the supposed morphogen distribution as it is chopped up by
neutral end-walls. An additional feature seems to be needed in the form of a
persistent gradient from which the morphogen distribution arises anew in each
new cell. Postulation of such a gradient, for this and many other instances of
morphogenesis, has two contrasting strategic aspects. On the one hand, it can
appear something of a deus ex machina, which serves only to push the crucial
question one stage back. What mechanism controls the gradient? Turing's
(1952) objective in his original proposal of reaction-diffusion theory was
clearly to show how an apparently uniform system can develop a precisely
controlled nonuniformity for which the system has no antecedent other than
random disturbances. On the other hand, especially in some multicellular
animal systems such as Hydra and insects, there is overwhelming experimen-
tal evidence for the existence of such persistent gradients. A substantial part of
the work of Gierer and Meinhardt (1972; Meinhardt, 1982) has been to show
how particular types of reaction-diffusion models can work to build complex
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structure out of rather simple directional information contained in such preex-
isting gradients.

My aim in the foregoing account is not to try to establish with certainty that
the location of the plane of division of a cell in all or most filamentous
structures is determined by reaction-diffusion in particular or kinetic mecha-
nism in general. Clearly, this can neither be proved nor disproved on the basis
of what we now know. My aim is to show the reader, and most especially the
reader unversed in differential equations, some ways of thinking, with the aid
of a few scribblings of sine waves, which will permit the reader to make some
assessment of the probability of such a mechanism and, when faced with a
variety of experimental behaviours, to assess what part of this range of phe-
nomena can easily be accommodated within a common mechanistic scheme,
and what part represents complications or snags for the mechanism.

3.2.2 Location of determinative events within the cell

For filamentous structures, it was possible to beg the question of just where
the event takes place which determines the plane of division by supposing that
pattern is formed one-dimensionally in the sense of the filament axis, which is
often (though not invariably) the long axis of each cell. The next example to
be discussed, in Section 3.2.3, is the root of the water-fern Azolla, for which
Gunning and co-workers (Gunning, Hughes, and Hardham, 1978; Gunning,
Hardham, and Hughes, 1978b; Gunning, 1981, 1982) have traced a complete
and complex series of cell divisions. This involves a number of types of
division of a number of quite different shapes of cells. To discuss the phe-
nomena in relation to theory, we need a more precise postulate in regard to the
location of the pattern-forming event.

A plant cell is often a polyhedron, or a cylinder, or other form having the
same general property that the three-dimensional region occupied by the cell
is bounded by a finite number of two-dimensional faces (some plane, some
curved) which join at well-defined one-dimensional edges. A priori, the bulk,
the faces, and the edges must all be considered as possible locations of the
crucial control processes in cell division. One may, however, assess relative
probabilities for these various locations on the bases of both experiment and
theory. The well-known identity, in most cases, of the plane of division with
the equator of the mitotic spindle (including, for a few animal cells, the
observation that rotating the latter rotates the former) focuses attention on the
interior of the cell. But for plant cells it has been recognized, since Pickett-
Heaps and Northcote (1966) discovered it in wheat, that the plane of division
is often clearly indicated in interphase by the appearance of a "preprophase
band" of microtubules, long before the mitotic spindle has started to assem-
ble. For the Azolla root, Gunning (1982) has stated that the plane (or curved
surface) of every cell division in the complex sequence is precisely marked in
advance by a preprophase band at the cell surface. The cell plate ultimately
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joins the existing surface at the midline of this band, to submicrometre ac-
curacy, the band being itself 1.5-3|xm wide. When this happens, at the end of
telophase, however, the band is no longer present. Its microtubules disappear
at the onset of prophase, but some sensitivity to drugs which would be
expected to affect microtubules remains in the intervening period. There are
also instances of plant cells (other than Azolla root) in which no attempt to
observe a preprophase band has succeeded. All this experimental evidence
leads to the view current in cell biology texts: " . . . the significance of the
band to the division mechanism, other than providing indications that un-
known events preceding mitosis may fix both spindle position and cytoplasmic
division in plants, is obscure" (Wolfe, 1981; my italics).

In the sense of the enquiry for locations of morphogenetic control, there-
fore, all this evidence leaves the cell looking as structureless as it appeared
before the invention of the electron microscope or even before the optical
microscopic observation of the details of mitosis. All one seems to know
surely is something about timing: that the determinative event occurs during
interphase, preceding the appearance of the preprophase band. It is, however,
reasonable to suppose that the event may be rather closely related to the
preprophase band and hence to its location. This takes our attention to the cell
surface. Further, Gunning indicates that for all arrays of microtubules in the
Azolla root, including the preprophase band, first appearance is at edges of the
cell, followed by spreading over the faces; see Gunning (1982) and the earlier
sources cited there.

From the viewpoint of general kinetic theory, comprising both reaction-
diffusion theory and anything else which, mathematically, leads to a formula-
tion as wave equations, the fewer spatial dimensions the game is played in,
the better for precision of control. Elsewhere (Harrison 1982) I have called
attention to the advantage which a developing system would acquire in reduc-
ing the morphogenetic field from two dimensions to one, by using the analogy
of the sound of a violin string versus that of a cymbal. This case of acoustic
oscillations has only very partial correspondence to that of morphogenetic
waveforms as envisaged in reaction-diffusion theory. The sound of a three-
dimensional acoustic oscillator is actually somewhat better organized than that
of a two-dimensional one. But in reaction-diffusion, as the system goes up in
dimensionality from one to two to three, one finds successively more different
patterns which will be competing on more or less equal terms by having very
similar values of the exponential growth constant kg. Thus more dimensions
implies less chance of achieving simple overall order. Hence the practitioner
of this kind of theory is led to make a first attempt to understand the behaviour
of a polyhedral cell by regarding its morphogenetic field as most probably a
framework of edges, with the faces as a second possibility, and the whole bulk
of the cell as an unlikely field for the playing of this game.

In a broader view of mechanistic possibilities for the positioning of the cell
plate in each successive division, a question arises which is almost the stan-
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dard cliche of physical chemistry in approaching any new phenomenon: Is it
governed by equilibrium or kinetics? D'Arcy Thompson (1917) discussed the
geometry of successive cell divisions in relation to equilibrium configurations
of intersecting soap films. That discussion, largely omitted from Bonner's
1961 abridgement of Thompson's work, was revived by Green and Poethig
(1982); Goodwin and Trainor's (1980) "field description" of the cleavage
process likewise relies upon free-energy minimization as the controlling pro-
cess. The contrast between the equilibrium and kinetic concepts will be taken
up again in Chapter 4. The immediate purpose, in Section 3.2.3, is to show
only how one may think about the capabilities of the kinetic explanation, in
the particular form of reaction-diffusion.

3.2.3 Division sequence of the Azolla root meristem

Much of plant development is significantly dependent upon the control of
direction in a sequence of cell divisions; but this sequence is more regular and
reproducible in some plants than in others. Mosses, liverworts, and some
ferns show greater regularity than the higher plants; and among the latter,
roots show more regularity than other tissues. Regularity is greatest when a
structure is generated from a single apical cell. An example in which the
sequence has been determined in great detail is the root of the water-fern
Azolla (Gunning, 1981, 1982; Barlow, 1984).

The single apical cell is roughly an octant of a sphere, with the curved
surface facing outward. In the earliest stages of development, while the future
root is still within the shoot, there are one or two divisions parallel to the
curved surface (Figure 3.6, BCD), one of which produces the root cap initial.
But most of the root development arises from a sequence of 50-55 successive
cleavages parallel to the flat faces (e.g., ABC, producing a pie-slice-shaped
cell ABCA'B'C and regenerating the geometry of the apical cell in the smaller
version A'B'C'D. Each flat face has a division parallel to it in rotary se-
quence, so that each face is cleaved off 17 or 18 times. This sequence defines
a spiral, the chirality of which is not genetically determined. Both clockwise
and anticlockwise sequences occur, depending on the orientation of the partic-
ular root within the shoot from which it emerges. The rule for which face
cleaves next is simple: It is always the oldest of the three flat faces.

If we regard the cell as a framework of six edges which are the possible
morphogenetic fields for specification of the preprophase band, the rule is that
the three edges bounding the oldest face are inactive, while the other three
obey the same rule as applies along the long axis of Anabaena catenula
(Section 3.2.1). If indeed this identification can be made, Anabaena is far
from unique, because Azolla's division pattern is the norm for single apical
cells. The rule suggests a reaction-diffusion model similar to that proposed for
A. catenula, but there are complications. Clearly, new morphogen sinks (or
inhibitor production) at A', B', and C" would tend to drive the maxima close
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Figure 3.6. Division sequence in the root of Azolla, from data of Gunning.

to point D on three edges, leading to a chopping-off of a small corner at D as
the next division. This never happens. To account for the observed sequence,
we must assume, first, that the interior corner A is always held at equilibrium
morphogen concentration by some interaction with the tissue surrounding it.
The division plane will then never be remote from point A along any of the
three straight edges.

Suppose that one pie-slice division has just occurred (Figure 3.7a). The
three corners B', C, and D are all different in age characteristics, in terms of
the two flat faces which meet at each of those corners. In Figure 3.7, these
characters are represented by the letters y, m, and o for young, middle-aged,
and old. If these dual characters govern the depth or persistence of a corner as
a morphogen sink (or its activity as a source of inhibitor), then C clearly has
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Figure 3.7. Two successive divisions of the apical cell in the Azolla root, illustrating
the rationale for determination of the next division plane in the sequence from young,
middle-aged, and old characters of cell surfaces.

that "young" character in greatest measure, specifying the next morphogen
maxima as A", B", and D'', and the continuing division sequence in like
manner as clockwise viewed from within the root.

Gunning noted, and considered it significant, that the cell plate is not
exactly planar as drawn in Figures 3.6 and 3.7. It is consistently slightly bent,
so that D'D is shorter than B"B' (Figure 3.7b). In the most general terms, this
is quite compatible with any theory which accounts for age-sensitive pattern,
because C'B' and CD do not have the same age profile. This means that any
kinetic theory is more promising than any equilibrium theory (such as the
positioning of cell plates like sheets of soap bubbles, Section 4.3), because
kinetics deals with time-dependent phenomena, and equilibrium does not.

Figure 3.8 shows possible time sequences for the reestablishment of reac-
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Figure 3.8. Hypothetical time sequences of development of the morphogen profiles
along two edges (C'B' and CD) of the apical cell of the Azolla root in the time interval
between the two divisions shown in Figure 3.7. The final states are the same, but
intermediate states are not. B" and D' might be differently positioned along their
respective edges if division occurs before the final form has been reached.

tion-diffusion pattern along C'B' and CD. In keeping with the spirit of this
chapter (and all of Part I), these are freehand sketches, with no attempt at
precise computation from any particular reaction-diffusion model. The final
distribution, at t6 in Figure 3.8a and t4 in Figure 3.8b, is the same for both
edges; but the initial distributions are different. C'B' starts with a morphogen
minimum all the way along, and hence symmetrical end-conditions. The new
peak starts to arise in the middle of the edge, but moves toward B' because the
dual character (y, o) of B' is older than that of C (y, m), and hence B' starts to
relax gradually back toward equilibrium concentration. D, however, is al-
ready so old that it is keeping concentrations at equilibrium. The change from
the premitotic distribution (t = 0) to the immediate postmitotic one (tx)
amounts to a decrease in pattern wavelength which should cause the pattern to
decay and then recover its original wavelength with inverted form, and quite
probably with very little shift in the position of the peak as it grows. Thus, if
the new division occurs before the end of the sequences here shown, the peak
B" may be caught farther away from B' than D' is from D.

Without computation, we have now reached the limit of pictorial conjecture
and arrived perilously close to "arm-waving." But pictorial reasoning has
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pointed the way toward a possible kinetic-theory explanation of even the fine-
tuning of the detailed shape of the cell plate.

The division sequence of a "pie slice" is complex. It consists of a series of
"formative" divisions, which carve the pie slice into a number of cells of
different sizes and shapes. These are followed by "proliferative" divisions, in
the plane of the pie slice, converting each cell into a file of cells disposed
longitudinally along the root. We shall not be concerned with the latter. The
formative divisions, as given by Gunning (1982), are redrawn in temporal
sequence in Figure 3.6. At each division, the inactive cells are shown by
broken lines, and the dividing cells, with their new cell plates, by solid lines.
Before trying to cope with irregularities, I note that division activity tends to
alternate between inner and outer parts of the pie slice. This is what one would
expect if one started with a system of two cells, one larger than the other, with
all parts of the system growing at the same fractional rate and any cell
dividing perpendicular to its longer dimension when that length reaches a
critical value. Such a sequence is shown in Figure 3.9, with initial cell
dimensions "cooked" so that the series continues perfectly regular indefi-
nitely. Each cell has its long dimension 21/2 times the shorter one. The smaller
cell starts out 21/4 times smaller (in linear dimensions) than the larger one, and
in each time step shown the linear growth is by a factor 21/4. Thus, at the start,
the larger cell has just divided. At the next step, the smaller cell has reached
the same length, and therefore has divided in the same direction. Because of
the special shape chosen for each rectangle, when it divides, the two daughter
cells have the same shape, but with 90°-rotated orientation. Hence, the next
two divisions again alternate as, first, outer half and then inner half, but both
are now with horizontal cell plates - and so forth, through the whole series.

A general tendency for a similar alternation of divisions of inner and outer
parts, and of horizontal and vertical divisions, is evident in the experimental
data of Figure 3.6. The overall size increase is, however, not as large as that
shown in Figure 3.9. Evidently, in the later stages of the Azolla sequence,
somewhat smaller cells are dividing than in the earlier stages. This is quite
compatible with reaction-diffusion theory. In a symmetrical cell division, we
are supposing that the division plane is specified by the crest of a morphogen
wave in which the long dimension of a cell is matched by a half-wavelength of
the pattern with a Dirichlet boundary at each end (Figure 3.1c) or a full
wavelength with a Neumann boundary at each end (Figure 3.lid, inverted).
The wavelength, however, need not stay constant through a long sequence of
divisions. As discussed in Section 7.3.2, wavelength can be sensitive to
precursor concentrations. If in the course of a division sequence the supply of
precursor improves, the wavelength is expected to fall, so that smaller cells
will indeed divide. Figure 3.10 shows the same division sequence as Figure
3.9, but instead of the system growing by a factor 21/4 in each time step and
cells dividing always at the same critical length, the cells have grown by 21/8,
and the wavelength, or critical length for division, has fallen by the same
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Figure 3.9. Division sequence for an idealized sequence of rectangles with ratios of
21/2 and 21/4.

factor inverted, 2~1 / 8 . This gives a better match to the actual size changes
between division steps in Figure 3.6.

The experimental sequence is of course distinctly more irregular than my
idealized example. Even the example of two unequal rectangles as the starting
configuration would have given a less regular sequence if I had not idealized
to the extent of very careful choices of the shape of each rectangle and the size
relationship of the two initial ones. I am not at this point trying to get a perfect
fit between reaction-diffusion theory and every detail of the Azolla sequence. I
am seeking only to show that the theory can be applied and its capability
assessed at some length and in some detail, at least as deeply as any rival
theory, and without having to plunge into mathematics.

The only notably asymmetric division is that in Figure 3.6c. It does not
correlate well with the concept of control by some residuum of the polarities
in the apical cell from which the pie slice arose. The asymmetry shown
corresponds to a sequence in which face ACD cleaved off immediately before
ABC, and therefore C should have the more "morphogen-negative" character.
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Figure 3.10. Division sequence for an idealized sequence of rectangles with ratios of
21/8 and 2~1/8, giving a close match to the actual size changes for the Azolla root, as
shown in Figure 3.6.

This would seem more likely to direct the division plane to left of centre. At
the last stage of the sequence, Figure 3.6k, Gunning has pointed out evidence
for control on the multicellular scale. Of the two side-by-side cells apparently
eligible to divide simultaneously, only one does so. Further, this happens in
only two of the three pie slices that have reached the same stage, and in such a
way that the two dividing cells are opposite and the overall symmetry of the
root is reduced from threefold to twofold.

In Section 4.3 this example is taken up again to compare the kinetic expla-
nation with the possibilities of an equilibrium explanation.

3.3 Animal development: response to damage and grafting

3.3.1 Teratogenesis and nonlinearities in the
Gierer-Meinhardt model

Elongated systems often show an arrangement of parts, and an ability to
regulate the formation of these parts, which suggests control by an ante-
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Figure 3.11. Linear Turing waves: concentration distributions of morphogens X (solid
line) and Y (broken line) along an elongated system, (a) Initial state, (b and c) Possible
responses to local morphogen removal at one end. (d) An impossible response to this
damage.

roposterior gradient. A simple kinetic model for the establishment of such a
gradient is the linear Turing model with no-flux boundaries at the anterior and
posterior extremities and just half a wavelength fitting the system length
(Figure 3.11a). Such a pattern could be the preferred one, that is, the pattern
of highest kg, for systems varying in length by as much as a factor of 5
(Lacalli and Harrison, 1978) (see Section 10.4).

Suppose that some damage is done to the developing system in a small
region at one end, such that the morphogens are destroyed. Later, following
Meinhardt (1982, chap. 8), I shall assume that in early insect development the
inhibitor Y is preferentially destroyed both by ultraviolet (UV) irradiation and
by puncturing the end of the embryo. In the latter case, the inhibitor escapes
faster because it is always the faster-diffusing of the morphogen pair. The
destruction of morphogens is analogous to the putative effect of the new cell
plate, as discussed in the preceding section. For a linear Turing wave, there
could be only two responses to such damage. If it were at the peak (or
"activated") end of the morphogen gradient (A in Figure 3.11), and severe
enough, the gradient would simply reverse (Figure 3.1 lb). If it were at end B,
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or at end A but insufficiently severe, the gradient would be unaltered (Figure
3.11c). Response (b) would tell us at once that A was the activated end.
Response (c) would not answer that question.

The response which would never occur is that of Figure 3.lid,
teratogenesis giving a gradient with a peak at both ends and hence a mirror-
imaged embryo, with either a head at both ends or an abdomen at both ends.
The Turing wave "knows" its wavelength and is not about to put one wave-
length into the system where half a wavelength is preferred. But this unex-
pected response, always in the double-abdomen form, never the double-head,
is exactly what happens in response to U V or puncture damage at a very early
stage of insect embryogenesis (Figure 3.12). Meinhardt (1982) has given a
carefully ordered account of the experimental evidence and of how his non-
linear model accounts for it. Here, I do not seek to repeat his account, but to
give the gist of how his model works, setting this in the context of the linear
model and other nonlinear models, especially the Brusselator. The com-
parison is taken up again, with mathematics, in Chapter 9.

The Brusselator, when taken in computations to a steady state in which
concentrations have altogether stopped changing in time, seems to retain some
of the properties of the linear model, almost miraculously. It still "knows" its
linear wavelength. If the system is disturbed, the pattern responds as a Turing
pattern would. If a pattern has been computed to steady state, and the system
is stretched to a length at which the preferred Turing pattern would be more
complex, the Brusselator pattern starts at once to change into that more
complex one (Lacalli, 1981, and previously unpublished calculations in my
laboratory; Section 9.1.5, Figure 9.4).

The Gierer-Meinhardt model behaves quite differently. As mentioned in
Section 2.6, it tends to produce concentration profiles in the form of "isolated
mountains in the middle of a vast plain." That is, the peaks and troughs are
different in instantaneous shape and dynamic development, and the pattern
does not look the same, statically or dynamically, if it is turned upside down.
A Turing pattern does, except for the matter of end-to-end reversal, as be-
tween (b) and (c) in Figure 3.11. Its peaks and troughs have exactly the same
shape, and at any instant the dynamics of the downward movement of the
troughs exactly match those of the upward movement of the peaks. The "one-
morphogen" optical-resolution model shows a similar property (Figure 2.4)
continuing into its nonlinear regime (Figure 2.4c). This is because upward and
downward movements on the diagram correspond to the two possible optical
resolutions, as D and L. The symmetry of dynamics corresponds to a feature of
the structural symmetry of the system. This is why the optical-resolution
model is a useful introduction. But the symmetry of Figure 2.4 is imposed by
an initial sine-wave input. The model has no permanent pattern-forming abili-
ty. Crests and troughs will develop differently if they are different in the initial
input.

Brusselator patterns do not look the same turned upside down, but the
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Figure 3.12. The double-abdomen deformity in early insect embryogenesis. Modified
from Meinhardt (1982, Fig. 8.4), in which the experimental drawings refer to the
midge Smittia; results of Kalthoff and Sander (1968), redrawn from Kalthoff (1976).
(a) Normal development, (b) Development with two mirror-imaged abdominal ends
and no head, following UV irradiation at the cellular blastoderm stage, before the
structures identifying head and abdomen had started to appear. The graphs are the
corresponding distributions of the Gierer-Meinhardt activator A (solid lines) and
inhibitor H (broken lines). These correspond, respectively, to Turing morphogens X
and Y in the linear regime. See also Slack (1983, chap. 9).

distortions from linear waveforms are only moderate and, as already men-
tioned, do not significantly change the regulatory properties of the patterns.
The flat plains of the Gierer-Meinhardt patterns do, however, change these
properties, by effectively limiting communication across the system. This is
not immediately apparent from the differential equations of the model, which,
like the Turing equations or Brusselator equations, have diffusion terms for
both morphogens, with no spatial limitations other than the boundaries of the
system. What happens in practice, however, is that a peak tends to suppress
the formation of others in its immediate vicinity, but has very little interaction
with other peaks beyond a certain range. Thus the concept of "chemical
wavelength," as it arises from the Turing model, is replaced by the concept of
the "range of the activator." This corresponds to much looser control of
positions of activator peaks, such that teratogenesis can be described in terms
of the formation of new peaks.

For this to happen, there must be a way in which new peaks can rise up out
of the plain in response to some kinds of damage. Any explanation of this
requires some mention of the special mathematical form of the nonlinearities
of the Gierer-Meinhardt model. The essential feature is that there are two
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morphogens, activator A and inhibitor H (roughly equivalent to Turing X and
Y), and the rate of growth of activator A contains a term proportional to A2/H.
This, obviously, is extremely sensitive to changes in the inhibitor concentra-
tion H when that is very low (i.e., down on the plains). Thus, if anything
happens in a local region of the plain to destroy H preferentially, there can be
a very rapid production of A in that region. This may be sufficient to establish
a new peak.

The effects of damage to the system are thus quite different for the Turing
model and the Gierer-Meinhardt. In the former, the end at which damage can
bring about a change is the activated end, and the resulting change is end-to-
end reversal of pattern. This was illustrated in the preceding section. For the
Gierer-Meinhardt model, the damage-sensitive region is the inhibited one,
and damage introduces new peaks without removing old ones. Thus it is
possible for the anteroposterior-gradient-forming mechanism in insects to
identify the posterior end as being the activated one.

3.3.2 "Firing" a persistent gradient: grafting behaviour
of Hydra

Turing's objective was to show how a uniform system can self-organize into
nonuniformity with nothing but random disturbances to provide rudiments for
the nonuniformity. The pattern-forming mechanism decides which of these
rudiments will be amplified. For a half-wave pattern like that of Figure 3.11a-
c, in individual organisms using a Turing mechanism the pattern would al-
ways form, but equally often in the alternative orientations of (b) and (c).

In the developmental sequence of a living organism, a pattern-forming
mechanism very often will be operating not upon uniformity, but upon a
system with gradients built into it by preceding developmental events. The
previously graded property may be persistent and unalterable by the new event
which is about to occur, and it may lead to a gradation along the system in the
initial rate of supply of activator to start the pattern-forming mechanism.
Here, "unalterable" does not imply an infinite time scale. A morphogen
prepattern may be envisaged as something which can form, or change from
one form to another, in a period from a few minutes up to a few hours.
Anything which needs more than a day to alter substantially is unalterable
with respect to that morphogen prepattern. For instance, a pair of morphogens
may react on the molecular scale in a pattern-forming reaction-diffusion
mechanism. But the activator may then induce cells to differentiate, over a
longer time period, into a form which manufactures more of the activator (and
perhaps secretes it, if the morphogenetic region for the reaction-diffusion
mechanism is extracellular). Thus a gradient of cell types could be set up
along a tissue. There are two positive feedback loops in such a system:
molecule-to-molecule autocatalysis of the activator (fast), and molecule-to-
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Figure 3.13. Steady-state distributions of activator and inhibitor produced along with
an elongated system by operation of the Gierer-Meinhardt model upon a shallow
source gradient. From Gierer and Meinhardt (1972), with permission from Springer-
Verlag.

cell-to-molecule feedback leading to increased activator production (slow).
The latter may be neglected for the time scale of the former, and the gradient
of cell types regarded as fixed.

This picture of morphogenesis raises some important issues which are
enlarged upon in later chapters: Does every pattern-forming process build
upon a preexisting shallow gradient, so that in some sense the whole final
shape is present ab initio? (see Chapter 5.) Are the basic "particles of the
system" to which pattern-forming dynamic equations refer molecules or cells,
or both together in the same mechanism? (see Section 4.4, anticipated in
Section 1.3.2.) Is the observation that a particular substance induces differ-
entiation to be regarded as evidence that the substance may be a morphogen?
(see Section 10.3.1.)

Whatever may be the answers to these questions, the value of seeing what a
morphogenetic amplifier can do to an initial shallow gradient is undeniable,
and that was Gierer and Meinhardt's initial (1972) objective. They showed
how to construct a two-morphogen model (substances A and H) which would
work upon a shallow, fixed, straight-line gradient of sources of A (p, Figure
3.13) and convert it into the now-familiar spiky peak and long flat plain. This
they called "firing" a gradient. Their models all contain a term ArIHs in the
rate of activator production. The analysis shows that a gradient will be fired
only if r > 1, so that if r is an integer it must be at least 2. In most subsequent
work they have used the form A2/H. The parallel between this and the Mills
(1932) proposal for optical resolution is quite striking (see Mills' explanation
as quoted in Section 5.3.1).

The predictions of the Gierer-Meinhardt model about the behaviour of a
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Figure 3.14. Schematic of a /fydra grafting experiment; #, activator concentration; h,
inhibitor concentration; p, source gradient. A graft containing the region immediately
below the hypostome (region 1) fails to give a second whorl of tentacles if it is grafted
on immediately below another region 1. But if it is grafted below a region 2, a second
whorl of tentacles forms. This illustrates the Gierer-Meinhardt model's ability to
amplify the top end of a gradient behind a discontinuity exceeding some threshold
value. From Gierer and Meinhardt (1972), with permission from Springer-Verlag.

system in response to disturbance may often be arrived at pictorially with the
aid of a few simple rules which characterize the particular idiosyncratic be-
haviour of this model and are not necessarily applicable to any other nonlinear
model. As for any pattern-forming model, one prediction cannot be made
without mathematics: the number of peaks which will appear when the pattern
first arises out of uniformity or out of a shallow straight-line gradient. This
needs a calculation of the "chemical wavelength" of the model in its linear
Turing regime. (I am avoiding using the word "linear" for the gradient be-
cause of the danger of confusion with the quite different major meaning of
"linear" in this topic, as applied to dynamic equations.) If, however, we have
good reason to believe that we are dealing with a chemical pattern with only
one peak along the length of the system, predictions can be made regarding
the changes upon disturbance:
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Figure 3.15. The same grafts as in Figure 3.14, differently illustrated. The block
diagrams show concentrations of activator a only, but as functions of both distance
along the organism and time. From Meinhardt (1982), with permission.

1. An existing peak is not easily destroyed by removal of the morphogens
from any small fraction of its total extent.

2. An existing peak prevents formation of a new one within a certain "range
of lateral inhibition"; beyond this range, positions at which new peaks may
form are not precisely correlated by any "chemical wavelength."

3. Two possible initiators of new peaks are (a) local destruction of inhibitor
somewhere in the nonactivated region, as discussed for insect teratogen-
esis in Section 3.3.1; (b) production of peaks in the source gradient, for
instance by grafting of tissues into unnatural juxtapositions.

Here an additional meaning appears for persistence of a gradient. Its
changes must be slow compared with the morphogenetic event which ampli-
fies and expresses it, not only in the natural state but also after grafting, so that
pieces which have been moved around and rejoined will retain their gradients.
There is extensive experimental evidence for such persistence of gradients
both in insects and in Hydra. One example from the latter serves well to
illustrate the explanatory or predictive power of the Gierer-Meinhardt model,
and at the same time to clarify pictorially the extent of the range of lateral
inhibition mentioned in rule 2. Experimentally, if a Hydra is decapitated just
behind the hypostome, leaving the abdomen intact (cut between H and 1,
Figure 3.14), and another Hydra is severed part way back in the abdomen and
the anterior part is retained, then grafting these two pieces together may or
may not lead to teratogenesis by production of a second tentacle whorl at the
graft (Figures 3.14 and 3.15). Success in forming a second whorl depends on
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how far back the graft is from the retained head end. Here, by contrast to the
previous discussion of insect embryogenesis, the Gierer-Meinhardt model
works on the assumption that the head is the activated end and that a whorl of
tentacles will arise wherever the model shows an activator peak forming.



4
Structure, equilibrium, kinetics

What is the ultimate reality in terms of which scientific explanations should,
at the deepest level, be written: matter or motion? Scientific philosophy has
most commonly asserted that it is the latter. D'Arcy Thompson (1917) quoted
instances of this starting from Aristotle's concept of the "efficient cause" and
proceeding by way of Newton to a statement by F. G. FitzGerald that "all
explanation consists in a description of underlying motions." But in the same
chapter, Thompson indicated that an accepted axiom of biology at that time
was that "function presupposes structure." And he also stated that "the over-
whelming progress of microscopic observation has multiplied our knowledge
of cellular and intracellular structure; and to the multitude of visible struc-
tures it has often been easier to attribute virtues than to ascribe intelligible
functions or modes of action." This seems curiously modern for something
written long before theories of motion had arrived at the wave nature of the
electron and so made possible the structural revelations of the electron micro-
scope.

Thompson could have had no inkling that such "overwhelming progress"
was only the beginning of the possibilities of microscopy. He envisaged,
rather, that there would soon be a concentration of effort on dynamics, in
which "the things which we see in the cell are less important than the actions
which we recognize in the cell." In the event, the infant microscopy of 1917
metamorphosed into an adult capable of finding more things in the cell than
were dreamed of in Thompson's philosophy. The account from which I have
quoted (Chapter 4 of On Growth and Form) was considered by J. T. Bonner to
be so completely out of date that he omitted it entirely from his 1961 abridge-
ment. Yet the first few pages of that chapter express very well the philosophy
of kinetic theory to which this book is addressed. Despite the glories of
modern microscopy, there are senses in which the cell remains as empty as it
seemed in 1917, as I have pointed out in Section 3.2.2. An old book should be
read to perceive, through the deadfall of a million trees of detail, the living
forest of an enduring philosophy. Some of its best seedlings may be concealed
in the deadfall. Do not abridge.

In Vancouver and in England, my two homes, the rain that is forecast for
tonight often falls on us tomorrow; I am familiar with predictions which give

89
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the sequence correctly but get the timing wrong. I still expect that the con-
centration on structural studies, so prolonged by the electron microscope, will
be followed by attention to dynamics, as Thompson expected, but in the
twenty-first century. Meanwhile, we have to cope with the full flowering of
the structural approach along with the first sprouting of the dynamic. (A
somewhat parallel instance of mistiming was Malthus's indication of the perils
of the population explosion, an outcome apparently invalidated but really only
delayed by the remarkable technological improvements in transport which
made possible the feeding of a much greater population, for a while. Expo-
nential growth of anything, whether a chemical concentration, or the size of
an organism, or a population, or the scientific literature, must always reach a
limit beyond which it will turn into something else.)

Elsewhere in the same work, Thompson explored in some detail the notion
that the forms of individual cells and of the partitions between cells in tissues
are governed, like those of soap bubbles, by a thermodynamic drive toward
minimum surface free energy, that is, toward equilibrium. Some of the crucial
diagrams in that account, showing the expected shapes for successive cell
divisions within a disc, were also omitted from Bonner's abridgement, but
were revived by Green and Poethig (1982); see Sections 4.3 and 4.4 for
modern uses of this concept in relation to both the static arrangements of plant
cells and the dynamical sorting-out of animal cells.

In the remainder of this chapter, I try first (Section 4.1) to give definitions
of structural, equilibrium, and kinetic theories of development. Sections 4.2-
4.5 discuss particular examples, not to show that any one of them belongs
exclusively to one of the three categories of theory, but rather to analyze what
aspects of the development belong to each of the categories. Crystal growth is
treated first because it most clearly and unequivocally involves all three.

4.1 Definitions of the categories

Any phenomenon of the physical universe, in material living or otherwise,
may be looked at from a great variety of viewpoints, and as arising from a
complex etiology of contributing factors. These may perhaps be put together
in a formidable multiterm equation. But often it is possible to ignore many of
these terms and concentrate upon one or two which give an essentially full
account of the phenomenon in the simplest way. We tend to describe the view
thus obtained as "the explanation" of the phenomenon. When a theory has not
yet been scientifically established by the test against experiment, such ap-
plication of Ockham's razor is usually necessary to permit the scientific meth-
od to proceed. It leads to a separation of categories.

4.1.1 Structure

In the most penetrating view of the ordinary matter around us, everything is
mechanics: movement of particles in force fields, and their collisions with
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Structure

Figure 4.1. The self-assembly of the tobacco mosaic virus, illustrating the generation
of form by structural fitting together of parts. From Klug (1972), with permission.

each other. In such terms we explain the formation of molecules and of the
solid, liquid, and gaseous phases. But if we wish, for example, to determine
the conformation to which some large molecule will fold up, we often think of
the problem as a geometrical one of "how pieces fit together," rather than as a
mechanical one of "how the net force on every particle may be reduced to
zero." In using such concepts as atomic radius and steric hindrance, we
replace the continuous variation of force with distance between objects by the
concept of idealized hardness: Down to a certain approach distance, repulsive
force is zero, and at that threshold it becomes effectively infinite. The objects
are then "in contact." This is a crude approximation, but it serves us very well
very often. Without it, we could not use in any simple way the concept that an
object has a size and shape. The fitting together of parts in this approximation
is what I call the structural approach. Forces have essentially disappeared
from the discussion, which is all in terms of geometry.

At the supramolecular scale of, for example, viruses (tobacco mosaic virus,
Figure 4.1) (Klug, 1972; Lehninger, 1975), this is the concept of development
of form traditionally designated in biology by the term "self-assembly." Both
this term, however, and the similar term "self-organization" are often used in
ways which overlap the three categories of physicochemical theory which I
am here seeking to distinguish.

4.1.2 Equilibrium

When a solution, cooled below a certain temperature, separates out into two
liquid phases, or when a mixture of cells in culture from two tissues of an
embryo sorts out into an aggregate of cells of one type enveloped by an
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Equilibrium

Figure 4.2. An idealized drawing of two types of experiments, as used in the work of
Steinberg (1970) on cell sorting (see Section 4.4.2). The upper arrow indicates an
engulfment experiment in which two pieces of different tissues in culture are threaded
together on one skewer. One piece moves to engulf the other. The lower arrow
indicates a cell-sorting experiment in which the two tissues have been disassembled
(by proteolytic enzymes) into separate cells, which have been randomly mixed. They
move to form two spheres, one inside the other. The fact that for the same two tissues
both experiments almost always give the same result was cited by Steinberg as an
indication that that result is most probably an equilibrium structure.

aggregate of cells of the other type (Figure 4.2, Section 4.4.2) (Townes and
Holtfreter, 1955; Steinberg, 1970), then we tend to think in terms of the
approach to equilibrium, minimization of free energy, rather than of geo-
metrical fitting or mechanical forces. Indeed, the geometry now has some
indeterminate aspects. Minimization of free energy, including surface and
interfacial free energies, requires that one of the two immiscible systems must
envelop the other, in a specific order, and that each must have a surface in the
form of a single sphere; but there is no requirement that the two spheres be
concentric.

(It is, however, possible to switch back and forth rather readily between the
thermodynamic description of a surface in terms of excess free energy and the
mechanical description in terms of a force, the surface tension. If each is done
properly, the two approaches are equivalent. This illustrates that assignment
of the explanation of a phenomenon to a category is not always unique.)

4.1.3 Kinetics
It is sufficiently evident that if material is transported to and deposited at some
places and is not transported to others, a shape is going to arise in the
distribution of that material. This shape is an immediate result of the trans-



Structure, equilibrium, kinetics 93

-14°C

Kinetics

-6°C -4°C

Figure 4.3. The shape of a snowflake is governed by how much its temperature of
formation differs from the equilibrium temperature (about 0°C). This shows that kinet-
ic factors dominate in generating shape. Top drawings: a needle growing at -4°C and
then transferred to - 14°C grows a star on its end; when changed to - 1°C it grows a
plate. Modified from Mason (1961), with permission.

port, which is therefore always in some sense among the causes of the shape.
But very often we do not view the transport as being a really significant
component of the etiology of the shape (in Aristotle's terminology, an efficient
or formal cause). Similar transport processes for stones might give rise to a
wall, Stonehenge, an Egyptian pyramid, or a Gothic cathedral. The essential
explanation of which one will arise lies in the architect's plans and the mental
processes which gave rise to them. Transport is essential to the production of
shape, but in such instances trivial in the determination of what shape will
arise.

I reserve the term kinetic explanation for one in which the transport pro-
cesses and the on-the-spot production and removal processes of chemical
reactions themselves intrinsically fulfil the function of the architect's mind:
They determine what shape is to arise. No example is needed here because
most of the chapters of this book are devoted to possible examples.

The essence of the contrast between the equilibrium and kinetic categories
is that in the latter the system moves away from equilibrium. One of the most
promising lines for conducting a "crucial experiment" is to devise a test for
whether or not form can be affected by distance from equilibrium. For the
shapes of snowflakes (Section 4.2, Figure 4.3), where there is only one simple
phase equilibrium to think about, the test proves crucial and gives the answer
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that form is kinetically determined. But living things have thousands of simul-
taneous departures from various physical and chemical equilibria, and a simi-
larly clear-cut test is difficult to devise.

4.1.4 Mechanochemistry
To reiterate: At a sufficiently fine level of subdivision of matter, all explana-
tion is in terms of forces and motions. Often we avoid explicit discussion of
these in one of two ways. Structurally, the biologist can explain many things
quite well by stopping at the stage of static molecules and their geometrical
fitting, without the need to consider molecular motions or to resolve the static
molecules into moving electrons and nuclei. In both equilibrium and kinetic
approaches, the macroscopic scale is so huge compared with the molecular
that forces and motions can be blurred into continuum properties, such as
energy, entropy, diffusivity, concentration, and kinetic rate constants. One
may pursue reaction-diffusion theory a long way by knowing that the diffusiv-
ities of small molecules in aqueous solution are of order 10 ~6 cm2 s~ l

9 and
that those of membrane-bound species are of order a thousand times smaller,
without seeking to explain those orders of magnitude in terms of molecular
collisions and suchlike.

There are, however, some experimental phenomena in which the existence
of forces and motions is brought directly to the attention of the observer, and it
appears a priori that they must be included explicitly in the explanations. Most
obvious among such instances are the phenomena in which a macroscopic
object undergoes change because of the movement and rearrangement not of
molecules but of pieces which are themselves large enough to be macroscopic
and individually observable. In biological systems, these pieces are often the
cells. Oster (1983) has written that "anyone who has watched time-lapse
movies of developing embryos cannot help being astounded by the almost
miraculous way they pulse, jerk and heave about, as they gradually shape
themselves into complex geometries and tissue configurations. . . . While it
is clear that these formshaping movements - which are very essence of
morphogenesis - must be driven by mechanical forces, until quite recently the
origin of these forces was a complete mystery."

I have been struck with exactly the same impression, as, for example, on
seeing such a movie of gastrulation in the nematode Caenorhabditis elegans,
shown by von Ehrenstein (1980) at the Second International Congress on Cell
Biology. In this process, two cells on the boundary of an elongated cell mass
have become visibly different from the rest (Figure 4.4a), and they move into
the interior (where they start to divide to form the gut) by a series of almost
imperceptible nudges and jostlings in which no cell ever seems to make a
single jump anything like as large as its own size. This aspect is strikingly
similar to the same aspect of the plastic deformation of crystals. The latter
process occurs more than a million times more easily than it should (in terms
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Figure 4.4. Two kinds of gastrulation, to illustrate a type of phenomenon in which the
existence of mechanical forces is rather obvious, and to which the mechanochemical
division of kinetic theory is likely to be relevant: (a) Gastrulation in nematode worms
(and many other lower invertebrates), sketched from memory of the film shown by von
Ehrenstein (1980). Two cells on the edge of the mass differentiate and move inward.
From these, the gut then starts to form, (b) Gastrulation in echinoderms, Amphioxus,
and elementary textbooks, which have some tendency to convey an erroneous impres-
sion that this idealized geometry is to be seen in the corresponding process in higher
vertebrates. These are schematic cross-sections through a hollow spherical shell of one
layer of cells.

of threshold shearing force and its relation to modulus of elasticity) if one
molecular plane had to slide over another in a concerted movement of the
order of one intermolecular spacing at a time. The theory of dislocations,
originating in the simultaneous and independent papers of Taylor (1934),
Orowan (1934), and Polanyi (1934), explains this in terms of a defect which is
really a geometrical fault of the whole crystal but which appears to be a
localized region of disorder. In a movie, one would see this defect work its
way right across the middle of the crystal, with the result that the top half
would finally slide one molecular spacing over the bottom half. But again, as
for the nematode gastrulation, the whole mechanism would seem to involve
some sleight-of-hand. No molecule ever makes an individual movement of
more than a small fraction of the intermolecular spacing, and thus it does not
have to overcome the energy barrier of such a jump. In the hands of metal-
lurgists, the theory of dislocations has become firmly established and exten-
sively elaborated over half a century. It seems to me that there are opportunites
for the application of some themes from this body of theory to many of the
movements within cell masses which occur in animal development.

Up to the present time, this has not been done; but Oster and collaborators
(Oster and Odell, 1980; Odell et al., 1981; Oster, 1983; Oster, Murray, and
Harris, 1983) have developed theories of the mechanochemical basis of mor-
phogenesis. Although a model in this category had been devised for Acetabu-
laria by Goodwin and Trainor (1985), most of this work has been relevant to
phenomena in the animal kingdom which have no counterpart in plant mor-
phogenesis. Where they refer to cells, in apparently very general terms, it is
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useful to remind oneself that often the word "animal" should be inserted in
front of "cell."

These papers describe a variety of complex concepts, but the gist of the
mechanochemical interaction as a mechanism parallel to reaction-diffusion
and as another subset of kinetic theory may be shown by a simplified abstract
from Oster (1983). The contractile mechanisms of cytoplasm in general,
involving actin and other associated proteins, are not so well known in detail
as is the actin-myosin-troponin-tropomyosin-myosin-ATPase-calcium mecha-
nism in muscle cells, but are generally believed to be similar and are known to
involve control by calcium concentration. Now intracellular calcium is subject
to an autocatalytic phenomenon known as "calcium-stimulated calcium re-
lease," in which an increased calcium concentration in turn increases the rate
of its release from calcium-sequestering vesicles. If mechanical stretching can
deform the cell membranes so as to allow a leakage of calcium, either from out-
side across the plasma membrane or from the calcium-sequestering vesicles
into the cytoplasm, then we have at least the equivalent of a one-morphogen
mechanism for unstable pattern analogous to the reaction-diffusion mecha-
nism for optical resolution. There is autocatalysis; and, without the need for
invoking calcium diffusion, there is long-range transfer of a stimulus tending
to even out the calcium to a high level everywhere, in the form of the
mechanical stress. This becomes the analogue of the long-range communica-
tion by diffusion. To stabilize pattern, there is no analogue of the inhibitor in
reaction-diffusion theory, but rather a strongly nonlinear behaviour of the
system of mechanical stress.

In some instances, however, the formulations of the mechanochemical
theory include diffusion terms. In the case of mesenchymal morphogenesis, in
which migrating cells often form clusters with definite geometries and con-
trolled spacings between them, the randomly moving "particles" for which
diffusion terms appear in the equations are the cells themselves (Oster et al.,
1983). In such cases, which, as these authors suggest, may include feather
primordium initiation and chondrogenesis, the mechanical terms can, just as
for molecular motion, disappear from explicit treatment and be replaced by
diffusion parameters.

The concept of cell-as-molecule is a recurring theme in the topics of sort-
ing-out and aggregation. The analogies are strong and useful, but also have
limitations. This theme is taken up again in Section 4.4.

4.1.5 Semantics of the term "field theory," and electric fields

Morphogenesis is a field of study; as a developmental phenomenon, it occurs
within the boundaries of morphogenetic fields; Goodwin and Trainor (1980)
proposed a field description of the cleavage process in embryogenesis; and the
work of Jaffe is largely concerned with the possible role of the electric field as
a long-range communicator in morphogenesis (self-electrophoresis) (e.g.,
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Jaffe, 1982). The four usages of the noun "field" in the preceding sentence are
clearly different, but have sufficient overlap in meaning that possibilities of
confusion arise. Of the seven numbered definitions of the uncombined noun
"field" in the latest edition of the Concise Oxford Dictionary, just one
(number 6) covers all four of the preceding usages: "area or sphere of opera-
tion, observation, intellectual activities, etc., . . . region of electric, gravita-
tional, magnetic, etc., influence, presence of such influence, force exerted by
it on standard object."

As an item in the terminology of physical theory, the word "field" is
intimately related to the concepts of "action at a distance" and "delocaliza-
tion of matter." General acceptance of the notion that objects not connected to
each other could exert forces on each other arose principally through the work
of Kepler and Newton, and that notion was a main feature of the Scientific
Revolution in the seventeenth century. This concept inevitably entails that of a
dual nature for a particle: as a highly localized object, and as an influence
extending through the whole of space. This duality is not something new to
the quantum mechanics of the twentieth century (wave-particle duality).
Physics has had to live with it for three centuries, and keeps on finding new
resolutions for the apparent conflict. In the present century, two contrasting
views have arisen: a completely particulate view, in which interparticle forces
arise from exchange interactions between them which quite replace the
"field" concept; and "field theory," in which everything is fields and there
really are no localized particles. In the words of Dodd (1984):

In the most sophisticated form of quantum theory, all entities are described by fields.
Just as the photon is most obviously a manifestation of the electromagnetic field, so
too is an electron taken to be a manifestation of an electron field and a proton of a
proton field. Once we have learned to accept the idea of an electron wavefunction
extending throughout space . . . it is not too great a leap to the idea of an electron field
extending throughout space. Any one individual electron wavefunction may be thought
of as a particular frequency excitation of the field and may be localised to a greater or
lesser extent dependent on its interactions.

Physicists such as Trainor are not seeking to introduce quantum mechanics
into the field (that word again!) of biological development. But it is in the
context of that fashion of twentieth-century physics that the term "field de-
scription" is being used by Goodwin and Trainor. Their strategic objective is
to try to set up theories of morphogenesis in the first instance in terms of the
mathematical properties of a very generalized abstraction, a "field" of un-
defined physical nature, and to proceed step by step toward what that field
might be in more concrete terms. In the first instance, they appeared to
envisage fields in which a process is operating for which a mathematical
minimization is appropriate, such as the minimization of free energy. Thus the
concrete representation of the field would involve the free energy, and ulti-
mately the structure, of the cell surface - something not far away from the
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soap-bubble analogies of D'Arcy Thompson (1917), as revived by Green and
Poethig (1982). More recently, via personal communications and in unpub-
lished lectures, Goodwin and Trainor have suggested that reaction-diffusion
and the mechanochemical theory might come under the all-sheltering um-
brella of field theory. To my mind, we should not be using the same term to
include theories of pattern formation as approach to equilibrium and theories
of pattern formation as departure from equilibrium (kinetic theory). If the
term "field theory" is going to obscure that distinction, its use is not con-
ducive to progress in the interaction between theory and experiment, and it
should be avoided. Most of the theory which the advocates of this term have
been using could be restated very similarly except for the omission of the
term.

Self-electrophoresis is, like reaction-diffusion and the mechanochemical
theory, a division of kinetic theory. It has not been under development as long
as reaction-diffusion, nor pursued by so many workers. But the whole of
kinetic theory remains so generally foreign to developmental biologists that
the relative popularity of its various branches cannot yet be taken as any index
of eventual promise.

The concept of self-electrophoresis, or a role for the electric field in pattern
formation, starts from the experimental knowledge that cell membranes are
often furnished with two kinds of structure relevant to the transport of simple
ions, such as Na+ or Ca 2 + , across them: passive leaks and active pumps.
Second, both in some fully developed structures (frog skin) and in a variety of
developing systems, both animal and plant (Figure 4.5), the pumps and leaks
are spatially segregated, often to opposite ends of a cell. This pattern of
distribution leads to the possibility of closed loops of electric current, which
have been observed. A current arises because of the existence of a potential
gradient (voltage gradient), otherwise known as the quantitative measure of
the electric field. It is evident that where all this is known to exist, there is a
possibility of directional movement of various charged species toward or
away from particular locations. This is self-electrophoresis. But do we have in
all of this a pattern-creating mechanism? That is, are the observed nonuniform
distributions of ion pumps and ion leaks self-organizing, with the electric
field playing some role in the process? Or are the distributions of pumps and
leaks set up by some quite different mechanism, such as reaction-diffusion,
mechanochemistry, self-assembly, or whatever, which does not invoke self-
electrophoresis as a process capable of setting itself up ab initio?

The answers to these questions are not yet known. There is, however, some
information relevant to important features of self-electrophoresis as a possible
self-organizer. First, are the fields big enough to act as the principal long-
range communicator, replacing diffusion or mechanical stress? The problem
here is that the important self-organizing region, the cell membrane, is usually
in contact with a highly conducting solution. A measurable current in the
solution may correspond to a field which is tiny indeed (Jaffe's vibrating
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a) Fucoid embryo b) Blastocladiella c) Cecropia follicle
sporangium

d) Xenopus oocyte e) Xenopus furrow

f) Early chick embryo

Figure 4.5. Some patterns of electric current observed during early development in a
wide variety of organisms. From Jaffe (1982), © Wiley-Liss, with permission from
Wiley-Liss, a division of John Wiley and Sons, Inc.

electrodes will detect 10 ~9 V cm"1) and which is unlikely to bring about
significant movement in the more sluggish charged particles attached to the
membrane. But Jaffe (1982) gives a number of instances of fields up to 100
mV mm" l in developing systems.

Second, can an electric field move charged particles in such a way as to
enhance itself? Usually, one expects the opposite. An electric field set up by
positive charges in one place and negative charges in another is so directed
that each kind of charge will move away from where it now is, leading to
diminution of the field. This is simply the discharge of a capacitor through a
conductor connected to both plates.

There are, however, plausible ways in which the expected flows in a simple
capacitor-conductor system can be reversed in the much more complex sys-
tems here considered. As one example, Jaffe (1982), in his Figure 7 and its
related text discussion, refers to a model by McLaughlin and Poo (1981) for
simultaneous self-electrophoresis and electroosmosis. In this model (Figure
4.6), an electric field along the outside of a membrane can move positive ions
in the exterior solution in one direction and set up a countercurrent of water in
the opposite direction. A large membrane-bound particle may have an exterior
appendage which then will act as a kite. The particle will move, impelled by
the water current, toward the positive end of the electric field, more or less
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Figure 4.6. Cartoon showing the joint effects of electroosmosis and electrophoresis on
a particle C within a cell membrane, but mobile and moved by its "kite" K. The
movement of water («) causes the negatively charged K to move away from the net
positively charged region on the right (i.e., in the direction opposite to that of simple
electrostatically generated movement in a vacuum). This is therefore a possible mecha-
nism for self-organization of membrane-attached species. From Jafife (1982), © Wiley-
Liss, with permission of Wiley-Liss, a division of John Wiley and Sons, Inc., modified
from McLaughlin and Poo (1981).

regardless of the charge, or lack of it, on the large particle. If this particle is
part of the mechanism for setting up the positive end of the electric field, one
then has a possible mechanism for the field to be self-organizing.

At the end of his 1982 review, Jaffe has a comparison of the electrical
theory with reaction-diffusion theory which to my mind totally misses the
most significant point. He enquires whether pattern formation is likely to be
"exclusively chemical" or to involve electrical forces. I do not understand his
concept of "exclusively chemical." Most modern chemists, especially analyt-
ical electrochemists, but including increasing numbers of organic chemists
who find that important oxidations and reductions sometimes may best be
done at an electrode surface, will tend to switch back and forth quite readily
between charged and uncharged species. In particular, the practitioner of
polarography and other voltametric methods knows that a fine line separates
the conditions in which current is diffusion-limited and independent of field
(even though fields are there and the species are charged) and the conditions
unwanted in such experiments in which field-governed transport dominates.
Such a worker will see diffusive and electric forces as two aspects of a given
experimental system, not as different worlds.

I am inclined to believe that the important thing about reaction-diffusion,
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the mechanochemical theory, and self-electrophoresis is that they all involve
fundamentally the same kind of principles of self-organization. To be capable
of generating pattern, any of these three must include the attributes of self-
enhancement (positive feedback, autocatalysis), long-range communication
(whether diffusive, mechanical, or electrical), and, for formation of stable
pattern, something equivalent to inhibition. All three together are branches of
kinetic theory, and involve movement away from equilibrium. In this they
stand together, and they stand opposed to theories of equilibrium and struc-
tural self-assembly.

This opinion should not be construed as an attempt to subsume the forces of
Oster and Jaffe under the banner of the Turingians. The field has no need of a
supreme commander, but we do need to recognize that we are all on the same
side. Neither should it be supposed that the object of the battle is to occupy all
the territory of the structuralists and the equilibrists. It would be surprising
indeed if nothing in morphogenesis turned out to need their kinds of explana-
tion. The point is not that the territory of the kineticists should be the whole
world of morphogenesis, but that it is not yet generally recognized as being a
vast territory, which I believe will one day happen.

In the remainder of this chapter, I try to indicate what are the structural,
equilibrium, and kinetic aspects of some phenomena mostly chosen because
they have all three.

4.2 Developmental control of the shapes of crystals

4.2,1 Structural aspect: just a few symmetry elements

The shapes (or habits, to use the crystallographer's term) of snow crystals
(Figure 4.3) have, when seen together, two striking aspects: first, their diver-
sity; second, that all of them (except, perhaps, some of the needles) clearly
show a single sixfold axis of symmetry. This feature correlates, if we go from
the macroscopic to the molecular scale, with the symmetry of the hexagonal
lattice in which the water molecules are arranged. (Actually, the hexagonal
system is defined by a unique threefold axis, but in simple cases it often
appears as sixfold.)

Likewise, sodium chloride has a lattice of Na+ and Cl~ ions of cubic
symmetry (essential elements: four threefold axes mutually at the tetrahedral
angle of 109° 28') and normally crystallizes in a cubic habit. If, however, the
salt is crystallized from a solution also containing urea, it forms octahedral
crystals (Figure 4.7a,b). Both cubic and octahedral habits reflect the symme-
try of the lattice, as also would an intermediate shape with parts of both cube
and octahedron faces exposed (Figure 4.7c). Thus the correspondences be-
tween crystal habit and crystal lattice are rather limited, being confined to a
few symmetry elements. On the basis of the regular habits of crystals it was
speculated for centuries that they contained orderly arrangements of minute
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Figure 4.7. Three contrasting crystal habits all compatible with the self-assembly of
any lattice of cubic symmetry. Only two types of faces are used: (a) (100); (Z?) (Ill);
(c) both of these. The "morphogenetic" question is, What determines which of these
shapes (or many other possibilities) a crystal will adopt; and in case (c) what deter-
mines the ratio of areas of cube and octahedron faces? For the small use of Miller
indices made here, the reader unacquainted with them need only know that they relate
the orientation of a plane (or a line) to a set of rectangular coordinates x, y, and z; (100)
specifies a plane which intercepts the x axis but is parallel to the y and z axes, e.g., the
right and left faces of the cube shown in (a). Faces "of type (100)" include (010) and
(001), i.e., all six faces of the cube. A (111) face makes equal intercepts on all axes. In
two dimensions, a face becomes a line, or edge. The designation "of type (12)," which
includes (21), will specify all lines with slopes of \ or 2, i.e., a factor of 2 between its
intercepts on the JC and y axes.

particles. In 1611, Kepler, in an essay on The Six-Cornered Snowflake, pub-
lished with English translation in 1966, almost anticipated modern concepts
of close-packing. Later in the seventeenth century, Robert Hooke got even
further with stacks of cannonballs. And toward the end of the eighteenth
century, de Hauy invented the word "molecule" for what would today be
called a unit cell. But the evidence from habit could give no detailed infor-
mation on the arrangements of particles within crystals, beyond a few sym-
metry elements, until the twentieth century produced X-ray diffraction. For
crystals, the very broad correspondences in symmetry represent the limit of
self-assembly in accounting for shape. Everything more detailed has some
other explanation.

4.2.2 Equilibrium shapes: surface free energy
and Wulff's theorem

When crystals are grown close to equilibrium conditions, that is, from a liquid
solution or vapour with a very low degree of supersaturation, they most
usually have rather simple shapes, for which the surfaces are only one or two
types of crystallographic planes. It seems reasonable to expect that such
shapes may often correspond to equilibrium, that is, to the minimization of
free energy. Surfaces usually have excess free energy over the same material
in the bulk. This excess, per unit area, is different for different kinds of crystal
planes. Commonly, it is lowest for low-index planes, such as the cube faces,
or (lOO)-type planes, of sodium chloride. This is the reason why such planes
are commonly found as the only bounding surfaces of many crystals.
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Figure 4.8. Equilibrium shape of a two-dimensional crystal. A single layer of mole-
cules forms a simple square lattice. For a crystal of finite size, a (lO)-type edge
(horizontal or vertical) has excess free energy G10 per unit length. A (1 l)-type edge, at
45°, has excess free energy G n per unit length. For a crystal of a fixed number of
molecules, area A is fixed. (Thus, if the shape changes because of increased or
decreased bevelling-off of corners, both / and a must change.) If G n /G 1 0 = «, and all
edges other than those of the (10) and (11) types have such high free energy that they
need not be considered, then the equilibrium shape is given by / n / / 1 0

 = n. (Problem
6.5.2 asks for proof of this, and the solution is given in Section 6.6.)

Two different kinds of low-index planes, such as the cube and octahedron
faces, (100) and (111), may often have rather similar surface free energies. If
the free energy of the latter is somewhat, but not much, greater than that of the
former, one can see the possibility that free energy might be minimum for a
shape such as that in Figure 4.7c, in which cube corners are bevelled off to
expose pieces of the octahedron faces. But how much of each corner will thus
be "chopped off"?

The answer is given by Wulff's theorem: "In a crystal at equilibrium, the
distances of the faces from the centre of the crystal are proportional to their
surface free energies per unit area." For a discussion, including a proof for
two-dimensional systems, see Burton, Cabrera, and Frank (1951). This sim-
ple theorem makes it quite easy to solve the bevelling-off problem, provided
that one knows the excess free energy per unit area of both kinds of face (Goct
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and Gcube). The distance from the centre of a cube to a corner is 31/2 times the
distance from the centre to a cube face (and the direction from centre to corner
is perpendicular to the octahedron face which might cut off the corner).
Therefore, if Goct/Gcube

 > 31 /2 , there is no thermodynamic advantage to
appearance of the octahedron faces. But if Goct/Gcube < 31 /2 , there is such an
advantage. As ^oct^cube decreases below this threshold value, the size of the
octahedron faces should increase relative to the size of the remaining parts of
the cube faces.

Quantitative calculation of the shape is most simply illustrated by the same
situation reduced to two dimensions (Figure 4.8). The corners of a square
crystal will be bevelled off to such a depth that the distance lx l from the centre
to bevelled edges is n times the distance /10 to square edges, where n is the
ratio of excess edge free energies per unit length for bevelled and square
edges. Proof of this is asked for as the first exercise in the use of calculus in
Chapter 6 (Section 6.5, Problem 6.5.2) and is a proof of WulfiPs theorem for
this special case.

The structuralist will have noticed that the equilibrium shapes of crystals
depend upon a property related to structure: the excess free energy for differ-
ent kinds of crystal faces. But there is still no way of avoiding calculus to find
how the shape will be determined by those free energies.

4.23 Kinetic aspect: the diverse shapes of snow crystals

Notwithstanding F. C. Frank's remark that "the average photograph of a
snowflake is more symmetrical than the average snowflake," the stellate
crystal must have some remarkably good control mechanism for the produc-
tion of a shape far more complex than any predicted by equilibrium concepts.
If we idealize the crystal as two-dimensional, a single layer of molecules in
hexagonal array, the simplest representation of a stellate crystal (Figure 4.9)
shows two kinds of edges exposed. In the rhombic indexing of the two-
dimensional hexagonal lattice, horizontal edges and ones at 60° to the hori-
zontal (i.e., what would be the edges of a simple hexagonal plate) are (11)
edges. Vertical edges and others at 30° to the (11) edges are (12) edges. This
labelling is used in Figure 4.9, but no knowledge of Miller indices is in fact
needed to follow the argument.

The shape is accounted for, in general kinetic terms, if molecules are added
to (12) edges much faster than to (11) edges. As the six arms grow out, with
(12) edges on their ends, they can remain narrow because they are bounded on
the sides by slow-growing (11) edges. Here, the principle of equilibrium
embodied in Wulff's theorem cannot help. The sides of the growing rays are
clearly at varying distances from the centre of the crystal, according to what
point along the ray one looks at. Thus the rays do not satisfy Wulff's theorem
and are not part of an equilibrium shape.

Whereas equilibrium thermodynamicists are thus confounded in trying to



Structure, equilibrium, kinetics 105

Figure 4.9. Basic stellate shapes, in two dimensions, for a hexagonal lattice and a
square lattice. Both have two kinds of faces (or edges, in two dimensions) exposed.
The type of face is labelled with Miller indices for rhombic and square indexing, faces
such as (10) and (01) all being labelled as type (10), and so forth. Thus a change of
shape because of differential growth rates for different types of faces is possible. But
the six-pointed star can grow long thin rays if (12) grows faster than (11), because (12)
faces occur only at ray ends; the four-pointed star will grow fatter rays because the side
faces are of the same type as the ends. Knowledge of indexing is not needed to
appreciate the difference in face types. For the six-pointed star, the spacings of points
on ends and sides of a ray are clearly different, whereas for the four-pointed star they
are the same.

explain the shape, structuralists may see a valid extension of their realm. The
crystal can develop rays, in the geometry of the six-pointed star, because the
sides of rays, together with the boundaries of the central hexagonal plate, are
structurally different from the growing ends of rays. By contrast, a square
crystal of a substance crystallizing in a simple square lattice could not send
out rays as in Figure 4.9 because the sides of the rays would be the same kind
of edges as their ends and should grow at the same rate. Much is thus
explained by looking at structure, but only because structure determines rate.

Rates of processes usually depend on some measure of how far a system is
away from equilibrium. Hallett and Mason (1958) considered two possible
mechanisms for the contrast in rates of growth: (1) different rates of direct
condensation from the vapour phase onto different faces; (2) different rates of
migration of adsorbed water molecules across different faces of the crystal
surface. They were able to devise an experimental test to distinguish these
possibilities. For (1), the appropriate measure of distance from equilibrium
should be the degree of supersaturation of the vapour; for (2), it should be the
temperature. In the laboratory, using an atmosphere of water vapour at con-
trolled pressures and temperatures, they could control the two variables sepa-
rately and show that the shapes of snowflakes depend directly on temperature,
not on degree of supersaturation. Thus (2) is the phenomenon which shapes
the crystal (see Section 6.5, Problem 6.5.3.). There is current interest among
physicists in the dendritic crystallization of supercooled succinonitrile, which
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is thought to have some analogy to formation of ice (Saito, Goldbeck-Wood,
and Muller-Krumbhaar, 1988). Dr. Muller-Krumbhaar (personal communica-
tion) assures me that Mason's much earlier work on ice remains valid, and that
the process is still not understood in detail beyond the generalization in this
paragraph.

What is the significance of all this to a student of biological mor-
phogenesis? First, this discussion of crystal growth is offered as a general
conceptual introduction to the modes of thinking of a physical chemist in
approaching the problem of shape-generation. Particularly, such a scientist
would have no aversion to switching rapidly between concepts of structure,
equilibrium, and kinetics as various manifestations of shape-production might
seem to indicate. Biologists in general seem to have much more reluctance to
switch back and forth rapidly between the concepts of self-assembly and those
of kinetic control.

