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Foreword

One only has to read the newspapers to understand the extent to which addictions
are among the scourges of the day. They lead to wastage and wasting of innumerable
individual lives, and a huge cost to the body politic, with gargantuan sums of illicit
money supporting edifices of corruption. The blame for other modern solecisms,
such as burgeoning obesity, is increasingly being laid at the same door.

From the perspective of neuroscience, addictions present a critical challenge.
Substances with at least initially relatively immediate effects on more or less well-
defined sets of receptors, have, in some individuals, a panoply of physiological and
psychological consequences that unravel over the course of years. Understanding
each domain of inquiry by itself, and the links between them, is critical for under-
standing the course of addictions, and in the longer run, conceiving more effective
options for palliation or even cure. Although there is a near overwhelming volume
of data, the complexities of the subject mean that there are also many apparent in-
consistencies and contradictions.

The understanding of addiction rests on analyses over multiple scales. For in-
stance, we not only have to understand the progressive effects of long-term drug use
on receptor characteristics and density, we must also grasp the changes this leads
to in the neurons concerned, and then in the dynamical operation and information
processing of the circuits and systems those neurons comprise. Equally, we have to
understand how the effects on decision-making play out in terms of the economic
choices made by complex, human, decision-makers.

The need to tie together phenomena at these multiple scales is a critical force
leading to the current book’s focus on theoretical ideas. Indeed research in addic-
tion is a paradigmatic example of modern systems biology. The task of providing a
formal scaffolding for understanding the links across levels of inquiry, is the topic
of one of three wings of theoretical neuroscience. In the top-down direction, this is
a case of a formal scientific reduction, explaining phenomena observed at one scale
by mechanistic models built from components that live at finer scales. These com-
ponents are characterized either by descriptive models, or are themselves explained
by models at yet finer scales. Building and proving such multi-scale models is a per-
fectly normal role for mathematical and (increasingly) simulation-based modeling
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in a natural science. One might only cavil that, compared with some of its cousins,
experimental neuroscience has sometimes seemed a little tardy in playing ball.

Chapter 4 is perhaps the purest example of this sort of analysis—providing, for
instance, a formal way of resolving the apparent conflict between in vivo and in
vitro data as to whether nicotine’s main action on the activity of dopaminergic cells
(believed to be key to the drug’s addictive potential) is direct or indirect. However,
many of the other chapters also contain elements of this modus operandi too, ap-
plied at different levels. For instance, the sophisticated agent modeling of Chap. 11
reminds us about the complexity of interactions between addicts and the environ-
ment which facilitates and hinders their addiction. Rich patterns of positive and
negative feedback emerge. Thus, it is possible to examine and predict the effects of
making manipulations at single points in the nexus of interactions—woe would, for
instance, betide the policy-maker who attempts to intervene too simplistically in a
system that is sufficiently non-linear as to be chaotic.

However, the chapters of the book also attest to the power of a second wing of
theoretical neuroscience. This is the concept that brains must solve computational,
information-processing and control-theoretic problems associated with surviving in
a sometimes nasty and brutish world. Decision-making, in its fullest sense, is per-
haps the critical competence for survival. The idea is to start from an understanding
of the various ways that systems of any arbitrary sort can (learn to) make good de-
cisions in the face of rewards and punishments. This topic lies at the intersection
of economics, statistics, control theory, operations research and computer science.
The resulting computational and algorithmic insights provide a foundation for, and
constraints on, how humans and other animals actually make choices. Further, the
sub-components of these models provide a parameterization of failure—points at
which addictive substances can exert their intricately malign effects.

Somewhat alternative versions of these normative, and approximately normative,
notions are apparent in many of the remaining chapters, differing according to the
degree of abstraction, the intensity of focus on the computational level versus as-
pects of the algorithms and implementations of those computations, and also the
extent to which the complexity of the neural substrate is included. There are also
many different ways to formalize control theoretic problems, in terms of (a) the na-
ture of the world (and the possible internal model thereof); (b) the goals of control,
for instance the homeostatic intent of keeping variables within appropriate bounds
as opposed to finding optimal solutions in the light of costs and returns; along with
(c) assumptions about the possible solutions.

The relatively purer control theoretic approaches discussed in Chaps. 1, 2, 3 lie
nearer one end of the spectrum. They pay particular attention to one of the cen-
tral ideas in control theory, namely feedback as a way of keeping systems in order.
Although one can imagine computational-level renditions, this is mostly an algorith-
mic idea, being rather divorced from possible computational underpinnings in terms
of such things as being an optimal way of preventing divergence from a suitable op-
erating point according to a justifiable cost function. Drugs can knock systems out of
kilter, and so inspire immediate or predictive feedback to correct the state; the nega-
tive effects of withdrawal can also lead to a corrective policy of self-administration.
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In these chapters, we can see something of the power of quantitatively characteriz-
ing the dynamical effects of drugs in systems with substantial adaptation.

The behavioral economic modeling of Chap. 10 has a somewhat similar quality.
Here, the aliquots of computational analysis concern the relationship between price
and demand and the effect of temporal delay on value. These then play out through
psychological data and algorithmic realizations of these data.

The chapters based on modern reinforcement learning (RL) ideas (parts or all
of Chaps. 5, 6, 7, 8) span the other end of the spectrum. As will become apparent
in reviewing these chapters, reinforcement learning, which comprises forms of op-
timal, adaptive control, has become a dominant theoretical paradigm for modeling
human and animal value-based decision-making. In some ways, it has taken over
this role from cybernetics, its close control-theoretic cousin, which historically ex-
erted a strong influence over systems thinking in areas in which value has played
a lesser part. Aspects of the activity of dopaminergic cells offered one of the early
strong ties between theory and experiment; it is only surprisingly recently that ad-
diction, with its manifold involvement of dopamine, has become a target for this sort
of effort.

Different RL approaches, such as model-based methods (which make choices
by building and searching models of the decision-making domain) and model-free
methods (which attempt to make the same optimal choices, but by learning how
to favor actions from experience, without building models) are suggested as be-
ing realized in structurally and functionally-segregated parts of the brain, and have
each been provided with normative rationales. The various chapters also speak to a
fecund collaboration between theory and experiment, for instance winkling out po-
tentially suboptimal interactions between the systems, and roles for evolutionarily
prespecified control in the form of Pavlovian influences.

These chapters take rather different perspectives on the overall problem of ad-
diction, even if generally adopting a rather common language. Indeed, although this
language is powerful, uniting as it does information-processing notions with psy-
chological and anatomical, physiological and pharmacological data, it is fair to say
that it reveals rather than reduces the complexity of the individual systems, a com-
plexity which is then hugely magnified in the way the systems interact. However,
the multiple influences of drugs acting over the systems and their interactions all at
diverse timescales, can at least be laid bare, and reasoned about, given this formal
vocabulary.

Chapter 9 comes from another, subtly different, tradition of normative modeling,
associated originally more with unsupervised learning (or probabilistic modeling of
the statistical structure of the environment with no consideration of valence) than
RL, and indeed comes to suggest a rather different (and, currently rather restricted)
way that drugs can act. Nevertheless, there are ties both the RL models and indeed
the control theoretic ones—for instance, Chap. 3’s discussion of the limits of home-
ostasis is nicely recapitulated in Chap. 9’s notion of itinerant policies, for which
fixed points are an anathema.

Finally, note a critical lesson from the diversity of the chapters. Chapter 4’s
whole contribution concerns important (but still doubtless not comprehensive) de-
tails about the complex effects over time of one particular drug of addiction on one
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key circuit. Consider how these effects would be rendered in the abstract, impres-
sionistic, terms of pretty much all the other chapters. These latter models simply
lack the sophistication to capture the details—but, sadly, without being able to pro-
vide a guarantee that in the complex systems they do model, omitting the details is
benign.

If one regards the diversity as a mark of adolescent effervescence in this field
of computational addiction; the fact that such a fascinating book is possible is a
mark of impending maturity. Theoretical ideas and mathematical and computational
models are rapidly becoming deeply embedded in the field as a whole, and, most
critically, are providing new, and more powerful, ways to conceive of the multiple,
interacting, problems wrought by addictive substances. Providing the guarantees
mentioned above, and indeed a more systematic tying together of all the different
levels and types of investigation across different forms and causes of addiction, is
the challenge for early adulthood.
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Chapter 1
Simple Deterministic Mathematical Model
of Maintained Drug Self-administration
Behavior and Its Pharmacological Applications

Vladimir L. Tsibulsky and Andrew B. Norman

Abstract Currently dominating psychological theories of drug self-administration
explain some experimentally observed facts, however, at the same time they lead
to logical contradictions to other accepted facts. A quantitative pharmacological
theory of self-administration behavior states that cocaine-induced lever pressing be-
havior occurs only when cocaine concentrations are within a certain range, termed
the compulsion zone. These concentrations can be calculated using standard phar-
macokinetic mathematical models. The lower and upper limits of this range of
concentrations are the priming and satiety thresholds, respectively. This pharma-
cological theory explains all phases of the self-administration session but is partic-
ularly useful at explaining the intervals between drug injections during maintained
self-administration in terms of a mathematical model that contains only three pa-
rameters: the drug unit dose, the satiety threshold and the drug elimination rate
constant. The satiety threshold represents the equiactive agonist concentration. Be-
cause competitive antagonists increase equiactive agonist concentrations and the ag-
onist concentration ratio increases linearly with antagonist concentration, the sati-
ety threshold model allows the measurement of the in vivo potency of dopamine
receptor antagonists using the classical mathematical method of Schild. In addi-
tion, applying pharmacokinetic models to the time course of the magnitude of the
antagonist-induced increase in the satiety threshold allows the pharmacokinetics
of antagonists to be calculated. Pharmacokinetic/pharmacodynamic models explain
self-administration behavior and make this paradigm a rapid and high-content bioas-
say system useful for screening agonists and antagonists that interact with important
neurotransmitter systems in the brain.

1.1 Introduction

Drug abuse/addiction research is part of the field of behavioral pharmacology. The
first animal model of drug-taking behavior that featured feedback for intravenous

V.L. Tsibulsky (�) · A.B. Norman
Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati,
OH 45267-0583, USA
e-mail: tsibulvr@ucmail.uc.edu

B. Gutkin, S.H. Ahmed (eds.), Computational Neuroscience of Drug Addiction,
Springer Series in Computational Neuroscience 10,
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4 V.L. Tsibulsky and A.B. Norman

self-injections of morphine in freely moving rats was introduced in the pivotal paper
by Weeks (1962). This method could be easily used for any other species or drug
of abuse and it became a favorite model for psychologists. Despite the critically
important role of drugs in this paradigm, the method has been largely ignored by
pharmacologists. There are two principal approaches to the study of any behavior—
physiological and psychological. Psychological pharmacology (psychopharmacol-
ogy) has been the dominant approach. The numerous paradoxes that continue to
confuse the interpretation of self-administration behavior (Norman and Tsibulsky
2001) are mainly due to the combination of incompatible psychological and physi-
ological principles. An alternative approach to study this behavior is to restrict the
methodology and theory to the principles of physiological pharmacology. We have
found that this physiological approach resolves all of the existing paradoxes. Phys-
iological pharmacology has the inherent advantage of expressing measured param-
eters in well defined terms and units. This chapter will illustrate the usefulness of
the physiological approach by presenting a mathematical model of maintained co-
caine and apomorphine self-administration behavior. The ability of the model to
obtain quantitative data on the pharmacodynamic and pharmacokinetic potencies of
agonists and antagonists of dopamine receptors will then be demonstrated.

The model presented herein was developed using intravenous cocaine self-
administration in Sprague-Dawley rats. Procedural details can be found in our previ-
ous publications (Tsibulsky and Norman 1999, 2005; Norman and Tsibulsky 2006).
Briefly, silicone catheters were implanted into jugular or femoral veins and rats were
trained to press a lever on a fixed ratio 1 (FR1) schedule of drug injections. The
unit dose of drug was changed randomly between sessions within the range of 0.3–
12.0 µmol/kg for cocaine and 0.075–0.6 µmol/kg for apomorphine by changing the
duration of activation of a syringe pump. The time of every press was registered and
the inter-injection intervals were analyzed. The cocaine and apomorphine levels in
the body were calculated every second during the sessions.

1.1.1 Definitions of Terms

There are two basic characteristics of cocaine self-administration during the main-
tenance phase of the session: (1) self-injections occur regularly, (2) the rate of self-
injections is inversely related to the unit dose of cocaine (Pickens and Thompson
1968). Building a mathematical model of the relationship between the dose and the
rate of self-administration of cocaine will help to understand the mechanisms regu-
lating drug taking behavior.

In any pharmacological paradigm, the independent variable is the drug concen-
tration at the site of action. As this cannot be readily measured in vivo, in this model,
the drug unit dose can be readily controlled and is convenient to use as the indepen-
dent variable. Although, when a lever-press occurs immediately after the end of an
injection it will initiate the next injection and the resulting dose will be equal to two
unit doses. Such an event creates some difficulty for the application of the model.
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Therefore, the actual dose rather than the unit dose is the appropriate independent
term in the model.

In order to define the dependent variable in the paradigm, it is necessary to iden-
tify the response. There are two different aspects in any drug-induced response: a
dynamic component, that is, the magnitude of the response, and a kinetic compo-
nent, that is, the duration of the response. In self-administration studies, the response
is defined by the manipulandum selected (typically a lever-press or a photo-beam
interruption). Therefore, the response used in the self-administration paradigm is
quantal. Consequently, there is no dynamic term for response in our mathematical
model. In this model, the dependent variable has only a kinetic component as the
inter-response intervals are controlled exclusively by the animal. The inter-injection
intervals are partially controlled by the experimenter by means of a schedule of drug
delivery. Using complex schedules greatly complicates any pharmacological model
of self-administration behavior. For the sake of simplicity, we use the FR1 sched-
ule where the pump injects a unit dose of cocaine in response to one lever-press.
Under this schedule, inter-response and inter-injection intervals should be indistin-
guishable. Infrequent lever-presses occurring when the pump is already activated are
registered but do not have any consequence. Therefore, the inter-injection interval
is the true dependent variable in this model.

In our physiological pharmacology approach, the response is quantal and the
dose-inter-injection interval relationship is treated as a dose–duration function. In
contrast, in the traditional psychological approach the rate of lever-pressing is as-
sumed to reflect the magnitude of a graded response. Therefore, the dose–rate rela-
tionship is treated as a dose–response function.

1.1.2 Principles

In behavioral pharmacology, it is assumed that the drug exerts its effects according
to the principles of pharmacology. There are two basic pharmacological principles.
Pharmacodynamics relates the magnitude of drug effect to the occupancy of a re-
ceptor population. The fractional occupancy of a receptor population depends on
the affinity of the drug for this receptor and on the concentration of the drug. Phar-
macokinetics studies the drug concentration over time which is determined by the
absorption, distribution, metabolism and excretion of the drug. Although these basic
pharmacological principles should be common for both psychological and physio-
logical pharmacology, they are largely ignored by psychopharmacology.

The assumption intrinsic only to the psychological approach is that lever-pressing
behavior is emitted in order to receive a reinforcer. In the case of self-administration,
the animal is working to obtain the next dose of drug, which is still in the syringe. In
the physiological pharmacology approach, the drug in the syringe cannot exert ac-
tions in the body and, therefore, the psychological and pharmacological approaches
are incompatible. Strictly speaking, according to operant theory the lever-press is
not a response to any stimulus but an operant. The magnitude of an operant is mea-
sured by the rate. In psychopharmacology, the lever-pressing behavior is a graded
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dependent variable and the rate of presses should be proportional to the magnitude
of reinforcer, in this case, to the dose of the drug. This approach leads to a dose–rate
paradox (see below).

The assumption intrinsic to the physiological approach is that lever-pressing be-
havior is a drug-induced response which depends on the cumulative drug concentra-
tion at the site of action. According to occupancy theory, the inter-injection interval
should be proportional to the dose (or concentration) of the drug which is in the
body. It should be emphasized that approaching the paradigm from the point of
view that animals are seeking the drug is intrinsically teleological where the effect
precedes the cause. This is incompatible with the view that responses are induced by
the drug that is already in the body where the cause precedes the effect. Therefore,
these approaches must be clearly differentiated and cannot be combined or used
interchangeably.

It is well established that the rate of lever-pressing decreases as a function of
cocaine dose (Pickens and Thompson 1968; Mello and Negus 1996; Zernig et al.
2007). These results are not consistent with the prediction from operant theory that
assumes the direct proportionality between the rate of the reinforced behavior and
the dose. This is the major paradox that arises from the application of operant the-
ory to the drug self-administration paradigm. It should be noted though, that in
some studies in rats and mice and in many studies in monkeys researchers report
the so-called ascending limb of the dose–rate curve: within a very narrow range
of small cocaine doses the rate can be proportional to the dose. However, closer
scrutiny of these data reveals that the reported ascending limb contains a maximum
of only three data points: the rate of pressing at zero cocaine dose (saline injec-
tions), the maximal rate and occasionally one intermediate point (Wilson et al. 1971;
Mello and Negus 1996; Flory and Woods 2003). To the best of our knowledge,
there is no report showing that activity at this intermediate dose is regular and
can be stably maintained for a reasonable length of time (more than half an hour
in the case of cocaine). Some researchers suggest that the ascending limb repre-
sents an artifact that results from the incorrect averaging of periods with maxi-
mal activity and periods with no activity (Wise 1987; Sizemore and Martin 2000;
Norman and Tsibulsky 2001; Zittel-Lazarini et al. 2007).

1.1.3 Critical Review of Existing Models

There is one mathematical model describing both the ascending limb of the dose–
rate curve that is predicted by psychologically oriented theories and the descending
limb (Zernig et al. 2004). According to this theory, the inverted U-shaped dose–rate
curve results from superposition of two opposite effects: one leads to an increase
in the rate of lever-pressing behavior (variously termed a reinforcing effect, reward,
euphoria, pleasure, craving, wanting or liking) and the second one leads to a sup-
pression of the rate (direct effect, depression, satiety, aversion or disliking). Because
the former effect starts at relatively lower doses than the latter, the overall dose–rate
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curve has the inverted U-shape. According to this mathematical model, both effects
are proportional to the fractional occupancy of different populations of receptors.
This attempt to explain the dose–rate function in pharmacological terms reasonably
applied the classical Hill equation.

The first problem with this model is that the lever-press rate, i.e., the kinetic com-
ponent of the response, is used instead of the response amplitude, i.e., the dynamic
dependent variable which is required in the Hill equation. The second important
mistake typical for the psychological approach is that the cocaine unit dose is used
as the independent variable instead of required drug concentration. Therefore, the
application of the Hill equation is inappropriate. Not surprisingly given the large
magnitude of effect over a narrow range of doses the Hill equation generated slopes
(Hill coefficient) in the range of 7–8 for the ascending limb (Zernig et al. 2007).
This indicates that the dose–rate function does not follow the law of mass action
for a response mediated by a single population of receptors. Although Hill slopes in
the range of 2–3 are not uncommon for agonist dose–response curves, slopes in the
range of 7–8 suggest that the rate on the ascending limb is all-or-nothing and not a
graded response.

Sizemore and Martin (2000) also attempted to develop a mathematical model in
which the ability of a drug to maintain responding was described in terms of receptor
occupancy theory. The rate of lever-pressing was treated as a response and, respec-
tively, the Hill equation was used to describe the dose–response relationship in terms
of classical occupancy theory. Obviously, all criticism of the previous model is rel-
evant in this case. In addition, the “pharmacological reinforcement function” was
used to incorporate a description of how an organism’s behavior affects the amount
of drug in the animal over time. Although the final equations were not derived, the
main predictions of the theory were that: (1) there should be no ascending limb,
(2) the running rate of responding does not depend on the unit dose and, (3) pause
duration should be an exponential function of the dose. The first two predictions are
consistent with most experimental data. However, the third prediction is not, as will
be shown in the next section of this chapter.

Ahmed and Koob (2005) published the most comprehensive mathematical model
of maintained cocaine self-administration combining a two-compartment pharma-
cokinetic model of distribution and elimination of cocaine with a pharmacodynamic
Emax model of cocaine effect on reward threshold. However, the authors made two
important assumptions in the course of developing their model: (1) The equation
could not be derived unless the two-compartment model was partially reduced to
a one-compartment model by the assumption e−αt ≈ 1 and (2) the drug-specific
pharmacodynamic parameter T50 became redundant after the assumption Tmax = T0
(as T0 = 2T50). Unfortunately, these simplifications undermined the intent to pro-
vide a comprehensive pharmacokinetic/pharmacodynamic model of acquired self-
administration behavior. Interestingly, by substituting β ≈ kel , K ≈ 1/Vd and
T50 · (T0 − TS)/TS = CS into their final equation it can be demonstrated that it
is invariant with the satiety threshold model proposed by Tsibulsky and Norman
(1999) using a one-compartment model. Thus, the satiety threshold model remains
the simplest (see the model development in Sect. 1.2) and the most useful model
developed over the last decade (see the application in Sect. 1.3).
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1.2 Mathematical Model of Maintenance

As maintained, cocaine self-administration is characterized by regular inter-dosing
intervals, a quasi-steady-state should be eventually established. By definition, at
steady-state the drug concentration is constant in spite of ongoing pharmacoki-
netic processes that strive to change it. In a quasi-steady-state, drug concentration
changes cyclically. This state is typically characterized by three constant concentra-
tions: the mean, the maximal, and the minimal concentration.

1.2.1 Assumptions

For the sake of simplicity, let’s assume that:

1. The whole body of the animal can be represented by one compartment.
2. The process of drug elimination is first order dC/dt = −k · C where C = drug

concentration, t = time and k = first-order elimination rate constant.
During quasi-steady-state, the three constant concentrations depend on the

drug unit dose and the dosing interval according to the following equations:

Cmean = D/(Vd · k · T ) (1.1a)

Cmax = Cmax · e−k·T + D/Vd (1.1b)

Cmin = (Cmin + D/Vd) · e−k·T (1.1c)

where Cmean, Cmax and Cmin are the mean, maximal, and minimal concentra-
tions of the drug maintained at the unit dose (D) administered regularly every T

seconds and Vd = the volume of distribution. Rearranging these equations to fit
the dose–duration curve T = f (D) yields:

T = D/(Vd · k · Cmean) (1.2a)

T = ln[Cmax/(Cmax − D/Vd)]/k (1.2b)

T = ln[(Cmin + D/Vd)/Cmin]/k (1.2c)

3. The final assumption of the model is that one of these three concentrations is
independent of the cocaine dose. Nonlinear regression analysis applied to the
experimentally derived dose–duration curves using Eqs. (1.2a), (1.2b), or (1.2c)
shows that at any cocaine dose the response is induced when cocaine concen-
tration declines to the same minimal concentration (Cmin) maintained during the
quasi-steady-state (Fig. 1). The Cmax and Cmean models failed to adequately ac-
count for the observed dose–duration relationship and, therefore, these quasi-
steady-state parameters are not constant during self-administration at different
unit doses.
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Fig. 1 Dose–duration function for cocaine during maintained self-administration in rats. Self-
-administration was under an FR1 schedule with no time out. The filled circles represent mean
inter-injection intervals in the group of 6 rats. The bars represent the standard deviation. The lines
represent the best approximation to the data points according to three mathematical models for the
mean, maximal and minimal concentrations (see Eqs. (1.2a), (1.2b) and (1.2c)) with correlation
coefficients: 0.966, 0.934 and 0.999, respectively. The satiety threshold Cmin = 5.1 µmol/kg, the
elimination half-life t1/2 = 494 s

1.2.2 Dose–Duration Curve

During the self-administration of higher doses of cocaine, it takes more time for the
higher concentrations to decline back to Cmin when the next dose is injected. Fur-
thermore, cocaine’s elimination is first order, where the absolute rate of drug elimi-
nation is linearly proportional to the absolute drug concentration. Consequently, the
drug will be eliminated faster at higher drug concentrations. This accounts for the
relatively shorter intervals observed at increasing unit doses. Therefore, the curva-
ture of the dose–duration function, that is, progressive deviation from a straight line,
is due to first order drug elimination.

The shape of the dose–duration function depends on both parameters: Cmin (the
pharmacodynamic parameter) and on the elimination constant k (the pharmacoki-
netic parameter). This makes it possible to estimate both independent parameters by
nonlinear regression analysis using Eq. (1.2c) (Tsibulsky and Norman 1999).

It is interesting that if the drug elimination rate does not depend on the absolute
drug concentration (zero order kinetics: dC/dt = −k0 where k0 = zero-order elim-
ination rate constant) then the dose–duration function would be strictly linear and
independent of the value of Cmin:

T = D/(Vd · k0) (1.3)
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1.2.3 Satiety Threshold

During the maintenance phase of a cocaine self-administration session, lever-
pressing behavior occurs only when the cocaine level is at Cmin, which we termed
the satiety threshold. The probability of a lever-press is close to zero when the co-
caine level is above the satiety threshold. Therefore, the satiety threshold represents
the lower limit of the range of cocaine concentrations when the animal is in the state
of apparent satiety. This upper range represents the satiety zone. The adjacent lower
range of concentrations below the satiety threshold, but above the priming threshold
(see Norman et al. 1999), was called the compulsion zone because cocaine within
this range of concentrations induces the highest rate of compulsive lever-pressing
activity (Norman and Tsibulsky 2006). Therefore, the satiety threshold represents
the upper limit of the compulsion zone. Because the switch between the state of
lever-pressing activity and the satiety state occurs over a narrow range of agonist
concentrations implies that this event represents a quantal response.

The satiety threshold is apparent not only at the first lever-press occurring af-
ter long inter-injection pauses during the maintenance phase, but also at the last
lever-press of a series of short-interval loading injections that precede the first long
pause. In addition, the model assumes that the magnitude of the satiety threshold is
independent of whether cocaine concentrations are rising or falling.

The Cmin cannot be readily measured in the brain. But the product of Cmin · Vd

can be calculated from the dose–duration function during the maintenance phase
(Eq. (1.2c)). The proposed mathematical model of self-administration suggests that
the inter-injection interval represents the apparent dependent measure which al-
lows for the calculation of the satiety threshold. This latter parameter represents
the fundamental dependent measure in the self-administration paradigm. Because
the satiety threshold is independent of the unit dose, the only reason to measure
inter-injection intervals at different unit doses is to calculate the satiety threshold if
the drug first-order elimination rate constant (k) is unknown. If k is known, then the
satiety threshold (DST ) can be calculated using the inter-injection interval measured
at any single unit dose according to the equation:

DST = Cmin · Vd = D/
(
1 − e−k·T )

(1.4)

1.3 Application of the Model

It has been demonstrated that the concentration of dopamine in the brain is linearly
proportional to the concentration of cocaine (Nicolaysen et al. 1988). Fluctuations
of dopamine levels are parallel to the fluctuations of cocaine levels during main-
tained self-administration in rats (Pettit and Justice 1989; Wise et al. 1995). Based
on receptor occupancy theory, we can assume that the satiety threshold corresponds
to a certain fractional occupancy of a fixed population of dopamine transporters
by cocaine and, correspondingly, to a certain occupancy of receptors by dopamine.
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Competitive receptor antagonists increase the equiactive concentration of an ag-
onist. The satiety threshold represents an equiactive cocaine concentration and is
increased in the presence of competitive dopamine receptor antagonists (Norman et
al. 2011b).

1.3.1 Measurement of Antagonist Kdose

The potency of a series of antipsychotic drugs, measured as the dose that in-
creased the rate of cocaine self-administration by 25%, correlated with antipsy-
chotic potency (Roberts and Vickers 1984). This promising approach to using self-
administration behavior as a pharmacological assay system has remained underde-
veloped. The magnitude of competitive antagonist-induced increases in the equiac-
tive agonist concentration, measured as a concentration ratio, should be directly
proportional to the antagonist concentration (Schild 1949; Colquhoun 2007). Theo-
retically, the dose of antagonist required to increase the satiety threshold by a factor
of two would represent 50% fractional occupancy of the receptor population me-
diating the agonist-induced satiety effect. This represents the antagonist Kdose and
is a measure of the absolute potency of the antagonist in vivo. This value can also
be expressed as the antagonist apparent pA2, the negative logarithm of the Kdose.
The following simple equations describe the relationship between this in vivo and
the conventional in vitro terms: Kdose = Vd · Cmin and apparent pA2 = − logKdose.
The potency of antagonists measured by their pA2 values in vitro has provided a
basis for receptor classification (Rang 2006).

Occasional reports have provided apparent pA2 values in vivo that have been
used to identify the receptor subtypes mediating the self-administration of alfentanil
(Bertalmio and Woods 1989) and heroin (Rowlett et al. 1998) which are direct re-
ceptor agonists. The theory of competitive antagonism assumes that the competitive
antagonist and the agonist bind reversibly to the same site. Therefore, indirect recep-
tor agonists in general may not be suitable for this type of investigation. However,
because the concentration of dopamine is directly proportional to the concentra-
tion of cocaine in the nucleus accumbens (Nicolaysen et al. 1988) the occupancy of
dopamine transporters by cocaine should be directly proportional to fractional occu-
pancy of dopamine receptors in the basal ganglia. Therefore, it should be possible to
use the Schild method to measure the potencies of antagonists on the cocaine satiety
threshold during self-administration. Additionally, the direct dopamine receptor ag-
onist apomorphine is also self-administered by rats (Baxter et al. 1974) making this
agonist an appropriate model system that can be compared with cocaine (Norman
et al. 2011a).

1.3.2 Calculation the Level of Cocaine in the Body

The cumulative cocaine (and in separate experiments apomorphine) level in the
body was calculated every second by summation of the amount of agonist that was
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administered to the animals minus the amount of the drug eliminated per unit time
according to the simplified linear equations for the zero-order input and first-order
elimination kinetics for a one or a two-compartment model (Tsibulsky and Norman
2005). The agonist’s volume of distribution was assumed to be constant. The kinetic
constants of distribution and elimination were taken from the literature.

1.3.3 Agonist Concentration Ratios

The magnitude of a pharmacological response should be proportional to the frac-
tional occupancy (f ) of a receptor population by an agonist (A). A competitive
antagonist (B) decreases f according to the equation:

f = (XA/KA)/((XA/KA) + (XB/KB) + 1) (1.5)

where XA and XB are the concentrations of agonist and antagonist, respectively
and KA and KB are the equilibrium dissociation constants of the agonist and an-
tagonist, respectively (for overviews see Rang 2006; Colquhoun 2007). A useful
method of determining antagonist potency is to measure the antagonist-induced in-
crease in the equiactive agonist concentration according to the method devised by
Schild (1957). In the case of our model, the lever-press occurs at the same agonist
fractional occupancy. Therefore, in the presence of a competitive antagonist at the
time of lever-press the Schild equation holds:

r = (XB/KB) + 1 (1.6)

where r = the ratio by which XA is increased in order to produce the same agonist
fractional occupancy produced in the absence of the antagonist. The concentration
of antagonist that is required to increase the equiactive agonist concentration by
2-fold (agonist concentration ratio, r = 2) would occupy 50% of the receptors me-
diating the agonist-induced responses if it is administered alone. This concentration
of antagonist has been termed the constant of dissociation Kd (or KB in the original
notations used for Eq. (1.5)) and the antagonist pA2 = − logKd (Arunlakshana and
Schild 1959).

The mean of the values for the level of apomorphine or cocaine at the satiety
threshold during the maintenance phase and prior to the injection of antagonist rep-
resented the baseline. The level of agonist at the time of each lever-press after the
injection of antagonist was divided by the baseline value for that session and the
resulting value represented the agonist concentration ratio. These agonist concen-
tration ratios minus one were plotted as a function of time after the injection of an-
tagonist. The subtraction of 1 makes the initial value 0, corresponding to the absence
of antagonist, making it convenient to apply standard pharmacokinetic models.
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1.3.4 Measurement of Antagonist Pharmacokinetics

As stated above, the magnitude of a competitive antagonist-induced increase in the
equiactive agonist concentration, in our model Cmin, should be directly proportional
to the concentration of antagonist at its site of action. If so, then the time course of
the change in the magnitude of Cmin should reflect the change in the concentration
of the antagonist in vivo, that is, its pharmacokinetics.

1.3.5 Pharmacokinetic and Pharmacodynamic Models

Because the maximum agonist concentration ratio was found to be approximately
linearly proportional to antagonist dose, the concentration ratio minus one was as-
sumed to be linearly proportional to the antagonist concentration at any time after
dynamic equilibrium was approached. This allowed the application of pharmacoki-
netic models to the antagonist-induced changes in the agonist concentration ratio.

Fig. 2 The dose-dependent
antagonist-induced increases
of the cocaine satiety
threshold. Each point
represents the cocaine
concentration ratio at the time
of each self-administration
after the injection of
antagonist. The ratios
represent the cocaine
concentration at the time of
each lever-press after the
injection of antagonists
divided by the mean baseline
values of the satiety threshold
in each session. The curve
through each data set is the
best fit generated by a
pharmacokinetic model with
first order absorption into a
single compartment
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Fig. 3 The absolute
pharmacodynamic potencies
of SCH23390 and
(−)-eticlopride on
apomorphine and cocaine
satiety thresholds. The
concentration ratio values
represent the mean maximum
concentration ratio at each
dose of antagonist calculated
from sessions conducted as
described in Fig. 2. The Kdose
values for the antagonists
were calculated according to
the method of Schild. For
SCH23390 the slopes of the
linear regressions were 1.3
and 1.0 on apomorphine and
cocaine, respectively. For
eticlopride slopes of the
linear regressions were 1.2
and 1.1 on apomorphine and
cocaine, respectively

The bimodal SCH23390 and (−)-eticlopride-induced changes in agonist concentra-
tion ratio as a function of time were analyzed using a series of single and multiple-
compartment pharmacokinetic models. These models provided reasonable fits to the
data (for illustration purposes, one of these models is shown in Fig. 2).

Linear regression analysis using Eq. (1.6) was applied to the data on the Schild
plots (Fig. 3) and the slope and intercept on the abscissa of the linear regressions
were assessed.

1.4 Discussion

The mathematical model of the maintained cocaine self-administration is developed
on the basis of only three assumptions. The possibility that animals “adjust their re-
sponse rates to maintain an optimum blood level” was discussed 40 year ago (Wilson
et al. 1971). This pharmacological approach to explain the dose–duration function
was further developed in the seminal work of Yokel and Pickens (1974). They were
the first to demonstrate that the amphetamine level at the time of lever-press is inde-
pendent of the drug unit dose. However, this promising pharmacological approach
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was sacrificed in favor of the psychological approach which now dominates the
field.

Application of the Schild method to the satiety threshold model of maintained
drug self-administration shows that the Schild equation is obeyed exactly by a com-
petitive antagonist in vivo. Surprisingly, the Schild equation holds even for the in-
direct agonist cocaine and if the true equilibrium is not reached. The Schild method
appears to be even better than Colquhoun realized (Colquhoun 2007).

1.4.1 Indirect Agonist

Cocaine is an antagonist of the dopamine transporter and because the dopamine in
the synaptic cleft continues to act and to induce a number of behaviors, cocaine
works as an indirect agonist. Strict linear proportionality between the exogenous
indirect agonist (cocaine) and endogenous direct agonist (dopamine) (Nicolaysen et
al. 1988) makes the condition of competitive antagonism at the same site required
by the Schild method applicable to dopamine antagonists and cocaine. This is be-
cause the ratio of cocaine concentrations in the presence and in the absence of the
antagonist will be equal to the ratio of corresponding dopamine concentrations.

1.4.2 Quasi-Equilibrium

An important assumption of the Schild equation is that the measurements of
antagonist-induced shifts in the agonist concentration ratio are made at equilibrium
(Kenakin 1997; Colquhoun 2007). Because both agonist and antagonist concentra-
tions are constantly changing in vivo it is not in equilibrium at most times. However,
the reasonable approximation to the data of a slope of unity on the Schild plot may
indicate that the major assumptions of the Schild method are satisfied. An important
caveat is that non-equilibrium situations can produce Schild plots with slopes of
unity but provide erroneous measures of pA2 (Kenakin 1997). Whether this caveat
will prove to be a significant limitation of this method will only become apparent
from additional studies (Norman et al. 2001a).

Drug concentrations in the body are influenced by several simultaneous pro-
cesses. Some of them are reversible, for example, distribution and redistribution,
association and dissociation. Some are irreversible, for example, administration and
elimination. Quasi-steady state of the agonist during maintained self-administration
is achieved because of the quasi-equilibrium between administration and elimina-
tion. According to the satiety threshold model, regardless of the unit dose, the rate
of dosing equals the mean rate of cocaine elimination. Although, the antagonist
concentration is never in quasi-steady-state because only a single injection is ad-
ministered, the antagonist concentration at the site of action is in quasi-equilibrium
exactly at the time when the fractional occupancy of the receptors is at maximum.
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This is because the rates of association and dissociation are equal at this moment.
As the maximum occupancy produces the maximum effect, we can use the highest
satiety threshold to compare effects of different doses of antagonist under conditions
satisfying the Schild assumptions.

1.4.3 Volume of Distribution

If the maximum concentration ratio is measured close to equilibrium binding con-
ditions, the linear increase in the peak agonist concentration ratio as a function of
antagonist dose provides a measure of the pharmacodynamic potency of eticlopride
and SCH23390. When the cocaine or apomorphine concentration ratio is two this
should correspond to the dose of the antagonist required to occupy 50% of the re-
ceptors that mediate the satiety response, i.e. the Kdose of the antagonist. The an-
tagonist Kdose value should be the product of its affinity constant measured in vitro
and its apparent volume of distribution (Vd ). As the apparent Vd of the antagonist
can usually be assumed to be constant across a range of doses, the Kdose of an-
tagonists should be constant for all responses mediated by the same receptors in
vivo. If so, then knowing the Kd from radiolabel binding assay and the Kdose from
self-administration assay allows the apparent Vd for an antagonist to be estimated.
In the case of SCH23390, assuming a Kd of 0.3–0.5 nmol/L and with a Kdose of
7–8 nmol/kg the apparent Vd would be approximately 14–27 L/kg. For eticlopride
assuming a Kd of 0.2–0.5 nmol/L and with a Kdose of 9–12 nmol/kg the apparent Vd

would be approximately 18–40 L/kg. It is possible that the rank order of antagonist
potencies for a specific receptor measured in vitro and in vivo may be different if
there are significant differences in their apparent Vd . However, because the appar-
ent Vd of an antagonist should be constant, the rank order of in vivo potencies for a
series of antagonists should also be constant for different responses mediated by the
same receptor population.

1.4.4 Summary

The self-administration paradigm represents a sensitive and rapid assay system to
measure the pharmacokinetic and pharmacodynamic potencies of self-administered
agonists and antagonists of the receptor populations in the brain mediating this
agonist-induced behavior. This method may be useful for validating pharmacoki-
netic/pharmacodynamic models of agonist and antagonist effects in the brain. The
ability of this system to measure drug pharmacokinetics has not been investigated
previously and may offer a useful adjunct to standard analytical pharmacokinetic
methods that rely on measuring drug concentrations in timed plasma samples.
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1.5 Conclusions

• Psychological and physiological pharmacology approaches to study animal be-
havior are not compatible and mixing the two approaches creates paradoxes. Re-
stricting investigations of self-administration behavior to the physiological phar-
macology approach provides explanations of the major phenomena while avoid-
ing all paradoxes.

• The experimental data accumulated during the first decade of intravenous drug
self-administration studies in rats (1962–1974) were consistent with the princi-
ples of physiological pharmacology. This approach was abandoned apparently
because of the assumption that this behavior must follow psychological princi-
ples.

• The satiety threshold model represents a return to the neglected application of
pharmacological principles and provides a rational theoretical basis for study-
ing the mechanisms underlying drug self-administration and addictive behavior.
A mathematical model of this phenomenon may be used to calculate the pharma-
cokinetic and pharmacodynamic potencies of agonists.

• The satiety threshold is an equiactive concentration of the self-administered ago-
nist at which a quantal response is induced. This equiactive agonist concentration
is increased in the presence of competitive receptor antagonists and the degree
of this increase is directly proportional to the antagonist concentration. A mathe-
matical model of this phenomenon may be used to measure the pharmacokinetic
and pharmacodynamic potencies of antagonists.

• Self-administration behavior represents a sensitive and rapid bioassay system use-
ful for high-content screening of agonists and antagonists that interact with sev-
eral clinically relevant neurotransmitter systems.

References

Ahmed SH, Koob GF (2005) Transition to drug addiction: A negative reinforcement model based
on an allostatic decrease in reward function. Neuropsychopharmacology 180:473–490

Arunlakshana O, Schild HO (1959) Some quantitative use of drug antagonists. Br J Pharmacol
Chemother 14:48–58

Baxter BL, Gluckman MI, Stein L, Scerni RA (1974) Self-injection of apomorphine in the rat:
Positive reinforcement by a dopamine receptor stimulant. Pharmacol Biochem Behav 2:387–
391

Bertalmio AJ, Woods JH (1989) Reinforcing effect of alfentanil is mediated by mu opioid recep-
tors: Apparent pA2 analysis. J Pharmacol Exp Ther 251:455–460

Colquhoun D (2007) Why the Schild method is better than Schild realised. Trends Pharmacol Sci
28:608–614

Flory GS, Woods JH (2003) The ascending limb of the cocaine dose–response curve for reinforcing
effect in rhesus monkeys. Neuropsychopharmacology 166:91–94

Kenakin TP (1997) Pharmacological analysis of drug-receptor interaction, 3rd edn. Lippincott-
Raven, Philadelphia

Mello NK, Negus SS (1996) Preclinical evaluation of pharmacotherapies for treatment of co-
caine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology
14:375–424



18 V.L. Tsibulsky and A.B. Norman

Nicolaysen LC, Pan HT, Justice JB Jr (1988) Extracellular cocaine and dopamine concentrations
are linearly related in rat striatum. Brain Res 456:317–323

Norman AB, Norman MK, Hall JF, Tsibulsky VL (1999) Priming threshold: a novel quantitative
measure of the reinstatement of cocaine self-administration. Brain Res 831:165–174

Norman AB, Tsibulsky VL (2001) Satiety threshold regulates maintained self-administration: com-
ment on Lynch and Carroll (2001). Exp Clin Psychopharmacol 9:151–154

Norman AB, Tsibulsky VL (2006) The compulsion zone: A pharmacological theory of acquired
cocaine self-administration. Brain Res 1116:143–152

Norman AB, Tabet MR, Norman MK, Tsibulsky VL (2011a) Using the self-administration of
apomorphine and cocaine to measure the pharmacodynamic potencies and pharmacokinetics
of competitive dopamine receptor antagonists. J Neurosci Methods 194:152–258

Norman AB, Norman MK, Tabet MR, Tsibulsky VL, Pesce AJ (2011b) Competitive dopamine
receptor antagonists increase the equiactive cocaine concentration during self-administration.
Synapse 65:404–411

Pettit HO, Justice JB Jr (1989) Dopamine in the nucleus accumbens during cocaine self-
administration as studied by in vivo microdialysis. Pharmacol Biochem Behav 34:899–904

Pickens R, Thompson T (1968) Cocaine-reinforced behavior in rats: Effects of reinforcement mag-
nitude and fixed-ratio size. J Pharmacol Exp Ther 161:122–129

Rang HP (2006) The receptor concept: Pharmacology’s big idea. Br J Pharmacol 147(Suppl 1):S9–
S16

Roberts DCS, Vickers G (1984) Atypical neuroleptics increase self-administration of cocaine:
An evaluation of a behavioural screen for antipsychotic activity. Neuropsychopharmacology
82:135–139

Rowlett JK, Wilcox KM, Woolverton WL (1998) Self-administration of cocaine-heroin combina-
tions by rhesus monkeys: Antagonism by naltrexone. J Pharmacol Exp Ther 286:61–69

Schild HO (1949) pAx and competitive drug antagonism. Br J Pharmacol Chemother 4:277–280
Schild HO (1957) Drug antagonism and pAx. Pharmacol Rev 9:242–246
Sizemore GM, Martin TJ (2000) Toward a mathematical description of dose-effect functions for

self-administered drugs in laboratory animal models. Neuropsychopharmacology 153:57–66
Tsibulsky VL, Norman AB (1999) Satiety threshold: A quantitative model of maintained cocaine

self-administration. Brain Res 839:85–93
Tsibulsky VL, Norman AB (2005) Real time computation of in vivo drug levels during drug self-

administration experiments. Brain Res Brain Res Protoc 15:38–45
Weeks JR (1962) Experimental morphine addiction: Method for automatic intravenous injections

in unrestrained rats. Science 138:143–144
Wilson MC, Hitomi M, Schuster CR (1971) Psychomotor stimulant self administration as a func-

tion of dosage per injection in the rhesus monkey. Neuropsychopharmacology 22:271–281
Wise RA (1987) Intravenous drug self-administration: A special case of positive reinforcement. In:

Bozarth MA (ed) Methods of assessing the reinforcing properties of abused drugs. Springer,
New York, pp 117–141

Wise RA, Newton P, Leeb K, Burnette B, Pocock D, Justice JB Jr (1995) Fluctuations in nucleus ac-
cumbens dopamine concentration during intravenous cocaine self-administration in rats. Neu-
ropsychopharmacology 120:10–20

Yokel RA, Pickens R (1974) Drug level of d- and l-amphetamine during intravenous self-
administration. Neuropsychopharmacology 34:255–264

Zernig G, Wakonigg G, Madlung E, Haring C, Saria A (2004) Do vertical shifts in dose–response
rate-relationships in operant conditioning procedures indicate “sensitization” to “drug want-
ing”? Neuropsychopharmacology 171:349–351

Zernig G, Ahmed SH, Cardinal RN, Morgan D, Acquas E, Foltin RW, Vezina P, Negus SS, Crespo
JA, Stockl P, Grubinger P, Madlung E, Haring C, Kurz M, Saria A (2007) Explaining the es-
calation of drug use in substance dependence: Models and appropriate animal laboratory tests.
Pharmacology 80:65–119

Zittel-Lazarini A, Cador M, Ahmed SH (2007) A critical transition in cocaine self-administration:
Behavioral and neurobiological implications. Neuropsychopharmacology 192:337–346



Chapter 2
Intermittent Adaptation: A Mathematical Model
of Drug Tolerance, Dependence and Addiction

Abraham Peper

Abstract A model of drug tolerance, dependence and addiction is presented. The
model is essentially much more complex than the commonly used model of home-
ostasis, which is demonstrated to fail in describing tolerance development to re-
peated drug administrations. The model assumes the development of tolerance to
a repeatedly administered drug to be the result of a process of intermittently de-
veloping adaptation. The oral detection and analysis of endogenous substances is
proposed to be the primary stimulus triggering the adaptation process. Anticipation
and environmental cues are considered secondary stimuli, becoming primary only
in dependence and addiction or when the drug administration bypasses the natural—
oral—route, as is the case when drugs are administered intravenously. The model
considers adaptation to the effect of a drug and adaptation to the interval between
drug taking to be autonomously functioning adaptation processes. Simulations with
the mathematical model demonstrate the model’s behaviour to be consistent with
important characteristics of the development of tolerance to repeatedly adminis-
tered drugs: the gradual decrease in drug effect when tolerance develops, the high
sensitivity to small changes in drug dose, the rebound phenomenon and the large
reactions following withdrawal in dependence.

2.1 Introduction

If a drug is administered repeatedly, the effect it has on the organism decreases
when the organism develops tolerance to the drug. Many models of drug tolerance
have been developed in the past. Most of these models are qualitative only and do
not illuminate the mechanism underlying the effect very much. Those models that
do attempt to describe the process mathematically are often too simple and only
consider the effect of a single drug administration. A proper model describing how
drug tolerance develops should account for a gradual decrease in the drug effect
when a drug is administered repeatedly and should include a triggered response

A. Peper (�)
Department of Medical Physics, Academic Medical Centre, University of Amsterdam,
Amsterdam, The Netherlands
e-mail: a.peper@planet.nl

B. Gutkin, S.H. Ahmed (eds.), Computational Neuroscience of Drug Addiction,
Springer Series in Computational Neuroscience 10,
DOI 10.1007/978-1-4614-0751-5_2, © Springer Science+Business Media, LLC 2012

19

mailto:a.peper@planet.nl
http://dx.doi.org/10.1007/978-1-4614-0751-5_2


20 A. Peper

to the drug administrations. The slow build-up of tolerance during successive drug
administrations and the triggered response necessarily imply the presence of long
term memory for the properties and the effects of the drug.

A variety of theories and models have been proposed to explain the mechanism
relating the various aspects of drug taking. Very important has been the concept
of homeostasis. In 1878, Bernard wrote: “It is the fixity of the ’milieu interieur’
which is the condition of free and independent life. All the vital mechanisms how-
ever varied they may be, have only one object, that of preserving constant the con-
ditions of life in the internal environment” (Bernard 1878, cited by Cannon 1929).
Cannon translated Bernard’s observation into the model of homeostasis (Cannon
1929). Fundamental in Cannon’s theory is the presumption that physiological pro-
cesses are regulated and that their functioning is in a “steady state”: their conditions
are stable and held constant through feedback. Homeostasis has been the basis of
important theories like Bertalanffy’s Systems Theory and Norbert Wiener’s Cyber-
netics, which propose that physiological processes can be simulated by electronic
feedback models (Wiener 1948; von Bertalanffy 1949, 1950). In the mathematical
models of drug tolerance developed on the basis of these theories, the effects pro-
duced by drugs are assumed to be counteracted by a feedback mechanism which
keeps the processes involved functioning at a preset level, thus causing tolerance
to develop (Goldstein and Goldstein 1968; Jaffe and Sharpless 1968; Martin 1968;
Kalant et al. 1971; Snyder 1977; Poulos and Cappell 1991; Dworkin 1993; Siegel
1996; Siegel and Allan 1998).

Besides the theories of drug tolerance based on homeostasis, there are theories
which do not consider tolerance development the result of a regulated process. An
influential theory was developed by Solomon and Corbit, the Opponent-Process the-
ory (Solomon and Corbit 1973, 1974; Solomon 1977, 1980). In this theory, the drug
is thought to trigger a response known as the A-process. The A-process induces a re-
action called the B-process which opposes the A-process and increases in magnitude
by repeated elicitation of the A-process. The A-process is fast, while the B-process
is delayed and slow. As the difference between the A-process and the (negative)
B-process is the ultimate effect of the drug, the drug effect will slowly decrease.

Several theories are based on a model of habituation developed by Rescorla and
Wagner, which attributes tolerance to a learned diminution of the response (Rescorla
and Wagner 1972; Wagner 1978, 1981; Tiffany and Baker 1981; Baker and Tiffany
1985; Tiffany and Maude-Griffin 1988). Dworkin incorporated this theory in a feed-
back model of drug tolerance (Dworkin 1993).

Another influential theory was proposed by Siegel (Siegel 1975, 1996, 1999;
Siegel and Allan 1998; Siegel et al. 1982). In Siegel’s theory, drug tolerance is as-
sumed to be caused by Pavlovian conditioning: the compensatory response of the
organism to the administration of a drug is triggered by environmental cues paired to
the drug taking. Poulos and Cappell augmented Siegel’s theory of drug tolerance by
incorporating homeostasis, which was adopted by Siegel (Poulos and Cappell 1991;
Siegel 1996; Siegel and Allan 1998).

In what follows, a model of drug tolerance, dependence and addiction will be pre-
sented which is different from the theories outlined above. The model is based on the
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assumption that most processes in a living organism are regulated, which is in accor-
dance with homeostasis. It will be argued that the slow build-up of tolerance during
repeated drug administrations, combined with a triggered response to those adminis-
trations, requires a complex adaptive regulation mechanism which, although incor-
porating feedback, is essentially different from homeostasis. The model presented is
a general model of drug tolerance and drug dependence where “general” indicates
that the model is based on principles which are thought to be more or less applica-
ble to all processes of tolerance development. The model assumes the development
of tolerance to a drug to be a process of intermittent adaptation to the disturbing
effects of the drug: during the disturbances the body gradually learns to counteract
these effects (Peper et al. 1987, 1988; Peper and Grimbergen 1999; Peper 2004a,
2004b, 2009a, 2009b). It also assumes that when processes in living organisms are
disturbed, they adapt in a way that is fundamentally the same for all processes.
Knowledge about adaptation in one process, therefore, teaches us about adaptation
in other processes. The latter hypothesis is defended by many writers (Thorpe 1956;
Kandel 1976; Koshland 1977; Poulos and Cappell 1991; Siegel and Allan 1998). It
allows us to use our knowledge of the body’s adaptation to changing environmen-
tal temperature equally well as, for instance, knowledge about adaptation to colour
stimuli (Siegel and Allan 1998) to solve problems in modelling the organism’s adap-
tation to drugs.

2.2 Properties of Adaptive Regulated Physiological Processes

2.2.1 Homeostasis

Homeostasis has made an invaluable contribution to our understanding of how phys-
iological processes function by introducing the concept of the regulated physiolog-
ical process: the presumption that most processes in a living organism are, one way
or another, regulated. Regulation implies that the behaviour of a certain process in
the organism is ultimately determined by an aim set by the organism itself, which in
a highly simplified process is the process set point or process reference. In a simple
regulated process, the output of the process—i.e. what is produced or obtained—
is observed by a sensor and compared with a desired value, the process reference.
When the output is not at the desired level, the process parameters are changed until
the output is—within certain margins of accuracy—equal to the process reference.
In this way the process is maintained at the desired level through feedback. There
are many forms of feedback. In general, the feedback is negative. Negative feedback
of a process in its most simple form means that the process output is subtracted from
(negatively added to) the process input. The effect of negative feedback is that the
regulation error—the deviation of the process output from the desired value—is re-
duced, the remaining error depending on the amplification of the feedback loop.
When delay and stability problems can be managed, negative feedback can be very
effective in counteracting the effects of disturbances to the process, making the pro-
cess output less responsive to changing parameter values or changes in its environ-
ment.
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Fig. 2.1 Development of
tolerance to the repeated
administration of a drug

Fig. 2.2 Computer
simulation of the effect of a
single disturbance on the
process output of a simple
linear negative feedback
circuit

Homeostasis has made clear that most physiological processes are regulated, and
that regulation implies feedback. This has resulted in numerous models using neg-
ative feedback systems as a description of their behaviour. However, the incorpo-
ration of negative feedback in itself does not suffice to obtain a model describing
the behaviour of adaptive physiological processes like the development of drug tol-
erance, as will be demonstrated with the response of negative feedback systems to
regularly occurring disturbances.

Figure 2.1 illustrates the effect of tolerance development on the drug effect when
a drug is administered repeatedly. The gradual build-up of tolerance is reflected in
a gradual decrease in drug effect. It is accompanied by reactions during the interval
between two drug administrations (the signal going below the base line), represent-
ing the rebound phenomenon: opposite symptoms after the drug effect has ended.

Figure 2.2 shows a computer simulation of the effect of a disturbance on the
output of a simple (first order) linear negative feedback circuit. The length of the
stimulus and the time constant τ of the circuit are set at 6 and 3 hours, respectively.
The vertical axes are in arbitrary units. The initially large effect of the stimulus
on the output decreases over time at a speed determined by τ . This decrease more
or less resembles the development of acute tolerance: tolerance to the effect of a
single drug administration. When the stimulus ends, there is an effect in the opposite
direction, which could be regarded as representing the rebound mechanism.

If the same stimulus is applied repeatedly to this simple regulated system, the
model’s response does not resemble the development of tolerance shown in Fig. 2.1.
This is demonstrated in the simulation depicted in Fig. 2.3, where the stimulus is
applied twice a day. Every time the stimulus is applied, the effect of the stimulus
on the output (Fig. 2.3b) appears to be the same as in Fig. 2.2. The stimuli are
all suppressed to the same degree, which does not reflect the decrease in drug effect
over time as the organism develops tolerance. If the time constant of the regulation is
increased from 3 hours to 3 days, the sole effect of the regulation is that the average
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Fig. 2.3 Effect of a
repeatedly applied stimulus
on a simple feedback circuit

value of the signal drifts towards the base line (Fig. 2.3c). Although this example of a
simple regulated process shows some qualities of tolerance development and might
give an acceptable description of acute tolerance, it apparently lacks the capacity
to adapt to recurring disturbances. The above simulation uses a simple, first order
negative linear feedback circuit. When a mathematical model combines systems to
form a complex, higher order feedback circuit, it will generate a response which
differs from that of Fig. 2.2b. However, the effect of repeatedly applied stimuli will
always give the pattern displayed in Fig. 2.3. Apparently, feedback does not suffice
to describe the development of tolerance to repeatedly applied disturbances and,
consequently, the model of homeostasis cannot describe drug tolerance.

An attempt to modify the model of homeostasis to account for its obvious short-
comings is the model of allostasis (Koob and Le Moal 2001; Ahmed et al. 2002;
Schulkin 2003; Sterling 2004). Allostasis challenges the basis of homeostasis that
processes are functioning at a steady state and proposes that the goal of regulation is
not constancy, but rather, ‘fitness under natural selection’ (Sterling and Eyer 1988;
Sterling 2004). Yet, in spite of its criticism of the homeostatic model, allostasis as-
sumes that while the set points of process regulations are controlled by the organism
to meet its overall goal these processes themselves are regulated in a homeostatic
manner. Allostasis is predominantly a qualitative model (Ahmed and Koob (2005)
set out a quantitative model which controls the intravenous administration of co-
caine in rats) and there is no indication that it can describe the effects of repeated
drug administrations.

2.2.2 The Properties of Adaptive Processes

When the development of drug tolerance cannot be described by homeostasis, or
in general, by simple feedback systems, what then is the mechanism which does
describe it? The model presented here posits that the development of drug tolerance
is an expression of the general process of adaptation to environmental disturbances.
Homeostasis and adaptive regulation are often assumed to be synonymous. In re-
ality, these concepts are very different. The basis of homeostasis is that processes
continue functioning at a preset level during changing environmental conditions,
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the “equilibrium” or “steady state” of Cannon. Adaptive processes, on the other
hand, aim for optimal performance, which in a changed environment may imply
functioning at a different level or even in a different way (Bell and Griffin 1969;
Toates 1979). Moreover, as most processes in the organism interact with numer-
ous other processes, environmental changes may affect the functioning of the entire
organism.

Adaptation and habituation, too, are often used interchangeably even though they
are essentially different concepts. Habituation is a multiplicative mechanism: the re-
sponse to the stimulus is attenuated to reduce the effect of the stimulus. Adaptation,
on the other hand, is an additive process: the disturbance is counteracted by a com-
pensating mechanism. The applicability of additive and multiplicative mechanisms
to the description of tolerance development has been analysed in an earlier publica-
tion (Peper et al. 1988).

Adaptation is often considered a relatively slow, continuous learning process.
Drug tolerance, however, usually manifests itself as a relatively short lasting, but re-
current and triggered process and may therefore be seen as an intermittent learning
process of the organism: during the disturbances it learns how to deal with recurrent
changes in its environment to keep functioning optimally. If a drug is administered,
the organism “remembers” the effect of the drug during previous administrations
and takes measures to lessen its effect this time. When full tolerance is established,
the organism has learned to deal with the disturbance as effectively as possible in
the given circumstances. The organism’s learning process during adaptation in re-
sponse to the repeated administration of a drug inevitably presumes memory over
an extended period of time: memory for the properties of the particular drug, mem-
ory for the effects exerted by the drug on previous occasions and memory for the
measures it has to take to oppose the effect of the drug.

In the general process of adaptation, it is postulated that the organism remem-
bers as separate facts changes in its functioning when these are caused by differ-
ent changes in its environment. This seems obvious: different drugs elicit different
adaptation processes. Yet the implications of such specificity are far-reaching as is
demonstrated with a simplified example of how the body’s thermogenesis reacts to
temperature changes. When one leaves a warm room to stay in the cold outside for
a few minutes, the warm room feels normal on returning. After a day in the cold
outside, the warm room feels hot on entering. Apparently, after adaptation to the
cold outside, adaptation to the warm room must develop again. This adaptation to
the warm room could be interpreted as the transition phase back to the normal sit-
uation. However, when the length of the disturbance is increased, the concept of
“normal situation” becomes ambiguous. For somebody who has lived rough on the
street over a prolonged period, the cold outside has become the normal situation and
entering a warm room a disturbance: there has been a shift in the normal situation
from the high temperature in the room to the low temperature outside. This shift
is only comprehensible when it is accepted that for an adaptive process there is no
normal situation: every change in environmental condition results in a new situation
to which the process adapts by seeking a new level of functioning.

When this analysis of how the organism adapts is translated to the administration
of drugs, it implies that for the organism the beginning of the drug action and its
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Fig. 2.4 General outline of
the development of
adaptation to a repeatedly
occurring disturbance in an
adaptive process

ending constitute different disturbances because they are the beginning of different
(opposite) events, namely the drug effect and the interval between drug adminis-
trations. In existing models of drug tolerance, the interval between drug adminis-
trations is assumed to be the base line, the situation identical to the undisturbed
situation before the first dose. In the model proposed, the organism’s adaptation to
the effect of a drug and its adaptation to the interval between drug administrations
are considered autonomous processes.

Like homeostasis, the model adapts to a disturbance by opposing its effect. Fig-
ure 2.4 illustrates how this process of adaptation develops. The level of adaptation
at any moment depends on the magnitude and length of the disturbance while it in-
creases with every disturbance. Adaptation to the interval proceeds from the level
acquired during the disturbance. In the above example of the body’s thermoregula-
tion, an increase in thermogenesis on entering the cold outside is the body’s method
of adapting to that disturbance. A return to the warm room will result in a decrease in
heat production, accompanied by cooling if necessary through, for instance, sweat
secretion. Figure 2.4 shows that after the body has learned to cope with this particu-
lar disturbance, the increase in thermogenesis on entering the cold and its decrease
on return to the room will take place rapidly, while the level of adaptation has in-
creased considerably.

2.2.3 The Detection of Exogenous Substances

The effects of drugs are for an important part determined by their disturbing ef-
fect on the information transfer within the organism’s regulated processes. Consider
a process which sends information about its level of functioning to the regulator
of that process (this is detailed below in Fig. 2.5). The messenger used to transfer
this information—a number of molecules of a certain substance—is detected by a
sensor—receptors sensitive to that particular substance—which relays the informa-
tion to the process regulator. If a drug interferes with the transport of this messenger,
for instance by binding to the receptors, changing their affinity for the messenger, or
simply by adding to the amount of the messenger substance, the information from
the sensor will change and the effect will be a change in the output level of the
process.

The disturbing effect of a drug on the regulation of a physiological process de-
creases when tolerance develops: the process regulator learns to counteract the effect
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of the drug on the information transfer. This antagonistic action of the regulator is
operative mainly during the time the drug is present. This can be deduced from the
fact that when a drug is given only occasionally, the effect during the intervals is
very small, even though the organism may have developed a high level of tolerance
to the drug (this subject is treated extensively in Peper et al. 1987, 1988). If tolerance
to a drug manifests itself mainly during the time the drug is present, an important
conclusion can be drawn: when a process is disturbed by a drug, its regulator must
at that moment “know” that the change in the output of the sensor is due to the pres-
ence of the drug and not to a normal fluctuation in the process it regulates. From the
output signal of the sensor alone the regulator will not be able to determine whether
the receptors are bound to an endogenous or an exogenous substance or whether a
drug has changed the sensitivity of the sensor to the messenger substance. It can dis-
tinguish between the various ways in which a drug may interfere only by acquiring
additional information about the situation. If, for instance, the exogenous substance
differs from substances usually found at the location of the sensor, the regulator
might be able to acquire this information from the receptor site. If, however, the
exogenous substance is of the same chemical composition as an endogenous mes-
senger substance, this information cannot be acquired other than from the fact that
the organism has detected the substance somewhere in the organism where it is nor-
mally not present or from oral or environmental information about the substance
entering the body.

The organism has several ways to detect a drug. If administered orally, there
are gustatory and olfactory mechanisms to record the presence of a drug and its
chemical characteristics. At a later stage, when the drug is within the organism
or if the drug is administered intravenously, there are other ways in which a pro-
cess regulator may obtain information about its presence and characteristics: from
chemical sensors which are sensitive to the drug, from information originating
from processes in the organism which themselves are disturbed by the drug or
from environmental cues which it has learned to associate with the presence of
the drug. But regardless of how the information is acquired, to enable a process
regulation to take measures to reduce the effect of an exogenous substance upon
the process, information about the presence of the drug should reach the regula-
tor at an early stage, before the drug actually reaches the receptor site. This im-
plies that the regulator will attach greater value to oral information about the pres-
ence of the drug than to information from the surrounding tissue (Steffens 1976;
Grill et al. 1984). Given, furthermore, that the natural route into the body is through
the mouth, it can be assumed that the organism will regard the detection of exoge-
nous substances in the mouth as the fundamental source of information about the
presence of a drug.

2.2.4 Oral and Environmental Cues

In discussions about tolerance development, cues originating from environmental
causes are usually considered more important than the administration of the drug
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itself. Although environmental cues can indeed dominate completely in certain sit-
uations, under closer scrutiny it becomes clear that the oral administration of a drug
must be the primary and natural stimulus for the development of tolerance. One ra-
tional consideration is that for a living organism there is a relationship between oral
drug-taking and the drug effect and that the organism will use such a relationship.
After all, the natural route of an exogenous substance into the body is through the
mouth. The mouth is - so to speak—made for that purpose. Together with the nose, it
contains all the means needed to detect and analyse exogenous substances. The pri-
mary functions of the mouth and the nose—taste and smell—are there to allow the
organism to recognise a substance when it enters the body, enabling it to anticipate
its effect and to take appropriate measures in time.

An additional consideration indicating that oral administration is the fundamental
stimulus in the tolerance process is that, when the organism is able to pair very
different kinds of environmental cues with the drug effect as has been demonstrated
in the literature, it will certainly relate the drug’s presence to the drug effect. In fact,
this relation must have been the first to develop in primitive organisms as it can also
be observed at cell level where the mere presence of a drug can induce tolerance
without the mediation of higher structures like the central nervous system. This has
been demonstrated explicitly in isolated cell cultures, where repeated stimulation
with toxic substances or changes in temperature induce tolerance (Peper et al. 1998;
Wiegant et al. 1998).

There is ample evidence that the adaptive response—the compensatory action of
the organism to the effect of a drug—is triggered by the oral administration of the
drug. For instance, the oral administration of glucose almost immediately results in
an increased release of insulin into the bloodstream (Deutsch 1974; Steffens 1976;
Grill et al. 1984; Dworkin 1993; Loewy and Haxhiu 1993). In fact, the organism
will make use of any cue it can find to anticipate disturbances of its functioning, and
oral drug taking seems crucial in this mechanism.

These considerations do not mean that an oral stimulus is always the dominant
stimulus for the tolerance process. Environmental cues become of prime importance
when the natural—oral—route is bypassed through the injection of the drug directly
into the bloodstream. Since much of the research into drug tolerance has been done
with drugs administered intravenously, that is, without the fundamental—oral—cue
being present, care should be taken in interpreting any results. When the oral drug
cue is not present, the body will have to depend on environmental cues to trigger
the tolerance mechanism, which may result in a different behaviour. In any research
into the development of drug tolerance, it is therefore essential to understand the
natural way in which the organism develops drug tolerance and the consequences of
administering drugs directly into the bloodstream.

2.2.5 The Effect of Unknown Substances

When tolerance to a drug has developed, the organism apparently has enough in-
formation about the drug to reduce its disturbing effect. That information may in-
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clude the chemical characteristics of the drug, the exact processes disturbed by the
drug, the nature and the extent of the disturbance, the time taken by the drug to
reach the receptor site, its effect on the sensor characteristics, and so on. When a
drug enters the organism for the first time, the organism may be assumed not yet
to have gathered this information and it must then establish the relationship be-
tween the taking of the unknown drug and subsequent disturbances in the organ-
ism.

As postulated above, the function of the mouth is to detect exogenous substances
entering the body and to activate the processes which will be disturbed so they can
generate a compensating response to the effect of the substance. Although no tol-
erance exists and no compensating response will be generated when a substance
is unknown to the organism, for the organism to know that a drug is new implies
that the substance first has to be analysed. It will, consequently, not make much
difference for the organism whether a drug is new or whether there already exists
a certain degree of tolerance to the drug: familiar or not, every drug entering the
organism will be analysed. In case of an unknown substance, the changes in func-
tioning of processes which follow will then be related to the composition of the
substance and tolerance can develop.

In addition, it is quite conceivable that the organism has a built-in degree of tol-
erance to all (or most) substances in nature, in which case there are no “new” drugs
and it is not a matter of analysis but of recognition. Every drug entering the organ-
ism is “recognised” and the organism “remembers” what the consequences for its
functioning were on previous occasions when it detected that particular drug, where
“previous” includes inheritance. The latter hypothesis is difficult to test, however, as
in most cases it is not possible to determine the actual level of tolerance to a certain
drug: the drug effect itself does not reveal information about the magnitude of the
compensatory response or the level of tolerance.

2.2.6 The Magnitude of the Compensatory Response

The question now remains of why the organism requires so much time to develop
tolerance to a drug when it apparently has all the information about the drug’s chem-
ical characteristics even when the drug enters the body for the first time. The answer
to this question derives from the observation that, while a drug’s chemical character-
istics determine which processes are disturbed, it is the quantity of the drug which
determines how much those processes are disturbed and hence the extent of the
measures the organism must take to reduce the drug effect. This quantity, however,
cannot be determined at an early stage. The organism is, for example, unable to de-
termine the quantity of a medication before it is dissolved completely, or whether a
cup of coffee is followed by a second or third. Such information becomes available
only after a relatively long time, which is (or may be) too long for the processes
involved to counteract the drug’s disturbing effect in an effective way. The organ-
ism is thus confronted with a fundamental problem. It wants to counteract the drug
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effect but has no definite information about the magnitude of the measures it has to
take. The approach the organism has adopted to solve this difficulty is to base the
magnitude of the compensatory response on the drug dose it expects: the usual or
habitual drug dose. In practise, this will be about the average dose of a number of
previous drug administrations.

It then becomes clear that tolerance to a certain drug does not merely mean that
the organism knows how to cope with the given drug, but that the organism knows
how to cope with a certain quantity of the drug. A change in that quantity—a change
in the habitual drug dose—will therefore result in a period of incomplete tolerance
during which the effect of the drug on the organism differs substantially from the
tolerant situation. The functioning of the organism will then remain disturbed until
it has learned to cope with the new drug level and has become tolerant to the new
drug dose.

It is difficult to find a rationale for the initial large drug effect and the long time it
takes the organism to develop tolerance other than the assumption that the organism
does not determine the quantity of a drug entering the body. Again, if the organism
were able to determine the properties and the quantity of the drug at an early stage,
it would have all the information needed to rapidly suppress any drug activity. The
organism needs a relatively long period to make an approximation of the drug dose
it can expect.

2.3 Modelling Tolerance Development in Physiological Processes

2.3.1 The Model

The initial effect of a disturbance upon a regulated physiological process will now
be elucidated with a simplified model. Subsequently, the model will be expanded
to describe the complex response of a regulated physiological process to repeated
disturbances in its functioning. Figure 2.5 shows a simple model of a regulated
physiological process and the way in which a drug may disturb its functioning. In
the normal, undisturbed functioning of the process, an endogenous substance in the
blood, e, which is a measure of the level of the substance in the bloodstream pro-
duced by the process, E, is detected by the sensor, receptors which have affinity

Fig. 2.5 Example of a
simplified regulated process
and the way in which a drug
in the bloodstream may
disturb its functioning
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Fig. 2.6 Adaptive regulator
added to the regulated
process of Fig. 2.5

with the substance in question. The binding of this substance with the receptors
results in a signal from the sensor to the process regulator, Ssens. The magnitude
of Ssens is a measure of the number of bound receptors and thus of the amount
of the substance in the bloodstream. The process regulator compares the level of
Ssens with the level of the process reference, Rp , and regulates the process in such a
way that Ssens and Rp are about equal. In this way the level of the substance in the
bloodstream is kept at the desired level through negative feedback. If an exogenous
substance, e′, with which the receptors also show affinity (this may, but need not,
be the same substance as the endogenous substance) is introduced into the blood-
stream, the subsequent binding of this exogenous substance to the receptors will
raise the level of Ssens. However, to keep Ssens at about the level of the reference, the
negative feedback will reduce the process output, E—and consequently the level of
the messenger substance, e—until the number of bound receptors is about the same
as before the intervention.

In Sect. 2.2.1, it was argued that the development of drug tolerance cannot be de-
scribed adequately in terms of simple feedback regulation. The mechanism respon-
sible for tolerance development in the organism is fundamentally more complex
and, hence, even a model which describes only the main characteristics of drug tol-
erance will be more complex. An adequate model of drug tolerance should possess
the following characteristics:

• When a drug is administered repeatedly, the process should gradually learn how
to readjust its functioning to oppose the effect of the drug.

• This adaptation process should be active mainly during the time the drug is
present and should be activated upon the detection of the drug or associated cues.

• The drug’s presence and the intervals between drug administrations should be
considered different disturbances and should therefore initiate their own respec-
tive adaptation processes.

In Fig. 2.6, an “adaptive regulator” is added to the model of the regulated process
in Fig. 2.5. This regulator is assumed to possess the qualities listed above. During
successive drug administrations, it learns to change the process reference Rp during
the presence of the drug in such a way that the effect of the disturbance on the level
of the substance in the bloodstream, E, is reduced. To this end, it uses the output
signal of the sensor, Ssens, and information about the drug administration, Pd . The
dashed line indicates that Pd is information about the moment of drug administra-
tion only. In this model, the sensor output is assumed to be proportional to the sum
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Fig. 2.7 Model of adaptive regulated process in which a drug increases the level of the produced
substance

of the exogenous substance and the endogenous substance. The binding rates of the
two substances with the receptors of the sensor are assumed to be equal.

2.3.2 Different Ways in Which Drugs Disturb the Body

A distinction has to be made between two fundamentally different ways in which
drugs may disturb physiological processes:

Case 1: a drug changes the level of a regulated substance in the organism, increas-
ing it when the drug and the substance are similar, or decreasing it, for instance by
neutralisation.

Case 2: a drug disturbs the information transfer in the organism.
These two kinds of drug effects have essentially different consequences. If a

drug increases the level of an endogenous substance of the same chemical compo-
sition, the long term effect will be a decrease in the production of that substance by
the organism. When the low level of insulin in the blood of a diabetic is increased
via the administration of exogenous insulin, the organism develops tolerance by
gradually decreasing the insufficient insulin production of the pancreas even fur-
ther, necessitating a gradual increase in the dose of the exogenous insulin (Heding
and Munkgaard Rasmussen 1975; Mirel et al. 1980). If a drug interferes with the
information transfer in a regulated process in the organism by affecting messenger-
receptor interactions, or in general, the sensitivity of a sensor to an endogenous
substance, the organism will learn to counteract the effect and, after a while, the
process will more or less regain its normal functioning.

Figure 2.7 shows a model of an adaptive regulated process. The level of the sub-
stance produced by the process is increased by an exogenous substance of the same
composition (case 1). The adaptive regulator gradually learns to suppress the effect
of the drug during the period when the drug is in the bloodstream by lowering the
process output. The adaptive regulator bases its action on information it receives
from the sensor about the level of the regulated substance in the bloodstream, E,
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Fig. 2.8 Model of regulation
in which a drug interferes
with the information transfer
in the regulation

and on information about the drug administration, Pd . In many models of drug tol-
erance, adaptation is assumed to be effected at the receptor site. However, if a drug
changes the amount of a substance whose level is regulated, this information is cru-
cial for the process regulator and should pass the sensor unaltered. It follows that
the transfer function of the sensor (its input–output relation) must be kept constant.
Consequently, when a drug changes the amount of a substance which is regulated
at a preset level, the organism can be expected to counteract such a disturbance
primarily by a readjustment of the process parameters.

When a drug interferes with the information transfer in the process regulation
(case 2), it is not the level of the process which has to be corrected, but the change
in input signal to the process regulator induced by the drug. As the feedback path
in the regulation is affected here, the disturbance caused by the drug may be cor-
rected via a change in the transfer function of the sensor, for instance by means of
a change in the number of receptors sensitive to the drug. In this configuration, the
adaptive regulator learns to change the transfer function of the sensor in a way that
counteracts the effect of the drug on the sensor’s sensitivity to the messenger.

Figure 2.8 shows a model of a regulated process in which the information trans-
fer is disturbed by a drug. The adaptive regulator gradually learns to suppress the
effect of the drug on the sensor signal by changing the sensitivity of the sensor. The
adaptive regulator bases its action on information it receives from the sensor, Ssens,
and on information about the drug administration, Pd .

The model in Fig. 2.7 describes the effect of a drug on the level of an endogenous
substance which does not function as a messenger. The model in Fig. 2.8 describes
the effect of a drug on messenger–receptor interactions and is therefore applicable
to many of the effects associated with addictive drugs.

2.3.3 Fast and Slow Adaptation

The adaptive regulator treated above minimises the direct effect of a drug on the
regulation. If it could suppress the drug effect completely, it would do all that is
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required. However, in general drug effects are only partially suppressed and in most
cases substantial effects remain. An important additional function of an adequate
regulator is minimising the effect of the remaining disturbance. The model achieves
this by combining the fast regulator, which reduces the immediate effect of the dis-
turbance, with a slow regulator, which minimises the magnitude of the remaining
disturbance in the long run and which anticipates frequently occurring stimuli (see
also Peper et al. 1987). After tolerance has been established, the slow adaptation is
responsible for a shift in the output level to below normal in the interval between
drug administrations. The magnitude of these negative reactions in the tolerant sit-
uation depends on the length of the interval. When a drug is taken infrequently, the
organism is not much affected during the intervals; when the frequency of admin-
istration is high, the shift can become considerable. The fast regulator is a complex
system and determines to a large extent how tolerance develops. The slow regulator
has a small effect by comparison but is an essential component of the adaptive regu-
lator. Slow regulation can manifest itself in different forms. For a human moving to
a hot climate, it may imply a permanent increase in sweat secretion. The thermoreg-
ulation in animals moved to a colder climate may adapt through a slow increase
in the growth of their fur. The time constant of the slow regulator may amount to
weeks months or even years.

2.4 The Mathematical Model and Its Practical Significance

2.4.1 The Model

It is important to observe that the mathematical model supports the underlying the-
ory. This contrasts with other published models of drug tolerance, which are gener-
ally qualitative only. The importance of conducting research into the behaviour of
physiological systems using control theoretical principles cannot be overemphasised
as the behaviour of regulated systems can only be understood from the behaviour
of mathematical models describing them. Even the behaviour of the simplest regu-
lated system cannot be described other than mathematically. The behaviour of more
complex regulated systems can only be understood from simulations with computer
programs using advanced, iterative methods to solve the differential equations in-
volved. This implies that a model which is qualitative only may never include feed-
back systems as the behaviour of such systems cannot be predicted or understood
qualitatively.

The mathematical implementation of the current model is discussed in the ap-
pendix, which addresses the complex structure of the components of the regulation
loop and presents the equations describing them. The model is a nonlinear, learn-
ing, adaptive feedback system, fully satisfying the principles of control theory. It
accepts any form of the stimulus—the drug intake—and describes how the phys-
iological processes involved affect the distribution of the drug through the body.
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Fig. 2.9 Block diagram of the mathematical model of Fig. 2.7

A previous publication (Peper 2004b) derives the equations more fully and exten-
sively discusses the control-theoretical basis of the regulation as well as the condi-
tions for its stability.

The following model simulations are based on a number of simplifying assump-
tions:

• The parameters have been chosen to obtain a clear picture of the outcome of
the simulations. Because in practise the stimulus—the drug intake—is extremely
short in terms of repetition time, its duration has been extended for additional
clarity.

• The mechanism of tolerance development will only function if it is triggered
when the drug is administered. For the behaviour of the mathematical model, it
is of no relevance whether it is triggered orally or by environmental cues. Hence,
the simulations do not distinguish between different kinds of triggering.

• Whenever the paper discusses oral drug administration, the drug is assumed to be
gustatorily detectable.

• As the model is a general model of tolerance development and does not describe
a specific process, the vertical axes in the figures are in arbitrary units.

Figure 2.9 shows a block diagram of the mathematical implementation of the reg-
ulated adaptive process of Fig. 2.7. The process produces a hypothetical substance.
Its regulation is disturbed by an exogenous substance of the same composition. The
diagram comprises the digestive tract, the bloodstream, the process, the process reg-
ulator, a loop control function (see the Appendix) and the adaptive regulator. When
the exogenous substance changes the level of the substance in the bloodstream, the
adaptive regulator corrects for this disturbance by readjusting the output level of the
process. The heavy arrows indicate the main route of the regulation loop. The thin
arrows indicate the route of the disturbance: the transfer of the exogenous substance
through the digestive tract to the bloodstream and the transfer of the information
about the presence of the substance to the adaptive regulator. The block “reference”
represents the reference level for the process regulator, which is set at a higher level
in the hierarchical organisation of the organism. This subject will not be treated
here.

When the exogenous substance enters the body, a series of activities readjusts
the processes involved in order to reduce the disturbance. Figure 2.10 shows some
signals from the block diagram which illustrate this mechanism (Peper 2004b). The
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Fig. 2.10 Some signals from a process modelled with the mathematical model clarifying the func-
tioning of the tolerance mechanism: (a) The exogenous substance when it enters the bloodstream,
Sdigest. (b) Process output during tolerance development, Sprocess. (c) Sprocess and Sdigest added in
the blood stream and the resulting blood level, Sblood. The level of the process output and the
resulting blood level before the drug is administered are Lprocess and Lblood

endogenous substance is produced at a normally constant level, Lprocess. The result-
ing blood level is Lblood. When a similar substance is administered exogenously,
the blood level will be disturbed. When the exogenous substance is administered
repeatedly, the regulated process will develop tolerance to the disturbance. Trace
(a) shows the exogenous substance, Sdigest, when it enters the bloodstream. Trace
(b) shows the process output: during the disturbances the output level will drop to
counteract the induced rise in the level of the substance in the blood. The signal
representing this change in process output level, Sprocess, represents the compen-
satory response of the process to the disturbance. In addition to these temporary
changes in level, a permanent downward shift in the process output occurs. This
shift of the curve to a level substantially lower than the baseline, Lprocess, repre-
sents a fundamental change in the functioning of the processes involved.1 The two
signals—Sdigest and Sprocess—are added when the endogenous and exogenous sub-
stances mix in the bloodstream. The resulting signal is shown in trace (c) together
with the resulting blood level, Sblood. The disturbance of the blood level gradually

1This downward shift in the functioning of the process represents the drug induced change in the
functioning of processes involved in the drug effect. The shift depends mainly on the function-
ing of the slow regulator which can have a long time constant (see Sect. 2.4.2). As a result, the
shift may remain a long time after a drug is withdrawn. This has important consequences as was
first pointed out in a previous publication (Peper et al. 1987): The negative shift of the process
output on drug withdrawal signifies the occurrence of antagonistic symptoms with respect to the
drug effect and these are consequently in the “direction” of the disorder the drug was intended to
counteract (Kalant et al. 1971). This implies [. . . ] a worsening of the disorder of the patient after
termination of drug treatment. Apparently, for the body, adaptation to a medicine means a shift in
its functioning in the direction of the disease.
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decreases during subsequent administrations when the process regulator adapts to
the recurrent disturbance. Recall that all parameter settings in the simulations are
arbitrary, as are the axes in the figure.

