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interpretation of RNAi HTS experiments. The opening chapters are carefully presented to be
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Preface

In 2000, scientists triumphantly announced they had deciphered the human genome,

the blueprint for human life; in 2001, almost the entire human genome sequence

became principally known. In 2003, the Human Genome Project was completed.

By laying out in order the 3.2 billion units of our DNA, researchers sparked a

firestorm of discovery and an explosion of genomic knowledge, which have been

accompanied by rapidly emerging novel genomic technologies, including micro-

arrays, whole-genome single nucleotide polymorphism (SNP) chips, RNA interference

(RNAi) high-throughput screening (HTS), and so forth. All these have launched a

new era – the genomic revolution era, which offers us boundless potential and

great promise. Foremost are prospects in health, ranging from discovering cures for

cancer to developing personalized medical products for individuals. The success in

applying the “genomic revolution” to the discovery and development of new medical

products largely depends on our ability to understand gene and gene interactions

associated with drug response and disease. RNAi is a natural mechanism for gene

silencing that can be harnessed to reveal information about gene function [48],

leading to advances not only in drug target identification and validation, but also

in the development of a potentially whole new class of therapeutic agents based on

RNAi [24].

RNAi was first characterized as post-transcriptional gene silencing in petunia

[109]. Later studies in Caenorhabditis elegans revealed that the interference with gene

function was triggered by the presence of double-stranded RNA [48]. Exogenous

delivery of double-stranded RNA was then developed as an experimental tool for

functional genomics: first, in C. elegans and Drosophila and later, in mammalian

cell culture systems, when it was discovered that delivery of short double-stranded

RNA oligonucleotides triggers RNAi without inducing the interferon response [51].

This type of RNA oligonucleotide is thus called small interfering RNA (siRNA). The

development of algorithms for siRNA design that produce a potent and selective

knockdown of targeted genes has led to a great deal of interest in using siRNAs to

elucidate gene function and identify novel targets for drug discovery. The importance

ix
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of RNAi was further recognized when the Nobel Prize in medicine and physiology

was awarded to A. Fire and C. C. Mello in 2006 for their research in this field [48].

The application of genome-scale RNAi relies on the development of RNAi HTS

technology.

RNAi HTS is broadly used in the identification of genes associated with specific

biological phenotypes. This technology has been hailed as the second genomics wave,

following the first genomics wave of gene expression microarray and single nucleotide

polymorphism discovery platforms [101]. Before the emergence of RNAi HTS,

compound HTS (which allows rapid screening of large collections of compounds

consisting of small molecules) had been widely used in the pharmaceutical industry.

As in any high-throughput platform, one of the most fundamental challenges in

RNAi/compound HTS is gleaning biological significance from large volumes of data

that rely on the development and adoption of appropriate statistical designs and

analytic methods for quality control and hit selection [43].

Merck has applied extensive effort into RNAi research. It purchased Sirna Ther-

apeutics for $1.1 billion in October 2006 [186] and has one of the largest labs for

conducting genomewide RNAi research and compound HTS. Since early 2005, I have

led data analysis in RNAi HTS projects at Merck and have continuously developed

and adopted experimental designs and analytic methods for genome-scale RNAi

research, including novel analytic methods for quality control and hit selection,

which has allowed my colleagues and me to publish multiple articles on genome-

scale RNAi research [28;45;86;161–180;182;183]. In 2005, I gave presentations on

statistical methods for RNAi HTS at the Joint Statistical Meetings (Minneapolis,

Minnesota) and the RNAi Meeting (Cold Spring Harbor, New York). Since then,

I have given invited presentations and seminars at, among others, the 2006 Inter-

national Conference on Bioinformatics and Computational Biology (Las Vegas,

Nevada); 2006 Joint Statistical Meetings (Seattle, Washington); 2007 Seminars of

Institute of Microbiology, Chinese Academy of Sciences (Beijing, China); 2007 Inter-

national Conference of Bioinformatics (Hong Kong, China); 2007 Joint Statistical

Meetings (Salt Lake City, Utah); 2008 Department of Statistics Seminar, Temple

University (Philadelphia, Pennsylvania); 2008 RNAi and miRNA World Congress

(Boston, Massachusetts); and 2009 World Pharmaceutical Congress (Philadelphia,

Pennsylvania).

During my presentations, the following questions are usually asked by members

of the audience: “As a statistician, I want to know about recently developed statistical

methods and analytic tools in genome-scale RNAi research. Could you suggest a

book in this field?” “As a biologist, although I have some knowledge of statistics,

I do not have systematic training in this field. I am very interested in reading a

book that introduces analytic tools in genome-scale RNAi research. Do you know

of any book that describes the necessary and basic statistics knowledge in genome-

scale RNAi research so that I can apply it to our experiments without knowing

much details about statistics?” Or, “I am a graduate student. I am very interested
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in data analysis in genome-scale RNAi research and am eager to work in this area

in the near future whenever possible. Could you tell me which book will describe

the necessary scientific knowledge and prepare me well for data analysis in this

area?” Obviously, there is a demand for a self-contained and cohesive book about

data analysis on genome-scale RNAi research. However, to my knowledge, such

a book had yet to be written. The demands from the audiences and the need to

promote genome-scale RNAi research propelled me to write such a book, in which I

describe and present scientific knowledge and recently developed analytic methods

and applications based on my experience in developing them and analyzing many

genome-scale RNAi projects in the pharmaceutical industry.

Audience

In genome-scale RNAi research, it takes an ongoing dialog and a two-way flow of

information and ideas between biologists and computational scientists, including

statisticians, to develop experimental designs and analytic methods that are amenable

to rigorous analysis and interpretation of RNAi HTS experiments. It has been recog-

nized that biologists have an unfortunate tendency to “plug and play” with analytic

methods without understanding the underlying principles, resulting in the misuse

of otherwise effective strategies. Thus, at this time, most biologists depend on their

computational colleagues for the development of data analysis methods, and most

computational scientists depend on their biology colleagues to perform experiments

that address important biological questions and to generate data [5]. Meanwhile,

some people believe that, soon, if a scientist does not understand some statistics or

rudimentary data-handling technologies, he or she may not be considered a true

molecular biologist and thus will simply become a dinosaur [43]. On the other hand,

to perform appropriate and effective data analysis, computational scientists need to

know the details about recently developed methods and understand basic biological

processes and technologies in HTS experiments.

Considering the needs of both biologists and computational scientists, this book

has two major goals: 1) to help biologists who have limited training in statistics under-

stand experiment designs, recently developed statistical methods, and rudimentary

data-handling strategies for RNAi HTS experiments; and 2) to help computational

scientists grasp recently developed statistical methods and common analytic tools

and then be able to use them for analyzing data in HTS experiments. It is also

suitable for graduate students (and perhaps undergraduate students) of biology or

computational science who want to learn data analysis in HTS technologies. The first

part of this book should be generally comprehensible to a biologist with training in

basic statistics, as well as to a computational scientist with basic biological knowl-

edge; the second part of this book should be comprehensible to a computational

scientist with a master’s degree or equivalent in statistics/biostatistics. The analytic

methods presented in this book should also be suitable for biologists/chemists and
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computational scientists working in any other HTS, including small-molecule HTS

experiments.

Content and General Outline

This is a concise, self-contained, and cohesive book focusing on commonly used and

recently developed methods for designing an HTS experiment from a statistically

sound basis and for analyzing data from the experiment. The topics of this book

reflect my personal experiences and biases in designing and analyzing HTS data. A

significant portion of the book is built on material from articles that my colleagues

and I have written, talks I have presented at multiple conferences, and my unpub-

lished observations. Although I have tried to quote relevant literature, I may have

missed some related references.

Chapter 1 presents an introduction to RNAi and HTS technologies and a descrip-

tion of a typical RNAi HTS project in the pharmaceutical industry. Chapter 2 pro-

vides experimental designs for genome-scale RNAi screens, which include siRNA

designs, control designs, plate designs, designs for siRNA delivery and optimization

of transfection, and sample size designs. Chapter 3 discusses how to display data

in order to identify potential systematic errors, how to determine data transfor-

mation, and how to adjust for identified systematic errors. In Chapter 4, I present

both biological processes and analytic methods for quality control and demonstrate

how to apply them in HTS experiments. In an RNAi HTS, a primary goal is to

select siRNAs with a desired size of inhibition or activation effect. An siRNA with

a desired size of effect in an HTS screen is called a hit. The process of selecting hits

is called hit selection. The analytic methods for hit selection in the screens without

replicates differ from those with replicates. Therefore, I present them separately:

without replicates in Chapter 5 and with replicates in Chapter 6. In Chapters 5 and

6, I explore classic analytic methods, including z-score method and t-test; describe

recently developed methods, including robust methods, error control methods, and

methods based on strictly standardized mean difference (SSMD) for hit selection;

briefly introduce analytic methods for addressing off-target effects; and illustrate

how to use them in RNAi HTS experiments. Sample size consideration for hit selec-

tion is also explored in Chapters 5 and 6. Chapters 1 through 6, which are presented

in Part I of this book, are written so that a scientist with training in basic statistics

can understand them. In each of these six chapters, I provide strategies on when

and how to apply experimental designs and analytic methods in practical RNAi HTS

experiments.

In contrast, Chapters 7 and 8, which are presented in Part II, describe and

derive recently developed analytic methods from a solid statistical foundation and

thus require the reader to have systematic training in statistics. Specifically, in

Chapter 7, I present newly developed statistical methods for comparing groups,

including contrast variable, c+-probability, d+-probability, standardized mean of
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a contrast variable (SMCV), and their statistical estimation and inference; derive

SMCV-based criteria for assessing the strength of group comparisons; and extend

the concepts to the settings of multifactor analysis of variance (ANOVA). Chap-

ter 7 builds a strong theoretical base for newly developed statistical methods for

assessing the size of siRNA effects and for addressing off-target effects. In Chap-

ter 8, I describe and derive newly developed statistical methods for assessing the

size of siRNA effects, which includes SSMD and associated error-control methods,

such as false discovery rate, false non-discovery rate, p-value, p∗-value, q-value, and

q∗-value for hit selection in RNAi HTS experiments. In Chapter 8, I also elaborate

on analytic methods adjusting for off-target effects. R functions for most analytic

methods in this book will be formed into an R library and should be submitted to

Bioconductor (www.bioconductor.org).
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1

Introduction to Genome-Scale RNAi Research

1.1 RNAi: An Effective Tool for Elucidating Gene Functions and a New Class
of Drugs

RNAi is a mechanism in living cells that helps determine which genes are active

and how active they are. It is a naturally occurring pathway for the regulation of

gene expression in which small RNA molecules lead to the destruction of messenger

RNA (mRNA) with complementary nucleotide sequences [48;128]. RNAi has an

important role in defending cells against parasitic genes – viruses and transposons –

but also in directing development and gene expression in general.

Two types of small RNA molecules are central in the RNAi pathway (Figure 1.1).

One is small interfering RNA (siRNA), sometimes known as short-interfering RNA

or silencing RNA, a class of 20 to 25 nucleotide-long double-stranded RNA (dsRNA)

molecules [48], and the other is microRNA (miRNA), a class of endogenous dsRNA

molecules of about 21 to 23 nucleotides in length [89;91;92;128]. Both siRNA and

miRNA can bind to other specific RNAs and either increase or decrease their activity,

usually by preventing an mRNA from producing a protein.

siRNA. The RNAi pathway is controlled by endoribonuclease-containing com-

plexes known as RNA-induced silencing complexes (RISCs) and initiated by an enzyme

called Dicer in the cell’s cytoplasm (Figure 1.1). In the initiation step, the Dicer cleaves

long dsRNA molecules into siRNAs. An siRNA assembles into a RISC and unwinds

into two single strands. One of the two strands, known as the guide strand, is then

incorporated into the RISC. Later, the guide strand specifically pairs with a comple-

mentary mRNA molecule. This recognition event may produce one of the following

two major outcomes: (i) post-transcriptional gene silencing [63;74] (i.e., the gene is

not expressed) or (ii) epigenetic changes to a gene affecting the degree to which the

gene is transcribed. Post-transcriptional gene silencing occurs when the pairing of

the guide strand with mRNA induces cleavage by argonaute, the catalytic component

of the RISC complex, in the region homologous to the siRNA.

3
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Figure 1.1 The RNA interference pathway. External double-stranded RNAs (dsRNA), siRNA, or pre-miRNA

in the RNAi pathway may come from laboratory manipulation, which is the basis for the use

of RNAi as an effective tool to knock down targeted genes.

miRNA. The miRNA molecule has a similar function to that of siRNA in the RNAi

pathway (Figure 1.1). miRNA is a noncoding RNA. That is, miRNAs are encoded by

genes from DNA from which they are transcribed, but miRNAs are not translated

into protein; instead, each primary transcript (called a pri-miRNA) is processed into

a short, 70-nucleotide stem-loop structure called a pre-miRNA in a cell’s nucleus.

The stem-loop structure is also called hairpin structure and, subsequently, a pre-

miRNA is also called hairpin miRNA precursor [63] or short hairpin RNA (shRNA).

A pre-miRNA is exported into cytoplasm and is then identified and cleaved by

Dicers into a functional miRNA. Mature miRNAs are structurally similar to siRNAs.

However, mature miRNA molecules are partially complementary to one or more

mRNA molecules. The main function of miRNA is thought to be down-regulation

of the translation of mRNA to protein.
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In the RNAi pathway, the dsRNA may come from infection by a virus with

an RNA genome or from laboratory manipulations. Therefore, this pathway can be

co-opted by experimentally introducing synthetic dsRNAs designed to target specific

mRNAs, thus knocking down the expression of the protein of interest [44;63;64].

The development of algorithms for siRNA design that produce potent and selective

knockdown of targeted genes has led to a great deal of interest in using siRNA to

elucidate gene function and identify novel targets for drug discovery. In medical

research, in addition to drug target identification and validation, RNAi can also be

harnessed to develop a whole new class of potential therapeutic agents [98]. In fact,

RNAi is seen as the third class of drugs, after small molecules and proteins [24]. The

importance of RNAi was further recognized when the Nobel Prize in Medicine and

Physiology was awarded to A. Fire and C.C. Mello in 2006 for their work [48] on

RNA interference in Caenorhabditis elegans, which they published in 1998. Galun

[51] even parallels the article by Fire et al. [48] on RNAi to that of Watson and Crick

[156] on the double helix of DNA.

1.2 High-Throughput Screening: A Vital Technology in Drug Discovery

High-throughput technologies such as microarrays, whole-genome single-

nucleotide polymorphism chips, and high-throughput screening (HTS) play a cen-

tral role in current molecular biological research and drug discovery. The abil-

ity of high-throughput technologies to simultaneously interrogate thousands of

genes/compounds has led to important advances in solving a wide range of biologi-

cal problems, including the identification of previously unknown genes involved in a

biological pathway and the subsequent unveiling of new insights into developmental

processes and pharmacogenomic responses, the evolution of gene regulation, and

the discovery of new drug targets [18;54;100]. Likewise, RNAi can be utilized on

a genome-wide scale via HTS technology, which allows thousands of siRNAs to be

tested simultaneously to identify previously unknown genes involved in a biological

pathway [8;16;64;96;138;158;176;180].

HTS technology uses automation (including robotics, data processing, and con-

trol software, liquid handling devices, and sensitive detectors) to run an assay screen

against a library of candidate compounds or siRNAs. An assay is a test for specific

biochemical activity such as the inhibition or stimulation of a biochemical or biolog-

ical mechanism. The biochemical activity can be represented by measured responses

such as the reflectivity of polarized light shined on cells or the intensity of emission

from labeled particles. A typical compound HTS-screening library contains more

than 100,000 small molecules. A genome-scale siRNA library may contain 60,000

or more siRNAs that are pooled to target about 25,000 genes. Usually, three siRNAs

targeting the same gene are pooled together. Hence, using HTS, one can rapidly

identify active compounds, antibodies, genes, or effective siRNAs that modulate a



6 Introduction to Genome-Scale RNAi Research

Figure 1.2 Two types of microtiter plates commonly used in high-throughput screens. Left: a 384-well

plate. Right: a 1,536-well plate.

particular biomolecular pathway and thus can discover the interaction or role of a

particular biochemical process in biology.

The key testing vessel of HTS is a small container with a grid of small, open

divots, called wells. This container is called a microtiter plate or microplate of about

5 inches long and 3 1
8 inches wide and is usually disposable and made of plastic

(Figure 1.2). The microplates for HTS generally have 384, 1,536, or 3,456 wells,

although they may have 96 wells in some experiments. Most of the wells contain

test compounds (i.e., small molecules) or siRNAs, with one compound or siRNA

per well, although some of the wells contain controls to indicate the quality of the

assays. The test compounds or siRNAs are also called sample compounds or sample

siRNAs. A screening facility usually has a library of source microtiter plates holding

the compounds or siRNAs that have been carefully chosen, arranged, and cataloged.

The source plates are also called stock plates, and they are either created by the lab

or obtained from a commercial source. The source plates themselves are not directly

used in experiments. During experiments, copies of selected source plates are created

by pipetting a small amount of liquid (often measured in nanoliters) from the wells

of a source plate to the corresponding wells of a completely empty plate. The copied

plates that are actually used in the experiments are called assay plates.

To conduct an HTS experiment, the researchers fill each well of an assay plate with

some biological matter, such as protein, cells, or an animal embryo, and incubate
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them for a certain time so that the biological matter can absorb, bind to, or have other

reactions with the compounds/siRNAs in the wells. Then the response representing

the biochemical reaction (e.g., the intensity of light emitted by labeled particles) is

measured across the wells, usually by an automated machine. The machine outputs

the result as a grid of numeric values, with each number mapping to the value

obtained from a single well of an assay plate in an experiment. A high-capacity

machine can measure dozens of assay plates in a few minutes, generating very

quickly thousands of experimental data points. One of the most important features in

HTS technology is automation, which relies on robotics and high-speed computers.

Typically, an integrated HTS system consisting of one or more robots has the ability to

transport assay plates from station to station for sample and reagent addition, mixing,

incubation, and readout. Therefore, an HTS system can usually simultaneously

prepare, incubate, and output many plates, subsequently testing a large number of

compounds/siRNAs (e.g., up to 100,000 compounds per day) and generating a huge

amount of data. The term ultra high-throughput screening (uHTS) has been created

to refer to an HTS facility that can screen in excess of 100,000 compounds a day on

a routine basis.

1.3 Genome-Scale RNAi Screens

Genome-scale RNAi screens can be conducted in different organisms. Three that

have been intensively studied are C. elegans (a small roundworm), Drosophila (fruit

flies), and human cells.

Human genome-scale RNAi screens are currently conducted in human cells,

including stem cells, and a variety of immortal cell lines [41]. Long dsRNAs acti-

vate interferon responses, which leads to apoptosis (cell death) in somatic cells.

Short dsRNAs do not activate the interferon response; thus RNAi in human

cells must use short dsRNA of less than 30 nucleotides such as synthetic siRNA,

vector-expressed short-hairpin RNA (shRNA, and endoribonuclease-derived siRNA

(esiRNA). Even shorter dsRNAs may be needed: a recent study [85] found that

dsRNAs of just 21 nucleotides long triggered an immune response through toll-like

receptor three (TLR-3), which ultimately inhibited angiogenesis, and that simply

shortening the siRNA to fewer than 18 nucleotides seemed to eliminate TLR-3

recognition.

RNAi screens in human cells can use a diverse set of phenotypic measurements

such as homogenous cell viability, alternations in reporter-gene expression, high-

content readouts using automated microscopy, and immunofluorescence signal from

a highly specific antibody. In situations where the focus is on a single measured

response, the design and analysis should be similar regardless of differing types of

phenotypic measurements. In other cases, we may consider multiple measurements

simultaneously in an experiment, especially for high-content readout. More details

about different analyses will be provided in Chapter 5.
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Cell of Interest

Transfection

Identified Genes

or Therapeutic Targets

siRNA Library
(1~70K)

Treatment / Incubation

Scanning

Numeric Data
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Figure 1.3 Procedure of genome-scale RNAi screens.

The HTS technology applied to RNAi has made it feasible to use cell-based assays

to query every gene in the genome for its potential function in a given biological

process of a cell. The general procedure for cell-based RNAi screens is demonstrated

in Figure 1.3. The first step is to choose an RNAi library and a robust and stable type

of cell, which can be a stem cell, primary cell, established cell line, or engineered

cell line. Primary cells have limited passaging capacity (thus siRNAs are hard to get

into the cells), whereas established cell lines such as Hela and HEK are capable of

indefinite passaging under proper cell culture conditions. Engineered cell lines are

modified to over-express or underexpress native, tagged, or engineered proteins.

Transfection. The delivery of siRNAs in a library into cells is called transfection

of siRNAs into the cells in an RNAi screen. For transfection, we need to identify rel-

evant siRNA controls and HTS-compatible transfection methods that give optimal

gene knockdown and cell viability. The transfection can be conducted using either

suspension-mode electroporation or lipid reagents. Suspension-mode electropora-

tion is good for cells that are difficult to transfect but currently is limited to the 96-well

format. Lipid reagents are easily scalable and mostly highly efficient with varying

degrees of cytotoxicity and stability. In addition to choosing the best transfection

method, we need to determine cell density (i.e., number of cells per well), time of

lipid/microRNA complex formation, assay incubation time post-transfection, trans-

fection efficiency (i.e., the performance of assay with respect to positive and negative

control siRNAs), detection reagent stability at the working concentration, effect of

cell passage number, and so on.

There are various types of RNAi-detection assay technologies. Two commonly

used types are well-based assays using photomultiplier tube– or charge-coupled
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device–based cameras and cell imaging based on fluorescent labeling of macro-

molecule of interest. To minimize the need to continually change platform instru-

mentation for new assays, RNAi assays can be broken into portions, with one robotic

platform handling transfection, a second handling detection, and, possibly, a third

carrying out a high-content read, which allows each robot to specialize in a particular

aspect of the RNAi HTS process.

1.4 An Example of Genome-Scale RNAi Research

In genome-scale RNAi screens, a primary goal is to select siRNAs with a desired

effect size. The siRNA effect is represented by the magnitude of difference between

the intensity of an siRNA and that of a negative reference in RNAi HTS experiments

[183]. For screens using the common platform of 384-well plates, limitations of

experimental time and cost usually do not allow a single experiment to have more

than two hundred 384-well plates, whereas two hundred 384-well plates is usually

the minimal requirement for conducting a genome-wide screen with replicates

(i.e., each siRNA is measured multiple times). Therefore, currently, a typical RNAi

HTS project starts with a first screen (called primary screen) of single or pooled

siRNAs targeting about 20,000 genes, most of which have no replicate. The single or

pooled siRNAs identified (called hits) in the primary screen are further investigated

using one or more secondary screens (called confirmatory screens) in which each

siRNA or pool has replicates. A typical primary screen has fifty to one hundred

fifty 384-well plates, and a typical confirmatory screen has three to twenty 384-well

plates.

For example, a genome-scale RNAi project for hepatitis C virus (HCV) started

with a primary screen, in which a total of about 22,000 siRNA pools were tested across

97 plates [180]. The experiment was designed to identify host factors associated with

HCV replication using the HCV replicon assay system described in Zuck et al. [185].

The negative control used in the experiment was a nonsilencing siRNA. Two positive

control siRNAs were used: (i) a very strong one that targeted the HCV replicon [121]

and (ii) a weaker one that targeted hVAP33 [61;97].

Following the primary RNAi HTS experiment and using the methods described

in Zhang et al. [161;162;174;180], a total of 640 siRNAs were identified as hits. These

siRNAs were transfected into 384-well plates with controls set up as in the primary

experiment. HuH-7 cells containing an HCV genotype 1b replicon were transfected

with these 640 siRNAs as described for the primary screen, but the transfections were

carried out in triplicate of every source plate for improved statistical robustness in a

confirmatory screen. In addition, a second confirmation screen was carried out using

HuH-7 cells expressing the genotype BK-2b HCV replicon. The replicon-containing

cells were transfected in triplicate and assayed in the same manner as the HuH-7

genotype 1b HCV replicon containing cells in the primary screen and in the first

confirmatory screen [173].
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1.5 Challenges in Genome-Scale RNAi Research

Genome-scale RNAi screens have two major advantages over classical genetic screens:

(i) the sequences of all identified genes are immediately known, and (ii) lethal

mutations are easier to identify because it is unnecessary to recover mutants [16].

Classical genetic screens for elucidating gene function largely rely on the recovery of

lethal mutation, which is usually time-consuming and may be difficult. Now RNAi

screens directly measure the knock-down impact of siRNAs on their targeted genes,

thus making it unnecessary to recover mutants as in classical genetic screens. Thus

genome-scale RNAi screens have great promise for elucidating gene function and for

discovering new drug targets in our post-genome era. Meanwhile, as a technology

that is still under development, genome-scale RNAi screens face many challenges.

Four key challenges are (i) controlling optimal experimental time, (ii) identifying

moderate or weak hits, (iii) reducing off-target effects, and (iv) gleaning biologically

relevant information from a large body of data.

Experimental times. Compared with small-molecule HTS experiments, RNAi

HTS experiments have more challenges in controlling the optimal experimental

time so that all the potent siRNAs are measured in their effective peaks. RNAi targets

mRNA and depletes it from the cell. However, the levels of mRNA vary across a wide

dynamic range; consequently, the depletion of different mRNAs may take different

lengths of time. Furthermore, after the depletion of mRNAs in the cell, the residual

protein can remain for an extended time, which is protein dependent. As a result,

the knockdown of genes by RNAi reagents has a wide temporal range (e.g., within

12–120 hours after transfection) [62]. When a large number of siRNAs are used

in a single assay as in a genome-scale RNAi screen, the onset of action of potent

siRNAs can occur at different times, and there is no time point in the assay that is

optimal for all the potent siRNAs. If a potent siRNA is not measured at or nearly at

its effective peak, it may act like an impotent siRNA during measurement and may

not be identified as a hit in the assay, which then leads to a higher false-negative rate

in RNAi screens than in small-molecule screens.

Identifying hits. A unique feature of RNAi is that its effect on genes is to knock

down, not knock out completely. Compared with the effect of knockout in classical

genetic screens, the size of effect on a measured phenotype is moderate or weak

for many potent siRNAs. Furthermore, in some cases, the siRNAs with moderate

effects are more biologically relevant [173]. Although many of the siRNAs might

affect the outcome of the assay, in most cases, a small percentage of the effective

siRNAs truly target genes involved in the phenotype under investigation. That is,

the true-positive hits are buried in a large body of data containing substantial noise.

siRNAs with moderate or weak effects are more likely to be buried among siRNAs

with extremely weak or no effects. In other words, a nonhit tends to behave more like

a hit in RNAi HTS experiments. In contrast, the effects of potent small molecules
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are usually strong. Therefore, RNAi HTS experiments tend to have a higher false-

positive rate than both classical genetic screening experiments and small-molecule

HTS experiments.

Off-target effects. When using RNAi as a gene-silencing tool, we want an RNAi

reagent to specifically knock down a target gene but not to interfere with other genes.

However, an siRNA can silence not only the target gene, but also other genes with

similar sequences. The silencing effect of an siRNA on nontarget genes is called an

off-target effect. Off-target effects can produce false positives, leading to misleading

results and erroneous conclusions about the genes that are involved in a biological

pathway, when RNAi experiments are used to elucidate gene functions [78–80].