Second, a specific feature of the evidence on the stellate snowflake is that
the shape of a three-dimensional structure is controlled by rates of transport
across its surface, tangential to the actual growth. This may sometimes have
close analogues in thq control of biological growth. It draws attention to the
probable importance of events at the cell surface, including transport along the
plasma membrane.

Third, and somewhat more likely to make the biologist a little despondent,
the discussion has described a type of experiment in which we see the pos-
sibility of two measures of displacement from equilibrium being important,
and we separate them experimentally so as to vary them one at a time. The
strategy is important to bear in mind, but much more difficult to put into
practice in biological systems, because they inevitably contain thousands of
assorted displacements from equilibrium. Most of these cannot be adjusted
experimentally independently of all the others. This is what makes it so
difficult to devise the "crucial experiment" to decide whether control is or is
not kinetic.

4.2.4 Biological control: the echinoid spicule

Inoue (1982), reviewing the role of (structural) self-assembly in mor-
phogenesis, presented "a graded series of examples that . . . illustrate the
extent to which self-assembly can specify the product formed and the degree
to which kinetic, or cellular, features govern or modulate the generation of
biological structures by self-assembly." Last in this graded series, and so by
implication showing the greatest kinetic component, he placed his own obser-
vations (Okazaki and Inoue, 1976; Inoue and Okazaki, 1977) on the skeletal
spicules of sea-urchin larvae. These have complex shapes entirely failing to
display the symmetry of the calcite lattice. But polarized light suggests a
uniformity of crystal-lattice orientation throughout the spicule, and X-ray
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Figure 4.10. (a) Shape of a sea-urchin spicule, surrounded by an indication of the
orientation of the calcite lattice within it, the whole spicule being a single crystal, (b) A
triradiate rudiment of a spicule removed from the larva and grown further in saturated
calcium carbonate solution, showing the preferential growth of low-index faces, and
equal growth of all crystallographically equivalent faces, which does not occur in vivo.
From Inoue (1982), with permission. Originally published in Development, Growth, &
Differentiation, the Japanese Society of Developmental Biologists (1976).

diffraction confirms that the spicule is a single crystal of calcite (Figure
4.10a). Growth of a spicule in saturated calcium carbonate solution takes
place by preferential advance of some low-index faces, as one would expect
for the approach to equilibrium. The crystal then begins to assume the ap-
pearance of a set of connected blocks all in the same orientation (Figure
4.10b). The change from out-of-equilibrium shape determination in the living
system to a movement toward equilibrium in the inanimate solution is very
striking.

This evidence is of great philosophical interest as an example of the kind of
thing that different individual scientists are likely to interpret quite differently,
according to their preconceptions. Inoue seems to classify this example as still
belonging to the category of self-assembly, but with some fine-tuning or
modulation provided by kinetics. A vitalist could take the contrast between
Figures 4.10a and 4.10b as a striking illustration of how living things defy the
principles of chemical behaviour in vitro. To my mind, the vitalist would be
right if it were not that physical chemistry provides mechanisms for move-
ment away from equilibrium, including the breaking of those basic sym-
metries which are inevitably maintained when growth control is by self-
assembly. To me, therefore, the kinetics form the basis of the growth
mechanism, not just the fine-tuning.
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Spicule shape, in vivo, is controlled by clusters of mesenchyme cells with
pseudopods fused to form a syncytium. Okazaki and Inoue found that as few
as three mesenchyme cells had the capacity to generate the unique spicule
shape; they suspected that even one cell might be enough. From further details
of the evidence, they concluded that "healthy mesenchyme cells must be
suppressing the growth of calcite crystal faces. While permitting the calcite
lattice to self-assemble, the cells regulate the exact pattern of calcium carbon-
ate deposition to meet the genetically dictated form." I am quite happy with
the implied characterization of genetics as a dictator, provided that it is recog-
nized that dictators and their ilk commonly employ artists and architects to
control the design of elaborate structures intended to aggrandize the dictator,
and that here a mechanism within the mesenchyme cells is the architect. In
this sense, I see the calcite lattice of the spicule as having no more and no less
significance than the same lattice within a piece of marble which is being
carved by a sculptor.

No specific theoretical model has yet been developed for this phenomenon,
to show how so few cells may act as so talented a sculptor. But kinetic effects
of mesenchyme cells are numerous and varied. Oster's mechanochemical
theory of mesenchymal morphogenesis is outlined briefly in Section 4.4. It
requires quite large numbers of cells which move independently and divide.
This leads to controlled clustering in definite geometrical patterns. In the
echinoid larva, this mechanism might be relevant to the determination of
where in the larva the syncytial clusters form and hence where the spicules
originate (i.e., the stage of morphogenesis preceding spicule growth).

4.3 Division of plant cells: Is control kinetic, thermodynamic,
or mechanical?

Kinetic control of shape is easy to prove when the equilibrium shape is
known. But for many intracellular events, no such clearly defined structure is
formed. Then, rather than separating structural, equilibrium, and kinetic as-
pects, one is left to speculate on alternative mechanisms which may be quite
disparate in respect of which aspect is dominant in shape determination.
Kinetic theory of plant cell division was exemplified at length in Section 3.2.
A well-known form of equilibrium theory was presented by D'Arcy
Thompson in his 1917 and 1942 editions, though it was not given fully in
Bonner's 1961 abridgement. It was revived by Green and Poethig (1982), and
something similar is implied, in connection with cleavage of animal egg cells,
in Goodwin and Trainor's "field description" (1980).

The equilibrium principle used by Thompson is that cell surfaces are likely
to have excess free energy and that the shapes of multicellular aggregates
produced by cell division should be such as to minimize this free energy.
Roughly, this means that cell surfaces should assume shapes similar to those
of assemblies of soap bubbles. A well-known property of such films is that
they tend to avoid a quadruple junction, such as that in the middle of Figure
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Figure 4.11. (a) Unstable equilibrium of dividing surface between soap bubbles, (b)
Stable equilibrium to which the former inevitably changes (being an example of
symmetry-breaking which arises from equilibrium considerations), (c-f) Equilibrium
divisions within each cell readjusting to equilibrium of the 8-cell assembly. (g,h)
Sections of actual assemblies of cells in a developing moss. From Thompson (1917).

4.11a, replacing it with two triple junctions with angles close to 120° sepa-
rated by a "polar furrow," this being the vertical line in Figure 4.11b. (The
polar furrow arises again in a discussion of how animal cells may rearrange in
sorting-out; see Section 4.4.4.)

In many instances of the formation of sheets of cells by repeated division in
the plant kingdom, quadruple junctions indeed seem to be avoided most of the
time, but not completely. Figure 4.1 lc-f shows Thompson's concept of how a
disc-shaped cell might divide into eight by divisions at first idealized to the
situation within each dividing cell, but with readjustments to a stable equi-
librium for the whole assembly. Figure 4.1 lg,h, also from Thompson, shows
sections through early developmental stages of a moss. Gunning (1982) indi-
cated a similar fairly general but incomplete avoidance of the quadruple
junction in his observations on the Azolla root.
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Lintilhac (1984) proposed a model for the orientation of the preprophase
band which could be regarded as a problem for the student of this chapter. To
which of my categories, structural, equilibrium, or kinetic, does it belong?
(Or, for a much more detailed answer, how would you start to set up this
model mathematically? It is clearly at the stage of an interesting and well-
presented suggestion, and yet it remains somewhat undefined until one tries to
express it mathematically.)

The model starts from cellular deformation arising from both internal turgor
forces and external forces. In response: "A dimension-seeking mechanism
within each cell would therefore be the most direct method of determining the
directions of principal stresses and strains, effectively transforming each indi-
vidual cell into a three-dimensional, multi-axial strain-gauge." Lintilhac pro-
poses that this mechanism involves stiff, noncontractile elements such as
microtubules, randomly oriented but spanning the cell, with attachments to
the plasmalemma on both sides. In response to extension of the cell in any
direction, elements running along that direction will be broken. New linkages
are then assumed to be formed randomly to restore structural continuity.
"Thus, a period of extended dimensional change will result in the gradual
depletion of structural elements along the axis of maximum dimensional
change and the accumulation of elements in the orientation which is the most
protected from shattering forces. This . . . will be transverse . . . to the di-
rection of maximum dimensional change" (Figure 4.12).

The short answer to the problem posed earlier may be arrived at by apply-
ing a well-known test for whether or not a final state is an equilibrium state:
Does one reach the same state from different starting points, or is the state
path-dependent? If the former is answered affirmatively, the final state may be
an equilibrium state; if the latter, it definitely is not. Let us suppose that the
final cell shape, corresponding to Figure 4.12e or 4.12j, is a cube. In which of
the three mutually perpendicular planes bisecting this cube will the "pre-
prophase band" form? In Lintilhac's mechanism, this is governed by which
dimension has been altered the most to achieve the cubic shape. The symme-
try of the change governs the symmetry of the product. The model is kinetic.

Section 3.2 and the present section are, I believe, together sufficient to
show that despite all that has been discovered about the cytoskeleton and other
contents of the cell since Thompson wrote, yet in terms of surely known or
generally accepted developmental mechanisms the cell is as empty today as it
was in 1917.

4.4 Animal morphogenesis: rearrangement, deformation,
and proliferation of cells

4.4.1 Some phenomena, and the cell-as-molecule concept

Molecules move randomly, being propelled passively, that is, from without,
by their collisions with other molecules. They attract each other by forces
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Figure 4.12. Lintilhac's diagram of the determination of a plane of future cell division
by the breaking of an array of elements such as microtubules chiefly in the direction of
maximum dimensional change, followed by random re-formation: (a) for cell shorten-
ing; (b) for cell lengthening. In both cases, the "pre-prophase band" develops perpen-
dicular to the direction of maximum change. From Lintilhac (1984), with permission.



112 Macroscopics without mathematics

mainly requiring a quantum-mechanical explanation. And they take part in
reactions, including in some instances autocatalytic proliferation.

Some of the behaviour of cells as units of an assembly seems analogous to
these properties of molecules. Animal embryogenesis frequently involves
movements of cells which lead to rearrangements (e.g., the gastrulation pro-
cess in nematodes and many other lower invertebrates, as sketched in Figure
4.4a). In an assembly of cells in which all cells are dividing at regular
intervals, their total number increases in the same manner as a concentration
increases in a first-order autocatalysis. Taken together, these two properties
seem to indicate that cells may sometimes have the essential attributes for
them to serve as the "molecules" in a reaction-diffusion formulation.

Many instances of animal morphogenesis involve an epithelial sheet lined
on one side with a basal lamina of extracellular-matrix materials, and an
adjacent layer of mesenchyme cells. These last display the attributes of inde-
pendent mobility and proliferation. In some instances, experimental evidence
suggests that the positions of particular epithelial structures (e.g., the regular
hexagonal arrays of chick feather primordia) are first established as clusters of
mesenchyme cells. One is then left to wonder if a mesenchyme cell can
sometimes be identified with an activator morphogen "molecule" X. The
theory of Oster et al. (1983) (see Section 4.4.4) leads to that interpretation in
certain limiting conditions.

There are, however, important properties of the motion of cells which limit
the validity of the analogy between that and molecular motion. This is seen
particularly in epithelial sheets, which often change their shape by deforma-
tion of individual cells precisely orchestrated over certain areas of the sheet
(e.g., the gastrulation process in echinoderms and higher animals, Figure
4.4b). Some components of this long-range organization can be destroyed, so
that others can be studied by themselves, by taking a tissue apart into separate
cells. This was done in the in vitro sorting-out experiments of Steinberg and
co-workers (Phillips and Steinberg, 1969; Steinberg, 1970, 1975; Steinberg
and Wiseman, 1972). When cells thus obtained from two different tissues of a
chick embryo are mixed randomly together in culture, they sort out into two
separate aggregates, one enveloping the other, as in Figure 4.2. This requires
movement of cells relative to each other much as molecules must move when
a solution separates into two phases, as a result of change in temperature or
other conditions. But cells would take most of eternity to do this if each could
be regarded as a molecule moving only with the kinetic energy appropriate to
the temperature. To move quickly enough, cells must be propelled from
within by the contractile machinery which can bring about shape changes.
This is active movement, quite unlike the internal motions of molecules. But
it can still be directionally random. An assembly of rearranging cells can then
still usefully be thought of as rather like a set of molecules, but with a mean
kinetic energy appropriate to some fictitious temperature enormously greater
than the real temperature of the system.
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Such in vitro experiments were used to establish the concept that differen-
tial adhesion exists between various types of cells, and that this can be a factor
in morphogenesis. This is equilibrium theory, and the in vitro phenomena
were carefully shown by Steinberg (1970) to be in that category (Section
4.4.2), and analogous to phase separations arising from differential attractions
between molecules. To what extent is it a factor in living pattern formation?
These workers have been careful never to claim it as a complete model for
this, and to stress that the order of envelopment of one tissue by another
makes no anatomical sense. When sorting-out seems to be a component of
morphogenesis in vivo, it is usually evident that there is some long-range
organizer of the cell movements which may or may not take the system
toward an equilibrium. Cells, for instance, often move as coherent aggre-
gates, or form into such aggregates as they move. Steinberg showed that when
pieces of tissue from chick embryos are excised and placed adjacent to each
other on a skewer, they move so that the final conformation is the same as that
in the sorting-out experiments, in respect of order of envelopment of one
tissue by another. Here, equilibrium still dominates. The path by which it is
reached is a secondary matter.

By contrast, the cellular slime mould Dictyostelium discoideum, at one
stage in its life cycle, forms an elongated mass of nonfeeding, nondividing
cells nowadays usually called a "slug." This differentiates into two cell types,
the pre-stalk cells occupying about the anterior quarter of its length, and the
pre-spore cells the remainder (Figure 4.13a). Both the formation of the slug
and the following stage, culmination, in which the slug is transformed into a
fruiting body of spore cells and stalk cells, are relevant to the present topic,
except that the organism does not seem to own allegiance to either the animal
or the plant kingdom.

In both developmental stages there is cell movement. For the slug stage, it
remains uncertain whether a spatial prepattern is laid down by some chemical
mechanism which then commands the differentiation of the cells, or whether
the cells differentiate randomly and thereafter sort out spatially; see Mac-
Williams (1982) and earlier references there cited. But the shape of the slug
does not correspond to the end of Steinbergian sorting to minimize the free
energy of differential adhesion. One cell mass does not envelop the other. If
sorting is dominant, it must be by some such means as chemotaxis. Pre-stalk
cells are known to produce cAMP and to move toward high concentrations of
it. Anything along these lines would be a kinetic mechanism, and a proper
mathematical treatment of it would probably have resemblances to reaction-
diffusion, with pre-stalk cells as a "morphogen." See Section 10.3.1 for
further discussion and two other morphogens.

Culmination (Figure 4.13b-e) shows even more striking evidence for
mechanokinetic organization. The pre-stalk cells, instead of forming a stalk in
the geometrically simplest way on the side of the spore mass where they are
already located, first move anteriorly (now upward), but at the tip form a
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Figure 4.13. Two morphogenetic stages of the cellular slime mould Dictyostelium
discoidewn. (a) The fully developed pattern in the slug (grex, or pseudoplasmodium),
with the pre-spore cells (dark) and the pre-stalk cells (light) distinguished by the
periodic acid-Schiff staining method, (b-e) Stages between the slug and the fruiting
body, which is a spherical mass of spores atop a narrow stalk with a basal disc at the
bottom. Pre-spore cells (2) mature into spore cells (5); pre-stalk cells (3) mature into
stalk cells (4). As the stalk forms by downward movement of the stalk cells, it acquires
a heavy cellulose sheath. Arrows in the pre-stalk and stalk cell masses show approxi-
mate directions of the reverse-fountain flow, which is clear evidence for a system of
mechanical stresses highly organized throughout the structure. Modified from Bonner
(1967), with permission; Sections b-e adapted from Scientific American 201 (De-
cember 1959), 152-62.

narrow file which then moves right through the spore mass in the opposite
direction to form the stalk. The whole flow path of cells is essentially a
reverse fountain, highly organized and not at all like random sorting, and
leading to a structure which would be most unlikely as an equilibrium shape.

Morphogenesis is a continuous sequence of processes in which the occur-
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rence of one stage is often dependent upon the prior completion of another
event. For two such successive stages, it is not always clear which should be
accorded the greater credit for determination of form. This is particularly the
case when there is good experimental evidence that one event requires the
presence of a preexisting and persistent gradient in some property along
the morphogenetic field of the event. Does one take the gradient for granted as
an experimental fact, or does one maintain that the crucial question is how the
gradient was set up in the first place? The former view has been taken, at least
for the time being, in some important accounts of kinetic theory, especially
Gierer and Meinhardt (1972), as well as equilibrium theory (Steinberg and
Poole, 1981). These latter workers showed that the pronephric duct of the
axolotl (Ambystoma mexicanum) grows across the flank mesoderm in a dor-
socaudal direction in response to an adhesive gradient in the mesoderm.
While the duct may be regarded as seeking equilibrium, it is trying to hit a
moving target, because there is evidence that the gradient was not fully set up
previously and then became static, but is itself moving as it guides the duct.
Description of the gradient therefore needs kinetic theory.

The two kinds of gastrulation used here as examples, for nematodes and
echinoderms, both suggest the presence of some prepattern before the onset of
cell migration or deformation. Oster's (1983) mechanochemical description of
the onset of invagination in the echinoderms gives a good account of how the
signal to deform may be passed from cell to cell, and how the resulting
concerted deformations may produce the observed change of form. But it
presupposes that the cells on one side only of the blastula are somehow
prepared to receive the mechanical signal. This is a prepattern, and its estab-
lishment is the fundamental symmetry-breaking between blastula and gas-
trula, before the mechanical deformations begin. It was this demarcation of
the blastula into two disparate sides which Turing had in mind as the role for
his kinetic mechanism when he remarked that the spherical blastula, in the
absence of such a mechanism, "could not give rise to a horse, which is not
spherically symmetrical."

Nematode gastrulation looks superficially very different, leaving one to
wonder if nature has found two separate ways to form a gut, that is, in
topological terms, to form a sheet of cells into a non-simply-connected sur-
face, the topology of a doughnut. Yet, in the sorting-out process which looks
so random if one gives detailed attention to the jostlings of a few cells, the
resultant cell movements suggest a system of long-range forces organized just
as precisely as those in the echinoderm gastrulation. This suggests that there
may here also be a hidden prepattern which prepares the ground for organiza-
tion of forces by an Oster mechanism.

In this view, the two kinds of gastrulation may in fact be rather similar at the
stage at which organized forces arise to move and deform cells. The processes
look different because the starting shapes of the assemblies of cells are differ-
ent, and the prepatterns are different. Comparative study of morphogenesis in
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different organisms requires first a careful analysis of the morphogenetic event
into stages, so that one may then try to pick out which stages are similar and
which are different between various examples. The initial analysis requires
recognition of complex sequences of the making and breaking of symmetry,
which is the topic of Chapter 5. The question of linking morphogenetic
processes in sequence is taken up again in Sections 9.1.4, 10.1, 10.2, and
10.3.3.

For the purpose of the present chapter, the operation of systems of orga-
nized forces to shift cells around and to change their shapes is clearly in the
realm of kinetic explanation. One cannot say much that is definite about the
probable chemical prepatterns until more is known about them experimen-
tally, but such distributions of material are quite difficult to account for other
than kinetically.

The last example in this section is the account of morphogenesis of the
mouse submandibular salivary gland given by Bernfield et al. (1984). This
seems to be a phenomenon which has everything that is kinetic, and very little
that is not. The dominant feature seems to be establishment of nonuniform
distributions of chemical substances along the boundary of the developing
multilobate form (Figure 4.14). There seems to me to be something here
which is far more complex than, but yet strategically similar to, the mor-
phogenesis of the stellate snowflake: One's attention is continually brought to
the directions tangential to the advance of the developing outline, and to how
disparities arise along those directions because of differential rates of pro-
cesses.

The system is one of three layers: an epithelial sheet, bounded outside by a
basal lamina, with a layer of mesenchyme cells outside that. Bernfield and
associates give an extensive catalogue of the known aspects of the behaviour,
cellular and histochemical, which gives rise to morphogenesis. This includes
almost every kind of behaviour which can form part of a kinetically organized
process. For instance, the extra surface area of the enlarging and branching
lobes is provided by proliferation of cells. This has been shown to involve
substances, probably classifiable as mitogens, transmitted from the mes-
enchyme cells. What is missing is any model for how these cells go about
providing this chemical signal more at the lobe tips than elsewhere. From the
description, it would appear that this is more a matter of nonuniform distribu-
tion of the chemical signal than of clustering of the mesenchyme cells. Possi-
bly, then, a reaction-diffusion mechanism along the mesenchymal layer could
be involved. Also, there is a nonuniform distribution of extracellular matrix
on the epithelium. There is less basal lamina (e.g., type IV collagen) on the
lobule tips than in the notches, and the latter have an additional layer of type I
collagen. The basal lamina is produced by the epithelium, but some modifica-
tions of it are due to the mesenchyme. The control of lobule branching needs
not only a mechanism for an increase in area but also a shaping influence,
probably involving the cytoskeletal mechanics which can change the shapes of
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Figure 4.14. Morphogenesis of the mouse submandibular salivary gland. Changes in
the extracellular matrix (removal at active areas of lobe growth, and the laying down of
extra type I collagen in the notches), as well as cell proliferation and shape change at
the growing and branching lobe tips, involve chemical interactions between epithelium
and mesenchyme. This implies the formation of chemical prepatterns to control lobe
formation and branching. How are these prepatterns formed? From Bernfield et al.
(1984), © Wiley-Liss, with permission of Wiley-Liss, a division of John Wiley and
Sons, Inc.

cells. But those authors mention (in a general context, rather than with specif-
ic evidence from this example) that changes in cell shapes can affect rates of
DNA synthesis and cell proliferation. This is a feedback linkage which is
quite appropriate to the differential equations for kinetically controlled devel-
opment.

This instance well exemplifies the general state of the field. There is quite a
wealth of cellular and chemical information which gives strong indications of
the main players in the game of morphogenesis. But there can be no proof that
these various behaviours can indeed be responsible for the observed shape
changes short of a mathematical analysis of their kinetic interactions. Every-
where, their account stops short of that, and for good reason. In doing all that
work, those authors had enough on their hands without embarking on that
equally time-consuming but very different part of the work. A main purpose
of this book is to try to encourage more people into activity in that side of the
work.
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Table 4.1 is a checklist of the equilibrium and kinetic factors likely to be
involved in the various examples described in this section. The three terms
used (Yes, ?, and No) should be taken as indications of relative probability, as
I see it, rather than absolutes. It would be possible to argue about some of the
affirmatives and negatives. The three columns on the right, under the heading
"Cells as units," must be understood in a very specific sense. "Yes" does not
merely indicate that mechanical strain, or chemotaxis, or proliferation occurs
and has some role in the process. It means that there is a high probability that
one of these factors has an essential role in the self-enhancing, self-inhibiting,
cross-enhancing, or cross-inhibiting interactions which confer on a mecha-
nism the power to produce pattern or form. Thus the word "Self-organizing"
in the title of each of those columns is vital to its meaning.

The items have been listed in a particular order, to form a series in which
the "Yes" items go in a diagonal band from top left to bottom right. It is my
expectation that when the question marks can someday be replaced by "Yes"
or "No," this pattern will be even more obvious. Thus, the instances, in order
from top to bottom, go from those in which equilibrium adhesion is most
important, via those probably involving kinetic self-organization on the mo-
lecular scale, to those in which the cells themselves are in a sense mor-
phogens. For the two instances in which I have indicated "Yes" to reaction-
diffusion, see Section 10.3.

4.4.2 Equilibrium aspects: differential adhesion

Conceptual advances in science frequently become firmly established through
the recognition of a new property which can be quantified: the velocity of
light, believed infinite up to the seventeenth century; the mechanical equiv-
alent of heat, essential to establishment of the concept of energy; and the
statistical ratios of Mendelian genetics, which paved the way toward mo-
lecular biology.

Sometimes the recognition of a quantifiable property occurs when a set of
objects A, B, and C are shown to have a property (represented by the same
letters) which, by qualitative test, obeys either (1) the law that if A = B and B
= C, then A = C, or (2) the so-called transitive law that if A > B and B > C,
then A > C. Here, the signs for "equals" and "greater than" acquire their
usual mathematical meanings only after the qualitative comparison has been
used to assert the possibility of, and then set up, a quantitative scale. Case (1)
is exemplified by the zeroth law of thermodynamics, being the starting point
of an approach to the subject which efficiently extracts the essence of its
beginnings by mincing and boiling its historical details. Thermal equilibrium
between two bodies can be defined, without the concept of temperature, as the
relationship between them when all their properties have ceased to change as a
result of contact (e.g., size, pressure, electrical conductivity). The law is as
follows: If two bodies are each in thermal equilibrium with a third body, then



Table 4.1. Physicochemical factors likely to dominate specific examples of form determination

Experimental phenomenon

Sorting-out in vitro (chick embryo
cell types)

Pronephric duct growth (Ambystoma)
Nematode gastrulation (Caenorhab-

ditis elegans)
Echinoderm gastrulation (the phylum

in general)
Axolotl heart formation {Ambystoma

mexicanum)
Slime-mould slug pattern {Dictystelium

discoideum)
Slime-mould culmination {D. dis-

coideum)
Mesenchyme clustering (chick feather

primordia)
Mouse submandibular gland morpho-

genesis

Equilibrium:
adesion

Yes
Yes

7

No

No

No

No

No

No

Kinetics

Molecules

Prepattern
(unknown
origin)

No
Yes

?

Yes

Yes

7

7

7

Yes

as units

Molecular
reaction-
diffusion

No
7

7

7

Yes

Yes

7

7

Cells as units

Self-organizing
mechanical
strain

No
7

Yes

Yes

7

7

Yes

7

7

Self-organizing
chemotaxis

No
7

7

No

No

Yes

Yes

7

7

Self-organizing
proliferation
(cells as X)

No
7

No

No

No

No

No

Yes

Yes
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they are in thermal equilibrium with each other. It leads to the recognition of a
property which can be given the same value for the entire set of bodies in
thermal equilibrium with each other: the temperature.

The transitive property (2) is exemplified by a replacement series. If Zn
replaces Cu from solution, and Cu replaces Ag, then Zn replaces Ag. This
implies the existence of a hierarchy A > B > C, and hence of a quantifiable
property corresponding to order in the hierarchy. This is of course the revers-
ible electrode potential: oxidation potential for Zn > Cu > Ag, or reduction
potential for the reverse order. It is often arbitrary in a hierarchy which
direction is defined as increase.

Hierarchical ordering is commonly to be expected for equilibrium proper-
ties. Kinetic pair-interactions are idiosyncratic: If a snake can kill a man, and
a man can kill a mongoose, it does not follow that a snake can kill a
mongoose.

Steinberg (1970) established the existence of a transitive property and
hence of a hierarchy in sorting-out and engulfment experiments, as shown
schematically in Figure 4.2. He used six tissues from chick embryos, taken at
sufficiently early stages (1-8-day embryos) that each tissue usually contained
only one cell type:

A: back epidermis, 8-day
B: pigmented epithelium of the eye, 5-day
C: heart ventricle, 5-day
D: liver, 5-day
E: chondrogenic cores, fore- and hind-limb buds, 4-day
F: posterior neural tube, 36-hour

For these 6 items, there are 15 pair combinations; with each, both a sorting-
out experiment and an engulf ment experiment were done. The former in-
volves taking a tissue apart into cells, mixing them in culture, and observing
how the aggregate rearranges. The latter involves skewering two bits of tissue
together on a glass fibre in culture, and observing which crawls over the other.
The work is difficult, and the amount of work increases roughly with the
square of the number of tissues. One might therefore ask: Why six tissues and
two kinds of experiments?

Steinberg's arguments were meticulous. If the same result is achieved by
two different paths, that is a strong indication, though not a proof, that the
result is determined by equilibrium. As to the number of tissues, if one has
only 3, A, B, and C, then of the 8 possible sets of results of pair-competition
experiments, 6 correspond to hierarchies. That is, there is a 75% chance of
"proving" the existence of a hierarchy when the pair-competition results are
in fact random, with no difference in property driving them (Table 4.2). For 6
items, the chance of finding a hierarchy by such an accident is reduced to
2.2%.
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Table 4.2. Pair competitions between three items:
the eight sets of results and six hierarchies,
showing 75% chance of finding a hierarchy
"by accident" from random results

Possible

AIB

A> B
A> B
A> B
A> B
B> A
B > A
B > A
B > A

data sets

BIC

B >
B >
C>
C>
B >
B >
C >
C>

C
C
B
B
C
C
B
B

CIA

C>
A >
A >
C>
C>
A >
C >
A >

A
C
C
A
A
C
A
C

Hierarchy

None
A > B >
A> C>
C> A>
B> C>
B > A>
C> B>
None

C
B
B
A
C
A

If we take the sign " > " to mean "goes inside," for the final configuration
of one spherical tissue inside another, the experiments give the hierarchy A >
E>B>C>F>D. Of the 15 pair competitions, only one gives a mixed
result (F > D?).

The final configuration is just that which would be assumed for two immis-
cible liquids put in contact with each other. Suppose that at the liquid/air
interface, liquid A has surface tension yA and liquid B has surface tension yB.
Where the two liquids are in contact, there is an interfacial tension yAB.
Surface tensions are excess free energies per unit area. A system will tend to
adopt the geometrical configuration which minimizes the product of surface
tension and area, summed over all surfaces. In the engulfment of one liquid by
another, the liquid/liquid interface is a complicating factor. yAB may be an
idiosyncratic property of the AB pair, not simply related to yA and yB, and
therefore capable of destroying hierarchical ordering. But if the two drops of
liquid placed together have equal volumes, then the liquid which goes inside
will form a sphere of the same size regardless of whether A goes inside B or
vice versa. The contribution of yAB is then the same in either configuration.
The order of engulfment will then be determined by the excess free energy at
the air/liquid interface, the surface of the larger sphere. For minimization, the
liquid of higher surface tension will go inside the other. The sign " > " was
taken earlier to mean "goes inside" in anticipation of this correlation with a
surface-tension-like property for an aggregate of cells. Steinberg and his co-
workers did not stress the matter of relative volumes in their writings, but in
fact seem usually to have taken rather similar volumes of the two tissues to be
compared.

Phillips and Steinberg (1969) performed an experiment to measure the
surface tension of an aggregate of cells of one kind by the sessile drop
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method. A drop of liquid sitting on a flat plate assumes a shape close to
spherical if it has a high surface tension, and tends to flatten if it has a
low surface tension. The experiment can be made quantitative by precise mea-
surements of the shape. Phillips and Steinberg did not try to represent
the results numerically, but showed that aggregates centrifuged on a flat
plate assumed flatter drop shapes if the cell type was lower in the engulf-
ment hierarchy; specifically, in ordering according to drop shape, E > C > D
(Figure 4.15).

The surface tension of a liquid is a manifestation of the energy of cohesion
between its molecules. Using the cell-as-molecule concept, Steinberg at-
tributed the gradation in a surface-tension-like property as described earlier to
differential adhesion between different kinds of molecules. At the level of
adhesive molecules attached to the cell surface, two general possibilities are
distinguished: homophilic adhesion, in which a molecule on the surface of one
cell adheres to a molecule of the same kind on another cell; and heterophilic
adhesion, in which the adhesive molecules on the two surfaces are different.
For the homophilic case, cells of different kinds are supposed to have different
fractions of their surfaces occupied by adhesive molecules, to account for the
differential strengths of adhesion. If for cells of type A this fraction is a, and
for type B it is b, then the strength of A-A adhesion is proportional to a2, and
that of B-B adhesion is proportional to b2. Unlike cells (A-B) should then
adhere to each other with a strength proportional to ab, being the geometric
mean of the A-A and B-B adhesions. It is a curious coincidence that this is the
same relationship proposed by Berthelot in 1898 for the attractions between
unlike molecules in a mixture of imperfect fluids; see Hildebrand and Scott
(1962) for an account of the theory of mixed fluids. On this basis, immis-
cibility of fluids, being the molecular analogue of cell sorting-out, should
require the difference \a — b\ to exceed some threshold value. That threshold,
however, is related to the entropy of mixing. For the statistics of molecules,
entropy is a powerful opponent of unmixing. For the small-number statistics
of cells (a million is a very small number for this purpose), the entropy of
mixing is negligibly small, if indeed such a quantity can be defined at all.
Cells are individually distinguishable from each other. Molecules are not, and
that indistinguishability is essential to the calculation of statistical entropy.
Thus, any threshold value of \a — b\ as an immiscibility criterion for cell types
may be expected to be quite minute.

Heterophilic (lock-and-key) adhesion was proposed by Marchase, Barbera,
and Roth (1975), with a speculative molecular mechanism. They envisaged
cell coat glycoproteins with side-chains composed of 10 assorted monosac-
charides. Each of these would be attached in turn by a glycosyl transferase
specific to recognize the partly completed chain and attach the next monosac-
charide. But if that unit was not supplied, the enzyme would stay attached to
the partly complete chain indefinitely, in lock-and-key fashion.

Such ideas remain useful. The molecular aspects of adhesion are not yet all
known. But there is now one known class, called cell-adhesion molecules
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Figure 4.15. Schematic representation of centrifugation experiments on aggregates of
cells from a single embryonic tissue, analogous to the "sessile drop" method of
measuring surface tension of a liquid. The tissues were dissociated with trypsin. The
cells were suspended in culture medium and spun down into flat sheets. Some pieces
of these were used as starting material. Others were rounded up on a gyratory shaker.
The bottoms of the centrifuge tubes were coated with agar. From Phillips and Stein-
berg (1969), with permission.

(CAMs), about which much is known. They are in the extended family of
immunoglobulins (Edelman, 1984, 1988).

4.4.3 From equilibrium to kinetics: incompleteness of
adhesive-gradient theory

The preceding section concerned the interaction of two cell types differing in
cell-to-cell adhesive strength. There is substantial evidence for a much more
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Figure 4.16. Pronephric duct development in the salamander or axolotl, used by
Steinberg and Poole (1981) in a series of experiments showing that the duct is guided
by an adhesive gradient in the flank mesoderm. (a) Stage 22 embryo. The structure
below somites 2-7 is the beginning of development of the duct, and the dark mark
across it is a vital dye. (b) The same embryo at stage 32, showing how the dyed section
of the duct has moved, (c) A similar embryo to which an extra duct primordium has
been grafted at G, showing that the extra duct is guided to join the normal one and then
travel with it. From Steinberg and Poole (1981), with permission of The Company of
Biologists Ltd.

complex situation involving such adhesion, that is, for a continuous gradient
in adhesive properties across a tissue. Steinberg and Poole (1981; Poole and
Steinberg, 1981) found evidence for an anteroposterior gradient of increasing
adhesion along the flank mesoderm of the salamander or axolotl, Ambystoma
maculatum and A. mexicanum, during embryonic development (Figure 4.16).
Their experiments included transplanting a portion of this tissue to a more
anterior location, where, instead of fusing into the surrounding tissue, it
rounded up in the manner of a strongly adhesive aggregate surrounded by a
more weakly adhesive one. Most particularly, they performed a series of
experiments on the directional control of the development of the pronephric
duct from an anteriorly placed primordium posteriorly into an elongated struc-
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ture. The experiments were designed to distinguish between guiding by an
adhesive gradient and other possibilities, such as chemotactic signalling, and
the results showed definite indications of control by adhesive gradient.

From such evidence as this, I am left with little doubt that adhesive gra-
dients exist and that they are important in morphogenesis. But I have serious
doubts that they can be regarded as the whole story, or even the greater part of
it for a single morphogenetic event. As is so common in this field, the crucial
event seems to have hidden itself one level behind what experiment is reveal-
ing. How is the adhesion gradient set up and maintained? Its maintenance is,
in fact, neither temporally nor spatially well separated from such events as the
migration of the pronephric duct, because this occurs during a period of
increasing size of the flank mesoderm region, and the tip of the duct follows
close behind the leading edge of the sequentially forming somites (Figure
4.16, from a to b).

An adhesion gradient, operating within a tissue without a strong polarizing
influence from the surroundings, will not organize itself monotonically from
high at one end to low at the other. Just as in the sorting-out experiments on
two cell types the more strongly adhesive ones went inside, so in an assembly
of cells with a range of adhesiveness the drive toward minimization of free
energy will lead to the most adhesive cells ending up somewhere in the
middle. The details of the geometry may be complicated, according to the
shape of the tissue and the relative abundances of cells of various adhesive
strengths. Two simple examples are shown in Figure 4.17.

The lock-and-key model runs into different (but strategically related) diffi-
culties. One of its special areas of application is in the joining of the optic
nerve to that part of the brain surface known as the optic tectum, in the lower
vertebrates. Grossly simplified, but I believe in a manner which retains the
essence of the morphogenetic problem, the process is as follows: The tectum
may be idealized as a square of a million cells in a single epithelial sheet, one
thousand cells on a side. About an equal number of retinal axons form the
extremity of the optic nerve which joins the tectum. They do so in such a way
that visual information goes from the eye to the brain with a precision of about
one part in a million for its geometrical ordering. This can be and commonly
is taken to mean that every axon finds exactly the correct tectal cell to join up
to, although it is difficult to confirm this by direct histological examination.

Diverse theories have been proposed for how such precise connection may
be directed. Willshaw and von der Malsburg (1976, 1979) proposed a model
with Turing-like features on a cellular rather than a molecular scale. A direc-
tional information model is presented in the form of a problem for readers to
discuss for themselves, in Section 4.5. Sperry (1965) put forward a hypoth-
esis, usually called neuronal specificity, wherein every neuron is supposed to
be in some way chemically labelled differently from every other. This does
not necessarily mean that a million substantially different molecules are in-
volved. Sperry mentions gradients, and the hypothesis is formulated suffi-
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Figure 4.17. Self-organization of assemblies of cells of diverse adhesiveness, if
guided by the equilibrium criterion, (a) A row of three cells with homophilic adhesive
energies determined by the fraction of each cell surface covered by adhesive mole-
cules, which, for cells A, B, and C, respectively, is a - 1, b - | , c = \. The favoured
arrangement (high number, because these are binding energies, which should strictly
be given a negative sign) is the one in which the most adhesive molecule, A, is in the
middle, (b) Three strongly adhering cells A and six weakly adhering cells B in a 3 x 3
square array. If one calls the AA, AB, and BB binding energies large, medium, and
small and counts the number of interactions of each kind, one may draw all possible
arrangements of the cells and conclude that the two arrangements shown are equal in
energy and are favoured over all other possibilities. It is not necessary to use a precise
rule for how the AB energy is related to the AA and BB energies, except that it lies
between them. This case illustrates both that the strongly adhering cells tend to go to
the middle and that the equilibrium geometry can be ambiguous.

ciently loosely that, as Hope, Hammond, and Gaze (1976) pointed out, the
same experimental results can be seen by some people as supporting it, by
others not.

The lock-and-key model of Marchase et al. (1975) may be regarded as one
interpretation of neuronal specificity which minimizes the need for an unlikely
multitude of different molecules. They consider that one-in-a-million specific-
ity in a two-dimensional array could be achieved by two crossed gradients, at
roughly right angles to each other, each with a specificity of one part in a
thousand. Suppose that the substance concerned were a glycoprotein, that
three of its oligosaccharide side-chains each had 10 monosaccharide units if
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complete, and that, by the presence or failure of the supply of each monosac-
charide at the right time, each could be in any of its 10 possible states of
partial completion. This gives a thousand different chemistries. (Their models
also included gradients in concentrations of the various glycosyl transferases
needed, but they could find no experimental evidence for such gradients.)

This model is a useful concept in relation to the achievement of molecular
diversity at cell surfaces. But to my mind, as a model for self-organization of
neuronal systems it has two serious areas of incompleteness, one of them
specific to the kind of molecular diversity proposed, the other a much more
general problem of the need for precise definition in setting up any lock-and-
key model.

The first is the matter of where all these incomplete side-chains came from,
each with exactly the right degree of incompleteness for its spatial location.
Just as much as the homophilic gradient, though for different specific reasons,
the heterophilic gradient is not self-organizing, and the real organizer must be
hidden at least one level deeper. What is needed seems to be a supply of the
monosaccharides for production of the side-chains, these substrates being
themselves in spatially graded distributions so that there is enough concentra-
tion for reaction in some places and not in others. This seems to transfer the
burden of self-organization back to kinetics again.

The second problem lies in how far the locks and keys are able to move
around on the surfaces in order to maximize the linkages from one cell to
another. It is implied, but not usually explicitly stated in descriptions of the
lock-and-key concept, that the adhesive molecules can move around freely on
one cell surface to achieve this optimization, but cannot jump from one cell to
the next in the epithelial sheet. To see the need for mobility, consider what
would happen if there were none, the locks and keys on any cell being in
random arrangement but in fixed positions (Figure 4.18). A gradient from all
locks at one end to all keys at the other across the tectum is represented by its
two end cells and the middle one. If the incoming axons arrange themselves in
the same gradient reversed, then the two end cells can join axons with the use
of all their adhesive molecules (12 in the diagram). But the middle cell is quite
nondirecting if all molecules are fixed. It will make 6 molecular connections
to each of the incoming axons shown. In order to make 12 connections to the
middle axon, and that one only, the locks and keys must be able to move
around on each cell surface to find each other.

The adhesive molecules must not, however, be able to diffuse from one cell
surface to the next, or their diffusion would destroy the gradient, unless it
were continuously kinetically maintained. The discontinuity between epi-
thelial cells shown in Figure 4.18, however, is not actually present. The
tectum, as is common for epithelial sheets, is covered by a continuous base-
ment membrane (the preferred term today is basal lamina), and the adhesive
molecules must be above that to interact with the incoming axons. The paper
of Marchase et al. (1975) is followed by several pages of published discussion
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The ends of three incoming retinal axons
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Surfaces of three cells in the optic tectum

Figure 4.18. The lock-and-key model for the retinotectal junction, to illustrate the
need for the adhesive molecules to move on the cell surfaces. Circles indicate "lock"
molecules; vertical bars indicate "key" molecules. Numbers (6 and 12): the number of
lock-and-key connections made from each axon to each tectal cell if the adhesive
molecules do not move, illustrating lack of discrimination in the central region.

in which, especially on pages 329 and 331, Brenner, Wolpert, and Roth zero
in on this point. It is important, and still easy to overlook today.

There have been several treatments of the shaping of epithelial sheets in
which they have been regarded as visco-elastic solids or elastico-viscous
liquids (e.g., Jacobson and Gordon, 1976). In these, both deformation of the
shapes of cells and rearrangement of cells are considered to be related to the
mechanical stresses in the sheets. In the visco-elastic model, a cell can be
displaced a certain distance without losing its position in the assembly (elastic
behaviour), but greater stress causes it to lose its position and start moving
past other cells (viscous or plastic flow). In the elastico-viscous model, cells
have no threshold strain for flow in response to an in-plane shear stress, but
can show elastic properties for out-of-plane bending of the sheet.

Full consideration of models of these kinds is quite beyond the space
available for equilibrium models in a book intended to expound chiefly the
kinetic models. But they are mentioned here because they come very close to
the border between the two fields. It should be evident from the general nature
of these models that they may be set up in terms of approach to equilibrium,
mechanical and chemical, but that they could also contain features which
would create feedback loops in which the mechanical forces would take on the
role of long-range communicators, and the system would self-organize by
moving away from equilibrium. Models of that kind are described in the next
section.
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4.4.4 Kinetic aspects involving mechanical forces

Most cells contain cytoskeletal structures capable of generating mechanical
forces on a supramolecular spatial scale. They include microtubules, contrac-
tile arrays of microfilaments of actin and other proteins, and, in animal cells,
intermediate filaments which, after dissociation of their ends from the cell
surface, have an almost miraculous capacity to find their way back to the same
point of attachment. They are responsible for cytoplasmic streaming, the
complex sequence of events in mitosis and cytokinesis, and most deforma-
tions of the shapes of cells during development.

The cytoskeleton is the great hope of the structuralists, because it appears
capable of structural self-organization and then of bringing about orderly
movements of material on a large spatial scale. Such mechanisms are un-
doubtedly important. But if I believed that structure could be the great orga-
nizer of pattern and form, with dynamics serving only as its handmaids and
porters, I should not have written this book. I believe that where mechanical
forces are clearly present, and a morphogenetic event is occurring, one should
a priori keep an open mind to the possibilities that the mechanical force may
be (1) irrelevant to the shaping event, (2) part of the mechanism of the event,
but in a subsidiary role, or (3) an integral part of the shape-forming dynamics.

Consider, for instance, the early events of insect embryogenesis. Repeated
division of the fertilization nucleus produce a multinuclear syncytium. The
daughter nuclei move outward and form a single layer close to the surface.
There, plasma membranes form, and the syncytium is transformed into the
cellular blastoderm. Apparently at the same time as this sequence of events,
determination of the anteroposterior gradient and the segmentation is taking
place. Clearly, the outward movement of the nuclei to their places in the
blastoderm is a shaping event which involves patterned forces, everywhere
directed toward the cell surface. But the formation of anteroposterior gra-
dients may involve both type I (see Section 10.2) and type II (see Section
3.3.1) morphogen behaviour in reaction-diffusion models without mechanical
forces. Such forces may be quite irrelevant both to gradient formation and to
periodically repeating pattern formation in segmentation, though both of these
occupy time intervals overlapping that of the nuclear migration.

Mechanical force as an essential but subsidiary player in morphogenesis (a
construction worker, not part of the mind of the architect) may be illustrated
by the requirements of sorting-out in assemblies of cells. In the analogy of a
mixture of molecules separating into two phases, the necessary molecular
motion is thermal. This is a collective property of the assembly, in which
every molecule receives its kinetic energy through buffeting by others. For
cells, thermal energy is quite negligible as a source of locomotion. Cells can,
however, move relative to each other in random directions, so that the motion
can be called diffusion, by means of deformations caused by their internal
contractile mechanisms. Steinberg and Wiseman (1972) discussed the relative
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roles in sorting-out of this kind of force and of adhesive forces at the cell
surface. They pointed out that a cell cannot locomote unless it adheres to
nearby objects, and they raised most of the questions that a theoretical model-
ler of rearrangements in an assembly of cells needs to worry about, as follows:
". . . a cell might extend a filopodium, attach it to a nearby object, and then
contract it, pulling the cell toward the object. The cell still provides all the
energy for movement, but here it is especially obvious that certain adhesive
relationships must exist for the described movement to occur. The object must
be rooted strongly enough, the filopodium must adhere to the object strongly
enough and have sufficient tensile strength, and the force must be exerted in
such a way that the filopodium neither pulls loose nor snaps and that it is the
cell rather than the object that moves."

They pointed out also that rearrangements could be propelled exclusively
by the adhesive forces at cell surfaces: "If sufficient inequalities in adhesive
energy exist among the various regions of contact, the greater energy of the
stronger contacts will cause these to 'zip up' at the expense of the weaker
ones, which will tend to yield." In the operation of both internal and surface
forces together, ". . . a cell might extend and attach a filopodium to a nearby
object, but the filopodium, instead of contracting, might adhere to the object
so strongly as to produce a zipping up of the two. . . . this would result in the
pulling of the cell toward the object. . . . "

In considering such possible mechanisms for motion, one should not lose
sight of the fact that they are means for speeding the approach of the system to
its equilibrium geometry, but they do not determine that geometry. Sorting-out
remains an instance of pattern determination by minimization of free energy.

Computations on sorting-out may, however, tackle the problem of the equi-
librium configuration either directly, without mechanistic detail, or by follow-
ing a postulated kinetic path. For example, the former approach was taken by
Goel and Rogers (1978; Rogers and Goel, 1978). Figure 4.17 is sufficient to
indicate that finding the equilibrium configuration of a number of cells with a
range of adhesive strengths is not a trivial problem, and needs a computer for
anything more than a very small number of cells. Goel and Rogers used a
three-dimensional array of cubic sites. Their programs examined pair-
exchanges between sites and allowed those that were energetically favourable.

A kinetic approach was taken by Matela and Fletterick (1980). It is based
on contact exchanges in groups of four cells in a way analogous to the treat-
ment of changes in bonding between small groups of atoms in the transition-
state theory of chemical kinetics. As mentioned in Section 4.3 (especially
Figure 4.11a,b), if the surfaces of such a group of cells have appreciable
surface tension, the equilibrium configuration, in respect of minimizing sur-
face free energy, will not have a four-cell junction, but two three-cell junctions
and a two-cell junction called the "polar furrow." Matela and Fletterick
picture (Figure 4.19) the elementary contact-exchange step as a switch of the
polar furrow from contact between cells A and B to contact between C and D,
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Figure 4.19. The four-cell analogue of a chemical reaction occurring via an unstable
transition state, as used by Matela and Fletterick in computations on the kinetics of cell
sorting, (a) The cell surfaces, (b) Transformation to the representation of each cell by a
"vertex" (V), and each cell-to-cell contact by a line, (c) The transformed symbolism
by itself, without the cell surfaces, as usually shown in results of computations. From
Matela and Fletterick (1980), with permission of Academic Press, London.

by way of an unstable intermediate state (the analogue of the chemical transi-
tion state) which has a four-cell junction. The step is equivalent to a reaction:

C + AB + D -* ABCD * -* A + CD + B.

Irregular clustering of cells of assorted polygonal shapes, according to their
contacts with neighbours, can be represented. To do this, the cell surfaces are
not drawn. Each cell is represented by a small circle (black for strongly
adhesive cells, white for weakly adhesive ones), with lines joining any two
cells sharing a contact surface. The elementary step of contact exchange is
allowed if it improves adhesion energy. As mentioned earlier in connection
with Figure 4.17b, when there are only two types of cells, it is necessary only
to specify interactions as strong, medium, and weak; numerical values need
not be assigned.
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Initial

Final

Figure 4.20. Initial and final configurations in a sorting-out computation of Matela and
Fletterick. The proper equilibrium configuration is approached, but the distortions of
shapes of some cells are enormous, especially near the interface between the clusters
of the two cell types. The symbolic representation of cells and contacts is that of Figure
4.19c. From Matela and Fletterick (1980), with permission of Academic Press,
London.

The result reported by these authors for a sorting-out computation is shown
in Figure 4.20. All the strongly adhesive cells end up clustered inside the
array of weakly adhesive cells, but some rather alarming shape changes have
taken place, as indicated by very long lines joining cells which supposedly
still have surfaces in contact.

This model has the virtue of seeking to represent the kinetics of cell rear-
rangement, but one may question whether it is at all close to a correct repre-
sentation. Shape change of cells is unrestricted, except for the use of the polar-
furrow concept of contacts. Much more experimental work, such as close
examination of the details of time-lapse photographic sequences on cell sort-
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Figure 4.21. A bubble-raft analogue of a two-dimensional crystal containing a disloca-
tion. The defect is close to the centre of the raft. It appears to be localized disorder. But
if one looks along the page at a glancing angle, along the arrow A, one can see that the
defect is in fact a much-longer-range displacement of the lines of bubbles. The pres-
ence of such defects can make plastic deformation up to 107 times easier than it would
be if a whole plane of atoms had to slide simultaneously over another. In this case, the
movement facilitated would be of the top right region relative to the lower left, in
response to the shearing force represented by arrows BC and DE. All elementary
displacements of the bubbles are much smaller than those of Figure 4.19a. Bubble rafts
were invented by Bragg and Nye (1947). This picture, by Lomer, is from Moore
(1972), with permission.

ing, needs to be done to establish the details of shape changes. But in the
present state of knowledge, it seems to me that two kinds of processes are
more likely than the polar-furrow exchange. One is the involvement of con-
tractile filopodia, as mentioned by Steinberg and Wiseman in the quotations
given earlier. The other is some analogue of plastic deformation of crystals, in
which, as mentioned in Section 4.1.4, the presence of the type of defect
known as a dislocation enables molecules - or in the present case cells - to
move past each other without any elementary readjustment of more than a
fraction of the size of a cell (i.e., nothing nearly as big as the polar-furrow
exchange step). Figure 4.21 illustrates the subtlety of this defect by showing
just one of them in an otherwise orderly assembly of bubbles on a soap-
solution surface, a model which has been used to simulate the mechanical
properties of a crystal of copper metal. An array of cells in a developing tissue
would contain many such defects.

Up to this point, kinetics and mechanical forces are still employed as
obedient labourers in the work of pattern formation. The models of Oster and
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co-workers would promote them to the managerial office of the architects.
Two aspects will be outlined.

The first, from Oster (1983), is a mechanism for concerted deformation of
cells in an epithelial sheet, capable of accounting for such shape changes as
occur in gastrulation, by invagination of one side of a spherical sheet of cells.
The positive feedback loop which makes this self-organization possible, in
this model, is as follows: an increase in calcium concentration in the cytogel
stimulates production of mechanical stress by contractile microfilament sys-
tems; increased mechanical stress stimulates an increase in calcium concentra-
tion. The long-range communication needed for self-organization can involve
either side of this feedback loop. Calcium may diffuse from a high concentra-
tion in one cell to a lower concentration in a neighbour, so that the latter
concentration rises and the contractile machinery of the second cell is acti-
vated in concert with that already active in the first cell. In that case, the
morphogenetic mechanism is basically reaction-diffusion, with mechanical
force acting as the final labourer converting the orders of the chemical prepat-
tern into a shape change. Alternatively, in the absence of any significant cell-
to-cell calcium transport, the mechanism allows for the forces deforming one
cell to deform also, to a lesser extent, attached neighbours. This can switch on
an increase in calcium concentration in the neighbours which will lead them to
complete the job with their own contractile mechanisms. In that case, the
fundamental pattern-forming mechanism is mechanochemical, and does not
depend on diffusion.

In either case, the protagonist here is a mechanism known as the calcium
trigger, which Oster takes from Jaffe (1980). It causes the cell which receives
a small-to-moderate signal, either of force or of diffusing calcium, to amplify
it into a big change in the same direction. The amplifier resides in the surface
properties of calcium-sequestering vesicles. These are known to respond to
changes in external calcium very little up to a certain point, and then by a
rapid increase in calcium outflow rate from the vesicle over a small range of
external concentrations (Figure 4.22, curve R). If this were an ideal switching
mechanism, the curve would be a step function; the rate would jump from
zero to its maximum suddenly at a concentration near to x2. Once the phe-
nomenon has been qualitatively demonstrated, I think most biologists will
readily accept, without full quantitative demonstration, a sketch like curve R
of a switching function with nonideality in the form of rounded corners to the
step.

This raises an important philosophical question of plausibility. If biologists
are asked to accept as a working hypothesis that the rate of increase of a
concentration C is controlled autocatalytically, being proportional to C2,
many will be quite unhappy proceeding from this starting point. But the initial
part of curve R could be quite well represented by this dependence. What is
happening on the vesicle surface may be quite a complicated process, but the
essence of its kinetic consequence is the autocatalysis commonly used as the
basis for reaction-diffusion theories.
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R+S

Figure 4.22. The calcium trigger, (a) Broken lines represent contributions to the free-
calcium concentration, [Ca2 + ] = C, in the cytogel, from various processes: R, release
from calcium-sequestering vesicles; S, resequestration; L, leakage, either into the cell
from an external supply of calcium or from the vesicles. The latter type of leakage is
strain-induced and can increase with increasing mechanical forces exerted on the cell
by its neighbours. The solid line is the sum of the release and resequestration terms,
without the leakage term. It is of the general type of multiple-steady-state curves, often
involving cubic terms (Section 6.4). There are two stable steady-state concentrations of
calcium, x2 and JC3, and an unstable steady state x2. This value is a threshold: If C < x2,
then C will sink toward xx (which is zero if there is no leakage term). If a brief pulse of
calcium puts C momentarily above x2, then C will continue to rise until it reaches x3.
(b) C can be switched to the upper state not only by a pulse but also by an increase in
the long-term leakage rate L. Curve R + S is the same as in (a). Curve R + S + L is the
same with the value of L as shown in (a) added. This shifts the whole curve upward so
that there is only one steady state, x'3. Because L can be increased by forces from
neighbouring cells, it is possible for these neighbours to "pull the trigger" on the
increase of C in the cell under discussion.

If calcium can be resequestered by a process which is not the ther-
modynamic reverse of its release, but a simpler process at a rate proportional
to external concentration (curve S), then the balance of release and rese-
questration is a sigmoid curve of the basic type often used to discuss multiple
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steady states, which are in this case xx, x2, and x3. The remainder of the
operation of the calcium trigger is given in the legend to Figure 4.22. If the
theory of self-organization is to be mechanochemical rather than reaction-
diffusion, leakage L from the vesicles must be promoted by mechanical strain
transferred from neighbouring cells. What category of theory we have de-
pends on where L comes from.

To use this mechanism for gastrulation, Oster required two additional
assumptions. First, the disposition of contractile elements in a cell was pictured
as what the structural engineer would call a truss (Figure 4.23a), but with only
one element of it becoming active through the self-organizing process. Second,
the cells had to be in a condition to take part in the propagation of this
self-organization only on one side of the blastula. Does this asymmetry mean
that another pattern-forming mechanism has already done its work on the
blastula (which is one of the structures Turing had in mind when he first
devised reaction-diffusion), or is it a direct descendant of the animal-vegetal
asymmetry of the oocyte? This matter of where symmetry-breaking is
needed and where symmetry is already broken is taken up as a major topic in
Chapter 5.

Oster et al. (1983) published a paper entitled "Mechanical Aspects of
Mesenchymal Morphogenesis" showing how, by kinetic self-organization,
mesenchyme cells adjacent to an epithelium might group themselves into
clusters in periodic patterns with a quantitatively controlled spacing between
them (Figure 4.24). They applied this theory to feather-follicle primordium
formation and to the formation of the cartilaginous rudiments of the vertebrate
skeleton. Obviously, such a theory is promising for many other mor-
phogenetic phenomena, such as the glandular morphogenesis shown in Figure
4.14.

Like the preceding example, this theory contains both forces and diffusive
movements as possible means of long-range communication. But the diffus-
ing species in this case is the mesenchyme cell, not a molecular species. Also,
the kinetic self-enhancement which is important in determining the spacing
between clusters, at least at early stages, is not a process on the molecular
scale, but the mitotic rate r of the mesenchyme cells. To my mind, one of the
most interesting features of this model is not that it concerns "mechanical
aspects" but that, at least in the limit of the early stages of pattern formation,
it reduces to reaction-diffusion with the cell-as-molecule concept. From their
paper: " . . . when patterns first appear the spacing between the cell aggrega-
tions is given approximately by the expression

Spacing ~ 2i:[D2lrN]l/4.

However, the precise pattern that eventually evolves can only be determined
by numerical simulation of the model equations." (D2 is diffusivity for the
cells, r is mitotic rate, and N is cell density.)
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Apical Surface

Active subcortical
filament bundle

Basal surface

Figure 4.23. The truss-like arrangement of contractile elements in each cell, and the
assumptions as to which ones are active, and in which cells, as used in Oster's theory
of gastrulation. From Oster (1983), with permission.

4.5 A few problems (without solutions)

A person indoctrinated into the standard ways of thinking of physical chem-
istry tends to be very sensitive to a particular kind of looseness in the discus-
sion of a phenomenon, and upon detecting that problem, will at once say:
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Figure 4.24. Examples of clustering of mesenchyme cells as predicted by the theory of
Oster et al. (1983). From Oster et al. (1983), with permission of The Company of
Biologists Ltd.
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"Now, wait a minute. Are we dealing with equilibrium or kinetics here?" The
intent of Chapter 4 has been to try to indoctrinate other kinds of scientists with
this attitude, because I believe the adoption of it to be essential to acceleration
of progress in solving the problems of morphogenesis. Here are a few things
to think about in order to exercise that way of thinking. It is not expected that
anyone, physical chemists included, will find clearly unequivocal answers to
all these problems.

Problem 4.5.1

A stack of dinner plates on a shelf consists of two sizes of plates. The
convenient stack has all the smaller ones together on top of all the larger ones.
Initially there are two plates on the shelf, arranged as one small plate on top of
one large plate. The stacker takes unassorted plates one at a time, does not
look at the plate in his hand but only at the stack, and inserts the next plate
always into the present junction between smaller and larger ones. The stack
will develop as desired. This could be an analogy for mechanisms of biolog-
ical ordering in which the plates are analogues of molecules, or cells, or other
biological structures. Discuss the structural, equilibrium, and kinetic aspects
of any hypothetical biological process for which this could be an analogy.

Problem 4.5.2

Hope et al. (1976) published a model for retinotectal specificity in which the
tectum supplies not positional information but only "directional informa-
tion," such that incoming axons can find from local information on the tectum
which is the rostrocaudal direction, and which its rostral sense, and similarly
for mediolateral. The analogy is of a parade ground, in which soldiers know
which is the front side toward which they face, and which are the right and left
sides. They form up in rows, facing the front. In the words of these authors:

Suppose that there is a row of soldiers lined up side by side, facing the same way. The
order of the soldiers is initially random with respect to their height. The problem is to
give a set of instructions which, if obeyed, will cause the soldiers to be lined up with
the tallest man on the far left, the next tallest to his immediate right, and so on, until
the smallest is on the far right.

The set of instructions which defines the arrow model, and which is to be obeyed by
each soldier in turn, is as follows: Choose either of your neighbours. If you have
chosen your left-hand neighbour, then if he is taller than you, stay put; if he is shorter
than you, change places. If you have chosen your right-hand neighbour, then if he is
taller than you, change places; if he is shorter than you, stay put.

Discuss (1) whether the existence of the local "directional information" on
an epithelial sheet does or does not imply the existence of a hierarchy A > B
> C . . . for some kind of property of the cells in any row across the sheet
and (2) the structural, equilibrium, and kinetic aspects of this model.
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Problem 4.5.3

The establishment of a quantitative measure of length for any part of a biolog-
ical system, including a macromolecular fibre, is a form-determining event
which potentially could have structural, equilibrium, and kinetic aspects. For
a protein, the process is entirely structural. But consider a cellulose micro-
fibril in a plant cell wall. Current evidence indicates that some, and quite
probably most, such fibres are formed by the action of a rosette-shaped array
of a few cellulose synthetase molecules in the plasma membrane, and that
each fibre stops growing at approximately the same length. What might be the
structural, equilibrium, and kinetic aspects of this length determination?

Problem 4.5.4

Computer programs intended to find the equilibrium configuration of an as-
sembly of two types of cells of different adhesiveness by examining pair-
exchanges for whether or not they are energetically favourable are notoriously
prone to poor performance. What are the structural, equilibrium, and kinetic
aspects of this difficulty? (Consider, for instance, whether the equilibrium
configuration is ambiguous, as in Figure 4.17, or whether it is unambiguous
but there are numerous only slightly suboptimal configurations. Some of these
latter might be much more easily reached kinetically. For example, in pre-
cipitations of a solid from solution, the equilibrium state of the precipitate is
always just one crystal, but usually large numbers of small crystals are
formed. They then move toward, but rarely reach, the equilibrium configura-
tion, by "Ostwald ripening," in which some small crystals redissolve while
others grow. It is instructive to write a simple microcomputer program for cell
sorting and compare its performance with that of a simple reaction-diffusion
model of optical resolution, for which a program is given in Section 10.5.)

Problem 4.5.5

Edelman (1984) asked his reader to

. . . imagine a stream of water running down a mountainside and striking a submerged
boulder whose temperature is below freezing. At first the flow of water will be
influenced only slightly by the boulder and the stream will remain a single stream. In
time, however, as water freezes onto the boulder, the enlarging structure may suddenly
become a barrier causing the stream to split in two and assume a new shape as it runs
down the mountain. All subsequent shapings of the stream will be influenced by the
effect of the original freezing. Rivulets downstream may break into a variety of new
and intricate patterns . . . one can imagine that the cellular counterparts to the driving
force of the gravitational potential on the mountain might be the processes of cell
division, cell death and cell movement. The counterpart to the freezing of the water
would be the attachment of cells to one another by cell-adhesion molecules. . . .
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Consider both the biological analogue as Edelman gives it and the alter-
native possibility that the analogue of the flow of the stream could be the
metabolic flow of material in homeostasis, either in a single cell or in an
assembly of cells in the same differentiation state. For the latter analogue,
what might be the equivalent of the boulder and its enlargement which at
some threshold size would lead to a switchover of homeostasis? For any level,
cellular or molecular, of biological interpretation of the features of the model,
discuss the structural, equilibrium, and kinetic aspects of it. A living cell can
have some analogies to a molecule, but is always an out-of-equilibrium flow
system. In light of this, are the structural, equilibrium, and kinetic aspects the
same or different for molecular analogues and for cell-as-molecule analogues?