2.4.2 The Open-Loop Gain

The compensatory response only partly compensates the effect of the drug. The
extent to which this takes place depends on the capacity of the body to suppress
disturbances, which in the model domain is represented by the open-loop gain of the
regulation loop. A large open loop gain—as is found in most electronic regulated
systems—suppresses disturbances to a large extent. Stability considerations suggest
that the open-loop gain in fast biological processes is small (Peper et al. 1987),
and the suppression of disturbances only modest. In the example of Fig. 2.10, the
open-loop gain is set at 4. This would be a very low figure for a electronic feedback
system, but is a common value in physiological regulations.

The open-loop gain in physiological regulations is not fixed but depends on fac-
tors such as health, age and fitness (Mitchell et al. 1970; Verveen 1978, 1983; Peper
et al. 1987, 1988; Peper 2004a). The open-loop gain determines both the rate of sup-
pression of the drug effect after tolerance has developed and the magnitude of the
reactions after withdrawal. This direct link between very different effects forces the
organism to make a trade-off between a beneficial and an undesirable effect of the
regulation, which may partly explain why the suppression of the drug effect when
tolerance has developed tends to be relatively low. Yet another reason why there
is a limited suppression of the drug effect in the tolerant situation may be that the
organism cannot estimate the exact drug dose at the moment of administration and
therefore has to be cautious in opposing the drug effect. If the organism nevertheless
overestimates the drug dose, its drug-opposing action may outweigh the drug effect
itself, resulting in a paradoxical drug effect: an effect with characteristics opposite
to the normal drug effect.

When the time constant of a regulation loop is large, stability becomes less of a
factor. In many cases, the open-loop gain of the slow adaptive regulator in physio-
logical processes will therefore be significantly larger than that of the fast adaptive
regulator.

2.4.3 Constant Drug Effect

In the simulation of Fig. 2.10, the drug dose has a constant magnitude. In clinical
practise, it is not the drug dose but the drug effect that is of primary interest. As
the drug effect decreases when tolerance to the drug develops, the dose must be in-
creased to maintain the drug effect at the desired level. In the simulation in Fig. 2.11,
the magnitude of the drug dose has been adjusted during the simulation to maintain
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Fig. 2.11 The result of a
computer simulation showing
dose–response relation for
constant drug effect. The
magnitude of the stimulus has
been adjusted during the
simulation to maintain a
nearly constant effect in the
output of the model

Fig. 2.12 Illustration of the
consequences of adaptive
regulation to a permanent
change in level

a nearly constant drug effect. After an initial increase, the magnitude of the stimu-
lus settles at a level which yields the desired effect. The relation between the dose
and the drug effect in that situation is determined by the open loop gain of the fast
adaptive regulator, as explained in Sect. 2.4.2.

2.4.4 Adaptive Regulation

Figure 2.10 demonstrates how the adaptive regulator learns to generate a compen-
satory response when a drug is administered repeatedly. Figure 2.12 shows its re-
sponse when a drug is administered permanently. A permanent change in drug level,
as shown in the first part of Fig. 2.12a, will result in a permanently changed level of
the output of the adaptive regulator (Fig. 2.12b). This level then becomes the new
base line for the regulation and is accompanied by a shift in the level of the drug in
the bloodstream (Fig. 2.12c). This shift is generally small, as the compensation in
slow adaptation is generally large (see Sect. 2.4.2). Interruptions to such a permanent
stimulus, shown in the second part of the figure, are now new—negative—stimuli,
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Fig. 2.13 A simulation of the
effect of a small change in
drug dose after tolerance has
developed. For a given set of
parameters, a 20 percent
decrease in dose results in an
initial suppression of the drug
effect. An increase in dose
back to the original value
causes an initial large
increase in the drug effect

the suppression of which will increase over time similarly to the periodic stimuli
shown in Fig. 2.10.

A permanent drug administration is no different from any other permanent
change in the environment as was illustrated in Sect. 2.2.2 with an example of the
consequences of a permanent change in environmental temperature. Figure 2.12 de-
picts adaptation to the cold outside when the temperature is substituted for “drug
dose”. The vertical axes then show an increase in cold and the onset of the signal is
the temperature inside. Figure 2.12c then depicts the sensation of cold or warm and
Fig. 2.12b the adaptation to the changes in temperature, that is, the compensatory
response.

2.4.5 The Effect of Changes in Drug Dose

Because the compensatory response is not based on the actual drug dose but on the
dose the subject is accustomed to (see Sect. 2.2.5), the compensatory response will
initially not change when the actual dose is changed. The consequence is that a small
change in drug dose will have a disproportionately large effect. Figure 2.13 shows
a model simulation of the effect of a small change in drug dose after tolerance has
developed. For a given set of parameters, a 20 percent decrease in drug dose results
in an initial suppression of the drug effect. When the regulation adapts itself to the
new situation—it slowly learns to decrease the compensatory response—the magni-
tude of the drug effect settles at a level reduced proportionally by 20 percent. When
the dose is increased to its original magnitude, the drug effect initially increases to
approximately twice the normal level.

In Fig. 2.13, with the parameter values selected, a 20% reduction in the dose
results in an initial reduction in the drug effect to zero. This implies that at that
moment the drug action and the compensatory response are of equal magnitude
(Sdigest and Sprocess in Fig. 2.10). When the dose is reduced by more than 20%,
negative reactions occur as the compensatory response then initially exceeds the
action of the drug. This is shown in Fig. 2.14, where the dose is reduced to 50%.

Positive reactions to a small increase in drug dose are usually less apparent than
negative reactions since the latter may cause a reversal of the symptoms, which is
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Fig. 2.14 Effect of reduction
in drug dose to 50%

generally unpleasant or undesired, while a positive reaction is of the same nature
as the drug effect. The action of many drugs is also subject to an upper limit. Pain
medication, for instance, alleviates pain and cannot go beyond no pain. In addition,
the effect of a larger dose is often reduced by non-linear transfers in the process.
These are not incorporated in the general model presented here.

The large responses to small changes in drug dose are a common feature of the
drug effect and are well known in the treatment of addicts. It explains why tapering
off the drug dose to prevent negative reactions is such a slow process. A decrease of
10% or less a week is a common value for dependent or addicted subjects as higher
values might cause adverse effects.

The disproportionate responses to a change in drug dose in dependence and ad-
diction are not fundamentally different from when only tolerance is present. In de-
pendence, the effect is large because tolerance in dependence is high. When toler-
ance is lower, as will be the case after a limited number of drug administrations, the
effect of a reduction in dose is smaller but the decrease in drug effect may initially
still be significantly larger than expected.

2.4.6 The Dose–Response Curve

Existing conceptualisations of the relationship between drug dose and drug effect
display fundamental contradictions. It is undisputed that in dependent subjects a
reduction in drug dose may generate large reactions. At the same time, the dose–
response curve—shown in Fig. 2.15—which postulates that a change in drug dose
will produce a proportionate and predictable change in drug effect, is assumed to
provide an adequate description of the dose-effect relation. The applicability of the
dose–response curve is limited because responses vary widely across subjects (Ram-
say and Woods 1997). But it also has other shortcomings.

In standard medical practise, the initial dose of a drug is selected on the basis of
the dose–response curve of the drug (curve (a) in Fig. 2.15) and the characteristics
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Fig. 2.15 (a) Dose–response
curve. (b) Dose–response
curve after tolerance has
developed

and peculiarities of the patient. In the figure this is assumed to be dose Ad , which
has a drug effect Ae. If, after a while, the effect of the dose is not as desired, the dose
is adjusted. For instance, if the effect is too small the dose is increased. In curve (a)
that would be dose Bd with a drug effect Be . However, if curve (a) were used to
determine the new dose a problem would occur because, during the administration
of the drug, tolerance may have developed. The dose–response curve captures an
increase in tolerance through a shift to the right to curve (b). A larger dose is required
to obtain the same drug effect. In the figure the shift is arbitrarily large, but in reality
the shift can also be substantial and dose Bd will be too small to generate the desired
effect Be. If in practise tolerance development can be estimated and the curve is
shifted to the right by the measured value, another difficulty arises. Whereas curve
(a)—that is, the curve relevant for the first dose—can determine the drug effect
values Ae and Be given the drug dose values Ad and Bd , once tolerance has started
to develop, an increase in dose from Ad to ′Bd will cause an initial increase in
drug effect larger than curve (b) suggests, as was demonstrated in Fig. 2.13. In other
words, an increase in the dose of a drug to which tolerance has developed may result
in a disproportionately large increase in drug effect. Negative overshoot when the
drug dose is decreased will be just as large and both situations may not be without
risk to the patient.

The dose–response curve presumes a static relationship between drug dose and
drug effect. Yet tolerance development—and thus time—is an important factor in
measuring the drug effect. This is demonstrated in the model simulations reported
in Fig. 2.16, where the dose and the drug effect are plotted separately against time to
illustrate the influence of tolerance development on dose–response curve measure-
ments.

Usually, the dose–response curve is measured by increasing the dose in logarith-
mic steps. The tolerance which develops during such a measurement distorts the
curve. This effect, however, is not very clear in the curve, partly due to the distor-
tion being gradual and partly due to the logarithmic change in dose.2 When the curve

2The bend at the bottom of the dose–response curve is largely caused by the logarithmic scale. In a
linear process, a linear change in dose will cause a linear change in drug effect, as long as there is
no tolerance development (curve (d)). With a linear scale, distortion of the curve due to tolerance
development is easily noticed. However, as the dose–response curve is commonly presented using
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Fig. 2.16 Simulations with
the mathematical model of
the relation between dose (a)
and drug effect, plotted
against time to illustrate the
influence of tolerance
development on the outcome
of dose–response curve
measurements. The time
constant of the tolerance
mechanism in the simulations
is respectively 7 days (b),
30 days (c) and 400 days (d)

is determined with a decreasing dose, the effect of tolerance development becomes
readily apparent. To demonstrate these effects, in Fig. 2.16 the dose is first increased
and subsequently decreased (a). In curve (b), which represents the drug effect, a time
constant of seven days is chosen for the tolerance process (approximately the time
constant used in the simulations shown above and in previous publications on the
subject). The effect of the decrease in drug dose is a dramatic shift towards a neg-
ative drug effect with symptoms opposite to the normal drug effect. When the time
constant is increased to 30 days (c), this effect is still very strong. When the time
constant is increased to 400 days (d), the effect has nearly disappeared, leaving a
curve where tolerance development does not take place during measurement and
the upward- and downward-sloping portions of the curve have a similar shape.

The full implication of the effect of tolerance development in dose–response
curve measurements becomes clear during the decrease in drug dose when the de-
crease in drug action causes the compensatory response to become dominant and the
overall drug effect to turn negative. Negative reactions are commonly seen in slow
withdrawal when the dose is tapered off too rapidly, a situation comparable to that
depicted in the figure. The dose–response curve is naturally measured by increasing
the dose, in which case no such reactions are generated. But the distortion of the
curve during the increase in dose is significant too, as shown in the figure. In the
simulations, doses are administered once a day, over 50 days in total. Simulations
with other settings of the model parameters, such as a different maximal dose, fewer
stimuli or stimuli with different time intervals give a very similar picture.

The static representation of the relationship between drug dose and drug effect
suggested by the dose–response curve cannot be reconciled with the dynamic re-
sponses of the organism to changes in drug dose characteristic of the mechanism of

a logarithmic dose scale, this has also been adopted here. The saturation in the top of the dose–
response curve in Fig. 2.15 is the natural maximal activity of the processes involved. This effect
has been left out in the simulation of Fig. 2.16 as it has no relevance to the present subject.



42 A. Peper

Fig. 2.17 Effect of reduction
in drug dose to 10%

tolerance development. Unless tolerance to a certain drug develops very slowly, tol-
erance development will distort the curve when the effect of different drug doses is
determined in a single subject. Values for the dose–response curve should therefore
be determined from the (averaged) responses to single drug administrations mea-
sured in different subjects. Even measured in this way, a dose–response curve can
only serve one valid purpose: it shows the average relationship between the dose
and the initial response to a drug.

2.4.7 The Effect of a Further Reduction in the Drug Dose

It was explained above that when the compensatory response exceeds the drug ac-
tion, negative reactions occur. This was demonstrated in Fig. 2.14 with a reduction
in the dose to 50%. When the dose is reduced even more, the net result will be ap-
proximately the compensatory response alone, as is shown in Fig. 2.17, where the
dose is reduced to 10%. A further reduction in drug dose will give about the same
negative effect, as the contribution of any such small dose to the total drug effect
becomes negligible.

The negative reactions shown in Fig. 2.17 are not fundamentally different from
withdrawal reactions in dependence. In withdrawal, however, reactions occur be-
cause environmental cues paired to the drug taking continue to trigger the compen-
satory mechanism after the drug is withdrawn. When an exogenous substance is
taken orally and there are no environmental cues paired to the drug taking, the com-
pensatory mechanism is not triggered when the administration of the drug is stopped
and no reactions will occur, as will be discussed in Sect. 2.5.1. When the adminis-
tration of the drug is continued but the dose is reduced, however, the compensatory
mechanism will keep responding at the moments when the drug is administered,
as illustrated in Figs. 2.13 and 2.14. When the dose is sharply reduced, yet is still
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Fig. 2.18 The drug effect
when a small dose is
administered at an arbitrary
time after the administration
of a drug to which tolerance
has developed is discontinued

detected by the organism, it is basically not the drug which induces these reactions
but the orally acquired information that the drug is present.

Not only oral administrations of small doses can evoke the responses described
above, any stimulus able to trigger the compensatory mechanism can cause reac-
tions such as those shown in Fig. 2.17. In other words, the tolerance mechanism
will respond, whether it is triggered orally or by environmental cues. But environ-
mental cues are only coupled to drugs which are used regularly whereas a small
dose of any drug to which the body has a certain level of tolerance to will trigger a
compensatory response. As the oral detection of exogenous substances is a highly
sensitive and specialised mechanism, capable of reacting to very small doses, this
phenomenon may provide an explanation of such controversial subjects as hormesis
and homeopathy.

Hormesis has been defined as a bi-phasic dose–response relationship in which the
response at low doses is opposite to the effect at high doses. Examples of opposite
effects of drugs (and radiation) at low and high doses can be found abundantly in
the literature (Calabrese and Baldwin 2001, 2003; Conolly and Lutz 2004; Ali and
Rattan 2006). Hormesis is usually explained by assuming a negative part in the
dose–response curve at the low dose end. Homeopathy claims a curative reaction
from a small dose of a drug of which high doses cause symptoms similar to those
from which the patient is suffering.

In Figs. 2.14 and 2.17, the dose was reduced abruptly. The resulting reactions,
however, do not depend on a sudden change in dose but on the difference between
the actual dose and the dose to which the organism has developed tolerance. Tol-
erance to a drug develops slowly and remains present for a long time. Figure 2.18
depicts a model simulation describing what happens when a small dose is adminis-
tered at an arbitrary time after the administration of a drug to which tolerance exists
is discontinued. The figure shows that the small dose evokes a reaction similar to
the sudden reduction in dose simulated in Figs. 2.14 and 2.17. The drug dose in the
figure of 10% is arbitrary. As the actual dose itself plays only a minor role in the
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remaining drug effect, any small dose will cause approximately the same reaction
as long as the body recognises the drug.

Generally speaking, when there exists tolerance to a substance, the effect of a
small dose is limited to triggering the compensatory response, resulting in effects
opposite to the normal drug effect. Small doses of a drug apparently separate the
compensatory response from the drug effect, which is a peculiar phenomenon. It
does not explain the assumed curative effect of small doses in homeopathy. It does
show, however, that a small dose of a substance can cause reactions with symptoms
opposite to the action of the drug in high doses, a phenomenon that lies at the basis
of homeopathy. The small dose mentioned above does not refer to the “infinitesimal
dose” or “high potency” homeopathic medicines. On the other hand, the analysis
shows that it is not the dose but information about the presence of a substance that
triggers the compensatory response.

2.4.8 Sensitisation and Other Paradoxical Effects

Figure 2.13 shows that the fall in drug effect in response to a decrease in dose is
followed by a rise in drug effect during subsequent drug administrations. The re-
duction in drug dose in this figure has been chosen to obtain a large initial reduction
in drug effect. However, after tolerance has developed, any reduction in dose will
be followed by a rise in drug effect until the organism has readjusted the magni-
tude of the compensatory response to correspond with the action of the new drug
dose. This gradual increase in drug effect may explain cases of sensitisation, a phe-
nomenon whereby the drug effect increases during repeated administrations (Robin-
son and Berridge 1993; Everitt and Wolf 2002). Figure 2.13 demonstrates the effect
of abrupt changes in drug dose. As noted above, tolerance to a drug remains present
for a long time. When a drug has not been administered over a certain period but
tolerance has remained, or when innate tolerance exists, a dose smaller than the dose
to which tolerance exists will result in a similar effect and may also be the origin
of other paradoxical drug effects reported in the literature (Heisler and Tecott 2000;
Wilens et al. 2003). It should be observed that neither sensitisation nor opposite drug
effects necessarily require tolerance to the administered drug as cross tolerance to a
related drug may cause similar effects.

Besides the drug dose, the magnitude of the compensatory response also depends
on other variables. The capacity of the body to suppress disturbances—the open
loop gain of the regulation loop (see Sect. 2.4.2)—is of major importance. The latter
parameter is not fixed but depends on the subject’s age, state of health and condition.
The consequence is that an individual’s level of tolerance to a certain drug and the
resulting drug effect may appear different in different situations. This may mimic
changes in drug dose with all its consequences and may be an additional cause of
sensitisation. Rather than a loss of tolerance (Miller 2000) this might then constitute
a loss of the organism’s ability to express its tolerance.

In addition, the open loop gain may be affected by depressants and stimulants and
even by the effect of the drug administration itself. Psychological factors, too, such
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Fig. 2.19 Decrease in drug
effect after the gain of the
regulation loop is increased
by 20%

as positive reinforcers may affect the open loop gain, causing changes in the drug ef-
fect (Fillmore and Vogel-Sprott 1999; Grattan-Miscio and Vogel-Sprott 2005). Sim-
ilar to small changes in drug dose, small changes in the open loop gain can have
large effects. This is demonstrated in Fig. 2.19, where at the instant indicated by
the arrow, the gain of the regulation loop is increased by 20%. There is an instant
decrease in the drug effect and even an adverse effect temporarily appears. In the
physiological regulation process, the gain is a distributed entity and the speed of
change in the drug effect depends on where in the regulation loop a change in gain
occurs.

2.5 Practical Significance of the Model

2.5.1 Anticipation and Dependence

When an orally administered drug is taken infrequently, the gustatory detection of
the substance will be the main trigger of the compensatory response. When a drug
is taken frequently over a longer period, other mechanisms will start to play a role,
such as anticipation and the coupling of environmental cues to the taking of the drug.
The incorporation of additional information about the drug’s presence will change
the nature of the mechanism. If a drug is taken infrequently, the effect of not taking
the drug will be that the rebound takes its course. When the organism anticipates a
drug which, however, is not administered, strong negative reactions can occur.

Figure 2.20 shows a model simulation demonstrating what happens when the ad-
ministration of a drug is abruptly discontinued after tolerance has developed. When
at withdrawal the triggered compensatory action of the adaptive mechanism also
ends, the magnitude of the negative shift following withdrawal is comparable to the
regular rebound (Fig. 2.20b). Figure 2.20c shows the effect when after withdrawal
the adaptive regulator keeps responding, triggered by time factors or environmen-
tal cues associated with the administration of the drug. Now, large negative reac-
tions occur at the moment the drug is “expected”. In the model, the activation of
the compensatory mechanism, independently of the drug’s presence, is assumed to



46 A. Peper

Fig. 2.20 Simulation of the
effect of abrupt drug
withdrawal in tolerant (b) and
dependent (c) subjects. The
drug is administered once a
day

be the essential difference between drug tolerance and drug dependence. In reality,
this difference is of course much more complex and difficult to define. Even so,
in the model domain it provides fundamental insight into the mechanisms playing
a role in dependence and addiction. The magnitude of the negative reactions after
withdrawal—the magnitude of the compensatory response—is determined by the
dose to which the subject is accustomed, the level of tolerance and the capacity of
the organism to suppress disturbances to its functioning, that is, the open loop gain
in the model.

Compared with the severe reactions in the model to drug withdrawal in a de-
pendent subject, the effect in a tolerant but non-dependent subject is moderate
(Fig. 2.20b). Nevertheless, its consequences can be considerable. The negative shift
after the termination of drug treatment represents a worsening of the disorder in the
patient (see also the note to Fig. 2.10, Sect. 2.4.1). Although this effect will dimin-
ish over time as the organism adapts to the new situation, an initial worsening of the
symptoms will give the patient a strong incentive to continue drug treatment. In the
figure, the reaction declines relatively fast, but the speed of decline is determined
for an important part by the slow regulator which can have a long time constant so
that the shift may remain for a long time after a drug is withdrawn. Moreover, in the
case of a chronic disorder due to a shift in the reference level of a process regula-
tor (Verveen 1978, 1983), it is doubtful whether adaptation to zero drug level will
occur at all. A permanent shift in the reference level of a process indicates a certain
malfunctioning of the regulation and a negative reaction in the process output to
interruption of the stimulus represents a further shift in this reference level (Peper
et al. 1987). Consequently, if a chronic disorder is due to a shift in a reference level,
the extra shift after a drug treatment has ended might become permanent too and the
effect of any drug treatment of limited duration will then be a permanent worsening
of the disorder.
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Fig. 2.21 Simulation of
gradual drug withdrawal

Fig. 2.22 Gradual drug
withdrawal, allowing
moderate reactions

2.5.2 Alternative Protocols for Drug Withdrawal

The large reactions occurring in an addicted subject when a drug is withdrawn,
simulated in Fig. 2.20c, are an expression of the high level of tolerance associated
with the large dose to which the subject is accustomed. The figure shows that the
reactions gradually decrease in time when the body adapts to zero drug level and
tolerance to the large dose decreases.

Figure 2.21 shows a simulation of how withdrawal can be achieved in addicted
subjects without negative reactions. The dose is initially decreased by 20%, which
causes the drug effect to go to zero, as was shown in Fig. 2.13. (The 20% is a re-
sult of the parameter values used in the simulation. In practise, this will be different
for different drugs and in different subjects.) After this step in drug dose, the dose
is gradually tapered off in such a way that the drug effect is kept small. This pro-
cess is very slow, much slower than when negative reactions are allowed to occur
(Fig. 2.20c). The speed of withdrawal can be increased considerably when moder-
ate negative reactions are allowed. This is depicted in Fig. 2.22, where an initial
decrease in drug dose of 50% is followed by a fast decrease in the dose of succeed-
ing drug administrations. The reactions in this approach are considerably smaller
than with abrupt withdrawal, while the decrease in drug dose is much faster than
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Fig. 2.23 Withdrawal with
increased frequency of drug
administration

Fig. 2.24 Abrupt drug
withdrawal using a small drug
dose and an increased
frequency of drug
administration

is the case in Fig. 2.20. Nonetheless, moderate responses remain for a long time
due to what is still a relatively slow decline in tolerance level. As the axes in the
figures are arbitrary, the negative reactions in the figures can be interpreted more
easily if their magnitude is compared with the positive drug effect in the first part of
the figure.

The speed of decline in withdrawal can be increased by administering the drug
more frequently. This is demonstrated in Fig. 2.23 where, instead of once a day, the
drug is administered three times a day. The negative effect now declines consider-
ably faster than in Fig. 2.22. This method of reducing tolerance can also be used
when maximal reactions are allowed in withdrawal. If during drug withdrawal the
drug dose is reduced to a low rather than zero value, the reactions become almost
as large as in complete withdrawal, depicted in Fig. 2.20. When the small dose is
now administered more frequently, the negative effect declines more rapidly. This
is demonstrated in Fig. 2.24, where the drug dose is lowered to 10% of the usual
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dose and the frequency of administration is increased from once a day to three times
a day. For comparison, abrupt drug withdrawal—as shown in Fig. 2.20—is repre-
sented with a dotted line.

In these simulations of alternative drug withdrawal, the stimulus is obtained by
the oral detection of small drug doses. If the drug is not administered orally, this sim-
ple means of triggering the compensatory response is not available and other ways
have to be investigated to obtain a reliable stimulus. If the drug is administered in-
travenously, it might be sufficient to inject a diluted sample of the drug itself. If that
does not trigger the compensatory response or if the drug is administered in some
other way, an unrelated stimulus may be paired with the usual drug administration
in the Pavlovian manner, before withdrawal is started. Further research will have to
confirm these suggestions and investigate their practical applicability.
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Appendix

The model is a non-linear, learning feedback system, fully satisfying control theoret-
ical principles. It accepts any form of the stimulus—the drug intake—and describes
how the physiological processes involved affect the distribution of the drug through
the body and the stability of the regulation loop. The model assumes the develop-
ment of tolerance to a repeatedly administered drug to be the result of a regulated
adaptive process; adaptation to the effect of a drug and adaptation to the interval
between drug taking are considered autonomous tolerance processes.

The mathematical model is derived in detail in Peper (2004b). In the present
appendix the equations are summarised. A block diagram of the model is shown in
Fig. 2.25. For the sake of brevity, the index ‘(t)’ in time signals is omitted.

A.1 The Digestive Tract

The digestive system plays no role in the regulation loop. Drug transport through
the digestive tract is modeled as a first order function:

Sdigest =
∫ t

0
drugdt − 1

Tdigest

∫ t

0
Sdigest dt (1)

The input to the block is the drug administration, drug. The input signal is inte-
grated to obtain the drug level when it enters the bloodstream, the output of the
block Sdigest. A fraction 1/Tdigest of the output signal is subtracted from the input
to account for the distribution of the drug in the digestive tract. Tdigest is the time
constant of this process.
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Fig. 2.25 Block diagram of the mathematical model

A.2 The Bloodstream

After digestion, the drug enters the bloodstream where it is dispersed. In the present
configuration of the model, the drug and the substance produced by the process are
assumed to be identical in composition and consequently add in the bloodstream.
The amount of the total substance in the bloodstream will be reduced by the body’s
metabolism. The processes are modeled by a first order function:

Sblood =
∫ t

0
(Sprocess + Sdigest) dt − 1

Tblood

∫ t

0
Sblood dt (2)

The input signals—the drug as it moves from the digestive tract into the blood-
stream, Sdigest, and the substance produced by the process, Sprocess—are added and
integrated, yielding the output of the block, the blood drug level Sblood. To account
for the body’s metabolism, a fraction 1/Tblood of the output signal is subtracted from
the input.

A.3 The Adaptive Regulator

The input signals of the adaptive regulator are the drug administration and the sen-
sor signal, processed by the loop control block. The sensor signal provides the in-
formation about the drug effect. The output of the adaptive regulator counteracts the
disturbance by lowering the process output during the drug’s presence. The adap-
tive regulator comprises a fast and a slow regulator. The fast regulator consists of the
blocks “drug regulator”, “interval regulator” and “model estimation”. The slow reg-
ulator suppresses the slow changes in the input signal, its output being the average
of the input signal. As the fast regulator reacts to fast changes only, the output of
the slow regulator is subtracted from its input. It is assumed that the body more
or less separately develops tolerance to the drug’s presence and to the intervals
between drug administrations. The fast regulator therefore consists of a regulator
which provides the adaptation to the drug’s direct effect and a regulator which pro-
vides adaptation to the interval between drug taking. The output of the complete
adaptive regulator is a combination of signals from its individual components.

The model assumes the body to anticipate the effect of a drug to which it has
developed tolerance. This implies that the body has made an estimate of what is
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Fig. 2.26 Block diagram of the adaptive regulator

going to happen when the drug is administered: it has a model of it. The organism
has also made an estimate of the magnitude of the drug effect at the given state
of tolerance development. These two entities are the main factors determining the
functioning of the fast regulator: the level of tolerance development and the course
of the drug effect.

A.3.1 The Fast Regulator

The fast regulator consists of the blocks “drug regulator”, “interval regulator” and
“model estimation” (Fig. 2.26). The input signal of the drug regulator Sd is mul-
tiplied by Mdrug, which represents the course of the drug level in the input signal
over time. This signal is integrated (1/s) with a time constant Tdrug, yielding its aver-
age. The resulting value is a slowly rising signal, Ldrug. Multiplying Ldrug by Mdrug
yields the output signal Sdrug.

Because of the slow response of the circuit, changes in the input magnitude
will be followed only slowly by the output. The speed of change of the output
magnitude—representing the slow development of tolerance by the organism—
depends on the frequency of occurrence of the drug signal and the amplification
of the feedback loop: 1/Tdrug. The relation between the signals is

Sdrug = Mdrug · 1

Tdrug

∫ t

0
(Sd − Sdrug) · Mdrug dt (3)

and

Sdrug = Ldrug · Mdrug (4)

The input to the interval regulator is obtained when the output signal of the drug
regulator—Sdrug—is subtracted from its top value Ldrug. The model of the interval
is Mint.

The relation between the signals in the fast regulator describing the drug’s pres-
ence is then

Sdrug = Mdrug · 1

Tdrug

∫ t

0
(Sd − Sdrug) · Mdrug dt

− Mdrug · 1

Tdecline

∫ t

0

Sdrug

Mdrug
dt (5)
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Fig. 2.27 Fast regulator implemented in Simulink

and

Sdrug = Ldrug · Mdrug (6)

Similarly, the equation describing the interval regulator is

Sint = Mint · 1

Tint

∫ t

0
(Ldrug − Sdrug − Sint) · Mint dt

− Mint · 1

Tdecline

∫ t

0

Sint

Mint
dt (7)

and

Sint = Lint · Mint (8)

The output of the interval regulator is Sint. The output signal of the total fast reg-
ulator is obtained by subtracting the interval signal from the top level of the drug
signal:

Sout = Ldrug − Sint (9)

Figure 2.27 shows the implementation of the fast regulator in the mathematical sim-
ulation program Simulink (see Peper 2004b).

A.3.2 Estimation of the Drug Effect in the Adaptive Regulator

As the duration of the drug administration is relatively short in most cases, it may
be represented by a short pulse. The model of the course of the drug concentration
when it enters the bloodstream—Mdrug—is then computed by calculating the effect
of a pulse with a magnitude of 1 on the digestive tract’s transfer function. The input
of the interval is acquired when the signal “drug” is subtracted from its top value
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of 1. Multiplying this signal by the transfer of the digestive tract yields the model of
the interval Mint:

Mdrug =
∫ t

0
drugdt − 1

Tdigest

∫ t

0
Mdrug dt (10)

and

Mint =
∫ t

0
(1 − drug) dt − 1

Tdigest

∫ t

0
Mint dt (11)

Tdigest is the time constant of the digestive system.

A.3.3 The Slow Regulator

The slow regulator models the long term adaptation to the drug effect. In the tol-
erant state, the slow adaptation causes the magnitude of the negative reaction after
the drug effect to depend on the interval between drug administrations: an infre-
quently taken drug has a small effect during the interval, while a frequently taken
drug causes a large rebound. The slow regulator counteracts the disturbance by low-
ering the level of the process by the average of the drug effect. Its input signal—the
sensor signal, processed by the loop control block—provides the information about
the drug effect. The average of the input signal is obtained by a low pass filter with
a time constant Tslow:

Sslow =
∫ t

0
Scontr dt − 1

Tslow

∫ t

0
Sslow dt (12)

A.4 The Process

The model does not incorporate the characteristics of the process and the process
regulator. In a specific model of drug tolerance where the process is included, the
effect of the process transfer on loop stability has to be controlled by the loop control
block.

A.5 Loop Control

A loop control is an essential element in any regulated system. It incorporates the
open loop amplification, which determines the accuracy of the regulation, and it pro-
vides the necessary conditions for stable operation of the negative feedback system.
For stable operation, the regulation loop has to contain compensation for the effect
of superfluous time constants: their effect on the signals in the loop has to be coun-
teracted by circuits with an inverse effect. In the present form of the model, only the
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effect of the bloodstream on the regulation loop is counteracted as the transfer of the
process and its regulator and the transfer function of the sensor are set at unity. The
relation between the input and the output of the loop control is

Ssens =
∫ t

0
Scontr dt − 1

Tblood

∫ t

0
Ssens dt (13)

A.6 The Sensor

The sensor transforms the chemical signal Sblood—the blood drug level—into the
signal Ssense. In the present model, this transformation is assumed to be linear and
is set at 1. In specific models of physiological processes, this complex mechanism
can be described more accurately. Stable operation then requires that the effect of
its transfer on loop stability is controlled by the loop control block.
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Chapter 3
Control Theory and Addictive Behavior

David B. Newlin, Phillip A. Regalia, Thomas I. Seidman,
and Georgiy Bobashev

Abstract Control theory provides a powerful conceptual framework and mathe-
matical armamentarium for modeling addictive behavior. It is particularly appro-
priate for repetitive, rhythmic behavior that occurs over time, such as drug use.
We reframe seven selected theories of addictive behavior in control theoretic terms
(heroin addiction model, opponent process theory, respondent conditioning, evolu-
tionary theory, instrumental conditioning, incentive sensitization, and autoshaping)
and provide examples of quantitative simulations for two of these models (oppo-
nent process theory and instrumental conditioning). This paper discusses theories
of addiction to lay the foundation for control theoretic analyses of drug addiction
phenomena, but does not review the empirical evidence for or against any particular
model. These seven addiction models are then discussed in relation to the addictive
phenomena for which they attempt to account and specific aspects of their feedback
systems.

3.1 Control Theory and Addiction

Addictive behavior occurs rhythmically over time in what is often a roughly cyclic
process (Bobashev et al. 2007). This form of repetitive behavior is frequently the sig-
nature of a controlled, regulated system with delayed feedback (Ahmed et al. 2007).
For example, a thermostatically controlled environment with a heating system pro-
duces such a time series in its output—in this case, rhythmic oscillations in room
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temperature. There is an inherent delay between thermostatic actuation and the de-
livery of heat to the room. We explore the application of control theory (see Carver
and Scheier 1990; Johnson et al. 2006; Warren 2006) to addictive behavior on an
exclusively theoretical level. In this discussion, explicit control theoretic models of
seven psychobiological theories of addictive behavior are developed. These include
a heroin addiction model, opponent process theory, respondent conditioning, evolu-
tionary psychological theory, instrumental conditioning, incentive-sensitization the-
ory, and autoshaping. These theories were chosen to represent a broad range of mod-
els of addiction, from traditional learning theory to evolutionary theory, but they are
far from exhaustive.

Control theory has been considered under a variety of labels, including (but not
limited to) set point theory, feedback models, cybernetics, regulator theory, and sys-
tems theory. We use the term “control theory,” noting the vast mathematical and
engineering literature in which these ideas have been developed more fully.

We argue that formal control theory increases understanding of how these theo-
ries model the disparate behavioral, neurochemical and pharmacodynamic aspects
of drug use.1

Control theory is particularly valuable because it facilitates comparison of the
structural similarities and differences among competing theories. We provide con-
trol theoretic diagrams of each model; control theorists can easily convert these
diagrammatic representations into mathematical formulations. We chose this in-
termediate step (diagrams) for all but two of these models because they are both
conceptually intuitive and lead rather directly to control theoretic implementations.
Simulations of the outputs of two of these controlled systems, opponent process the-
ory (or respondent drug conditioning, which is structurally similar) and incentive-
sensitization theory, are illustrated with tracings that represent different values for
the parameters of the models.

The significance of control theory in this discussion is as a “way of thinking”
about addiction issues and a collection of examples exhibiting diverse behavior. In
fact, most control theory is purposeful in the sense that people specifically design
systems using control theoretic principles to solve concrete problems. On the other
hand, we can consider these mechanisms (and the underlying physiology) as evolv-
ing over time with the usual teleology defined by natural selection processes. More
generally, one has dynamical system models (which also serve as a “way of think-
ing” and collection of examples). It might only be the evolutionary (selection) of
ideas which would emphasize optimization and stabilization.

1We do not model pharmacokinetic functions in this discussion, although we recognize that phys-
iologically based pharmacokinetic modeling (e.g., Umulis et al. 2005) is needed to complete the
modeling process. For simplicity, drug metabolism and excretion is modeled here simply as “time
elapsed since drug administration.”
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3.1.1 Scope

This discussion is an initial application of control theory to addictive behavior in
ways that promote its understanding. It is a selective review of theories of addiction
rather than the empirical results that may be used to verify or reject these theories. At
the present time, we are modeling theories rather than empirical data. The adequacy
of these models in terms of their congruence with experimental results is far beyond
the scope of this discussion, and is beyond that of any single paper. For example,
Petraitis et al. (1995) reviewed theories of adolescent substance abuse in terms of
their congruence with each other and their theoretical differences, but did not review
empirical evidence related to these theories. This discussion lays the foundation for
future research in which control theoretic implementations may be key to modeling
empirical data and, in turn, the degree to which these data conform to theoretical
prediction.

Our decision to avoid discussion of the vast empirical literatures relevant to these
theories should not be taken as promotion or acceptance of these models. Far from
it. As we shall see, many models are mutually exclusive, particularly as they collide
with each other in terms of empirical results of real-world experimentation. Our dis-
cussion may guide control theoretic research on these theories that is data-driven,
and may highlight ways in which models are similar or different, but does not at-
tempt to evaluate these theories in terms of their congruence with existing empirical
data.

In our discussion, we emphasize that drug self-administration is neither nec-
essary nor sufficient for drug addiction, depending of course on one’s definition
of “addiction” in human and nonhuman animals. Therefore, a model of drug self-
administration, though highly relevant to addictive behavior, is not by itself a the-
ory of addiction. For example, Deroche-Gamonet et al. (2004) tackled this issue in
studies of rats that were trained to self-administer cocaine. They noted that the ma-
jority of human drug users and drug self-administering rodents are not addicted to
the drug. Deroche-Gamonet et al. (2004) adopted human-like criteria for addiction
in their study of rats: (1) difficulty stopping or limiting drug self-administration,
(2) extreme motivation to use the drug, and (3) continued use despite harmful con-
sequences. Note that the classic criteria of drug tolerance and withdrawal effects
upon cessation were not included in this definition of addiction, and that it would
be possible to have an addicted rat that had prolonged passive administration of
the drug rather than self-administering it—that is, drug self-administration may be
neither necessary nor sufficient for addiction.

We also seek to present these theories in a manner that is helpful for comparing
and contrasting their formal characteristics. Some problems with individual theories
become evident when they are formalized in terms of their structural components.
Control theory may also lead ultimately to prediction of phenomena that are difficult
to envision or model without explicit, formal control theory modeling.

Therefore, the purposes and goals of this discussion are to (1) present capsule
descriptions of various homeostatic and nonhomeostatic models of addictive behav-
ior, (2) reframe them in control theoretic terms, (3) implement two of the models so
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that simulations can be constructed, and (4) compare and contrast these theories in
relation to control theoretic analyses.

3.2 Key Concepts

3.2.1 Feedback

Feedback refers to modifying the driving forces of a dynamical system based on
measured responses, in order to manipulate the dynamic behavior of the system.
Familiar examples are found in economics (e.g., adjusting the prime rate according
to economic indicators), navigation (firing rocket thrusters to correct for trajectory
variations of a spacecraft), temperature control (turning a heater on when the tem-
perature drops below a critical value, and turning if off when the desired temper-
ature is reached) and even gaming (adjusting one’s wager based on perceptions of
another player’s hand). In these examples, “feedback” represents a corrective action
that is a function of the measured or observed behavior of the system. A “dynamic”
system is simply one that changes over time, such as drug self-administration, and
a “system” is a set of interacting variables that, in the case of feedback systems,
are interconnected and guided by feedback from the system’s measured output. If
feedback functions to regulate the system, as in the examples above, then control
theory is a useful conceptual and mathematical approach for describing, modeling,
and controlling that dynamic system.

Feedback describes the situation when the signal from a past event influences the
same event in the present or future. When this past event is part of an interlocking
network of causes and effects that forms a system, then the system represent a feed-
back loop. In mathematical terms, with feedback the input signals or parameters of
the system are changing (adapting) in relation to the observed or perceived response.

The following is a simple mathematical example. A more detailed mathematical
treatment is in the Simulations section.

Let response x at time t + �t be positively and linearly dependent on some
input y(t) (i.e., the larger the y(t) the larger becomes the value of x after an inter-
val �t).

x(t + �t) = ay(t) + b, where a and b are positive parameters. (3.1)

Linear feedback will occur if y(t) is itself linearly dependent on the output x(t)

(e.g., y(t) can have a negative relationship with x(t)):

y(t) = −cx(t) + d, where c and d are positive parameters. (3.2)

Evaluating Eq. (3.1) in relation to (3.2) yields an iterative equation for x(t +�t),
that is,

x(t + �t) = −acx(t) + ad + b. (3.3)
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This equation leads to a steady state solution when x(t + �t) = x(t) = (ad +
b)/(1 + ac). This solution is stable when the product ac is positive.

Feedback is ubiquitous in nature and in human behavior. It is generally of two
types: enhancing the behavior of the system (positive feedback) and attenuating it
(negative feedback). Positive feedback tends to support the beginning of a process
or to prevent the process from becoming extinct. For example, the use of a food treat
in animal training is a typical example of positive feedback. As the animal exhibits
more of the targeted behavior, the more treats it receives (i.e., instrumental condi-
tioning). A problem with positive feedback is that if this process were not countered
by resource limitation or negative feedback, the process would build exponentially
into the future. For example, if there were no negative feedback (e.g., satiety) built
into the organismic system, then humans with unlimited access to food would eat
continuously until they died. In other words, the system is unstable and explosive.

Negative feedback in physiological processes gives rise to a variety of stable dy-
namical processes. In a simple case, a combination of positive or negative feedback
can lead to a steady state. For example, if the goal of reaching a destination in the
shortest time possible leads us to drive as fast as possible, then safety and speed
limit considerations (negative feedback) settle the driver to a stable compromise. If
the responses of the positive and negative feedback are slow or delayed, the process
could exhibit periodic or semiperiodic behavior (i.e., biological cycles). An exam-
ple of these cycles is feeding in humans (e.g., breakfast, lunch, and dinner) that
are semi-periodic responses to positive (food reward) and negative (satiety) feed-
back, among other limiting and entraining factors. In nature, the dynamic behavior
of physiological systems with feedback have tended to evolve such that they are
relatively stable and lead either to homeostasis or semi-periodicity, often with slow
secular trends such as maturation or—in our case—the development of addiction.

3.2.2 Feedback Systems Gone Awry

The guiding principle behind this work is the idea that normally adaptive feedback
systems in the brain become ensnared by highly potent drugs that were not encoun-
tered in our deep ancestral past, or at least not with the potency and abundance they
now have (e.g., Nesse and Berridge 1997; Redish et al. 2008). This view is made
explicit in the evolutionary psychology model of addiction (see SPFit theory, be-
low), but applies as well to all seven of the theories presented herein. By “normally
adaptive” we mean these feedback systems are fundamental to mammalian func-
tioning, such as those that support respondent or instrumental conditioning. They
are adaptive in the sense that they promote survival and reproduction more often
than not. This view speaks to the relevance and importance of control theory model-
ing for behavioral science in general. The ways in which these feedback systems go
awry with drugs of abuse may be very informative as to their operating characteris-
tics. Moreover, we hope that better understanding the fundamental organization and
modes of operation of these feedback systems in addiction will be useful ultimately
in preventing and treating drug abuse and dependence.
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Fig. 3.1 Quasi-linear
operating range of some
common functions

3.2.3 Linear and Non-linear Dynamical Systems

A linear dynamical model (Chen 1999; Kailath 1980) is one in which the relations
between input and output are linear (i.e., change in the output is uniformly propor-
tional to change in the input). Uniformity means that the proportionality coefficient
is the same for the entire range of inputs and outputs. Graphically, this relationship is
expressed as a straight line. However, many natural responses show a more complex
relationship between input and output. For example, the pharmacodynamic dose-
response relationship for many drugs is disproportionately small at very low doses,
and either reaches saturation or there is some catastrophic change in state (e.g.,
toxicity or mortality) at very high doses. This common sigmoidal dose-response
function often affords a quasi-linear range through the moderate dosages in which
the output is approximately proportional to the input. These relationships between
input X (e.g., dose) and output Y (e.g., pharmacodynamic response) are illustrated
in Fig. 3.1. There are an infinite number of nonlinear response shapes. Some could
be linearized (i.e., approximated with a straight line), others described explicitly by
a smooth curve, others as a collection of linear relationships (piece-wise linear),
but some can include disconnected “jumps” and “brakes.” The exact formalism for
dealing with these functional forms is beyond the scope of the paper. We emphasize
that while most processes are nonlinear by nature, the analysis of simpler, lineariza-
tion models can be very useful to capture the essence of the system’s regulatory
mechanisms.

This discussion generally concerns single variables in the control theoretic mod-
els. In the long term, vectors of variables rather than single variables will be the
focus of inquiry as the ability to measure from multiple sensors becomes more com-
monplace, and the theoretical models become multicomponent, just as in other con-
trol theoretic applications (such as electronics or physical systems). This general-
ization will not be difficult from a control theoretic perspective since the procedures
for modeling multicomponent systems have been developed fully.
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3.2.4 Feedback Delay

Most of the addiction models we present have variable delays in their feedback
loops. These delays can be due to a host of factors specific to the drug, the person,
constraints of the environment, or the interactions among these. One result of these
variable delays is that there can be positive and negative swings in the response
of the system that the individual may experience as euphoria, craving, acute with-
drawal, etc., depending on the model. This is true even with homeostatic models
that “seek” a neutral, quiescent state. A second result, related to the first, is that
these systems may exhibit semi-periodic oscillatory behavior, particularly if the rate
of drug self-administration is relatively constant or if the feedback delay is similar
each time that the drug is taken. We noted this system behavior in the example of
the temperature-controlled room. This rhythmic, oscillatory behavior would appear
to be characteristic of addiction as well.

3.2.5 Control Theoretic Diagrams

One may be tempted to view a formal control theory diagram as a sequence of
operations (i.e., from “a” to “b” to “c” to “d” as a function of time). Although
this sequential functioning is possible, in most controlled systems to understand and
analyze the system one must view many operations as occurring simultaneously in
time and fully interdependently. In other words, it functions as a system rather than
simply the amalgamation of effects of “a” on “b” and “b” on “c”, etc. This is a major
shift in thinking away from reductionist science in which one deconstructs systems
to study isolated variables, such as the effect of “a” on “b” while controlling “c.”

3.3 A Brief Introduction to Control Theory

We are concerned here with a branch of control theory called “cybernetics” or “reg-
ulator theory”—typically stabilization in the neighborhood of a set point (desired
state). This has two related aspects: design and analysis. The mathematical theory,
going back to Airy (1840) and Maxwell (1868), has shown what phenomena can
occur in various dynamic contexts and can therefore improve design characteristics.
Our present use of regulator theory is intended to be intuitive, in the sense of re-
verse engineering (see below) mechanisms producing phenomena similar to those
observed in addiction. This modeling can be relevant ultimately to causal under-
standing and possible intervention in drug addiction. In evolutionary terms, it is
meaningless to speak of “optimal control,” which is often the goal of control theo-
retic analyses, but we occasionally refer to a set point as “optimal” by analogy with
control design methodology.

Wiener (1948) introduced the term “cybernetics” based on the metaphor of steer-
ing a ship: the pilot (steersman; from the classical Greek word, kybernetes) observes
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the current state of the ship’s motion and, on noticing any deviation from the desired
course, adjusts the steering oar (control mechanism) to make the ship move back to
course. This sequence:

state → observation → change of control → correction of state

represents a “feedback loop.” Since it is necessary for stabilization that the resultant
state correction be opposite directionally to the initiating deviation, this is an exam-
ple of “negative feedback.” The action of a competent pilot is then a paradigm of
successful homeostatic feedback, smoothly maintaining a stable course despite envi-
ronmental perturbations. Even in this simple setting we recognize the oversimplifi-
cation in omitting consideration of such factors as rower fatigue, wind and currents,
and obstacles to be avoided, which would intervene in a more complete treatment.
This emphasizes, to paraphrase Hamming (1962), that “The purpose of modeling is
insight, not formulas,” or, as Albert Einstein is thought to have said, “Our theories
should be as simple as possible, but no simpler.”

Another familiar example is riding a bicycle. For a competent bicyclist, maintain-
ing balance is unconscious; one reflexively shifts one’s weight and steering propor-
tionally to compensate for almost imperceptible changes in the bicycle’s balance so
the underlying feedback process is effectively invisible to the observer. This process
is, however, much more noticeable for the beginner, who must provide the feedback
deliberately; rather than inducing a rapid smooth response, a shift in the bicycle’s
balance has time to grow before reaching a perceptual threshold and only after this
delay producing the response. There are several important inferences that can be
drawn from this example:

• The simplest design for feedback mechanisms is to use control changes (approx-
imately) proportional to deviation in the current observation, but directed oppo-
sitely in effect. Violent responses to perceived deviations (i.e., “overcorrection”)
can lead to extreme oscillatory behavior.

• Even when a feedback control mechanism operates appropriately, delay in its
implementation can cause oscillations. This may be actually an objective, such as
in a drug abuser who desires “overshoot” in their homeostatic system so that they
experience drug-induced effects (e.g., “euphoria”) before compensatory (negative
feedback) processes attenuate or negate the drug effect.

• Alternatively, oscillations might signal overcompensation, amplifying the devia-
tion each time in the opposite direction (unless constrained by training wheels in
the bicycling example), so these corrections effectively become a kind of positive
feedback, leading to catastrophic failure.

• The most important inference, perhaps, is that a control mechanism is often ob-
served most clearly when it is not functioning properly, such as in drug addiction.

This bicycling model is illustrated in Fig. 3.2. The goal of the bicyclist is to
follow a certain path, and deviations from that goal lead to corrective negative feed-
back. These deviations from the desired direction are sensed by a sensori-motor
executive within the rider that is informed by an internal model of bicycle controls
and control actions, an internal model developed as the bicyclist first learned to ride.
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Fig. 3.2 Control theoretic example of bicycling as a negative feedback system

In this graphic (Fig. 3.2), the negative feedback arm is controlled by an “observer”
component that has an internal model of bicycling. The “observer” is a control theo-
retic construct invoked when one component has information about the inner work-
ings of other components in the control system. In this sense, the observer is an
intelligent component that can correct error based on observation of other structural
components. This does not imply that the intelligent observer consciously controls
the bicycle. In fact, the bicycle rider may fall if he or she attempts to consciously
control the system through verbal thought and planned adjustments to remain ver-
tical, just as inexperienced riders often fall before their internal model of bicycling
has developed fully.

Once learned, the experienced bicyclist is unlikely to forget how to ride, and will
relearn efficient bicycling very quickly even after years of disuse. This is analogous
to the addicted individual who has been abstinent for many years, but who returns
to an addicted state very rapidly after reinitiating drug use.

Another familiar example of control feedback is the use of a thermostat. The
temperature measured at a single point in space or time determines whether the
furnace is turned on or off. If the furnace is on, then the resultant heat reduces error
and the thermostat then shuts off the furnace. In this case, the change in control
action is binary (on or off) and does not depend on the amount of deviation from
the threshold setting; therefore, this is not a linear dynamical system because the
feedback is not proportional to the input. Several additional inferences can be drawn:

• While many feedback mechanisms have control changes (approximately) propor-
tional to the current deviation in the observation, there are other possibilities (e.g.,
hybrid control [involving thresholds, Goebel et al. 2009], nonlinear dependence,
or delayed action).
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• The observation used in the feedback loop is not necessarily the state of interest.
In this case, the temperature at a single point in space is used as surrogate for the
entire distribution of temperatures in the room or building.

In this example of temperature regulation, we do not need to “reverse engineer”
(see below) the system because we already know precisely how a thermostat works.
The negative feedback may be (strikingly) compared to a similar room in which
the thermostat was miswired such that it actuated the furnace when the temperature
reached above (rather than below) the set point. This would be a positive feedback
system in which feedback increased error rather than decreased it. The result would
be runaway heating, and a very hot room! We raise this issue because some of the
addiction models that are discussed (below) employ positive feedback, with or with-
out parallel negative feedback to limit the inherently runaway escalation of positive
feedback systems.

To pursue this example further, suppose that a small fire were introduced into
a temperature-controlled room in which the heating-cooling systems were working
properly. One first might predict that the additional heat would lead to an increase in
the ambient temperature of the room, and indeed, this would be the case if the heat-
ing/cooling system were turned off. However, because temperature is the controlled
variable in this example, we would expect little or no change in ambient tempera-
ture when the additional heating source is introduced, particularly if the thermostatic
control is regulated tightly. Note too that there would likely be changes in other vari-
ables, such as the humidity of the air or the particulate levels in the room, because
these variables are not part of the control system.

A final example is the delivery of anesthesia during surgery. The goal of anesthe-
sia is to reduce pain and motor movement, but the model of state evolution (deter-
mining the anesthesia level in the body) must include such considerations as drug
metabolism, localization, and heart and lung function. However, the sensor data used
by the anesthetist to control the depth of anesthesia—defining the negative feedback
loop—are typically just blood pressure and oxygenation. These variables serve as
surrogates for the actual internal values of a full state description.

The dynamical systems (and consequent control theoretic models) for biological
settings are typically complicated, with many interacting variables. We will use the
simple single-variable examples to develop intuitive understanding of these systems,
but recognize that the actual complexity of these systems requires deeper mathemat-
ical tools of multivariate analysis to allow full treatment of these problems.2

2From Wiener’s (1948) introduction to Cybernetics: “The mathematician need not have the skill to
conduct a physiological experiment, but he must have the skill to understand one, to criticize one,
and to suggest one. The physiologist need not be able to prove a certain mathematical theorem, but
he must be able to grasp its physiological significance and to tell the mathematician for what he
should look.”
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3.3.1 Applying Control Theory

Homeostatic theories are modeled well in control theoretic terms. Control theory
describes the behavior of processes in interconnected systems that exert mutual in-
fluences over each other, especially closed-loop feedback systems. Mathematical
laws may be invoked to deduce equilibrium or set points, if any exist. The set point
of a system, typically its input or “goal-state,” is a level about which the output tends
to vary or oscillate. The system can be described mathematically in terms of its ex-
ternal influences and the internal descriptions of how individual components in the
system behave and interact.

In this case, much is known about the specific influences of individual compo-
nents (such as the effects of drug-related stimuli) on other components in the system
(such as craving or drug self-administration). These relations are studied typically
as isolated influences (i.e., the effect of one variable on another). At the same time,
very little is known about the mathematical properties of these models as closed-
loop feedback systems in freely behaving animals or people.

3.3.2 Modern History

Modern mathematical descriptions of feedback systems are usually traced to
Nyquist (1932), Lurie and Enright (2000), whose feedback stability criterion was
critical to the design of vacuum tube amplifiers in the early days of telephony. The
space age ushered in the need for more advanced internal models of feedback sys-
tems and stability criteria, with major progress in this direction usually credited to
Kalman (1963) who favored an internal or “state-space” viewpoint. This refined
approach culminated in the mature field of optimal filtering in which feedback laws
are designed to minimize estimation errors between an observed phenomenon and
its predicted behavior based on a self-adjusting mathematical model (Anderson and
Moore 1979). Subsequent trends incorporate the effects of uncertainty in modeling
and measurements (Doyle et al. 1989; Francis 1988), and the influence of nonlinear
phenomena (Isidori 1989).

Control theory carries with it a powerful armamentarium of conceptual, ana-
lytical, mathematical, and simulation tools for studying regulated systems. This is
because it has been fully developed over many decades, in part due to its broad
applicability to a wide range of engineering and other problems. There is consid-
erable potential for developing control theoretic analyses of addictive behavior and
its neurobiology in future research (e.g., DePetrillo et al. 1999; Ehlers 1995; Ehlers
et al. 1998; Hufford et al. 2003). Modern control theory emphasizes settings with
multicomponent sensors and responses and even distributed parameter models; we
simplify here by avoiding such complications for this stage of the development of
control theoretic modeling in addictions research.

Control systems generally exhibit a wide variety of solutions that can be clas-
sified in several types. Usually the solutions are designed by the control theorist
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to be bounded (i.e., occurring within certain predefined limits). Unbounded solu-
tions could lead to system destruction (e.g., a thermostat with only positive feedback
would not result in infinitely high room temperature but rather would self-destruct).
Common bounded solutions are steady states, periodic behavior, and chaos regimes,
each of which could be perturbed by stochastic noise. Although stochastic and
chaotic solutions often look similarly “random” there is a major distinction between
them. A chaotic solution, because of the underlying determinism, allows short term
predictions but does not usually permit long term predictions because small initial
perturbations can lead to large divergences in the future. Nonlinearity is necessary
but not sufficient for chaotic systems. Conversely, stochastic systems explicitly as-
sume the presence of noise and thus precise short term predictions are not possible,
although long term average trends can often be predictable. Stochasticity can be
present in any system, linear or nonlinear. Noise simply represents the impact of
numerous factors for which the system does not account explicitly.

This discussion focuses on more conventional control systems in which the in-
put and output variables and feedback are continuous and there are no thresholds.
Hybrid control systems (see Goebel et al. 2009) represent a second class of control
theoretic models in which there are both continuous and binary (nonlinear) vari-
ables. Hybrid systems generally have a threshold for control activation (such as a
minimum sensed temperature in a thermostat) and the control action is binary (ei-
ther “on” or “off,” like a furnace in a heating system). None of the addiction models
discussed here was conceived and constructed in a manner akin to hybrid control
systems,3 although future modeling may lead to hybrid model applications.

3.3.3 Reverse Engineering

In control theoretic terms, inferring models of addiction from measured physiology
and behavior represents a classic problem in reverse engineering (Csete and Doyle
2002; Eisenberg 2007). We seek to proceed from the observable outputs of a con-
trolled system to the psychobiological processes that govern them. In a sense, this is
the work of much of integrative neuroscience (Aarmodt 2006). It may be contrasted
with the typical situation in engineering in which one designs and builds a mechani-
cal or electronic device with known governing principles in order to achieve specific
outputs. In the case of drug addiction, we have a complex biological machine that is
malfunctioning (at least in relation to societal values), and we attempt to determine
what characteristics of the controlling system might account for this problematic
behavior. Control theory provides an extensive body of knowledge about regulated
systems that may prove useful in describing the systems involved. If the control

3If self-administration were at a constant dose of the drug, then one might construe several addic-
tion models herein as hybrid control models because the actual self-administration appeared binary
(either take the drug or not). However, using a longer time frame, such as weeks or months, the
rate and dose can be viewed as continuous measures, making hybrid modeling unnecessary.
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system were well understood, it would likely have important implications for pre-
venting and treating drug addiction.

In this discussion, we focus on the “goal state” of the system as the critical input,
although we note other inputs from exogenous (e.g., drug-associated stimuli) and
endogenous (e.g., time since last use of the drug) influences. The term “goal state”
is used here to refer to a characteristic of the system, determined in many cases
by currently unknown or controversial neurobiological mechanisms, rather than as
a design characteristic. We suggest that evolutionary selective forces have shaped
these neurophysiological systems in a manner that has led to systems that appear
to “seek” certain states, such as a neutral affective state (e.g., Solomon 1980). This
clearly does not imply active design as in other applications in which set points and
other characteristics are deliberately engineered.

The “state” of the system may be defined as the set of descriptive characteristics
at a certain time point that allows one to predict the future behavior of the system
(aside from varying external influences). The system output in these examples is the
measured response.

3.4 Characteristics of Control Theoretic Systems

Control theory concerns the relationships among the inputs and responses in a dy-
namical system. The term “control” is key and implies four components: (1) a de-
sired path or goal, (2) observed system output, (3) defined error which characterizes
the difference between the desired path and the system output, and (4) feedback that
changes the system input in order to correct error. Feedback modeling distinguishes
control theory from other disciplines that study dynamical systems. Control theory
solves “direct” or “inverse” problems. In the direct problem, the intent is to pre-
dict the response to the input signal given a particular system. In solving an inverse
problem, control theory aims to define or construct a system that would behave as
prescribed or observed. In the current discussion, we seek to lay the foundation for
using control theoretic models to reverse engineer addiction phenomena.

Control theory could be applied to “systems theory” with which it shares many
components: specialization (dividing the system into components), grouping (pro-
viding the optimal level of detail for the purpose), synthesis (identifying interactions
between the components), and aggregate behavior (which might evolve in time) of
multi-element systems, such as a flock of geese flying in “V” formation. Control
theory originated in mechanistic representations of natural processes and in engi-
neering, and thus offers a well developed set of mathematical and conceptual tools
that can be applied to the analysis of biological systems. For some applications, like
physiological modeling, the use of control systems is inherently applicable because
many processes in nature have evolved in a manner that maintains stability and
sustainability. Other applications, such as drug addiction, involve a wide range of
psychobiological processes spanning physiology, neurobiology, social interactions,
and interactions with the environment. This breadth of processes makes the rigorous
application of control theory tools more challenging. In this discussion, we address
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this challenge by applying control theory to demonstrate that, although there are
different and competing theories of addiction, there is a possible unifying approach
to describe them with the same classes of feedback models.

The simplest scientific models have the form of cause and effect, but the world is
often more complicated than this and more sophisticated models are required. These
models take the form of associations of variables without a clear cut distinction be-
tween “independent” and “dependent” variables. We noted above that much of psy-
chopharmacology and neurobiology involves studying the effect of one variable on
another. In testing hypotheses researchers usually seek to determine the causal ef-
fect of the independent on the dependent variable. However, when feedback loops
control the process, causal relationships are in both directions and thus it is more
accurate to describe this as an association of the independent and dependent vari-
ables. An association between variables X and Y could be the result of a variety of
different combinations of causal relationships of X on Y and Y on X. Control the-
ory methods describe these relationships in a unified way that considers both direct
and indirect causal and dynamic pathways.

Very misleading interpretations can occur if the researcher is dealing with a con-
trolled system. A probe that has dramatic effects in vitro can have no apparent effect
in vivo. In the latter case, there may be intact feedback loops that drastically limit
the effects of the probe. The same probe may lead to opposite effects in vivo if it
boosts the negative feedback arm of the controlled system. Or, as in the temperature-
controlled room example above, a probe may alter only variables other than the tar-
get variable because the latter is under regulatory control. Enhanced understanding
of misleading results such as these is one of the values of integrative neuroscience.

3.5 Homeostatic Theories of Addiction

Many theories of drug addiction are explicitly (Koob and Le Moal 1997; Poulos
and Cappell 1991) or implicitly homeostatic. Homeostasis (Cannon 1929) is a char-
acteristic of biological organisms in which feedback systems maintain a relatively
constant internal milieu despite external and internal perturbations that can be in-
tense. This means they assume a process by which the organism (whether human or
nonhuman animal) “seeks” a “normal” homeostatic balance. Deviations away from
this quiescent state are sensed as requiring corrective action, including taking a drug
of abuse. Such feedback is relatively ubiquitous in biological organisms. Nonhome-
ostatic systems do not have this self-righting characteristic, although they may have
feedback systems in place.

3.5.1 Heroin Addiction Model

The classic homeostatic model of heroin addiction was developed by Himmelsbach
(1943). Among individuals who were addicted to heroin, he found that ceasing to
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Fig. 3.3 Himmelsbach’s
(1943) negative feedback
model of heroin addiction.
Note the integration of highly
disparate elements in one
system, a hallmark of control
theory implementations

use the drug led to a well-defined heroin withdrawal syndrome consisting of dys-
phoria, nausea, tearing, yawning, diarrhea, sweating, etc. Implicit in his model was
that addicts required heroin to feel “normal” or in homeostatic balance. Individuals
who were addicted to heroin would therefore take the drug to stave off withdrawal
sickness or to alleviate it once the syndrome had developed: if heroin were not taken,
the system would deviate strongly from its neutral state. This deviation (or “error”
signal) would be manifest as the heroin withdrawal syndrome. We add that deviation
or error in the opposite direction would be system “overshoot” or euphoria in this
case. This subjectively rewarding state could result from more heroin than is needed
to achieve a neutral or homeostatic state.

Himmelsbach’s (1943) classic model of heroin addiction is illustrated in a con-
ventional control theory diagram in Fig. 3.3. The power of control theory is that
it integrates a number of highly disparate elements in one functioning system. In
this case, the constituents are neurochemical (the input to the system, or goal-state,
and the output or actual state of the system), behavioral (the control action), and
pharmacodynamic (the response). The diagram models how these elements oper-
ate together as a controlled system, in this case instigating either heroin use or the
opioid withdrawal syndrome. In this simple negative feedback system, heroin self-
administration counteracts drug craving (conceptualized here as an error signal in
the system) and also prevents or ameliorates the withdrawal syndrome. Note that
the negative feedback is related to the level of the drug in the system, which is itself
a function of the dose that is self-administered and the duration of time after use
(i.e., metabolism and excretion). If the behavior (heroin self-administration) were
not executed (i.e., if it became an “open-loop” system, then craving for heroin and
the opioid withdrawal syndrome would ensue).

Several features of the heroin addiction model schematized in Fig. 3.3 are spe-
cific to control theory. First, the comparator in this case is a summing or integrating
function that compares the set point to the output (actual level) of the system. It
calculates error (deviation of the output from the input) that can be positive (with-
drawal) or negative (toxicity), depending on whether the actual opioid blood level
is too low or too high, respectively, relative to the optimal level for the addicted
individual. The feedback from the pharmacodynamic response to the heroin is neg-
ative because it reduces positive error (i.e., it counteracts the heroin withdrawal syn-
drome) by moving the system in the direction of higher opioid blood levels. Note
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that this simple negative feedback system is analogous to the example above of a
temperature controlled room with a thermostatically controlled heating system.

3.5.2 Control Theoretic Considerations

The heroin addiction model is a fairly simple negative feedback model, with a set
point of the optimum blood heroin level for an individual addict. It is remarkably
stable, predicting a relatively constant rate of heroin self-administration behavior
(assuming equivalent dosings). Interruption of that behavior, or the administration of
an opioid antagonist, drives the system into the classic opioid withdrawal syndrome.
This is a model of addiction based on the key concept of the withdrawal syndrome;
it is not merely a model of drug self-administration.

This simple—but powerful—homeostatic model of opioid addiction (Himmels-
bach 1943) in Fig. 3.3 was prominent for many decades. In fact, it is still the domi-
nant model (e.g., Baker et al. 2004) for most drugs in addition to opioids, and among
many researchers who are not familiar with recent theoretical developments in the
addictions field. It also instituted homeostatic approaches to addiction that persist
today.

3.5.3 Opponent Process Theory

Opponent process theory (Solomon 1980; Solomon and Corbit 1973) has had a pro-
found influence on the study of motivation, including that of substance use disorders.
The theory posits that intense affective stimulation elicits a primary process, termed
the “a” process, that may be affectively positive or negative, but not neutral. The “a”
process is relatively constant in both its short- and long-term response. Its duration
is normally assumed to be limited by the length of time that the eliciting stimulus is
present. Therefore, it is often modeled as a quasi-square wave, and that wave is the
same each time it is elicited. It is also proposed that the “a” process automatically
(nonassociatively) engenders a “b” process that is subjectively and physiologically
opposite in direction to the “a” process. The “b” process is sluggish. It is recruited
slowly (delayed in time), terminates slowly, and extends in time beyond the end of
the “a” process. Moreover, the “b” process is strengthened each time it is elicited by
the “a” process so that it grows in magnitude and duration each time it is manifest.
The “b” process also moves forward in time each time that it is elicited by the “a”
process, and can come to partially precede the “a” process.

Importantly, since the “a” and “b” processes are opposite in direction, the “b”
process partially or fully cancels the “a” process. This cancellation reflects a primary
assumption of opponent process theory (and other theories, below) that different re-
sponses combine additively. Because the “b” process is slow, it leads to a subjective
and physiological response immediately after the “a” process ends that is opposite
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Fig. 3.4 Opponent process theory. This figure schematizes the assumptions of opponent process
theory and respondent conditioning: (1) a growing counter-response with each elicitation of the
drug effect, and (2) additivity. In the left panel, the X axis has separate elicitations of the affec-
tive stimulus (in this case, a drug effect) over time, and the Y axis shows the magnitude of the
responses. In the right panel are the same assumptions, although the secondary response is in the
same direction as the primary drug response. Opponent process theory and the respondent con-
ditioning model (left panel) account well for drug tolerance, but cannot account easily for drug
sensitization unless one makes the secondary assumption (right panel) that the “b” process or con-
ditioned response can be in the same direction as the drug, resulting in sensitization rather than
tolerance

in direction to the initial response as the b process wanes. This produces a biphasic
drug response in which the early response to the drug is qualitatively different from
the late response to the drug—that is, the early and late components of the acute
drug response are opposite in direction.

The result of these temporal dynamics is a homeostatic model in which intense
affective responses (“a” processes) are diminished following repeated elicitations.
The organism “seeks” and generally achieves a neutral affective state that is less
perturbed by strong stimuli or intense emotions and returns relatively quickly to a
quiescent state. These relations are illustrated in Fig. 3.4 in which repeated elici-
tations of the “a” process (or unconditioned response in respondent conditioning,
see below) are countered by an opposite-direction “b” process that grows with each
elicitation. The combined effect is a diminishing response. Note that if we simply
assume that there are certain conditions in which the “b” process is in the same di-
rection as the “a” process, then the result is sensitization of the combined response.

The application of opponent process theory to drug addiction is clear, and was
envisioned from inception of the theory (Solomon and Corbit 1973). The “a” process
is the primary response to the drug of abuse and the “b” process partially cancels
the “a” process. This produces drug tolerance as the drug response diminishes with
repeated use at the same dose. In addition, gradual recruitment and strengthening of
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Fig. 3.5 Control theory
implementation. The control
theory implementation of
opponent process theory has
both negative (the “a”
process) and positive (the “b”
process) feedback arms.
Forcing functions, whether
external to the human or
nonhuman animal
(exogenous) or internal states
or processes (endogenous)
impinge on the system and
affect the goal-state or drive
control actions

the “b” process leads to the drug withdrawal syndrome, which is generally opposite
in direction to the initial response to the drug (Siegel 1983), as the “b” process is
expressed in the absence of the “a” process.

At its core, opponent process theory is nonassociative. The elicitation and re-
cruitment of the “b” process occurs reflexively without any learning having taken
place. Having said that, Solomon (1980) also allowed for respondent (Pavlovian)
conditioning of both the “a” and “b” processes, particularly the “b” process. So,
for example, an environmental cue that has reliably predicted the drug in the past
may elicit a withdrawal-like “b” process (conditioned withdrawal). This additional
complexity makes the theory more powerful because it can “explain” many psycho-
logical phenomena. However this is at the expense of parsimony and leads to greater
difficulty in designing specific and unique empirical tests of the theory.

Opponent process theory may be diagrammed in control theory terms as in
Fig. 3.5. Note there is both negative feedback (as in the Heroin Addiction Model,
Fig. 3.3) and positive feedback in the form of a drug-opposite “b” process. The lat-
ter is positive feedback because it increases error, potentially subserving craving
and drug withdrawal. The output of the system is determined by the relative magni-
tude or “gain” of the negative and positive feedback loops (assuming they combine
additively).

We introduce components (“forcing functions” in control theory terms) that are
external to the model, but affect the “goal-state” of the system and the actions of
the “controller.” This has many effects, including allowing influences of the state of
the organism (such as anticipation of the drug) and those of triggering stimuli (such
as drug-related cues or stressful, noxious stimuli). It also provides mechanisms for
the influence of learning, such as conditioning of the “b” process. It is important to
note that all of these forcing functions are positive in the sense that they drive the
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Fig. 3.6 Opponent process model of nicotine addition (Gutkin et al. 2006). Schematic of Gutkin
et al.’s (2006) opponent process model of nicotine. Note that the “a” process is in a positive feed-
back loop, while the “b” process represents negative feedback. Ventral tegmental (VTA) phasic
dopamine signaling drives the system. Unlike Solomon’s (1980) original opponent process the-
ory (Fig. 3.5), this relatively complex system is very specific in its hypothesized neurobiological
mechanisms

system toward greater drug self-administration. None of the forcing functions intro-
duce limits to the system. The only limiting factors are the negative feedback loop
from the “a” process, and the implication that “toxicity” from drug levels that are
too high may limit self-administration. We model mathematically a version of the
system schematized in Fig. 3.5 in the Simulations section. Opponent process the-
ory is clearly a model of addiction, based largely on classic indices of the addictive
process such as tolerance, withdrawal and craving, etc.

3.5.3.1 Gutkin et al. (2006)’s Opponent Process Model of Nicotine Addiction

Gutkin et al. (2006) presented a neurocomputational model of nicotine dependence
with opponent process aspects. Their model is schematized in Fig. 3.6. This rel-
atively complex system is driven in turn by nicotine, nicotinic acetylcholinergic
receptors (nAChRs), particularly the beta-2 subunit, and dopamine; it is modulated
by gabaergic and glutamatergic influences. The model has two compartments, an
action-selection compartment that is roughly equated with dorsal striatal function,
and a ventral striatal dopamine compartment that drives the system. This model
is of particular interest because the feedback loops, whether positive or negative,
have different time scales—from seconds to minutes to weeks. The primary positive
feedback (the “a” process) represents phasic (seconds) dopamine signaling, which
is closely related to the input and output of the system. This signaling is driven (pos-
itive feedback) over seconds by nAChRs activation, followed by upregulation over
minutes. Finally, an opponent “b” process consisting of renormalization over weeks
of the nAChRs represents a negative feedback loop that stabilizes the system.
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The actuator of this system is an action-selection compartment that biases action
toward or away from self-administration of nicotine depending on weighting func-
tions. In turn, the system is driven by dopamine signaling that functions to influence
the weighting of action-selection. This signaling also provides positive feedback,
whose action outcome evaluation (similar to “reward”) supports acquisition, main-
tenance, and reacquisition of nicotine self-administration.

The detailed specification of this neurocomputational model in terms of neuro-
biological mechanisms, differential equations, and experimental tests makes it un-
usual and of particular interest. Although it was not presented originally in control
theoretic terms, it is easily specified in relation to control theory.

3.5.4 Respondent Conditioning

In a separate development during the same period of time as Solomon’s (Solomon
and Corbit 1973) theorizing, Siegel (1975) provided empirical evidence for a re-
spondent (Pavlovian) conditioning model of morphine tolerance. His theory was
explicitly and entirely associative. Wikler (1973) had theorized earlier concern-
ing drug conditioning (as had Pavlov 1927), but Siegel’s empirical work was more
compelling, at least in demonstrating environmental specificity of tolerance to mor-
phine.

Siegel (1975) proposed that with repeated elicitations of the drug effect (the un-
conditioned response4 to the drug) in the presence of drug-predictive environmen-
tal stimuli (conditioned stimuli), respondent learning occurs such that a compen-
satory conditioned response develops that is opposite in direction to the uncondi-
tioned response. Since the conditioned and unconditioned responses are assumed to
combine additively, there is partial cancellation, producing morphine tolerance. For
example, morphine causes analgesia to painful stimuli, so this model predicts an
hyperalgesic (increased pain sensitivity) compensatory conditioned response when
elicited by drug-predictive stimuli in the absence of morphine. Siegel’s (1975) re-
spondent conditioning model is illustrated in control theory terms in Fig. 3.7. Note
the strong structural similarity to Solomon’s (1980) opponent process theory, even
though Siegel’s model is associative and Solomon’s is nonassociative. In fact, the
two control theory diagrams (Figs. 3.5 and 3.7) are virtually identical.

4In its original formulation (Siegel 1975), Siegel’s associative model of morphine tolerance as-
sumed that the unconditioned response was the drug effect, itself. However, this was revised (Eikel-
boom and Stewart 1982) to acknowledge that the drug effect (analgesia) is actually the uncondi-
tioned stimulus, and the adaptive, counter-directional response to the drug effect is the uncondi-
tioned response. In this sense, the conditioned and unconditioned responses are actually in the same
direction, in this case hyperalgesia. For the purposes of this discussion, we will revert to Siegel’s
terminology, keeping in mind that these psychobiological systems are themselves controlled sys-
tems for which the issue of whether the response is part of an afferent or efferent response can be
critical (Eikelboom and Stewart 1982).
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Fig. 3.7 Respondent drug conditioning model. The control theoretic diagram of Siegel’s (1975)
respondent (Pavlovian) model of drug conditioning, is structurally similar to that of opponent pro-
cess theory (Fig. 3.5). However, it is an associative model

This structural equivalency of two theories that were developed independently
requires some comment. First, control theoretic modeling has the virtue of making
this similarity more explicit. These structural similarities may not seem as surpris-
ing if one views the function of the theorist to reverse-engineer addictive processes
in which many of the same phenomena are apparent (i.e., tolerance, withdrawal
syndrome, a shift from euphoria to discomfort, etc.). However, it raises the ques-
tions of whether control theoretic modeling has missed critical differences (such
as associativity) between models (and phenomena) or whether these mathematical
models are unique to a given theoretical model? This is confused by Solomon’s
(1980) assertion that the “a” and “b” processes are conditionable, in which case the
theories are themselves indistinguishable other than the fact that opponent process
theory is couched in terms of hedonics while the respondent conditioning model
concerns primarily response magnitude. We note below that there are an infinite
number of linear mathematical models that can account for a given set of inputs
and outputs. Therefore, these issues are unlikely to be resolved because of am-
biguities in the theoretical models, but it is clear that control theoretic modeling
focuses and clarifies the issues, particularly when implementing the models in sim-
ulations.
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3.5.5 Control Theoretic Considerations

Opponent process theory and respondent conditioning models do not afford sim-
ple set points, as was found with Himmelsbach’s (1943) heroin addiction model.
Instead, there is periodic or semi-periodic behavior of the system, with relatively
stable equilibrium functions that vary consistently around the neighborhood of (but
not on) average values. This average value could be taken as a kind of set point in
the sense that the system “seeks” this point, but varies around it rather than settling
on it. There is a degree of stability in the oscillating functions. These considerations
apply equally to both opponent process theory and respondent conditioning models
since they are structurally equivalent (Figs. 3.5 and 3.7).

3.5.6 Problems with Homeostatic Models

In terms of reverse-engineering the addictive process, drug use disorders are char-
acterized by strong acquired motivation. After all, these drugs are self -administered
in an apparently compulsive, driven manner. We need control theoretic models that
are strongly self-sustaining and that capture the “drive” in drug addiction.

In our discussion of opponent process theory and the respondent model of drug
conditioning, one might view the human or nonhuman animal as a passive recipient
of powerful affective stimuli and Pavlovian learning processes (so-called “stamping-
in”). These opponent or compensatory processes might seem to be fully automatic
with the organism passively “seeking” a neutral state. In contrast, several theorists
have recast drug conditioning findings in terms of a more active organism. In this
case, the nonhuman animal or human has critical behavioral demands, senses per-
turbations that may be biologically relevant, and responds actively to counteract
drug effects that contribute to these demands or obstruct those behavioral agenda.
After all, the dog in Pavlov’s (1927) classic experiments was physically restrained
so that its skeletal behavior could not be fully observed. At the same time that the
dog salivated to the bell signaling imminent meat, a host of other physiological and
behavioral phenomena were occurring concurrently that were not measured or that
were prevented. In other words, a casual observer of Pavlov’s experiments might see
an active dog that was highly motivated to cope with restraint, and to anticipate the
meal that was coming!

In terms of considering the organism as more than a passive recipient of
“stamping-in” processes, Poulos and Cappell (1991) emphasized in their general
homeostatic theory of physiological adaptation (including drug tolerance) that the
disturbance in homeostasis caused by a drug (or other stimulus) must be sensed (but
not necessarily consciously) to be effective. Moreover, this biological perturbation
is not exclusively an internal regulatory function, but interacts with the organism’s
behavior and environment. For example, they argue that “an adaptation to a disrup-
tion in hunger (anorexia) will not occur in the absence of a behavioral interaction
with food.” Poulos and Cappell’s (1991) elaboration of homeostatic theory places
the organism squarely within the behavioral demands of its environmental milieu.
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3.5.7 Cognitive Theories of Addiction

Purely cognitive theories of addiction (e.g., Cox and Klinger 1988; Tiffany 1990),
though certainly important, are not discussed further because they are not easily
rendered in control theoretic terms. It may be without coincidence that this class of
theories lends itself poorly to characterizing motivation and drive, which have been
more typically the province of models of physiological homeostasis (i.e., “drive-
reduction”) and behavioral learning theories.

3.5.8 Internal Model

The cleft between informational and motivational theories of addiction is not com-
plete. Feedback models can, and sometimes do, incorporate cognitive components.
Peper’s conceptual (2004a) and mathematical (2004b) account of drug tolerance
is somewhat different from those discussed above. He assumed that the human or
nonhuman animal has an internal model of the expected action of the drug, and
homeostatic adaptive responses counter it in order to maintain optimum function-
ing. This internal representation may be present even on first administration in a
drug-naïve organism because drugs of abuse mimic endogenous biochemicals that
are “known” to the brain’s regulatory systems. However, the dose of the drug is
not known to the subject, and many self-administrations may be needed to calibrate
this internal model so that it can effectively cope with the drug response, resulting
in profound tolerance. Moreover, abrupt cessation of drug intake will result in the
withdrawal syndrome in a classic rebound response.

Peper’s (2004a) theory took an explicitly informational approach to the regula-
tion of drug responses. His internal representation of the drug effect echoed Baker
and Tiffany’s (1985) cognitive-habituation model of tolerance, although Peper’s
model was homeostatic while Baker and Tiffany’s was not. More importantly, Peper
(2004a) emphasized that the “goal” of the organism is to maintain optimal levels of
functioning despite drug disturbances, implying a more active animal or human than
in other homeostatic models.

Another problem with homeostatic models, besides their inherently passive na-
ture, is they beg the question of what is the neurobiological mechanism controlling
the set point or goal-state of the system? This is a critical element in a homeostatic
system, like the thermostat in a building with an automated heating/cooling sys-
tem. At the present time, this biological controlling mechanism is usually inferred
rather than measured directly. The strength of this inference depends on indirect
evidence that deviations away from the hypothetical set point are sensed and acted
upon by neurobiological processes that can be measured, at least to some extent.
Koob and Le Moal (2006), Di Chiara and Imperato (1988), Robinson and Berridge
(1993, 2003), and Gutkin et al. (2006) have been the most specific regarding the
neurobiology of these regulatory mechanisms.
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3.5.9 Direction of the Conditioned Response

Theories of addiction have made much of the issue of whether the conditioned re-
sponse to drug cues is in the same direction as the unconditioned drug effect or
opposite in direction. Opponent process theory (Solomon 1980) and Siegel’s (1975)
respondent conditioning model of drug tolerance assume counter-directional cued
responses, while Stewart et al.’s (1984) model and Robinson and Berridge’s (1993)
incentive-sensitization model propose that the conditioned response is drug isodi-
rectional. As we shall see, the direction of the conditioned response is critical to the
behavior of control theoretic models. Moreover, this directionality, often expressed
in terms of whether the conditioned response is in a negative or positive feedback
loop, helps determine how the model deals with issues of motivation and drive.

3.6 Non-homeostatic Models of Addictive Behavior

3.6.1 Instrumental Conditioning

One of the great ironies of addiction is that individuals demonstrate relentless use
of a drug they often report gives them little or no pleasure (Robinson and Berridge
1993). This presents a real problem for instrumental conditioning theories of addic-
tion (Pickens and Thompson 1968), which are in some ways the dominant models
of addictive behavior in current thinking.

McSweeney et al. (2005) proposed a disarmingly simple—yet powerful—
behavioral theory of chronic drug use that is based on instrumental conditioning
(Skinner 1938). It is a modern update of the original instrumental models of drug
use that simply observed that drugs of abuse serve as primary reinforcers (a radical
notion at the time). That is, they increase the likelihood of immediately preced-
ing behavior, specifically the instrumental response that instigated delivery of the
drug. McSweeney et al. (2005) argued that the instrumental response is strongly
modulated, initially by sensitization, then by habituation to the reinforcer. Drug
sensitization, a well-documented phenomenon, increases the rate and strength of in-
strumental responding, while habituation, an even more thoroughly studied process,
decreases it.