Detecting biologically relevant data. One of the major advantages of HTS

technologies is their ability to simultaneously interrogate thousands of genes/

compounds. With the ability to generate large amounts of data per experiment,

HTS technologies have led to an explosion in the rate of data compiled in recent

years [9;70]. Consequently, one of the most fundamental challenges of HTS biotech-

nologies is to glean biological significance from large volumes of data [16;25;38;

43;70;82;136;161;176;180]. There are many analytic questions to be solved. For

example, systematic errors (e.g., row and/or column effects) and outliers are not

uncommon in HTS experiments. How should we address them? For quality control

(QC) in genome-scale RNAi experiments, signal-to-background ratio, signal-to-

noise ratio, signal window, assay variability ratio, and Z-factor have been adopted

to evaluate data quality [17;39;77;99;116;123;148;150;159;180;185]. How well do

these QC metrics work? For hit selection, z-score and t-statistic are commonly

used. Do these methods work well? If not, can we develop better analytic meth-

ods? Should we perform analyses on a plate-by-plate basis (called plate-wise) or on

all the plates in an experiment (called experiment-wise)? How should we address

multiplicity issues of hit selection in genome-scale RNAi screens?

To face all these challenges, we must adopt appropriate experimental designs and

suitable analytic methods so that we can obtain optimal results in genome-scale

RNAi research. For example, the z-score and t-statistic are both based on testing

the null hypothesis of exactly no effects on average. However, owing to the network

of gene interactions, many genes may have some degree of impact on a measured

biochemical response [167;178]. Better analytic metrics are required for assessing the

size of siRNA effects rather than testing the null hypothesis of no effect on average. I

have developed a statistical parameter, strictly standardized mean difference (SSMD),

for effectively measuring the size of siRNA effects [161;162;165]. On the basis of

SSMD, I have also proposed an error-control method for maintaining a balanced

control of both false-positive and false-negative rates [161;174;175;178]. In addition,

we need to adopt effective sequence designs, such as the design of multiple individual

siRNAs per gene and siRNA pooling to address off-target effects [16]. We also need

better plate designs to account for positional effects in RNAi screens [166;173]. In the
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following chapters, I present the use of experimental designs and analytic methods to

optimize genome-scale RNAi research. Specifically, I discuss experiment designs in

Chapter 2, data display and normalization in Chapter 3, quality control in Chapter 4,

hit selection for screens without replicates in Chapter 5, and hit selection for screens

with replicates in Chapter 6.



2

Experimental Designs

As illustrated in Figure 1.3 of Chapter 1, the basic procedure of a cell-based genome-

scale RNAi screen includes selection of an RNAi library to be screened, choice of

human cells, transfection of siRNA into cells, treatment or incubation, detection,

and statistical analysis. Following this procedure, the success of a cell-based genome-

scale RNAi screen in this procedure relies on the design of the following elements:

siRNA, control, plate, sample size, and methods for optimizing siRNA delivery and

transfection efficiency. All these designs are explored in this chapter.

Beginning with this chapter, most of the work discussed in this book focuses

on RNAi screens using siRNA; however, the designs and methods described in the

following chapters are also applicable to RNAi screens performed in microplates

with other silencing reagents, including shRNA, esiRNA, and dsRNA, which are

described in Chapter 1.

2.1 siRNA Designs

The first step in starting a genome-scale RNAi screen is to choose an RNAi library.

One important criterion for an siRNA library is well-designed siRNAs. siRNA design

is critical for both successful gene knockdown and on-target hit selection. The quality

of siRNA design is gauged mainly by the potency and specificity of the siRNAs in

a library. siRNA design is sometimes performed by commercial siRNA vendors. In

other cases, researchers also must get involved in siRNA design by either doing it

alone or cooperating with the vendors.

RNAi is the phenomenon in which double-stranded RNA knocks down a gene in a

sequence-specific manner. Thus one should expect that the introduction of an siRNA

can produce a specific effect mediated by the gene that this siRNA targets. The potency

of an siRNA is represented by the total amount of the phenotypic effect related to

the introduction of the siRNA into the cells or an organism. The design of the siRNA

sequence is crucial for finding the siRNAs that produce a high phenotypic effect.

The specificity of an siRNA is represented by its on-target gene knockdown; namely,

13
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the amount of phenotypic effect that is caused by its knockdown on its target gene.

However, the introduction of siRNA can result in nonspecific phenotypic effects.

These nonspecific effects appear to have three separate origins [23]: (i) transfection

agent-mediated response [47], (ii) interferon response [69;81;85], and (iii) siRNA-

mediated off-target effects [12;46;78–80;94;130;133;137].

Transfection is the delivery of siRNAs in a library into the cells in an RNAi screen.

RNA cannot penetrate cellular membranes. Thus the delivery of siRNAs to target cells

requires specific methods, such as viral delivery, the use of liposomes or nanopar-

ticles, bacterial delivery, and chemical modification of siRNA to improve stability.

Currently, for cell-based genome-scale RNAi screens, an RNAi library is constructed

using suspension-mode electroporation, lipid reagents, or viral backbones.

Transfection agents such as liposomes that are used to carry siRNA into cells

may induce broad changes in gene expression profiles [47]. Long dsRNAs can acti-

vate interferon response in a cell-type specific manner [69;81;85]. In general, short

dsRNA of less than 30 nucleotides can evade the interferon response, but some

shorter dsRNAs have been observed to trigger an immune response. The nonspe-

cific effects caused by transfection agent–mediated response can be eliminated by

adopting or developing better delivery methods (see Section 2.4) or by optimizing

lipid concentrations/compositions. The interferon response can be eliminated by

adopting stringent siRNA design filters [81;85].

Off-target effects. Off-target siRNA-mediated effects offer a more serious chal-

lenge in the application of RNAi in biomedical research and drug discovery and

development [23]. In this case, unintended mRNA targets with sequence homology

to the RNAi oligonucleotide are knocked down in addition to, or instead of, the

intended target gene. Off-target gene knockdown may induce measurable pheno-

types [46;94]. False positives generated by off-targets during phenotypic screens can

result in false leads, the use of resources to explore nonproductive research tracks,

and even serious safety issues in therapeutic agents.

Off-target effects can be addressed in both the experimental design stage and the

data analysis stage. In the experimental design stage, the focus is on the following

major approaches to siRNA design: siRNA pooling [23], siRNA modification [79],

siRNA construct design using 3′ untranslated region (3′UTR) seed match [12;78;94],

and design of multiple siRNAs per gene. In siRNA pooling, several single siRNA

sequences targeting the same gene are arranged in each well of a plate in an RNAi

screen. The rationale behind siRNA pooling is that off-targets are concentration

dependent. A pool consisting of multiple siRNAs that target the same gene can

maintain a desired size of on-target gene knockdown while inducing only a fraction

of the off-target effects that one or more of the pooled siRNAs might have. The siRNA

modification approach is to use chemical modification to reduce off-target effects;

for example, the differential addition of 2′-O-methyl moieties to both the sense and

antisense strands of the siRNA [79]. 3′UTR seed match is defined as the presence

of one or more perfect matches between the 3′UTR of a gene and the hexamer or
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heptamer seed region (positions 2–7 or 2–8) of the antisense strand of the siRNA,

which can increase the occurrence of off-target effects [12;78;94]. Utilizing this

observation, the siRNA sequences that have a 3′UTR seed match with unintended

genes during the siRNA construction stage can be replaced or removed.

Deconvolution screens. A more accessible solution to the problem of off-target

effects that has been adopted by most researchers and companies today is to design

and conduct an experiment in which multiple siRNAs with different sequences

are tested against a target gene to increase the level of confidence in positive hits

[14;40]. These types of experiments, usually called deconvolution screens, are usually

conducted after reducing the selected hits to a limited number of approximately 100

to 800 from primary and/or confirmatory screens. In a deconvolution screen, 3 to 7

siRNAs per gene are typically measured, and the collective activity of multiple siRNAs

targeting the same gene is analyzed. More details about the analysis of deconvolution

screens are discussed in Chapters 6 and 8.

2.2 Control Designs

Effective positive and negative controls should be selected to develop the RNAi

screen assay to achieve high signaling with the positive controls and low noise

with the negative ones [16]. Negative control siRNAs should be designed to have

no specific effects on any characterized genes in the experiment [173]. Whenever

possible, positive controls should encompass a range of strengths to develop an

assay that can identify both weak and strong hits [16;173]. The design of effective

biological controls is critical for conducting meaningful experiments.

2.2.1 Design of Negative Controls

Negative controls are important to monitor data variability and systematic exper-

imental errors. They can serve as a negative reference for hit selection, especially

in confirmatory screens. Negative control siRNAs are usually purchased and are

designed to be nonsilencing, meaning that they do not target any characterized genes.

Negative control siRNAs can be those with no homology to any known mammalian

gene or with homology to a gene that is not present in the cells under study.

Unlike small-molecule screens, which can utilize vehicle-only wells as negative

controls, RNAi screens do not have such universal negative controls. This is because

RNAi screens usually involve complex delivery vehicles that can also have biological

effects, and even nontargeting siRNA controls may exhibit off-target effects in some

cell lines [78]. It is essential to test multiple negative control siRNAs to identify one

that has the smallest effect relative to mock transfection (typically, introduction of

transfection reagents in the absence of RNA).

2.2.2 Design of Positive Controls

Positive controls are used to monitor the quality of data produced during the screen

and aid in the selection of physiologically relevant hits. Positive controls are typically
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siRNAs targeting genes with a known association to the biological process being

studied and resulting in a particular phenotypic effect. They may also be siRNAs

that are known to result in high gene knockdown.

A challenge in identifying positive control siRNAs is that siRNAs are typically

more effective if they target mRNAs present in limited amounts for the biological

process being assayed; as such, even proteins with well-characterized associations

with a biological process may not make effective siRNA controls. For example,

the lens epithelium-derived growth factor (LEDGF) protein is critical for human

immunodeficiency virus (HIV) integrase function, but only a small fraction of

the LEDGF proteins present in the cell is required for this function [27;95;97]. To

see an effect of siRNA-mediated LEDGF knockdown on HIV infection, cells must

be subjected to intensified RNA interference, which is impractical for HTS. Therefore,

LEDGF is an invalid positive control for any siRNA HTS for HIV host factors, despite

its biological relevance. Positive controls may provide more of a challenge than

negative controls if the biology of the process being studied is not well understood.

Ideally, more than one positive control will be used, as in, for example, the HCV

screens described in Section 1.4 of Chapter 1, in which two positive control siRNAs

were used to inhibit HCV replication [180].

An additional consideration is that the positive controls should be as effective

as the hits in the screen are expected to be. An example of this is shown in the

HCV screens described in Section 1.4 of Chapter 1. The very strong positive control

siRNA targeted the HCV replicon and was uniformly effective at knocking down

90% to 95% of HCV replication. In contrast, the weaker positive control targeted

hVAP33, a host factor known to participate in HCV replication. In this instance, the

weaker positive control was more instructive than the very strong positive control,

because the effectiveness of this control was more similar to HTS hits than the siRNA

targeting HCV itself. Another example of fairly strong control is epidermal growth

factor receptor in a mucin screen [174].

2.3 Plate Designs

The arrangement of control and sample wells in a plate is called plate design. The

existence of systematic errors of measurement is not uncommon in HTS experiments

[20;58;99;143]. A good plate design helps to identify systematic errors (especially

those linked with well position) and determine what normalization should be used

to adjust the data so that the impact of systematic errors on both QC and hit selection

can be removed or reduced. Here, various plate designs are compared.

First, we need to choose a plate format. The current formats are 96-well, 384-well,

and 1,536-well plates. Currently, the 384-well plate is the commonly used format for

a genome-scale RNAi screen in which approximately 25,000 siRNAs are screened,

although the use of the 1,536-well plate format is increasing [166]. The disadvantage

of the 96-well plate format is its low capacity for containing siRNAs in a plate,
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thus requiring too many plates for a genome-scale RNAi screen. The advantage of

the 1,536-well plate format is its better capacity for including more siRNAs and

more replicates in a genome-scale screen. Currently, the use of 96-well or 384-well

plate formats barely allows the arrangement of replicates for each siRNA in a genome-

scale primary screen. By contrast, the use of the 1,536-well plate format can allow

three or four replicates per siRNA in a primary screen. The disadvantage of the

1,536-well plate format, however, is that the intensity of a well with a strong effect is

more likely to affect the measured intensity of its neighbor wells because the size of

a well in this format is much smaller (i.e., only one quarter of the size of a well in a

384-well plate [Figure 1.2]).

For a primary screen, sample siRNAs should be randomly arranged across the

plates, as well as across the well positions in each plate. This is because it is difficult

to distinguish enriched plates (or enriched areas within a plate) with plate-to-plate

variation (or systematic positional effects) in the late process of hit selection. System-

atic errors such as plate-to-plate variation and systematic spatial effects commonly

exist in RNAi screens.

2.3.1 Construction of Plate Designs

Because genome-scale RNAi screens are most often conducted in 384-well plates,

we focus here on the design of wells in such plates. A typical format for current

plate designs involves arranging multiple types of controls in the four edge columns

and arranging sample siRNAs in the remaining columns (e.g., designs A and B in

Figure 2.1). Design A (or similar designs) is commonly used in current RNAi HTS

experiments because it is more convenient for laboratory staff to arrange one control

in a column consecutively. In design B, the negative control wells are arranged in

both edges and occupy both top and bottom rows. The positive control wells are

arranged similarly. Thus design B is more balanced than design A. Both designs A

and B are subject to the restriction in which control wells can only be arranged in the

four edge columns. The restriction of designs A and B is that they can only be used

to display or adjust a few types of positional effects (as is shown in Figures 2.2, 2.3,

2.4, 2.5). Designs with controls arranged in the middle of a plate (such as in designs

C–F) are needed for effectively displaying and adjusting various commonly existing

positional effects.

Now that robots can readily arrange controls anywhere in a plate, it is possible to

adopt designs C through F (Figure 2.1). The arrangement of the negative control in

design C is the same as in design D, which can effectively display various patterns of

systematic errors, especially for those with a sharp change in the edge row/column.

Design E is a variant of design C or D that allows for one more column to accommo-

date other controls. Similar variants can be obtained to allow for four edge columns

to accommodate other controls. Design F may not work as effectively as designs

C through E, especially when there is a sharp change in the edge; however, fewer

wells are needed for the negative control (16 in design F as compared with 24 in
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Figure 2.1 (See color insert following page 110.) Plate designs in a 384-well (designs A–F), 96-well

(design G), or 1,536-well plate (designs H and I). Designs A, B, and H are for situations

in which controls can only be arranged in edge columns; designs C through G and I are

for situations in which controls are allowed to be arranged anywhere in a plate. The colors

represent types of wells, as shown in the legend to the right of each panel: green = negative

control; red = first positive control; purple = second positive control; yellow = sample siRNAs;

gray = other controls. Source: From Zhang [166].

designs C and D). For design F, positive controls can be arranged in the edge, similar

to design C, or in the middle, similar to design D. Among these designs, design D

has the highest capacity for displaying various positional effects; however, it requires

positive controls to be arranged in the middle of a plate, which can be difficult and

time-consuming for many researchers. The major difference among designs C, E,

and F is their different capacity for accommodating controls.

The plate designs A through F in Figure 2.1 are constructed for experiments

with a 384-well plate. Similar plate designs and guidelines can be constructed for

experiments with a 96-well or 1,536-well plate. Design G is a design for a 96-well plate,

and designs H and I are for a 1,536-well plate. Design H is subject to the restriction

by which the control wells can be arranged only in the eight edge columns. In a
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Figure 2.2 (See color insert following page 110.) The capacity of three typical plate designs, designs

A, B, and C (shown in Figure 2.1), in identifying and adjusting for linear row effects. Panels

A1, B1, and C1 show the measured intensities (in log10 scale) in all wells in a plate from

three experiments that have plate designs A, B, and C, respectively. Panels A2, B2, and C2

display intensities of the negative control. Panels A3, B3, and C3 display the data adjusted

using the negative control wells. In each panel, a red + (or a green –) denotes an outlier in

up-regulated (or down-regulated) direction based on sample wells.

1,536-well plate, the intensity of a well with a strong effect is more likely to affect the

measured intensity of its neighbor wells; thus in design I, we arrange many negative

control wells in the 3rd, 4th, 45th, and 46th columns to establish buffering borders.

When the impact of edge wells on the neighbor wells is strong, the negative control

wells in these four columns are not used for smoothing, but are used instead for the

comparison with positive controls in the edge columns. For experiments conducted

in 1,536-well plates, only one primary screen with replicates may be needed, with no

follow-up confirmatory screens. In such a case, to adopt design I or similar designs,

it may be necessary to work with vendors of genomic libraries to arrange a control

such as luciferase in the green wells during the process of generating a genomic

library.
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Figure 2.3 (See color insert following page 110.) The capacity of three typical plate designs, designs A,

B, and C (shown in Figure 2.1), in identifying and adjusting for linear column effects. Panels

A1, B1, and C1 show the measured intensities (in log10 scale) in all wells in a plate from

three experiments that have plate designs A, B, and C, respectively. Panels A2, B2, and C2

display intensities of the negative control. Panels A3, B3, and C3 display the data adjusted

using the negative control wells. In each panel, a red + (or a green –) denotes an outlier in

up-regulated (or down-regulated) direction based on sample wells.

2.3.2 Capacity of Plate Designs in Identifying and Adjusting Spatial Effects

Systematic spatial or positional effects commonly exist in genome-scale RNAi

screens. In many screens, especially in confirmatory screens, it is hard to deter-

mine whether systematic spatial effects are caused by systematic experimental errors

or by the location of true hits if an effective plate design has not been adopted. Effec-

tive plate designs can greatly help to identify and adjust systematic experimental

errors in RNAi screens.

Systematic spatial effects occur in a variety of patterns. Four common patterns

are (i) linear row effect, in which measured raw or transformed values have a linear

relationship to row numbers (illustrated in Figure 2.2A1, B1, and C1); (ii) linear col-

umn effect, in which measured raw or transformed values have a linear relationship

to column numbers (illustrated in Figure 2.3A1, B1, and C1); (iii) linear row and
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Figure 2.4 (See color insert following page 110.) The capacity of three typical plate designs, designs A,

B, and C (shown in Figure 2.1), in identifying and adjusting for linear row and column effects.

Panels A1, B1, and C1 show the measured intensities (in log10 scale) in all wells in a plate

from three experiments that have plate designs A, B, and C, respectively. Panels A2, B2, and

C2 display intensities of the negative control. Panels A3, B3, and C3 display the data adjusted

using the negative control wells. In each panel, a red + (or a green –) denotes an outlier in

up-regulated (or down-regulated) direction based on sample wells.

column effect, in which measured raw or transformed values have a linear relation-

ship to both row and column numbers (illustrated in Figure 2.4A1, B1, and C1); and

(iv) bowl-shaped spatial effect, in which measured raw or transformed values have

a bowled relationship (either concave or convex) to well positions (illustrated in

Figure 2.5A1, B1, and C1). The spatial effects can be revealed using plate image plot

and plate-well series plot, which is described in Chapter 3. Here I show the capacity

of three typical plate designs, designs A, B, and C shown in Figure 2.1, in identifying

and adjusting for the four common patterns of systematic spatial effects.

Row effects. In design A, because the negative control wells only occupy the upper

eight rows in a column, they cannot reveal the spatial effect in the bottom eight

rows (Figure 2.2A2) and may not be used successfully to adjust for the row effects in

the bottom eight rows (Figure 2.2A3). In design B, the negative control wells only
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Figure 2.5 (See color insert following page 110.) The capacity of three typical plate designs, designs A,

B, and C (shown in Figure 2.1), in identifying and adjusting for bowl-shaped spatial effects.

Panels A1, B1, and C1 show the measured intensities (in log10 scale) in all wells in a plate

from three experiments that have plate designs A, B, and C, respectively. Panels A2, B2,

and C2 display intensities of the negative control. Panels A3, B3, and C3 display the data

adjusted using the negative control wells. In each panel, a red + (or a green –) denotes an

outlier in up-regulated (or down-regulated) direction based on sample wells. Source: From

Zhang [166].

occupy five upper rows and five bottom rows, both in two columns; thus they can

reveal the row effect (Figure 2.2B2) and can be used to adjust for the row effects in

all rows (Figure 2.2B3). In design C, the negative control wells are balanced among

16 rows; thus they can reveal the row effects (Figure 2.2C2) and can be used to adjust

for the row effects in all rows better than design B (Figure 2.2C3).

Column effects. In design A, because all the negative control wells are in the same

column, they cannot reveal the column effects (Figure 2.3A2) and cannot be used

to adjust for the column effects (Figure 2.3A3). In design B, the negative control

wells are located in both a left column and a right column; thus they can reveal the

column effects (Figure 2.3B2) and can be used successfully to adjust for the column

effects (Figure 2.3B3). In design C, the negative control wells are balanced among
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14 columns; thus they can reveal the column effects (Figure 2.3C2) and can adjust

for the column effects in all rows better than design B (Figure 2.3C3).

Similarly, as illustrated in Figure 2.4, design A can neither reveal nor be used to

adjust for linear row and column effects, whereas both designs B and C can effectively

reveal the linear row and column effects and be used to adjust for these effects.

Bowl-shaped spatial effects. In designs A and B in Figure 2.5, no negative control

wells are located in the middle of the plate; therefore, neither design can reveal the

spatial effects or be used to adjust for bowl-shaped effects (panels A2 and B2). The

negative control wells in design C are balanced in the middle; thus they can reveal

and be used to adjust for the bowl-shaped spatial effects (Figure 2.5C2 and C3).

2.3.3 Guidelines for Adopting Plate Designs in HTS Experiments

In primary screens, we may assume that the majority of sample siRNA wells have

no effects. Thus it is reasonable to use the majority of sample wells to adjust for

systematic errors of measurement. However, even if we do so, plate designs with

controls arranged only in edge columns cannot identify the plates with enriched

hits. Given these facts, I suggest the following guideline for choosing plate designs

in primary screens: if possible, adopt one of designs C through F and their variants,

especially in a situation in which sample siRNAs are not randomly arranged in the

screen; otherwise, adopt design B or a similar design. To adopt designs C through

F or their variants in primary screens, it may be necessary to work with vendors of

genomic libraries so that a control such as luciferase or polo-like kinase-1 can be

arranged in the green wells of a plate during the process of generating a genomic

library.

In confirmatory screens, it is infeasible to use sample wells to adjust for systematic

errors because the sample siRNAs are pre-selected to have inhibition or activation

effects. Given this fact, I suggest the following guideline for choosing plate designs in

confirmatory screens: adopt one of designs C through F and their variants whenever

possible; adopt design B or a similar design and avoid design A or a similar design if

the negative control cannot be arranged in the middle of a plate.

Use of designs C through F or their variants depends on (i) the ability to arrange

positive control wells in the middle of a plate and (ii) the tradeoff between the ability

of the chosen design to display systematic errors and the number of negative control

wells. If the positive control cannot be arranged in the middle of a plate or if the

arrangement may greatly affect the measured intensities of neighbor wells, choose a

design with positive controls only in the edge columns, such as design C; otherwise,

choose a design with positive controls in the middle of a plate, such as design D. If

more wells are needed in the edge for other types of controls, choose design E or a

similar design. If more wells are needed for sample siRNAs, choose design F or one

of their variants.

The preceding plate designs and guidelines are intended for experiments with

a 384-well plate. Similar plate designs and guidelines can be constructed for
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experiments with a 96-well or 1,536-well plate, such as design G for a 96-well

plate and designs H and I for a 1,536-well plate.

The above guidelines for adopting plate designs are important and necessary in

designing a genome-scale RNAi screen. In Chapter 3, we will see how the absence

of an effective plate design can produce misleading results of hit selection, and

in Chapter 4, we will see that effective plate design is needed for quality control,

whether in the primary/confirmatory screen, in which we use analytic metrics to

measure the differentiation between a positive control and a negative control, or

in the confirmatory screen, in which we use the correlation analysis for two repli-

cate plates from the same source plate. The adoption of effective plate designs can

help to reduce or eliminate such misleading results in both quality control and hit

selection [166;173].

2.4 Designs of siRNA Delivery and Optimization of Transfection

Positive control siRNAs should be designed in every experiment to help moni-

tor transfection efficiency. One commonly used positive control for transfection

in cell-based RNAi screens is PLK1. Meanwhile, negative control siRNAs such as

luciferase should be designed to monitor cytotoxicity resulting from the siRNA

delivery method. To do so, the viable cell numbers in cultures that were treated with

the negative control should be compared with those of untreated samples.

High transfection efficiencies are required in an RNAi screen because low transfec-

tion efficiencies lead to reduced target gene knockdown, reduced phenotypic effects,

and lower reproducibility. Consequently, cells must be in optimal physiological con-

dition, and various transfection parameters should be optimized. The commonly

considered parameters to be optimized for obtaining maximal transfection efficiency

and low toxicity are cell density at the time of transfection, transfection method,

amount of transfection reagent, amount of siRNA, and time of treatment/incubation.

In many cases, a pilot study is needed to optimize transfection parameters. For

example, before the formal start of a genome-scale RNAi screen, one may conduct

a pilot study to optimize several parameters simultaneously so that the maximal

transfection efficiency with a low cytotoxicity can be achieved; the parameters might

include transfection agents (e.g., from two different vendors), lipid amounts, cell

density, siRNA amounts, and incubation time. A negative control such as luciferase

may be used to indicate cytotoxicity of delivery methods, and PLK1 might be used

as a positive control to measure transfection efficiency.

2.5 Design of Sample Size

In RNAi HTS assays, it is critical to determine a sample size for the achievement of

certain false-negative and false-positive levels. The limitation of experimental time

and cost usually does not allow a single experiment to have more than two hundred



25 2.6 Conclusions

384-well plates, whereas two hundred 384-well plates is usually the minimal require-

ment for conducting a genome-wide screen with replicates. Therefore, currently,

a typical RNAi HTS project starts with a primary screen of approximately 20,000

siRNAs, most of which have no replicate. The siRNAs identified in the primary screen

are further investigated using one or more confirmatory screens in which each siRNA

has replicates. A typical primary screen has fifty to one hundred fifty 384-well plates,

and a typical confirmatory screen has three to twenty 384-well plates. In the primary

screen, we may use the negative control in a plate as a negative reference. The ques-

tion is: how many wells should we arrange for the negative control in a plate so that

we can maintain a manageable false-positive rate while maintaining a reasonably low

false-negative rate? Currently, a negative control usually occupies 4, 8, 16, 20, or 24

wells per plate in a primary screen with 384-well plates. Are these numbers enough

to maintain low false-positive and false-negative rates? A typical confirmatory screen

usually has triplicates for each investigated siRNA. Are triplicates enough to achieve

low false-positive and false-negative rates?

To address the questions regarding sample size, we need to conduct a formal

statistical analysis to explore the false-positive and false-negative rates across various

sample sizes. Statistical analysis for determining sample size in RNAi screens is

discussed in Section 5.4 of Chapter 5 and Section 6.5 of Chapter 6. Here I provide

guidance for sample size designs that comes from that analysis. In a primary screen

using 384-well plates, an arrangement of 4 or 8 wells per plate is not enough to

achieve an acceptably low false-negative rate; an arrangement of 16 wells per plate

is acceptable, and an arrangement of 20 or 24 wells per plate is preferable for the

negative control to be used as a negative reference for hit selection. In a confirmatory

screen, a sample size of at least four for each siRNA (i.e., the design of at least four

replicate plates per source plate) is required for detecting siRNAs with strong, fairly

strong, or moderate effects. Regarding tradeoff between benefit and cost, any sample

size between 4 and 11 is a reasonable choice for selecting siRNAs with strong, fairly

strong, or moderate effects. If the main focus is the selection of siRNAs with strong

effects, a sample size of four or five is a good choice. If cost is not as much of an

issue, a sample size of six, seven, or eight is preferred, especially when only one or

two sets of source plates are investigated in a confirmatory screen. If enough power

is needed to detect siRNAs with moderate effects, then the sample size needs to be

8, 9, 10, or 11 [175].