Problem 4.5.6

Paul Green, in reviewing the manuscript of this book, threw me a curve in a
notation at the end of Section 4.3, which I shall paraphrase as follows:

A balloon is being inflated and is increasing in size. This is nonequilibrium.
But the shape of the balloon is essentially spherical at all times. This is a
shape of minimum free energy, corresponding to equilibrium.

Discuss the kinetic, structural, equilibrium, and mechanical aspects of the
shape of the growing balloon. (Hints: It may emerge in your discussion that
equilibrium and mechanical descriptions address the same aspect in different
ways. The concept of a quasi-equilibrium, in which various aspects of a
system keep pace with a slow change, is very commonly used, both in physics
and in chemical kinetics.)





PART II

Pattern-forming processes

Events are ordered rather than structures.

—Thurston C. Lacalli (1973)

Part II deals with the kinds of processes capable of forming pattern. Here the
word "process" implies a time sequence of events with essential properties
which can be understood only by considering times and rates of change. It is
contrasted to "structure," in which parts may have to be fitted together in
some definite succession, though it doesn't really matter when; any time
intervals, regular or irregular, long or short, can be used between successive
steps. The same distinction is implied in this book between the terms "self-
organization" (involving processes) and "self-assembly" (involving structural
fitting).

To describe processes and their intrinsic pattern-forming capabilities be-
yond what is given in Part I requires more of the mathematical language of the
infinitesimal calculus. In Part II, this is kept as elementary as the subject will
allow, and some attempt is made to instruct the beginner in the terminology of
this branch of mathematics.

Often the formation of a pattern can usefully be thought of as a gain or loss
of symmetry; so Part II commences with a discussion of symmetry. This leads
into the instance of symmetry-breaking which is the simplest for mechanistic
and mathematical exposition of the principle of symmetry-breaking by chem-
ical kinetics: optical resolution. As mentioned in the Preface, a beginner in
this topic who is interested in developmental biology but who doesn't feel
especially interested in the old problem of spontaneous optical resolution
should not pass over this section; there is no other equally easy example. In
Chapter 5 this topic is discussed without mathematical formulation. The ex-
ample serves to define how far one can go in explaining development by direct
simulation of models, with or without a computer, but without equations.
Chapter 6 introduces the mathematics needed for reaction-diffusion theory
step by step and at one point returns to optical resolution to show the greater
power of the mathematical analysis. Alone of the chapters in this book,
Chapter 6 has, in textbook style, a set of problems at the end. They are not
difficult, but are not intended for the veriest beginner, who should seek
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routine practice in an elementary calculus text. Under their disguise, my
problems are philosophic essays, like most of this book. The discussion in
chapter 6 is in terms of kinetic equations, but it allows some exposition of how
the second law of thermodynamics is satisfied, so that this topic may then be
set aside and the kinetic approach pursued for the rest of the book.

Chapter 7 is the main introduction to reaction-diffusion models for the
generation of stable pattern. Turing's model is presented, first without equa-
tions, and then with them. We are then equipped to cope with some of the
basic questions about what reaction-diffusion can do, and what place it may
have within the overall framework of developmental mechanisms, kinetic and
otherwise. This is the topic of Part III.

Part II will have achieved my purpose if the experimental biologist under-
stands it but is left in a state of desperation, having realized that it is essential
to spend long periods with pen and paper doing algebra in order to study
development, and that this activity is just as much a part of the "real world"
as is maintaining a culture or purifying an extracted active substance; but
together, all these seem to need the 48-hour day.



5
The making and breaking of symmetry

In a review seeking to draw the attention of physical chemists to mor-
phogenesis (Harrison, 1981) I wrote: "Morphogenesis is the creation of a
complicated shape out of a simpler one by chemical processes in living
organisms. To the physical scientist, the essence of it is symmetry-breaking."
Almost simultaneously, Meinhardt (1982) wrote: "In most biological cases,
pattern formation does not involve symmetry breaking (although the proposed
mechanism can perform this). . . . " Here we have an apparent contradiction
between two people who usually see eye to eye about the general strategy of
the explanations of morphogenesis. Each of us then proceeded to mention
antecedents such that the precept "asymmetry begets asymmetry" would not
be violated; but they were different in the two accounts. From mine: "Natural
disturbances, which are continually present everywhere, contain adequate
asymmetry to serve as antecedent for any shape, however complex. But how
do living organisms go about making a rather precise selection of what parts
of the available asymmetry to amplify?" From Meinhardt's: "The asymmetric
organism forms an asymmetric egg and the orientation of the developing
organism is therefore predictable." In the first quotation, I stressed the inheri-
tance of a selection mechanism to extract order out of chaos; Meinhardt
emphasized the direct inheritance of asymmetry. Both are aspects of mac-
roscopics, and the contradiction between the two attitudes is only apparent. To
see this, however, it is necessary to consider rather precisely what we are
doing when we observe a living organism and perceive symmetry, or the lack
of it, in what we see.

5.1 Symmetry is in the spline of the beholder

It is a commonplace that the human body displays a certain semblance of
bilateral symmetry. This idea is so built into our minds that it is easy to
perceive symmetry when it does not exist at all. I once came upon a textbook
which illustrated bilateral symmetry with a drawing of one of those very
formal and orderly looking ancient Egyptian statues of a standing man. In
accord with the artistic convention of the period, the statue had its left foot a
little farther forward than the right. This displacement destroys, totally, the
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symmetry of the statue. A living, flexible human body in fact is rarely close to
showing external bilateral symmetry except when it is standing at attention.

In common with other well-known properties of geometrical figures, such
as the constant sum of the angles of a triangle, symmetry is an attribute of a
mathematical idealization, not precisely attained by any real physical system.
This idealization is an array of points in rigidly fixed relative positions. For
spherical or cylindrical symmetry, it is an infinite array of contiguous points.
In looking at any living organism, we make some kind of approximation to
extract this idealized structure out of it. There are various kinds and levels of
approximation commonly used. One was illustrated earlier. We tend, usually
without formulating the problem to ourselves in precise terms, to define the
symmetry of a flexible object as the maximum symmetry attainable by any
rearrangement of its parts allowed by its flexibility.

Even when the symmetric possibilities are thus maximized, to perceive
symmetry we must ignore many structural features. Looking only at the
outline of the body, and not contending with the disposition of the internal
organs, to see symmetry we still have to pass over such things as fingerprints.
The perceived symmetry is that of a smoothed-out envelope drawn through
these small-scale irregularities. In visualizing it, we do, mentally, what any
scientist does mechanically to experimental data by drawing a smooth curve
through a set of somewhat scattered points. For nonlinear plots, this fitting
often used to be done on a drawing board with the aid of a flexible strip of
wood or metal or plastic which was held in any desired curved configuration
by a set of weights; it was called a spline. Nowadays, the scientist is more
likely to put the points into a computer and summon up a genie with some
such name as SPLINEFIT to do the job. This deprives the operator of seeing in
an obvious, concrete, Aristotelian way that he has imposed a long-range
continuous organization upon the set of points.

An egg cell is often spherical in outline, to a good approximation. This is a
legitimate symmetry to describe as such. At other levels of approximation, we
perceive the animal-vegetal polarity, and see that neither contents nor surface
are spherically symmetrical in detailed chemical composition. If our descrip-
tion goes down to the molecular level in spatial scale, no real system is
spherical, because spherical symmetry is a property of an infinite set, and all
real systems have finite numbers of molecules. But the idealized spline curved
through the outline is spherical. When the egg first divides, that symmetry is
broken. As it divides repeatedly, if it is, for instance, an echinoderm egg, a
new spherical symmetry arises, that of the blastula. This is perceived as
spherical at a different level of approximation, by another spline-fitting. Tur-
ing referred to this level of spherical symmetry and pointed out that a system
with spherical symmetry would, except for the presence of natural distur-
bances, remain spherically symmetrical forever, even if it did have reaction-
diffusion amplifiers in it. He wrote: "It certainly cannot result in an organism
such as a horse, which is not spherically symmetrical." (Evidently he had an
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Figure 5.1. A generalized sequence of makings and breakings of symmetry typical of
early echinoderm development. Both losses and gains of symmetry occur, at first in the
whole organism and later in its parts. Each is seen only by using an appropriate spatial
scale of approximation, which is not the same at all stages and for all aspects of
development. Each, however, points to the existence of a morphogenetic field, or
spatial range of operation of some morphogenetic control process. The echinoderms
are the highest animals in which the blastula is clearly spherical and the early gastrula
is of cylindrical symmetry (in having one infinite-fold rotation axis).

impression, which some elementary textbooks of embryology seem quite
anxious to convey, that spherical blastulae are more widely distributed in
nature than they are.)

Thus, while nature is breaking a symmetry as seen to some approximation
at the single-cell level, it may be on the way to making another symmetry as
seen at the multicellular level with a grosser spatial scale of approximation.
Figure 5.1 shows a typical sequence of such changes in symmetry taken from
the early stages of echinoderm embryogenesis. Such complex sequences can
be perceived throughout development. Whenever one recognizes such a
change, one has applied a new spline-fit to the developing shape. Each time,
the question arises: Has nature used a spline?

Whenever one figuratively reaches for the spline to put it through the
developing shape in a new way, one has seen an event which is in some sense
always of the same kind; though sometimes the system has gone from a higher
symmetry to a lower one, and sometimes from lower to higher, the significant
thing is that it has changed from one state of organization to another. The
spline signals that the process is organized over whatever spatial scale the
spline is used on - that is the sense in which nature has used a spline.
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Symmetry-breaking should not be confused with reversion from order to
chaos. It can be quite the reverse. For instance, if a simple chemical system in
an elongated vessel consists of a mixture of two substances, A and B, and if
they are somehow caused to separate, so that A occupies the top half of the
vessel and B the bottom half, then a symmetry-breaking has occurred on the
spatial scale of the vessel and substantial fractions of its total size. But on
the molecular scale, the system has become more orderly. The relation of
macroscopic complexity of form to order on a very much more microscopic
scale is not straightforward. This makes it rather dangerous to try to put the
physical science of development continually in the language of entropy. There
is just too much chance of setting up an incorrect description in that language.

None of the foregoing, however, fully resolves the question raised at the
beginning of this chapter. We perceive symmetry in the blastula at one level of
spline-fitting. But when it goes on to show development to a lower symmetry,
might we already have seen this if we had had a more precise description of
the system, and traced the lower symmetry back to the egg? Or is a new event
necessary at the blastula stage to break symmetry?

These questions appear superficially to present clear alternatives. One
must, apparently, answer one in the affirmative and the other in the negative
for any particular developmental phenomenon one is considering. To my
mind, the greatest philosophical difficulty in the attempt to describe and
explain development from the molecule to the organism is that such a distinc-
tion is nonsense. Both questions must always be answered in the affirmative.
At one level of approximation in spline-fitting, new shapes and symmetries
are appearing sequentially de novo. At another, they are all present in appar-
ent molecular chaos. It all depends how hard one looks before bending the
spline.

The essence of understanding self-organization is that the external human
observer should picture himself vanishing into the system and becoming part
of it. In this instance, the question becomes, How hard can the system look at
itself? Or, more precisely, from what rudiments can the system start to build a
new macroscopic shape? In arriving at this question, I have departed signifi-
cantly from Turing's attitude toward the problem of antecedents for pattern.
His opinion was that there is no problem. He used the analogy of an electrical
oscillator. Any time one switches it on, connected to a loudspeaker, one
expects to hear the same note, apparently immediately, on the time scale
which people can follow. One simply does not worry about what gave the
electrons in the circuit the "kick" to start the oscillation. From the resistance,
capacitance, and inductance of the circuit one can calculate an oscillation
frequency. One expects it always to be expressed.

If, however, one looked at the behaviour of an oscillator in the first few
milliseconds after switching it on, one would probably get a quite different
impression, of a complex and confusing signal gradually changing into a
simple and precisely controlled kind of behaviour. For biological develop-
ment, it is my impression that the corresponding time interval is from tens of
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minutes up to some days. Experimental evidence which must be used to prove
or disprove kinetic theory refers to patterns which are not in the infinite-time
form, equivalent to the pure note from the electrical oscillator. It is therefore
necessary to ask what rudiment a system contains within it for a particular
pattern. The final pattern may depend only on the mechanism and not on the
starting point (except for orientation, which may or may not be important); but
the time taken for its establishment may be quite sensitive to the rudiment.

Themes introduced in this section recur, with more extensive development,
in various parts of this book. There is more about splines operated from within
the system in Section 5.2. An example in which a human observer may fail to
find a hidden pattern, though the most primitive reaction-diffusion mechanism
can recognize it easily, is discussed in Section 5.3. The question of spline-
fitting, when it is done from within, without an external intelligent being to
work the spline, is almost identical to the question of selective amplification
of the great range of available inputs.

5.2 Open and closed traverses: the accuracy
of self-organization

Since I began to study morphogenesis I have continually been struck by the
contrast between the orderliness of the overall shapes of organisms or their
parts and the comparative disorder of the microscopic parts of which they are
constructed. The first example which I encountered, and still one of the most
striking, is Lacalli's transmission electron micrograph of a developing semi-
cell of the desmid alga Micrasterias rotata (Figure 5.2). The regularity of the
outline greatly exceeds that of the organelles within, and when the living cell
is observed under the optical microscope, its contents are seen to undergo
rapid and rather irregular cytoplasmic streaming. It is possible to maintain that
both the outline and the streaming cytoplasm are dependent upon a
cytoskeleton which imposes the overall order. But most pictures of the
cytoskeleton which I have seen show increasingly disorderly tangles as the
magnification increases; the more detail, the less order. The same is true in
animal tissues for the collagen fibrils of the extracellular matrix, which un-
doubtedly plays some role in morphogenesis, but surely not by a strict struc-
tural conveying of short-range geometry to long-range geometry. Also in
Micrasterias and other plants which form both primary and secondary cell
walls, it is striking that the orderly morphogenesis occurs with formation of a
disorderly array of primary-wall microfibrils from a disorderly array of poly-
merase rosettes, whereas the nonmorphogenetic secondary wall, which later
passively rigidifies the already formed outline of the cell, is regular and is
formed from a regular hexagonal array of rosettes (Staehelin and Giddings,
1982). (Yet more paradoxically, the instances in which small structures stack
up most precisely into orderly arrays are not concerned with the construction
and maintenance of fixed shape, but with the mechanisms of motility:
flagella, and the actin-myosin contractile mechanisms of muscle cells.)
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Figure 5.2. Electron micrograph of a developing Micrasterias rotata semicell. From
Lacalli (1973), with permission.

Distance

Figure 5.3. Computation by Gierer and Meinhardt illustrating a reaction-diffusion
mechanism smoothing out irregularities in a system: S, source gradient, with persistent
irregularities; A, steady-state concentration of activator; //, steady-state concentration
of inhibitor. From Gierer and Meinhardt (1972), with permission from Springer-
Verlag.

In all these instances of rough materials and polished form, I tend to see,
rather directly, nature at work with the spline. An example of reaction-diffusion
doing this, in a computation, was given in the first paper of Gierer and
Meinhardt (1972). A source gradient that contained random irregularities of
substantial amplitude was worked upon by the kinetic model and converted
into almost exactly the same "fired gradient" that would have been obtained
from a smooth, straight-line source gradient (Figure 5.3).
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In case the reader has had enough of splines, a different analogy comes
from the work of the land surveyor on the ground, with theodolite and chain.
In the days before one could do everything with photographs from the air or
from outer space, intervisibility of distant points was a serious problem. Let
us suppose that a set of points on the terrain to be surveyed (A, B, C, etc.) is
such that A and C are both visible from B, so that the angle ABC can be
measured, but there is no longer-range visibility. For a simple illustration of
error accumulation, let us suppose that all the points are actually in a straight
line (Figure 5.4a). Because each direction is measured relative to the previous
one, errors in direction accumulate. The last segment may be badly displaced
in the survey from its true position on the ground (Figure 5.4b). This pro-
cedure, with internal short-range reference only, lacking both long-range con-
trols and external reference, is called an "open traverse." In navigation, it is
"dead reckoning." Error accumulated in the well-known statistical fashion.
The measure of error in position or direction at the end of the traverse (e.g.,
the standard deviation of either quantity, applicable to a large number of
repeats of the whole traverse) increases with the square root of the number
of segments. The total length, however, goes up in proportion to the number
of segments; hence fractional (or percentage) error in total distance drops as
the number of segments becomes larger. But direction does not accumulate
like total distance, and hence it is the error in direction which is clearly seen to
get worse and worse as the traverse lengthens. The shape of the traverse has,
of course, aspects of both length and direction.

Two things have commonly been done to improve accuracy. One is to
"close the traverse" by ensuring that points A and Z are intervisible. When the
direction from A to Z has been ascertained, the necessary correction can be
spread over all the segments, reducing but not eliminating error (Figure 5.4c).
This shows the use of a long-range control in a more active way than the
previous example of a spline. When the long-range control has been estab-
lished, the intermediate points are actually moved in conformity with it. In the
simplest spline-fit, drawing a straight line through a scatter of points with a
ruler, this is similar to finding the best line and then moving each point to a
nearby position on the line, thereby removing the scatter. In a living system,
there may or may not be an obvious spline, or traverse-closing observation,
independent of the intermediate points. The points themselves may have to
represent the line. In that case, the sophisticated long-range interactions
which are the main topic of this book are probably involved. In other cases,
whether or not such mechanisms are involved, some smoothing may occur in
a more trivial way, with something closely analogous to a spline which,
however, actually pushes the points into line (e.g., an envelope with appropri-
ate balance of flexibility and flexural rigidity).

The other way for a surveyor or navigator to avoid accumulation of errors in
direction is to use an external frame of reference by replacing the theodolite
with a compass and measuring every direction with respect to magnetic north
instead of measuring angles such as ABC. Clearly, living systems sometimes
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ABC

Figure 5.4. Accumulation of errors in spatial sequences of structures, (a-c) Surveying
a traverse from point to point, (a) It is assumed that the true map is a straight line, (b)
No error has been deliberately put into the length of each leg of the survey. Directional
errors have been put in by tossing a coin four times for each leg. Heads are given the
value 1, and tails —1, so that the values —4, —2, 0, 2, and 4 were obtained in a
1 : 4 : 6 : 4 : 1 probability distribution. Each leg was offset in direction from the
previous one by this error, taken directly as degrees (negative is clockwise), (c) The
open traverse of (b) has been closed by a determination of end-to-end direction,
assumed to have given the correct result. The correction has been distributed along the
traverse, (d) Four stages in the development of a leaf of the liverwort Lophocolea
bidentata. From Bopp (1984), after Bopp and Feger (1960). Whether the regularities in
overall shape (and, not shown, its reproducibility from leaf to leaf) are statistically
compatible with a two-dimensional open traverse or require its closure on a scale
longer than the cell-to-adjacent-cell basis is an open question. This is intended to
suggest that the error-suppressing ability of every kind of pattern-forming mechanism
suggested should become a major field. There is enough in it for many workers. See
Lacalli and Harrison (1991).

do this (e.g., in the negative geotropism of plants, wherein the gravitational
field provides an external frame of reference). Not many developmental
events, however, involve a frame which is not self-generated by the organism
as part of its self-organization. The theoretical modeller, especially when
using a computer, must be continually on guard against putting into the
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models something external which the living system does not have. For in-
stance, "cellular automaton" models usually generate patterns in a rec-
tangular array of sites which is larger than the developing pattern and can be
arbitrarily expanded indefinitely as the pattern needs more space to grow into.
A living organism has to manufacture the coordinate grid on which it grows as
an integral feature of its growth, and never ahead of the spatial limits it has
reached at any time.

Figure 5.4d shows the assembly of cells at four stages in the growth of the
leaf of a liverwort. Plant cells do not sort out. Each cell may change its size
and shape, but they remain in the spatial sequence in which they are formed.
They are therefore analogous to the successive stages of a survey, as shown in
Figure 5.4a-c. Morphogeneticists should continually be asking themselves
this question: Does the final shape show the amount of dead-reckoning error
which one would statistically expect, or is it controlled over the long range
better than an open traverse? Thin filaments in the plant kingdom often do
have irregular changes of direction just like diagram (b), and clearly are not
keeping control along the whole length. Leaves, on the other hand, seem to
grow to species-characteristic shapes, despite marked irregularities in sizes
and shapes of individual cells.

It is not intuitively obvious at the pictorial level whether Figure 5.4d is the
two-dimensional analogue of the open traverse of (b) or the closed traverse of
(c). There is scope for statistical analysis and computations here. Meanwhile,
nature itself supplies some of the statistical work. Anyone wanting to pho-
tograph a wide variety of stellate snowflakes may take a selection out of a
single snowstorm. To get an equal range of branching patterns for maple
leaves, or diatom patterns, one would not go for a selection of leaves from one
tree, or cells from one species in culture. One would look for a range of
species. As discussed in Chapter 4, even the snowflake does not grow statis-
tically randomly. Without some long-range kinetic control, it would not be
dendritic at all. But its degree of control of detailed branching pattern is surely
primitive compared with the leaf or the diatom frustule. The identical mole-
cules of a snowflake might seem to be better starting material for building a
well-controlled shape than the very variable cells shown in Figure 5.4d; but it
is the latter kind of unit which is the building block for species-specific
shapes. In summary:

1. Every description of a shape or symmetry in a living system is an idealiza-
tion, or spline-fit.

2. For every such idealization by the external observer there is within the
system a pattern-forming event.

3. The relation between the large-scale order of the shape and the degree of
spatial disorder of its parts gives an indication of the controlling power of
the pattern-forming event, in the following hierarchy:
A. Least powerful: The overall pattern or form may be generated by
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repeated small-scale activity only, with no long-range control. There
must then be an appropriate statistical match between the overall form
and small-scale irregularities.

B. Intermediate: Simple mechanical interactions, such as a moderately
flexible envelope, may impose some smoothing on the form so that its
irregularities are less than statistical expectation for the accumulation
of small-scale irregularities.

C. Most powerful: Where long-range order seems to have overridden
small-scale irregularities very markedly, the presence of a powerful
kinetic organizer, such as reaction-diffusion or mechanochemical ac-
tion, is strongly indicated.

4. The indications in (3) are for completely self-organizing systems. More
orderly shape may arise from less internal organizing power whenever a
system uses an external frame of reference for some aspects of its form.

A very remarkable instance of approximate symmetry occurs in a few non-
living systems, the quasicrystals. These, to a good approximation, have ico-
sahedral symmetry and are three-dimensional analogues of the "Penrose til-
ings" which, in two dimensions, show a good approximation to fivefold
rotational symmetry, an element of symmetry which is mathematically forbid-
den in two- and three-dimensional arrays with translational symmetry (i.e.,
crystals). The approximation to a forbidden symmetry is a very sophisticated
instance of a spline-fitting. Penrose (1989, p. 565) points out for such struc-
tures that "their assembly is necessarily non-local." Models of achieving the
structure by successive addition of one atom at a time simply cannot work.
Penrose suggests that there must be a quantum-mechanical ingredient to such
an assembly process. His suggestion goes far beyond any concept of action
across long distances that I use for biological self-organization. Everything I
discuss involves strictly classical concepts of long-range communication by
diffusion or mechanical force to establish approximate long-range symme-
tries. Are these enough, or will biological theory some day involve grappling
with the concepts of long-range quantum interactions which are not yet well
understood by physicists?

5.3 The simplest reaction-diffusion mechanism:
optical resolution

The preceding section was intended to allow one to visualize oneself in the
midst of a somewhat disorderly system acting as a perceiver, corrector, and
amplifier of whatever long-range order is there to be found, that is, first as the
operator of a spline, then as the surveyor calculating corrections after closing
a traverse, but finally as something remaining to be discussed. In the arrange-
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Figure 5.5. The starting point for a simulation of the Mills model for optical resolu-
tion, with diffusion added so that it becomes a simple reaction-diffusion model and
permits transient pattern formation; s is a substrate in solution. It can be converted
autocatalytically into either of the enantiomers A and B. They are shown attached to
sites (arrows) on a rigid catalyst bed. For illustration of concepts throughout Chapter 5,
the initial arrangement contains an almost imperceptible rudiment of long-range order.
The working of the mechanism is described in Section 5.3.2 and Figure 5.6. In relation
to biology, the catalyst bed with its attached activator molecules is the analogue of the
living system, and the flow of s represents intake of food and excretion of waste
products. This flow is also the communication between system and surroundings
which makes the increase of order in the system thermodynamically possible (Section
6.4).

ment of A's and £'s in Figure 5.5, can the reader who has not already glanced
at the later diagrams perceive any long-range order? A reaction-diffusion
mechanism not only can perceive it, but will make haste to get rid of every-
thing else.

How spontaneous optical resolution occurred during biochemical evolution
has been an important philosophical question since Pasteur (1848) sorted out a
pile of crystals of sodium ammonium tartrate into separate heaps of right- and
left-handed crystals. A fundamental question arises of random chance versus
sequential cause, the stochastic versus the deterministic. On this basis, three
kinds of theories may be distinguished:

1. Theories linking spontaneous resolution to the intrinsic universal asymme-
try of the so-called weak interaction in the theory of nuclear structure, and
the phenomenon of nonconservation of parity. [For a clear account of this
universal asymmetry for the nonphysicist, see Gardner (1982).] This is the
only type of theory which is completely deterministic: Living material has
a twist in it because the universe has a twist in it. On this basis, if we were
to discover life which had originated independently on a number of
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planets, and with the same chemical basis as on earth, the amino acids
should be L and the sugars D in all cases.

2. Theories linking spontaneous resolution to preexisting asymmetry in some
inanimate system. Two examples: first, the possibility that early life in-
teracted with asymmetric quartz crystals which happened to have an im-
balance of the two types; second, possible interaction with circularly polar-
ized radiation likewise unbalanced. In this kind of mechanism, the
processes envisaged within life are completely deterministic, but the ques-
tion of the ultimate origin of the asymmetry is begged. There is no expla-
nation of how the inanimate system, crystals or radiation, came to have a
chiral imbalance, and no prediction as to whether one would expect to find
the same or variable chirality for life on different planets.

3. Theories linking spontaneous resolution to a chemical reaction system
with the property of self-enhancement (positive feedback, autocatalysis)
on a stereospecific basis. Such a system could act as an amplifier of
asymmetry and use as antecedent nothing more than random disturbances,
which are always present everywhere. If the significant reactants are diffu-
sible, the mechanism becomes the simplest form of reaction-diffusion and
is likely to produce transient unstable pattern as an intermediate stage in
resolution. On this basis, life on different planets should display both
possible chiral systems with statistical distribution, just as if the choice had
been made for each planet by tossing a coin.

For collections of papers on the various theories, see the symposium volumes
edited by Thiemann (1974) and Walker (1979).

The following account relates to theories of type 3, which I consider by far
the most probable. Theories of type 1 would require an amplification from
energies of interaction of order 10 ~14 eV to chemical bonding energies of
order 1 eV. This seems unlikely; if it does happen, then more interest should
attach to the amplifier than to the initiator, and the amplifier could be a
mechanism of type 3. Theories of type 2 transfer the question to behaviour of
inanimate matter, which is less likely than living material to contain sufficient
self-organizing capability.

Nevertheless, I have noted in informal conversations that many among the
most objective of scientists yet seem to have an emotional antipathy to con-
cepts which assign a dominant role to chance at some point in what is other-
wise a strictly deterministic sequence. This produces a predisposition against
theories of type 3. I do not share that antipathy. It does not bother me that on
some other planet, life may have arisen just like ours, but with D-amino acids
and L-sugars. What would be the same on both planets would be the funda-
mental nature of the amplifier which would allow resolution to occur in either
case, and that is what I am about to discuss. Einstein, as quoted by Wald
(1957), explained the dominance of one chirality in the words "it won in the
fight." What we are studying, then, is the strategy of the fight.
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53.1 The mechanism ofW. H. Mills

Mills (1932), in a review talk on stereochemistry at a regional meeting of the
British Association, seems to have clear priority for the concept of the asym-
metrizing power of an autocatalysis needing two product molecules. This later
appears in the crucial step of the Brusselator pattern-generating mechanism of
Prigogine (1967) and is implicit in the A2/H term in the growth rate of
activator A in the Gierer-Meinhardt model (1972). It is not quite so obvious
that the Turing model effectively involves the same concept, but it does (see
Sections 6.3, 7 .1 , and 9.2.2).

Mills first pointed out that Pasteur sought the origin of the optical activity of
life in dissymmetry of the universe (not, in the modern way, via the minute
scale of nuclear processes, but the obvious large-scale dissymmetry). He
continued:

. . . it may be profitable to enquire whether the property of growth which is charac-
teristic of living matter may not necessarily lead to its dissymmetry. . . . Let us now
consider the growth of a tissue which is not completely optically inactive, that is, a
tissue in which the d- and /-systems are not present in equal quantities. Let us suppose,
for example, that there is twice as much of the ^-system as of the /-system . . . in the
process of growth . . . the d-system will increase at a relatively greater rate than the /-
system. The complex dissymmetric components . . . will be built up . . . by chains
of synthetic reactions, and the rates of formation of the end-products will be controlled
by the velocity of the slowest link in the chains. If we consider a case in which, as must
frequently happen, this slowest link is an interaction involving two dissymmetric
molecules and . . . assume that, as in a simple bimolecular reaction, the reaction
velocity is proportional to the second power of the concentration, then the rate of
formation of the ^-component will be four times that of its enantiomorph. If this
applied to every dissymmetric constituent of the new growth, then, whereas there was
twice as much of the d- as of the /-system in the old tissue, there would be four times as
much of the d- as of the /-system in the new growth.

It will be clear that, even though the reactions of living matter may be less com-
pletely stereospecific than I have, for simplicity, assumed, and though the ve-
locities . . . may increase more slowly with the concentration than according to the
second power, yet as long as they increase more rapidly than according to the first
power . . . any excess of one system over the other in the old tissue will become
greater in the new growth. . . . There is an a priori probability that an optically
inactive growing tissue would be, as regards its optical inactivity, in a state of unstable
equilibrium. . . . From this point of view the optical activity of living matter is an
inevitable consequence of its property of growth.

(He goes on to discuss the original bias and to show that the statistically
expected scatter about equal numbers of d and / molecules would be adequate
to start the asymmetrization in something about the usual size of a cell, 30 jxm
in diameter.)

This earliest proposal for the asymmetrizing mechanism is striking in that it
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lays stress on a simple general property of something envisaged from the start
as a very complex reaction system. When the topic is developed mathe-
matically, it is usually idealized into a couple of equations relating to the
behaviour of a small number of substances. All such idealized treatments
should be approached in the spirit of Mills' generalizing vision. The model
immediately following is such an idealization, but it also adds the feature of
diffusion, which was not in Mills' proposal, and hence allows pattern forma-
tion as an intermediate stage on the way to optical resolution.

5.3.2 A model without mathematics

In Figure 5.5, the eighteen boxes represent a solid surface having sites capable
of being activated for catalysis of a reaction by adsorption of its product. The
reaction is s —> A or s —» B, the alternative products A and B being the two
optical enantiomers of the same molecule. The catalysis is bimolecular, corre-
sponding to Mills' model. A site is represented by the boundary between two
boxes which represent attachment positions for A or B. The substrate s is
envisaged as in solution and flowing upward across the catalyst bed. The
reaction rule is that an s which passes between two A's is converted to an A; an
s which passes between two #'s is converted to a B; and an s which passes
between an A and a B is unchanged. At the outset, A and B have been
adsorbed at random onto the attachment positions. But randomness cannot be
represented unequivocally by an arrangement of any finite number of objects,
and numbers so small as nine A's and nine #'s are bound to show some kind of
order in their arrangement. In an infinite random array, one-quarter of the
catalytic channels would be active for production of each of A and B; here, six
out of seventeen are active, three to make A and three to make B (Figure 5.6a).

After some reaction has occurred, diffusion is simulated in the solution by
choosing at random to leave each A or B unmoved or to move it one space
right or left. Then, again by random choice, some of the molecules in solution
are exchanged with ones attached to the catalyst surface. This having been
done, the continual upward washout which would be occurring in a flow
system is simulated by replacing all the A's and 2Ts in solution with s's (Figure
5.6b-d). Of course, all these steps should be envisaged as going on simul-
taneously.

A substantial increase in activity of the catalyst has now occurred. In Figure
5.6d, eleven channels are active (six for A and five for /?), and the activities
for A-production and /^-production are clearly becoming segregated into wide
blocks on the catalyst surface. A number of stages of the same sort of thing
have been omitted before the next reaction-diffusion sequence shown (Figure
5.6e,f). After one more complete sequence, the system has sorted out into a
pattern of two equal parts (Figure 5.6g). This will not happen inevitably. In a
number of repeats of the same simulation, the pattern at this stage will often
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consist of somewhat unequal assemblies of A's and ZTs, but always with the
ZTs on the left and the A's on the right, if the identical starting configuration
was used. If that was also made subject to random variation, the two-part
pattern will sometimes have A's on the left.

This system has not yet reached its inevitable destiny. It has gone as far as I
could take it in half an hour with paper and pencil. The next stage takes
longer, and it is useful to put the model on a small computer, as described
later, to pursue the development to the end. But several significant features
already emerge.

First, the pattern that has arisen had an antecedent in the original arrange-
ment of adsorbed A's and Z?'s, however disorderly that may have seemed at
first glance. In the simplest terms, the left-hand half had an excess of ZTs over
A's (5 to 4), and the right-hand half had the same excess reversed. Figure 5.6h
shows the same imbalance in a different way. The starting arrangement is
compared with a strict alternation of A's and ZTs, a short-range order which
would leave the system forever totally inactive for the catalysis, since there
would be no adjacent AA or BB pairs. The six discrepancies, three in the left-
hand half and three in the right, form the same pattern in the two halves, but
with reversal of A's and ZTs. Only that long-range order was amplified.

This provides a simple illustration of a concept addressed at length and with
sophisticated mathematics by Nicolis and Prigogine (1977, part III, "Stochas-
tic Methods"). They wrote: "In essence, the purpose of the macroscopic
analysis carried out in [parts I and II] was to test the response of the system to
an external disturbance, which, although weak, was assumed to be present
initially in the system with a macroscopically observable amplitude. The view
adopted in fluctuation theory, on the other hand, is that the system has to gen-
erate spontaneously this deviation from the average regime, which could then
trigger further evolution to a dissipative structure provided it contains a non-
Poissonian contribution." And later: " . . . the onset of a self-organization
process implies that there exists a volume element within the system of dimen-
sions much larger than the characteristic molecular dimensions but smaller
than the total volume of the system, within which fluctuations behave co-
herently, and that they add up to a sizable result and subsequently modify the
macroscopic behaviour."

These authors are saying that it is not the random (Poissonian) aspect of
fluctuations which serves as antecedent for pattern, but the incipient long-
range order (non-Poissonian) contained in them. Elsewhere (Harrison et al.,
1984), in connection with time and space scales for pattern formation, I used
Poisson statistics to estimate the initial amplitude from which pattern starts to
grow. That was for an analysis of experimental data on the kinetics of pattern
switchover after rapid temperature change, for the temperature-sensitive
whorl spacing in Acetabularia. Mills used the same kind of estimate in con-
sidering the size of a system in which optical resolution could readily occur.
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Are these estimates legitimate, in the light of Nicolis and Prigogine's com-
ments?

For a pattern of just two parts, which is a situation of widespread biological
importance, simple Poissonian statistics indicates a high probability that ran-
dom fluctuations will provide a substantial rudiment. Suppose, for instance,
that we divide an elongated system into left- and right-hand halves. The
average concentration of a morphogen is such that each half should contain
106 molecules of this species. The Poissonian standard deviation of this
quantity is its square root, 103. Without further ado, we can make an order-of-
magnitude estimate that imbalances between the numbers of molecules in the
two halves on the order of a few hundred to a thousand molecules will
commonly arise, and that that is the amplitude of the rudiment for two-part
pattern. More precisely, the expectation value is NL - NR = 0, but its
standard deviation is a L _ R = (a£ + o-R)1/2 = 2l/2N1/2, where N is the
average value of NR or AfL. If we are not bothered about which way round the
pattern appears in the system (i.e., we are interested in |NL - NR\ rather than
the value with sign attached), then the root-mean-square value of this is
crL_R. This is about 1,400. One could take half of it, 700, as a good estimate
of initial pattern amplitude. This kind of estimate is good for patterns of two
or three parts, but probably overestimates initial amplitudes for patterns of
greater complexity. These require coherence, or in-phase character, between
fluctuations in different parts of the system; it is this non-Poissonian behaviour
which a reaction-diffusion amplifier will tend to pick up. In the remarks of
Nicolis and Prigogine quoted earlier, they were thinking not only of biological
pattern but also of such things as nucleations of phase changes (e.g., pre-
cipitations, in which thousands of events such as formation of small crystals
may be occurring simultaneously in the system). This is a different order of
complexity from a two-part pattern.

Second in the list of features which may be extracted from the model before
we let it go on operating is the absence of anything commonly recognizable as
mathematics in this presentation of it. To see this fully, it is essential to try
using the model first with paper and pencil only, abstaining from the use of
any kind of electronic computer. In this way, I made enough pictures for an
animated film shown at the fortieth annual symposium of the Society for
Developmental Biology (Harrison, 1982), from which Figure 5.6 presents a
few extracts. No numbers are used; this is an analogue computation, although
it is straightforward enough to program it for a digital computer, as described
later. Nor need any words be written down. Three or four abstract symbols
have to be manipulated according to fixed rules. Random choices can be made
by guesswork, or with less risk of bias by using a coin or dice or playing
cards.

I recall reading in a Vancouver newspaper a few years ago of the death of an
old street gambler who was adept at manipulating a pack of cards, but who
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had otherwise never learned to read or write. I expect he was not too good on
partial differential equations either, but his thought processes must have
worked quite well on playing complicated games according to rules. This is
all one needs to follow the model presented here.

Third, and arising directly from the previous point, there is a variety of
things one may do with a computer to find out whether or not a model works:

A. Computer experiments: These are necessary when one does not have a
complete understanding of the behaviour of the model from mathematical
analysis, which is nearly always the case for nonlinear dynamics. One
programs the model into the computer and determines its properties in
ways which have the style of an experimental project on a process in a
living organism. Two levels of description of the model for insertion into
the computer may be distinguished:
1. Simulation without equations: The computer program is set up directly

from the verbally expressed rules of the model, as in the instance just
described. Figure 5.6 is such a simulation, but was done without even
using a computer, because the number of operations was small enough
to do it by hand.

2. Simulation by numerical solution of dynamic equations: To do this,
one converts the rules of the model into differential equations, as
described beginning in Chapter 6. One then uses standard arithmetical
methods of solving differential equations on a digital computer. This is
a long step in abstraction from direct operation of the model. It can
require careful consideration of the relationships of the continuous
variables in the differential equations to two kinds of discontinuities:
(a) the finite-difference procedures used in the computer; (b) the struc-
tural discontinuities in the living system being modelled. (See Figure
9.6 for a very coarse-grained computation intended to match the small
number of rows of nuclei in a Drosophila blastoderm.)

B. Numerical calculation of analytical solutions: If one has analytical solu-
tions, one knows already how the model behaves, and the computer is
being used merely to generate illustrations. This is rare for nonlinear
dynamics.

To return to the A's and the ZTs: For gaining understanding of the dynamics,
there are virtues in doing the simulation by hand, and different virtues in
putting it on a computer, so that it can be repeated many times with the same
or different random inputs. Figure 5.7 shows a typical complete run. In the
first 23 steps, the mechanism quickly produces a patch of ZTs which floats
around in the middle to left region and eventually settles down as the left-hand
half of the pattern. Repeat computations with this same input (which is the
same as that in Figure 5.6) usually produce some variant of this behaviour.
Here, the mechanism emulates the human observer who has done some count-
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ing and realized that there is an ambiguity as to whether there is a rudiment of
pattern with ZTs on the left and A's on the right or of pattern with A's on both
sides and ZTs in the middle.

As the model continues to run from the two-part pattern onward, the in-
terest is in what happens to the boundary between the ZTs and the A's. In the
next step, one of four things can happen: (1) the system can remain un-
changed, (2) the system can take a step backward in order from the two-part
pattern, (3) the sharp boundary can become "fuzzy," and (4) the boundary can
move one column to the right or the left. Only this last possibility is signifi-
cant in the further development of the system over a large number of steps.
Possibilities (1) and (2) could serve only to delay the approach of the system
to its final destiny. If (2) occurs, it will soon be reversed to restore a two-part
pattern. If we concentrate upon (3) and (4), we perceive that the boundary has
become an entity which is executing a random walk in one dimension (the
horizontal); it is jumping to left or right, one step at a time, from whatever its
previous position was, just like a diffusing molecule. Eventually it must reach
either the left-hand or the right-hand edge of the system. One of the enan-
tiomers, A or B, will then have disappeared from the system, and it will never
reappear. Optical resolution has occurred, spontaneously.

What is going on in this stage of the development is a version of the
classical statistical problem known as the gambler's ruin, which is discussed
in texts on probability theory (e.g., Feller, 1968). Of two gamblers, one starts
with a capital of z dollars, and the other with a — z. A game in which the first
gambler wins or loses a dollar with probabilities p and q is played repeatedly
between the two, until the first gambler's capital reaches zero or a\ one of the
gamblers is then ruined. The classical problem concerns the probability of the
gambler's ruin and the probability distribution for the duration of the game.

In our case, each B or A may be taken as a dollar in the possession of
gambler B or gambler A. The game is simply a toss of a coin, giving equal
probabilities p = q = i that the boundary will move left or right. It is evident
in this symmetrical case, with a = z = 8 in Figure 5.5g, that both gamblers
stand equal chances of ruin. The average duration of the game (expectation
value of the number of repeats before one player is ruined) is D = z(a - z). In
our case, D = 8 x 8 = 64 repeats. Feller points out that a game can be very
long. If each player started with 500 dollars, the average duration would be
250,000 tosses of the coin before the ruin of one player. (In our case, we have
overlooked the steps in which the boundary did not move, which will add to
the length of the game.)

Because of this long duration, it is easy to overlook the fact that the ultimate
ruin of one or the other of the gamblers is inevitable; that is, in our model,
optical resolution is inevitable. (What is "intuitively obvious" in statistical
situations of this kind varies quite a lot from one individual to another.)
Several things may help to throw some light on various aspects of this:

1. A simple computer program for the gambler's-ruin problem may be run
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repeatedly, with the same starting capitals, while the observer watches the
changing scores. After a number of games, the average length of a game
should be calculated. It is very instructive to give one gambler only 1 dollar
and the other 100. Half the games must end on the first toss, but the average
length is 100 tosses.

2. One should recognize that in a sequence of a longer series of coin tosses
the imbalance of heads over tails, or vice versa, often keeps the same sign for
very long sequences. This was stressed by Feller (1968, chap. Ill), especially
in his Figure 4, being a record of a computer simulation of 10,000 tosses of a
coin, reprinted in Mandelbrot's 1982 book on fractals. He found that even
experts on statistics could have incorrect intuitions about this. In this book,
Figure 5.4b, the example of surveying an open traverse, is essentially the
same thing. Notice that the map has strayed away from the true path in the
downward direction throughout, though positive and negative errors of angle
are selected with equal probabilities.

3. The computer program for Figure 5.7 (Harrison and Green, 1988) should
be run repeatedly, both with the same starting sequence and with different
ones, which may be selected at random or prearranged as one wishes. The
paper cited gives programs and suggestions for two-dimensional computa-
tions.

4. One should consider the analogy between these various random se-
quences and the random walks of diffusion. For a sequence of coin tosses it is
easy to get the impression that over a long sequence the numbers of heads and
tails will approach equality and the ruin game will never end. The approach to
equality is true on a fractional or percentage basis, but on an absolute basis the
discrepancy between total heads and total tails will, on the average, grow with
the square root of the number of tosses of the coin. This is equivalent to the
observation that a coloured material placed in a small region of a colourless
solvent always spreads; on the average, every molecule moves away from its
starting point in proportion to the square root of the time, and every one will at
some time hit the wall of the container.

The dependence of the length of the game on the square of the size of the
system is rather significant in relation to optical resolution during biochemical
evolution. The games in Figure 5.6 and 5.7 are being played in regions about
100 A long, if the symbols A and B represent molecules adsorbed on sites a
few angstroms apart. Unit steps of reaction, diffusion, and exchange probably

Caption to Figure 5.7 (cont.) which does not make them available for separate display.
Each row of the output is the set of A's and #'s on the catalyst bed after a sequence of these
processes. See Harrison and Green (1988) for a discussion, with computer programs given,
of this computation and similar computations in two dimensions, in which the movement of
the boundary between two oppositely resolved regions is much more complex. To try some
such computations is of pedagogic value to students of pattern formation contemplating the
transition from stochastic to deterministic behaviour, or from small-number to large-
number statistics. From Harrison and Green (1988), with permission.
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have to be assigned times from 10~~6 tolO~2s, and the complete optical-
resolution game needs at the very least 10~4 s up to 1 s or even more. This
gets us well away from having to assume that chirality arose because all life is
derived from a single molecule (a mechanism which I consider so unlikely
that I did not even list it among the possibilities), but still requires a micro-
scopic scale for optical resolution; Mills (1932), without detailed analysis of
the time scale, was thinking of something like the size of a single cell, a few
micrometres, to have enough starting imbalance. From the foregoing esti-
mate, our game would go to completion in something from an hour to a couple
of weeks when played in a region 10 (Jim long; but for 10 m, it might need the
total time that life is believed to have been present on earth.

The game has a feature, however, which could cut these times drastically.
This is the possible interaction with long-range disturbances at the stage at
which pattern has reached whatever I just meant by long-range. A disturbance
could be, for example, a failure of the food supply (stoppage of, or reduction
in, the supply of reactant s in the model) over only one part of the system. If
this affected, say, most of the left-hand half of Figure 5.6g, then the distur-
bance would effectively have handed the game to A with no need for much
further play. As every experimental biologist knows, mysterious variations in
the health of a living system can easily affect regions as small as adjacent cells
in a carefully maintained culture dish. The growth of transient pattern in our
game sensitizes the system to disturbance on that scale in an hour or a week.
Evidently a number of jumps of this kind could successively take increasingly
large reefs in the time scale. I see, therefore, no essential difficulty in this kind
of mechanism having operated to produce optical resolution reasonably quick-
ly in a system some metres or even kilometres across.

I tend to regard spontaneous optical resolution as being, in respect of the
essence of the mechanism, a solved problem. We may never know precisely
what molecules were involved, nor whether the crucial autocatalysis was a
simple bimolecular step or some behaviour of a complex reacting system
which, overall, gave self-enhancement kinetics in some order exceeding the
first. But the general strategy of the mechanism is so much in accord with the
self-replicating property of life, so powerfully asymmetrizing, and so capable
of making use of the asymmetry of a great variety of disturbances on a wide
range of spatial scales that the strategy must surely be accorded a very high
probability. Frank (1953) also regarded the problem as thus solved.

The relevance of similar concepts to other aspects of biological develop-
ment is much more complex and speculative. This game has not directly
addressed the question of shape development, because it was played with a
fixed frame of reference, the set of sites on the catalyst bed. The preceding
discussion of random walks is of course applicable to the increasing error
limits in the later steps of an open traverse (Figure 5.4b) and hence to the
consideration of whether or not small-scale disorder can produce observed
long-range order (Figure 5.2) without a long-range organizer.
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This mechanism has the territorial ambition of an imperial expansionist of
unlimited greed. It amplifies disturbances more rapidly the longer they are,
without limit, until the longest takes over the system. This is shown mathe-
matically in Chapter 6. What is lacking is the stabilization of a particular finite
size of pattern repeat. The addition to this kind of model needed to do that was
first devised by Turing (1952) and is described in Chapter 7.

This principle of optical resolution has been discussed by a number of
workers, some of whom rediscovered it independently without knowledge of
the earlier work. Frank (1953) gave a mathematical discussion including
consideration of the game in two dimensions. He pointed out that a boundary
between regions resolved as A and B, which can be a curve in two dimensions,
will advance in the direction toward which it is concave. Therefore, a region
which has become surrounded has lost the battle. This feature resembles the
strategy of the Japanese game of Go. For other discussions, see Seelig
(1971a,b), Decker (1973, 1974, 1979), Harrison (1973, 1974), and Harrison
and Lacalli (1978).

This kind of mechanism, as well as everything else about kinetic determina-
tion of form in this book, has possible implications in regard to biological
evolution as well as development. The reader may find it interesting to reflect
on whether or not the system in Figures 5.6 and 5.7 has evolved. It has
become more orderly; it is better adapted to handling the s supply from the
environment, because by the stage of the two-part pattern all of the system can
assimilate s (except the central boundary), whereas only part of it (one-half,
on a statistical average) could at the outset. But its complexity in terms of
macroscopic parts increases from Figure 5.6a to Figure 5.6g, and then de-
creases as one enantiomer is annihilated.

In regard to the excessively popular definition of natural selection as "the
survival of the fittest," it is astonishing that of two exactly equally matched
adversaries, one must inevitably be annihilated totally by the other.

5.4 Asymmetry begets asymmetry

5.4.1 Trivial and significant antecedents

Developmental mechanisms are amplifiers, and form arises from what is most
efficiently amplified. The example in Section 5.3 of one of the simplest
possible developmental amplifiers has shown that what is amplified may
cover a wide range of spatial scales. That particular mechanism favours the
longest spatial scale it can find in any asymmetric antecedent. An organism
which inherits, by the genetic code, the ability to manufacture the molecules
called A and B, or 0 and 1, has inherited this property of long-range selection.
Even if, in a primitive form, it contained both those enantiomers, it would
have inherited the property of optical resolution; that is, it must inevitably lose
A or B. That is clear without any consideration of the nature of the asymmetric
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antecedents on which the mechanism works. But which enantiomer is lost,
and how long the whole procedure takes, can be strongly dependent on the
antecedents. If at the stage of Figure 5.6g a gradient in concentration of s is
somehow set up from left to right across the system, it will determine the
winner and accelerate the process. Now the distribution of s may not be
relatable back to the genetic code on the time scale of one generation. The
asymmetric organism may form an asymmetric tgg (i.e., the s gradient may
be inheritable as a long-range template outside the genetic code). The model
therefore resolves not only optical enantiomers but also the philosophical
paradox propounded in the first paragraph of this chapter. It contains both an
antecedent-independent, genetically determined inevitability (so long as there
is some antecedent, it does not matter what) and a genetic-code-free, organism-
scale sensitivity (so long as the genetic code has provided the amplifier,
different templates can be amplified).

This model is, of course, very indeterminate in relation to the precise
patterns which may form at intermediate stages; the pattern of two equal parts
does not necessarily appear. More sophisticated kinetic models (beginning in
Chapter 6) make finite pattern determinate. The quantitative measure of dis-
tance between repeated parts in a pattern is then linked to the chemical nature
of the morphogens and hence is attributable to the genetic code. But for an
asymmetric pattern of different parts, the matter of "which way round" is still
dependent on long-range templates.

There is no doubt, then, that kinetic amplifiers will respond to polarities.
The question arises whether the polarities are a significant part of develop-
ment or just an antecedent where any antecedent would do. This question
surely has different answers for different cases. Let us consider first a polarity
provided by an external frame of reference, such as the gravitational field. It is
significant to a plant that it should grow upward. But if a Xenopus egg is
rotated through 90°, by an osmotic technique of collapsing the vitelline mem-
brane onto the egg (Kirschner et al., 1980), the orientation of the dorso-
ventral axis can be completely reversed. This gravitational effect appears
completely trivial, of no possible use to the organism; but it is there, and it
shows that an insignificant polarity can be amplified. In this case, the ampli-
fier is probably of quite a different kind than the reaction-diffusion systems
discussed here, at least for the first step of rearranging the cell contents in the
gravitational field. The cell's later response to that rearrangement, leading to
the establishment of the dorso-ventral axis, could, of course, involve kinetic
mechanisms.

The energetics of the coupling of a cell to gravity are interesting in relation
both to how small an energy can be amplified and to how a response to an
unnecessary polarity may arise. In Section 5.3 1 cast doubt on the possibility
of significant interaction of living material with the nuclear weak interaction
because it involves an amplification from 10 ~14 to 1 eV. But gravitational
interaction requires a response, in a cell 1 mm high (Xenopus egg), to the
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difference in gravitational potential between a structure at the top of the cell
and one at the bottom. Per atomic mass unit, this is 10 ~1 0 eV. Amplification
to chemical energies simply requires that the cell contain some organized
structure of 109-1010 daltons which moves as a single unit in the gravitational
field and has a density significantly different from that of the surrounding
cytoplasm. Such a structure needs to be about 0.2 |xm across in each dimen-
sion. Because organized structures of at least this size are common in all cells,
an accidental gravity response is not at all unlikely. In an oocyte, it could be a
gradient of density through the whole contents of the cell which is involved.
This kind of amplifier involves the approach to equilibrium (Chapter 4) rather
than a kinetic departure from equilibrium.

A polarity can, on the other hand, be of great significance, especially in
ensuring that a developing part of an organism has the correct orientation
relative to other parts. I expect that this is what Meinhardt had in mind in
suggesting that whereas developmental mechanisms are capable of symmetry-
breaking, actually they usually amplify asymmetries already present. Exam-
ples abound in the embryology of vertebrates. The specificity of attachment of
retinal axons to the optic tectum is an example for which a variety of models
have been proposed, including one which uses self-enhancement and self-
inhibition on the grand scale, the units being entire synapses and their overall
electrical activity, rather than individual molecules (Willshaw and von der
Malsburg, 1976, 1979). The various models all need some form of positional
or directional information, the extent of which varies from model to model.
Experimentally, it is known that changing the region of contact between the
tectum and the thalamus induces errors in orientation. This kind of polarity
sensitivity is nontrivial; the proper orientation of eye-to-brain messages de-
pends upon it.

This last example points to another aspect of the model described here. If
one considers A and B to represent molecules, one must, as always, be
somewhat suspicious of any attempt to illustrate large-number statistics with a
small-number example. Features of enormous significance can be absent from
or inadequately represented in the small-number situation (e.g., entropy). But
our A's and ZTs may sometimes represent whole cells, perhaps at the onset of
differentiation into two types. Then to the list of essentially synonymous
terms "autocatalysis," "self-enhancement," "positive feedback," "assimila-
tion," and "reproduction" we must add another: "homeogenetic induction,"
the phenomenon in which differentiated cells cause neighbouring cells to
differentiate in the same way. The numbers of cells across a system at crucial
stages in pattern formation often can be as small as the eighteen attachment
sites used in the model, and these small-number statistics are then quan-
titatively appropriate.

When we move up in spatial scale while considering optical resolution as
illustrative of a fundamental property of life, surely we should return at last to
Pasteur. He believed in an interaction involving the large-scale asymmetry of



170 Pattern-forming processes

the universe, as we perceive it so readily in the arrangement of the starry skies
at night. Einstein used a device known as the thought-experiment (Gedanken
experiment) to illustrate succinctly the gist of some theoretical topics. Here is
a Gedanken experiment.

5.4.2 Life on the planet Gedanken

The planet Gedanken is exactly spherical and is covered with an ocean of
uniform depth which initially contains a "primeval soup" of primitive life in
which the organisms (or large self-replicating molecules) are present every-
where in both enantiomeric forms. The planet orbits a sun. It has a magnetic
field, with an axis which coincides with its axis of rotation, and this axis lies
in the plane of its orbit. This arrangement minimizes the possible large-scale
asymmetries in the system. The planet also has an atmosphere.

In this arrangement, the interaction of radiation from the sun with the
magnetic field and with the atmosphere has enough asymmetry to encourage
separation of the enantiomers spatially into two separate hemispheres (north
and south). This happens because unpolarized light can be resolved into right-
and left-hand circularly polarized components. These are chiral (i.e., they
have right- and left-hand screw-thread asymmetry) and therefore absorbed to
different extents by the opposite enantiomers of a chiral substance (the Cotton
effect). This can potentially lead to a difference in rates of destruction of the
two enantiomers by photochemical action. For this to happen, one of the
circularly polarized components must reach the surface of the planet in greater
intensity than the other. The magnetic field can make this happen, provided
that the planet has an atmosphere. Wherever the magnetic field has a compo-
nent parallel to the direction of the light, it makes the refractive indices of the
two circularly polarized components different. The one of greater refractive
index will be deflected downward more by the atmosphere, because its refrac-
tive index is greater in the denser lower layers. Thus, more of one chiral
component of the light will reach the surface of the planet.

The effect is a maximum when the axis of the planet points toward the sun.
We need not trouble ourselves as to which way round the effect is. Half a year
later, the planet will be on the other side of the sun, with the other end of its
axis pointing to the sun. The entire effect will be mirror-imaged. Whichever
enantiomer of the primitive life was encouraged in one hemisphere, the other
will be similarly encouraged in the other hemisphere (Figure 5.8). Thus, in a
time-average over a full year, the planet receives from the celestial spatial
scale an asymmetrizing antecedent for a pattern in which one hemisphere is
occupied by life of one chirality, and the other hemisphere by life of the
opposite chirality. Classical properties of radiation and of the magnetic field
are used in this model, but the physics of the weak interaction and nonconser-
vation of parity does not come into the model at all.

Large-scale separation of enantiomers could, of course, take place without
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Figure 5.8. Life on the planet Gedanken. The magnetic field, together with the refrac-
tive-index gradient through the planet's atmosphere, causes right- and left-hand cir-
cularly polarized light (L and R) to be deflected downward to varying extents. The
effect is exactly mirror-imaged at half-year intervals, if the orbit is circular. This can
encourage two-part pattern formation in two hemispheres (arrow A) by the pho-
tochemical effects of L and R light on D and L enantiomers. A large-scale external
disturbance (arrow B) can encourage loss of L, and resolution.

such an antecedent, because random fluctuations in the ocean and its primeval
soup contain some rudiment of long-range pattern. But, as indicated earlier, if
one depended on those, one might have to wait billions of years for the
separation to get up to a spatial scale of a few metres. The interaction with
asymmetries on a vaster scale is capable of providing a bigger antecedent and
speeding the process up.

As to the eventual loss of one enantiomer, there are two possibilities for an
asymmetrization which would accelerate the process much above the rate
which a random walk of the boundary would achieve. One, as described by
Mortberg (1974), from whose account this is adapted, is that the arrangement
of the axis of the planet and the axis of its orbit is not as symmetrical as
suggested here, and the planet has an elliptical orbit, not a circular one. This
gives enough asymmetry for the two hemispheres to get unequal treatment.
The other is simply that an accident on the large scale, such as collision with a
meteorite, or a burst of destructive radiation from some particular direction,
may destroy much more of the life on one hemisphere than on the other. Such
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antecedents need no knowledge of modern particle physics or statistical ther-
modynamics for their appreciation. They are big things, that we can all see or
visualize.

5.5 The paradoxical nature of symmetry

One might think, a priori, that if anything is a straightforward manifestation
of static aspects of geometry, it is the symmetry of an object. Yet whenever
one studies symmetry in nature, somehow one soon seems to be concentrating
on motion. In the quantum mechanics of atoms and molecules, symmetry and
angular momentum, the measure of circular motion, go hand in hand. Here,
motion has entered in quite a different way, but has been prominent through-
out the discussion. Symmetry is the aspect of shape which shows most clearly
the main thesis of this book: that shape is a manifestation of motion.



6
Matters needing mathematics: an introduction

6.1 The language of rates, and the need for it

The Scientific Revolution of the sixteenth and seventeenth centuries featured
above all other concepts that of accelerated motion. At that time, the infinites-
imal calculus was developed by Leibniz and, as the "method of fluxions," by
Newton. In that language, acceleration is, of course, a second derivative, the
rate of change of the rate of change in position. Simultaneous development of
the concept and the mathematical language was no accident. When one has to
deal with second and higher derivatives, the compact language of the calculus
is essential. Not so, I think, if one has to deal only with first derivatives.
Aristotle's law of motion, that velocity is proportional to applied force, is
correct for motion in a viscous medium (the world as experienced by bacte-
ria). It had been current for many centuries without provoking the invention of
such a language as the calculus. If one wishes, for instance, to discuss the law
of exponential growth for some quantity C, nowadays one will usually start by
writing

dC/dt = C; (6.1)

but one need not. It is quite possible to write the compound-interest law
(100%)

C = C0[l + (I/*)]"' (6.2)

and to go to the limit of continuous addition of interest by taking n to infinity
and so inventing the number e and writing

C = C V (6.3)

without using the notation dldt or the notion of a differential equation at all.
The accumulation or disappearance of material in diffusion involves a sec-

ond derivative and, like accelerated motion, demands the language of the
calculus. Surely this should be, therefore, in commoner use among experi-
mental developmental biologists than it is at present. But one cannot readily
rekindle enthusiasm for something three hundred years old as if it were the
latest fashion. Nevertheless, that is what is needed for theories of develop-
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ment: a lively enthusiasm for fairly elementary calculus. It is the old stuff in
the expertise of mathematicians and physicists which is relevant to biology,
because most of it has not yet been used there.

Calculus is a means of discussing continuous variables, and we are here
particularly concerned with concentrations of substances as such variables.
This does not arise very obviously from the model in Chapter 5, which used
small-number statistics with an all-or-nothing character to the contents of
every box: either an A or a B. That simulation is not readily extendable,
without the use of much larger numbers, to models for forming stable pattern.
Consider the stage at which a two-part pattern has developed, with some ZTs
on the left and some A's on the right. We would like to devise a model, for
instance, in which the boundary between these two regions would not go into
a random walk but would stay unmoving if it were exactly in the middle of the
system, with as many ZTs on the left as there were A's on the right. How is the
boundary to know the length of the region on each side of it? Clearly it does
not, and it moves randomly with respect to the ends of the system because its
lack of information about them is total.

That is not so if the concentrations of A and B are continuous variables.
Diffusion, and its consequences for buildup or dispersal of material, is quite
sensitive to the spatial scale of the pattern of nonuniform distribution of the
diffusing material. This, we shall see later (Chapter 7), leads ultimately to the
conclusion that reaction-diffusion can set up a quantitative measure of dis-
tance - something surely of importance in biological development, but not
much emphasized in most accounts. In the following section, the diffusion
equation is set up and applied to a sine-wave distribution of material which at
once gets rid of the second derivative and leaves us with only first derivatives,
time rates of change. The same strategy is used in Chapter 7 to handle Turing's
model. This treatment is designed to be intelligible to readers who at some
time have taken a first course in calculus but who do not use it every day and
therefore are not fluent in the language. Section 6.5 poses some problems
intended to assist at this level, and there are brief indications of their solutions
in Section 6.6.

There is no purpose in reading on beyond this point unless the reader
intends to spend a significant amount of time on all the mathematics in
Chapters 6 and 7. Both chapters are needed to reach the point at which one
can understand the nature of a pattern-forming reaction-diffusion mechanism.
Many biologists may still have doubts that such effort will be worth their
while. Indeed, in most published work I have read by experimental biologists
who mention reaction-diffusion with any favour at all, such mention usually
ends exactly at the point at which this mathematical account is about to begin.
To take up again a matter addressed in Chapter 1, I do not believe that this
happens merely from an aversion to mathematical language and procedures.

The biologist's customary answer to the problem of stabilizing the position
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of an A/B boundary (usually with A and B representing differentiation states of
cells, rather than molecular species) is the concept of positional information
provided by a fixed gradient of another substance. In terms of the number of
substances required, this is no less complicated than a reaction-diffusion
mechanism. Indeed, the gradient itself needs a simple form of reaction-
diffusion to account for its quantitative stability. The contrast between this
kind of model and Turing two-morphogen reaction-diffusion is in the kinds of
processes envisaged. The usual biologists' explanations are fundamentally
hierarchical. Each new step is dependent upon something that is higher in the
hierarchy and is not alterable by the subsequent process. You don't try to get
back to the boss and change his mind. The essence of a Turing model is the
existence of feedback loops in which everything interacts back on everything
else and there is no boss. It does not preclude the process being part of a
hierarchy of processes on a grander scale. But for the formation of a single
pattern, processes with feedback control are far more powerful than are pro-
cesses with a unidirectional control sequence, and to my mind therefore much
more likely to have been found by living things.