McSweeney et al. (2005) use the terms sensitization and habituation somewhat
differently than other models discussed here (except Robinson and Berridge 1993).
They use them to refer to the increased valuation or devaluation, respectively, of the
drug reinforcer (i.e., its reward value), and therefore, the rate of self-administration;
other theorists have used the terms sensitization and tolerance to refer to the magni-
tude of the drug response.

This is an entirely behavioral theory. It does not draw in the least on the mas-
sive literature concerning the neurobiology of drug use and addiction. For example,
McSweeney et al. (2005) noted the model cannot account for the drug withdrawal
syndrome. Biological processes external to the model are needed to model this and
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Fig. 3.8 Instrumental drug conditioning model. McSweeney et al.’s (2005) instrumental (Skinner-
ian) conditioning model. The control theoretic implementation has both negative (habituation) and
positive (sensitization) feedback arms, although it is a theoretically different model from those in
Fig. 3.5 (opponent process theory) and Fig. 3.7 (respondent conditioning). In instrumental condi-
tioning, the reinforcer (the drug effect) is contingent on the response (drug self-administration).
Note the reversal of direction of error relative to Figs. 3.3, 3.5, and 3.7

other phenomena that many other theories are intended to address. Technically, it is
not a theory of drug addiction. Constructs such as incentive motivation and craving
are also external or irrelevant to the model.

McSweeney et al.’s (2005) theory is schematized in Fig. 3.8. Note first that, like
instrumental conditioning, itself, this is a positive feedback model. Drug reinforce-
ment simply increases the likelihood of the instrumental response, such as lever-
pressing or pecking a key (Skinner 1938). Positive feedback systems such as this
are explosive because there is no inherent negative feedback to limit growth of the
behavior over time; as such, they are not realizable in nature, at least not without
some other process to limit the system’s behavior. Initial sensitization increases this
growth curve as it enhances the reward value of the drug reinforcer. Responding is
ultimately limited by habituation processes that devalue the reinforcer and limit its
efficacy. This model predicts a bitonic curve: sensitization and increased rates of
responding followed by habituation and decreased rates. McSweeney et al. (2005)
did not explain why drug sensitization generally precedes habituation other than the
empirical observation that this sequence is dominant in the literature on nondrug
stimuli. In terms of biphasic responses, they emphasized that low drug doses often
engender sensitized rates of responding while high doses promote habituation.

3.6.2 Control Theoretic Considerations

McSweeney et al.’s (2005) model of instrumental drug conditioning has both posi-
tive and negative feedback. It does have set points or “set responses,” but they vary
over time with habituation and sensitization processes. The presence of positive
feedback injects “drive” into this system that many purely negative feedback sys-
tems do not exhibit, while the negative feedback affords stability to the system.
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Fig. 3.9 Incentive-sensitization theory. Incentive-sensitization theory is modeled as a positive
feedback system (i.e., no negative feedback), which can be problematic because it is inherently
explosive (see text). Note that the direction of error has been reversed from that of previous models
(Figs. 3.9 and 3.13)

3.6.3 Incentive-Sensitization Model

Homeostatic models of addiction do not account easily for drug sensitization. This
phenomenon, when the response to the drug given repeatedly on different occasions
at the same dose increases rather than decreases, is well established. In fact, some
authors (e.g., Peper 2004a, 2004b; Poulos and Cappell 1991) simply stated their
model does not apply to sensitization. However, sensitization has played a central
role in some theories of addiction.

Robinson and Berridge’s (1993, 2003) incentive-sensitization theory of addiction
proposed that the incentive-salience of drugs and drug stimuli becomes sensitized
such that the organism comes to “want” or crave the drug more than they “like” it. It
is modeled graphically in Fig. 3.9. Note that drug wanting increases due to positive
feedback at the same time that drug liking is relatively constant because it is not part
of a feedback loop. This is not a homeostatic theory of addiction because it does not
“seek” a neutral state, but it is instead a learning theory (Bolles 1972) based on re-
ward and plasticity in the neural systems that control drug-seeking behavior. It is
analogous in some ways to Stewart et al.’s (1984) argument that addictive behavior
is driven by conditioning of a drug-like (rather than drug-opposite) appetitive re-
sponse to drug cues. These theories of drug-seeking behavior stand in direct contrast
to most homeostatic models, particularly those that emphasize negative reinforce-
ment (prevention or reversal of aversive affective states such as the drug withdrawal
syndrome or stress).
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Fig. 3.10 Koob and Le Moal’s model. Koob and Le Moal’s (1997) model involves two stages, with
incentive-sensitization processes early in addiction, and opponent processes (negative feedback) in
the later stages of addiction. It is also a stress allostasis model (see text)

Robinson and Berridge’s (1993, 2003) model is schematized in Fig. 3.9 as an
exclusively positive feedback system. This makes it very different from the theories
discussed above (Figs. 3.3, 3.5, 3.6, and 3.7). It is essential to observe in Fig. 3.9
and in other positive feedback models (Figs. 3.9 and 3.13) that the direction of error
has been reversed from that of the previous models; both craving and toxicity are
schematized as positive error. Incentive-salience increases (sensitizes) craving and
drug “wanting” in a positive feedback loop. Because positive feedback systems are
rarely manifest in nature (since they are inherently explosive), it raises the question
of what (negative feedback) processes may ultimately limit the growth of drug self-
administration. The authors (Robinson and Berridge 1993) are silent on this issue.

Having written that, it is not difficult to integrate drug sensitization phenomena
into control theory models. We simply assume that the conditioned response is in
the same direction as the unconditioned response and they combine in a constructive
(positive) way, if not necessarily additively. This is illustrated in Fig. 3.4, right panel.
Note that this produces a positive feedback system rather than negative feedback,
much like the models of Stewart et al. (1984) and Robinson and Berridge (1993; see
Fig. 3.10).

Most theories of addiction implicitly assume that the same biological or learning
processes that control initial, experimental drug use also determine addictive, de-
pendent use. Although several theories emphasize change over time with repeated
drug use on many occasions, the structural models that we have diagrammed in for-
mal control theory terms remain the same in different phases of drug use and abuse.
There may be growth of a process, such as the “b” process, compensatory con-
ditioned response, drug “wanting,” and either respondent or instrumental learning
functions, but the feedback loops and other structural characteristics do not change.
This speaks to the ambitiousness and parsimoniousness of these theories.

Koob and Le Moal (1997, 2006) proposed an ambitious model that attempts to
integrate many of the structural components in the theoretical models above. Their
theory involves primarily negative feedback that subserves negative reinforcement
(prevention or alleviation of aversive states such as the drug withdrawal system
or stress). However, it incorporates “allostasis” (Goldstein and McEwen 2002) in
which acute and chronic stress to the organism changes the set point or goal-state
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of the system over time. This structural change is important because it suggests
mechanisms (i.e., allostatic load) by which the set point of the system may change
from “neutral” or a zero blood drug level in the drug-naïve person or nonhuman
animal to a positive drug level. Note that in Koob and Le Moal’s (1997, 2006) model,
allostasis affects the set point of the system rather than the unconditioned response
to the drug, or even the conditioned response to drug cues. This model is illustrated
in Fig. 3.10.

Although the theory of stress allostasis has been criticized (Day 2005) for being
unnecessary and a misbegotten take on homeostatic theory, the concept of allostasis
is in current usage. Koob and Le Moal (1997, 2006) argue that the role of stress in the
development and maintenance of addictive behavior is critical, but this is either not
incorporated into most homeostatic or other theories of addiction, or is peripheral
to these models. Their inclusion of stress into the basic structure of a homeostatic
model appears to strengthen the generalizability of the approach.

3.6.4 Control Theoretic Considerations

The early stages of drug use in Koob and Le Moal’s (1997) model are viewed as a
positive feedback system with no set point or stability. However, asymptotic drug
use can yield a set point if the composite influence of both positive and negative
feedback is a net negative. In their later writings (Koob and Le Moal 2008a, 2008b),
they have emphasized negative feedback in the sense of avoiding the drug with-
drawal syndrome. This would tend to stabilize the system, and would admit a set
point.

3.6.5 Autoshaping

Autoshaping is simply respondent conditioning in which the conditioned response is
skeletal approach toward the conditioned stimulus rather than an autonomic or vis-
ceral response (Hearst and Jenkins 1974). Therefore, it has elements of both instru-
mental (skeletal responding) and respondent conditioning (the stimulus–stimulus
contingency). In the classic autoshaping procedure, the conditioned stimulus is pre-
sented immediately prior to the unconditioned stimulus (in this case, some reward
such as an injection of a drug of abuse). This stimulus-stimulus pairing does not
depend in any way on the animal’s response. Despite this lack of stimulus-response
contingency, the animal approaches and contacts the conditioned stimulus (e.g.,
Brown and Jenkins 1968). For example, if the conditioned stimulus is the intro-
duction of a lever into the cage and the unconditioned stimuli is an injection of
cocaine, the animal will approach the lever each time and eventually press it. This
has been used in some cases as a standardized, “hands off” procedure to induce drug
self-administration (Carroll and Lac 1993) because the approach behavior elicited
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Fig. 3.11 Autoshaping. The autoshaping model of addiction proposes a skeletal approach condi-
tioned response toward drug cues and drugs. This is a positive feedback model

in this way is remarkably durable and resistant to extinction. In fact, the animal will
approach the conditioned stimulus even when it is prevented from receiving the un-
conditioned reward. This has been taken as evidence that the learning is Pavlovian
rather than instrumental, and at least in this case, the respondent conditioning is
more potent than instrumental conditioning (!) (Hearst and Jenkins 1974).

Newlin (1992) proposed an autoshaping model of human drug craving. Stimuli
that have been paired repeatedly with drug effects, such as procurement procedures,
commercials for the drug (e.g., tobacco advertisements), alcohol drinking buddies,
or injection paraphernalia, elicit through autoshaping procedures a psychological
orientation toward drug triggers and approach toward the drug and stimuli associ-
ated with it that we refer to as “craving.” This autoshaping model is illustrated in
Fig. 3.11. This is a positive feedback model because the approach behavior increases
both craving and drug use. Autoshaping was proposed (Newlin 1992) as a model of
craving and drug addiction because it might account for the remarkable resistance
to extinction of drug self-administration behavior and craving for drugs.

Although the autoshaping model (Fig. 3.11) employs a form of respondent con-
ditioning, it differs in important ways from both opponent process theory (Fig. 3.5)
and Siegel’s (1975) respondent conditioning model of tolerance (Fig. 3.7). First, the
autoshaping model employs only positive feedback; limiting factors, such as sati-
ety or toxicity of the drug are external to the model. The drug use and craving will
increase progressively in this model without end (i.e., it is explosive, or a “vicious
cycle”). Therefore, it accounts well for acquisition of drug use, intense bouts of drug
use (bingeing), relapse, sensitization and craving, but does not reach asymptote.

3.6.6 Control Theoretic Considerations

This positive feedback model does not admit a set point. The instability of this sys-
tem raises questions about whether additional control components (such as negative
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Fig. 3.12 Foundations of
SPFit. Foundations of SPFit
(self-perceived fitness) theory
in survival and reproductive
motivation

feedback) are needed for it to be realizable. This problem is inherent to some extent
in nonhomeostatic models of addiction. Control theoretic analyses highlight these
“design” problems. Although the autoshaping model of addiction (Newlin 1992)
does not account well for the classic criteria of tolerance or withdrawal, it does
cover many other human-like criteria of dependence (such as craving, narrowing of
behavioral repertoire on drug use, drug self-administration, etc.).

3.6.7 Evolutionary Psychological Theory

Negative feedback models may have difficulties with motivation and “drive.” A final
model of addiction is derived from evolutionary theory and evolutionary psychol-
ogy. In 1997, Nesse and Berridge suggested that “drugs of abuse create a signal in
the brain that indicates, falsely, the arrival of a huge fitness benefit.” Newlin (2002,
2007) developed an evolutionary model of addiction, Self-Perceived Fitness (SPFit)
theory, that expands upon this premise. The essence of SPFit theory is that humans
(and perhaps some other mammals) seek to increase or protect their self-perceived
sense of being empowered and sexually/personally attractive. Power enhancement
derives from survival motivation because a more powerful individual is viewed as
more likely to survive. The desire to be sexually and personally attractive is related
to reproductive motivation because the attractive person may be better able to attract
and keep a mate for reproduction. In this sense, SPFit theory proposes that people
strive to increase their Darwinian fitness (Darwin 1871), and self-perception of this
fitness is vitally important to their behavior, cognitions, and emotional functioning.
These theoretical views are illustrated in Fig. 3.12. Survival and reproductive moti-
vation drive the acute response to abused drugs in which SPFit is artificially, and in
many cases, dramatically elevated.

Importantly, SPFit theory proposes that drugs of abuse artificially inflate the per-
son’s feelings of powerfulness and being attractive because they directly or indi-
rectly affect functioning of the cortico-mesolimbic dopamine (CMDA) system that
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has been studied so intensively in neurobiology and neuropharmacology. SPFit the-
ory views the CMDA as the primary substrate for survival and reproductive motiva-
tion. The CMDA is viewed in most theories as a “reward center,” “reward pathway,”
or “reward circuitry” (the latter terms are retrenchments of sorts, given more recent
evidence concerning the complexity of this system). SPFit theory proposes instead
that the CMDA is a survival and reproductive fitness motivation system rather than
a reward system in the brain. Newlin (2002, 2007) noted that aversive or noxious
stimuli, novelty, and other non-reward stimuli also increase activity in the CMDA,
which argues against the common view that this is a reward system. This evidence
is consistent, though, with the view that it is a survival motivation system because
aversive or novel stimuli would be expected to activate a survival motivation system
along with “reward” stimuli. While it may be argued that the entire body and brain
are honed sharply by evolutionary forces to promote survival and reproductive func-
tions, most bodily organs and brain systems are not involved directly in motivation.

An important way in which SPFit differs from models of addiction discussed
above is that it does not make use of constructs such as “reward,” “reinforcement,”
or “euphoria,” although it does include drug craving in its model. Evolutionary psy-
chology derives from a very different intellectual tradition than that of behavioral
learning theory.

The control theoretic illustration of SPFit theory appears in Fig. 3.13. The control
theory models in Fig. 3.2 (bicycle riding) and Fig. 3.13 (SPFit) can be highly adap-
tive and at least semi-automatic. Bicycle riding is a skill and a habit that is highly
resistant to unlearning. In a similar manner, promotion of SPFit and protecting it
against environmental threats represents semi-automatic or automatic functioning
that is usually highly adaptive, except in the case of drug abuse and addiction. In
Fig. 3.13, the goal that the system seeks is a desired mesolimbic state. The actual
mesolimbic state is affected rather directly by drugs of abuse. A prefrontal exec-
utive, with an internal model of the drug’s anticipated and actual effects, senses
deviations (error) in the mesolimbic state.

There is a fundamental distinction between the prefrontal executive and the ob-
server (SPFit). The executive senses error and executes motor, affective, and cog-
nitive operations that support SPFit, and in this case, promote drug use. In con-
trast, the observer is privy to information about the state of other components in the
model (through imperfect self-observation) and provides corrective feedback to the
prefrontal executive. The drug effect inflates SPFit in a way that would appear to
promote Darwinian fitness, but in the case of drug use, it actually impairs fitness.
In the bicycling example, the prefrontal executive executes motor sequences for rid-
ing the bicycle, and the observer provides necessary, and generally accurate (in the
experienced rider), feedback to guide the executive’s actions.

3.6.8 Control Theoretic Considerations

SPFit theory is a positive feedback model, although there are social constraints that
limit SPFit in a negative feedback loop. The operating characteristics of this model
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Fig. 3.13 Self-perceived fitness theory. This SPFit model (Newlin 2002) is structurally similar to
the bicycling example (Fig. 3.2) of a control model with an “observer” (see text), although it is
a positive feedback model. It “seeks” higher levels of SPFit rather than a fixed level (i.e., there
is no set point). There are multiple social environmental constraints that “weigh down” SPFit in
a negative feedback loop, including the short and long term deleterious effects of the drug that
is used. “BioFit” is an unmeasurable output of the system that corresponds roughly to classic
Darwinian fitness, while SPFit is the self-perception of that fitness

may be compared to those of the heroin addiction model. The heroin addict titrates
the amount of heroin taken to “hover around” or to “seek” an optimum blood level
of the drug. In contrast, individuals generally strive to increase (or to protect) their
SPFit within social environmental constraints and available resources. Therefore,
SPFit theory does not admit a set point. In this way, SPFit theory avoids some of the
passivity problems associated with some other models. Although the SPFit model
has positive feedback, there are many factors in the social environment of the indi-
vidual that limit it. These can be as diverse as social feedback from friends, looking
at oneself in the mirror, and frequent self-observation of obvious mistakes and lack
of perfection. These factors that weigh SPFit down serve as negative feedback that
is generally limiting and helps stabilize the model.

SPFit theory, like autoshaping, accounts well for many human-like addictive phe-
nomena. In fact there are strong structural parallels between the two models, al-
though this would not be obvious without control theoretic modeling.
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Fig. 3.14 Opponent process theory of chronic tolerance/sensitization. Technical implementation
of opponent process theory. Note the addition, relative to Fig. 3.5, of random time delay (white
noise), level adjustment (set point regulator), system memory (lossy accumulator), and gain blocks
in the negative and positive feedback loops

3.7 Simulations of Two Addiction Systems

3.7.1 Simulation of Opponent Process Theory

To demonstrate implementation of a control system, we performed simulations on
the opponent process theory model presented in Fig. 3.5 and more technical imple-
mentation as presented in Fig. 3.14. Since the respondent drug conditioning model
is virtually identical in structural terms, Fig. 3.7 can be taken as an implementation
of that theory as well. We chose opponent process theory to simulate for several
reasons. First, opponent process theory is both historically important and in cur-
rent use (e.g., Koob and Le Moal 2006). Second, it represents a potentially stable
system because it is not based on positive feedback alone. Third, it is of particular
interest in control theory terms because it has elements of both positive and nega-
tive feedback. Finally, it includes aspects that are characteristic of a number of the
models of addiction presented here. For example, the negative feedback from the
drug effect is similar to the heroin addiction model of Himmelsbach (1943). The
positive feedback from the “b” process has similarities to instrumental conditioning
and incentive-sensitization theory.

3.7.2 Opponent Process Theory Implementation

It is useful to consider the simplest model of an opponent process loop, as in
Fig. 3.14. The error signal represents euphoria for negative swings, and withdrawal
for positive swings; it drives a threshold comparator such that when the signal rises
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Fig. 3.15 Signals triggered
by the A and B processes.
Showing the signals triggered
by the A and B processes.
The slope of the B process is
controlled by a parameter β

above a certain threshold, the “a” and “b” processes are triggered. These processes
counteract each other in their influence on the error signal.

The “a” process that is triggered is taken as

A(t) = exp(−σ t) cos(θ + ωt)

σ
+ 1 (3.4)

using θ = 0.8π , along with σ = − cos θ and ω = sin θ , giving the step response of a
second-order lowpass filter. The “b” process is a slowly dropping function that lags
behind the “a” process; here we consider a sigmoidal falling function of the form
B(t) = −[f (t) − f (0)]/[1 − f (0)] using

f (t) = 1

2
+ arctan(β(t − t0))

π
. (3.5)

The two functions are graphed in Fig. 3.15 using t0 = 30 (arbitrary time units)
which sets the lag time of the “b” process; the lower graph illustrates how the slope
of the “b” process decreases with decreasing values of the parameter β . Subtracting
the “b” process from the “a” process results in a square pulse with an initial over-
shoot (from the “a” process) and a return to zero with variable slope (from the “b”
process).

3.7.3 “Lossy Accumulator”

To account for drug sensitization and tolerance, a lossy accumulator is included,
which works akin to a leaky bucket: with each drug dose, “water” is added to the
bucket but, due to “holes,” the bucket is perpetually leaking some water away. The
mathematical form obeys the differential equation

dw

dt
= αw(t) + g(t) (3.6)
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Fig. 3.16 Gain and slope
parameters. Indicating how
the gain and slope parameters
vary with the “water level” of
the lossy accumulator

in which w(t) plays the role of the “water level” in the leaky bucket, and the param-
eter α (= −0.002 in the simulations) controls the leakage rate. Note that stability
occurs only when α is negative. The driving function g(t) turns on during a drug
dose that commences at time t = t ′, and then returns to zero:

g(t) =
{

0.02(1 − w(t ′)), t ′ ≤ t ≤ t ′ + 5;
0, otherwise.

(3.7)

The “water level” w then determines the gain given to the opponent process func-
tions, according to Fig. 3.16. It is seen that for initial doses (corresponding to a small
“water level” in the bucket), the intensity of the “a” and “b” functions increases, to
simulate sensitization, but as the “water level” rises further, the gain functions de-
crease again, to simulate tolerance. In addition, an offset equal to w(t) is added to
the error signal so that as the “water level” increases, the intensity of the withdrawal
effect likewise increases. Finally, the slope parameter β of the b process is decreased
as the “water level” increases, as shown in the lower graph of Fig. 3.16, to simulate
faster counteraction of the drug dose that comes with tolerance. The lossy accumu-
lator plays a role similar to the level adaptation mechanism of Peper (2004b), but
the present scheme also accounts for sensitization by virtue of modifying the gains
given to the “a” and “b” functions.

Figure 3.17 plots the error signal versus time of the closed-loop system, using
a random (white noise) time delay between the trigger function and the “a” and
“b” process activations; the trigger threshold is set to −0.01. The top graph shows
the autonomous behavior of the system, in which successive positive-going pulses
represent successive drug doses. The euphoria (indicated by positive swings of the
error signal) initially increases in amplitude with successive doses, but eventually
settles to smaller amplitudes, consistent with initial chronic sensitization followed
by tolerance.
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Fig. 3.17 Rise/fall characteristics. Each positive-going pulse represents a drug dose, which then
wears off, causing the euphoria to drop below a set threshold, which triggers the next drug dose.
(Top): The euphoria produced by successive drug doses initially increases, and then settles into
a lower value. (Bottom): Illustrating the effects of withdrawal between time instants 250 and 400
(arbitrary time units); the negative value of euphoria slowly works its way closer to zero (a neutral
condition) due to the lossy accumulator

3.7.4 Drug Withdrawal

The lower plot simulates a period of drug abstinence by removing the trigger func-
tion between time instants 250 and 400 (arbitrary time units). The dropping error
signal indicates the intensity of the withdrawal symptoms, and is provoked by the
offset included in the error signal. The intensity of the withdrawal effect slowly de-
creases due to the “leaky bucket” mechanism, until the next dose is administered
after time 400.

These simulations illustrate how the interconnection of basic building blocks can
simulate the “euphoria” and chronic tolerance characteristics of successive drug
dosings, including conditioning. The “a” and “b” process functions are not pre-
cise, but rather are common mathematical functions that suffice for illustrating the
interaction between mechanisms in the feedback loop. Replacing these with other
functions displaying similar rise/fall characteristics would lead to interactions simi-
lar to those plotted in Fig. 3.17. Although the precise waveforms might change, the
general rise/fall tendencies should still behave as plotted. Further tailoring of the
model to specific habitual tendencies can be readily envisaged.

3.7.5 Simulation of Instrumental Conditioning Theory

We distinguish clearly between short- and long-term responses. Short-term re-
sponses refer to those occurring over a small number of successive self-administra-
tions of the drug. Without external limitation, instrumental conditioning could lead
to overdose and death because it is conceptualized as a simple positive feedback
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Fig. 3.18 Effects of instrumental conditioning. Illustration of the effects of instrumental condi-
tioning on the pattern of subsequent self-administration with forced cessation. After the cessation
the subject’s substance use follows the same pattern of sensitization and habituation although the
size of the sensitization is not as pronounced as in the naïve case due to residual long-term memory

loop. Internal response mechanisms that usually prevent overdose could be related
to toxicity and eventually to an inability to administer the dose. Escalating drug
self-administration can occur either as an increase in the size of the dose or as an
increase in the frequency of dosing.

The short-term time scale is governed by a positive feedback loop as each drug
self-administration is positively reinforced by the primary reward of the drug ef-
fect. In contrast, the longer time scale is associated with chronic use of the drug and
slower processes that determine variations in dosage and timing—that is, sensitiza-
tion and habituation (McSweeney et al. 2005). For the purposes of presentation, we
focus on the longer time scale such that the short term processes are represented
simply by a delay between doses; we ignore for the moment the complexities of the
pharmacokinetics and dynamics of an individual drug self-administration, as did
McSweeney et al. (2005).

To illustrate this concept, we begin with a simple model of drug self-administra-
tion in which the dose is administered following the principles of instrumental con-
ditioning. This is expressed as a positive feedback loop (i.e., the size of the next
dose is larger than the previous one by an arbitrary factor (1.1) in the model, and
the length of time between doses is shortened by 5% (another arbitrary value)).
In the absence of sensitization or habituation processes, the subject would in-
crease the dose and the frequency of use and would eventually self-destruct. Sen-
sitization and habituation are expressed in this model as variations in dosage and
frequency necessary for stability. The dose is thus modulated in this model by
two factors: the previous dose and the sensitization-habituation process that in-
creases or decreases the dose depending on the lossy accumulation of drug expe-
rience.

Figure 3.18 shows instrumental conditioning for a situation of continuous use
and Fig. 3.19 demonstrates the behavior of the model when use is forced to cease
and then restarted with a small priming dose. We use the same lossy accumulator as
in the previous opponent process theory model.

The gain function determines the shape of sensitization/habituation and has a
shifted bell shape: Gain = exp(−(w(t) − 0.3)2/0.2). It reaches maximum at the
value of w(t) = 0.3. As shown in Fig. 3.18, after a significant period of abstinence
a small dose is able to trigger new consumption.
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Fig. 3.19 Effect of self-adjustment. The effect of self-adjustment to the delay between the doses
due to sensitization and habituation. During the sensitization phase the interval between the doses
is shorter, which increases the speed at which the lossy accumulator fills. As habituation comes
to predominate, the interval between self-administrations becomes longer and finally settles to a
steady self-administration regime

This model has mathematical similarities to that for opponent process theory de-
scribed above, although there are substantial differences between these models. In
Instrumental conditioning, it is the dose and the frequency that are being increased,
while for the opponent process theory model the increase was in the drug response
and hedonics. In the current model, repetitive use is generated through positive feed-
back triggering the next dose after a delay from previous use. This repetitive mech-
anism could be generated even without an increase in dose or frequency and would
result in repetitive consumption of a fixed dose and rate.

3.7.6 Sensitization and Habituation

The size and frequency of drug self-administrations are further controlled by sen-
sitization/habituation processes that are mathematically expressed through a gain
function, which is in turn a function of the amount in the lossy accumulator. As
the “water level” increases in a lossy “bucket,” gain first provides sensitization, and
with further increases, habituation. The control theoretic model of instrumental con-
ditioning does not have a preset error per se, but rather leads to a long term stationary
process with a stable dose and regular consumption intervals.

Figure 3.20 illustrates this behavior of the model. While the definitions of sensi-
tization and habituation here are different than the ones in the opponent process
theory model, the mathematical forms of the lossy accumulator and gain func-
tions remain the same. The lossy accumulator represents the accumulated history
and experience of drug use and is an internal controlling factor for drug self-
administration.

Positive and negative feedback operate such that as the dose increases, so does
the value in the lossy accumulator. As this value becomes large, the gain function
decreases it, which in turn decreases the value in the accumulator. When the value in
the accumulator is low, the gain function increases the dose which in turn increases
the accumulator (Fig. 3.20).
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Fig. 3.20 Instrumental drug
conditioning. A control
theoretic diagram of
instrumental conditioning

Fig. 3.21 Instrumental drug conditioning. Illustration of the relationship between the dose size,
the amount in the lossy accumulator and the gain function. Note the delay in response of the dose
compared to the lossy accumulator and gain function status. After the first two doses the value of
the lossy accumulator has increased close to 0.3, which corresponds to the maximum of the gain
function. This, in turn, resulted in the increase in the third dose. Although the gain reached the
value of 0.6, the fourth dose still has positive gain compared to the previous dose resulting in the
lossy accumulator reaching the value of 0.8. This dramatically decreases the gain function and thus
the next dose. Gradually, the size of the lossy accumulator decreases such that the gain, and thus
the dose size, is slowly increasing again

Similar processes control the timing of the subsequent dose (i.e., the gain func-
tion controls the timing of the next dose). Finally, both the dose size and its tim-
ing could be simultaneously controlled by sensitization/habituation processes. Fig-
ure 3.21 shows the delay between doses.
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As noted above, this is not a theory of addiction. It is instead a theory of drug
self-administration, which is a common component in models of addiction.

3.8 General Discussion

The seven models presented here span a vast range of different theories and
proposed psychobiological mechanisms. Control theory highlights stark contrasts
among theories. At the most fundamental level, models that employ only negative
feedback are very different from those that use only positive feedback or both pos-
itive and negative. Even models derived from a common lineage (e.g., behavioral
learning theory) can be remarkably different from each other in terms of their control
theory structures (e.g., respondent conditioning versus instrumental conditioning).
Yet there are some general similarities that are highlighted when they are modeled
using control theory.

3.8.1 Linear

All of the seven models presented here are linear in conception, although imple-
mentation led to adding nonlinear components. In constructing these models, we
used the approach suggested by Einstein that the model should be as simple as pos-
sible but not simpler. Adding more complexity and non-linearity might make the
models better describe the complexities of actual drug use, but would make the rep-
resentation of the theories more obscure. For example, both opponent process theory
(Solomon 1980) and Siegel’s (1975) respondent conditioning model assume that the
two opposing processes (“a” and “b,” or unconditioned and conditioned responses,
respectively) combine additively (i.e., linearly). Clear and persistent evidence might
be needed to abandon this (convenient) assumption.

3.8.2 Dynamical

All of the theories presented here (see Table 3.1) are intended to account for repet-
itive behavior that unfolds and changes over time. This is the nature of addictive
behavior. For the addicted individual, there are a number of possible time scales that
are relevant. For example, if the drug of choice is cocaine, then the time scale of the
acute drug effect can be in minutes or tens of minutes, while bouts of cocaine use
may last hours or days. The initial, intense subjective effect of cocaine is measured
in seconds. Craving may last seconds or minutes, while the abstinence syndrome
can be very protracted. In contrast, if an individual with opioid dependence receives
regular methadone treatments, then these brief time scales are increased 10- to 100-
fold because the acute methadone effect is so much longer lasting that of cocaine.
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Table 3.1 Proposed mechanisms for different stages of drug use and addiction

Model Naïve use Experimental drug
use

Asymptotic drug
use

Relapse

Heroin addiction prevent withdrawal

Opponent process “a” process “a” process &
“b” process

“b” process

Respondent
conditioning

unconditioned
response

unconditioned
& conditioned

conditioned
response

Instrumental
conditioning

learn contingency obtain
reward

obtain
reward

Incentive—
sensitization

drug
“liking”

drug
“wanting”

drug
“wanting”

Autoshaping learn contingency sign-tracking sign-tracking

Evolutionary
psychology

increase
SPFit

increase
SPFit

increase
SPFit

trigger
SPFit

The length of time required for subchronic drug use to lead to addiction is an impor-
tant time scale that is unclear at the present time. Finally, the career of the addicted
individual can be often described in years or decades, with the potential for rapid
(hours or days) readdiction after long (up to decades) periods of abstinence.

The extreme variation in times scales for the pharmacokinetics and pharmaco-
dynamics of addictive behavior presents problems for control theory modeling (or
any other mathematical modeling, for that matter). The linear dynamical model that
describes well the acute drug response may be very different from that for chronic
drug use over decades. Only an ambitious control theory model will attempt to apply
the same structural model to functions over the full range of time scales.

We have been concerned mainly with system dynamics over brief to medium-
length time scales. Drug use also develops over a very long time scale, from initial
use in the drug-naïve individual, experimental use, addictive use, and relapse after
periods of abstinence. Some of these models make different assumptions about the
mechanisms that apply to different stages. This is illustrated in Table 3.1.

Note in Table 3.1 that SPFit theory is the only model that attempts to account for
all stages of drug use, including the first use in a person who is naïve to drugs, with
the same mechanism; this is the motivation to increase or to protect SPFit. Koob
and Le Moal (1997) invoked a two-stage model with very different mechanisms in
the early stages of drug use (incentive-sensitization) and the later addictive stage
(opponent process theory). The early stage in Koob and Le Moal’s (1997) model
is characterized by positive feedback, while later stages involve both positive and
negative feedback. In their later writings (Koob and Le Moal 2008a, 2008b), these
authors have emphasized negative feedback (or negative reinforcement, which is a
similar construct) in the addiction to drugs.
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Implied in incentive-sensitization theory is that while drug “wanting” increases
with persistent use, drug “liking” either remains constant or habituates; this is sug-
gestive of a two-stage model because people in the early stages of drug use take
the drug for a different reason (“liking” the drug effect) than in the later stages
(“wanting” the drug effect). Traditional learning theories (respondent and instru-
mental conditioning, as well as autoshaping) imply an early learning phase in which
the mechanism is primarily unconditioned, and a later stage in which conditioning
has developed fully.

One might assume that two-stage models would account for more addictive phe-
nomena than single-stage models, but inspection of Tables 3.1 and 3.3 suggests that
this is not necessarily the case. Again, parsimony is an important consideration.

Most of these theories are nebulous about transitions between stages of drug
use. This is striking considering that the transitions between stages, and the psy-
chobiological mechanisms that determine those transitions, are considered critically
important by many psychopathologists in the addictions field. For example, what de-
termines when there is a transition from naïve use of a drug or drugs to subchronic
use, and who specifically makes this transition and who does not? The structural
modeling that we have performed sharply delineates these stages, but does not really
speak to the mechanisms of transitions between stages. It does, however, encourage
the theorist to specify the psychobiological mechanisms that control each stage, and
these same mechanisms then become hypotheses for those mechanisms that control
transitions between stages. We leave individual differences to future work, although
it represents a substantial part of the literature on the etiology of substance use dis-
orders.

3.8.3 Systems

A system is characterized by different processes or components that are function-
ally or statistically related to each other. In these systems, a perturbation in one
component will reverberate throughout the system because they are mutually inter-
connected. There is a sense in which control theory allows one to predict how such a
perturbation of one variable will affect others in the system. In many cases, these ef-
fects could not be predicted by knowing the isolated effect of changing one variable
on one other.

The parameters of the model will likely differ as a function of the specific drug or
drugs that the individual is taking, person variables (such as genotype, phenotype,
and social or physical environment), and pharmacokinetic and pharmacodynamic
factors. Most of these models (with the possible exception of the heroin addiction
model) were either originally constructed to account for a wide range of addictive
drugs, or were generalized to them. This generality is reflected in the Diagnostic
and Statistical Manual of the American Psychiatric Association – IV (American
Psychiatric Association 2000) as diagnostic criteria for abuse and dependence that
are similar or identical for very different drugs of abuse. These drugs are a loose
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collection of substances that share “abuse liability,” and have very little else in com-
mon. Modern conceptions of abuse liability go beyond self-administration in hu-
mans or nonhuman animals to common neurochemical functions, such as dopamin-
ergic stimulation in the ventral striatum of rodents (Di Chiara and Imperato 1988).

In control theoretic analyses, the application to a specific drug or person be-
comes a matter of parameter estimation within the particular control theory model.
Parameter estimation involves finding parameter values which are best compatible
or best explain observed responses of phenomena, and is closely connected to suf-
ficient statistics in statistical modeling (Kay 1993). Parameter estimation is beyond
the scope of this discussion.

Noise Although these seven models of addiction are all deterministic systems,
in real-world applications they have noise (stochastic) components. In constructing
time-series simulations of these systems, the modeler must choose what types of
noise (e.g., Gaussian or Poisson) components to add and where to add them.

Feedback All of these models employ some type of feedback. This can be nega-
tive feedback, positive feedback, or a combination of the two. Note in Table 3.2 that
models with negative feedback tend to be more stable, and (in Table 3.3) to account
well for drug withdrawal effects. On the other hand, models with only positive feed-
back are often unstable, and account well for acquisition of drug-taking and binging
(rapid, repetitive use that leads to very high or toxic levels in the blood), but do not
model the withdrawal syndrome well. Models with only one type of feedback (i.e.,
positive or negative but not both) have fewer parameters and are more parsimonious.
In contrast, models with more than one type of feedback (i.e., opponent process the-
ory, respondent conditioning, and instrumental conditioning) are inherently complex
and can account for a wide range of empirical phenomena at the inevitable expense
of parsimony. For example, Solomon’s (1980) notion that both and the “a” and “b”
processes are conditionable allows the model to account for almost any eventuality,
but makes it more difficult to test the theory (i.e., it is difficult to falsify).

Note in Table 3.2 that all the models are linear in theory. However, in order to
implement two of these models (opponent process theory and instrumental condi-
tioning) it was necessary to add nonlinear components such as stochastic noise. The
‘lossy accumulator’ is a linear component (in these cases) that introduces memory
into the system.

Set Points It may seem ironic that only one (heroin addiction model) of the seven
models that we discuss has a simple set point. Even in this case, the set point is only
at asymptotic levels of drug use; it must have had some (unspecified) mechanism by
which it changed from a desired blood heroin level of zero (in the never user) to a
nonzero positive level after progression to addictive drug use. Several of the mod-
els have “neighborhoods” that the system “seeks” or tracks rather than specific set
points. For some limited purposes, the mean of this neighborhood could be taken as
an estimated set point. These models predict oscillatory system behavior, a charac-
teristic of addictive behavior, and these semi-periodic changes can be fairly regular,
particularly when there are minimal social environmental constraints.
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Table 3.2 Control theoretic aspects of models of addiction

Model Feed-
back

Error signal Stages Set point Stability Linearity

Heroin addiction neg (−) mu-opioid? 1 yes high linear

Opponent
process

neg (−)
pos (+)

affective 2 equilibrium
functions

high linear
nonlineara

Respondent
conditioning

neg (−)
pos (+)

? 2 equilibrium
functions

high linear
nonlineara

Instrumental
conditioning

neg (−)
pos (+)

reinforcement 1 varying set
points

moderate linear
nonlineara

Incentive—
sensitization

pos (+) drug “wanting” 2 no no linear

Autoshaping pos (+) skeletal approach 1 no no linear

Evolutionary
psychology

pos (+)
neg (−)

SPFit 1 varying set
points

moderate linear

aThe theoretical models are all linear, but implementation for simulations required the inclusion of
some nonlinear components (see text)

At the same time, several of the models admitted no set points. This could be
due to the fact that they are simple positive feedback systems that do not afford
a set point (e.g., incentive-sensitization and autoshaping), or the system generally
“strives” toward a higher level (e.g., SPFit theory) rather than a specific optimal
level.

Structural Similarity Table 3.3 lists the addictive phenomena for which different
models account. We noted (above) that control theory models of opponent process
theory and respondent conditioning are so structurally similar that they are virtu-
ally identical in control theoretic terms (even though they were developed indepen-
dently). Another example of structurally similar models is instrumental condition-
ing, incentive-sensitization, and autoshaping models, whose theoretical similarity
is more subtle. All three models have positive feedback arms and the value of the
drug “reward” becomes inflated by that positive feedback. These models account
for the same addictive phenomena (see Table 3.3), except that McSweeney et al.’s
(2005) instrumental model also has a negative feedback arm that accounts for drug
tolerance, and their system does reach asymptote (limited by habituation).

Mutual Exclusivity Since some of the models discussed herein propose markedly
different mechanisms and systems of addiction, it begs the question of whether these
models are mutually exclusive for an individual person (or nonhuman animal), or
for addictive processes in general. In fact, Koob and Le Moal’s (1997) model in-
corporates two and perhaps three (including stress allostasis) into one (actually, a
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two-stage model). This issue of mutual exclusivity is facilitated by control theoretic
analyses. The combination of different addiction theories into an integrated control
theoretic model is an interesting and important area for future research.

3.8.4 Limitations

Alternative Models This discussion focused on several homeostatic and non-
homeostatic models of drug addiction that were selected primarily for didactic rea-
sons. These models represent a number of alternative formulations that frequently
contradict each other. Of course, there are many theories of addictive behavior that
are beyond the scope of this presentation. Some of these other theories may be dif-
ficult to model in control theory terms, whether by linear or nonlinear dynamical
systems (Khalil 2002). The potential usefulness of research on addictive behavior
in the context of control theory should be apparent. Our attempt to make control
theory explicit rather than implicit may facilitate research of this nature.

3.8.5 Surrogate Measures

These theoretical models are abstract representations or summaries of complex phe-
nomena. In most cases they are oversimplifications for the purposes of better under-
standing, communicating, and testing hypotheses about the phenomena. In turn, a
mathematical treatment—such as control theoretic modeling—is a further simplifi-
cation. Nonetheless, modeling plays an important role in understanding the theories
and the phenomena to which they relate. At some point, the theory (or mathematical
treatment) must “touch down” to measurable variables that are considered key to
testing the hypotheses derived from these theories. We noted above that most mea-
sures in these psychobiological systems are surrogate measures—that is, they relate,
closely we hope, to the actual measures of interest, which may not be available for
technical or ethical reasons.

Table 3.4 lists common surrogate measures associated with the seven theories
that we have discussed, as well as the target measures that we might prefer to mea-
sure but are generally unavailable at this time. In the case of instrumental condition-
ing, the rate of operant responding is the theoretical sine qua non of the model, so
the surrogate and the target measures are the same. Again, the variables in Table 3.4
represent a remarkably wide range of measures, from rate of pressing a lever or
nose-pokes (rate of drug self-administration) to a questionnaire measure of power
and sexual functioning (SPFit). These may or may not have been the measures that
we would have chosen in a perfect world, but they may suffice to test theoretical
hypotheses. The degree of discrepancy between the surrogate and target measures is
of great importance to testing the theories. We hope that control theoretic analyses
sharpen the focus on these surrogate measures and issues concerning the congruence
between them and the variables we might prefer to measure.
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Table 3.4 Common surrogate measures and the target measures often associated with different
addiction theories

Model Surrogate measure Target measure

Heroin addiction ventral striatal β-endorphin

Opponent process intense affect brain substrates

Respondent conditioning panorama of the drug effect
and its opposite

brain substrates of these two
responses

Instrumental conditioning rate of drug self-administration rate of drug self-administration

Incentive—sensitization drug “wanting” neural plasticity of mesolimbic
dopamine circuitry

Autoshaping physical approach psychological approach
(sign-tracking)

Evolutionary psychology self-perceived fitness (SPFit) survival and reproductive
fitness motivation system

A further consideration is that most theories do not depend on a single measure,
whether surrogate or target. There is typically a vector of measures rather than a
single one in the theory and the control theoretic model; this vector may be of sur-
rogate or target variables. For example, SPFit theory uses the variable “SPFit” as
the surrogate measure of oversight of the survival and reproductive fitness motiva-
tion system. The actual vector of variables might include SPFit-power motivation,
self-assessment of social rank and influence, SPFit-reproductive fitness motivation,
prefrontal dopaminergic stimulation, ventral striatal dopamine and its modulating
influences, etc. ‘SPFit’ is shorthand for this vector. Our denoting a single variable
is a further simplification to already concise models of addiction. Modern control
theoretic modeling easily embraces this complexity if the vector of variables is mea-
surable.

3.8.6 Issues for Further Theoretical Development

Our review of theories did not touch on differences among drugs of abuse, among
different dosages of the same drug, or even between groups of people or animals
that respond differently to the same drug (or to different dosages of that drug), al-
though it is conceivable that these merely involve different sets of parameters in
essentially a simple structural model. Moreover, we reviewed mainly models of
chronic drug use. We discussed aspects of the acute response to drugs (e.g., acute
tolerance/sensitization, biphasic or multiphasic pharmacodynamic responses, non-
linearities in dose–effect curves, etc.) only as they might relate to models of chronic,
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relapsing addiction. Whether these many factors can be modeled by changes in pa-
rameter values or require entirely different structural models is an open question.
However, we do suggest that control theory carries with it powerful tools for ad-
dressing these issues, as well as raising questions for study that might not have been
asked without this explicit approach.

3.9 Conclusions

We have shown that many (seven) theories of addiction and their variations are
amenable to control theoretic modeling. This is only the tip of the iceberg. The
control theory literature is immense, and the tools are powerful and fully developed
for analyzing feedback systems. We conclude with a set of recommendations for
further applications of control theory to addictive behavior that summarize some of
the points that we have made:

• Control theoretic diagrams are simple and useful means to summarize and com-
municate many (but not all) theoretical models of addiction. These diagrams
make explicit the feedback loops that are implicit in many theories and highlight
limitations of specific models. Moreover, they encourage the theorist to explicitly
designate surrogate measures for (currently) immeasurable variables that are cen-
tral to the operation of the controlled system. Most importantly, these diagrams
lead rather directly to mathematical implementations of the models.

• Control theory has been thoroughly developed because of its many applications
in engineering, computer science, and biology. It has proven highly flexible in
solving theoretical and practical problems. The addictions theorist is more likely
to be limited by gaps in the addictions literature than they are of control theo-
retic implementations. Addiction theories that do not involve feedback—open-
loop models—may not benefit by control theoretic modeling, except when the
theorist proposes that the model is “normally” closed-loop, but the feedback loop
is “broken” in this particular psychopathology.

• The addictions theorist interested in control theory modeling is certainly not lim-
ited to the types of control theoretic models presented herein (e.g., hybrid and
adaptive models [Goebel et al. 2009; Astrom and Wittenmark 1989; Dewilde and
van der Veen 1998]).

• Researchers might consider carefully whether linear control models are sufficient
to account for available evidence. Not unlike the “general linear model” in clas-
sical statistics, linear dynamical models with some degree of negative feedback
are robust and stable. Nonlinear dynamical models and chaotic systems may be
necessary to account for some phenomena that are not encompassed by linear
models.

• Control theoretic modeling may facilitate the determination of congruence be-
tween empirical evidence and theoretical models. Although an in-depth discus-
sion of parameter estimation is beyond the scope of this discussion, we note a
general approach. Once one has fixed on a particular structure for a proposed
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model, there will typically be several parameters involved, such as time scales,
relative units, interaction coefficients, etc. If this structure is really appropriate,
we expect that good agreement with experimental data occurs for some correct
specifications of parameter values. Without going into details of the theory of pa-
rameter estimation, we note that this procedure typically involves an optimization
of the choice of values as matching the results/observations of a number of exper-
iments. Depending on the amount of measurement noise and the sensitivity of the
measurements to variation of the parameter choices, this procedure can be quite
effective in providing a satisfactory match—subject, of course, to the correctness
of our assumption that the right general structure has been chosen for analysis.

• Multiple stages of addiction are amenable to control theoretic modeling. Different
stages of addiction need not have the same feedback structures (e.g., Koob and
Le Moal 1997). Addiction staging highlights the critical importance of factors
or psychobiological mechanisms (which may or may not be modeled in control
theoretic terms) that determine the transitions between stages.

• Theoretical integration of models in control theoretic terms that might appear ir-
reconcilable or unrelated is a priority for future research. Different theories of
addiction may simply emphasize different feedback arms in a controlled sys-
tem (i.e., control theory may aid reconciliation of apparently unrelated theories).
Recognition of the vastly different time scales for different addiction phenomena
may lead to controlled systems embedded within other regulated systems, each
with different time scales and potentially different feedback mechanisms. This
recognizes the multi-dimensional nature of addiction phenomena;

3.9.1 Final Comment

In 1978, Meehl argued that psychological science must go beyond null hypothesis
testing and “significant differences between means,” in the direction of estimating
point values for mathematical functions. Control theoretic modeling is one possible
approach to attaining this goal. We have taken a first step in terms of specifying sev-
eral theoretical models of addiction in control theoretic terms. These specifications
lead rather directly to constructing simulations that can be tested against empirical
realities. The “goodness of fit” of these simulations has important implications for
testing, rejecting, modifying, or developing new theories that can best mimic empir-
ical data. While this is not the only contribution that control theoretic modeling can
bring to drug abuse studies, it is arguably the most compelling. We hope that control
theory gains traction in addictions research.
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Chapter 4
Modelling Local Circuit Mechanisms
for Nicotine Control of Dopamine Activity

Michael Graupner and Boris Gutkin

Abstract Nicotine exerts its reinforcing action by boosting dopamine output from
the ventral tegmental area (VTA). This increase results from stimulation of nico-
tinic acetylcholine receptors (nAChRs). However while much is known about the
receptor mechanisms of nicotine actions several issues remain to be clarified. One
is how the receptor-level action results in acquisition and maintenance of nicotine
addiction. Another is what are the specific circuit level neural pathways of nicotine
acute action on the dopamine system. In fact in vivo and in vitro experiments reach
contradictory conclusions about the key target of nicotine action: direct DA cell
stimulation or indirect effects mediated through GABAergic interneurons. We ad-
dress these issues through computational modeling first through a global framework
taking into account multiple-time scales of nicotine effect and second modeling the
VTA circuitry and nAChR function which allows to pinpoint the specific contribu-
tions of various nAChRs to the DA signal. We show that the GABA interneurons
play a central role in mediating nicotine action. Our results propose mechanisms by
which the VTA mediates the rewarding properties of nicotine.

4.1 Introduction

The ventral tegmental area (VTA) is a key dopaminergic structure that is involved
in signaling of reward and motivation as well as in the acquisition of drug rein-
forced behavior (Hornykiewicz 1966; Nestler and Aghajanian 1997; Chiara 2000).
Nicotine (Nic) stimulates nicotine acetylcholine receptors (nAChRs) in the VTA
(Mereu et al. 1987) thereby boosting dopamine levels in its target brain structures,
such as the nucleus accumbens (NAcc) (Clarke 1991). Several lines of evidence
suggest that the nACh receptors in the mesolimbic dopamine (DA) system domi-
nantely mediate the motivational properties of nicotine (Chiara and Imperato 1988;
Corrigall and Coen 1991; Corrigall et al. 1994; Nisell et al. 1994; Picciotto et al.
1998). Despite ample data on the outcome of nicotine action, the exact mechanisms
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how nicotine usurps dopamine signaling in the VTA have not been conclusively
resolved. A significant open question is how the local effects of nicotine lead to
nicotine addiction. Another major outstanding question is whether nicotine acts di-
rectly on the dopamine neurons or changes the interplay between the dopamine and
the local GABA neurons. In other words, is the nicotine boost of DA signaling a sin-
gle cell—or a local circuit phenomenon? In this chapter we go over our modelling
efforts toward answering these open questions.

4.2 The Ventral Tegmental Area as a Local Circuit:
A Brief Overview

The VTA is a neuronal microcircuit, containing approximately 80% DA neurons
targeted locally by the GABAergic cells (∼20%) (Lacey et al. 1989; Johnson and
North 1992b; Sugita et al. 1992; Ikemoto et al. 1997). This local circuit receives
glutamatergic (Glu) afferents from the prefrontal cortex (PFC) (Christie et al. 1985;
Sesack and Pickel 1992; Tong et al. 1996; Steffensen et al. 1998) and is furthermore
innervated with glutamatergic (Clements and Grant 1990; Cornwall et al. 1990;
Forster and Blaha 2000) and cholinergic projections (Oakman et al. 1995) from
the brainstem. In turn DA and GABAergic projections from the VTA target numer-
ous areas of the brain including the PFC (Thierry et al. 1973; Berger et al. 1976;
Swanson 1982; Steffensen et al. 1998; Carr and Sesack 2000a) and limbic/striatal
structures (Andén et al. 1966; Ungerstedt 1971; Oades and Halliday 1987; Bock-
staele and Pickel 1995). Thus the VTA DA and GABAergic neurons send projec-
tions throughout the brain generating DA and GABAergic signals in response to
cortical (Taber and Fibiger 1995; Tong et al. 1998) and subcortical inputs (Floresco
et al. 2003; Lodge and Grace 2006) as well as to nicotine.

Release of the endogenous ligand ACh into the VTA causes nearly synchronous
activation of nAChRs (Dani et al. 2001). The rapid delivery and breakdown of
ACh by acetylcholinesterase precludes significant nAChR desensitization (Feld-
berg 1945). Nicotine (Nic) activates and then desensitizes nAChRs within sec-
onds to minutes (Katz and Thesleff 1957; Pidoplichko et al. 1997; Fenster et al.
1997) since it remains elevated in the blood of smokers during and after smoking
(∼500 nM for ∼10 min; Henningfield et al. 1993). Importantly, the various sub-
types of nAChRs have distinct affinities for acetylcholine as well as nicotine, ex-
hibit markedly different activation/desensitization kinetics (Changeux et al. 1998),
and have different expression targets: (i) low affinity α7 containing nAChRs desen-
sitize rapidly (∼ms) (Picciotto et al. 1998) and are found on glutamatergic termi-
nals; (ii) high affinity, slowly desensitizing α4β2 containing nAChR on GABAergic
cells; and (iii) α4- and α6-containing nAChRs on DA neurons (Calabresi et al. 1989;
Klink et al. 2001). Most of the nAChR-mediated currents and the reinforcing prop-
erties in response to nicotine are mediated by the α4β2 nAChR subtype (Picciotto et
al. 1998), whereas α7 nAChRs have been suggested to contribute to the fine-tuning
of the DA response to nicotine.
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On a longer time scale nicotine is known to lead to upregulation of the α4β2
nAChRs. This increases the density of receptors, boosting their number, while the
receptors remain fully functional (Picciotto et al. 1998; Champtiaux et al. 2003).
A further longer time scale, homeostatic re-dress of the receptor function—the
downregulation—has also been hypothesized. In contrast, the α7 nAChRs have
therefore been suggested to contribute to long-term potentiation of glutamatergic
afferents onto DA neurons (Bonci and Malenka 1999; Mansvelder and McGehee
2000).

4.3 Global Neurocomputational Framework Shows How
Receptor-Level Effects of Nicotine Result
in Self-administration

We tackled the first question posed above by constructing a neuro-computational
framework for nicotine addiction that integrates nicotine effects on the dopaminer-
gic (DAergic) neuron population at the receptor level (signaling the reward-related
information), together with a simple model of action-selection. This model also in-
corporates a novel dopamine-dependent learning rule that gives distinct roles to the
phasic and tonic dopamine (DA) neurotransmission. We strived to clarify the rela-
tive roles of the positive (rewarding) and opponent processes in the acquisition and
maintenance of drug taking behavior, and the development of such behavior into a
rigid habit.

The major hypothesis for the approach is that the nicotine effects on dopamine
signaling in the ventral tegmental area initiate a cascade of molecular changes that in
turn bias glutamatergic (Glu) learning processes in the dorsal striatum-related struc-
tures that are responsible for behavioral choice, leading to the onset of stable self-
administration. Gutkin et al. (2006) specifically hypothesized that nicotine, through
activation and up-regulation of nicotinic acetylcholine receptors (nAChRs) in the
VTA (e.g., Picciotto et al. 1998; Champtiaux et al. 2003), dynamically changes the
gain of the dopaminergic signaling. Hence, nicotine both potentiates the phasic DA
response to rewarding stimuli and evokes such signal by itself (Picciotto et al. 1998;
Changeux et al. 1998; Dani and Heinemann 1996). Note that this is rather dif-
ferent than in the reinforcement learning models of addiction (e.g. Redish 2004)
where the pharmacological and reward signals are independent. In the neurody-
namical framework, the reward signal is in fact modulated by the pharmacological
effect of the drug. The phasic DA in turn instructs the learning and plasticity in the
action-selection neural machinery that is modeled as a stochastic winner-take-all
network (Usher and McClelland 2001; Cho et al. 2002) and reflecting activity in
the dorsal nigro-striatal-cortical loops (Beiser et al. 1997; Dehaene and Changeux
2000). Since both DA and nicotine potentiate Glu plasticity in the dorsal striatum
(Reynolds and Wickens 2002), the authors proposed a specific Hebbian learning
rule for the excitatory (cortico-striatal-cortical) synapses gated by the tonic DA.
Persistent nicotine-dependent depression in tonic DA then causes the learned be-
havioral bias to become rigid. Here Gutkin et al. (2006) hypothesize a slow-onset
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opponent process that is recruited and that in turn disrupts DA neurotransmission to
the point that extinction learning or response unlearning is impaired; hence, progres-
sively, nicotine self-administration escapes from the control of the DA signal. This
effectively models the ventral–dorsal progression of long-term addiction hypothe-
sized by DiChiara (1999). Further supporting data for the framework was discussed
in Gutkin et al. (2006).

The general framework is applied to simulating self-administration of nicotine.
In the computational framework, nicotine affects the DA response through a three-
time scale model of drug action on the dopaminergic neuron population; the pha-
sic nicotine dependent activation of nicotinic ACh receptors, slower nicotine de-
pendent upregulation or increase in number of receptors (modeled as a multiplica-
tive term in the model) and subsequent upregulation-evoked opponent homeostatic
down-regulation of nAChRs (and hence their responses to nicotine).

Injections of nicotine in sufficient doses potentiate the DA signal so as to gate
plasticity in the action-selection machinery. Since nicotine is contingent on a spe-
cific action choice (encoded in the model as activity of a specific neuronal popu-
lation), the excitatory synaptic weights of the corresponding neural population in-
crease and bias the action-selection towards the self-administration of nicotine. With
prolonged self-administration, the influence of the DA signal diminishes due to the
opponent process (consequence of the receptor down-regulation)—the behavioral
bias for the action leading to nicotine becomes “stamped in”. Drug seeking behav-
ior becomes routinized, and inelastic the motivational value of nicotine or the cost
and is associated with hypodopaminergic withdrawal (Rahman et al. 2003).

Simulations of the above framework, showed that positing drug induced neuro-
adaptations in the ventral dopaminergic circuitry and drug-modulated learning in
the dorsal cortico-striatal action-selection system is sufficient to account for the
development and maintenance of self-administration. Importantly, the positive re-
warding effect of the drug is translated into biased action selection and choice mak-
ing, whereas the slow opponent process plays a key role in cementing the drug-
associated behavior by removing the DA signal from the range where learning (and
unlearning) can take place. Hence, the model predicts that in the long-term the self-
administration behavior would tend to become progressively more difficult to ex-
tinguish. The model speculates that this effect on action-selection learning may be
the reason why nicotine has reportedly high addictive liability despite its limited
hedonic impact.

The major strength of the model framework is that it neatly integrates the various
processes involved in nicotine self-administration identifying the various functional
effects with biological mechanisms and brain structures. This framework can be
viewed as a “knowledge repository model” (Bobashev et al. 2007) synthesizing a
host of known effects at multiple levels of organization. For example, it links recep-
tor level effects to behavior. The model further makes a number of interesting pre-
dictions. An important prediction of the model is that plasticity in the dorsal striatum
of animals that are chronically exposed to nicotine should be reduced. These ani-
mals should show deficits in re-adjusting their behavior under new conditions (see
Granon et al. 2003 for possible experimental equivalent). The above framework im-
plies a hierarchy of thresholds for the progressive stages of addiction. This is an
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outcome of the distinct roles of the direct motivational (rewarding), and opponent
processes in drug addiction such that the dose and duration of the exposure to nico-
tine for the initial sensitization by the drug is below that for the acquisition of the
self-administration, followed by higher thresholds for the stabilization of the self-
administration and for the transfer to habit-like rigidity. The computational frame-
work implies that the sensitization of behavior by nicotine through DA-dependent
processes may be disassociated from the acquisition of self-administration. At low
doses/short duration, nicotine may lead to apparent behavioral sensitization, but not
self-administration. Drug-related behaviors may be acquired due to the action of the
positive “reinforcement” or “reward” DA-related process. Hence, the acquisition
of self-administration would be under motivational control. The behavioral choices
will be selected probabilistically in agreement with their relative value. The devel-
opment of rigidity in actions is a major point of the neurocomputational framework
proposed by Gutkin et al. (2006). The model suggests how, in the long run, processes
that oppose the primary reward ingrain the drug-related behavior making it inde-
pendent of the motivation state and value of various action choices and difficult to
modify in the face of changing contingencies. This further implies that drug-related
behaviors would be extremely difficult to unlearn, even when the environment is
enriched by new rewarding stimuli.

Like other models, the neurodynamical approach rests on a number of assump-
tions to be confirmed and leaves questions that are not directly addressed. For exam-
ple, explaining why nicotine self-administration can be difficult to acquire remains
a challenge. One clue may come from the hypothesized multiplicative role of nico-
tine on dopaminergic signaling: at low doses nicotine may not boost the phasic
dopamine signal (burst) sufficiently to lead to learned self-administration, yet when
the dopamine burst is evoked by another rewarding stimulus, the multiplicative ef-
fect of nicotine would boost such DA response nonlinearly, subsequently leading to
a preference for drug-related behavior. Finally. the global model does not pin-point
the specific local mechanisms by which nicotine may bias the DA signaling. We
now turn to reviewing a novel hybrid pharamcodyamics- neural model that focuses
exactly on the question of local circuitry and nicotinic receptor mechanisms.

4.4 Local Circuit Model of the VTA Shows the Mechanisms
for Nicotine Evoked Dopamine Responses

Despite the accumulated knowledge, the mechanisms that translate the nAChR ac-
tivation by nicotine into the observed DA response in the VTA remains contro-
versial. In particular, in vitro studies attribute a crucial role to nicotine-mediated
activation of α4β2 nAChRs on GABA cells, whereas in vivo data point to DA
cells, leaving the dominant site of nicotine action elusive. In vitro data show that
nicotine transiently increases afferent glutamatergic and local GABA input to VTA
DA cells (Mansvelder and McGehee 2000; Mansvelder et al. 2002). Mansvelder
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et al. (2002) show that the change in inhibitory postsynaptic current (IPSC) fre-
quency in response to nicotine is biphasic: a robust increase during the pres-
ence of nicotine is followed by a drop below baseline after the removal of nico-
tine. Blocking α7-containing nAChRs with methyllycaconitine (MLA), a specific
α7 nAChR antagonist, reduces the relative IPSC frequency increase from 320%
to 280%, whereas mecamylamine (MEC), an antagonist of non-α7-containing
nAChRs, completely abolishes the change in IPSC frequency. Together with the
fact that GABAergic neurons mainly express α4β2 nAChRs (Klink et al. 2001),
Mansvelder et al. (2002) conclude that the increase in IPSC frequency is due to ac-
tivation of α4β2 nAChRs on those cells. Based on in vitro recordings, Mansvelder
et al. (2002) reason that the increase in DA is due to disinhibition. The idea be-
ing that nicotine transiently boosts GABA transmission to DA cells, followed by
α4β2 nAChR desensitization which in turn removes the tonic cholinergic drive
to GABAergic neurons, i.e. disinhibits DA cells (Mansvelder and McGehee 2000;
Mansvelder et al. 2002). In a stark contrast, in vivo studies of wild-type as well as
α7- and β2 knockout mice emphasize the importance of β2-containing nAChRs on
DA neurons (Mameli-Engvall et al. 2006). Mameli-Engvall et al. (2006) conclude
that β2-nAChRs on DA cells act like a nicotine-triggered switch between basal and
excited state of these cells.

To pin-point the mechanisms by which nicotine acutely controls the DA neu-
ron activity in the VTA we apply computational methods. We build a simple neu-
ronal network model that accounts for the afferent inputs to the VTA, the local VTA
connectivity as well as the location and activation/desensitization properties of the
different nAChR subtypes. We examine to which extent nicotine influences DA sig-
naling through α4β2 nAChRs on GABAergic or DA cells, revealing that disinhibi-
tion and direct stimulation of DA cells, respectively, may in principle account for
experimental data. However, and crucially, the general conditions required suggest
the disinhibition scenario to be more likely, i.e. α4β2 nAChRs on GABA cells pre-
dominantly mediate the reinforcing role of nicotine. Lastly, we develop a series of
experimental predictions and protocols that should disambiguate the predominance
of the local circuit (disinhibition via GABA) vs. single cell (direct DA stimulation)
pathways.

4.5 VTA and nAChR Model

In order to examine the mechanisms of nicotine action, we build a neural popu-
lation model of the ventral tegmental area microcircuit. The temporal dynamics
of the dopaminergic and GABAergic neurons in the VTA are modeled using a
mean-field description, that is we model the dynamics of the firing rates (see Wil-
son and Cowan 1972 for the derivation of mean-field equations, and Hansel and
Sompolinsky 1998 for an example). The average activities of both neuronal pop-
ulations are accounted for with respect to afferent inputs to the VTA, local cir-
cuitry and the location as well as activation/desensitization properties of nicotinic
acetylcholine receptors. Specifically, we take into account the two main classes of
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nAChRs responsible for nicotine evoked responses in the ventral tegmental area, i.e.
high affinity slowly desensitizing (α4β2-type) and low affinity rapidly desensitizing
nAChRs (α7-containing) (Mansvelder and McGehee 2000; Champtiaux et al. 2003;
Gotti et al. 2007).

4.5.1 Mean-Field Description of Dopaminergic and GABAergic
VTA Neurons

The temporal dynamics of the average activities of dopaminergic and GABAergic
neuron populations in the VTA is characterized by

τDν̇D = −νD + Φ(I0 − IG + IGlu + rIα6β2), (4.1)

τGν̇G = −νG + Φ(IGlu + (1 − r)Iα4β2). (4.2)

νD and νG are the firing rates of the DA and GABAergic neuron populations, re-
spectively. τD and τG are membrane time constants of the neurons specifying how
quickly the neuron integrates input changes, i.e. τD = τG = 20 ms. IGlu and Iα4β2
characterize excitatory inputs to both neuron populations mediated by glutamate
receptors and α4β2-containing nAChRs, respectively, expressed by the neurons.
IG is the local inhibitory input to DA neurons emanating from VTA GABAergic
neurons. I0 is an intrinsic current of DA cells giving rise to intrinsic activity in
the absence of external inputs (Grace and Onn 1989). We assume furthermore that
I0 accounts for other input sources with are not affected by nicotine exposures and
therefore provide a constant background input (e.g. α6-containing nAChR mediated
cholinergic input to DA cells, Champtiaux et al. 2003; inhibitory input originating in
other brain regions; etc.). Φ(I) is the steady-state current-to-rate transfer function.
For simplicity, we assume that Φ(I) is threshold-linear, i.e. Φ(I) = I if 0 ≤ I and
Φ(I) = 0 otherwise. The parameter r controls the balance of α4β2 nAChR action
through GABAergic or dopaminergic cells in the VTA. For r = 0: α4β2 containing
nAChRs act through GABAergic neurons only, whereas for r = 1: α4β2 receptor
activation influences DA neurons only. Both neuron populations are influenced by
α4β2 nAChR activation for intermediate values of r . In practice, this balance is
determined by the expression level of α4β2 nAChRs, the overall impact of local
GABAergic inputs on DA activity and by the location of α4β2 nAChRs on the so-
matodendritic tree of DA and GABAergic cells. We vary r in order to investigate
the implications of α4β2 nAChR action through GABAergic or dopaminergic cells.
See Fig. 4.1A for a schematic depiction of the VTA as accounted for by the model.

The input currents in Eqs. (4.1) and (4.2) are given by

IG = wGνG, (4.3)

IGlu = wGlu[νGlu + να7]1, (4.4)

Iα4β2 = wα4β2να4β2, (4.5)

where the wx ’s (with x = G, Glu, ACh) specify the total strength of the respec-
tive input since the activation variables (νG, να7, να4β2) are normalized to vary be-
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tween 0 and 1. For our qualitative investigations, we use wx = 1 (with x = Glu,
ACh) without loss of generality. Inhibitory input to DA cells, IG, depends on the
GABAergic neuron population activity, νG. Glutamatergic input is activated either
by upstream glutamatergic activity, νGlu, or by activation of να7 nAChRs on presy-
naptic glutamatergic terminals, να7 (see next section). Nicotine-evoked glutamater-
gic transmission is independent of action potential activation in presynaptic fibers
(Mansvelder and McGehee 2000). Hence, either of both inputs can fully activate
glutamatergic transmission

[νGlu + να7]1 =
{

νGlu + να7 if νGlu + να7 ≤ 1,

1 if νGlu + να7 > 1.
(4.6)

The activation of α4β2 nAChRs, να4β4 (see next section), determines the level of
direct excitatory input, Iα4β2, evoked by nicotine or acetylcholine (Champtiaux et
al. 2003).

4.5.2 Modeling the nAChR Activation and Desensitization Driven
by Nic and ACh

The activation and desensitization of nicotinic acetylcholine receptors (nAChRs)
is controlled by a number of endogenous and exogenous ligands including acetyl-
choline (ACh) and nicotine, respectively (Gotti et al. 2006). We included in our cir-
cuit model of the VTA a minimal description for the receptors that resolves the sub-
type specific activation and desensitization properties of the two considered nAChR
classes, i.e. the high affinity slowly desensitizing α4β2 nAChR, and the low affinity
fast desensitizing α7 nAChR.

We implement nAChR activation and desensitization as transitions between
two independent state variables. This yields four different states of the nico-
tinic acetylcholine receptor: inactivated/sensitized (also resting or responsive state),
activated/sensitized, activated/desensitized and inactivated/desensitized state (see
Fig. 4.1B). Of those states, three are closed and the activated/sensitized state is the
only open state of the receptor in which it mediates an excitatory current. Note
that compared to other model suggestions of allosteric transitions of the nAChR,
we choose to leave aside the rapidly and slowly desensitized states (Changeux et
al. 1984), deeper-level desensitized state or inactivated states (Dani and Heinemann
1996). Such states are collapsed in the desensitized state here. Our model is modi-
fied from Katz and Thesleff (1957) where “effective” and “refractory” in their model
refer to sensitized and densensitized here, respectively. Assuming independent tran-
sitions of the activation and the desensitization variables entails another simplifi-
cation compared to cyclic allosteric transition schemes. In our model, the reaction
rates are the same on opposite sides of the reaction cycle (Fig. 4.1B), i.e. the rate
from inactivated/sensitized to activated/sensitized is the same as the transition rate
from inactivated/desensitized to activated/desensitized.

The model accounts for the opening of the channel (transition from inacti-
vated/sensitive to activated/sensitive, Fig. 4.1B and C) in response to both, Nic
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and ACh; while desensitization is driven solely by nicotine (transition into the acti-
vated/desensitized state, Fig. 4.1B and C). Although acetylcholine may also desen-
sitize nAChRs (Katz and Thesleff 1957; Quick and Lester 2002), its rapid removal
from the synapse by hydrolization through acetylcholinesterase (Feldberg 1945) al-
lows us to leave aside the ACh driven desensitization. The inverse transitions, i.e.
from activated to inactivated and from desensitized to sensitized, occur after the
removal of Nic and ACh.

The total activation level of nAChRs (να4β2, να7) is modeled as the product of the
fraction of receptors in the activated state, a, and the fraction of receptors in the sen-
sitized state, s. The total normalized nAChR activation is therefore with νx = axsx
with x = α4β2 or α7. The time course of the activation and the sensitization vari-
ables is given by

dy

dt
= (y∞(Nic,ACh) − y)/τy(Nic,ACh), (4.7)

where τy (Nic, ACh) refers to the Nic/ACh concentration dependent time constant
at which the maximal achievable state y∞ (Nic,ACh) is exponentially attained. The
maximal achievable activation or sensitization, for a given Nic/ACh concentration,
a∞ (Nic,ACh) or s∞ (Nic,ACh) respectively, is given by Hill equations of the form

a∞(Nic,ACh) = (ACh + αNic)nα

ECnα

50 + (Ach + αNic)nα
, (4.8)

s∞ (Nic) = ICns

50

ICns

50 + Nicns
. (4.9)

EC50 and IC50 are the half maximal concentrations of nACh receptor activation
and sensitization, respectively. The factor α > 1 accounts for the higher potency
of nicotine to evoke a response as compared to acetylcholine (Peng et al. 1994;
Gerzanich et al. 1995; Buisson and Bertrand 2001; Eaton et al. 2003; see Table 4.2).
na and ns are the Hill coefficients of activation and sensitization.

The transition from the inactivated to the activated state is fast (∼µs, ms)
(Changeux et al. 1984) compared the time scales investigated here that are of the
order seconds to minutes. We therefore simplify the activation time constant, τa ,
to be independent of the acetylcholine/nicotine concentration, i.e. τa(Nic,ACh) =
τa = const. The time course of nicotine driven desensitization is characterized by a
nicotine concentration dependent time constant

τd(Nic) = τ0 + τmax
K

nτ
τ

K
nτ
τ + (Nic)nτ

(4.10)

τmax refers to the recovery time constant from desensitization in the absence of
nicotine (τmax � τ0). τ0 is the minimal time constant at which the receptor is driven
in the desensitized state at high Nic concentrations. Kτ is the Nic concentration
at which the desensitization time constant attains half of its minimum (τmax � τ0).
The parameters describing activation and desensitization of the two nicotinic acetyl-
choline receptor subtypes are taken from a number of studies on human nAChRs and
are listed in Table 4.2. Note that we use τmax = 10 min for α4β2 nAChR in order to
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match the time course of DA activity recorded in vivo (see below), while Fenster et
al. (1997) recorded a value of τmax = 86.9 min during experiments at room temper-
ature (see Sect. 4.10). τ0 is adjusted such that the qualitative time course of nAChR
mediated current recordings is reproduced (see Sect. 4.6).

In our simulations, we assume that both the nicotine bath application and the
intravenous injection implies a slow build up of the nicotine concentration at the
site of the receptor. That is, the applied nicotine concentration is not immediately
available but increases/decays exponentially with a time constant of 1 min. The fast
activation of nAChRs, a (transition from inactivated/sensitive to activated/sensitive,
Fig. 4.1B), is therefore taken to be in steady-state with the nicotine concentration at
all times.

Clearly, the above presented simple model of nAChR activation and desensitiza-
tion does not resolve all the details of nAChR kinetics. For example, it is assumed
that ACh and Nic evoked responses reach the same maximal amplitude and that
despite different potencies, Nic and ACh dose–response curves can be character-
ized by the same Hill coefficient. These assumptions are approximately met for
α7-containing nAChRs (Chavez-Noriega et al. 1997). ACh evokes however twice
the response of Nic with human α4β2 nAChRs in a study by Chavez-Noriega et
al. (1997), but the same response according to Buisson and Bertrand (2001). We
simplify the dose–response curve using a single Hill equation, rather than using a
sum of two Hill equations as suggested by Buisson and Bertrand (2001). Neverthe-
less the simple model presented here captures the qualitative time course of nAChR
currents evoked in response to Nic and ACh exposures (see below).

4.6 VTA Model Results

To address the question of the specific mechanisms of nicotine action we propose a
minimal local circuit model of the VTA that reflects the glutamatergic and cholin-
ergic afferent inputs to DA and GABA cells in the VTA, as well as local inhibition
of DA cells by GABA neurons (see Fig. 4.1A). The α4β2- and the α7 nAChRs
mediate nicotine effects in VTA. We describe their activation and desensitization
in response to nicotine and ACh by a simple 4-state model adapted from Katz1957
(see Fig. 4.1B and C). We model α7 nAChRs at presynaptic terminals to affect Glu
input strength. We introduce a parameter r which allows to shift continuously the
balance of α4β2 nAChR action on DA cell activity from mediated purely through
GABA cells (r = 0, disinhibition) to being exerted directly on DA cells (r = 1,
direct stimulation; see Fig. 4.1A). We adjust the model to reproduce in vitro and
in vivo nicotine application experiments using the same implementation of the VTA
model and only changing the external input strength. The model combines a mean-
field dynamic firing-rate approach with subtype specific receptor kinetics to study
neuronal activity in response to endogenous (Nic) and exogenous (ACh) ligands
acting on nAChRs (please refer to Sect. 4.5 for more details on the model).
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Fig. 4.1 Scheme of the ventral tegmental area and the states of nicotinic acetylcholine recep-
tors. A, Afferent inputs and circuitry of the ventral tegmental area. GABAergic neuron population
(red) and dopaminergic neuron population (green) receive excitatory glutamatergic input (blue
lines) from the PFC, the LDT and the PPT. The LDT and the PPT furthermore furnish cholin-
ergic projections (cyan lines) to the VTA. nAChRs are found at presynaptic terminals of gluta-
matergic projections (α7-containing receptors), on GABAergic neurons (α4β2 nAChRs) and DA
neurons (α4β2 nAChRs). r is a parameter introduced in the model to change continuously the
dominant site of α4β2 nAChR action. Dopaminergic efferents (green) project, amongst others,
to the NAcc and the PFC (see text for more details). B, State model of nicotinic acetylcholine
receptors. Activation (horizontal) and desensitization (vertical) of nAChRs are two independent
transitions in the model, i.e. the receptor can exist in four different states: (i) inactivated/sensitized
(up-left), (ii) activated/sensitized (up-right), (iii) inactivated/desensitized (down-left), and (iv) acti-
vated/desensitized (down-right). Activation is driven by Nic and ACh and induces a transition from
the inactivated/sensitized to the activated/sensitized state (green), the only open state in which the
receptor mediates an excitatory current. Desensitization is driven by Nic only. a and s characterize
the fraction of nAChRs in the activated and the sensitized state, respectively (modified from Katz
and Thesleff 1957). C, α4β2 nAChR state occupation as described by the model for different Nic
and ACh concentrations. The area of the circle represents the fraction of receptors in one of the
four states (alignment as in B). The occupation of receptor states is shown for long term exposures
to low (0.1 µM) and high (100 µM) ACh, without and with 1 µM nicotine. A star means that the
respective state is not occupied
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4.7 Kinetics of the Subunit Specific nAChR Model Stimulated
by Nic and/or ACh

In order to develop our hybrid neurodynamical—pharmacodynamical network we
must first come up with a simple, yet sufficiently accurate model of the nACh recep-
tor. Hence we define here the α4β2- and α7 nACh receptor model by replicating the
receptor responses to nicotine and acetycholine recorded with human nAChR sub-
types expressed in Xenopus oocytes. We then use the receptor model to investigate
to which extent the current evoked by ACh is affected in the presence of a constant,
realistic level of nicotine. In particular, we emphasize the differences in response
properties for the two nAChR subtypes responsible for nicotine action in the VTA:
the α4β2- and the α7.

Both, acetylcholine and nicotine induce the transition from the inactivated/sensi-
tized to the activated/sensitized state of the receptor allowing an excitatory ionic
current to pass through the receptor pore (see Fig. 4.1B). Sustained presence of the
agonist drives the receptor in the desensitized state in which the receptor is in a
closed conformation. The receptor recovers on the time scale of seconds to minutes
back to the inactivated/sensitized state in the absence of the agonist (Changeux et
al. 1984). Figure 4.2A and B show how simultaneous receptor activation and desen-
sitization shape the current mediated by the α4β2- and the α7-containing nAChR
in our model in response to nicotine. Fast activation gives rise to an initial peak cur-
rent and the concurrent slow desensitization reduces the current during the 200 ms
of the agonist presence (blue lines in Fig. 4.2A and B). Figure 4.2C and D show
the dose–response curves of the peak current and the evoked net charge (illustrated
in Fig. 4.2A and B) with respect to agonist concentration for the α4β2- and the
α7-containing nAChR, respectively.

�Fig. 4.2 Nicotinic acetylcholine receptor responses to nicotine and acetylcholine. Response prop-
erties of α4β2- (panels A, C, E) and α7 nAChRs (panels B, D, F). A & B, Dynamics of α4β2-
(A) and α7-containing nAChRs (B) in response to nicotine. Activation, a, (purple lines) and sen-
sitization, s, (orange lines) variables are shown during and after the exposure to a constant Nic
concentration of 10 µM (A) and 100 µM (B) for 200 ms starting at t = 50 ms. The normalized
receptor activation, ν = a · s, is shown in blue. Peak current and net charge mediated during the
exposure are illustrated in the panels. The inset shows the dynamics of the same variables on a
longer time scale. C & D, Dose–response curves of α4β2- (C) and α7-containing nAChRs (D) in
response to Nic and ACh. Full lines show the peak current (illustrated in A & B) and the dashed
lines show the normalized net charge (illustrated in A & B) mediated by the receptor during a
200 ms exposure to the respective agonist concentration. The responses to nicotine (acetylcholine)
are depicted in blue (red). Realistic nicotine concentrations are indicated by the arrow. Example
currents evoked by Nic (blue lines) and ACh (red lines) are shown on the top of the panel for
different agonist concentrations (in µM on top of the traces). E & F, Dose–response curves of
α4β2- (E) and α7-containing nAChRs (F) in response to ACh in the presence of constant Nic. The
normalized peak current (full lines) and the normalized net charge (dashes lines) evoked by ACh
(green lines) are shown. A constant concentration of Nic = 0.5 µM is present during the 200 ms
exposures to ACh. Red lines depict the responses evoked by the respective ACh concentration in
the absence of Nic (as depicted in C and D). The net charge is normalized to 163 unit current times
ms for α4β2 nAChRs (panel C and E) and to 73 unit current times ms for α7 nAChRs (panels D
and F). See Table 4.2 for parameters
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Inward current traces in response to different concentrations of ACh (red lines)
and Nic (blue lines) are shown on top of Fig. 4.2C and D. The two nAChR sub-
types exhibit a fast current increase with the onset of the agonist exposure and the
current reaches a stable plateau level for sustained applications of low agonist con-
centrations (e.g. at ACh = Nic = 3 µM for α4β2 nAChRs, or at ACh = Nic = 10 µM
for α7 nAChRs). However, the currents after the initial peak mediated by the two
nAChR subtypes exhibit different kinetics at higher agonist concentrations. The
α4β2 nAChR mediated currents decay slowly over the course of agonist expo-
sure due to the slow transition in the desensitized state (Fig. 4.2C, for ACh and
Nic ≥ 10 µM). On the contrary, α7 nAChR mediated currents decay completely after
the fast initial peak current in the presence of high agonist concentrations (Fig. 4.2C,
for ACh and Nic ≥ 100 µM). Here the fast desensitization of α7-containing receptors
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suppresses completely the inward current on the time scale of ∼100 ms. In practice,
we adjust the minimal time constant by which the receptors can be driven in the
desensitized state, τ0, such that the model currents capture qualitatively the exper-
imentally observed behavior (see above). This fit yields a faster minimal desensiti-
zation constant for the α7 nAChR, i.e. 10τα7

0 = τ
α4β2
0 (see Sect. 4.5 and Table 4.2,

compare top panels of Fig. 4.2C and D with Briggs et al. (1995), Chavez-Noriega et
al. (1997), Buisson and Bertrand (2001), Papke (2006)).

We furthermore investigate the model response of α4β2- and α7-containing
nAChRs, respectively, to acetylcholine applications in the presence of a constant
level of 0.5 µM nicotine (green lines in Fig. 4.2E and F). While the presence of Nic
does not affect the half-maximum concentrations of peak amplitude and transmit-
ted net charge, it reduces the maximum amplitudes of both attained at high agonist
concentrations. The maximal response of α4β2 nAChRs is reduced to ∼25% of the
response in the absence of the drug (see Fig. 4.2E), whereas the maximum peak am-
plitude and net charge only drops to ∼85% of the response at 1000 µM ACh for α7
nAChR in the absence of nicotine (Fig. 4.2F). This is because a smaller fraction of
α7 nACh receptors is driven in the desensitized state due to the lower affinity of α7
nAChRs for desensitization as compared to α4β2 nAChR, i.e. ICα7

50 � ICα4β2
50 (see

Sect. 4.5 and Table 4.2). Nicotine not only triggers desensitization but also evokes
activation that results in a small residual activation (see elevated green lines at very
low agonist concentrations in Fig. 4.2E and F). This baseline current is more appar-
ent with α4β2 nAChR due to the higher affinity and has been seen experimentally
(Pidoplichko et al. 1997). Overall, realistic nicotine concentrations reduce the re-
sponse of both receptor subtypes to ACh, the response is however not completely
abolished due to partial desensitization by 0.5 µM nicotine only.