2.6 Conclusions

As has been illustrated in this chapter and will be demonstrated in the following

chapters, experimental design may affect the results of both quality control and hit

selection in RNAi screens. The adoption of suitable experimental designs is critical

in RNAi screens. With good experimental design, experiments with lower quality

or systematic errors can be salvaged. On the other hand, if experimental design



26 Experimental Designs

is poor, we may not address the questions of interest or salvage experiments that

are otherwise good quality. Therefore, the importance of experimental design in

a genome-scale RNAi screen cannot be emphasized enough. Consequently, RNAi

screening experiments should always be designed appropriately in the beginning to

avoid an unpleasant situation that potentially exists in high-throughput biotech-

nologies, as pointed out by John Quackenbush [43], in which “People tend to go out

blindly and do experiments, then go back and try to analyze them and figure out

what the question is afterwards.”
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Data Display and Normalization

One of the major advantages of HTS technologies is their ability to simultaneously

interrogate thousands of genes/compounds and generate large amounts of data per

experiment. To glean biological information from large volumes of data, the first step

in data analysis is to use specific graphics to visualize the data and display important

features of data. Data display allows the identification of potential problems such as

row and column effect, pin issues, and so forth, as they occur [20;58;99;166;173].

If the identified spatial effects are caused by systematic experimental error, we need

to adjust for them [20;83;166;173]. Otherwise, they will produce misleading results

in both quality control and hit selection. In this chapter, I present graphics for

displaying data and explore analytic methods for identifying and/or adjusting for

spatial effects that are caused by systematic experimental error. The commonly used

analytic methods such as z-score and t-test are based on normal distributions or

at least symmetric distributions with constant variance. However, the raw values

from RNAi screens are usually skewed with unequal variance. Data transformation

is one of the most effective techniques for handling this issue. I also explore data

transformation in this chapter.

3.1 Data Display Using Graphics

3.1.1 Plate-Well Series Plot

In a typical RNAi HTS experiment, there are tens to hundreds of plates, each with

384 or 96 wells in which siRNAs are transfected. A scatter plot, called a plate-well

series plot [180], was designed to display the measured or calculated values well by

well and plate by plate in an experiment. In a plate-well series plot, the value of the

x-axis is the index of the position of a well in a plate, whereas the labels in the x-axis

are the plate number, instead of the index of the position of a well. The positions

of wells in a plate can be indexed by either the rows or columns in a plate. In an

experiment with n rows and m columns in each plate, if the well is indexed by the

rows, the value of x for the well in the jth row and kth column of the ith plate is

27
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(i − 1)nm + ( j − 1)m + k. Points with x value of 1 to nm denote the nm wells row

by row in the first plate; nm + 1 to 2 nm denote the nm wells row by row in the

second plate, and so on (see Figure 3.1A and B). Similarly, if the well is indexed by

the columns, the value of x for the well in the jth row and kth column of ith plate

is (i − 1)nm + (k − 1)n + j ; points with x value of 1 to nm denote the nm wells

column by column in the first plate; points with x value of nm + 1 to 2 nm denote

the nm wells column by column in the second plate; and so on (see Figure 3.1C).

The y-axis denotes the intensity either in the original scale, a transformed scale such

as log-transformed, or a calculated value such as fold change, percent inhibition, or

z-score. When controls are arranged in a plate, we may use different colors or point

types to display the values of various control wells in a plate.

The plate-well series plot can also be used to display the results of hit selection in a

screen. For example, the sample wells for selected hits are labeled with one color, and

the sample wells for non-hits are labeled with another color. See Figure 3.1D for an

example showing the use of a plate-well series plot to display hits selected using the

criterion of |SSMD| > 1.645 (see Chapters 5 and 8 for more details about SSMD).

The advantage of a plate-well series plot is that it can effectively display plate-to-

plate variability, show selected hits for all plates, and present common data features of

multiple plates in a single plot. For example, the plate-well series plot in Figure 3.1A

clearly indicates that the measured values in the first nine plates differ from those

in the remaining plates. The measured values in the sample wells and the weaker

inhibition control wells in plates 1 to 9 shift down, whereas the measured values

in the stronger positive control wells in plates 79 to 88 shift down. The plate-well

series plots in Figure 3.1B and C reveal that the measured values in the edge rows are

clearly lower than those in the middle rows in each plate of the second confirmatory

screen. On the other hand, the well-series plot cannot display the positional effects

in an individual plate as straightforwardly as the plate image described in Sec-

tion 3.1.2.

3.1.2 Plate Image Plots Incorporating Boxplot and Heat Maps

In a genome-scale RNAi screen, each plate may have its own unique data feature; thus

it is necessary to check the data plate by plate. The most straightforward approach

for displaying data in each individual plate is the use of image of data in the plate

[20;166;173]. One common plate image is the so-called heat map, in which green

represents low values and red represents high values. However, the regular heat map

is dominated by extreme data values. In other words, the extremely high or low

values such as the outliers make most wells have one color and thus prevent the

plate image from accurately displaying data features in the plate (Figure 3.2A). It is

well-known that strong true hits behave like outliers and outliers commonly exist in

genome-scale RNAi screens. Therefore, the standard heat map or plate image does

not work effectively in genome-scale RNAi screens. The regular image plot for a plate

in the HCV RNAi second confirmatory screen described in Section 1.4 is shown in
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A: Plate-well series plot displaying data in a primary screen

D: Plate-well series plot displaying selected hits in a primary screen
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C: Plate-well series plot by column
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Figure 3.1 (See color insert following page 110.) Plate-well series plots to display data or hits in the

HCV RNAi primary screen (A, D) and the second confirmatory screen (B, C) described in

Section 1.4. In the legends, Background, Positive Control, and Misc Control denote empty

wells, stronger inhibition control wells, and weaker inhibition control wells, respectively.
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A: Regular image plot
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B:  Image plot incorporating boxplot
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C: Image plot displaying hits

Figure 3.2 (See color insert following page 110.) Regular image plot (Panel A), improved image plot

(Panel B) to display the measured value in a plate, and improved image plot to display

selected hits in a source plate (Panel C) in the HCV RNAi second confirmatory screen described

in Section 1.4 in Chapter 1. The improved image plot clearly reveals a systematic spatial effect

(low values in the edge rows and high values in the middle rows), whereas the regular image

plot does not reveal the spatial effect.

Figure 3.2A. This image plot barely reveals any data features in the sample wells in

that plate because all the sample wells are red.

To address this issue in the regular image plot, we can incorporate boxplot statistics

into the image plot. That is, we first use the boxplot technique to find the lower and

upper whiskers. The whiskers are used to define outliers. Then the strongest green

represents the lower whisker (instead of the minimal value in the regular image plot)

and the strongest red represents the upper whisker (instead of the maximal value in

the regular image plot). A green “–” in a white well indicates that the value in that

well is an outlier in the lower end, and a red “+” in a white well indicates that the

value in that well is an outlier in the upper end. The values in the legend are those

between the upper and lower whiskers. The improved image plot for a plate in the

HCV RNAi second confirmatory screen clearly reveals a systematic spatial effect: low

values in the edge rows and high values in the middle rows (Figure 3.2B).

Pins are used to transfer liquids to assay plates, and it is not uncommon for RNAi

screens to have pin problems. The improved image plot can also help to locate any

such pin problems. For example, if some sample wells with the same positions have

extremely low (or high) values in all plates or in the majority of the plates in an

experiment, then the pins corresponding to these wells potentially have problems.

If some well positions have missing values in all plates, then the pins corresponding

to these well positions may be missing.

The image plot can also be used to display the positions of selected hits in a plate.

To do so, the strongest green color represents the cutoff for selecting hits in the lower

end, and the strongest red color represents the cutoff for selecting hits in the upper

end. A green “H” in a white well indicates that the siRNA in that well is a selected hit

in the lower end, and a red “H” in a white well indicates that the siRNA in that well

is a selected hit in the upper end. The values for non-hits are represented by green

and red, depending on how large the values are. See Figure 3.2C for an example of
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C3: Plate 3 from source plate 3

Figure 3.3 (See color insert following page 110.) Improved image plots to display a high reproducibility

of data in plates from three source plates (source plates 1, 2, and 3) in an RNAi confirmatory

screen. The data in the plates from the same source plate have a very similar pattern, whereas

the data in the plates from different source plates have very different patterns.

using image plots to display selected hits using the criterion of |SSMD| > 1.4 (SSMD

is discussed in Chapter 4). In this example, the color represents estimated SSMD

value. This image plot shows that most up-regulated hits (red “H”) are located in

the middle, and most down-regulated hits (green “H”) are located in the edge of the

source plate, which also suggests the existence of edge positional effects in the screen.

Another important use of the improved image plot is to display the reproducibility

among replicates of the same source plate; that is, whether the plates from the same

source plate have the same pattern of data and the plates from different source plates

have a different pattern of data. For example, the improved plate image plot clearly

indicates that the reproducibility of data in plates from the same source plate is very

high in a confirmatory screen (Figure 3.3).

The so-called correlation plot is commonly used to check for reproducibility

among replicate plates from the same source plate. A correlation plot is a scatter
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A1:  Raw Data in Plate 1
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A2:  Log-transformed Data in Plate 1
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B1:  Raw Data in Plate 2
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B2: Log-transformed Data in Plate 2
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C1:  Raw Data in All 96 Plates
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Figure 3.4 Histograms to display the distributions of data in the sample wells in a primary screen with

96 plates. Clearly, the log-transformation makes the skewed data closely symmetric and

approximately normal.

plot in which the x-axis represents the values in one plate and the y-axis represents

the values in another plate from the same source plate. If there are no systematic

spatial effects, correlation plots work effectively. However, if there are unadjusted

systematic spatial effects, correlation plots can produce misleading results because

the stronger the systematic spatial effects, the higher the correlation between two

plates. In other words, a high correlation between two replicate plates may simply

indicate a strong spatial effect. Therefore, it is essential to check systematic spatial

effects before applying correlation plots for reproducibility.

3.2 Transformation of Measured Raw Values

Most statistical methods for hit selection, including the classical z-score and

t-statistic, work best when the data have a normal distribution or at least have a

symmetric distribution. Many statistical methods also require the condition of con-

stant variance. That is, the variance for siRNAs with different means of measured

values should theoretically have about the same variance. The measured values in

their original scale are usually highly skewed to the right (e.g., Figure 3.4A1, B1,

and C1). Some measured raw values such as the cell counts theoretically have a

Poisson distribution, with variances being linearly linked with means. Therefore,

before we formally conduct statistical analysis for quality control and hit selection,

we may need to transform the measured raw values.
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Detailed analysis about data distributions can be conducted using more specific

analytic methods and plots, such as the Shapiro-Wilk test [135], the Anderson-

Darling test [2], the Kolmogorov-Smirnov test [140], and QQ plots [10;30]. If a

transformation can make the distributions symmetric or approximately normal in

most plates, this transformation should work in this screen.

The commonly used transformation is log-transformation. We might also use a

square-root transformation for some measured raw values with a Poisson distribu-

tion. However, even for cell counts, a log-transformation may work well because the

measured raw values are usually large (≥ 5 digits; see Figure 3.4). Therefore, in most

cases, we must apply log-transformation to the measured values in their original

scale.

Data transformation may have a huge impact on the result of hit selection. Not

adopting a suitable transformation may lead to completely misleading results in both

quality control and hit selection. For example, in an HIV RNAi primary screen, in

which the main objective was to search for down-regulated hits (i.e., inhibition hits),

as described in Zhou et al [183], even after we applied the z∗-score method (a robust

version of the z-score method) on a plate-by-plate basis, the selected hits based

on the raw data were dramatically different from those based on log-transformed

data. Figure 3.5 shows that the results based on the log-transformed data are more

reasonable than those based on raw data.

3.3 Identification and Adjustment of Systematic Spatial Effects

3.3.1 Identifying Systematic Spatial Effects

Systematic spatial effects commonly exist in RNAi screens. As described in Sec-

tion 2.3.2, four common patterns of systematic spatial effects are (i) linear row

effects, (ii) linear column effects, (iii) linear row and column effects, and (iv) bowl-

shaped spatial effects. Spatial effects can be revealed using the improved plate image

plot and/or the well-series plot.

An improved image plot can effectively display strong and weak systematic spatial

effects in an individual plate (as illustrated in Figure 3.6A1, B1, C1, and D1). It

can also reveal various types of spatial effects. Its drawback is that it cannot display

quickly the common pattern of spatial effects in many plates. Because each plate

requires an image plot, if there are hundreds of plates in an experiment, it may be

tough to check them all using the plate-by-plate method. The plate-well series plot

can effectively display strong spatial effects in multiple plates (as demonstrated in

Figure 3.1B and C). It may also display strong spatial effects in an individual plate,

as illustrated in Figure 3.6A2, B2, C2, and D2. However, the plate-well series plot

may not reveal weak spatial effects or irregular spatial effects. In addition, for some

patterns of systematic spatial effects, such as those in pattern iii (linear row and

column effects), we may need one figure plotting against rows and another figure
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A: Data in Original Scale
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B: Data in log10 Scale
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Figure 3.5 (See color insert following page 110.) Plate-well series plots to display the data and selected

hits based on original scale (A) or log-transformed scale (B). The use of the criterion of

selecting the sample siRNAs with absolute z∗-score (robust version of z-score) greater than 3

as hits leads to the selection of 1,843 up-regulated hits and zero down-regulated hits based

on the raw data (A, red points), but selection of 77 up-regulated hits and 29 down-regulated

hits based on the log-transformed data (B, red points).

plotting against columns for the same set of plates. It is a good strategy to use both

improved image plots and plate-well series plots to check systematic spatial effects.

3.3.2 Consequence of Unadjusted Spatial Effects

Systematic spatial effects can be caused by systematic experimental errors such as

liquid evaporation. If systematic spatial effects caused by systematic experimental

errors are present, we must adjust for them before conducting analysis for selecting

hits. Otherwise, the selected hits will be dominated by spatial effects. That is, whether
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B1: Column Effect Image 

Column Number---Well Series

In
te

n
s
it
y

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4

1

2

3

4

5

6

B2: Column Effects 

H

H

H

H

H
H

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

5.37
5.25
5.12
4.99
4.87
4.74
4.61
4.48
4.36
4.23
4.10
3.98
3.85
3.72
3.60
3.47
3.34
3.22
3.09
2.96
2.83
2.71

B3: Hits by Column Effects 
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C1: Row & Column Effect Image 
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C3: Hits by Row & Column Effects 
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D1: Bowl-shaped Effect Image 

Column Number---Well Series

In
te

n
s
it
y

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4

2.4

2.5

2.6

2.7

D2: Bowl-shaped Effects 

H
H

HH
H

HH
H

HH
HHH

HHHHHHHH
H

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2.67
2.66
2.65
2.64
2.63
2.62
2.61
2.60
2.59
2.58
2.57
2.56
2.55
2.54
2.53
2.52
2.50
2.49
2.48
2.47
2.46
2.45

D3: Hit by Bowl-shaped Effects 

Figure 3.6 (See color insert following page 110.) The use of improved image plot and plate-well series

plot to display four common patterns of spatial effects: (i) linear row effects (A1–A3), (ii)

linear column effects (B1–B3), (iii) linear row and column effects (C1–C3), and (iv) bowl-

shaped spatial effects (D1–D3). In A1, B1, and C1, a red “+” (or a green “–”) denotes an

outlier in up-regulated (or down-regulated) direction. In A2, B2, and C2, an orange (or green)

point denotes a value in a sample well (or a negative control well); the grey lines denote the

boundary of SSMD = ±1.4 for selecting hits. In A3, B3, and C3, a red (or green) “H” denotes

a selected hit in up-regulated (or down-regulated) direction.
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an siRNA is selected as a hit or not is mainly based on its well position in the plate,

not based on its knockdown effects.

For example, the selected hits in plates with linear row effects mainly come from

the edge columns: down-regulated hits from one edge and up-regulated hits from

the other (Figure 3.6A3). Similarly, the selected hits in plates with linear column

effects mainly come from the end columns for sample wells (Figure 3.6B3). The

selected hits in plates with linear row and column effects mainly come from the

two opposite corners (Figure 3.6C3). The selected hits in plates with edge effects,

including the bowl-shaped effects, mainly come from the middle wells and edge

wells (Figure 3.6D3). These results distort the true pattern.

Spatial effects caused by systematic experimental errors may also increase the

variability of the data we use to set up the boundary for selecting hits. Linear row

and/or column effects may substantially increase the value of the median of absolute

deviations (MAD) when we use the median ± 2 × MAD method for selecting hits

(median ± 2 × MAD methods are described in detail in Section 5.2). As a result,

the upper boundary of median + 2 × MAD is too high, and the low boundary of

median – 2 × MAD is too low; subsequently, we will miss more true hits and have

a higher false-negative rate. In Figure 3.6, for example, without adjusting for spatial

effects, only a few hits are identified in the first three plates (Figure 3.6A3, B3, and

C3). However, after adjustment for spatial effects, many more hits are identified

(Figure 3.7A3, B3, and C3).

Systematic spatial effects can also produce misleading quality control results in

both primary and confirmatory screens [166;173]. See Chapter 4 for more details

about the impact of systematic experimental errors on quality control.

3.3.3 Methods for Adjusting for Systematic Spatial Effects

There are several statistical methods for addressing systematic spatial effects. The

first is regular linear regression, in which we fit a linear model of the measured value

(after suitable transformation) of an siRNA in a well over the mean of values in its

row, the mean of values in its column, and, possibly, over the interaction between

the row and column. A simple formula for the linear model is:

y ∼ row.mean + column.mean + row.mean ∗ column.mean

The adjusted value for an siRNA is its measured value minus its fitted value plus

the mean of all fitted values.

To address the common problem of outliers in HTS experiments, we may use

robust linear models. One such model is median polishing, in which we fit a linear

model of the measured value (after suitable transformation) of an siRNA in a well

over the median of values in its row, the median of values in its column, and,

possibly, over the interaction between the row and column. A simple formula for

median polishing is:

y ∼ row.median + column.median + row.median ∗ column.median



37 3.3 Identification and Adjustment of Systematic Spatial Effects

++
+

+

+

- - -
--
--

-

--
--

---

-
---

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

4.57

4.51

4.44

4.38

4.32
4.25

4.19

4.12

4.06

4.00

3.93

3.87
3.81

3.74

3.68

3.62

3.55
3.49

3.43

3.36

3.30

3.23

A1: Row Effect Adjusted 

Row Number --- Well Series
In

te
n
s
it
y

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1

2

3

4

5

6

A2: Row Effect Adjusted 

HH
HH

H

HH
H

H

H
H
H

H
H

HHH
H

HH
H

H

H
H

H

H
HH

H
HHH
H

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

4.43

4.38

4.33

4.28

4.23
4.18

4.14

4.09

4.04

3.99

3.94

3.89
3.84

3.79

3.74

3.69

3.64
3.60

3.55

3.50

3.45

3.40

A3: Hits after Adjustment 

+

+
+

+

- -
--
---

--
-

--
--
--

-
-

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

4.80

4.73

4.66

4.59

4.52
4.45

4.38

4.31

4.24

4.17

4.10

4.03
3.96

3.89

3.82

3.75

3.67

3.60

3.53
3.46

3.39

3.32

B1: Column Effect Adjusted 

Column Number --- Well Series

In
te

n
s
it
y

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1

2

3

4

5

6

B2: Column Effect Adjusted 

H
H

H

H
H

H
H

H

H
H

H
HH

HH
H

HH
H

H
H

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

4.63

4.57

4.52

4.46

4.40
4.35

4.29

4.23

4.18

4.12

4.07

4.01
3.95

3.90

3.84

3.78

3.73

3.67

3.62
3.56

3.50

3.45

B3: Hits after Adjustment 

+

+
+

+++
+

+

- - -
--
--

-

-

--
---

--
-

-
-

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

4.72

4.65

4.59

4.52

4.45

4.38

4.31
4.24

4.17

4.10

4.03

3.97

3.90

3.83
3.76

3.69

3.62

3.55

3.48
3.41

3.35

3.28

C1: Row & Column Effect Adjusted 

Column Number --- Well Series

In
te

n
s
it
y

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1

2

3

4

5

6

C2: Row &Column Effect Adjusted 

H

H

H
H

H

HH
H

H
H

HH

H

H

H
HH

H
H

H

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

4.62

4.56

4.50

4.44

4.39

4.33

4.27
4.21

4.15

4.09

4.03

3.97

3.92

3.86
3.80

3.74

3.68

3.62

3.56
3.50

3.45

3.39

C3: Hits after Adjustment 

+

+

++

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-

- - -

16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2.67
2.66
2.65
2.64
2.63
2.62
2.61
2.60
2.59
2.58
2.57
2.56
2.55
2.54
2.53
2.52
2.51
2.50
2.49
2.48
2.47
2.46

D1: Bowl-shaped Effect Adjusted 

Column Number --- Well Series

In
te

n
s
it
y

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2.4

2.5

2.6

2.7

D2: Bowl-shaped Effect Adjusted 

H
HH

HHH
H

H

HH
H

H

H
HHH

H

HHH

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2.65

2.64

2.64

2.63

2.62

2.61
2.60

2.59

2.59

2.58

2.57

2.56

2.55

2.54
2.53

2.53

2.52

2.51

2.50

2.49

2.48
2.48

D3: Hit after Adjustment 

Figure 3.7 (See color insert following page 110.) Adjustment of four common patterns of spatial effects:

(i) linear row effects (A1–A3), (ii) linear column effects (B1–B3), (iii) linear row and column

effects (C1–C3), and (iv) bowl-shaped spatial effects (D1–D3). In A1, B1, and C1, a red “+”

(or a green “–”) denotes an outlier in up-regulated (or down-regulated) direction. In A2, B2,

and C2, an orange (or green) point denotes a value in a sample well (or a negative control

well); the grey lines denote the boundary of SSMD = ±1.4 for selecting hits. In A3, B3, and

C3, a red (or green) “H” denotes a selected hit in up-regulated (or down-regulated) direction.
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In a regular linear model, we usually find the fitted value by minimizing mean

squared error, whereas in median polishing, we find the fitted value by minimizing

the median absolute deviation. The median polishing method can be implemented

using B-scores [20]. A more convenient choice may be the use of robust regression

implemented in the R function rlm [71;154].

The basic R codes using function rlm to adjust positional effects are as follows.

For adjusting both row and column effects:

library(MASS)

Yraw = dataIn.df[, "Intensity"]

Yfits = rlm(Intensity ∼ Xpos * Ypos, data = dataInNeg.df)

# or simply Yfits = rlm(Intensity ∼ Xpos + Ypos, data = dataInNeg.df)

Ypredicted = predict(Yfits, data.frame("Xpos"=dataIn.df[, "Xpos"],

"Ypos"=dataIn.df[, "Ypos"]))

Yadjusted = Yraw - Ypredicted + mean(Ypredicted)

For adjusting row effects only:

Yraw = dataIn.df[, "Intensity"]

Yfits = rlm(Intensity ∼ Xpos, data = dataInNeg.df)

Ypredicted = predict(Yfits, data.frame("Xpos"=dataIn.df[, "Xpos"]))

Yadjusted = Yraw - Ypredicted + mean(Ypredicted)

For adjusting column effects only:

Yraw = dataIn.df[, "Intensity"]

Yfits = rlm(Intensity ∼ Ypos, data = dataInNeg.df)

Ypredicted = predict(Yfits, data.frame("Ypos"=dataIn.df[, "Ypos"]))

Yadjusted = Yraw - Ypredicted + mean(Ypredicted)

In the above codes, dataIn.df is a data frame containing the data for all wells in

a plate, which must contain three columns: Xpos, Ypos, and Intensity. These three

columns represent, respectively, the row number, column number, and measured

response value (usually in log scale) for each well. dataInNeg.df is a part of dataIn.df

for data in the negative reference wells only. The negative reference can be either

all negative control wells if the negative control is arranged across the plate or all

sample wells (see Section 5.2.1 of Chapter 5 for a more detailed discussion about the

negative reference in hit selection).

The linear model and its robust version work effectively when the spatial effect

is linear. However, to address for nonlinear spatial effects, such as bowl-shaped

effects, we need to use smoothing techniques such as local fitting [31], smoothing

splines [56], and some regular nonlinear models to find a smoothing surface over

the well positions. The adjusted value for an siRNA in a well is the measured value

minus its corresponding value in the smoothing surface in that well plus the mean
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of all fitted values in the smoothing surface. It is not easy to determine which regular

nonlinear model to apply; thus local fitting and smoothing splines are commonly

used. A convenient and usually effective method is to use the function loess or

sometimes smooth.spline in R to find the fitted value [166;173].

The basic R codes using function loess to adjust positional effects are:

Yraw = dataIn.df[, "Intensity"]

Yfits = loess(Intensity ∼ Xpos * Ypos, dataInNeg.df,

control = loess.control(surface = "direct"))

Ypredicted = predict(Yfits, data.frame("Xpos"=dataIn.df[, "Xpos"],

"Ypos"=dataIn.df[, "Ypos"]))

Yadjusted = Yraw - Ypredicted + mean(Ypredicted)

3.3.4 Applications in Adjustment of Systematic Spatial Effects

After choosing an analytic method for adjusting for spatial effects that are caused by

systematic experimental errors, we need to determine which type of wells to use for

fitting the model. In a primary screen in which the siRNAs are randomly arranged

in a plate, the majority of siRNAs in a plate should not have a large inhibition or

activation effect. If they do, we may use the sample wells to fit the model and then

use the fitted model to find fitted values for every well, including the control wells

in a plate.

For example, the four plates displayed in Figure 3.6 come from primary screens,

although each one is from a different screen. Thus we can use the 320 sample wells

to fit the model. For each of the first three plates, robust regression can be used to

build the model based on the rows and columns of all the 320 sample wells; the fitted

values for all 384 wells can then be found in a plate. The adjusted values for these

three plates using R function rlm are displayed in Figure 3.7A1 and A2, B1 and B2,

and C1 and C2, respectively. The fourth plate can be adjusted using smoothing based

on all 320 sample wells. The adjusted values for this plate using R function loess are

displayed in Figure 3.7D1 and D2. Figure 3.7 clearly indicates that the spatial effects

in all the four plates have been adjusted. Figure 3.7A3, B3, C3, and D3 indicate that

the impact of systematic experimental errors on hit selection has been removed.

In a confirmatory screen in which most siRNAs are selected from primary screens

and are supposed to have large or moderate effects, sample wells cannot be used to

fit the model because the systematic spatial effects may be caused by clusters of true

hits in an area of a plate. Fitting a model to adjust for spatial effects may substantially

reduce the measured signal of true hits. For example, we do not want to use local

fitting on sample wells to remove the spatial pattern in Figure 3.3B1, B2, and B3 or

C1, C2, and C3 because those spatial patterns are caused by the location of true hits

in those plates.

Thus the best strategy to adjust for spatial effects in a confirmatory screen

is to use well-designed negative control wells or a control that is supposed to
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D: Adjusted Data in a Plate

Figure 3.8 (See color insert following page 110.) Adjustment of spatial effects using an effective plate

design in a confirmatory screen.

consistently have the same or a similarly sized effect in an experiment. Unfortu-

nately, the arrangement of negative control wells in a plate is not well designed in

many experiments. Therefore, following the strategy of plate designs described in

Section 2.3 of Chapter 2 is critical for the adjustment of systematic spatial effects

caused by systematic experimental error. For example, both the plate-well series plot

(Figure 3.1B) and the image plot (Figure 3.2B) show that there are convex bowl-

shaped spatial effects in the second HCV screen. However, because all the negative

control wells were arranged in column 23, it is infeasible to determine whether

these spatial effects are caused by systematic error or the arrangement of sample

wells.