6.2 Differential equations, diffusion, and a Cheshire Cat

6.2.1 A Cheshire Cat
Diffusion is flow of material down a gradient of concentration. Fick's law,
which gives the simplest mathematical expressions for diffusion and which
well represents the behaviour of many diffusing materials, is that the rate of
flow of material is proportional to the concentration gradient. The process of
diffusion tends to destroy nonuniformities in concentration distribution. One
often thinks of this as equivalent to spreading out, in the sense, for example,
that a spot of coloured solution placed somewhere in a dish of water will
become gradually larger and fainter in colour and have fuzzier boundaries, or
that an originally sharp boundary between a coloured solution and water in
two sections of a tube will gradually blur (Figure 6.1a,b).

There are circumstances in which the approach to uniformity does not
involve spreading in the sense of change of shape of the original distribution.
Suppose we have a rectangular dish of water in which some coloured solution
is somehow arranged initially in the form of a set of parallel, equidistant,
fuzzy-edged stripes (Figure 6.1c). More precisely, the initial distribution is to
be (Figure 6. Id)

C = A cos(axs) + Co, (6.4)

where C is the concentration of the material, s is distance along the dish
perpendicular to the stripes, and <o and Co are constants. Because if we start
from the crest of the wavelike distribution at one end of the trough (s = 0) the
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t = o

Figure 6.1. Spreading by diffusion, (a and b) Two cases in which spreading changes
the shape of the distribution: (a) a spot of solution, containing a diffusible coloured
solute, put in a dish of solvent; (b) a tube with an initially sharp boundary between so-
lution on the left and solvent on the right, (c) A case in which spreading alters the in-
tensity but not the shape of the distribution: Coloured solution is distributed in "fuzzy-
edged" stripes along a trough full of solvent, (d) The precise indication of what is
meant by "fuzzy-edged" for the pattern to fade undistorted: a sinusoidal distribution of
concentration along the left-to-right direction. The broken line (t > 0) indicates the
fading of the pattern, i.e., decrease in amplitude, without change in its sinusoidal
morphology. The peak-to-peak distance is the wavelength X. Throughout this book, I
use a) = 2TT/\. Physicists are more accustomed to the use of co as an angular frequency
in time-periodicity, and k = 2TT/X. I have switched the terminology because, as a
chemical kineticist, I wish to use &'s extensively for chemical rate constants.

next crest must be at COS(2TT) and also at s = X (the wavelength), then it
follows that

a) = 2TT/ \ . (6.5)

I assume that the trough is an integral number of wavelengths long, and so has
a crest at both ends.

What will be seen to happen if we observe this system without disturbing it?
The answer is not entirely obvious. Clearly, the stripes will finally disappear,
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and the whole solution will have the depth of colour corresponding to Co.
What is not obvious is that as the stripes fade, their shapes do not change at
all. The amplitude A of the sinusoidal waveform decreases as time goes on,
and nothing else changes. The pattern fades like the Cheshire Cat, without
change in its features. Thus in the sense of the intensity of the pattern,
spreading occurs, but in the sense of its morphology, there is no spreading. It
is clearly important in relation to pattern formation that there is such a thing as
a pattern that diffusion cannot change, morphologically.

Anyone who can prove that the pattern fades in this way knows enough
mathematics to cope with the rest of this book. The example will serve as an
introduction to differential equations for those not yet acquainted with them.

6.2.2 Differential equations

Let us consider a concentration C which varies in some way with distance s,
so that its distribution constitutes a pattern or form (or one may prefer the term
"prepattern"). Let us suppose that all we are told about it is that it obeys the
relationship

C = Co- (\lu2)d2Clds2. (6.6)

This is, obviously, an equation. It looks as if it might possibly contain the
information on what function C is of s, that is, what the pattern is. That
relationship is called a solution of the equation. Thus we have an equation
involving differential coefficients, the solution of which is not a numerical
value of C, but an algebraic expression relating C to s. This is a differential
equation. When it involves only one independent variable (s, in this case), it is
called an ordinary differential equation.

How to go about solving a differential equation is often not at all obvious,
and there is no standard method that always works. Guesswork is sometimes
as good as anything. (The reader with only an introductory calculus course
should have met this same problem in integration, which is closely related to
solving differential equations.) In the present case, a correct guess is easy to
make, because one has just been given as equation (6.4). Check by differ-
entiation:

dClds = -Ao) sin(a>,y); (6.7a)

d2C/ds2 = -Ao)2cos((i)j); (6.7b)

and on substitution in (6.6),

C = Co- (l/a)2)[-A(o2cos(a)ly)] (6.8a)

= Co + A cos(us). (6.8b)
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So we have a solution of the differential equation, but not the only solution.
If, instead of the cosine function, we used sine, that is,

C = Co + A sin(axy), (6.9)

it is easy to check by differentiation that we again have a solution. The
difference between the two solutions we now have is the condition at one end
of the system, s = 0. For the first solution, a crest of the waveform was at this
position; for the second, a node. To find not a particular solution, but the
general solution, it remains only to see that any intermediate point on the
waveform could be its start at s = 0. This can be expressed as

C = Co + A sin(a>5- - 8). (6.10)

This expression contains two undetermined constants: the amplitude A of
the sinusoidal waveform, and its phase 8. The latter can be determined if we
have sufficient information on what is happening at the boundary of the
system s = 0. There are two undetermined constants because the equation
contained a second derivative. The order of the highest derivative is the order
of the equation and gives the number of arbitrary constants in its general
solution.

6.2.3 Diffusion

The example just treated was of a frozen distribution of material, a pattern
unchanging in time in any of its characteristics, including amplitude. If the
material so distributed is diffusible, C changes with time at every point in the
pattern (Figure 6. Id). The complete specification of C is therefore as a func-
tion of two variables, position and time:

C = C(s,t). (6.11)

Information which would let us determine this function might also be given as
a differential equation, but it could now contain two kinds of derivatives,
those with respect to position and those with respect to time. Such an equation
is called a partial differential equation, distinguished from the previous case
of an ordinary equation. At first encounter, the word "partial" may seem
obscure in this context; its rather straightforward meaning should emerge in
what follows.

[In his introductory remarks at a discussion hosted by the Royal Society of
London on theories of biological pattern formation, J. D. Murray (1981b)
said: "At several 'interdisciplinary' meetings it was clear that communication
between the various groups was non-existent and, after some of the answers to
questions, perhaps it was not even wanted. A reply such as, 'It's probably a
secondary Hopf bifurcation in the p.d.e. parameter space' does not have
biologists on the edge of their seats - unless to leave." In those remarks,
p.d.e. stands for partial differential equation.]
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As the reader knows, a derivative such as dClds is the slope of a graph of C
against s. The problem in the more complicated two-variable situation is this:
While s is changing, what is happening to ft The most obvious answer, to give a
simple significance to the slopes, is as follows: While measuring dC/ds, keep t
constant, and while measuring the time rate of change of C (i.e., dC/dt), keep s
constant (i.e., make the measurement at a fixed position) (Figure 6.2a). Each
slope so measured gives only a part of the information about how C is varying,
and is called a partial derivative. There is a special notation for it. The two just
mentioned are (dC/ds)t and (dC/dt)s. This notation is devised to cope with an
unlimited number of variables. When we have only two, it is not necessary to
use the subscript indicating what is held constant while we are measuring one
variation. We may write dC/ds without specifying that t is to be held constant.
The use of d in place of d signals a partial derivative, and there is only one
possibility for what the other variable is.

The beginner may have been puzzled since reading in the second paragraph
of this chapter that diffusion involves a second derivative, because Fick's law
mentions only a first derivative:

rate of flow of material M = -2)Ac(dC/ds), (6.12)

where 2) is the diffusivity of the moving material, and Ac is cross-sectional
area perpendicular to s. Consider, however, a system with a linear distribution
of concentrations (Figure 6.2b); dC/ds is the same everywhere. Thus, at the
point B, the rate of delivery of material from the right is the same as its rate of
removal on the left. There is no net gain or loss of material at B (which could
be any point along the linear distribution); dC/dt is everywhere zero. For
material to accumulate at B, the slope on the left must be less than the slope on
the right, so that less material is removed than is delivered in any time
interval. This is illustrated in a finite-difference approximation, such as one
would use in programming a computer to calculate diffusion, in Figure 6.2c.
For a continuous variation (Figure 6.2d), what we see is that if, as we go past
the point B from left to right, dC/ds is increasing with s, then there is a
buildup of material at B (i.e., dC/dt is positive if the rate of change of dC/ds
with s is positive, i.e., if d2C/ds2 is positive). The reader may now be
prepared to swallow, without further ado, the expression of this result as an
equation:

dC/dt = 2)(d2C/ds2). (6.13)

The derivative of (6.13) is given as Problem 6.5.5. It is sometimes called
Fick's second law, but there is really only one law; equation (6.13) is an
inevitable mathematical consequence of equation (6.12).

A curve for which d2C/ds2 is everywhere positive is concave upward, and
dC/dt is everywhere positive; that is, a short while later, the whole curve will be
displaced upward, to higher concentrations. By the same token, a curve which
is concave downward is moving downward as time goes on. If we apply this to
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B

Figure 6.2. (a) The meaning of partial derivatives, for a concentration (X) dependent
upon both position and time, (b and c) Illustration of why the diffusion equation
involves the second derivative of concentration with respect to position, shown in the
kind of finite-difference approximation one might use in a computation; a tube (shown
square-sectioned) of diffusing material is divided into segments of equal length, the
average concentration of each is put at its midpoint, and the concentration gradients are
approximated by straight lines joining the midpoints; (b) When the concentration
distribution is linear, there is no buildup of material at B; rate of delivery from the right
equals rate of removal on the left, (c) When the concentration distribution is nonlinear,
the concentration at B is changing. Here, the rate of delivery exceeds the rate of
removal, and concentration at B is rising, (d) The same as (c), but shown with a
continuous variation of concentration with position. The rate of rise of concentration is
fastest where the curve departs most from a straight line.

the sinusoidal distribution, we get the result shown in Figures 6. Id and 6.2a:
The entire top half of a sinusoidal wave is concave downward and the entire
bottom half is concave upward, and each is moving toward the direction to
which it is concave. The nodes, where C = Co , are at the transition from
concave up to concave down. There, d2C/ds2 = 0; that is, the curve has, in fact,
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no curvature. The concentration at these points therefore remains at Co: The
nodes of the wave do not move. Without further algebra, we are close to
showing that the pattern is changing only in amplitude, but we have not yet
proved precisely that it remains sinusoidal as it decays.

6.2.4 The Cheshire Cat, with mathematics, and three entities

The step that remains is to put together equations (6.6) and (6.13), and so get
rid of the second derivative. From equation (6.6), applied to the shape of the
concentration distribution at any fixed time, and therefore with the ordinary
second derivative replaced by a partial,

d2C/ds2 = -co2(C - Co). (6.14)

Substituting in (6.13),

dC/dt = -w 2 3(C - Co). (6.15)

This is an ordinary differential equation. Its solution, for C as a function of t,
will show how concentration changes with time at any point along the pattern.
It is already obvious to us that C is everywhere heading for the value Co at
infinite time. To represent this progress as concisely as possible, it is useful to
introduce the measure of displacement from Co:

U = C - Co. (6.16)

Because Co is constant, differentiation yields

dU/dt = dC/dt, (6.17)

and recognizing that because s has disappeared from the scene the derivative
in (6.15) can be written as an ordinary derivative, that equation becomes

dU/dt = -a>22)£/. (6.18)

This equation probably is already familiar to the reader who has not pre-
viously encountered differential equations in general, but who has learned
something about chemical kinetics, or radioactive decay. It is the equation for
exponential decay (often called a relaxation process). The solution is

U = Uoe-"2qbt. (6.19)

This decay has the well-known property of first-order chemical reactions. The
time required for U to fall to some given fraction of Uo is independent of Uo.
Thus, for our sinusoidal pattern, if the crest, where Uo = Ao, drops to Ao/2 in
some given time, every other point along the curve will have halved its initial
displacement from Co in the same time. The curve will have retained its
sinusoidal shape, but its amplitude will have been halved. This establishes
that the Cheshire Cat behaviour described in Section 6.2.1 actually occurs
(Figure 6.3, from 0 to T1 / 2) .
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Figure 6.3. Exponential decay of a sinusoidal pattern, as a result of diffusion, with the
same half-life (T1/2) for all positions in the pattern. U = X - Xo is displacement of
concentration X from its average value for the whole pattern, which is the same as the
value of X at all points at infinite time.

(6.20)

Equation (6.19) is the general first-order decay equation

U = Uoe~kt,

with the decay constant k given by

k = o)23) = 4TT23/X2; (6.21)

that is, the shorter the wavelength, the faster the decay. For a given amplitude,
concentration gradients are greater for shorter waves, and therefore diffusion
is faster for shorter waves, so we should intuitively expect this sort of varia-
tion; but without the mathematics, it would have been difficult to see that the
dependence is on 1/X2 rather than on 1/X.

This analysis has shown us that the sinusoidal pattern behaves, because of
the occurrence of diffusion of its constituent molecules, as a whole, a single
organized entity which fades away as if it were one object, the Cheshire Cat.
Hence we recognize two kinds of entities in the system: the whole pattern, and
its constituent molecules. A third entity may be useful to think of from time to
time: the repeating unit of the pattern, which is one cycle of the sinusoidal
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wave, occupying length X of the system. It is informative, instead of thinking
of the length of each unit, or the spacing between units (which is the same
thing for the sinusoidal pattern), to take its reciprocal and think of how many
pattern units are present in unit length, that is, the concentration of pattern
units, 1/X. From this viewpoint, our kinetic law is that pattern units do not
like to be crowded, and each one of them fades away in intensity at a rate
proportional to the square of its concentration.

6.3 Reaction-diffusion and growth of pattern: departure
from uniformity, both ways

To study the mathematically simplest reaction-diffusion equation, we need
only to suppose that the diffusing substance of concentration C, or U = C —
Co, is also being formed autocatalytically. The kind of autocatalysis required
has the peculiarity introduced in Section 2.2: The autocatalytic function is to
involve U, not C, so that the catalysis will pull the concentration away from
Co in either direction, upward or downward:

dU/dt = kU. (6.22)

Before we combine this with the diffusion equation, perhaps some justifica-
tion is needed for its form. It is obviously reasonable to suppose that there
may be molecules which catalyze their own formation in a unidirectional
sense,

dC/dt = IcC, (6.23)

but how the bidirectional character of equation (6.22), in which U can have a
positive or negative value, arises is not so obvious. In Chapter 9, the algebra
of several reaction-diffusion models is presented and shown to give the kind of
variation indicated by equation (6.22) for the displacements U = X — Xo and
V = Y — Yo from the spatially uniform (patternless) steady state (Xo, 70).
What is going on in principle can easily get lost in the algebraic details.
Morphogenetic reaction-diffusion mechanisms usually contain a term in X2

(or the equivalent, A2, in the Gierer-Meinhardt mechanism) in the growth
rate of X. Just why this works to give morphogenetic behaviour is not easily
generalized in words. An understanding of it requires discussion of several
examples, some of which can be handled quite easily mathematically, but in
which the essence of what is going on does not lend itself to verbal descrip-
tion. It is necessary to appreciate that one equation can be worth a thousand
words.

One such example, that of bimolecular activation of a site for stereospecific
autocatalysis, was discussed in Chapter 5 as far as could reasonably be done
without the use of equations. It is taken up again in Sections 6.3.3 and 6.4. An
advantage of that system as a first example is that the movement away from
equilibrium in two opposite directions can be appreciated as movement to-
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ward optical resolution in the two opposite senses. But this same bidirectional
movement can occur where there is no such symmetric relationship between
two substances, as the following section shows.

6.3.1 Linearization about the spatially uniform steady state:
a simple example
Suppose that a substance X decays in first-order manner and also self-cata-
lyzes its own formation in a second-order manner, and is diffusible:

dX/dt = -kdX + kfX2 + diffusion. (6.24)

Let us determine if there is a steady-state value, X = Xo, for which X is not
changing with time throughout the system. In spatial uniformity, the diffusion
term vanishes, because there are no concentration gradients in the system.
Then if we write dX/dt = 0, for X = Xo,

0 = -kdX0 + kfXl (6.25)

whence

Xo = kd/kf (6.26)

(except for the trivial value Xo = 0; because morphogenetic mechanisms
contain squared terms, one often has to solve quadratic equations, and one is
then faced with the usual question of which of the two solutions is the
physically significant one).

Being assured that such a quantity as Xo exists, we may now write, as
usual, U = X — Xo and rewrite equation (6.24) in terms of U instead of X, in
order to enquire about the rate of departure from the spatially uniform steady
state. Because Xo is constant,

dU/dt = dX/dt, (6.27)

and hence, for the moment, with the diffusion term left out, and with X =
X o + U,

dU/dt = ~kd(X0 + U) + jfcf (Xo 4- U)2,

or, expanded,

dU/dt = ~kd(X0 + U) + jfcf(X§ + 2X0U + U2). (6.28)

Subtract from this

0 = -kdXQ + kfX2. (6.25)

Hence

dU/dt = (-kd + 2X0kf)U + kfU2, (6.29)

which, upon inserting the value of Xo, becomes

dU/dt = kdU + kflP. (6.30)
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dX

dU

U

Figure 6.4. Rates of change of (a) concentration X and (b) displacement from steady
state U = X - Xo plotted against X and U, to illustrate equations (6.24) (without
diffusion term) and (6.30). In each case, the solid curve is the overall rate of change,
and the broken lines are the separate linear and quadratic contributions to it.

This is very straightforward algebra, but it has led to a result with some
remarkable features (Figure 6.4), which are typical of the more complicated
cases in Chapter 9. When the system starts to move away from the steady state
U = 0, the term in U in equation (6.30) will at first be much larger than the term
in U2; so, for small displacements, we may neglect the latter. This gives us the
equation we wanted, equation (6.22), and indicates that movement away from
U = 0 will indeed occur, and either upward or downward, depending on what
sort of disturbance starts the process on its way. Whenever the U2 term can be
safely ignored, equation (6.30) becomes a linear equation; and its important
feature for our purpose is that the coefficient of U is positive. If we trace back
through the algebra where that value of +kd came from, we find —k d from the
original linear term in equation (6.25) or (6.28), and 2X0kf = 2kd from the
nonlinear term. Thus the behaviour that we want, although it can be expressed
as a linear term, arose from the nonlinear part of the original expression.
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Evidently the second-order nature of the autocatalysis is very important;
therefore, one might imagine that the rate constant for that catalysis, kf, would
dominate the movement away from the steady state. Not so: The coefficient of
our linear term is kd, the decay constant of X, not kf. Of course, when the
pattern amplitude becomes so large that we cannot neglect the U2 term, the
further development of the pattern will be governed by kf. But what pattern
develops may be strongly dependent on the initial stages of that development,
in the linear region.

Meinhardt (1984) has stressed that reaction-diffusion models have "count-
er-intuitive properties." The difficulties in recognizing that the expression for
dU/dt would have a linear term in U (applicable to both positive and negative
values of that variable), that the coefficient of that term would be positive, and
that it would arise from the decay rate of X are three such counterintuitive
matters.

The diffusion term will be added in Section 6.3.4, following brief notes on
two other linearizations.

6.3.2 A brief comment on the Brusselator

The Brusselator is discussed in more detail in Chapter 9. It is formulated as a
hypothetical chemical reaction mechanism with four steps:

A -» X (rate constant = a), (6.31a)

B + X -^ Y + D (rate constant = b), (6.31b)

2X + Y-^ 3X (rate constant = c), (6.31c)

X-> E (rate constant = d). (6.3 Id)
The overall reaction is (as an unbalanced equation)

A + B -» D + E, (6.32)

and the intermediates X and Y are the morphogens.
When the kinetic equations are written down for this mechanism and lin-

earized about the spatially uniform steady state in a more complicated version
of the procedure described in the preceding section, it turns out that the rate of
displacement of X from its steady state has terms linear in both U = X — Xo
and V = Y - Yo:

dU/dt = kxU + k2V + nonlinear terms + diffusion. (6.33)

Without doing the algebra, can the reader guess what the expression for kx is
likely to be, in terms of a, b, c, and dl Most probably, the previously
uninitiated reader would have gone for c, the rate constant of the all-important
autocatalysis, as a dominant part of kl9 but will, after reading the preceding
section, have realized that c is not going to be in kv Anyone who further
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guesses that either b or d, the rate constants for the two reactions consuming
X, is going to be there is along the right lines. The expression is

kx= bB - d. (6.34)

Note that b appears with a positive sign, but d with a negative sign; and for the
full treatment, see Chapter 9.

6.3.3 The mechanism for optical resolution
In the previous two examples, symmetrical departure from the steady state
arose despite the absence of any such symmetry in the chemical makeup of the
system. Spontaneous optical resolution is the only case in which the symme-
try of the kinetics corresponds to the symmetry of chemical composition.
Hence the behaviour of this system is not nearly so markedly counterintuitive
as that of most other systems. That is why this system is a good lead-in to the
topic for biologists. The structural symmetry, which is probably the first thing
the biologist perceives, corresponds to the symmetry of the algebra.

The model described in Chapter 5, following Mills, assumes random asso-
ciation of the two enantiomers in pairs on potentially active catalytic sites. If
we use A and B to represent the concentrations of those substances in the
solution in contact with the catalyst, and suppose that the sum of these
concentrations is always high enough to keep the catalytic sites saturated with
attached A or B, then for a fixed number of catalytic sites, the number
activated by two attached A's will be proportional to the square of the fraction
AI {A + B)\ and similarly for activation by two ZTs. This gives, for the rates of
the reactions,

S H A (6.35a)

and

S^B, (6.35b)

with diffusion still omitted from the equations,

dA/dt = kfSA2/(A + B)2\ (6.36a)

dB/dt = kfSB2/(A + B)2. (6.36b)

Now the optical asymmetry of the solution (being the quantity one would
measure as being proportional to the rotation found in a polarimeter) is propor-
tional to A —  B. The rate of increase of this asymmetry is found by subtracting
(6.36b) from (6.36a) and simplifying the result by using

A2 - B2 = (A - B)(A + B). (6.37)

Thus,

d(A - B)/dt = kfS(A - B)I{A + B). (6.38)
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Because equilibrium between the two enantiomers is the racemic state A = B,
we may use A — B as a measure of departure from true thermodynamic
equilibrium (not just a spatially uniform steady state, as in the previous
examples). If we write

asymmetry U = A — B (6.39a)

and

total product P = A + B, (6.39b)

then (6.38) becomes

dU/dt = (kfS/P)U. (6.40)

Thus, once again, we have an equation indicating that the kinetics of the
system will take it away from equilibrium (in this case, the racemic equi-
librium of the enantiomers) in either direction.

Linear and nonlinear terms are not clearly separated in equation (6.40). If P
were constant, and the supply of reactant S to the system were externally
managed so that S remained constant, the system would behave exactly lin-
early. It is quite straightforward to envisage the supply of S being so managed,
though while doing so we should not neglect to observe that this brings in the
whole question of the interaction of system and surroundings, and hence the
compatibility of pattern formation with the second law of thermodynamics, as
discussed in Section 6.4. But from the kinetic equations we have used, P
cannot be constant, as we may see simply by adding together equations
(6.36a) and (6.36b) and obtaining a nonzero sum for the rate of increase
of A + B.

P can actually be held constant by the washout process, which was in the
model in Chapter 5 but has not been included in the foregoing equations. This
is done in Chapter 9, and equation (6.40) is thereby resolved into its linear and
nonlinear terms. For the present purpose, it is sufficient to recognize that
circumstances can readily be envisaged in which the asymmetry U is changing
rapidly while the total product P is changing only slowly. The linear form of
equation (6.40) is then a good approximation. The treatment of the washout
model in Chapter 9 shows that when the system is 10% of the way from the
50/50 racemic mixture to resolution (i.e., it is at 55/45 or 45/55), the correc-
tion to the rate for nonlinearity is only 1%.

6.3 A Reaction-diffusion: rate versus wavelength
for a single morphogen

For a displacement U = X — Xo, because Xo is constant it disappears from the
derivative in the diffusion equation as it did from the kinetic derivatives, that
is,

d2U/ds2 = d2Xlds2. (6.41)
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This makes it appear, formally, in a diffusion equation, as if U were the
concentration of a diffusing substance, whereas it is actually a measure
of displacement from a steady state. Combining this with the linear self-
enhancement of U, as in the previous three examples, we have the reaction-
diffusion equation

dU/dt = kU + 3 d2U/ds2. (6.42)

Let us now suppose that to a system obeying this dynamic equation, and in the
state U = 0 everywhere, there is applied a small disturbance in the form of a
sine wave of wavelength X, alternatively specified by co = 2n7X. For such a
disturbance,

d2U/ds2 = -u2U. (6.43)

On substituting this in equation (6.42), we have

dU/dt = W - a>23£/,

or

dU/dt = (k - a>23)[/. (6.44)

This is the differential equation for an exponential growth or decay, according
as the quantity in parentheses is positive or negative. The solution for U as a
function of t is

U = U^-™2^. (6.45a)

The exponential growth or decay constant kg is

kg = (k - o)22)) = (k - 4TT23/X2). (6.45b)

Clearly, at short wavelengths the negative term is dominant, and the initial
disturbance will decay away. At a certain threshold wavelength Xo, the growth
constant will reach zero, and the disturbance will neither decay nor grow; and
at longer wavelengths, kg will become positive, and the disturbance will grow
exponentially. Its growth rate will become greater with increasing wave-
length, reaching kR = k at infinite wavelength.

These equations formalize mathematically the model for spontaneous op-
tical resolution. In a system with patches of partially resolved material,
which may be regarded as fragments of patterns of various wavelengths, the
ones of longer measure are growing faster than the shorter ones. It follows
that, in the eventual outcome, one patch must take over the whole system.
This wavelength dependence of kg for unstable pattern (Figure 6.5) also
establishes the behaviour of a single self-enhancing morphogen, so that we
may see what more is required to form stable pattern. This has already been
shown in Figure 3.2: kg must not go on increasing with X, but must pass
through a maximum and start to decrease as X rises. This needs a second
morphogen.

Anyone wishing to continue pursuing this aspect should jump to Chapter 7;
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Figure 6.5. Exponential growth rate constant kg of pattern amplitude versus wave-
length X for a one-morphogen model, equation (6.45). Patterns with repeat unit shorter
than Xo decay (kg is negative), and patterns with repeat unit longer than Xo grow. Their
growth rate increases monotonically with wavelength, toward a maximum which is k,
the autocatalytic rate constant in equation (6.42). As in Figure 6.4, this k may not be
the rate constant of the autocatalytic step in a reaction mechanism; in Figure 6.4,
k = &d, the rate constant of a decay step.

but here we have some unfinished business to do with optical resolution and
the second law of thermodynamics (Section 6.4).

6.3.5 Must the self-enhancement involve a squared
concentration?

Second-order autocatalysis, as postulated in equation (6.24) and in most
nonlinear models (Chapter 9), often needlessly worries biochemists who want
to identify it at once with a known mechanistic step. (Curiously, when bio-
chemists find that a protein works only dimerically or tetramerically as an
enzyme or a transcriptional activator, they do not usually identify this poten-
tial dynamic significance. For my response when I first learnt of protein
tetramerization, see Section 9.2).

One should keep in mind the perspective of Mills (p. 157). The dynamics
may involve any power, integral or fractional, above the first, and all the
mechanistic complexity of biological growth. I define the dynamics by rate
equations which could arise from a few steps in a chemical mechanism, but
which could also be metaphors for larger-scale feedback controls. Even when
there is a simple mechanism, the right nonlinearities can appear without a
specific autocatalytic step (e.g. equations (9.41)). An inhibition of an inhibi-
tion is equivalent to an autocatalysis.

If, however, one takes the chemical dynamics quite literally, equation
(6.24) shows the two commonest concentration dependences in chemical
kinetics: first power and second power of concentration. The latter, however,
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stems not from an overall bimolecular reaction, but from an autocatalysis
which is bimolecular in the catalyst and at least unimolecular in a substrate;
for example,

S + 1A -» 3A, (6.46)

which is another way of writing equation (6.35a); or, from the Brusselator
mechanism,

y + 2 X ^ 3 X . (6.31c)

In elementary accounts of chemical kinetics, which refer mainly to gas-phase
reactions and often fail to stress that many aspects are different in liquid
solution, a termolecular step is usually indicated as improbable in a reaction
mechanism, because three-body collisions are very infrequent. Indeed, in
some of their earlier writings, the devisers of the Brusselator were clearly
worried about the termolecular step; for example, Prigogine (1967) wrote that
"this reaction scheme is physically unrealistic because it involves the tri-
molecular step [(6.31c)]."

This is a problem only if one takes the equation literally as a single step in a
reaction mechanism. In condensed phases, the same kinetic expressions that
one would write for (6.31c) may very readily arise through the quasi-equi-
librium formation of a catalytically active complex followed by the kinetic
exercise of its activity. This is just what I proposed in the optical-resolution
model of Chapter 5, and it is in the spirit of Mills' (1932) suggestion, which
envisaged something like a quadratic concentration dependence as a very
generalized feature of complex reaction mechanisms. The optical-resolution
mechanism may be written, with M as the site which becomes active on
attachment of product, as

M + 1A ^± MA2 (6.47)

S + MA2 -» SMA2 - » MA2 + A. (6.48)

The first step still looks termolecular, but in fact makes no claim to be a single
step. It is written as an equilibrium, from which an equilibrium concentration
of the complex can be calculated no matter how many steps it takes to achieve
the formation of MA2. One would usually expect a sequence of bimolecular
processes such as

M + A^MA (6.49a)

and

MA+A^± MA2. (6.49b)

Such a sequence might, however, stop at the first step or go on to the
formation of higher complexes MAn, with n > 2. This would lead to kinetic
expressions similar to equation (6.24) but with powers other than 2 in the
autocatalytic term:
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dX/dt = -kdX + kfXn. (6.50)

It is left to the reader (Problem 6.5.4) to repeat the algebra of equations (6.24)
to (6.30) in this more generalized form, and hence to show that the required
expression for departure from equilibrium,

dU/dt = kU + nonlinear terms, with k > 0, (6.51)

is obtained if n > 1, whereas if n < I, k turns out to be negative, and a
displacement from equilibrium would decay away. In this exercise, one need
not think of n as being capable only of assuming integral values. Very simple
mechanisms can give |-order rate equations, and if one is thinking of these
simple mechanistic schemes as being abbreviations for much more compli-
cated ones, then one should think of n as a continuous variable.

The threshold n = 1 for production of out-of-equilibrium structure arises,
of course, because the Xn term stands compared with a first-order decay. One
may question whether the latter is an arbitrary choice (although biologists,
whatever they have doubts about in proposed kinetic expressions, usually
seem prepared to admit a probable first-order decay of almost anything). The
optical-resolution model of Chapter 5 calls attention to the importance of
envisaging biological systems as flow systems. Thus, the disappearance of X
(corresponding to A or B in that model) in proportion to its concentration is
nothing more than the washout in the continuous flow. The parameter kd is
then a measure of the rate at which the developing system interacts with the
rest of the universe, which is somehow maintaining the flow and reprocessing
the removed products into fresh reactants. The term — kdX is then far from
arbitrary in form; its linearity corresponds to a linear measure of flow rate and
of system-surroundings interaction. Because by the second law of ther-
modynamics the production of order in the system (optical resolution or
pattern formation) requires a system-surroundings interaction in which the
latter is increasing in entropy, is it any longer surprising that the rate parameter
for departure from equilibrium turned out to be kdl In the more extensive
analysis of this aspect in the next section, a corresponding constant is called
kexV to stress its relation to external influences.

6.4 Thermodynamics, thresholds, bifurcations,
and catastrophes

Thermodynamics, as the name implies, arose from the study of movement of
heat. But the chemical thermodynamics of an open system can often be
discussed primarily in terms of flow of chemical substances. The optical-
resolution model of Chapter 5 is formulated in a way which facilitates such a
discussion. There is no specific requirement that any of the reactions be
endothermic or exothermic, and no need for any flow of energy per se be-
tween fixed masses of material. All exchange between system and surround-
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ings is represented by the flow of S into the system and A and B out of it.
These are analogues of the supply of food and oxygen or carbon dioxide to a
living organism, or a population (for the model may be read as developmental
or ecological), and the removal from it of waste products to be recycled into
food.

The following equations do not represent exactly what is shown in Figure
5.5. There, the enduring analogue of the living system is a fixed amount of
catalyst with a fixed total of A and B attached. To achieve this constancy, all A
and B produced in solution, if not exchanged back onto the catalyst, is
removed in the flow, which implies that the rate of removal is increasing as
the catalyst increases in total activity by loss of inactive AB pairs. In the
present account, the system is the catalyst with a fixed volume of solution,
catalyst bed in Figure 6.6a. The flow rate in and out of the bed is constant;
hence A and B are removed at rates proportional to their concentrations. The
catalyst is again constant in amount and is always saturated with A and B
attached at random, in pairs, to each site. The total amounts of A and B in the
system are thus not held arbitrarily constant, but are subject to changes which
can be calculated from the kinetic equations.

Those same rate equations can, however, be set up if the system is en-
visaged as closed, but with a flow of energy into and out of it. One may
suppose, for instance, that A and B are destroyed photochemically and thereby
converted into something from which S can spontaneously regenerate. The
energy flowing into the system most probably would become thermalized and
flow out of the system as heat (Figure 6.6b).

6.4.1 Threshold flow rate: kinetic analysis
of the optical-resolution model

For either the open system with material flow or the closed system with
energy flow, the rate of removal of products can be written in the rate equa-
tions as

rate of removal of A = £extA, (6.52a)

rate of removal of B = kextB. (6.52b)

In the case of the open system, occupying a length L of the flow path in which
linear velocity of flow is V, the equivalent of kext is simply the reciprocal of
the time taken for the flow to traverse the system,

kcxt = V/L (6.53)

The flow of matter or energy which appears in the equations only as
represented by the parameter kext drives the nonspontaneous order-creating
process in the system. But up to this point, throughout the discussion in
Chapters 5 and 6, it has not been especially obvious that the process needs
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Catalyst
bed

S,A,B

T Flow T
I rate Irate

V

Heat

Figure 6.6. (a) Open system, with substrate S flowing in at a concentration above
equilibrium with A and B, and flowing out at equilibrium with them. (A and B may or
may not be at the racemic equilibrium with each other.) (b) Closed system with
radiation entering not at the temperature of the system (e.g., solar radiation, which has
an effective thermodynamic temperature of about 5,000K, in equilibrium with the
surface of the sun) and photochemically converting A and B back to S (above equi-
librium). Energy leaves as heat, at the temperature of the system.

driving. This is because each reaction has been written with an arrow pointing
only to the right. Such an assertion of total irreversibility represents an infinite
thermodynamic driving force, and is always unrealistic. In rigorous ther-
modynamic discussion, every chemical reaction must be shown as reversible,
and the rate of its reverse taken into account. In treating the development of
the system in this way, one is replacing thermodynamic by kinetic formalism.
This is often indicated as dangerous, but is always legitimate if one can cope
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with the problem of writing, for every forward reaction shown, the precise
reverse reaction. The present case is not difficult. For the reaction

MA2 catalyst, kf

S =± A, (6.54)
MA2 catalyst, kr

the reverse reaction involves the same catalytic function as the forward, and is
therefore stereospecific, in contrast to the destructions of A and B by the fcext
process. This contrast confers on the removal process of A and B by matter
flow or energy flow the ability to drive the order-generating process. A
fraction A2I(A + B)2 of the catalyst has 2A molecules attached. Hence, the
rate of removal of A by reverse reaction is

kTAA2/(A + B)2 = krA3/(A + B)2, (6.55)

where the constant kr is proportional to the total amount of catalyst in the
system.

The gist of the role of flow rate in permitting resolution to occur is that the
forward reaction has a rate proportional to A2, whereas its reverse has a rate
proportional to A3. This higher power prevents the system from leaving the
racemic state, unless the dominant reverse reaction is the one involving exter-
nal interference, which has a rate proportional to A. The algebraic proof of
this assertion is as follows (Harrison, 1974). The overall rates of change of A
and B in the system are (Figure 6.7)

dAldt = kfSA2/(A + B)2 - krA3/(A + B)2 - £extA, (6.56a)

dB/dt = kfSB2/(A + B)2 - krBV(A + B)2 - kextB. (6.56b)

This treatment will consider only the possibility of resolution in the well-
stirred solution in which concentrations are spatially uniform. Hence there are
no diffusion terms, and the time derivatives can be written as ordinary deriva-
tives. From these two equations, we may determine the steady states of the
system by setting both rates equal to zero. The one we need, because it is the
starting point for resolution, is the racemic state:

A = B = Skf/[kr + 4fcext]. (6.57)

[There are also resolved states:

A = 0, B = SKf/(kr + ifcext), (6.58)

and the same with A and B reversed.]
From equations (6.56) we may also calculate the rate of change of the

fraction of A in the system, d[AI(A + B)]ldt. If one would prefer to look at the
rate of change of (optical asymmetry)/(total product) = d[(A - B)/(A +
B)]/dt, one has only to double the previous quantity. After some algebra, the
result is
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d[A/(A + B)]/dt = [AB/(A + B)4]kf(A - B)[S - (kr/kf)(A + B)].
(6.59)

This gives the rate of optical resolution for any values of A and B. Because the
first square bracket is necessarily positive, if A > B the rate of change of A/(A
+ B) is positive or negative according as the second square bracket is positive
or negative. We wish to consider starting from the racemic state, equation
(6.57), and applying a small disturbance which will make A — B slightly
positive without much change in the second square bracket. The condition for
the latter to be positive is

S > (kr/kf)(A + B) = 2(kr/kf)Skf/[kr + 4fcext]
= 2Skr/[kT + 4*exJ. (6.60)

Clearly, this inequality is satisfied if and only if

4*ext > K- (6-61)
This puts on a quantitative basis the earlier statement that for resolution to
occur, the dominant reverse reaction is the one involving external inter-
ference. Expression (6.61), written as an equation rather than an inequality, is
a threshold condition on the rate of flow of matter or energy through the
system for optical resolution to occur. Similar conditions may usually be
expected to govern the occurrence of any order-generating or pattern-forming
processes in living systems.

The parameter £ext appears, most obviously, as something concerned with
the rate of removal of material from the system. If we think of the model in an
ecological sense, with each A or B particle as an organism, then the terms
-kextA and ~kextB in fact represent death. One of my thermodynamically
minded colleagues used to describe the foregoing argument to me as "your
'death dominates' thing." One may also go right back to the origins of
thermodynamics in practical engineering and note that James Watt's success in
getting steam engines to work well arose largely because he worried about the
condenser, the remover of heat from the system.

It is, however, important to appreciate that the flow of the significant
reactants and products in this process, through system and surroundings, can

Figure 6.7. (opposite) Aspects of the optical-resolution model in an open system with
material flow, (a) Slow flow produces the racemic mixture, with no resolution or
pattern formation, (b) Numerical illustration of how the internal and external reverse
processes compete to destroy and assist, respectively, the asymmetrization. (c) Fast
flow produces the kind of sequence of events shown in Figure 5.7, pattern formation
followed by resolution, shown here at the intermediate stage. The rest of the universe
contains a chaotic mixture of thermodynamic and mathematical jargon, which is
getting worse all the time. From Harrison (1982), © Alan R. Liss with permission
from Wiley-Liss, a division of John Wiley and Sons, Inc.
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be formulated cyclically. In that sense, &ext is not related to any particular
point in the cycle, but to the rate of rotation of material around the whole of it.
The important aspect may be seen not as the destruction of A and B, but as the
building up of an adequate supply of the reactant S. Thresholds such as
expression (6.61) often may be recast as lower limits on reactant concentra-
tions for order-generation. The Brusselator is interesting in this respect. Of the
two reactants A and B (which are analogous to the S of the present discussion),
in some important regions of pattern-forming behaviour, B must exceed a
threshold value, but A must be less than a threshold value for the order-
generating behaviour to occur. Such thresholds are potentially important in
connection with the establishment of the boundaries of a morphogenetic field
(Chapter 9, especially Section 9.1.3).

The optical-resolution model may be thought of as more evolutionary than
developmental. For the stabilization of pattern, it is incomplete. But it cer-
tainly takes a system irreversibly away from its starting configuration toward
two possible states each of which has more order than the starting configura-
tion. This is variation, or even the most primitive example of speciation.
Here, a partial failure of one of my favourite analogies may be very signifi-
cant. The autocatalytic terms, bimolecular in A and B, are seen in the ecologi-
cal aspect of the model as representing sexual reproduction. But once a system
has reached the complexity of a unicellular organism, and the chemical reac-
tion step has been transferred in meaning to something to do with the whole
biochemistry of two cells, then the reverse reaction becomes, if I may be
excused the double entendre, inconceivable. For sexual reproduction, kr = 0.
It therefore appears to be a process having the character of an infinite ther-
modynamic driving force. I have not been thinking about evolutionary theory
for long enough to have arrived at any personal assessment of how important
this may be. I offer it for stimulation to evolutionary thermodynamicists
(though they seem to need none, because the field is currently one of strong
controversy).

6.4.2 The same threshold condition with more entropy
and less algebra

Although the word "thermodynamic" is used extensively in the preceding
section, the argument presented in detail is kinetic. Because the matter con-
cerns relative rates, any treatment necessarily has kinetic aspects, even if it is
made ostensibly fully thermodynamic by disguising all rates as rates of en-
tropy increase rather than rates of production and consumption of matter.
Here, I do not attempt a complete recasting of the treatment in such terms.
Instead, I introduce entropy criteria, use the racemic steady-state equation
(6.57) arising from the kinetic equations (6.56), but avoid asking the reader to
perform or take for granted the algebraic chores involved in deriving equation
(6.59). With this step (which involved differentiating a quotient) bypassed, we
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actually need no formalisms of the calculus. Instead of dA/dt, we can write
"rate of formation of A" and conduct the argument just as well. The less
mathematically prepared reader should try this approach wherever in this book
expressions are used containing only first derivatives.

We may take a step toward analysis of the requirements of pattern forma-
tion by abandoning the well-stirred system and the departure of the overall
AIB ratio from unity and returning to the intermediate stage of sorting out a
mixture of A and B into a pattern of two parts, that is, the first 23 time steps of
the computation shown in Figure 5.7, but idealized to the case in which the
lengths of the two parts are exactly equal. Let us assume that solutions of 5, A,
and B behave ideally and that there are no energy changes in the chemical
reactions. The pattern formation can then be described thermodynamically by
an entropy of unmixing. For one mole total of A and/?, this is —R  In 2, where
R is the gas constant. Its negative sign is the problem, for occurrence of the
process. Actually, we do not need to use this expression, but only to know that
it is the entropy decrease of one mole upon compression into half its original
volume. (In an ideal mixture, each component behaves as if it occupied the
whole volume entirely independently of the other components. Here, upon
unmixing, \ mole of A has been compressed from the complete volume to half
of it, and likewise for B, a total compression of one mole by a factor of 2.) If
we look at the flow system batch wise, and suppose that a batch of S has been
delivered to a system with randomly distributed active catalyst for A and B
production, we may then treat the system as isolated while the reaction oc-
curs. For the reaction to include spatial unmixing, there must somewhere be a
compensatory entropy increase. This is present if S is supplied at a concentra-
tion at least twice its equilibrium concentration with A and B. Then the
process involves, effectively, a dilution of one mole of S by a factor of 2 for
the production of one mole total of A and B. The entropy increase associated
with this dilution compensates for the entropy of unmixing of A and B (Figure
6.8).

Now the equilibrium relationship among A, B, and S can be obtained by
setting kext = 0 in equation (6.57). Then, only the forward reaction and its
precise thermodynamic reverse on the same catalyst are being considered, and

A = B = Seqkf/kr (6.62)

This is the familiar representation of an equilibrium constant as the ratio of
forward and reverse rate constants. We require that this concentration of S be
no more than one-half of the "forced" steady-state concentration 5fo which is
the S in equation (6.57):

A = B = Sfokf/(kr + 4fcext). (6.57)

For unmixing to occur at some finite rate, then, we require 5fo > 25eq or

K + 4^ext > 2kr (6-63)
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Figure 6.8. A hypothetical "optical-resolution machine" illustrating the essential en-
tropy changes in the irreversible cycle. The three locations marked "System" would
all be the same location in practice. Thus the two compressions of A and B shown
separately represent the unmixing of them. These two pumps, as well as the two
concerned with 5, are active-transport pumps with semipermeable pistons (stereo-
specific, for A and B). The A and B compressions are each by a factor of 2 and can be
driven by S if 5fo > 2Seq. The P pump is envisaged as a compressed perfect gas. Its
noncyclic expansion is the dissipation in the surroundings. P/Pext must exceed Sfo/Seq.
This machine contains an antecedent, on the macroscopic scale, for the pattern forma-
tion: The two pistons pumping A and B are, in effect, separated enantiomers. This does
nothing to relieve the thermodynamic requirements of separating the continuing pro-
duction of A and B as a mixture. Any attempt to locate the two pistons in the actual
geometry of the system would confer a somewhat supernatural character upon them:
They would have to pass through each other.

Subtracting kr from each side gives us again inequality (6.61), which we now
see also as a threshold of reactant concentration, being the requirement that
reactant be delivered in twofold excess over equilibrium.

One is obliged to worry about the entropy of the universe, and hence about
the reprocessing of S outside the system for redelivery as new input. Because
S leaves the system at equilibrium with A and B, compression by a factor of at
least 2 is needed. Every student of biology learns that such compression of a
solute in solution is the proper business of an active-transport pump. This can
be formally envisaged as a piston made of a semipermeable membrane which
passes the solvent but not the solute. The minimum compression needed is
equivalent to doubling the pressure and halving the volume of a mole of
perfect gas, and again has an entropy decrease of -R In 2. To complete the set
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of changes in the whole universe, we may now suppose that, to achieve a
finite rate of compression, the semipermeable piston is connected to another
on a cylinder of perfect gas at somewhat more than the osmotic pressure of the
higher concentration Sfo. If any restraint on the pistons is released, the re-
quired process will take place with an entropy increase exceeding R In 2 in the
perfect gas. We have thus taken into account four entropy changes: —R In 2 in
the pattern formation; two equal and opposite changes, both exceeding R In 2,
in the effective dilution of S within the system and its reconcentration outside;
and an increase exceeding R In 2 in the external driver (the perfect gas, or
whatever). The difference of the first and fourth of these terms is the entropy
increase of the universe.

6.4.3 An assortment of jargon: bifurcation, instability,
catastrophe

The biologist is accustomed to use terms descriptive of shape for the real
morphologies of living things. The mathematician, however, often uses sim-
ilar terms in an abstract, figurative sense which has proceeded beyond the
need for pictorial representation. Most people describe x2 as a square and x3 as
a cube, without trying to visualize any such actual shape. The mathematician
behaves similarly in many instances much less familiar to other people. There
is sometimes danger of confusion between concrete and metaphorical usages.

Bifurcation means division into two branches. To the biologist, it is a
synonym for dichotomous branching. To the mathematician, it means, for a
set of differential equations, the point at which a new solution arises as one
continuously changes the value of some adjustable parameter in the equations.
This mathematical concept can be involved in theoretical explanations of real
dichotomous branching. But it could equally well arise in explanations of the
initiation of any change of shape in a living organism, regardless of whether
or not that change is morphologically a bifurcation. Because of this possible
confusion, and the wide prevalence of the mathematical usage of "bifurca-
tion," I tend to avoid the term when describing the real phenomenon.

As an example of the mathematical usage, consider the system of two
enantiomers A and B initially at racemic equilibrium, and with an auto-
catalytic asymmetrizing mechanism, as discussed in Sections 6.3 to 6.4.2. If
U = A - B and P = A + B, then we may write a measure of asymmetry,
indifferent to whether A or B is in excess, as

Z = \A - B\/(A + B\ (6.64)

If we use equation (6.59) for the growth rate of asymmetry, with equation
(6.57) for the racemic starting concentrations, then the exponential growth
rate of asymmetry at the beginning of departure from the racemic state,

K = (l/Z)dZ/dt, (6.65)
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becomes the rather simple expression

(6.66)

Suppose that, as an instance of parameter variation in differential equations,
we increase the flow rate around the cycle of Figure 6.6a or 6.7. This amounts
to increasing £ext at constant kr. At slow flow rates, kg is negative, and any
small displacement from racemic proportions will decay back to zero. At the
critical value already indicated in equation (6.61), and evident again from
equation (6.66), kg switches sign, and a displacement will grow exponentially
instead of decaying. This growth will continue, but must eventually slow
down because the system has limited capacity to hold material, so that U is
limited to some maximum value Umax = Pmax- We do not need the details of
the growth law to draw a bifurcation diagram representing the destiny of the
system at infinite time (Figure 6.9).

A threshold value of a parameter for the onset of a particular kind of
dynamical behaviour arose in the last example. To my mind, the concept of
thresholds is a better one for the biologist to keep in mind than is the concept
of bifurcations, though frequently the two words draw attention to the same
changeover point in behaviour.

In this book, such thresholds are treated throughout in terms of the switch
of an exponential growth constant kg from negative to positive (i.e., from
decay to growth), or occasionally in terms of competitive growth of two
patterns according to which has the larger positive kg. This kind of treatment
arises because this book is about kinetic theory, and kinetics often simplifies
to the matter of exponential growth or decay, at least at the onset of any new
process. In other respects, however, the thresholds mentioned can be dis-
tinguished into three kinds:

1. Threshold wavelengths for growth of pattern, as exemplified by the Xo of
Figure 6.5 for the "one-morphogen" case. This kind of threshold has to do
with possible variable input to a system with a definite mechanism for
pattern formation, with fixed parameters. This kind of threshold is very
useful to think about in trying to arrive at an understanding of how a
pattern-forming mechanism manages to produce order out of chaos. For
the matter of what will be observed in practice in undisturbed natural
development, however, the disorderly input which one can expect to be
present always will contain wavelengths on both sides of the threshold.
The system therefore will always show the behaviour corresponding to the
^-positive side of the threshold.

2. Kinetic-parameter variations corresponding to the second law of ther-
modynamics. This kind of threshold is illustrated by equation (6.64) and
the discussion in Sections 6.4.1-6.4.3. Without that discussion, it is not
immediately obvious that the threshold condition, which can so easily be
derived from simple consideration of relative rates of a few reactions, has
to do with ensuring that the entropy of the universe increases as it must.
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Figure 6.9. Bifurcation diagram for the flow system of Figures 6.6a and 6.7. The
diagram is drawn for the absolute value of asymmetry, so that resolutions as A or B
appear as the same line, although U is positive for resolution as A and negative for
resolution as B. The absolute value is used to stress that the bifurcation is not so called
because two new states have arisen at the bifurcation point (resolution as A or B), but
because one or more new states have branched away from the possible continuation of
the racemic state, shown as a broken line. The system would remain in this state if no
displacement at all ever arose to start the movement toward resolution; but the racemic
state is kinetically unstable beyond the bifurcation point. The line representing equi-
librium behaviour (in this case, the racemic case) is called in the writings of the
Prigogine school "the thermodynamic branch."

3. Kinetic-parameter variations not corresponding to the second law. Proper
discussion of the thermodynamic criterion required the introduction of
reverse reactions into the discussion, and the resulting condition involved
only the reverse rate constants. Very often, kinetic mechanisms for pattern
formation are analyzed with the reverse reactions omitted. Then, it is being
assumed (usually, tacitly) that the flow rate, or excess of reactant con-
centration over the thermodynamic threshold (where reactant concentra-
tion determines flow rate and hence is hidden in &ext), is very large, so that
the system is far from the thermodynamic threshold.

In this book, this is done for the Turing model (Chapter 7) and the
Brusselator (Chapter 9). But in those accounts, some more threshold condi-
tions appear in the form of restrictions on the relative values of various rate
parameters. For instance, Figure 7.5 is a threshold (or bifurcation) diagram
showing how different kinds of behaviour of the two-morphogen Turing
model depend on the autocatalysis (or self-inhibition) constants for the two
morphogen displacements U and V. These relative values determine, for
instance, whether stable pattern will form or whether the system will go
into oscillations or whether all disturbances will decay into uniformity. But
these distinctions are not concerned with satisfaction of the second law.

"Structure," to many people, would seem to be a word exclusively specify-
ing concrete, physical realities. But again, mathematicians use it in a figur-
ative sense. To a mathematician, a set of differential equations is a thing, and
changes to its structure are new terms in the equations. Thus, for instance, of
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the three categories of thresholds just listed, the first is concerned with vari-
able input to a system with fixed dynamic capabilities, whereas the other two
are concerned with changing those capabilities by changing parameters in the
equations. The mathematician sees the equations as an engine, and the dis-
tinction as being that between the driver trying to start the engine and a
mechanic tuning it up (changing parameter values) or more drastically chang-
ing its structure (adding new terms).

It is in this mathematical sense, quite different from the sense of my
distinction among structure, equilibrium, and kinetics, that Andronov intro-
duced the term "structural stability" into the theory of oscillators (Andronov
and Pontryagin, 1937; Andronov, Vitt, and Khaikin, 1937). An example often
given to explain the meaning of structural stability is the simple harmonic
oscillator, in the form of either a swinging pendulum or a weight going up and
down on the end of a spring. In an elementary account, such situations are
described in terms of the ordinary differential equation

d2x/dt2 = -kx, (6.67)

where x is displacement of the weight or the pendulum bob from its rest
position. (For the pendulum, one should have sin x on the right-hand side, but
it approximates to x for small amplitudes.) Solutions of this equation indicate
a sinusoidal oscillation going on forever; for example,

x = A sin(kl/2t). (6.68)

In practice, if we let an oscillating spring or a pendulum go on without
external interference, it eventually will come to rest because of the existence
of something called friction in the real system which was not represented in
the differential equation. It can be represented by adding a term (—kfdx/dt) on
the right-hand side to show a drag proportional to velocity. The solutions of
the equation will then remain periodic in time, except that the amplitude A
will acquire a time dependence, decaying exponentially to zero, and the
frequency of oscillation will be somewhat altered. Equation (6.67) is said, in
Andronov's terminology, to be structurally unstable to the addition of a fric-
tion term.

Suppose now that we add to the system some mechanism to keep on
supplying the energy which friction removes. For a pendulum clock, this will
be the mainspring, plus the escapement mechanism by which it and the
pendulum communicate with each other. The oscillation can now go on for-
ever, if we assume the presence of someone to wind up the mainspring. An
equation with an extra term for the transfer of energy through the escapement
will have solutions rather similar to those of equation (6.67): a slightly differ-
ent frequency of oscillation, quantitatively, but qualitatively an approximately
sinusoidal oscillation which will go on forever. The equation with three terms
on its right-hand side has become structurally stable with respect to any
additional minor amendments we might think of to fine-tune the model to the
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physical reality, and the upshot is that the one-term equation (6.67) can be
used as a good first representation of what is going on.

The close analogy between this example and the one-morphogen model for
optical resolution should now be clear. Mills' second-order autocatalysis
mechanism seems to be destroyed by putting in a realistic reverse reaction,
just as friction destroys simple harmonic motion as a long-term phenomenon.
But an external drive will keep the move toward optical resolution running,
just as it keeps a clock pendulum running. Once we are assured of this, often
we may drop both the additional terms, as is done throughout the discussion
of two-morphogen models in the next three chapters.

For systems which may have behaviour periodic in time or space or both,
the theory of stability is complicated and leads to various categories: Lia-
punov stability, marginal stability, orbital stability, structural stability, and so
forth. For those who want to know whether a mathematical idealization is
irrelevant to real systems because small changes in the model totally change
its predictions, or whether it is "coarse" enough (another of Andronov's
words) that its properties resist small perturbations, structural stability is the
concept that matters.

"Catastrophe" has, both in French and in English, a connotation corre-
sponding fairly precisely to its Greek etymology: a downturn. It is therefore a
somewhat strange word to characterize events which we usually view as
upturns, or progress to higher forms, in the development of a system. Yet in
1972 R. Thorn (1975) introduced the term for just such changes. (Theoreti-
cians, who should be sensitive to the need to persuade an unreceptive au-
dience of experimentalists, seem to have had little regard for rhetoric: "catas-
trophe," "instability," and "dissipative" are all pejorative terms.)

Thorn's strategy in developing catastrophe theory is concordant with the
approach of physicists and applied mathematicians, as discussed here in Sec-
tion 1.2.1, especially Figure 1.1: He wishes to proceed from observed mor-
phological change to analysis of the type of process which could account for
it. Thus he wrote (1975, p. 60): "This algebraic behaviour has fundamental
importance in our model, as it shows that the type and dynamical origin of a
catastrophe can be described even when all the internal parameters describ-
ing the system are not explicitly known" (Thorn's italics).

Despite this philosophical resemblance of Thorn's basic attitude to my own,
I have not yet found catastrophe theory to be particularly useful as a practical
formalism for trying to relate theory to experiment in pattern formation. This
may signify only that I have not had time to work with the theory so as to get a
feeling for it. But I suspect the cause is something less personal: that catastro-
phe theory is at present, in its level of abstraction, one big step further from
experiment than is, for instance, reaction-diffusion theory. Thus, to the biolo-
gist the living organism is the engine, and a set of differential rate equations is
as far as a biologist would want to go in level of abstraction to describe how
the organism works. But, to repeat my earlier statement, to the mathematician
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the set of differential equations is the engine. The theory of structural stability,
which is catastrophe theory, is the description of how that abstract engine
works. It is therefore not surprising that the language used in that theory, even
when specifically biological problems are being addressed, is for mathemati-
cians only, and quite inaccessible to most experimental biologists and also to
people like myself with some pretensions to a moderate degree of mathe-
matical literacy. As a possible participant in the scientific enterprise of strong
interaction between experiment and theory to the benefit of both, catastrophe
theory may be some decades ahead of its time.

I am, of course, expressing a bias toward my own discipline in suggesting
that the right level of abstraction just now is that biological systems are
chemical systems and their dynamics are in the realm of the physical chem-
istry of the 1920s to 1940s, which has not yet been fully exploited to this end,
though Turing pointed the way in 1952. The physical chemist tends to be quite
dogmatic in distinguishing between equilibrium and kinetics, which is an
appropriate and important attitude at that level of abstraction. Both field
theory (Section 4.1.5) and catastrophe theory tend to blur that distinction. To
see how this happens in terms of level of abstraction, consider Figure 6.10.
Figure 6.10a represents the rate of formation of a substance, concentration C,
obeying the kinetic law:

dCldt = -krC3 + kfSC2 - JcextC. (6.69)

This is a bimolecular autocatalysis model with formation and destruction
terms for C similar to those discussed for the optical-resolution model (though
it is not the same as that model). It corresponds more closely to the switching
behaviour in Oster's mechanochemical model (Section 4.4.4).

Figure 6.10b shows the pressure-volume curves for a fluid which obeys the
van der Waals equation. This can be written

V3 - (b + RT/P)V2 + (a/P)V - ab/P = 0, (6.70)

where V is the molar volume. Here again there is a switching phenomenon
between two different concentration states of a substance: the evaporation-
condensation switch between liquid and vapour.

The chemist distinguishes these two phenomena, the one as belonging to
kinetics, the other to equilibrium behaviour. The mathematician notices that
both expressions are cubic (one in C, the other in V, which is 1/C for the
substance concerned). Because a cubic equation can have three real roots,
both equations indicate a triple-valued property for some numerical ranges of
the parameters. In relation to the kinetic system, if we seek steady states by
setting dC/dt = 0, there are three values of C for any kext > 0. In the
equilibrium system, there are three values of V for a constant pressure at any
temperature below the critical temperature. In both cases, the middle of the
three values is unstable, but for two very different reasons.

Just as the foregoing example places disparate phenomena within the math-



Matters needing mathematics 207

a Kinetics b Equilibrium

3
dC

1

-1

-2

-3

I

/ r V

~\ *
\ v_ \ v
\
\\

/
' i

4

\-kTC3

\

6 \ 8

\
1

I
1

^eqm
i

c 10

i

\ v\\
\/!
/'

o—

u

X
^. \

\

31.5°

31.0°

30.4°

29.9°

\

Figure 6.10. Multivalued properties in kinetics and equilibrium, both in the guise of
solutions of cubic equations, to illustrate unity versus diversity at different levels of
theoretical abstraction, (a) Rate of formation of a substance C versus concentration,
equation (6.69), with kr = 0.1, k{S = 1, and &ext = 2. Ceqm = kfS/kr is the ther-
modynamic equilibrium concentration. Of the three steady states D, E, and F, the
middle one (E) is unstable, because if C increases slightly, dCldt becomes positive,
leading to further increase, and likewise negative dCldt arises if C falls. Compare the
point U = 0 in Figure 6.4b. D and F are stable, (b) Pressure-volume relationships in
carbon dioxide near to its critical temperature (31.013°C). The sigmoid curve shown as
a broken line from G to L at 30.409°C represents solutions of the van der Waals
equation (6.70) which are not physically realized. G is the gaseous state, L the liquid,
and U an unstable state, for which greater pressure would lead to greater volume. From
Philos. Trans. R. Soc. London, 1937, with permission.

ematical discussion of the solutions of cubic equations, so Thorn's catastrophe
theory seeks to unify bifurcations, or changes in structural stability, into a few
shapes of surfaces with interesting folds and pleats in them. Some of these
have been given picturesque names (the butterfly, the swallow's tail, etc.). All
are plots of polynomials with two variable parameters, just as one might
convert all the curves of Figure 6.10b into a surface by adding a temperature
axis as the third dimension. Both this surface and the related but different one
that could be generated by plotting Figure 6.10a for different values of kexV

and then turning the set of curves into a surface by adding a fcext axis to the
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Variable 2

Figure 6.11. The simplest example of the kind of diagram used in Thorn's catastro-
phe theory: the cusp catastrophe. The cusp, at C in the projection of the surface onto
the plane for which variable 3 = 0, corresponds to a value of variable 2 which must
be exceeded before there can be any "catastrophic" behaviour. This is similar to
what happens in the systems of Figure 6.10a,b when, respectively, kext exceeds zero
or the temperature falls below the critical value. Variable 3 becomes triple-valued for
certain ranges of the other two variables. But this diagram does not correspond in
any more precise way to those obtained by the three-dimensional representations of
Figure 6.10.

diagram, bear some relationship to Thorn's cusp catastrophe surface (Figure
6.11). But neither example is exactly the same as the cusp catastrophe, which
one does not need to know about in order to construct and use diagrams like
Figure 6.10.

Catastrophe theory is capable of covering both equilibrium and kinetics.
But applications of it to biology have been concerned largely with the latter.
Thus, Zeeman (1974) elaborated Thorn's earlier work on embryology into an
extensive account of gastrulation, neurulation, and somite formation. The
entire account envisages differentiation as switches between different states of
homeostatic cellular metabolism. Points D and F in Figure 6.10a are two
homeostases for substance C. In catastrophe theory, an entire surface like that
of Figure 6.11 can consist of possible states of homeostasis.

The reader may detect some inconsistency between my desire to draw
physical distinctions here and the unifying philosophy advocated in Chapter 1,
especially the paragraph in Section 1.1.1 in which a biological referee's views
on mathematicians are mentioned. The resolution of this paradox is that I am
primarily concerned with seeking physicochemical explanations of biological
phenomena, with mathematics coming into use as a language where neces-
sary, rather than as the ultimate unifier. We are still a long journey from the
One Equation.
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6.5 Problems illustrating principles

This book is not a primer in calculus. It is intended for readers who have at
some time taken at least a first course in that branch of mathematics. The
calculus is a language, possessing the powers of description, explanation, and
enlightenment of the understanding that any sophisticated language should.
Those who need reminders on the basic vocabulary and grammar of the
language of calculus should look first at mathematical texts of the appropriate
level. Anyone who does not immediately understand the statement that the
fundamental basis of calculus is the notion of a limit needs a course in the
subject, taken at that leisurely pace which is essential to assimilation of new
concepts. Because it is based on the idea that changes can be taken down to
infinitesimal limits, calculus is primarily concerned with continuous vari-
ables. Molecular systems approximate these when the numbers of molecules
become very large. Their individual properties then blur into continuum prop-
erties. In place of the random walks in the small-number illustrations of
Chapter 5, we have movement along a concentration gradient dCldx, which
can be assigned a value at any point.

In the analogy of language, then, what follows next is a set of easy read-
ing pieces, in which the language is used in the simplest possible way to
comment on the physicochemical principles of biological morphogenesis.
They should be approached in that spirit, rather than as instruction in mathe-
matics.