The experimentally observed differences in response properties of the two re-
ceptor subtypes are reproduced by our model. We show below that these give rise
to functionally distinct roles of the two considered nAChR subtypes in the VTA.
Most importantly, the affinity of the α4β2 nAChR for nicotine and acetylcholine
is much higher than that of the α7 nAChR. This fact is crucial since the nicotine
concentration remains relatively low (0.5 µM) in the blood of smokers (Henning-
field et al. 1993; indicated in Fig. 4.2C and D). Moreover, nicotine is a more po-
tent agonist than ACh since the half-maximum nicotine concentration for the peak
current and the net charge is lower than the same measure for ACh for both re-
ceptor subtypes (the higher potency of Nic compared to ACh is reflected by the
factor α in the model, i.e. αα4β2 = 2, αα7 = 3, see Sect. 4.5 and Table 4.2). An-
other important difference is the slow desensitization of α4β2 nAChRs in con-
trast to the fast desensitization dynamics of α7 nAChRs. The fast desensitization
of α7 nAChRs yields a significantly lower half-maximum concentration of the
transmitted net charge than that of the peak current (see Fig. 4.2D). High ago-
nist concentrations drive the receptor rapidly in the desensitized state leading to
an early saturation (and even reduction) of the transmitted charge, while the initial
peak remains unaffected by desensitization (τa � τ0) and keeps rising with ago-
nist concentration. A difference in half-maximum concentrations of the same order
of magnitude is observed experimentally for α7 nAChRs (Papke and Papke 2002;
Papke 2006). This detail further validates our reduced receptor model.
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In summary we have constrained our reduced nAChR model to capture the key
properties of the subtype specific responses to nicotine and acetylcholine. Impor-
tantly, experimental whole-cell current recordings (e.g. from oocytes, human em-
bryonic kidney 293 cells, neurons) expressing the respective nAChR subtype are
typically done in the absence of acetylcholinesterase (Peng et al. 1994; Gerzanich
et al. 1995; Fenster et al. 1997; Buisson and Bertrand 2001; Eaton et al. 2003;
Papke 2006). We therefore assume in this section that induced inward currents
rapidly activate and desensitize in response to nicotine and acetylcholine. Note
however that desensitization is assumed to be driven by nicotine only in the rest
of this study. In other words, acetylcholine drives the transition from inactivated
to activated only and is hydrolyzed before it evokes significant desensitization (see
Fig. 4.1B and C).

4.8 Modeling the VTA Response to Nicotine in vitro and in vivo

We now turn to the question whether the in vitro and in vivo data on nicotine ac-
tion in the VTA can be reconciled? What are the specific pathways for nicotine
action? We start by showing that in vitro excitatory and inhibitory input changes
to DA neurons in response to bath perfusion of nicotine are captured by the
model by adjusting afferent input strengths only (Mansvelder and McGehee 2000;
Mansvelder et al. 2002). We then show that the DA recordings in vivo from wild
type and nAChR knockout mice are reproduced by the same model of the VTA
again changing only the afferent input strength (Mameli-Engvall et al. 2006). Hence
we show that a minimal circuit model of the VTA model can elegantly account for
both in vitro and in vivo for electrophysiological recordings from VTA DA neurons
during nicotine applications. Finally we go on to show that two alternative mech-
anisms, direct stimulation and disinhibition of DA cells, may potentially account
for the increase in DA activity recorded in vivo in response to intravenous nicotine
injections. We then delineate the conditions for each mechanism.

4.8.1 Excitatory and Inhibitory Input Increases to DA Cells
in vitro Reproduced by the Model

Data show that bath application of nicotine initially increases the frequency of IP-
SCs followed by a drop below baseline of the IPSC frequency after nicotine perfu-
sion (Mansvelder et al. 2002). It has furthermore been shown that nicotine causes a
robust enhancement of the spontaneous EPSC frequency onto DA neurons in slices
of the VTA (Mansvelder and McGehee 2000). We show here that the qualitative
behavior of VTA DA cell inputs is reproduced by the model if we assume weak
afferent input strength, which characterizes the in vitro situation in which those data
were recorded.
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The model reproduces GABAergic input changes to DA neurons in response
to nicotine (1 µM nicotine for 2 min). Note that Glu transmission is blocked during
those experiments. In the model, this corresponds to setting wGlu = 0 (see Sect. 4.5).
The GABAergic input (IG) to VTA DA cells increases initially and drops below
baseline after nicotine application (Fig. 4.3C). This change is mediated through
nicotinic action on α4β2 nAChRs on GABA cells. The maximal relative increase
in IG during nicotine perfusion (green line in Fig. 4.3E) and the maximal relative
decrease after nicotine washout (magenta line in Fig. 4.3E) as observed in the model
(lines in Fig. 4.3E) matches the experiments (squares in Fig. 4.3E, Mansvelder et al.
2002). Note that the GABAergic input to the DA cells (IG) corresponds to the ac-
tivity of the VTA GABA cells (νG) since they furnish local inhibitory connections.

What are the receptor level mechanisms for this effect? The α4β2 nAChR ex-
pressed by GABAergic cells are activated by nicotine increasing GABAergic popu-
lation activity and in turn leading to an increase in GABAergic input (IG) to DA cells
(see green lines in Fig. 4.3C and E). The biphasic nature of this increase (Fig. 4.3C
during Nic presence) stems from the single-exponential build-up of Nic concentra-
tion in the model (time constant of 1 min). The initial peak arises from fast activa-
tion counterbalanced by slower desensitization. The subsequent steady and smaller
increase follows the time course of Nic concentration build-up in the model, i.e.
activation and desensitization can be considered in quasi steady-state during that
phase. A fraction of nAChRs remains desensitized after the washout of the drug and
recovers slowly back to the sensitized state. This desensitized fraction of nAChR re-
duces the constant excitatory drive from cholinergic input to GABAergic cells, i.e.
IG falls below baseline levels after nicotine is removed (illustrated in magenta in

�Fig. 4.3 VTA response to nicotine in vitro. Left hand panels (A, C, E and the left-hand side of
panel G) show the results on GABAergic input changes to VTA DA cells, while the panels on the
right-hand side (B, D, F and the right-hand side of panel G) depict results on glutamatergic input
increases to VTA DA cells in response to 1 µM nicotine for 2 min starting at t = 1 min. A & B, In
vitro input changes to VTA DA cells in response to Nic. Grey shaded parts and black crosses show
blocked transmission pathways, and the scissors illustrate the truncation of the input pathways in
vitro (compare with Fig. 4.1A). C & D, Time course of GABAergic, IG, (C) and glutamatergic
input, IGlu, (D) changes to VTA DA neurons during and after Nic exposures (black bar on top
of the panels). The increase (green) and the decrease (magenta in C) of the input currents with
respect to baseline are illustrated in both panels. E & F, Maximal change of GABAergic (E) and
glutamatergic input currents (F) as a function of the nicotine concentration applied. The lines show
the results of the model for control conditions (in green in both panels and magenta for decrease
in panel E), with α4β2 nAChRs blocked (green in panel E and F, and cyan in panel E), and
with α7 nAChRs blocked (green and magenta in panel E, orange in panel F). The squares show
experimental results adapted from Mansvelder et al. (2002) (panel E) and Mansvelder and McGe-
hee (2000) (panel F) for different experimental situations: control conditions—green squares; with
α7 nAChR specific antagonist—orange squares; and with antagonist for non-α7 nAChRs—cyan
squares. G, Comparison of relative input changes between model and experiment for the case
of 1 µM nicotine for 2 min. Model results are shown with shaded and experimental results with
filled bars. Both, GABAergic- and glutamatergic input changes are shown for the three discussed
cases: control conditions—green and magenta, α4β2 nAChR blocked—cyan, and α7 nAChR
blocked—orange and magenta (experimental data adapted from Mansvelder and McGehee 2000;
Mansvelder et al. 2002; ACh = 0.384 µM and νGlu = 5.68 · 10−14 in all panels, see Table 4.2 and
Sect. 4.5 for other parameters)
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Fig. 4.3C and E). The recovery time course is governed by the maximal desensitiza-
tion time constant τmax of α4β2 nAChRs. This time constant in the model (10 min,
see Table 4.2) is on the same order of magnitude as observed experimentally, i.e.
Mansvelder et al. (2002) fit the recovery of the IPSC frequency back to baseline at
room temperature with a time constant of 20 min.

We find that in line with the experiments, the increase in IPSC frequency in the
model is exclusively mediated by α4β2 nAChRs. Hence, when these receptors are
blocked in the model, the input changes are abolished (see cyan line in Fig. 4.3E). In
contrast, α7 nAChRs have little or no impact on the response (green line and orange
square in Fig. 4.3E). In the model, we account for the experimentally measured rela-
tive increases of IGmax/IG0 under control conditions and with α7 nAChRs blocked
by adjusting the average cholinergic drive to GABAergic cells such that the relative
increase of GABAergic input attains 300% of baseline (ACh = 0.384 µM). Inter-
estingly, the drop below baseline matches experimental data without further fitting
of the model (see Fig. 4.3E). Importantly, the constant ACh tone signifies ongoing
cholinergic afferent activity in the model. We therefore do not assume that ACh was
present in the external bath during the in vitro experiments considered.

Our model furthermore accounts for the increase of glutamatergic (IGlu) input
to VTA DA cells in response to the same stimulation protocol as above (1 µM Nic
for 2 min, see Fig. 4.3D). This increase stems from the activation of presynaptic α7
nAChRs by nicotine. The maximal relative increase of IGlu is depicted with respect
to the applied nicotine concentration in Fig. 4.3F. We can see that the model ac-
counts for experimental data recorded in control conditions (green line and squares);
in the presence of an α7 nAChR specific antagonist (orange line and square); and
in the presence of an antagonist for non-α7 subunit-containing nAChRs (green line
and cyan square).

In order to account quantitatively for the observed nicotine-induced increase in
Glu input to DA cells (IGlu max/IGlu 0) we choose νGlu such that the relative increase
attains 325% of baseline level. This satisfies both the control data (400% increase)
and the increase measured when α4β2 nAChRs are blocked (275% increase; and
ACh = 0.384 µM; see Fig. 4.3F). Note that increasing basal Glu input in the model
reduces the relative increase in IGlu, for example, since nicotine induced changes
are added to the basal Glu upstream activity (see Sect. 4.5; Eq. (4.4)). Blocking the
α4β2 nAChRs does not affect the glutamatergic input increase in the model since
the change stems from α7 nAChR activation only (see Fig. 4.3B). Note that the con-
stant cholinergic tone in the model (ACh), fixed through the experiments described
above, results in a weak activation of α7 nAChRs on average in the absence of
nicotine.

In summary, we show that the model reproduces qualitatively the relative change
in IPSC and EPSC frequency to VTA DA neurons during in vitro nicotine perfusions
(see comparison of model and experiments in Fig. 4.3G). The model reproduces
furthermore the supralinear increase in EPSC frequency in the nicotine range from
0.1 to 1 µM Nic (green line and squares in Fig. 4.3F). Note that the increase in IPSC
frequency is predicted to show a sublinear increase in the same range of nicotine
(4.3E). This difference stems from the difference in affinity of the α7 and the α4β2
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receptor, i.e. the response of the high affinity α4β2 receptor starts to saturate in this
range. We argue that the afferent input strength, reflected by the constant cholinergic
tone (ACh) and the relative upstream glutamatergic activity (νGlu), is weak in vitro
(compare with in vivo conditions below). The low input tones reflect the disruption
of the afferent pathways in this experimental preparation (illustrated by the scissors
in Figs. 4.3A and B).

4.8.2 Direct Stimulation (Intrinsic Cellular) vs. Disinhibition
(Local Circuit) Mechanisms for Nicotine-Evoked Increase
of DA Cell Activity in vivo

We now show that the minimal VTA-circuit model accounts for the in vivo experi-
ments. To do so we leave the VTA circuit unchanged and alter only the afferent input
strength. We require the model to account for the following data: (i) An intravenous
injection of nicotine in anesthetized wild type mice increases the firing rate of DA
cells in vivo. (ii) This increase is diminished in α7 knockout mice and is completely
abolished in α4β2 knockout mice (Mameli-Engvall et al. 2006).

We identify two different instances of the model which both could account for
the experimentally observed behavior in wild type, α7- and β2 nAChR knockout
mice. We refer to the scenario in which α4β2 nAChR-mediated action is predomi-
nantly exerted onto the DA cells as to “direct stimulation” (see Fig. 4.4A). On the

�Fig. 4.4 VTA response to nicotine in vivo. Panels on the left-hand side (A, C and E) show re-
sults of the direct stimulation scenario (I0 = 0.0202, ACh = 0.1 µM, νGlu = 0.1) and panels on the
right-hand side (B, D and F) depict results for disinhibition (I0 = 0.1, ACh = 1.77 µM, νGlu = 0.1).
The increase in DA activity stems from activation of α4β2 nAChRs on DA cells in case of direct
stimulation, whereas α4β2 nAChR desensitization on GABAergic cells boosts DA activity for dis-
inhibition (see text for more details). A & B, Illustration of the experimental situation in vivo. Note
the difference in α4β2 nAChR distribution between the direct stimulation (A, r = 0.8) and the
disinhibition case (B, r = 0). C & E, Normalized GABAergic (C) and DA neuron activity (E) in
response to the application of 1 µM nicotine in case of direct stimulation. The full lines show the
time course of the normalized νG (C) and νD (E) for three different durations of nicotine exposure,
TNic (as indicated, and illustrated by the bar on top of panel C). The full and the dashed blue lines
depict the responses for low (ACh = 0.1 µM) and high cholinergic input levels (ACh = 1.77 µM),
respectively (TNic = 10 min). D & F, Normalized GABAergic (D) and DA neuron activity (F) in
response to 1 µM nicotine for 2 min in case of disinhibition. The full lines show the time course
of the normalized νG (D) and νD (F) for three different maximal desensitization time constants of
α4β2 nAChRs, τmax (as indicated in the panel). The full and the dashed blue lines depict the re-
sponses for high (ACh = 1.77 µM) and low cholinergic input levels (ACh = 0.1 µM), respectively
(τmax = 10 min). G, Comparison of model results (shaded bars) and experimental data (full bars)
on relative DA neuron activity changes in response to 1 µM nicotine. The maximal relative increase
of DA activity in wild type (TNic = 10 min for direct stimulation; and τmax = 10 min for disinhibi-
tion) and mutant mice is shown (experimental data adapted from Mameli-Engvall et al. 2006). H,
Comparison of the total duration of elevated DA neuron activity with respect to the duration of Nic
application, TNic. The duration of elevated activity is taken to be the time between the two points
where νD attains half-of-maximum activity (as illustrated in E and F and depicted by square and
circle, respectively). This duration is plotted for direct stimulation (green) and disinhibition (red)
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other hand, “disinhibition” refers to the scenario in which α4β2 nAChRs mainly
influence GABAergic activity (see Fig. 4.4B). Crucially, the conditions for the two
mechanisms are different as we show below. In the model, the parameter r sets the
balance of α4β2 nAChR action between DA and GABA neurons, i.e. r = 0.8 is used
for direct stimulation and r = 0 for disinhibition. We choose these two extreme val-
ues of r to illustrate the qualitative behavior of the model in the direct stimulation
and the disinhibition case. The behavior of the model for intermediate values of r

is examined in the next section. For simplicity, we utilize the same concentration of
nicotine in this section as in the in vitro experiments, i.e. 1 µM.

Direct Stimulation Here, we identify the conditions for nicotine-evoked increase
in DA activity if we assume that DA neurons predominantly express α4β2 con-
taining nAChRs. Based on the activation and desensitization properties of α4β2-
containing nAChRs, we derive two important requirements for such a scenario to
boost DA activity. (i) The constant cholinergic drive to the VTA has to be low
(ACh � ECα4β2

50 and ACh ≈ ICα4β2
50 ) such that nicotine can further activate α4β2-

containing nAChRs. (ii) The duration of elevated DA activity cannot outlast the
presence of nicotine, i.e. the increase of DA neuron activity for 10 min requires the
presence of nicotine for the same amount of time (blue lines in Figs. 4.4C and E).
In other words, DA activity stays elevated as long as nicotine is present and de-
cays back to baseline level after removal of nicotine. The full lines in Figs. 4.4C
and E show the temporal dynamics of the normalized GABAergic and dopaminergic
neuron activity, respectively, for different durations of 1 µM nicotine being present
(indicated by the bars on top of panel C) in case of direct stimulation (i.e. low con-
stant ACh level, ACh = 0.1 µM). The activity of GABAergic neurons follows the
same time course as DA neuron activity, i.e. increased activity during the presence
of Nic, but with a smaller amplitude due to the smaller fraction of α4β2 nAChR
expressed on GABAergic cells (r = 0.8). Again, the biphasic nature of the DA and
GABAergic neuron activity increases emerges from the slow build-up of Nic con-
centration in the model (see above). We furthermore find that when the tonic ACh
drive is high, nicotine leads to a decrease in the DA activity for the direct excita-
tion case (r = 0.8, ACh = 1.77 µM, dashed blue lines in Figs. 4.4C and E). The
choice of r = 0.8 in the model represents an α4β2 nAChR expression ratio of 80
to 20 on DA to GABA cells. In this case and as long as more α4β2 nAChRs are
expressed on DA cells in general (r > 0.5), the cholinergic drive has to be smaller
than ACh < 0.38 µM in the model in order to observe an net increase of DA activity
during and after nicotine application (we speak of an increase in DA activity as long
as:

∫
(νD(t) − νD(t = 0)) dt > 0). Note that we do not chose the extreme case of

r = 1, which would imply no α4β2 nAChRs on GABA cells, since the existence of
α4β2 nAChRs on GABA cells has been shown experimentally (Klink et al. 2001;
Mansvelder et al. 2002).

Disinhibition How can nicotine action through α4β2 nAChRs expressed on
GABAergic cells lead to an overall increase in DA activity? In case r = 0, we ob-
serve an increase in DA neuron activity in response to a 2 min exposure to 1 µM



132 M. Graupner and B. Gutkin

nicotine if the constant cholinergic drive to the VTA is bigger than ACh ≥ 0.17 µM.
The high cholinergic drive assures that nicotine mainly drives α4β2 receptor de-
sensitization after a short initial period of activation (Fig. 4.4D). Figure 4.4D shows
that nicotine-induced desensitization removes cholinergic excitatory drive from the
GABAergic cell population reducing their activity below baseline levels during and
after the exposure to the drug (full blue, green and red lines). Return to baseline ac-
tivity is determined by the maximal desensitization time constant of α4β2 nAChRs
(τmax, see Table 4.2). The time course of GABAergic activity is depicted for three
different values of for α4β2 nAChRs in Fig. 4.4D. DA activity changes are solely
governed by GABAergic cells in case of disinhibition since the activation of α7
nAChRs is negligible at 1 µM nicotine which is in the ballpark of realistic nico-
tine levels. The profile of DA activity is therefore a mirror-image of the GABAergic
activity due to the inhibitory influence of the latter on DA cells (see Fig. 4.4F).
In turn, the duration of boosted DA activity outlasts the presence of nicotine and
depends on the recovery time constant from desensitization of α4β2 nAChRs. We
furthermore show in Fig. 4.4F that DA activity exhibits a drop below baseline if
the constant cholinergic drive to the VTA is assumed to be low (dashed blue line,
ACh = 0.1 µM), i.e. this drop stems from an increase of GABA cell activity (dashed
blue line in Fig. 4.4D).

In summary, we show that the direct stimulation and the disinhibition scenarios
can both potentially account for nicotine induced DA activity changes in wild type,
α4β2-, and α7-knockout mice (see summary in Fig. 4.4G). However, and this is a
crucial point, these two mechanisms require different and distinct levels of afferent
cholinergic input: Cholinergic drive has to be low for direct stimulation and high
for disinhibition in order to lead to DA activity increases in response to nicotine.
The model shows a second tell-tale difference in the relative observed time course
of the DA activity: in case of direct stimulation the duration of DA response is
determined directly by the duration of nicotine presence, whereas for disinhibition
the recovery from desensitization of the α4β2 nAChR defines the temporal scale of
the DA activity (see Table 4.1 for an overview of the differences). The α4β2 nAChR
recovery time constant used in the model (τmax = 10 min) results in a ∼12 min
longer increase in DA activity with disinhibition as compared to direct stimulation
for the same duration of nicotine application (see Fig. 4.4H).

4.9 Predictions of the VTA Model and Experimental Protocols to
Pin Down the Major Nicotinic Pathway of Action

The experimental data available so far is not sufficient to determine conclusively to
which extend direct stimulation or disinhibition of DA cells is at the origin of DA
signal increases in response to nicotine. We now study the DA cell response in the
model for different cholinergic input levels and for a range of nicotine concentra-
tions applied in order to suggest concrete experiments to pinpoint the mechanisms
of drug induced DA activity changes.
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Table 4.1 Overview of the model results

Mechanism Expression Conditions to reproduce
experimental data

Predictions

Disinhibition α4β2 nAChR-mediated
action predominantly
through GABA cells

– high afferent ACh input – the higher the afferent
ACh input level, the
stronger the increase in
DA activity in response
to Nic

– recovery from α4β2
nAChR desensitization
determines duration of
elevated DA activity in
response to Nic

– max. increase of DA
activity saturates at low
Nic

Direct stimulation α4β2 nAChR-mediated
action predominantly
through DA cells

– low afferent Ach input – high ACh input levels
turn the excitation of DA
activity into inhibition in
response to Nic

– duration of Nic
presence determines the
duration of elevated DA
activity in response to Nic

– higher Nic
concentrations lead to
stronger boost of DA

In our model the control parameter r , determining the distribution of α4β2
nAChR on DA and GABAergic neuron populations, allows to change the balance
of α4β2 action, i.e. from direct stimulation to disinhibtion. For clarity, we chose
extreme values of r for direct stimulation (r = 0.8) and disinhibition (r = 0). How-
ever, our analysis shows that the conditions for direct stimulation are met as long as
r > 0.5 and for disinhibition with r < 0.5.

Figure 4.5A shows the temporal profile of DA activity in response to 1 µM nico-
tine for different values of r for low- (left panel, in vitro) and high afferent input
strength (right panel, in vivo). Note that the DA activity is increased in the in vitro
(in vivo) case as long as r > 0.5 (r < 0.5). The direct stimulation (r = 0.8) and dis-
inhibition (r = 0) cases are highlighted by the red and the blue lines, respectively, for
both input strength cases. Importantly, the extent to which the GABAergic neuron
activity dominates DA cells in case of disinhibition (r < 0.5) depends on balancing
the glutamatergic and GABAergic input to DA cells. In the model, we set the ratio
of glutamatergic and GABAergic input current weights, wGlu/wG, to unity. If we
chose wGlu/wG = 100, for example, the DA cell activity shows no inhibition in the
in vitro scenario (results not shown). wGlu/wG = 100 means that DA cell activity is
dominated by nicotine driven Glu input increases outweighing inhibitory input from
GABA cells.

Our model predicts that the cholinergic input level (ACh) determines the extent
of the delayed increase in DA activity in case of disinhibition (r = 0), as shown
in Fig. 4.5B (left panel). The DA cells are initially inhibited due to fast activation
of α4β2 nAChR on GABAergic cell and subsequently disinhibited since those re-
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ceptors are desensitized and GABAergic activity falls below baseline levels (see
Fig. 4.4D). In turn, the amount of relief from inhibition of DA cells depends on the
overall excitatory drive to GABAergic cells. This excitatory drive is directly related
to the cholinergic input strength (Fig. 4.5B, left panel). Our analysis further shows
differential effects on the two parts of the DA response to nicotine: the delayed
increase (right panel in Fig. 4.5B, orange line) strongly depends on the constant
cholinergic drive to the VTA, whereas the initial drop of DA activity (right panel in
Fig. 4.5B, purple line) is less sensitive to the cholinergic input level.

How does the DA response for the direct stimulation and disinhibition depend
on the applied nicotine concentration? We find that the relative maximal increase
of DA activity augments with Nic in case of direct stimulation while this increase
saturates at ∼0.5 µM nicotine for disinhibition (see Fig. 4.5C, right panel). The dif-
ference stems from the fact that the maximal increase for direct stimulation is due
to fast activation of α4β2 nAChRs, whereas in the disinhibition case, the increase
arises from delayed desensitization of those receptors. Importantly, the two differ-
ent mechanisms entrain different time scales of maximal DA activity (compare time
points at which the maximal activity of DA neurons is attained in Fig. 4.5C, left
panel). Higher nicotine levels result in stronger activation, i.e. the initial peak rises
with Nic for direct stimulation (compare responses to 0.5 µM—full red line—and
3 µM nicotine—dashed red line—in the left panel of Fig. 4.5C; summary of results
in the right panel). On the other hand, the fraction of receptors driven in the de-
sensitized state cannot be increased with higher Nic concentrations for disinhibition
since the maximal fraction (IC50 � 0.5 µM) and the minimal rate of desensitization,
τ0, (Kτ < 0.5 µM) are already attained at ∼0.5 µM nicotine for α4β2 nAChRs (see
Table 4.2). In other words, 0.5 µM nicotine for 2 min is already effective in desensi-
tizing the maximal amount of α4β2 nAChRs. Note that the nicotine concentration
is applied for 2 min in case of disinhibition and for 10 min in case of direct stimu-

�Fig. 4.5 Predicted dynamics of the DA neuron population in the VTA in response to nicotine. A,
Temporal dynamics of DA neuron activity in response to 1 µM nicotine for 2 min for different
values of r and afferent input strengths. The left panel (right panel) shows the DA response in
the presence of constant low (high) cholinergic and glutamatergic afferent input to the VTA, i.e.
in vitro (in vivo) like conditions (in vitro: ACh = 0.384 µM, νGlu = 5.68 · 10−4; I0 = 0.1 in vivo:
ACh = 1.77 µM, νGlu = 0.1, I0 = 0.1). The distribution of α4β2 nAChRs is changed by varying
the control parameter r as indicated in the panels. Direct stimulation (disinhibition) refers to the
case with α4β2 nAChRs dominantly on DA (GABAergic) cells, i.e. r = 0.8 and r = 0, respec-
tively. B, Biphasic response of DA neuron activity in response to 1 µM nicotine for 2 min and
for different cholinergic input levels. The temporal dynamics of νD is shown in the left panel for
the disinhibition case (r = 0). The maximal initial inhibition of DA activity (marked by the pur-
ple symbols) and the maximal delayed excitation (marked by the orange symbols) is shown with
respect to the cholinergic input strength in the right panel (νGlu = 0.1, I0 = 0.1). C, Different re-
sponse profiles of the DA activity in the disinhibition and the direct stimulation case for varying
nicotine concentrations. The left panel shows the time course of DA activity in response to 0.5 µM
(full lines) and 3 µM nicotine (dashed lines) for 2 min, in case of disinhibition (blue lines; r = 0,
ACh = 1.77 µM, νGlu = 0.1, I0 = 0.1), or 10 min, in case of direct stimulation (inset, same axes,
red lines; r = 0.8, ACh = 0.1, νGlu = 0.1, I0 = 0.0202). The maximal DA response with respect to
nicotine is depicted in the right panel for direct stimulation (red line) and disinhibition (blue line;
data point adapted from Mameli-Engvall et al. 2006)
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lation in order to achieve comparable durations of DA activity increases (compare
Fig. 4.4H).

In summary, we suggest that changes of the cholinergic drive to the VTA during
nicotine application, or changes in the nicotine concentration administered in vivo
can potentially reveal the nature of the underlying mechanisms at the origin of DA
activity changes. Decreasing the cholinergic drive to the VTA further boost DA ac-
tivity increases for direct stimulation but diminishes that response for disinhibition
(Figs. 4.5A and B). Furthermore, the maximal DA response saturates at low nico-
tine concentrations (∼0.5 µM) for disinhibition but keeps rising with higher nicotine
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Table 4.2 Parameters of nAChR activation and desensitization kinetics

Parameter Definition Value Reference

α7-containing nAChR

EC50 half-maximum conc. of
activation

80 µM Peng et al. (1994), Gerzanich et
al. (1995), Fenster et al. (1997),
Papke (2006)

α potency of nicotine to evoke
response

∼2 Peng et al. (1994), Gerzanich et
al. (1995)

na Hill coefficient of activation 1.73 Peng et al. (1994), Fenster et al.
(1997), Papke (2006)

IC50 half-maximum conc. of
desensitization by Nic

1.3 µM Peng et al. (1994), Fenster et al.
(1997)

ns Hill coefficient of desensitization 2 Fenster et al. (1997)

τa activation time constant 5 msec Papke (2006)

Kτ half-maximum conc. of
desensitization time constant

1.73 µM Fenster et al. (1997)

nτ Hill coefficient of des. time
constant

2 Fenster et al. (1997)

τmax maximal des. time constant 2 min Fenster et al. (1997)

τ0 minimal des. time constant 50 msec this study, Papke 2006

α4β2-containing nAChR

EC50 half-maximum conc. of
activation (ACh)

30 µM Buisson and Bertrand (2001)

α potency of Nic to evoke response ∼3 Buisson and Bertrand (2001),
Eaton et al. (2003)

NA Hill coefficient of activation 1.05 Fenster et al. (1997), Buisson
and Bertrand (2001)

IC50 half-maximum conc. of
desensitization by Nic

0.061 µM Fenster et al. (1997)

ns Hill coefficient of desensitization 0.5 Fenster et al. (1997)

τa activation time constant 5 msec Buisson and Bertrand (2001)

Kτ half-maximum conc. of
desensitization time constant

0.11 µM Fenster et al. (1997)

nτ Hill coefficient of des. time
constant

3 Fenster et al. (1997)

τmax maximal des. time constant 10 min this study

τ0 minimal des. time constant 500 msec this study, Buisson and Bertrand
(2001)

concentrations for direct stimulation (Fig. 4.5C). See Table 4.1 for a summary of the
predictions for both mechanisms.
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4.10 Discussion

Our major goals were to exhibit how the nicotine evoked responses at the re-
ceptor population level in the dopaminergic nucleus VTA can lead to the self-
administration of nicotine and second to determine the dominant pathways of ac-
tion for nicotine within the ventral tegmental area. In order to address the first is-
sue we earlier proposed a novel neurodynamical modelling approach to drug-self-
administration (Gutkin et al. 2006). In this multi-modular framework we managed
to show that nicotine acting through nicotinic acetylcholine receptors, provoking ac-
tivation/desensitization on the short time scale with upregulation on the longer time
scales is able to drive the dopamine-dependent learning (read reward-modulated)
in the action selection circuits and lead to the onset of nicotine self-administration.
A slower opponent process that is engaged by nicotine then is shown to result in the
drug-seeking being stamped-in and becoming a habitual behavior. This model made
a number of predictions, e.g. changes in the general learning rates for addicted in-
dividuals, differential dose-availability thresholds for the initiation and habituation
of nicotine-seeking. However it was of insufficient detail to tease out the precise
receptor mechanisms governing the acute dopamine response to nicotine.

To address this issue we developed a novel approach allowing us to investigate
the interplay of the pharmacodynamics of nicotine and the dopaminergic signal con-
structed in the VTA. The combination of a population activity model of the VTA
with a detailed model of nAChR kinetics enables us to better understand the mech-
anisms of nicotine action on DA signaling. Our explorations of the model show that
in vitro and in vivo data can be reconciled by taking into account the difference in
afferent input strengths to the VTA in the two experimental settings. Hence, the dif-
ferential activation and desensitization kinetics of α7- and α4β2 nAChRs combined
with different afferent input levels can explain the mechanism of nicotine action.
Our approach confirms the previously expressed hypothesis that α4β2 nAChRs pre-
dominantely mediate nicotine influence on DA signaling (Mansvelder et al. 2002;
Champtiaux et al. 2003; Mameli-Engvall et al. 2006).

Available experimental data does not allow to pinpoint whether α4β2 nAChRs
on VTA DA—direct stimulation—or GABA cells—disinhibition—are the dominant
site of nicotine action. We further demonstrate that disinhibition and direct stimula-
tion of DA cells can potentially be at the origin of the experimentally observed nico-
tine induced boost of DA activity. In that sense, the here presented VTA model rep-
resents a necessary circuit to describe experimental data on nicotine applications yet
the data is not sufficient to resolve unanimously the underlying mechanism. Using
the model, we identify that the cholinergic input levels have to be low for direct stim-
ulation, whereas high cholinergic input levels are crucial in the disinhibition case, to
observe a DA activity increase. These results emerge directly from known activation
and desensitization properties of α4β2 nAChRs. Assuming that cortical glutamater-
gic and subcortical cholinergic as well as glutamatergic afferent activities are low in
vitro and high in vivo suggests disinhibition of DA cells to be the candidate mecha-
nism at the origin of increased DA activity. Several experimental results support the
importance of α4β2 nAChRs on GABAergics cells for nicotinic action: (i) Cholin-
ergic axon terminals synapse selectively on non-DA neurons and on a subset of DA
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neurons in the VTA (Garzón et al. 1999). (ii) The α4-containing nAChR upreg-
ulation on VTA GABAergic neurons in response to chronic nicotine supports the
functional importance of those receptors on GABAergic cells with respect to nico-
tine (Buisson and Bertrand 2001; Nashmi et al. 2007). (iii) A whole class of drugs—
including opioids, cannabinoids, γ -hydroxy butyrate (GHB), benzodiazepines—has
been identified which lead to inhibition of GABA neurons in the VTA and thereby
disinhibition of DA neurons (e.g., Johnson and North 1992a, see Lüscher and Un-
gless 2006 for an overview). This together with the finding that the GABA an-
tagonist bicuculline is self-administered by mice supports the hypothesis that re-
duced GABAergic input to DA cells induces addictive behavior (David et al. 1997;
Ikemoto et al. 1997). (iv) The hyperexcitability of the VTA in response to nicotine
(Sher et al. 2004) could be related to the higher abundance of GABAergic cells in
the VTA as compared to the SN (GABA to DA ratio about 1/4 in the VTA, Johnson
and North 1992b; and 1/19 in the substantia nigra, Lacey et al. 1989). We would
like to point out that the disinhibition scenario emphasizes the role of local circuitry
organization, i.e. the behavior of GABA cells is crucial for the augmentation of DA
activity. This is opposed to the single cell mechanism associated with direct stimu-
lation of DA cells.

Our model makes several predictions for the case that the reinforcing properties
of nicotine are mediated through inhibition of GABA cells. The boost of DA activity
induced by nicotine is preceded by a short-lasting inhibition of DA activity in the
model stemming from fast activation of α4β2 nAChRs (see Figs. 4.4F and 4.5A).
Independently obtained experimental results seem to support the finding that the
response of DA neurons is biphasic, at least in some (but not all) cases of direct
recordings from DA cells (private communications with Philippe Faure and Jie Wu;
Erhardt et al. 2002). Another prediction of the model is the saturation of the nicotine
induced DA boost at low (∼500 nM) nicotine levels in case of disinhibition (see
Fig. 4.5). Higher nicotine levels do not evoke further increases of DA activity since
the maximal desensitization of α4β2 nAChR is already attained at low nicotine. Two
interesting implications of this result are: (i) Nicotine elicits maximal α4β2 nAChR-
mediated increase of DA activity at nicotine concentrations attained in the blood of
smokers (Henningfield et al. 1993). (ii) Repetitive nicotine applications consistently
evoke the same boost in DA activity even at high repetition rates, which would
maintain the reinforcing properties of the drug even at high exposure frequencies.

We confirm previous findings suggesting that realistic doses of nicotine do not
significantly desensitize α7-containing nACh receptors (Wooltorton et al. 2003).
We extend this statement and propose that realistic concentrations of nicotine do
not succeed to significantly activate α7-containing nAChRs. We consider it there-
fore unlikely that increased excitatory drive to DA cells in response to nicotine per-
sistently augments their activity. It should however be noted that the mean-field
approach presented here does not resolve the different firing modes of DA cells, i.e.
bursting and regular firing. α7-containing nAChs could play a role in nicotine in-
duced bursing since bursts have been shown to be induced by glutamatergic inputs
to DA cells (Grenhoff et al. 1988; Chergui et al. 1993). One could imagine that the
tonic inhibitory input from GABAergic cells sets the overall level of excitability of
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DA cells. In case the DA cells are sufficiently disinhibited through desensitization of
α4β2 nAChRs, α7 nAChR activation induces burst firing on top of elevated mem-
brane depolarizations. Hence GABA cells would gate DA burst firing, as suggested
in a biophysically detailed model by Komendantov et al. (2004). Furthermore, burst-
ing induced by α7 nAChR activation could be crucial for the induction of long-term
potentiation of Glu synapses onto DA cells as proposed by Mansvelder and McGe-
hee (2000). One future direction of our research is the investigation of the effect of
nicotine in a spiking and bursting model of VTA DA cells in order to address the
issue of the different DA cell activity patterns.

We note that we concentrated on the local VTA mechanisms and developed
a minimal local-circuit model of the VTA that combined both neuronal popu-
lation dynamics and receptor kinetics in a novel way. In particular, we focused
only on feedforward afferent input (glutamatergic and cholinergic) and a sim-
plified local circuitry of the VTA. We left aside the possible recurrent involve-
ment of other neuronal structures participating in DA-signaling, such as GABAer-
gic connections from the nucleus accumbens for example (Kalivas et al. 1993;
Wu et al. 1996). Furthermore, we chose to not address the potential heterogene-
ity of the VTA itself (Garzón et al. 1999; Carr and Sesack 2000a, 2000b; Fagen et
al. 2003). However, our proposed circuitry can be seen as a global description of
the VTA or as a model of a local computational unit of neurons within the VTA.
Whether the experimentally observed diversity of DA cell behavior could be ex-
plained by the coexistent presence of direct stimulation and disinhibition subcircuits
in the VTA or whether recurrent inhibition has to be taken into account remains an
area for future studies. We would however like to draw the attention to the fact that
DA and GABAergic cells show a variety of temporal profiles in the model depend-
ing on their α4β2 nAChR expression level and their cholinergic input level.

We show that the constant cholinergic tone crucially determines the phasic
dopamine signal in response to nicotine. For disinhibition, we illustrate that the
increase of the phasic DA activity grows with the tonic cholinergic input level to
the VTA (see Fig. 4.5B). Furthermore data and theory suggest that phasic dopamine
modulates learning (Reynolds and Wickens 2002; Dayan and Niv 2008). Our results
together with this fact lead us to speculate that if salient characteristics of environ-
mental cues are reflected in the overall cholinergic tone (Yu and Dayan 2005), the
increase of phasic DA could explain the strong associations formed between these
cues and the habit of smoking (Lichtenstein 1982; DiChiara 1999). Furthermore,
taking diural rhythms of cholinergic signaling into account, the VTA may give rise
to different DA output at different times of the day, e.g. the morning cigarette may
deploy different mechanisms than an evening cigarette. However, how dynamic af-
ferent input changes, possibly signaling behaviorally relevant features such as re-
ward or expectation of reward, are translated into dopamine output is a future di-
rection of the local VTA circuit modeling approach. The model would furthermore
allow us to study how nicotine changes this input integration. Identifying the specific
functional targets of nicotine driven reinforcement potentially has direct implication
for developing nicotine addiction treatments, e.g. for designing replacement drugs.
Overall, we suggest the dynamics of the local VTA circuit including GABA cells
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play a crucial role in constructing the dopamine signal in response to nicotine for
the constant afferent input regime considered here.
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Chapter 5
Dual-System Learning Models and Drugs
of Abuse

Dylan A. Simon and Nathaniel D. Daw

Abstract Dual-system theories in psychology and neuroscience propose that a
deliberative or goal-directed decision system is accompanied by a more auto-
matic or habitual path to action. In computational terms, the latter is prominently
associated with model-free reinforcement learning algorithms such as temporal-
difference learning, and the former with model-based approaches. Due in part to
the close association between drugs of abuse and dopamine, and also between
dopamine, temporal-difference learning, and habitual behavior, addictive drugs are
often thought to specifically target the habitual system.

However, although many drug-taking behaviors are well explained under such a
theory, evidence suggests that drug-seeking behaviors must leverage a goal-directed
controller as well. Indeed, one exhaustive theoretical account proposed that drugs
may have numerous, distinct impacts on both systems as well as on other processes.

Here, we seek a more parsimonious account of these phenomena by asking
whether the apparent profligacy of drugs’ effects might be explained by a single
mechanism of action. In particular, we propose that the pattern of effects observed
under drug abuse may reveal interactions between the two controllers, which have
typically been modeled as separate and parallel. We sketch several different candi-
date characterizations and architectures by which model-free effects may impinge
on a model-based system, including sharing of cached values through truncated tree
search and bias of transition selection for prioritized value sweeping.

5.1 Introduction

Dual-system theories of decision making—involving, for instance, a deliberative
“goal-directed” controller and a more automatized or “habitual” one—are ubiq-
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uitous across the behavioral sciences (Blodgett and McCutchan 1947; Dickin-
son 1985; Verplanken et al. 1998; Kahneman and Frederick 2002; Loewenstein
and O’Donoghue 2004; Daw et al. 2005; Wood and Neal 2007). Many theo-
ries of drug abuse draw on this sort of framework, proposing that the compul-
sive nature of abuse reflects a transition of behavioral control from the volun-
tary system to the habitual one (Tiffany 1990; Ainslie 2001; Everitt et al. 2001;
Vanderschuren and Everitt 2004; Everitt and Robbins 2005; Bechara 2005). Such
a characterization may explain many drug-taking behaviors that become stereo-
typed and automatic, and dovetails naturally with models of the function of
the neuromodulator dopamine (a ubiquitous target of drugs of abuse) suggest-
ing a specific role for this neuromodulator in reinforcing habits (Di Chiara 1999;
Redish 2004). However, the view of abusive behaviors as excessively automatized
stimulus-response habits cannot easily explain many sorts of drug-seeking behav-
iors, which can involve novel and often increasingly inventive goal-directed acqui-
sition strategies (Tiffany 1990). Such theories also do not speak to more cognitive
phenomena such as craving.

Drug abuse is a dysfunction of decision making, acquired through learning.
In this domain, theories are often formalized in terms of reinforcement learning
(RL) algorithms from artificial intelligence (Sutton and Barto 1998). By provid-
ing a quantitative characterization of decision problems, RL theories have enjoyed
success in behavioral neuroscience as methods for direct analysis and interpreta-
tion of trial-by-trial decision data, both behavioral and neural (Schultz et al. 1997;
Daw and Doya 2006). Importantly, these theories also offer a putative computa-
tional counterpart to the goal-directed vs. habitual distinction, which may be useful
for characterizing either system’s role in drug abuse. In these terms, the more au-
tomatic, habitual behaviors are typically associated with so-called model-free RL,
notably temporal-difference (TD) methods such as the actor/critic, in which suc-
cessful actions are reinforced so that they may be repeated in the future. However, it
has more recently been proposed that goal-directed behaviors can be captured with
a categorically distinct type of RL known as model-based, in which actions may
be planned based on a learned associative model of the environment (Doya 1999;
Daw et al. 2005; Tanaka et al. 2006; Hampton et al. 2006; Pan et al. 2007;
Redish and Johnson 2007; Rangel et al. 2008; Gläscher et al. 2010).

Such theories hypothesize that goal-directed and habitual behaviors arise from
largely separate and parallel RL systems in the brain: model-based and model-free.
Model-free RL forms the basis for a well-known account of dopamine neurons in
the midbrain, as well as BOLD activity in dopamine targets in the basal ganglia
(Houk et al. 1994; Schultz et al. 1997; Berns et al. 2001; O’Doherty et al. 2003;
McClure et al. 2003). Since it is well established that drugs of abuse affect the
function of these systems, and that other problem behaviors such as compul-
sive gambling show evidence of related effects, it has been a natural and fruit-
ful line of research to apply TD-like theories to drug abuse (Di Chiara 1999;
Redish 2004). However, these more computational theories pose the same puz-
zle as their psychological counterparts: how to account for the role of more flex-
ible, drug-seeking behaviors apparently associated with goal-directed (in this case,
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model-based) control. Here, we consider how these behaviors might be understood
in terms of the less well characterized model-based system. We follow Redish et
al. (2008) in this endeavor, but focus more on what drug abuse phenomena suggest
about potential variants or elaborations of the standard model-based account. In par-
ticular, we relate these issues to a range of other data suggesting that the two hypoth-
esized RL systems are not as separate as they have been envisioned, but may instead
interact in some respects. We consider how different sorts of interaction might be
captured in modified forms of these theories in order to extend the computational
account of drug abuse.

5.2 Background: Reinforcement Learning and Behavior

As a framework for formalizing theories of drug abuse, this section lays out the
basics of RL, the study of learning optimal decisions through trial and error. For a
more detailed description of this branch of computer science, see Sutton and Barto
(1998) or, for its applications to psychology, Balleine et al. (2008).

5.2.1 The Markov Decision Process

Most decision problems in RL are based on Markov decision processes (MDPs),
which formalize real-world problems as a sequence of steps, each of which involves
a choice between actions affecting the resulting reward and the situation going for-
ward. Formally, an MDP is a set of states, S , and actions, A, which occur in some
sequence, st and at over timesteps t , such that st+1 depends stochastically on st
and at , but on no other information. This dependence is described by a transition
function specifying the probability distribution over possible next states given the
current state and chosen action:

T
(
s, a, s′) = P

[
st+1 = s′∣∣st = s, at = a

]

Rewards are similarly described by a stochastic reward function mapping each state
to the quantity of reward received in that state: R : S →R, such that rt = R(st ). The
transition and reward functions thus fully describe the process.

5.2.2 Values and Policies

The goal of an agent in an MDP is to select actions so as to maximize its reward, and
more specifically, to learn to do so by trial and error, using only information about
the underlying process observed during behavior (i.e., samples from the transition
and reward functions). Specifically, at a state, s, an agent aims to pick the action,
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a, that will maximize the cumulative, temporally discounted rewards that will be
received in the future, in expectation over future states and actions:

Q(s, a) = E

[∑

i=1

γ i−1rt+i |st = s, at = a

]

where γ < 1 is an exponential time discounting factor. This quantity is known as
the state-action value function, and many approaches to RL involve estimating it,
either directly or indirectly, so as to choose the action maximizing it at each state.

A key aspect of MDPs (indeed, what makes them difficult), is their sequential
nature. An agent’s future value prospects depend not only on the current state and
action, but on future choices as well. Formally, consider a policy by which an agent
selects actions, that is, a (possibly stochastic) function describing the action to take
in each state: π : S → A. From this, we can define the expected value of taking
action a in state s, and then following policy π thereafter:

Qπ(s, a) =
∑

s′
T

(
s, a, s′)

[
E
[
R

(
s′)] + γ

∑

s′′
T

(
s′,π

(
s′), s′′)[E

[
R

(
s′′)] + · · · ]

]

(5.1)
This value depends on the sequence of future expected rewards that will be obtained,
averaged over all possible future trajectories of states, s, s′, s′′, . . . , according to the
policy and transition function. One way of framing the goal, then, is to determine
the optimal policy, known as π∗, that will maximize Qπ∗

(st , π
∗(st )) at each step.

A key insight relevant to solving this problem is that the state-action value may
be written recursively:

Qπ(s, a) =
∑

s′
T

(
s, a, s′)[R

(
s′) + γQπ

(
s′,π

(
s′))]

Since the optimal policy must maximize Q at each step, the optimal value satisfies:

Q∗(s, a) =
∑

s′
T

(
s, a, s′)[R(s′) + γ max

a′ Q∗(s′, a′)] (5.2)

This is known as the Bellman equation, which provides a recursive relationship
between all the action values in the MDP.

The optimal policy can be extracted directly from the optimal value function,
if it is known. That is, an agent can achieve maximal expected reward by simply
choosing the maximally valued action at each step: π∗(s) = argmaxaQ

∗(s, a). Ac-
cordingly, we next consider two different approaches to learning to choose actions,
which each work via learning to estimate Q∗(s, a).
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5.2.3 Algorithms for RL

5.2.3.1 Model-Free RL

The recursive nature of the state-action value motivates one approach to RL, often
exemplified by temporal-difference learning (Sutton 1988). Here, an agent attempts
directly to estimate the optimal value function Q∗. (A closely related variant, the
actor/critic algorithm, estimates the policy π∗ itself using similar methods.)

The recursion in Eq. (5.2) shows how such an estimate may be updated, by chang-
ing it so as to reduce the observed deviation between the left and right hand sides of
the equation, known as the prediction error. Specifically, consider any step at which
an action, a, is taken in state s, and a new state, s′, and reward, r , are observed.
From Eq. (5.2), it can be seen that the quantity r + γ maxa′ Q(s′, a′) is a sample of
the value of the preceding state and action, Q(s, a), where the state s′ samples the
transition distribution T (s, a, s′), and the agent’s own estimate of the new state’s
value, Q(s′, a′), stands in for the true Q∗. We can then update the estimated value
toward the observed value, with learning rate α:

Q(s, a) ← Q(s, a) + α
(

Q sample
︷ ︸︸ ︷
R

(
s′) + γ max

a′ Q
(
s′, a′)−Q(s, a)

︸ ︷︷ ︸
prediction error, δ

)

Algorithms of this sort are known as model-free approaches because they do
not directly represent or make use of the underlying MDP transition or reward func-
tions, but instead learn the relevant summary quantity directly: the state-action value
function.

5.2.3.2 Model-Based RL

A second approach to RL is model-based learning. Here, representations of the tran-
sition and reward functions are themselves learned, which function as a model of the
MDP, thus giving rise to the name. This is quite straightforward; for instance, the
transition function may be estimated simply by counting state-action-state transi-
tions. Given any estimate of these functions, the state-action value function may
be computed directly, for example, through the iterative expansion of Eq. (5.1) to
explicitly compute the expected rewards over different possible trajectories.

Such a recursive computation can be laborious, in contrast to and thus motivat-
ing model-free methods which involve minimal computation at choice time (e.g.,
simply comparing learned state-action values). The flip side of this trade-off is that
computing these values on the basis of a full world model, rather than simply relying
on a previously learned summary, offers more flexible possibilities for combining
information learned at different times, and enables the agent to respond more dy-
namically under changing situations.
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5.2.4 RL and Behavioral Neuroscience

These two frameworks for solving an MDP, one (model-free) computationally fast
and reactive, and the other (model-based) involving more deliberative or proactive
consideration of possibilities, are closely related to the psychological concepts of
habits and goal-directed actions, respectively.

In psychology, these two sorts of instrumental behavior are envisioned as rely-
ing on different underlying representations (Balleine and Dickinson 1998). Goal-
directed actions are supposed to be based on a representation of the action-outcome
contingency (e.g., that pressing a lever produces a certain amount of cheese; or, in
a spatial task, a ‘cognitive map’ of the maze), allowing deliberative choice by ex-
amining the consequences of different possible actions. Habits are instead assumed
to be based on direct stimulus-response associations, which may be learned by a
simple reinforcement rule (i.e., if a response in the presence of some stimulus is
followed by reward, strengthen it, as proposed by Thorndike 1898) and embody a
very simple, switchboard-like choice strategy.

However, since the stimulus-response association lacks any representation of the
specific outcome (e.g., cheese) that originally reinforced it, a choice mechanism of
this sort predicts odd inflexibilities and insensitivities to certain shifts in circum-
stances. For instance, it predicts that a rat who is trained to lever-press for food
while hungry, but then fed to satiety, will continue to work for food given the oppor-
tunity, at least until given enough experience to unlearn or relearn the association.
In contrast, since choosing a goal-directed action involves examining the action-
outcome association, this approach can adjust behavioral preferences instantly to
comply with new situations such as changes in outcome values. Another important
capability of a goal-directed approach is the ability to plan novel actions to obtain
new goals or react to new information. For instance, in a maze, an animal might use
a cognitive map to plan a route not previously followed, such as a shortcut between
two locations (Tolman 1948). Such flexibility is not possible using only stimulus-
response associations (since such a route will not have previously been reinforced).

All this motivates standard experimental procedures, such as outcome devalua-
tion, for distinguishing these two sorts of behaviors. The results of such tests (specif-
ically, whether actions are or are not sensitive to devaluation under different circum-
stances) indicate that the brain uses both approaches (Dickinson and Balleine 2002).

The two sorts of RL algorithms directly mimic these psychological theories in
key respects (Daw et al. 2005; Balleine et al. 2008). Like habits, model-free ap-
proaches support easy choices by relying on a summary representation of an imme-
diately relevant decision variable: the value function or policy. For the same reason,
these representations lack information about outcome identity and are insensitive to
changes; they can be updated only following additional experience with the conse-
quences of a state and action, and often through its repetition. Conversely, model-
based algorithms formalize the idea of an associative or cognitive search in which
possible outcomes are explicitly considered in relation to their likelihood of achiev-
ing some goal (i.e., reward). These forms of reasoning depend on representations of
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outcomes and state transitions (analogous to a cognitive map or action-outcome as-
sociation), and, like their psychological counterparts, can adjust rapidly to changes
in the worth or availability of outcomes and can combine previously experienced
sequences of actions in novel ways to reach goals.

RL approaches have also been associated with specific neural systems. Model-
free algorithms in particular have been a valuable tool for explaining the func-
tion of the dopamine system, as the firing rates of midbrain dopamine neurons
closely match the error signals predicted by these algorithms (Houk et al. 1994;
Schultz et al. 1997). There is also evidence for representation of state-action values
in other areas of the brain, including prefrontal cortex, striatum, and parietal regions
(Delgado et al. 2000; Arkadir et al. 2004; Tanaka et al. 2004; Samejima et al. 2005;
Plassmann et al. 2007; Tom et al. 2007; Kable and Glimcher 2007; Hare et al. 2008;
Kim et al. 2009; Wunderlich et al. 2009; Chib et al. 2009).

Less is known about the neural substrate for model-based or goal-directed ac-
tions, though there are now a number of reports of potentially model-related activity
throughout the brain (Hampton et al. 2006, 2008; Pan et al. 2007; Bromberg-Martin
et al. 2010). In general, these actions are not envisioned to involve dopamine, since
model-based approaches rely on quite different learning mechanisms with error sig-
nals that do not match the dopaminergic response (Gläscher et al. 2010) and be-
cause lesions of the dopaminergic system appear to spare goal-directed action while
affecting habits (Faure et al. 2005). More generally, the use of the reward devalua-
tion procedure together with numerous brain lesions has allowed the demonstration
of an anatomical double-dissociation, wherein different areas of striatum (and as-
sociated parts of cortex and thalamus) support each learning strategy even under
circumstances when the other would be observed in intact animals (Killcross and
Coutureau 2003; Yin et al. 2004, 2005; Balleine et al. 2007). These findings have
suggested that the brain implements both model-based and model-free approaches
as parallel and, to some extent, independent systems.

5.2.5 RL and Drugs of Abuse

In this light it seems natural to interpret the strongly habitual behaviors associ-
ated with drug taking as an effect of drug abuse specifically on model-free val-
uations (Redish 2004; Redish et al. 2008; Schultz 2011). In particular, compul-
sive behaviors have been attributed to overly strong habitual responses (or state-
action values), whereby learned responses persist despite contrary evidence of
their value available to a contemplative, model-based system (Everitt and Rob-
bins 2005). A candidate mechanism for such uncontrolled reinforcement is ef-
fects of drugs on the dopaminergic signal carrying the reward prediction error sup-
posed to train model-free values or policies (Redish 2004; Panlilio et al. 2007;
Redish et al. 2008). This interpretation is consistent with the fact that most if not
all drugs of abuse share effects on dopamine as a common mechanism of their rein-
forcing action.
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However, it has also been pointed out that such an account is necessarily in-
complete, and in particular that drug abusers demonstrate highly elaborate and of-
ten novel drug-seeking behaviors (Tiffany 1990; Olmstead et al. 2001; Kalivas and
Volkow 2005; Root et al. 2009). Just as with short cuts in mazes, such flexible plan-
ning cannot be explained by the model-free repetition of previously reinforced ac-
tions. Therefore, the remainder of this chapter considers algorithmic possibilities for
ways a model-based system could be affected by drug abuse. These considerations
have consequences for theories of appetitively motivated behavior more generally,
since they strongly suggest some sort of integration or cooperation between the sys-
tems in commonly valuing drug outcomes.

5.3 Drugs and Model-Based RL

The problem facing us is that, under a standard theory (e.g., Daw et al. 2005), drugs
of abuse affect valuations only in the model-free system, via effects on a dopamin-
ergic prediction error. Valuations in a model-based system have been presumed to
be entirely separate and independent, and in particular, to be unaffected by manip-
ulations of dopamine. However, if the effects of drugs are isolated to a model-free
system (and drugs are not, by comparison, disproportionately valued in a model-
based system) then actions motivated by drugs should exclusively constitute simple
repetitions of previously reinforced actions. Such a system has no mechanism for
planning novel drug-seeking actions.

In this section, we consider a number of potential solutions to this issue, focusing
on effects either via inflation of values per se, or biasing them via changes in the
search process by which they are computed.

5.3.1 Drugs and Model-Based Reward

A typical application of model-free theories to drug abuse depends on drugs affect-
ing the learned value or policy function, for example, by inflating the state-action
values leading to drug rewards. Is there some simple analogy in a model-based sys-
tem for such inflation? While model-based systems typically construct a value func-
tion on demand, rather than maintaining a representation of one, they do maintain a
representation of rewards in some other form, often as an approximation to the state
reward function. This reward function could theoretically be learned through pre-
diction errors just as state-action values are, and similarly be inflated as an effect of
drug abuse (Redish et al. 2008; Schultz 2011). In this case, an increased reward as-
sociated with the attainment state would flexibly elicit a wide range of goal-directed
behaviors, as any actions likely to eventually reach that state would themselves have
a higher computed action value, even along novel paths. However, this explanation
raises a problematic question: what is the process by which drugs of abuse could
inflate the reward function?
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By analogy with the TD account, the natural answer would seem to be that the
inflation happens in much the same way as model-free value inflation is supposed
to occur: via effects on dopaminergic responses effectively exaggerating the predic-
tion error used to learn these representations. However, as previously mentioned, the
representations learned in a model-based system (notably, the reward function, R)
require different sorts of prediction errors (Gläscher et al. 2010). On available ev-
idence, the responses of dopaminergic neurons appear consistent with a prediction
error appropriate for training future (discounted) value (Q), not immediate reward
(R). In particular, the signature phenomenon whereby dopamine responses transfer
with training to cues predicting upcoming reward is inconsistent with a prediction
error for the one-step reward R: there are no immediate rewards and no errors in
their predictions tied to this event (Schultz et al. 1997). Moreover, although reward
values for the model-based system are likely represented in a dissociable location
in the brain from model-free values, it is unlikely that this learning is driven by
some atypical dopaminergic signal, since reports suggest at least anecdotally that
dopamine neurons are consistent in this respect, regardless of where they project
(Schultz 1998).

If dopamine controls these secondary incentives or motivational values and not
representations of one-step rewards, then the latter are unlikely to be a mechanism
by which drugs of abuse impact model-based valuations.

5.3.2 Drugs and Model-Based Value

In order to solve this problem, we return to the Bellman equation (5.2) which con-
nects model-free and model-based approaches by defining the state-action value that
they both compute in different ways. A key claim of the model-free approaches is
that the brain maintains internal (“cached” or stored) estimates of the state-action
values, which are updated in place by prediction error and are putatively inflated by
drugs of abuse via their effects on this prediction error signaling. The model-based
approach is assumed instead to compute the state-action values anew at decision
time by evaluating the Bellman equation, deriving them from more elemental infor-
mation (the reward and transition functions).

If indeed both systems operate in the brain and aim to compute equivalently de-
fined state-action values, then the Bellman equation suggests an obvious possibility
for their interaction: a model-based system could make use of the cached state-
action values maintained by the model-free system. In particular, because of the
recursive form of the Bellman equation, at any point in its iterative, tree-structured
expansion, it is possible to substitute a cached (e.g., model-free) estimate of the
right-hand value, Q, to terminate the expansion. One motivation for this “partial
evaluation” is that the full reevaluation of the Bellman equation at each decision
step is computationally laborious; moreover, repeating this computation each step
may have diminishing returns if, for instance, the learned estimates of transition
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and reward functions change little between each evaluation (Moore and Atkeson
1993).

If a model-based search immediately terminated with cached action values (i.e.,
on the first step) it would simply revert to a model-free system, while each addi-
tional step of evaluation using the model’s transition and reward functions would
provide a view of value which is model-based out to a horizon extended one step
further into the future, at the cost of additional computation. Thus, if a model-
based system engaged in such partial evaluation by terminating its search at states
with model-free state-action values inflated by the theorized dopamine mechanisms
(such as states associated with drug attainment), the model-based system would
be similarly compromised, with this exaggeration carried back to other computed
action values that may reach such a state. The combination of the two sorts of
evaluation would allow the model-based system to plan novel action trajectories
aimed at attaining states with high (potentially drug-inflated) value in the model-
free system’s estimates. In this sense, the model-free estimates can serve as sec-
ondary incentives for guiding the model-based system’s preferences, an idea remi-
niscent of “incentive salience” accounts of drug motivation (Robinson and Berridge
2008).

The foregoing considerations suggest a new perspective on the joint contribution
of model-based and model-free evaluations to behavior. Whereas previous work
(Daw et al. 2005) envisioned that the brain must select between separate model-
based and model-free values, the partial evaluation approach suggests that the key
question is instead where to integrate the values: at each step, whether to further
evaluate a decision branch or to truncate the trajectory using cached values. With this
extension, the traditional story of a shift from goal-directed to automatic processing
can make a broader range of behavioral predictions as a shift towards more limited
searches under model-based evaluation (Nordquist et al. 2007).

Also, interacting architectures of this broad sort may help to explain numerous
indications from the neuroscientific literature that model-free and model-based eval-
uation may be more interacting than separate. For instance, goal-directed learning
appears to involve a subregion of striatum, dorsomedial, which is adjacent to the
part apparently responsible for habits, and which also receives heavy dopaminergic
innervation (Yin et al. 2005). Moreover, indications of model-based computations
(such as devaluation sensitivity) have been observed throughout areas of the brain
traditionally thought to be part of the model-free system including ventral striatum
(Daw et al. 2011; Simon and Daw 2011; van der Meer et al. 2010), downstream
ventral pallidum (Tindell et al. 2009), and even dopaminergic neurons (Bromberg-
Martin et al. 2010).

In the drug context, this view also raises a new set of questions, surrounding
how drugs might affect search termination. For instance, if drug-inflated estimates
of state-action values serve as secondary incentives for model-based search, why
would the model-based system terminate with them, rather than planning past the
contaminated states?
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5.3.3 Drugs and Model-Based Search

If a model-based search process were biased at search time to adopt exaggerated
cached values rather than pursuing further evaluation, the resulting behavior would
show strong preferences for actions (even novel ones) that tend to lead to such out-
comes. The question is why such a bias would arise. That is, the concept of partial
evaluation explains how inflated values in the model-free system could affect the
model-based system, but may not adequately account for the particular fixations
drugs of abuse engender, whereby goal-directed behaviors may operate to fulfill the
craving to the exclusion of other goals.

To begin to address this question, we consider how search progress and search
termination might be affected by drugs of abuse. A more general and flexible frame-
work for reasoning about these issues is Sutton’s Dyna architecture (Sutton 1990),
which provides a framework by which model-based and model-free RL can coex-
ist and dynamically trade-off their contributions to learning. This architecture has
also been employed in theories of model-based learning in the brain (Johnson and
Redish 2005). The Dyna-Q algorithm envisions that an agent will maintain a single
set of cached state-action values, but that these can be updated by both model-based
and model-free updates in any mixture. As with standard model-free learning, state-
action values may be updated directly by prediction errors according to actual ex-
perience. A learned world model can also be used to produce simulated experience
(i.e., state, action and reward trajectories sampled from the modeled transition and
reward functions), which can train the cached state-action values in the same way
as real experience. Full model-based value updates (i.e., averaging rather than sam-
pling over possible successor states for an action using the Bellman equation) can
also be applied in place.

As opposed to the traditional view of a tree-structured search, Dyna-Q has the
freedom to apply these model-based updates in arbitrary orders. All these up-
dates may be interleaved during behavior, at decision time, or off-line. Given suf-
ficient updates, the values learned will approach the same model-based values a
fully expanded search would. Because of the possibility of learning from simu-
lated sample trajectories, the theory also exposes the connection between model-
based valuation and simulation. Intuitively this idea comports well with ideas that
search may be implemented by cognitive simulation (Buckner and Carroll 2007;
Buckner 2010) as well as evidence for various sorts of on- and off-line replay or pre-
play over spatial trajectories in hippocampal place cells (Johnson and Redish 2005;
Foster and Wilson 2006; Hasselmo 2008; Koene and Hasselmo 2008; Davidson
et al. 2009; Lansink et al. 2009; Derdikman and Moser 2010; Carr et al. 2011;
Dragoi and Tonegawa 2011).

The question of drug abuse now can be further refined to which trajectories are
simulated, as well as where these trajectories are terminated. One principled ap-
proach to this question is the prioritized sweeping algorithm (Moore and Atkeson
1993). In its original form, it is fully model-based (i.e., no direct TD updates from
experience are used) but the same principle is equally applicable within Dyna. The
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general idea is that if new experience or computation changes the value (or transi-
tion and reward functions) at a state, then these changes will have the most extreme
effects on the state-action values for actions leading up to those states, and so those
predecessors should have the highest priority for simulated updates. For example, if
a novel reward is experienced following an action, with the standard TD algorithm,
this reward will not have an effect on other actions that may lead to the reward
state until those actions are taken, while a model-based system will be able to up-
date other action values accordingly, but only with extensive computation. Under a
Dyna algorithm, however, this reward value could be propagated to other cached,
model-free action values through simulated sampling of actions. By sampling states
in reverse order along trajectories leading to the reward state, for instance, ‘back-
ing up’ the values to more distant states, this can happen quite efficiently without
requiring any additional real experience (Foster and Wilson 2006).

A neural system that implements such an algorithm suggests a mechanism for
exploitation by drugs of abuse, whereby values inflated by distorted prediction
errors could preferentially be selected for backing up. In particular, the princi-
ple that model-based updates are prioritized toward areas of the state space with
new learning will be directly compromised by inflated prediction errors, since
these will drive new learning and thereby attract more priority for model-based
updates. Thus, the standard dopamine-mediated drug abuse story, whereby effec-
tive prediction errors are enhanced by drug experiences even when no new re-
ward information is available, now cleanly predicts such prioritized model-based
value updates as well. The action values associated with drug-taking would con-
tinue to increase in such a scenario, and thus always be given high priority for
backups. As a result, these inflated values would propagate throughout the model,
even to actions not previously resulting in drug attainment that have some prob-
ability of leading to other inflated states, to the exclusion of other potential goals
or even negative experiences that may occur subsequent to fulfillment. This may
constitute a computational description of phenomena associated with drug abuse,
such as salience-driven sensitization or motivational magnets (Di Ciano 2008;
Robinson and Berridge 2008), and can also explain suggestions that even goal-
directed drug-seeking actions are insensitive to devaluation (Root et al. 2009). Here,
the high priority given to such continually changing values is analogous to high
salience for drug-associated stimuli.

Finally, a related phenomenon observed in drug abuse that might be similarly
explained in this framework is cue-specific craving, in which stimuli associated
with drug-taking result in increased drug-seeking motivation (Meil and See 1996;
Garavan et al. 2000; Bonson et al. 2002; See 2005; Volkow et al. 2008). A potentially
related effect in psychology is known as outcome-specific Pavlovian-instrumental
transfer (PIT), in which presentation of cues associated with a particular reward
increase the preference for instrumental actions associated with the same reward
(Lovibond 1983; Rescorla 1994). A pure model-free learning system has no way to
explain these effects, as action values abstract specific outcomes, and so while cues
could generally enhance motivation, they cannot do so in an outcome-specific way.
Further, it is unclear why cues in themselves should change an agent’s action prefer-
ences or valuations, since the cues do not in fact carry information relevant to action
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valuation. A model-based system, however, stores specific outcomes as part of the
reward function. These, in the Dyna framework, may be used to drive simulation
priorities for value updates. Through a priority mechanism, and since this approach
allows on-the-fly updating of model-free values based on model-driven updates, it
could theoretically drive updates preferentially toward a cued goal, ignoring other
rewards to effect an updated value map more biased toward that outcome. Simi-
larly, a drug-associated cue could simply trigger further updates back from objective
states, pushing the values for related actions higher.

5.4 Conclusion

Drug abuse is a disorder of decision making, and as such its phenomena are rel-
evant to and can be informed by the established computational theories of the do-
main. Building on two-system theories of learned decision making (Dickinson 1985;
Balleine and Dickinson 1998; Poldrack et al. 2001; Daw et al. 2005; Wood and Neal
2007) and on the broad taxonomy of their potential vulnerabilities to drugs of abuse
by Redish et al. (2008), we have considered the implications of drug-seeking be-
havior for algorithms and architectures hypothesized to comprise such a system.
Drugs of abuse are commonly thought to target a habit learning system, specifically
via their effects on dopamine and resultant amplification of model-free prediction
errors. That they appear to serve as incentives for goal-directed behavior as well
strongly suggests that the two decision systems interchange information rather than
operating independently. We suggest this interchange might be captured within a
modified architecture, such as Dyna or tree search with partial evaluation, allow-
ing model-free and model-based influences to converge within a single representa-
tion. Importantly, such a mechanism, coupled with a scheduling principle for model-
based searches like prioritized-sweeping, allows the single, ubiquitous, model-free
mechanism of drug action to account for the range of behavioral phenomena.

The implications of these hypothesized mechanisms for decision making theories
more generally remain to be developed. In particular, previous work has addressed
a range of data on how animals’ behaviors are differentially sensitive to devaluation
in different circumstances by assuming two separate RL algorithms whose prefer-
ences were arbitrated according to relative uncertainty (Daw et al. 2005). It remains
to be seen whether the same phenomena can be understood in the more integrated
architectures suggested here, either in terms of prioritized sweeping heuristics or,
alternatively, by developing the uncertainty explanation in this setting. That said,
indications are accumulating rapidly, beyond the context of drugs of abuse, that
the systems are more interactive than was assumed in previous theories (Root et
al. 2009; Bromberg-Martin et al. 2010; van der Meer et al. 2010; Daw et al. 2011;
Simon and Daw 2011). This accumulation of evidence strongly motivates the in-
vestigation of hybrid algorithms and interacting architectures of the type discussed
here to expand our understanding of the range of strategies by which humans make
decisions.
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Chapter 6
Modeling Decision-Making Systems in Addiction

Zeb Kurth-Nelson and A. David Redish

Abstract This chapter describes addiction as a failure of decision-making systems.
Existing computational theories of addiction have been based on temporal difference
(TD) learning as a quantitative model for decision-making. In these theories, drugs
of abuse create a non-compensable TD reward prediction error signal that causes
pathological overvaluation of drug-seeking choices. However, the TD model is too
simple to account for all aspects of decision-making. For example, TD requires a
state-space over which to learn. The process of acquiring a state-space, which in-
volves both situation classification and learning causal relationships between states,
presents another set of vulnerabilities to addiction. For example, problem gambling
may be partly caused by a misclassification of the situations that lead to wins and
losses. Extending TD to include state-space learning also permits quantitative de-
scriptions of how changing representations impacts patterns of intertemporal choice
behavior, potentially reducing impulsive choices just by changing cause-effect be-
liefs. This approach suggests that addicts can learn healthy representations to re-
cover from addiction. All the computational models of addiction published so far are
based on learning models that do not attempt to look ahead into the future to cal-
culate optimal decisions. A deeper understanding of how decision-making breaks
down in addiction will certainly require addressing the interaction of drugs with
model-based look-ahead decision mechanisms, a topic that remains unexplored.

Decision-making is a general process that applies to all the choices made in life,
from which ice cream flavor you want to whether you should use your children’s
college savings to buy drugs. Neural systems evolved to make decisions about what
actions to take to keep an organism alive, healthy and reproducing. However, the
same decision-making processes can fail under particular environmental or phar-
macological conditions, leading the decision-maker to make pathological choices.
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Both substance addiction and behavioral addictions such as gambling can be viewed
in this framework, as failures of decision-making.

The simplest example of a failure in decision-making is in response to situations
that are engineered to be disproportionately rewarding. In the wild, sweetness is a
rare and useful signal of nutritive value, but refined sugar exploits this signal, and
given the opportunity, people will often select particularly sweet foods over more
nutritive choices. A more dangerous failure mode can be found in drugs of abuse.
These drugs appear to directly modulate elements of the decision-making machinery
in the brain, such that the system becomes biased to choose drug-seeking actions.

There are three central points in this chapter. First, a mathematical language of
decision-making is developed based on temporal difference (TD) algorithms ap-
plied to reinforcement learning (RL) (Sutton and Barto 1998). Within this math-
ematical language, we review existing quantitative theories of addiction, most of
which are based on identified failure modes within that framework (Redish 2004;
Gutkin et al. 2006; Dezfouli et al. 2009). However, we will also discuss evidence that
the framework is incomplete and that there are decision-making components that
are not easily incorporated into the TD-RL framework (Dayan and Balleine 2002;
Daw et al. 2005; Balleine et al. 2008; Dayan and Seymour 2008; Redish et al.
2008). Second, an organism’s understanding of the world is central to its decision-
making. Two organisms that perceive the contingencies of an experiment differ-
ently will behave differently. We extend quantitative decision-making theories to
account for ways that organisms identify and utilize structure in the world to make
decisions (Redish et al. 2007; Courville 2006; Gershman et al. 2010), which may
be altered in addiction. Third, decision-making models naturally accommodate a
description of how future rewards can be compared to immediate ones (Sutton
and Barto 1998; Redish and Kurth-Nelson 2010). Both drug and behavioral ad-
dicts often exhibit impulsive choice, where a small immediate reward is preferred
over a large delayed reward (Madden and Bickel 2010). There is evidence that im-
pulsivity is both cause and consequence of addiction (Madden and Bickel 2010;
Rachlin 2000). In particular, a key factor in recovery from addiction seems to be
the ability to take a longer view on one’s decisions and the ability to construct
representations that support healthy decision-making (Ainslie 2001; Heyman 2009;
Kurth-Nelson and Redish 2010).

6.1 Multiple Decision-Making Systems, Multiple Vulnerabilities
to Addiction

Organisms use a combination of decision-making strategies. When faced with a
choice, a human or animal may employ one or more of these strategies to pro-
duce a decision. The strategies used may also change with experience. For exam-
ple, a classic experiment in rodent navigation involves a plus-shaped maze with
four arms. On each trial, a food reward is placed in the east arm of the maze and
the animal is placed in the south arm. The animal quickly learns to turn right to
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the east arm to reach the food. On a probe trial, the animal can be placed in the
north arm instead of the south arm. If these probe trials are conducted early in
the course of learning, the animal turns left to the east arm, indicating that the
animal is following a location-based strategy that dynamically calculates appro-
priate actions based on new information. On the other hand, if probe trials are
conducted after the animal has been overtrained on the original task, the animal
turns right into the west arm of the maze, indicating that it is following a response
strategy where actions are precalculated and stored (Tolman 1948; Restle 1957;
Packard and McGaugh 1996).

These different decision-making systems have different neuroanatomical sub-
strates. In the rodent navigation example, the location-based strategy requires hip-
pocampal integrity (Barnes 1979; Packard and McGaugh 1996), while the response
strategy is dependent on the integrity of lateral aspects of striatum (Packard and Mc-
Gaugh 1996; Yin et al. 2004). The location-based system is more computationally
intensive but is more flexible to changing environments, while the response-based
system is quick to calculate but inflexible to changing environments (O’Keefe and
Nadel 1978; Redish 1999).

How the results of these different decision-making systems are integrated into a
final decision remains an important open question. Obviously, if the two predicted
actions are incompatible (as in the example above where one system decides to
turn right while the other decides to turn left) and the animal takes an action, then
the results must be integrated by the time the signals reach the muscles to perform
the action. For example, an oversight system could enable or disable the place and
response strategies, or could decide between the suggested actions provided by the
two systems. However, economic theory implies the results are integrated much
sooner (Glimcher et al. 2008). In neuroeconomic theory, every possible outcome is
assumed to have a utility. The utilities of any possible outcome can be represented in
a common currency, allowing direct comparison of the expected utilities to select a
preferred action. In between the two extremes of common currency and muscle-level
integration, there is a wide range of possibilities for how different decision-making
systems could interact to produce a single decision. For example, a location-based
strategy and a response strategy could each select an action (e.g., “turn left” or “turn
right”), and these actions could compete to be transformed into a motor pattern.

In the following sections, we will develop a theoretical description of the brain’s
decision-making systems and show how drugs of abuse can access specific failure
modes that lead to addictive choice. Addictive drugs have a variety of pharmaco-
logical effects on the brain, ranging from blockade of dopamine transporters to
agonism of μ-opioid receptors to antagonism of adenosine receptors. Fundamen-
tally, the common effect of addictive drugs is to cause pathological over-selection
of the drug-taking decision, but this may be achieved in a variety of ways by ac-
cessing vulnerabilities in the different decision-making systems. This theory sug-
gests that addicts may use and talk about drugs differently depending on which
vulnerability the drugs access, and that appropriate treatment will likely differ
depending on how the decision-making system has failed (Redish et al. 2008).
For example, craving and relapse are separable entities in addictive processes—
overvaluation in a stimulus-response based system could lead to relapse of the
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action of drug-taking even in the absence of explicit craving, while overvalua-
tion in the value system could lead to explicit identifiable desires for drug, but
may not necessarily lead to relapse (Redish and Johnson 2007; Redish et al. 2008;
Redish 2009).

6.1.1 Temporal Difference Reinforcement Learning and the
Dopamine Signal

To explain why reward learning seems to occur only when an organism is con-
fronted with an unexpected reward, Rescorla and Wagner (1972) introduced the
idea of a reward learning prediction error. In their model, an agent (i.e., an or-
ganism or a computational model performing decision-making) learns how much
reward is predicted by each cue, and generates a prediction error if the actual re-
ward received does not match the net prediction of the cues they experienced. The
prediction error is then used to update the reward prediction. To a first approxima-
tion, the fast phasic firing of midbrain dopamine neurons matches the Rescorla-
Wagner prediction error signal (Ljungberg et al. 1992; Montague et al. 1996;
Schultz 2002): when an animal is presented with an unexpected reward, dopamine
neurons fire in a phasic burst of activity. If the reward is preceded by a predictive
cue, the phasic firing of dopamine neurons gradually diminishes over several trials.
The loss of dopamine firing at reward matches the loss of Rescorla-Wager prediction
error, as the reward is no longer unpredicted.

However, there are several phenomena that the Rescorla-Wagner model does not
account for. First, in animal behavior, conditioned stimuli can also act as reinforcers
(Domjan 1998), and this shift is also reflected in the dopamine signals (Ljung-
berg et al. 1992). The Rescorla-Wagner model cannot accommodate this shift in
reinforcement (Niv and Montague 2008). Second, a greater latency between stim-
ulus and reward slows learning, reduces the amount of responding at the stimu-
lus, and reduces dopamine firing at the stimulus (Mackintosh 1974; Domjan 1998;
Bayer and Glimcher 2005; Fiorillo et al. 2008). The Rescorla-Wagner model does
not represent time and cannot account for any effects of timing. Third, the Rescorla-
Wagner model is a model of Pavlovian prediction and does not address instrumental
action-selection. A generalized version of the Rescorla-Wagner model that accounts
for stimulus chaining, temporal effects and action-selection is temporal difference
reinforcement learning (TDRL).

Reinforcement learning is the general problem of how to learn what actions to
take in order to maximize reward. Temporal difference learning is a common theo-
retical approach to solving the problem of reinforcement learning (Sutton and Barto
1998). Although the agent may be faced with a complex sequence of actions and ob-
servations before receiving a reward, temporal difference learning allows the agent
to assign a value to each action along the way.

In order to apply a mathematical treatment, TDRL formalizes the learning prob-
lem as a set of states and transitions that define the situation of the animal and how



6 Modeling Decision-Making Systems in Addiction 167

that situation can change (for example, see the very simple state-space in Fig. 6.1A).
This collection of states and transitions is called a state-space, and defines the cause-
effect relationships of the world that pertain to the agent. The agent maintains an
estimate, for each state, of the reward it expects to receive in the future of that state.
This estimate of future reward is called value, or V . We will use St to refer to the
state of the agent at time t ; V (St ) is the value of this state.

When the agent receives reward, it compares this reward with the amount of
reward it expected to receive at that moment. Any difference is an error signal,
called δ, which represents how incorrect the prior expectation was.

δ = (Rt + V (St )) · disc(d) − V (St−1) (6.1)

where Rt is the reward at time t , d is the time spent in state St−1, and disc is a
monotonically decreasing temporal discounting function with a range from 0 to 1.
(Note that in the semi-Markov formulation of temporal difference learning (Daw
2003; Si et al. 2004; Daw et al. 2006), which we use here, the world can dwell in
each state for an extended period of time.) A commonly used discounting function
is

disc(d) = γ d (6.2)

where γ ∈ [0,1] is the exponential discounting rate. δ (Eq. (6.1)) is zero if the agent
correctly estimated the value of state St−1; that is, it correctly identified the dis-
counted future reward expected to follow that state. The actual reward received im-
mediately following St−1 is Rt , and the future reward expected after St is V (St ).
Together, Rt + V (St ) is the future reward expected following St−1. This is dis-
counted by the delay between St−1 and St . The difference between this and the
prior expectation V (St−1) is the value prediction error δ.

The estimated value of state St−1 is updated proportional to δ, so that the expec-
tation is brought closer to reality.

V (St−1) ← V (St−1) + δ · α (6.3)

where α ∈ (0,1) is a learning rate. With appropriate exploration parameters and
unchanging state space and reward contingencies, this updating process is guaran-
teed to converge on the correct expectation of discounted future reward for each
state (Sutton and Barto 1998). Once reward expectations are learned, the agent can
choose the actions that lead to the states with highest expected reward.

6.1.2 Value Prediction Error as a Failure Mode

The psychostimulants, including cocaine and amphetamine, directly increase
dopamine action at the efferent targets of dopaminergic neurons (Ritz et al. 1987;
Phillips et al. 2003; Aragona et al. 2008). The transient, or phasic, component of
dopamine neuron firing appears to carry a reward prediction error signal like δ
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(Montague et al. 1996; Schultz et al. 1997; Tsai et al. 2009). Thus, the psychostim-
ulant drugs may act by pharmacologically increasing the δ signal (di Chiara 1999;
Bernheim and Rangel 2004; Redish 2004).

Redish (2004) implemented this hypothesis in a computational model. Drug de-
livery was simulated by adding a non-compensable component to δ,

δ = max(Dt , Dt + (Rt + V (St )) · disc(d) − V (St−1)) (6.4)

This is the same as Eq. (6.1) with the addition of a Dt term representing the drug
delivered at time t . The value of δ cannot be less than Dt , due to the max function.
The effect of Dt is that even after V (St−1) has reached the correct estimation of
future reward, V (St−1) will keep growing without bound. In other words, Dt can
never be compensated for by increasing V (St−1), so δ is never driven to zero. If
there is a choice between a state that leads to drugs and a state that does not, the
state leading to drugs will eventually (after a sufficient number of trials) have a
higher value and thus be preferred.