An example of adopting effective plate design to adjust for spatial effects is an

siRNA confirmatory screen in which the negative control wells are arranged as in

Figure 3.8A. The display of measured values indicates the existence of systematic

row effects (Figure 3.8B). The values in the negative control wells indicate that the

systematic spatial effects were caused by measurement error (Figure 3.8C). Based on

the values in the negative control wells shown in Figure 3.8C, we can adjust for the

spatial effect in Figure 3.8B to get the adjusted data shown in Figure 3.8D.
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3.4 Strategy for Data Display and Normalization

Data display and normalization represent the first step for data analysis in RNAi

screens. Data display may identify important data features, including systematic

experimental errors in an RNAi screening experiment. Transformation of measured

raw values and adjustment of systematic experimental errors may have a huge

impact on the results of hit selection (Figures 3.5 through 3.8). A good strategy

for data display and normalization is to follow the following steps: (i) determine

what transformation should be applied to the measured raw values in a screen;

(ii) use graphics to display data features and to examine whether any systematic

spatial effects exist; (iii) if systematic spatial effects exist, explore whether they are

caused by systematic experiment errors, such as evaporation, pin issues, and so forth;

(iv) if the existing systematic spatial effects are caused by systematic experimental

errors, adopt a suitable analytic method such as robust linear model and local fitting

to adjust for them.

The best strategy to adjust for spatial effects in a confirmatory screen is to use

well-designed negative control wells or a control that has consistently the same or

similar size effects. If all controls are not well designed for the adjustment of spatial

effects in a confirmatory screen, we may adopt the following strategy: (i) if many

plates in a screen have the same pattern of spatial effects, regardless of whether they

come from the same or different source plates, we may apply the corresponding

adjustment method based on the sample wells in each plate that has systematic

spatial effects; (ii) if only plates from one or two source plates have certain patterns

of systematic spatial effects, we may not adjust for the spatial effects because the

spatial effects may be caused by the positions of true hits in those source plates.
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Quality Control in Genome-Scale RNAi Screens

4.1 Introduction

High-quality RNAi HTS assays are critical in genome-scale RNAi research. The devel-

opment of high-quality RNAi HTS assays requires the integration of both experimen-

tal and computational approaches for quality control (QC). Three important means

of QC are (i) good plate design, (ii) the selection of effective positive and negative

biological controls, and (iii) the development of effective QC metrics to measure the

degree of differentiation so that assays with inferior data quality can be identified.

Plate design and the design of effective controls are described in Chapter 2. A

good plate design helps to identify systematic errors (especially those linked with

well position) and determine what normalization should be used to remove/reduce

the impact of systematic errors on both QC and hit selection. Section 2.3 presents

multiple effective plate designs and guidelines; more information is available in

Zhang [166]. In this chapter, the development of effective QC metrics and the use

of effective QC criteria are discussed, and the use all three QC processes to improve

data quality in genome-scale RNAi screens is demonstrated.

4.2 Quality Assessment Metrics

Effective analytic QC methods serve as a gatekeeper for excellent quality assays. In a

typical HTS experiment, a clear distinction between a positive control and a negative

reference such as a negative control is an index for good quality. Many quality assess-

ment measures have been proposed to measure the degree of differentiation between

a positive control and a negative reference. Signal-to-background ratio, signal-to-

noise ratio, signal window, assay variability ratio, and Z-factor have been adopted to

evaluate data quality [17;39;77;99;116;123;148;150;159;172;180;185]. Strictly stan-

dardized mean difference (SSMD) has recently been proposed for assessing data

quality in RNAi HTS assays [162]. The commonalities and differences of these

measures are shown in the formulas for their estimates in Table 4.1.

42
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Table 4.1. Quality control measures, their estimation formulas, and characteristics

QC Measure Estimation Formula Characteristics

Signal-to-background

ratio
X̄ P

X̄N

Interpretation based on graphics

Does not contain any information regarding data

variability

Signal-to-noise ratio
X̄ P − X̄N

s N

Interpretation based on graphics

Takes into account the variability in the negative

control but not in the positive control

Signal window |X̄ P − X̄N | − 3(s P + s N )

s N

Accounts for data variability in both negative and

positive controls

Interpretation based on graphics

Assay variability ratio
3(s P + s N)

|X̄ P − X̄N |
Accounts for data variability in both controls

Interpretation based on graphics

Assay variability ratio = 1 + Z-factor

Z-factor |X̄ P − X̄N | − 3(s P + s N )

|X̄ P − X̄N |

Accounts for data variability in both controls

Interpretation based on graphics

No direct probability-based interpretation

Difficult to derive its estimation and confidence

interval from a complete statistical basis

SSMD
X̄ P − X̄N√

s 2
P + s 2

N

Accounts for data variability in both controls

Interpretation based on probability: has a direct

relationship with the probability that a draw from

the positive control is greater than a draw from the

negative control

Simple to derive its estimation and confidence

interval from a complete statistical basis

Note: QC, quality control; X̄ P and s P are sample mean and standard deviation of a positive control, respectively,

and X̄ N and s N are sample mean and standard deviation of a negative reference, respectively.

All these methods have advantages and drawbacks. From Table 4.1, we see that

signal-to-background ratio is simple to calculate but does not contain any informa-

tion regarding data variability, because it does not include the standard deviation.

Signal-to-noise ratio takes into account variability in the negative reference but

not that of the positive control. Consequently, QC results reached using signal-

to-background ratio and signal-to-noise ratio are misleading [17;77;159;162]. For

example, the data distributions and observed values in Figure 4.1 clearly show

that the degrees of differentiation between the positive and negative controls are

very different from cases A to D. However, the signal-to-background ratios are

the same for all four cases, and the signal-to-noise ratios are the same for cases A

through C.
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Figure 4.1 Distributions and observed values of positive controls (marked as black curves and points)

and negative controls (marked as grey curves and points) and the corresponding values of

QC metrics in four cases: Case A (A1–A3), B (B1–B3), C (C1–C3), and D (D1–D3). The grey

straight lines denote the means in the positive control and the negative reference, respectively.

Signal window, assay variability ratio, Z-factor, and SSMD all capture data vari-

ability. For a signal window, a larger value should indicate a larger degree of differ-

entiation between the positive control and the negative control. The value of signal

window is larger in case D than in case C. Thus the use of signal window for QC

would have led to the conclusion that the quality of case D is better than that of

case C. However, the distributions in C1 and D1 reveal that the overlap between

distributions in the two controls in case C is smaller than in case D. The observed

values in C2 and D2 also indicate that more values in the positive controls in case C

separate from those in the negative control than in case D. Hence the distributions

and observed values clearly reveal that the degree of differentiation in case C is larger

than in case D; consequently, the quality of case C is better than that of case D (Fig-

ure 4.1). Therefore, signal window also leads to misleading results. The table clearly

shows that the assay variability ratio = 1 + Z-factor; thus the assay variability ratio

and Z-factor are equivalent. Using simulations, Iversen et al. [77] show that Z-factor

is better than signal window in terms of accuracy and precision.

I recommend using SSMD whenever possible. SSMD and signal-to-noise ratio

have the same numerator but different denominators. Signal-to-noise ratio incorpo-

rates variability only in the negative reference, whereas SSMD accounts for variabil-

ity in both controls. Consequently, when the two controls have different variability,
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Figure 4.2 Graphic interpretation of quality control metrics. Signal-to-background ratio = D/C; signal-

to-noise ratio = E/B; signal window = A/B; assay variability ratio = (F + G)/E; Z-factor =
A/E. The black and grey points denote observed values in a positive control and a negative

reference, respectively.

signal-to-noise ratio may give misleading results, whereas SSMD does not. SSMD

is similar to the reverse of the assay variability ratio. Both take into account vari-

ability in both controls; however, the methods differ in terms of how they combine

information about this variability: assay variability ratio and Z-factor directly sum

up the standard deviations in the two controls, whereas SSMD adopts the standard

deviation of the difference between the positive and negative controls. As a result,

assay variability ratio and Z-factor are conveniently interpreted using graphics, or

control chart (as shown in Figure 4.2), based on means and standard deviations in a

similar way to signal-to-background ratio, signal-to-noise ratio, and signal window,

whereas SSMD is better in terms of both probabilistic interpretation and statistical

estimation and inference, as elaborated in the following two paragraphs. This is an

advantage of SSMD because of the stochastic nature of readouts in HTS assays.

Probabilistic basis of SSMD. SSMD has a direct relationship with d+-probability;

that is, the probability that a draw from the positive control is greater than a draw

from the negative reference (see Section 8.1 of Chapter 8). The simplest relationship

is d+-probability = �(SSMD), where �(·) is a cumulative distribution function

of a standard normal distribution N(0, 1). This relationship offers a strong basis

for a probabilistic interpretation of SSMD-based criteria. By contrast, there is no

direct relationship between Z-factor and related probability, although Sui and Wu
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[148] roughly give a power interpretation to Z-factor–based criteria under certain

assumptions and limitations. SSMD is also easily interpreted by average fold change

(in log scale) standardized by the variability of fold change (in log scale) between the

two controls.

The fact that the Z-factor is based on an absolute value rather than a normal

value also makes it more difficult to derive estimation and inference for Z-factor. By

contrast, it is simple to derive the estimation and confidence interval of SSMD from

a complete statistical basis. When the positive control and the negative reference

have equal variance, an estimate (namely, minimal variance unbiased estimate) of

SSMD better than the estimate in Table 4.1 is as follows:

SSMD = X̄ P − X̄ N√
2

K

(
(nP − 1)s 2

P + (nN − 1)s 2
N

)
≈ X̄ P − X̄N√

2

nP + nN − 3.5

(
(nP − 1)s 2

P + (nN − 1)s 2
N

) (4.1)

where nP and nN are sample sizes of the positive control and the negative ref-

erence, respectively, nP , nN ≥ 2 and K = 2 · ((� ( nP +nN−2
2

)) /(
�
(

nP +nN−3
2

) ))2 ≈
nP + nN − 3.5 (see Chapter 8 details regarding statistical derivation).

t-statistic and p-value. The SSMD estimate in Table 4.1 looks similar to the

t-statistic in situations of unequal variance:

t-statistic = X̄ P − X̄N√
s 2

P

nP
+ s 2

N

nN

. (4.2)

The SSMD estimate in Formula 4.1 looks similar to the t-statistic in situations of

equal variance:

t-statistic = X̄ P − X̄N√
1

nP + nN − 2

(
(nP − 1)s 2

P + (nN − 1)s 2
N

) ·√ 1

nP
+ 1

nN

. (4.3)

However, there is a major difference between the t-statistic and SSMD. In situations

of either equal or unequal variance, if there is a tiny true mean difference, when

nP and/or nN increases, t-statistics increase and corresponding p-values decrease,

whereas SSMD estimates tend to be closer to its population value [162]. In other

words, a t-statistic is a function of both sample size of controls and degree of

differentiation between two controls and is thus highly affected by sample size of

controls, whereas the values of an SSMD estimate fall around SSMD population

value. This difference makes the t-statistic a poor metric and makes SSMD a good

metric for assessing data quality.
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For example, no matter how poor an assay is, one can increase the t-statistic to

reach a very large value (or reduce the corresponding p-value to reach a very small

value) simply by increasing the sample size of controls in a plate, as long as there

is a tiny mean difference between the positive and negative controls. By contrast,

increasing the sample size only increases the SSMD estimate if its population value

is higher. The population value of SSMD reflects only the degree of differentiation

between the two controls and is not affected by the sample size of the controls. The

Z-factor should have a similar property to SSMD in terms of sample size impact,

which is a major reason why the Z-factor has been much more widely used to assess

quality in HTS assays than the t-statistic and its associated p-value.

Statistical power. Statistical power for testing null hypotheses has also been pro-

posed for a QC metric [148]. However, power is a more complicated term than the

t-statistic and its corresponding p-value. Power is further affected by type I error as

well as the effect size and the sample size of the controls. Thus t-statistic, p-value,

and power are all suitable for null hypothesis testing but are not suitable for mea-

suring effect size, especially with the consideration that many siRNAs may have tiny

effects on measured response due to gene network (Harlow, Mulaik, and Steiger [65]

provide more serious criticisms).

4.3 Quality Control Criteria

SSMD cutoffs. To assess data quality, we should first choose an effective QC metric

and then determine cutoffs of the chosen metric for classifying quality type. Con-

sidering the advantages of SSMD as described in Section 4.2, we choose SSMD as

the QC metric and use the SSMD-based criteria listed in Table 4.2 for QC in RNAi

screens [166].

The thresholds β̂ in the SSMD-based criteria in Table 4.2 have a theoretical basis

and a probabilistic interpretation. The SSMD values of 0.5, 1, 2, and 3 have clear

meanings: the size of mean difference being one half, one time, two times, and

three times the standard deviation of the difference, respectively. The d +-probability

associated with SSMD of an siRNA (or a positive control) is the probability that a

value from this siRNA (or the positive control) is greater than a value from a negative

reference. Based on the relationship between SSMD and d+-probability, the SSMD

values of 1, 2, and 3 (or –1, –2, and –3) also indicate that the minimums (or

maximums) of the corresponding d +-probabilities are respectively approximately

0.5, 0.95, and 0.975 (or 0.5, 0.05, and 0.025) in a situation in which the difference has

a symmetric unimodal distribution with finite variance. Similarly, an SSMD value

of 4.7 (or –4.7) indicates that the minimum (or maximum) of the corresponding

d+-probability is 0.99 (or 0.01). In a situation in which the difference has a normal

distribution, SSMD = 0.5, 1, 2, 3, 4.7 corresponds to d +-probability = 0.69, 0.84,

0.97725, 0.99865, and 0.9999987, respectively. The SSMD-based criteria consider

various distributions and are thus robust to different symmetric distributions.
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Table 4.3. Z-factor-based criteria for classifying assay quality

Category Z-Factor-Based Criterion

Ideal Z-factor = 1

Excellent 1 > Z-factor ≥0.5

Doable 0.5 > Z-factor > 0

Yes/no Z-factor = 0

Screening essentially impossible Z-factor < 0

Source: From Zhang, Chung, and Oldenburg [159].

Z-factor criteria. In the early stages of HTS technology research, Z-factor, along

with the Z-factor-based criteria listed in Table 4.3, were widely used for evaluating

data quality [17;99;116;123;150;159;160;180;185]. The Z-factor-based criteria were

derived empirically [159] and lack a clear probabilistic interpretation [161;162;164].

Consequently, we do not know in what conditions they work best and in what

situations they have limitations. The clear probabilistic interpretation of SSMD may

help to find an indirect probabilistic interpretation of the Z-factor-based criteria, as

follows.

Relationship between SSMD and Z-factor. Because
√

s 2
P + s 2

N < s P +
s N when s P > 0 and s N > 0, we have |SSMD| = |X̄ P − X̄N|

/√
s 2

P + s 2
N >

|X̄ P − X̄N |/(s P + s N) = 3/(1 − Z-factor). Therefore, given a value z (not greater

than 1), if Z-factor > z, then |SSMD| > 3/(1 − z); however, if |SSMD| > 3/(1 − z),

we cannot ensure that Z-factor > z. Therefore, Z-factor > z is a subset of

|SSMD| > 3/(1 − z), which leads to the result that Z-factor > 0 is a subset of

|SSMD| > 3 and Z-factor > 0.5 is a subset of |SSMD| > 6 [162].

Consequently, the criterion of Z-factor > 0 is more conservative than the criterion

of |SSMD| > 3. When the positive control has a mean greater than the negative

control, the use of SSMD > 3 already requires that, if we draw two values from

the positive and negative controls, respectively, the probability that the draw from

the positive control must be greater than the draw from the negative control is

greater than 0.99865 under normal assumption. That is, SSMD > 3 is already a

strong requirement. The more conservative criterion of Z-factor > 0 (namely, not

screening essentially impossible) has an even stronger requirement than SSMD >

3. Thus the popularly used Z-factor-based QC criterion is most suitable for very or

extremely strong positive controls.

Level of controls. In an RNAi HTS assay, a strong or moderate positive control

is usually more instructive than a very or extremely strong positive control because

the effectiveness of this control is more similar to HTS hits of interest (see the HCV

example in Section 2.2.2 of Chapter 2). Applying the Z-factor–based QC criteria

in Table 4.3 to strong or moderate positive control may not help to identify true

hits of interest. For example, in the simulation study shown in Figure 4.3, the assay



50 Quality Control in Genome-Scale RNAi Screens

quality in each simulated experiment is ideal: data variability consists of biological

variability but no assay variability. The positive control in experiment A has stronger

inhibition effects than the positive control in experiment B, as shown in A1 and B1.

If we use the Z-factor-based QC criteria in both experiments, 28 plates are “screening

essentially impossible” and 72 are “doable” in experiment A (A3), and 95 plates are

“screening essentially impossible” and 5 are “doable” in experiment B (B3). Thus

many plates with good quality are mistakenly judged to have poor quality when

using the Z-factor-based criteria.

Because the positive controls in the two experiments theoretically have different

sizes of inhibition effects, the QC thresholds for the moderate control should be

different from those for the strong control in these two experiments. In addition, it

is common that two or more positive controls are adopted in a single experiment,

such as in experiment C (Figure 4.3). Applying the same Z-factor-based QC criteria

to both controls leads to inconsistent results: 32 “excellent” and 68 “doable” by

one positive control, represented by purple points, and 4 “doable” and 96 “screening

essentially impossible” by the other control, represented by red points (Figure 4.3C3).

Compared with the Z-factor-based criteria, the SSMD-based QC criteria in Table 4.2

have the merit of taking into account the size and direction of effects of positive

controls in an HTS assay, thus working effectively to address the need for QC in

RNAi screens.

Based on the SSMD-based QC criteria and related strategies, criteria IIc and IIb are

applied to the very strong control in experiment A and the strong control in experi-

ment B, respectively, which produces the following sensible QC evaluation results: 21

excellent and 79 good plates in experiment A and 31 excellent, 66 good, and 3 infe-

rior plates in experiment B. Criteria IId and IIb are applied to the extremely strong

control and the strong positive control in experiment C, respectively, which yields

the following evaluation results: 60 excellent and 40 good plates by the extremely

strong control and 34 excellent, 63 good, and 3 inferior plates by the strong positive

control. All the QC results obtained using SSMD-based QC criteria are much more

reasonable than those obtained using the Z-factor-based QC criteria.

To apply the SSMD-based QC criteria listed in Table 4.2, we need to know the size

and direction of effects of positive controls in an HTS assay. In practice, we usually

know whether the measured intensity of a positive control is theoretically greater

than a negative reference. It is more difficult to obtain the information about the

sizes of positive controls. Most positive controls adopted in RNAi HTS experiments

have strong or very strong effects. Therefore, the QC criteria Ib, Ic, IIb, and IIc

listed in Table 4.2 work for most RNAi HTS experiments. In some cases, a good

positive biological control is unavailable for experimenters, and some very strong

positive controls must be used. For example, in some experiments in which the goal

is to screen out siRNAs capable of inhibiting cancer cell growth, the wells with no

cells are used as a positive control because no better positive biological controls are

available. Because these positive control wells have no cells added at all, the size
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Figure 4.3 (See color insert following page 110.) Data, SSMD, and Z-factor in three simulated exper-

iments A, B, and C in which the positive controls have different effect sizes: a very strong

control (red points) in experiment A, a strong control (red points) in experiment B, and an

extremely strong control (purple points) and a strong control (red points) in experiment C.

In each simulated experiment, there are 100 plates each, with 10 replicates for each positive

or negative control. The data for each control in each experiment is generated from a normal

distribution with standard deviation of 0.25, namely N(μ, 0.252) where μ = 3 for the neg-

ative control in each experiment, and μ = 1.44, 2.01, 0.35, 2.01 for the very strong positive

control in experiment A, strong positive control in experiment B, and extremely strong positive

control and strong positive control in experiment C, respectively.

of inhibition effect in this positive control is extremely strong. In such a case, we

may use QC criterion Id or IId. Detailed strategies for adopting an SSMD-based QC

criterion for a positive control in an HTS experiment in which there is not enough

information about the size of positive controls are described in the Notes section of

Table 4.2.

To use SSMD-based QC criteria for judging whether a plate passes or fails QC in a

screen with only one positive control, the following strategy may be adopted: a plate
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Table 4.4. Strategies for quality controls in a screen with one or two positive controls

Strategy 1. Using one positive control:
� A plate passes QC if it has good or excellent quality for the positive control.
� A plate fails QC if it has poor or inferior quality for the positive control.

Strategy 2. Using two positive controls:
� A plate passes QC if it has good or excellent quality for both positive controls.
� A plate fails QC if it has inferior or poor quality for both positive controls.
� Depending on experimental need and cost, a plate may pass or fail QC if it has good or excellent

quality for one positive control and inferior or poor quality for the other positive control.

passes QC if it has excellent or good quality and fails QC if it has inferior or poor

quality. When multiple positive controls are used in an HTS screen, we may need to

evaluate data quality based on two or more positive controls. In many cases, to pass

QC in a plate, we may need both positive controls to pass QC in that plate, especially

in the experiments with the objective of selecting both the siRNAs with very strong

effects and those with strong or moderate effects. The strategies for the adoption of

SSMD-based criteria for QC in an HTS experiment are summarized in Table 4.4.

Although I recommend the use of different criteria for controls with different

effect sizes in RNAi HTS experiments, especially in situations in which there is no

replicate for the majority of sample siRNAs in a plate, there are disputes about

whether a single criterion or multiple criteria should be used. The adoption of

multiple criteria for controls with different effect sizes (such as the SSMD-based QC

criteria in Table 4.2) takes into account the fact that different positive controls may

have different effect sizes; however, it is complicated to apply them in experiments

in which the sizes of positive controls are unknown. A single criterion is simple to

apply in experiments; however, it cannot account for the fact that different positive

controls may have different effect sizes and thus leads to inconsistent QC results in

experiments with two or more positive controls with different effect sizes.

In RNAi HTS experiments with no replicate for sample siRNAs, it is important

to allow for the sizes of positive controls because (i) a moderate or strong positive

control is usually more instructive and relevant to the hits of interest than a very or

extremely strong positive control in RNAi HTS assays, and (ii) it has strongly been

recommended that HTS assays incorporate as many controls as possible (http://nsrb.

med.harvard.edu/assaydev.html), and different controls have different effect sizes.

Controls in compound screens are straightforward, whereas siRNA controls in RNAi

screens are usually neither straightforward nor as strong as the positive controls in

compound HTS. For example, some RNAi screens in which cell viability is measured

only use the background wells as a positive control, whereas others may use a weak

positive control. Applying the same QC criterion to these two positive controls will

lead to misleading QC results for detecting siRNAs with moderate or strong effects

(i.e., judging the screens with very strong positive controls as good-quality assays

http://nsrb.med.harvard.edu/assaydev.html
http://nsrb.med.harvard.edu/assaydev.html
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even if they have poor quality and judging the screens with weaker positive controls

as poor-quality assays even if they have good quality for detecting hits of interest

that have moderate or strong effects).

4.4 Adoption of Effective Plate Designs

The results of QC assessment are affected not only by the choice of quality assessment

metrics and their associated criteria, but also by the adoption of plate designs.

Without the adoption of a suitable plate design, an assay with poor quality may be

judged as having good quality, even using the best QC metric.

For example, suppose we conduct a primary screen with a very strong positive

control and a negative control. In this screen, we use three different plate designs (i.e.,

designs A, B, and C as shown in Figure 2.1 in Chapter 2 in three plates). For these

three plates, we evaluate data quality using both SSMD-based and Z-factor-based

criteria on the positive and negative controls. The QC results in plate 1 are shown

in Figure 4.4A1, which clearly indicates that the quality in plate 1 is good (using the

SSMD-based criterion IIc in Table 4.2) or doable (using the Z-factor-based criterion

in Table 4.3). However, if we check the raw data, as in Figure 4.4A2, there is a strong

row effect. Because this is a primary screen, we can use the sample wells to adjust

for the row effect, as described in Chapter 3. After adjusting for the row effect to

obtain the data in Figure 4.4A3, the corresponding QC results actually indicate that

the quality in plate 1 is inferior (using the SSMD-based criterion IIc in Table 4.2)

or “screening essentially impossible” (using the Z-factor-based criteria in Table 4.3)

(Figure 4.4A4). By contrast, when we adopt two more effective plate designs (i.e.,

designs B and C as shown in Figure 2.1 of Chapter 2) in plates 2 and 3, respectively,

the QC results based on either raw or adjusted data suggest that the assay quality in

plate 2 is poor (i.e., SSMD > –2) or “screening essentially impossible” (i.e., Z-factor

< 0) (Figures 4.4B1 through B4 and 4.4C1 through C4).

In addition, by adopting an effective plate design in the very beginning of an

experiment, we may save an assay that has a good quality but might have otherwise

been judged as having poor quality. In a primary screen with a very strong positive

control and a negative control, we obtained QC results as poor (using SSMD) or

“screening essentially impossible” (using Z-factor) in most plates. The QC results

in one typical plate are shown in Figure 4.5A. The image plot indicates there is a

strong row effect (Figure 4.5B). Because the plate design adopted in this screen is an

effective design (i.e., design C in Figure 2.1 in Chapter 2), we can use the negative

control wells to adjust for the row effect. After adjusting for the row effect using the

methods described in Chapter 3, we obtained data shown in Figure 4.5C. Based on

the adjusted data, the QC results indicate that the quality is good (using SSMD) or

“doable” (using Z-factor) (Figure 4.5D).

In confirmatory screens, a correlation plot between two replicate plates from the

same source plate is a commonly used method to check data quality. Without the
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A1: QC on raw data in plate 1 (Design A) 
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B1: QC on raw data in plate 2 (Design B) 

M
e
a
s
u
re

d
  
va

lu
e

2

3

4

5

6

SSMD = -1.517 

z- factor = -1.763

-
-

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

5.81
5.64
5.47
5.30
5.13
4.96
4.79
4.62
4.45
4.28
4.11
3.94
3.77
3.61
3.44
3.27
3.10
2.93
2.76
2.59
2.42
2.25

B2: Raw data in plate 2 

+

-
--

-

-

--
--

-
-

-

-

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

4.83
4.76
4.68
4.60
4.53
4.45
4.37
4.30
4.22
4.15
4.07
3.99
3.92
3.84
3.77
3.69

3.61
3.54
3.46
3.39
3.31
3.23

B3: Adjusted data in plate 2 

B4: QC on adjusted data in plate 1  

M
e
a
s
u
re

d
 v

a
lu

e

2

3

4

5

6

SSMD = -1.525 

z-factor = -1.483

C1: QC on raw data in plate 3 (Design C) 
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C4: QC on adjusted data in plate 3 
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Figure 4.4 (See color insert following page 110.) Impact of plate design on quality assessment. Three

designs (A, B, and C as shown in Figure 2.1 of Chapter 2) are adopted in plates 1, 2, and 3,

respectively, in a primary screen with strong row effects. The red and green points respectively

denote a very strong positive control and a negative control in A1, A4, B1, B4, C1, and C4.

adoption of effective plate designs, correlation analysis may also be misleading and

useless. Suppose we have a confirmatory screen with a very strong positive control,

a moderate positive control, and a negative control. In this confirmatory screen,

plates 1 and 2 come from a source plate with plate design A (shown in Figure 2.1

in Chapter 2) and plates 3 and 4 come from another source plate with plate design

C. The correlation plots for plates 1 and 2 as well as for plates 3 and 4 are shown in

Figure 4.6.