Problem 6.5.1 Exponential growth

This problem essentially defines the point at which verbal reasoning without
mathematics starts to lead one astray. I am indebted to Paul Green for pointing
out to me the existence of the trap set in this question, and for telling me that
many biology students of high calibre have fallen into it.

Two plants, A and B, elongate in a 24-hour period, A to twice its original
length, and B to three times its original length. The growth is exponential,
because every part of the plant stem is growing continuously in proportion to
its length at any time. Three substances X, Y, and Z are found in the plants in
the following concentration (C) ratios:

Substance (C in B)/(C in A)

X 3.0
Y 2.0
Z 1.6

Which substance is most likely to be the growth controller?
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Problem 6.5.2 Equilibrium shape and Wulff's theorem

An aspect of development which overrides the distinction between kinetics
and equilibrium is that when nature designs a shape, just as much as when an
engineer designs one, some kind of optimization is being done. This usually
requires the finding of a maximum or minimum, and is an instance in which it
is difficult to get along without calculus, even though only first derivatives are
used.

(a) A two-dimensional crystal is rectangular. It contains enough material to
form an area A, which must therefore be taken as constant. The sides of the
rectangle are of lengths a and b. The edge excess free energies per unit length
are Ga for the two sides of length a and Gb for the two sides of length b. Write
the total edge free energy G in terms of Ga, Gb, a, and A (i.e., eliminate b).
Find the minimum by differentiating G with respect to a. Hence, show that
this minimum gives the shape bla = GJGb. This proves Wulff's theorem for
the special case of this very simple shape.

(b) Refer to Section 4.2.2, especially Figure 4.8. Again area A is con-
stant. Write an expression for the total edge free energy in terms of /, a, n,
and G10, and eliminate / by using A. Minimize and show that at the mini-
mum, / n / / 1 0 = n.

Problem 6.5.3 Kinetics of dendritic growth

Refer to Section 4.2.3, especially the hexagonal two-dimensional crystal in
Figure 4.9. This problem illustrates the structure-kinetics relationship. Faces
of different structure develop differently, but only because different structures
lead to different rates of processes. The problem asks for the minimal algebra
needed to cope with this. The general algebraic strategy will be familiar to
readers who have taken a course in chemical kinetics including the use of the
steady-state approximation to get from mechanism to rate law. The additional
feature in kinetic determination of shape is that the steady states of reaction
intermediates are spatially nonuniform. Here, the nonuniformity is the sim-
plest possible: two different concentrations on two kinds of crystal faces. In
Figure 6.12, the intermediate between gas and solid is an adsorbed layer on
the surfaces, concentration Cx on (11) faces, and C2 on (12) faces. The rates
of adsorption, transfer by flow along the surfaces, and incorporation into the
crystal are shown in the diagram. Adsorption and incorporation rates are per
unit length, but the "round-the-corner" transfer is not. Therefore, contribu-
tions to the rate of change of concentration by transfer are k2C2llx and
kxCxll2. Write expressions for dCl/dt and dC2ldt. For the steady-state approx-
imation, set both rates of change equal to zero. Hence, express C2ICX in terms
of the rate constants and lengths. If transfer between faces is very rapid
compared with incorporation into the crystal, show that C2/Cl is approx-



Adsorbate flow k2c

Adsorbate flow k{c{.

Adsorption from gas
rate fcaper unit
length

(11)

Matters needing mathematics 211

Adsorbate to crystal
) rate *cC2per unit length

• Y J • •

Adsorbate to crystal
rate fc^per unit length

(12)

Figure 6.12.

imately kl/k2, which therefore gives the relative rates of linear advance of
(12) and (11) faces.

Problem 6.5 A Kinetic instability of the spatially uniform steady
state

The square of a concentration in a rate expression, or second-order kinetics
often related to a bimolecular mechanism, is used so extensively as the self-
enhancement term in pattern-forming mechanisms that one can easily over-
look the fact that the authors very often will have stated at the outset that the
power does not need to be 2; it just needs to be anything greater than unity.
This problem is stated following equation (6.50). Use an autocatalysis of
arbitrary order n, and show that the k in equation (6.51) is positive if n > 1,
by repeating the algebra of equations (6.24) to (6.30) with n replacing 2 as
exponent. All terms in U2 and higher powers of U can be dropped from the
equations. Only the coefficient of U is wanted.
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Problem 6.5.5 Diffusion and the second derivative

The problem is to derive 'Tick's second law," equation (6.13), from 'Tick's
first law," equation (6.12). Consider region B in Figure 6.2, and suppose it to
be very thin, with its left-hand boundary at s and its right-hand boundary at s
+ bs. The rate of increase of concentration in B is the difference between the
rate of arrival of material at the right-hand boundary and the rate of removal at
the left, divided by the volume of the region. Recall that

d2y/dx2 = [(dy/dx)x + bx - (dy/dx)x]/bx.

Problem 6.5.6 Chemical systems that measure distance:
positional signals

Refer to Section 2.1, especially Figures 2.1b and 2.2. A substance, concentra-
tion C, is produced at a localized source at position s = 0 in a one-dimensional
system. The source maintains the concentration C = Co at s = 0 at all times.
The substance diffuses with diffusivity 2) and is everywhere subject to first-
order decay, with rate constant k. Show that for all s > 0, C falls off with
increasing s so that in the steady state In C is linear in s with slope -(fc/2))1/2.

Problem 6.5.7 Concentration distribution
with a central minimum

Kinetic theory of morphogenesis is very much concerned with the establish-
ment of regions of maximum or minimum concentration of some substance.
For models of localized sources combined with diffusion and decay of the
diffusing material elsewhere, the maxima can only be at the positions of the
sources. If there is a single source, the only minimum is reached asymptoti-
cally at infinite distance from it. But if there are two sources, an intermediate
minimum is possible. Such a model, from Nicolis and Prigogine (1977), is
used later in discussion of the Brusselator (Section 9.1.3, especially Figure
9.3).

The model is the same as that of the previous problem, but the boundary
conditions are C = Co at both s = 0 and s = I. Show that an appropriate
solution of the differential equation is

C =

where a =

Problem 6.5.8 First-order relaxation to stable equilibrium

A substance X is formed by first-order autocatalysis (rate constant kf) and
destroyed only by the thermodynamic reverse of this formation reaction.
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Show that there is a stable steady state Xo such that if U = X — XQ, and terms
in U2 are neglected,

dU/dt = -kfU.

This problem is put in just to remind readers what "normal" chemistry is
like, in which systems tend to reach equilibrium and return to it if displaced. It
is useful to sketch a graph of dX/dt against X and compare it with Figure
6.10a. The comparison raises another problem: Point E is the "point of
departure" for kinetics leading to morphogenesis. But in view of its in-
stability, how does a system get near to it in the first place?

6.5,9 Periodic solutions versus growth and decay;
phase planes and parameter spaces

It has been stressed already that the behaviour of a system may depend upon
the relative values of two rate constants, and there is going to be much more
of this sort of thing in Chapters 7 and 9. One particularly common feature of
the pairs of differential rate equations for two-morphogen systems is that for
some ranges of values of the rate constants they give morphogenetic be-
haviour, based on exponential growth and decay, whereas for other ranges
they give oscillatory behaviour. For our purposes, we want to know about the
latter mainly to know how to avoid it. To ecologists studying predator-prey
interactions, the time-periodic solutions often represent the reality of their
systems and are of the most interest. If two substances X and Y are both
varying periodically, with their changes linked, one may ask, If X has some
given value, what is the value of Y at the same time? This question can be
answered by a graph of Y versus X in which the time variable does not appear.
This is called a "phase plane." I do not find much use for this representation
in thinking about morphogenesis, but the reader should be aware of its exis-
tence. Much more important for the content of the following chapters is the
graphing of different kinds of behaviour in a space with two rate constants as
its coordinates (k2 and k3 in this problem). This is a parameter space. The
biochemically minded should think of this sort of representation as being
close to their interests and essential to bridging the gap between the mac-
roscopic and the molecular, because the rate constants are related to such
things as enzyme activities.

As usual, we have two substances X and 7, and U = X — Xo, V = Y — Yo.
They interact with each other according to

dUldt = k2V, dV/dt = k3U.

Here, k2 and k3 may each have either positive or negative values; that is, the
effect of each substance on the other may be either a catalysis or an inhibition
of departure from the steady state (Xo, Yo).

(a) Show that there are time-periodic solutions if k2 and k3 have opposite
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signs, and solutions showing exponential decay or growth if k2 and k3 have the
same sign. (Hint: Differentiate dU/dt a second time with respect to t.)

(b) For the periodic solutions, draw a phase-plane representation (X, Y
coordinates), mark the state at t = 0 as you have written the solutions with any
extra conditions needed to make this point unambiguous, and show the direc-
tion of circulation around the phase-plane diagram. (It should be a closed loop
of some kind. For simplicity, use k3 = —k2.)

(c) Draw the parameter space (k2, k3) and mark in it where the periodic
solutions are, and where the growth-or-decay solutions.

Problem 6.5.10 Turing's model without diffusion:
parameter space again

The use of parameter space in the previous problem may seem rather trivial. It
is, however, a first step along the road to understanding Figure 7.5, which
clearly is nontrivial. This problem presents the second step. The differential
equations are now

dUldt = kxU + k2V,

dV/dt = k3U + k4V.

Again, each of the rate constants may be positive or negative. Consider the
special condition k4 = —kx. For this condition, show that there are periodic
solutions if k2 is less than some threshold value, and growth-or-decay solu-
tions if it exceeds that value. Show that the algebra can be set down most
concisely by using the complex-number representation of periodic functions.
(The solution to this problem may serve as a reminder of this representation,
and it is all that one needs to know about the topic for the discussion in the
ensuing chapters. Just as for the calculus, the account of complex numbers
here is intended as a reminder, not an introduction.) Draw a parameter space
in which the coordinates are k\ = kxl\k2k3\x/2 and kr

4 = k4/\k2k3\l/2. (Absolute
value of k2k3 is specified here because, as emerges in Chapter 7, one of these
quantities k2 and k3 is usually negative, and the other positive.) In the quad-
rant (k\ > 0, k4 < 0), draw the conditions you have derived for oscillatory
behaviour and for growth-or-decay behaviour.

Problem 6.5.11 Structural stability of dynamic behaviour

Consider equation (6.69) and the plot of it in Figure 6.10a. Remove the kext
term from the equation, leaving only the autocatalytic term and its ther-
modynamic reverse. Indicate whether or not the dynamics of this system are
structurally stable against addition of the kext term, explaining your answer
with diagrams.
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6.6 Brief indications of solutions to problems 6.5

Problem 6.5.1

Plant A, length initially LOa, finally La; likewise for B. Exponential growth
LJLOa = ekal; likewise for B. The growth controller is likely to promote
growth in proportion to its concentration, so we want the ratio kblka, which is
NOT 2.0. For the same time t in both cases,

kjkb = \n(Lb/LOb)/\n(La/LOa) = In 3.0/ln 2.0 = 1.585.

Z is most likely to be the growth controller. This question is just about
understanding compound interest. It could be recast as follows: A and B each
invest the same amount of capital in different places. After a given time, A's
capital has doubled, and ZTs has tripled. What is the ratio of the interest rates,
for continuous compounding?

Problem 6.5.2(a)

G = 2aGa + 2bGb = 2aGa + 2{Ala)Gb.

Differentiating with A constant, dGlda = 2Ga - 2(A/a2)Gb = 0 for a mini-
mum or maximum. At the minimum or maximum, GJGb = A/a2 = ab/a2 =
b/a. We can look at the sign of the second derivative to show that this
condition is a minimum, not a maximum.

Problem 6.5.2(b)

There are four (11) edges of length a and four (10) edges of length / - 2l/2a.

G = 4aGu + 4(1 - 2l/2a)Gw = Gw[4an + 4(1 - 2V2a)],

A = I2 - a2, whence / = (A + a2)172,

G = 4Gw[na - 2l/2a + (A + a2)112],

dGlda = n - 21/2 + (V2)2al(A + a2)112 = 0 at minimum or maximum.

Taking n — 21/2 to the other side and squaring,

(21/2 - n)2 = a2l(A + a2) = a2ll2.

The ratio all is one way of specifying the equilibrium shape. To convert it to
distances from the centre,

ln = 21/2/10 - a/2, where ll0 = 112,

lullw = 21/2 - all = 21/2 - (21/2 - n) = n.
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In Problems 6.5.2 and 6.5.3, the really nontrivial aspect is recognizing what
is constant and what is variable in setting up an expression for the quantity to
be optimized. We are looking for the shape which will minimize the free
energy of a fixed amount of material, so A must be constant.

Problem 6.5.3

dCx/dt = k&- kcCx - kxCxllx + k2C2/lx = 0 in steady state,

dC2/dt = ka - kcC2 - k2C2/l2 + kxCx/l2 = 0 in steady state.

Subtract the second equation from the first, and collect C2 terms on the left-
hand side, and Cx on the right-hand side:

C2(kc + k2/l2 + k2flx) = Cx(kc + kxll2 + kxllx).

Abbreviate by writing \llx + l//2 = l/ / r

c2icx = (kc + v
If the transfer between faces is very rapid, the second term in each set of
parentheses is much greater than the first, and we can neglect kc. Then

C2/Cx = kx/k2.

Because the linear rate of advance of each face as the crystal grows is propor-
tional to C for the adsorbed layer on that face, the ratio of transfer rates
between faces controls the developing shape of the crystal.

Problem 6.5.4
dX/dt = -kdX + kfXn,

0 = -kdX0 + fcfXg,

dXIdt = dU/dt = -kd(X0 + U) + kf(X0 + U)n,

dU/dt = ~kd(X0 + U) +

+ terms in U2 etc.

Subtract 0 = ~kdX0 + kfXfr

dUldt = ~kdU + kfnX%~lU + terms in U2 and higher powers.

Substitution of the value found earlier for Xo yields, for the term in U,

dU/dt = -kdU + nkdU - kd(n - \)U.
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This is an equation for exponential growth if n > 1, and decay if n < 1. No
calculus is needed for this problem. The notations dX/dt and dU/dt could be
replaced by verbal statements: "rate of formation of X (or £/)•" The rest is
elementary algebra.

Problem 6.5.5

The flows suggested by the wording of the problem and shown by arrows in
Figure 6.2 are in the reverse sense to the usual meaning of M (flow to positive
s direction), so the minus sign can be omitted from the expression in equation
(6.12):

rate of accumulation in region B

= 2)

volume of region B

Ac[(dC/ds)s+8s - (dC/ds)s]
An8s

From the definition given in the problem, this can at once be rewritten as
equation (6.13).

Problem 6.5.6

dC/dt = -kC + <3)(d2C/ds2),

steady state: 0 = -kC + ®){d2Clds2).

(There is now only one variable, s; so the partial derivative sign is no longer
needed.) The equation to be solved may also be written

d2C/ds2 = (Jfc/2J)C.

Proportionality between a function and its own second derivative indicates
exponential variation with the variable if the constant of proportionality is
positive (which fc/2) is), or a periodic function (e.g., sin or cos) if the constant
is negative. The obvious simplest solution is

C = Coe-^k/^l/2s.

This satisfies the boundary condition C = Co at s = 0 (the same expression,
but with a plus sign in the exponent, would also satisfy the equation and the
boundary condition, but would indicate C increasing away from the source, a
distribution which could not be generated without other sources):

In C = In Co - {kl%y/2s.
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Problem 6.5.7

Satisfaction of the boundary conditions is easily checked. As to the satisfac-
tion of the steady-state equation, which is the same as in the previous prob-
lem, the two exponential functions of s are both functions which give a2 times
themselves on differentiating twice, so

d2C/ds2 = a2C,

which is the steady-state equation.

Problem 6.5.8

dX/dt = KfX - kvX? = X - (i)X2

for Figure 6.13. For any positive values of kf and kr, the curve of dXIdt versus
X starts out from the origin to positive values, because the X2 term has zero
slope at the origin, and later goes negative as the X2 term becomes dominant.
Xeqm is clearly a stable steady state like point F in Figure 6.10a. The latter is
displaced from Ceqm by the kext term, which we do not have in this problem:

dXIdt = dUldt = kf(X0 + U) - kr(X0 + U)2,

steady state: 0 = kfX0 - krX^.

Subtract dU/dt = kfU - 2kTX0U - krU2:

Xo = kf/kT,

dUldt = kfU - 2kfU - krU2

= -kfU

when the term in U2 is neglected.
For an unstable state such as point E in Figure 6.10a, we have to consider

what is happening in the system before the morphogenetic action is "switched
on" and what kind of change the switching is. Quite possibly the switch-on is
an increase in the metabolic flow which at once supplies S and removes C at
rate kexV Before this increase, S probably had a lower value. Now Ceqm =
kfS/kr and is therefore lower before the switch-on than afterward. It is quite
likely that Ceqm before the switch-on lies near to point E or at least in the
approximately linear region of positive slope in Figure 6.10a, which is what
we need to start the morphogenetic process in the region represented by linear
equations.
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Problem 6.5.9(a)

d2U/dt2 = dVldt = Jt>£3£/.

This is the familiar proportionality between a function and its own second
derivative, which has exponential growth-or-decay solutions if the constant,
here k2k3, is positive, and periodic (sin or cos) functions if the constant is
negative. For positive k2k3,

U =

and similarly for V. For negative k2k3, the same solution can be used if one
likes to represent periodic functions by complex exponentials, and most math-
ematicians do prefer that to sine and cosine, for the reason exemplified here
that nothing extra now needs to be written. In terms of trigonometric func-
tions,

k2k3 = "0)2,

U = A sin(otf - 8),

V = (\/k2) dUldt = (Aco/A:2)cos(a)f - 8) = A(-k3/k2)l/2 cos(ut - 8).

Because sin2jc + COS2JC = 1, we may combine these expressions into an
equation for a curve in the (£/, V) phase plane, which is just the (X, Y) phase
plane with the origin shifted to (Xo, Yo):

U2 + (-k2/k3)V2 = A2.
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t = 0

or U

Figure 6.14.

This is the equation for an ellipse; if k3 = -k2, it is

U2 + V2 = A2,

which is the equation of a circle of radius A and centre at U = V = 0, that is,
at (Xo, Yo). The starting point at t = 0 depends on the phase angle 8. If that is
zero, then at t = 0, V is at its maximum, and (7 = 0; this is the top of the
circle. As t becomes positive, U increases and V decreases: clockwise circula-
tion (Figure 6.14).

The (Jc2, k3) parameter-space representation is quite simple. Two quadrants
are occupied by growth-or-decay behaviour, and two by oscillatory behaviour
(Figure 6.15).

Problem

d2U/dt2

If *4 =

6.5.10

= kx(dU/dt)
= k\U 4- kxk
= (k2 + k2k3

-kx, then

4- k2(dV/dt)
:2V 4- k2k3U •
)U + k2(kx 4

</2£//^2 =

f k2k4V
- kJV.

(k2 + >k2k3)U.

Once again, we have the relation of something to its own second derivative,
which makes the something periodic if the constant of proportionality is
negative, and gives it growth-or-decay behaviour if the constant is positive.

Periodic solutions will therefore arise if one of k2 and k3 is negative and the
other positive, and k2 < k2k3 or k\< 1. In the parameter space (k[, ty, the
condition k4 = —kx is a straight line through the origin, of unit negative slope,
and this condition divides it at the point A in Figure 6.16.

Reminders about complex numbers and periodic variations: Suppose a
variable U is indicated as being related to time by

U = Uoeikt,
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Figure 6.16.

where A: is a real constant, and i2 = —  1. On differentiating twice,

d2Uldt2 = i2k2Uoeikt = -k2U.

This is the now-familiar differential equation for which the solutions are
periodic functions previously written as sine or cosine. Hence eikt is such a
periodic function. It is shown in elementary accounts of complex numbers that

In the ensuing chapters, expressions will turn up of the form

U = Uoekz<,

in which the exponential growth constant kg is obtained as the solution of a
quadratic equation. Such equations have solutions which are sometimes real
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and sometimes complex, according to the numerical values of their coeffi-
cients. When kg is real and positive, U grows. When kg is real and negative, U
decays. When kg is complex, U oscillates, but the oscillations may grow in
amplitude or die away according as the real part of kg is positive or negative.
To see this, write

kg = kre + ikim and e V = (e*re'y*im'.

The expression in parentheses is a real growing or decaying function; it
multiplies a complex exponential, which is an oscillating function. Problems
6.5.9 and 6.5.10 could have been discussed in this format, with, in Problem
6.5.9, k\ = k2k3, and, in Problem 6.5.10, k\ = k\ + k2k3.

Problem 6.5.11

For the parameter values used in Figure 6.10a, at low concentrations kfSC2

rises faster than — krC3 falls. Thus if the term -k e x tC is omitted from equation
(6.69), as C increases from zero, dCldt will rise to positive values instead of
falling to negative values as shown for the sum of all three terms. Thus
without the kext term, the curve is generally similar to the solid line in Figure
6.13, showing only one stable steady state, at true equilibrium, and an unsta-
ble one at zero concentration. Addition of a kext term, however small, changes
the form of the curve to the three-steady-state shape of Figure 6.10a. Equation
(6.69), without the kext term, is therefore structurally unstable to addition of
that term.



7
Kinetic models for stable pattern: an introduction

The optical-resolution mechanism of the preceding two chapters is the basic
self-organizing asymmetrizer. But its enthusiasm outruns its discretion. Its
final outcome is to leave the system, macroscopically, as symmetric at the end
as it was at the start, by the rejection, on the molecular scale, of all molecules
of one symmetry. (Even for this simplest model, the interplay of molecular
and large-scale symmetries and asymmetries is rather subtle.) The game is
played to this extremity because, as explained in Section 6.4, the exponential
growth rate constant kg of pattern amplitude increases monotonically with
wavelength. Thus the longest wavelength, spatially infinite uniformity, is
ultimately favoured.

The basic difference needed to produce stable nonuniform pattern was
described qualitatively in Section 3.1.2 with reference to Figure 3.2. Above
some finite wavelength designated Xm the growth rate kg must fall. We must
now consider what has to be added to the simplest reaction-diffusion model to
give it this characteristic. In general, at least one more morphogen is needed.
The interplay of two morphogens cannot be analyzed fully without mathemat-
ics. An illustration devised by Maynard Smith (1968) is described in Section
7.1. It shows the need for the form of the cross-interactions between mor-
phogens X and Y and for the relative values of their diffusivities. Such a
simple illustration cannot, however, reveal all the important properties of
such complex and subtle dynamics. It shows that X and Y may settle down
into standing waves in phase with each other. It does not show what
factors determine the wavelength, nor how the amplitude of the waves will
grow or decay as time goes on. It does not show that V should be self-
inhibiting (where V = Y — Yo), nor does it show that the standing-wave be-
haviour arises only for restricted ranges of the rate constants and diffusivities.
To use reaction-diffusion models, one must study them mathematically.

7.1 Turing's model without equations

7.1.1 Maynard Smith's illustration
In Chapter 6, the concept of a self-catalyzed departure from equilibrium (or
from a spatially uniform steady state) was introduced. If the displacement of X

223
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from equilibrium, U = X - Xo, is positive, then an increase of U is catalyzed
at a rate proportional to U\ if U is negative, then a decrease of U is catalyzed.
In both directions, the change promoted is movement away from the equi-
librium value Xo. But in terms of the total concentration X, the enhancement
of its increase is catalysis, but the acceleration of its decrease is inhibition.
Thus X switches over from being self-catalyzing to being self-inhibiting as it
drops below the value Xo. (Note once again that the rate constant for this self-
enhancement of the variable U must involve destruction processes for X in the
reaction mechanism, because X cannot fall below Xo as a result of its own
positive self-interaction.) The Turing model is, for the displacements U and V
of two substances X and Y from equilibrium,

U catalyzes itself; U diffuses slowly;
U catalyzes V; V diffuses quickly;
V inhibits U;
(V may catalyze or inhibit itself).

Maynard Smith's (1968) illustration starts with the system at equilibrium; U
and V are both zero all along an elongated (one-dimensional) system and are
represented by the same horizontal straight line. Now suppose that a small
local increase of X occurs somewhere, represented as a positive U peak
(Figure 7. la). Because U catalyzes itself, the peak grows; because U diffuses,
the peak spreads sideways. But also, because U catalyzes V, a positive V peak
appears; and because V diffuses quickly, this peak becomes broader than the U
peak (Figure 7.1b). Now V inhibits U; that is, where V is positive and U is
zero, U starts to move to negative values (Figure 7.1c). As explained earlier,
when a catalytic variable goes negative, its catalysis switches over into an
inhibitory effect. In simpler words, where U is negative, it pulls V down after
it (Figure 7. Id). The implication of this diagram is that U and V are beginning
to assume wavelike patterns, with the waves for the two substances in phase
with each other. It is quite straightforward to continue the argument in the
same way for the further sideways spread and see that more half-cycles of the
same wave pattern will be generated. As one thinks about this, however, some
problems may become evident. First, what on earth is determining the wave-
length of these successive half-cycles? Second, if we grant that it looks as if U
and V are going to form patterns of indefinite length in the form of waves in
phase with each other, what is going to happen to the amplitudes of these
waves as time goes on? Will they reach constant values, will they grow, or
will the system gradually relax back to equilibrium until another disturbance
comes along, like the vibrations of a plucked string? Clearly, Maynard
Smith's illustration is a good first step, but far from the whole path we must
tread to understand this model. In fact, for different quantitative ranges of
values of the kinetic constants, there are several ways the system can go on to
behave. Only one of them is the one we are interested in for the explanation of
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— X0,Y0,orU=V = 0

Figure 7.1. Illustration of the formation of standing waves from an initial local distur-
bance, by Turing dynamics. Redrawn from Maynard Smith (1968).

morphogenesis. Thus far, the illustration has not pointed to any particular
advantage or disadvantage in V interacting with itself, as self-catalyst or self-
inhibitor. On more detailed analysis, as we shall see later, it turns out to be
very advantageous (though not absolutely essential for all examples of mor-
phogenesis) for V to be a self-inhibitor.

7.1.2 Waves in phase as the starting point

Here I have (and take) yet another opportunity to stress that it is of the essence
of kinetic theory to view a pattern as a single entity occupying the whole
system and behaving dynamically. In Chapter 6, I twice discussed the sine-
wave pattern, arbitrarily imposed upon a system as an initial disturbance. For
diffusion only, this pattern underwent the Cheshire Cat fade-out, a loss of
amplitude without change of form. With self-enhancement added, the fade-
out switched over to augmentation above a threshold wavelength.

Similarly, let us take as the initial disturbance in the system of U and V a
pair of sine waves of the same wavelength and with shared nodes, that is,
either exactly in phase with each other or exactly out of phase with each other.
One might object that it is expecting a lot of a system to produce such an
initial disturbance. But we have just seen how a localized initial disturbance
might change into the pattern of two sine waves. In fact, neither the local
disturbance nor the sine waves are very likely to be what nature provides at the
start; a jumble of fluctuations of assorted sizes is most likely. It is legitimate to
take such a highly idealized initial state because we are heading toward a
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Figure 7.2. Interaction of £/ and V waveforms to determine growth or decay of pattern
amplitude. The larger V is, the larger its negative contribution to the growth of U
(inhibition of U by V). Diffusion makes a negative contribution to the growth of both
U and V, and this is worst at short wavelength (steep concentration gradients, rapid
diffusion). Because V diffuses faster, this effect is more for V than for U, meaning that
for the same U amplitude, V will, at long times, settle down to amplitudes in the order
A < B < C, as drawn. But then the two negative effects on the growth of U are in
reverse order. For diffusion, A > B > C; for inhibition by V, A < B < C. The balance
of these effects gives the advantage to B; waves of this length grow, while both A and C
decay. (If U only were present without V, only diffusion would limit the growth of U.
In that case, A would still decay, B would grow, and C would grow faster, as discussed
in Chapters 5 and 6.)

mathematical analysis of a system of linear equations. For such, the sum of
two solutions is itself a solution. Thus, if we can pick out of the starting
jumble a component which is a sine wave of some particular wavelength, we
can determine what the mechanism will do to it, with the confidence that
when we likewise treat all the other components of the initial disturbance, all
we shall finally have to do is to add all the results together.

For our pair of U and V waves (Figure 7.2), two quantities remain unspec-
ified: the wavelength, and the ratio of U and V amplitudes. The latter also
represents the ratio UIV at every point along the pattern, because that is
obviously constant. {UIV should be distinguished from the activator/inhibitor
ratio XIY, oxAIH in the Gierer-Meinhardt model, as discussed in Section 3.3.
The latter is a ratio of absolute concentrations. It is high at the peaks and low
at the troughs of the waveform. But for the undistorted sine wave, the ratio of
displacements from equilibrium UIV is the same at peak or trough or any-
where else.)

Let us take an initial pattern, with wavelength and UIV specified at the
outset. How can it change in development? If V were absent, the system
would be that of Section 6.2, subject only to Cheshire Cat fade-out or inten-
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sification. Only the amplitude can change, not the sinusoidal form or the
wavelength. Now if V is added in the same sinusoidal form, its effect on U
likewise can change only the U amplitude, but not the shape or wavelength.
The same applies to the V waveform, when one considers its self-interaction,
the effect of U on it, and the effect of diffusion. All bring about changes
strictly in proportion to the current value of V at any point, and therefore
change only the amplitude of the wave.

Nothing in all of this, however, suggests that the amplitudes of U and V
change in the same proportion. As time goes on, the ratio U/V may adjust to
some new value; it is under the control of the mechanism. Everything would
become rather straightforward for the ultimate course of development if U/V
eventually settled down to a constant value and the two waves then grew or
decayed together. Intuitively, one would probably expect this to happen, and
the mathematical treatment confirms it (Lacalli and Harrison, 1978) (see
Section 7.2). That long-time ratio is, however, wavelength-dependent, and
therein lies the essence of how the Turing model works. In place of the simple
wavelength dependence of growth rate discussed for one morphogen in Chap-
ter 6, in which longer waves always grow faster than shorter ones [Figure 6.5
and equation (6.45)], there are two opposing wavelength dependences in the
Turing model. Because of this, both long and short waves may grow more
slowly than those of some intermediate length (Figures 3.2 and 7.2).

To see the opposing effects, consider the growth of the U amplitude. It is as
described in Chapter 6, except that the presence of V makes an additional
negative contribution. All that is needed for the model to work is that, as
wavelength becomes longer, that contribution from V becomes larger, so that
at some point the overall growth rate constant kg of U starts to decrease. Why
should V increase (i.e., the ratio U/V fall) as wavelength stretches? The
reason for this is in the diffusion terms. As wavelength increases, the loss of
amplitude by the spreading effect of diffusion becomes less, because the
concentration gradients become less. This effect is more for V than for U,
because V diffuses faster. Hence, if a wave pattern which has reached a
steady-state U/V ratio at some particular wavelength is stretched to a greater
length without change in amplitude, V will at once start to grow proportion-
ately faster than U, the U/V ratio will decline, and U will have an additional
negative term in its growth rate (Figure 7.2).

This system is akin to an engine (the U system, driving the amplitude
increase) with a governor attached to it (the V system). The load against which
the engine is working is the spreading effect of diffusion. It is greatest at short
wavelength. The engine may then be unable to work even if there is no
governor on it (wavelength less than threshold X.o). If the load is decreased,
the engine can work, for instance, to raise the load (Figure 7.3). Suppose now
there is a governor not in the modern form of a silicon-chip microprocessor
(which gives us no visual analogy because we can't see what it is doing) but in
the form of two balls on hinged rods attached to a shaft driven by the engine.
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Fuel

Activation
- An engine lifts a load. On Jupiter,

the engine stops because the load is
too heavy.

- A pattern-forming mechanism works
against the spreading effect of
diffusion. At short wavelength,
the diffusion stops pattern forming.

Obvious threshold: too much load
stops the process.

y uy
Inhibition

The engine has a governor. As it goes
faster, the balls rise and a fuel valve
is shut off. The engine is limited to
a certain speed. On the moon, the balls
are too light, and the governor limits
it to less than its minimum operating
speed. The engine stops.
In a pattern-forming mechanism, the
inhibitor diffuses faster. Therefore,
the inhibitor has more to gain when
long pattern wavelength diminishes the
effect of diffusion. The inhibitor
then destroys the pattern.

Paradoxical threshold: Too little load
stops the process.

Figure 7.3. Engine-and-governor analogy for U and V (or X and Y) in Turing's model,
to show lower and upper thresholds. Most particularly, gravity is the analogue of the
"diffusive load" on a pattern, so going to the moon corresponds to increasing the
wavelength, which diminishes the effects of diffusion. Upper threshold: In lower
gravity, the engine cannot raise the load because the governor shuts the valve.

As the shaft spins faster, the balls rise until a balance is achieved between the
centrifugal force driving them out, and therefore up, and gravity pulling them
down. The governor is the V system, and the analogue of the diffusive load is
the weight of the balls. As the balls rise, they progressively shut down a valve
supplying fuel to the engine, or otherwise work something to impede its
operation. This is the inhibitory effect of V on U. The governor normally
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works to limit the speed of the engine, but if the balls rose too far, the valve
could be shut completely and the engine would stop.

Let us now transport the engine to the moon, where the gravitational pull is
less. The engine has to exert less force to lift the load, but there is also less
downward pull on the governor, which may therefore rise to shut the valve
and stop the engine. The decreased pull of gravity is the analogue of the
decreased diffusive load on a pattern-driving engine when the wavelength is
increased. The decrease may help the governor more than it helps the engine,
and the engine will stop, though it seems to have an easier job to do (wave-
length above the second threshold Xf). If we were not thinking rather carefully
about the governor, we would hardly have expected that an engine which
could easily lift a particular load on earth would fail to lift the same load on
the moon. This is an example of what Meinhardt (1984) called "counter-
intuitive properties"; see also the quotation from Meinhardt in Section 10.1.2.

My analogy works well for illustrating upper and lower bounds for opera-
tion of a dynamical system, but the reader may find some of its features rather
odd. The analogue of a pattern to be formed is a weight to be raised, and the
analogue of diffusion is the pull of gravity, both longish stretches for the
imagination. These features are, however, specifically intended to encourage
a certain attitude: to think of a pattern as a thing, and to think of diffusion as
something inextricably intertwined in all the dynamics of a system, just as no
part of a moving system is without the pull of gravity. Too often, diffusion is
thought of in developmental biology only when it is necessary to consider how
some material gets from one specific point A to another point B, or how a
simple gradient is set up. How diffusion may actually be involved is so much
subtler as to seem qualitatively different, though in the end it is still transport
down a concentration gradient, and nothing more.

7.2 Turing's equations and the growth or decay
of a sine-wave pattern

Turing's kinetic equations are

dU/dt =
dV/dt =

kx

*3

u ^
u ^

-k2

- kA

,V H- 3
h 3

xd2U/ds2,

d2V/ds2.

(7.

(7.

la)

lb)

As described in Section 7.1.2, my strategy to show the properties of this
model as simply as possible is to take the initial disturbance as a pair of
sinusoidal waves in U and V, sharing the same oo or X, and in phase with each
other. Then we may write

V = W, (7.2)

where the ratio 9 is the same at all positions s but may vary with time t. To be
sure that 6 never becomes dependent on s, we need to see that we can extract
from the Turing equations and the initial condition an ordinary differential
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equation in the time variable for the variation of 6, with no s dependence in it.
We may hope to find that as time goes on, 6 will settle down to a time-
independent value and that the U and V waves can thus be envisaged, at long
times, as growing or decaying together with a constant ratio of amplitudes.

As usual, we can dispose of the second derivatives, for sinusoidal distur-
bance, by writing

d2U/ds2 = -o>2U, (7.3)

and likewise for V. The Turing equations now become

dU/dt = kxU + k26U - U<o2(3)x, (7.4a)

d(6U)/dt = k3U + k4OU - U(o2my (7.4b)

In the derivative with respect to s, 0 can be treated as a constant; but because 6
and U are both functions of time, we must use the formula for differentiation
of a product of two functions and write

d(QU)/dt = Q(dU/dt) + U(dQ/dt). (7.5)

Evidently we can get rid of dU/dt and set up a differential equation in which
the only derivative is the rate of change of 6 with time by multiplying (7.4a)
by 9 and subtracting it from (7.4b), which, on insertion of (7.5), is

9(dU/dt) + U(dWdt) = k3U + k4W - a)20%/7. (7.6)

The expression to be subtracted from it is

Q(dU/dt) = <dkxU + Q2k2U - Qta^U. (7.7)

The result of the subtraction is

U(dQ/dt) = (k3 - §kx)U + (fc4e - §2k2)U
- io2&y - ®X)U. (7.8)

Every term in equation (7.8) is proportional to U, and upon dividing by this
quantity, we obtain an equation which has nothing to say about the evolution
of the U and V disturbances except what happens to the ratio 0 between them.
Because we now have an equation for time dependence only, we may as well
write it as an ordinary equation. Upon collecting terms in 8 and B2, this is

= k3 + Q[k4 - kx - o o 2 ^ - %x)} - 82fc2. (7.9)

This may be abbreviated in the form

dQ/dt = c + 60 + ad2. (7.10)

The right-hand side of this expression is the standard form of a quadratic
equation. Indeed, that is just what we have if we suppose that 0 does approach
a long-time limit and seek that limiting value by setting dQ/dt = 0. From this
point onward, we have very little calculus to do, but a lot of algebraic juggling
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with solutions of quadratic equations. Unfortunately, these are expressions in
which it is often difficult to see the wood for the trees, especially in terms of
the relationship of the behaviour of the model to the numerical values of the
six parameters in it. In the present section, the algebraic expressions are set
out. In Section 7.3, such simplifications of their significance as seem to be
possible are described.

If the two roots of the quadratic equation obtained by setting the rate of
change of 6 equal to zero in equation (7.10) are called rx and r2, then the
solution of that equation for the evolution of 0 in time is

0 = ('i - r2)/[l - e-W ~ frX'i - V] + r2, (7.11)

where

t0 = [\lk2{rx - r2)]ln[(60 - rx)l{% - r2)], (7.12)

80 being the value of 6 for the disturbance applied to the system at t = 0.
According to the values of the fc's and 2)'s, the roots rx and r2 may be real or
complex, and hence so may 6. In this respect, the character of 9 is the same as
that of the fractional growth rate of pattern amplitude [see equation (7.17)].
Real 9 describes stationary U and V waveforms (in phase for positive 9, 180°
out of phase for negative 9) growing or decaying monotonically. Complex 9
describes waveforms with oscillating amplitude. For our purpose of explain-
ing morphogenesis, the ranges of parameters which make 9 and kg real are of
the most interest, although it is shown in Section 7.3 that part of the oscillato-
ry region could be connected with morphogenetic capability.

When the roots are real, equation (7.11) shows that at long times, 9 tends to
either rx or r2, according as the exponent —k2(t — to)(rx - r2) is positive or
negative. Thus if k2 is positive, 9 tends to the algebraically larger of the two
roots, and if k2 is negative, 9 tends to the smaller root. Both cases correspond
to a choice of negative sign in the usual expression for solutions of a quadra-
tic; that is, the long-time limit 9^ is

9^ = [-b - (b2 - 4ac)1/2]/2a, (7.13a)

or

9oo = [b + (b2 + 4k2k3)l/2]/2k2, (7.13b)

where

b = k4- kx - co2(% - 3 g . (7.14)

Now the fractional growth rate constant kg of the U pattern is

kg = (\/U)(dU/dt). (7.15)

Thus equation (7.4a), divided through by U, yields an expression for kg:

(7.16)
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At long times, when 6 has become effectively constant, kg is therefore also
constant, and the growth of pattern amplitude is exponential. This limiting
value of kg is found by substituting (7.13) into (7.16):

2kg = kx + jfc4 - a)2(2)y + 2 g + (b2 + 4k2k3)l/2. (7.17)

From this equation one of the most important conditions for the Turing
model to work emerges at once: the need for two morphogens with different
diffusivities. Suppose that 3 ^ — 3^ . Then equation (7.14) shows that b is
independent of the diffusivities, because it contains them only as their dif-
ference. In that case, the only diffusivity dependence in equation (7.17) is of
just the same form as that in equations (6.44) and (6.45), for the optical-
resolution model which is incapable of stabilizing pattern: kg grows monoton-
ically with increasing wavelength. For kg to pass through a maximum at some
finite wavelength, this diffusivity dependence must be offset by a conflicting
term, which can come from b only when 2)^ and 2)^ are unequal. We may
examine the passage of kg through a maximum by differentiating the ex-
pression for kg with respect to wavelength, or, for simpler algebraic ex-
pressions, with respect to co2:

d(2kg)/du2 = a ( % - 2),) - (% + 2),), (7.18)

where a is an abbreviation for

a = b/(b2 + 4k2k3)l/2. (7.19)

At a maximum or minimum of kg, this derivative is zero. Hence,

2)^/2)^ = (a - l)/(a + 1). (7.20)

Now if a is numerically less than unity (i.e., if a lies between 1 and — 1), the
ratio of diffusivities is given by equation (7.20) as negative, which is phys-
ically impossible. Hence, for kg to have a maximum at finite wavelength, this
range of a is excluded. Equation (7.19) shows that if a is to keep outside this
range, (b2 + 4k2k3)l/2 < b. Clearly, this means that

k2k3 < 0. (7.21)

Because k2 is the catalytic constant for the effect of V on U, and k3 is that for
the effect of U on V, and because equation (7.21) means that if one of these
constants is positive, the other must be negative, the condition is that if U
catalyzes growth of V, then V must inhibit growth of U, and vice versa. This
condition is sufficient to ensure that the turning point in kg versus \ or oo2 is
always a maximum, not a minimum. One may see this in the usual way by
differentiating kg a second time with respect to co2 and requiring the second
derivative to be negative (Lacalli and Harrison, 1978).

One of the most significant constants of the Turing model is the wavelength
of maximum kg, for that is the pattern spacing between repeated parts. It is
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Xm = l

+ k4 - kj1'2. (7.22)

It can be shown (Lacalli and Harrison, 1978) that for this value of the wave-
length, kg is always real, provided only that condition (7.21) is satisfied.
Thus, although oscillatory behaviour can occur in the Turing model, it never
happens at the wavelength of maximum growth rate.

The foregoing equations are the basic requirements for using the Turing
model. In particular, equation (7.17), with the expression for b from equation
(7.14), enables one to calculate, for given numerical values of the fc's and the
2)'s, how ks varies with wavelength (e.g., the graphs shown in Figures 3.2,
7.2, and 7.7). I have not yet discussed, however, how one goes about select-
ing the numerical values of the parameters. If reaction-diffusion theory had a
trade secret, this would be it. For instance, when Lacalli and I did the the-
oretical work on the regulatory capacity of the model (with an application to
slime moulds in mind) for which most of the foregoing account was first
devised, our first computations gave oscillations instead of stable pattern. Of
the six kinetic parameters, only one had to be changed from our first choice of
values, and by only 10%, to stabilize the pattern. But the mathematical
analysis was necessary to see what was wrong and what value should be
changed. The next section discusses the types of behaviour which a Turing
system can exhibit and the ranges of values of parameters for each.

7.3 Turing's conditions

In his long and comprehensive paper, Turing rather casually and briefly set
down, with no discussion, a set of relationships between kx—k 4 and <Sbx and 2)^
which must be satisfied for the model to exhibit morphogenetic behaviour
[Turing 1952, equations (9.4)]. Lacalli and I (1978, 1979) attempted, while
giving the otherwise briefer account of Turing's model repeated here, to
explain Turing's conditions in some detail. Whatever merit our account may
have had as exposition of how Turing's model works, it unfortunately con-
veyed an erroneously pessimistic impression of whether it works. Thus Green
(1980) wrote that "Lacalli and Harrison have performed the great service of
showing how restricted the values of the various parameters . . . must be, if
stable waveforms are to be generated. . . . " The problem here is that experi-
mentalists will usually want to think of parameters for dynamics as being rate
constants for particular specified chemical reactions. That is not what the
Turing parameters kx-k4 represent. Their relationship to actual reaction rate
constants is different for every specific reaction-diffusion model, and often
quite complicated. I believe that if one is going to use two-morphogen reaction-
diffusion concepts in discussing morphogenetic mechanisms, one must go as
far in the mathematics as to understand and habitually use the Turing param-
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eter space shown in Figure 7.5. One must also be able to relate the Turing
constants kx-k4 to the actual rate constants of individual steps in whatever
particular reaction-diffusion mechanism one is contemplating. The simplest
example of this is in Section 6.3.1. In the transformation from equation (6.24)
to equation (6.30), it arises that the Turing constant kx is not the rate constant
of the autocatalytic step, but that of the decay step in a simple two-step
mechanism.

In this section I undertake two tasks. The first, in Section 7.3.1, is to show
how Turing's conditions may be derived and what they mean in terms of the
various kinds of behaviour in a system obeying Turing's equations (e.g., going
to spatial uniformity, pattern-forming, or oscillatory). This is done in terms of
the values of the Turing rate constants kl9 k2, k3, and k4 and leads to rela-
tionships such as

kxkA > k2k3 (7.23)

for pattern-forming behaviour to be possible. The need for this and several
other relationships between the constants to be satisfied simultaneously can
easily give the impression that most arbitrary choices of values for these
constants will not give the desired kind of behaviour. Indeed, that is exactly
what computer programmers will find if they do not study the conditions, but
simple make unguided choices of values.

In Section 7.3.2, I discuss the fact that Turing's model is not a chemical
mechanism and that the rate constants in it do not correspond to those of unit
steps in a chemical mechanism. As an example of what happens if one tries to
work back to the chemical level, I take the Brusselator, which happens to have
four steps and therefore another set of four constants, a, b, c, and d. The
object of this discussion is to show that the Turing conditions look much less
restrictive in terms of a, b, c, and d than in terms of kx-k4. For instance,
equation (7.23) translates into

dlbB > 0, (7.24)

where B is a reactant concentration. This is always satisfied if B, b, and d are
positive, which they always are, by definition. Numerical ranges at the level
of chemical reality are not the same as those at the level of Turing's equations,
in which some of the quantities which look like chemical rate constants can be
negative.

The problem for the research worker trying to investigate the applicability
of Turing's model and all other versions of reaction-diffusion is a very subtle
kind of anthropomorphism. One sits down with a model expressed at the level
of rate equations and containing several parameters, and it appears that one's
choice, and therefore nature's choice, of numerical values for these is from
the whole range of numbers. Therefore, if nature has managed to select values
from a tiny part of that range, nature has done something arithmetically
rather clever. The words in italics make up the anthropomorphism. Nature did
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not sit down with a set of rate equations and parameters. These arise from our
description of a mechanism that is going on naturally, and that mechanism
often does not entail the possibility of the selection of parameters being from
unrestricted ranges. Rather, the qualitative features of the mechanism place
the parameters, almost automatically, in the appropriate quantitative ranges.
The conditions discussed in the present section do not cast any kind of doubt
on the model. They provide valuable clues as to what kind of mechanism may
be responsible for a system obeying Turing-type rate equations.

The essential distinction here is between two levels of models: rate equa-
tions versus chemical reaction equations. The former are the stock-in-trade of
the macroscopist seeking to explain morphogenetic process at the scale of the
whole organism or that part of it which constitutes a morphogenetic field. The
latter are the preserve of the biochemist, enzyme kineticist, and so forth. The
macroscopist's parameters are not the enzymologist's rate constants, turnover
rates, and so forth. If the former appear very restricted, the proper next step is
not to say "therefore nature is not using reaction-diffusion, because it would
be so awkward to keep the parameters always inside these narrow ranges."
Rather, one should ask: "What kind of chemical mechanism has qualitative
features which automatically relieve most of the restrictions?"

7.3.1 The conditions from a computer programmer's
viewpoint: LacallVs (k'l9 k'4) space

The Turing conditions can be written in terms of the six parameters kx-k4, Q)x,
and 2)y. But upon examination of them it turns out that if one divides the
expressions by (—k2k3)l/2 and also by Q)x, they can be rewritten in terms of
only three parameters. These are

K = k4/(-k2k3y/2, (7.25b)

n = %/%. (7.25c)

The precise form of these parameters has to be arrived at by doing the algebra.
But their nature is easy to rationalize in retrospect in terms of the strategy of
operation of the morphogenetic control system. What matters for this is not
how fast U self-enhances (&j). It is how this rate compares with the more
indirect self-inhibition of U via the catalysis of V by U (k3) and the inhibition
of U by V (k2). Clearly, the parameter k[ gives a measure of this comparison;
k'4 similarly compares the direct self-interaction of V with its indirect self-
interaction via U. The importance of the diffusivity ratio (n) has already been
explained.

For representing as much as possible on one graph, or for making com-
putations with one set of numbers which actually cover wider ranges, it has
long been recognized as good practice to use dimensionless parameters
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wherever possible, and the three parameters here introduced are examples of
these. All of the Turing rate constants kx-k4 have the dimensions of a first-
order rate constant, (time)"1, and each diffusivity has the dimensions
(length)2(time)~l. But k[, k'A, and n are pure numbers without dimensions.
The divisor which turns the two self-enhancement constants into dimen-
sionless parameters is

kcr = (-k2k3Y<2. (7.26)

This is the geometric mean rate constant for the two cross-effects, of V on U
and U on V. Thus k[ measures how much faster the self-interaction of U is
than the mean cross-effect, and similarly for kr

4; and n measures how much
faster Y diffuses than X. Clearly, such relative measures are pure numbers, but
they also contain the essence of the interplay which is the pattern-generating
ability of the model.

If we want to know how quickly a pattern should grow (i.e., the value of
kg), or what its "chemical wavelength" is (Xm), then we are seeking quantities
with dimensions. It is useful to recast the expressions for these, equations
(7.17) and (7.22), partly in terms of the dimensionless parameters, but there is
going to be something left over for which the dimensions do not cancel out in
these two expressions.

There are six Turing conditions, given later as expressions (7.27a-f), each
of which is an inequality. For graphic representation, as devised by Lacalli
(Lacalli and Harrison, 1979), each condition can be written as an equation for
a boundary in a space in which k\ is plotted against k\. On one side of each
boundary, the inequality is satisfied; on the other, it is not. To show on a plane
something involving three variable parameters, one of them has to be held
constant. Hence we usually set up the diagram for some constant value of the
diffusivity ratio n. Provided that n > 1, the diagram does not vary greatly with
n. It is shown in Figures 7.4 and 7.5. The conditions are as follows:

(a) The fact that kg passes through a maximum at some finite wavelength
does not of itself establish that the pattern of that wavelength will grow. It is
additionally required that the maximum value of kg be positive (i.e., at \ m , kg
> 0). Otherwise, the maximum would simply represent the pattern which
would decay most slowly, which is not of much morphogenetic interest; a
Cheshire Cat endowed with some longevity is still a Cheshire Cat. The re-
quired condition is

k'4 < nk\ - 2n1/2. (7.27a)

This, as an equation, is the steep line, with slope equal to the diffusivity ratio.
It is the most important boundary. To the left of it there is no interesting
behaviour for our purpose. To the right of it, an assortment of interesting
things may happen, including morphogenesis (Figure 7.7b versus 7.7a).

(b) For selection of a particular pattern spacing, there must be a maximum
in kg at some wavelength less than infinity. Mathematically, this means that
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. / Positive:
" 1 U is self-enhancing

No selectivity for pattern:
has no maximum at finite X

Figure 7.4. Morphogenetic capability of the Turing model as a function of the feed-
back constants for U and V. These, k[ and k'4, are effectively kx and k4 reduced to unit
values for the cross-effects of U on V and V on U. See equations (7.25a,b) for precise
definitions. The figure is drawn for a diffusivity ratio n — 10. This number is the slope
of the steep line separating the left-hand region, in which all patterns decay, from the
right-hand region, in which oscillatory or pattern-forming phenomena occur. The most
important parts of the morphogenetic region are in the quadrant where k'x > 0 (U or X
self-enhances) and k\ < 0 (V or Y self-inhibits). See Figure 7.5 for numbering on scales
and subdivisions of morphogenetic region.

\ m must be real. A complex Xm, with an imaginary component, cannot have
real physical significance. The required condition is

k'4 > k[ - (n + \)ln112. (7.27b)

On the diagrams, this is the lowest of three parallel lines of unit slope. All the
regions of interesting behaviour lie between lines a and b in Figure 7.5. If the
two diffusivities were the same, n = 1, line a would also be of unit slope and
would in fact coincide with line b. The morphogenetic regions would then
have collapsed into zero area on the diagrams. In this way, the need for two
different diffusivities can be seen pictorially.

(c) The term "stationary wave," or "standing wave," is often used to
describe morphogenetic Turing patterns. Its older and commoner usage is for
such things as the vibrations of a violin string. These two classes of phe-
nomena have aspects in common, which makes it possible to use this term to
cover both of them. These are (1) that the displacement from equilibrium at
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Figure 7.5. Subdivision of the morphogenetic ranges of the two self-interaction pa-
rameters. The six boundaries lettered a-f correspond to expressions (7.27a-/) written
as equations, and they separate the regions where these expressions are satisfied or not
satisfied when written as inequalities. Shaded regions: A: Oscillations grow, but super-
imposed on nonoscillating pattern which grows faster; likely to be of minor mor-
phogenetic significance, but could be relevant to such cases as the cellular slime
moulds (e.g., Dictyostelium), in which time-periodic and morphogenetic behaviour
occur successively. B: No oscillations, but the maximum in kg versus X is shallow
(Figure 7.7a), and patterns of different complexity might not be well discriminated. C:
System can oscillate initially if oscillations are somehow initiated, but they decay
away, while pattern grows; good morphogenetic region. D\ No oscillations, and kg
versus X has a sharp maximum; kg goes negative at some finite X above Xm (Figure
7.7e); excellent morphogenetic region. The point indicated by an arrow in region C
shows the parameters used in discussing possible application to Drosophila imaginal
discs (Lacalli and Harrison, 1979; referring to Kauffman, Shymko, and Trabert, 1978)
and to Acetabularia whorls (Harrison et al., 1984). When the values of k\ and k'A for a
system are changed so that the steep line a is crossed from left to right, the behaviour
of the system changes from stable uniform distribution of material to more interesting
behaviour. If the region entered is C or D, this behaviour is morphogenetic pattern
formation. The crossing of line a is then known as "the onset of the Turing instability."

any fixed time is sinusoidal in distance along the system and (2) the "station-
ary" aspect: that the nodes of the waveform, where there is no displacement,
do not move. The distinction between the two classes of phenomena is that for
the violin-string vibration, the displacement at all points other than nodes is
periodic in time. A positive wavecrest subsides to zero, becomes negative,
thus turning into a trough, and then returns back to a crest again (Figure 7.6a).
In the morphogenetic situation, the displacement changes monotonically with



a Violin string

b Morphogenetic

C Travelling

d Growing oscillations

Figure 7.6. Time sequences for the development of various kinds of waves, to clarify
terminology: (a), (b), and (d) are all stationary waves, in the sense that the displace-
ment at any point can change with time, but the nodes (points where the displacement
is always zero) do not move; (a) is the violin-string behaviour; (b) is morphogenetic
behaviour, in which the displacement at any point increases (in the positive or negative
direction) monotonically in time, instead of oscillating as in (a); (d) is like (a) except
that the amplitude of the oscillations is growing as time goes on; (c) is a travelling
wave, moving to the right. Turing waves can show all these kinds of behaviour. Waves
(a), (c), and (d) would all correspond to parameter values above line c in Figure 7.5.
Wave (a), showing oscillations neither growing nor decaying, would correspond to
parameters lying exactly on line d in Figure 7.5. The travelling wave shown in (c) is
sinusoidal, and Turing mechanisms can generate such phenomena. These are not the
same as the travelling waves produced in the Belousov-Zhabotinski reaction, which
have more the character of relaxation oscillations; see Section 10.3.4. For a sinusoidal
oscillator mechanism closely resembling the Brusselator reaction-diffusion mecha-
nisms (but without diffusion), see Sel'kov (1968).
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time: A crest grows higher, and a trough deeper, continuously, without peri-
odic aspect (Figure 7.6b).

Turing's model can produce both kinds of behaviour in different ranges of
the parameters. Mathematically, the time oscillations will occur if kg is a
complex number. Problem solution 6.5.10 is a reminder that complex expo-
nentials are periodic functions; mathematicians usually prefer to write general
solutions of differential equations in this form, which is often less cumber-
some than using sine and cosine. The boundary between the two types of
behaviour is thus simply the boundary between real and complex solutions
of a quadratic equation. The condition specifying the "morphogenetic" side
of the boundary is

k\ < k\ - 2. (7.27c)

This appears to limit the regions of interest to us to those marked B and D in
Figure 7.5; but in Figure 7.4 I have also included region C in the total
morphogenetic region, and in Figure 7.5 region A is shaded as of possible
significance for morphogenesis. A and C are subdivisions of the time-periodic
region, and need further discussion.

(d) The mathematical analysis of the Turing model given in this chapter,
however extensive it may appear to the beginner in differential equations, is
far from complete. Input has been specified as U and V standing waves in
phase with each other. This leaves us discussing only which of the two kinds
of standing waves occurs for various values of the parameters, and ignoring
all behaviour which does not fall in either category. Computations using
parameter values which are "wrong," in the sense of giving the unwanted
time-periodic behaviour, easily show that travelling waves as well as standing
waves arise. Lacalli and I (1978) fell into this trap in our first computations on
regulation of a simple two-part pattern after chopping the system into pieces;
this was intended to be relevant to differentiation in the slug stage of the slime
mould Dictyostelium discoideum. For our first choice of parameter values,
two separate travelling U and V waves arose, with the node of each moving
across the system and appearing to "bounce" off the boundaries.

From the viewpoint of required conditions to prevent oscillation, however,
it does not seem to matter very much which kind of oscillation we are discuss-
ing. Choice of parameters to avoid stationary oscillations will also avoid
travelling ones, and I continue to classify oscillations only in terms of the
former.

The categories of damped and growing oscillations are well known (e.g.,
respectively, the dying away of the vibrations of a string or a pendulum which
has been set in motion but is not being continuously supplied with energy, and
the growing positive-feedback howl in a public-address system in which the
loudspeakers have been placed behind the microphone). Both can arise in a
Turing model. Where oscillation occurs, its amplitude may grow or decay as
time goes on. The indicator of which occurs, in terms of kg as a complex
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number, is whether its real part is positive or negative. This gives the condi-
tion

k\ < -k[ (7.27d)

to avoid growing oscillations. The boundary is the only line of negative slope
in Figure 7.5. It separates region C (damped oscillations) from region A
(growing oscillations).

Clearly, the damped oscillations are not a big problem for interference with
morphogenetic behaviour. They can never become larger than the initial dis-
turbance, which is not likely to give very much to start them going. Ther-
modynamic fluctuations do not provide the equivalent of someone starting the
pendulum of a grandfather clock, or pushing someone else on a garden swing.
Only growing oscillations, which can amplify small rudiments, are likely ever
to be seen in biological development. Hence region C is quite legitimately
within the morphogenetic region and is a possible region of parameter values
for instances in which, experimentally, one sees no hint of oscillatory be-
haviour at any stage.

All instances of time-periodicity in the Turing model have the characteristic
of appearing only above some threshold wavelength. The reason for this can
be traced very easily through equations (7.13) to (7.17). Trouble (if one
regards complex numbers and vibrating development as trouble) arises if the
quantity b2 + 4k2k3 is negative, because one has to take its square root. Now
k2k3 must be negative, so what matters is the relative size of b2; if it is big
enough, it avoids the trouble. Because b contains w2 = 4TT2/X2, it goes
infinitely positive as \ goes to zero. Therefore, as wavelength decreases, one
must reach a point at which b2 + 4k2k3 becomes positive. There is no
oscillatory behaviour below that wavelength. Hence plots of kg versus wave-
length in the oscillatory regions are like Figure 7.7c,d. Up to the threshold X,
real kg is plotted as a solid line. It has a maximum, and that is the pattern
which grows to dominate the system. Above the threshold, the real compo-
nent of kg is shown as a broken line. If it is negative, oscillations die away; if
it is positive, they grow. These are, then, disturbances at longer wavelength
than the pattern which is becoming established.

(e) The essence of the Turing model is competitive exponential growth of
patterns, in which the fastest swamps everything else and appears to be
present alone at long enough times. Thus, even a growing oscillation may not
be seen if it does not grow as fast as stable pattern. This leads to a further
subdivision of the oscillatory region, according to whether its growth rate is
greater or less than that of the pattern at \ m . The condition for oscillation to
grow slower than pattern is

k'4< k[- 4n1/2/(n + 1). (7.27e)

It is satisfied in the region A, which is therefore of possible morphogenetic
significance. I have indicated doubt by equivocating about whether the overall
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Figure 7.7. Various ways in which the exponential growth rate constant kg can vary
with wavelength, for sinusoidal U and V waves in phase with each other, (a) kg is
real at all wavelengths and passes through a maximum, but rather a shallow one. All
patterns of wavelength above the threshold will grow (parameters in region B, Figure
7.5). (b) k is never positive; patterns of all wavelengths decay (parameters in region
to the left of the steep line in Figures 7.4 and 7.5). (c) kg has a maximum, but at some
longer wavelength becomes complex; the broken lines represent the real component of
complex kg: Line A is for parameters in region A, Figure 7.5; the oscillations do not
grow as fast as the pattern at \ m . Line E is for parameters above line e in Figure 7.5.
Oscillatory behaviour builds up faster than pattern, (d) Here again kg goes complex
above some wavelength, but the real component is negative. This means that oscillato-
ry behaviour will die out and is unlikely ever to make itself noticed (parameters in
region C, Figure 7.5). (e) kg has a sharp maximum and goes negative at long wave-
lengths. This is the band-pass region, D in Figure 7.5, which is strongly discriminating
between patterns, and is a likely region of parameters for much morphogenetic be-
haviour.
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morphogenetic region does or does not contain region A, between Figure 7.4
and Figure 7.5. Because oscillations can grow above their initiating distur-
bance, one might expect to see them transiently, before the organism settles
down to proper developmental business, if the parameters are in region A.
This could be related to the pulsed behaviour of cAMP in the cellular slime
moulds.

(f) Doubters may find their doubts growing monotonically with time about
the last-mentioned aspect of the Turing model: that it proposes selection of one
pattern from all other possibilities by competition of rates which does nothing
to eliminate the slower patterns. They are, in the outcome, still there, though
at smaller amplitude than the winner. This statement is, however, strictly
correct for all wavelengths of pattern only in a certain part of the mor-
phogenetic region. In another part, pattern decays above a wavelength Xf.
Lacalli and I have stressed the importance of this part of the morphogenetic
region by repeated use of parameter values in that region, which includes
region C (Lacalli and Harrison, 1979; Harrison et al., 1984) (see Figures 3.2
and 7.2). The curve of kg versus X must have the form of Figure 7.7d or 7.7e,
as contrasted to Figure 7.7a or 7.7c, for the system to have this "band-pass"
discrimination for pattern. The condition to be satisfied is that kg is negative at
infinite wavelength, and the algebra gives

*; > -(1/tJ). (7.27f)

The boundary is the only one which is not a straight line in Figures 7.4 and
7.5; it is a hyperbola. It appears to squash the most precise pattern-forming
behaviour into a tiny region of parameter space, C + D, forcing the computer
programmer into a very restricted choice of numbers.

But it does not, I stress again as at the beginning of Section 7.3, force
nature into a restricted choice, because nature is not a computer programmer
and is not directly playing a numbers game. This last condition is the one
previously mentioned as expression (7.23), which, for the example of the
Brusselator mechanism, means no more than that two of its steps exist.

7.3.2 The conditions from a chemical kineticist's viewpoint:
the Brusselator as an example

I raised a question in the preceding section as to whether the Turing conditions
are to be regarded as narrowly restrictive or rather easy to satisfy. There is
another way to put this question: In Figure 7.5, should we, to cover all likely
ranges, be plotting in an area in which the scales of k\ and k'4 both run up into
the hundreds, in which case the area C + D would look tiny indeed? Or, on
the other hand, does the area actually plotted cover unnecessary tracts? If, for
instance, there are good reasons for k\ not to exceed unity, about two-thirds of
Figure 7.5 could have been omitted, and the remainder drawn on an increased
horizontal scale, which would make C + D look much bigger.
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The Turing constants kx-k4 can have positive and negative values; indeed,
one of them (either k2 or k3) is required to be negative for the model to work in
a morphogenetic manner. This indicates that these constants are not the rate
parameters for individual steps in a reaction mechanism; the latter must al-
ways be positive. Thus the numerical ranges spanned by their possible values
are not the same as those for k^-k4. If we have a model specified as a
chemical mechanism, the restrictions on its rate parameters must be different
from those on kx-k4.