This model exhibits several features of real drug addiction. The degree of pref-
erence for drugs over natural rewards increases with drug experience. Further, drug
use is less sensitive to costs (i.e., drugs are less elastic) than natural rewards, and the
elasticity of drug use decreases with experience (Christensen et al. 2008). Like other
neuroeconomic models of addiction (e.g., Becker and Murphy (1988)), the Redish
(2004) model predicts that even highly addicted individuals will still be sensitive to
drug costs, albeit less sensitive than non-addicts, and less sensitive than to natural re-
ward costs. (Even though they are willing to pay remarkably high costs to feed their
addiction, addicts remain sensitive to price changes in drugs (Becker et al. 1994;
Grossman and Chaloupka 1998; Liu et al. 1999).) The Redish (2004) model
achieves inelasticity due to overvaluation of drugs of abuse.

The hypotheses that phasic dopamine serves as a value prediction error signal
in a Rescorla-Wagner or TDRL-type learning system and that cocaine increases
that phasic dopamine signal imply that Kamin blocking should not occur when co-
caine is used as a reinforcer. In Kamin blocking (Kamin 1969), a stimulus X is first
paired with reward until the X→reward association is learned. (The existence of
a learned association is measured by testing whether the organism will respond to
the stimulus.) Then stimuli X and Y are together paired with reward. In this case,
no association between Y and reward is learned. The Rescorla-Wagner model ex-
plains this result by saying that because X already fully predicts reward, there is no
prediction error and thus no learning when X and Y are paired with reward. Consis-
tent with the dopamine-as-δ hypothesis, phasic dopamine signals do not appear in
response to the blocked stimuli (Waelti et al. 2001). However, if the blocking exper-
iment is performed with cocaine instead of a natural reinforcer, the hypothesis that
cocaine produces a non-compensable δ signal predicts that the δ signal should still
occur when training XY→cocaine, so the organism should learn to respond for Y.
Contrary to this prediction, Panlilio et al. (2007) recently provided evidence that
blocking does occur with cocaine in rats, implying that either the phasic dopamine
signal is not equivalent to the δ signal, or cocaine does not boost phasic dopamine.
Recently, Jaffe et al. (2010) presented data that a subset of high-responding animals
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did not show Kamin blocking when faced with nicotine rewards, suggesting that the
lack of Kamin blocking may produce overselection of drug rewards in a subset of
subjects. An extension to the Redish model to produce overselection of drug rewards
while still accounting for blocking with cocaine is given by Dezfouli et al. (2009)
(see also Chap. 8 in this book). In this model, new rewards are compared against
a long-term average reward level. Drugs increase this average reward level, so the
effect of drugs is compensable and the δ signal goes to zero with long-term drug
exposure. If this model is used to simulate the blocking experiment with cocaine
as the reinforcer, then during the X→cocaine training, the average reward level is
elevated, so that when XY→cocaine occurs, there is no prediction error signal and
Y does not acquire predictive value.

Other evidence also suggests that the Redish (2004) model is not a complete pic-
ture. First, the hypotheses of the model imply that continued delivery of cocaine will
eventually overwhelm any reinforcer whose prediction error signal is compensable
(such as a food reward). Recent data (Lenoir et al. 2007) suggest that this is not the
case, implying that the Redish (2004) model is not a complete picture. Second, the
Redish (2004) model is based on the assumption that addiction arises from the ac-
tion of drugs on the dopamine system. Many addictive drugs do not act directly on
dopamine (e.g., heroin, which acts on μ-opioid receptors (Nestler 1996)), and some
drugs that boost dopamine are not addictive (e.g., bupropion (Stahl et al. 2004)).
Most psychostimulant drugs also have other pharmacological effects; for example,
cocaine also has an action on the norepinephrine and serotonin systems (Kuhar et al.
1988). Norepinephrine has been implicated in signaling uncertainty (Yu and Dayan
2005) and attention (Berridge et al. 1993), while serotonin has other effects on
decision-making structures in the brain (Tanaka et al. 2007). All of these actions
could also potentially contribute to the effects of cocaine on decision-making.

Action selection can be performed in a variety of ways. When multiple actions
are available, the agent may choose the action leading to the highest valued state.
Alternatively, the benefit of each action may be learned separately from state val-
ues. Separating policy learning (i.e., learning the benefit of each action) from value
learning has the theoretical advantage of being easier to compute when there are
many available actions (for example, if the action space is continuous, Sutton and
Barto 1998). In this case, the policy learning system is called the actor and the
value learning system is called the critic. The actor and critic systems have been pro-
posed to correspond to different brain structures (Barto 1994; O’Doherty et al. 2004;
Daw and Doya 2006). The dopamine-as-δ hypothesis can provide another explana-
tion for drug addiction if learning in the critic system is saturable. During actor
learning, feedback from the critic is required to calculate how much unexpected re-
inforcement occurred, and thus how much the actor should learn. If drugs produce
a large increase in δ that cannot be compensated for by the saturated critic, then
the actor will over-learn the benefit of the action leading to this drug-delivery (see
Chap. 8 in this book).

The models we have discussed so far use the assumption that decision-making
is based on learning, for each state, an expectation of future value that can
be expressed in a common currency. There are many experiments that show



170 Z. Kurth-Nelson and A.D. Redish

that not all decisions are explicable in this way (Balleine and Dickinson 1998;
Dayan 2002; Daw et al. 2005; Dayan and Seymour 2008; Redish et al. 2008;
van der Meer and Redish 2010). The limitations of the temporal difference models
can be addressed by incorporating additional learning and decision-making algo-
rithms (Pavlovian systems, deliberative systems) and by addressing the representa-
tions of the world over which these systems work.

6.1.3 Pavlovian Systems

Unconditioned stimuli can provoke an approach or avoidance response that does
not depend on the instrumental contingencies of the experiment (Mackintosh 1974;
Dayan and Seymour 2008). These Pavlovian systems can produce non-optimal
decisions in some animals under certain conditions (Breland and Breland 1961;
Balleine 2001, 2004; Dayan et al. 2006; Uslaner et al. 2006; Flagel et al. 2008;
Ostlund and Balleine 2008). For example, in a classic experiment, birds were placed
on a linear track, near a cup of food that was mechanically designed to move in the
same direction as the bird, at twice the bird’s speed. The optimal strategy for the
bird was to move away from the food until the food reached the bird, but in the
experiment, birds never learned to move away; instead always chasing the food to
a greater distance (Hershberger 1986). Theories of Pavlovian influence on decision-
making suggest that the food-related cues provoked an approach response (Breland
and Breland 1961; Dayan et al. 2006). Similarly, if animals are trained that a cue
predicts a particular reward in a Pavlovian conditioning task, later presenting that
cue during an instrumental task in which one of the choices leads to that reward will
increase preference for that choice (Pavlovian-instrumental transfer (Estes 1943;
Kruse et al. 1983; Lovibond 1983; Talmi et al. 2008)). Although models of Pavlo-
vian systems exist (Balleine 2001, 2004; Dayan et al. 2006) as do suggestions that
Pavlovian failures underlie aspects of addiction (Robinson and Berridge 1993, 2001,
2004; Berridge 2007), computational models of addiction taking into account inter-
actions between Pavlovian effects and temporal difference learning are still lacking.

6.1.4 Deliberation, Forward Search and Executive Function

During a decision, the brain may explicitly consider alternatives in order to pre-
dict outcomes (Tolman 1939; van der Meer and Redish 2010). This process allows
evaluation of those outcomes in the light of current goals, expectations, and values
(Niv et al. 2006). Therefore part of the decision-making process plausibly involves
predicting the future situation that will arise from taking a choice and accessing the
reinforcement associations that are present in that future situation. This stands in
contrast to decision-making strategies that use only the value associations present in
the current situation.
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When rats running in a maze come to an important choice-point where they could
go right or left and possibly receive reward, they will sometimes pause and turn
their head from side to side as if to sample the options. This is known as vicarious
trial and error (VTE) (Muenzinger 1938; Tolman 1938, 1939, 1948). VTE behavior
is correlated to hippocampal activity and is reduced by hippocampal lesions (Hu
and Amsel 1995; Hu et al. 2006). During most behavior, cells in the hippocampus
encode the animal’s location in space (O’Keefe and Dostrovsky 1971; O’Keefe and
Nadel 1978; Redish 1999). But during VTE, this representation sometimes projects
forward in one direction and then the other (Johnson and Redish 2007). Johnson and
Redish (2007) proposed that this “look-ahead” that occurs during deliberation may
be part of the decision making process. By imagining the future, the animal may
be attempting to determine whether each choice is rewarded (Tolman 1939, 1948).
Downstream of the hippocampus, reward-related cells in the ventral striatum also
show additional activity during this deliberative process (van der Meer and Redish
2009), which may be evidence for prediction and calculation of expectancies (Daw
et al. 2005; Redish and Johnson 2007; van der Meer and Redish 2010).

Considering forward search as part of the decision making process permits a
computational explanation for the phenomena of craving and obsession in drug ad-
dicts (Redish and Johnson 2007). Craving is the recognition of a high-value out-
come, and obsession entails constraint of searches to a single high-value outcome.
Current theories suggest that endogenous opioids signal the hedonic value of re-
ceived rewards (Robinson and Berridge 1993). If these endogenous opioids also
signal imagined rewards, then opioids may be a key to craving (Redish and John-
son 2007). This fits data that opioid antagonists reduce craving (Arbisi et al. 1999;
Levine and Billington 2004). Under this theory, an opioidergic signal at the time of
reward or drug delivery may cause neural plasticity in such a way that the dynamics
of the forward search system become biased to search toward the outcome linked to
the opioid signal. Activation of opioid receptors is known to modulate synaptic plas-
ticity in structures such as the hippocampus (Liao et al. 2005), suggesting a possible
physiological basis for altering forward search in the hippocampus.

6.2 Temporal Difference Learning in a Non-stationary
Environment

Temporal difference learning models describe how to learn an expectation of fu-
ture reward over a known state-space. In the real world, the state-space itself is
not known a priori. It must be learned and may even change over time. This is
illustrated by the problem of extinction and reinstatement. After a cue-reinforcer
association is learned, it can be extinguished by presenting the cue alone (Domjan
1998). Over time, animals will learn to stop responding for the cue. If extinction is
done in a different environment from the original learning, placing the animal back
in the original environment causes responding to start again immediately (Bouton
and Swartzentruber 1989). Similarly, even if acquisition and extinction occur in
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the same environment, a single presentation of the reinforcer following extinction
can cause responding to start again (Pavlov 1927; McFarland and Kalivas 2001;
Bouton 2002). This implies that the original association was not unlearned dur-
ing extinction. A similar phenomenon occurs in abstaining human drug addicts,
where drug-related cues can trigger relapse to full resumption of drug-seeking be-
havior much faster than the original development of addiction (Jaffe et al. 1989;
Childress et al. 1992). In extinction paradigms, the world is non-stationary: a cue
that used to lead to a reward or drug-presentation now no longer does. Thus,
a decision-making system trying to accurately predict the world requires a mech-
anism to construct state-spaces flexibly from the observed dynamics of the world.
This mechanism does not exist in standard TDRL models.

To explain the phenomenon of renewal of responding after extinction, a recent
model extended temporal difference learning by adding state-classification (Redish
et al. 2007). In this model, the total information provided from the world to the agent
at each moment was represented as an n-dimensional sensory cue. The model clas-
sified cue vectors into the same state if they were similar, or into different states
if they were sufficiently dissimilar. During acquisition of a cue-reinforcer asso-
ciation, the model grouped these similar observations (many trials with the same
cue) into a state representing “cue predicts reward”. The model learned to associate
the value of the reward with instrumental responding in this “cue predicts reward”
state. This learning occurred at the learning rate of the model. During extinction,
as the model accumulated evidence that a cue did not predict reward in a new con-
text, these observations were classified into a new state representing “cue does not
predict reward”, from which actions had no value. When returned to the original
context, the model switched back to classifying cue observations into the “cue pre-
dicts reward” state. Because instrumental responding in the “cue predicts reward”
state had already been associated with reward during acquisition, no additional
learning was needed, and responding immediately resumed at the pre-extinction
rate.

This situation-classification component may be vulnerable to its own class of
failures in decision-making. Based on vulnerabilities in situation-classification,
Redish et al. (2007) were also able to simulate behavioral addiction to gam-
bling. These errors followed both from over-separation of states, in which two
states that were not actually different were identified as different due to unex-
pected consistencies in noise, and from over-generalization of states, in which
two states that were different were not identified as different due to the similar-
ities between them. The first process is similar to that of “the illusion of con-
trol” in which subjects misperceive that they have control of random situations,
producing superstition (Langer and Roth 1975; Custer 1984; Wagenaar 1988;
Elster 1999). The illusion of control can be created by having too many avail-
able cues, particularly when combined with the identification of near-misses (Cote
et al. 2003; Parke and Griffiths 2004). The phenomenon of “chasing”, in which
subjects continue to place deeper and deeper losing bets, may arise because gam-
blers over-generalize a situation in which they received a large win, to form a
belief that gambling generally leads to reward (Custer 1984; Wagenaar 1988;
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Elster 1999). We suggest this is a problem of state-classification: the gamblers clas-
sify the generic gambling situation as leading to reward.

In the Redish et al. (2007) model, states were classified from sensory and re-
inforcement experience, but the transition structure of the world was not learned.
Smith et al. (2006) took the converse approach. Here the algorithm started with
a known set of states, each with equal temporal extent, and learned the transition
probability matrix based on observed transitions. A “surprise” factor measured the
extent to which a reinforcer was unpredicted by previous cues, also allowing the
model to reproduce the Kamin blocking effect (Kamin 1969) and the reduction of
latent inhibition by amphetamine (Weiner et al. 1988).

Both the Redish et al. (2007) and Smith et al. (2006) models are special cases of
the more general latent cause theory, in which the agent attempts to identify hidden
causes underlying sets of observations (Courville 2006; Gershman et al. 2010). In
these models, agents apply an approximation of Bayesian statistical inference to
all observations to infer hidden causes that could underlie correlated observations.
Because latent cause models take into account any change in stimulus–stimulus or
stimulus–outcome contingencies, these models are able to accommodate any non-
stationary environment.

The ability of the brain to dynamically construct interpretations of the causal
structure of the world is likely seated in frontal cortex and hippocampus. Hippocam-
pus is involved in accommodating cue-reward contingency changes (Hirsh 1974;
Isaacson 1974; Hirsh et al. 1978; Nadel and Willner 1980; Corbit and Balleine 2000;
Fuhs and Touretzky 2007). Returning to a previously reinforced context no longer
triggers renewal of extinguished responding if hippocampus is lesioned (Bouton
et al. 2006). Medial prefrontal cortex appears to be required for learning the rele-
vance of new external cues that signal altered reinforcement contingencies (Lebron
et al. 2004; Milad et al. 2004; Quirk et al. 2006; Sotres-Bayon et al. 2006). Classi-
fication and causality representations in hippocampus and frontal cortex may form
a cognitive input to the basal ganglia structures that perform reinforcement learn-
ing. Drugs of abuse that negatively impact the function of hippocampal or cortical
structures could inhibit the formation of healthy state-spaces, contributing to addic-
tion. Alcohol, for example, has been hypothesized to preferentially impair both hip-
pocampal and prefrontal function (Hunt 1998; Oscar-Berman and Marinkovic 2003;
White 2003).

In general, if the brain constructs state-spaces that do not accurately reflect the
world but instead overemphasize the value of the addictive choice, this constitutes
an addiction vulnerability. Behavioral addiction to gambling may arise from a fail-
ure of state classification as described above. Addiction to drugs could result from
state-spaces that represent only the immediate choice and not the long-range conse-
quences. This would suggest that training new state-space constructions, and mech-
anisms designed to prevent falling back into old state-spaces, may improve relapse
outcomes in addicts.
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6.3 Discounting and Impulsivity

In this section we will discuss the phenomenon of intertemporal choice (how the
delay to a reward influences decisions), and show how changes in the agent’s state-
space can change the intertemporal decisions made by an organism.

If offered a choice between $10 right now and $11 tomorrow, many people will
feel it is not worth waiting one day for that extra dollar, and choose the $10 now.
When offered a choice between a small immediate reward and a large delayed re-
ward, impulsivity is the extent to which the agent prefers the small immediate re-
ward, being unwilling to wait for the future reward. This is sometimes viewed as
a special case of temporal discounting, which is the general problem of how the
value of rewards diminishes as they recede into the future.1 As discussed above,
a discounting function disc(d) maps a delay d to a number in [0,1] specifying how
much a reward’s value is attenuated due to being postponed by time d . The impul-
sive decision to take a smaller-sooner reward rather than a larger-later one can be
studied in the context of temporal difference learning.

Addicts tend to be more impulsive than non-addicts. It is easy to see why impul-
sivity could lead to addiction: the benefit of drug-taking tends to be more immediate
than the benefits of abstaining. It is also possible that drugs increase impulsivity.
Smokers discount faster than those who have never smoked, but ex-smokers dis-
count at a rate similar to those who have never smoked (Bickel et al. 1999). In the
Dezfouli et al. (2009) model, simulations show that choice for non-drug rewards
becomes more impulsive following repeated exposure to drugs. Although the causal
relationship between drug-taking and impulsivity is difficult to study in humans,
animal data show that chronic drug-taking increases impulsivity (Paine et al. 2003;
Simon et al. 2007).

If offered a choice between $10 right now and $11 tomorrow, many people will
choose $10; however, if offered a choice between $10 in a year and $11 in a year
and a day, the same people often prefer the $11 (Ainslie 2001). This is an example
of preference reversal. Economically, the two decisions are equivalent and, under
simple assumptions of stability, it should not matter if the outcomes are each post-
poned by a year. But in practice, many experiments have found that the preferred
option changes as the time of the present changes relative to the outcomes (Madden
and Bickel 2010).

In principle, any monotonically decreasing function with a range from 0 to
1 could make a reasonable discounting function. Exponential discounting (as in
Eq. (6.2)) is often used in theoretical models because it is easy to calculate and
matches economic assumptions of behavior. However, preference reversal does
not occur in exponential discounting, but does occur with any non-exponential

1There are multiple decision factors often referred to as “impulsivity”, including the inability to in-
hibit a pre-potent response, the inability to inhibit an over-learned response, and an over-emphasis
on immediate versus delayed rewards (which we are referring to here). These multiple factors
seem to be independent (Reynolds et al. 2006) and to depend on different brain structures (Isoda
and Hikosaka 2008) and we will not discuss the other factors here.
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discounting function (Frederick et al. 2002). Discounting data in humans and
animals generally does show preference reversal (Chung and Herrnstein 1967;
Baum and Rachlin 1969; Mazur 1987; Kirby and Herrnstein 1995), indicating that
organisms are not performing exponential discounting. Human and animal discount-
ing data are often best fit by a hyperbolic discount function (Ainslie 2001):

disc(d) = 1

1 + kd
(6.5)

where k ∈ [0,∞) is the discount rate. It is therefore important to consider how
hyperbolic discounting can fit into reinforcement learning models.

Hyperbolic discounting is empirically a good fit to human and animal discounting
data, but it also has a theoretical basis in uncertain hazard rates. Agents are assumed
to discount future rewards because there is some risk that the reward will never be
received, and this risk grows with temporal distance (but see Henly et al. 2008).
Events that would prevent reward receipt, such as death of the organism, are called
interruptions. If interruptions are believed to occur randomly at some rate (i.e., the
hazard rate), then the economically optimal policy is exponential discounting at that
rate. However, if the hazard rate is not known a priori, it could be taken to be a uni-
form distribution over the possible rates (ranging from 1 where interruptions never
occur to 0 where interruptions occur infinitely fast). Under this assumption, the eco-
nomically optimal policy is hyperbolic discounting (Sozou 1998). Using the data
from a large survey, it was found that factoring out an individual’s expectation and
tolerance of risk leaves individuals with a discounting factor well-fit by an exponen-
tial discounting function (Andersen et al. 2008). This function was correlated with
the current interest rate, suggesting that humans may be changing their discounting
rates to fit the expected hazard functions. Studies in which subjects could maximize
reward by discounting exponentially at particular rates have found that humans can
match their discounting to those exponential functions (Schweighofer et al. 2006).
However, neurological studies have found that risk and discounted rewards may be
utilizing different brain structures (Preuschoff et al. 2006).

Semi-Markov temporal difference models, such as those described above, can
represent varying time intervals within a single state, permitting any discount func-
tion to be calculated across a single state-transition. However, the value of a state is
still calculated recursively using the discounted value of the next state (rather than
looking ahead all the way to the reward). Thus, across multiple state-transitions,
the discounting of semi-Markov models depends on the way that the total tempo-
ral interval between now and reward is divided between states. With exponential
discounting, the same percent reduction in value occurs for a given delay, regard-
less of the absolute distance in the future. Because of this, exponential discounting
processes convolve appropriately; that is, the discounted value of a reward R is inde-
pendent of whether the transition is modeled as one state with delay d or two states
with delay d/2. In contrast, hyperbolic discounting functions do not convolve to pro-
duce hyperbolic discounting across a sequence of multiple states, and the discounted
value of a reward R depends on the number of state transitions encompassing the
delay.
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As a potential explanation for how hyperbolic discounting could be calculated in
a way that is not dependent on the division of time into states, Kurth-Nelson and
Redish (2009) noted that a hyperbolic discount function is mathematically equiv-
alent to the sum of exponential discounting functions with a range of exponential
discount factors.

∫ 1

0
γ xdγ = 1

1 + x
(6.6)

Kurth-Nelson and Redish extended TDRL using a population of “micro-agents”,
each of which independently performed temporal difference learning using expo-
nential discounting. Each micro-agent used a different discount rate. Actions were
selected in the model by a simple voting process among the micro-agents. The over-
all model exhibited hyperbolic discounting that did not depend on the division of
time into states (Fig 6.1).

There is evidence that a range of discounting factors are calculated in the stria-
tum, with a gradient from faster discount rates represented in ventral striatum to
slower rates in dorsal striatum (Tanaka et al. 2004). Doya (2000) proposed that
serotonin levels regulate which of these discounting rates are active. Tanaka et al.
(2007) and Schweighofer et al. (2007) showed that changing serotonin levels (by
loading/unloading the serotonin precursor tryptophan) produced changes in which
components of striatum were active in a given task. Drugs of abuse could pharmaco-
logically modulate different aspects of striatum (Porrino et al. 2004). Kurth-Nelson
and Redish (2009) predicted that drugs of abuse may change the distribution of
discount factors and thus speed discounting. The multiple-discount hypothesis pre-
dicts that if the distribution of discount rates is altered by drugs, the shape of the
discounting curve will be altered as well.

6.3.1 Seeing Across the Intertrial Interval

Discounting is often operationally measured by offering the animal a choice be-
tween a smaller reward available sooner or a larger reward available later (Mazur
1987). In the mathematical language used in this chapter, this experiment can be
modeled as a reinforcement learning state-space (Fig. 6.2). The discount rate de-
termines whether the smaller-sooner or larger-later reward will be preferred by a
temporal difference model.

Rather than running a single trial, the animal is usually required to perform mul-
tiple trials in sequence. In these experiments the total trial length is generally held
constant (i.e. the intertrial interval following the smaller-sooner choice is longer
than the intertrial interval following the larger-later choice) so that smaller-sooner
does not become the superior choice simply by hastening the start of the next trial.
This creates a theoretical paradox. On any individual trial, the animal may prefer
the smaller-sooner option because of its discount rate. But consistently choosing
smaller-sooner over larger-later only changes the phase of reward delivery and de-
creases the overall reward magnitude.
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Fig. 6.1 Distributed discounting permits hyperbolic discounting across multiple state transitions.
A, All delay between stimulus and reward is represented in a single state, permitting any discount
function to be calculated over this delay, including exponential (B) or hyperbolic (C). (D) The de-
lay between stimulus and reward is divided into multiple states. Exponential discounting (E) can
still be calculated recursively across the entire delay (because γ aγ b = γ a+b), but if hyperbolic
discounting is calculated at each state transition, the net discounting at the stimulus is not hyper-
bolic (G). However, if exponential discounting is performed in parallel at many different rates,
the average discounting across the entire time interval is hyperbolic (F). [From Kurth-Nelson and
Redish (2009).]

Fig. 6.2 A state-space representing intertemporal choice. From the initial state, a choice is avail-
able between a smaller reward (of magnitude RS ) available after a shorter delay (of duration DS ),
or a larger reward (RL) after a longer delay (DL)

This suggests that there are two different potential state-space representations
to describe this experiment. In one description, each trial is seen independently
(Fig. 6.3, top); this is the standard approach in TDRL. In the other description,
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Fig. 6.3 Allowing the agent to see across the inter-trial interval changes the state-space represen-
tation of the task. Top, A state-space in which each trial is independent from the next. Bottom,
A state-space in which the end of one trial has a transition to the beginning of the next trial, allow-
ing the value estimates to include expectation of reward from future trials. The delays following
the rewards are set to keep the total trial length constant. Note that the states are duplicated for
illustrative purposes; an equivalent diagram would have only three states, with arrows wrapping
back from RS and RL states to the initial choice state

the end of the last trial has a transition to the beginning of the next trial (Fig. 6.3,
bottom). By adding this transition (which we will call a wrap-around transition),
the algorithm can integrate expectation of future reward across all future trials. The
total expectation is still convergent because future trials are discounted increasingly
with temporal distance.

Adding a wrap-around transition to the state-space has the effect of slowing the
apparent rate of discounting. Without wrap-around, the value of the smaller-sooner
option is RS ·disc(DS), and the value of the larger-later option is RL ·disc(DL). With
wrap-around, the smaller-sooner option becomes RS · disc(DS)+X, and the larger-
later option becomes RL · disc(DL) + X, where X is the value of the initial state in
which the choices are available. In other words, wrap-around adds the same constant
to the reward expectation for each choice. Thus, if the smaller-sooner option was
preferred without wrap-around, with wrap-around it is still preferred but to a lesser
degree. Because additional delay devalues the future reward less (proportional to its
total value), the apparent rate of discounting is reduced. Note that adding a wrap-
around transition does not change the underlying discount function disc(d), but the
agent’s behavior changes as if it were discounting more slowly. Also, because X is
a constant added to both choices, X can change the degree to which the smaller-
sooner option is preferred to the larger-later, but it cannot reverse the preference
order. Thus, if the agent prefers the smaller-sooner option without a wrap-around
state transition, adding wrap-around cannot cause the agent to switch to prefer the
larger-later option.

If addicts could be influenced to change their state-space to see across the inter-
trial interval, they should exhibit slower discounting. Heyman (2009) observes that
recovered addicts have often made the time-course at which they view their lives
more global. An interesting question is whether this reflects a change in state-space
in the individuals.
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Fig. 6.4 A state-space in which the agent can make a precommitment to avoid having access to
a smaller-sooner reward option. The portion of the state-space inside the dashed box is the small-
er-sooner versus larger-later choice state-space shown in Fig. 6.2. Now a prechoice is available to
enter the smaller-sooner versus larger-later choice, or to enter a situation from which only larg-
er-later is available. Following the prechoice is a delay DC

6.3.2 Precommitment and Bundling

The phenomenon of preference reversal suggests that an agent who can predict their
own impulsivity may prefer to remove the future impulsive choice if given an op-
portunity (Strotz 1956; Ainslie 2001; Gul and Pesendorfer 2001; Heyman 2009;
Kurth-Nelson and Redish 2010). For example, an addict may decline to visit
somewhere drugs are available. When the drug-taking choice is viewed from
a temporal distance, he prefers not to take drugs. But he knows that if faced
with drug-taking as an immediate option, he will take it, so he does not wish
to have the choice. Precommitment to larger-later choices by eliminating future
smaller-sooner choices is a common behavioral strategy seen in successful recov-
ery from addiction (Rachlin 2000; Ainslie 2001; Dickerson and O’Connor 2006;
Heyman 2009).

Kurth-Nelson and Redish (2010) showed that precommitment behavior can be
modeled with reinforcement learning. The reinforcement learning state-space for
precommitment is represented in Fig. 6.4. The agent is given a choice to either en-
ter a smaller-sooner versus larger-later choice, or to enter a situation where only
the larger-later option is available. Because the agent discounts hyperbolically, the
agent can prefer the smaller-sooner option when making the choice at C, but also
prefer the larger-later option when making the earlier choice at P. Mathematically,
when the agent is in state C, it is faced with a choice between two options with val-
ues RS · disc(DS) and RL · disc(DL). But when the agent is in state P, the choice is
between two options with values RL · disc(DC + DL) and RS · disc(DC + DS). In
hyperbolic discounting, the rate of discounting slows as rewards recede into the fu-
ture, so disc(DS)

disc(DL)
>

disc(DC+DS)
disc(DC+DL)

, meaning that the extra delay DC makes the smaller-
sooner choice relatively less valuable. This experiment has been performed in pi-
geons, and some pigeons consistently elected to take away a future impulsive choice
from themselves, despite preferring that choice when it was available (Rachlin and
Green 1972; Ainslie 1974). However, to our knowledge this experiment has not yet
been run in humans or other species.



180 Z. Kurth-Nelson and A.D. Redish

In order for a reinforcement learning agent to exhibit precommitment in the state-
space in Fig. 6.4, it must behave in state P as if it were discounting RS across the en-
tire time interval DC +DS , and discounting RL across the entire interval DC +DL.
As noted earlier (cf. Fig. 6.1), hyperbolic discounting across multiple states cannot
be done with a standard hyperbolic discounting model (Kurth-Nelson and Redish
2010). It requires a model such as the distributed discounting model (Kurth-Nelson
and Redish 2009) described above. In this model, each μAgent has a different expo-
nential discounting rate and has a different value estimate for each state. This model
performs hyperbolic discounting across multi-step state-spaces (cf. Fig. 6.1) by not
collapsing future reward expectation to a single value for each state. Thus, if the
distributed discounting model is trained over the state-space of Fig. 6.4, it prefers
the smaller-sooner option from state C, but from state P prefers to go to state N
(Kurth-Nelson and Redish 2010).

Another way for an impulsive agent to regulate its future choices is with bundling
(Ainslie 2001). In bundling, an agent reduces a sequence of future decisions to a
single decision. For example, an alcoholic may recognize that having one drink is
not a choice that can be made in isolation, because it will lead to repeated impulsive
choice. Therefore the choice is between being an alcoholic or never drinking.

Consider the state-spaces in Fig. 6.5. If each choice is treated as independent,
the value of the smaller-sooner choice is RS · disc(DS) and the value of the larger-
later choice is RL · disc(DL). However, if making one choice is believed to also
determine the outcome of the subsequent trial, then the value of smaller-sooner
is RS · disc(DS) + RS · disc(DS + DL + DS) and the value of larger-later is
RL · disc(DL) + RL · disc(DL + DS + DL). In an agent performing hyperbolic
discounting, the attenuation of value produced by the extra DS + DL delay is less if
this delay comes later relative to the present. Thus bundling can change the agent’s
preferences so that the larger-later choice is preferred from the initial state. Like pre-
commitment, bundling can be modeled with reinforcement learning, but only if the
model correctly performs hyperbolic discounting across multiple state transitions
(Kurth-Nelson and Redish 2010).

It is interesting to note that the agent can represent a given choice in a number of
ways: existing in isolation (Fig. 6.3, top), leading to subsequent choices (Fig. 6.3,
bottom), viewed in advance (Fig. 6.4), or viewed as a categorical choice (Fig. 6.5,
bottom). These four different state-spaces are each reasonable representations of
the same underlying choice, but produce very different behavior in reinforcement
learning models. This highlights the importance of constructing a state-space for re-
inforcement learning. If state-space construction is a cognitive operation, it is pos-
sible that it can be influenced by semantic inputs. For example, perhaps by verbally
suggesting to someone that the decision to have one drink cannot be made in isola-
tion, they are led to create a state-space that reflects this idea.

Throughout these examples in which state-space construction has influenced the
apparent discount rate, the underlying discount rate (the function disc(d)) is unaf-
fected. The difference is in the agent’s choice behavior, from which discounting is
inferred. Since state-space construction in temporal difference models affects appar-
ent discount rates, it may be that discounting in the brain is modulated by the capac-
ity of the organism to construct state-spaces. This suggests that a potential treatment
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Fig. 6.5 Bundling two
choices. Top, Each choice is
made independently. Bottom,
One choice commits the
agent to make the same
choice on the next trial

for addiction may lie in the creation of better state-spaces. Gershman et al. (2010)
proposed that a limited ability to infer causal relations in the world explains the fact
that young animals exhibit less context-dependence in reinforcement learning. This
matches the data that people with higher cognitive skills exhibit slower discounting
(Burks et al. 2009). It is also consistent with the emphasis of addiction treatment
programs (such as 12-step programs) on cognitive strategies that alter the perceived
contingencies of the world.

However, it is not clear that the learning systems for habitual or automatic behav-
iors always produce impulsive choice, or that the executive systems always produce
non-impulsive choice. For example, smokers engage in complex planning to find
the cheapest cigarettes, in line with the economic view that addicts should be sen-
sitive to cost (Becker and Murphy 1988; Redish 2004). Addicts can perform very
complex planning in order to get their drugs (Goldman et al. 1987; Goldstein 2000;
Jones et al. 2001; Robinson and Berridge 2003). Thus it does not appear that the
problem of addiction is simply a case of the habitual system pharmacologically pro-
grammed to carry out drug-seeking behaviors (as arises from the Redish (2004),
Gutkin et al. (2006), or Dezfouli et al. (2009) models discussed above; see also
Chap. 8 in this book). Rather, addictive drugs seem to have the potential to access
vulnerabilities in multiple decision-making systems, including cognitive or execu-
tive systems. These different vulnerabilities are likely accessed by different drugs
and have differentiable phenotypes (Redish et al. 2008).

6.4 Decision-Making Theories and Addiction

We have seen examples of how decision-making models exhibit vulnerabilities to
addictive choice. Another important question is how people actually made decisions
in the real-world. There is a key aspect of addiction that does not fit easily into cur-
rent theories of addiction: the high rate of remission. Current theories of addiction
generally account for the development and escalation of addiction by supposing that



182 Z. Kurth-Nelson and A.D. Redish

drugs have a pharmacological action that cumulatively biases the decision-making
system of the brain toward drug-choice. These models do not account for cases of
spontaneous (untreated) remission, such as a long-term daily drug user who sud-
denly realizes that she would rather support her children than use drugs, and stops
her drug use (Heyman 2009).

Approaches like the 12-step programs (originally Alcoholics Anonymous) have
a high success rate in achieving lasting abstinence (Moos and Moos 2004, 2006a,
2006b). These programs use a variety of strategies to encourage people to give up
their addictive behavior. These strategies may be amenable to description in the
framework of decision-making modeling. For example, one effective strategy is to
offer addicts movie rental vouchers in exchange for one week of abstinence (McCaul
and Petry 2003; Higgins et al. 2004). If an addict is consistently making decisions
that prefer having a gram of cocaine over having $60, why would the addict prefer
a movie rental worth $3 over a week of drug taking? This is, as yet, an unanswered
question which may require models that include changes in state-space representa-
tion, more complex forward-modeling, and more complex evaluation mechanisms
than those currently included in computational models of addiction.

References

Ainslie G (1974) Impulse control in pigeons. J Exp Anal Behav 21:485
Ainslie G (2001) Breakdown of will. Cambridge University Press, Cambridge
Andersen S, Harrison GW, Lau MI, Rutström EE (2008) Eliciting risk and time preferences.

Econometrica 76:583
Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) Preferen-

tial enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is
attributable to a direct increase in phasic dopamine release events. J Neurosci 28:8821

Arbisi PA, Billington CJ, Levine AS (1999) The effect of naltrexone on taste detection and recog-
nition threshold. Appetite 32:241

Balleine BW (2001) Incentive processes in instrumental conditioning. In: Handbook of contempo-
rary Learning Theories, p 307

Balleine BW (2004) Incentive behavior. In: The behavior of the laboratory rat: a handbook with
tests, p 436

Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive
learning and their cortical substrates. Neuropharmacology 37:407

Balleine BW, Daw ND, O’Doherty JP (2008) Multiple forms of value learning and the function of
dopamine. In: Neuroeconomics: decision making and the brain, p 367

Barnes CA (1979) Memory deficits associated with senscence: A neurophysiological and behav-
ioral study in the rat. J Comp Physiol Psychol 93:74

Barto AG (1994) Adaptive critics and the basal ganglia. In: Models of information processing in
the basal ganglia, p 215

Baum W, Rachlin H (1969) Choice as time allocation. J Exp Anal Behav 12:861
Bayer HM, Glimcher P (2005) Midbrain dopamine neurons encode a quantitative reward prediction

error signal. Neuron 47:129
Becker GS, Murphy KM (1988) A theory of rational addiction. J Polit Econ 96:675
Becker GS, Grossman M, Murphy KM (1994) An empirical analysis of cigarette addiction. Am

Econ Rev 84:396
Bernheim BD, Rangel A (2004) Addiction and cue-triggered decision processes. Am Econ Rev

94:1558



6 Modeling Decision-Making Systems in Addiction 183

Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience.
Psychopharmacology 191:391

Berridge CW, Arnsten AF, Foote SL (1993) Noradrenergic modulation of cognitive function: clin-
ical implications of anatomical, electrophysiological and behavioural studies in animal models.
Psychol Med 23:557

Bickel WK, Odum AL, Madden GJ (1999) Impulsivity and cigarette smoking: delay discounting
in current, never, and ex-smokers. Psychopharmacology (Berlin) 146:447

Bouton ME (2002) Context, ambiguity, and unlearning: sources of relapse after behavioral extinc-
tion. Biol Psychiatry 52:976

Bouton ME, Swartzentruber D (1989) Slow reacquisition following extinction: context, encoding,
and retrieval mechanisms. J Exp Psychol, Anim Behav Processes 15:43

Bouton ME, Westbrook RF, Corcoran KA, Maren S (2006) Contextual and temporal modulation
of extinction: behavioral and biological mechanisms. Biol Psychiatry 60:352

Breland K, Breland M (1961) The misbehavior of organisms. Am Psychol 16:682
Burks SV, Carpenter JP, Goette L, Rustichini A (2009) Cognitive skills affect economic prefer-

ences, strategic behavior, and job attachment. Proc Natl Acad Sci 106:7745
Childress AR, Ehrman R, Rohsenow DJ, Robbins SJ, O’Brien CP (1992) Classically conditioned

factors in drug dependence. In: Substance abuse: a comprehensive textbook, p 56
Christensen CJ, Silberberg A, Hursh SR, Roma PG, Riley AL (2008) Demand for cocaine and food

over time. Pharmacol Biochem Behav 91:209
Chung SH, Herrnstein RJ (1967) Choice and delay of reinforcement. J Exp Anal Behav 10:67
Corbit LH, Balleine BW (2000) The role of the hippocampus in instrumental conditioning. J Neu-

rosci 20:4233
Cote D, Caron A, Aubert J, Desrochers V, Ladouceur R (2003) Near wins prolong gambling on a

video lottery terminal. J Gambl Stud 19:433
Courville AC (2006) A latent cause theory of classical conditioning. Doctoral dissertation,

Carnegie Mellon University
Custer RL (1984) Profile of the pathological gambler. J Clin Psychiatry 45:35
Daw ND (2003) Reinforcement learning models of the dopamine system and their behavioral im-

plications. Doctoral dissertation, Carnegie Mellon University
Daw ND, Doya K (2006) The computational neurobiology of learning and reward. Curr Opin

Neurobiol 16:199
Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and dopamine.

Neural Netw 15:603
Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolat-

eral striatal systems for behavioral control. Nat Neurosci 8:1704
Daw ND, Courville AC, Touretzky DS (2006) Representation and timing in theories of the

dopamine system. Neural Comput 18:1637
Dayan P (2002) Motivated reinforcement learning. Advances in neural information processing

systems: proceedings of the 2002 conference
Dayan P, Balleine BW (2002) Reward, motivation, and reinforcement learning. Neuron 36:285
Dayan P, Seymour B (2008) Values and actions in aversion. In: Neuroeconomics: decision making

and the brain, p 175
Dayan P, Niv Y, Seymour B, Daw ND (2006) The misbehavior of value and the discipline of the

will. Neural Netw 19:1153
Dezfouli A, Piray P, Keramati MM, Ekhtiari H, Lucas C, Mokri A (2009) A neurocomputational

model for cocaine addiction. Neural Comput 21:2869
di Chiara G (1999) Drug addiction as dopamine-dependent associative learning disorder. Eur J

Pharmacol 375:13
Dickerson M, O’Connor J (2006) Gambling as an addictive behavior. Cambridge University Press,

Cambridge
Domjan M (1998) The principles of learning and behavior. Brooks/Cole
Doya K (2000) Metalearning, neuromodulation, and emotion. In: Affective minds, p 101
Elster J (1999) Gambling and addiction. In: Getting hooked: rationality and addiction, p 208



184 Z. Kurth-Nelson and A.D. Redish

Estes WK (1943) Discriminative conditioning. I. A discriminative property of conditioned antici-
pation. J Exp Psychol 32:150

Fiorillo CD, Newsome WT, Schultz W (2008) The temporal precision of reward prediction in
dopamine neurons. Nat Neurosci 11:966

Flagel SB, Watson SJ, Akil H, Robinson TE (2008) Individual differences in the attribution of
incentive salience to a reward-related cue: Influence on cocaine sensitization. Behav Brain Res
186:48

Frederick S, Loewenstein G, O’Donoghue T (2002) Time Discounting and time preference: A
critical review. J Econ Lit 40:351

Fuhs MC, Touretzky DS (2007) Context learning in the rodent hippocampus. Neural Comput
19:3172

Gershman SJ, Blei DM, Niv Y (2010) Context, learning, and extinction. Psychol Rev 117:197
Glimcher PW, Camerer C, Fehr E, Poldrack RA (2008) Neuroeconomics: decision making and the

brain. Elsevier/Academic Press, London
Goldman MS, Brown SA, Christiansen BA (1987) Expectancy theory: thinking about drinking. In:

Psychological theories of drinking and alcoholism, p 181
Goldstein A (2000) Addiction: from biology to drug policy. Oxford University Press, Oxford
Grossman M, Chaloupka FJ (1998) The demand for cocaine by young adults: a rational addiction

approach. J Health Econ 17:427
Gul F, Pesendorfer W (2001) Temptation and self-control. Econometrica 69:1403
Gutkin BS, Dehaene S, Changeux JP (2006) A neurocomputational hypothesis for nicotine addic-

tion. Proc Natl Acad Sci USA 103:1106
Henly SE, Ostdiek A, Blackwell E, Knutie S, Dunlap AS, Stephens DW (2008) The discounting-

by-interruptions hypothesis: model and experiment. Behav Ecol 19:154
Hershberger WA (1986) An approach through the looking-glass. Anim Learn Behav 14:443
Heyman GM (2009) Addiction: a disorder of choice. Harvard University Press, Cambridge
Higgins ST, Heil SH, Lussier JP (2004) Clinical implications of reinforcement as a determinant of

substance use disorders. Annu Rev Psychol 55:431
Hirsh R (1974) The hippocampus and contextual retrieval of information from memory: A theory.

Behav Biol 12:421
Hirsh R, Leber B, Gillman K (1978) Fornix fibers and motivational states as controllers of behavior:

A study stimulated by the contextual retrieval theory. Behav Biol 22:463
Hu D, Amsel A (1995) A Simple Test of the Vicarious Trial-and-Error Hypothesis of Hippocampal

Function. Proc Natl Acad Sci USA 92:5506
Hu D, Xu X, Gonzalez-Lima F (2006) Vicarious trial-and-error behavior and hippocampal cy-

tochrome oxidase activity during Y-maze discrimination learning in the rat. Int J Neurosci
116:265

Hunt WA (1998) Pharmacology of alcohol. In: Tarter RE, Ammerman RT, Ott PJ (eds) Handbook
of substance abuse: Neurobehavioral pharmacology. Plenum, New York, pp 7–22

Isaacson RL (1974) The limbic system. Plenum, New York
Isoda M, Hikosaka O (2008) Role for subthalamic nucleus neurons in switching from automatic to

controlled eye movement. J Neurosci 28:7209
Jaffe JH, Cascella NG, Kumor KM, Sherer MA (1989) Cocaine-induced cocaine craving. Psy-

chopharmacology (Berlin) 97:59
Jaffe A, Gitisetan S, Tarash I, Pham AZ, Jentsch JD (2010) Are nicotine-related cues susceptible

to the blocking effect? Society for Neuroscience Abstracts, Program Number 268.4
Johnson A, Redish AD (2007) Neural ensembles in CA3 transiently encode paths forward of the

animal at a decision point. J Neurosci 27:12176
Jones BT, Corbin W, Fromme K (2001) A review of expectancy theory and alcohol consumption.

Addiction 96:57
Kamin LJ (1969) Predictability, surprise, attention, and conditioning. In: Learning in animals,

p 279
Kirby KN, Herrnstein RJ (1995) Preference reversals due to myopic discounting of delayed reward.

Psychol Sci 6:83



6 Modeling Decision-Making Systems in Addiction 185

Kruse JM, Overmier JB, Konz WA, Rokke E (1983) Pavlovian conditioned stimulus effects upon
instrumental choice behavior are reinforcer specific. Learn Motiv 14:165

Kuhar MJ, Ritz MC, Sharkey J (1988) Cocaine receptors on dopamine transporters mediate
cocaine-reinforced behavior. In: Mechanisms of cocaine abuse and toxicity, p 14

Kurth-Nelson Z, Redish AD (2009) Temporal-difference reinforcement learning with distributed
representations. PLoS ONE 4:e7362

Kurth-Nelson Z, Redish AD (2010) A reinforcement learning model of precommitment in decision
making. Frontiers Behav Neurosci 4:184

Langer EJ, Roth J (1975) Heads I win, tails it’s chance: The illusion of control as a function of the
sequence of outcomes in a purely chance task. J Pers Soc Psychol 32:951

Lebron K, Milad MR, Quirk GJ (2004) Delayed recall of fear extinction in rats with lesions of
ventral medial prefrontal cortex. Learn Mem 11:544

Lenoir M, Serre F, Cantin L, Ahmed SH (2007) Intense sweetness surpasses cocaine reward. PLoS
ONE 2:e698

Levine AS, Billington CJ (2004) Opioids as agents of reward-related feeding: a consideration of
the evidence. Physiol Behav 82:57

Liao D, Lin H, Law PY, Loh HH (2005) Mu-opioid receptors modulate the stability of dendritic
spines. Proc Natl Acad Sci USA 102:1725

Liu J-, Liu J-, Hammit JK, Chou S- (1999) The price elasticity of opium in Taiwan, 1914–1942. J
Health Econ 18:795

Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learn-
ing of behavioral reactions. J Neurophysiol 67:145

Lovibond PF (1983) Facilitation of instrumental behavior by a Pavlovian appetitive conditioned
stimulus. J Exp Psychol Anim Behav Process 9:225

Mackintosh NJ (1974) The psychology of animal learning. Academic Press, San Diego
Madden GJ, Bickel WK (2010) Impulsivity: the behavioral and neurological science of discount-

ing. American Psychological Association, Washington, DC
Mazur J (1987) An adjusting procedure for studying delayed reinforcement. In: Quantitative anal-

yses of behavior, p 55
McCaul ME, Petry NM (2003) The role of psychosocial treatments in pharmacotherapy for alco-

holism. Am J Addict 12:S41
McFarland K, Kalivas PW (2001) The circuitry mediating cocaine-induced reinstatement of drug-

seeking behavior. J Neurosci 21:8655
Milad MR, Vidal-Gonzalez I, Quirk GJ (2004) Electrical stimulation of medial prefrontal cortex

reduces conditioned fear in a temporally specific manner. Behav Neurosci 118:389
Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems

based on predictive Hebbian learning. J Neurosci 16:1936
Moos RH, Moos BS (2004) Long-term influence of duration and frequency of participation in

alcoholics anonymous on individuals with alcohol use disorders. J Consult Clin Psychol 72:81
Moos RH, Moos BS (2006a) Participation in treatment and Alcoholics Anonymous: a 16-year

follow-up of initially untreated individuals. J Clin Psychol 62:735
Moos RH, Moos BS (2006b) Rates and predictors of relapse after natural and treated remission

from alcohol use disorders. Addiction 101:212
Muenzinger KF (1938) Vicarious trial and error at a point of choice. I. A general survey of its

relation to learning efficiency. J Genet Psychol 53:75
Nadel L, Willner J (1980) Context and conditioning: A place for space. Physiol Psychol 8:218
Nestler EJ (1996) Under siege: The brain on opiates. Neuron 16:897
Niv Y, Montague PR (2008) Theoretical and empirical studies of learning. In: Neuroeconomics:

decision making and the brain, p 331
Niv Y, Daw ND, Dayan P (2006) Choice values. Nat Neurosci 9:987
O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of

ventral and dorsal striatum in instrumental conditioning. Science 304:452
O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit

activity in the freely moving rat. Brain Res 34:171



186 Z. Kurth-Nelson and A.D. Redish

O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford
Oscar-Berman M, Marinkovic K (2003) Alcoholism and the brain: an overview. Alcohol Res

Health 27(2):125–134
Ostlund SB, Balleine BW (2008) The disunity of Pavlovian and instrumental values. Behav Brain

Sci 31:456
Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine

differentially affects expression of place and response learning. Neurobiol Learn Mem 65:65
Paine TA, Dringenberg HC, Olmstead MC (2003) Effects of chronic cocaine on impulsivity: rela-

tion to cortical serotonin mechanisms. Behav Brain Res 147:135
Panlilio LV, Thorndike EB, Schindler CW (2007) Blocking of conditioning to a cocaine-paired

stimulus: Testing the hypothesis that cocaine perpetually produces a signal of larger-than-
expected reward. Pharmacol Biochem Behav 86:774

Parke J, Griffiths M (2004) Gambling addiction and the evolution of the near miss. Addict Res
Theory 12:407

Pavlov I (1927) Conditioned reflexes. Oxford Univ Press, Oxford
Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM (2003) Subsecond dopamine

release promotes cocaine seeking. Nature 422:614
Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA (2004) Cocaine self-administration pro-

duces a progressive involvement of limbic, association, and sensorimotor striatal domains. J
Neurosci 24:3554

Preuschoff K, Bossaerts P, Quartz SR (2006) Neural differentiation of expected reward and risk in
human subcortical structures. Neuron 51:381

Quirk GJ, Garcia R, González-Lima F (2006) Prefrontal mechanisms in extinction of conditioned
fear. Biol Psychiatry 60:337

Rachlin H (2000) The science of self-control. Harvard University Press, Cambridge
Rachlin H, Green L (1972) Commitment, choice, and self-control. J Exp Anal Behav 17:15
Redish AD (1999) Beyond the cognitive map: from place cells to episodic memory. MIT Press,

Cambridge
Redish AD (2004) Addiction as a computational process gone awry. Science 306:1944
Redish AD (2009) Implications of the multiple-vulnerabilities theory of addiction for craving and

relapse. Addiction 104:1940
Redish AD, Johnson A (2007) A computational model of craving and obsession. Ann NY Acad

Sci 1104:324
Redish AD, Kurth-Nelson Z (2010) Neural models of temporal discounting. In: Impulsivity: the

behavioral and neurological science of discounting, p 123
Redish AD, Jensen S, Johnson A, Kurth-Nelson Z (2007) Reconciling reinforcement learning mod-

els with behavioral extinction and renewal: implications for addiction, relapse, and problem
gambling. Psychol Rev 114:784

Redish AD, Jensen S, Johnson A (2008) A unified framework for addiction: vulnerabilities in the
decision process. Behav Brain Sci 31:415

Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: Variations in the effective-
ness of reinforcement and nonreinforcement. In: Classical conditioning II, p 64

Restle F (1957) Discrimination of cues in mazes: A resolution of the ‘place-vs-response’ question.
Psychol Rev 64:217

Reynolds B, Ortengren A, Richards JB, de Wit H (2006) Dimensions of impulsive behavior: per-
sonality and behavioral measures. Pers Individ Differ 40:305

Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters
are related to self-administration of cocaine. Science 237:1219

Robinson TE, Berridge KC (1993) The neural basis of drug craving: An incentive-sensitization
theory of addiction. Brains Res Rev 18:247

Robinson TE, Berridge KC (2001) Mechanisms of action of addictive stimuli: Incentive-
sensitization and addiction. Addiction 96:103

Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25
Robinson TE, Berridge KC (2004) Incentive-sensitization and drug ‘wanting’. Psychopharmacol-

ogy 171:352



6 Modeling Decision-Making Systems in Addiction 187

Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241
Schultz W, Dayan P, Montague R (1997) A neural substrate of prediction and reward. Science

275:1593
Schweighofer N, Shishida K, Han CE, Yamawaki S, Doya K (2006) Humans can adopt optimal

discounting strategy under real-time constraints. PLoS Comput Biol 2:e152
Schweighofer N, Tanaka SC, Doya K (2007) Serotonin and the evaluation of future rewards. The-

ory, experiments, and possible neural mechanisms. Ann NY Acad Sci 1104:289
Si J, Barto AG, Powell WB, Wunsch D (2004) Handbook of learning and approximate dynamic

programming. Wiley/IEEE Press, New York
Simon NW, Mendez IA, Setlow B (2007) Cocaine exposure causes long-term increases in impul-

sive choice. Behav Neurosci 121:543
Smith A, Li M, Becker S, Kapur S (2006) Dopamine, prediction error and associative learning: a

model-based account. Network: Comput Neural Syst 17:61
Sotres-Bayon F, Cain CK, LeDoux JE (2006) Brain mechanisms of fear extinction: historical per-

spectives on the contribution of prefrontal cortex. Biol Psychiatry 60:329
Sozou PD (1998) On hyperbolic discounting and uncertain hazard rates. R Soc Lond B 265:2015
Stahl SM, Pradko JF, Haight BR, Modell JG, Rockett CB, Learned-Coughlin S (2004) A review of

the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor.
Prim Care Companion J Clin Psychiat 6:159

Strotz RH (1956) Myopia and inconsistency in dynamic utility maximization. Rev Econ Stud
23:165

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge
Talmi D, Seymour B, Dayan P, Dolan RJ (2008) Human Pavlovian instrumental transfer. J Neurosci

28:360
Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate

and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7:887
Tanaka SC, Schweighofer N, Asahi S, Shishida K, Okamoto Y, Yamawaki S, Doya K (2007) Sero-

tonin differentially regulates short- and long-term prediction of rewards in the ventral and dorsal
striatum. PLoS ONE 2:e1333

Tolman EC (1938) The determiners of behavior at a choice point. Psychol Rev 45:1
Tolman EC (1939) Prediction of vicarious trial and error by means of the schematic sowbug. Psy-

chol Rev 46:318
Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189
Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K (2009) Phasic

firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080
Uslaner JM, Acerbo MJ, Jones SA, Robinson TE (2006) The attribution of incentive salience to a

stimulus that signals an intravenous injection of cocaine. Behav Brain Res 169:320
van der Meer MA, Redish AD (2009) Covert expectation-of-reward in rat ventral striatum at deci-

sion points. Frontiers Integr Neurosci 3:1
van der Meer MA, Redish AD (2010) Expectancies in decision making, reinforcement learning,

and ventral striatum. Front Neurosci 4:29
Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply with basic assumptions of

formal learning theory. Nature 412:43
Wagenaar WA (1988) Paradoxes of gambling behavior. Erlbaum, London
Weiner I, Lubow RE, Feldon J (1988) Disruption of latent inhibition by acute administration of

low doses of amphetamine. Pharmacol Biochem Behav 30:871
White AM (2003) What happened? Alcohol, memory blackouts, and the brain. Alcohol Res Health

27(2):186–196
Yin HH, Knowlton B, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome

expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19:181
Yu AJ, Dayan P (2005) Uncertainty, neuromodulation, and attention. Neuron 46:681



sdfsdf



Chapter 7
Computational Models of Incentive-Sensitization
in Addiction: Dynamic Limbic Transformation
of Learning into Motivation

Jun Zhang, Kent C. Berridge, and J. Wayne Aldridge

Abstract Incentive salience is a motivational magnet property attributed to reward-
predicting conditioned stimuli (cues). This property makes the cue and its associated
unconditioned reward ‘wanted’ at that moment, and pulls an individual’s behavior
towards those stimuli. The incentive-sensitization theory of addiction posits that per-
manent changes in brain mesolimbic systems in drug addicts can amplify the incen-
tive salience of Pavlovian drug cues to produce excessive ‘wanting’ to take drugs.
Similarly, drug intoxication and natural appetite states can temporarily and dynam-
ically amplify cue-triggered ‘wanting’, promoting binge consumption. Finally, sen-
sitization and drug intoxication can add synergistically to produce especially strong
moments of urge for reward. Here we describe a computational model of incen-
tive salience that captures all these properties, and contrast it to traditional cache-
based models of reinforcement and reward learning. Our motivation-based model
incorporates dynamically modulated physiological brain states that change the abil-
ity of cues to elicit ‘wanting’ on the fly. These brain states include the presence
of a drug of abuse and longer-term mesolimbic sensitization, both of which boost
mesocorticolimbic cue-triggered signals. We have tested our model by recording
neuronal activity from mesolimbic output signals for reward and Pavlovian cues in
the ventral pallidum (VP), and a novel technique for analyzing neuronal firing “pro-
file”, presents evidence in support of our dynamic motivational account of incentive
salience.

Definition Box:
Incentive salience: Also called ‘wanting’, incentive salience represents motivation
for reward (UCS), and is typically triggered in anticipation by a reward-related cue
(Pavlovian CS) when the cue is encountered by an individual whose brain meso-
corticolimbic circuits are in a highly reactive state (determined by a modulation
parameter kappa in our model). Attribution of incentive salience to the cue or re-
ward representations make them more attractive, sought after, and likely to be con-
sumed. Brain mesolimbic systems, especially those involving dopamine, are espe-
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cially important to “wanting.” Ordinarily “wanting” occurs together with other re-
ward components of “liking” and learning, but can be dissociated both from other
components and subjective desire under some conditions. Incentive salience may
occur in the absence of conscious, declarative goal in the ordinary sense of the word
wanting. This cognitive form of wanting involves additional cortical brain mecha-
nisms beyond the mesolimbic systems that mediate “wanting” as incentive salience.
The difference between conscious desire (want) and incentive salience (‘want’) can
sometimes confer an irrational feature on the excessive urges of sensitized addicts
who are not in withdrawal yet still ‘want’ to take a drug that they know will not give
much pleasure.

7.1 Introduction

Incentive salience is a psychological process and neural mechanism to explain the
acquisition and expression of motivational values of conditioned stimuli (Berridge
and Robinson 1998; Berridge 2007). Incentive salience arises typically as a conse-
quence of reward learning (Bindra 1978; Toates 1986; Berridge 2004), and involves
a fundamental dissociation in brain mechanisms of learning, “liking” (hedonic im-
pact or pleasure associated with the receipt of a primary reward) and “wanting”
(incentive salience itself; features that makes a stimulus a desirable and attractive
goal), see Berridge and Robinson (2003); Robinson and Berridge (2003). Incentive
salience is attributed to a sensory stimulus after prior learning of cue-reward asso-
ciations (between a Pavlovian cue for reward [CS], or the reward itself [UCS]), and
transforms it from a sensory representation into a salient and attractive goal rep-
resentation capable of grabbing the animal’s attention and motivating the animal’s
approach and consumption behaviors.

Beyond learning, physiological brain states relevant to drugs and addiction for
the relevant reward, such as activation of mesocorticolimbic dopamine circuits
or their regulatory inputs, also modulate attributions of incentive salience on a
moment-to-moment basis, in part via alteration in mesolimbic dopamine activa-
tion. The incentive salience hypothesis specifically suggests Pavlovian-guided at-
tribution of incentive salience to be dynamically modulated by physiological states
that impact NAcc-related circuitry, including dopamine neurotransmission. Regard-
ing addiction, the incentive-sensitization hypothesis suggests that drugs of abuse
induce compulsion to take drugs by hijacking neural circuits of incentive salience
that evolved to motivate behavior for natural rewards (Robinson and Berridge 1993,
2003, 2008). The hypothesis is not exclusive: it does not deny an important role for
drug pleasure or drug withdrawal in motivating drug taking behavior (Koob and Le
Moal 2006; Gutkin et al. 2006; Redish et al. 2008). But it suggests that the com-
pulsive and persistent nature of addiction, may be best explained by the concept
of a sensitized ‘wanting’ systems in susceptible individuals, mediated by long-term
neuroadaptations that may involve alterations in gene expression, neurotransmitter
release and receptor levels, and dendritic sprouting patterns in mesocorticolimbic
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structures. Incentive-sensitization can create addiction even to drugs that are not
particularly pleasant, and still produce cue-triggered relapse back into drug taking
even long after recovery from withdrawal.

The relation to mesocorticolimbic modulation makes incentive salience particu-
larly influenced by natural appetite states, by psychostimulant drugs that promote
dopamine and by enduring neural sensitization of mesolimbic NAc-VP systems.
Previous computational models have suggested that incentive salience can be con-
strued purely by reinforcement learning mechanisms such as the temporal difference
or prediction error model (McClure et al. 2003; Redish 2004). Such models account
for incentive salience in terms of dopamine-based learning mechanisms (Schultz et
al. 1997; Schultz 2002), without invoking a role for physiological modulation of
motivation after learning. For example, McClure et al. identified incentive salience
with the “(state) value function” or expected total discounted reward. Redish (2004)
identified drug sensitization with a mechanism that amplifies the temporal difference
prediction error signal itself. This is different from our view, which posts incentive
salience to be dynamically modulated from moment to moment, based on inputs
from current physiological/brain states as well as from learned associations to a
reward cue (Zhang et al. 2009). In this chapter, we first review those standard learn-
ing models, and then contrast them to data that indicate incentive salience involves
more than merely learning. Namely, cue-triggered ‘wanting’ also involves an ad-
ditional physiological factor that dynamically transforms transforms static learned
values into a flexible level of motivation appropriate to the moment (Tindell et al.
2009). Rather than simply reflecting a previously-learned value, our model proposes
a specific gain-control mechanism for modulating on the fly the expected values of
reward-predicting stimuli to dynamically compute incentive salience.

7.1.1 Dopamine and Reinforcement Learning: The “Standard”
Model and Critique

Contemporary reinforcement learning theory posits an actor-critic architecture for
reward prediction and action control. The critic computes the error in reward-
prediction—the discrepancy between the reward expected from a stimulus (tech-
nically, a state) and the reward actually received. The temporal-difference (TD)
method provides an explicit formula for calculating such expected reward through
incorporating the subsequent prediction made by the same reward-predicting system
as a part of predicted reward of the current state, thereby allowing a refined estimate
of the value of a state in the sequential context. The actor, on the other hand, evalu-
ates the merits of policies and selects for each state an action associated with highest
long-term reward values. Critic and actor are often discussed as potential functions
of ventral striatum and its mesolimbic dopamine inputs from ventral tegmental area
(VTA) and substantia nigra pars compacta (SNc), respectively (O’Doherty et al.
2004).

There is growing consensus (though not without controversy, see Redgrave et
al. 1999; Redgrave and Gurney 2006), that the predictive error signal, which lies
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at the core of temporal difference learning, is carried by the firing of dopamin-
ergic neurons projecting to nucleus accumbens and neostriatum (Schultz 1998;
Schultz et al. 1997). Phasic firing in midbrain dopaminergic neurons (Schultz
et al. 1997; Schultz 1998) has been suggested to express the TD error in re-
ward prediction. Such signal has also been posited to update working mem-
ory and goal stack representations in prefrontal cortex (Montague et al. 2004;
O’Reilly 2006), consistent with neuropsychological proposals that the prefrontal
cortex (PFC) controls goals and goal-directed action (Miller and Cohen 2001).

The actor-critic architecture and TD-based learning rule derives its computational
power from its consistent and effective scheme for optimizing sequential decision-
making in a stationary Markov environment (e.g., Puterman 1994), without the need
of an elaborate model of the world. However, an important missing piece for this
framework is how learned predictions are used to generate motivation on a moment-
to-moment basis in a way that incorporates the current physiological state such as
hunger, satiety, psychostimulant sensitization, or the immediate impact of drugs.
This was pointed out by Dayan (2009) and Dayan and Balleine (2002). Attempts to
grapple with this issue have been made via tree-search devaluations of goals (Daw
et al. 2005a, 2005b) or via satiation decrements that reduce motor arousal or limit
generalization (Niv et al. 2006). A problem that has remained unaddressed is how
the motivation value of specific reward stimuli may be dynamically increased in
targeted fashion by physiological states involving mesolimbic activation, includ-
ing neural sensitization states relevant to addiction (Robinson and Berridge 2003;
Berridge 2007).

Going beyond the act-outcome (“A-O”) devaluation that can be successfully
modeled by the cognitively-based tree-search mechanism (Daw et al. 2005a, 2005b)
the concept of incentive salience posits an additional Pavlovian-based cue-triggered
(“S-S”) motivation process (i.e., incentive salience attribution), which can be either
increased or decreased phasically by physiological hunger-satiety states that are rel-
evant to the brain’s calculation of hedonic value for particular sensory goals (for ex-
ample, sweet versus salty tastes during caloric hunger versus salt appetite) (Berridge
and Valenstein 1991; Robinson and Berridge 1993; Berridge and Robinson 1998;
Tindell et al. 2006). Incentive salience takes Pavlovian associations as its primary
learned input, but also takes a separate input in the form of current mesolimbic states
that amplify or dampen ‘wanting’ for specific cues and their rewards. Further, the
incentive-sensitization theory of addiction posits that mesolimbic activation, drugs
of abuse and persisting sensitization can tap into those motivation-amplifying brain
circuits to incrementally raise the incentive salience carried by particular reward
stimuli, so that cues may trigger compulsive motivation for their rewards by the
same S-S incentive modulation mechanism (Robinson and Berridge 1993, 2003)
The incentive salience attribution mechanism is thus essentially Pavlovian-guided,
but calculates value anew on a moment-by-moment basis that is influenced by
mesolimbic dopamine states (see Berridge 2001 chapter). This view assigns a very
different role to dopamine function from traditional learning models, but one that
we suggest below can be made compatible with the existing computational theories
of reinforcement learning.
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7.2 Previous Computational Approaches to Learning
and Incentive Salience

Several models of dopamine function with respect to computation of incentive
salience and incentive sensitization have been proposed, including our own. They
are all anchored on the now-standard reinforcement learning framework along with
the temporal difference (TD) learning method.

Reinforcement learning theory provides a mathematical framework to model ac-
tion control and reward prediction by an agent in a stable Markov environment. In
temporal difference models (Sutton and Barto 1981), the expected total future dis-
counted reward V associated with an environmental state s (i.e., the conditioned
stimulus [CS] associated with reward) is

V (st ) =
〈∑

i=0

γ irt+i

〉
= 〈rt 〉 + γ 〈rt+1〉 + γ 2〈rt+2〉 + · · · , (7.1)

where γ ∈ [0,1) is the discount factor, rt , rt+1, rt+2, . . . , representing the sequence
of primary rewards (UCS) starting from the current state (subscripted t , predictive
CS), and the expectation 〈·〉 is taken over generally stochastic state transition and
reward delivery. The estimated value of reward prediction V̂ (denoted with a hat)
is a cached value that becomes gradually established through temporal difference
learning over past instances in which r and s are paired. On each trial, specifically,
a prediction error δ concerning deviation from consistent successive predictions is
calculated, based on instantaneous reward rt (which might be stochastic)

δ(st ) = rt + γ V̂ (st+1) − V̂ (st ), (7.2)

and is used to update V̂ via δV̂ (st ) ∝ δ(st ). After learning has completed, δ(st ) = 0,
so

V̂ (st ) = 〈rt 〉 + γ V̂ (st+1). (7.3)

In the early application to ‘wanting’ mentioned above, McClure et al. (2003) pro-
posed that the notion of incentive salience be mapped directly to the computational
concept of total expected future discounted reward, namely V (see Eq. (7.1)). In
TD learning theory, V is a cached, incrementally-learnt value function. However,
a difficulty arises from identifying incentive salience with the value function V , as
V is usually defined in TD models. That difficulty is that V can change if a reward
is revalued only after further relearning about the new prediction error introduced
by re-encounters with the revalued reward. Thus, to change incentive salience of a
CS requires further pairing with its revalued UCS, according to such a pure learn-
ing model based on re-training via new prediction errors. That contradicts our idea
described above that CS incentive salience is also modulated on the fly by rele-
vant physiological states that alter mesolimbic function, which produces a syner-
gistic interaction between prior learning and current mesolimbic reactivity in deter-
mining the current level of CS-triggered motivation (Robinson and Berridge 1993;
Berridge and Robinson 1998).
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Fig. 7.1 Simulations of dynamic shifts in incentive salience. Initial learning is assumed to proceed
by a TD type of rule initially. At time step t = 11, a new mesolimbic activation introduced via
amphetamine administration, sensitization, or both. The change in incentive salience occurs as
indicated by the arrows, multiplicatively (V · κ). Modified from Zhang et al. (2009)

A variant on prediction-error approach applied to addiction has been to posit that
sensitization elevates learning itself (e.g., Redish 2004). For example, by magnify-
ing the drug-elicited prediction error signal carried by dopamine neurons, this has
been suggested to result in a surge in the value of δ itself (Redish 2004). Such a
change would then induce an increase in the learned value function V via the stan-
dard, δ-driven TD learning mechanism on the next trial that paired the initial CS
with the UCS. An exaggerated TD error signal, repeated again and again in drug
addicts who continue to take drugs, has been posited to increase V without upper
bound, hence explaining addiction as over-learning of V prediction (Redish 2004).
Such ideas are elegant applications of TD learning theory to addiction, but neverthe-
less rely exclusively on the assumption that dopamine causes a predictive error that
functions as a teaching signal in the TD framework. There are reasons to question
that assumption (e.g., Berridge 2007).

7.3 Our Dynamic Model of Incentive Salience: Integrating
Learning with Current State

To incorporate motivational modulation of previously learned values (Fig. 7.1),
we propose that the incentive salience or motivational value Ṽ (st ) of a reward-
predicting CS be described as

Ṽ (st ) = r̃(rt , κ) + γV (st+1), (7.4)

where the value of the UCS (i.e., the primary reward value rt ) is modulated by a
factor κ reflecting current physiological state, such as hunger, thirst, salt appetite,
amphetamine administration, drug sensitization, etc. Two specific forms of r were
postulated in Zhang et al. (2009): an additive mechanism and a multiplicative mech-
anism. Only the multiplicative mechanism is required regarding addiction in terms
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of drug activation of dopamine systems and long-term sensitization of those sys-
tems, and so in this chapter, we concentrate on the multiplicative form

r̃(rt , κ) = κ〈rt 〉. (7.5)

In our model, the multiplicative constant κ can be specific to a particular appet-
itive system. Incentive salience can be either increased or decreased, with κ < 1
representing decrease (such as satiation or devaluation) and κ > 1 representing in-
crease (such as hunger or sensitization). Equation (7.4) along with (7.5) suggests
that moment-to-moment evaluation of the incentive value of the goal associated
with the current state st , is contributed to by two parts: a gain-controlled evaluation
of the immediately available reward (first term), and a γ -discounted evaluation of
future rewards based on stored prediction value (second term). Physiological state
κ factors may couple with geometric discounting under γ , in that satiation (κ < 1)
may increase the temporal horizon γ , whereas sensitization or an increased physio-
logical appetite (κ becomes greater than 1) may decrease γ , and disproportionately
raise the motivational value of temporal proximity to reward UCS (see Giordano et
al. 2002). The incentive value of a state st is the motivationally-modulated value of
the immediate reward rt plus the discounted value of the expected reward in the next
state st+1; both are loaded into the goal representation as st is presented.

The multiplicative modulation (i.e., the calculation of Ṽ ) is the key distinction
from learning-based models of incentive salience—it corresponds to model-based
action control via goal representation versus model-free action control using stored
predictions. Subtracting both sides of Eq. (7.5) from those of Eq. (7.3), and substi-
tuting in the multiplicative relation (7.5), we obtain

Ṽ (st ) − V (st ) = (κ − 1)〈rt 〉, (7.6)

that is, the incentive salience Ṽ (st ) reduces to V (st ) in the absence of devalua-
tion/sensitization manipulation (κ = 1). We believe, however, that the κ param-
eter does not act as an indiscriminate tide that floats all boats to raise the in-
centive salience of all CSs equally. Rather, specific physiological appetite states,
such as drug addiction, caloric hunger or salt appetite, each amplify the hedonic
value of their own reward (drugs, sweets, salty foods), and hence specifically am-
plifies the incentive salience of particular CSs related to that UCS (Bindra 1978;
Toates 1986; Berridge 2001, 2004; Dickinson and Balleine 2002), presumably each
modulated by its own κ parameters.

It follows from Eqs. (7.1), (7.4) and (7.5) that

Ṽ (st ) = κ〈rt 〉 + γ

(〈∑

i=0

γ irt+1+i

〉)
. (7.7)

In essence, Eq. (7.7) is an expression of what is known as the “quasi-hyperbolic”
discounting model (Laibson 1997; Frederick et al. 2002). Hence, our model pro-
vides an incentive salience explanation of why mesolimbic NAc-VP systems may
sometimes be activated by an immediately available reward more than by tem-
porally distant reward (McClure et al. 2004), and suggests that the degree of
discounting in such situations will be modulated by current mesolimbic states.
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Note that our postulated gain-control mechanism effectively modulates the tradeoff
of immediate primary reward and future expected reward. Recent neuro-imaging
studies implicating ventral striatum and parietal cortex in mediating the relative
weighting of immediate versus future rewards in humans (McClure et al. 2004;
Glimcher and Kable 2005) and in monkeys (Louie and Glimcher 2005), with
mesolimbic neural activation specifically potentiating the motivational value of
short-term rewards at the expense of long-term rewards, are consistent with our
proposed gain-control function for dopamine.

In short, our model proposes that incentive salience requires (1) an online gain
control (gating) mechanism κ that dynamically modulates CS reward value accord-
ing to changes in reward-relevant physiological or neurobiological states, including
mesolimbic dopamine activation or sensitization, along with (2) potential adjust-
ment of the temporal horizon γ for evaluating stored prediction values; both moti-
vational consequences are adjustable on-the-fly without the need for (re)learning.

7.4 Testing Model Predictions Using a Serial Conditioning Task

The above-mentioned models of incentive salience and mesolimbic dopamine func-
tion were teased apart previously by our colleagues and us in an electrophysio-
logical recording study that employed post-learning mesolimbic modulation in a
Pavlovian conditioning task (Tindell et al. 2004). Let us consider the serial condi-
tioning paradigm involving two conditioned stimuli in sequence, CS1 and CS2, that
predict a terminal reward UCS: the full series is CS1 → CS2 → UCS (Fig. 7.2).
After the rat is trained on this sequential paradigm, it learns the values associated
with V1 (of CS1) and V2 (of CS2), as well as with the value r of the terminal re-
ward. In later tests, the rat’s mesolimbic systems may be activated by amphetamine
administration; or between the training and the test, the rat may be sensitized by a
hefty regimen of exposure to psychostimulant drugs. In all test cases, the first CS
still predicts all following stimuli, and because of temporal discounting, their mag-
nitude will be in descending order: V1 < V2 < r . So a pure TD value-coding model
would predict that neuronal coding of incentive salience should follow the same or-
dering, with activation to UCS being the largest. Under sensitization manipulation,
the primary UCS reward values will be magnified, r → κr .

A TD error model by comparison would predict that, after learning is complete in
the CS1/CS2/UCS paradigm, δ2 = δ3 = 0, whereas δ1 > 0. Allowing the possibility
for incomplete learning, one still has δ1 > δ2 > δ3, where the ordering reflects the
propagation of learning gradient from reward-distal to reward-proximal direction.
Assuming the effect of sensitization or acute amphetamine challenge to be either
additive or multiplicative on the existing δ signal, it follows from the above line
of reasoning that the response of TD error-coding neurons to CS1 would be the
strongest, though it would not appear until after a new learning trial once the drug
elevated δ. In short, a prediction error coding model (e.g., Redish 2004) specifies in-
crements in the neural code for δ, most prominently for CS1. That is in stark contrast
to the specification (by our incentive salience model below) of CS2 as the stimulus
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Fig. 7.2 Selective amplification of CS incentive salience (not CS prediction or UCS hedonic im-
pact) by transient amphetamine intoxication and more permanent drug sensitization. Experimental
design of the serial CS1/CS2/UCS procedure, and effects of sensitization and amphetamine on
neuronal firing profiles in ventral pallidum (A). The relative rank-ordering of neuronal responses
to CS1/CS2/UCS is defined as the “profile” of a neuron; it can be represented mathematically as
the angle of a vector in a two-dimensional space, where the two axes represent two orthogonal
contrasts formed from the three responses (B). The computation is such that this angular value in-
dexing a response profile exists in a continuum which (1) exhausts all possible firing patterns (i.e.,
relative orders in firing rates to these three types of stimuli); and (2) guarantees that nearby val-
ues represents similar firing patterns. Temporal difference error-coding implies maximal response
to CS1 which has the greatest prediction, whereas value-coding implies maximal firing to UCS
which has the highest hedonic value. By contrast, incentive-coding implies maximal firing to CS2
that has the greatest motivational impact as it immediately precedes the actual reward. The data
panel shows firing in control condition contrasted to the combination of amphetamine plus sensi-
tization (C). The summary arrow panel shows the averaged neuronal response for each group of
rats, illustrating the additive increments produced by sensitization, amphetamine and combination
of both (D). From Zhang et al. (2009) and modified from Tindell et al. (2005)

most enhanced in incentive salience by a neurobiological activation of mesolimbic
systems.

By contrast, our gain-control κ model of incentive salience predicts that
mesolimbic activation, even if occurring after learning (e.g., by psychostimulant
sensitization or by acute amphetamine administration), may immediately modulate
the neuronal computation of CS incentive salience (especially for CS2). In the serial
conditioning paradigm, r1 = 0 and r2 = r , so the motivationally controlled incen-
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tive salience value is Ṽ1 = γ r , Ṽ2 = κr . Pan et al. (2005) showed that on certain
trials when the CS2 is omitted after CS1 there is a “dip” in the firing of dopamine
neurons in substantial nigra and VTA. This suggests that following CS1, the animal
is indeed expecting CS2 rather than UCS. (Because the temporal discount factor
γ < 1 and sensitization manipulation κ > 1, Ṽ1 < Ṽ2.) In short, with respect to or-
dering of magnitudes, our model of incentive salience anticipates that CS2 should
receive greater motivational impact than CS1, because it is closer in time to UCS,
facilitating transfer of incentive properties directly from UCS to CS2 (see Tindell
et al. 2005 for supporting evidence regarding relative roles of CS1 and CS2). The
reward-proximal CS2 should be most potently enhanced by either persisting neural
sensitization induced after learning, or acute amphetamine administration on the
day of test, because both manipulations activate mesolimbic dopamine systems.

7.4.1 VP Neuronal Coding for Incentive Salience

These models were tested in a study that focused on mesolimbic output signals that
were intercepted in the ventral pallidum (Tindell et al. 2005). The ventral pallidum
(VP) lies at the base of the brain behind the nucleus accumbens and in front of ven-
tral tegmental area (VTA) and lateral hypothalamus, and serves as a final common
path for mesocorticolimbic circuits. The VP processes compressed representations
of mesocorticolimbic reward signals before relaying them back up into corticolim-
bic and mesocorticolimbic loops, and downward to motor structures (Zahm 2000;
Zahm 2006). Regarding mesolimbic dopamine inputs, VP also receives direct
dopamine projections from VTA that has been implicated in drug reward (Gong
et al. 1996; McFarland et al. 2004), as well as most efferent projections from the
nucleus accumbens. Its outputs project upward to mediodorsal thalamus and thence
back to corticolimbic loops involving prefrontal, cingulate, and insular cortical ar-
eas, and downwards to subcortical sites. VP neurons fire to Pavlovian conditioned
stimuli (CS+) that predict rewards as well as to reward UCSs themselves (Tindell
et al. 2004). Hence, VP is a prime candidate to study mesolimbic modulations of
CS incentive coding.

The Tindell et al. (2005) study tested whether mesolimbic activation by sensitiza-
tion or pharmacological dopamine release enhances VP firing that codes incentive
salience as a motivational transform of CS+ in a manner specified by our model
of incentive salience computation, as opposed to pure learning-based models. Rats
were trained on a serial Pavlovian conditioning paradigm, CS1/CS2/UCS, where a
Pavlovian CS1 (a tone) followed after a 10 second delay by a CS2 (a click) predicted
immediate (i.e., within 1 second) reward in the form of a sucrose pellet (UCS); they
were also trained on a negative CS− (another tone) that did not lead to any reward.
After two weeks of Pavlovian training, physiological activation of dopamine-related
mesolimbic brain systems was induced in either or both of the following two ways:
by neural sensitization caused by repeated, pulsed psychostimulant drug adminis-
tration followed by a prolonged drug-free incubation period (“sensitization condi-
tion”), or later during testing sessions by acute amphetamine administration that
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immediately causes dopamine to be released into synapses (“amphetamine chal-
lenge condition”). Recordings were done during testing sessions. An offline review
of the monitoring video ruled out that VP neuron activity in response to CS2 and
UCS presentation were due simply to pure movements.

Each neuronal unit’s responses to the three stimuli (CS1, CS2, UCS) were an-
alyzed by a novel data analysis and presentation method, called Profile Analysis
(Tindell et al. 2005; Zhang et al. 2009), to derive a profile direction (an angle within
360°). A total of 524 recorded units show that VP neuronal response profiles were
broadly dispersed, covering the entire spectrum of value-coding, predictive error-
coding, and incentive-coding regions of the profile space. Histograms (polar plot)
were constructed by plotting the number of units at each directional angle versus the
angular values themselves. Population averages of such profile vectors (i.e., vector
sum called a Population Profile Vector), were also plotted for VP neurons under var-
ious conditions including normal control, sensitization and/or acute amphetamine
conditions. Normally, VP neurons signaled prediction-error preferentially, respond-
ing maximally to CS1, secondarily to CS2, and least to UCS. But mesolimbic
dopamine activations enhanced incentive salience computations on the fly. Sensi-
tization (Fig. 7.2) and acute amphetamine (Fig. 7.2) both shifted the distributions of
response profiles away from predictive error coding (CS1-maximal response) and
toward incentive coding (CS2-maximal response). The greatest shift occurred when
rats were both pre-sensitized and exposed to acute amphetamine challenge on the
same test day (Fig. 7.2).

The effects of mesolimbic dopaminergic activation can be visualized as the rota-
tion of the Population Profile Vectors away from a CS1-maximal/prediction-coding
axis (CS1) and towards the CS2-maximal/incentive-coding axis (CS2) (Fig. 7.2).
Thus, it can be concluded that while VP neurons in control animals (after train-
ing) tend to follow a TD error coding profile, mesolimbic dopaminergic acti-
vation causes the neuronal response profiles to shift towards encoding incentive
salience. Mesolimbic activation by sensitization, amphetamine administration, or
both, specifically and progressively caused VP neurons to increase their firing rates
predominantly to CS2, compared with CS1 or UCS. Such results are anticipated by
our motivational-based model of incentive salience (with κ > 1).