The correlation between the raw values in plates 1 and 2 is 0.814, with a p-value

of nearly 0 (Figure 4.6A1). Therefore, one may conclude that the reproducibility is

very high and the assay quality very good. However, the image plot reveals a strong
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A: QC on raw data in a plate
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C: Adjusted data (Design C) D: QC on adjusted data in a plate
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Figure 4.5 (See color insert following page 110.) An effective plate design saving an assay that might

have been judged as poor quality. The screen had strong row effects and adopted design C

as shown in Figure 2.1 of Chapter 2. The red and green points respectively denote a very

strong positive control and a negative control in A and D.

bowl-shaped spatial effect in both plates (Figure 4.6A2 and A3). If the spatial effect

is caused by the location of true hits, the high correlation may indicate good quality.

On the other hand, if the spatial effect is caused by systematic experimental error,

then the high correlation cannot indicate good quality at all. Unfortunately, because

this source plate adopts design A, in which all negative control wells are arranged in

column 23, we cannot tell whether this spatial effect is caused by the arrangement

of true hits or by systematic experimental errors. In this design, we cannot use the

negative control to adjust for the spatial effect.

By contrast, plates 3 and 4 come from a source plate with design C, in which

the negative control wells are arranged across the plate in a balanced manner. The

correlation plot of the raw values in plates 3 and 4 also indicates a correlation of

0.821, with a p-value of nearly zero. The image plot also reveals a strong bowl-shaped

spatial effect in both plates (Figure 4.6B2 and B3). However, in this effective design,

the values of the negative controls also have a bowl-shaped effect (Figure 4.6B2 and

B3), which indicates that the spatial effect is caused by systematic errors and should

be adjusted. As described in Section 3.3.3 of Chapter 3, using the negative control

wells, we can adjust for the spatial effect to obtain adjusted data for plates 3 and

4, as shown in Figure 4.6B5 and B6. The image patterns in plates 3 and 4 are now

very different (Figure 4.6B5 and B6), and the correlation between these two plates

is –0.02 with a p-value of 0.72. Therefore, blindly using correlation analysis may
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A1: Correlation plot of raw data in plates 1&2 
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A3: Raw data in Plate 2 (Design A) 

B1: Correlation plot of raw data in plates 3&4
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B2: Raw data in Plate 3 (Design C) 
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Figure 4.6 (See color insert following page 110.) Impact of systematic spatial effects on quality assess-

ment using correlation between two replicate plates from the same source plate. The red,

blue, green, and black points respectively denote a very strong positive control, a moderate

positive control, a negative control, and sample siRNA wells in A1, B1, and B4.

lead to misleading results, and effective plate designs can help us make better use of

correlation analysis.

4.5 Integration of Experimental and Analytic Approaches to Improve
Data Quality

As we mentioned in the chapter introduction, the keys to integrating experimental

and analytic approaches to improve data quality are the guidelines for selecting

effective biological controls, the construction and usage of effective plate designs, and

the development and adoption of effective analytic QC metrics. Table 4.5 provides

a strategy for implementing both experimental and analytic approaches to improve

data quality in RNAi HTS experiments.

Following the strategy in Table 4.5, we may select effective biological controls,

display systematic errors, and then adjust for the errors when we can adopt effective

plate designs in the very beginning. In a situation in which we may not control the
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Table 4.5. A strategy for implementing experimental and analytic approaches to improve

data quality in RNAi HTS experiments

1) Use the guidelines provided in Section 4.1 to select effective positive and negative controls.

2) Whenever possible, adopt effective plate design in the very beginning of the experiment

following the guidelines described in Chapter 2.

3) Check for systematic errors of measurement using a negative reference:

a) If systematic errors exist, try to adjust for them (see Section 3.3.3 of Chapter 3).

b) If obvious systematic errors exist and cannot be adjusted, QC results reached using any

analytic metric may not be reliable.

4) Adopt SSMD-based criteria for QC if systematic errors do not exist or have been adjusted.

5) Examine the plates failing QC to investigate potential causes.

a) Check whether the failure is only caused by the contaminated positive controls:

i) If yes, the plate may be used for hit selection.

ii) Otherwise, redo the plate when possible.

b) Check whether the failure is only caused by one or two extreme outliers in the controls:

i) If yes and if the plate passes QC after removing the outliers, the plate may be used for

hit selection.

ii) Otherwise, redo the plate when possible.

plate design, this strategy may still help us to identify plates with bad quality and redo

them or exclude them for further data analysis. In either situation, following this

strategy will help us to obtain high-quality data. This strategy should be generally

applicable to any assay in which the end point is a difference in signal compared

with a reference sample, including enzyme, receptor, and cellular function assays, in

addition to RNAi-based high-throughput screens.

4.6 Application

For the HCV primary siRNA screen described in Section 1.4 of Chapter 1, the

biological controls are carefully selected as follows. a number of negative controls

were purchased from various siRNA vendors and tested in the replicon system to

guard against toxicity and off-target–mediated inhibition of HCV replication. The

negative control used in the experiment was a nonsilencing siRNA purchased from

Dharmacon. Positive controls were identified by testing siRNAs described to have

efficacy against HCV replication in different replicon models of HCV replication,

as well as by testing siRNAs targeting host factors with published links to HCV

replication. Two positive control siRNAs were used: a very strong one that targeted

the HCV replicon and was uniformly effective at knocking down HCV replication

by 90% to 95% [121] and a weaker one (i.e., fairly strong one) that targeted hVAP33

[61;97]. In this instance, the weaker positive control was more instructive than the

strong positive control, because the effectiveness of this control was more similar to
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Figure 4.7 (See color insert following page 110.) Quality assessment in an HCV siRNA primary experi-

ment. The x-axis in each panel denotes plate numbers. A point denotes the measured intensity

in a well of a plate in A, a value of SSMD in a plate in B, and a value of Z-factor in a plate in

C. The well types are denoted using different colors, as shown in the legend of C.

HTS hits than the siRNA targeting HCV itself. The control and sample wells were

arranged as in Figure 2.1A in Chapter 2.

Using the SSMD-based criteria [166] shown in Table 4.2, by the very strong

positive control (applying QC criterion IIc), 88 plates were excellent and 9 were

good; by the strong (weaker) positive control (applying QC criterion IIb), 53 plates

were excellent, 37 were good, and 7 were inferior (Figure 4.7B). By looking at

the results for the two positive controls together, 90 plates were excellent or good

by both controls (Table 4.6A). These plates all passed QC based on strategy 2 of
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Table 4.6. Quality assessment using SSMD and Z-factor based on two positive controls

in the HCV primary screen

A. Using SSMD

Strong Positive Control

Excellent Good Inferior Poor Total

Very

Strong

Positive

Control

Excellent 52 30 6 0 88

Good 1 7 1 0 9

Inferior 0 0 0 0 0

Poor 0 0 0 0 0

Total 53 37 7 0 97

B. Using Z-factor

Strong Positive Control

Ideal Excellent Doable Yes/No SEI Total

Very

Strong

Positive

Control

Ideal 0 0 0 0 0 0

Excellent 0 0 5 0 3 8

Doable 0 0 29 0 52 81

Yes/no 0 0 0 0 0 0

SEI 0 0 2 0 6 8

Total 0 0 36 0 61 97

Note: SEI, Screening essentially impossible.

Table 4.4. Only seven plates (i.e., 7/97 = 7%; plates 4, 36, 72, 74, 76, 78, and 80)

were judged as inferior by the strong (weaker) positive control but good or excellent

by the very strong positive control. The raw data displayed in Figure 4.7A also show

that the strong positive control and the negative control do not differentiate well in

these 7 plates but differentiate quite well in the remaining 90 plates. Therefore, the

QC results using SSMD (Figure 4.7B) match with data (Figure 4.7A).

By contrast, if we use the Z-factor-based QC criterion in the HCV primary screen,

we would obtain the following results: by the very strong positive control, 8 plates

were “excellent,” 81 were “doable,” and 8 were “screening essentially impossible”; by

the strong positive control, 36 plates were “doable” and 61 were “screening essentially

impossible” (Figure 4.7C). When the results for the two positive controls were studied

together, 55 plates were judged as “screening essentially impossible” by the strong

positive control but as “doable” or “excellent” by the very strong positive control;

2 plates were judged as “screening essentially impossible” by the very strong positive

control but as “doable” by the strong positive control (Table 4.6B). Therefore, it

was difficult to evaluate the quality for each plate using Z-factor, especially for the

57 plates (i.e., 57/97 = 59%) with highly inconsistent QC results by the two positive

controls. For example, plate 83 is judged as “excellent” if using the very strong positive

control but as “screening essentially impossible” if using the strong positive control,
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which makes it hard to judge whether plate 83 should have “excellent” or “screening

essentially impossible” quality when adopting the Z-factor-based QC criteria.

Therefore, the SSMD-based criteria produce much more consistent QC results

than the Z-factor-based criterion: 93% of plates are good or excellent by both

positive controls using SSMD-based criteria, whereas only 31% plates are “doable,”

“excellent”, or “ideal” by both positive controls (Table 4.6). The judgments using

SSMD are much more reasonable and match with the data better than those using

Z-factor.

4.7 Discussion and Conclusions

This chapter provides a strategy for implementing both experimental and analytic

approaches to improve data quality in RNAi HTS experiments (Table 4.5). The keys

to this strategy are selection of effective biological controls, construction and use

of effective plate designs, and development and adoption of effective analytic QC

metrics.

Effective positive and negative controls are the means of gauging the size of siRNA

effects. Hence the selection of effective positive and negative controls is critical for

experiments to select siRNAs with a desired size of inhibition/activation effects. The

guidelines for designs of controls provided in Chapter 2 should help to select effective

positive and negative controls in the design of a genome-scale RNAi screen [166].

Whether in a primary screen or a confirmatory screen, a clear distinction between a

positive control and a negative reference such as a negative control is an index for good

quality. Many quality assessment measures, including signal-to-background ratio,

signal-to-noise ratio, signal window, assay variability ratio, Z-factor, and SSMD, have

been used to measure the degree of differentiation between a positive control and a

negative reference [17;39;77;99;116;123;148;150;159;162;180;185]. The theoretically

sound QC criteria are the SSMD-based criteria listed in Table 4.2. In the early stages

of HTS research, the Z-factor-based criteria listed in Table 4.3 were commonly

used. The disadvantage of the Z-factor-based criteria is that they do not take into

account the different strength of different positive controls and thus may have issues,

especially in experiments with more than two positive controls in the same direction.

In such cases, it is better to use the SSMD-based criteria, even though these are more

complicated. The best way to handle the complexity is to follow the guidelines listed

in Table 4.2. A simple strategy for using SSMD-based criteria is to use criterion Ic

for an up-regulated positive control and criterion IIc for a down-regulated positive

control, unless we know the strength of a positive control or we have two positive

controls in the same direction in an experiment.

Section 4.4 demonstrates that the adoption of effective plate designs as presented in

Chapter 2 may have a huge impact on quality assessment results, regardless of whether

we use SSMD and Z-factor in primary and confirmatory screens or correlation
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analysis among replicates in confirmatory screens. The blind use of differentiation

metrics and correlation analysis may lead to misleading results. Effective plate designs

are usually needed to help to reduce these misleading results.

The application in Section 4.6 demonstrates the importance and feasibility of inte-

grating the above experimental and analytic approaches to improving data quality

in genome-scale RNAi screens.



5

Hit Selection in Genome-Scale RNAi
Screens without Replicates

5.1 Introduction

In an RNAi HTS, one primary goal is to select siRNAs with a desired size of inhibition

or activation effect. The size of the siRNA effect is represented by the magnitude of

difference between a tested siRNA and a negative reference group with no specific

inhibition/activation effects. An siRNA with a desired size of effects in an HTS screen

is called a hit. The process of selecting hits is called hit selection. There are two main

strategies of selecting hits with large effects [161;174]. One is to use certain metric(s)

to rank and/or classify the siRNAs by their effects and then to select the largest

number of potent siRNAs that is practical for validation assays. The other strategy

is to test whether an siRNA has effects strong enough to reach a pre-set level. In

this strategy, false-negative rates (FNRs) and/or false-positive rates (FPRs) must be

controlled.

As described in Chapter 1, a typical RNAi HTS project currently starts with a

primary screen of single or pooled siRNAs, most of which have no replicate, and

follows with one or more confirmatory screens in which each siRNA or pool has

replicates. With the development of the platform of 1,536-well plates, more and

more primary screens can also have replicates. The analytic methods for hit selection

in screens without replicates differ from those with replicates. Therefore, I discuss

these methods separately: without replicates in this chapter and with replicates in

Chapter 6.

In this chapter, I describe various metrics; in Section 5.2, I discuss how to select

a metric for hit selection in genome-scale RNAi screens without replicates. After

choosing a metric, a decision rule must be constructed to judge whether an siRNA

is a hit or non-hit, and this process is presented in Section 5.3. In the experimental

design stage of a genome-scale RNAi project, we need to determine a suitable sample

size for the achievement of reasonable FPRs and FNRs; thus I explore sample size

determination in screens without replicates in Section 5.4. Finally, I demonstrate

62
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how to apply the described methods for selecting hits in real genome-scale RNAi

screens without replicates in Section 5.5; conclusions are discussed in Section 5.6.

5.2 Methods for Hit Selection in Primary Screens without Replicates

There are many metrics used for hit selection in primary screens without replicates.

The easily interpretable ones are fold change, mean difference, percent inhibition,

and percent activity. However, the drawback common to all of these metrics is that

they do not capture data variability effectively. To address this issue, researchers then

turned to the z-score method or mean ± a standard deviation (SD) method, which

can capture data variability in negative references. However, outliers are common

in RNAi HTS experiments, and methods such as z-score are sensitive to outliers

and can be problematic. Consequently, robust methods such as the z∗-score method

(median ± a MAD method), B-score method, and quantile-based method have

been proposed and adopted for hit selection [28;179;180]. For hit selection in RNAi

screens, the major interest is the size of effect in a tested siRNA, which is represented

by the magnitude of the difference between the siRNA and a negative reference

group with no specific inhibition or activation effects. All the methods previously

described attempt to estimate and test means of differences. They are not designed

for assessing the magnitude of differences. SSMD can be used to assess the size of

siRNA effects [161;167;182]. Therefore, SSMD should work best for hit selection in

genome-scale RNAi screens.

5.2.1 A Negative Reference to Represent siRNAs with No Specific Effects

All the methods described in this section require a negative reference group to

represent the siRNAs with no specific inhibition/activation effects. Thus the choice

of a negative reference is crucial in RNAi screens. Two common choices for the

negative reference are (i) negative control wells and (ii) sample wells.

When an effective negative control is available in a screen and the number of

wells per plate for the negative control is large (>10), the negative control is an ideal

choice. However, in many screens, the negative control may not work effectively

to represent siRNAs with no specific effects, or the number of wells per plate for

the negative control is too small (<6). In such a case, it is a good idea to use the

majority of sample wells as the negative reference for the primary screen because

the majority of sample siRNAs in a primary screen’s plate tend to have no or

extremely weak specific inhibition/activation effects and because the number of

sample wells per plate is large (approximately 300 in a 384-well plate). The use

of the majority of sample wells as a negative reference may lead to more robust

and more stable results because of the large sample size. In some cases, there is no

effective negative control available at all. In such cases, we may only use the sample

wells as a negative reference in a primary screen. In a confirmatory screen, the
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siRNAs arranged in a plate are selected from a primary screen or from other studies

and are supposed to have specific inhibition or activation effects. Thus, in most

confirmatory screens, we may only use a negative control as a negative reference for hit

selection.

5.2.2 Plate-Wise versus Experiment-Wise

In the process of hit selection, we usually face the following question: Should we

perform these analyses on a plate-by-plate basis (called plate-wise) or on all the

plates in an experiment (called experiment-wise)?

If there are different systematic errors in different plates (e.g., different plates may

have different transfection efficiencies and hence have different centers and vari-

ability), plate-wise analysis can adjust for the different systematic errors in different

plates, whereas experiment-wise analysis cannot. On the other hand, there is the

possibility that a cluster of active siRNAs will be located within a single plate, which

will cause the variability of sample wells in this plate to be inflated. The plate-wise

sample-based method may not detect these true hits. If an effective negative control

is used as a negative reference and the number of wells for the negative control in

each plate is small (e.g., < 8 wells/plate), then experiment-wise analysis can substan-

tially increase the power in estimating the mean and SD of the negative reference.

The existence of enriched plates is not very common in a primary RNAi screen.

Therefore, plate-wise analysis is more commonly used, especially when the sample

wells are used as a negative reference.

5.2.3 Hit Selection Metrics and Their Calculation

Metrics and their calculation for hit selection in primary screens without replicates

are listed in Table 5.1.

z-score. The z-score method is equivalent to the mean ± a SD method, in which

the siRNAs with bigger measured value than the mean + a SD or smaller than the

mean – a SD are selected as hits, where a is a pre-set constant usually being 2 or 3.

This method relies on the z-score of the standard normal distribution N(0,1) and is

thus also called the z-score method. The z-score method addresses the question of

what would happen if an investigated siRNA truly comes from the negative reference

population with no specific inhibition or activation effects. a is also the cutoff (or

critical value) of z-score.

z∗-score. In practice, the measured values are not normally distributed. Long-

tailed or even skewed distributions may occur. Outliers appear frequently in RNAi

HTS data. True hits should behave differently from the siRNAs, which do not have

specific silencing effects. Because the majority of siRNAs in a primary HTS experi-

ment do not have specific silencing effects, true hits (especially strong ones) should

behave like outliers. To obtain estimates for the center and variability similar to mean

and SD, but more robust to outliers and the violation of normal assumption, one
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Table 5.1. Metrics and their calculation for hit selection in primary screens without replicates

Calculation Formula

Hit Selection Metric Regular Version Robust Version

Fold change A1:
YsiRNA

Ȳ−
A2:

YsiRNA

Ỹ−

Percent activity B1:
YsiRNA

Ȳ+
× 100 B2:

YsiRNA

Ỹ+
× 100

Percent inhibition C1:
YsiRNA − Ȳ−

Ȳ+ − Ȳ−
× 100 C2:

YsiRNA − Ỹ−
Ỹ+ − Ỹ−

× 100

z-score D1:
YsiRNA − Ȳ−

SD−
D2:

Ys iRNA − Ỹ−
MAD−

, called z∗-score

SSMD E1:
YsiRNA − Ȳ−√

2SD−
E2:

Ys iRNA − Ỹ−√
2MAD−

B-score method B-score [20] is a robust metric similar to z∗-score but with an

additional adjustment for positional effects.

Quantile method The lower boundary for hit selection is the smallest observed value

greater than Q1 − c interquartile range (IQR) and the upper

boundary for hit selection is the biggest observed value smaller

than Q3 + c IQR, where IQR = Q3 − Q1, Q1 and Q3 are the

1st and 3rd quartiles of measured values in a negative reference,

respectively, and c is a pre-set constant [180].

Bayesian method Adopts robust estimation in the prior and controls false discovery

rate via a direct posterior approach [176].

YsiRNA denotes a measured value usually in log-scale of an investigated siRNA; Ȳ−, Ỹ−, SD−, and

MAD− denote the mean, median, standard deviation (SD), and median of absolute deviation

(MAD) of measured values in a negative reference, respectively.

common choice is median and MAD [20;28;108;180]. MAD represents the median

of absolute deviations, that is:

MAD = 1.4826 median(|yi − median(y)|).

The constant of 1.4826 is chosen so that MAD is equivalent to SD when the

measured values are normally distributed. Similar to mean ± a SD, the method

based on median and MAD is median ± a MAD, where a is often set to be 2 or 3.

Similar to z-score, we have z∗-score as Formula D2 in Table 5.1.

B-score. B-score [20] is a robust metric similar to z∗-score but with an additional

adjustment for positional effects. Technically, the B-score method is equivalent to

doing the following two steps at once: (i) applying smoothing to adjust for posi-

tional effect during the normalization stage and (ii) calculating the z∗-score using

sample wells as the negative reference based on the normalized data. The B-score
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method adjusts for systematic positional effects regardless of whether the adjust-

ment is needed. When these positional effects are caused by measurement error, the

adjustment is appropriate. However, when these positional effects are caused by the

clusters of hits, the adjustment may lead to missing the cluster of hits. This can be

problematic if one or more clusters of true hits are placed in a small area of a plate.

Thus the best strategy is to conduct the following analyses step by step: (i) apply

the methods described in Chapter 3 to determine whether there are any systematic

positional effects; (ii) if there are, investigate whether they are caused by systematic

experimental errors; (iii) if the systematic positional effects are caused by systematic

experimental errors, adopt necessary and suitable adjustment/normalization meth-

ods as described in Chapters 2 and 3 to adjust for the identified systematic errors;

and finally, (iv) apply a suitable analytic method (chosen from not only z∗-score

method, but also other alternatives described in Table 5.1) to the normalized data

for hit selection.

SSMD. SSMD is the mean difference penalized by the inconsistency (i.e., variabil-

ity) of the difference between an siRNA and a negative reference. In screens without

replicate, there is a linear relationship between z-score and SSMD, namely z-score =√
2 SSMD, when the estimation in Table 5.1 is used. Note that this relationship does

not exist for screens with replicates. An advantage is that we can use SSMD to classify

the size of siRNA effects as in Table 5.2 when the true value of SSMD is known. See

Chapter 8 for more details about how the cutoffs in this table were derived. Another

advantage is that z-score cannot be applied in screens with replicates, whereas

SSMD can.

The usual process for calculating SSMD listed in Table 5.1 comes from the method-

of-moments estimation, which is a biased estimate. A uniformly minimal variance

unbiased estimate of SSMD is:

β̂ = YsiRNA − Ȳ−√
2

K
(n− − 1) SD−

(5.1)

where K ≈ n− − 2.48 and n− is the sample size in the negative reference. See Chap-

ter 8 for more details regarding how this estimate is derived.

Outliers. To reduce the impact of outliers, one approach is to adopt the

robust version of hit selection metrics as in Formulas A2, B2, C2, D2, and E2 in

Table 5.1. Another approach is to calculate Ȳ− and SD− after excluding outliers in

the negative reference. This approach can be conducted plate-wise or experiment-

wise. For the plate-wise calculation, in the plate in which the siRNA is placed, boxplot

parameters are used to identify outliers in a negative reference group. n−, Ȳ−, and

SD− are respectively the sample size, mean, and standard deviation of measured

values (usually after log-transformation) in the negative reference, excluding the

identified outliers in that plate. This calculation is often adopted in most screens,

especially when the sample wells are used as a negative reference. We usually adopt
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Table 5.2. The size of siRNA effects classified using the true value of SSMD

Effect Direction Effect Subtype SSMD Threshold

Extremely strong SSMD ≥ 5

Very strong 5 > SSMD ≥ 3

Strong 3 > SSMD ≥ 2

Fairly strong 2 > SSMD ≥ 1.645

Up-regulated Moderate 1.645 > SSMD ≥ 1.28

(i.e., increasing activity) Fairly moderate 1.28 > SSMD ≥ 1

Fairly weak 1 > SSMD ≥ 0.75

Weak 0.75 > SSMD > 0.5

Very weak 0.5 ≥ SSMD > 0.25

Extremely weak 0.25 ≥ SSMD > 0

Zero Zero SSMD = 0

Extremely weak −0.25 ≤ SSMD < 0

Very weak −0.5 ≤ SSMD < −0.25

Weak −0.75 < SSMD < −0.5

Down-regulated Fairly weak −1 < SSMD ≤ −0.75

(i.e., decreasing activity) Fairly moderate −1.28 < SSMD ≤ −1

Moderate −1.645 < SSMD ≤ −1.28

Fairly strong −2 < SSMD ≤ −1.645

Strong −3 < SSMD ≤ −2

Very strong −5 < SSMD ≤ −3

Extremely strong SSMD ≤ −5

this calculation to obtain the SSMD value, especially when Formula 5.1 is used. For

the experiment-wise calculation, boxplot parameters are first used to identify outliers

in a negative reference group across all plates in the experiment. n−, Ȳ−, and SD−
are respectively the sample size, mean, and standard deviation of measured values

in the negative reference, excluding the identified outliers in the whole experiment.

This calculation may be used when a negative control with a small sample size is used

as a negative reference. This calculation is implemented in the prior in the Bayesian

methods described in Zhang et al. [176].

5.2.4 Comparison of Metrics for Hit Selection Using Example Data Sets

Here we use the example data sets in Table 5.3 to demonstrate the use of various

metrics for hit selection in primary screens without replicates. The calculated values

for various metrics based on these data sets are shown Figure 5.1. The only difference

between data sets A and B is that there exist two outliers in data set A, one in the

positive control and one in the negative control. As demonstrated in Figure 5.1A

and B, the median-based fold change (i.e., fold change2) is 1.9 for both data sets A

and B, whereas the mean-based fold change (i.e., fold change1) is 1.4 for data set A
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Table 5.3. Example data sets for demonstrating the usage of metrics for hit selection in

RNAi primary screens without replicates (focusing on one siRNA only in each data set)

Data Set A Data Set B Data Set C

siRNA 6.0 6.0 6.0

Negative control 2.1, 2.2, 2.4, 2.7, 3,

3.2, 3.4, 3.5, 3.6, 16

2.1, 2.2, 2.4, 2.7, 3, 3.2,

3.4, 3.5, 3.6, 3.9

0.1, 0.4, 0.9, 1.2, 1.9,

2.7, 3.4, 5.2, 6.2, 7.8

Positive control 6.0, 6.2, 6.4, 16.6 6.0, 6.2, 6.4, 6.6 4.0, 5.2, 7.4, 8.6

but 2 for data set B, which indicates that the median-based fold change is robust to

outliers, whereas the mean-based fold change is sensitive to outliers. Similar results

are obtained for percent inhibition and percent activity.

The value in the siRNA is consistently above all the values in the negative control

in Figure 5.1B, whereas the value in the siRNA is less than at least two values in the

negative control in Figure 5.1C, which indicates that the siRNA separates well from

the negative control in Figure 5.1B but not in Figure 5.1C. However, the mean-based

fold change has the same value in both Figure 5.1B and C, and the median-based

fold change is smaller in Figure 5.1B than in Figure 5.1C, which indicates that

the siRNA separates from the negative control in Figure 5.1B no better than in

Figure 5.1C. Thus both mean-based and median-based fold changes produce mis-

leading results. Percent inhibition and percent activity give similar misleading results

(Figure 5.1). The issues with fold change and percent inhibition are further demon-

strated in real RNAi screens in Section 5.5. These issues can be addressed using

methods that incorporate information about data variability, as described in follow-

ing subsections.

z-score. The z-score method takes into account data variability by penalizing

data variability in the negative reference. In Figure 5.1, the z-score is 4.8 in B and

1.1 in C, which correctly indicates the separation of the siRNA from the negative

control. The z-score method is based on the assumption of a normal distribution

of data and is very sensitive to outliers. As demonstrated in Figure 5.1, one outlier

in the negative reference may dramatically change the z-score value from 4.8 (B)

to 0.4 (A).

z∗-score. The z∗-score is 4.3 for the siRNA in data set B and 1.5 for the siRNA

in data set C. Thus, like z-score, z∗-score takes into account data variability, and its

values correctly indicate the separation of the siRNA from the negative control. In

addition, z∗-score is 4.3 for both siRNAs in data sets A and B, demonstrating that

z∗-score is robust to outliers.