By no means has every reaction-diffusion model been written down in
chemical-mechanistic terms. The Brusselator has, however, and will serve as
an example. The mechanism is

A -* X (rate constant = a), (7.28a)

B + X- » Y + D (rate constant = b), (7.28b)

Y + 2X -> 3X (rate constant - c), (7.28c)

X -» E (rate constant = d). (7.28d)
The chemical nature and mathematical analysis of this scheme are discussed
in detail in Chapter 9. There it is shown that if reactants A and B are supplied
at constant concentrations, the intermediates X and Y can settle down to
spatially uniform steady-state concentrations Xo and YQ, as one would com-
monly expect for transient intermediates in a reaction. But if X and Y are
diffusible, departure from this steady state in the Turing manner is possible, to
give spatial patterns of X and Y, which may be expressed in terms of the
displacements U and V from Xo and Yo. Provided that they are fairly small, U
and V develop in time and space according to Turing's equations. The algebra
relating the Turing constants to a, b, c, and d is given in Chapter 9, and the
results are tabulated in Table 9.1. For the present illustration, we need the last
item in that table,

k[k'4= - ( 1 - d/bB). (7.29)

Inequality (7.27f), corresponding to the hyperbolic boundary line/in Figure
7.5, requires that the right-hand side of equation (7.29) be greater than —1.
This is clearly satisfied if d, b, and B are all positive. Two of these quantities
are actual rate constants for steps in the mechanism; the third is a complete
concentration (not a displacement from steady state). All are necessarily
positive, and the representative point for the system in (k[, k'4) space is
automatically on the right side of the hyperbola if reactions (7.28b) and
(7.28d) exist at all. These are the two reactions in which X is destroyed. If, for
the same X concentration, (7.28b) is the faster of these two, then k[ is
positive. Again from Table 9.1, k4 is automatically negative if steps (7.28a),
(7.28c), and (7.28d) all exist.

Consider the following statement: In a particular reacting system with
intermediates X and Y between reactants A and B and the final products, all



Kinetic models for stable pattern 245

Figure 7.8. An illustration that some of Turing's conditions are not very restrictive
when discussed at the chemical-mechanistic level. For the Brusselator mechanism, the
representative point in (k\, k'A) space lies in the shaded region provided that reaction of
X with B is faster than its unaided decay.

four steps of the Brusselator mechanism occur; and of the two reactions
destroying X, its reaction with B is faster than its unimolecular decay, for the
same X concentration. This statement places the system in the region of (k[,
k'4) space shaded in Figure 7.8.

Further carving up of that region, as for instance by the important lines a
and d in Figure 7.5, is somewhat more restrictive, but not nearly so much as
first appeared in the account in Section 7.3.1. The inequality for which line d
is the boundary is, for instance, automatically satisfied if the rate constants are
such that the uniform starting concentration Xo is greater than Yo. The condi-
tions will not be discussed in further detail here. The above examples are
sufficient to show that what may seem abstract, mysterious, and highly re-
strictive at the algebraic and computer-programming level may turn out to be
not much more than common sense whenever one can transfer the analysis to
the chemical level.

Finally, the question arises of what quantitative values of spacings between
repeated parts in a pattern (wavelengths \ ) may reasonably be regarded as
capable of establishment by reaction-diffusion. For order-of-magnitude esti-
mates, the message of parameter space is that the Turing rate constants must
all have rather similar values. This leads to the possibility of replacing them
by the doubling time T1/2 of pattern amplitude in the regime of exponential
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growth. From initiation to observable expression of pattern probably needs an
increase of pattern amplitude of the order of a factor of 1,000 (Harrison,
Snell, and Verdi, 1984), which would take 10T1/2 . Lacalli and Harrison (1987)
derived the approximation

T1 /2 = X2 In 2/2TT22), (7.30)

where 2) is the geometric mean diffusivity, (QJdby)1'2. For a very small spac-
ing such as X = 1 |xm (e.g., xylem rings), 2) would have to be 10~10 cm2 s ~ l

to make the pattern development time (10T1 / 2) about half a minute. Smaller
diffusivity would give proportionately longer development time. For common
morphogenetic spacings of order 10 |xm, a diffusivity of 10~10 cm2 s " 1

would allow about 1 hour development time. This quantitative linkage of
time and spacing shows that most morphogenetic events are compatible with
reaction-diffusion mechanisms, especially if the morphogens are membrane-
bound. Turing patterns for non-living chemical systems in aqueous solution
(Section 10.3.4) have much larger spacings, because of the high diffusivities.



PART III

Bringing experiment and theory together

In the actual history of science many of the most fruitful theories have been
developed from preconceived ideas of the kinds of laws or theoretical entities
that will be discovered to explain the phenomena. The history of the inquiry has
to a large extent consisted of using the sharp tools of mathematics and experi-
ment to carve out of these preconceptions a theory exactly fitting the data.

—A. C. Crombie (1959, vol. II, p. 288)

As a schoolboy in England, I was taught the scientific method almost as a
kind of credo. Two words were conspicuously (from my present perspective)
absent from its description: machinery and models. Science was defined
primarily as a function of the human mind, seeking to find order in apparent
chaos by a particular kind of formal procedure. In this, the first step is
gathering data; the second is making generalizations from data, which are
often called laws; the third is explaining those laws on levels different from
the observational level of the original data. This is theoretical explanation,
and it leads into a sequence of steps in which theory leads to prediction,
thence to new experiments, and thence to confirmation, rejection, or detailed
refinement of the theory. In this sequence it is sometimes indicated that a
theoretical explanation is categorized successively as hypothesis, theory, and
law as it becomes more securely established. The progression certainly exists
as the principal method of science. But the semantics of the use of the words
"hypothesis," "theory," and "law" seems to lack historical validity, and
unfortunately gives two different meanings to the word "law," because the
established theory is quite a different thing from the generalization from data.

Any semantic confusion in this usage is, however, insignificant compared
with the currently popular use of the word "model" indiscriminately for either
kind of law and for a theory at any stage in its progress toward establishment
or rejection. This usage tends to cast attempts to follow the scientific pathway
into a deep fog. The word has also a somewhat pejorative nuance, in that
many people think of a model as something distinct from reality. The aim of
science is, of course, to find reality in the form of theoretical explanations.

In approaching specific examples, therefore, one should start with the
recognition that the scientific method is in full and normal operation in the
field of living pattern and form, and that various things now grouped together
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under the term "model" actually represent different stages along the scientific
progression. One should frequently remind oneself, when thinking about a
model, that one must be clear where it lies in this progression.

There is very little in this book about the first kind of model, or law, or
whatever, arising from the data gathering, that is, the generalization from
data. To be sure, such laws exist in the field of developmental biology. An
excellent example is the set of rules formulated by French et al. (1976) for
limb regeneration in insects and amphibia. These rules, expressed in terms of
a polar-coordinate system around the limb and a Cartesian coordinate along it,
are quite powerfully predictive for the results of grafting experiments. As a
generalization, the scope of the polar-coordinate concept has been remarkably
extended by Frankel's (1989, 1990) evidence that it is applicable to a single-
celled group, the ciliates. But we still await a definitive explanation of how a
living organism goes about setting up a polar coordinate. Generalizations
from data have predictive power, but they are all on one level. They do not
relate the variables to anything except each other.

This is because generalizations from data are essentially independent of
preconceptions. The epigraph from Crombie adds something to the conven-
tional elementary description of the scientific method. In embarking upon
their journeys of discovery, scientists commonly have a general preconception
of the kind of country to be covered. Up to this point, this book has been
largely devoted to expounding, with biologists in mind as the readers, a
preconception which many of them do not have but which is widespread
among physical scientists thinking about the same experimental phenomena.
Turing's equations cannot necessarily be adequately tested against experi-
ment. They compose a roughed-out preconception, which may never exactly
fit any precise data. The carving of a theory exactly fitting the data may
always involve the use of nonlinear equations. These are introduced in Chap-
ter 9, with an extensive description of the Brusselator model.

Several other nonlinear models are also discussed in that chapter. The
general aim is to show that each of them, because of its particular dynamic
structure, can serve a particular range of pattern-forming purposes while it
altogether fails to serve others. This is the beginning of recognizing reaction-
diffusion theory as a class of dynamics containing many species, as do classes
of living organisms or classes of molecules such as proteins. Therefore, Part
III starts with a brief chapter on classifications.

Many biologists may still, however, be inclined to enquire whether the
models discussed here are a class within developmental biology or within a
branch of pure mathematics irrelevant to their experimental discipline. Are
my titles for Part III ("Bringing experiment and theory together") and for the
final chapter ("Approaching agreement?") at best optimistic and at worst
quite misleading?

I am encouraged to believe that this is not so, and that my titles are correct,
by my current writing of this introduction. I started work on this book in 1984.
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Then, and even somewhat later, I had quite a different plan for the contents of
Part III. Because I have now written it differently, I have had to rewrite this
introduction, and this paragraph is my last task in writing the book. This has
led me to recognize that almost none of the material that I have presented in
Chapter 10 as evidence for kinetic theory in general and reaction-diffusion in
particular could have been written in 1984. Progress is being made toward
union of this kind of theory and biological experiment. I believe that the
material I have been able to put into Chapter 10 makes the book a more
powerful argument for kinetic theory than it could have been if I had finished
it sooner.





8
Classifications

The urge to classify is the primary driving force of science. It is the deepest
form of the common human desire to make things look tidy. But unlike the
domestic analogue which that suggests, the urge to classify operates in realms
where one cannot impose order, but can seek to find it if it is already really
there (in the deepest sense of the word real, or really, or reality).

Classification can be used in both the analytical and the synthetic parts of
the scientific process, the lumping and the splitting. It assists both in the
recognition of fundamental common features (e.g., by the setting up of such
categories as kingdoms and phyla) and in the drawing of careful detailed
distinctions between species and varieties. In the scientific interplay of experi-
ment and theory, classification can appear in different places. It may be the
first step beyond data gathering, the organization of data into generalized
statements. The larger divisions in the biological classification are of that
kind. On the other hand, theories themselves may become complex and
diverse enough to require classification. Classification can assist in giving an
overview to remove either factual or conceptual confusion. It is most needed
where either of these exists in large measure.

Most particularly, classifications of both kinds are needed where experi-
ment and theory are both extensively elaborated, but not well joined to-
gether. Both must be properly organized if there is to be a complete plug-in
between them. To continue the metaphor of Section 1.2.2, the optic nerve
can do its job if the retina and the tectum are each separately already well
organized.

Therefore, to assess the current state of kinetic theory of living pattern, and
to try to make some contribution to its advancement, I start the last part of this
book by attempting some classifications. This is the last chapter in which I try
to be in some sense comprehensive. Indeed, earlier in this book I have tried
this only in Chapters 1 and 4. Those two and the present chapter can be taken
together as my view of the relationship of paradigms and classifications in this
subject. Chapters 9 and 10 are quite selective and open-ended, which corre-
sponds to the state of the topic.
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8.1 Beginnings of a classification of developmental theories

I am not seeking to propose that kinetic theory should become the be-all and
end-all of the explanation of pattern formation, only that it is a necessary part
of the complete assembly of morphogenetic theories, and should be a very
large part. The proper balance will not have been achieved, to my mind, until,
in the experimental biology journals and alongside many papers of the kinds
which are being written nowadays, there are usually quite large numbers of
papers in which the discussion sections use mathematical language and the
explanations have been tested by computation.

Table 8.1 is an attempt to map out the main parts of the entire kingdom of
developmental theory. The map has not been drawn in equal detail within each
of the three "phyla": kinetics, equilibrium, and structure. My purpose is to
discuss the first of these. Most biologists will be able to draw detailed maps of
the other two (and especially the third) for themselves. Both the "phyla" and
the "classes" have been discussed in Chapter 4. But the subdivision of the
class "reaction-diffusion" cannot be understood on the basis only of the
mathematical introduction in Chapters 6 and 7. The Turing equations express
the gist of what a mechanism must have to be able to generate pattern at all.
But they are, mathematically, linear equations, which have the unrealistic
aspect that their solutions show concentrations of substances growing expo-
nentially without any limitations whatever on the maximum values they may
attain. Realistic models, even from very simple putative chemical mecha-
nisms such as the Brusselator, contain nonlinearities. These, for any model
worth discussing at all, remove the feature of unrestricted growth and give
accounts of patterns which settle down into steady states of concentration
distribution. But every specific model has different nonlinearities which give
it some quite idiosyncratic properties not shared by other models. These
idiosyncrasies hold the promise that reaction-diffusion theory can be fine-
tuned to fit many different experimental phenomena, in conformity with
Crombie's view of the scientific method quoted as epigraph to Part III.

8.2 The idiosyncrasies of some reaction-diffusion models

8.2.1 Nonlinearity and the history of reaction-diffusion models

A mathematician or physicist describing kinetics as being nonlinear means
simply that the rate of some process depends on a power different from the
first power of the concentration of some substance. For pattern-forming abili-
ty, the power should be greater than the first. In Section 5.3.11 credited Mills
(1932) with the original idea of an autocatalysis of kinetic order higher than
the first as leading to a two-way departure from equilibrium. This reference
seemed to be well known among practitioners of the theory of spontaneous
optical resolution, who gave it to me when I first entered that field, and it has



Classifications 253

been elaborated or independently rediscovered by several of them (Frank,
1953; Seelig, 1971a,b, 1972; Harrison, 1973, 1974; Decker, 1974). Although
this has been a continuous line of advance in its own right, it is not clear to
what extent it has contributed to the introduction of similar ideas in mor-
phogenetic theory (except for my own rather late entry into the field).

The fact that a combination of positive feedback and diffusion could give an
equation in the form of a wave equation in the distance variable was first
recognized by Rashevsky (1940). His priority is not acknowledged as often as
it should be. Even earlier, Fisher (1937) published an equation for a single
diffusible autocatalyst. This has travelling-wave solutions. But the paper of
Turing (1952) is far better known, for good reason. [See Murray (1977) for a
discussion of Fisher's paper, as well as for one of the numerous opinions in
the literature that the concept of reaction and diffusion giving rise to spatial
structure starts from Turing.]

Turing's combination of the concepts of autocatalysis, inhibition, and diffu-
sion with a specific interrelationship of cross-interactions between two sub-
stances, is a theory having enormously greater power to explain generation of
form than any predecessor. It has not yet led to a fusion of chemical kinetics
with developmental biology, but it has been the basis for the most extensive
theoretical work yet done relevant to that important objective.

Whenever Turing's equations are derived from the rate equations for a
putative reaction mechanism, it is easily seen that nonlinearity has two differ-
ent aspects and functions. The rate equations are written in terms of true
concentrations of chemical substances (e.g., X and Y). The corresponding
Turing equations are written in terms of departures of X and Y from the
spatially uniform steady state (i.e., in terms of the variables U and V). The
nonlinearities appearing in the U, V equations are not the same as those in the
X, Y equations. They serve different purposes in the possible biological ap-
plicability. This is perhaps the primary reason why an experimental biologist
interested in using this kind of interpretation of data must understand the
mathematical procedure of linearization about the spatially uniform steady
state (see Section 6.3 and the full account for the Brusselator in Section 9.1).
Without this background, the qualitative features of the theory cannot be
properly appreciated.

The first aspect is the general one: Nonlinearity in the chemical kinetics,
involving terms in X2 and so forth in the X, Y equations, is essential to pattern-
forming ability. But we saw in Section 2.2 that Mills-type nonlinearity (D2 -
L2) leads to linear growth of the optical asymmetry (D - L). And in Section
6.3.1 we saw that a nonlinear term in X2 gives rise to the Turing-like linear
term in U. Thus the linear Turing equations in U and V express the essence of
the nonlinear chemical kinetics from which they arise.

The second aspect is concerned with the idiosyncratically different be-
haviours of different models which must be taken into account in all attempts
to fine-tune the fit between data and theory. When chemical models with
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pattern-forming ability are transformed from the X, Y form to the U, V form,
there will always be nonlinear terms in U and V. One ignores these when one
uses the linear terms only (i.e., the terms which together make up the Turing
equations). Then, one is looking at equations which have the important fea-
tures of pattern growth, wavelength determination, response to boundary
conditions, and so forth, but which also have the unrealistic feature that
exponential growth of pattern amplitude goes on forever. This misfit with
nature is removed as soon as one adds the nonlinear terms. Pattern amplitudes
do not then go on increasing forever. Growth eventually slows down, and
patterns reach steady states.

In the development of a pattern, one may then distinguish between an initial
linear regime, of which the linear Turing equations give a good account, and a
nonlinear regime in which pattern growth slows and finally ceases. For the
latter, a host of questions arise. Nonlinear patterns will not be of sine-wave
form. How much will they differ from sinusoidal shape? Will the peaks and
troughs have the same shape and the same length, or will they differ? For
instance, will there be short activated regions and long inhibited ones, or not?
Will the number of repeated parts in the steady-state pattern be the same as in
the initial pattern of the linear regime, or will there be a drastic change? To put
the same question differently, will the system continue to "know" its linear
wavelength? By the same token, if a system has reached a patterned steady
state, and then some change is made, such as an increase in length of the
system or a change in supply of a chemical reactant which affects the linear
wavelength, will the steady-state pattern respond as one expects the linear
pattern to do? Answers to questions like these are far from obvious, because it
has, in general, not yet been found possible to study nonlinear partial differen-
tial equations by analytical methods. The method which helps most is the use
of the digital computer. A model can be put into it, and one may then regard
the model as an experimental system in its own right. One can carry out
experiments on the model, just as one can carry out experiments on a develop-
ing biological system. This permits some attempt to classify models by their
characteristics of pattern development.

8.2.2 Beginnings of a classification
of reaction-diffusion models

In Table 8.1 I have suggested that the reaction-diffusion class might be sub-
divided into orders on the basis of the number of mutually interacting mor-
phogens in the model. In the end, this may or may not turn out to be the best
way of going about the classification. It is not yet clear whether or not there is
sufficiently close correlation between numbers of morphogens and differences
in dynamics of development. (But one feature is fundamental: Turing's big,
original contribution was the addition of the second morphogen, the inhib-
itor.) This section will be concerned mainly with two-morphogen models, and
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to some extent with four-morphogen models. The distinctions to be described
here go beyond the indications in Table 8.1.

Indeed, two different ways of looking for the characteristics of reaction-
diffusion models are suggested here, and they might lead to two different
classifications: First, what kind of terms does one see in the equations?
Second, what does one learn from computer experiments on the model? Of
these, the latter is likely to be more attractive to experimental biologists,
because the procedure resembles experimental rather than theoretical work.
But biologists are often worried, in relation to reaction-diffusion, whether or
not a realistic chemistry is being postulated. For example: "These equations
always contain autocatalysis, but we don't know many such processes." Such
matters need a hard look at the equations themselves. But in the absence of
complete analysis of nonlinear equations, computations can help. Here I
discuss the foregoing questions together.

Ideally, a reaction-diffusion model should be postulated first as a set of
chemical equations, putative steps in a reaction mechanism. Then the rate
equations should be written for this mechanism. This is not always done.
Often the model is written as rate equations, and one is left to infer the
chemistry. This can lead to misconceptions. Among these, perhaps the most
important is that a Turing reaction-diffusion model always requires an ex-
plicitly autocatalytic step in the reaction mechanism. Recently, acting as a
referee, I recommended acceptance of a paper claiming to show evidence for
reaction-diffusion. The other anonymous referee wrote: "A key aspect of all
reaction-diffusion mechanisms is the presence of some form of catalysis,
typically autocatalysis (hence the 'reaction' in the name)." The editor rejected
the paper.

In fact, the "reaction" in the name is not synonymous with autocatalysis.
What it signifies is what I have called the kinetic preconception or paradigm:
that pattern arises somehow or other out of rates of reaction, not out of
structural fitting or approach to equilibrium. For the kinetic equivalent of the
Turing equations to be obtainable by linearizing the rate equations about the
spatially uniform steady state, it is not necessary that the mechanism include
an explicit autocatalytic step. There are at least two examples of this in the
literature: Murray's (1981a,b, 1989) well-known modelling of mammalian
coat patterns, and a three-morphogen model of Meinhardt (1989). In the
latter, it is quite obvious in the equations that positive feedback is achieved by
an inhibition of an inhibition. This is mathematically equivalent to auto-
catalysis, in terms of the kind of dynamics occurring. It is not at all equivalent
to autocatalysis in terms of what any one molecular species is doing.

For the scientist whose thinking is molecularly oriented, there are two
messages here. First, in conformity with the major theme of this book, it can
help in understanding dynamics to try to think about dynamics only and quite
avoid the question of which molecules are doing what. Then one can appreci-
ate positive feedback as a "thing," an important "thing" which has to be
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present in a model to give it pattern-forming ability. When positive feedback
is thus separated from the molecular questions, it is quite irrelevant to intro-
duce the term "autocatalysis." The more general term is far superior.

But my second theme is the building of bridges between the dynamic level
and the molecular level. It is here that conceptual confusion may easily arise,
and classification is often an aid in avoiding confusion. Hence, it may help to
distinguish two categories: (1) that in which the positive feedback corresponds
to an explicit autocatalysis of one molecular species; (2) that in which there is
no explicit autocatalysis, and the positive feedback loop usually has to be
traced through the inhibitions.

It is also quite straightforward to devise reaction-diffusion models which do
not contain an explicit kinetic inhibitor. This, in fact, is the nature of the
mechanism described in most detail in this book, the Brusselator. There is no
explicit inhibition in the mechanism shown as equations (6.31a-d) and repeat-
ed as equations (9.14a-d). What happens instead is, in step c, the auto-
catalytic formation of X uses up Y. In the dynamics, this leads to Yplaying the
role of an inhibitor, because where X is large, the depletion of Y puts the
brakes on the rate of formation of X.

Here, then, is another source of quite dangerous confusion. Earlier in this
book (Section 2.6 and most of Chapter 7) I discussed Turing dynamics in
terms of a true kinetic inhibitor. To do its work of slowing down X production,
the inhibitor Y must be present in highest concentration where there is also the
most X. For such a substance, the biologist is wrong who says that "I've
found an activator at one end of the system; now I'm going to look for an
inhibitor at the other end." But if the dynamics involve depletion rather than
inhibition, the X and Y patterns will be out of phase with each other, and the
right place to look for Y is indeed where there is the least X.

Here, the classification, which Meinhardt (1982) has already pointed out, is
into (1) inhibition models and (2) depletion models. The distinction is readily
seen if one has either the chemical equations for the putative reaction mecha-
nism or the rate equations for true X and Y concentrations. If, however, one
has only the Turing equations for U and V (departures from uniform steady
state), it can still easily be seen whether the model is an inhibition or a
depletion model. Always, either k2 or k3 must be negative, and the other
positive [equations (7.1)]. For an inhibition model, k2 is negative, and com-
putations on these equations will give U and V in phase with each other. For a
depletion model, k3 is negative, and computations will give U and V out of
phase.

Thus far, this account has been concerned with properties which affect the
basic Turing-like behaviour of a model, that is, in algebraic terms, what is
necessary and sufficient for the model to yield the linear Turing equations
upon linearization about the spatially uniform steady state. What follows is
concerned with nonlinearities which give the nonlinear terms in U and V.
These are much more difficult to cope with mathematically. What is known
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about them is mostly from computer experiments on the behaviour of the
model. But these lead to some things which can be seen just by looking at the
equations.

First, there is the distinction which I have represented by the words "adapt-
able" and "headstrong" (Harrison, 1982); see the classification scheme in
Harrison (1987) and in Table 8.1. An adaptable model (e.g., the Brusselator)
is one which behaves much like the linear model, continuing to "know" its
linear wavelength when it is operating in its nonlinear regime, and therefore
regulating well to put the right number of evenly spaced pattern repeats within
the boundaries of the morphogenetic region. A headstrong model (e.g., the
Gierer-Meinhardt model) tends to stabilize peaks once they have been formed
and to allow their persistence in the face of production of new peaks in the
"wrong" places. Such a model is good for instances in which it is known that
interference with the system can lead to teratogenesis. The contrast between
adaptable and headstrong models has already been elaborated in Sections 3.2
and 3.3.

Can one look at the equations for a model and tell by inspection which kind
it is? There is as yet no definitive answer to this question, but I have a
tentative one. The Brusselator equations are given in Section 9.1, both as
equations in X and Y [equations (9.15)] and as equations in U and V [equations
(9.23) and (9.24)]. In either format, one can see that the nonlinearities in Y or
V are exactly equal and opposite to those in X or U. This corresponds to the
chemistry of the model. As discussed in detail in Section 9.1.1, the
Brusselator is derived from a type of mechanism taught in elementary chem-
ical kinetics courses in relation to balanced radical-chain reactions. These
often involve an alternation of steps in which there are two types of radical
intermediates. Whenever one is formed, the other is destroyed, and vice
versa. Therefore, these alternating steps cannot alter the total content of both
radicals together in the system. Likewise, in the Brusselator, the pattern-
forming steps exchange X for Y or Y for X but do not change the total in the
system. This means that a region of positive U (i.e., excess of X over nonpat-
terned level) somewhere in the system must be balanced by a region of
negative U somewhere else. The total sizes of activated and inhibited regions
are tied to each other; they must be equal. (This is for no-flux boundaries.) It
seems to me that the high regulatory capacity of the Brusselator is related to
this nature of its chemistry, which is seen in the rate equations by the equal
and opposite terms in U and V.

By contrast, the rate equations for Gierer and Meinhardt's A and H [Section
9.3.1, equations (9.39)] are quite different. The essence of the pattern-
forming ability lies in the fact that the rate of growth of activator H includes a
term in A2IH. The A2 represents the bimolecular autocatalysis; the \IH is its
inhibition. There is no corresponding term in the rate of growth of inhibitor//.
This implies a totally different chemistry from that of the Brusselator, related
to the fact that one is an inhibition model and the other a depletion model. The
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nonequivalent dynamics of activator and inhibitor in the Gierer-Meinhardt
model give it the power to represent "short-range activation, long-range
inhibition" and teratogenesis.

Computer experiments on reaction-diffusion models have often been done
for both one-dimensional and two-dimensional morphogenetic regions. Some
examples are given in Sections 9.2, 9.3, and 10.1. Two-dimensional work
often tests the models in ways which are both more severe and more infor-
mative. Especially, the question of whether a model generates a striped or a
spotted pattern in two dimensions is of great interest. [A referee for a grant
application of mine once scornfully indicated that this problem is so passe that
it is a topic for a problem in an undergraduate course in one institution. In the
world of reality, I have had a graduate student writing a Ph.D. thesis in
physics on one aspect of this problem (Lyons, 1991), and I would confidently
expect the question to be a prolific Ph.D. generator through the foreseeable
future.]

A general difference in properties between the solutions of linear equations
and those of nonlinear equations must here be appreciated. For linear equa-
tions, the sum of any two solutions is also a solution. This means that the two
physical entities represented by two solutions are noninteracting. They ignore
each other (just as molecules in a mixture of two perfect gases behave as if
each gas had the container to itself).

If the two solutions are spatial patterns, each with its own development in
time, then each will grow as if the other were not there. Suppose that the
morphogenetic region is square, with X and Y spatial coordinates, and the
patterns are of the form exp(/:g0sin(2/rrjc/X) and exp(/:g0sin(2iTv/X). These are
two patterns, crossed at right angles, each like the Cheshire Cat pattern of
Figure 6.1. If one of them is a solution of the kinetic equations, with particular
values of kg and X, then the other will also be a solution, with the same kg and
X. They will therefore grow at the same rate and together make a spotted
pattern.

On the other hand, for nonlinear equations it is not true that the sum of two
solutions is also a solution. This is equivalent to saying that the physical
entities represented by the solutions do not behave independently of each
other, but interact. It is no longer to be taken for granted that two similar
patterns, crossed at right angles, will grow at similar rates. Something al-
together different may happen, including the effective suppression of one of
the patterns, leaving the system striped instead of spotted.

What must be the characteristics of the nonlinearity in a model for it to be
good at making stripes without having to rely on strongly asymmetrizing
unidirectional gradients or asymmetric boundary conditions? Quite recently,
one property has become clear, both from computer experiments (Nagorcka,
1988; Lacalli, 1990; Lyons et al., 1990; Harrison and Lyons, in press) and,
with some degree of approximation, from two nonlinear analyses (Er-
mentrout, 1991; Lyons and Harrison, 1991). The models with the strongest
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striping tendency are those in which the growth rates of U and V are antisym-
metric in those variables (i.e., the growth rates change sign, but not magni-
tude, when the signs of U and V are simultaneously changed). Some years ago
I devised a model of this kind which was an extension of the optical-resolution
model (which has that symmetry) and which I described as hyperchirality
(Harrison and Lacalli, 1978). It turns out to have a strong ability to form
stripes. But in fact, some of the ways in which biologists discuss pattern
formation without mathematical analysis contain a concealed assumption
which also has the appropriate dynamic symmetry.

8.2.3 When can dynamics be classified as chiral?

A plot of a square-wave pattern of patches of opposite optical resolutions
looks the same if it is turned upside down (Figure 2.4c). To the structurally
minded scientist, this may seem to have no relevance to biology, except to the
speculative question of how spontaneous optical resolution occurred in the
remote past. It is well known that it did happen, so that for any chiral
biochemical, living organisms nowadays contain only one of the enantiomers.
The other is absent, and with it, surely, one half of Figure 2.4c must be
absent.

Once again, the essence of my discussion is to put molecular structure
completely out of mind and enquire only, What kind of dynamics can give rise
to a pattern such as Figure 2.4c? The answer can be put simply in very general
terms. The rate of growth of U (upward) at any point depends on the values of
U and V and on that property of the shape of the pattern which governs the
diffusion rate of U (second derivative in one dimension, Laplacian when
generalized to two or three dimensions). Suppose that any local piece of the
pattern is inverted through the point U = V = 0 (i.e., the signs of U and V are
changed without change in numerical values, and the local shape is inverted
so that the second derivatives likewise change sign). If the rate of formation of
U is thereby changed in sign but not magnitude, and if the same applies to the
rate of formation of V, then the positive and negative parts of the pattern will
have exactly the same dynamics when they are the same shape. This means
that the upward- and downward-facing parts of the pattern will indeed be the
same size and shape and will develop, quantitatively, in exactly the same way.

Mathematically, in regard to looking at the equations in U and V to see if
this condition exists, one must take note that quadratic terms such as £/2, V2,
and UV do not change sign with U and V, but cubic terms such as U3, V3,
U2V, and UV2 do change sign. If the equations contain only linear terms and
cubic nonlinear terms, the pattern will develop the same upward and down-
ward. The peaks and troughs of the pattern are symmetrically related as if
increase and decrease in U or V represented resolution to two optical enan-
tiomers, even if there is no such structural feature to be found in the molecules
concerned. This means that an effective chirality in the dynamics does not
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require, in molecular structure, the presence of both enantiomers of the same
substance.

Consider for instance, the model for optical resolution described in Section
5.3.2 in terms of an array of A's and B's. The letters A and B do not have
shapes which are related symmetrically as enantiomers, but they act in the
model as a pair of enantiomers would. When the system is analyzed mathe-
matically in Section 6.4.1, we see that the symmetrical relationship between A
and B lies in the dynamics of their rates of formation. Equations (6.56a,b)
contain the same rate constants, and each equation can be changed into the
other merely by interchanging A and B. This example is intended for the final
entrapment of the reader who is still trying to think structurally. Look at the
equations. See their symmetrical appearance. Recognize that it does not de-
pend on any relationship between the shapes of the symbols A and B. What
the equations signify is that a starting material S can be converted into either a
final state A or a different final state B with exactly the same dynamics. A and
B could be two different molecules, or the symbols could represent cell states,
with S as undifferentiated and A and B as two states of differentiation.

In the latter case, the model is for homeogenetic induction of cell states A
and B. Biologists often postulate induction, but do not often write down the
dynamic equations corresponding to the postulate. The absence of the equa-
tions effectively hides an important dynamic assumption: Induction to two
different states usually is assumed to take place over the same time interval
and therefore with essentially the same dynamics, quantitatively. This corre-
sponds to what one sees experimentally, such as (1) in the differentiation of
pre-spore and pre-stalk cells at the slug stage of Dictyostelium discoideum
(which does not, however, give equal space to the two parts of the pattern) and
(2) in the formation of pair-rule gene-expression stripes, such as the alternat-
ing stripes of expression of hairy and runt in Drosophila melanogaster. This
may be a case of chiral dynamics involving quite different proteins in the
alternating stripes.

In Section 9.2 I present my hyperchirality model (Harrison and Lacalli,
1978; Harrison, 1979). This uses a structural concept that a protein, itself
always of one chirality, might yet exhibit effective chiral asymmetry in two
modes of attachment to a membrane. But the proposed dynamics are far more
general than the structural suggestion. Dynamics such as those discussed
could arise from altogether different structures in which one cannot see any
geometrical chiral relationship; see Section 9.2.3.

The essence of the mathematical contrast is that the Brusselator model
contains quadratic nonlinearities and in two dimensions tends to give spotted
patterns. Force is needed, in the form of unidirectional gradients along the
system, to get the Brusselator to make stripes (Lacalli, Wilkinson, and Har-
rison, 1988). The hyperchirality model has only cubic nonlinearities and
makes stripes without the aid of gradients. In living organisms, gradients will



Classifications 263

tell the stripes which way to be oriented, but they do not have to force the
existence of the stripes.

Spotting and striping are general properties of dynamics respectively with
and without quadratic terms (Ermentrout, 1991; Lyons and Harrison, 1991).
What is more important - the absence of quadratic terms, or the chiral
asymmetry which gives rise to that? To my mind, it is the latter, because that
can lead us from the mathematics toward cellular and chemical mechanisms.



9
Nonlinear reaction-diffusion models

The term "nonlinear" is common parlance among physical scientists who
habitually discuss dynamics mathematically; it is not familiar language to
most biologists. Therefore, at the risk of repetition, I call attention again to
the fact that, in the most general sense of the term, everything in kinetic
theory of pattern formation (including reaction-diffusion, mechanochemistry,
and whatever other forms may be devised) fundamentally involves non-
linearity. The reason for this was given as succinctly as is possible by Mills, as
quoted in Section 5.3.1. This kind of nonlinearity, however, gives rise to the
linear terms in the Turing equations. In this chapter I am considering the roles
of the additional nonlinear terms which will always be present in the U, V rate
equations for the full representation of the dynamics of any realistic chem-
istry.

This account is highly selective. Only the two models with which I am most
familiar are discussed in detail, in Sections 9.1 and 9.2. One of the models
best known to experimentalists, that of Gierer and Meinhardt (1972), is given
much less space, for two reasons: first, I have written something about its
character in Section 3.3; second, it is not necessary to repeat the extensive
account given by Meinhardt (1982). There is no intention here to rank models
in order of importance by the amount of space given to them. My purpose in
this book is to elucidate general principles which I believe developmental
biologists should be using and, for the most part, are not. It will be time for a
comprehensive, balanced survey of numerous models when more people have
been using them for some time and the biologist habitually thinks about what
kind of dynamic mechanisms are present just as much as what proteins are
present. The terms in equations have functions in the organism, as groups of
amino acids do. Here is an a-helix; it helps to make the protein span a
membrane. Here is a cubic term; it helps the organism to make stripes. [Lewis
Held (1992) has published a very extensive literature survey, from a viewpoint
somewhat similar to mine except that his philosophical orientation is more
toward the computability of developmental models than to their expressibility
in mathematical form.]

264
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9.1 The Brusselator

9A.I Chemical nature of the model (1): elementary
two-intermediate schemes

The Brusselator mechanism arises from one of the best-known types of reac-
tion schemes in elementary chemical kinetics. An appreciation of this may
help the biologist to understand why physical chemists may persist in believ-
ing in type II morphogens although they have proved notoriously difficult to
isolate. The hypothetical morphogens X and Y in the Brusselator are in fact
kinetic analogues, not of stable reactants and products, but of the unstable
intermediates, or free radicals, in elementary schemes for simple organic
decompositions. These are not substances that one expects to be able to keep
in a bottle, or even to keep for half an hour without a continuously operating
source.

Many decompositions of small organic molecules (as well as some simple
inorganic reactions) share the common feature of an alternation of steps in
which one radical R is destroyed and there is simultaneous production of a
different one, Rf, and vice versa in the alternate step. Standard textbook
examples are the gas-phase decompositions

C 2 H 6 ^ C 2 H 4 + H2 (9.1)

and

(C2H5)2O -> CH3CHO + C2H6. (9.2)

In the first of these, the alternating radicals are H and C2H5 in the steps

H* + C2H6-> * C2H5 + H2, (9.3a)

C2H5-» H' + C2H4. (9.3b)

In the other, they are again C2H5 (written Et' below) and CH3CHOEt:

Et2O 4- Ef -> CH3CHOEt + C2H6, (9.4a)

CH3CHOEt -> Et' + CH3CHO. (9.4b)

In each of these examples, one of the radicals, with no other reactant, decom-
poses to generate the other. This corresponds to the reaction Y —» X which is a
step in various of the Brusselator-type schemes.

Pairs of reaction steps such as equations (9.3) or (9.4) have the property
that as they occur repeatedly, converting large numbers of molecules of reac-
tants into products, the number of radicals present is conserved. How fast the
overall reaction proceeds depends on the steady-state concentrations of radi-
cals, which must evidently be controlled by a balance of production and
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destruction processes, neither of which has yet been specified in the exam-
ples. These intermediates may be produced in a variety of ways, from the
principal reactants, or from some other substance present in much smaller
quantity and serving only as a radical initiator. Complete reaction schemes
therefore vary quite a lot in detail. The closest correspondence to the
Brusselator is in the scheme

uct, (9.5a)

(9.5b)

(9.5c)

Termination: R —> by-product. (9.5d)

What is the overall reaction to which this scheme refers? The indication that
the first and fourth steps give only by-products suggests that the other two
steps occur much more often, and hence that the overall reaction is

B^D 4- E. (9.6)

This corresponds to the examples of simple decompositions given earlier.
Such processes are called unbranched chain reactions. If, however, one de-
letes the two indications of by-product formation, it is possible to envisage all
four steps going at similar rates, so that A and B are consumed in comparable
quantities, and the overall reaction is

A + B -* D + E. (9.7)

The Brusselator is often thought of in these terms, and the product E may be
indicated as appearing in the fourth step rather than the third, with no impor-
tant feature of the mechanism being changed thereby.

Kinetic analysis of such a mechanism is usually carried out by the steady-
state method. In this, one writes rate equations for the rates of change of
concentrations of the intermediates R and R', and one sets each of these rates
equal to zero. The chemist commonly calls this procedure an approximation,
which it is for the common laboratory situation of a reaction going on in a
closed reaction vessel. In that case, A and B are being used up, and because
the "steady-state" concentrations R and R' depend on A and B, they cannot
truly be steady.

In a flow system, however, it is possible to envisage such a reaction scheme
as a small part of a much larger complex of processes in which homeostatic
control operates to supply reactants and remove products at such rates that
their concentrations stay constant. The steady-state treatment is then exact.
But one may expect it still to be only an approximation in the nonhomeostatic
conditions of a developing system.

For reactions (9.5),

dR/dt = aA - bBR + cR' - Rd = 0 in steady state, (9.8a)

dR'Idt = bBR - cR' = 0 in steady state. (9.8b)
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If we add these two equations, the two propagating steps cancel out, and we
are left with the rather obvious result that the steady-state concentration ofR is
determined simply by a balance between its production in the initiating step
and its destruction in the termination step:

aA - Rd = 0, (9.9)

R = aAld. (9.10)

By substitution in equation (9.8b) we can find the steady-state value:

Rf = (ablcd)(AB). (9.11)

But without finding R' we could determine from R the overall rate of the
reaction, which is the same thing as the rate of reaction (9.5b), the only source
of product D:

reaction rate = -dBldt = dDldt = bBR
= (ab/d)(AB). (9.12)

The role of the third step, reaction (9.5c), is particularly interesting, be-
cause this is the one which is altered to an autocatalytic step to turn the whole
scheme into the Brusselator. Equation (9.12) shows that the rate constant c of
this step does not appear in the expression for the overall reaction rate. We
saw earlier [Section 6.3.1, derivation of equation (6.30)] that the rate constant
for an autocatalytic step, which is all-important in giving a system the ability
to move away from equilibrium, may not actually appear in the rate of
departure from equilibrium. We should now be prepared to find the same
feature in this more complicated example.

One important feature of such mechanistic schemes is not well shown by
the foregoing example. It is quite unsurprising that the overall reaction rate
turned out to be first-order in both A and B, but equally simple-looking
schemes can give much less obvious dependences. Suppose, for instance, that
the overall reaction is

B + C^D + £, (9.13)

reactant B being consumed in one of the propagating steps, and reactant C in
the other. A possible mechanism can be written merely by adding the reac-
tant C to reaction (9.5c) and leaving everything else unchanged. It is then
assumed that A is an initiator present in very small quantity compared with
B and C.

The steady-state analysis need not be set out in detail. The rate of reaction
(9.5c) is amended to cCR', and the treatment is as before, except that c is
multiplied by C wherever it occurs. Because c disappeared in the derivation of
the overall rate expression, so does C, and the reaction turns out to be first-
order in reactant B, but zero-order in reactant C.
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9.1.2 Chemical nature of the model (2): the Brusselator itself

The Brusselator mechanism is usually written with six symbols for three pairs
of chemical substances: A and B, the initial reactants or morphogen precur-
sors; X and y, the intermediates or morphogens; and D and E, the final
products. Commonly, the entire discussion concerns A, B, X, and Y, and the
two products are not mentioned at all beyond their preliminary inclusion in the
set of chemical equations. Thus X and Y often may seem to be regarded as
both intermediates and products, which amounts to equivocation about their
long-term stability.

An experimentalist who discovers some phenomenon which might loosely
be called activation or inhibition, and who has any inclination at all to try to
relate this to reaction-diffusion, is likely to seek a correlation of the activating
and inhibiting substances with X and Y. A major aim of the present account of
the Brusselator is to establish, for this example and by implication for other
reaction-diffusion mechanisms, that such experimental properties may belong
as much to the precursors A and B as to the morphogens X and Y. When
interpreting data, one should be very careful as to which of these pairs one
thinks one has found. The present section analyzes algebraically how A and B
may appear to be activator and inhibitor. The matter is taken up again in the
discussion of Acetabularia morphogenesis in Section 10.1.

The preceding discussion relevant to equation (9.13) shows us that a rela-
tion between two reactants B and C which looks quite symmetric in the overall
stoichiometric equation may altogether lack that symmetry in the detailed
mechanism. The significance of this for our purpose is that two morphogen
precursors may have contrasting control effects, which are relatively easy to
predict or explain mathematically, but which are not at all obvious without the
algebra. Such effects often involve threshold concentrations for pattern forma-
tion.

In this connection, two kinds of thresholds should be distinguished. In
Chapter 6 I discussed thresholds which must be passed to ensure that pattern
formation does not violate the second law of thermodynamics. To conduct that
discussion, one must write every step in the mechanism as a reversible reac-
tion. Such an analysis is complicated enough for the simple optical-resolution
mechanism. Models such as the Brusselator are often extensively discussed
with the steps indicated as going forward only. It is then tacitly assumed that
the equilibrium constant for each step is so large that the thermodynamic
criterion is easily satisfied by quite low reactant concentrations, and need not
be discussed further.

The other type of threshold is concerned with the satisfaction of Turing's
conditions (Section 7.3), that is, the crossing of any of the boundary lines in
Figure 7.5. Of these, the two most important are those marked a and b, which
enclose all the areas in which anything interesting occurs (i.e., any behaviour
of either time-periodic or space-periodic kind). The parameter space of that
diagram consists of the parameters k\ and k'4 derived from the four Turing
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constants kx-k4. In the following account of the Brusselator, I start with four
rate constants a, b, c, and d and two reactant concentrations A and B, as in the
preceding elementary example of equations (9.5). I go on to show that the
Turing constants can be expressed in terms of these six parameters. One of
the outcomes of this analysis is that reactant concentrations A and B can easily
be chosen to put the system entirely outside the interesting region of Figure
7.5, but that it may then be moved into the region of morphogenetic behaviour
by increasing B or decreasing A. Thus we see that B may appear to be an
activator, and A an inhibitor, for pattern formation, although neither is a
morphogen in the sense that X and Y are morphogens.

The earliest description of the Brusselator of which I am aware was by
Prigogine (1967). More often, the reference given for this model is Prigogine
and Lefever (1968), which was the first extensive account of the kinetic
properties of the model. Nicolis and Prigogine (1977) gave a very extensive
account.

The Brusselator mechanism is

Initiation:
Propagation:

Termination:

B +

Y +

A-+

X^

2X->
X^

X
Y + L
3X

E

(rate constant = a),

> (rate constant = b),

(rate constant = c),

(rate constant = d).

(9.14a)

(9.14b)

(9.14c)

(9.14d)

The autocatalytic step (9.14c) is written as being bimolecular in X to imply
second-order dependence on the concentration of X as a catalyst. The two
intermediates X and Y are considered to be diffusible, with, as usual, Y
diffusing faster than X. The rate equations for X and Y, corresponding to those
given for R and Rr in equations (9.8), but with diffusion added, are

dX/dt = aA - bBX + cX2Y - Xd + %d2X/ds2, (9.15a)

dY/dt = bBX - cX2Y + %d2Ylds2. (9.15b)

To find the spatially uniform steady-state concentrations Xo and Yo, omit the
diffusion terms from equations (9.15) and go through the same procedure used
in deriving the concentrations R and R', equations (9.10) and (9.11), from
equations (9.8). On setting each of equations (9.15a) and (9.15b) equal to
zero and adding them, one sees very easily that

Xo = aA/d. (9.16)

Then, upon substitution in equation (9.15b),

y0 = bB/cX0 = (bd/ac)(B/A). (9.17)

The inverse dependence of Yo upon A is a conspicuous difference from the
corresponding expression for/?' in equation (9.11). This change is obviously
caused by the introduction of the X2 autocatalytic term. A similar effect of this
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term carries through into the derivation of the Turing constants for this mecha-
nism. In the event, this explains the "upside-down" nature of the threshold
condition for the localized pattern in Figure 9.1. There, pattern is produced
only where A is below some threshold value, which is quite the opposite to the
kind of thermodynamic threshold effect discussed in Chapter 6.

Continuing to omit the diffusion terms just for convenience, because we
wish to do algebra only on the chemical kinetic terms, we may write the
displacements from equilibrium, as usual,

U = X - Xo and V = Y - Yo. (9.18)

Because Xo and Yo are constants, any time or space derivative of U is equal to
the same derivative of X, and likewise for V and Y. Equations (9.15) become

dU/dt = aA- bB(U + Xo) + c(U + X0)2(V + Yo) - (U + X0)d, (9.19)

where 0 = aA - bBX0 + cXlY0 - Xod, (9.20)

dV/dt = bB(U + Xo) - c(U + X0)2(V + Yo), (9.21)

where 0 = bBX0 - cX2Y0. (9.22)

These equations contain terms in U and V and also some more complicated
(nonlinear) functions. The procedure of "linearization about the spatially
uniform steady state" consists of retaining only the terms in U and V and
ignoring all the rest (i.e., the terms in UV, U2, and U2V). If the system is
initially in the spatially uniform steady state, U = V = 0 everywhere, and
starts to depart from it toward small positive and negative values of U and V,
the linear terms will at first be much larger than the nonlinear ones. It is then
legitimate to ignore the latter. The result is that the equations for rates of
change of U and V become Turing's equations. This implies that the depar-
tures from spatial uniformity will grow exponentially in time if we have
chosen parameter values which let them grow at all. But as U and V depart
increasingly from zero, the terms in UV, U2, and U2V begin to catch up in
magnitude to the linear terms, and the approximation breaks down. This
passage into the nonlinear regime has among its properties a slowdown and
ultimately complete cessation of the growth of pattern amplitude, so that a
stable nonuniform spatial distribution of material is established.

The equations, including the nonlinear terms, but with the diffusion terms
omitted, are

BUIdt = (bB - d)U + (a2A2c/d2)V + (2aAc/d)UV + (bBd/aA)U2 + cU2V, (9.23)

dV/dt = ~(bB)U - (a2A2cfd2)V - (2aAc/d)UV - (bBd/aA)U2 - cU2V, (9 .24)

linear Turing equations nonlinear terms

dU/dt= kxU + k2V, (9.25)

dv/dt= k3u + k4v. (9.26)
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The rate constants a, b, c, and d for individual steps of the reaction mecha-
nism are necessarily positive; so are the reactant concentrations A and B. It is
evident from the preceding equations that the four Turing constants kl9 k2, k3,
and k4 are not rate constants as that term is normally understood in elementary
chemical kinetics. First, they are pseudo-constants containing the reactant
concentrations A and B, and therefore are constant only in the conditions of
homeostatic control of A and B. Second, the Turing constants are not neces-
sarily all positive. In fact, k3 and k4 are always negative in this mechanism.
Thus, for all possible values of a, b, c, d, A, and/? the mechanism automati-
cally assures the satisfaction of two important conditions for morphogenetic
capability: k2 and k3 are of opposite signs, and k4 (and hence k'A) is negative. It
is not automatic that kx is positive. This depends on the comparative values of
bB and d and requires a sufficiently high concentration of reactant B.

The reader, having perceived from the foregoing that the Turing equations,
with parameters kx-k4, are at a long abstraction from the simple-looking
chemical reaction scheme, may wonder if the mathematical analysis is un-
necessarily cumbersome. It is not, if one happens to possess a computer.
Without the translation of terminology represented by equations (9.23) to
(9.26), and the consequent possibility of working back from the Turing condi-
tions in Section 7.3 to the values of a, b, c, d, A, and/?, one is working almost
blind in selecting such values for computations.

This is largely because the computer and its program for solving the equa-
tions, plus the input (such as values of parameters) supplied to the program,
together are not isomorphous with the living developmental system and are
operating quite differently. Solving differential equations with a computer is a
different matter altogether from direct simulation. In the latter, the computer
does operate in a manner isomorphous with the living process. The model is not
converted into equations, but is used directly. For instance, the computations on
optical resolution in Chapter 5 (with paper and pencil, leading to Figure 5.6,
and with a microcomputer, leading to Figure 5.7) are of that kind. I did, in fact,
essentially work blind in setting up the scheme of relative rates used.

Even the conversion of a model directly into a simulation is not always
enough to ensure that all necessary conditions are satisfied for the kind of
behaviour desired. Only some of the conditions convert, as discussed in
Section 7.3.2, into a simple assertion that certain features of the model exist.
Others remain a matter of choosing appropriate numerical values for the
parameters. For a two-morphogen model, I could not do this without the
mathematical analysis.

Prigogine and his collaborators have presented extensive illustrations of
the behaviour of the Brusselator, setting a = b = c = d= 1. This rather
sweeping-looking assumption is in fact not restrictive at all. In effect, the
values of the rate constants have been rolled into the parameters A and B.
Variation of these two can be used to explore the whole of parameter space,
and hence the full range of behaviour of the model. Table 9.1 shows the
general expressions for the Turing parameters of the Brusselator, and the
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Table 9.1. Turing parameters for the Brusselator in terms
of the rate constants and reactant concentrations in the mechanism

Turing
parameter

* i
k2
k3

K
k[ = k^kl 3

k'4 = kjkcr

General expression for the
Brusselator model

bB - d
a2A2cld2

-bB
-a2A2cld2

(bBc)l/2(aAld)
(bBlc)l/2(dlaA)(\ - dlbB)
-(c/bB)l/2(aAld)
- (1 - dlbB)

Expressions for
unit values of a,
b, c, and d

B - 1
A2

-B
-A2

Bl/2A
(Bl/2IA)(l - \IB)
-AIBl/2

-(1 - \IB)

values with this simplification. The latter enable one to see rather clearly the
roles of the reactant concentrations in determining whether or not the various
Turing conditions discussed in Section 7.3 are fulfilled. For instance, the
lower boundary to all regions with morphogenetic capacity in Figure 7.5 (line
b) has a position which depends somewhat on the diffusivity ratio. But for
reasonable values of that quantity, it indicates that values of k'4 below about
—2.5 (i.e., numerically larger negative values) are quite unfavourable for
morphogenesis. Nicolis and Prigogine (1977, sect. 7.11), following Hersch-
kowitz-Kaufman (1975), have discussed how A and B supplies may work to
keep the pattern-forming region confined to a part of the whole area of the
organism potentially available. This illustration starts from the values A = 14,
B = 24, for which k4 = -A/Bl/2 = -2.857, a very unpromising value for
morphogenesis.

Let us now look at what happens when either A or B is held constant while
the other of them is changed. Movement of k'4 upward into the morphogenetic
region needs either a decrease of A or an increase of B. If one discovers a pair
of substances which seem to be promising candidates for the style and title of
morphogen, and one finds that morphogenesis is switched on by decreasing
the concentration of one of them, it seems reasonable to label that substance
an inhibitor; conversely, a substance which switches morphogenesis on when
its concentration is raised may equally reasonably be termed an activator. But
these could be the AB pair, not the XY pair.

9.1.3 Pattern localization: its control
by reactant concentrations

To illustrate pattern localization, Nicolis and Prigogine assume that B is
constant throughout the system, but that A is distributed in a steady-state



Nonlinear reaction-diffusion models 273

10

0.5

X -

10 -

5 -
•

V V V
v v/

0.5

Figure 9.1. Localization of the pattern-forming region; results of computations from
Herschkowitz-Kaufman 1975). Boundary conditions are specified at the ends (s = 0
and s = 1), but pattern-forming is confined to a central part of that region: in (a) about
50% of the overall length, and in (b) about 70%. The model for formation of complex
short-wavelength pattern is the Brusselator, with a=b=c=d= \,$)x = 1.052 x
10~3, and %y = 5%. The reactant A is also diffusible, with 2>A = 0.1972. It is
maintained at A = 14 at both ends, but falls to a minimum at the centre of the system
because of first-order decay (Figure 9.2; compare Section 6.3.1). The reactant B is
uniform across the system: (a) B = 24; (b) B = 30. From Herschkowitz-Kaufman
(1975), with permission.

gradient. This has a maximum (A = 14) at both ends and a minimum in the
middle. Somewhere between the ends and the middle, A is small enough in
relation to the constant value of B to move the system into the morphogenetic
region. The results of their computations, for B = 24 and B = 30, are shown
in Figure 9.1.

The account given by those authors of the threshold condition which ex-
plains this localization is complex and difficult to follow, and it appears to
suggest that the condition needed to limit pattern in Figure 9. lb to 70% of the
length of the system is different from that which limits pattern in Figure 9.1a
to 50% of the length of the system. Both can be understood as manifestations
of the same threshold condition in a much simpler way in relation to the
Lacalli-Harrison k[, kf

4 diagram (Figure 7.5, redrawn for diffusivity ratio
n = 5) of Turing's conditions (Figure 9.2).
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Figure 9.2. The Turing conditions in (k[, ty space, as in Figure 7.5, but redrawn for
diffusivity ratio n = 5. The important morphogenetic regions C and D are shaded. The
line of arrows is the trajectory of the representative point for constant B and decreasing
A. For B = 24, A falling from 14 to 8.2, the trajectory is from Sa to Ea; for B = 30 and
the same A limits, Sb to Eb. The curves B = 24 and B = 30 are so close together that
they can be drawn here as one curve.

From the expressions for k\ and k\ in the Brusselator model with unit values
of the rate constants (Table 9.1), these constants are related by

*; = - ( ! - \IB)lk' (9.27)

The values of B in the calculations illustrating localized pattern are much
greater than unity (24 and 30), so that the constant 1 - 1/5 is very close to
unity (0.958 and 0.967). The curve (9.27) is a hyperbola which lies only a
short distance above the hyperbola

k\ = -\lk'A. (9.28)

The latter is, of course, Turing's condition, equation (7.27f) and l ine / in
Figure 7.5, which gives a two-morphogen model its band-pass character. A
hyperbola just above this one passes right through the most important mor-
phogenetic regions (C and D, Figure 7.5 and 9.2, shaded in the latter).
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Figure 9.3. Steady-state distribution of A for a source maintaining A = 14 at both ends
of the system, unit value for the first-order decay constant of A everywhere, and
diffusivity of A as mentioned for Figure 9.1. The broken lines indicate that A < 9.7 for
50% of system length, and A < 11.0 for 70% of system length. These are the extents
of pattern in Figure 9. la,b and were found in Nicolis and Prigogine's computation for
B — 24 and B = 30, respectively. Mathematically, this A distribution makes the Turing
parameters k2 and k4 position-dependent (see Table 9.1). Analysis of the Turing equa-
tions is then a different matter from the analysis of the usual Turing equation with
space-independent parameters. To be rigorous about this, Hunding (1989) refers to
"Turing patterns of the second kind" when a gradient input is present. In computer
experiments, linear analysis based on local values of the graded variable (A, in this
figure) seems usually to have given the right indications of what behaviour will be
found.

The model distribution of A is shown in Figure 9.3. From one end of the
system to the middle, A drops from 14 to 8.2. This corresponds to the
combined effects of diffusion and first-order decay:

dA/dt = -kA + 3 A d2A/ds2 = 0 in steady state, (9.29)

with k = 1.
If B = 24 and A falls from its value at s = 0 to its minimum at s = 0.5, the

representative point in Figure 9.2 moves up the hyperbola from Sa to Ea and
enters the downward-pointing "horn" of the morphogenetic region close to
point C. If B = 30, the trajectory is from Sb to Eb. The point C was marked as
follows: In Figure 9.3, if pattern is to occupy 50% of system length, the
threshold of A must be 9.7 for B = 24. Likewise, at B = 30, if pattern is to
occupy 70% of system length, A = 11.0. These two conditions turn out to be
almost the same, that is, point C, in Figure 9.2. It is a good approximation to
the point of entry to the morphogenetic region.

9.1.4 The joining of models in sequence

Control of a morphogenetic event by a precursor, or input, which has itself
acquired nonuniform distribution in a previous morphogenetic event may have
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very broad strategic significance in biological development. My own research
on tip growth in plants (see Section 10.1) provides experimental phenomena
which make clear demands of this kind upon theoretical explanation. While a
rounded growing tip works to elongate a cylindrical cell, the boundary of this
morphogenetic region, where dome joins cylinder, moves in pace with the
growth. This movement needs a model, linked to the one for growth. When,
at such a tip, a more complex event occurs, such as the formation of a whorl,
it is extremely difficult (however diligently one wields Ockham's razor) to
model the event with anything so primitive as a single two-morphogen reac-
tion-diffusion model. At least two of these in sequence seem to be needed.

Such joining together of processes in sequence is merely, on a grander
scale, what the kineticist always does in writing a multistep mechanism such
as the Brusselator. The concept of a chemical reaction being established, with
reactants and products and rates of change of the one into the other, one next
perceives that the product of one reaction can be reactant for another, and that
this can have profound consequences in regard to overall rates of change.

My use of the word "sequence" in this section somewhat confuses the
concept of a time sequence and that of a logical sequence of processes, such
as steps in a reaction mechanism which are joined in a certain order but which
are envisaged as all continuously and simultaneously in operation. Such con-
fusion is usually legitimate and is not troublesome in discussing multistep
processes. An effective time sequence is often implicit in a logical sequence.
For instance, often the concentration of a reaction intermediate rises, passes
through a maximum, and then falls. Thus, at different stages the formation or
destruction processes for the intermediate appear to dominate, although all of
them actually operate continuously.

The localization of pattern-forming action discussed in the preceding sec-
tion is our first example of joining entire morphogenetic models in sequence,
and it deserves strategic analysis. No less than four complex events are in-
volved:

1. At the two ends of the system, s = 0 and 1, localized sources of reactant A
have somehow become established. To postulate the presence of such
sources with no explanation whatever of why they are where they are
jumps right over an important morphogenetic event preceding the one of
immediate interest.

2. The sources of A have achieved homeostasis in their operation, so that they
deliver A always at the constant concentration A = 14 used in the computa-
tions. This illustrates that models for development and models for homeo-
stasis must sometimes be envisaged as linked.

3. Reactant A undergoes a morphogenetic process which distributes it in a
simple spatial pattern, as shown in Figure 9.3. The symmetry of this
reflects the symmetry of placement of the two sources. But the quantitative
aspect, the depth of the central minimum, is very important in defining



Nonlinear reaction-diffusion models 277

quantitatively the extent of the pattern-forming region for the next stage in
the sequence. The power to do this is conferred by the first-order decay of
A, and as stressed in Section 2.1, this is the first step from passive involve-
ment of A as a messenger toward an active role as a morphogen. The
reaction-diffusion rate equation (9.29) is linear, but predicts a steady-state
distribution of A. This may appear at first glance to contradict my assertion
(Section 9.1) that differential rate equations arising from realistic reaction
mechanisms will always be nonlinear. This takes us back to stages 1 and 2.
No reaction scheme has been written down for the operation of sources of
A and for its homeostasis, or steady-state behaviour. If this were done in
any realistic manner, the equations would be nonlinear.

4. Reactant A is the start of the Brusselator mechanism, which is the only part
of this sequence specified in full mechanistic detail and shown to be
capable of generating complex pattern.

In such sequences it is not at all necessary that the earlier stages be mecha-
nistically simpler than the later, as might seem to be implied by stages 3 and 4
of the present example. In fact, stages 1 and 2 may readily need something at
least as complicated as the Brusselator for anything like a complete explana-
tion. In Chapter 10 I present my own work on whorl formation, in which a
pair of two-morphogen reaction-diffusion models are used in places in the
sequence corresponding roughly to stages 3 and 4 of the preceding strategy.
The one occupying the position of stage 3 is the Brusselator. In the following
stage, I have been able to get a long way by using only a linear Turing model.
Thus the more complex model, which is also the one more completely spec-
ified chemically, appears earlier than the last stage. This will often be neces-
sary, because one needs for the early stages some representation of outputs
reaching a steady state. Otherwise, one has something hopelessly unstable to
feed into the last stage as input.

The sequential or hierarchical ordering of the events to be explained is, of
course, a consistent theme of embryology; see Figure 5.1 and, for much more
information, Slack (1983). But models such as a monotonic gradient and a
two-morphogen pattern-former can be linked not only in series but also in
parallel; see Nagorcka and Mooney (1982, 1985).

Lacalli (1981) presented the same concept in a somewhat veiled way,
because he did not explicitly discuss how the nonuniform distribution of
precursor might arise. In a number of calculations on the increase of pattern
complexity in a growing one-dimensional system, he used a modified
Brusselator model (Tyson and Light, 1973) and, instead of using an ordinary
boundary condition, specified a gradient in the parameter b across the system,
with either a maximum or a minimum at the centre. He wrote that "in living
organisms, boundaries do not always clearly separate the parts of a tissue or
cell involved in pattern formation from those that are not. The use of param-
eter gradients may be the most appropriate means of dealing with such situa-
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tions. Parameter values capable of supporting a pattern in one part of the
system would gradually reduce to values incapable of generating pattern in
surrounding parts of the system." He gave no model for this spatial variation
of parameters except to remark, earlier in the same paper, that "rate constants
may contain concealed concentration dependence . . . and could therefore
vary across the system."

Lacalli in fact used unit reactant concentrations in his computations, and his
b parameter is really bB in the present terminology. Spatial variation of this
across the system could therefore be achieved by a mechanism for nonuniform
distribution of the reactant B, parallel to the case of nonuniform distribution of
A presented earlier from Nicolis and Prigogine, and to my whorl-formation
model (Harrison et al., 1981; Harrison and Hillier, 1985). A feature of this not
present in the examples described earlier is reduction in dimensionality of the
morphogenetic field (Harrison 1982). Patterns on a two-dimensional surface,
which a growing tip is, effectively, tend to be rather poorly controlled unless
they are rather simple. Production of a simple pattern of precursor confines
the following complex pattern formation (the whorl) to a ring, effectively a
one-dimensional region, in which control of complicated pattern is much
easier.