7.5 Discussion

Reward cues trigger motivation “wanting”, as well as hedonic affects, cognitive ex-
pectations and procedural habits. Incentive salience theory posits the motivational
value triggered by a CS+ to be based on two separate but integrated inputs: (a) cur-
rent physiological/neurobiological state; and (b) previously learned associative val-
ues. This integration of physiological signals allows drug states, sensitization states,
or natural hunger, thirst and other appetitive states to immediately enhance the in-
centive salience attributed to a previously learned CS+ for relevant reward, without
necessarily requiring additional re-learning trials.
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To summarize, our analysis supports a computational account of incentive
salience as a motivational gain control mechanism that dynamically responds to
post-learning shifts in physiological states when computing ‘wanting’ triggered by
a relevant CS for reward. This gain control mechanism modulates motivation on
a moment-by-moment basis as brain states vary, gauging the relative importance
(tradeoff in values) between primary reward versus expected future reward. Finally,
VP circuits, as a crucial node in mesocorticolimbic circuits, may be an important
stage in computing the motivational transforms of CS and UCS values alike.

7.5.1 Multiple Motivation-Learning Systems

We stress that other types of learning and motivation exist aside from Pavlovian
incentive salience: in particular, cognitive incentives and reward-oriented habits.
For example, evidence described elsewhere indicates that ‘wanting’ (with quota-
tion marks: incentive salience) exists alongside ordinary wanting (without quotation
marks: cognitive predictions), which may plausibly be based on full look-ahead cog-
nitive representations of expected goal values and their related act-outcome strate-
gies to obtain those goals (Dayan and Balleine 2002; Dickinson and Balleine 2002;
Berridge and Robinson 2003). Ordinarily, wanting and ‘wanting’ act together to
guide behavior toward the same goals, with incentive salience serving to add moti-
vation ‘oomph’ to cognitive representations. But under some important conditions
cognitive and Pavlovian motivation mechanisms may diverge. For example, diver-
gence can lead to ‘irrational wanting’ in addiction for a target that the individual
does not cognitively want, nor predicatively expect to be of high value. Our current
model may help to computationally capture the Pavlovian incentive salience limb of
that divergence (Berridge and Aldridge 2008).

7.5.2 Contrasting Dynamic Incentive Salience to Cognitive Tree
Goals

Loosely speaking, our model could be considered similar to one-step look-ahead in
a model-based (tree-search) approach. However, there are important differences be-
tween our model and most tree-search models. A full tree-model is usually thought
to have an advantage of providing a stable cognitive map of declarative goals and
available actions within the tree representation of the world. Our model nevertheless
posits a dynamic synergy between current mesolimbic reactivity and the presence
of a cue (with its previously acquired association to reward). For example, cue-
triggered ‘wanting’ shoots up upon presentation of a CS, but importantly, also goes
down again nearly as soon as the CS is taken away—even when the brain remains
in a mesolimbic-activated state (e.g., after amphetamine administration; after sen-
sitization; or after combination of both). Coupling of incentive salience to CS is
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evident in behavioral cue-triggered ‘wanting’ experiments (Pavlovian instrumental
transfer), where lever-pressing peaks fade away as soon as the CS is removed—even
though the dopamine drug or sensitization state that enhanced the cue’s motivation-
eliciting power persist.

This type of transience is quite typical of motivational states. In particular, the in-
centive salience mechanism is especially compatible with transient peaks in ‘want-
ing’ being tied to CS presence because the rules that underlie Pavlovian controls
of incentive salience specify that a synergy exists between CS presence and cur-
rent mesolimbic state (Robinson and Berridge 1993; Berridge 2007). The physical
presence of a Pavlovian CS is a crucial factor in generating incentive salience, and
a sporadic CS can lead to up-and-down changes in ‘wanting’. This synergy fea-
ture is precisely why a drug CS triggers relapse in an addict as a phasic peak of
temptation—at least if that CS is encountered in a mesolimbic-activated state.

Our model for the computation of incentive salience implies the motivational
magnet property of a drug reward cue is dynamically recomputed based on current
physiological states of sensitization and drug intoxication. This dynamic amplifi-
cation of motivation in addicts may maladaptively pull the addict like a magnet
towards compulsively ‘wanted’ drugs, and so make it harder to escape from the
addiction.

Acknowledgements Collection of experimental data that gave rise to this computational model
was supported by NIH grants DA017752, DA015188 and MH63649. The writing of this book
chapter was also supported by AFOSR grant FA9550-06-1-0298. We thank Dr. Michael F.R.
Robinson for helpful comments on an earlier version of the manuscript.

References

Berridge KC (2001) Reward learning: Reinforcement, incentives, and expectations. In: Medin
DL (ed) The psychology of learning and motivation, vol 40. Academic Press, New York,
pp 223–278

Berridge KC (2004) Motivational concepts in behavioral neuroscience. Physiol Behav 81:179–209
Berridge KC (2007) The debate over dopamine in reward: the case for incentive salience. Psy-

chopharmacology 191:391–431 (2007)
Berridge KC, Aldridge JW (2008) Decision utility, the brain, and pursuit of hedonic goals. Social

Cogn 26:621–646
Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward

learning, and incentive salience? Brains Res Rev 28:309–369
Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26:507–513
Berridge KC, Valenstein ES (1991) What psychological process mediates feeding evoked by elec-

trical stimulation of the lateral hypothalamus? Behav Neurosci 105:3–14
Bindra D (1978) How adaptive behavior is produced: a perceptual-motivation alternative to re-

sponse reinforcement. Behav Brain Sci 1:41–91
Daw ND, Niv Y, Dayan P (2005a) Uncertainty-based competition between prefrontal and dorsal

striatal systems of behavioral control. Nat Neurosci 8:1704–1711
Daw ND, Niv Y, Dayan P (2005b) Actions, policies, values, and the basal ganglia. In: Bezard (ed)

Recent breakthroughs in basal ganglia research. Nova Publ, New York, pp 91–106
Dayan P (2009) Dopamine, reinforcement learning, and addiction. Pharmacopsychiatry

42(S 01):S56–S65



202 J. Zhang et al.

Dayan P, Balleine BW (2002) Reward, motivation and reinforcement learning. Neuron 36:285–
298

Dickinson A, Balleine B (2002) The role of learning in the operation of motivational systems. In:
Gallistel CR (ed) Stevens’ handbook of experimental psychology: learning, motivation, and
emotion, vol 3, 3rd edn. Wiley, New York, pp 497–534

Frederick S, Loewenstein G, O’Donoghue T (2002) Time discounting and time preference: A crit-
ical review. J Econ Lit 40:351–401

Giordano LA, Bickel WK, Loewenstein G, Jacobs EA, Marsch L, Badger GJ (2002) Mild opioid
deprivation increases the degree that opioid-dependent outpatients discount delayed heroin and
money. Psychopharmacology 163:174–182

Glimcher PW, Kable O (2005) Neural mechanisms of temporal discounting in humans. Abstract
for 2005 annual meeting of the society for neuroeconomics

Gong W, Neill D, Justice JB Jr (1996) Conditioned place preference and locomotor activation
produced by injection of psychostimulants into ventral pallidum. Brain Res 707(1):64–74

Gutkin BS, Dehaene S, Changeux JP (2006) A neurocomputational hypothesis for nicotine addic-
tion. Proc Natl Acad Sci USA 103(4):1106–1111

Koob GF, Le Moal M (2006) Neurobiology of addiction. Academic Press, New York
Laibson D (1997) Golden eggs and hyperbolic discounting. Q J Econ 112(2):443–477
Louie K, Glimcher PW (2005) Intertemporal choice behavior in monkeys: interaction between

delay to reward, subjective value, and area LP. Abstract for 2005 annual meeting of the society
for neuroeconomics

McClure SM, Daw ND, Montague PR (2003) A computational substrate for incentive salience.
Trends Neurosci 26:423–428

McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value imme-
diate and delayed monetary rewards. Science 306:503–507

McFarland K, Davidge SB, Lapish CC, Kalivas PW (2004) Limbic and motor circuitry underlying
footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24(7):1551–1560

Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neu-
rosci 24:167–202

Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in behavioral con-
trol. Nature 760–767

Niv Y, Joel D, Dayan P (2006) A normative perspective on motivation. Trends Cogn Sci 10:375–
381

O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of
ventral and dorsal striatum in instrumental conditioning. Science 304:452–454

O’Reilly RC (2006) Biologically based computational models of high-level cognition. Science
314:91–94

Pan W-X, Schmidt R, Wickens JR, Hyland BI (2005) Dopamine cells respond to predicted events
during classical conditioning: evidence for eligibility traces in the reward-learning network.
J Neurosci 25:6235–6242

Puterman ML (1994) Markov decision processes. Wiley, New York
Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering novel ac-

tions? Nat Rev, Neurosci 7:967–975
Redgrave P, Prescott TJ, Gurney K (1999) Is the short-latency dopamine response too short to

signal reward error? Trends Neurosci 22:146–151
Redish AD (2004) Addiction as a computational process gone awry. Nature 306:1944–1947
Redish AD, Jensen S, Johnson A (2008) A unified framework for addiction: Vulnerabilities in the

decision process. Behav Brain Sci 31(4):415–437; discussion 437–487
Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization

theory of addiction. Brains Res Rev 18:247–291
Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53
Robinson TE, Berridge KC (2008) The incentive sensitization theory of addiction: some current

issues. Philos Trans R Soc Lond B Biol Sci 363(1507):3137–3146
Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27



7 Computational Models of Incentive-Sensitization in Addiction 203

Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263
Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science

275:1593–1599
Sutton RS, Barto AG (1981) Toward a modern theory of adaptive networks: expectation and pre-

diction. Psychol Rev 88(2):135–170
Tindell AJ, Berridge KC, Aldridge JW (2004) Ventral pallidal representation of pavlovian cues and

reward: population and rate codes. J Neurosci 24:1058–1069
Tindell AJ, Berridge KC, Zhang J, Peciña S, Aldridge JW (2005) Ventral pallidal neurons code

incentive motivation: amplification by mesolimbic sensitization and amphetamine. Eur J Neu-
rosci 22:2617–2634

Tindell AJ, Smith KS, Pecina S, Berridge KC, Aldridge JW (2006) Ventral pallidum firing codes
hedonic reward: when a bad taste turns good. J Neurophysiol 96(5):2399–2409

Tindell AJ, Smith KS, Berridge KC, Aldridge JW (2009) Dynamic computation of incentive
salience: “wanting” what was never “liked”. J Neurosci 29(39):12220–12228

Toates F (1986) Motivational systems. Cambridge University Press, Cambridge
Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of

adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–
105

Zahm DS (2006) The evolving theory of basal forebrain functional-anatomical ‘macrosystems’.
Neurosci Biobehav Rev 30:148–172

Zhang J, Berridge KC, Tindell AJ, Smith KS, Aldridge JW (2009) Modeling the neural computa-
tion of incentive salience. PLoS Comput Biol 5:1–14



sdfsdf



Chapter 8
Understanding Addiction as a Pathological State
of Multiple Decision Making Processes:
A Neurocomputational Perspective

Mehdi Keramati, Amir Dezfouli, and Payam Piray

Abstract Theories of addiction in neuropsychology increasingly define addiction
as a progressive subversion, by drugs, of the learning processes by which animals
are equipped with, to adapt their behaviors to the ever-changing environment sur-
rounding them. These normal learning processes, known as Pavlovian, habitual and
goal-directed, are shown to rely on parallel and segregated cortico-striatal loops,
and several computational models have been proposed in the reinforcement learning
framework to explain the different and sometimes overlapping components of this
network. In this chapter, we review some neurocomputational models of addiction
originating from reinforcement learning theory, each of which explain addiction as a
usurpation of one of the well-known models under the effect of addictive drugs. We
try to show how each of these partially complete models can explain some behav-
ioral and neurobiological aspects of addiction, and why it is necessary to integrate
these models in order to have a more complete computational account for addiction.

8.1 Introduction

Addiction, including addiction to drugs of abuse, is defined as a compulsive ori-
entation toward some certain behaviors, despite the heavy costs that might be
followed (Koob and Le Moal 2005b). In the case of drug addiction, addicts are
usually portrayed as people who seek and take drugs, even at the cost of ad-
verse social, occupational and health consequences. Although a wide range of
effects of drugs on different body and nervous system regions has been shown,
it is progressively becoming accepted that the above definition of drug addic-
tion arises from the pharmacological effects of drugs on the brain learning sys-
tem, that is, the brain circuits involved in adaptively guiding animals’ behav-
iors toward satisfying their needs (Everitt and Robbins 2005; Redish et al. 2008;
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Belin et al. 2009). In fact, drugs of abuse are notorious for usurpation of the natural
learning processes and consequently, understanding normal learning mechanisms
has proven to be a prerequisite for understanding addiction as a pathological state
of those underlying systems.

Conditioning literature in behavioral psychology has long studied animal behav-
ior and has developed a rich and coherent framework for understanding associa-
tive learning by defining several components involved in decision making, most no-
tably Pavlovian, habitual, and goal-directed systems (Dickinson and Balleine 2002).
The neural underpinnings of these components and their competitive and collabo-
rative interactions have also been well studied during the last 50 years (Balleine
and O’Doherty 2010; Rangel et al. 2008), although there is still a long way to go.
This psychological and neurobiological knowledge has paved the way for com-
putational models of decision making to emerge. These models rephrase in a for-
mal language, the developed concepts in the neuropsychology of decision making
and thus, guarantee the coherency and self-consistency of the proposed compu-
tational theories, as well as quantitatively examining their validity using experi-
mental data. The computational theory of reinforcement learning (RL) (Sutton and
Barto 1998), which is the origin of all computational models reviewed in this chap-
ter, is a putative formal framework that has captured many aspects of the psycho-
logical and neurobiological knowledge gathered around animal decision making.
Within this framework, the “Q-learning” model explains the behavioral charac-
teristics of the habitual process (Sutton and Barto 1998), which is believed to be
neurally implemented in the sensorimotor cortico-striatal loop (Yin et al. 2004,
2008). The “actor-critic” models, on the other hand, explain collaboration between
Pavlovian and habitual systems and are based on the integrity of limbic and sen-
sorimotor loops (Joel et al. 2002). Finally, “dual-process” models, capture the in-
terplay between habitual and goal-directed processes, and are based on the inter-
action between sensorimotor and associative loops, respectively (Daw et al. 2005;
Keramati et al. 2011).

As addictive drugs are known to usurp the normal learning mechanisms, many
of the computational models proposed to date for explaining addiction-like be-
haviors are based on the RL framework. In fact, each of the five computational
models reviewed in this chapter (Redish 2004; Dezfouli et al. 2009; Dayan 2009;
Piray et al. 2010; Keramati et al. 2011) explains addiction as a malfunction, due to
the effect of drugs, of one of the variants of the RL theory mentioned above. As
each model takes into account different, and sometimes overlapping components of
the whole learning system, each of them can explain some limited, and sometimes
overlapping, behavioral aspects of addiction.

In the following sections, we first briefly discuss some key concepts of the con-
ditioning literature and its neural substrates. The main focus of the first section is on
introducing Pavlovian and instrumental forms of associative learning and the mul-
tiple kinds of interaction between them, as well as the anatomically parallel and
segregated closed loops in the cortico-basal ganglia system that underlie those dif-
ferent associative structures. Based on this literature, potential impairments in these
systems induced by pharmacological effects of drugs, and their related behavioral
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manifestations are explored in the next section. We then review five computational
models of addiction, each of which has incorporated the pharmacological effects
of drugs into a version of the computational theory of reinforcement learning. The
first two models (Redish 2004; Dezfouli et al. 2009) are based on the Q-learning al-
gorithm, which models the habitual decision making process. The second group of
models (Dayan 2009; Piray et al. 2010) study the drug-induced pathological state of
the actor-critic model, representing the interaction between Pavlovian and habitual
process. And the last model (Keramati et al. 2011) relies on the dual-process theory
of decision making. Finally, we discuss some open avenues for future theoretical
efforts for explaining more behavioral and biological evidence on addiction in the
RL framework.

8.2 Normal Decision Making Mechanism

Conditioning is an associative learning process by which animals learn to adapt
their predictions and behaviors to the occurrence of different stimuli in the envi-
ronment (Dickinson and Balleine 2002). This learning is made possible by repre-
senting the contingencies between different stimuli, responses, and outcomes, in
brain associative structures. Psychologists have long made a distinction between
Pavlovian and instrumental forms of conditioning. Pavlovian (or classical) condi-
tioning is a form of associative learning where the animal learns that presentation of
a neutral stimulus, known as conditioned stimulus (CS), predicts the occurrence of a
salient event, known as unconditioned stimuli (US). For this reason, Pavlovian con-
ditioning is also known as stimulus-stimulus (S-S) conditioning. Appearance of the
US might evoke an innate, reflexive response called unconditioned response (UR).
When this reflexive response is evoked by presenting the CS (which itself predicts
the US), it is called a conditioned response (CR). Salivation in response to presen-
tation or prediction of food is a famous example of conditioned or unconditioned
responses, respectively. It is important to note that in Pavlovian conditioning, the
animal has no control over the occurrence of events in the environment, but only
observes. A computational model for learning these S-S associations is presented in
Sect. 8.4.2.

In instrumental conditioning, in contrast, the animal learns to choose a sequence
of actions so as to attain appetitive stimuli or to avoid aversive ones. At the early
stages of exploring a new environment, the animal starts discovering the causal re-
lations between specific actions and their consequent biologically significant out-
comes. Based on this instrumental knowledge, at each state like s, the animal delib-
erates the consequences of different behavioral strategies and then, takes an action
like a by which it reaches a desirable outcome like o. Regarding that this kind of
instrumental behavior is aimed at gaining access to a certain outcome or goal, it
is called goal-directed or stimulus-action-outcome (S-A-O) responding. A formal
representation for this system is presented in Sect. 8.4.3. After the animal is ex-
tensively trained in the environment, it learns to habitually make a certain response,
say a, whenever it finds itself in a certain state, like s, without considering the poten-



208 M. Keramati et al.

tial consequences that action might have. Not surprisingly, this type of instrumental
behavior is called habitual or stimulus-response (S-R) responding. A computational
model representing this type of learning is introduced in Sect. 8.4.1.

Although the three types of learning mechanisms (S-S, S-A-O, S-R) are defined
operationally independent from each other, they both collaborate and compete to
produce appropriate behavior. The S-S system mainly interacts with the S-R system
(Yin and Knowlton 2006; Holland 2004). Conditioned reinforcement phenomenon
and Pavlovian-to-instrumental transfer (PIT) are two demonstrations of this inter-
action, both playing a critical role in addiction to drugs. Conditioned reinforcement
refers to the ability of a CS (e.g., a light associated with food) in gaining reward-
ing properties in order to support the acquisition of a new instrumental response
(pressing a lever in order to turn the light on) (Mackintosh 1974). Actor-critic mod-
els, explained in Sect. 8.4.2 are proposed to model such an interaction between
the two systems (but see Dayan and Balleine 2002). PIT, on the other hand, is a
behavioral phenomenon in which non-contingent presentation of a CS markedly el-
evates responding for an outcome (Lovibond 1983; Estes 1948). Although PIT is
suggested to play an important role in addictive behaviors, the computational ac-
counts for the role of this phenomenon in addiction are still not well developed,
and thus we do not discuss them in this chapter (see Dayan and Balleine 2002;
Niv 2007 for computational models of PIT).

The so far studied interactions between the S-R and S-A-O systems, on the
other hand, mainly focus on the competition between these two systems; i.e. these
two systems compete for taking the control of behavior. As noted earlier, it has
been demonstrated that at the early stages of learning, the behavior is governed
by the S-A-O system, whereas extensive learning results in the S-R system win-
ning the competition. The dual process models introduced in Sect. 8.4.3 are de-
veloped to model this interaction, and explain how drug-induced imbalance in the
interaction between S-R and S-A-O systems can contribute to addictive behav-
iors.

The three different decision making processes discussed above are demonstrated
to depend on topographically segregated, parallel cortico-striato-pallido-thalamo-
cortical closed loops (Alexander et al. 1986, 1990; Alexander and Crutcher 1990).
These loops include limbic, associative and sensory-motor loops, which are shown
to mediate Pavlovian, goal-directed and habitual processes, respectively. Striatum
is a central structure in this system, though it should be viewed as only a part
of a bigger network. It receives glutamatergic projections from cortex, as well as
dopaminergic inputs from Ventral Tegmental Area (VTA) and Substantia Nigra Pars
Compacts (SNc). The striatum can be divided into anatomically and functionally
heterogeneous subregions. Classically, the ventral subregion is shown to mediate
Pavlovian conditioning, whereas the dorsal region is involved in instrumental con-
ditioning (O’Doherty et al. 2004; Yin et al. 2008). Within the dorsal striatum, dorso-
lateral part and dorsomedial are demonstrated to mediate habitual and goal-directed
processes, respectively (Yin et al. 2004, 2005, 2008).



8 Understanding Addiction as a Pathological State of Multiple Decision 209

8.3 Aspects of Addictive Behavior

In the general system-level framework within which the computational models of
addiction are discussed in this chapter, three criteria for evaluating each model can
be proposed. Each criterion is, in fact, a set of theories on which a system-level
model of addiction is expected to be based on. Satisfying each of these criteria
can improve either the behavioral explanatory power or relevancy to neurobiolog-
ical reality of the corresponding model. These three criteria are: (1) being based
on a model for the normal decision-making system, at both neurobiological and
behavioral levels; (2) incorporating the pharmacological effects of drugs on neural
systems into the structure of the computational model; and (3) explaining a set of
well-known behavioral syndromes of drug addiction. In the previous section, we
provided a conceptual framework for the normal decision-making system (basis 1),
which will be later used as a basis for the addiction models introduced in this chap-
ter. In this section, we focus on the third basis, and discuss some important behav-
ioral aspects of drug addiction. Discussing the second basis is postponed until the
description of computational models in Sect. 8.4.

8.3.1 Compulsive Drug Seeking and Taking

According to the current Diagnostic and Statistical Manual of Mental Disorders
(American Psychiatric Association 2000, p. 198) “The essential feature of sub-
stance abuse is a maladaptive pattern of substance use manifested by recurrent
and significant adverse consequences related to the repeated use of substances.
. . . There may be repeated failure to fulfill major role obligations, repeated use in
situations in which it is physically hazardous, multiple legal problems, and recurrent
social and interpersonal problems.” In other words, the fundamental characteristic
of drug addiction is that the consumption of drug doesn’t decrease proportionally
when its costs (health costs, social costs, financial costs, etc.) increase. In behav-
ioral economic terms, this type of behavior is referred to as inelastic consumption,
as opposed to elastic consumption where decreases in demand are significant when
price increases. In accordance with this feature, studies looking at the sensitivity
of drug consumption to its price, demonstrate that the consumption of cigarettes
and heroin among dependent individuals is less elastic (or sensitive) to price,
compared to other reinforcers (Petry and Bickel 1998; Bickel and Madden 1999;
Jacobs and Bickel 1999). Figure 8.1 presents a simplified environment for compu-
tationally investigating the sensitivity of the consumption of drugs to the associated
costs (e.g., price). A decision maker (model) has two options: (a) to do nothing (C1),
which leads to the delivery of no reinforcer, and (b) to pay the cost of the drug (C2),
and then receive the drug reinforcer. The relative inelasticity of demand for drugs
implies that the probability of selecting the second option (punishment-then-drug)
by the model should be insensitive to the cost, as compared to a situation where the
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Fig. 8.1 The model has to
choose between C1 which
brings no reward, and C2.
Choosing C2 is followed by a
cost, and then a drug reward

model receives a natural reinforcer instead of the drug (punishment-then-natural-
reinforcer). This procedure is used to study the behavior of the model proposed in
Sect. 8.4.1.

The compulsive nature of drug-seeking behavior in addicts is tried to be captured
in animal models of addiction in various ways. In a variation of such experiments,
rats are trained to respond on a seeking lever in order to get access to a taking lever,
on which responding leads to the drug. Here, drug seeking and taking are sepa-
rate actions. In the test phase, seeking responses are measured in the presence of
a punishment-paired CS. In fact, during the test phase, the animal doesn’t receive
punishment nor drugs. Thus, its behavior is measured when no new training is pro-
vided and the animal should choose whether to continue going for the drug in the
new condition or not (Vanderschuren and Everitt 2004). The formal representation
of the procedure is similar to the one in Fig. 8.1: the animal can attenuate aversive-
ness of the expected electric shock by freezing (C1), or alternatively, it can press the
seeking lever in order to get access to the drug (C2).

As another attempt to capture compulsivity in animal models, a CS is paired
with an electric shock (electric shock plays the role of the cost associated with the
drug) during the training phase. In the test phase, if the rat chooses to press the lever
while the CS is present, it will receive the electric shock, which is then followed
by the delivery of the drug (Deroche-Gamonet et al. 2004; Belin et al. 2008). This
procedure is used to examine the behavior of the model proposed in Sect. 8.4.2.2
(a formal representation of the schedule is also provided there). In another exper-
iment (Pelloux et al. 2007), half of the responses (i.e., lever presses) are followed
by punishment (and not drug delivery), whereas the other half are followed by drug
delivery (and not punishment). From an animal learning point of view, the benefit
of this paradigm is that unlike the previous one, the assertiveness of the punishment
will not attenuate through its association with the reward (see Pelloux et al. 2007
for more explanation). However, the exact difference between this paradigm and the
previous ones from a modeling and behavioral economic point of view needs further
investigation.

Intuitively, all the mentioned experiments are to investigate the degree to which
the consumption of drugs is sensitive to the associated costs. However, the question
of what degree of insensitivity to costs should be regarded as compulsive behavior is
still unanswered. At least three types of criteria are used to distinguish between com-
pulsive and non-compulsive drug seeking behavior: (1) Comparing the sensitivity of
drug consumption to costs, with the sensitivity of the consumption of natural rein-
forcers (e.g., sucrose) to costs. Here, the experiments indicate that compared to nat-
ural rewards, drug consumption is less sensitive to punishments (Pelloux et al. 2007;
Vanderschuren and Everitt 2004); (2) Comparing the behavior of different subpopu-
lations of drug-exposed animals. In such experiments, animals are first divided into
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groups based on a criterion like the degree of impulsivity, the degree of reactivity to
novelty (Belin et al. 2008), or based on results of a test for reinstatement (Deroche-
Gamonet et al. 2004). Next, the sensitivity of responses to a punishment is measured
and compared between groups, and the group with the lowest sensitivity is consid-
ered to be compulsive. In this paradigm, individuals that exhibit compulsive behav-
ior are considered as vulnerable individuals; and (3) Comparing the behavior of an-
imals exposed to drug in different conditions and schedules of drug reinforcement.
Here, the main finding is that the inelasticity in drug consumption progressively in-
creases as the history of drug consumption increases. In fact, drug consumption be-
comes compulsive after a long-term drug exposure (Deroche-Gamonet et al. 2004;
Pelloux et al. 2007; Vanderschuren and Everitt 2004).

In conclusion, appearance of compulsive behavior is a function of two indepen-
dent factors: the degree of drug exposure (criterion 3) and the degree of vulnerability
of the individual exposed to drug (criterion 2). This implies that, the more vulnera-
ble the animal is, or the longer the period of exposure to the drug is, the insensitivity
of drug consumption to punishments must increase, compared to a natural reward
(criterion 1).

8.3.2 Impulsivity

Impulsivity is one of the behavioral traits that is closely related to addiction (Dal-
ley et al. 2011). Addicts are generally characterized as impulsive individuals. They
usually exhibit deficiency in response inhibition when it is necessary for reward
acquisition, even in non-drug-related tasks. Impulsivity is a multidimensional con-
struct, though two aspects of it seem to be more important: impulsive choice and
impaired inhibition. Formal modeling and simulation of situations measuring im-
pulsive choice is rather straight-forward (see below). However, modeling an envi-
ronment for assessment of impaired inhibition (i.e., inability to inhibit maladaptive
behaviors) is hard to achieve, and to our knowledge, there is no computational study
on impaired inhibition. Thus, hereafter, we focus on the impulsive choice aspect and
refer to it as impulsivity.

Impulsivity is defined as the selection of a small immediate reward over a delayed
larger one (Dalley et al. 2011). Figure 8.2 illustrates an environment for the delay
discounting task, which is commonly used for the assessment of impulsive behavior.
As the figure shows, the model has two choices: one (C1) leads to an immediate
small reward, Rs , and the other (C2) leads to a delayed (k time steps), but larger
reward, Rl . In this environment, the impulsive individuals are those that have more
tendency to small rewards, compared to other individuals. A wealth of evidence
in human subjects suggests that drug-dependent individuals have more tendency to
the small-reward choice, compared to non-dependent individuals (see Bickel and
Marsch 2001; Reynolds 2006 for a review). In the same line, animal models report
that chronic drug intake causes impulsive choice in rats, as they show less ability to
delay gratification compared to control rats (Simon et al. 2007; Paine et al. 2003).
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Fig. 8.2 Delay discounting task. The model has two choices, C1 and C2. Selection of C1 leads to
a small reward, Rs , only after one time step, whereas by choosing C2, the model should wait for k

time steps, and a large reward, Rl , will be delivered afterwards

It is still unclear whether this increased impulsivity in drug-dependent individuals
is a determinant or only a consequence of drug use. However, in human, using self-
report measures of impulsivity, it has been reported that youth with impulsive traits
are more likely to initiate drug use (see de Wit 2009 for a review). In animals, high
impulsivity measured by lack of behavioral inhibition predicts transition to compul-
sive behavior (Belin et al. 2008). Accordingly, it can be expected from a model of
addiction that the more impulsive the model is (as measured by impaired inhibition),
the more vulnerable it should be to develop compulsive drug-seeking. However, for
concluding that choice impulsivity is also an indicator of vulnerability to develop
compulsivity, there should at least be a strong correlation between these two mea-
sures of impulsivity. Although it is reported in some studies that impaired inhibition
is significantly correlated with impulsivity measured in the delay discounting task
(Robinson et al. 2009), other evidence suggest that these two behavioral constructs
are not necessarily overlapping (de Wit 2009). Thus, for establishment of links be-
tween choice impulsivity and compulsivity, further computational works are needed
on modeling impaired inhibition forms of impulsivity.

8.3.3 Relapse

Although compulsive drug taking is an important defining feature of addiction, the
most challenging clinical feature of addicts is that they remain vulnerable to re-
lapse, even after long periods of withdrawal (Stewart 2008). Clinical and experi-
mental studies have shown that non-contingent injections of drugs, re-exposure to
drug-paired cues, and stress are three factors reinstating drug taking and seeking
behavior (Shaham et al. 2003). In a typical reinstatement model of relapse, animals
are first trained to acquire responses that lead to the drug (e.g., lever press in order
to gain access to the drug). Next, they undergo “extinction training” in which, re-
sponses no longer result in the drug outcome. Once the behavior has extinguished,
in a subsequent test phase, the effect of different factors triggering relapse (stress,
drug priming, drug cues) on the extinguished behavior is determined.

According to these experimental procedures, developing formal representations
of the tasks is straightforward. The challenging point, however, is the effect of phar-
macological and environmental stimuli on the internal processes of a model, that
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is, how the effect of drug priming or stress on the brain neurocircuitry can be rep-
resented in computational models. In Sect. 8.4.3, we return to these questions and
suggest a potential way for modeling these manipulations.

8.4 Computational Accounts

8.4.1 S-R Models

Habit or S-R learning is the ability to learn adaptively to make appropriate responses
when some certain stimuli are observed. According to this theory, given a situation
or stimulus, if making a certain response produces a reward (a pleasant, biologically
salient outcome), then the corresponding S-R association will be potentiated (rein-
forced) and thus, the probability of taking that response in similar circumstances in
the future will increase. Inversely, a behavior will occur less frequently in the future,
if it is followed by a punishment (an aversive outcome). In this manner, animals can
be viewed as organisms that acquire appropriate behavioral strategies in order to
maximize rewards and minimize punishments. This problem, faced by the animals,
is analogous to the problem addressed in the machine learning theory of reinforce-
ment learning (RL), which studies how an artificial agent can learn, by trial and
error, to make actions to maximize rewards and minimize punishments. Indeed, in
recent years, strong links have been forged between a method of RL, called Tempo-
ral Difference Reinforcement Learning (TDRL), animal conditioning literature and
the potential underlying neural circuits of decision making. The developed neuro-
computational models in this interdisciplinary field has provided as an appropriate
basis for modeling drug addiction.

In the RL framework, stimulus and response are referred to as “state” and “ac-
tion”, respectively. At each time-step, t , the agent is in a certain state, say st , and
among the several possible choices, it takes an action, say at , on the basis of sub-
jective values that it has assigned to those alternatives through its past experiences
in the environment. These assigned values are called Q-values. The more Q-value
does an action have, the more likely that action is to be selected for performance.
Denoting the probability of taking action at at state st by π(at |st ), the below equa-
tion known as the Softmax rule reflects this feature:

π(at |st ) = eβQ(st ,at )
/ ∑

b∈Ast

eβQ(st ,b) (8.1)

where Ast is the set of all available choices at state st . β is a free parameter deter-
mining the degree of dependence of the policy π on Q-values. In other words, this
parameters adjust the exploration/exploitation trade-off.

For making optimal decisions, Q-values are aimed to be proportional to the dis-
counted total rewards that are expected to be received after taking the action onward:

Q(st , at ) = E
[
rt + γ rt+1 + γ 2rt+2 + · · · |st , at

] = E

[ ∞∑

i=t

γ i−t ri |st , at

]

(8.2)
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Achieving this objective requires the animal to sufficiently explore the task envi-
ronment. In the previous equation, 0 < γ < 1 is the discount factor, which indicates
the relative incentive value of immediate rewards compared to delayed ones.

To update the prior Q-values, a variant of RL known as TDRL calculates a pre-
diction error signal each time the agent takes an action and receives a reward (as a
feedback) from the environment. This prediction error is calculated by comparing
the prior expected value of taking that action, Q(st , at ), with its realized value after
receiving the reward rt :

δt = γ (rt+1 + V (st+1)) − Q(st , at ) (8.3)

In this equation, V (st+1) is the maximum value of all feasible actions available
at the state that comes after taking the action at . This prediction error is then utilized
to update the estimated value for that action:

Q(st , at ) ← Q(st , at ) + αδt (8.4)

where 0 < α < 1 is the learning rate, determining the degree to which a new experi-
ence affects the Q-values. As a critical observation, the phasic activity of midbrain
dopamine (DA) neurons is demonstrated to be significantly correlated with the pre-
diction error signal that the TDRL model predicts (Schultz et al. 1997). In fact,
dopamine neurons projecting to associative learning structures of the cortico-basal
ganglia circuit are believed to carry a teaching signal that modulates the strength of
S-R associations and thus, will increase the probability of taking an action in the
future, if an unexpected reward has come as a consequence of that action.

TDRL provides a framework for the better understating of the S-R habit forma-
tion. In this framework, reinforcement of an association between stimulus s and
response a after receiving a reward is equivalent to an increase in Q(st , at ) . By uti-
lizing the softmax action-selection rule, this will result in increasing the probability
of taking that action in the future. By interpreting the TDRL model from another
point of view, since only previously learned values accumulated through time deter-
mine which action the model takes in a certain state, the behavior of a TDRL model
is not sensitive to sudden environmental changes. In other words, it takes several
learning trials for the value of actions to be updated according to the new condi-
tions. On the basis of this feature, the TDRL framework is behaviorally consistent
with habitual (S-R) responding.

8.4.1.1 Redish’s Model

If phasic dopamine activity corresponds to the reward prediction error signal, then
after sufficient learning when predictions converge to their true values, the pre-
diction error and thus phasic DA activity should converge to zero. In fact, this
happens in the case of natural rewards: after adequate learning trials, the phasic
activity of DA neurons vanishes. However, this is not true in the case of drugs
such as cocaine and amphetamine. These drugs, through their neuropharmacological
mechanisms, increase dopamine concentration within the striatum (Ito et al. 2002;
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Stuber et al. 2005). This artificial build up of dopamine readily means that the error
signal can not converge to zero in the course of learning and as a consequence, the
experienced value of drug-related behaviors will grow more than expected. Based on
this argument, a modified version of the TDRL algorithm is proposed Redish (2004)
that can explain some behavioral aspects of addiction. Assuming that the pharma-
cological effect of drugs induces a bias with the magnitude of D on dopaminergic
signalling, the error signal equation (8.3) can be rewritten as below when drug is
available (Redish 2004):

δc
t = max(γ (rt + V (st+1)) − Q(st , at ) + D(st ),D(st )) (8.5)

This implies that the prediction error signal will always be higher than D, as long
as the drug’s effect is available:

δc
t ≥ D(st ) (8.6)

Hence, by each drug consumption session the value that a decision-maker pre-
dicts for drug-seeking and -taking increases. This leads to the over-valuation of this
behavior and explains why drug-associated behaviors become more and more insen-
sitive to their harmful consequences through the course of addiction, as measured
by the behavior of the model in the environment shown in Fig. 8.1. In fact, as drug-
related S-R associations become more and more reinforced, only a more intense
adverse event can cancel out the high estimated value of drug-seeking. This model,
thus, explains how compulsive drug-seeking habits develop as a result of repeated
drug abuse.

Thus, the model proposed in Redish (2004) provides an elegant explanation for
progressive inelasticity of drug consumption as a function of the drug exposure his-
tory. However, this account does not propose explanations for other addictive behav-
iors such as impulsivity and relapse. Besides, some predictions of the model have
proven inconsistent with some studies that have explicitly investigated the validity
of the way in which the effect of drugs are modeled on the error signal.

Firstly, the model predicts that the true value of drug can never be predicted by
environmental cues, because it is always better than expected. A behavioral implica-
tion of this property is that the “blocking” effect (Kamin 1969) should not occur for
the case of drugs (Redish 2004). In fact, the “blocking” phenomenon occurs when
a stimulus, as a result of sufficient training, can correctly predict the value of the
upcoming outcome. In this case, if a new stimulus is paired with the old one after
the training period, since the old stimulus can correctly predict the value of the out-
come, no prediction error (teaching signal) should be generated and thus, no new
learning will occur. Therefore, it is said that the old highly-trained stimulus blocks
other stimuli to be associated with the outcome. However, as the model proposed in
Redish (2004) assumes that drugs always induce non-compensable dopamine sig-
nalling, it predicts that the blocking effect should not be observed for stimuli that
predict drugs. However, experimental results have shown that the “blocking” effect
does occur in the case of drugs (Panlilio et al. 2007) and thus, the always-better-
than-expected value formation for the drug is not a correct formulation. Secondly,
the validity of this method of value learning is investigated even more explicitly. In
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Marks et al. (2010), rats were first trained to press two levers in order to receive
a large dose of cocaine. Then, the dose associated with one of the levers was de-
creased. Here, the theory predicts that the value associated with the low-dose lever
will not decrease, because drug consumption always increases the value irrespec-
tive of the experienced dose (see Eq. (8.6)). At odds with this prediction, the result
showed that the lever press performance for the reduced-dose lever has decreased,
which indicates that the value of the drug has decreased.

8.4.1.2 Dezfouli et al.’s Model

Borrowing from the model proposed by Redish (2004) (the idea that drugs increase
the error signal), we proposed another computational model for drug addiction (Dez-
fouli et al. 2009) that is based on the supplementary assumption that long-term ex-
posure to drugs causes a long lasting dysregulation in the reward processing system
(Koob and Le Moal 2005a). Consistent with behavioral findings, this persistent dys-
regulation causes less motivation in addicts toward natural rewards like sexually
evocative visual stimuli, as well as secondary rewards like money (Garavan et al.
2000; Goldstein et al. 2007).

This dysregulation of the reward system can be modeled in a variant of the TDRL
algorithm called “average-reward” TDRL (Mahadevan 1996). In this computational
framework, before affecting the current strength of associations, rewards are mea-
sured against a level called “basal reward level” (Denoted by ρt ). As a result, an
outcome will have reinforcing effect only if the reward value is higher than the basal
reward level. Otherwise, the reinforcing value of the outcome will be negative. The
basal reward level, according to this framework, is equal to the average reward per
step, which can be computed by an exponentially weighted moving average over
experienced rewards (σ is the weight given to the most recent received reward):

ρt ← (1 − σ)ρt + σrt (8.7)

In fact, an outcome will reinforce the corresponding association only if it has a re-
warding value higher than what the animal receives on average. In this formulation,
the value of a state-action is the undiscounted sum of all future rewards measured
against ρt :

Q(st , at ) = E

[ ∞∑

i=t

(ri − ρi)|st , at

]

(8.8)

These state-action values can be learned using the following error signal:

δt = γ (rt+1 + V (st+1)) − Q(st , at ) − ρt (8.9)

Using this error signal, Q-values are updated by the same rule of Eq. (8.4). The
definition of the error signal in the average reward RL algorithm does not imply that
the value of a state is insensitive to the arrival time of future rewards. In contrast, in
Eq. (8.9), the average reward (ρt ) is subtracted from V (st+1), meaning that by wait-
ing in state s for one time step, the agent loses an opportunity to gain potential future
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rewards. This opportunity cost is, in average, equal to ρt , and is subtracted from the
value of the next state. This learning method guides action selection to a policy that
maximizes the expected reward per step, rather than maximizing the sum of dis-
counted rewards. As in the simple TDRL framework, the error signal computed by
Eq. (8.9) corresponds to the phasic activity of DA neurons. The term ρt , on the other
hand, is suggested to be coded by the tonic activity of DA neurons (Niv et al. 2007).

Roughly, long-term exposure to drugs causes two, perhaps causally related, ef-
fects on the dopamine-dependent reward circuitry. Firstly, chronic exposure to drugs
affects the dopamine receptors availability within the striatum. Human subjects
and non-human primates with a wide range of drug addictions have shown sig-
nificant reductions in D2 receptor density within the striatum (Nader et al. 2002;
Porrino et al. 2004a; Volkow et al. 2004b). This effect reduces the impact of normal
dopamine release that carries the error signal and thus, results in a reduction in the
magnitude of the error signal, compared to its normal value (Smith et al. 2006). Sec-
ondly, it is proposed that chronic drug abuse causes an abnormal increase in the tonic
activity of dopamine neurons (Ahmed and Koob 2005). As the tonic DA activity is
hypothesized to encode the ρt signal, this second effect of drugs can be modeled by
abnormal elevation of the basal reward level. Thirdly, as mentioned earlier, chronic
drug exposure causes decreased sensitivity of the reward system to natural rewards.
This effect can be interpreted as an abnormal elevation of the level against which
reward is measured. In other words, long-term drug abuse elevates the basal reward
level to a level that is higher than that of normal subjects. This drug-induced ele-
vation of the basal reward level, ρt , can be formally captured by adding a bias to
it:

ρc
t = ρt + κt (8.10)

Normally, κt is zero and therefore, rewards are measured against their average
level (ρt ). However, with drug use, κt grows and consequently, the basal reward
level elevates abnormally to ρc

t . This modification covers all the three long-term
effects of drugs discussed above. As adding a positive bias to ρt leads to a decrease
in the error signal (see Eq. (8.9)), it is somehow reflecting the reduced availability
of dopamine receptors. Alternatively, if ρt is related to the tonic activity of DA
neurons, adding a bias to it corresponds to an increase in the tonic activity of these
neurons.

According to the above modification to the average reward TDRL algorithm, we
rewrite the error signal equation for the case of drugs as follows:

δc
t = max(γ (rt + V (st+1)) − Q(st , at ) + D(st ),D(st )) − ρc

t (8.11)

Similar to the model proposed in Redish (2004), the maximization operator re-
flects the drugs’ neuropharmacological effects, but unlike that model, the error sig-
nal is not always greater than zero. In this model, although drugs produce extra
dopamine through direct pharmacological mechanisms, due to the increase in the
basal reward level, the error signal will eventually converge to zero. This property
ensures that the estimated value of the drug does not grow unboundedly, which
makes the model more biologically plausible. Furthermore, as the prediction error
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signal in this model can converge to zero after sufficient experience with drugs,
no further learning will occur after extensive training. This will result the drug-
predicting stimuli to block forming new associations. This is consistent with the
report that the blocking effect is observed for the case of drugs (Panlilio et al. 2007).

It should be noted that because abnormal elevation of the basal reward level is
a slow process, the error signal under the effect of drugs will be above zero for a
relatively long time and thus, drug-seeking habits will be abnormally reinforced.
This leads to insensitivity of drug consumption to drug associated punishment, as
indicated by the tendency of the model toward C2 in the environment shown in
Fig. 8.1.

As the decision-making system is common for natural and drug reinforcers, de-
viation of the basal reward level from its normal value can also have adverse effects
on decision making in the case of natural rewards. Within the framework proposed
above, ρc

t determines the cost of waiting. Hence, high values of ρc
t in an environ-

ment indicate that waiting is costly and thus, guide the decision maker to options
with a relatively faster reward delivery. In contrast, low values indicate that the de-
layed interval before reward delivery is not costly and it is worth waiting for a de-
layed but large reward. If chronic drug exposure leads to high values of ρc

t , then the
model’s behavioral strategy will shift abnormally toward more immediate rewards,
even if their rewarding value is less than that of distant rewards. In other words, in
the environment show in Fig. 8.2, preference of the model toward C1 increases as
the degree of prior exposure to drug increases. This is because the cost of waiting
is relatively high and the decision-maker prefers to have immediate rewards. This
explains why addicts become impulsive after chronic drug abuse (Logue et al. 1992;
Paine et al. 2003; Simon et al. 2007).

As another deficit in the decision-making mechanism, since the basal reward
level abnormally elevates in addicts, the model predicts that the motivation for
natural reinforcers will decrease after long-term drug exposure. This prediction
is consistent with behavioral evidence in human addicts (Garavan et al. 2000;
Goldstein et al. 2007).

8.4.2 S-S and S-R Interaction: Actor-Critic Models

Actor-critic is a popular reinforcement learning model that subdivides the process of
decision making into two subtasks: learning and action-selection (Sutton and Barto
1998). These two tasks are conducted by the “critic” and the “actor” components,
respectively.

The critic component is responsible for adaptively predicting the value of states,
V (st ), by utilizing the prediction error signal. Assuming that the agent leaves state
st , enters state st+1 and receives reward rt at time t , the critic will compute the
prediction error signal based on the received reward and the prior expectation of the
agent:

δt = γ (rt + V (st+1)) − V (st ) (8.12)
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This prediction error is then used for updating predictions of the critic:

V (st ) ← V (st ) + αδt (8.13)

where, as before, α is the learning rate. As the critic only predicts the value of a
state (V (st )), without caring about what action or external cause has led to it, it is
suggested to be a model for S-S (Pavlovian) learning.

The actor component, on the other hand, is involved in making decisions about
what action to perform at each state, based on its stored preferences for different
actions, P(st , at ): the higher the preference toward an action, the higher the prob-
ability of taking that action by the actor. The preferences in the actor are learned
based on the values learned by the critic: if taking an action by the actor in a state
results in an increase in the value of the state (computed by the critic), the preference
toward that action will also increase. The converse is also true: if taking an action
leads to a decrease in the critic’s value of the state, the probability that the actor
takes the action again also decreases by decreasing the preference for that action.

For achieving this harmony, the critical feature of the actor-critic model is that
the preferences in the actor are updated using the same prediction error signal that
is produced and utilized by the critic component:

P(st , at ) ← P(st , at ) + αδt (8.14)

The fact that the actor uses the error signal generated by the critic can be viewed
as an interaction between the S-S (critic) and the S-R (actor) systems. Behaviorally,
conditioned reinforcement phenomenon implies that a CS which is associated with
a reinforcer (e.g., a light associated with food) supports the acquisition of a new
instrumental response (pressing a lever in order to turn the light on). Here, the asso-
ciation between the CS and the reinforcer can be learned by the critic component,
that is, the value of the state in which the CS is presented (sCS ) increases as the
reward in the subsequent state (reward delivery state) is experienced. Next, when
several actions are available in a state (sA), the action that leads to sCS obtains a
higher preference (learned by the actor), because taking that action leads to an in-
crease in the value of sA, as predicted by the critic.

In this respect, dissociating the functions of prediction and action-selection in
the actor-critic model is reminiscent of the behavioral psychologist dissociation
between Pavlovian and instrumental processes (Niv 2007; Joel et al. 2002). Con-
sistently, a relatively rich body of experiments has shown the dissociable role
of striatal subdivisions in prediction and action-selection (O’Doherty et al. 2004;
Roesch et al. 2009). Based on these observations, critic and actor components can
be thought to be neurally implemented by limbic and sensorimotor cortico-striatal
loops, respectively.

Dopamine neurons are hypothesized to integrate information across parallel
loops in the cortico-basal ganglia circuit (Haber et al. 2000; Haber 2003), by prop-
agating the prediction error signal made by more limbic (ventral) regions toward
associative (dorsomedial) and then motor (dorsolateral) areas of the striatum, via
the spiral organization of dopamine neurons. By these spiral connections between
the striatum and the VTA/SNc, the output of the accumbens shell can affect the



220 M. Keramati et al.

functioning of the core region and in the same way, the output of the accumbens
core can influence more dorsal domains of the striatum, via SNc. These dopamine
spirals that travel from the ventral to the dorsal regions of the striatum can account
for the assumption of the model that the prediction error signal used for updating
the actor’s preferences is the same signal generated and used by the critic (Joel et
al. 2002). These behavioral and neurobiological supports of the actor-critic model
has made it a popular model for decision making analysis, and the central role that
dopamine plays in it, has allowed addiction-modelers to employ it as a basis for
their models.

8.4.2.1 Dayan’s Model

Recently, inspired by the model proposed in Redish (2004), Dayan proposed an
actor-critic model for addiction (Dayan 2009). The model is based on a variant of
the actor-critic model called “advantage learning” (Dayan and Balleine 2002) in
which, the critic module has the same algorithm as the classical actor-critic model
explained above. Thus, the critic module produces a prediction error signal (δV ) and
uses it for both updating its own value predictions (as in Eq. (8.13)) and also feeding
it into the actor component. Rather than learning the preference toward actions, the
actor component learns the advantage of taking that action over all other actions that
has been previously taken in that state. This “advantage” is denoted by A(st , at ). To
learn this “advantage”, the actor uses a transformed error signal δA:

δA = δV − A(st , at ) (8.15)

This signal is then used to update the expected advantages:

A(st , at ) ← A(st , at ) + αδA (8.16)

The actor utilizes advantages instead of classic preferences to choose among dif-
ferent possible actions. After sufficient learning, as the best action will be the action
that the agent takes frequently, its advantage over previously taken actions will tend
to zero and the advantage of other alternatives will become negative in their steady
levels.

The basis of this model is a hypothesis suggested in Everitt and Robbins (2005)
that explains addiction, at a behavioral level, as a transition from voluntary control
over drug consumption at the early stages to rigid habitual and compulsive behav-
ior in later stages. Specifically, the hypothesis indicates that this behavioral shift is
based on a transition of control over drug-seeking behavior from limbic structures,
such as prefrontal cortex (PFC) and nucleus accumbens (NAc), to more motor struc-
tures, particularly dorsal striatum. Neurobiological evidence has suggested that this
shift is mainly mediated by striatal-midbrain spiraling network that connects the
ventral regions of the striatum to more the dorsal parts (Belin and Everitt 2008). Ac-
cording to the Dayan’s model, the pharmacological effect of drugs on the dopamine
spirals will not only affect the actor indirectly through its effect on the critic’s error
signal, δV , but will also directly affect the actor’s updating mechanism due to its
effect on δA.
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In fact, if the pharmacological effect of drugs is assumed to be equal to D, then
it will be augmented to the critic’s error signal and thus, the critic’s value for a drug
state will converge to γ (rD + V (st+1)) + D. Similarly, due to the effect of drugs on
δA, the advantage of drug-related actions will increase by D units. This abnormality
has been interpreted as a reason to explain why drug-seeking behavior becomes
compulsive. The model in Dayan (2009) can also explain how addictive drugs can
induce abnormal drug-seeking behavior without abnormally affecting the addict’s
expectations stored in the critic.

8.4.2.2 Piray et al.’s Model

So far, we have described models that have explained addiction as a disease that
is pervasively augmented by drug experience. However, like other diseases, addic-
tion requires a suitable host, that is, a susceptible individual, to spread (Nader et
al. 2008). Indeed, overwhelming evidence has shown that only a subpopulation of
humans, as well as animals, that have experienced drugs, show symptoms of ad-
diction (compulsive drug seeking and taking) (O’Brien et al. 1986). Some behav-
ioral traits and neural vulnerabilities have been hypothesized to predispose addic-
tion (Koob and Le Moal 2005a; Everitt et al. 2008; Nader et al. 2008). Importantly,
a large body of literature suggests a crucial role for dopamine receptors in predispo-
sition to exhibit addiction-like behavior. For example, Dalley and colleagues have
shown that lower density of D2 receptors in NAc, but not dorsal striatum, of rats,
predicts higher tendency to cocaine self-administration and also addiction-like be-
havior (Dalley et al. 2007; Belin et al. 2008). Similar results have been reported in
non-human primates’ neuroimaging studies (Nader et al. 2008), as well as in human
studies (Volkow et al. 2008). Moreover, it has been reported recently that low D1 re-
ceptor availability within NAc predisposes tendency to cocaine self-administration
(Martinez et al. 2009).

In a similar line, a wealth of evidence has shown the important role of dopamine
receptors in the development of obesity (Johnson and Kenny 2010) and pathological
gambling (Steeves et al. 2009). This is computationally important because a com-
mon framework for these diseases and drug addiction, as suggested by Volkow et
al. (2008) and Potenza (2008), cannot be constructed only by focusing on the di-
rect pharmacological effects of drugs (Ahmed 2004), but instead, there should be
a model that some elements of it bootstrap abnormal and compulsive tendency to
rewarding stimuli.

Recently, we proposed a simple actor-critic like model to capture this feature
of addiction (Piray et al. 2010). The model relies on three assumptions motivated
by neurobiological evidence: (1) VTA dopamine neurons encode action-dependent
prediction error (Roesch et al. 2007; Morris et al. 2006) and ventral striatal neurons
encode action-dependent values (Roesch et al. 2009; Nicola 2007; Ito and Doya
2009), (2) lower co-availability of D1 and D2 receptors, that is, lower availability
of either D1 or D2, in NAc is a necessary condition for addiction to both drug
and food to develop (Hopf et al. 2003; Ikemoto et al. 1997; Dalley et al. 2007;
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Johnson and Kenny 2010; Martinez et al. 2009), and (3) the first leg of the spiral,
that is, posteromedial VTA to NAc shell, is involved in appetitive but not aversive
learning (Ford et al. 2006; Ikemoto 2007).

The translation of these assumptions to actor-critic components is straight-
forward. The first assumption can be interpreted as an action-dependent value repre-
sentation in the critic, V (st , at ), and also action-dependent prediction error, instead
of action-independent ones (see Eq. (8.12):

δt = γ (rt + V (st+1)) − V (st , at ) (8.17)

V (st+1) is again the value of the best available choice at state st+1 (see Piray et al.
2010 for further discussion).

To model the second assumption, we need to suppose a role for dopamine re-
ceptors in terms of the actor-critic model. In line with previous studies (Rutledge
et al. 2009; Frank et al. 2007), we have assumed that the availability of dopamine
receptors modulates the learning rate (see Smith et al. 2006; Dezfouli et al. 2009 for
other ways of modeling the function of dopamine receptors in RL models). Thus, a
slight modification in the critic’s learning rule, Eq. (8.13), is required:

V (st , at ) ← V (st , at ) + κcαδt if r > 0 (8.18)

where κc corresponds to the availability of dopamine receptors in the NAc. In this
formulation, the second assumption can be realized by normalizing the parameter
κc to one for a healthy subject, and setting it to a value less than one (κc < 1) for
individuals who are susceptible to addiction. Finally, the third assumption implies
that only appetitive, but not aversive, learning is modulated by the availability of
dopamine receptors. Thus, Eq. (8.18) should only be used for appetitive learning;
and for learning the value of aversive outcomes (r < 0), the prediction error com-
puted by Eq. (8.17) will be used directly.

The behavior of the model can be examined in the task introduced in Deroche-
Gamonet et al. (2004). In this experiment, animals learn to self-administer drugs by
performing a lever-press action firstly. In the next phase, the lever-press action gets
paired with an acute shock punishment. It has been reported that only a proportion of
rats, almost 20 percent, that had prolonged experience with drugs, show compulsive
behavior.

Figure 8.3 illustrates the behavior of the model in an environment that models
the mentioned experiment. As the figure shows, the simulated individual selects
the drug-related lever, even after removing the drug reward and instead, giving an
acute punishment (phase 2). Since the critic’s value is updated with κcαδ, but the
actor’s preference is updated by αδ, when κc < 1, the preference toward action a in
phase 1 increases abnormally, whereas it increases in a normal way in the critic. In
phase 2, however, both the value and the preference are updated by an equal amount
and thus, as the figure shows, the amount of drop in both the critic’s value and the
actor’s preference is equal. This drop is sufficient for the critic’s value, V (s, a), to
converge to rsh, but is not enough to make the preference, P(a, s), negative. For
action b, as the reward associated with it is zero, its value and preference remain
zero. Hence, in phase 2, while the value of action a falls below the value of action



8 Understanding Addiction as a Pathological State of Multiple Decision 223

Fig. 8.3 (a) A model with vulnerability to addiction (κc = 0.25) performs the task illustrated in the
figure. In state s, the model chooses between two actions. Action a results in a drug reward (drug
taking action, rd = 10) and action b results in no reward. After sufficient learning in this phase, the
drug reward will be removed and action a is paired with a shock punishment, rsh (phase 2). (b) The
performance of the model proposed in Piray et al. (2010) in the mentioned task. While the optimal
behavior in phase 2 is choosing b, the vulnerable model chooses a. This is because the preference
toward a in phase 1 is abnormally exaggerated in the actor, while its value is normal in the critic.
Moreover, since learning from punishment is required in this phase, both value and preference
will be updated equally and thus, the amount of drop in both the critic’s value and the actor’s
preference is equal. After a while, the critic’s value converges to rsh and thus, the prediction error
by performing a converges to zero. As a result, no more changes in the value and the preference
associated with a occurs. This effect will decrease the critic’s value for a to a level below that of b

(zero), but is not sufficient to make the preference toward a negative. The origin of this behavior is
the abnormal increase in the actor’s preference (habit) toward a in phase 1

b, the preference toward action a is still above that of action b. In fact, when the
critic’s value converges to rsh, the prediction error of performing a converges to
zero and so, no change in the value and preference associated with a occurs.

Notably, if we assume that by chronic administration of drugs, the availability of
receptors will further decrease, which is supported by neurobiological data (Nader
et al. 2002; Porrino et al. 2004a; Volkow et al. 2004b), the discrepancy between
the values and the preferences in the appetitive system will further increase through
learning (see Piray et al. 2010 for details). Hence, the insensitivity of addicts to
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the negative consequences of drug-taking will increase after a prolonged experience
with drugs.

This model has two major behavioral implications. First, the compulsivity only
appears in vulnerable individuals. Second, compulsivity does not depend on the
pharmacological effect of drugs and thus, the model can explain compulsive ten-
dency to natural rewards, such as palatable foods and gambling, in a common frame-
work with compulsive drug taking. The important neurobiological implication of the
model is that compulsivity depends on abnormally strong actor’s preferences toward
drugs; however, it is the critic’s deficit that is the origin of this abnormal behavior.
Thus, the model accounts for the progressive shift of behavior control during drug
consumption from ventral to dorsal striatum, which is initiated by the ventral striatal
vulnerabilities and mediated by the dopaminergic spiralling network (Everitt et al.
2008; Porrino et al. 2004b).

8.4.3 S-R and S-A-O Interaction: Dual-Process Models

Whereas actor-critic models have tried to model some properties of the limbic and
sensorimotor loops as well as their interaction, dual-process models are focused on
the sensorimotor and associative loops, responsible for making habitual and goal-
directed decisions, respectively, as well as competitive and collaborative interac-
tions between them (Daw et al. 2005; Keramati et al. 2011). In this section we
explain a dual-process model that we have proposed recently (Keramati et al. 2011),
which we believe has important implications for explaining some aspects of addic-
tion.

In this model, similar to the seminal dual-process model (Daw et al. 2005), the
fundamental nature of the habitual system is the same as a simple TDRL model
discussed in previous sections. This system is capable of enforcing or weakening an
association between a state and an action (denoted by QH (st , at ), hereafter), based
on the prediction error signal, which is hypothesize to be carried by the phasic ac-
tivity of dopamine neurons (Schultz et al. 1997). At the time of decision making,
the established associations can be exploited, and as all the information needed for
making a choice between several alternatives is accumulated in S-R associations
from previous experiences, the habitual responses can be made within a short inter-
val after the stimulus is presented. However, this speed in action selection doesn’t
come without cost: because many learning trials are required for the outcomes of
an action to affect an association, the strength of associations are low-elastic to the
outcomes, making the habitual responses inaccurate, particularly under changing
motivational or environmental conditions.

In contrast, the goal-directed system is hypothesized to learn through experience
the causal relationship between actions and outcomes, so that it has access to a
decision tree at the time of decision making and can deliberate the consequences of
different alternatives. Denoting the learned dynamics of the environment by p̂T (s

a→
s′) (indicating the probability of traveling from state s to s′ by taking action a), and
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the reward function by p̂R(r|s, a) (indicating the probability of receiving reward
r by taking action a at state s), the estimated value of a state-action pair can be
calculated by the below recursive equation. This algorithm is intuitively equivalent
to a full-depth search in a decision tree for finding the maximum attainable reward
by taking each of the available choices:

Q̂G(st , at ) = E
[
p̂R(r|st , at )

] + γ
∑

s′
p̂T

(
st

at→ s′).V̂
(
s′) (8.19)

Although this system can estimate the value of actions more accurately and more
optimally, it is not as fast as the habitual system because of the cognitive load
(tree search) required for value estimation. Thus, the animals’ decision making ma-
chinery is always confronted with a trade-off between speed and accuracy; that is,
whether to make a fast, but inaccurate habitual response, or to wait for the goal-
directed system to make a more optimal decision. This trade-off is hypothesized to
be based on a cost-benefit analysis. Assuming that the time needed for the goal-
directed system to accurately calculate the estimated value of each available action
is τ , the cost of deliberating for each response will be R̄τ , where R̄ is the amount of
reward that the animal is expected to receive at each unit of time. This variable can
be simply computed by taking an average over the rewards obtained through time in
the past, as in Eq. (8.7). As discussed before, this average reward signal is hypothe-
sized to be carried by the tonic activity of dopamine neurons (Niv et al. 2007). Thus,
if for whatever reason the tonic firing rate of dopamine neurons elevates, the model
predicts that the cost of goal-directed responding will increase and consequently,
decisions will be made more habitually.

The benefit of deliberation for a certain action, on the other hand, is equal to
how much the animal estimates that having the exact value of that action will help
it improve its decision policy. This parameter, called “value of perfect information
(VPI)”, is computable using the estimated Q-values and their corresponding uncer-
tainties cached in the habitual system. Without going into details of the algorithm,
one critical prediction of the model is that if the values of two competing actions,
estimated by the habitual system, are very close together, then knowing their exact
values would greatly help the animal make the optimal decision between those two
choices. In contrast, if at a certain state, the estimated value of one of the feasible
choices is markedly greater than other actions, and its uncertainty is low, then it can
be inferred by the animal that it is less likely that having perfect information about
the value of actions will change its initial conjecture about the best choice, made by
the habitual system. Thus, under such conditions, the goal-directed system will not
contribute to the decision making process.

As the consistency of the model with behavioral and neuronal findings is dis-
cussed in the original paper (Keramati et al. 2011), we focus here on the implications
of the model for addiction.

All the previous computational theories of addiction discussed in this chapter
explain how drug-seeking and drug-taking habits consolidate through the course
of addiction as a result of neuroplasticity in different regions of the cortico-basal
ganglia circuit, under the effect of dopamine bursts. Although these models have
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proven fruitful to some degrees, many theories of addiction emphasize on impair-
ment of top-down cognitive control as the essential source of compulsivity. Inability
of addicts in breaking habits that have evident adverse consequences is attributed
to dysfunctional prefrontal cortical executive control over abnormally strong mal-
adaptive habits. In fact, the evolution of control over behavior from ventral to dorsal
striatum, discussed in the previous section, is followed by a shift within the dorsal
striatum from action-outcome to stimulus-response mechanisms (Pierce and Van-
derschuren 2010; Belin et al. 2009).

Taking into account the effect of drugs on phasic dopamine, the dual-process
model discussed above can explain how addictive drugs, by over-reinforcing
stimulus-response associations, result in the estimated value of the habitual sys-
tem for drug-seeking choices becoming maladaptively high. As a consequence, the
VPI signal (benefit of deliberation) for those actions will be very low after long-
term drug consumption and thus, the individual will make habitual and automatic
responses, without considering the possible consequences. Consistent with this pre-
diction, it has been reported that short-term drug seeking is a goal-directed behavior,
whereas after prolonged drug exposure, drug seeking becomes habitual (Zapata et
al. 2010). According to the models introduced in the previous sections, this is equiv-
alent to the insensitivity of drug consumption to harmful consequences.

Beside the direct effect of addictive drugs on reinforcing drug-seeking S-R as-
sociations through their pharmacological effect on the dopaminergic circuit, they
also pathologically subvert higher level learning mechanisms responsible for sup-
pressing inflexible responses. Protracted exposure to drugs of abuse is widely re-
ported to associate with behavioral deficits in tasks that require cognitive areas of
the brain to be involved (Rogers and Robbins 2001; Almeida et al. 2008). Reduc-
tion in the activity of the PFC regions in abstinent addicts is also reported in many
imaging studies (Goldstein and Volkow 2002; Volkow et al. 2004a). Interestingly,
extended access to cocaine has shown to induce long-lasting impairments in work-
ing memory-dependent tasks, accompanied with decreased density of neurons in
dorsomedial PFC (George et al. 2008). Considering the role of this region in goal-
directed decision making, the atrophy of the associative cortex induced by drugs
can further disrupt the balance between the goal-directed and habitual systems in
favor of the latter. One simple way to model these morphological neuroadaptations
in the dual-process framework is to assume that debility of the goal-directed system
corresponds to its weakness in searching for the accurate estimated value of actions
in the decision tree. Thus, reaching an acceptable level of accuracy (searching deep
enough) to obtain “perfect information” will require more time (τ ) in addicts, com-
pared to healthy individuals. The assumption that the low performance of addicts in
cognitive tasks can be modelled by a higher-than-normal τ can be tested by compar-
ing the addicts’ reaction time with that of healthy individuals, at the early stages of
learning when responding is still goal-directed. Furthermore, since the deliberation
time constitutes the cost of deliberation, another prediction that comes from this
assumption is that addicts, because of having higher-than-normal deliberation cost,
are less prone to deliberate and thus, more prone to make habitual responses than
normal subjects. Thus, habitual responding for natural rewards must appear earlier
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in addicts, compared to non-addict subjects. In addition, addicts must be more vul-
nerable than healthy subjects to commit actions with catastrophic consequences, not
only in drug-associated cases, but also in other aspects of their daily lives.

The arbitration between the two systems is not only under the effect of long-
lasting brain adaptations (like the two mechanisms described above: drug affects
VPI and τ signals), but some transient changes in the brain decision making vari-
ables might also affect the arbitration between the two systems for a short period
of time. For example, if for any reason the tonic dopamine, which is assumed to
encode the average reward signal, increases for a certain period, the model pre-
dicts that the cost of deliberation will increase and thus, the individual will be
more susceptible to make habitual responses during that period. This prediction
of the model can explain why drug relapse is often precipitated by exposure to
drug-associated cues, non-contingent drug injection, or stress (Shaham et al. 2003;
Kalivas and McFarland 2003). In fact, the model explains that after prolonged absti-
nence, these three triggers of relapse revive the habitual system by increasing tonic
dopamine and therefore, result in the dormant maladaptive habits to drive the behav-
ior again toward drug consumption. Stress, as a potent trigger of relapse, has shown
to increase extracellular concentration of dopamine in cortical and subcortical brain
regions in both animal models of addiction (Thierry et al. 1976; Mantz et al. 1989)
and humans (Montgomery et al. 2006). Intermittent tail-shock stress, for example,
increases extracellular dopamine relative to the baseline by 39% and 95% in nu-
cleus accumbens and medial frontal cortex, respectively (Abercrombie et al. 1989).
Interestingly, protracted exposure to stress, similar to the effect of chronic drug con-
sumption, results in the atrophy of the medial prefrontal cortex and the associa-
tive striatum, as well as hypertrophy of the sensorimotor striatum. These structural
changes are accompanied with progressive behavioral insensitivity to the outcome
of responses (Dias-Ferreira et al. 2009). This phenomenon can be explained in a
similar argument proposed for explaining the long-lasting effect of drugs on the as-
sociative loop. Exposure to drug cues and drug-priming (non-contingent injection
of drugs), as other triggers of relapse, are also well-known to increase extracel-
lular dopamine for a considerable period of time (Di Chiara and Imperato 1988;
Ito et al. 2002).

In sum, the dual-process model proposed above, explains the story of addic-
tion in a scenario like this: at the early stages of drug self-administration, similar
to responding for natural rewards, responding for drugs is controlled by the goal-
directed system. After extensive training, as a result of a decrease in the VPI signal,
as well as an increase in the average reward signal and deliberation time (as de-
scribed before), the habitual behavior takes control over behavior. At this stage, as
no drug is delivered to the animal anymore (extinction period), the average reward
signal will drop significantly and thus, the goal-directed system will again take con-
trol over behavior. Finally, when a relapse trigger is experienced by the animal,
the average reward signal increases again and thus, the habitual system can again
come to the scene. Hence, the high values assigned to drug-seeking behavior by
the habitual system will make the animal motivated to start responding for the drug
again.
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As explained above, this scenario is based on the assumption that the goal-
directed system doesn’t predict maladaptively high values for drug-seeking behav-
iors. This assumption implies that animals with inactivated brain regions underlying
the habitual system should not develop compulsive behavior.

Furthermore, it is assumed that after the extinction period, the habitual system as-
signs a high value to drug seeking and taking behavior when the animal is exposed
to relapse-triggering conditions. This property cannot be explained by the compu-
tational models of the S-R system introduced previously. This is because during
the extinction phase, drug taking action is not followed by a drug reward and thus,
drug seeking and taking actions lose their assigned values. This implies that the ha-
bitual system will not exhibit a compulsive behavior after extinction training. To
explain the fact that drug-related behaviors regain high values after the animal faces
relapse-triggers, it is necessary to incorporate more complicated mechanisms into
the habitual system to represent the effect of relapse-triggers on habitual responding
(see Redish et al. 2007 for the case of cue-induced relapse).

Finally, the explained scenario predicts that the reinstatement of drug seeking
behavior is due to the transition of control from the goal-directed system to the
habitual system. However, it is still unclear whether the drug seeking response after
reinstatement is under the control of the habitual system or the goal directed system
(Root et al. 2009).

8.5 Conclusion

Drug addiction is definitely a much more complicated phenomenon, both behav-
iorally and neurally, than the simplified image presented in this chapter. Neurally,
different drugs have different sites of action and even for a certain drug like co-
caine, the dopaminergic system is not the only circuit that is under the pharma-
cological effect. For example, serotonergic (Dhonnchadha and Cunningham 2008;
Bubar and Cunningham 2008) and glutamatergic (Kalivas 2009) systems are also
shown to be affected by drugs. However, the computational theory of reinforce-
ment learning has proven to be an appropriate framework to approach this com-
plex phenomenon. The great advantage of this framework is in its ability to bridge
between behavioral and neural findings. Moreover, modeling DA receptors’ avail-
ability within the actor-critic framework (Piray et al. 2010), as an example, shows
that the RL framework is also potentially capable of modeling at least some of the
detailed neuronal mechanisms.

There are still many steps to be taken in order to improve the current RL-based
models of addiction. On important step is to develop an integrated model that can
have all the three learning processes (Pavlovian, habitual and goal-directed) at the
same time. Such a model would be expected to explain several behavioral aspects
of addiction like loss of cognitive control, as well as the influence that Pavlovian
predictors of drugs can exert on habitual and/or goal-directed systems (the role of
PIT in cue-triggered relapse).
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Chapter 9
Policies and Priors

Karl Friston

Abstract This chapter considers addiction from a purely theoretical point of view.
It tries to substantiate the idea that addictive behaviour is a natural consequence
of abnormal perceptual learning. In short, addictive behaviours emerge when be-
haviour confounds its own acquisition. Specifically, we consider what would hap-
pen if behaviour interfered with the neurotransmitter systems responsible for op-
timising the conditional certainty or precision of inferences about causal structure
in the world. We will pursue this within a rather abstract framework provided by
free-energy formulations of action and perception. Although this treatment does
not touch upon many of the neurobiological or psychosocial issues in addiction
research, it provides a principled framework within which to understand exchanges
with the environment and how they can be disturbed. Our focus will be on behaviour
as active inference and the key role of prior expectations. These priors play the role
of policies in reinforcement learning and place crucial constraints on perceptual in-
ference and subsequent action. A dynamical treatment of these policies suggests a
fundamental distinction between fixed-point policies that lead to a single attractive
state and itinerant policies that support wandering behavioural orbits among sets of
attractive states. Itinerant policies may provide a useful metaphor for many forms
of behaviour and, in particular, addiction. Under these sorts of policies, neuromodu-
latory (e.g., dopaminergic) perturbations can lead to false inference and consequent
learning, which produce addictive and preservative behaviour.

9.1 Introduction

This chapter provides a somewhat theoretical account of behaviour and how ad-
diction can be seen in terms of aberrant perception. Its contribution is not to
provide a detailed model of addictive behaviour (see Ahmed et al. 2009 for a
nice review of current models) but rather to describe a principled framework
that places existing ideas in a larger context. This exercise highlights the archi-
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tecture of adaptive behaviour, in relation to perception, and the ways in which
things can go wrong. Its main conclusion is that addictive behaviour may be an
unfortunate and rather unique consequence of a pathological coupling between
behaviour (e.g., drug taking) and the perceptual learning (e.g., abnormal mod-
ulation of synaptic plasticity) that supports behaviour (cf., Alcaro et al. 2007;
Zack and Poulos 2009). This coupling can be particularly disruptive because learn-
ing is fundamental for making predictions about exchanges with the world and these
predictions prescribe behaviour. In what follows, we will spend some time devel-
oping a normative framework for perception and action, with a special emphasis
on behavioural policies as prior expectations about how the world unfolds. Having
established the basic structure of the problem faced by adaptive agents, we will con-
sider how pathologies of learning manifest behaviourally and show that addictive
behaviour is almost impossible to avoid, unless perceptual inference and learning
are optimal

This chapter comprises three sections. In Sect 9.2, we review a free-energy prin-
ciple for the brain. In Sect. 9.3, we focus on a key element of this formulation;
namely, prior expectations that reflect innate or epigenetic constraints. In Sect. 9.4,
we use the policies from Sect. 9.3 to illustrate failures in learning and behaviour
using simulations.

9.2 The Free-Energy Formulation

This section considers the fundaments of normal behaviour using a free-energy ac-
count of action and perception (Friston et al. 2006). Its agenda is to establish an
intimate relationship between action and perception and to sketch their neurobio-
logical substrates. In brief, we will see that an imperative for all adaptive (biolog-
ical) agents is to resist a natural tendency to disorder (Evans 2003) by minimising
the surprise (unexpectedness) of sensory exchanges with the world. This imperative
can be captured succinctly by requiring agents to minimise their free-energy, where
free-energy is an upper bound on surprise. When one unpacks this mathematically,
minimisation of surprise entails two things. First, it requires an optimisation of per-
ceptual representations of sensory input of the sort implied by the Bayesian brain
hypothesis. Second, it requires an active sampling of the sensorium to select sensory
inputs that are predicted and predictable. These two facets of free-energy minimi-
sation correspond to perception and action respectively. Basically, we will see that
perceptual predictions enslave action to ensure they come true. We will start with a
heuristic overview of the free-energy principle and then reprise the basic ideas more
formally. By the end of this section we will have expressed perceptual inference,
learning and action in terms of ordinary differential equations that describe putative
neuronal dynamics underlying active inference. These dynamics can be regarded as
a form of evidence accumulation, because free-energy is a bound approximation to
log model-evidence. The ensuing scheme rests on internal models of the world used
by agents to make predictions. In the subsequent section, we will look at the basic
forms that these models can take and the prior expectations about state-transitions
(i.e., policies) they entail.
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9.2.1 Free-Energy and Self-organisation: Overview

Free-energy is a quantity from information theory that bounds the evidence for a
model of data (Feynman 1972; Hinton and van Camp 1993; MacKay 1995). Here,
the data are sensory inputs and the model is encoded by the brain. More precisely,
free-energy is greater than the negative log-evidence or ‘surprise’ inherent in sen-
sory data, given a model of how they were generated. Critically, unlike surprise
itself, free-energy can be evaluated because it is a function of sensory data and brain
states. In fact, under simplifying assumptions (see below), it is just the amount of
prediction error.

The motivation for the free-energy principle is simple but fundamental. It rests
upon the fact that self-organising biological agents resist a tendency to disorder and
therefore minimise the entropy of their sensory states. Under ergodic assumptions,
minimising entropy corresponds to suppressing surprise over time. In brief, for a
well-defined agent to exist it must occupy a limited repertoire of states (e.g., a fish
in water). This means the equilibrium density of an ensemble of agents, describing
the probability of finding an agent in a particular state, must have low entropy:
A distribution with low entropy just means a small number of states are occupied
most of the time. Because entropy is the long-term average of surprise, agents must
avoid surprising states (e.g., a fish out of water). But there is a problem; agents
cannot evaluate surprise directly because this would require access to all the hidden
states in the world causing sensory input. However, an agent can avoid surprising
exchanges with the world if it minimises its free-energy, because free-energy is
always bigger than surprise.

Mathematically, the difference between free-energy and surprise is the diver-
gence between a probabilistic representation (recognition density) encoded by the
agent and the true conditional distribution of causes of sensory input. This en-
ables the brain to reduce free-energy by changing its representation, which makes
the recognition density an approximate conditional density. This corresponds to
Bayesian inference on unknown states of the world causing sensory data (Knill
and Pouget 2004; Kersten et al. 2004). In short, the free-energy principle subsumes
the Bayesian brain hypothesis; or the notion that the brain is an inference machine
(von Helmholtz 1866; MacKay 1956; Neisser 1967; Gregory 1968, 1980; Ballard
et al. 1983; Dayan et al. 1995; Lee and Mumford 2003; Friston 2005). In other
words, biological agents must engage in some form of Bayesian perception to avoid
surprises. However, perception is only half the story; it makes free-energy a good
proxy for surprise but it does not change the sensations themselves or their sur-
prise.

To reduce surprise, we have to change sensory input. This is where the free-
energy principle comes into its own: it says that action should also minimise free-
energy (Friston et al. 2009, 2010). We are open systems in exchange with the envi-
ronment; the environment acts on us to produce sensory impressions and we act on
the environment to change its states. This exchange rests upon sensory and effector
organs (like photoreceptors and oculomotor muscles). If we change the environment
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or our relationship to it, sensory input changes. Therefore, action can reduce free-
energy (i.e., prediction errors) by changing sensory input, while perception reduces
free-energy by changing predictions. In short, we sample the world to ensure our
predictions become a self-fulfilling prophecy and that surprises are avoided. In this
view, perception enables action by providing veridical predictions (more formally,
by making the free-energy a tight bound on surprise) that guide active sampling of
the sensorium. This is active inference.

In summary, (i) agents resist a natural tendency to disorder by minimising a
free-energy bound on surprise; (ii) this entails acting on the environment to avoid
surprises, which (iii) rests on making Bayesian inferences about the world. In this
view, the Bayesian brain is mandated by the free-energy principle. Free-energy is
not used to finesse perception, perceptual inference is necessary to minimise free-
energy. This provides a principled explanation for action and perception that serve
jointly to suppress surprise or prediction error; but it does not explain how the brain
does this or how it encodes the representations that are optimised. In what follows,
we look more formally at what minimising free-energy means for the brain.

9.2.2 Free-Energy and Self-Organisation: Active Inference
from Basic Principles

Our objective is to minimise the average uncertainty (entropy) about generalised
sensory states s̃ = s ⊕ s′ ⊕ s′′ . . . ∈ S, sampled by a brain or model or the world m

(⊕ means concatenation). Generalised states comprise the state itself, its velocity,
acceleration, jerk, etc. The average uncertainty is

H(S|m) = −
∫

p
(
s̃|m)

lnp
(
s̃|m)

ds̃ (9.1)

Under ergodic assumptions, this is proportional to the long-term average of surprise,
also known as negative log-evidence −lnp(s̃(t)|m)

H(S|m) ∝ −
∫ T

0
dt lnp

(
s̃(t)|m)

(9.2)

It can be seen that sensory entropy accumulates negative log-evidence over time.
Minimising sensory entropy therefore corresponds to maximising the accumulated
log-evidence for an agent’s model of the world. Although sensory entropy cannot
be minimised directly, we can induce an upper bound S(s̃, q) ≥ H(S) that can be
evaluated using a recognition density q(t) := q(ϑ) on the generalised causes (i.e.,
environmental states and parameters) of sensory signals. We will see later that these
causes comprise time-varying states u(t) ⊂ ϑ and slowly varying parameters ϕ(t) ⊂
ϑ . This bound is the path-integral of free-energy F(t), which is created by simply
adding a non-negative function of the recognition density to surprise:

S =
∫

dtF(t)



9 Policies and Priors 241

F(t) = DKL
(
q(ϑ)‖p(

ϑ |s̃,m)) − lnp
(
s̃(a)|m)

= DKL
(
q(ϑ)‖p(ϑ |m)

) − 〈
lnp

(
s̃(a)|ϑ,m

)〉
q

= 〈
lnq(ϑ)

〉
q

− 〈
lnp

(
s̃(a),ϑ |m)〉

q
(9.3)

This non-negative function is a Kullback-Leibler divergence DKL(q(ϑ)‖p(ϑ |s̃,m)),
which is only zero when q(ϑ) = p(ϑ |s̃,m) is the true conditional density. This
means that minimising free-energy, by optimising q(ϑ), makes the recognition den-
sity an approximate conditional density on sensory causes. The free-energy can be
evaluated easily because it is a function of q(ϑ) and a generative model p(s̃, u|m)

entailed by m. One can see this by rewriting the last equality in Eq. (9.3) in terms
of H(t), the neg-entropy of q(t) and an energy L(t) expected under q(t).