SSMD. Calculated based on Formula 5.1 after excluding outliers using boxplot

statistics, the value of SSMD is 3.1 for the siRNA in data set B and 0.7 for the siRNA

in data set C (Figure 5.1). Thus, like z-score and z∗-score, SSMD takes into account

data variability, and its values correctly indicate the separation of the siRNA from

the negative control. The values of SSMD are 3.5 for the siRNA in data set A and 3.1

for the siRNA in data set B, demonstrating that SSMD in Formula 5.1 is robust to
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z-score = 4.8

z*-score = 4.3
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fold change2 = 2.6
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SSMD = 0.7

Figure 5.1 Examples of 4 wells for a positive control (white bars), 10 wells for a negative control (grey

bars), and 1 well for an siRNA (black bar) in three data sets shown in Table 5.3, demonstrating

the use of fold change, percent inhibition, percent activation, z-score, z∗-score, and SSMD in

RNAi screens without replicates. The data in the positive control, negative control, and an

siRNA in (A) are the same as the corresponding data in (B) except for one outlier in the

positive control and one outlier in the negative control in (A). Data variability in (C) is larger

than in (B). Fold change1, %inhibition1, and %activation1 are all based on means of positive

and/or negative control; fold change2, %inhibition2, and %activation2 are all based on

medians of positive and/or negative control.

outliers. In addition, applying the criteria listed in Table 5.2, we can roughly classify

the size of effects as very strong for the siRNAs in data sets A and B and weak for the

siRNA in data set C.

5.3 Decision Rules for Hit Selection in RNAi Screens

For hit selection in RNAi screens, the key is to find an analytic metric to effectively

quantify knockdown effects of siRNAs and then to construct a decision rule based

on this metric to identify siRNAs with large effects on a biological response of

interest. Sections 5.2 presents various metrics for quantifying siRNA effects. Some

of these metrics are estimates of population parameters, such as fold change, percent

activity, and SSMD, whereas others are testing statistics such as z-score and z∗-score.

The testing statistics aim at testing the null hypothesis about a parameter, such as

mean difference. A parameter has a true value (or, more accurately, a population

value) in a distributional level. We usually do not know the true value of a parameter.

However, we can estimate and test it based on some measured values (or, in statistical

terms, some random samples). The estimated value of a parameter based on random

samples may deviate from its true value due to the stochastic features of the measured

response. Therefore, to determine the decision rule for hit selection, we need to
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control false positives and false negatives based on the estimated values of mean

difference or SSMD.

False positives and false negatives are defined by a statistical parameter. Many

traditional methods, including z-score method or t-test for hit selection, use mean

difference as a parameter to define false positives and false negatives. By contrast,

the SSMD method uses SSMD as a parameter to define false positives and false

negatives. Consequently, the decision rules in the z-score method differ from those

in the SSMD method. Therefore, I introduce the definition of false positives and

false negatives in Section 5.3.1, describe decision rules in the z-score method in Sec-

tion 5.3.2, and present decision rules in the SSMD method in Section 5.3.3.

5.3.1 Definition of False Positives and False Negatives

After choosing a parameter for hit selection, we need to set up a threshold for the

true value of this parameter for defining a true hit. When mean difference is chosen

as the parameter for hit selection, as in the z-score method, the following rule is

commonly used for defining true hits in the down-regulated direction: the siRNAs

with true values of mean difference less than zero are defined as true hits, and the

siRNAs with true values of mean difference greater than or equal to zero are defined

as true non-hits. Because the true value of the mean difference is unknown and

we can only obtain its estimated value, we need to control false positives and false

negatives, defined as follows: an siRNA that has a true value of mean difference

greater than or equal to 0 but is declared as a hit based on its estimated value is a

false positive; the siRNA that has true value of mean difference less than zero but is

declared as a non-hit based on its estimated value is a false negative.

The definition of false positives and false negatives in the SSMD method differs

from that in the z-score method because it captures not only the effect size of siRNAs

in which we are interested, but also the effect size of siRNAs that we do not want to

include in the selected list of hits. Consequently, in the z-score method, we only need

to specify one value (usually zero) for the tested parameter (i.e., mean difference),

whereas in the SSMD method, the definition of false positives and false negatives

requires the specification of two different values, β1 and β2, for the tested parameter

SSMD. Using the case of selecting siRNAs with very strong effects or even stronger

effects and avoiding siRNAs with extremely weak effects or even weaker effects in the

down-regulated direction as an example, an siRNA that has a true value of SSMD

greater than or equal to –0.25 but is declared as a hit based on its estimated value is

a false positive; an siRNA that has a true value of SSMD less than or equal to –3 but

is declared as a non-hit based on its estimated value is a false negative. In this case,

β1 = –3 and β2 = –0.25.

5.3.2 Decision Rules in the z-Score Method

When using the z-score method for hit selection in screens without replicates, the

decision rule for selecting down-regulated hits is as follows.
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Decision rule 5.1 (down-regulation). Declare an siRNA as a hit if it has a z-score

value less than or equal to a critical value a and as a non-hit otherwise.

To use this decision rule, we need to determine the critical value a so that a suitable

FPR can be achieved.

False-positive rate. This decision rule actually comes from testing the mean

difference. Let μ denote mean difference. Then this decision rule corresponds to a

test of the null hypothesis H0: μ ≥ 0. The FPR in decision rule 5.1 is the probability

that the z-score is less than or equal to a when the true value of the mean difference is

greater than or equal to zero, namely, FPR = Pr(z-score ≤ a|μ ≥ 0). Given μ ≥ 0,

the maximal FPR is called the false-positive level (FPL), which is achieved at μ = 0,

namely, FPL = Pr(z-score ≤ a|μ = 0). Using normal approximation, the z-score

has a standard normal distribution. Thus FPL = �(a), where � is the cumulative

distribution function of the standard normal distribution. The FPL is applied to

any siRNA. When we focus on one specific siRNA and treat the z-score zobs of

this siRNA as a critical value, then FPL becomes the p-value with respect to this

observed value. That is, the p-value for an siRNA with an observed z-score value zobs

is p-value = Pr(z-score ≤ zobs|μ = 0) = �(zobs).

False-negative rate. Similarly, the FNR is the probability that the z-score is greater

than a when the true value of mean difference is less than zero, namely, FNR =
Pr(z-score > a|μ < 0). Given μ < 0, the upper limit of FNR is called the false-

negative level (FNL), which is achieved atμ = 0, namely, FPL = Pr(z-score > a|μ =
0). Under a normal assumption, FNL = 1 − �(a).

Traditionally, to find the critical value a, we control FPL to be α, where α equals

0.05 or 0.01; then a = aα where aα is a critical value such that � (aα) = α.

All the above are for the down-regulated direction. Similarly, the decision rule for

selecting up-regulated hits is as follows.

Decision rule 5.2 (up-regulation). Declare an siRNA as a hit if it has a z-score value

greater than or equal to a critical value a and as a non-hit otherwise.

Decision rules 5.1 and 5.2 and their associated FPRs, FNRs, and p-values are also

listed in the left panel of Table 5.4.

5.3.3 SSMD-Based Decision Rules

For convenience, let β denote SSMD. When using the SSMD method for hit selection

in screens without replicates, the decision rule for selecting down-regulated hits is

as follows.

Decision rule 5.3 (down-regulation). Declare an siRNA as a hit if it has an estimated

value β̂ of SSMD less than or equal to a critical value β∗ and as a non-hit otherwise.

To use this decision rule, we need to determine the critical value β∗ so that a

suitable FPR and FNR can be achieved.
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Table 5.4. Decision rules, FPL, FNL, and p-value for hit selection in RNAi primary screens without

replicates

Calculation Formula

Direction z-Score Method SSMD Method

Down-regulation Decision Rule 5.1: Any siRNA is a hit if it

has z-score ≤ a and a non-hit otherwise

Decision Rule 5.3: Any siRNA is a hit if

estimated SSMD ≤ β∗ and a non-hit

otherwise

Formula 5.1A: FPL = �(a) Formula 5.3A: FPL = Ft(ν,bβ2)

(
β∗

k

)

5.1B: FNL = 1 − �(a) 5.3B: FNL = 1 − Ft(ν,bβ1)

(
β∗

k

)

5.1C: p-value = �(zobs) 5.3C: p-value = Ft(ν,bβ2)

(
βobs

k

)
Up-regulation Decision Rule 5.2: Any siRNA is a hit if it

has z-score ≥ a and a non-hit otherwise

Decision Rule 5.4: Any siRNA is a hit if

estimated SSMD ≥ β∗ and a non-hit

otherwise

Formula 5.2A: FPL = 1 − �(a) Formula 5.4A: FPL = 1 − Ft(ν,bβ2)

(
β∗

k

)

5.2B: FNL = �(a) 5.4B: FNL = Ft(ν,bβ1)

(
β∗

k

)

5.2C: p-value = 1 − �(zobs) 5.4C: p-value = 1 − Ft(ν,bβ2)

(
βobs

k

)

Note: FNL, false-negative level; FPL, false-positive level. � (·) and Ft(ν,bβ) (·) are the cumulative distribution

functions of the standard normal distribution N(0,1) and noncentral t-distribution t(ν, bβ), respectively; b =√
2/

√
1 + 1/n−; ν = n− − 1; n− is the sample size in the negative reference; k = √

K /
√

2(n−1).
√

1 + 1/n−
when SSMD is estimated using Formula 5.1 and k = √

1 + 1/n− when SSMD is estimated using Formula E1

in Table 5.1. zobs and βobs are the z-score and estimated SSMD value of an siRNA, respectively. β1 and β2 are

population values of SSMD to indicate large and small effects, respectively.

SSMD can effectively assess the size of siRNA effects and can classify them into

different categories such as zero, extremely weak, very weak, and so on (as shown in

Table 5.2). Based on SSMD, we can control the FPR not only with respect to no effect,

but also with respect to extremely weak effects or even very weak effects. Similarly,

we can control the FNR with respect to extremely strong, very strong, and strong.

For example, in the down-regulated direction, we can use β1 = –3 to indicate large

effects and β2 = –0.25 to indicate small or no effects. The corresponding FPR is the

probability that an siRNA is selected as a hit based on estimated values given that

the true value of SSMD is greater than or equal to β2; the FNR is the probability that

an siRNA is selected as a non-hit based on estimated values given that the true value

of SSMD is less than or equal to β1.

The FPR in decision rule 5.3 is the probability that the SSMD estimate is less

than or equal to β∗ when the true value of SSMD is greater than or equal to β2,

namely, FPR = Pr(β̂ ≤ β∗|β ≥ β2). Its corresponding FPL is Pr(β̂ ≤ β∗|β = β2).
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Figure 5.2 The changes of error rates (i.e., false-positive level [FPL] and false-negative level [FNL]) versus

critical value when using the majority of sample wells as a negative reference for selecting

down-regulated hits in a primary screen without replicates.

Similarly, the FNR in decision rule 5.3 is the probability that the SSMD estimate is

greater than or equal to β∗ when the true value of SSMD is less than or equal to β1,

namely, FNR = Pr(β̂ ≥ β∗|β ≤ β1). Its corresponding FPL is Pr(β̂ ≥ β∗|β = β1).

The formulas to calculate FPL, FNL, and p-value based on the noncentral distribution

are Formulas 5.3A through 5.3C in Table 5.4.

Based on Formulas 5.3A, 5.3B, 5.4A, and 5.4B in Table 5.4, we can calculate the

theoretical FPL and FNL corresponding to each set of values for β∗, β1, and β2. In

a primary screen using 384-well plates, the majority of sample wells may be used as

the negative reference in a plate. In such a case, n− is approximately 300. To select

down-regulated hits, we can use Formulas 5.3A and 5.3B in Table 5.4 to calculate

theoretical FPLs with respect to β2 = 0, –0.25, –0.5 and theoretical FNLs with respect

to β1 = –2, –3, –5. Figure 5.2 shows the calculated FPLs and FNLs when n− = 300.

The commonly used error rates are 0.05, 0.025, and 0.01 in one direction. From

Figure 5.2, a critical value between −1.8 and −1.4 can control FPL with respect to

β2 = 0 to be less than 0.025, FPL with respect to β2 = –0.25 to be less than 0.051, and

FNL with respect to β1 = –3 to be less than 0.05. A critical value between 1.9 and

2.1 can control FPL with respect to β2 = 0 to be less than 0.005, FPL with respect

to β2 = –0.25 to be less than 0.01, and FNL with respect to β1 = –3 to be less than

0.10. Therefore, any critical value between −2.1 and −1.4 for SSMD is theoretically
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reasonable and may maintain a balanced control of both FPR for including siRNAs

with small or no down-regulated effects and FNR for excluding siRNAs with large

down-regulated effects [165].

The choice of an exact critical value between −2.1 and −1.4 in a real experiment

relies on the refined tolerance of false positives and false negatives and the capacity

of follow-up studies after that experiment. For example, if one has a low tolerance

in missing hits with SSMD less than −2 or −3, then one may choose a critical

value between −1.6 and −1.4. On the other hand, if follow-up studies have a low

capacity of including selected hits, then one may choose a critical value between

−2.1 and −1.8.

Similarly, the decision for selecting up-regulated hits is as follows:

Decision rule 5.4 (up-regulation). Declare an siRNA as a hit if it has an estimated

value β̂ of SSMD greater than or equal to a critical value β∗ and as a non-hit

otherwise.

The formulas for calculating FPL, FNL, and p-value in this decision rule for

selecting up-regulated hits are Formulas 5.4A through 5.4C in Table 5.4. See Chap-

ter 8 for more details about how these formulas are derived.

The strategy for hit selection described previously is to determine a critical value

of SSMD through various FPLs and FNLs so that we can obtain reasonable levels

of FPRs and FNRs. Another strategy is to fix a pre-set FPL (or FNL) first and then

to calculate the corresponding critical value of estimated SSMD and FNL (or FPL).

When the FPL with respect to β2 is pre-set to be α1, the corresponding critical

value is β∗ = βα1 , where βα1 is obtained by solving Ft(n−−1,bβ2)(βα1/k) = α1. The

corresponding FNL with respect to β1 is FNL = 1 − Ft(n−−1,bβ1)(βα1/k). Similarly,

we can pre-set FNL with respect to β1 to be α2 and calculate the corresponding

critical value and FPL. The formulas are shown in Table 5.5.

5.4 Sample Size Determination

As described in Chapter 2, we need to determine a sample size for the achieve-

ment of certain FNLs and FPLs in the experimental design stage of a genome-scale

RNAi project. We can use the formulas presented in Table 5.4 to calculate theFPRs

and FNRs corresponding to various sample sizes. The critical issue of sample size

determination in a primary screen without replicates is to determine the number

of replicates (i.e., number of wells per plate) in the negative reference group. An

essential consideration for hit selection in a primary screen is the capacity available

for confirmation screening or other investigations after the primary screen. In a

typical primary screen, there are approximately 20,000 siRNAs, and the major goal

is to select 300 to 800 siRNAs in one direction for follow-up research. If we control

the FPLs with respect to extremely weak or no effects to be 0.05, 0.025, and 0.01 for

one direction, we would obtain 1,000, 500, and 200 hits, respectively, even if all the
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Table 5.5. SSMD-based decision rules, FPL, and FNL in RNAi primary screens without

replicates when a pre-set FPL or FNL is fixed

Calculation Formula

Direction Fix FPL w.r.t. β2 be α1 Fix FNL w.r.t. β1 to be α2

Down-regulation Decision Rule 5.5: Any siRNA is a

hit if estimated SSMD ≤ βα1 and a

non-hit otherwise, where βα1 is

obtained by solving

Ft(n−−1,bβ2)

(
βα1

k

)
= α1

Decision Rule 5.6: Any siRNA is a

hit if estimated SSMD ≤ βα2 and a

non-hit otherwise, where βα2 is

obtained by solving

Ft(n−−1,bβ1)

(
βα2

k

)
= 1 − α2

Formula A:

FNL = 1 − Ft(n−−1,bβ1)

(
βα1

k

) Formula B:

FPL = Ft(n−−1,bβ2)

(
βα2

k

)
Up-regulation Decision Rule 5.7: Any siRNA is a

hit if estimated SSMD ≥ βα1 and a

non-hit otherwise, where βα1 is

obtained by solving

Ft(n−−1,bβ2)

(
βα1

k

)
= 1 − α1

Decision Rule 5.8: Any siRNA is a

hit if estimated SSMD ≥ βα2 and a

non-hit otherwise, where βα2 is

obtained by solving

Ft(n−−1,bβ1)

(
βα2

k

)
= α2

Formula C:

FNL = Ft(n−−1,bβ1)

(
βα1

k

) Formula D:

FPL = 1 − Ft(n−−1,bβ2)

(
βα2

k

)

Note: FNL, false-negative level; FPL, false-positive level; w.r.t., with respect to.

Ft(n−−1,bβ)(·) is the cumulative distribution function of a noncentral t-distribution t(n− −
1, bβ); b = √

2/
√

1 + 1/n−; n− is the sample size in the negative reference; k =√
K /
√

2(n− − 1).
√

1 + 1/n− when SSMD is estimated using Formula 5.1 and k = √
1 + 1/n−

when SSMD is estimated using Formula E1 in Table 5.1. β1 and β2 are population values of SSMD

to indicate large and small effects, respectively.

20,000 siRNAs have extremely weak or no effects. Clearly, an FPL of 0.05 is too large,

an FPL of 0.025 might be acceptable, and a FPL of 0.01 is preferred.

Calculated using Formula A in Table 5.5, the FNLs (with respect to β1 = –1.28,

–1.645, –2, –3, and –5) under the control of FPL = 0.025 and 0.01 with respect to

β2 = 0 are shown in Figure 5.3A and B, respectively; the FNLs under the control of

FPL = 0.025 and 0.01 with respect to β2 = –0.25 are shown in Figure 5.3C and D,

respectively. The figure shows that a choice of four or eight wells per plate for the

negative control is not enough to achieve an acceptable FNRs; a choice of 16 wells

per plate is acceptable, and a choice of 20 to 24 wells per plate is preferable [175].

The FNL is relatively large for 4 to 12 negative references in a plate and becomes

fairly flat as sample size increases above 16 (or, in some cases, 20–24). For example,

if the FPL with respect to β2 = 0 is controlled to be 0.025 (Figure 5.3A), then the

curves of FNLs with respect to β1 = −1.28, −1.645, −2, −3 go down relatively

quickly when the sample size increases from 4 to 16 and become relatively flat when
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A: Control FPL=0.025 for no effect (i.e., beta2 = 0)
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B: Control FPL=0.01 for no effect (i.e., beta2 = 0)
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C: Control FPL=0.025 for extremely weak effect (i.e., beta2 = -0.25)
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D: Control FPL=0.01 for extremely weak effect (i.e., beta2 = -0.25)
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Figure 5.3 The changes of false-negative level (FNL) versus sample size by controlling false positive-level

(FPL) for siRNAs with no effects (A, B) and with extremely weak effects (C, D) for down-

regulation in a primary screen without replicates. The legends in (B–D) are the same as

in (A).

the sample size is greater than 16 (black curves). If the FPL with respect to β2 = 0.25

is controlled to be 0.01 (Figure 5.3D), then the curves of FNLs with respect to

β1 = −1.28, −1.645, −2, −3 go down relatively quickly when the sample size is less

than 24 and become relatively flat when the sample size is greater than 24. A sample

size of 24 leads to an FNL of nearly 0.10 with respect to β1 = −3 when controlling

FPL = 0.01 with respect to β2 = −0.25.

Figure 5.3 also reveals that, with an experimentally manageable FPR, the FNL

for the siRNAs with extremely strong effects is very low, even if sample size is small

(grey solid curves in Figure 5.3). The FNL for the siRNAs with very strong effects

is also reasonably low as long as the sample size is greater than 16 (black solid

curves in Figure 5.3). However, the FNL for siRNAs with strong, fairly strong, or

moderate effects can be high. For example, even if 300 wells are occupied by a

negative reference, the FNLs for siRNAs with strong, fairly strong, and moderate
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effects are approximately 0.35, 0.53, and 0.71, respectively (black dashed curves in

Figure 5.3C), when controlling FPL = 0.025 for siRNAs with extremely weak effects.

Therefore, the primary screen without replicates in 384-well plates does not have

power large enough to detect siRNAs with strong, fairly strong, and moderate effects

when controlling a manageable FPR for the siRNAs with extremely weak or no

effects.

In a primary screen, we may also use the majority of the sample siRNAs as the

negative reference group [174;176;180]. In such a case, n− equals approximately

200 to 340. Compared with the case of n− =20, the FNRs of missing hits with very

strong effects are reduced by about one half (solid black curves in Figure 5.3), but

the amount of reduction in the FNRs of missing hits with strong, fairly strong, or

moderate effects is not substantial (three types of dashed black curves in Figure 5.3).

On the other hand, the use of the majority of sample siRNAs as the negative reference

group is based on the assumption that the majority of sample siRNAs have no or

tiny effects. This assumption may not be true in some screens.

In summary, a primary screen using 384-well plates should have at least 16 wells

per plate, and an arrangement of 20 or 24 wells per plate is preferable for the negative

control to be used as a negative reference for hit selection [175].

5.5 Applications

Here we demonstrate how to use various metrics including mean difference (or

equivalently average fold change), percent inhibition, z-score, z∗-score, and SSMD

to select hits in the HCV siRNA primary screen described in Section 1.4 of Chap-

ter 1. In that screen, approximately 22,000 siRNA pools were tested across ninety-

seven 384-well plates. Considering that the majority of siRNAs in the primary screen

should have weak or no effect, we use the sample wells in a plate as the negative

reference for calculating metrics for hit selection. Because the variability between

plates is very large (Figure 5.4A), we adopt plate-wise analysis instead of experiment-

wise analysis (Section 5.2.2).

From the raw data shown in Figure 5.4A, the measured values (in log2 scale) in

the first nine plates are very different from the rest. The measured values of positive

controls are slightly higher and the measured values of negative controls and sample

wells are much lower in the first nine plates than in the remaining plates; this is

clearly caused by a systematic shift of values in the sample wells and negative control

wells. Consequently, the values of percent inhibition have a much larger spread in

the first nine plates than in the remaining plates (Figure 5.4B). If we use the criterion

of selecting siRNAs with percent inhibition above 40 as hits, we would select 215

hits, 92 (i.e., 43%) of which come from the first 9 plates (Figure 5.4B). If we did not

check the raw data and directly used percent inhibition to select hits, we may have

concluded that there were enriched true hits in the first nine plates, which is very

misleading.
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Figure 5.4 (See color insert following page 110.) Metrics for selecting hits in a hepatitis C virus RNAi

primary screen without replicates.

z-score and z∗-score. The values of z-score and z∗-score are shown in Figure 5.4C

and D, indicating that overall the z∗-score values are larger than the z-score values.

If we use the criterion of selecting siRNAs with z-score less than –3 as inhibition

hits, we would select 133 hits, as compared with 210 hits, by using the criterion of

z∗-score less than –3. Among the 133 hits selected by z-score, 132 were also selected

by z∗-score. Compared with siRNAs with weak or no effects, the true hits with

large effects behave like outliers. Consequently, the estimated standard deviation

will be inflated, and z-score will shrink. MAD is robust to the existence of outliers.
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Therefore, the hit selection results using z∗-score are more reliable than those using

z-score. So is the robust version of SSMD calculated using Formula E2 of Table 5.1.

SSMD. Figure 5.4E and F shows the difference (or equivalently fold change in log2

scale) and SSMD between an siRNA and mean of the negative reference with the

mean calculated in the same way as for SSMD, as described in Section 5.2. That is,

we calculated the mean and SD of the sample wells, excluding outliers in each plate.

The R codes to calculate the difference and SSMD using sample wells as the negative

reference are basically as follows:

for(i in 1:length(plates)) {

dataIn.df = data.df[plate.vec == plates[i],]

theInten.vec = dataIn.df[, Intensity]

theWells = dataIn.df[, wellName]

condtSample = theWells == sampleName

theIntenSample.vec = theInten.vec[condtSample]

theIntenSample.vec = theIntenSample.vec[!is.na(theIntenSample.vec)]

boxplot.stat = boxplot(theIntenSample.vec, plot = F)$stats[c(1,5)]

condt = theIntenSample.vec < boxplot.stat[2] &

theIntenSample.vec > boxplot.stat[1]

negCenter = mean(theIntenSample.vec[condt])

negSpread = sd(theIntenSample.vec[condt])

theDiff.vec = theInten.vec -- negCenter

zScore.vec = theDiff.vec/negSpread

ssmd.vec = z.vec/sqrt(2)

theResult.df = data.frame("log2Fold" = theDiff.vec,

"zScore" = zScore.vec, "ssmd" = ssmd.vec)

if(i == 1) {result.df = theResult.df}else {

result.df = rbind(result.df, theResult.df)}

}

Fold change. When we use fold change to select hits, one big issue is the determina-

tion of a meaningful and practical cutoff for fold change. Conventionally, researchers

have used the cutoff of two-fold change. However, that cutoff has no strong theoret-

ical basis and is only applicable in some screens. In this example, using the cutoff of

two-fold change in the inhibition direction, we only identified 21 inhibition hits as

compared with at least 133 inhibition hits using other criteria. Another major issue

is that fold change cannot take data variability into account, as illustrated in Fig-

ure 5.1B and C. This issue also exists in this screen. For example, because the mea-

sured values in plates 89 through 92 are compressed with smaller data variability (Fig-

ure 5.4A), the fold changes in those plates tend to be smaller than those in other

plates; consequently, true hits in those plates would be missed if using fold changes

to select hits.
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Table 5.6. The size of siRNA effects classified using SSMD in the HCV primary screen

Activation Inhibition

Effect Subtype SSMD Cutoff Count SSMD Cutoff Count

Extremely strong SSMD ≥ 5 3 SSMD ≤ −5 2

Very strong 5 > SSMD ≥ 3 9 −5 < SSMD ≤ −3 29

Strong 3 > SSMD ≥ 2 38 −3 < SSMD ≤ −2 259

Fairly strong 2 > SSMD ≥ 1.645 150 −2 < SSMD ≤ −1.645 423

Moderate 1.645 > SSMD ≥ 1.28 640 −1.645 < SSMD ≤ −1.28 957

Fairly moderate 1.28 > SSMD ≥ 1 1,280 −1.28 < SSMD ≤ −1 1,285

Fairly weak 1 > SSMD ≥ 0.75 2,081 −1 < SSMD ≤ −0.75 1,808

Weak 0.75 > SSMD > 0.5 3,161 −0.75 < SSMD < −0.5 2,497

Very weak 0.5 ≥ SSMD > 0.25 3,883 −0.5 ≤ SSMD < −0.25 3,250

Extremely weak 0.25 ≥ SSMD > 0 4,111 −0.25 ≤ SSMD < 0 3,716

Zero SSMD = 0 0

Note: “Count” is the number of siRNAs in each category.

The values of SSMD are robust to the shift and compression of data, as shown

in Figure 5.4F. In addition, a unique advantage to using SSMD is that we can use it

to classify the size of siRNA effects. If the true value equals the estimated value of

SSMD, then we may use the criteria in Table 5.2 and obtain the classifying results in

Table 5.6 for siRNA effects in the HCV RNAi primary screen. Based on the results in

Table 5.6, we may focus on the 713 siRNAs with fairly strong or stronger inhibition

effects and the 200 siRNAs with fairly strong or stronger activation effects in the

follow-up studies.

The SSMD-based classifying criterion works effectively when the sample size is

large. However, in the primary screen without replicates, there is only one replicate for

an siRNA, although there are approximately 300 replicates for the negative reference.

Because the sample size is not large and the true values of SSMD are unknown, we

need to determine a cutoff of estimated SSMD values for hit selection to control

FPRs and FNRs at the desired level. As presented in Section 5.4, based on SSMD,

we can control FPR not only with respect to no effects, but also with respect to

extremely weak effects. The FPRs with respect to true SSMD values of 0 and –0.25

and the FNRs with respect to true SSMD values of −2, −3, and −5 are shown in

Figure 5.5.