9.1.5 The "adaptable" character of the Brusselator

When a reaction-diffusion model has been put into the computer and values of
X and Y have been set at their spatially uniform steady-state values Xo and Yo
(or U and V have everywhere been set to zero), and some initial random
fluctuations have been put on top of this uniformity, then one knows what is
going to happen as the dynamics are allowed to run for a short time. The
model will initially behave as a linear Turing model, and the separation of
maxima in the pattern can be calculated from the linear Turing wavelength. At
longer times, when U and V have grown so that nonlinear terms become
significant, there is no a priori reason why the model should still "know" its
linear wavelength. But if it has started out with the "right" number of parts in
the pattern (i.e., that given by linear analysis), one expects that the model will
not easily change the number of parts later. Each part may change somewhat
in shape, so that the pattern is no longer a simple sine wave, but the length of a
pattern repeat will not change.

Suppose now that a computation has been run long enough to reach a steady
state and that some change is then made which, according to linear analysis,
should give a different pattern. Will the established pattern start to change,
leading eventually to that different pattern, or will it not? No general analyti-
cal solution is known to this problem. One has to rely on the computer
experiments for answers. In our experience in this laboratory, and also that of
Lacalli (1981), the Brusselator has a quite astonishing capacity to find its way
from one pattern to another, as linear analysis would predict, when the start-



Nonlinear reaction-diffusion models 279

ing point is in the nonlinear regime. Figure 9.4 shows some plots of X
morphogen patterns along a one-dimensional system. When the length is one
linear wavelength, pattern develops from (a) random input to (b) a steady-state
pattern of one central peak. If when that steady state has been reached the
parameter values are changed to simulate a sudden stretch of the system to
two wavelengths long, development of two peaks occurs by a dichotomous
branching of the single peak. Part (c) shows an early stage in the change. But
what happens if one similarly stretches the system from one wavelength to
three wavelengths? At first, (d), the peak again branches dichotomously, as if
to make two peaks. But this is followed, (e) and (f), by change at the
boundaries. In this particular computation, a pattern of one central maximum
has eventually changed to a pattern with three minima. The pattern unit has
been made into three units by an inversion of it. (One could also say that it is
still the same way up, but one peak has been split so that it is seen at both
ends.) Lacalli (1981, Figure 5), using one of Tyson's variants of the
Brusselator model, obtained in the same kind of computation a split of one
peak into three without inversion, by repeated branching at the centre. One
may look at the stages of either of these computations for a long time and
wonder how the mechanism is managing to count to three. It is not at all
obvious. The development looks uncannily as if the model is capable of
planning ahead by abstract reasoning, as a human designer would.

In fact, what is going on illustrates an important duality in the character of
reaction-diffusion mechanisms. In one sense, the whole pattern is an interact-
ing entity. But here, parts of it are changing semi-independently to make a
pattern repeat wherever there is a long enough space not occupied by one. In
Figure 9.4d there is too long a flat region at each end, so something must
happen. In Lacalli's computation, too long a flat region developed in the
middle, which therefore had to produce a new pattern unit. That is how the
mechanism counts parts. But they all continue to interact with each other, so
that they place themselves correctly along the length of the system. This dual
character of semiautonomous parts which yet belong to an interacting whole is
very relevant to Drosophila segmentation (Section 10.2).

The kind of test shown in Figure 9.4 is quite severe, because it requires a
readjustment of pattern to start from the extreme limit of nonlinear behaviour,
the steady state. But it is by no means the most severe test which can be
devised. Lacalli (1981) compared the abilities of the Brusselator (in one of
Tyson's modifications) and the Gierer-Meinhardt model to produce a regular
hexagonal array of spots in two dimensions. It is general experience from
computer experiments (e.g., Murray, 1981 a,b) that two dimensions provide
much more scope than does one for a pattern to "go wrong."

The Brusselator did produce a regular array; the Gierer-Meinhardt model
did not (Figure 9.5a,b). The obvious curvature everywhere, both on the peaks
and in between them, in part (a), is in striking contrast to the flat, "long-
range-inhibition" regions in (b). This correlates with the contrast discussed in
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Figure 9.4. The Bmsselator for a one-dimensional system. Pattern change from one
steady state to another when the length of the system is suddenly changed, (a) Random
input, (b) Steady-state pattern for a system one wavelength long, (c) Beginning of the
change from (b) when the length of the system is doubled, (d-f) Stages in the change
from (b) to a three-repeat pattern when the length is suddenly tripled.

Figure 9.5. Lacalli's (1981) computations of progress toward a regular hexagonal
array, from random input, in a two-dimensional system in which the growth mecha-
nism is (a) Tyson's modification of the Bmsselator or (b) the Gierer-Meinhardt (G-M)
model. Vertical relief is concentration of the activator morphogen X or U (Bmsselator)
or A (G-M model). New random input was introduced continuously, and computation
was continued until the array of peaks was unchanging on further iteration. From
Lacalli (1981), with permission.
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Chapter 3 between regulatory behaviour (Section 3.2), for which the Brussela-
tor would be a good mechanism, and teratogenesis, for which the Gierer-
Meinhardt model is superior (Section 3.3).

Reaction-diffusion mathematics is usually discussed in the continuum ap-
proximation: Chemical substances have concentrations which are continuous
functions of position and time, and one may ascribe mechanistically important
roles to the slopes and curvatures of these functions, as I did in the preceding
paragraph. For computations, the programmer is obliged to approximate these
continuous variables by a finite number of discrete points, but is usually
careful to use a fairly large number of points for spatial position within each
wavelength of the pattern.

Nature is not always so careful. If the points in a computation are supposed
to represent cells or nuclei in the real system, there may be very few of them
to a wavelength. Continuum diffusion may be replaced, for instance, by cell-
to-cell exchange via gap junctions, with each cell being effectively a well-
stirred compartment. Wolk et al. (1974) and Wolk and Quine (1975) pointed
out, in relation to the spacing of heterocysts in the cyanophyte Anabaena, that
the appropriate unit for diffusion distance in multicellular organisms is the
cell. Even in a syncytium, with a diffusion continuum between nuclei, the
localization of crucial steps in developmental chemistry at the nuclei may
amount to coarse compartmenting of a pattern unit. The syncytial blastoderm
of Drosophila melanogaster is a good instance. At the time when the segmen-
tation pattern of the insect is first generated as a set of stripes of expression of
some pair-rule genes, each stripe is only three or four rows of nuclei wide; see
the cover illustration on the book by Gilbert (1988).

What happens if one does a one-dimensional computation on pattern forma-
tion by a reaction-diffusion mechanism, but uses only three points per wave-
length? Given a set of 22 points (i.e., a region 7 wavelengths long), will the
mechanism produce 7 pattern repeats, or will it, because of the coarse sub-
division and lack of continuity of derivatives, totally lose track of the size of
pattern unit it is "supposed" to generate? In this laboratory, we tried this
computer experiment with the same Tyson modification of the Brusselator
which Lacalli used in most of his computations (Harrison and Tan, 1988). The
result (Figure 9.6) was that the model sometimes went slightly astray, giving a
small defect somewhere in the pattern which led to a total of 6 or 8 units
instead of 7 (Figure 9.6a, defect between 4 and 5 units on the distance scale),
but in general showed a strong continued "knowledge" of its linear wave-
length and the number of pattern units it should therefore produce, despite the
coarse subdivision.

A second, and equally important, feature of this result is that the pattern
unit, having only three points, could have only two or three concentration
levels. This computation produced the pattern unit with two levels: two points
at a low concentration of X, and one at a high concentration. This means that
the Brusselator is a good mechanism for producing on-off switching be-
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Figure 9.6. Reaction-diffusion pattern in a coarsely compartmented region. Results of
a computation with Tyson's modification of the Brusselator, as used extensively in the
work of Lacalli (1981), from Harrison and Tan (1988). Our experience in using both
the original Brusselator and the Tyson modification is that, for most of the properties of
interest for biological pattern formation, they are very similar. Parameter values were
chosen to give 7 Turing wavelengths along the system, with 3 points per wavelength.
The solid horizontal line marked 0 is the spatially uniform steady state. Plots are of
concentrations of the X morphogen. (a) Initial input is random noise above and below
the line 0. The computation was started with 12 points per wavelength, reduced to 3 in
the later stages, (b) To remove pattern defects such as that between 4 and 5 wave-
lengths in (a), the initial input was a sine-wave pattern with the right wavelength. With
only 3 points per wavelength, the computer starts with a sawtooth pattern of three
concentrations. This turns out to be unstable. The computation changes it to an "on-
off switching" pattern of two concentration levels. The pattern produced in these
computations suggests the expression pattern of a segment-polarity gene, such as
engrailed, in Drosophila (see Section 10.2.1) and is my only attempt so far to model
segment polarity. For different but related ideas on applying reaction-diffusion to this
problem, see Russell (1985).



Nonlinear reaction-diffusion models 283

haviour, which is generally much more discussed by biologists than is contin-
uous concentration variation. The two are not necessarily different in chem-
ical mechanism. Reaction-diffusion can do both.

Why is the Brusselator so good at behaving quasi-linearly in its nonlinear
regime? This question calls for algebraic analysis which has not yet been
achieved by mathematicians for this instance or for nonlinear dynamics in
general. Speculatively, I suggest that an important feature may be the close
match between the nonlinearities in rates of growth of U and V. They are in
fact equal and opposite, so that if we enquire about the overall rate of growth
of the sum of the two morphogen concentrations (U + V), by adding equa-
tions (9.23) and (9.24), we have, with diffusion terms added,

d{U + V)/dt = -Ud + <3)ud2U/ds2 + 3 V d2V/ds2. (9.30)

Consider a system of length /, from s = 0 to s = /, with no-flux boundaries at
both ends. The boundary condition means that the slopes of the pattern (first
derivatives of U and V with respect to s) must be zero at both ends. Let us
compare the excess of U above the spatially uniform state (U = 0) in the
positive half-waves with the deficiency of U in the negative half-waves. For a
linear waveform (i.e., a cosine wave), excess and deficiency would cancel
each other out because the positive and negative halves are the same size and
shape. They are not the same shape for nonlinear Brusselator patterns, but
what about size, that is, integral of U along the system? At steady state:

Integral / = f!
0 U ds = {9bu/d) Jl

0 (d2U/ds2)ds
+ &Jd) J'o {d2V/ds2) ds = {9bu/d)[{dU/ds)l
- {dU/ds)0] + {9bJd)[{dV/ds)l - (dV/ds)0]. (9.31)

Because all the first derivatives are zero at both ends, the integral vanishes.
This means that however a Brusselator pattern develops, it must always keep
the area of the peaks equal to the area of the troughs. There can be no long-
range inhibition unless the inhibited state is very close to U = V = 0. This
seems rather unlikely. When the model is operating with pattern-forming
ability, it is not going to leave any region essentially unpattemed. A region of
flat concentration profile would have to be displaced some significant distance
from the unpattemed, spatially uniform steady state. Hence the Brusselator
does not produce long unpattemed regions and always behaves as if every part
of the pattern is looking to right and to left and interacting with what is there.

9.2 The hyperchirality model

9.2.1 Big hands from little hands

The word "chirality" means "handedness," and the concept is brought into
our minds by our right and left hands. However much we think of a molecule
as a real object, we remain accustomed to drawing a distinction between the
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molecular and macroscopic scales, and we do not readily think of our hands as
two enantiomers. But they are, if the shapes are smoothed by a reasonable
spline fit (see the discussion of large-scale symmetry in Sections 5.1 and 5.2).
Yet at the microscopic extreme, we find that both right and left hands are built
of L-amino acids only, assembled into polypeptide chains and protein poly-
mers up to the size of cytoskeletal elements still in one chirality only. Yet at
some spatial scale between those polymers and the hand there is a symmetry-
breaking which permits those polymers to make up the two enantiomeric
hands. What is the spatial scale concerned, and what is the significance of this
symmetry-breaking in relation to mechanism of pattern formation?

Whatever that spatial scale may be, its significance is that at that point
something other than geometrical self-assembly must take over control of
pattern, to override the propagation of a single chirality to larger spatial
scales. In the unicellular ciliates, such as Tetrahymena and Paramecium,
highly organized cell surface structures are made up of arrays of microtubules.
The latter are all of one chirality. But there are many instances of formation of
mirror-image doublet cells which have, effectively, left- and right-handed
versions of the organized structures. Here, the spatial scale of the symmetry-
breaking event can be rather precisely identified as being between 1 and 10
|xm. Frankel (1989) has given a comprehensive account of these organisms
from the viewpoint of pattern formation, and he maintains that there is evi-
dence for "hidden global controls of pattern formation." In another review
(Frankel 1990) he introduces the major problem with my phrase "big hands
from little hands," first used in 1979 (Harrison, 1979). Another interesting
aspect of this geometry has been discussed by Brown and Wolpert (1990), and
it involves two different meanings of "handedness." We may use the word as
a synonym of chirality, to mean a shape which does not superpose on its
mirror image, and we may then consider bilateral symmetry as the presence of
both handednesses on the two opposite sides (e.g., right and left hands).
Otherwise, we may use "handedness" in the sense of saying that someone is
left-handed (i.e., that there are limitations on the bilateral symmetry). If we
look on a fine enough spatial scale, we may find that right and left halves are
not mirror-symmetry equivalent because they are both made of molecules of
one chirality. In some sense, the different relationship of these "little hands"
to the two "big hands" may confer some kind of advantage on one of the big
hands. This is likely to happen only if the chirality of the little hands is
somehow translated to a larger scale, statically. Again the question of the
spatial scale arises. Brown and Wolpert argue that molecular chirality may be
translated into an effective orientation of a whole cell, which they represent by
the asymmetric form of the letter F. If these cells are then organized in a
bilateral symmetry, on one side of the organism the open side of each F will
point medially; on the other side, they will all point laterally.

Similar thinking led me to my "hyperchirality" model for reaction-diffu-
sion (Harrison and Lacalli, 1978). In this, some geometry involving protein



Nonlinear reaction-diffusion models 285

tetramers and their orientations on a cell membrane is suggested. Once again,
I see a danger that the molecularly minded scientist may give most attention to
the details of this speculative chemistry. They are not the point. Similar
dynamics might arise from many different models, in which the change from
one chirality present to two chiralities present would occur at different spatial
scales. What matters is the symmetry of the dynamics, in which four mor-
phogens reduce effectively to two.

9.2.2 Dynamics of the model

A mechanism for spontaneous optical resolution is discussed in Section 6.3.3.
The gist of it is the autocatalytic production of two substances A and B out of
the same substrate S with exactly the same kinetics. The most obvious struc-
tural situation which would lead to such symmetry in the kinetics is that in
which A and B are related as two optical enantiomers. But, as discussed in
Section 8.2.3, any such structural aspect is a secondary consideration. The
important thing is the kinetic symmetry between the two processes. The
experimental biologist may readily arrive at either of two contradictory con-
clusions about the possible value of this kind of model. On the one hand, the
biologist will say that on the molecular level, both enantiomers of any given
structure are hardly ever present in a living system. On the other hand, the
biologist will agree that, especially on the cellular level, establishment of two
new states of differentiation often takes place on exactly the same time scale. I
conduct the following analysis as if pairs of enantiomers are involved and use
subscripts D and L for the two enantiomers of the same substance: XD, XL and
yD, FL. These are supposed to be formed out of two precursors: A for the X
enantiomers and B for the Y enantiomers.

The spatially uniform steady state corresponds to the racemic mixtures XD
= XL and FD = yL. The two measures of departure from uniformity, U and V,
therefore correspond to optical asymmetries:

U = XD - XL and V = YD - FL. (9.32)

If it is recognized that XD and XL may be symmetrically related in kinetic
reality but not in structural reality, it will then be appreciated that the mor-
phogen variable U can be a very far cry from a concentration of one chemical
substance.

For these four morphogens, ZD, XL, yD, and yL, in two symmetry-related
pairs, the activator-inhibitor dynamics of a Turing model are achieved by a
crossover in stereospecificity of catalysis in which X catalyzes formation of Y
the "right way round" (D catalyzes D), but Y catalyzes formation of X the
"wrong way round" (D catalyzes L). This makes the asymmetry of Y an
effective inhibitor of the asymmetry of X. These two asymmetries are U and
V, and the model leads to Turing equations with the signs as for an inhibitor
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model (k2 negative, k3 positive), not as for a depletion model such as the
Brusselator.

The catalyses are all represented as being bimolecular and second-order in
both the substrate A or B and the catalyst Xu, and so forth, and hence involv-
ing squared concentrations of all these. Thus, the autocatalysis of XD appears
in the equations as kxxA2X^. As in the optical-resolution models of Sections
5.3.2 and 6.3.3, the catalytic species are supposed to occupy sets of sites
limited in number. If we are thinking of processes at the plasma membrane of
a cell (or assembly of cells), we shall call these sites receptors for X and Y. It
is assumed that there is one set of sites for X, each site having the same
binding characteristics for XD orXL, with the total concentration of these sites
being Px. A similar set of sites is postulated for Y, with total concentration
PY. If each set is always saturated with X or Y, but with variability in the ratio
XD/XL or FD/FL, then at all times,

*D + * L = Px and FD + yL = PY. (9.33)

For the rate equations to represent this condition, they must contain displace-
ment terms showing the removal of X from the X sites at a total rate equal to
the rate of formation of X, but at an XD/XL ratio corresponding to that on the
sites at any moment. Terms with Px or PY in them in the equations are these
displacement terms. An interesting feature is that the model has no explicit
effect of Y on itself. But when the algebra has been done to yield the Turing
equations, there is a k4 term, and k4 is always negative, as required to put the
constants in a morphogenetically promising region of parameter space. If one
traces it through the algebra, one finds that this effective self-influence of Y
arises from the displacement terms.

In summary, the catalytic interactions are

XD catalyzes its own formation;
XD catalyzes formation of YD, which catalyzes formation of XL,

and the same two statements with D and L interchanged throughout.
With all the terms for catalysis, displacement, and diffusion together, the

rate equations for formation of the X enantiomers in a one-dimensional region
(distance coordinate s) are

dXD/dt = kxxA2Xl + kXYA2Yl

- (XDA2/Px)[kxx(X2
D + Xl) + kXY(Y2

D + Yl)]

+ 2bxd2XD/ds2, (9.34a)

dXJdt = k^Xl + kXYA*Y2
D

- (XLAVPx)[kxx(X2
D + Xl) + kXY(Y2

D + Yl)]

(9.34b)
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On subtracting (9.34b) from (9.34a), with the substitutions

U = XD- XL, V = YD -
X,~ ~kxyA PY/2PX, k2

 = ~kXYA PY,

*1 = *1« + *lft. (9.35)

we obtain for the rate of growth of the hyperchiral asymmetry of morphogen X

dU/dt = {kla[l - (U2/P2)] + klb} U + k2V
- k5UV2 + 2)x d2U/ds2. (9.36)

For U and V small enough to allow neglect of the nonlinear terms, this
expression reduces to the Turing equation (7.1a), and k2 is negative (i.e., V
destroys U).

Proceeding in like manner for Y, we amend equations (9.34) by interchang-
ing the letters X and Y throughout, replacing A by B, writing kYY = 0, and, in
the cross-catalysis term in kyx, interchanging L and D, SO that XD catalyzes
production of YD. Subtraction of the resulting equations, with substitutions as
in equations (9.35) and with the additional substitutions

k6 = kYXB2/2PY, (9.37)

we obtain for the rate of growth of the hyperchiral asymmetry of morphogen Y

dV/dt = k3U + k4V - k6U2V + Q)Y d2V/ds2. (9.38)

For small X and Y, this reduces to the Turing equation (7.1b), and k4 is
negative. If the receptor concentrations Px and PY are similar in magnitude,
then k4 is approximately ~hk3, and if, additionally, the cross-catalysis con-
stants k2 and k3 are similar in absolute magnitude, then the absolute value of
either of them is roughly kcr and k'4 = k4fkcr « —£. This places k4 within the
limits of the most generally useful morphogenetic region of parameter space
(see Figure 7.5).

The hyperchirality model arose from my initial interest in both optical
resolution and morphogenesis, as represented particularly by semicell devel-
opment in the desmid Micrasterias. It now appears to me less likely that this
is the appropriate reaction-diffusion model for the desmids. We now have a
much better model for the desmids which uses the Brusselator with an addi-
tional feedback loop into its reactant A (Harrison and Kolaf, 1988). But the
hyperchirality model, in two-dimensional computations (Harrison and Lyons,
in press; Lyons and Harrison, 1991), turns out to have great power to produce
striped rather than spotted patterns (Figure 9.7). This is the property discussed
in Section 8.2.3, and there indicated as belonging to mechanisms which have
only cubic nonlinearities (or, more generally, only nonlinearities which are
odd functions of the simultaneous sign changes of U and V). Inspection of
equation (9.36) shows nonlinearities only in the forms U3 and UV2, and only
U2V in equation (9.38).
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9.2.3 A structural model, and a wider dynamic significance

A well-known feature of proteins is their quaternary structure, which is quite
often a dimeric or tetrameric association of identical subunits. When such
structure is present, the polymerization is commonly a necessary condition to
give the protein its function (e.g., as an enzyme). This makes such proteins
very good candidates to be recognized as morphogens, because this structure-
function relationship should produce nonlinear dynamics. My attention was
first drawn to this kind of geometry by looking at diagrams of the quaternary
structure of the soybean lectin concanavalin A (Figure 9.8a). Here, each
subunit is to be seen as a left-hand mitten, the four being joined at P pleated
sheets which are their palms.

My structural model of hyperchirality used protein tetramers on a cell
surface and the concept of "flatland" chirality (Gardner, 1964, 1982). The
latter is illustrated by the shape of four joined rectangles in Figure 9.8c. If this
shape is an object so strongly attached to a flat surface that it is confined to
two spatial dimensions and cannot be taken out into a third dimension and
turned over, then it is chiral with respect to reflection in a mirror line in that
surface. By a distortion of the concanavalin A quaternary structure, I devised
a geometry which could be attached to a surface in two ways to make the two
flatland enantiomers (Figure 9.8b). The hyperchiral property belongs to the
general outline of the tetramer, a spline-fitting which does not see the geome-
try of the primary, secondary, and tertiary structure (i.e., a "big hands" view).
Figure 9.8d shows such flatland chiral structures acting as stereospecific
templates for the autocatalytic assembly of more tetramers. The structural
relationships are those which would lead to the kinetics of equations (9.34).

I present this model with some trepidation as to whether it will assist or
hinder the advance of kinetic theory. The danger is that the molecularly

Figure 9.7. (opposite) A computation, from Lyons and Harrison (1991), of the ability
of the hyperchirality model to form stripes. The array is square and has no gradients on
it to force the formation of stripes. Periodic boundary conditions were used both
between top and bottom and between left and right edges. The final pattern, which
looks like four zigzag stripes (looking at light or dark only), is thus actually a single
stripe. Light colour represents high values of U = XD - XL; but this is of no signifi-
cance. The model is chiral, and the significances of D and L can be arbitrarily changed.
(a) Random input, t = O.(b)t= 10,000. (c) t = 40,000. (d) t = 100,000. Time is in
arbitrary units, representing number of iterations of the computation. If, instead of the
hyperchirality model, a Brusselator had been used, a regular spotted pattern like that of
Figure 9.5a would have been obtained. We have recently done a series of computations
(Lyons and Harrison, not yet published) with increasing amounts of a quadratic term
added to otherwise hyperchiral equations. As the coefficient of the quadratic term is
increased, the steady-state pattern after a long computation changes, going from
striped, through splotchy patterns of spots partly joined into stripes, and finally to
spots when the quadratic term is large. From Lyons and Harrison (1991), with permis-
sion of Elsevier Science Publishers.
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Figure 9.8. Left-hand side: A speculative model of a tetrameric protein structure
attachable to one side of a cell membrane in two different ways which are chirally
related in two-dimensional flatland: (a) the actual arrangement of four subunits into a
tetramer in concanavalin A; (b) a hypothetical distortion of this geometry; (c) an
idealization of this structure as seen in plan view, looking down on the cell surface, as
an arrangement of four rectangles with the same flatland chirality. Right-hand side:
Autocatalytic assembly of subunits into tetramers, for two proteins X and Y in a
flatland-stereospecific way. The longest arrows indicate the crossover in which YL
catalyzes formation of XD, and vice versa, so that the asymmetry (YD - YJ inhibits
growth of the asymmetry (XD — XL). Hyperchiral kinetics are not necessarily related to
anything remotely like this structural model; but for recent indications of possible
relevance of cell surface structures to chiral symmetries, see Brown and Wolpert
(1990) and Frankel (1990). From Harrison (1979), with permission.

oriented biologist will find the specific structural proposal marginally pos-
sible, but very unlikely, and will dismiss the dynamic discussion from consid-
eration because it seems to be tied to an improbable structural hypothesis. But
the dynamic model is not so tied. The essential symmetry is in values of rate
constants, not necessarily in geometrical structure at all. Biologists are fond of
postulating that cells might differentiate in two quite different ways on the
same time scale. That is hyperchiral kinetics.

In the higher vertebrates, each side of the visual cortex of the brain is
connected to both eyes. (The optic chiasm is differently arranged from that in
lower vertebrates, in which right eye connects to left brain, and vice versa.) In
the Primates, the information from both eyes is found to be received in a set of
alternating parallel ocular-dominance stripes, and in these instances the mix of
neurons from the two eyes connecting to one side of the cortex is close to
equality, 50/50 on a percentage basis. By contrast, in the cat the mix is 70/30,
and the pattern of ocular-dominance regions is spotted. Also, for the macaque
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monkey, which is the Primate on which most experiments have been done,
monocular deprivation by blindfolding one eye for a few days after birth leads
to disruption of the striped pattern.

These observations correlate with the kinetic concept of hyperchirality.
Somewhere in the formation of connections of the optic nerves to the cortex
via the lateral geniculate nuclei, neurons from the two eyes have acted as
distinguishable from each other in the left-versus-right sense, but otherwise in
kinetically equivalent ways. This is hyperchirality, and it is good for making
stripes when the left/right mix is 50/50. But it involves dynamics on the
grand scale of the whole metabolism of cells and the electrochemistry in-
volved in making stable synapses. Structurally, we are a long way from my
putative protein tetramers on a cell surface when we think of ocular domi-
nance; kinetically, we may be in the same place (Harrison and Lyons, in
press).

This example illustrates particularly well the basic philosophy of the kinetic-
theory approach to pattern formation. One may reject totally the structural
model of Figure 9.8 as being unrealistic, unknown, and irrelevant to living
things; but one still needs to know how dynamics with the equivalent of a
left/right asymmetry are expressed in equations lacking quadratic terms and
generate striped patterns.

9.3 Brief comments on other models

The brevity of this section is not intended to convey any information about
relative importance of models. I have dealt with the Brusselator at length,
first, because the originators of the model have neglected to reach out to
biologists in their presentations of its properties, second, because it is one of
the best to illustrate some important general principles simply, and, third,
because I have used it extensively and regard it as promising for many biolog-
ical applications. The hyperchirality model is my own, and in the dozen or so
years since I devised it I have done less than most modellers in advertising the
merits of my own model; and it has a special merit, namely, its strong
tendency to form stripes.

The following accounts can be much briefer because all of the originators
have done a thorough job of relating their models to biological problems, and
their own work can be consulted. The following sections are not much more
than a list of models, with a few comments to indicate where these models
may fall into place in the classification of kinetic theory. The times are not
ready for an exhaustive taxonomic survey of dynamic models.

9.3.1 The Gierer-Meinhardt model
The first paper of Gierer and Meinhardt (1972) discussed a number of models,
and the book by Meinhardt (1982) presented even more. I think it legitimate,
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however, to refer to the model in the singular because these authors are
particularly responsible for one pair of dynamic equations, and many of the
other models they have discussed are essentially variants of these. The special
character of the Gierer-Meinhardt model is given to it by the way in which
the inhibitor effect is put into the rate of growth of activator. This has been
discussed in Section 3.3, and the question of whether or not anteroposterior
gradients in insect embryos are Gierer-Meinhardt patterns is further alluded to
in Section 10.2.

The dynamics which may be regarded as the Gierer-Meinhardt model are

dA/dt = pop + cp(A2/H) - [xA + a A d2A/ds2, (9.39a)

dH/dt = cf p'A2 - vH + <&H d2H/ds2. (9.39b)

Here, A and H are morphogen concentrations corresponding to Turing X and
Y. They may be taken as the initials of the German words for activator and
inhibitor, but it has also been noted that the first names of the originators of
the model are Alfred and Hans. p0, c, JLJL, C', and v are constants, p and p' are
functions of position s representing "source gradients" which are taken as
preformed and unchanging in time.

The reader of this book may be interested in two aspects of any specific
reaction-diffusion model which are contrasted and sometimes even in conflict:
First, does the model give a good fit to some particular range of developmen-
tal phenomena? Second, from a pedagogic viewpoint, is the model an easy
one to approach and to appreciate within the general framework of Turing
dynamics, so that the research worker who is trying to use reaction-diffusion
can make progress?

As to the first question, I have indicated elsewhere in this book (especially
in Section 3.3) that I see the Gierer-Meinhardt model as being exceptionally
well suited to the explanation of some phenomena, but inferior to other
models such as the Brusselator or hyperchirality model for some others. The
things with which it does particularly well are as follows:

1. Amplification of a shallow gradient and representation of nonregulatory
events following grafting of pieces which retain their fragments of the
gradient, as in Hydra (Gierer and Meinhardt, 1972) (see Section 3.3.2).

2. Formation of a small region of morphogenetic activity within a much
larger region, the greater part of which does not manifest such activity
("short-range activation, long-range inhibition").

3. Teratogenesis of the kind in which peaks fail to maintain the proper spac-
ing between them which linear Turing analysis would indicate (Section
3.3.1).

The Gierer-Meinhardt model seems to me, however, to be definitely in-
ferior to the Brusselator in giving an account of formation of patterns of
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repeated parts with quantitative control of either the number of parts or the
spacing between parts (i.e., morphogenesis that performs well the job of
either measuring or counting). And both of these models are inferior to the
hyperchirality model in respect of the tendency to form stripes rather than
spots in a two-dimensional region. A comparison which the reader might find
instructive is the use of these diverse two-morphogen models to tackle the
problem of Drosophila segmentation (Section 10.2). Meinhardt, on the one
hand, and Lacalli and I, on the other, are enthusiastic about the possibilities of
reaction-diffusion within the complex hierarchy of events in Drosophila; but
the places we identify as most likely to involve two-morphogen activity are
different.

As to the pedagogic question, two things are somewhat unfortunate: First,
Gierer and Meinhardt themselves, though often briefly acknowledging Tur-
ing's priority, do not to my mind stress nearly enough the value of seeking to
understand two-morphogen models always within the Turing framework. This
involves linearization of the equations about the spatially uniform state and
use of parameter spaces. In my laboratory, when people are working on
reaction-diffusion computations, one tends to trip over parameter-space dia-
grams like Figure 9.2 all over the place. Second, the Gierer-Meinhardt model
happens to give rather cumbersome expressions when one does the lineariza-
tion. The formulae for Turing constants kY-k4 are not easy to work with,
whereas those for the Brusselator are (Table 9.1). Of course, if the Gierer-
Meinhardt model is looking like the right explanation for some phenomenon,
one must live with that complexity. The point is that the Gierer-Meinhardt
model is not a good start for a beginner.

The transformation of Gierer-Meinhardt parameters to Turing ones is

kx = (fi/M)(cv - poc'p'), (9.40a)

k2 = -cv2fji2/M2p, (9.40b)

k3 = 2Mp/fi, (9.40c)

k4 = -v, (9.40d)

where

M = cv + poc'p\ (9.40e)

The reader who desires some algebraic exercise might try the following:
Derive the expressions for k[ and k'4. Consider a system in which p and p' are
gradients monotonic in the spatial variable s. They may both decrease in the
same direction, or they may be opposed. For both cases, as one moves along
the system, how does the representative point for the dynamics move in (k[,
k'^ parameter space? Could the crossing of boundaries in that space on mov-
ing up or down a gradient be related to the "short-range activation, long-range
inhibition" property of the model?
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The term A2IH in equation (9.39a) is chemically unusual. Mechanisms
containing inhibition more often give expressions such as A2/(H + K). The
distinction is important when a new peak is attributed to inhibitor loss, as in
the double-abdomen deformity (Section 3.3). I know of only one mechanistic
scheme which, to a certain approximation that is exact for the steady states,
reduces to the Gierer-Meinhardt rate equations: that of Babloyantz and Hier-
naux (1975). We have started some computations with this model to study its
dynamics far from the steady states.

A basic concept of the Gierer-Meinhardt model, as its originators have
used it, is that it features changes on two different time scales: Chemical
reactions between molecules are envisaged as occurring rapidly, whereas
changes in cellular states are seen as occurring so much more slowly that they
can be taken as static on the chemical time scale. That is, A and H can change
quickly, but the source gradients p and p' are fixed. This corresponds to the
wealth of very convincing experimental data, both for Hydra and for insects,
that gradients are persistent even in grafted pieces. But the head-activator and
head-inhibitor identified in Hydra, and therefore looking like promising can-
didates for the title of Turing morphogen, are activator and inhibitor for
cellular differentiation as neurons. These cells are more concentrated in the
head region and could therefore constitute the source gradients. It seems to me
that any attempt to bring these substances into the Gierer-Meinhardt dynam-
ics must involve a substantial modification of the model involving feedback
into the source gradients. The dynamic preconception, and the kind of mathe-
matics needed to follow it through, would remain unchanged; and the starting
point could be the Gierer-Meinhardt equations. There is opportunity for
much work by many scientists in reaction-diffusion. This paragraph defines a
field big enough for quite a few Ph.D. projects.

9.3.2 Murray's model

Murray, like Gierer and Meinhardt, has worked with more than one model. In
a recent paper (Shaw and Murray, 1990), his group has become the first,
within my knowledge, to combine reaction-diffusion and mechanochemistry
in parallel as putative parts of the same patterning process. This is the for-
mation of patterns on vertebrate skin (hair follicles, scales, etc.) in which
they have assumed mechanochemistry in the dermis interacting with reaction-
diffusion in the epidermis.

Murray's name is, however, probably most specifically associated with a
model for striped and spotted mammalian skin markings which has led to the
biomathematical theorem that "it is not possible to have a striped animal with
a spotted tail; the converse is quite common" (Murray, 1981b). The special
feature in this work is a set of reaction-diffusion equations in which the kind of
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pattern obtained is rather sensitive to the shape of the region in which it forms.
I copy these from equations (4) of Murray (1981b), with some changes in
notation to simplify the parameters. [Bard (1981) used different reaction-
diffusion equations for the same phenomena.]

dA/dt = a(A0 - A) - pSAI(\ + S + KS2) + 3 A V2A, (9.41a)

dS/dt = y(S0 - S) - pSAI{\ + S + KS2) + <3>SV2S. (9.41b)

These equations represent a specific model in which two substrates S and A of
a membrane-bound enzyme diffuse to the membrane at rates represented by
the (Ao - A) and (So — S) terms. The denominator (1 + S + KS2) combines a
Michaelis-Menten binding with an inhibition by S when it is large. That latter
is the KS2 term. I write the Laplacian operator in general form, whereas I
wrote it in one dimension for the Gierer-Meinhardt equations, simply be-
cause all Murray's investigation of these dynamics involves two-dimensional
regions, whereas Gierer and Meinhardt have done extensive work in one
dimension.

Murray's equations have two features which have not appeared previously
in this account: first, the absence of an explicit autocatalytic term and, second,
the presence of a saturation term in the concentrations, that is, the S/(l + S)
term, which is the Michaelis-Menten form until the KS2 term becomes signif-
icant. Murray has studied the patterns which these dynamics will produce on
surfaces of a variety of shapes approximating the skins of animals on their
trunks, legs, and tails. He has found interesting correspondences with some of
the things that actually happen in mammalian coat patterns.

As for every nonlinear model, the main burden of discovering its properties
is currently carried by the computer. Algebraic analysis lags far behind.
Murray has particularly stressed that one-dimensional patterns computed to
steady state often are only moderate distortions of those expected from linear
analysis and seen in the early stages of a computation, but that this is definite-
ly not so for two-dimensional patterns. These often change quite substantially
between linear and nonlinear regimes.

The diversity of patterns which this model can produce and its sensitivity to
the shape of the region seem to me to indicate a striping tendency greater than
that of the Brusselator but less than that of the hyperchirality model.
Meinhardt (personal communication to T. C. Lacalli) has suggested that a
saturation term helps in stripe production. Lacalli (personal communication)
has suggested that saturation will flatten sharp peaks and hence will make a
model which otherwise would behave in the "short-range activation, long-
range inhibition" manner instead produce rather comparable flattish peaks
and troughs. The patterns thus produced would to some extent mimic those
made by kinetically chiral models. Perhaps the behaviour of Murray's model
is an illustration of this.
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9.3.3 The Sachs-Mitchison model, and an acknowledgment to
Rashevsky

Turing was not the first to invent a model for kinetic production of periodic
pattern. That honour belongs to Rashevsky (1940), an American pioneer of
theoretical biology. Turing is justly celebrated for the elegant simplicity and
probable great importance of the concept of activator-inhibitor mutual in-
teraction leading to pattern. Rashevsky's idea was different. He proposed
that a membrane permeability might be self-enhancing. A few years earlier,
indole-3-yl acetic acid (I A A) became the first growth-promoting substance in
plants with a known chemical identity. [For a good, concise review of the first
half-century of discovery in the field of substances which control plant
growth, see Wain (1977).] This has become the type substance of the class of
substances known as auxins, and the singular noun "auxin" is often used for
IAA itself.

In the 1940s and 1950s it became clear that auxin was involved in the
formation of veins in plants. Sachs (1969) suggested that the efficiency of
transport of auxin increases with its flux. Mitchison (1980, 1981) formulated
this concept as a mathematical model. His equations show auxin flux J from
one cell to the next as the sum of two terms, one representing passive transport
of neutral IAA molecules across the plasmalemmas, and the other represent-
ing active pumping of IAA anions:

J = q(Cb - Ca) + PCb, (9.42)

where p and q are constants, and the concentrations Cb and Ca are those
of auxin at the basal end of one cell and the apical end of the next. This
is equation (1) of Mitchison (1981), with altered notation to the physico-
chemical conventions of J for flux and C for concentration. The essence of the
pattern-forming model is that the polar (active-transport) part of the flux is
envisaged as autocatalytic in J, not C:

dp/dt = e(U2 - p\ (9.43)

where e and k are constants. The theme of nonlinearity, shown in the mathe-
matically simplest way by a squared term, which has been present in most of
the models discussed in this book, is here again in the J2 term. By elaboration
of this kind of dynamics, Mitchison has been able to model vein formation,
including a strange phenomenon sometimes observed in which a closed loop
of vein is formed, with circular transport around it. This peculiarity is some-
what distantly related to the main vein-forming activity, both in nature and in
the model, but the ability of the model to produce it is evidence in favour of
the model.

A strong distinction should be borne in mind between equation (9.43) and
all previous postulations of autocatalysis mentioned in this book. Because the
flux is autocatalytic, the model can lead to fast-transport paths (veins) in
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which the concentration of auxin is lower than in the surroundings. This leads
to two rather obvious questions: First, what is the mechanism whereby either
each channel becomes more efficient or the number of channels between two
cells increases as a consequence of the rate of pumping? This matter has not
been addressed in any account I have read of autocatalytic flux. When I try to
think of mechanisms, I find myself nearly always putting in something in
which the presence of auxin is producing some kind of activation. This is
inappropriate when the active veins are going to be regions of low concentra-
tion. Is it possible that the essential step is autocatalytic assembly of the
quaternary structure of auxin pumps on the plasmalemmas, so that the flux
dependence is a symptom of the pattern formation event, not part of its
etiology?

The second question, which seems to arise readily whenever an auto-
catalytic flux is mentioned, is the possibility of a geophysical analogue in the
formation of the drainage patterns of rivers and their tributaries. Such analo-
gies are of doubtful value. In the geophysical system, neither the magnitude
of the total flux nor the local directions of parts of it are under such strong
feedback control as that of a set of self-organizing pumps. Perhaps a better
analogue might be human settlement, with the associated networks of roads
and railways being the veins. By contrast to river systems, in which there are
no uphill flows, the movement of people and goods to where they are already
more concentrated is perhaps too much in the latter analogy.



10
Approaching agreement?

La ou je cherchais de grandes lois, on m'appelait fouilleur de details. [Where I
was looking for great laws, they called me a digger for details.]

—French-Canadian saying quoted by A. J. Libchaber
at 13th International Liquid Crystal Conference, 1990,

session on Pattern Formation

How precise a fit should one expect between experiment and theory at various
stages in the scientific enterprise? Where experiment rests upon clearly estab-
lished "great laws" (i.e., preconceptions or paradigms), one knows what to
measure, and one may seek ever-higher precision, as in modern spectroscopy.
When one is dealing with applied science, whether it be the clinical testing of
a drug or the construction of an engine, precision is again of the essence. (I
have heard it suggested that, conceptually, the Elizabethans could have de-
vised a steam engine, but they had no lathes to give a good enough fit of
piston to cylinder to make it work.)

It is quite a different matter when the "great laws" are not firmly estab-
lished. How shall one improve the precision of measurements when one is not
yet sure which properties may be the significant ones to measure precisely,
and the worker in the next laboratory clearly has a different opinion on this?
Major concepts have arisen from partially correct data. For instance, Dalton's
atomic theory arose from the law of constant composition. The controversy
between Dalton and Berthollet, with the latter maintaining that the composi-
tion of a compound by weight was variable, is very well known. In retrospect,
we know that both were correct for different ranges of compounds and that the
berthollide nature of many metal oxides can be accounted for by variable
mixes of, say, Fe2 + and Fe3 + in the crystal. But would we ever have got
around to using those symbols without Dalton's insistence on constant com-
position? In the same vein, the best-known instance of wasted effort in science
is the extreme concentration, late in the nineteenth century, on determining
atomic weights to ever-increasing accuracy, before it was known that the
existence of isotopes makes those atomic weights variable well outside the
limits of accuracy which were being achieved.

The foregoing is not intended as a polemic against precision and in favour
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of sloppiness, either in experimental work per se or in the fit which one
regards as acceptable between experiment and theory. I am an experimental
scientist who worries about details in the laboratory (see Section 10.1). The
matter is one of perspective. For instance, the quotation from Crombie which
I have used as epigraph to Part III is immediately followed in his book by this
sentence: "A good example of this is the atomic theory, first seen as scientific
material of this kind in the 17th century and eventually reduced to exact
empirical form by John Dalton in 1808." But in what sense was the atomic
theory of 1808 a "theory exactly fitting the data," as specified in Crombie's
previous sentence? The atomic weight scale was in serious confusion up to the
1860s; indeed, I have even seen a paper from the 1890s in which the formula
of water was given as HO. And I have mentioned earlier the dispute between
Boltzmann and the positivists in the 1890s, in which many scientists per-
ceived the atomic theory as a "tottering edifice."

In the sections of this chapter, I try to assess the present extent of two kinds
of fit between biological experiment and kinetic theory of pattern formation.
The first is between the predicted and observed dynamics of pattern forma-
tion, sometimes with a little knowledge of what chemical substances are
patterned but without knowledge of what substances do the patterning (i.e.,
are morphogens). The second is the bridge between macroscopic dynamics
and biochemistry, which does require morphogen identity. In the following
sections I make no attempt at a comprehensive account of all the experimental
evidence. The primary objective of this book is to conduct an examination of
the differing philosophical attitudes of two groups of scientists who should be
getting together and are not. What I present in this last chapter is my own view
of what features of the evidence are important in this enterprise, and it is to be
read as commentary.

The examples chosen for discussion illustrate the generalization that I am
quite happy, in the first instance, to consider kinetic mechanisms as promising
possibilities both for unicellular and for multicellular phenomena of pattern
formation. Unicellular instances are important to consider as a counterbalance
to the common tendency to identify pattern in terms of gene switchings in
multicellular assemblies. For other accounts of unicellular pattern formation,
see Frankel (1989) on the ciliates and Harold (1990) for a perspective cover-
ing diverse microorganisms.

10.1 Acetabularia and some desmids

I start with the only organism on which I have been doing extensive experi-
mental work in my own laboratory: the marine siphonous green alga
Acetabularia acetabulum (or A. mediterranean a name in disfavour among the
taxonomists, but to my mind better because it gives significantly more infor-
mation than the repetitive A. acetabulum). Single cells grow into cylindrical
structures of enormous size (up to 4 cm long and 0.4 mm in diameter), mainly
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by action at a dome-shaped growing tip at the opposite end of the cell from its
single nucleus. From time to time, complex structures of whorl form are
produced at the growing tip. Among these, the best-known are the reproduc-
tive structures ("caps"), formed once only in the life cycle after several
months of vegetative growth. During those months, however, a whorl of hairs
forms at the growing tip every few days.

10.1.1 Choice of organism and of developmental event to study

Acetabularia has been advocated as a very suitable organism for the study of
some aspects of cell biology (Puiseux-Dao, 1970; Berger et al., 1987), but has
not attracted the experimental attention of a large number of biologists. There
are several good reasons for this, in regard to the usual kinds of experimental
programs in biology. Because the organism is uninucleate throughout its
vegetative growth, pattern formation in the whorl-producing events cannot be
linked to patterns of differentiation and gene-switching at the nuclear level.
Thus, many may reasonably presume an irrelevance of pattern-forming mech-
anisms in Acetabularia to those in higher plants and animals. There is a dearth
of mutants, and the long life cycle hinders the search for them (Green, 1976),
so that Acetabularia seems the very antithesis of Drosophila (or, in the plant
kingdom, Arabidopsis) for a program of work intended to throw light on the
relation of development to genetics. There is no strict control of the number of
parts in a whorl pattern. Vegetative whorls can have from 3 to 35 hairs. The
extremes are uncommon, but a normal healthy population provides numerous
examples having from 7 to 21 hairs (Harrison et al., 1984, Figure 3a).

Why, then, did I choose this organism for developmental studies, when
most biologists have failed to respond to admonitions to do so? First, my
preconception that the same kind of dynamics may be expressed at a variety of
levels of organization and by diverse chemical reactants leads me to believe
that study of pattern formation in a unicellular plant may readily throw light
on what is going on in multicellular animals. The unicellular plant may indeed
be a minimal system, showing how much an organism can manage without
(e.g., differentiation, patterned gene-switchings) and yet still have all that is
needed for generation of complex pattern.

Second, as a classical physical chemist I like straight lines; that is, I like to
change one variable continuously and see the response as a continuous quan-
titative change in some other variable. Unlike the biologist, I tend to avoid the
study of discontinuous variations (i.e., on-off switchings). From this view-
point, a pattern of a variable number of parts within wide limits is attractive.
After a few months of preliminary study of Acetabularia in 1978, I decided
that the vegetative whorls were definitely more interesting to me than the cap,
because of the greater variability in the number of parts in the former.

Third, it is a commonplace that biologists would like to study phenomena
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mainly in vivo if possible; but to a chemical kineticist, it is an absolute
imperative that change must be studied as it occurs. At the growing tip of
Acetabularia, one can observe quantitative changes in dimensions hour by
hour in the formation of one whorl, and one can show directly that the number
of hairs in the next whorl formed a day or so later is usually not the same.

The first result that led me to continue studying Acetabularia whorls as a
long-range project was that under fixed environmental conditions the spacing
between adjacent hairs in a whorl is constant; that is, one whorl makes twice
as many hairs as another because its diameter and perimeter are twice as large.
Diameter is sloppily controlled. Spacing of hairs is precisely controlled.

In discussing these data with biologists who have not heard of them before,
I find that a misunderstanding very commonly arises. Biologists often think at
first that I am measuring the longitudinal distance from one whorl to the next
along the main axis of the cell. That variable, together with longitudinal
growth rates, does not interest me. (Being persuaded by biologists to try some
longitudinal growth measurements, I did so and found them hopelessly idio-
syncratic from one cell to another, in growth conditions in which the hair
spacing gave well-behaved results which I find significant.)

The object, then, is not to study anything to do with a set of events in a time
sequence, such as formation of successive whorls, but to concentrate on the
properties of a pattern which arises as one entity, all its parts appearing
simultaneously. Every whorl-forming event in Acetabularia, cap or vegetative
whorl initiation, is impressively simultaneous. All the initials appear at once.

What should one study as independent variables, what should one control
precisely, and what can one afford to control rather more sloppily? My
cultures are maintained in growth chambers just as biologists usually do it.
Temperature is controlled to ±0.5K, and light is between fixed limits of
intensity, on and off on a 12 : 12 cycle. But my experiments have been done
as a physical chemist of the 1930s and 1940s would do experiments on
chemical systems: in water baths controlled to ±0.02K, with lights above to
give more than a minimum intensity on a 12 : 12 cycle, but open to the
laboratory so that large amounts of stray light on indeterminate schedules are
in no way excluded. This very precise control of temperature and sloppy
control of lighting are choices opposite to what biologists would be most
likely to do. My procedure is not intended to deny that it has been clearly
shown (Schmid, Idziak, and Tunnermann, 1987) that whorl formation can be
initiated by a flash of blue light in Acetabularia otherwise grown in red light.
The implication of my procedure is that quantitative control of hair spacing is
quite a different matter from whorl initiation. In my work, whorls can be
initiated at any hour of the day or night, and the time of initiation does not
affect the hair spacing. But temperature does, and so does the calcium con-
centration in the culture medium. These, again, are the kinds of variables the
classical physical chemist would think of first.
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10.1.2 Predictions, and assessment of the significance of
results

Two philosophical matters relating to the dynamics of scientific progress are
mentioned as general problems here and are discussed in relation to data on
Acetabularia whorls. The first of these is also quite relevant to the present
state of work on Drosophila segmentation, which is discussed in the next
section. The question is, On what scale of time, number of people and
projects involved, and generality or detail of experimental data does one
expect the progression from experiment to theoretical prediction to further
experiment to operate? The second question is, When a theory concerns
complex phenomena, so that its predictions are not simple but need an exten-
sive literature for their description, is it straightforward for all scientists to
assess properly whether or not some particular data support the theory?
Meinhardt (1984) wrote that "without knowledge of the underlying principles
on which pattern formation is based, the chance would be high that a suc-
cessful experiment would be incorrectly interpreted as a failure."

To my mind, the most fruitful predictions at the present stage are quite
unlikely to be those which seek to guide an experimental program from step to
step in close detail for one particular organism. Rather, the useful predictions
will probably be those of a general nature which must eventually be verified in
a variety of organisms if the theory is to be recognized as having any general
validity. For instance, it may be predicted from reaction-diffusion theory that
the chemical wavelength, or distance between adjacent repeated parts of a
periodic pattern, should be controlled by the concentrations of immediate
precursors to the morphogens in the chemical mechanism (e.g., the A and B of
the Brusselator, where X and Y are the morphogens). This control should be of
such a nature that spacing becomes smaller as the precursor concentration
increases. It may be a simple inverse variation, or an inverse dependence on
the square root or one-quarter power of the precursor concentration; for exam-
ple, for the Brusselator an approximate form of equation (7.22) for large
diffusivity ratio n leads to

chemical wavelength X = 2ir(28JC3y/ik^)1/4, (10.1)

and if we use in this the value of klr for a Brusselator with unit values of rate
constants a, b, c, and d, as given in Table 9.1, then

X = 2iT(2)JC2yA2£)1/4. (10.2)

Thus the spacing between adjacent repeated parts should be proportional
inversely to A112 and Bl/2. The same approximation applied to the hyper-
chirality model (Harrison and Lacalli, 1978, equation 47) indicates, for the
two precursors A and B of that model, inverse proportionality both to A112

and Bl/2.
I am not aware of any theory of pattern formation other than reaction-
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diffusion which predicts this kind of concentration dependence. Therefore, if
such a dependence is found in any pattern-forming process, I regard it as quite
strong evidence for a reaction-diffusion mechanism. The substance producing
the concentration-dependent effect is not a morphogen, but an immediate
precursor of a morphogen in the biochemical mechanism.

The preceding two paragraphs contain, to my mind, a definite and unequiv-
ocal prediction which is a proper part of the scientific dynamic at its present
stage in developmental biology. But to many experimental biologists it may
appear quite otherwise, in fact not a prediction at all. This is because there are
three things totally unspecified in the prediction; the organism, the develop-
mental process within the organism, and the specific chemical substances
involved in that pattern-forming process. What the prediction says is very
general: that among all the processes being studied in developmental biology,
some (and probably a large number, eventually) will be found in which pattern
spacings decrease as the concentration of some chemical substance is in-
creased; and the variation will have a simple functional form, related to the
reciprocal of a power of the concentration (probably the first power or a
fractional power). This is a testable prediction within my understanding of
how the scientific method is supposed to work. But it doesn't tell anybody
precisely what experiment to do at the bench tomorrow, which seems to be the
stringent requirement of many experimental biologists for something to be
classed as a testable prediction.

For instance, a major project in relation to hair spacing in Acetabularia
whorls in my laboratory has been to study the quantitative effect on spacing of
the calcium concentration in the artificial-seawater culture medium (Harrison
and Hillier, 1985; Harrison et al., 1988). Figure 10.1 shows the variation
found. It is of the kind predicted earlier. But it was not with this expectation
that I started the study. The motivation for looking at calcium concentration
was that I believed the morphogenesis to have its primary control in the rate of
plasma membrane extension. This involves the rate of fusion of membrane
vesicles with the membrane, and calcium is a likely controller of that process.
In the event, we found a variation in accordance with my general prediction
and, to my mind, pointing toward an extracellular role for calcium, rather than
to intracellular control of membrane fusion. Thus the month-to-month dynam-
ic of what we were doing in the laboratory was driven by something quite
other than the prediction we ended up verifying, though that prediction was
my own.

The reader may, however, object that my prediction is for lines showing not
just a linear variation of spacing with some inverse power of a concentration,
but direct variation (i.e., lines that go through the origin of coordinates).
Those in Figure 10.1 do not. I return to this point in the next section.

Meanwhile, one should always recognize that everything one does within
the scientific method, whether experimental or theoretical, is part of a con-
tinuity and therefore both answers a question and asks another. Evidence such
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Figure 10.1. Dependence of spacing between hair initials in whorls of Acetabularia
mediterranea upon l/[Ca2 + ] in the culture medium (artificial seawater, Shepard's
medium), showing linearity of each plot and systematic variation of its slope and
intercept with temperature. These latter were interpreted in such a way as to give
binding constants and thermodynamic properties for binding of extracellular calcium
to a cell surface receptor which then becomes a morphogen precursor. A problem for
the reader: The Brusselator expression (10.2) indicates dependence of spacing on
A ~1/2 and Z? ~~1/4, not a simple dependence on reciprocal of concentration. What needs
to be changed in the Brusselator mechanism to make one or other of these a simple
inverse dependence? Is the required change reasonable in relation to the possible
nature of morphogens? See Section 10.4 for my answer.

as Figure 10.1 is consistent with a prediction of reaction-diffusion theory, but
does not definitely prove that the mechanism of pattern formation in
Acetabularia whorls is of that type. It does, however, present a challenge to
all future theories. They should address the question of how this concentration
dependence arises.

More directly, the data point to a particular role for calcium in the mor-
phogenetic mechanism, and ask a question: Can one find a spatial distribution
of calcium corresponding to that role? And first, what is that spatial distribu-
tion? Here, Meinhardt's remark that ". . . a successful experiment would be
incorrectly interpreted as a failure" is very relevant. In my laboratory, we
looked for calcium distributions during the whorl initiation event by using
chlorotetracycline as a fluorescence chelate. We found a sharply defined
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annulus of membrane-bound calcium at the location of whorl initiation, and it
was uniform, not breaking up into the whorl pattern until the initials were
already well established morphologically (Harrison et al., 1988, especially
Figure 3C-E). This is just as expected on the basis of reaction-diffusion
theory. For instance, in the Brusselator mechanism, patterning of a whorl
would be envisaged as arising first in the morphogens X and Y. But according
to equation (10.2) the spacing between adjacent hairs (X) should be governed
by concentrations of precursors A and B and should be uniform only where
those precursor concentrations are high and uniform. If we had found that
calcium was never distributed uniformly around the whorl-forming region,
but formed a pattern of peaks where the hairs were going to be right from the
start, we would have been faced with a real problem. I know of no theory in
which that kind of distribution is compatible with a X-controlling role.

An anonymous referee of my next research-grant application made a com-
plimentary remark about this work, but added in passing that it is a pity that
the calcium was not found in the whorl pattern at an earlier stage. This referee
had fallen right into the trap of which Meinhardt warned. If one does not look
carefully at the mathematics of the theory, it might seem that one is looking
for something distributed in the whorl prepattern, and it is then a pity if one
does not see it before morphological expression. But the mathematics requires
one to distinguish X and Y from A and B and to think of the different things
that these two pairs of substances are doing. A whorl pattern at an early stage
for something which otherwise has an important attribute of A or B (i.e.,
spacing control) would be evidence that one has got onto the wrong theory and
needs to think again.

10.1.3 Morphogens and mechanisms

Physical chemists who were brought up on gas-phase kinetics expect very
simple reactions to have very complex mechanisms, with multiple roles for
very few elements. The gas-phase combination of hydrogen and oxygen to
form water has more than a dozen steps, among which two steps show why
the reaction occurs explosively over certain ranges of concentration. All the
steps involve only two elements. Such a chemist, faced with the problem that
calcium has something to do with Acetabularia morphogenesis, will probably
not ask, (a) Is calcium a morphogen? (b) What is the role of calcium in whorl
morphogenesis? Rather, the question will be, (c) Which of the multiple roles
of calcium is involved in the particular aspect of morphogenesis we are
considering at the moment?

For the formation of Acetabularia whorls, two groups have been following
parallel lines of work, both using kinetic theory but in different forms, and
both involving calcium. My approach has already been outlined up to the
evidence of Figure 10.1. Those lines, however, do not go through the origin
of coordinates. This suggested to me that the morphogen precursor is not free
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calcium ion but a membrane-bound form of it involving a calcium receptor on
the outside of the plasma membrane. If the spacing \ is inversely proportional
to the concentration of bound calcium, then the plots of Figure 10.1 be-
come plots of (1/bound) versus (I/free). These are analogous to the familiar
Lineweaver-Burk plots of Michaelis-Menten enzyme kinetics. There, the
rate of reaction is proportional to the concentration of bound substrate, so that
(I/rate) plotted as ordinate is proportional to (1/bound). Of course, the con-
cept which I discuss here of spacing being inversely proportional to a con-
centration arises from the idea that spacing, however static it may look, is a
manifestation of reaction rates.

On this basis, I was able to extract quantitative values of the binding
constant from (intercept/slope) of the plots, of order 103 M~ *. Such values
are common for the binding of calcium to a pair of carboxylate ligands and a
few neutral donors (Williams, 1976, 1977), including the weak calcium-
binding sites of some proteins (e.g., the calcium-binding site of concanavalin
A, where the anionic ligands are on the side-chains of Asp 10 and Asp 19).
The binding constant increased with temperature, indicating endothermic
entropy-driven binding (Aff§98 = 88 kJ mol~ \ &S%S = 356 J mol~ l K" l ) .
Endothermic binding is in fact quite common for calcium (e.g., with phtha-
late, malonate, or lactate as ligand).

This line of physicochemical reasoning points toward an unidentified pro-
tein on the plasma membrane as the essential morphogen precursor, with a
weak calcium binding needed to activate it. Thus the calcium is a somewhat
incidental player in the morphogenesis. The possibility that a protein has the
leading role makes it easy to see, in general terms, that the genome can
exercise control of species-specific differences in cell surface architecture.
This has astonishing diversity in the Dasycladales.

The parallel line of work is that of B. C. Goodwin with his group and
collaborators. They have found that whorl morphogenesis can be switched off
by decreasing the calcium level in the culture medium below about one-fourth
of the normal level, or by using a calcium ionophore (Goodwin and Pa-
teromichelakis, 1979; Goodwin, Skelton, and Kirk-Bell, 1983). These data
point clearly to an involvement of calcium in morphogenesis, and the effect of
the ionophore suggests that intracellular calcium is involved. These workers
have gone on to develop a mechanochemical theory of whorl morphogenesis
using the cytoskeleton and intracellular calcium (Goodwin and Trainor, 1985;
Briere and Goodwin, 1988). This type of theory is of course within the general
category of kinetic theory which I am advocating in this book. Also, it is quite
concordant with current biological thinking that extracellular receptors on the
cell surface and the intracellular cytoskeleton should be linked together in the
performance of a single biological event. My concept of calcium triggering a
membrane-bound protein into becoming a precursor of a Turing morphogen
is, however, the only theory so far published which accounts for the phys-
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icochemical data on control of hair spacing by calcium concentration in the
medium.

No other workers seem to have studied calcium distribution at closely
spaced intervals during whorl initiation. But at a later stage, when the hairs
have grown extensively, Reiss and Herth (1979) showed by chlorotetracycline
fluorescence that calcium was concentrated just below the point of emergence
of each hair from the main stalk of the cell. Cotton and Vanden Driessche
(1987) followed that up by showing that at the same developmental stage,
calmodulin was concentrated in a similar region. This points toward involve-
ment of intracellular calcium at some stage in hair development.

Vanden Driessche (1990) has reviewed these various observations on cal-
cium and morphogenesis in Acetabularia, particularly from the viewpoint of
characterizing intracellular calcium as a second messenger. She mentions at
some length my concept of membrane-bound morphogenetic calcium, but
from my evidence mentions only two qualitative points which I regard as quite
minor. The usual philosophical gap, or paradigm difference, between physical
scientists and biologists is once again apparent. I regard the quantitative
evidence in Figure 10.1 and the thermodynamic data derived therefrom as
being the burning issue. These are what point so strongly to an extracellular
role of calcium. Although the reference is given, the significance of these data
is not mentioned in Vanden Driessche's account.

What may be the nature of the morphogen precursors which are activated
by this calcium binding? It was suggested to me by an anonymous referee that
autophosphorylating protein kinases offer a promising possibility. Lisman
(1985) devised a putative bistable switching system in which the nonlinear
(bimolecular) step was intermolecular phosphorylation of this kind. Goodwin
and Pateromichelakis (1979) found a strong gradient in phosphate incorpora-
tion along the stalk of Acetabularia. They mentioned that protein kinases are
known to be present in Acetabularia and to increase apically during cap
formation (Pai et al., 1975). Vanden Driessche (1990) refers to this work and
to known relationships (e.g., in maize) between protein phosphorylation and
auxins. Perhaps the Turing morphogen pair in whorl morphogenesis is a
protein kinase and a small-molecule plant hormone, whether among the aux-
ins or in some other category. A connection between extracellular calcium
binding and intracellular bimolecular auto-phosphorylation, via integral mem-
brane proteins, may eventually serve to put these diverse observations and
theories together in a consistent picture in which very little will have been
discarded of all the current ideas.

10.1.4 Three feedback loops

As discussed earlier, my scheme for hair-whorl morphogenesis has two
stages. In the first, an annular pattern is formed. This defines the region in
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which whorl pattern is set up essentially one-dimensionally, that dimension
being distance around the perimeter of a circle. The concept here is much
more general than the idea of using reaction-diffusion in each of these pattern-
ing processes. I have pointed out (Harrison, 1982) that wavelike patterns are
particularly badly controlled on a hemispherical surface and that reduction of
dimensionality in a preliminary stage might be expected to be a common
feature of developmental hierarchies. Is there any more direct evidence for the
existence of two stages?

First, there is a little phylogenetic evidence. In the Palaeozoic Rhab-
doporella, believed to be the ancestor of all the modern Dasycladales, the
arrangement of hairs was random. Organization into whorls arose in the
Mesozoic (Fritsch, 1956; Herak, Kochansky-Devide, and Gusic, 1977). This
suggests that for these two stages, ontogeny reverses phylogeny. The first
stage was absent in the earliest dasyclads. (Presumably they did not have the
trick of from time to time boosting an input, S in Figure 10.2, so that it
changed the A pattern from apical maximum to annular.)

Second, the observation of Goodwin and Pateromichelakis (1979) that
ionophore A23187 switches off whorl formation but allows tip growth to
continue seems to indicate that these two processes have different mecha-
nisms.

Third, there is a contrast between main whorl formation and subsequent
branching of each hair. The former needs a switch-on event (Harrison et al.,
1984; Schmid et al., 1987). But once the main whorl has formed, the subse-
quent branchings always occur, on a fairly regular time schedule. This is
compatible with the second stage, once activated, remaining active in the
hairs.