F(t) = 〈
L(t)

〉
q

−H(t)

L(t) = − lnp
(
s̃(a),ϑ |m)

H(t) = −〈
lnq(ϑ)

〉
q

(9.4)

In physics, L(t) is called Gibb’s energy and reports the joint surprise about sen-
sations and their causes. If we assume that the recognition density q(ϑ) = N (μ,C)

is Gaussian (the Laplace assumption), then we can express free-energy in terms of
the mean and covariance of the recognition density

F = L(μ) + 1

2
tr(CLμμ) − 1

2
ln |C| − n

2
ln 2πe (9.5)

Where n = dim(μ). Here and throughout, subscripts denote derivatives. We can now
minimise free-energy with respect to the conditional precision P = C−1 (inverse
covariance) by solving ∂ΣF = 0 ⇒ δΣS = 0 to give

FΣ = 1

2
Lμμ − 1

2
P = 0 ⇒P = Lμμ (9.6)

This allows one to simplify the expression for free-energy by eliminating C to give

F = L(μ) + 1

2
ln |Lμμ| − n

2
ln 2π (9.7)

Crucially, Eq. (9.7) shows that free-energy is a function of the conditional mean,
which means all we have worry about is optimising the means or (approximate)
conditional expectations. Their optimal values are the solution to the following dif-
ferential equations. For the generalised states ũ(t) ⊂ ϑ

μ̇(u) = μ′(u) −Fu

μ̇′(u) = μ′′(u) −Fu′

... (9.8)

�
˙̃μ(u) = Dμ̃(u) −Fũ
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Where D is a derivative matrix operator with identity matrices above the lead-
ing diagonal, such that Dũ = [u′, u′′, . . .]T. Here and throughout, we assume
all gradients are evaluated at the mean; here ũ = μ̃(u). The stationary solution
of Eq. (9.8), in a frame of reference that moves with the generalised motion of
the mean, minimises free-energy and its path integral. This can be seen by noting
˙̃μ(u) − Dμ̃(u) = 0 ⇒ Fũ = 0 ⇒ δũS = 0. This ensures that when free-energy is

minimised the mean of the motion is the motion of the mean: i.e., ˙̃μ(u) = Dμ̃(u).
For slowly varying parameters ϕ(t) ⊂ ϑ , we can use the a formally related scheme,
which ensures their motion disappears

μ̇(ϕ) = μ′(ϕ)

μ̇′(ϕ) = −Fϕ − κμ′(ϕ)
(9.9)

Here, the solution ˙̃μ(ϕ) = 0 minimises free-energy, under constraint that the motion
of the expected parameters is small: i.e., μ′(ϕ) → 0. One can see this by noting that
when μ̇(ϕ) = μ̇′(ϕ) = 0 ⇒ Fϕ = 0 ⇒ δϕS = 0. Equations (9.8) and (9.9) prescribe
recognition dynamics for the expected states and parameters respectively. The dy-
namics for states can be thought of as a gradient descent in a frame of reference that
moves with the expected motion of the world (cf., a moving target). Conversely,
the dynamics for the parameters can be thought of as a gradient descent that resists
transient fluctuations with the damping term Fϕ′ = κμ′(ϕ) (see Appendix A for a
perspective from conventional decent schemes). It is this damping that instantiates
prior knowledge that fluctuations in the parameters are small. These recognition dy-
namics minimise free-energy with respect to the conditional expectations underlying
perception but what about action?

9.2.2.1 Action and Perception

The second equality in Eq. (9.3) equality shows that free-energy can also be sup-
pressed by action, through its effects on hidden states and ensuing sensory signals.
The key term here is the accuracy term, 〈lnp(s̃(a)|ϑ,m)〉q which, under Gaussian
assumptions, this is just the amount of prediction error. This means action should
change the motion of sensory states so that they conform to conditional expectations.
This minimises surprise, provided perception makes free-energy a tight bound on
surprise. In short, the free-energy principle prescribes optimal perception and action

μ(t)∗ = arg min
μ

F(s̃(a),μ)

a(t)∗ = arg min
a

F(s̃(a),μ)
(9.10)

Action reduces to sampling input that is expected under the recognition density (i.e.,
sampling selectively what one expects to experience). In other words, agents must
necessarily (if implicitly) make inferences about the causes of their sensory signals
and sample signals that are consistent with those inferences. In summary, the free-
energy principle requires the internal states of an agent and its action to suppress
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free-energy. This corresponds to optimising a probabilistic model of how sensations
are caused, so that the resulting predictions can guide active sampling of sensory
data. The requisite interplay between action and perception (i.e., active inference)
ensures the agent’s sensory states have low entropy. This recapitulates the notion
that “perception and behaviour can interact synergistically, via the environment” to
optimise behaviour (Verschure et al. 2003). Active inference is an example of self-
referenced learning (Maturana and Varela 1980; Porr and Wörgötter 2003) in which
“the actions of the learner influence its own learning without any valuation process”
(Porr and Wörgötter 2003).

9.2.2.2 Summary

In conclusion, we have derived recognition dynamics for expected states (in gen-
eralised coordinates of motion) and parameters, which cause sensory samples. The
solution to these equations minimise free-energy and therefore minimise a bound
on sensory surprise or (negative) log-evidence. Optimisation of the expected states
and parameters corresponds to perceptual inference and learning respectively. The
precise form of the recognition dynamics depends on the energy L = − lnp(s̃,ϑ |m)

associated with a particular generative model. In what follows, we consider dynamic
models of the world.

9.2.3 Dynamic Generative Models

We now look at hierarchal dynamic models (discussed in Friston 2008) and assume
that any sensory data can be modelled with a special case of these models. Consider
the state-space model

s = f (v)(x, v, θ) + ω(v) : ω(v) ∼ N
(
0,Σ(v)(x, v, γ )

)

ẋ = f (x)(x, v, θ) + ω(x) : ω(x) ∼ N
(
0,Σ(x)(x, v, γ )

) (9.11)

The nonlinear functions f (u) : u = v, x represent a sensory mapping and equations
of motion respectively and are parameterised by θ ⊂ ϕ. The states v ⊂ u are re-
ferred to as sources or causes, while hidden states x ⊂ u meditate the influence of
the causes on sensory data and endow the system with memory. We assume the
random fluctuations ω(u) ∈ Ω are analytic, such that the covariance of ω̃(u) is well
defined. This model allows for state-dependent changes in the amplitude of random
fluctuations, which speaks to a key distinction between the effect of states on first
and second-order sensory dynamics. These effects are meditated by the vector and
matrix functions f (u) ∈ �dim(u) and Σ(u) ∈ �dim(u)×dim(u) respectively, which are
parameterised by first and second-order parameters θ , γ ⊂ ϕ. Under local linearity
assumptions, the generalised motion of the sensory response and hidden states can
be expressed compactly as
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s̃ = f̃ (v) + ω̃(v)

Dx̃ = f̃ (x) + ω̃(x)
(9.12)

Where the generalised predictions are

f̃ (u) =

⎡

⎢⎢⎢
⎣

f (u) = f (u)

f ′ (u) = f
(u)
x x′ + f

(u)
v v′

f ′′ (u) = f
(u)
x x′′ + f

(u)
v v′′

...

⎤

⎥⎥⎥
⎦

(9.13)

Equation (9.12) means that Gaussian assumptions about the random fluctuations
specify a generative model in terms of a likelihood and empirical priors on the mo-
tion of hidden states

p
(
s̃|x̃, ṽ, θ,m

) = N
(
f̃ (v), Σ̃(v)

)

p
(
Dx̃|x, ṽ, θ,m

) = N
(
f̃ (x), Σ̃(x)

) (9.14)

These probability densities are encoded by their covariances Σ̃(u) or precisions
Π̃(u) := Π̃(u)(x, v, γ ) with precision parameters γ ⊂ ϕ that control the amplitude
and smoothness of the random fluctuations. Generally, the covariances factorise;
Σ̃(u) = V (u) ⊗ Σ(u) into a covariance proper and a matrix of correlations V (u)

among generalised fluctuations that encodes their smoothness. Given this generative
model, we can now write down the energy as a function of the conditional means,
which has a simple quadratic form (ignoring constants)

L = 1

2
ε̃(v)T Π̃(v)ε̃(v) − 1

2
ln

∣∣Π̃(v)
∣∣

+ 1

2
ε̃(x)T Π̃(x)ε̃(x) − 1

2
ln

∣∣Π̃(x)
∣∣

+ 1

2
ε̃(ϕ)T Π̃(ϕ)ε̃(ϕ) − 1

2
ln

∣∣Π̃(ϕ)
∣∣

ε̃(v) = s̃ − f̃ (v)

ε̃(x) = Dμ̃(x) − f̃ (x)

ε̃(ϕ) = μ̃(ϕ) − η̃(ϕ)

(9.15)

Here, the auxiliary variables ε̃(j) : j = v, x,ϕ are prediction errors for sensory
data, the motion of hidden states and parameters respectively. The predictions for
the states are f̃ (u)(μ) and the predictions for the parameters are the prior ex-
pectations η̃(ϕ). Equation (9.16) assumes flat priors on the states and that priors
p(ϕ|m) = N (η̃(ϕ), Σ̃(ϕ)) on the parameters are Gaussian, where κ is the precision
on the motion of the parameter (see Eq. (9.9)).

9.2.3.1 Perceptual Inference and Predictive Coding

Usually, these models are cast in hierarchical form to make certain conditional in-
dependences explicit. Hierarchical forms may look more complicated but they are
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simpler than the general form above. They are useful because they provide an em-
pirical Bayesian perspective on inference and learning that may be exploited by the
brain. Hierarchical dynamic models have the following form

s = f (1,v)
(
x(1), v(1), θ

) + ω(1,v)

ẋ(1) = f (1,x)
(
x(1), v(1), θ

) + ω(1,x)

...

v(i−1) = f (i,v)
(
x(i), v(i), θ

) + ω(i,v)

ẋ(i) = f (i,x)
(
x(i), v(i), θ

) + ω(i,x)

...

(9.16)

The random terms ω(i,u) are conditionally independent and enter each level of the
hierarchy. They play the role of observation error or noise at the first level and induce
random fluctuations in the states at higher levels. The causes v = v(1) ⊕ v(2) ⊕
· · · link levels, whereas the hidden states x = x(1) ⊕ x(2) ⊕ · · · link dynamics over
time. In hierarchical form, the output of one level acts as an input to the next. This
input can enter nonlinearly to produce quite complicated generalised convolutions
with deep (hierarchical) structure. If we substitute Eq. (9.16) into the recognition
dynamics of Eq. (9.8) (ignoring the derivatives of curvatures and state-dependent
noise), we get the following hierarchical message passing scheme

˙̃μ(i,v) = Dμ̃(i,v) + f̃
(i,v)T

ṽ
ξ (i,v) + f̃

(i,x)T

ṽ
ξ (i,x) − ξ (i+1,v)

˙̃μ(i,x) = Dμ̃(i,x) + f̃
(i,v)T

x̃
ξ (i,v) + f̃

(i,x)T

x̃
ξ (i,x) −DT ξ (i,x)

ξ (i,v) = Π̃(i,v)ε̃(i,v)

ξ (i,x) = Π̃(i,x)ε̃(i,x)

ε̃(i,v) = μ̃(i−1,v) − f̃ (i,v)

ε̃(i,x) = Dμ̃(i,x) − f̃ (i,x)

(9.17)

In neural network terms, Eq. (9.17) suggests that error-units receive messages from
the states in the same level and the level above. Conversely, state-units are driven by
error-units in the same level and the level below, were f̃

(i,u)
w : u = v, x are the for-

ward connection strengths to the state unit representing w ∈ ṽ, x̃. Critically, recog-
nition requires only the (precision-weighted) prediction error from the lower level
ξ (i,v) and the level in question, ξ (i,x) and ξ (i+1,v) (see Fig. 9.1 and Mumford 1992).
These constitute bottom-up and lateral messages that drive conditional expectations
μ̃(i,u) towards a better prediction, which reduces the prediction error in the level be-
low. These top-down and lateral predictions correspond to f̃ (i,u). This is the essence
of recurrent message passing between hierarchical levels to optimise free-energy or
suppress prediction error (see Friston 2008 for a more detailed discussion). This
scheme can be regarded as generalisation of linear predictive coding (Rao and Bal-
lard 1999).
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Fig. 9.1 Schematic detailing the neuronal architectures that could encode conditional expecta-
tions about the states and parameters of (three levels of) a hierarchical model of the world. This
schematic shows the speculative cells of origin of forward driving connections that convey pre-
diction error from a lower area to a higher area and nonlinear backward connections that are used
to construct predictions. These predictions try to explain input from lower areas by suppressing
prediction error. In this scheme, the sources of forward connections are superficial pyramidal cells
and the sources of backward connections are deep pyramidal cells. The differential equations relate
to the optimisation scheme detailed in the main text. The state-units and their efferents are in black
and the error-units in red; with causal states on the right and hidden states on the left. For sim-
plicity, we have assumed the output of each level is a function of, and only of, hidden states. This
induces a hierarchy over levels and, within each level, a hierarchical relationship between states,
where causes predict the motion of hidden states

Equation (9.17) shows that precision effectively sets the synaptic gain of error-
units to their top-down and lateral inputs. Therefore, changes in precision Π̃(i,u)

correspond to neuromodulation of error-units encoding precision-weighted predic-
tion error ξ (i,u). This translates as an optimisation of synaptic gain of principal
(superficial pyramidal) cells that elaborate prediction error (see Mumford 1992;
Friston 2008) and fits comfortably with (among other things) the modulatory effects
of dopaminergic and cholinergic neurotransmission. We will exploit this interpreta-
tion in the final section. We next consider learning.

9.2.3.2 Perceptual Learning and Associative Plasticity

Perceptual learning corresponds to optimising the first-order parameters θ ⊂ ϕ.
Equation (9.9) describes a process that is remarkably similar to models of associa-
tive plasticity based on correlated pre and post-synaptic activity. This can be seen
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most easily by assuming an explicit form for the generating functions; for example
(for a single parameter and ignoring high-order derivatives)

f
(i,x)
j = θx

(i)
k ⇒

μ̇(θ) = μ′(θ)

μ̇′(θ) = −μ̃
(i,x)T
k ξ

(i,x)
j − Π(θ)μ(θ) − κμ′(θ)

(9.18)

Here μ(θ) is the connection strength mediating the influence of the k-th hidden state
on the motion of the j -th, at hierarchical level i = 1,2, . . . . This strength changes
in proportion to a ‘synaptic tag’ μ′(θ) that accumulates in proportion to the product
of the k-th pre-synaptic input μ̃

(i,x)
k and post-synaptic response ξ

(i,x)
j of the j -th er-

ror unit (first term of Eq. (9.18)). The tag is auto-regulated by the synaptic strength
and decays with first-order kinetics (second and third terms respectively). Crucially,
this activity-dependent plasticity rests on (precise) prediction errors that are accu-
mulated by the ‘tag’. This highlights the fact that learning (optimising synaptic ef-
ficacy) depends on an optimal level of precision encoded by the synaptic gain of
error units. Similar equations can be derived for the optimisation of the gain or pre-
cision parameters γ ⊂ ϕ. However, in this work we will use fixed values and change
them to simulate pathology. We conclude this section by examining the dynamics
prescribing optimal action.

9.2.3.3 Action

Because action can only affect the free-energy through the sensory data, it can only
affect sensory prediction error. If we assume that action performs a gradient descent
on free-energy, it is prescribed by:

ȧ = −Fa

= −ε̃(v)T
a ξ (v)

ε̃(v)
a = f

(v)

x̃

∑

i

D−i
(
f

(x)

x̃

)i−1
f (x)

a

(9.19)

The partial derivative of the error with respect to action is the partial derivative of
the sensory samples with respect to action. In biologically plausible instances of
this scheme, this partial derivative would have to be computed on the basis of a
mapping from action to sensory consequences, which are usually quite simple; for
example, activating an intrafusal muscle fibre elicits stretch receptor activity in the
corresponding spindle (see Friston et al. 2010 for discussion).

9.2.3.4 Summary

In conclusion, we have established some simple dynamics for active inference that
implement recognition or perceptual inference, learning and behaviour. However,
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we have said nothing about the form of models biological agents might call upon.
In the next section, we turn to some fundamental questions about the nature of gen-
erative models underlying active inference and, in particular, the role of f (x)(x, v, θ)

in furnishing formal priors on the motion of hidden states in the world.

9.3 Priors and Policies

In this section, we focus on the equations of motion that constitute an agent’s
generative model of its world. In the previous section, we saw that every agent
or phenotype can be regarded as a model of its environment (econiche and inter-
nal milieu). Mathematically, this model corresponds to the form of the equations
of motion describing hidden states. If these forms are subject to selective pres-
sure, we can regard evolution as optimising formal priors on the environmental
dynamics to which each phenotype is exposed. Because these dynamics describe
a flow through different states (i.e., state-transitions), they correspond to policies.
This section tries to establish the different sorts of priors or policies that might
have emerged at an evolutionary scale. It also tries to relate existing formulations
(such as optimal control theory, dynamic programming and reinforcement learn-
ing) to the dynamical framework that ensues. Briefly, we will see that there are
two fundamentally different sorts of policies one could entertain. The first class
of (fixed-point) policies can be derived from vector calculus and equilibrium ar-
guments about ensemble densities on the states agents occupy (Birkhoff 1931;
Moore 1966; McKelvey and Palfrey 1995; Haile et al. 2008; see Eldredge and Gould
1972 for an evolutionary take on equilibria). These equilibria arguments suggest
that the states that are most likely to be occupied (peaks of the ensemble den-
sity) require the local policy (flow) to have negative divergence. We will refer to
this as the divergence-constraint. Mathematically, divergence measures the rate at
which flow disperses or dispels a density at any particular point in state-space. This
somewhat abstract treatment (and in particular the divergence-constraint) leads to
putative policies that ensure attractive states are occupied with the greatest proba-
bility. Important examples of these value-based policies are considered in optimal
control (Bellman 1952; Sutton and Barto 1981; Todorov 2006) and reinforcement
learning (Rescorla and Wagner 1972; Watkins and Dayan 1992; Friston et al. 1994;
Montague et al. 1995; Daw and Doya 2006; Daw et al. 2006; Dayan and Daw 2008;
Niv and Schoenbaum 2008). This class of policies rests on assuming that all hid-
den states are equipped with a particular cost, which has the important implica-
tion that the optimal flow (prior or policy) has fixed-point attractors. These attract
states to low-cost invariant sets; more formally global random attractors A(ω), when
considering random fluctuations ω ∈ Ω on the states (Matheron 1975; Crauel and
Flandoli 1994; Crauel 1999). One of the main purposes of this section is to sug-
gest that although fixed-point policies may provide useful heuristics, they are not
necessarily optimal or indeed tenable in a general (dynamical) setting. This is be-
cause the external and internal milieu is changing constantly and does not sup-
port fixed-point attractors in the state-space of any phenotype. Put simply, any
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agent that aspires to a fixed state is doomed, both ethologically and physiologi-
cally. To accommodate this, we introduce the notion of itinerant policies, whose
implicit attractors are space filling and support wondering (possibly chaotic) tra-
jectories or orbits (e.g., Maturana and Varela 1980; Haken 1983; Freeman 1994;
Tsuda 2001; Tyukin et al. 2003; Tschacher and Haken 2007; Tyukin et al. 2009;
Rabinovich et al. 2008). Put simply, this means an agent will move through its state-
space, sampling different weakly attracting states (attractors in the Milnor sense;
Tyukin et al. 2009; Colliaux et al. 2009 or attractor ruins; Rabinovich et al. 2008;
Gros 2009) in an itinerant fashion.

The basic idea behind the construction of these itinerant policies (priors) rests
on the destruction or vitiation of (weakly) attracting sets. We will focus on attrac-
tors that destroy themselves (autovitiate), when they have been occupied too long or
other imperatives come into play. This sort of policy will be illustrated with a sim-
ple simulation of active inference that leads to exploration and exploitation, under
physiologically plausible constraints. The associated model (agent) will be used in
the next section to see what would happen if we confound its ability to infer and
learn optimally.

9.3.1 Set-up and Preliminaries

The distinction between fixed-point and itinerant policies arises from the follow-
ing distinction among different subsets of hidden states: x ⊇ {x(a), x(p), x(q)}. This
partition acknowledges the fact that, from the agent’s perspective, there are two
proper disjoint subsets of states. The first comprises those states that can be affected
by action x(a) ⊂ x; namely states that support the motion of effectors (e.g., mo-
tor plant) and causal (e.g., Newtonian) mechanics in the external milieu. We will
call these physical states. The other subset x(p) ⊂ x\x(a) represents states in the
internal milieu, which must be maintained within certain bounds (e.g., physiolog-
ical states that determine interoceptive signals; Davidson 1993). To help remem-
ber what these refer to, we will call them physiological states and represent the
bounds with an indicator or cost-function c(x(p)) = 0 : x(p) ∈ A(p) that is zero on
the interior of some bounded (attractive or low cost) set A(p) and one otherwise.
Note that the cost-function is defined only on the physiological states. Indeed, one
could define the physiological states as the domain of the cost-function. We will
use the notion of an indicator or cost-function extensively below for two reasons.
First, it is the sort of constraint that can be specified epigenetically and is there-
fore consistent with the evolutionary perspective above (cf., Traulsen et al. 2006;
Maynard Smith 1992). For example, it is not inconceivable that natural selection has
equipped us with indicator functions that register when (inferred) blood sugar falls
outside the normal 3.6 and 5.8 mM range. Second, utility, loss, or cost-functions
are an integral part of optimal control in reinforcement learning and optimal de-
cision (game) theory in economics (e.g., Shreve and Soner 1994; Camerer 2003;
Coricelli et al. 2007; Johnson et al. 2007). The remaining hidden states will be called
manifold-states x(q) = x\{x(a), x(p)} ⊂ x for reasons that will become clear later.
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Fig. 9.2 Schematic showing the partition of hidden states into physical states, physiological states,
and manifold-states. Physical states correspond, heuristically, to mechanics of the physical world,
such as the movement of the motor plant and physical objects. The physiological states pertain to
the internal milieu and exhibit kinetics that depend upon physical states. The manifold-states rep-
resent the remaining hidden states that govern causal dynamics in the sensorium. These affect (and
can be affected by) the physical states but are only affected by the physiological states through indi-
cator or cost-functions reporting whether the physiological states occupy a particular subset: A(p).
The stochastic differential equations describing each partition are a probabilistic summary of their
dynamics. The arrows represent conditional dependencies and the schematic can be regarded as a
Bayesian dependency graph

With this partition in place, we can now consider the conditional dependencies
among the subsets. We will assume that physiological states depend on and only on
themselves and physical states (e.g., changes in blood sugar after ingestion). The
physical states depend upon themselves and manifold-states that shape the mani-
fold that contains the flow of physical states (e.g., forces on manipulanda in the
immediate environment). Finally, the manifold-states per se can be influenced by
the physical states and physiological states, where the latter influence is mediated
by a cost-function. The partition into physical and physiological states means that
action cannot affect physiological states directly. This is important and respects the
constraints biological agents evolve under. For example, no amount of voluntary
(striatal) muscle activity can directly increase blood sugar, it can only do so vicar-
iously by changing physical states that affect physiology. We can summarise these
dependencies mathematically with the following equations of motion, which are
shown as a dependency graph in Fig. 9.2.
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f (x) =
⎡

⎣
f (a)(x(a), x(q))

f (q)(x(a), x(q), c)

f (p)(x(a), x(p))

⎤

⎦

c =
{

0 :x(p) ∈ A(p)

1 :x(p) /∈ A(p)

(9.20)

These equations of motion are part of the agent’s generative model and induce for-
mal priors on state-transitions (i.e., a policy). Our objective now is to find constraints
on their form that disclose the nature of implicit policies. Clearly, the only explicit
constraint we have is the indicator or cost-function on physiological states. This de-
fines the physiological states the agent expects to be in a priori. In what follows, we
will use this cost-function in two distinct ways. First, we will use it to define low-
cost attractors in state-space using equilibrium arguments. This requires a rather
abstract formulation of the problem, which ignores the distinction between phys-
ical and physiological states and leads to conventional (fixed-point) policies. We
then reinstate the partition and use indicator or cost-functions to engender flow in
the physical space that destroys costly fixed-points in the physiological space. This
leads to itinerant policies, which we will use to examine pathological policies in the
last section.

9.3.2 Fixed-Point Policies: The Equilibrium Perspective

In this subsection, we will consider policies as prior expectations on flow that lead
to low-cost equilibrium densities. This perspective provides a fundamental (diver-
gence) constraint on local flow that can be exploited directly (or is met implicitly)
in schemes based upon value; the path-integral of cost. However, to pursue this
analysis we need to make a rather severe and implausible assumption. Namely,
that we can ignore the conditional dependencies implicit in the partition above
and assume that all states can be treated equally. This means the policy reduces
to f := f (x)(x, v, θ). With this simplifying assumption, one can appeal to standard
results in vector calculus that describe the evolution of the probability density on the
states the agent could occupy as a function of time. This is the ensemble density of
the previous section. It can be regarded as either the probability distribution of an in-
finite number of copies of the agent, observed simultaneously. Alternatively, under
ergodic assumptions, this is the same as the probability that an agent will be found
in a particular state when observed at different times. This probability is also called
the sojourn time and reflects the relative amount of time each state is occupied.
The evolution of the ensemble density over time is described by the Fokker-Planck
equation

ṗ(x|m) : = Λp

= ∇ · (Γ ∇ − f )p

= ∇ · Γ ∇p − ∇ · (pf )

= ∇ · Γ ∇p − p∇ · f − f · ∇p (9.21)
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Here Γ is half the amplitude (variance) of random fluctuations on the states. At
equilibrium, ṗ(x̃|m) = 0 and

p(x|m) := p = ∇ · Γ ∇p − f · ∇p

∇ · f (9.22)

Notice that as the divergence ∇ · f increases, the sojourn time (i.e., the proportion
of time a state is occupied) falls. Crucially, at the peaks of the ensemble density, the
gradient is zero and its curvature is negative, which means the divergence must be
negative (from Eq. (9.22))

p > 0
∇p = 0

∇ · ∇p < 0

⎫
⎬

⎭
⇒ ∇ · f < 0 (9.23)

This divergence-constraint simply says that any policy or flow must have negative
divergence at (low cost) maxima of the equilibrium density. One can exploit this
constraint by ensuring that all costly fixed-points have positive divergence. Essen-
tially, this destroys any fixed-points in the environment by making them unstable.
These policies are easy to construct. For example, the following (Newtonian) policy
can be made to satisfy the divergence-constraint very simply by ensuring χ(c) ≤ 0,
where

f =
[

x′
−cϕx(x) + χ(c)x′

]
⇒ ∇ · f = χ(c) (9.24)

This flow (policy) describes the Newtonian motion of a unit mass in a potential
energy well ϕ(x, θ), where cost plays the role of negative dissipation or friction
(and vitiates fixed points in costly regions). Crucially, under this policy, divergence
is a function of, and only of, cost. This means the associated ensemble density can
only have maxima in regions, where χ(c) ≤ 0. Put simply, this ensures that agents
are expelled from high-cost regions of state-space and get ‘stuck’ in attractive (flat)
regions. We can illustrate this sort of policy by revisiting a benchmark problem in
optimal control:

9.3.2.1 The Mountain-Car Problem

The mountain-car problem can be envisaged as follows: one has to move a car from
the bottom of valley and keep it there. However, the car is too heavy to simply
drive up the hill. This means that the target can only be accessed by starting on
the opposite side of the valley to gain enough momentum to carry it up the other
side. This represents an interesting problem, when considered in the state-space of
position and velocity, x, x′ ∈ x̃; the agent has to move away from the target location
(x = 1) to attain its goal and execute a very circuitous movement (cf., avoiding
obstacles). This problem can be specified with the following equations
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g =
[

ẋ
ẋ′

]

f =
[

x′
−ϕx(x) − 1

4 x′ + σ(a)

]

ϕx =
{

2x + 1 :x ≤ 0
x2(1 + 5x2)−3/2 + x4/16 :x > 0

(9.25)

We have used bold to highlight the fact that the states and functions are the true
values generating sensory data (as distinct from any hidden states assumed by a
generative model of these data). Crucially, at x = 0 the force on the car cannot be
overcome by the agent, because a squashing function −1 ≤ σ(a) ≤ 1 is applied
to action to prevent it being greater than one. Divergence-based policies provide a
remarkably simple and effective solution to problems of this sort and can be imple-
mented under active inference using policies with the form of Eq. (9.24) (see Friston
et al. 2010 for more details). These policies are entailed by the agent’s generative
model of its sensory inputs. For example,

f (v) =
[

x

x′
]

f (x) =
[

x′
−cϕx(x) + χ(c)x′

]

ϕx = θ1(x − θ2)

χ = 1

4
− 32(1 − c)

c =
{

0 :|x − 1| ≤ �

1 :|x − 1| > �

(9.26)

Figure 9.3 shows how paradoxical but adaptive behaviour (e.g. moving away from
a target to ensure it is secured later) emerges from these simple priors on the motion
of hidden states. This example used � = 1

16 , θ1 ≈ 0.6 and θ2 ≈ −0.2. These sim-
ulations of active inference involve integrating the states in the environments (e.g.,
Eq. (9.25)) and the agent (Eqs. (9.17) and (9.19)) simultaneously as described in
Appendix B.

Clearly, the construction of policies that use divergence to vitiate costly fixed-
points rests on knowing the form of the policy. In principle, this is no problem,
because we are talking about the agent’s prior expectations or model of its envi-
ronment. At no point do we assume that any of the states in the generative model
actually exist. For example, the true landscape that exerts forces on a mountain car
(Eq. (9.25) and Fig. 9.3) is much more complicated than the agent’s model of this
landscape, which is a simple quadratic approximation (Eq. (9.26)). This highlights
the fact that our expectations about the world and its actual causal structure do not
have to be formally equivalent to support adaptive policies. However, it is clearly
important that there is a sufficient homology between modelled and experienced
causal structure, otherwise the agent will be perpetually surprised by ‘obstructions’
to its path. This begs the question as to whether there is any universal form of policy
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Fig. 9.3 This figure shows how paradoxical but adaptive behaviour (e.g., moving away from a
target to ensure it is secured later) emerges from simple priors on the (Newtonian) motion of
hidden states in the world. A: The upper panel shows the landscape or potential energy function
(with a minimum at position x = −0.5) that exerts forces on a mountain car. The car is shown at
the target position on the hill at x = 1, indicated by the cyan ball. The equations of motion of the
car are shown below the figure. Crucially, at x = 0 the agent cannot overcome the force on the car
because a squashing function −1 ≤ σ(a) ≤ 1 is applied to action to prevent it being greater than
one. This means that the agent can only access the target by starting halfway up the left hill to gain
enough momentum to carry it up the other side. B: The results of active inference under priors
that destabilise fixed-points outside the target domain. The priors are encoded in a cost-function
c(x) (lower left), which acts like negative friction. When ‘friction’ is negative the car expects to
go faster. The inferred hidden states (upper right: position in blue and velocity in green) show that
the car explores its landscape until it encounters the target. At this point, friction increases (i.e.,
cost decreases) dramatically to prevent the car from escaping the target (by falling down the hill).
The ensuing trajectory is shown in blue (upper left) in the phase-space of position and velocity.
The paler lines provide exemplar trajectories from other trials with different starting positions. In
the real world, friction is constant. However, the car ‘expects’ friction to change with its position,
enforcing exploration or exploitation. These expectations are fulfilled by action (lower right)

that would comply with the divergence-constraint. An example of a universal form
is afforded by policies based upon value.

9.3.2.2 Value-Based Policies

In what follows, we consider the key notion of value V (x) as a function of state-
space that reports the relative probability or sojourn time a state is occupied at equi-
librium. Let flow be decomposed into the gradient of value and an orthogonal com-
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ponent f = ∇V + ζ , such that ∇V · ζ = 0, where the value of a state is proportional
to its log-sojourn time or density at equilibrium

V = Γ lnp ⇒ p∇V = Γ ∇p

p := p(x|m) = exp(V/Γ )
(9.27)

Equation (9.27) implies (intuitively) that if ζ is orthogonal to value (log-density)
gradients, it must also be orthogonal to the density gradients per se: ∇V · ζ = 0 ⇒
∇p · ζ = 0. If we now substitute Eq. (9.27) into the Fokker-Planck equation (9.21)
and solve for the equilibrium density that satisfies Λp = 0, we obtain (using stan-
dard results from vector calculus)

Λp = ∇ · (p∇V ) − ∇ · (p∇V ) − ∇ · pζ = 0 ⇒
∇ · pζ = p∇ · ζ − ζ · ∇p = 0 ⇒ ∇ · ζ = 0

(9.28)

This means that the orthogonal flow ζ = ∇ × W is divergence-free and can be
expressed in terms of a vector-potential W(x). This is just an example of the
Helmholtz decomposition (also known as the fundamental theorem of vector cal-
culus). It means we can express any policy as the sum of irrotational (curl-free) ∇V

and solenoidal (divergence-free) ∇ × W components. If the two components are
orthogonal, then the scalar-potential V (x) defines the equilibrium density and its
attracting states; that is, the scalar-potential is value. This equivalence rests on the
orthogonality condition ∇V · ζ = 0, which we will call the curl-constraint. Under
this constraint, curl-free flow prescribed by value counters the change in the equilib-
rium density due to random fluctuations. Conversely, divergence-free flow follows
isoprobability contours and does not change the equilibrium density. Finally, it is
easy to show that value is a Lyapunov function for policies that conform to the
curl-constraint

f = ∇V + ζ : ∇V · ζ = 0

= ∇V + ∇ × W

V̇ (x(t)) = ∇V · f = ∇V · ∇V + ∇V · ζ = ∇V · ∇V ≥ 0

(9.29)

Lyapunov functions increase (or decrease) with time and are used to prove the sta-
bility of fixed-points in dynamical systems. This means every policy that satisfies
the curl-constraint increases its value as a function of time. The notion of a Lya-
punov function is introduced here, because of its relationship to value or attraction
in optimal control and decision (game) theory, respectively:

9.3.2.3 Optimal Control and Reinforcement Learning

In optimal control theory and its ethological variants (i.e., reinforcement learning),
adaptive behaviour is formulated in terms how agents navigate state-space to access
sparse rewards and avoid costly regimes. The aim is to find a (proximal) policy that
attains long-term (distal) rewards. In terms of the above, a policy f = ∇V + ζ is
specified via the scalar-potential or value V (x) also known as (negative) cost-to-go.
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In this sense, value is sometimes called a navigation function. The value-function
is chosen to minimise expected cost. More formally, the cost-to-go of a state is the
cost expected over future states. In the deterministic limit Γ → 0, this is just the
path integral of cost

V (x) = −
∫ ∞

t

dτc(x(τ )) ⇒
V̇ (x(t)) = c(x) = ∇V · f ≥ 0

(9.30)

This says that cost is the rate of increase in value (the Lyapunov function). Crucially,
Eq. (9.30) shows that the maxima of the equilibrium density can only exist where
cost is zero, at which point value stops increasing and the divergence-constraint is
satisfied

∇V (x) = 0 ⇒ c(x) = 0

∇ · ∇V (x) < 0 ⇒ ∇ · f < 0

∇ · f = ∇ · ∇V + ∇ · ζ
= ∇ · ∇V

(9.31)

Heuristically, we can regard value as guiding flow towards points where there is
no cost (i.e., no gradients). This means that, in principle, we have a way to pre-
scribe equilibria with maxima (attracting fixed-points) that are specified with a cost-
function. Equation (9.30) shows that the cost-function can be derived easily, given
the policy and implicit value-function. However, to specify a policy with cost, we
have to derive the value-function from the cost-function; that is, solve Eq. (9.30) for
value. This is the difficult problem optimal control and value-learning deal with:

In the deterministic limit, the equilibrium density becomes a point mass at the
maximum of the value function (see Eq. (9.27)). This is the fixed-point to which
all trajectories are attracted. Value-based policies represent universal solutions that
do not require any knowledge about the form of the equations of motion generat-
ing sensory contingencies. However, this is also their weakness, because we require
the solution of Eq. (9.30) under unknown constraints. This leads to the celebrated
Hamilton-Jacobi-Bellman equation in optimal control theory (Bellman 1952), for
which there is no general solution. However, there is a vast literature on approxi-
mate solutions based upon dynamic programming and stochastic iteration. Variants
of these schemes appear as temporal difference models (Sutton and Barto 1981) and
Q-learning (Watkins and Dayan 1992) in machine learning, and as heuristics in psy-
chological studies of reinforcement learning (Rescorla and Wagner 1972). Almost
invariably, these approximate solutions rest on updating explicit representations of
the value-function using a prediction error on cost (or reward). This is called a re-
ward prediction error, which we will return to in the discussion. We will not pursue
this enormous field here for one simple reason: fixed-point policies are not solu-
tions to real-world problems. This is because there are no valuable fixed-points in
dynamical systems: an organism can only occupy a fixed-point when it is frozen or
petrified (i.e., dead).

Furthermore, from a technical point of view, value-based (fixed-point) policies
are incomplete. This is because real-world (non-abstract) systems do not satisfy
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the curl-constraint: Although, the Helmholtz decomposition provides a universal
form for policies, with curl and divergence-free components, there is no fundamen-
tal lemma or requirement for these components to be orthogonal. This means the
scalar-potential is not necessarily a Lyapunov function (i.e., a value-function) or a
useful navigation function (see Eq. (9.29)). The interactions among states that vi-
olate the curl-constraint are implicit in the conditional dependencies in Eq. (9.20)
(for nonlinear equations of motion). In the next subsection, we relax the simpli-
fying assumptions necessary for the abstract formulations used in economics and
reinforcement learning and turn to itinerant policies.

9.3.3 Itinerant Policies

In this subsection, we look at functional forms for policies using the (non-abstract)
set up that distinguishes between physical, physiological and other hidden states.
Here, we consider attractive states that are not fixed-points but bounded sets that
arise from itinerant (wandering or searching) dynamics. This is sensible, given the
nature of the environment, and speaks to optimising space-filling attractors that en-
sure low cost equilibria.

The importance of itinerancy has been articulated many times in the past (see
Nara 2003), particularly from the perspective of computation and autonomy (see
van Leeuwen 2008; with a focus on Milnor attractors). It has also been considered
formally in relation to cognition (e.g., Gros 2009, with a focus on attractor relics,
ghosts or ruins) and implicitly in ethology (e.g., Panksepp et al. 1984). The etho-
logical perspective is useful here because it suggests that some species are equipped
with prior expectations that they will engage in exploratory or social play, For ex-
ample, ‘rough and tumble play’ may be a fundamental form of play comprising a
unique set of behaviours that can be distinguished from aggression and other child-
hood activities. Indeed, there is growing interest in understanding brain dynamics
per se in terms of itinerancy and metastability (e.g., Jirsa et al. 1994; Breakspear and
Stam 2005; Bressler and Tognoli 2006). Tani et al. (2004) consider itinerant dynam-
ics in terms of bifurcation parameters that generate multiple goal-directed actions
on the behavioural side, and optimisation of the same parameters when recognising
actions. They provide a series of elegant robotic simulations to show generalisation
by learning with this scheme. See also Herrmann et al. (1999) for interesting simu-
lations of itinerant exploration, using just prediction errors on sensory samples over
time.

We will see below that it is fairly easy to construct itinerant policies. Further-
more, they can have constant (negative) divergence at all points in state-space. This
means that their equilibria depend on the divergence-free component of flow (i.e.,
the component that is discounted by the curl-constraint in fixed-point policies). Al-
though there may not be a universal form for itinerant policies, the principles upon
which they are based may be universal.

One universal principle (which we exploit here) is the vitiation or destruction
of costly attractors. A key difference between general vitiative mechanisms and the
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divergence-based vitiation above is that the destruction of costly attractors can be
state and time-dependent. This idea appears in several guises and has found impor-
tant applications in a number of domains. For example, it is closely related to the
notion of autopoiesis and self-organisation in situated (embodied) cognition (Matu-
rana and Varela 1980). It is formally related to the destruction of gradients in syn-
ergetic treatments of intentionality (Tschacher and Haken 2007). Mathematically, it
is finding a powerful application to universal optimisation schemes (Tyukin et al.
2003) and, indeed, as models of perceptual categorisation (Tyukin et al. 2009). The
dynamical phenomena, upon which these schemes rest, involve an itinerant wan-
dering through state-space along heteroclinic channels (orbits connecting different
fixed-points). Crucially, these attracting sets are weak (Milnor) attractors or attractor
ruins that expel the state until it finds the next weak attractor or ruin. The result is a
sequence of transitions through state-space that, in some instances, can be stable and
repeating. The resulting stable heteroclinic channels have already been proposed as
a metaphor for neuronal dynamics and underlying cognitive processing (Rabinovich
et al. 2008). Furthermore, the notion of Milnor or ruined attractors underlies much
of the technical and cognitive literature on itinerant dynamics. For example, Tyukin
et al. (2009) can explain “a range of phenomena in biological vision, such as mental
rotation, visual search, and the presence of multiple time scales in adaptation” using
the concept of weakly attracting sets. It is this sort of policy we exploit in the final
part of this section.

9.3.3.1 Itinerant Control and Autovitiation

The basic idea is to construct a policy (equations of motion) in which costly states
in the physiological subspace change the manifold on which the physical states are
evolving. In principle, the only ergodic solution, under this sort of policy, is one in
which an attractor (manifold) in the physical subspace induces a low-cost attractor in
the physiological subspace. Clearly, this rests upon the existence of such solutions.
The mathematical treatment of the existence of these solutions is not necessarily
simple. Indeed, it is only recently that the conditions for the existence of stable
heteroclinic channels have been established (Rabinovich et al. 2008). Furthermore,
even the existence of weakly attracting (Milnor) sets presents some deep challenges
(see Tyukin et al. 2003). Generally, attractors are invariant sets that attract states
from their neighbourhood, known as a basin of attraction (like a pudding basin that
collects its contents at its base). Milnor attractors generalise this notion so that the
basin of attraction is not required to be in the neighbourhood of the attractor (like
a pudding basin or sieve ‘riddled’ with holes). This allows the states to escape the
attractor when subject to small random fluctuations (like shaking the pudding basin).
Attractor ruins result from changing the manifold to destroy an attractor but preserve
its characteristic ability to attract trajectories (like a basin with a hole at the base,
from which its contents can escape slowly). A key distinction between different
sorts of itinerancy is based on whether the manifold supporting itinerant flow is
fixed or changing. Milnor attractors and attractor ruins support itinerant dynamics
with Type I complexity (Friston 2000); that is, the manifold is invariant. Conversely,
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when dynamical systems are coupled to each other, the states of one system can
change the manifold (topology or shape of the pudding basin) of another, leading to
Type II complexity (Friston 2000). This sort of itinerancy rests on the construction
(autopoiesis) and destruction (autovitiation) of attractors in one subspace by changes
in the states of another. This is the mechanism we will pursue, given the partition
in Eq. (9.20).

We will forego further mathematical discussion and try to illustrate the basic
idea with a simple example. This example has been chosen because it embodies
autovitiation using intuitive constructs from neurobiology. Consider the following
policy

f (x) =
[

f (a)

f (q)

]

f (a) = f (a,k)
(
x(a)

) : k = arg max
i

x
(q)
i

f
(q)
i = h

(
x(a), x(q)

) : x(a) /∈ A(a)
i

f
(q)
i < h

(
x(a), x(q)

) : x(a) ∈ A(a)
i

(9.32)

This policy describes coupled nonlinear systems in physical x(a) and manifold-
subspaces x(q) = [x(q)

1 , . . . , x
(q)
K ]. Physical flow is ‘selected’ by the (k-th) manifold-

state with the highest value, where each alternative flow f (a,k)(x) has a unique
attractor A(a)

k . More formally, for all real t > T there exists a time T ∈ �+ for

which x(t)(a) ∈ A(a)
i , under f (a,i)(x) : i ∈ 1, . . . ,K . For each attractor there is a

corresponding manifold-state. These change according to some arbitrary function
h(x(a), x(q)). Crucially, all the manifold-states experience the same change unless
the physical-state occupies the attractor selected by the manifold-state. In this in-
stance, the manifold states decreases, relative to its competitors. The attractor is
vitiated when its manifold-state ceases to be the largest and another physical flow
supervenes. This is a simple and fairly universal scheme that ensures all the attrac-
tors are visited at some point. The key aspect of these schemes is that attractors are
destroyed when occupied.

There are clearly many ways that we could have constructed itinerant schemes to
illustrate this sort of policy. We elected to use competition among attractors in the
physical state-space for several reasons. First, dynamics of this sort can be cast in
the abstract form required for conventional value-based policies. This is because the
system will visit a discrete number of attractive states A(a)

i : i ∈ 1, . . . ,K with well
defined probabilities. This will be pursued in a later communication using model-
based reinforcement learning. Second, the, saltatory migration from one attractor
(pattern) to the next is a ubiquitous phenomenon in neuronal dynamics; manifest
as synfire chains (Abeles et al. 2004), reproducible patterns in neuronal avalanches
(Pasquale et al. 2008) and ‘loss-less’ saltatory transitions observed in local field po-
tentials (Thiagarajan et al. 2010). Functionally, the use of attractors with associated
basins of attraction, provides a generic way of ‘tiling’ any space and bears a formal
resemblance to classical receptive fields in vision or, indeed, place-cells in spatial
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navigation (O’Keefe and Dostrovsky 1971; Sheynikhovich et al. 2009; Robbe and
Buzsáki 2009). This means that itinerant policies may furnish a model of saccadic
eye movements during exploration of visual scenes (Chen and Zelinsky 2006) or
in the context of foraging and spatial exploration. In what follows, we will adopt
the second heuristic and associate the attractors A(a)

i with i ∈ 1, . . . ,K locations in
something like a Morris water-maze (Morris 1984). To emulate conditioned place-
preference (e.g., Seip et al. 2008), we have to augment the itinerant scheme above
(Eq. (9.32)) with physiological states that can moderate the vitiation of rewarding
attractors. For simplicity, we will deal with just four locations and two physiological
states.

9.3.3.2 The Generative Model

The particular policy we will focus on for the remainder of this paper is part of the
following generative model

s = f (v) + ω(v)

ẋ = f (x) + ω(x)

f (v) =
⎡

⎣
x(a)

x′(a)

x(p)

⎤

⎦

f (x) =

⎡

⎢
⎢
⎣

f (a)

f ′(a)

f (p)

f (q)

⎤

⎥
⎥
⎦

=

⎡

⎢⎢
⎣

x′(a)

8(αk − x(a)) − 4x′(a)

θT β(x(a)) − x(p)

θc(x(p)) − 4β(x(a)) − ∑
i x

(q)
i

⎤

⎥⎥
⎦ ⇒ ∇ · f = −4 − 1 − K

βi =
{

0 :|αi − x(a)| ≥ �

1 :|αi − x(a)| < �
cj =

{
0 :x(p)

j ≥ τ

1 :x(p)
j < τ

i ∈ 1, . . . ,K, j ∈ 1, . . . , J, k = arg max
i

x
(q)
i

(9.33)

To complete the specification of this model, we will use the following values (unless
otherwise stated): A sensory log-precision of eight Π(v) = 8 ⇔ ω

(v)
i ∼ N(0, e−8),

a log-precision of four or six on the motion of hidden states: Π(a) = 4, Π(p) = 6,
Π(q) = 4, a spatial threshold of � = 1

8 and a physiological threshold of τ = 1
8 .

The sensory mapping f (v) means that the agent has access to its position and
velocity and (in this example) two physiological states x(p) = [x(p)

1 , x
(p)

2 ]T (e.g.,
blood sugar and osmolarity). The second line describes the policy in terms of for-
mal expectations about the generalised motion of hidden states: The agent assumes
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that it pulled to the location, αk under a degree of friction. This location is the point
attractor αk ⊆ A(a)

k associated with the highest manifold-state. This means we can

regard x
(q)
i as the attractiveness of its corresponding location. The manifold-states

are subject to three influences, the third is just a non-specific return to zero (medi-
ated by the sum over physiological states). The second mediates itinerancy by vitiat-
ing the attractiveness of fixed-points when the agent is in their neighbourhood; i.e.,
|αi −x(a)| < �. The first makes some locations progressively more attractive, when
the cost-function c(x(p)) reports that a physiological state has fallen below thresh-
old, τ = 1

8 . This cost-dependent attractiveness depends on parameters θij that en-
code an association between the j -th physiological-state and the i-th location. These
parameters also mediate an increase in the physiological-state—a reward—when the
location is occupied, as reported by the indicator function β(x(a)). In the absence of
any reward, the physiological states simply decay with first-order kinetics.

These dynamics mean that when a physiological state falls below threshold this
costly state is reported by a (vector) cost-function. This increases the attraction of
locations in proportion to a parameterised association between each location and
the costly physiological state (cf., Drive Reduction Theory; Hull 1943). The at-
tractiveness of the appropriate location increases until it supervenes over remaining
locations, at which point it draws the agent towards it. When the agent is sufficiently
close, the physiological state is replenished and the agent is rewarded. This construc-
tion of interdependent physical, physiological and manifold dynamics ensures that
no physiological state will remain below threshold for long. The ensuing physio-
logical homeostasis depends on physiological imperatives vitiating (non-rewarding)
physical attractors. In the absence of any cost (i.e., all physiological states are above
some lower bound) all locations will compete with each other, until they are all
visited in turn. This is a simple example of a system that shows cost-dependent
heteroclinic channels which, in ethological terms includes both exploration and ex-
ploitation (e.g., Nowak and Sigmund 1993). Note that the divergence of this policy
is a negative constant (see Eq. (9.33)). This means that the self-organising dynamics
conform to the divergence constraint but are mediated by changes in divergence-free
flow.

9.3.3.3 The Generative Process

Hitherto, we have described the policy as if it were a description of a real environ-
ment. However, the policy is just the agent’s fantasy about an unknown environment.
Crucially, this model is can be much more structured than the environment in which
the agent is immersed. The actual generative process we will use can be written as
follows.

f(v) =
⎡

⎣
x(a)

x′(a)

x(p)

⎤

⎦

f(x) =
⎡

⎣
x′(a)

a − 2x(a) − 4x′(a)

θβ(x(a)) − x(p)

⎤

⎦

(9.34)



262 K. Friston

Where ω
(u)
i ∼ N(0, e−16) : u = v, x. Here, the only forces acting upon the agent

are those that it generates itself with action. In other words, although the agent has
a concept of fixed-points to which it is variously attracted, the environment per se
has no such attractors (other than a fixed-point at x = 0). However, a number of the
locations do deliver rewards. The mapping between these locations and the rewards
is encoded by the (unknown) parameters θ ij ∈ {0,1}. These play the same role as
the parameters of the agent’s generative model. If the true parameters and those
used by the agent are the same, then the agent will happily navigate its environment
alternately visiting rewarding locations to replenish its physiology (e.g., eating and
drinking at different locations). However, to achieve this it has to learn the correct
parameters. Crucially, this learning is purely perceptual and driven by the prediction
errors established by conditional expectations about physiological rewards at every
location. This is a key attribute of the current scheme and highlights the critical
role of perceptual learning (parameter optimisation) in acquiring and maintaining
appropriate policies (cf., conditioned place-preference in animal studies; Seip et al.
2008). We will return to this in the last section.

In summary, we have described an itinerant policy in terms of a generative model
that prescribes the motion of physical and physiological states and how they cou-
ple to each other. Under active inference, this policy will enslave action to fulfil
implicit prior expectations, under the constraints afforded by the real generative
process in the environment. To illustrate this, we integrated the differential equa-
tions describing active inference from the first section, using the generative process
and model above (Eqs. (9.33) and (9.34)). In this example, we used the correct
mapping between rewards and locations (θij = θ ij ) such that the first location (up-
per right) replenished the first physiological state and the second location (lower
left) replenished the second physiological state. The resulting behaviour is shown
in Fig. 9.4. The upper left panel shows the predicted sensory input and its associ-
ated prediction errors (dotted red lines). This sensory input corresponds to the po-
sition and motion of the agent in two dimensions and the two physiological states.
The underlying conditional expectations of these hidden states, which include the
manifold-states, are shown on the upper right. The corresponding physical trajec-
tory is shown on the lower left superimposed on the four attractor locations (cyan
circles). This trajectory was driven purely by active inference, with the action con-
trolling forces in two dimensions (shown in the lower right panel). The trajectory
here shows that the two rewarding locations (upper right and lower left) are visited
most frequently, with occasional excursions to the remaining two locations. The
numbers by each location represent the percentage of time spent within � = 1

8 of
the location.

Figure 9.5 provides a more detailed description of the conditional expectations
about the physiological and manifold (internal) states in the upper panel and the
true physiological states in the lower panels. The upper panel shows the expected
physiological states (solid lines) and the manifold-states (broken lines). The key
thing to take from these time courses is the recurrent build-up and self-destruction of
manifold-states, as each attracting fixed-point is visited and consequently rendered
less attractive. Crucially, the attractors delivering rewards become more attractive
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Fig. 9.4 Conditional expectations and behaviour under an itinerant policy. The upper right panel
shows the conditional expectations of hidden states, while the upper left panel shows the corre-
sponding predictions of sensory input (solid lines) and prediction errors (dotted red lines). Action
tries to suppress these prediction errors and is shown on the lower right. These action variables
exert forces in two orthogonal directions to produce the movements shown on the lower left. The
ensuing path is shown as a continuous blue line, where each dot represents a single time bin in the
simulations. The cyan circles represent the four attractors used in this itinerant policy. It can be
seen that most of the time is spent at the two locations that supply physiological rewards: 23% for
the first (upper right) and 30% for the second (lower left)

after the physiological state falls below some threshold (red dotted line in all panels).
This ensures that the physiological states are lower bounded as seen in the lower
left panel. This shows the first (blue) and second (green) levels of the physiological
variable as a function of time. It can be seen that whenever the level falls below
threshold, the values are replenished rapidly by a visit to the appropriate attractor.
The same data are shown on the lower right. Here the two physiological states have
been plotted against each other to show how they are always (jointly) above or near
threshold.

These simulations were integrated as described in Appendix B and (Friston et
al. 2010) using log-precisions of eight and four on the sensory input and motion of
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Fig. 9.5 This figure provides a more detailed description of the conditional expectations of the
physiological (and manifold) states in the upper panel and the true physiological states in the
lower panels. The upper panel shows the expected physiological states (solid lines) and the mani-
fold-states (broken lines). The key thing to take from these dynamics is the recurrent build up and
autovitiation of manifold-states, as each attracting fixed-point is visited and consequently rendered
unattractive. Crucially, the attractors delivering rewards become more attractive after the physi-
ological state falls below some threshold (red dotted lines in all panels). This ensures that the
physiological states are lower bounded, as shown in the lower left panel. This shows the levels
of first (blue) and second (green) physiological variables as functions of time. It can be seen that
whenever the level falls below threshold, the values are rapidly replenished by a visit to the ap-
propriate attractor. The same data are shown on the lower right. Here, the two physiological states
have been plotted against each other to show how they are always (jointly) above or near threshold

physical states, respectively. These values are crucial for implementing any policy,
as we will see in the next section, where we use low and high precisions to simulate
pathological behaviour.
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9.3.4 Summary

This section has focused on plausible forms for the motion of hidden states in gen-
erative models of the world. These forms correspond to formal priors or policies,
which themselves have been optimised (by evolution in a biological setting). We
have introduced the distinction between fixed-point and itinerant policies. Fixed-
point policies (from optimal control theory and reinforcement learning) can be elab-
orated using an equilibrium perspective on abstract models of state-space, under
constraints on divergence-free flow (the curl-constraint). When this constraint is
satisfied, the scalar-potential guiding flow becomes a Lyapunov function and the
(log of the) equilibrium density; that is, value. Conversely, itinerant policies are
called for when one partitions hidden states into those that can be controlled di-
rectly and those which cannot. Both fixed-point and itinerant policies must conform
to a divergence-constraint, in that the flow at low-cost points of the equilibrium den-
sity must have negative divergence. Furthermore, both sorts of policies rest upon the
destruction or vitiation of costly fixed-points (either directly by making divergence
or value depend on cost or indirectly using cost-dependent autovitiation). The no-
tion of vitiating attractors to create itinerant dynamics along heteroclinic channels
can be exploited in itinerant policies using fairly simple schemes. We have seen an
example of one such scheme that will be used in the next section to study some of
its key modes of failure.

If you have got this far through the arguments then you must either be very inter-
ested, or an editor (or both). Furthermore, you may be thinking “this is all plausible
but its just common sense dressed up in the rhetoric of dynamical systems”. In one
sense this is true; however, it is worth reflecting on what has been achieved: We now
have a model of exploratory behaviour and conditioned place-preference that is de-
tailed to the level of forces, friction and physiology, using neurobiologically tenable
computations. Furthermore, at no point did we need to invoke any (abstract) rein-
forcement learning scheme: the only learning required is conventional associative
plasticity that is an integral part of perception. In the final section, we will use this
model to see how abnormal perceptual inference and learning can have profound
effects on behaviour.

9.4 Pathological Policies

In this section, we provide some simple case studies, using simulations to show how
behaviour breaks down when perception is suboptimal. Specifically, we will look at
the effect of changing the precision of random fluctuations on the hidden states. This
may seem a rather arbitrary target for simulated lesions; however, there are some
key reasons for starting here. Up until now, we have treated the precisions as known
quantities. In more general treatments they are optimised using update or recogni-
tion schemes that are not dissimilar to those used for perceptual learning (see Fris-
ton 2008). This optimisation of the precisions corresponds to optimising uncertainty



266 K. Friston

about prediction errors and the consequent predictions. As noted in the first section,
precision may be encoded in the post-synaptic gain of prediction error units. The
most likely candidates for these prediction error units are the principal (superficial
pyramidal) cells originating forward connections in the cortex (see Friston 2008). In
the present context, an important determinant of post-synaptic gain is classical neu-
romodulation. For example, changes in post-synaptic sensitivity due to the effect
of dopaminergic or cholinergic neurotransmission on slow conductances following
depolarisation. This premise is important in terms of clinical neuroscience because
the vast majority of neuropsychiatric disorders are associated with abnormalities in
neuromodulatory neurotransmission at one level or another (e.g., Liss and Roeper
2008; Goto et al. 2010). Indeed, the very fact that most psychotropic treatments
target these systems testifies to this fact. Furthermore, the drugs most commonly
associated with addictive behaviour affect dopaminergic and related classical neu-
romodulatory systems:

The mesocorticolimbic dopamine (DA) system comprises DA producing cells in
the ventral tegmental area (VTA) of the midbrain and projects to forebrain struc-
tures including the nucleus accumbens (NAcc), medial prefrontal cortex (mPFC)
and amygdala. It is generally thought that this system evolved to mediate be-
haviours essential for survival (Kelley and Berridge 2002; Panksepp et al. 2002)
and that it plays an essential role in mediating biological incentives. Acute exposure
to all drugs of abuse directly or indirectly increases DA neurotransmission in the
NAcc and repeated drug exposure results in enduring changes in mesocorticolim-
bic brain regions (Berke and Hyman 2000; Henry and White 1995; Nestler 2005;
Pierce and Kalivas 1997). These drugs include psychostimulants (e.g., cocaine,
amphetamine and its derivatives methamphetamine and methlyenedioxy metham-
phetamine), opiates (e.g., heroin and morphine) and other common drugs of abuse
(e.g., alcohol and nicotine). Psychostimulants act directly on dopaminergic termi-
nals in the NAcc (Khoshbouei et al. 2003), while opiates act indirectly by inhibiting
GABAergic neurons in the VTA with disinhibition of DA neurons.

In what follows, we will repeat the simulations of the previous section but using
suboptimal low and high levels of precision on the motion of hidden states. This
produces two characteristic failures of behaviour and learning that map, roughly,
onto the psychomotor poverty and bradykinesia associated with Parkinson’s disease
on the one hand and stereotyped perseverative behaviours that are reminiscent of
addiction on the other. We first consider the affect of reducing precision.

9.4.1 Simulating Parkinsonism

In the first simulations, we will look at the effects of reducing precision on the mo-
tion of hidden states. This can be seen as a crude model of neurodegeneration in
ascending dopaminergic systems, which would reduce synaptic gain and precision
Π̃(i,u) in Eq. (9.17). To simulate this reduction, we repeated the foraging simulations
above, using progressively lower levels of precision on the motion of physical states:
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Π(a) ∈ 4,2,0. The results of these simulations are shown in Fig. 9.6, in terms of the
trajectories in physical subspace (left panels) and the physiological subspace (right
panels). It is immediately obvious that the accuracy and speed of locomotion is im-
paired, with a progressive failure to hit the targets and pronounced over-shooting.
The physiological sequelae of this impaired behaviour are shown in terms of a pro-
gressive failure to keep the physiological states above threshold. Indeed, in the lower
right panel, the physiological states are sometimes close to zero.

The reason for this loss of control is simple. Action is driven by sensory predic-
tion errors (see Eq. (9.19)). These prediction errors depend upon precise predictions.
If the precision or certainty about the inferred motion of hidden states falls, more
weight is placed on sensory evidence. Heuristically, a low precision on the empirical
priors afforded by the motion of hidden states means that conditional predictions are
based upon sensory evidence. Because action tries to reduce prediction errors it now
depends more on what is sensed, as opposed to what is predicted. In the absence of
precise predictions, the agent will simply stop moving. We can see the beginnings
of this motor poverty in Fig. 9.6 (lower panels), where the forces exerted by action
are attenuated, resulting in trajectories with a much lower curvature. If we continued
reducing the level of precision (cf., dopamine), the agent would ultimately become
akinetic. We have illustrated this behaviour in a variety of simulations previously,
for example, the same behaviour can be elicited using the mountain car example in
Fig. 9.3, as shown in Friston et al. (2010).

Figure 9.7 shows the action and underlying sensory prediction errors associated
with the trajectories in Fig. 9.6. The action (in both directions) is shown as a function
of time in the left panels. The right panels show the corresponding prediction error
on the four physical states (position and velocity in two directions). The key thing to
take from these results is the progressive reduction in the amplitude of action due to
an underlying fall in the amplitude of sensory prediction errors. This leads to smaller
forces on the physical motion of the agent and the bradykinesia seen in Fig. 9.6. The
progressive reduction in sensory prediction errors reflects a loss of confidence (pre-
cision) in top-down prior expectations about movement, which would normally sub-
tend itinerant behaviour. This example is used to highlight the key role of precision,
especially the precision of predictions about the motion of hidden states. If these
predictions become less precise, they have less influence, relative to sensory infor-
mation and consequently exert less influence over action. In this view, pathologies
that involve a loss of neuromodulation can be regarded as subverting the potency of
empirical prior expectations that maintain adaptive behaviour.

9.4.1.1 Summary

In summary, we have seen how perceptual synthesis plays a crucial role in provid-
ing predictions that action can fulfil. However, if these predictions are under confi-
dent, they will fail to elicit sufficient sensory prediction errors to engage behaviour.
A key mechanism, by which conditional confidence can be undermined, is false in-
ference about the amplitude of random fluctuations on hidden states. This leads to
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Fig. 9.6 This figure shows the (true) trajectories and resulting physiological states (using the same
format as Figs. 9.4 and 9.5) for different levels of precision on the motion of physical states (i.e.,
position and velocity). The top row shows normal behaviour elicited with a log-precision of four.
The remaining two rows show progressive pathology in behaviour, when using log-precisions of
two and zero, respectively. The left panels show deterioration of the trajectories, with a generalised
slowing of movements and a loss of accuracy, when locating the target (attracting fixed-points).
This slowing is reflected in the number of times a target is visited. This is indicated in the right
panels by the dotted lines, which report the distance from the centre. In an extreme case (log-preci-
sion of zero), only one definite movement has been emitted in the 128 second simulated exposure.
These simulations are meant to reproduce the characteristic psychomotor slowing, bradykinesia
and loss of fine movement control associated with Parkinsonism due to neurodegeneration or psy-
cholytic therapy
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Fig. 9.7 This figure reports the action and underlying sensory prediction errors associated with
the trajectories in the previous figure. The action (in both directions) is shown as a function of time
in the left column, while the right column shows the corresponding prediction error on the four
physical states (position and velocity in two directions). The key thing to take from these results is
the progressive reduction in the amplitude of action due to an underlying fall in the amplitude of
sensory prediction errors. This leads to smaller forces on the physical motion of the agent and the
bradykinesia seen in the previous figure. The reduction in sensory prediction error reflects a loss of
confidence (precision) in top–down prior expectations about movements, which would normally
subtend itinerant activity
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the adoption of pathologically low precision on internal prediction errors that may
be associated with the failure of synaptic gain control associated with Parkinson-
ism (e.g., Zhao et al. 2001). In this context, impaired inference about proprioceptive
states translates into a failure of motor intention. This mechanism also sits com-
fortably with the role of substantia nigra-amygdala connections in surprise-induced
enhancement of attention in the perceptual domain: Lesion studies in rats (Lee et al.
2006) show that these connections are “critical to mechanisms by which the coding
of prediction error by midbrain dopamine neurons is translated into enhancement of
attention and learning modulated by the cholinergic system”. Furthermore, low dose
apomorphine, which is thought to inhibit DA release by activating pre-synaptic DA
autoreceptors, decreases the frequency of itinerant behaviours (e.g., Niesink and Van
Ree 1989). Interestingly, increasing precision has relatively little effect on percep-
tual inference and the attending behaviour; however, it can have a profound effect on
perceptual learning. We consider this in the next section, where we ask what would
happen if the precision or gain was too high? Here, the consequences are expressed
less in terms of locomotion but more in terms of deleterious effects on perceptual
learning that determines the organisation of behaviour.

9.4.2 Simulating Addiction

Hitherto, all our simulations have assumed the agent has learned the association
between the locations in its environment and the physiological rewards available.
These are encoded by the parameters θij ∈ ϕ in the generative model. In the final
simulations, we study how these associations can be acquired and the effects of
increasing precision (e.g., dopamine) on this learning.

9.4.2.1 Normal Learning

To study the effects of learning, we changed the reward contingencies by moving
the reward usually available at the second location (lower left) to the third location
(upper right). This presents an interesting problem under active inference, because
action fulfils expectations and the agent expects to be rewarded at the first and sec-
ond location. It must now undo this association to discover something unexpected,
while acting to fulfil its expectations. Itinerant policies meet this challenge easily
because, by their construction, they explore all putative reward locations in an itin-
erant fashion. In brief, the itinerant policy means the agent expects to visit most
states at some point and therefore its behaviour will follow suit. This ensures that
new associations between the physical and physiological dynamics are encountered
and remembered, through optimisation of the parameters encoded by connection
strengths (synaptic efficacy). An illustration of perceptual learning under an itiner-
ant policy is shown in Fig. 9.8. This summarises the results of perceptual learning
after 128 seconds of exploration, following a switch in the location of the second
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Fig. 9.8 This figure summarises the results of perceptual learning after 128 seconds of exploration,
following a switch in the location of the second reward. This location was switched from the lower
left to the upper left attractor. The upper panel shows the parameter expectations (grey bars) and
the 90% conditional confidence intervals (red lines). The eight parameters constitute the matrix
of coefficients θ that associate the two rewards with the four attracting locations. Before learning,
rewards were available at the first and second locations (corresponding to parameters one and
six). The switch of the location of the second reward corresponds to re-setting the sixth parameter
from one to zero θ22 → 0 with a complimentary increase in the seventh parameter from zero to
one θ23 → 1. The top panel shows that the true values are contained within the 90% confidence
intervals and a degree of ‘reversal learning’ has occurred (arrows above the parameters in dark
gray). The corresponding behaviour (before and after learning) is shown in the lower panels (left
and right respectively), using the same format as in previous figures. Before learning, the old and
new locations of the second reward were visited 30% and 9% of the time respectively. Conversely,
after learning this ratio reversed, such that the newly rewarded location is now visited 20% of the
time

reward. This can be regarded as a simulation of reversal learning, in the context
of conditioned place-preference (McDonald et al. 2002). The reward location was
switched from the lower left to the upper left. The upper panel shows the parameter
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expectations (grey bars) and the 90% conditional confidence intervals (red bars). It
should be noted that these confidence intervals (which are based upon the condi-
tional precisions in Eq. (9.6)), are not represented explicitly by the agent. However,
they provide a useful measure of the implicit certainty the agent has in its expec-
tations about causal structure in its world. The eight parameters correspond to the
matrix of coefficients θ ∈ ϕ that associate the two rewards with the four attracting
locations. Before learning, rewards were available at the first and second locations
(corresponding to parameters one and six). The switch of the location of the sec-
ond reward to the third location corresponds to a reduction in the sixth parameter
θ22 (from one to zero) and a complimentary increase in the seventh parameter θ23
(from zero to one). The top panel shows that the true values are contained within
the 90% confidence intervals and a degree of reversal learning has occurred. The
corresponding behaviour before and after learning is shown in the lower panels (left
and right, respectively). Before learning, the old and new locations of the second
reward were visited 30% and 9% of the time, respectively. After learning, this ra-
tio has reversed, such that the newly rewarded location is now visited 20% of the
time. Note that there is no imperative to spend all the time at a rewarding loca-
tion; just to emit a sufficient number of visits to ensure the physiological states
do not fall to very low levels (data not shown). This learning occurred with a log-
precision on the motion of the physiological states of four; Π(p) = 4. Next, we ex-
amine what happens with inappropriately high levels of precision on physiological
kinetics.

9.4.2.2 Pathological Learning

We repeated the above simulations but using a pathologically high level of precision
that can be thought of (roughly) as a hyper-dopaminergic state. The motivation for
this is based on the fact that most addictive behaviours involve taking drugs that
cross the blood/brain barrier and augment neuromodulatory transmission. For ex-
ample, acute exposure to psychostimulants increases extracellular DA levels in the
NAcc and this increase is significantly enhanced after repeated exposure; due to in-
creased activity of DA neurons and alterations in DA axon terminals (Pierce and
Kalivas 1997). Although a very simplistic interpretation of addiction, we can asso-
ciate increases in extracellular DA levels with an increase in precision. Intuitively
speaking, this means the agent becomes overly confident about its internal predic-
tions, in relation to the sensory evidence encountered. So what effect will this have
on learning?

Figure 9.9 reports the results of simulated learning under increasing levels of log-
precision on the motion (kinetics) of the physiological states. The left panels show
the corresponding behaviour using the same format as in previous figures. The right
panels show the conditional expectations and confidence following a 128 second
exposure to the environment, after the location of the second reward was switched.
The first row reproduces the results of Fig. 9.8 showing veridical, if incomplete,
reversal learning (a decrease in parameter six and an increase in parameter seven).
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Fig. 9.9 This figure reports the results of simulated learning under increasing levels of log-pre-
cision on the motion or dynamics of the two physiological states. The left column shows the cor-
responding trajectories using the same format as in previous figure. The right column shows the
conditional expectations and confidence intervals following 128 second exposure to the environ-
ment, after the location of the second reward had been switched. These use the same format as the
upper panel of the previous figure. The first row reproduces the results of Fig. 9.8 showing veridi-
cal, if incomplete, learning of the switched locations (a decrease in parameter six and an increase
in parameter seven). This reversal learning is partially (middle row) and completely (lower row)
blocked as log-precision increases from four to eight and from eight to twelve. The failure to learn
the change in the association between locations and rewards is reflected in the occupancy of the
corresponding locations. For example, the newly rewarding location (upper left) is visited on 20%,
13% and 8% of the time as precision increases and learning fails

This learning is partially (middle row) and completely (lower row) blocked as the
log-precision increases from four to eight and from eight to twelve. The failure to
learn the change in the association between locations and rewards is reflected in the
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occupancy of the corresponding locations. For example, the newly rewarding loca-
tion (upper left) is visited on 20%, 13% and 8% of the time, as precision increases
and learning fails. There is a concomitant retention of place-preference for the previ-
ously rewarded location (lower left). The reason for this failure of reversal learning
and consequent failure to adaptively update place-preference is reflected in the con-
ditional confidence intervals on the parameters. These reveal a progressive reduction
in conditional uncertainty (increase in conditional precision), which interferes with
learning. The mechanism of this interference is quite subtle but illuminating: Re-
call from Sect. 9.2 (Eq. (9.18)) that learning (associative plasticity) is driven by the
appropriate prediction error, here prediction errors about the motion or changes in
physiological states. These are extremely sensitive to the assumed precision about
fluctuations in these states as shown in the next figure:

Figure 9.10 shows the conditional expectations or predictions about the motion
of physiological states and their associated prediction errors (left and right columns,
respectively). The upper rows correspond to a roughly optimal log-precision of
four, while the middle and lower rows show the results for pathologically high log-
precisions (cf. hyper-dopaminergic states) of 8 and 12, respectively. The correspond-
ing increase in precision means that the conditional representations of changes in
physiological state (here the second physiological variable) are over confident and,
in extreme cases, a fantasy. This is shown in the left panels in terms of the con-
ditional expectations (solid lines) and the true changes (dotted lines). These are in
good agreement for appropriate levels of precision but not at high levels of preci-
sion (see lower row). When precision is very high, the agent expects to be rewarded
when it visits the old location. This expectation is so precise that it completely ig-
nores sensory evidence to the contrary. These false predictions are reflected in a
progressive fall in prediction error (see right column); such that, at high levels of
precision, there is no prediction error when there should be. For example, look at
the prediction error at around 20 seconds, when the second reward is elicited for
the first time. In summary, a high precision leads to over confident inference about
the states of the world and their motion, which subverts appropriate prediction er-
rors and their ability to drive associative plasticity. This leads to false expectations
about exteroceptive and interoceptive signals and a consequent failure of active in-
ference (behaviour). This example highlights the complicated but intuitive interplay
between perceptual inference, learning and action.

9.5 Discussion

In summary, we have seen how inappropriately high levels of precision in gener-
alised predictive coding schemes can lead to false, over confident, predictions that
do not properly reflect the true state of the world. This leads to an inappropriately
low expression of prediction errors signalled, presumably, by (superficial pyrami-
dal) principal cells in the cortex and a concomitant failure of associative plasticity
in their synaptic connections. This failure to learn causal contingencies or asso-
ciations in the environment results in maladaptive ‘place-preferences’ as reflected
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Fig. 9.10 This figure shows the conditional expectations or predictions about the motion of phys-
iological states and their associated prediction errors (left and right columns, respectively). The
upper rows correspond to a roughly optimal log-precision of four, while the middle and lower rows
show the results for pathologically high log-precisions (cf., hyper-dopaminergic states) of eight
and twelve, respectively. The increase in precision means that the conditional representations of
changes in the physiological state (here the second physiological variable) are overconfident and,
in extreme cases, illusory. This is shown in the left panels in terms of the conditional expectations
(solid lines) and the true changes (dotted lines). These are in good agreement for appropriate levels
of precision but represent a ‘fantasy’ at very high levels of precision (see lower row). These over-
confident predictions are reflected in a progressive fall in prediction error (see right column), such
that, at high levels of precision there is no prediction error when there should be. In short, a high
precision leads to overconfident inference, which subverts appropriate prediction errors and their
ability to drive associative plasticity



276 K. Friston

in the ensuing perseverative behaviour. This may represent one way in which ad-
dictive behaviour could be understood. The implicit explanation for why high lev-
els of precision are maintained in addictive (preservative) behaviour rests upon the
assumption that the behaviour per se results in the brain adopting inappropriately
high levels of precision. Neurobiologically speaking, this translates into inappro-
priately high levels of post-synaptic gain in specific neuronal populations. This is
consistent with the action of nearly all known drugs of abuse, which affect the
mesocorticolimbic dopamine system. Clearly, there can be many ways in which
to associate dopaminergic and other neuromodulatory mechanisms with the various
parameters and states of predictive coding models. We have chosen to focus on the
role of classical neuromodulators in optimising the sensitivity or gain of cells and
have equated this with the brain’s representation of the precision of random fluc-
tuations in the environment: in other words, a representation of uncertainty. This
is certainly consistent with some electrophysiological interpretations of dopamin-
ergic firing, in which phasic dopamine release may represent reward prediction
error per se and sustained or tonic firing represents the level of uncertainty (Fio-
rillo et al. 2003). For example, prediction error on the physiological states could
be encoded by phasic discharges in the dopaminergic system, whereas the post-
synaptic gain of DA error units may be influenced by (or cause) tonic discharge
rates.

Traditionally, midbrain dopamine neurons in the substantia nigra and ventral
tegmental area (VTA) are thought to encode reward prediction error (Montague et
al. 1996; Schultz et al. 1997; Schultz 1998; Salzman et al. 2005). Activity in these
neurons reflects a mismatch between expected and experienced reward that emulates
the prediction errors used in (abstract) value-learning theories (Friston et al. 1994;
Montague et al. 1996; Sutton and Barto 1981). Indeed, aberrant reward predic-
tion error accounts have proposed for addictive behaviour (Lapish et al. 2006;
Redish 2004) and the maintenance of maladaptive habits (Takahashi et al. 2008).
However, recent studies suggest a diverse and multilateral role for dopamine that
is more consistent with encoding the precision of generalised prediction errors
in the predictive coding sense (as opposed to reward prediction errors in particu-
lar). For example, punishment prediction error signals (Matsumoto and Hikosaka
2009) and mismatches between expected and experienced information (Bromberg-
Martin and Hikosaka 2009) may be encoded in distinct anatomical populations
of midbrain dopamine neurons. Furthermore, the timing of reward-related sig-
nals in VTA precludes the calculation of a reward prediction error per se (Red-
grave and Gurney 2006) and may report a change in the certainty about sensory
events, via cholinergic input from the pedunculopontine tegmentum (Dommett et
al. 2005). Similarly, violations of perceptual expectations engage hippocampal pro-
jections to the VTA, which modulate a broad population of dopamine neurons
(Lodge and Grace 2006). Human studies with functional neuroimaging suggest
that the ventral striatum responds to non-rewarding, unexpected stimuli in propor-
tion to the salience of the stimulus (Zink et al. 2006), as well as to novel stim-
uli (Wittmann et al. 2007). One of the proposed functions of these striatal re-
sponses is to reallocate resources to unexpected stimuli in both reward and non-
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reward contexts (Zink et al. 2006). Hsu et al. (2005) show that “the level of am-
biguity in choices correlates positively with activation in the amygdala and or-
bitofrontal cortex, and negatively with a striatal system” and interpret their find-
ings in terms of a “neural circuit responding to degrees of uncertainty, contrary to
decision theory”. These results suggest that rather than just coding reward predic-
tion errors, the striatum may have a more general role in processing salient and
unexpected events, under varying degrees of ambiguity or uncertainty (precision).
In summary, the mesocorticolimbic dopamine system may encode numerous types
of expectation violations associated with a change in the precision of top-down
predictions and ensuing prediction errors (see also Schultz and Dickinson 2000;
Fiorillo 2008).

Perhaps one thing to take from these considerations is the complex but intu-
itive interplay between the many variables that need to be encoded by the brain for
optimal behaviour. This means that it may not be easy, given the present state of
knowledge, to associate the algorithmic components of optimal schemes with spe-
cific neurotransmitter systems or their kinetics. Having said this, there are obvious
commonalities between the dynamical simulations presented above and the more
abstract formulations that rest on things like the Rescorla-Wagner model (Rescorla
and Wagner 1972) and dynamic programming. All these formulations highlight the
importance of prediction error on physiological states normally associated with re-
ward. This has been nuanced in the current formulation by a focus on the precision
of this prediction error as opposed to the prediction error per se. As we have noted
previously, it may be that dopamine does not encode the prediction error on value
but the value (precision) of prediction error. The motivation for this perspective rests
on the empirical observations discussed above and, more theoretically, on symmetry
arguments that place precision centre-stage in terms of amplifying expected actions
and percepts. This bilateral role of neuromodulation to select actions and precepts
maps nicely to a role for post-synaptic gain in intention and attention. In short, we
may be looking at the same mechanism but implemented in different parts of the
brain.

9.6 Conclusion

In this chapter, we have tried to cover the fundaments of adaptive behaviour starting
from basic principles. We have used the imperative for biological systems to resist
an increase in their entropy to motivate a free-energy principle that explains both
action and perception. When this principle is unpacked, in the context of generative
models the brain might use, we arrive at a fairly simple message-passing scheme
based upon prediction errors and the optimisation of their precision by synaptic
gain. We then considered generic forms that these models might possess, where the
form itself entails prior expectations about the motion of hidden states in the world
and, through active inference, behaviour. We considered fixed-point policies of the
sort found in psychology and optimal control theory. We then proceeded to itinerant
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policies that have a more dynamic and ethologically valid flavour. The notion of
itinerant policies, when combined with active inference, provides a rich framework
in which to understand many aspects of behaviour. We have focused on changes
in behaviour following a down-regulation or up-regulation of the precision, under
which perceptual inference and learning proceeds. This was motivated by the psy-
chopharmacology of addiction, which almost invariably involves some change in
dopaminergic neurotransmission and, from an algorithmic perspective, the optimi-
sation of precision in the brain. The results of these simulations suggest plausible
explanations for bradykinetic and addictive behaviour that rest upon impaired infer-
ence and learning respectively. Both the functionalist perspective afforded by this
analysis and the putative neurobiological mechanisms fit comfortably with many
known facts in addiction research. However, a specific mapping between functional
architectures of the sort considered here and the neurobiology of addiction clearly
requires more work. Although an awful condition from a clinical point of view, ad-
diction may be nature’s most unique and pervasive psychopharmacological experi-
ment, in which complex behaviour confounds the elemental (synaptic) mechanisms
upon which it rests.

Acknowledgements The Wellcome Trust funded this work and greatest thanks to Marcia Ben-
nett for helping prepare this manuscript.

Appendix A: Parameter Optimisation and Newton’s Method

There is a close connection between the updates implied by Eq. (9.9) and Newton’s
method for optimisation. Consider the update under a local linearisation, assuming
Lϕ ≈ Fϕ

�μ̃(ϕ) = (
exp

(
t�(ϕ)

) − I
)�(ϕ)−1 ˙̃μ(ϕ)

˙̃μ(ϕ) =
[

μ′(ϕ)

−Lϕ − κμ′(ϕ)

]

�(ϕ) = ∂ ˙̃μ(ϕ)

∂μ̃(ϕ)
=

[
0 I

−Lϕϕ −κ

]
(A.1)

As time proceeds, the change in generalised mean becomes

lim
t→∞�μ̃(ϕ) = −�(ϕ)−1 ˙̃μ(ϕ) =

[
�μ(ϕ)

�μ′(ϕ)

]
= −

[
L−1

ϕϕLϕ

μ′(ϕ)

]

�(ϕ)−1 =
[−κL−1

ϕϕ −L−1
ϕϕ

I 0

] (A.2)

The first line means the motion cancels itself and becomes zero, while the change
in the conditional mean �μ(ϕ) = −L−1

ϕϕLϕ becomes a classical Newton update.
The conditional expectations of the parameters were updated after every simulated
exposure using this scheme, as described in Friston (2008).
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Appendix B: Simulating Action and Perception

The simulations in this paper involve integrating time-varying states in the envi-
ronment and the agent. This is the solution to the following ordinary differential
equation

u̇ =
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⎥⎥⎥
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(B.1)

To update these states we use a local linearisation; �u = (exp(�t�) − I )�(t)−1u̇

over time steps of �t , where � = ∂u̇/∂u is evaluated at the current conditional
expectation (Friston et al. 2010).
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Chapter 10
Toward a Computationally Unified
Behavioral-Economic Model of Addiction

E. Terry Mueller, Laurence P. Carter, and Warren K. Bickel

Abstract This chapter describes an instance of computational constructionism ap-
plied to the understanding of drug addiction. Rather than devising models of increas-
ingly smaller anatomical, physiological or chemical units of analysis, the practice
exposited here was to expand the integrative scope of behavioral-economic con-
cepts that have been used to describe addiction phenomena. We discussed (a) ex-
cessive and persistent consumption of substances, as studied in analysis of demand;
and (b) concurrent-choice preference for immediate small and unhealthy reinforcers
over delayed but large and healthy reinforcers, and reversals of preference between
this two types of alternatives, as studied in the science of delay discounting. While
all of these phenomena are characteristic of addiction, it is remarkable how sel-
dom concepts for explaining (a) appear in scientific reports on (b). The notion of
expanding the scope of an explanatory concept is introduced via consideration of
the concept of unit price. This concept integrates numerous variables traditionally
studied in isolation in addiction research, and provides the basis of more general
and parsimonious explanations of addiction phenomena. The scope of the unit price
concept is further expanded, as it plays a role in a computational formulation de-
scribing choice among, and reversals of preference between, concurrently available
reinforcers, which are very complex aspects of behavior that are fundamental to
addiction phenomena. Lastly, we discuss computational implications and cautions,
and scientific and practical prospects that derive from the exercise of expanding the
integrative scope of the unit price concept to a broader and more complex range of
addiction phenomena. Future developments along these lines are expected to pro-
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duce constructs with which preferences exhibited by drug-dependent individuals
may be predicted more accurately, and may be therapeutically modified.