The HCV screen [174;180] of Figure 5.4 had one negative control and two positive

controls, a stronger inhibition control, and a weaker inhibition control. The main

interest is in the inhibition direction. Figure 5.5 shows the error rates for selecting

inhibition hits. We use the negative control to calculate empirical FPR (black solid line

in Figure 5.5) and the two inhibition controls to calculate corresponding empirical

FNRs (grey and black dashed lines in Figure 5.5). The empirical FPR in a decision

rule for hit selection based on a negative control is the ratio of the number of wells
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Figure 5.5 (See color insert following page 110.) False-positive levels (FPLs), false-negative levels (FNLs),

and empirical false-negative rates (FNRs) for selecting inhibition hits in a hepatitis C virus RNAi

primary screen without replicates.

being selected as hits to the total number of wells for this negative control. The

empirical FNR in a decision rule for hit selection based on a positive control is the

ratio of the number of wells being selected as a non-hit to the total number of wells

for this positive control. The empirical FPR curve for the negative control is nearly

the same as the theoretical FPR curve with respect to SSMD = −0.5 (blue solid line

in Figure 5.5), which indicates that the negative control actually has weak inhibition

effects. The empirical FNR curve for the weaker inhibition control (dashed grey line)

lies between the theoretical FNR curves with respect to SSMD = −2 and SSMD =
−3, respectively (green and blue dashed lines in Figure 5.5), which indicates that the

weaker inhibition control has a strong effect, with a theoretical SSMD value between

−2 and −3. Similarly, we can infer that the stronger inhibition control has a very

strong inhibition effect, with a theoretical SSMD value between −3 and −5.

In this screen, to control FPR with respect to SSMD = −0.25 to be less than 0.025

in the inhibition direction, the SSMD cutoff for selecting inhibition hits should be

no greater than −1.645. The use of an SSMD cutoff of −1.645 leads to 713 selected

inhibition hits. The theoretical error rates corresponding to this cutoff are less than

0.01 for FPR with respect to SSMD = 0, less than 0.025 for FPR with respect to SSMD

= −0.25, less than 0.054 for FPR with respect to SSMD = −0.5, less than 0.308 for

FNR with respect to SSMD = −2, less than 0.028 for FNR with respect to SSMD =
−3, and less than 0.000001 for FNR with respect to SSMD = −5. The SSMD cutoff

of −1.645 leads to an empirical FNR of 0.076 for the weaker inhibition control
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and 0.0045 for the stronger inhibition control and an empirical FPR of 0.0567 for

the negative control. Accordingly, we can obtain the FNRs and FPRs for the 200

activation hits obtained using the SSMD cutoff of 1.645 in the activation direction.

5.6 Conclusions

In many RNAi screens, hit selection is the ultimate goal and final stage in data

analysis before biological pathway analysis. As shown in this chapter and then again

in Chapter 6, there are many methods for hit selection, and different methods

may produce different results. We need to adopt suitable analytic methods for hit

selection. Because SSMD is effective in measuring the size of siRNA effects, capable

of capturing data variability and robust to outliers, I advocate the use of SSMD

for hit selection in RNAi screens. In addition, the reader should keep in mind that

the results of hit selection are affected not only by the methods of hit selection

described in this chapter, but also by experimental design, data normalization, and

quality control, as described in Chapters 2, 3, and 4. Therefore, we should follow the

strategies and adopt suitable methods in experimental design, data normalization,

and quality control as described in Chapters 2, 3, and 4 before we conduct formal

hit selection using the methods described in this chapter and in the next chapter.
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Hit Selection in Genome-Scale RNAi Screens
with Replicates

In Chapter 5, we discussed analytic methods for hit selection in screens without

replicates. Analytic methods for hit selection in screens with replicates differ from

those without replicates, mainly because we can directly estimate data variability

for a tested siRNA based on multiple measured values of a phenotype for an siRNA

in a screen with replicates, but we cannot do so for a screen without replicates. In

a primary screen without replicates, we must make a strong assumption that each

siRNA has the same variability as a negative reference group in a plate and use the

variability of this negative reference to represent the variability of each siRNA. In

a screen with replicates, the analytic methods do not rely on this assumption, and

thus we can use more powerful methods.

In this chapter, I present analytic methods for hit selection in screens with repli-

cates. Specifically, I provide metrics for hit selection in screens with replicates in

Section 6.1, in which the focus is on the classical t-statistic and the SSMD method. In

Section 6.2, I present a dual-flashlight plot in which both mean difference and SSMD

are displayed, and in Section 6.3, I elaborate on various decision rules and associated

false-positive and false-negative rates. In Section 6.4, I explore false discovery and

false nondiscovery rates; in Section 6.5, I investigate sample size determination in

screens with replicates; and in Section 6.6, I present SSMD-based statistical methods

for adjusting for off-target effects. Finally, I demonstrate how to use the analytic

methods in real examples in Section 6.7, with a general discussion in Section 6.8.

6.1 Metrics for Hit Selection in Screens with Replicates

In a screen with replicates, a potential approach for selecting hits is to adopt methods

similar to those for primary screens without replicates, as follows:

(i) Choose a metric for a primary screen without replicates.

(ii) Calculate the value of the chosen metric based on its corresponding formula

from A1 through E1 or A2 through E2 in Table 5.1 of Chapter 5 for each replicate

of an siRNA.

83
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(iii) Use their mean or median across replicates for this siRNA as a metric for

selecting hits.

One major issue with this approach is that it does not take into account data

variability of an siRNA across its replicates, although the z-score in D1 or D2 of Table

5.1 accounts for data variation in different plates. Therefore, the better approach is

to adopt statistical methods, such as the classical t-statistic or SSMD, that account

for variability across replicates of an siRNA, which is described in this section.

6.1.1 t-Statistic

In primary or confirmatory HTS experiments with replicates, a t-test for testing

mean difference has been used for selecting hits. It is well known that when there are

replicates, a t-test is better than the z-score method for testing no mean difference in

two groups, especially when the sample size is small. Because plate-to-plate variability

is usually higher than within-plate variability, a paired t-test is often used for hit

selection. That is, for the ith siRNA with n replicates, we calculate the difference

between the measured value (usually in log scale) of the siRNA and the mean or

median value of a negative control in a plate, di j ( j = 1, . . . , n), then calculate the

corresponding t-statistic value as follows:

t-statistic = d̄ i
s i√

n

(6.1)

where d̄ i and si are, respectively, the sample mean and standard deviation of di j for

the ith siRNA. We also calculate its corresponding p-value based on the t-distribution,

namely, the above t-statistic has a central t-distribution with n-1 degrees of freedom

under the null hypothesis of zero mean difference.

One issue with the use of the t-value and p-value is that they are affected by both

sample size and siRNA effects. People tend to think that a small p-value indicates a

large siRNA effect and a large p-value indicates a small or no siRNA effect. However,

as demonstrated in Figure 6.1, this is not true. An siRNA with a large p-value may

have a large effect (Figure 6.1A1). On the other hand, an siRNA with a small p-value

may have a small effect (Figure 6.1B2).

6.1.2 SSMD Method

In RNAi screens, we are really most interested in the size of siRNA effects. Thus

we need to separate effect size from the impact of sample size. The t-statistic and

associated p-value come from testing no mean difference and are affected by both

sample size and effect size. They are not designed to measure the size of siRNA

effects. SSMD directly assesses the size of siRNA effects [161;162;174]. In a screen

with n replicates, a simple estimate of SSMD is:

SSMD = d̄ i

si
(6.2)
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Figure 6.1 Examples of data for an siRNA, demonstrating the use of fold change, t-value, p-value, and

SSMD in RNAi screens with replicates. One bar represents one replicate of the difference

between an siRNA and a negative reference in a plate. The data in (A2) come from repeating

the data in (A1) two times, and the data in (B2) come from repeating the data in (B1) eight

times.

where d̄ i and si are, respectively, the sample mean and standard deviation of the

difference between the ith siRNA and a negative reference. Another estimate, called

uniformly minimal variance unbiased estimate of SSMD, is:

SSMD =
�

(
n − 1

2

)

�

(
n − 2

2

)√ 2

n − 1

d̄ i

si
(6.3)

where � (·) is a gamma function. See Chapter 8 for more details about the mathe-

matical formulation of these SSMD estimates in screens with replicates.

As demonstrated in Figure 6.1, the values of SSMD correctly indicate that the

siRNA in A1 and A2 has a strong effect and the siRNA in B1 and B2 has a very weak

effect. An additional example is shown in siRNA B1 and siRNA B2 in Figure 6.2, in

which mean fold change is large, but effect size is small. SSMD correctly indicates

that the two siRNAs have weak effects. In addition, one major advantage of using

SSMD is that there is a theoretical basis for deriving thresholds of SSMD population

values to assess the strength of siRNA effects, as shown in Table 5.2 of Chapter 5

[167].
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Figure 6.2 Examples of data for eight siRNAs each with four replicates in a confirmatory screen. siRNAs

A1 and A2 have a small mean fold change and a small absolute value of SSMD, siRNAs B1

and B2 have a large mean fold change and a small absolute value of SSMD, siRNAs C1 and

C2 have a relatively small mean fold change and a large absolute value of SSMD, and siRNAs

D1 and D2 have a large mean fold change and a large absolute value of SSMD.

6.2 Dual-Flashlight Plot

SSMD can overcome the drawback of fold change not being able to capture data

variability. On the other hand, because SSMD is the ratio of mean to standard

deviation of a variable, we may get a large SSMD value when the standard deviation

is very small, even if the mean is small (siRNA C1 in Figure 6.2). In some cases, a

too small mean value may not have a biological impact. As such, siRNAs with large

SSMD values (or differentiations) but too small mean values may not be of interest.

The issue can be more serious if the too large estimated values of SSMD are caused

by too small sample variance due to a small sample size. Too small sample variance

causes a similar issue in the use of p-values for measuring differential expression. To

address this issue, a plot called a dual-flashlight plot has been proposed to display

both SSMD and mean of difference, similar to a volcano plot [170].

Figure 6.3 is a dual-flashlight plot showing both estimated means and SSMDs of

the variable for the difference between an siRNA and a negative control in a simulated

experiment of 25,000 siRNAs, each with 50 replicates. As a whole, the points in a

dual-flashlight plot look like the beams of a flashlight with two heads. With the

dual-flashlight plot, we can see how the siRNAs are distributed into each category

of differentiation, as shown in Figure 6.3. Meanwhile, we can exclude the siRNAs

with large estimated SSMD values but too small fold change values. For example, if a

mean fold change between 1/1.4 and 1.4 does not have significant biological impact,
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Figure 6.3 Dual-flashlight plot of a variable representing the difference between an siRNA and a nega-

tive control in a simulated experiment of 25,000 siRNAs, each with 50 replicates. The gray

horizontal lines represent the thresholds in the SSMD-based classifying criteria.

we may exclude all the genes between the two thick gray vertical lines of Figure 6.3,

even if some of them have an estimated SSMD value greater than 2 or less than –2.

A clear benefit of the dual-flashlight method is demonstrated in Figure 6.2. From

the bar plots in Figure 6.2, siRNAs A1, A2, B1, and B2 do not have consistently large

effects of interest; siRNA C1 has consistently weak effects, which may be of interest

in some cases and may not be in other cases; and siRNAs C2, D1, and D2 clearly

have consistently large effects of interest. Using the dual-flashlight method, we can

readily select siRNAs A1, A2, B1, B2, and C1 as non-hits and select siRNAs C2, D1,

and D2 as hits.

The SSMD-based classifying criteria shown in Figure 6.3 (which are also displayed

in Table 5.2 of Chapter 5) are based on the true value (i.e., population value in a

distributional level) of SSMD for each siRNA. However, the true value of SSMD is

usually unknown for an siRNA. Thus these criteria work effectively when the sample

size is large and work only approximately when the sample size is small. When the

sample size is small, a more accurate method is to find an SSMD-based decision

rule to achieve a desired FPR for controlling the number of siRNAs with weak or no

effects in the selected hits and a desired FNR for controlling the number of siRNAs

with large effects not being selected as hits. In the following section, I will first

describe classical decision rules based on t-statistic and then present decision rules

based on SSMD.
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6.3 Decision Rules for Hit Selection in Screens with Replicates

The true value of SSMD can effectively assess the strength of siRNA effects and can

classify them into different categories, such as zero, extremely weak, very weak, and

so on (as shown in Table 5.2 of Chapter 5). Consequently, based on estimated values

of SSMD, we can control the FPR not only with respect to no effect, but also with

respect to extremely weak effects or even very weak effects. Similarly, we can control

the FNR with respect to extremely strong, very strong, and strong effects. Using the

SSMD-based definition of false positives and false negatives as described in Section

5.3.1 of Chapter 5, we can explore the FPR and FNR in SSMD-based decision rules

for hit selection in RNAi screens with replicates.

In screens with replicates, the SSMD-based decision rule for selecting down-

regulated hits is as follows.

Decision rule 6.1 (down-regulation, SSMD-based). Declare an siRNA as a hit if it

has an estimated SSMD value less than or equal to a critical value β∗ and as a non-hit

otherwise.

The formulas for calculating FPRs and FNRs in decision rule 6.1 are shown in the

left panel of Table 6.1.

For an individual siRNA, if we treat its estimated value of SSMD βobs as a crit-

ical value in a decision rule, the corresponding FPL becomes the p-value of this

siRNA. Note that the FPL is the maximal FPR in a decision rule. In decision rule

6.1, FPR = Pr(β̂ ≤ β∗|β ≥ β2). Given β ≥ β2, the maximal FPR is the FPL, which

is achieved at β = β2, namely, FPL = Pr(β̂ ≤ β∗|β = β2). The p-value for an indi-

vidual siRNA with estimated SSMD βobs is p-value = Pr(β̂ ≤ βobs|β = β2). Similar

to the definition of the p-value based on FPL, we may define the p∗-value for an

individual siRNA based on the FNL when we treat the estimated value of SSMD of

this siRNA as a critical value in a decision rule. That is, FNL = Pr(β̂ ≥ β∗|β = β1)

in decision rule 6.1 and p∗-value = Pr(β̂ ≥ βobs|β = β1) for an individual siRNA

with estimated SSMD βobs. The formulas for calculating p-value and p∗-value for an

siRNA are also listed in the left panel of Table 6.1.

Similarly, the SSMD-based decision rule for selecting up-regulated hits in screens

with replicates is as follows.

Decision rule 6.2 (up-regulation, SSMD-based). Declare an siRNA as a hit if it has

an estimated SSMD value greater than or equal to a critical value β∗ and as a non-hit

otherwise.

The formulas for calculating FPRs, FNRs, p-values, and p∗-values in decision

rule 6.2 are also shown in the left panel of Table 6.1. More mathematical details can

be found in Chapter 8.

Traditionally, the classical t-test is used for hit selection in RNAi screens with

replicates. The classical t-test uses mean difference to define true hits, false positives,

and false negatives in the same manner as those in the z-score method as described
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Table 6.1. Decision rule, FPL, FNL, and p-value for hit selection in RNAi primary screens with replicates

Calculation Formula

Direction SSMD Method Classical t-Test

Down-regulation Decision Rule 6.1: Any siRNA is a hit if

estimated SSMD ≤ β∗ and a non-hit

otherwise

Decision Rule 6.3: Any siRNA is a hit

if it has t-value ≤ t∗ and a non-hit

otherwise

FPL = Ft(n−1,
√

nβ2)

(
β∗

k

)
FPL = Ft(n−1) (t∗)

FNL = 1 − Ft(n−1,
√

nβ1)

(
β∗

k

)
FNL = 1 − Ft(n−1) (t∗)

p-value = Ft(n−1,
√

nβ2)

(
βobs

k

)
p-value = Ft(n−1) (tobs)

p∗-value = 1 − Ft(n−1,
√

nβ1)

(
βobs

k

)
Up-regulation Decision Rule 6.2: Any siRNA is a hit if

estimated SSMD ≥ β∗ and a non-hit

otherwise

Decision Rule 6.4: Any siRNA is a hit

if it has t-value ≥ t∗ and a non-hit

otherwise

FPL = 1 − Ft(n−1,
√

nβ2)

(
β∗

k

)
FPL = 1 − Ft(n−1) (t∗)

FNL = Ft(n−1,
√

nβ1)

(
β∗

k

)
FNL = Ft(n−1) (t∗)

p-value = 1 − Ft(n−1,
√

nβ2)

(
βobs

k

)
p-value = 1 − Ft(n−1) (tobs)

p∗-value = Ft(n−1,
√

nβ1)

(
βobs

k

)

Note: FNL, false-negative level; FPL, false-positive level. Ft(n−1) (·) and Ft(n−1,
√

nβ) (·) are the cumula-

tive distribution functions of central t-distribution t(n − 1) and noncentral t-distribution t(n − 1,
√

nβ),

respectively; n is the number of replicates; k = √
1/n when SSMD is estimated using Formula 6.2, and

k = �( n−1
2

)/�( n−2
2

)
√

2
n(n−1)

when SSMD is estimated using Formula 6.3. tobs and βobs are t-value and esti-

mated SSMD value of an siRNA, respectively. β1 and β2 are population values of SSMD to indicate large and

small effects, respectively. See Chapter 8 for how all these formulas are derived.

in Section 5.3.1 of Chapter 5. The decision rule based on the t-test for selecting

down-regulated hits in screens with replicates is as follows.

Decision rule 6.3 (down-regulation, t-test). Declare an siRNA as a hit if it has a

value t of t-statistic for the same sample size (as calculated in Formula 6.1) less than

a critical value t∗ and as a non-hit otherwise.

The decision rule based on t-test for selecting up-regulated hits in screens with

replicates is as follows.

Decision rule 6.4 (up-regulation, t-test). Declare an siRNA as a hit if it has a value

t of t-statistic for the same sample size (as calculated in Formula 6.1) greater than a

critical value t∗ and as a non-hit otherwise.
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Table 6.2. SSMD-based decision rules, FPL, and FNL in RNAi screens with replicates when a preset FPL

or FNL is fixed

Calculation Formula

Direction Control FPL w.r.t. β2 be α1 Control FNL w.r.t. β1 to be α2

Down-

regulation

Decision Rule 6.5: Any siRNA is a hit if

estimated SSMD ≤ βα1 and a non-hit

otherwise, where βα1 is obtained by solving

Ft(n−1,
√

nβ2)

(
βα1

k

)
= α1

Decision Rule 6.6: Any siRNA is a hit if

estimated SSMD ≤ βα2 and a non-hit

otherwise, where βα2 is obtained by solving

Ft(n−1,
√

nβ1)

(
βα2

k

)
= 1 − α2

Formula A:

FNL = 1 − Ft(n−1,
√

nβ1)

(
βα1

k

) Formula B:

FPL = Ft(n−1,
√

nβ2)

(
βα2

k

)
Up-regulation Decision Rule 6.7: Any siRNA is a hit if

estimated SSMD ≥ βα1 and a non-hit

otherwise, where βα1 is obtained by solving

Ft(n−1,
√

nβ2)

(
βα1

k

)
= 1 − α1

Decision Rule 6.8: Any siRNA is a hit if

estimated SSMD ≥ βα2 and a non-hit

otherwise, where βα2 is obtained by solving

Ft(n−1,
√

nβ1)

(
βα2

k

)
= α2

Formula C:

FNL = Ft(n−1,
√

nβ1)

(
βα1

k

) Formula D:

FPL = 1 − Ft(n−1,
√

nβ2)

(
βα2

k

)

Note: FNL, false-negative level; FPL, false-positive level; w.r.t., with respect to. Ft(n−1,
√

nβ) (·) is the cumulative

distribution function of noncentral t-distribution t(n − 1,
√

nβ); n is the number of replicates; k = √
1/n

when SSMD is estimated using Formula 6.2, and k = �( n−1
2

)/�( n−2
2

)
√

2
n(n−1)

when SSMD is estimated using

Formula 6.3. β1 and β2 are true values of SSMD to indicate large and small effects, respectively.

The error rates in decision rules 6.3 and 6.4 are shown in the right panel of

Table 6.1.

In RNAi screens, it is usually desirable to control the FPR to be less than a level α1

where α1 equals 0.05 or 0.01. Based on the formulas in Table 6.1, to control the FPL

with respect to β2 to be α1, we need to set β∗ = βα1 where βα1 is a critical value such

that Ft(n−1,
√

nβ2)

(
βα1/k

) = α1. Similarly, we control the FNR with respect to β1 to

be less than a pre-set level α2 and calculate the corresponding critical value and the

FPL. The formulas are shown in Table 6.2.

6.4 False Discovery Rate, False Non-Discovery Rate, q-Value, and q∗-Value

Whether using mean difference or SSMD, the methods for adopting FPR, FNR,

p-value, and p∗-value to control false positives and false negatives are based on a

single test. Given that a large number of siRNAs are tested in a genome-scale RNAi

screen, the FPR will be inflated. Hence one issue in these methods is the adjustment

of error rates in multiple hypothesis testing. The simplest adjustment may be the

Bonferroni correction [15], which is the FPR or p-value for a single test divided by the

total number of tests conducted. Currently, the most effective method for adjusting
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for the multiplicity issue is the use of the false discovery rate (FDR) [11;144] and

false non-discovery rate (FNDR) [52].

More importantly, as pointed out by Storey and Tibshirani [146], FPR and FDR are

often mistakenly equated, but their difference is very important. Given a particular

selection criterion or a decision rule for selecting siRNAs with large effects, FDR is

the proportion of the selected hits (i.e., discoveries) that are true non-hits, whereas

FPR is the proportion of all the true non-hits in the study selected as hits. FNDR is

the proportion of all the declared non-hits (i.e., non-discoveries) that are true hits,

whereas FNR is the proportion of all the true hits in the study declared as non-hits.

For example, an FPR of 5% means that, on average, 5% of all siRNAs with no or small

effects in the study will be selected as hits. By contrast, an FDR of 5% means that

among the list of selected hits, on average, 5% are siRNAs with no or small effects.

An FNR of 10% means that, on average, 10% of all siRNAs with large effects in the

study will be declared as non-hits. By contrast, an FNDR of 10% means that among

the list of declared non-hits, on average, 10% are siRNAs with large effects. FPR

and FNR are based on unknown numbers of true hits and true non-hits in a study,

whereas FDR and FNDR are based on known numbers of selected hits and declared

non-hits in a study. Therefore, FDR and FNDR provide more useful information in

a study than FPR and FNR.

Consider the problem of simultaneously testing m siRNAs, of which m0 are true

non-hits. False positives are the true non-hits among the selected hits, and false

negatives are true hits among the declared non-hits. FPR equals the expectation of

the total number of false positives FP divided by the total number of tests m, namely

E(FP/m). By contrast, FDR equals the expectation of FP divided by the total number

of selected hits R, namely E(FP/R). Similarly, FNR equals the expectation of the

total number of false negatives FN divided by the total number of tests m, namely

E(FN/m). FNDR is the expectation of FN divided by the total number of declared

non-hits m − R, namely E(FN/(m − R)).

The well-known q-value is a term defined similarly to p-value. Whereas a p-value

is defined on FPR, a q-value is equivalently defined on FDR. When using SSMD for

selecting up-regulated hits, for a particular siRNA with an observed SSMD value

βobs, the p-value equals the maximum probability of selecting this siRNA as a hit

(given that the true value of SSMD is less than or equal to a value β2) when we use

the following selection criterion: any siRNA is selected as a hit if it has an estimated

SSMD value greater than or equal to βobs and as a non-hit otherwise. That is, the

p-value equals the maximal FPR when we use decision rule 6.1 with βobs as a critical

value. Equivalently, q-value for this siRNA with respect to β2 is the maximum FDR

using βobs as a critical value. Similarly, the p∗-value is the maximal FNR with respect

to β1, and equivalently, the q∗-value for this siRNA with respect to β1 is the maximum

FNDR using βobs as a critical value.

There are an impressive number of algorithms for estimating the q-value and/or

controlling FDR in the literature [3;22;35;42;57;90;93;103;120;124;144;146]. One
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Figure 6.4 The changes of error rates versus sample size by controlling FPL for siRNAs with extremely

weak effects (A) and with no effects (B) in a confirmatory screen.

popular algorithm is the Benjamin-Hochberg procedure [11]. The FDR calculated

using the Benjamin-Hochberg procedure is conservative [146;147]. After obtaining

the p-value using the formulas listed in Table 6.1, we can use existing R packages

(e.g., qvalue [146], multtest [11] or fdrtool [147]) to calculate the q-value with

respect to β ≥ β2 in the down-regulated direction when using SSMD. To calculate

the q∗-value in the down-regulated direction, we can treat the p∗-value (using the

formulas listed in Table 6.1) as the p-value for testing null hypothesis H0 : β ≤ β1

and calculate the corresponding q-value; the resulting q-value equals the q∗-value

with respect to β ≤ β1. Similarly, we can derive FDR, FNDR, q-value, and q∗-value

for hit selection in the up-regulated direction. Additional mathematical details about

FDR, FNDR, q-value, and q∗-value and their estimation is provided in Section 8.6 of

Chapter 8.

6.5 Sample Size Determination

In a confirmatory screen, the goal is to achieve a reasonably low FNR of missing

siRNAs with large effects (i.e., to obtain a reasonably high power of selecting siRNAs

with large effects) while maintaining a pre-set low level (such as 0.05) of the FPR of

selecting siRNAs with extremely weak or no effects. Figure 6.4 displays the FNLs with

respect to SSMD critical values of 1.28, 1.645, 2, 3, and 5, respectively, with FPL =
0.05 with respect to β2 = 0.25 (A) or β2 = 0 (B). When FPL = 0.05 with respect to

β2 = 0.25, the FNL with respect to β1 = 5 is 0.019, the FNL with respect to β1 = 3

is 0.231, and the FNL with respect to β1 = 2 is 0.505 (or 0.288) for a sample size

of 3. Clearly, a sample size of three replicates can achieve a reasonably high power

for detecting siRNAs with extremely strong effects (bottom black dashed curve
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of Figure 6.4) and may achieve an acceptable power for detecting siRNAs with very

strong effects (next-to-bottom black dashed curve), but cannot achieve an acceptable

power for detecting siRNAs with strong, fairly strong, or moderate effects (top three

black curves). These curves show that 4, 5, or 6 is a reasonable sample size for detecting

siRNAs with strong effects; 5, 6, 7, or 8 is a reasonable sample size for detecting siRNAs

with fairly strong effects (top black dashed curve); and 8, 9, 10, or 11 samples are

best for detecting siRNAs with moderate effects (black solid curve of Figure 6.4).

Therefore, in a confirmatory screen, a sample size of at least four (i.e., the arrange-

ment of at least four replicate plates per source plate) is required for detecting siRNAs

with strong, fairly strong, or moderate effects. Regarding the tradeoff between benefit

and cost, any sample size between 4 and 11 is a reasonable choice for selecting siRNAs

with strong, fairly strong, or moderate effects. If the main focus is the selection of

siRNAs with strong effects, a sample size of four or five is a good choice. If cost is not a

serious consideration, then a sample size of six, seven, or eight is preferred, especially

when only one or two sets of source plates are investigated in a confirmatory screen.

If we want to have enough power to detect siRNAs with moderate effects, then the

sample size needs to be 8, 9, 10, or 11 [175].

6.6 Analytic Methods Adjusting for Off-Target Effects

6.6.1 Introduction to Experiments Addressing Off-Target Effects

RNAi HTS is broadly used in the identification of genes associated with specific

biological phenotypes [7;19;44;88;113;118;183]. The impact of an siRNA on a mea-

sured phenotype may come from two major sources. One is the knockdown of the

targeted gene that plays a role in generating the phenotype, and the other is the

knockdown of one or more unintended genes that affect the phenotype. The first

is an on-target effect, and the second is an off-target effect. Off-target gene knock-

down is an RNAi-mediated event in which unintended mRNA targets with sequence

homology to the RNAi oligonucleotide are degraded. False positives generated by

off-targets during phenotypic screens can lead to false leads and the use of resources

to explore nonproductive research paths and may impede analysis of RNAi screens

[78;87].