Most of the foregoing considerations (except for the parenthetic remark
about S and A) can be taken in the spirit of general systems theory, and could
be correct if the mechanisms do not involve reaction-diffusion at all. In
Harrison et al. (1988), a version of Figure 10.2 was shown with stages I and II
thus numbered, but without the equations suggesting two reaction-diffusion
processes in series, the X of I being the A of II, and therefore designated as A
in Figure 10.2.

Tip growth is a remarkably difficult phenomenon to explain even in the
absence of branching at the tip. For it to happen at all as a means of elongating
a cylinder, the tip must be self-limiting in extent; that is, the morphogenetic
activity which sustains the dome-shaped tip and elongates the cell must be
able to pull its own boundaries up after it. If the boundaries should cease to
move, cell surface extension would "blow a bubble," with the fixed boundary
as the end of the bubble pipe. Such morphogenesis happens in other dasyclads
at particular stages (e.g., Cymopolia, while producing hair whorls, makes
reproductive structures by forming large spherical gametangia on the ends of
certain hairs).
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Figure 10.2. Three feedback loops for whorl morphogenesis in Acetabularia. Loops I
and II are two Brusselators in sequence, the X morphogen of the former being desig-
nated A because it becomes the A input of the latter. Loop I has the necessary
patterning power to concentrate A into an annular region where loop II can produce the
whorl pattern. Both patterns were observed for membrane-bound calcium during whorl
initiation (Harrison et al., 1988). Loop III is the means by which the morphogenetic tip
draws its own boundary around itself. It is necessary to give tip growth its essential
character as a cylinder-elongator. In branching tip growth, it must be active to form a
new boundary round each hair, so that each of these may grow as a cylinder. Loop III
gives scope for new ideas, both as to its biological mechanism and as to its mathe-
matical formulation. In the modelling of sequential coupling of loops I and II done in
my laboratory by G. D. Zeiss [Harrison et al. (1981); computation of whorl mor-
phogen distribution shown again in Harrison and Hillier (1985), Harrison et al. (1988),
and Nagorcka (1989)], loop I was modelled with a Brusselator, but loop II was
modelled with a linear Turing model with concentration-dependent parameters as one
might expect them to be for a Brusselator, hyperchirality model, or others. In model-
ling a sequence, one must put in some specific nonlinearities in the earlier stages
because one needs to take them to the steady state. Only the last stage can be modelled
more simply.
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Figure 10.3. Morphogenesis in Micrasterias rotata, a desmid alga common in fresh-
water ponds in widespread locations, (a) About 3 hours after mitotic division, each
daughter cell is about 60% of the way through growing a new half-cell, (b) Growth
profiles for the semicell margin at 10-min intervals, 20°C. In the third dimension, this
cell is quite thin (without the indentations, its shape is somewhat like that of an
ordinary biconvex lens). The growing region may be approximated as an edge (i.e.,
the profile drawn in these diagrams). More precisely, it is a set of growing tips. Each of
these does not remain circular like Acetabularia tips. They become somewhat flattened
into the plane of the diagram. From Lacalli and Harrison (1987), with permission.

10.1.5 Branching tip growth in some desmids

Another group of algae, the placoderm desmids, display both tip growth, with
branching, and "bubble-blowing" at various stages of semicell morphogene-
sis. Figures 10.3 and 10.4a-e show some typical cell shapes. When mitosis
occurs, the daughter cells separate at the isthmus (i.e., the narrow junction
between the two halves, horizontal in the diagrams). Each daughter cell is
closed at the isthmus by a flat septum of cell membrane and wall. This
develops into the shape of a new half-cell by growing out into a "bubble"
which in some species stays fairly simple in shape (Figure 10.4a-c) and in
others becomes much more complex by repeated dichotomous branching
(Figures 10.4d,e and 10.3). Each lobe of these complex shapes advances by
tip growth, with progressive isolation of an increasing number of mor-
phogenetic regions from each other.

Morphogenesis in Micrasterias was studied extensively by Kiermayer
(1970) and later by Lacalli (1973, 1975a,b, 1976). The latter work gave me
my introduction into the whole field of morphogenesis. Reaction-diffusion
modelling has been based, as in my work on Acetabularia, on the concept that
the prepatterns are formed at the cell surface, and that one of the patterned
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Figure 10.4. Right-hand column, (a)-(e): Line drawings of the shapes of some fully
developed desmids. From West and West (1905). (a) Cosmarium nitidulum; (b)
Xanthidium armatum var. irregulariutf; (c) Cosmarium hammeri var. homalodermum;
(d)Euastrum divaricatum; (e) Euastrum rostratum. Left-hand column, (A)-(E): Some
computed morphologies in two dimensions. From Harrison and Kolaf (1988). The
growth region is a closed loop, initial state circular (not shown). A Brusselator patterns
X and Y around the loop. Every small region of the perimeter grows at a rate propor-
tional to X. The algorithm for converting length increase unequivocally to shape
change implies cell-wall mechanics which tend to preserve local directions. These
calculations illustrate the need to use "feedback loop III" in the model (Figures 10.2
and 10.5) to obtain repeated dichotomous branching. (A) and (B) are from a computa-
tion with no such loop. Beyond stage (#), the shape soon again becomes circular, as it
was initially, but now much larger. Stages (C)-(E) are from a computation in which
persistently low X ultimately switches off the morphogenesis. The Brusselator then
produces repeated branching. In (E) the branches are slightly overlapping in the
middle. The suggested comparison of the computations with the several desmid shapes
is to be understood in terms of the shape of the upper half-cell of the real desmid shape.
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morphogens governs the rate of extension of the surface. This assumption is
strongly supported in Micrasterias by the fact that cytoskeletal inhibitors do
not prevent morphogenesis. Kiermayer was the first to suggest that the rate
of membrane extension by fusion of vesicles from the Golgi was of primary
importance in shape development. Lacalli had this in mind in choosing the
organism for extensive study. Without at first being aware of the earlier
suggestions, I came around to the same idea upon reading Staehelin and
Giddings (1982), who, in this same alga, identified rosette-shaped structures
carried by Golgi vesicles to the plasmalemma as the active cellulose poly-
merases. Each rosette produces a microfibril of fixed length. Therefore, it
seemed to me, cell surface extension must go in lock-step with the addition
of polymerase rosettes to the plasmalemma. Control of the rate of that
process, at the membrane itself, should be the essential shape-forming
event.

In the first application of reaction-diffusion theory to this example (Har-
rison and Lacalli, 1978), we used the hiyperchirality model, which I had just
spent a lot of time devising. I no longer think that this is the most appropriate
form of reaction-diffusion for Micrasterias. The strength of hyperchirality lies
elsewhere, in the stripe-forming ability associated with its special symmetry
properties (Sections 9.2 and 10.2). Lacalli (1981) gave an extensive discus-
sion of reaction-diffusion modelling for desmids and other unicellular algae,
mainly in terms of a modification by Tyson of the Brusselator model. Harrison
and Kolaf (1988) used the standard Brusselator in a model which is the closest
so far published to being complete in the sense of containing all components
needed for repeatedly branching tip growth.

Complete modelling is very demanding because the cell shape is formed by
a sequence of events on a continuously changing shape (Lacalli and Harrison,
1987). In Acetabularia, one can demonstrate that a chemical model will give a
whorl prepattern on a fixed dome shape. Feedback loops I and II (Figure 10.2)
have to be linked together, but one can proceed a long way without having to
compute the actual morphological growth of the whorl or to devise a mecha-
nism for feedback loop III, the delineator of new boundaries for mor-
phogenetic regions. In Micrasterias, there is no avoiding growth and loop III
in the model. For the latter, reactant A of the Brusselator turns out to be very
useful in the modelling. In other instances, I have used A to model develop-
mental hierarchies: Acetabularia (Section 10.1.4), hierarchy from loop I to
loop II; Drosophila (Section 10.2.1), hierarchy from maternal-effect through
pair-rule gene activation (Lyons et al., 1990). For the desmids, I have used the
same control of morphogen X by input A, but have closed a loop by feedback
from X to A (Figure 10.5).

This feedback is described in the legend to Figure 10.5. It involves a
postulated aging effect in the cell surface, in which old surface fails to supply
reactant A. A continuous decrease in A with increasing age a was put into our
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Figure 10.5. My first, and rather primitive, model for feedback loop III. The upper
diagrams are loop morphologies, as in Figure 10.4 (A-E). The lower diagrams are
plots of Brusselator X and Y against distance L round the loop, from the top as L = 0
(upper diagrams, black arrowheads). If the loop is not growing, its material (cell wall
and membrane) is aging in real time. If it is growing, the added material is taken as
zero age at time of addition. An average age a for a small region of the loop can be
found by an integration over time of the amounts of material added at various times.
This will be less than real-time age. Where X is high and growth rapid, the cell surface
is kept continually rejuvenated. Where X is low and growth is slow, the surface ages
more rapidly. Without detailed discussion of mechanism, it is assumed that supply of
reactant A depends on the age and is completely cut off at a threshold value ath. X goes
to zero irreversibly in those regions, shown by heavy lines in the upper diagrams. At
point G, this is about to happen. From then on, the shape development does not take
the path back to a circle shown in Figure 10.4 (A and B). Instead, the morphogen peaks
are nicely separated, and each splits into a pair. The right-hand stage in this diagram
arises in place of Figure 10.4 (A), and further repeats of the same feedback through a
take the shape into the sequence of Figure 10.4 (C-E).

computations in the simplest possible way, the expression for the rate aA of
step 1 of the Brusselator mechanism being

aA = a o(a t h - a ) / a t h . (10.3)

Here, a th is the threshold age at which supply of A totally ceases. Equation
(10.3) is used for a < a th. For all greater ages, aA is taken as zero.

An age effect is likely to be quite plausible to botanists, but the properties I
assume for it are unconventional. In higher plants, especially at the onset of
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rapid elongation of cells, it is evident that mechanical factors are involved in
growth. Botanists are likely to expect an age effect to be formulated in terms
of mechanical hardening. This is not what I have done. Micrasterias grows by
formation of a thin, flexible, temporary wall (primary cell wall) which has
randomly oriented microfibrils. The thick, rigid, secondary wall with arrays
of parallel microfibrils is laid down only after semicell morphogenesis is
complete and the cell has already reached its final shape. This is a very
different kind of growth from higher-plant cell elongation. I am inclined to
expect aging effects in Micrasterias to involve changes in chemical compo-
nents of the membrane more than mechanical properties of the wall. For
instance, primary-wall formation involves the accumulation in the membrane
of polymerase rosettes which, for unknown reasons, have become irreversibly
inactive after formation of a definite amount of cellulose. Also, when vesicles
are conveying this enzyme to the plasmalemma, what else may they be con-
veying in addition? Whatever the precursor A to morphogen X is, it may
readily be conveyed in this way. If X catalyzes cell surface extension by
catalyzing vesicle fusion, then there is a feedback from X into A.

This account is intended to attract the attention both of physical scientists
and of biologists. For the theoretician, the feedback loops of Figures 10.2 and
10.5 afford much scope for mathematical analysis. My rudimentary model for
the aging effect [equation (10.3)] and hence for loop III is just a pointer to
what could be a large and almost untouched field of modelling. There is also
the matter that loops I, II, and III together form a loop on a grand scale.
Another feature of the present model which is quite rudimentary is the kind of
mechanical interaction implied by the algorithm which we used to translate
surface extension unequivocally into a uniquely determined shape. I believe
that this represents reasonably well the mechanical properties of a fairly
flexible wall with a membrane inside it, but there is scope for a lot of
mathematical analysis here. Finally, simultaneous prepatterning and shape
change must be commoner in plants than in animals, because plants continue
to develop throughout their lives. Very little has been done either of analysis
or of study by computation of what could be a large field here.

10.2 Drosophila segmentation

Segmentation of insects in general and Drosophila melanogaster in particular
has been treated by many of the persistent practitioners of reaction-diffusion
theory: Meinhardt (1977, 1986, 1988), Nagorcka (1988), Kauffman (1977,
1981), Goodwin and Kauffman (1990), Harrison and Tan (1988), Lacalli et al.
(1988), Lacalli (1990), Lyons et al. (1990), Hunding, Kauffman, and Good-
win (1990). Also, without any reference to Drosophila, Herschkowitz-
Kaufman (1975) used the Brusselator model to demonstrate that production of
pattern could be confined to a central part of a morphogenetic region (Section
9.1.3). The pattern of X and Y generated by the Brusselator mechanism had



Approaching agreement? 315

seven repeats occupying somewhat over half the overall length of the region
between the two A sources. This is remarkably similar to the initial ap-
pearance of the Drosophila segmentation pattern.

To my mind, reaction-diffusion is a very promising type of mechanism to
account for insect segmentation. It can represent the hierarchical ordering of
the several classes of segmentation genes in a manner formally similar to the
two-stage model discussed for Acetabularia in Section 10.1, albeit in a differ-
ent geometry. It can address the question of how pattern formation in two
dimensions is controlled to form stripes rather than spots (Sections 8.2.3 and
9.2). Its nonlinear dynamics correlate well with increasingly frequent refer-
ences to bimolecularity in the actions of regulatory proteins. None of this is
intended to signify that reaction-diffusion has yet been proved definitively to
be the mechanism for any particular stage in the segmentation sequence. But
neither has any other mechanism, and reaction-diffusion is one of the most
exciting possibilities, which ought to be engaging the attention of substantial
numbers of experimentalists and theoreticians interacting with each other.

In the past few years there has been, among drosophilologists, a brief
period of incipient interest in kinetic theory (Akam, 1987), followed by re-
newed doubt (Akam, 1989). From others among them, I have met attitudes
ranging from indifference through disappointment to overt hostility. The fol-
lowing two sections explore two aspects of this gulf between attitudes.

10.2.1 Communication versus "no crosstalk"

A living organism is, above all, a display of large-scale organization. At some
level of developmental processes, this requires long-range interaction. Phys-
ical scientists tend to start from the assumption that these long-range influ-
ences are built into most levels of the processes which generate complex
pattern. Developmental biologists tend to suppose that in a hierarchy of events
leading to complex pattern, only the top level of the hierarchy involves long-
range interaction. All the others can be understood on a local basis. Two
essentially equivalent terms denote this kind of hierarchical concept: "gra-
dient reading" and "positional information." In my classification, such mod-
els use type I morphogens at the top of the hierarchy and do not use type II
morphogens anywhere. By contrast, the kind of mechanisms which I regard
as most promising require type II morphogens for a pattern of repeating parts
to be formed at all.

The general outline of the experimental facts and the hierarchical order
which they require of a mechanism of either of the foregoing types is not in
dispute. Some 4 hours after fertilization, at the start of interphase 14 in the
sequence of divisions of the fertilization nucleus, the Drosophila egg has
about 8,000 nuclei in a syncytium. They form a single layer just inside the
surface of the egg, which is roughly a prolate ellipsoid 0.5 mm long. Adjacent
nuclei are a distance of order 10 |xm apart. Interphase 14 is a long pause in the
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division sequence. Within that period, the egg becomes, first, biochemically
segmented and, second, multicellular. The latter event occurs by multiple
invaginations of the plasma membrane to envelop each nucleus and the sur-
rounding cytoplasm in a separate plasma membrane. But while the egg is still
syncytial, some proteins, such as the product of the fushi tarazu gene, are
found to be produced in a pattern of seven stripes, each about three to four
rows of nuclei wide, transverse to the anteroposterior direction (Gilbert,
1988, cover illustration). The genes concerned are called "pair-rule" genes,
because two gene products are so related that they form alternating stripes; for
example, in the intervals in which fushi tarazu protein is not present, even-
skipped protein is found.

(The Japanese word fushi has the primary meaning of the repeated nodes
seen very obviously on a bamboo cane. By metaphorical extension, the word
is used as an abstract noun for both space-order and time-order. Thus, fushi
tarazu may be translated "not enough segments" or "not enough rhythm."
Many Drosophila genes have names suggesting a deficiency. Each was first
recognized as existing because of the deformity of a mutant insect lacking the
particular gene activity concerned. Physical scientists seeking to contribute to
explanations of biological development should recognize that the chemical
phenomena which they are considering - gradients and more complex pat-
terns of chemical substances - are still rarely known directly. Much more
commonly they are inferred from studies of developing morphology. Instances
of direct observation, such as fushi tarazu, remain exceptional even in such
huge bodies of information as that now existing for Drosophila.)

The pair-rule genes are the third level of a hierarchy of five classes of genes:
maternal-effect, gap, pair-rule, segment-polarity, homeotic. In brief:

1. Maternal-effect genes. These genes are transcribed in the mother. The
mRNA is transferred to localized regions at the anterior or posterior end of
the egg and does not move. It is translated into proteins which can move.
One of these, bicoid, is now known (Driever and Nusslein-Volhard, 1988)
to be distributed along the egg in a gradient which, for a large fraction of
the length, has the exponential form expected for a type I morphogen
(Figure 2.1b).

2. Gap genes. These genes are active along parts of the egg much longer than
one stripe of the 14-stripe pattern of two alternating pair-rule genes, and
they appear to control the expression of the pair-rule genes. Thus the
absence of gap gene activity leads to defects in about three fushi tarazu
stripes and hence to major morphological defects, as described by names
of mutants and genes such as hunchback, Kriippel (cripple), and knirps
(dwarf). [For a summary, see Carroll and Scott (1986).]

3. Pair-rule genes. These genes are expressed first in quite long domains, but
by interphase 14 have achieved the pattern of seven stripes of expression of
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one gene alternating with seven of another. There are four such pairs of
genes.The most widely studied is fushi tarazu, but it appears to be a
passive recorder of a pattern first appearing in the pair hairy and runt. If
there is within the pair-rule system a two-morphogen pattern generator, it
is most likely to involve the control systems of hairy and runt with some
feedback from even-skipped, the partner of fushi tarazu. The region oc-
cupied by a stripe is referred to as a parasegment, because the pair-rule
stripe pattern is staggered with respect to the ultimate morphological seg-
mentation (i.e., a segment corresponds to the posterior part of one stripe
and the anterior part of the next).

4. Segment-polarity genes. It has long been known from work on insects
other than Drosophila (e.g., Rhodnius) (Locke, 1967) that each segment
of an insect contains a repeat of the same anteroposterior gradient, so that
along the whole length of the insect the gradient has sawtooth form.
Segment-polarity genes are those which somehow specify this gradient by
being expressed only in the same localized region of each segment. In
Drosophila, the expression of these appears to begin mainly late in in-
terphase 14, after cellularization. Two well-known examples are engrailed
(a heraldic term for a scalloped border with the spikes pointing outward
from the bordered region) and wingless. Both are normally expressed only
in the posterior region of each segment. Absence of engrailed leads to a
mutant morphology in which, roughly, the posterior part of each segment
develops abnormally as a mirror image of the anterior part. A defect in
wingless can sometimes affect only the posterior part of the second thor-
acic segment, from which the wings arise. This gene is homologous to a
vertebrate gene int-1 (55% identity from Drosophila to mouse, 99% from
mouse to human), which is an oncogene (i.e., a gene for some part of a
signal transduction pathway which becomes drastically overexpressed in
cancers).

5. Homeotic genes. The term "homeosis," coined by Bateson (1894), de-
scribes an abnormality in which one organ is replaced by a likeness of
another (e.g., a leg-like structure grows where an antenna ought to be).
The modern definition of a homeotic gene in an insect is that it is one
which determines the identity of a particular segment.

These five classes of genes appear to be involved in a hierarchical ordering
of control processes. [See Akam (1987) for a review of the gene classes.]
These processes may be described as follows:

1. establishment of monotonic anteroposterior gradients along the whole em-
bryo,

2. demarcation of fairly long "cardinal regions" [terminology of Meinhardt
(1986)] along the embryo,
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3. formation of the 14-stripe pattern,
4. formation along each segment of a similar anteroposterior gradient,
5. specification of an individually different identity for each segment.

The preceding generalities are, I believe, not in dispute and are also un-
likely to be changed over the next few years by new evidence, even though it
is being obtained very rapidly by many workers. Controversy surrounds both
the nature of the pattern-forming control processes and the manner in which
one should go about trying to establish this. On the latter point, I maintain that
the first approach should be to the generalities. Fine-tuning to the impressive
array of known details is probably going to take decades. Many dros-
ophilologists would, I think, argue that progress beyond the current level can
be made only by increasingly meticulous attention now to all those details.

The question of type I (Wolpert) versus type II (Turing) morphogens arises
even at the top of the hierarchy, in the establishment of the anteroposterior
gradients. The fundamental distinction is that a Wolpert positional gradient
arises from a preexisting localized Saunders source (and is therefore not really
the top of a hierarchy; that honour belongs to the source-positioner, e.g., the
nurse-cell/egg interaction in Drosophila). A Turing morphogen pair has the
power to locate its own sources. The evidence that maternal-effect mRNAs
are Saunders sources for Wolpert gradients of their translation products is very
strong in Drosophila. But the double-abdomen deformity in Smittia correlates
well with a Turing mechanism and even allows one to start the fine-tuning of
theory to experiment by recognizing that the nonlinear structure of the Gierer-
Meinhardt equations is more appropriate to this case than is the structure of
the Brusselator (Meinhardt, 1977, 1982) (see Section 3.3.1, Figure 3.12).
Meinhardt (1986), as copied in amended form by Harrison and Tan (1988),
has also used this two-morphogen mechanism for the Drosophila gradients,
despite the evidence for fixed sources. Do insect eggs in fact have multiple
anteroposterior gradients, some of one type and some of the other, and there-
fore capable of diverse kinetic events (just as the many proteins in a cell have
diverse functions)?

Beyond the gradients, developmentally (or below them, hierarchically), lies
their interpretation in the expression patterns for gap genes and pair-rule
genes. Herein is the greatest divergence between the current views of reac-
tion-diffusion theorists and experimental drosophilologists, as summarized in
the title of this subsection: communication versus "no crosstalk." The ap-
proach taken in my laboratory builds on the work of Herschkowitz-Kaufman
(1975). We start the hierarchy by using the reactant A to represent the com-
bined effects of both anterior-high and posterior-high maternal gradients (re-
spectively, bicoid and probably nanos, though the posterior effects seem more
complex, and oskar has also been mentioned in this connection) (Irish,
Lehmann, and Akam, 1989). Is it reasonable to set up a model by rolling the
effects of two or more different substances together into a double-ended
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gradient of a single substance A? I have been severely criticized by dros-
ophilologists for doing this, and the procedure certainly runs quite counter to
their energetic efforts to disclose the variety of detail in the actions of the
several substances forming the anterior and posterior gradients. The next
section addresses this issue.

My gradient of A is simply the sum of two type I morphogen distributions,
of the steady-state exponential form in distance along the egg. The anterior-
high part is modelled on the known bicoid distribution. The posterior-high
part can be modelled more freely, because less is known experimentally about
it. Given these gradients, what happens down the hierarchy? At the lower
levels, especially the pair-rule level, we depart from both the experimentalists
and the approach of Meinhardt (1977, 1986) by using two-morphogen reaction-
diffusion as the pattern-former. This involves communication by diffusion of
X and Y from nucleus to nucleus through the intervening cytoplasm. With the
Brusselator mechanism and appropriate choices of parameter values, we can
produce one long plateau of morphogen concentration or a pattern of several
equally spaced peaks. The former might represent a gap gene distribution of
activation, the latter a pair-rule pattern. Eventually, we want to tie these two
kinds of computations together so that the whole hierarchy can be put into one
program. To do this will involve using two Brusselators in sequence, with a
morphogen of the first (gap gene pattern) becoming a reactant input to the
second. This is a strategy similar to feedback loops I and II in Figure 10.2 for
the Acetabularia whorl pattern.

That will be a major project needing a long-term approach in many steps.
For the nonce, our first step (Lyons et al., 1990) is to assume a gap gene
product distribution. Just as reactant A is used for all maternal-effect gene
products, so we use B for all gap gene products, and we model mutants by
taking pieces out of the otherwise uniform B distribution to correspond to
known regions of activity of particular gap genes. In this way we have been
able to model the defects in pair-rule pattern produced by null mutants for the
gap genes hunchback and Kriippel (Figure 10.6).

To do this, however, we did not have to drop B to zero. A diminution from
30 to 15 arbitrary concentration units was quite enough. For this we have
received the criticism that we are modelling a haplo-insufficiency rather than a
null mutation, and that it takes total absence of a gap gene product to erase
pattern. We are unrepentant. This work is a first attempt. After much more
theoretical work by several groups publishing many papers, the fine-tuning
of theory to experiment may progress, perhaps, into continuing with two-
morphogen reaction-diffusion but using a different model from the Brus-
selator; and all quantitative aspects could change. Our work seeks to point the
way to a promising-looking path.

The no-crosstalk model which is currently much preferred by many dro-
sophilologists does not involve any communication between nuclei. Each
nucleus is envisaged as responding independently to concentration levels of
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Figure 10.6. One-dimensional Brusselator modelling of the fushi tarazu expression
patterns at cellular blastoderm stage (interphase 14) in two Drosophila melanogaster
gap gene mutants, hunchback (hb) and Kruppel (Kr). Modified from Lyons et al.
(1990). A reactant had the double-ended gradient shown in Figure 9.3. With constant
B = 30, this gives a 7-peak pattern of Y, corresponding to the minima of X in Figure
9.1b. In the present figure, Y concentration patterns are shown (cross-hatched) for
distributions of B with distance s along the egg as shown on the left. Idealized
experimental data in the egg shapes on the right are adapted from Carroll and Scott
(1986).

the primary maternal-effect gradient. This response first produces the "car-
dinal regions" (Meinhardt's terminology) of the gap gene activities. These
regions have some overlap, and the changing ratio of gap gene product con-
centrations in the overlap regions is seen as a means of turning the primarily
monotonic positional information into a set of repeating stripes of pair-rule
gene activities (Figure 10.7) (Edgar, Odell, and Schubiger, 1989; Pankratz et
al., 1990; P. M. Macdonald, personal communication).

Whatever the details of intermediate stages in translation of a monotonic
gradient into a striped pattern, however, the precision with which the gradient
must be read remains the same. This may be estimated from the bicoid data of
Driever and Nusslein-Volhard (1988), with an uncertainty of about ±30%
arising principally from the question of how to correct for the background
intensity shown in their graphs. The exponential concentration gradient is of
course linear in free energy (chemical potential) (Figure 2.2), and I estimate
the change between adjacent rows of nuclei as about kBT/25 per molecule, or
0.1 ± 0.03 kJ mol~ l , in other words about 1/25 of thermal noise. This is not
nearly enough to switch on a gene in one row of nuclei while switching it off
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Figure 10.7. A detail of the no-crosstalk gradient-reading model at present more
favoured than reaction-diffusion by many experimental drosophilologists. Names of
mutants and their related genes: h, hairy; Kr, Kruppel; kni, knirps; wt, wild-type.
From Pankratz et al. (1990), © Wiley-Liss, with permission from Wiley-Liss, a
division of John Wiley and Sons, Inc.

in the next with the precision needed to control the 14-stripe pattern, by an
interaction of one positional-information molecule with one binding site on
nuclear DNA. The pattern would simply get lost in the noise.

There are various ways out of this difficulty. All of them involve the
operation of some kind of amplifier. Therefore, they all require careful mathe-
matical consideration. The kinds of models which the experimental dro-
sophilologists are formulating require different mathematics from reaction-
diffusion, but they do not permit full expression with less mathematics. No
model for the pattern-forming phenomenon has been adequately formulated
until its mechanism for overcoming thermal noise, to allow such astonishingly
precise gradient reading, has been presented. I present this consideration as a
challenge to the no-crosstalk theorists. Reaction-diffusion theorists have done
their work on this aspect. For instance, the first paper of Gierer and Meinhardt
(1972) contained a computation in which a very noisy gradient was ampli-
fied into a much steeper and much smoother one (see Figure 5.3). In two-
dimensional computations in my laboratory (Figure 9.7) (Lyons et al., 1990)
it is routine to put in thermal noise at every iteration.

Here, I am by no means maintaining that it is impossible to find an ampli-
fier which will overcome noise in a no-crosstalk model, only that this essential
part of the modelling has not yet been done. Edgar et al. (1989) have modelled
a bistable switching system which is an amplifier. But they have not yet
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shown fully how this could be used to fine-tune the gradient reading to the
required extent.

10.2.2 Carving out a theory

Crombie's phrase (from the quotation used as epigraph to Part III) suggests a
correlation in procedure between scientific and artistic enterprises, which are
indeed the two faces of human creative activity. Modern scientific theory is
sufficiently elaborately detailed that one should take as its analogue classical
representational art. But what kind of art should be envisaged: painting,
sculpture, or whatever? If one thinks of the painting of a vast mural, one may
envisage many workers simultaneously painting the details of diverse small
sections. The whole surface on which to do this is available from the start.
The artists do not have to produce it by their art.

The word "carving," however, suggests an art with different constraints, in
which the sculptor must rough out a human shape from a block of stone before
the carving of details of a face becomes feasible. Much of the art lies in the
roughing out. Contemporary sculpture often says important things about the
human form without going into the details. I contend that Crombie has chosen
his word with great precision. Scientific theory is an art in which the surface
on which to elaborate the details is not available a priori, but is itself a product
of the enterprise. The double helix of DNA, which is the broad ground on
which so much detail is being elaborated by molecular biologists, is itself a
product of similar work. In longer perspective, before the middle of the
nineteenth century Liebig had roughed out the ground for protein science:
"There is, indeed, no part of an organ possessing a form or structure of its
own, the elements of which are not derived from the albumin of the blood. All
organized tissues in the body contain a certain amount of nitrogen" (Leicester,
1974). But nitrogen itself is one detail of the elaboration, half a century
earlier, of the system of chemical elements.

What has all this to do with the production of 14 stripes by an interphase-14
Drosophila egg? In essence, I believe that all theories of this phenomenon
should be appreciated today as being at the roughing-out stage. They should
be judged on how they are coping with the broad generalities. Thus the
procedure which I have used for reaction-diffusion, to lump all the maternal
effects into a double-ended gradient of one substance, should be seen as
normal procedure. It should be anticipated that the single precursor A will
eventually be split down into two or more substances. Lacalli (1990) has
pointed the way toward this in his discussion of four-morphogen models,
which are basically two models of the two-morphogen type coupled in paral-
lel. My hyperchirality model in Section 9.2 (Harrison and Lacalli, 1978;
Lyons et al., 1990) is a four-morphogen model which, because of a particular
symmetry relationship between the rate constants, can be viewed alternatively
as a two-morphogen model [the four being ZD, XL, 7D, FL, and the two U and
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V, as in equations (9.34) through (9.38)]. This illustrates that the count of
morphogen concentration variables in the dynamic equations may readily be
different from the number of chemical substances concerned. These dif-
ferences do not matter in the roughing-out stage of the theory.

The no-crosstalk gradient-reading theories, on the other hand, require also
some general mathematical discussion to establish their feasibility as a class
of models. The crucial question was raised in the preceding section. Can these
models be provided with amplifiers which will provide the very precise read-
ings of concentration levels required and which at the same time will fight
against thermal noise in those concentrations, without the models turning into
reaction-diffusion models?

10.3 From slime moulds to salamanders

In this section I group together a number of phenomena which are biologically
and chemically quite disparate. Their common feature is that each represents,
to my mind, a quite significant advance toward the establishment of kinetic
theory in general and reaction-diffusion in particular as being relevant to real
pattern-forming processes. These advances are as follows: identification of
what is very probably a Turing morphogen pair; observation of the expected
intermediate stages between randomness and order in Turing dynamics; evi-
dence for an activation-inhibition-communication mechanism in a vertebrate
mesoderm; and two contrasted instances of Turing patterns in nonliving chem-
ical systems, one spotted and the other striped.

These examples also illustrate, however, the difficulties in establishing
morphogenetic mechanisms with certainty, especially in regard to the roles of
the molecular scale and the cellular scale. (I mentioned this earlier in Section
4.4.1.) What is an activator morphogen, Turing and Prigogine X or Gierer-
Meinhardt A, supposed to activate? For the stalk-cell-pathway activator DIF-1
in Dictyostelium and the heart-formation activator in Ambystoma, as also for
the head activator in Hydra (Schaller, 1973; Schaller and Gierer, 1973;
Bodenmuller and Schaller, 1981), the activator is known to govern a particu-
lar kind of cellular differentiation. Whenever the differentiated cells are found
to produce more of the activator than do other types of cells, the existence of a
positive feedback loop has been established. This is promising as a compo-
nent of a kinetic pattern-forming model. But it is not the Turing kx term, nor
the third step of a Brusselator mechanism, on a strictly molecular scale. The
feedback goes through the cellular scale.

The reader may have noticed an incorrect identification between two things
in the preceding paragraph. It was put in as a deliberate mistake, to highlight
the difficulty of investigating kinetic self-organization, possibly the principal
reason why the field is advancing so slowly. The autocatalytic rate constant kx
of the Turing equations is not the rate constant of the autocatalytic step (c) of
the Brusselator. In Table 9.11 have listed Turing kx as Brusselator bB - d, an
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expression not containing the rate constant of the explicitly autocatalytic step
at all. This was mentioned earlier in Section 6.3, following a simpler bit of
mathematics in which I showed that for a simple model of autocatalysis and
decay, the Turing kx constant is the decay constant [Figure 6.4, equation
(6.30)]. If this decay is brought about by an enzyme, addition of that sub-
stance could appear as an activation.

The foregoing may seem like a counsel of despair. If experimental ap-
pearances can be so deceptive in relation to real mechanism, what hope is
there of putting the two together? Beyond the stages already reached, as
indicated in the following sections, what is the next step? In fact, I remain
altogether excited and optimistic about this. The next step for the biologist
should be the first on a totally new staircase. It starts, in this book, at the
beginning of Chapter 6, and the ascent of it involves gradually introducing
into our discussions of developmental mechanisms all the mathematical lan-
guage presented from there through Chapter 9. To my mind, without that
language there is great danger of setting up a tottering edifice of false conclu-
sions; with it, there is hope of greatly accelerated progress in the field. The
following rather brief note on a few promising examples should be read in that
light.

10.3.1 A morphogen pair in Dictyostelium discoideum?

The differentiation of two types of cells in the "slug" stage of the cellular
slime mould Dictyostelium discoideum was mentioned in Section 4.4.1, es-
pecially Figure 4.13a. It is known that both cell-sorting and differentiation of
cells in situ in a manner sensitive to their surroundings occur in the slug stage.
Therefore, both cell-as-molecule and purely molecular versions of kinetic
theory may be considered. The linear Turing model was applied by Lacalli and
Harrison (1978) to the problem of regulation of this two-part pattern in the
face of variation of slug size or interference by cutting a slug into fragments
during this patterning process. This work, showing quite good regulatory
capacity, was presented to argue against the indication of Bard and Lauder
(1974) that the Turing model lacks regulatory capacity. This had tended to
diminish the enthusiasm of biologists for Turing models (e.g., Cooke, 1975),
though Bard (1981) was soon in favour of these models again.

There are three candidates for the title of Turing morphogen in D. dis-
coideum: cAMP, DIF-1, and ammonia. It has been known for nearly a
quarter-century that cyclic adenosine monophosphate (cAMP) is the chemo-
tactic signaller to which separately moving amoeboid cells respond in the
aggregation stage, to come together to form the slug (Konijn et al., 1967).
cAMP was identified in 1960 and is best known and described in most
biochemistry texts as a "second messenger," that is, a compound which acts
intracellularly to transmit and amplify the signals delivered to the outside of
the cell surface by "first messengers" [i.e., hormones, especially epinephrine
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(adrenaline)]. But in D. discoideum, cAMP can be secreted by the cells within
which it acts, and it can act on the outside of those cells as a first messenger
itself. This is a positive feedback loop, and it makes cAMP a possible X
morphogen.

The other two compounds, DIF-1 and NH3, are, however, the ones cur-
rently most strongly indicated as a probable type II morphogen pair. Schindler
and Sussman (1977) showed that ammonia plays a role in the patterning.
DIF- l i s a lipid-like molecule which appears to be an activator for the differ-
entiation of cells as pre-stalk cells (Town, Gross, and Kay, 1976; Gross et al.,
1981). Gross has proposed these two as a Gierer-Meinhardt morphogen pair,
the short activated region being that of the pre-stalk cells, and the long
inhibited region that of the pre-spore cells. Speculatively, Gross et al. (1988)
have linked the entire postulated dynamics to pumping of calcium into calcium-
sequestering vesicles (Figure 10.8). To my mind, this diagram should be taken
as a systems-theory schematic in the same spirit as my diagram of three
feedback loops in Acetabularia (Figure 10.2), but with substantially more
knowledge, for Dictyostelium, of the actual molecules involved. This should
be the takeoff point for the mathematical advance.

10.3.2 Stages of Turing kinetics in Polysphondylium pallidum

Figure 2.7c shows how a pattern with a definite wavelength may be expected
to develop out of random noise which contains a mixture of many wave-
lengths, when a Turing mechanism is operating. Direct observation of inter-
mediate stages would assist greatly in establishing the reality of such dynam-
ics. In my laboratory, we observed something different from this, but closely
related to it, in Acetabularia whorls: the shift from one hair spacing to another
via a spread of intermediate values when the temperature of a culture is
suddenly changed and spacings are measured in whorls formed through a
period of several hours after the change (Figure 10.9c).

E. C. Cox and co-workers have reported much more direct observations of
the Turing dynamics in the slime mould Polysphondylium pallidum (Figure
10.9a,b). Unlike D. discoideum, P. pallidum does not culminate its life cycle
by forming a single ball of spores atop a single stalk. Instead, a number of
whorl masses are segregated at equally spaced intervals along the main stalk.
Each of these develops from 1 to 8 secondary tips around its equator. These
grow out into a whorl of secondary stalks on which the spore masses (sori)
finally form. Byrne and Cox (1986, 1987) made several antibodies, one of
which, called anti-PglOl, detected a pattern of antigen expression on the
whorl masses which appears to correspond to the prepattern for whorl forma-
tion (Figure 10.9a). The distribution of immunofluorescent stain around the
equator of the tip was measured quantitatively (Byrne and Cox, 1987) and
converted by Fourier transformation into a "power spectrum" (Figure 10.9b).
This procedure resolves the pattern into intensities of sine-wave components
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Figure 10.8. (a) The structure of DIF-1. (b) Schematic of feedback controls in D.
discoideum patterning, from my notes of a lecture by J. D. Gross (1989), with addition of
broken lines representing my understanding of the feedback loops which make DIF anX
morphogen and ammonia a Y morphogen. The large circle is a calcium-sequestering
vesicle. 1,2, and 3 are transmembrane structures, respectively a proton pump, a chloride
channel, and a proton-calcium antiporter. To sequester calcium, the vesicle must be
acidified so that the antiporter has an adequate supply of protons to function. This
acidification is done by the proton pump, but its proper functioning depends on the
chloride channel being open to supply counter-ions for the protons. The feedback loops I
and II involve unspecified processes in the rest of the cell, in which the cytoplasmic
calcium level controls production of both DIF and ammonia. DIF opens the chloride
channels, while ammonia combines with protons and hinders the proton pump. Gross et
al. (1988) describe this mechanism with a diagram similar to parts of (b).

with wavelengths corresponding to various numbers of peaks around the
equator. As expected for Turing kinetics, out of many peaks of comparable
intensities, one grows to dominate the system. Byrne and Cox (1987) and
McNally and Cox (1989) performed reaction-dififusion calculations showing a
good match to this observed behaviour.
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Figure 10.9. (a) and (b) Whorl formation around the equator of a whorl mass in
PolysphondyHum pallidum, from Byrne and Cox. (a) A whorl mass with dark shading
showing the whorl prepattern as revealed by anti-PglOl immunofluorescent staining,
at two different stages in whorl mass development, (b) For samples at approximately
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103.3 Complex kinetics in the mesoderm
of Ambystoma mexicanum

It has long been recognized that some features of vertebrate development,
such as control of the number of somites, occur very early, suggesting the
existence of prepatterns. But reaction-diffusion models have been largely
discounted because of the rather general impression among biologists that this
kind of mechanism cannot cope with adjusting the number of parts in a pattern
precisely when the sizes of individual embryos are somewhat variable. Cooke
(1975) has succinctly summarized this general line of thinking. The problem
here has been the primitive nature of the reaction-diffusion models, which
have remained primitive much too long because not enough people have been
doing the detailed work of elaborating them. I have shown (Harrison, 1982)
that when one takes into account the ways in which inputs such as the
Brusselator reactants A and B may be controlled, the number of parts in a
pattern produced by reaction-diffusion can be made constant for changing
system size, or variable in any way one might want it to vary (see Section
10.4). This should not have been left for me to do, thirty years after Turing's
paper.

In view of the general scepticism, any evidence pointing toward reaction-
diffusion in the vertebrates is welcome. It has long been known that formation
of some organs from the mesoderm involves an inductive effect from the
endoderm. A specific example is the heart in some amphibians. Evidence in
some species has shown that the inductive effect is active until very shortly
before the heart begins to beat, giving the impression that the mesoderm
responds rather passively to endodermal instructions and does not have a big
job to do by itself in specifying the heart-forming tissue.

It is therefore very significant that in one species of salamander, the axolotl
Ambystoma mexicanum, the inductive effect has been found to be complete by
the end of the third day of development, whereas the beating heart is not

Figure 10.9 (cont.) the same stages, the power spectra of stain intensity. Each bar in
the histogram shows the intensity of a sine-wave component of the pattern having, all
round the equator of the whorl mass, the number of peaks shown by numbering on the
scale of abscissae. This is therefore a scale of spatial frequency, or reciprocal of
wavelength. As expected for Turing dynamics, the spectrum first has many lines of
comparable intensity; but later, one grows to dominate. In the case shown, that one
corresponds to a whorl of five secondary stalks, (c) The change in wavelength (hair
spacing) in Acetabularia whorls when the temperature is suddenly changed from 18°C
to 29°C. From Harrison et al. (1984), with permission. Here the abscissae are wave-
lengths in micrometres, not reciprocals of wavelength. Right-hand column: top, ex-
pected statistical distribution from data at a constant temperature of 18°C; bottom, the
same at 29°C; middle, half-way stage, sum of top and bottom graphs. Left-hand
column: distributions of spacings in whorls formed at various times after the tem-
perature shift, from top to bottom: 0-2 h, 2-4 h, 4-6 h, 6-8 h. (a) and (b) From Byrne
and Cox (1986, 1987), with permission of Academic Press.
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HFM

Figure 10.10. (a)-(d) Diagrams of the right side of Ambystoma mexicanum embryos
at four stages of neurulation, showing the advancing edge of the flank mesoderm and
the position within it of the heart-forming mesoderm (HFM). PE is the pharyngeal
endoderm which supplies the inducing signal. NF, NP, NT: neural fold, plate, and
tube. MM: mandibular mesoderm. (e) A view of the ventral side of the anterior part of
the embryo, anterior upward, at a later stage (29) when the two edges of the mesoderm
have just met and the two HFM regions are in contact. MA: mandibular arches; GB:
gill bulges.

operative until the end of the fifth day. The two-day gap makes it possible in
this species to do experiments establishing that in that two-day gap between
end of induction and start of heartbeat, something rather complicated is going
on in the mesoderm itself. This probably does not mean that heart formation
in the axolotl is fundamentally different from that in other amphibians, or for
that matter in other vertebrates, from mouse to human. The earlier induction
is probably quite a trivial feature, but it opens a window to the experimentalist
which is closed in other species (Smith and Armstrong, 1990; Smith, 1990).
Figure 10.10 shows the position of the inducing pharyngeal endoderm and
several sequential positions of the leading edge of the flank mesoderm through
the developmental stages of most interest.

It has been known since 1926 that the heart field (i.e., the region of
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Figure 10.11. Top: The same ventral view of a stage-29 embryo shown in Figure
lO.lOe, with the addition of indications of the relative extents of the heart-forming
mesoderm (inner pair of dashed lines and arrows) and the heart-field mesoderm (outer
pair of dashed lines and arrows). Bottom: A Gierer-Meinhardt diagram of short-range
activation, long-range inhibition from the operation of their model on a shallow source
gradient. Solid line, activator concentration. Dashed line, inhibitor concentration.
Dotted line, source gradient. In heart formation in Ambystoma mexicanum and many
other species, the source gradient is to be taken as the inducing effect from the
mesoderm. Diagrams combined from two in Smith (1990), with permission.

mesoderm capable of responding to the inducing signal) is larger than the
formed heart will be (Figure 10.11). Sater and Jacobson (1990) have discussed
the progressive restriction of the heart field in Xenopus laevis and come to no
definite conclusions on the cause of it. An obvious possibility is the progres-
sive operation of an inhibitor in that part of the heart field which does not
become heart-forming. Where does the inhibitor come from? Jacobson (1960)
and Jacobson and Duncan (1968) studied heart induction in amphibians, es-
pecially Taricha torosa, and found in that species an inhibitory effect from the
neural tissues (i.e., a source of inhibitor outside the heart field). But Smith
and Armstrong found no such effect in A. mexicanum and concluded that
inhibitor production is intrinsic to the heart-field mesoderm itself.

A strong line of evidence for this arises from the existence of a mutant,
cardiac-lethal (c), in which most of the events preliminary to heart formation
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occur normally, but the heart primordium fails to beat. All the necessary
muscle proteins arise in the heart-forming region, and this can even roll up
into a tube, the shape of the normal primordium when it first beats. The
specific defect in the c mutant is failure of the muscle proteins in each cell to
organize into sarcomeres. Earlier work suggested that the defect was absence
of inductive signal from the pharyngeal endoderm. But that was based on an
assumption that the induction occurred in A. mexicanum at the same develop-
mental stage as it does in T. torosa. That turned out to be incorrect. Following
their precise determination of the much earlier inductive stage in A. mex-
icanum, Smith and Armstrong went on to show conclusively that the induc-
tive signal in c is quite normal and that the defect is in the mesoderm. It can be
corrected by contact with normal mesoderm.

They discussed their data in terms of the interaction of a diffusible activator
and a diffusible inhibitor, both produced within the mesoderm. In this in-
terpretation, the c mutant either underproduces activator or overproduces
inhibitor. They propose that these two substances take part in Turing kinetics
(Armstrong, 1989; Smith and Armstrong, 1991). They regard the restriction
of the heart-forming region within the larger heart field as an instance of
Gierer-Meinhardt "short-range activation, long-range inhibition" (Figure
10.11). But no detailed attempt has yet been made to match their data by
computations with any specific reaction-diffusion model. Armstrong and I are
collaborating on this project.

This, of course, implies that I regard the reaction-diffusion hypothesis as
highly promising for this developmental event. But it is not yet certainly
proved. The problem of certain proof is a common one when reaction-
diffusion is postulated, as I mentioned in the prefatory remarks to Section
10.3: What is an activator morphogen supposed to activate, or an inhibitor
inhibit? Most commonly, activator and inhibitor are detected by their effects
on something else, in this instance the assembly of muscle proteins into
functional sarcomeres. But proof of two-morphogen reaction-diffusion needs
a knowledge of the effects of activator and inhibitor on themselves and on
each other. These are not at all easy to observe directly, and they are not the
same in all models which lead to Turing kinetics (e.g., the X morphogen is not
necessarily explicitly autocatalytic).

There is also the possibility that mechanochemical effects are involved.
Pieces excised during microsurgical experiments will roll up in reproducible
directions, indicating that there are patterned mechanical stresses in the em-
bryo.

These uncertainties do not bother me. The clear indication from Smith and
Armstrong's data is of kinetically generated pattern, involving complex kinet-
ics in the heart-field mesoderm and requiring investigation by the methods of
kinetic theory, that is, discussion in terms of partial differential equations and
computer experiments on the model which those equations describe.
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10.3.4 Turing patterns in nonliving chemical systems

Patterned distributions of chemical substances arising during chemical reac-
tions have long been known, such as the Liesegang rings formed during
precipitations occurring when either two gases (NH3 and HC1, for instance) or
two solutes in liquid solution diffuse into each other from opposite ends of a
container. Oscillatory behaviour and travelling waves are known in chemical
systems, especially in the well-known Belousov-Zhabotinski reaction, which
is cerium-catalyzed oxidation of malonate by bromate in aqueous solution; see
Tyson (1985). This reaction has attracted substantial attention from chemists,
among whom it is one of the best-known instances of a "dissipative structure"
in the Prigogine sense; the first textbook mention of this concept in physical
chemistry appears to have been by Moore (1972). The Belousov-Zhabotinski
reaction has been analyzed kinetically as a three-morphogen model in the
"Oregonator" scheme of Field and Noyes (1974), the morphogensX, Y, and
Z being bromite (Br O^), Br~, and Ce 4 + .

This instance, however, is rather on the fringes of the conceptual field of this
book. As Winfree (1987) has pointed out, travelling-wave phenomena are most
often studied in systems having a single diffusivity or, as is common in aqueous
solutions such as the Belousov-Zhabotinski (B-Z) mixture, several substances
with essentially the same diffusivity. Such systems do not have the large
disparity between two diffusivities which is a characteristic feature of the
Turing "diffusion-induced instability." If the B-Z reaction has biological
analogues, they are most probably excitable systems such as neural systems and
the heart muscle. In these, each excitable element has three states: resting,
excited, and refractory. The third of these has no analogue in Turing dynamics.
By the same token, travelling waves in excitable media have the character of
relaxation oscillations rather than sinusoidal oscillations. For the B-Z reaction,
Kopell and Howard (1973) performed an experiment which cast doubt on the
existence of diffusive coupling in the travelling-wave phenomenon.

It is therefore noteworthy that in 1990 two reports were published concern-
ing patterns in chemical systems which seem much closer to real instances of
Turing patterns. Further, one of these is a hexagonal array of spots, such as the
Brusselator readily produces (Castets et al., 1990), and the other is an array of
parallel stripes of alternating character (Tabony and Job, 1990), as seen ex-
perimentally in Drosophila pair-rule patterns and by computation in the be-
haviour of the hyperchirality model. The spotted pattern arises in a solution
occupying a narrow rectangular piece of poly aery lamide gel. One face of the
gel strip is in contact with a solution containing sodium chlorite (NaC102), the
other with a solution of malonic acid. Both solutions contain potassium
iodide. The chemical system is thus related to that of the B-Z reaction, but
oxidation of iodide to iodine is involved, and the patterns are observed with
the aid of a starch-like stain for elemental iodine. Both stripes and spots have
now been seen in this reaction (Ouyang and Swinney, 1991).
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Figure 10.12. Diagram of the arrangement of microtubules in two nematic liquid-
crystal phases oriented orthogonally to each other and forming a pattern of alternating
stripes in arrays of microtubules self-organizing in vitro. Alternate stripes are in a
certain sense of macroscopic geometry mirror images of each other, like stripes which
are formed by the hyperchirality model. This phenomenon may fall into the "big hands
from little hands" category (Harrison, 1979), for which examples of living organiza-
tion are the mirror-image doublets in ciliates (Frankel, 1989, 1990). From Tabony and
Job (1990), © Macmillan Magazines Ltd., with permission from Nature.

The pattern first appears as a set of stripes parallel to the faces at which the
solutions are supplied and therefore somewhat similar to Liesegang patterns,
but the significant observation is that each stripe breaks up into a series of
equally spaced spots. This, as the authors stress, is a symmetry-breaking
perpendicular to the gradients of the reactants. Further, the spots formed out
of successive stripes are staggered in position so that the whole set of spots in
two dimensions forms an essentially hexagonal array. The nearest-neighbour
distance is about 0.2 mm.

The pattern of alternating stripes is closer to biological realities, being an
array of microtubules self-organizing in vitro. The sample cell is 40 x 10 x 1
mm, roughly the size of a 1-mm-thick layer on a microscope slide. The
solutions contain tubulin, guanidine triphosphate (GTP), acetyl phosphate,
and acetate kinase. Microtubule formation and stability after assembly require
the hydrolysis of GTP to GDP and inorganic phosphate as the free-energy-
liberating process and hence thermodynamic driving force. Tabony and Job
observed that arrays of microtubules were formed as stripes which, in appro-
priately directional light, appear alternately light and dark. Each stripe is an
oriented nematic liquid-crystalline phase with microtubules lined up parallel
to each other. But in one stripe they are lined up at 45° to the direction of the
stripe, in the next at 135°. Thus alternate stripes have orthogonal orientations
of microtubules (Figure 10.12). The pattern was characterized by study with
ordinary light, polarized light, and small-angle neutron scattering. 31P-NMR
was used to monitor the reactions involving phosphate, to show that pattern
formation is indeed being driven by an irreversible chemical reaction.
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10.4 Measuring, counting, regulation: Acetabularia versus
Drosophila versus Dictyostelium

Reaction-diffusion theory continues to be rejected by many biologists as a
promising possibility on the same basis that led to its rejection by Waddington
(1956): that it requires a rather precise fit between the Turing wavelength and
the size of the system. A much more recent and very precise statement of this
objection to the theory is that of Cooke (1981): "A decisive limitation of
reaction-diffusion pre-patterns is that numbers of peaks or singularities gener-
ated are sharp functions of the spatial extents of tissues in which they operate,
unless the reaction and diffusion parameters can have their values adjusted
within tissue by appropriate feedback from the overall size." The first part of
this sentence specifies the ability of reaction-diffusion mechanisms to mea-
sure; the second part specifies in general strategic terms what is necessary in a
mechanism if it is, instead, to count.

In the account from which this is quoted, Cooke evidently sees the neces-
sary feedback from overall size as rather unlikely and indicates that reaction-
diffusion is not a promising possibility in relation to somite determination.
Likewise, when I tried a few years ago to publish a brief note indicating the
probable nature of such feedback and the versatility which it gave the Turing
theory in stabilizing pattern over a wide range of system size, I was sternly
taken to task by an anonymous referee for making "ad hoc additions" to the
Turing model.

It is important, I believe, to recognize that the feedback from overall size
which Cooke correctly indicates as necessary is neither an ad hoc addition
nor, as Cooke implies, a rather unlikely thing to arise. The essence of the
matter lies in appreciating the roles of both reactants and intermediates in
controlling the rates of chemical reactions. In accounts of reaction-diffusion
theory, the principal theme is usually the unusual feature of rate control by the
intermediates X and Y, which confers upon the dynamics their pattern-forming
ability. This is, of course, the matter to which attention must first be given in
reaction-diffusion theory. It is often concentrated upon at the expense of
everything else. Reactants, such as the Brusselator A and B, are pushed into
the background by assuming their concentrations constant, and sometimes
even rolling them into the values of the rate constants.

Any student who has just taken an elementary course in chemical kinetics,
however, if asked what is likely to control the rate of a reaction, is almost
certainly going to answer "the reactant concentrations." Throughout my ac-
counts of the Brusselator and its uses in Chapters 9 and 101 have repeatedly
pointed out that one must continually remind oneself whether one is dealing
with the A-B pair or the X-Y pair, and that they can be used together to devise
quite simple and straightforward models for feedback loops and for hier-
archies of processes in series, in which the X of one becomes the A of the next.
All of this is in no way a set of ad hoc additions to the Turing model. It is



Approaching agreement? 335

simply part of the chemical kineticist's way of life: putting into a complex
reaction mechanism, which may have many steps, just a few steps which have
particular kinetic attributes matching something seen experimentally.

In regard to the number of parts in a pattern, or the spacing between
repeated parts in a metameric pattern, I have described three types of phe-
nomena: (1) Acetabularia measures (i.e., the distance between adjacent hairs
in a whorl is constant). This needs no further discussion. It is the one thing
that everyone knows a Turing mechanism can do. (2) Metameric pattern,
whether in Drosophila segmentation or in the somites of vertebrates, counts.
The number of parts in the pattern is quite impressively held constant. (3)
Dictyostelium also maintains a constant number of parts in the pattern, but
that number is only two, and the phenomenon is better thought of as regula-
tion of pattern rather than counting of numbers of parts. The regulatory
capacity has limits. Very large slugs form a tip at each end and ultimately two
fruiting bodies (Hohl and Raper, 1964). But the two-part pattern is certainly
regulated within slugs, or artificially severed parts of slugs, covering a length
range of a factor between 10 and 20. What do we need in a dynamic model for
this kind of regulation, and for the more precise counting in metameric pat-
terns?

The first part of this question was addressed in Lacalli and Harrison (1978),
being our first paper on reaction-diffusion theory. We used parameter values in
the linear Turing equations which gave pattern growth rate kg a rather shallow
maximum when plotted against wavelength (Figure 7.7a, corresponding to
region B of parameter space, Figure 7.5). We were somewhat lucky to hit on
the appropriate range of values, because we had not yet found our way around
the parameter space systematically. In general, one should be very cautious
about saying what reaction-diffusion can or cannot do until one has under-
stood that parameter space fairly well.

If one thinks of an elongated organism such as the Dictyostelium slug, to
which reaction-diffusion theory might reasonably be applied one-dimension-
ally, the plot of kg against wavelength needs to be converted into a plot of kg
against length of the slug. Now the conversion factor between wavelength and
organism length depends on how many parts there are in the pattern. This
leads to a different plot for every possible pattern complexity (Figure 10.13).
The message of this diagram is that for the simple Turing model with no
additions, the two-part pattern is the fastest-growing and therefore the one that
will become established for a range of slug lengths of a factor of about 5. This
does not quite match the regulatory capacity of Dictyostelium slugs, but it is
close, and it is a far greater regulatory capacity than has been indicated by
most statements about reaction-diffusion in the biological literature.

To do better than this, one must, as Cooke (1981) pointed out, consider
feedback from system size. Once again, feedback is most easily modelled by
using the Brusselator reactant A. First, an answer to the question posed in the
legend to Figure 10.1: How can one devise a mechanism giving a simple
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Figure 10.13. Curves of exponential growth rate kg of pattern amplitude for the linear
Turing model with parameters chosen to be in region B of the parameter space in
Figure 7.5. For patterns of three different degrees of complexity, A, B, and C, the same
curve has to be plotted on three different scales on the axis of abscissae. Pattern A,
corresponding to a simple two-part arrangement of differentiation states, as in the
Dictyostelium slug, has the highest kg and would therefore become the dominant
pattern, for a range of system lengths from 5 to 28 arbitrary length units. Diagram
redesigned from the same curves in Lacalli and Harrison (1978).

inverse dependence of wavelength on A? If one writes the first step of the
Brusselator as bimolecular in A, and therefore likely to be kinetically second-
order, 1A —» X instead of A —» X, then A is replaced by A2 everywhere that it
appears in the Brusselator equations. These include the approximate wave-
length expression, equation (10.2). If A2 is replaced by A4 in that expression,
the required reciprocal relationship is obtained.

With the aid of that reciprocal relationship, it is possible to devise reaction-
diffusion models in which the length of a pattern repeat can vary with system
length in any way one might want. I first mentioned this in a review (Har-
rison, 1982) under the heading "pattern repeat versus system size: anything
goes." For instance, suppose that an organism of elongated form, such as a
Dictyostelium slug or a Drosophila egg, is always the same shape (i.e., all
instances of it are similar figures in the strict geometric sense), but that length
L varies between individuals. Suppose that substance A is supplied at a rate
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dependent on surface area (i.e., proportional to L2), either from the outside if
we are thinking of part of a larger organism or by activity at the inner side of
the cell membrane. Suppose also that A is used up in a first-order decay
everywhere in the volume, proportional to L3. Then A should settle into a
steady-state concentration proportional to 1/L. Correspondingly, wavelength
would be proportional to L, and the number of parts in the pattern to which A
is input should be independent of L. Reaction-diffusion can count; it can
regulate; it can measure. What more does it need to do?

10.5 Confirmed predictions of kinetic theory

I return finally to the philosophical question of predictions in science, as
discussed in Section 10.1.2. The following appear to me to be important
verifications of the predictions of kinetic theory:

1. Turing's theory postulated that morphological pattern should be preceded
by corresponding prepattern of distribution of chemical substances. Very
few such prepatterns were known in 1952. But in the 1980s and early
1990s, this prediction has been repeatedly verified, above all by the enor-
mous and still rapidly increasing information on patterns of gene products
in the Drosophila blastoderm. There are many other instances, including
the prepatterns in Polysphondylium (Section 10.3.2), and for chemistry
more remote from the genome, my calcium prepatterns in Acetabularia.

2. Turing's theory predicts that in the formation of a pattern of repeated parts
with a single spatial periodicity, there will be intermediate stages Fourier-
analyzable into a mixture of periodicities from which all but one are
gradually lost. The Polysphondylium data show this (Figure 10.9).

3. Reaction-diffusion theory predicts that increasing the concentrations of
inputs to the patterning mechanisms will cause decreased spacing between
repeated parts, but that a big enough increase may switch off the patterning
effect of the mechanism. The first part of this prediction is verified by my
work on calcium in Acetabularia whorl patterning. The second part corre-
sponds to what is seen in the relation of the Drosophila striped pattern to
the maternal gradients closely enough that its status as a verified prediction
should be getting a lot of attention from drosophilologists.

4. Reaction-diffusion theory predicts the simultaneous presence in a given
tissue of an activator and an inhibitor for a pattern-forming event. This is
confirmed in Hydra head formation, Dictyostelium differentiation, and
Ambystoma heart formation.

These things are not yet widely accepted as verified predictions, and that is
because the kinetic preconception itself is not yet the basis of most develop-
mental biologists' thinking. Why not?
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Cotton effect, 170
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processes, 197

depletion models, see also brusselator, 258
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differential equations: introduction to, 175-
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Turing's model, 223-9; and wavelength,
36, 50-3, 232-3, 302

DIF-1, as morphogen, 324-6
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dissipative structure, 196, 332
DNA, 117, 322
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discs, 238; segmentation, 11, 15, 19-20,
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3, 225, 229, 279, 301
entropy, 23, 26, 94, 122, 148, 169, 198-201
epithelia: axolotl embryo, 328-31; develop-

ment, in classification of theories, 254;
in glandular development, 116-17;
mechanochemical model for deformation
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equilibrium, 91-2, 118-23, 255; approach
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169, 257-8, 307-9, 312-14, 317, 323

Fick's Law, 179
field: diversity of meaning, 96-7; physical,

e.g., electrical, 74, 96-7; of science,
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filamentary organisms, 67-74
filopodium, 130, 133
flatland, 288-9
fluctuations, see also noise, 160-1, 225
flux, autocatalytic, 296-7
Flying Dutchman, opera, as an analogy, 30
fractals, 27
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free energy, 35-6, 92, 97, 103-4, 108-9,
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governor, on engine, analogy, 227-9
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Green, B. R., xvi
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Heisenberg, W., 23, 25
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Hoyle, F., 6
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hyperchirality, 55, 261-3, 283-91, 312, 322

IAA, indole-3-yl acetic acid, see auxin
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homeogenetic, 262
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kinase, protein, 307
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position to, 315; scope, 252-5
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Lachner, F., conductor, in musical analogy,
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linearization, 184-6, 258, 270-1
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localization of pattern-forming region, 272-5
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Mach, Ernst, 8, 22
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Maxwell distribution, 25
Mayer, J. R., 14
measuring versus counting, 56-7, 334-7
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mesoderm, 328-31
Michaelis-Menten equation, 295, 306
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310-14
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microtubules, 72-3, 110-11, 129, 333
Mills, W. H., mechanism for optical resolu-
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model, meaning of the word, 247-9
Moelwyn-Hughes, E. A., 13
Moore, Walter!, 14, 22
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(Wolpert), 32-7, 315, 318; type II (Tur-
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58-9, 223-4, 268-9

moss, 109
motion, as ultimate reality, 28-30, 89, 172
Murray, J. D., 294-5
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Needham, J., 9
noise (see also fluctuations), 43-4, 320-1
nonlinearity, 50, 58, 63-4, 185-6, 248,
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Ockham, William of (and Ockham's razor),
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ocular dominance, 290-1
optical resolution, xiii, 38-45, 143, 154-72,
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oscillations, see waves
oskar, 318

paradigms (see also preconceptions), xiv, 7,
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shift, xvi

Paramecium, 284
parameter space, 213-14, 235-45, 273-5
parity, 155
Pasteur, L., 155, 169
Perrin, 22
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phlogiston theory, 18-19
phosphorylation, 307
phylogeny, 308
Pincock, R. E., xiii-xiv
polar furrow, 109, 130
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315
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12-13, 15, 17-18, 21, 107, 248, 298
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range of activation, 83
receptors, 286, 306
regulation, 334-7
retinotectal specificity, 37, 125-8, 169
Rhabdoporella, 308
Rhodnius, 317
root development, 72-80
Rumford, Count, 14
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Schrodinger equation, 16
scientific method, xiv-xv, 3-7, 12-18, 28,
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