10.1 Introduction

“Another and less obvious way of unifying the chaos is to seek common
elements in the diverse mental facts rather than a common agent behind them,
and to explain them constructively by the various forms or arrangements of
these elements as one explains houses by stones and bricks.”

William James (James 1918, p. 1)

The scientific study of addiction presents an interesting and complex set of chal-
lenges. One important source of those challenges is the nature of the paradigms
employed by the scientific disciplines addressing this disease. As with most other
sciences, the science of addiction largely follows the reductionist paradigm and
program. The central notion underlying reductionism is that complex whole re-
sults may be understood by studying smaller and smaller components or ele-
ments of the larger phenomena (Skurvydas 2005; Soto and Sonnenschein 2005;
Strange 2005). Given the remarkable productivity of this approach, it is likely to
remain the dominant paradigm for some time.

One result of the reductionist approach is a continual increase in the number of
research reports published. However, this productivity might have an unintended
and troubling consequence; namely, to sustain their viability in a discipline, scien-
tists are compelled to learn more about increasingly smaller components of their
primary phenomena. Said another way, they need to know more and more about
less and less. A potential consequence of this specialization is the formation of in-
tellectual silos where new knowledge fails to be communicated and disseminated
outside of the relatively small community investigating that particular level of the
phenomenon. These intellectual silos are not a problem if the “cause” of the disease
the investigators wish to abate will become evident at some progressively finer level
of analysis (Evans 2008). However, if understanding the causes of a disease will
benefit from or even require the integration of multidisciplinary areas of research,
then the reductionist program is at risk of missing the important commonalities and
relationships between different aspects of the disease process.

In this chapter, we take an approach that is antithetical to the dominant reduction-
ist paradigm; our paradigm could perhaps be called computational constructionism.
Our specific goal, which is consistent with many other computational approaches,
is to build a more comprehensive model by integrating seemingly distinct aspects of
the addiction phenomenon, and with the resulting model, generate testable hypothe-
ses regarding the underlying mechanisms of, and potential treatments for, addiction.

Although consistent with the goals of other computational approaches to mod-
els of addiction, the focus of this chapter can be distinguished by the level of ob-
servation at which the computational formulae are descriptive. Rather than defin-
ing addiction by modeling, for example, a neurobiological component based on
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dopamine to explain the observed behavioral components of addiction, the alter-
native approach used here will address and model the behavior of the individual in-
tact organism. We also try to avoid defining addiction via diagnostic criteria and/or
statistically-codified symptoms of addiction. Instead, we portray addiction as a re-
sult of multiple behavioral processes that have been well-described and empirically
supported by behavioral-economic studies of addicted individuals. Behavioral eco-
nomics is an empirical analytical discipline in which much research on the variables
controlling individuals’ consumption of drug and non-drug commodities has been
explored and computationally described.

Behavioral economics is the study of consumption, conceptualized as decision-
making within an economic framework (Bickel and Christensen 2010) which ap-
plies constraint to consumption. Behavioral economics has shown that rational-
ity in decision making, often assumed in classical economics, is bounded; that is,
consumers’ decisions are constrained by several limitations, and these limitations
change the definition of what is “rational” behavior as compared to classical eco-
nomic definitions. The concepts from behavioral economics that are the foci of this
chapter are: (a) unit price and associated concepts of demand curve analysis; and
(b) delay discounting and related concepts involving inter-temporal choice. These
two groups of concepts (discussed below in detail) are well described computation-
ally. They comprise two sets of principles that have been developed in research
domains largely distinct from each other, although they both have been used to
compare and contrast the behavior of drug-dependent individuals with that of peo-
ple who are not drug-dependent (see Bickel et al. in press, for a review). Despite
commonalities of subject matter and similarities in ostensible description (both ap-
proaches are called “behavioral economics”), the procedures, analyses, and findings
of the two approaches have yet to be integrated into a single computational frame-
work, despite calls for such integration (Epstein et al. 2010). The aim of this chapter
is to move toward a more unified approach to studying the phenomena of addiction
by starting with the behavior of the drug-dependent individual. Such an approach is
complementary to neuroscience research and computational modeling and is likely
to inform our understanding of addiction at the neuroscientific level.

10.2 Behavioral Economics of Addiction I: Basic Demand Curve
Analysis

Drugs are consumable commodities: there are differences in the vigor with which
different drugs are consumed and with which different individuals consume them,
and their consumption is sensitive to differential levels of constraint in the form of
prices. In this section, these features of drugs as commodities are discussed as they
are revealed in demand curve analysis. In economic terms, the relationship between
consumption of a commodity and its price is referred to as demand, and this rela-
tionship is portrayed in a demand curve. In other words, the demand curve is the
result of plotting the amount of consumption as a function of commodity price. The
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Fig. 10.1 Two hypothetical demand curves depicting drug consumption. Consumption is a con-
tinuous variable generalized from discrete measurements, and it is plotted as a function of price
values generalized from discrete price points that may be implemented in a behavioral economics
experiment. The scales of both axes are logarithmic, as this allows changes in the curvature of the
function to be observed as straight-line slopes. Curves A and B both exhibit the negatively accel-
erated form that is characteristic of demand curves. Differences between Curves A and B illustrate
important general characteristics of demand curves. The greater height of Curve A compared to
Curve B illustrates greater demand intensity. Curve B is more elastic than Curve A, as reflected
in a greater rate of decline in consumption. Point slopes (slopes of curve tangents) and curve seg-
ment slopes illustrate localized degrees of elasticity. Curve segment L–M is inelastic, as it slope is
between zero and −1; curve segments M–N and R–S are elastic, as their slopes are less than −1

“law of demand” describes the reliable, generalized observation that as the price of
a commodity increases the consumption of it tends to decrease. Generalized charac-
teristics of demand curves have been determined, allowing useful analyses that com-
pare and contrast demand curves representing the consumption of different drugs,
as well as drug consumption by dependent individuals and populations as compared
to consumption by those who are not drug dependent.

Behavioral economics operationalizes economists’ observations of “prices” by
measuring work expended to acquire a unit of a commodity. The behavioral-
economic procedures for experimentally producing a demand curve for an indi-
vidual’s consumption of a particular commodity (Hursh 1991; Raslear et al. 1988)
involve the implementation of a series of conditions differentiated by the price the
individual must pay to consume the commodity. Within each condition (price point)
the amount of the commodity consumed is measured. For example, Fig. 10.1 shows
two hypothetical demand curves depicting drug consumption. Both curves exhibit
the characteristic form of demand curves, and differences between Curves A and B
illustrate important concepts used in the analysis of demand curves to describe con-
sumption of drugs and other commodities. Two problematic behaviors associated
with addiction are illustrated in Fig. 10.1: the consumption of larger and larger
amounts of drug (i.e., escalation of use) and the persistence of drug-taking behavior
despite increasing costs.

The characteristics of demand curves, that is, the intensity of demand (the height
of the curve) and the elasticity of demand (the point slope), represent empirical gen-
eralizations that are keenly relevant to clinical care and public policy. For example,
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if the curves in Fig. 10.1 represent consumption by two different individuals, an in-
tervention or policy that effectively increases the price of drug use from 1 to 2 would
be expected to change consumption by a drug-dependent individual from point L to
point M (Curve A) and from point R to point S in an individual who is not drug-
dependent (Curve B). The predicted effects of this policy would be a decrease in
consumption by individuals who are not drug-dependent because the change in price
from point R to point S lies along an elastic part of that demand curve. However,
very little change in consumption would be predicted for drug-dependent individu-
als because the change in price from point L to point M lies along an inelastic part
of that demand curve. Thus, detailed knowledge of the characteristics of demand
curves showing drug consumption and the location of current and projected prices
along those curves for affected individuals and populations can be useful in de-
signing and predicting the effectiveness of new therapeutic and regulatory strategies
(e.g., drug immunization or taxes on drugs) to treat and prevent addiction (Bickel
and DeGrandpre 1995, 1996; Hursh 1991).

The curves in Fig. 10.1 may also be used to illustrate differences between drugs
with regard to problems of excessive consumption and persistence of use, also
known as the abuse potential or abuse liability of a substance (Griffiths et al.
1979; Schuster and Thompson 1969). Curve A would represent the behavioral-
economic features of a drug with a high potential for abuse (e.g., crack co-
caine, which tends to be used frequently despite increasing costs), and Curve B
would depict consumption patterns of a drug with comparatively less abuse po-
tential (e.g., marijuana). Demand curve analysis has been used frequently to as-
sess the abuse liability of drugs (e.g., Ko et al. 2002; Mattox and Carroll 1996;
Winger et al. 2006). Similarly, demand curve analysis has been used to assess
human subjects’ susceptibility to abusing drugs such as opiates (Greenwald and
Hursh 2006) and nicotine (MacKillop et al. 2008) and alcohol (MacKillop and
Murphy 2007; Murphy and MacKillop 2006). In conformity with the law of de-
mand, drug consumption has been shown to decrease as price is increased at both
the individual (Johnson et al. 2007b) and population levels (Bach and Lantos 1999;
Caulkins 2001; for a review, see Chaloupka et al. 1999; Corman et al. 2005;
Darke et al. 2002a, 2002b; Longo et al. 2004; Schifano and Corkery 2008;
Schifano et al. 2006).

In this section, we have discussed demand intensity and elasticity, demand curve
analysis concepts relevant to study of drug consumption behaviors. These concepts
describe consumption that is constrained via price manipulation. In the next section,
we discuss a different approach to constraint on commodities.

10.3 Behavioral Economics of Addiction II: Analysis of
Inter-temporal Choice

Addictive drugs are positive reinforcers. A drug is considered to be a positive rein-
forcer if an effect of consuming that drug is the increased or continued likelihood
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that the consumption of that drug will recur in the future. Drugs are studied as re-
inforcers by many researchers, and the study of drug-taking as an operant behavior
has led to many advances in the understanding of addiction (Bigelow et al. 1998,
1983; Higgins et al. 1994). Addiction is often defined as persistent drug consump-
tion in the face of undesirable consequences; however, it is typically the case that the
negative consequences of drug use or addiction are located at some distance in the
future, whereas the reinforcing effects of drug use (e.g., the drug high) are almost
immediate. Another common feature of drug dependence or addiction is the prob-
lem of relapse, characterized by a period of abstinence from drug consumption and
an expressed intent or preference to not use drugs, which is followed by a return to
drug use. The resolve to avoid drug use that is reversed in a relapse episode is orig-
inally grounded in the individual’s recognition of the larger magnitude of non-drug
reinforcers; however, the influence of these large-magnitude reinforcers is signifi-
cantly affected by distance in time until receipt of those reinforcers as compared
to the immediate reinforcing effects of drug self-administration. In this section, we
discuss the behavioral-economic approach to understanding the effects of both re-
inforcement amount and reinforcement delay.

Most if not all people will claim to prefer receiving $100 today as opposed to
$100 one year from today. In other words, it is a generalized phenomenon that the
present subjective value of a delayed amount of a reinforcer is less than the nominal
amount expressed in present-day terms—a process that is more succinctly called
delay discounting or temporal discounting. While it is intuitive that the value of a
reinforcer would be discounted with delay, the quantitative rate of such discounting
is not obvious and has been shown to vary across persons and across situations.
For example, for person A, $1000 to be received in one year might be subjectively
worth the same as $950 now. If this discounting rate for person A (each year of
postponement equals a $50 decline in value) remains valid for a hypothetical delay
of ten years, then person A would agree that $1000 to be received in ten years
would be worth $500 now, since $1000 − (10 × $50) = $500. And if the rate were
generally true for person A then he or she would agree that $1000 to be received
after 20 years is worth nothing, since $1000 − (20 × $50) = $0. Consistency of
this sort is not generally observed within an individual’s choices because rates of
discounting across time are not typically linear. Another factor that complicates the
quantification of discounting is that rates of discounting can vary markedly from
person to person. For example, addicted persons exhibit greater rates of temporal
discounting as compared to individuals who are not addicted to drugs (see below for
examples). Another factor that can affect the assessment of discounting is that rates
of discounting for different commodities may vary even within a single person. For
example, if it is determined that an individual with heroin addiction assigns a present
subjective value for $1000 in currency to be received in one year at $500, it could
not be inferred that person’s present subjective value for a package of heroin with a
street value of $1000 to be received in one year is also $500. In general, drug addicts
have been shown to discount their drug of choice to a greater extent than equivalent
amounts of money. In summary, the quantification of individuals’ discounting rates
for delayed reinforcement is constantly being refined by a subgroup of researchers
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within behavioral economics. This research is the science of temporal discounting
(Bickel and Marsch 2001; Mazur 1987).

A delay discounting rate is typically determined via assessment procedures used
to study an inter-temporal choice. Such procedures use a series of binary choice
trials in which the choices are between a smaller-sooner (SS) amount and a larger-
later (LL) amount. The amount of the immediate SS reinforcer is varied across trials,
while the amount of the LL option remains constant. Choices in the series of trials
determine the present subjective value of the delayed LL amount. Across trials, the
procedure is programmed to offer “now amount” choices that become increasingly
close to the point of indifference by adjusting the amount of the “now” alternatives
in coordination with the participant’s selection on the previous trial. Ultimately, an
indifference point is determined, which is defined as the smallest immediate SS
amount used in the procedure at which the SS amount is preferred and at which
smaller SS amounts would shift preference to the larger, later amount.

Discounting assessment procedures have been devised for measuring the dis-
counting rates of humans (Kowal et al. 2007) and non-human subjects (Mazur
1987). With human participants, the use of hypothetical reinforcers has been shown
to yield the same results as studies using actual reinforcers (Bickel et al. 2009;
Johnson and Bickel 2002). The end result of one application of a procedure will
be the determination of a single indifference point, or one value that represents the
present subjective value of the larger reinforcer if its receipt were delayed until one
specific later time. A discounting rate for that amount of the reinforcer is determined
by assessing indifference points for several different delays. The delay discounting
procedure is repeated with the same larger reinforcer amount, but with a different
delay so that several indifference points at different delays are identified. After three
to seven indifference points have been determined in this way, they are plotted as
a function of the delay until the LL reinforcer. The points are fitted by non-linear
regression to a function, and the value of a free parameter, called k, is the subject’s
delay discounting rate for that particular amount of that particular reinforcing com-
modity.

Determining the rates for the discounting due to delay is important for an un-
derstanding of addiction because it quantifies how quickly the present subjective
value of a commodity diminishes over time. This is thought to be analogous to the
extent to which an individual might be influenced by the immediate reinforcing ef-
fects of drug administration (e.g., the drug high) but not by the temporally distant
negative or harmful consequences of that behavior or by the delayed positive and
healthy consequences of avoiding drug self-administration behavior. Research has
shown that individuals who are dependent on alcohol (Bjork et al. 2004; Petry 2001;
Vuchinich and Simpson 1998), nicotine (Baker et al. 2003; Bickel et al. 1999;
Heyman and Gibb 2006; Johnson et al. 2007a; Mitchell 1999), heroin (Kirby et
al. 1999; Madden et al. 1997; Odum et al. 2000), cocaine (Coffey et al. 2003;
Heil et al. 2006; Kirby and Petry 2004), and methamphetamine (Hoffman et al.
2006, 2008; Monterosso et al. 2007) exhibit greater rates of temporal discounting
as compared to individuals who are not dependent on those drugs. Moreover, higher
rates of delay discounting among cigarette smokers have been shown to be associ-
ated with greater dependence (Johnson et al. 2007b; Ohmura et al. 2005) and poorer
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treatment outcomes (Audrain-McGovern et al. 2009; Krishnan-Sarin et al. 2007;
MacKillop and Kahler 2009; Yoon et al. 2007). Also, children with mothers who
smoke are at greater risk of themselves being high discounters (Reynolds et al.
2009). Together these observations suggest that the rate of delay discounting is
predictive of the likelihood, severity, and prognosis of addiction as it pertains to
cigarette smoking, and likely other addictions as well.

Defining the form of the regression function that most accurately represents the
rate of delay discounting is an ongoing concern for the science of temporal dis-
counting. Candidate functions fall into two major groups, based on whether the
basic form is exponential or hyperbolic. An important virtue of the hyperbolic
model is that it can account for the phenomenon of preference reversals, whereas
exponential models generally cannot (Green and Myerson 1996). Reversals of pref-
erence are a hallmark feature of drug dependence and other addictive disorders,
as individuals will frequently prefer to “get on the wagon” only to fall off of
it, exhibiting an unfortunate reversal of their stated preference. Moreover, pref-
erence reversals appear to be an evolutionarily conserved phenomenon, as they
have been demonstrated with non-human animals (Ainslie and Herrnstein 1981;
Green and Estle 2003a; Green et al. 1981; Rachlin and Green 1972b) as well
as humans (Brandon et al. 1990; Green et al. 1994; Kirshenbaum et al. 2009;
Marlatt et al. 1988; Nides et al. 1995; Norregaard et al. 1993; Shiffman et al. 1996;
Westman et al. 1997; Yoon et al. 2007). The function that relates the subjective value
of a reward to delay until that reward can be interpreted as describing the process
of waiting for a reward. If such functions for a larger reward and a smaller reward
are hyperbolic in form, then the interaction of the two waiting processes results in
reversal of preference. However, if those functions are exponential in form, then the
waiting processes that they describe do not result in preference reversal. Figure 10.2
illustrates why reversals of preference could be predicted by hyperbolic delay dis-
counting functions and not by exponential delay discounting functions.

In this third section of the chapter, we discussed the behavioral economic con-
cepts that describe the interactions between reinforcement amount and reinforce-
ment delay. The phenomena of delay discounting and preference reversal are inter-
preted in behavioral economics as resulting from such interactions. As delay dis-
counting and preference reversals are characteristic of addiction, a better under-
standing of these behavioral-economic concepts will ultimately lead us to improved
understanding of the dynamics of addiction. It might be interesting to note that up to
this point Sects. 10.2 and 10.3 stood alone without much reference to each other. The
remaining sections of this chapter will discuss how the concepts from Sects. 10.2
and 10.3 interact, how they may be integrated, and how they provide a framework
for understanding addiction.

10.4 Integration of Variables I: Extension of Price to Unit Price

Unlike the theories in classical economics, behavioral economics theories should
explain the behavior of non-humans as well as humans. As a result, assump-
tions about the meaning of “price” in this science cannot be unquestioningly
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Fig. 10.2 Illustration of a preference reversal as an interaction of inverted hyperbolic delay dis-
counting functions for a smaller-sooner (SS) reward and a larger-later (LL) reward. The functions
relate subjective value of a reward to the inverse of delay till its receipt. (Delay discounting func-
tions, by comparison, relate subjective value of a reward to delay till its receipt; they are mirror
images on the vertical axis of functions shown in the figure.) Subjective value of a reward at a time
point is represented by the height of the curve at that time. The passage of time until receipt of the
reward is on the X-axis. A curve terminates at the nominal amount of the reward at the rightmost
point on the curve; this denotes the time at which delay-to-reward has diminished to zero. The
panels depict the individual processes of waiting for SS and LL rewards as inverted hyperbolic dis-
counting functions. In the top panel, the increase in subjective value of a reward as delay till receipt
of the reward becomes smaller is quantitatively described by hyperbolic functions; note that this
quantitative character would be different for exponential functions (not shown). The bottom panel
depicts the reversal of preference that would occur if those two processes occurred in overlapping
temporal ranges and only one of the two rewards could be chosen. The relative preferences between
the two rewards are depicted by the heights of the curves for each reward. The relative heights of
the two curves are shown to be different in two time ranges: from time 1 to time 2 the individual
(denoted as stick figure) prefers the LL reward; from time 2 to time 3 the same individual (denoted
as stick figure double-prime) prefers the SS reward. Thus, preference reversal follows from the
intersection of the two curves at point P (where the individual is depicted as stick figure prime).
If the delay discounting function were exponential in form, the curves depicting the processes of
waiting for SS and LL would not intersect and preference reversals would not be predicted

adopted from common knowledge about accepted mediums of exchange in hu-
man society (Hursh et al. 1988). Instead, price must be operationally defined.
Initially, simple price was defined as a count of the number of responses re-
quired for reinforcer delivery, such as pecks on a key by a pigeon or presses of
a lever by a rat, as a measure of the energy cost for reinforcement. The con-
cept of unit price differs from that of simple price in that unit price is the ef-



294 E.T. Mueller et al.

fort or response requirement (i.e., a measure of cost) per unit of the reinforcing
commodity (i.e., a measure of benefit). Unit price is a cost-benefit ratio that re-
flects the interaction of costs and benefits in a single variable (Collier et al. 1986;
Hursh et al. 1988). It is a more integrative concept than simple price because it in-
corporates seemingly disparate variables into a single measure. In this section of the
chapter, we review this conceptual integration. We discuss how unit-price demand
curve analysis subsumes two traditionally distinct variables in operant research, pro-
ducing results across a broad range of situations that conform to a generalized pat-
tern; and we reveal the economy of communication, or parsimony, that the unit price
notion introduces to the concepts used in the analysis of demand.

Variables that are integrated in the unit price concept are illustrated in two vari-
eties of operant drug self-administration studies, where measures of costs and ben-
efits are readily quantified and manipulated. In one type of traditional drug self-
administration experiment, simple prices are manipulated by varying the number of
responses (behavioral costs) required to produce a drug self-administration, allow-
ing consumption to be portrayed as a function of response requirement in a standard
demand curve. In a second type of traditional drug self-administration experiment,
the dose of the drug (i.e., the amount of the reinforcer, a benefit variable) is ma-
nipulated, permitting rate of response to be examined as a function of dose in a
traditional dose-response curve. These two variables—response requirement as cost
and dose as benefit—have typically been studied in operant research paradigms as
two distinct variables that affect drug self-administration.

Several lines of evidence show that unit price may be used to integrate
response-requirement and drug-dose variables. For example, a review of ten self-
administration studies using rats, squirrel monkeys, or rhesus monkeys showed that
manipulations of response requirement and dose of drug have functionally equiv-
alent effects on drug consumption (Bickel et al. 1990). Specifically, it was shown
that doubling the drug dose had the same effect on drug consumption as requiring
half as many responses per reinforcement, since both operations had the same effect
on unit price, where unit price = (response requirement / dose). This review also
showed that consumption plotted as a function of unit price on double logarithmic
axes resulted in a negatively accelerated demand curve.

These two features of unit price analysis, functional-equivalence and negatively
accelerated demand curve, were also observed in a human study in which partici-
pants self-administered nicotine in the form of cigarette puffs. In a laboratory setting
where the response requirement was either 200, 400, or 1,600 responses and the re-
inforcer was either 1, 2, or 4 puffs, experimental parameters that resulted in the
same unit prices (e.g., 200 responses/2 puffs and 400 responses/4 puffs both yield
100 responses per puff) resulted in similar levels of consumption, and the consump-
tion data for each of these conditions converged on negatively accelerated demand
curves when plotted as a function of unit price (Bickel et al. 1991).

In the drug self-administration studies described above, the costs and benefits
determining unit price were operationalized as response requirement and drug dose,
respectively. However, the concept of unit price has been shown to encompass a
broader range of operations that function as costs or benefits in a unit price equation.
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For example, in a study in which lever-presses by rats were reinforced by the deliv-
ery of food pellets, the potential costs were varied by manipulating the number of
lever-presses required for reinforcer delivery (i.e., the fixed-ratio requirement) and
also by manipulating the amount of force required to press the lever. The potential
benefits were varied by manipulating the number of food pellets delivered per com-
pletion of a fixed ratio requirement (analogous to dose in drug studies) and also by
manipulating the probability of reinforcer delivery after completion of a fixed-ratio
requirement (Hursh et al. 1988). This study showed that each of these four variables
comprising unit price had functionally equivalent effects on consumption to the ex-
tent that they resulted in equivalent changes in unit price. When consumption in this
study was plotted as a function of unit price on double-logarithmic coordinates, the
data points with similar unit prices converged on the same negatively accelerated
function regardless of which variables and values for those variables were used to
calculate the unit price. This report proposed the following equation to quantitatively
describe the negatively accelerated function:

LogQ = LogL + b(LogP) − aP (10.1)

where Q is the total consumption; P is unit price; and L, b, and a are fitted param-
eters for the level of consumption at a price of 1, the initial downward slope of the
curve, and the acceleration by which the slope increases with changes in unit price,
respectively (Hursh et al. 1988).

Another study (DeGrandpre et al. 1993) reviewed the results of 32 experiments
with rats, pigeons, dogs, or monkeys as subjects. This review showed that across
a variety of reinforcer types (sucrose, food, cocaine, d-amphetamine, procaine,
codeine, morphine, methohexital, pentobarbital) and a variety of types of reinforcer
magnitude (concentration and volume of liquid food, food pellet size, drug concen-
tration, duration of access to food), the different types of varying reinforcer magni-
tude were functionally interchangeable as benefit factors in the unit price equation.
This review also showed that the two most commonly used reinforcement sched-
ules (ratio and interval schedules) result from operations that have the same effect
as known costs on unit price. Furthermore, the review demonstrated the generality
of the negatively accelerated demand curve for consumption where unit price rather
than simple price is on the X-axis and log-log coordinates are used, suggesting that
this form of the demand function occurs ubiquitously. In summary, across a diverse
group of studies, the combination of cost and benefit factors into a single unit price
variable has been demonstrated to parsimoniously describe the effects of a broad
range of experimental conditions; and the form of the function exhibited when con-
sumption is plotted as a function of unit price on double logarithmic coordinates is
ubiquitous, appearing to be generalizable to a broad range of types of consumption
(Bickel et al. 1993).

Because the negatively accelerated form for the unit-price demand curve appears
to be a ubiquitous phenomenon, it is considered to be a standard form by which
consumption data are recognized as exhibiting order, in a manner analogous to how
data that conform to a linear function have traditionally been construed as orderly.
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As a standard of orderliness, the negatively accelerated demand curve form is rele-
vant to the treatment of addiction. Controversy surrounding the nicotine regulation
hypothesis provides an example. Scientists have hypothesized that smokers regulate
nicotine levels—in other words, smoking behavior occurs at a rate that will maintain
a characteristic level of nicotine in the smoker’s body. Many studies have attempted
to settle this controversy. Each of the studies examined nicotine intake or consump-
tion of nicotine by smokers as a dependent variable; however, the studies differed
in the way that the nicotine dose could be manipulated as an independent variable.
The general conclusion from this body of research was that blood levels of nicotine
are regulated by smokers; however, the conclusion could not be stated forcefully
because between-study discrepancies and contradictions were evident when it was
assumed that consistent results should converge on a linear function relating nicotine
consumption to nicotine yield (dose) in cigarettes (Gritz 1980; Henningfield 1984;
McMorrow and Foxx 1983; Moss and Prue 1982).

It is also possible that the relationship between nicotine consumption and nico-
tine yield (dose) in cigarettes was not linear. An alternative approach to analyzing
the data from the nicotine regulation studies (DeGrandpre et al. 1992) did not pre-
sume that results consistent with each other would converge on a linear function.
In that review, the independent variable (nicotine yield) was taken to be a bene-
fit variable in the unit price equation (unit price = 1/nicotine yield) and the nico-
tine yield (consumption) data were reanalyzed as a function of unit price. That re-
view found that the data from the studies were much more consistently described
by a negatively accelerated unit-price demand curves as specified by Eq. (10.1).
Curves in Figs. 10.3a and 10.3b, reprinted from DeGrandpre et al. (1992), illus-
trate this point. The curves reflect 25 reinterpreted data sets from the 17 reviewed
studies (Ashton et al. 1979; Benowitz et al. 1986; Creighton and Lewis 1978;
Frith 1971; Goldfarb et al. 1976; Griffiths et al. 1982; Gust and Pickens 1982;
Haley et al. 1985; Henningfield and Griffiths 1980; Hill and Marquardt 1980;
Jarvik et al. 1978; Russell et al. 1980, 1973, 1975; Stepney 1981; Turner et al. 1974;
Zacny and Stitzer 1988). Nicotine consumption is plotted as a function of unit price.
The variance accounted for (VAC) in the individual data sets (R2) by Eq. (10.1) was
very high (average VAC: 99.7%; range: 96.4–100%; P < 0.01 in all cases). How-
ever, high R2 values might have simply been a result of fitting individual curves to
a relatively small number of data points (three data points were used in the majority
of these cases). As a more stringent test of Eq. (10.1) as a standard of orderliness,
DeGrandpre et al. (1992) also computed a version of Eq. (10.1) in which the pa-
rameters that were assumed in the equation were the means of the parameters that
resulted from fitting the individual data sets. The R2 values reflecting the variance
in the individual data sets accounted for by this “mean equation analysis” were also
high (average VAC: 96.2%; range: 89.0–100%; P < 0.05 in 18 of 25 cases). De-
Grandpre et al. (1992) suggested that some VAC values may have been even higher
but for the likelihood that some studies did not include a broad enough range of unit
prices to produce a complete demand curve.

Further support for Eq. (10.1) as a standard of orderliness comes from five re-
viewed studies that reported measurements of blood nicotine in combination with a
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�Fig. 10.3 Graphic illustration of convergence on Eq. (10.1) of 25 nicotine-regulation-experiment
data sets from 17 studies. Nicotine consumption (intake) is plotted as a function of unit price in
log-log coordinates, where unit price = (1/nicotine yield). The curve drawn through each data
set is an approximate line of best fit. Nicotine regulation studies were included in the reanaly-
sis unless (a) the study assessed an insufficient number of nicotine yields (unit prices)—at least
three unit prices are required to establish a demand curve; (b) nicotine consumption in the ex-
periment could not be determined; (c) the nicotine yield manipulation of the study was difficult
to quantify as a unit price (e.g., there were nicotine preloads); or (d) nicotine consumption in
the study was confounded by a variable other than unit price (e.g., nicotine yield values were
grouped and thus precluded determination of an exact unit price or subjects were trying to quit
smoking). The 17 studies are grouped according to the method for manipulation of nicotine in-
take (brandswitching versus shortened cigarettes). For each panel, the publication is shown. The
method of estimation of nicotine intake for each data set is indicated in the lower left area in each
panel: NI-C = cigarette consumption; NI-P = smoke consumption taken from puff number, vol-
ume and/or duration; NI-BN = blood nicotine levels. The illustrated convergence to Eq. (10.1) re-
flects variances accounted for by Eq. (10.1). Percent of variance is based on comparison, using lin-
ear regression analysis, between observed nicotine consumption and those predicted by Eq. (10.1)
when values are assumed for the fitted parameters a and b and an intercept at unit price = 1. When
a and b were fitted from the individual data set the mean percentage VAC was 99.7% (range:
96.4–100%; P < 0.01 in all cases). When a and b parameters used in Eq. (10.1) were the means of
those values from the individual data sets, the mean percentage variance accounted for was 96.2%
(range: 89.0–100%; P < 0.05 in 18 of 25 cases)

behavioral measure (smoke consumption or cigarette consumption) of nicotine con-
sumption. For these studies, the mean VAC for the behavioral measure was 95.6%,
and for the blood nicotine measure it was 93.9%. This consistency of VAC values
across these measures also supports Eq. (10.1) as a standard of orderliness for nico-
tine intake data.

In summary, when the standard of orderliness for data was assumed to be a neg-
atively accelerated function described by Eq. (10.1), the data from various studies
of nicotine regulation show greater consistency (i.e., conform to a generalized pat-
tern) than when the standard of orderliness is a linear function. This 1992 review by
DeGrandpre and colleagues helped to substantiate the generality that smokers reg-
ulate their consumption of nicotine based on the nicotine content of the cigarettes
smoked. It showed that smokers’ nicotine consumption appears to obey a unit-price-
based law of demand, as does consumption of other reinforcing commodities, gen-
erally. The review demonstrated that the manipulation of the unit price of nicotine
(by manufacturers or via public policy) has predictable effects on drug consump-
tion, and therefore such manipulations potentially have important implications for
public health.

In this section of the chapter, we described the expansion of the economic notion
of price to the behavioral-economic concept of unit price, which is a concept that
integrates cost and benefit variables that interact in determining rate of consump-
tion. Thus, we find that the independent variable of the law of demand, “price,” is
being expanded in two directions that are important to the understanding of addic-
tion: (a) Toward incorporating a broader scope of what defines the costs of drug
consumption; these expanded “prices” may include fewer and poorer quality social
relations, diminished income production, antagonistic relations with legal authori-
ties, psychological problems caused by drug consumption, tolerance to positive sub-
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Fig. 10.3 (Continued)
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jective effects, and a predominance of negative reinforcing effects; and (b) toward
incorporating as drug-related “benefits” in the life of a drug dependent individual
not only the reinforcing effects of drug consumption (e.g., the drug “high”), but also
other sources of reinforcement (e.g., social relationships and status, escape from de-
mands on one’s time and effort, high monetary income in an illicit marketplace).
This conceptual expansion supports the proposition that the analysis of demand for
drug-related reinforcers may be a fundamental scientific activity in a comprehen-
sive understanding of drug dependency. In the next section, we carry our conceptual
expansion further to incorporate reinforcers in general, be they drug-related or non-
drug-related.

10.5 Integration of Variables II: “Costs” and “Benefits” in
Concurrent Choice

Although laboratory models of drug self-administration have been shown to have
excellent internal, external, and predictive validity, there are a number of social,
cultural, and environmental factors that can affect drug consumption outside of the
controlled laboratory setting (Carter and Griffiths 2009). One of these factors is
the availability of alternative non-drug reinforcers. For example, presenting drug-
dependent individuals with a choice to either use drugs or receive money has re-
peatedly been shown to delay or decrease the use of drugs (Mueller et al. 2009;
Silverman 2004). Outside of the laboratory, in the “real world,” individuals are faced
with a wide variety of choices among concurrently available drug and non-drug re-
inforcers. Thus, any computational approach to understanding drug use at the be-
havioral level must be able to account for situations of choice among and between
different reinforcers (Bickel et al. 1993).

In Sect. 10.3 of this paper, we pointed out that the behavioral-economic study of
delay discounting is essentially the quantitative study of choices whose outcomes
are different from each other because they incorporate different combinations of de-
lay and amount of a reinforcer. In Sect. 10.4, we described the generalization of the
“cost” and “benefit” notions in demand-curve analysis and showed how a broader
range of variables have been integrated into the unit price concept. In this section,
we expand the integrative scope of the unit price concept to include situations of
choice.

The science of delay discounting has been derived from learning theory that,
in turn, was influenced by the matching law. This approach to learning partitioned
the notion of reinforcement into several distinct dimensions (e.g., rate, probability,
amount, and delay of reinforcement) and undertook the analysis of the effects of
those dimensions as variables that would affect choice among reinforcers. The sci-
ence of delay discounting shows that preference reversals occur from the interaction
of the amounts and delays of a larger-later (LL) reinforcer and a smaller-sooner (SS)
reinforcer. A formulation of the matching law that predicts preference reversals as
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resulting from such interactions is

DLL

ALL

≤ DSS

ASS

, (10.2)

where DLL and ALL are the delay and amount values of the LL reinforcer and
DSS and ASS are the delay and amount values of the SS reinforcer. Equation (10.2)
predicts that under conditions in which there is the option between a LL reinforcer
and a SS reinforcer, the proportion of selections of the LL option will be greater than
or equal to 0.5 (qualitative preference for LL) if the term on the left of the inequality
is smaller than the term on the right of the inequality. Conversely, the proportion
of selections of the LL option would be predicted to be less than 0.5 (qualitative
preference for SS) if the term on the right of the inequality is smaller.

Notice that if delay to reinforcement is construed as a cost of consumption and
reinforcer amount is construed as a benefit of consumption, the left- and right-hand
terms in Eq. (10.2) are cost-benefit ratios. That is, the left- and right-hand terms in
Eq. (10.2) are unit prices of LL and SS reinforcers, respectively. Thus, Eq. (10.2) is
effectively equivalent to Eq. (10.3)

UPLL ≤ UPSS, (10.3)

where UPLL and UPSS are the unit prices of larger-later and smaller-sooner rein-
forcers, respectively. Thus, Eq. (10.3) is at once a formulation expressed in terms
integral to demand-curve analysis (unit prices) and also a formulation that is predic-
tive of phenomena studied in the science of delay discounting (preference reversals).

A good testing ground for the predictive success of Eq. (10.3) would entail ex-
perimental observations of preference reversals in situations of choice. Such studies
have been conducted and have experimentally demonstrated that subjects’ prefer-
ence between SS and LL reinforcers in different conditions may reverse across the
conditions if those conditions entail effectively different combinations of delay and
amount for SS and LL reinforcers. Thus, the ability of Eq. (10.3) to predict the con-
ditions under which preference will reverse can be assessed in such experiments.

In preference reversal experiments subjects are characteristically offered choices
between a LL reinforcer and a SS reinforcer (see Fig. 10.2 for a depiction of a hy-
pothetical preference reversal). Across conditions of the experiment the amount and
delay characteristics of the LL and SS reinforcers are controlled in this way: the re-
inforcer amounts of the LL reinforcer and the SS reinforcer remain constant across
conditions; the difference between the delay until the SS reinforcer and the delay
until the LL reinforcer also remains constant; whereas, the delay until the delivery
of the SS reinforcer is varied across conditions. Thus, the primary independent vari-
able in a preference reversal experiment is the delay until the SS. Within each of the
conditions in which the delay until the SS reinforcer is delivered varies, the propor-
tion of choices in which the LL reinforcer was selected is recorded (LL proportion).
These LL proportion values can then be plotted as a function of the delay until SS.
Figure 10.4 portrays data from a hypothetical preference reversal experiment in a
manner typical of such experiments.
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Fig. 10.4 Portrayal of data from a hypothetical preference reversal experiment. Proportion of
choices in which larger-later reinforcer is selected (larger-later [LL] proportion) is plotted as a
function of within-condition delay until the smaller-sooner (SS) reinforcer. Location of data points
in relation to the horizontal line at the LL proportion of 0.5 indicates preference; points above the
line (>0.5) indicate preference for the LL option; points below the line (<0.5) indicate prefer-
ence for SS reinforcers; points at larger-later proportion = 0.5 indicate indifference (illustrated in
Fig. 10.2 as point P). Preference reversals occur across conditions in which the curve crosses the
line at larger-later proportion = 0.5. The vertical line in the figure that extends downward from the
function to the X-axis indicates an estimate of delay-until-SS value at which the preference reversal
would be expected to occur on the basis of the experimentally obtained data

A recent study (Mueller and Bickel 2010) reviewed the results from 17 exper-
iments reported in nine published studies (Ainslie and Herrnstein 1981; Green
and Estle 2003b; Green et al. 1981, 1994; Green and Snyderman 1980; Logue
and Pena-Correal 1985; Navarick and Fantino 1976; Rachlin and Green 1972a;
Snyderman 1983) of preference reversal to examine whether Eq. (10.3) could pre-
dict the points at which preference reversals were observed to occur. In this reanal-
ysis, experimentally implemented delays until LL and SS reinforcer delivery were
interpreted as behavioral-economic costs, and reinforcer amounts were interpreted
as benefits, to create unit prices for the LL and SS reinforcers in each condition of
the experiments. These were substituted into Eq. (10.3) as the left- and right-hand
terms, respectively. Equation (10.3) was used to make predictions regarding the hy-
pothesized preference for the LL versus the SS reinforcer within the conditions of
the experiments. Data from this reanalysis showed that comparing UPLL and UPSS

values resulted in correct predictions of observed preference (proportion of choices
< or ≥ 0.5) in 619 of the 786 experimental conditions (78.8%) across all experi-
ments. Figure 10.5 displays the percentages of correct predictions for each individ-
ual study examined in this analysis. In the subset of cases in which both a preference
reversal was predicted and occurred, the correlation between the delays until the SS
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Fig. 10.5 Summary of results in a review of experimentally induced preference reversal experi-
ments. On the X-axis are groupings of conditions across which an experiment may have demon-
strated a reversal of preference between smaller-sooner reinforcers and larger-later reinforcers.
The height of each bar represents the percentage of conditions in the group for which Eq. (10.3)
correctly predicted empirically observed preferences

at which a preference reversal was predicted to occur and the observed delays until
the SS at which a preference reversal occurred was 0.95 [Pearson r(50) = 0.95].
These findings provide strong empirical support for the value of comparing unit
prices of LL and SS reinforcers as a means for predicting cross-condition reversals
of preference between them.

In this section, we extended the scope of the unit price concept to include mea-
sures from operations involved in situations of choice. We demonstrated the effec-
tiveness of comparing unit prices of larger-later versus smaller-sooner reinforcers to
predict laboratory-induced preference reversals. Since choice among numerous con-
current alternatives is a prominent feature of the lives of individuals dependent on
drugs, this extension of the unit price construct is another step toward a comprehen-
sive understanding of drug addiction through the analysis of demand for reinforcers.

10.6 Conclusions and Future Directions

In Sects. 10.2 and 10.3 of this chapter, we discussed two broad classes of behavioral-
economic research that appear to be remarkably disjointed from each other. One
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class has unit-price demand curve analysis at its core; this class is directly influ-
enced by consumer demand theory of traditional economics and it conceptualizes
the consequences of behavior as the receipt of commodities (Bickel et al. 1993;
Hursh 1980; Hursh and Silberberg 2008). The other class can be described as the
study of inter-temporal choice (Bickel and Marsch 2001). Its underlying conceptual
framework construes the consequences of behavior as reinforcement. Inter-temporal
choice studies explore the effects of the interaction between reinforcer amount and
delay on choices among alternatives that vary on those dimensions. The experimen-
tal study of preference reversals is clearly in the latter class of research, since that
phenomenon is characterized as the result of the interaction of reinforcer amount
and delay. As described above, the reinterpretation of the results of experimentally
induced preference reversal experiments in terms of unit prices of reinforcers rep-
resents a computational integration of two major classes of behavioral-economic
research and theory that have heretofore remained largely distinct.

The study of inter-temporal choice encompasses the quantitative study of how
delayed reinforcers are discounted—that is, the assessment of delay discounting by
individuals. As discussed earlier, the assessment of a subject’s rate of delay dis-
counting is accomplished by offering several series of choices between receiving a
large reinforcer later versus a small reinforcer sooner (where “sooner” is most often
operationalized as “now”) and detecting in each series the point of indifference be-
tween the two alternatives. Note that an indifference point is commonly indicated to
the researcher by the point at which the subject reverses preference between larger-
later reinforcement and smaller-sooner reinforcement. The discounting of delayed
reinforcers can thus be recognized as a phenomenon involving preferences and their
potential reversal. This suggests that the science of delay discounting may be ad-
vanced by applying the unit price concept to the design and interpretation of delay
discounting studies.

This suggestion is supported by a relationship discovered in discounting assess-
ment data from 26 cigarette smokers whose discounting of hypothetical rewards
of $50 and $1000 was assessed when they were nicotine-deprived and when they
were satiated (Mueller et al. 2010). The assessment procedures were as described
in Sect. 10.3 of this chapter and indifference points were indicated by partici-
pants’ cross-trial reversals of preference between hypothetically receiving LL re-
inforcers or SS reinforcers “now.” The experimental procedures entailing the de-
lays and amounts for the SS reinforcers and the LL reinforcers were interpreted as
behavioral-economic costs and benefits as described above to calculate unit prices
for the SS and LL options in each trial of the procedure. Such computations were
used to predict points of preference reversal, or indifference points, in this group of
delay discounting assessments. Rank correlations of the theoretical and empirically
determined indifference points provided strong support for the accuracy of the unit
price construct in predicting participants’ expressions of preference that are implicit
in delay discounting assessments.

Our use of the unit price construct to predict reversals of preference has implica-
tions for the future of that construct. In the above reinterpretation of delay discount-
ing assessment data, there was no evidence that the correlation between predicted



10 Toward a Computationally Unified Behavioral-Economic Model of Addiction 305

and observed indifference points depended upon either the amount of the reinforcer
(e.g., $50 or $1000) for which the discounting rate of a participant was being as-
sessed, or the state of the participant (satiated or deprived). This discovery suggests
a limitation of the unit price construct as it has been formulated to date. Unit price
consists of environmental cost and benefit variables, but does not incorporate vari-
ables that reflect the characteristics of the organism. In the future, refined versions
of the unit price construct (or related constructs) might incorporate terms that al-
low an accounting of subject states (e.g., drug withdrawal) or traits (e.g., “addictive
personality”).

While the current formulation of the unit price construct incorporates environ-
mental variables, it may account for them in ways that do not reflect scientific con-
clusions about how the environmental variables affect behavior. For example, in
applications of unit price to date, delay until reinforcement has been incorporated as
a cost variable. This formulation of unit price treats all delays to reinforcement as
having effects on behavior that simply differ by a constant proportion. The science
of delay discounting strongly suggests that this is not an accurate quantification of
the effects of reinforcement delay. Future versions of unit price and related concepts
may be improved, for example, by the inclusion of terms and/or parameters whose
values reflect the hyperbolic nature of delay discounting.

The unit price construct has thus far been applied to the analysis of prefer-
ence among qualitatively identical commodities. Behavioral economics refers to
such commodities as “substitutes.” The scientific meaning of substitutes and re-
lated concepts is readily suggested through example: Coca-Cola and Pepsi could
be classified as “substitutes” because one is consumed in place of the other; hot
dog franks and hot dog buns could be classified as “complements” because the con-
sumption of hot dog buns closely co-varies with the consumption of hot dog franks;
and paper clips and cheese could be classified as “independent commodities” be-
cause there is typically no relationship between the consumption of paper clips
and the consumption of cheese. Experiments involving decisions between substi-
tutes represent only one type of interaction (and perhaps the most simplified type),
whereas reinforcers are often consumed as complements or as independent com-
modities outside of the laboratory. In computationally accounting for substitutes,
units of measure are the same for many factors in the equation and thus cancel out,
minimizing a potential source of appreciable complexity. Accounting for the com-
plexities of complementary or independent commodities in a computation model of
addiction might prove to be quite challenging. However, it is behavioral economics
that makes us aware of such complexities (Green and Freed 1993; Hursh 1980;
Rachlin et al. 1981), and behavioral economics has methods for approaching them
with quantitative sophistication (Bickel et al. 1995, 1992; Johnson et al. 2004). Be-
havioral economics may thus be well positioned to further extend its analytical and
computational toolbox so that preference among qualitatively different reinforcers
is explained.

Science has tended to characterize addiction as a static phenomenon rather than
as a dynamic process. The behavioral-economic notion of substitution among rein-
forcing commodities may be central to elaborating the process of becoming and re-
maining addicted. This chapter has pointed out how from the perspective of demand
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curve analysis addiction entails relatively less elasticity of demand for the addictive
substance, and how from the perspective of the science of delay discounting addic-
tion entails a greater valuation of immediate versus delayed reinforcers. The pro-
cesses assessed with measures of elasticity and discounting may be interdependent
via the process of substitution. It has been shown that elasticity of demand is posi-
tively correlated with the availability of substitutes (Bickel et al. 1995; Hursh 1978;
Johnson and Bickel 2003; Johnson et al. 2004; Shahan et al. 2001, 2000). It may be
important to recognize, furthermore, that one way substitution can occur is through
inter-temporal exchange. For example, in the process of homeostatic regulation, the
immediate consumption of a reinforcing commodity may be forestalled or dimin-
ished by the availability of the commodity at a later time; that is, the later con-
sumption substitutes for immediate consumption. Some aspects of homeostatic reg-
ulation may thus be an effect of inter-temporal substitution that can be described
in behavioral-economic terms as greater elasticity of immediate consumption com-
pared to the elasticity of delayed consumption. The extent of this effect, it should
be emphasized, has been shown to be influenced by the discounting rate charac-
teristics of the consumer. If the degree of delay discounting changes, either as a
motivational or developmental process within the consumer, or across different con-
sumers, the magnitude of this substitution effect will change also. In this chapter we
discussed that delay discounting rates for individuals who are substance-dependent
are higher compared to individuals who are not dependent. We also promoted the
merits of unit price that are based on conceptual commonalities for understanding
demand elasticity of abused substances and delay discounting. Because of the con-
ceptual commonalities, future versions of the unit price construct have the potential
to incorporate variables that may appear in quantitative descriptions of regulated
processes such as the motivation to consume an abused substance, or developmental
aspects of addiction, or individual differences in discounting rates of the substance-
dependent. Such a future construct would permit a more accurate computational
analysis of the dynamic interaction of the processes that are assessed as the demand
elasticity and discounting rates for abuses substances and those who abuse them. To
the extent that such analyses explore dynamic reinforcement variables that result in
the removal of a phenomenon (e.g., the removal of nicotine withdrawal symptoms),
they may be addressing the concept of negative reinforcement—a concept hereto-
fore unaddressed by demand curve analysis because “removal” seems antithetical
to the acquisitive nature of “consumption.” Regardless of the variables that are in-
terpreted as differential elasticities for immediate versus delayed consumption, the
analyses would clarify the process of addiction.

A better understanding of the process of addiction will certainly entail appre-
ciation for the different time scales over which choices are made. At one point in
his life, for example, an alcoholic may find himself challenged by the choice be-
tween having a first drink or not. Years later and while in recovery he may in hind-
sight come to believe that decision was tantamount to deciding between a decade
of gainful employment versus living hand to mouth on the streets. While it may be
self-evident that the larger time scale is constituted of decisions on a much smaller
time scale, the task before science is to devise concepts that integrate the smaller-
scale events over time in such a way that (a) the larger pattern is predictable from
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the character of small-scale events, and (b) operations to modify the character of
the small-scale events (i.e., substance abuse therapies) can be taken so as to prevent
the large-scale phenomenon. We suggest that the present version of the unit price
concept is good first step in these directions.

This chapter has described and clarified an instance of computational construc-
tionism applied to the understanding of drug addiction. The exercise was shown to
involve (a) the examination of a handful of behavioral phenomena associated with
drug addiction (excessive consumption of a substance, persistent consumption of a
substance in the face of increasing costs, high rates of delay discounting, and fre-
quent reversals of preference), any one of which may traditionally be scientifically
studied in an “intellectual silo”; (b) the extension of the scope of the behavioral-
economic unit price concept so that it integrates a larger number of experimental
variables and incorporates features that are common to drug-addiction phenomena;
and (c) the use of the unit price construct to begin to explain the extremely complex
phenomena of choice among concurrently available reinforcers, and the process by
which one becomes addicted. Future developments along these lines are expected to
produce constructs with which preferences exhibited by drug-dependent individuals
may be predicted more accurately and may be therapeutically modified.
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Chapter 11
Simulating Patterns of Heroin Addiction Within
the Social Context of a Local Heroin Market

Lee Hoffer, Georgiy Bobashev, and Robert J. Morris

Abstract This study illustrates how the social structure of the heroin market can
impact the physiology of heroin addiction and how heterogeneity of addiction pat-
terns can be shaped by market dynamics. We use a novel agent-based modeling
(ABM) approach to simulate possible neurophysiologic functions based on the col-
lective self-organizing behavior of market agents. The conceptual model is based
on three components: biological, behavioral, and social. Biological components are
informed by mechanistic animal studies, behavioral component relies on studies of
real-life human experiences with addiction, and social aspects are based on market
research that describes the transactional and decision-making processes associated
with the distribution of drugs within local drug markets. Using ABM, this paper
unifies these three components to simulate how heroin addiction patterns are gener-
ated and shaped through heroin markets. The market model is based on data from an
ethnographic study of a local heroin market and includes customers (users), street
and private dealers, street brokers, police, and other potential market actors. Behav-
ioral data is based on converting narrative descriptions and fieldwork observations
into formal states and transitions, and a simple model of addiction process for the
drug users is based on published peer-reviewed literature. Analysis of model-based
simulations reveals “binge/crash,” “stepped,” and “stable” patterns in customer ad-
diction levels.

11.1 Introduction

Substance use has both social and individual aspects. Internal pharmacological and
neurobiological factors act as strong self-administration drivers (Koob and Le Moal
2005; Ahmed et al. 2007; Gutkin et al. 2006). At the same time, human substance
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use depends on drug availability (i.e., drug markets) and social environment (Hoffer
2006). Drug availability, in turn, is intertwined with drug demand and law enforce-
ment activities. In this paper, we address a challenge of linking individual consump-
tion patterns with both internal physiological mechanisms of addiction and external
market activities. In particular, we attempt to answer the question: how do heroin
markets shape users’ addictions? While there is a broad body of science that tries to
predict behavior based on neurobiology and physiology, our approach reverses this
order by deducing physiological patterns from social behavior.

The choice of heroin for our research is based on two factors: the importance
of heroin research to both basic science and public policy, and the availability of
ethnographic data. Heroin, 6-monoacetyl morphine (6-MAM), is a psychoactive
substance that both directly and indirectly influences the daily lives of millions of
people each year. Complicating efforts to reduce the public health harms associ-
ated with its use is that addiction to heroin, like that to all psychoactive substances,
involves complex biological and social/environmental factors. On one hand, the im-
portance of the biology and addiction cannot be ignored. Clearly, addiction is a
“brain disease.” On the other hand, people use drugs in very specific social, cultural,
and political contexts, and thereby experience addiction differently. These social en-
vironments affect drug use behaviors, as well as how harm associated with drug use
is experienced by the user.

In the United States, as in most countries, an unavoidable component of heroin
use is the illegal markets through which the drug is acquired. Since the Harrison Nar-
cotic Act in 1914 making the drug illegal (Hanson et al. 2006) and Richard Nixon’s
inauguration of the war on drugs in 1969 (Musto 1987), more and more resources
are spent each year in the United States unsuccessfully trying to undermine ille-
gal drug distribution activities. The economic cost of this policy and its burden on
our judicial system are well established (Musto 1987; Singer 2006). Research also
has demonstrated how drug market activities, often framed and manipulated by this
war, have negatively influenced the health behaviors of drug users (Kerr et al. 2005;
Koester 1994; Zule et al. 2002).

As the hallmark method in cultural anthropology, ethnographic research en-
tails gaining perspective on a social group’s beliefs and behaviors by the re-
searcher becoming an ad hoc member of the group under study (Bernard 1988;
Patton 1980; Hammersley and Atkinson 1993; Fetterman 1998). This is an in-
ductive and interpretive methodology. Since the 1960s, ethnography has been the
primary methodology used for in-depth research studies of illegal drug distribu-
tion and dealing operations (Preble and Casey 1969; Agar 1973; Adler 1985;
Bourgois 1997). Researchers take considerable time and effort with participants to
overcome suspicion and develop the rapport necessary to collect credible accounts
of illegal drug dealing. The method requires observing interactions and behaviors
to validate findings. Because of the significant rapport necessary to collect this type
of data, ethnography has been suggested as the only valid research approach in this
context (Bourgois 1997).

Hoffer’s ethnographic studies (Hoffer 2006) suggest that acquiring heroin
through a market is highly variable and inherently promotes intense short-term fluc-
tuations in individual addiction levels. Heroin users, however, attempt to maintain
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their addictions, which engage them in a dynamic interaction between their biol-
ogy and the market. Agent-based modeling techniques allow one to describe and
simulate individual behavior as well as the interactions between individuals. At the
same time, agent-based models (ABM) allow incorporation of the dynamic of drug
effects within an individual. Thus, ABMs provide a link across temporal and phys-
ical scales as well as combine research findings from tangential disciplines such
as the social and basic sciences. In a previous publication (Hoffer et al. 2009), we
have concentrated on the market aspects of social dynamics. In this paper, we focus
on the inverse relationship, that is, the individual neurophysiologic factors that are
shaped by market activities.

11.1.1 Individual and Social Patterns Impacting Heroin Addiction

Despite the considerable harm associated with heroin use, some people addicted to
the drug seem able to maintain stable addictions over considerable time periods.
However, for most people this stability is unachievable. Many factors often conspire
against heroin addicts: money runs out, the drug habit gets too unmanageable, or
both. Eventually, some users willingly or unwillingly change their habits or even
quit. Even dealers and others with apparently limitless access to the drug can get
“tired” of using, attempt to cut back, or otherwise reduce consumption. Under so-
cietal and health pressures, users can go into drug-treatment programs, or they may
be incarcerated, both of which can effect drug habits.

Because of the variety of patterns in heroin use over time and the challenges
of measuring them accurately, characterizing these patterns using conventional
methodologies has proven extremely difficult. Typically for behavioral studies, data
are extrapolated by asking heroin users to self-report how many days in the last 30
days they used a drug1 and how much they typically used each day/occasion. These
methods are clearly inexact and do not adequately address variations in use. For ex-
ample, a typical user’s response to the questions above might be, “I use heroin twice
a day, but there were several days last month when I only used once and a few where
I used three times.” Such responses do not fit formal survey question formats.

A large body of biological research focuses on the animal models of drug self-
administration under controlled experimental conditions. However, human heroin
users do not simply receive heroin whenever they want it. Rather, they purchase it
within the context of a market and through relationships with other market partici-
pants, that is, dealers. This aspect of maintaining an addiction introduces consider-
able variation. In human studies, researchers are only able to capture a rough esti-
mate of how much heroin a user consumes over a specific timeframe (i.e., 30 days),

1This paraphrases a question from the RBA (Risk Behavior Assessment) questionnaire (National
Institute on Drug Abuse 1993), commonly administered by professional interviewers and consid-
ered the gold standard in community-based research studies funded by the National Institute on
Drug Abuse. Other instruments use different questions but similarly remain oriented to a specific
timeframe.
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but little information concerning their overall pattern of use. Questions remain, such
as: how consistently do heroin users ingest the drug? How often are such patterns
disrupted? To generate answers to these questions, ABMs can simulate these be-
haviors by designing agents who are addicted to heroin and then allowing them to
acquire and use the drug in association with other agents. In addition to building
agents with heroin addictions, our model includes resources (cash and heroin) that
could be exchanged by the agents, the relationships necessary to acquire the drug,
and the places where users must go to facilitate transactions. This more contex-
tualized version of heroin addiction is what our simulation attempts to character-
ize.

The heroin market modeled in the Illicit Drug Market Simulation (IDMS) project
detailed below is not intended to answer all the questions about the interactions
between the individual and the market; however, this is the first attempt to apply
a multiscale systems approach to addiction modeling. The approach provided is
experimental and could be used to generate hypotheses, as well as provide useful
insights for designing prevention and treatment interventions. For example, among
the agents in our model, there were critical times when their addiction became out
of control. In the real world, these situations might cause users to (1) enter treatment
in an effort to reduce their addiction, (2) combine their resources with other users,
potentially increasing their health risks, and/or (3) commit crimes to support their
increasing drug habit.

As a result, policymakers can gain a more detailed understanding of what is
required to construct effective policy by looking at simulations of the patterns in
heroin addiction and how these patterns are shaped and vary over time. Instead of
being restricted to individual narratives of addiction, this simulation demonstrates
that addictions are dynamic and patterned through the market context in which they
exist.

11.1.2 Internal Components of Heroin Addiction

A large body of biological, clinical, neuropharmacologic, and ethnographic research
describes heroin addiction from individual perspectives. In our study, we simulate
experienced users and do not focus on heroin initiation and neurophysiologic pro-
cesses associated with initial euphoria in a naïve subject. We only consider the three
main features associated with repeated heroin use, such as withdrawal, tolerance,
and a user’s drug habit, that is, addiction.

Withdrawal is a key feature of most addiction, but is particularly relevant for
those addicted to heroin. After a certain length of time of repeatedly using the
substance, a person addicted to heroin must continue to use it or else become
sick. This withdrawal syndrome involves intense symptoms such as chills, fever,
runny nose, intense muscle pains, headaches, constipation and/or diarrhea, insom-
nia, anxiety, depression, and crawling flesh. Withdrawal from heroin is incapac-
itating and persists for approximately 2 weeks after an addict discontinues use.
However, symptoms are alleviated seconds after an addict in withdrawal uses the
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drug. Thus, heroin addicts commonly use the terms “fixing” and “getting well” to
refer to injecting heroin, implying correcting and/or returning to a state of well-
being.

Tolerance is another important feature of heroin addiction, and refers to needing
ever-increasing amounts of the drug to feel the euphoria it produces. After consis-
tently using a certain amount, a user must use more (or a higher level of potency)
to experience a high. Tolerance is a neuropsychological consequence of consistent
use. Eventually, because achieving a high may require using amounts of heroin that
have become unaffordable to the user, “staying well” or maintaining their addiction
to avoid withdrawal, is often a primary motive for addicts. As a result of tolerance,
people addicted to heroin often use the drug to prevent withdrawal rather than to
induce euphoria. While, on balance, avoiding withdrawal might be more motivating
to heroin addicts who are maintaining their drug habits, this does not mean users
are not still motivated to get high, that is, overcome their tolerance. After all, the
euphoria keeps heroin users wanting more.

Both tolerance and withdrawal are diagnostic terms characterizing substance de-
pendence disorders, classified by both DSM-IV (American Psychiatric Association
2000) and ICD-10 (Isaac et al. 1994) diagnostic manuals. People who are depen-
dent on heroin frequently report withdrawal and tolerance to the drug, as well as
cross-tolerance to other opiates, and these criteria are often the two most common
indicators of heroin addiction.

Another term relevant to this paper is “heroin habit.” Unlike terms defined by
the medical community, the term heroin habit is part of the lexicon of heroin users.
In short, a heroin habit is how heroin users describe their addiction and typically
refers to an amount of drug that addicts believe they need to consistently use to
avoid withdrawal. Another way to understand a heroin habit is the typical dose a
user reports using in one day.

Because heroin is a commodity, heroin habits are often framed monetarily.
A “$20-per-day-habit” straightforwardly means the user is using approximately $20
worth of heroin per day. In the author’s research (Hoffer 2006), this $20 dose corre-
sponded to a “pill” of black tar heroin, the smallest unit of heroin sold in the market.
If a heroin addict does not use equal to or more than their habit, they will eventually
get sick and go into withdrawal. Maintaining a habit refers to a heroin user’s ability
to consistently use this baseline level of heroin. Simply, a user’s habit is what heroin
addicts seek to maintain, and is the subject of this paper.

Finally, we introduce a working technical term, “addiction level,” which de-
scribes the amount of drug (in standard units: 1/120 of a gram) a user consumes
per day. It is closely related to habit and, in the case of stable price-to-dose ratio,
there is an exact one-to-one relationship. However, when price varies for the same
dose depending on the market condition, addiction level becomes a better measure
of use than a habit expressed in dollar amounts. Addiction level is thus a conve-
nient measure (similar to standard drinks in alcohol research) to use in modeling
and analysis.
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11.1.3 Social and Market Components of Heroin Addiction

The social environment surrounding the user can be quite complex and can involve
drug-use “buddies,” drug dealers, friends, relatives, neighbors, co-workers, treat-
ment professionals, and law enforcement professionals. While it is challenging to
identify the main social groups and components associated with the individual’s
drug use, in our research we consider the closed social circle that controls the supply
of the drug. A real-life heroin market differs from the controlled supply environment
in animal experiments and is a product of social behavior.

The global economy of heroin involves production, sales/exchanges, and use.
Local social markets are strongly impacted by both regional drug trends (Curtis and
Wendel 2000; Agar et al. 1998; Agar and Reisinger 2002; Hamid 1992) and local
use patterns. Because this study focuses on individual addiction patterns, we make
certain assumptions about the stability of drug supply and consider a micro-level
social space in which transactions occur in the local distribution of a drug. Unlike
buying a product in a store, buying and selling heroin is not a depersonalized ac-
tivity. In this context, prices, logistics, and credit are all unregulated and potentially
negotiable (Johnson et al. 1985).

For this modeling project, we made decisions about the level of detail describing
the market. We considered market complexity, relevance of the details to the re-
search question, and availability of the data. For example, although people who use
heroin also often use other drugs, for the purpose of this model, we only consider
their heroin addiction. We also don’t consider the intricacies of deal negotiation,
rather, we focus on the fact that the deal was eventually made and heroin was ob-
tained by the user.

11.2 The Data

Because heroin use and heroin dealing are illegal and stigmatizing behaviors, es-
pecially in the United States, collecting data on these activates is no simple matter.
Conventional methodologies such as surveys do not accurately capture these com-
plexities; one cannot realistically survey the participants of a heroin market.

Information on the heroin market presented in this manuscript was collected
during eighteen months of ethnographic research conducted with heroin users and
dealers in Denver, CO (Hoffer 2006). Because of the ethnographic nature of the
study, information was obtained through narratives of and fieldwork observations
with participants. One of the innovations of our study was to convert the narra-
tives into events, transitions, and transition probabilities that allowed us to build
an agent-based model. In-depth, extensive, and historical accounts of heroin users,
dealers, and middlemen (i.e., brokers), and their interactions in the market over time
were used for programming these groups as “agents” in the simulated market. The
advantage of ethnographic research over surveys is that the data are collected on so-
cial actions linked in sequence, as well as to participant belief systems. What heroin
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users are describing and how they are acting are easier to interpret if the researcher
is “there” when the action takes place. This perspective was essential for determin-
ing and setting simulation parameters, evaluating agent logics, debugging programs,
and most important, interpreting results.

A description of the heroin user’s daily activities can be transformed into model
parameters in two ways. One way is the logical sequence of events related to market
activities. For example, when users want to buy drugs, they can go to a private dealer,
if they know one, or go to the open marketplace. At the market, users can search for
a street dealer and engage in a deal if they find a dealer with heroin. Alternatively,
they can go to a street broker. A broker is a drug user who connects customers and
dealers.

The second way is providing distributions of numeric parameters, such as fre-
quencies of events and conditional probabilities. Although these parameters are not
measured exactly, ethnographic studies can provide ideas about the ranges and dis-
tributions of parameter values. For example, several drivers can make a user seek
heroin. One driver is related to a user’s withdrawal. This driver is guided by habit
and heroin pharmacodynamics from the last use. Another driver could be related to
the external cueing or other reasons not associated with the last dose. In the latter
case, the frequency of use or the distribution of such events is difficult to assess
precisely, but long-term ethnographic observations can provide reasonable insight
about the range and shape of the distribution. In the case of withdrawal as the driver,
we have used published pharmacokinetic data calibrated to humans. Because each
individual has different metabolism and response to a drug, we used a distribution
with reasonable parameter ranges.

11.3 The Model

While ethnographic description provides considerable information regarding vari-
ous aspects of heroin addiction, we have selected only those elements that are rele-
vant to market functioning and individual behaviors associated with selling, buying,
and using heroin. Other components such as treatment, criminal justice processes,
and family relations were not included in the model. Thus, the agent-based model
developed for the Illicit Drug Market Simulation (IDMS) contains six different agent
types. In particular, customers, brokers, sellers, and private dealers are the most be-
haviorally complex agents. These agents can learn about market, change their level
of addiction based on heroin use, choose transaction partners, and modify their ac-
tivities based on past experiences. Police and homeless agents are less complex.
Hoffer et al. (2009) describes more specific details. In the simulation study pre-
sented here, we used 360 agents: n = 200 customers, n = 25 private dealers, n = 20
street dealers, 15 street brokers, and n = 100 homeless agents.

Agents in the IDMS function according to agent rules. These rules specify the
states in which the agent can be (e.g., seeking money, seeking heroin, buying heroin,
using heroin) and transitions between these states (e.g., if found a dealer and the
dealer has enough heroin then purchase the desired amount of heroin or if purchased
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heroin can either use right away or go home, with certain probabilities of making the
choice). These states, and conditional decisions and the rates of transitions between
the states for an agent, are represented in a form of a state diagram (Fig. 11.1). For
example, a drug user could be in a satiated state but, after a while, the withdrawal
symptoms become more pronounced according to a within-agent pharmacological
model. When the level of withdrawal reaches a certain point, the user changes the
state to “seeking the drug.”

Because of the complexity of the full market model and the space limitation
of this manuscript, the authors are unable to provide complete documentation
for the IDMS model here. To find a narrative description, table of parameters,
and the programming code for this model, the authors invite researchers to visit
http://www.case.edu/artsci/anth/Hoffer.html. Copies of the simulation also are avail-
able upon request.

In this paper, we focus only on the 200 customer agents, or the main users, of
heroin. Their actions are primarily focused on (1) maintaining a drug habit (set
randomly for each agent as an initial condition); (2) using more heroin than their
habit when possible to get high; and (3) attempting to avoid running out of heroin
and entering withdrawal. If users consistently use more heroin to feel euphoria, the
increased use can reset their heroin habit to the greater amount. If users return to
their previous amount, they will get sick until their body readjusts. Such increments
in use are not random. Rather, they tend to be organized by the heroin units sold in
the market. Using the “$20-per-day-habit” as an example, if heroin users want to
feel high, they cannot simply purchase a little more heroin, that is, less than a pill.
Instead, they would have to purchase two pills. Increments (and decrements) in use
correspond to the heroin available.

Furthermore, the heroin-using agents in our simulation were dependent on the
capacity of the market; while some would use all their resources to purchase the
maximum available drug, others could be more prudent and purchase the amount
they expect to need in the near future. Potency of the drug was standardized and
linearly associated with heroin unit size.

Market organization shapes a user’s ability to acquire the drug (Hoffer 2006;
Curtis and Wendel 2000). For example, in local communities that have an open-
air market in which anyone can buy heroin at any time, the features of the market
(i.e., open access, constant availability) will directly influence a user’s ability to
maintain his or her addiction. Similarly, if no open-air markets exist, such as in many
smaller, rural communities, a heroin user’s personal relationship with a dealer(s)
directly determines access. We consider contingencies that organize a user’s ability
to acquire the drug structural components of heroin markets.

A no less relevant issue concerns how heroin users navigate social relationships
within these market structures. In other words, while heroin users might have bi-
ological motivations to use and knowledge about where to acquire the drug, these
prerequisites are put into action only within a set of social norms and/or belief sys-
tems. In other words, there are rules customers (and dealers) must know and follow
(Hoffer 2006).

While the complete model and market simulation outcomes are presented else-
where (Hoffer et al. 2009), the findings below only concentrate on how customer

http://www.case.edu/artsci/anth/Hoffer.html
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agents’ addictions were operationalized. Each customer agent in the simulation was
assigned four initial conditions, including (1) an addiction level, (2) a drug concen-
tration level, (3) an inventory of drug, and (4) money. A customer agent’s addiction
level is measured in drug units the customer sought to maintain the addiction. In the
model each agent was initially assigned a random number drawn from a normal dis-
tribution with the mean of 120 and a standard deviation of 55. This addiction level
roughly reflects an addict’s “heroin habit”, as described above. The concentration
level represented the current amount of drug in the agent’s body. This number also
was drawn from a normal distribution with a mean of 15 and a standard deviation
of 45.

The processes of satiation, withdrawal, tolerance, and habit are the key features
that distinguish our model from usual behavioral models. By modeling these pro-
cesses, we introduce neurobiological and physiological drivers that create sustain-
able support for drug use. Because this is an introductory “pilot” model, we used a
simple functional relation based on drug concentration in the body to describe sa-
tiation and withdrawal. Assuming that drug injection increases drug concentration
very quickly, we ignore the processes of rapid increase of concentration in blood
and assume that it happened instantly after the injection. The concentration C stays
constant for some short period of time τ , and then gradually decreases according to
the first order pharmacokinetic equation:

dC/dt = −λCt for (t > τ),

where λ is the rate at which drug concentration decreases and depends on the indi-
vidual metabolism. If drug concentration is below a certain threshold, the message
for seeking a fix is generated and the agent starts looking for the drug. Although this
process does not represent the actual heroin concentration, it mimics the dynamics
and the timing of the need for the new fix. Tolerance is introduced in an implicit
way through the change in the addiction (or habit) level. The habit depends on the
accumulated dose over a prolonged period and represents the change in the habit,
that is, it is linearly increased as the user consumes more heroin than targeted by his
or her addiction level, and linearly decreases in the event that the customer did not
use heroin.

The heroin used and sold by agents in the IDMS corresponds to the units of
heroin available in the market: 10-, 30-, 40-, 60-, 120-, and 360-unit bundles. These
bundles parallel actual units sold in the market in both cost and proportionality,
namely, $20 for a pill (10 units); $40 for 2 pills (30 units); $50 for 3 pills (40 units);
$70 for a half-gram (60 units); $130 for a gram (120 units); and $330 for 3 grams
(360 units). Considerable data from the ethnographic research (Isaac et al. 1994)
contributed to determining this pricing scheme.

In the event that a customer agent had an addiction level occurring between these
amounts, they had to select what amount to purchase and use. If they had the re-
sources, customer agents always selected the larger amount. For instance, an agent
with a 37-unit addiction level could only buy 30 or 40 units worth of heroin, and
if he or she had $50 or more the customer agent purchased 40 units (3 pills). Cus-
tomer agents used heroin units that best aligned with their addiction level in this
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manner until they ran out of inventory. If they possessed fewer units of drug than
what they wanted to use, they used the remainder of their inventory. Customers also
used heroin randomly, that is, when they were not otherwise motivated to do so.

After running out inventory, the customer evaluated if they could purchase
heroin. Customers with money either purchased as much drug as they could or just
enough to cover their addiction level. This decision was randomly determined. Cus-
tomers could only purchase heroin at the full retail prices, and most customers re-
ceived an income that they used for this purpose. Incomes were distributed based on
one of three pay schedules: weekly, every 2 weeks, or monthly. To reflect the poten-
tial for less-organized income sources, IDMS also included times when customers
randomly received money.

Customer agents could engage in the market and purchase heroin in one of three
ways: going into the public (open-air) market and purchasing from a street seller,
using a broker (middleman) in this market, or using a private dealer not in an open-
air market. Purchases from a street seller were straightforward and direct; customers
could see street sellers. If a customer agent transacted with a broker, the sales pro-
cess was indirect. The customer located a broker who was visible to him or her, but
the broker made the sale with a street seller or private dealer. Customer sales through
private dealers required a customer knowing the location of the dealer. These loca-
tions were identified after customers used a broker for a certain number of sales
with that dealer. Private dealers and customer agents transacted in two ways: either
the private dealer delivered drugs to the customer or, more typically, the customer
traveled to the dealer’s location.

Agents selling heroin processed each transaction separately and often had com-
peting transactions that delayed completion of sales. Street sellers and brokers also
were subject to arrest from police agents roaming the open-air market and thus
would change location. Customers maintained an up-to-date list of sellers and loca-
tions in which they had successful transactions, returning to locations in descending
order of success the next time they needed to purchase the drug.

The agent rules directing seller and customer behaviors clearly do not include
all decision-making processes or the complexity associated of heroin-market oper-
ations. Nonetheless, they do include a fairly robust and dynamic set of criteria and
realistically incorporate variation in these behaviors. It was not always easy for cus-
tomer agents to purchase the heroin they wanted to maintain their heroin addiction
levels.

11.4 Results

The initial and final distributions of addiction levels for 200 customers in the 12-
month simulation are compared in Fig. 11.2. The mean addiction level for the sam-
ple at baseline was 122 units and 156 units at 12 months. With one exception, these
distributions are relatively similar. The exception was that at 12 months, consid-
erably more customer agents had addiction levels of 250 or above (n = 1 vs. 25).
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Fig. 11.2 The distribution of customer-addiction levels, in units, for the sample of N = 200 cus-
tomers at baseline (Time 0) and 12 months postbaseline (Time 12)

However, this finding is not out of line after considering individual variations ob-
served in the patterns of addiction over time.

Although the overall distribution of addiction levels was important and within
the boundaries of what would be expected in a real sample of heroin users, the ma-
jor focus of this manuscript is to identify patterns in addiction levels among agents
over time. Using the initial mean addiction level as a guide, we randomly selected
15 customers around the mean, as well as two standard deviations above and below
it, for more detailed investigation. Although the complete analysis of all 200 agents
incorporating multiple simulation runs is ongoing, several trends in this initial ran-
dom sample are reported below. Figures 11.3, 11.4, 11.5 and 11.6 show individual
customer agent addiction levels over the entire 12 months of one random simulation
run.

First, some customer agents exhibited an intense and brief time period in which
their addiction level increased and then decreased. These long-term binges were
defined when an agent’s addiction doubled or more over a timeframe of 1 month.
These increases were then immediately followed by a sharp decline in addiction
level, usually of the same magnitude. Figures 11.3 and 11.4 show agents represent-
ing this pattern.

This pattern likely contributed significantly to the addiction level discrepancy
between the initial and final distributions. Ending the simulation at 12 months was
arbitrary, and addiction levels of 250 and above are likely for customers who are on
the upward slope of a binge (Fig. 11.5).

Overall, this binge/crash pattern can be imagined behaviorally as customers who
are trying to overcome their tolerance rapidly, but then run out of money to con-
sistently maintain such a high addiction level. Heroin users often report these sorts
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Fig. 11.3 The addiction level, in units, of agent #59 over the course of a 12-month simulation.
This agent shows a binge/crash pattern in the agent’s addiction level

Fig. 11.4 The addiction level, in units, of agent #128 over the course of a 12-month simulation.
This agent shows a binge/crash pattern in the agent’s addiction level
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Fig. 11.5 The addiction level, in units, of agent #31 over the course of a 12-month simulation.
This agent shows a stepped pattern to increasing the agent’s addiction level. This agent also may
be exhibiting the beginning of a binge/crash pattern at month 10

Fig. 11.6 The addiction level, in units, of agent #43 over the course of a 12-month simulation.
This agent shows a stepped pattern increasing the agent’s addiction level
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Fig. 11.7 The addiction level, in units, of agent #181 over the course of a 12-month simulation.
This agent shows a stepped pattern reducing the agent’s addiction level

of binge/crashes, especially when they buy heroin using money that they acquire
haphazardly or unexpectedly from crime.

Contrasting this binge/crash pattern, another pattern observed was a gradual or
stepped pattern of addiction levels. In this pattern, addiction levels increase for
1 month, are followed by a plateau period, and then followed by another increase.
The pattern is then repeated as the addiction level decreases. As in the binge/crash
pattern, the addiction level is also increasing and decreasing; however, the timeframe
here is more extended. Figures 11.5 and 11.6 show agents with this pattern.

Most stepped patterns produced overall increases in addiction levels. However,
in a few instances, addiction levels decreased in this manner. Overall, increases and
reductions seemed to correspond to the initial addiction level of the agent. If the
addiction level started low, it could increase gradually, while if it started high, it
might diminish over time, as shown in Fig. 11.7.

The gradual increases in addiction levels presented in the stepped pattern cor-
respond to a common narrative in becoming addicted. Users often report gradual
increases in heroin use over several months: they might start out “chipping” (i.e.,
using only on the weekends) and then proceed over time to everyday use. Many
heroin addicts report that often they slowly increase the amount of heroin that they
use to overcome tolerance.

The final pattern of customer agent addictions is shown in Fig. 11.8. This pat-
tern represents stability over time, meaning that the agent’s addiction level remains
relatively constant throughout the entire 12 months of the simulation. Our initial
analysis suggests that this pattern appears less frequently than the other patterns.
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Fig. 11.8 The addiction level, in units, of agent #199 over the course of a 12-month simulation.
This agent shows a stable pattern in the agent’s addiction level

It also seems most dependent on an agent’s initial addiction level, occurring most
often at relatively lower initial addiction levels. This result has certain face validity
because large addictions are inherently more expensive to maintain.

Stable patterns in addiction levels also are noted in the behavior of heroin users.
Heroin users who have considerable experience with their addiction show remark-
able resilience in maintaining affordable and manageable levels of use. Although
rare in our initial analysis, it is important to recognize agents who have developed
behaviors to meet the needs of their addiction and who could do so consistently
through the contingencies of the market.

As noted, a complete analysis incorporating multiple simulation runs and investi-
gating all 200 customer agents is in progress. Nonetheless, initial patterns identified
in this preliminary analysis are promising. The authors hope to better characterize
the binge/crash, stepped, and stable patterns, as well as recognize additional patterns
using ABM.

11.5 Limitations

It is important to recognize that the model presented here addresses only a limited
dimension of the market’s overall influence on heroin users’ addictions. One im-
portant missing component is the influence of other heroin users on a heroin user’s
behavior. People addicted to heroin often rely on their associates to share the cost
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of drugs. This is particularly relevant when users run out of their own funds (see
below). The current version of the model is focusing on the incorporation of the full
range of processes associated with purchasing the drug. It also is currently unclear
how factors associated with the cost or the processes of sales contribute to the pat-
terns observed. We are currently working on the incorporation of this component
into the next version of the model.

Other issues not included in the model involve how heroin users actively seek to
reduce their level of addiction. Heroin users who believe their addiction is becoming
out of control often enter treatment to reduce their use and/or substitute other opiate
class substances to reduce their dependence on heroin (Koester et al. 1999). We
model entering and leaving treatment as a random process associated with the level
of addiction and availability of resources to buy the drug, however, we don’t track
the detailed process of relapse and reentry as was considered, for example, by Zarkin
et al. (2005). Polydrug use is not currently included in the model.

In this model, the variety of alternatives for obtaining money and heroin is repre-
sented in two random processes: receiving windfalls and seeking money, when the
agent is actively seeking money and can find it with some probability. In the real
world, heroin addicts are much more industrious and find ways to acquire heroin in
these situations. Some of the ways users acquire heroin without money include part-
nering with fellow heroin users (as noted above), committing crimes to get money,
or getting heroin on credit from dealers (Hoffer 2006). Currently these behaviors
are not included in the model, and the windfall and seeking money processes are
calibrated to represent the frequency with which a user is able to acquire drugs.

Despite the limitations of IDMS, this model takes an important step toward pro-
viding a comprehensive understanding of heroin addiction by specifically incorpo-
rating individual features of a heroin addiction expressed within the context of a
dynamic social environment (the market), in which heroin and cash are exchanged.

As this project remains ongoing, the authors hope to address some of these im-
portant limitations and to verify findings from this model through independent data
collection. In particular, combining ethnographic research with Ecological Momen-
tary Assessment, where the users record their daily heroin use and purchasing pat-
terns, the authors will obtain the data to validate decisions and patterns assumed in
the model.

11.6 Conclusion

This paper illustrates how the social fabric of a heroin market can impact the physi-
ology of heroin addiction and how heterogeneity of addiction patterns can be shaped
by the events in the market. Two innovations are specifically notable: first is a new
conceptual use of ABMs, where the focus is on the within-agent dynamics under
the influence of the surrounding social landscape. This approach complements the
more traditional use of ABM, which studies self-organization of the complex sys-
tem due to the interaction of its members. The second innovation is an attempt to
uncover physiological trends and patterns that are generally not measurable in real
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life. Future studies might provide ways to measure partial components of the model
such as drug concentration or craving to validate patterns. However, this research
will never be able to provide an uninterrupted history of these dynamics available
via ABM. This study shows the utility of the systems approach, where simple but
realistic rules and equations provide insight into a real-life problem.

Using the results of this study, we would argue that heroin addiction and perhaps
some other addictions, such as addiction to crack or methamphetamine, cannot be
fully understood without incorporating ways in which drug users acquire the drug
within these environments. Thus, as the next stage in our project, we are collecting
daily drug use reports from active heroin users via interactive voice response (IVR)
or smartphones. These data will greatly facilitate both setting market simulation
parameters, as well as collecting the data necessary to validate simulated addiction
patterns and outcomes.

Finally, the real-world application of the findings reported here are significant
in a number of ways. For addicts attempting to manage their addiction, uncon-
trolled increases and decreases in their level of addiction are nearly unavoidable.
For frontline health professionals working with addicts, being able to identify and
work with specific patterns of addiction in devising strategies to minimize harm
might be extremely beneficial. These patterns also may prove useful in anticipating
opportunities when addicts might be more receptive to treatment alternatives. Devel-
oping ABMs that included biologically motivated and socially meaningful behavior
represents an exciting and novel approach for researching the complexity of drug
addiction.
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