As described in Chapter 2, there are many approaches and designs for reducing

the impact of off-target effects. However, as Echeverri [40] point out, although

the ideal approach to saving experiments from off-target effects remains technically

challenging in most contexts, a more accessible solution, adopted by most researchers

and companies today, is to test multiple siRNAs with different sequences against a

target gene to increase the level of confidence in positive hits.

With the consideration of controlling experimental cost, most genome-scale RNAi

screening projects start with a primary screen where thousands of siRNA pools (three

to four duplexes per well) are investigated without replicates. The hits (normally in

hundreds) from the siRNA pools in the primary screen are further investigated in
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one or more confirmatory screens where each pool has replicates (normally 3 to

6 replicates). The genes selected in the confirmatory screen (normally under 100)

from the confirmatory screens are further investigated by designing siRNA singles

per gene in a screen. The screen in which the phenotypic effects of multiple siRNA

singles per targeted gene are measured separately is called a deconvolution screen.

6.6.2 Issues in Current Analytic Methods Addressing Off-Target Effects

To capture the information of multiple siRNAs against a gene in an RNAi screen, the

straightforward analytic method is the so called “frequency approach”: first select

hits based on the individual activity of each siRNA and then select genes based on

the frequency with which the multiple siRNAs targeting this gene are selected as

hits. One criterion that some people adopt in the frequency approach is as follows:

a gene is selected as a hit if 25% of the siRNAs are selected as hits (e.g., two of seven

siRNAs). The frequency approach has two major issues: (i) captures the information

of only a portion of siRNA singles with strong effects and (ii) misses the selection of

genes with consistent moderate effects.

Classical t-test is another option which tests whether the mean of all siRNAs

targeting this gene being zero. The issue with the p-value from the classical t-test is

that it is strongly affected by sample size: for the same size of non-zero effects, the

large the sample size, the smaller the p-value. Consequently, the genes with fewer

siRNAs are less likely to be selected as hits even though they may have a large effect.

More recently developed analytic methods include Konig et al.’s redundant siRNA

activity (RSA) method [87] and Barbie et al.’s RNAi gene enrichment ranking

(RIGER) method [6]. Both the RIGER and RSA methods examine the rank dis-

tribution of all siRNAs targeting a gene and calculate the statistical significance of

all siRNAs targeting a gene being unusually distributed toward the top or bottom

ranking slots. To derive the statistical significance, the RSA method uses an iterative

hypergeometric distribution formula whereas the RIGER method uses a two-sample

weighted likelihood ratio statistic combined with permutation. A feature of these

ranking-based methods is that a gene with multiple moderately active siRNAs is

weighted more heavily than a gene with fewer active siRNAs. The RSA method

requires two arbitrary thresholds to initially define active siRNAs and negative siR-

NAs whereas the RIGER method does not.

In both the RSA and RIGER methods, the null distribution is formalized from all

the siRNAs in the entire list in an experiment. This null distribution is reasonable

if most investigated siRNAs have no or very small effects. Otherwise, especially

when most investigated siRNAs are active in one direction, this null distribution is

problematic. Therefore, the RSA and RIGER methods are applicable to a primary

screen where most siRNA singles should have no or very small effects; however, they

are inapplicable to a deconvolution screen where most siRNAs are pre-selected to

have up- or down-regulated effect.
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6.6.3 SSMD Methods Assessing Collective Activity of Multiple siRNAs

Here I present an SSMD-based method [168] to capture the collective activity of

multiple siRNAs per gene. This method that does not draw the null distribution

from all investigated siRNAs in a screen; thus it works effectively for both primary

and deconvolution screens with multiple siRNA singles against a gene. Like RSA and

RIGER, the new method captures the collective activity of multiple singles against

a gene, thus minimizing the impact of off-target effects. And a gene with multiple

moderately active singles is weighted more heavily than a gene with fewer active

singles in the new method. Therefore, the proposed method will not have the issues

of the frequency approach. Like the t-statistic, the SSMD estimate captures both

sample mean and sample variability of multiple investigated siRNAs targeting a

gene. Unlike the t-statistic, the SSMD estimate is robust to sample size. The SSMD

method naturally incorporates all the information of multiple siRNAs targeting the

same gene in a strong statistical basis. In addition, the SSMD method can assess not

only the collective activities of multiple siRNAs targeting the same gene, but also the

strength of specific effect of each siRNA beyond its collective activity.

Different siRNAs targeting the same gene may have different potency and different

silencing kinetics, leading to different specific on-target effects beyond shared on-

target effects. Thus the on-target phenotypic effect of an siRNA can be partitioned

into two parts: (i) a specific on-target effect that is unique to the siRNA, and (ii) a

shared on-target effect that is common to siRNAs targeting the same gene.

One major reason for examining the collective activity of multiple siRNAs is that

the off-target effects of these siRNAs are very likely to have different directions and

thus may be canceled out in their collective activity, whereas the on-target effects

of these siRNAs should be in the same direction and thus should not be canceled

out with each other. Both average fold change (in log scale) and collective SSMD for

multiple siRNAs are robust to off-target and specific on-target effects; thus they may

be used to assess the shared on-target effect on a gene by multiple siRNAs. Different

siRNAs may contribute to the shared effects with different weights. Considering the

fact that the contributing weights are hardly known, here we concentrate on the

cases in which each of m siRNAs against a gene has an equal weight of 1/m. (See

Section 8.7 of Chapter 8 for how to handle cases in which different siRNAs

have different contributing weights.)

To calculate collective SSMD for multiple siRNAs, we must explore sources of

data variation. The variation of data for siRNAs targeting a gene may come from

two sources: (i) the variation among different siRNAs (i.e., the variation of the black

crosses in a panel in Figure 6.5), and (ii) the variation among replicates within

an siRNA (i.e., the variation of the bars next to each other with the same color

for an siRNA in a panel in Figure 6.5). The former is contributed by different

effects of siRNAs with different sequences matched the same gene. If we treat an

siRNA as a biological replicate of a gene, then we may call this variation biological
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Figure 6.5 Examples of three genes, each targeted by seven siRNAs with different sequences in a decon-

volution screen. In each panel, a bar represents the fold change in one replicate of an siRNA,

the bars next to each other with the same color represent the values of replicates for one

labeled siRNA, a black cross represents the mean of replicates for an siRNA, and a gray

horizontal line represents the mean of all seven siRNAs against a gene.

variation. This variation may not be reduced or eliminated by improving assay

quality. On the other hand, the variation of replicates of an siRNA is mostly produced

in the experimental process and thus can be reduced or minimized by improving

assay quality. Consequently, we may call it technical variation. The SSMD based

on biological variation for multiple siRNAs is called biological collective SSMD,

the SSMD based on technical variation is called technical collective SSMD, and the

SSMD based on both variations is called total collective SSMD. The formulas for

calculating average fold change, biological, technical, and total collective SSMD are

shown in Table 6.3A. More details about how to derive these formulas are provided

in Section 8.7 of Chapter 8.

In a deconvolution screen with good quality, the biological variation is usually

larger than the technical variation. The existence of off-target effects in one or

more siRNAs targeting the same gene usually causes large biological variation for

a gene. Thus, in addressing off-target effects, the biological variation should be a

more serious concern than the technical variation. Consequently, biological or total

collective SSMD is usually more important than technical collective SSMD. The

biological collective SSMDs are 2.9, –2.1, and 0.1, and the average fold changes are

3.2, 1/2.3, and 1.06, respectively, for siRNAs against genes A through C in Figure 6.5,

indicating that siRNAs against gene A lead to a strong up-regulated effect (Figure

6.5A), siRNAs against gene B lead to a strong down-regulated effect (Figure 6.5B),

and siRNAs against gene C barely lead to an extremely weak effect (Figure 6.5C).

Similar to classic t-statistic, the SSMD method may over-emphasize the genes

with consistent but weak effects for its targeting siRNAs. Considering that the mean

deviation may have to have a reasonable size, we may use dual-flashlight plot [170]
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Table 6.3. Collective activity of multiple siRNAs with different sequences against a target

gene and their individual and specific activities

A. Collective Activity of m siRNAs against a Gene

Mean μ̂collective = d̄•• = 1

m

m∑
i=1

d̄ i• = 1

m

m∑
i=1

⎛
⎝ 1

ni

ni∑
j=1

di j

⎞
⎠

SSMD Biological β̂biological = μ̂collective√
MSB

Technical β̂technical = μ̂collective√
MSE

Total β̂total = μ̂collective√
MSB + MSE

B. Individual Activity of the ith siRNA

Mean μ̂i = d̄ i•

SSMD β̂i = d̄ i•
si

or β̂i =
�

(
ni − 1

2

)

�

(
ni − 2

2

)
√

2

ni − 1

d̄ i•
si

,

where � (·) is a gamma function

C. Specific Activity of the ith siRNA

Mean τ̂i = d̄ i• − d̄••

SSMD λ̂i = τ̂i√
MSE ·

m∑
k=1

c 2
k

, where ck =

⎧⎪⎪⎨
⎪⎪⎩

1 − 1

m
, when k = i

− 1

m
, when k 
= i

Note: Among the m siRNAs that are measured separately against a gene, the ith siRNA has been

measured ni times (i.e., measured in ni different plates) and has a sample mean d̄ i•, and sample

variance s 2
i . di j (j = 1, . . . , ni ) is the difference between the measured value of this siRNA and

the mean or median value of a negative reference in a plate calculated in a way similar to what

is described in Section 5.3.1. MSB = 1
m

∑m
i=1 (d̄ i• − d̄••)2, MSE = 1

N−m

∑m
i=1

∑ni
j=1 (di j − d̄ i•)2,

N =∑m
i ni and d̄•• =∑m

i=1 d̄ i•. More details about how to derive these formulas are described

in Section 8.7 of Chapter 8.

to display both average fold change and SSMD for the shared on-target effect of

siRNAs against each gene and use the dual-flashlight method to select hits in the

gene level.

6.6.4 SSMD-Based Methods Assessing Off-Target Effects and Specific On-Target Effects

In addition to assessing the collective activity of multiple siRNAs targeting a gene, we

may be interested in the effect of each individual siRNA. The individual activity of an

siRNA can be assessed based on its replicates using the sample mean d̄ i• and SSMD

β̂i , as shown in Table 6.3B. This activity of an siRNA contains the contributions
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from not only the shared on-target effect, but also the specific on-target and off-

target effects. To evaluate off-target effects, we need to assess the specific effect of an

siRNA relative to the collective effects of all siRNAs targeting the same gene. This

specific effect can be assessed using mean and SSMD as shown in Table 6.3C. See

Section 8.7 of Chapter 8 for mathematical details about how to derive the formulas in

Table 6.3C.

The specific effect of an siRNA is a combination of off-target effect and specific

on-target effect that this siRNA has. It is impossible to completely separate an off-

target effect from a specific on-target effect in current designs of studies. However,

the consideration of both specific and collective effects may provide a reference

about which siRNA singles are more likely to have off-target effects and which are

more likely to have specific on-target effects. The siRNAs with large specific effects

for themselves but small collective effects for their targeted genes are more likely to

have large off-target effects. The siRNAs with large specific effects in one direction

but large collective effects in the opposite direction are also more likely to have large

off-target effects. The siRNAs with large specific effects in one direction and large

collective effects in the same direction are more likely to have large specific on-target

effects.

6.7 Applications

6.7.1 An Example of an RNAi Confirmatory Screen with Replicates

Following the HCV RNAi primary screen in Section 5.5 of Chapter 5 and corre-

sponding biological pathway analysis, a total of 640 siRNAs were selected and then

arranged in a confirmatory screen in which each siRNA has three replicates. Based

on Formula 6.2 using the negative control as the negative reference, we can estimate

SSMD and mean difference for each siRNA as well as for each control well in a source

plate. If the true value equals the estimated value of the SSMD, then the strength of

effects for the siRNAs in the HCV RNAi confirmatory screen can be classified as in

Table 6.4, which indicates 13 siRNAs with extremely strong, 22 with very strong, 22

with strong, 15 with fairly strong, and 38 with moderate inhibition effects.

However, the true value of SSMD is unknown. Thus the results in Table 6.4 are

only approximations, especially when taking into consideration the small sample

size of the screen. Consequently, we need to determine a critical value of SSMD for

selecting hits so that desired control FPRs and FNRs may be achieved. Using the

formulas in Table 6.1, we calculate p-values with respect to true SSMD values of 0

and –0.25 for addressing FPR and the p∗-values with respect to the true SSMD values

of –2, –3, and –5 for addressing FNR in the direction of inhibition (Figure 6.6A).

Based on the p-value and p∗-value, we can control FPR and FNR for each critical

value of SSMD [169;177]. For example, the critical value of –1.28 controls FPR with

respect to SSMD = 0 under 0.08 (black round points in Figure 6.6A) and FPR with

respect to SSMD = –0.25 under 0.14 (black triangle points in Figure 6.6A) when
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Table 6.4. The size of siRNA effects classified using SSMD in the HCV primary screen

Activation Inhibition

Effect Subtype SSMD Cutoff Count SSMD Cutoff Count

Extremely strong SSMD ≥ 5 4 SSMD ≤ −5 13

Very strong 5 > SSMD ≥ 3 4 −5 < SSMD ≤ −3 22

Strong 3 > SSMD ≥ 2 12 −3 < SSMD ≤ −2 22

Fairly strong 2 > SSMD ≥ 1.645 8 −2 < SSMD ≤ −1.645 15

Moderate 1.645 > SSMD ≥ 1.28 15 −1.645 < SSMD ≤ −1.28 28

Fairly moderate 1.28 > SSMD ≥ 1 11 −1.28 < SSMD ≤ −1 37

Fairly weak 1 > SSMD ≥ 0.75 30 −1 < SSMD ≤ −0.75 37

Weak 0.75 > SSMD > 0.5 38 −0.75 < SSMD < −0.5 64

Very weak 0.5 ≥ SSMD > 0.25 55 −0.5 ≤ SSMD < −0.25 70

Extremely weak 0.25 ≥ SSMD > 0 91 −0.25 ≤ SSMD < 0 64

Zero SSMD = 0 0

Note: “Count” is the number of siRNAs in each category.

we use the following decision rule: an siRNA is selected as a hit if it has estimated

SSMD greater than –1.28 and as a non-hit otherwise in the direction of inhibition.

This critical value also controls FNR with respect to SSMD = –3 under 0.018 (grey

triangle points in Figure 6.6A) and FNR with respect to SSMD = –2 under 0.15 (grey

round points in Figure 6.6A).

Given a decision rule for selecting hits, FPR is the proportion of all the true

non-hits in a study selected as hits, and FNR is the proportion of all the true hits in

the study declared as non-hits. The number of true non-hits in a study is unknown;

so is the number of true hits in a study. What we know is the number of siRNAs

declared as hits, as well as the number of siRNAs declared as non-hits. Therefore,

FPR and FNR do not provide the exact information in which we are normally

interested in an RNAi screen. We are primarily interested in the proportion of true

non-hits among declared hits (i.e., FDR) and the proportion of true hits among

declared non-hits (i.e., FNDR). The level of FDR is reflected by q-value, and the

level of FNDR is reflected by q∗-value. Based on the p-values calculated using the

formulas in Table 6.1, we can calculate corresponding q-value using R packages such

as qvalue [146], multtest [11], and fdrtool [147]. Similarly, we can calculate q∗-value

corresponding to p∗-value. The q-values and q∗-values calculated using fdrtool in the

HCV confirmatory screen are shown in Figure 6.6B.

The critical value of –1.28 leads to the selection of 100 hits and 540 non-hits in

the direction of inhibition. As described in Section 5.3.1 of Chapter 5, to define false

positives and false negatives in the SSMD method, we need to specify two different

values, β1 and β2, of true SSMD. In the case of β1 = –3 and β2 = –0.25, the q-value

is 0.66 ( black triangle points in Figure 6.6B), and the q∗-value is 0.003 (grey triangle

points in Figure 6.6B) when we use the critical value of –1.28 for selecting inhibition



100 Hit Selection in Genome-Scale RNAi Screens with Replicates

A: SSMD-based p-value or p*-value

Observed value of SSMD

p
-v

a
lu

e
 o

r 
p
*-

v
a
lu

e

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 p-value  wrt beta2= 0
p-value  wrt beta2= -0.25

p*-value wrt beta1= -2

p*-value wrt beta1= -3
p*-value wrt beta1= -5

B: SSMD-based q-value or q*-value

Observed value of SSMD

q
-v

a
lu

e
 o

r 
q
*-

v
a
lu

e

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 q-value  wrt beta2= 0
q-value  wrt beta2= -0.25

q*-value wrt beta1= -2

q*-value wrt beta1= -3
q*-value wrt beta1= -5

Figure 6.6 (A) p-value, p∗-value, (B) q-value, and q∗-value for selecting inhibition hits in a hepatitis C

virus RNAi confirmatory screen with three replicates.

hits. That is, on average, there are no more than 66 (i.e., 100 × 0.66) false positives

with respect to β2 = –0.25 (i.e., siRNAs with extremely weak or no inhibition effects)

among the 100 selected hits and no more than 2 (i.e., 540 × 0.003) false negatives

with respect to β1 = –3 (i.e., siRNAs with very strong or extremely strong effects)

among the 540 declared non-hits in the inhibition direction. Similarly, in the case of

β1 = –2 and β2 = 0, the q-value is 0.31 (black round points in Figure 6.6B) and the

q∗-value is 0.04 (grey round points in Figure 6.6B) when we use the critical value

of –1.28 for selecting inhibition hits. That is, on average, there are no more than 31

siRNAs with no inhibition effects among the 100 selected hits and no more than 22

siRNAs with strong, very strong, or extremely strong inhibition effects among the

540 declared non-hits.

As described in Section 6.2, due to the small sample size, a dual-flashlight plot

(or volcano plot) will be useful in considering both SSMD (p-value or q-value) and

mean difference (or equivalently average fold change) for selecting hits. Figure 6.7

indicates that the average fold changes for all the wells of the stronger positive control

in the source plate are greater than two-fold (purple points in Figure 6.7) and those

for the weaker positive control are all greater than 1.1-fold (black points in Figure

6.7) in the inhibition direction. Considering the fact that the weaker positive control

is more biologically relevant, we use the cutoff of 1.1 for average fold change in this

experiment.
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Figure 6.7 (See color insert following page 110.) Dual-flashlight plot for selecting inhibition hits in a

hepatitis C virus RNAi confirmatory screen with three replicates. Positive control 1 and Positive

control 2 are for the stronger and weaker positive controls, respectively. The horizontal gray

lines denote SSMD = –1.28 and 1.28, respectively.

Using both SSMD and mean difference, we obtain the following result: 70 siRNAs

with estimated SSMD values less than –1.28 and average fold change greater than 1.1-

fold in the inhibition direction and 23 siRNAs with estimated SSMD values greater

than 1.28 and average fold change greater than 1.1-fold in the activation direction

(Figure 6.7). Those 93 siRNAs should be the main focus in follow-up research.

6.7.2 An Example of an RNAi Deconvolution Screen with Multiple Single siRNAs per Gene

In another project for cancer, following a confirmatory screen, 344 genes were

selected for a further study in a deconvolution screen. Of these 344 genes, 343

genes were targeted by 7 single siRNAs and 1 gene by 10 siRNAs, resulting in the

measurement of 2,411 single siRNAs. Each of these siRNAs had two to six replicates.

We used the formulas in Table 6.3 to calculate average fold change and SSMD for each

individual siRNA, average fold change and collective SSMD for each set of siRNAs

targeting a gene, and specific activity for each siRNA beyond its shared activity.

The biological collective SSMD may address off-target effects better than technical

and total collective SSMD. Consequently, we concentrate on the use of the biological

collective SSMD. The classifying results based on the biological collective SSMD for

siRNAs targeting a gene indicate that 2 genes have extremely strong effects, 4 strong,

5 fairly strong, 6 moderate, 19 fairly moderate, 22 fairly weak, 40 weak, 57 very

weak, and 36 extremely weak in the inhibition direction, as well as 6 strong, 2 fairly
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Table 6.5. The size of gene effects based on SSMD in a cancer deconvolution screen

Activation Inhibition

Effect Subtype SSMD Cutoff Count SSMD Cutoff Count

Extremely strong SSMD ≥ 5 0 SSMD ≤ −5 2

Very strong 5 > SSMD ≥ 3 0 −5 < SSMD ≤ −3 0

Strong 3 > SSMD ≥ 2 6 −3 < SSMD ≤ −2 4

Fairly strong 2 > SSMD ≥ 1.645 2 −2 < SSMD ≤ −1.645 5

Moderate 1.645 > SSMD ≥ 1.28 7 −1.645 < SSMD ≤ −1.28 6

Fairly moderate 1.28 > SSMD ≥ 1 10 −1.28 < SSMD ≤ −1 19

Fairly weak 1 > SSMD ≥ 0.75 25 −1 < SSMD ≤ −0.75 22

Weak 0.75 > SSMD > 0.5 25 −0.75 < SSMD < −0.5 40

Very weak 0.5 ≥ SSMD > 0.25 33 −0.5 ≤ SSMD < −0.25 57

Extremely weak 0.25 ≥ SSMD > 0 45 −0.25 ≤ SSMD < 0 36

Zero SSMD = 0 0

strong, 7 moderate, 10 fairly moderate, 25 fairly weak, 25 weak, 33 very weak, and

45 extremely weak in the activation direction (Table 6.5).

We used the dual-flashlight plot in Figure 6.8, which incorporates both average

fold change and biological collective SSMD, to select hits at the gene level. The

cutoffs of 1/1.2 for average fold change and –0.5 for biological collective SSMD lead

to the selection of 97 genes with at least weak inhibition effects and at least 1.2-fold

change on average in the inhibition direction, as well as 72 genes with at least weak

activation effects and at least 1.2-fold change on average in the activation direction.

The cutoffs of 1/1.5 for average fold change and –1 for biological collective SSMD

lead to the selection of 31 genes with at least fairly moderate inhibition effects and

at least 1.5-fold change in the inhibition direction and 20 genes with at least fairly

moderate activation effects and at least 1.5-fold change in the activation direction.

Those genes, especially the 51 genes with absolute value of SSMD greater than 1

and average fold change greater than 1.5 in either direction, should be explored in

follow-up researches.

The specific effect of each siRNA beyond its shared on-target effects was eval-

uated using both average log fold change and SSMD, calculated using formulas

in Table 6.3C. The specific effects of siRNAs in the study can be evaluated using

dual-flashlight plot, as shown in Figure 6.9. From Figure 6.9, 423 of 2,411 siRNAs

have absolute SSMD value greater than 1.28 and average fold change greater than 2

in either direction. Those siRNAs may have a large off-target effect, a large specific

on-target effect, or both. We may further check those 423 siRNAs in a scatter plot

of average fold change of a single siRNA versus that of multiple siRNAs against its

targeting gene, as shown in Figure 6.10.

The specific effect of an siRNA is a combination of off-target effect and specific

on-target effect that this siRNA has. It is impossible to separate an off-target effect
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from a specific on-target effect in the calculated values in current study designs.

However, Figure 6.10 can provide a reference regarding which siRNAs are more

likely to have off-target effects and which siRNAs are more likely to have specific

on-target effects among the 423 siRNAs with large specific effects (“×” points).

The “×” points for the siRNAs whose targeting genes have average fold change

away from 1 (especially the 83 siRNAs marked with “×” points whose targeting genes

have average fold change less than 1/1.5 or greater than 1.5) are more likely to have

large specific on-target effects (Figure 6.10). Two of them are shown in Figure 6.11A

and B. The average fold change and biological collective SSMD are, respectively, 3.17

and 2.92 for siRNAs A1 through A7 targeting gene A (Figure 6.11A). Thus these

siRNAs have a large shared on-target activation effect. siRNA A2 has an average

fold change of 6.7, whereas the remaining 6 siRNAs all have an average fold change

of approximately 3. The average fold change and SSMD for the specific activity of

siRNA A2 are 2.1 and 4.6, respectively. Thus siRNA A2 against gene A has a large

specific on-target activation effect. Similarly, the average fold change and biological

collective SSMD are, respectively, 1/2.86 and –2.63 for siRNAs B1 and B2 targeting

gene B (Figure 6.11B). Thus these siRNAs against gene B have a large shared on-

target inhibition effect. siRNA B5 has an average fold change of 1/6.7, whereas the

remaining 6 siRNAs all have an average fold change of approximately 1/2.5. The

average fold change and SSMD for the specific activity of siRNA B5 are 1/2.36 and
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Figure 6.11 Examples of siRNAs with large specific on-target effects (A, siRNA A2; B, siRNA B5) or with

large off-target effects (C, siRNA C7; D, siRNA D5). In each panel, a bar represents the fold

change in one replicate of an siRNA, the bars next to each other with the same color represent

the values of replicates for one labeled siRNA, a black cross represents the mean of replicates

for an siRNA, and a gray horizontal line represents the mean of all seven siRNAs for a gene.

–2.11, respectively. Thus siRNA B5 against gene B has a large specific on-target

inhibition effect.

The “×” points with average fold change of approximately 1 (especially the 164

siRNAs in red with average fold change between 1/1.2 and 1.2) are more likely to

have large off-target effects (Figure 6.10). This is because those siRNAs have large

effects, whereas their targeting genes do not. Two of these siRNAs are shown in

Figures 6.11C and D. The average fold changes and biological collective SSMDs are,

respectively, 1.004 and 0.01 for siRNAs C1 through C7 targeting gene C (Figure

6.11C). Thus these siRNAs have essentially no shared on-target effect. siRNA C7

has an average fold change of 2.02, whereas the remaining six siRNAs all have an

average fold change of approximately 1. The average fold change and SSMD for the

specific activity of siRNA C7 are 2.01 and 4.3, respectively. Thus siRNA C7 against

gene C has a large off-target activation effect. Similarly, the average fold change and

biological collective SSMD are, respectively, 1.08 and 0.14 for siRNAs D1 through

D7 targeting gene D (Figure 6.11D). Thus these siRNAs against gene D have a very
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small shared on-target effect. siRNA D3 has an average fold change of 1/3.04, whereas

the remaining six siRNAs have average fold change of approximately 1. The average

fold change and SSMD for the specific activity of siRNA D3 are 1/3.3 and –7.3,

respectively. Thus siRNA D3 against gene D has a large off-target inhibition effect.

6.8 Discussion and Conclusions

The ultimate goal in a genome-scale RNAi project is to select siRNAs with a desired

size of inhibition or activation effects on a biological phenotype of interest. Two

main strategies are commonly used in hit selection in RNAi screens: (i) ranking, and

(ii) testing [161].

Traditionally, two types of measures have been used to rank siRNA effects. One is

mean difference (or, equivalently, average fold change), and the other is the p-value

from either the z-score method or a t-test of mean difference. The first measure

cannot represent the magnitude of the difference because it does not effectively

capture the data variability [162;165]. When statistical significance is used, the p-

value comes from testing the hypothesis of no mean difference between two groups.

It addresses the question of whether an siRNA has exactly the same effect as the

negative reference based on the sample observation. It is also not designed to measure

the magnitude of the difference is [162;165]. The p-value from a z-score or t-test

is affected by both sample size and the size of the siRNA effect. An siRNA effect

that results in a low p-value may not cause a robust enough effect on the assay to

indicate any meaningful biological association. Therefore, neither mean difference

nor p-value can represent the magnitude of difference.

SSMD is a better metric for measuring the magnitude of difference [162]. SSMD

can be calculated as the mean of log fold change divided by standard deviation of log

fold change with respect to a negative reference. Thus SSMD can be interpreted as

the average fold change (in log scale) penalized by the variability of fold change (in

log scale). Unlike mean difference, SSMD is robust to both measurement unit and

strength of positive controls; it takes into account data variability in both compared

groups and has a probability interpretation [166;167]. Compared with p-value,

SSMD directly measures how large the magnitude of difference is [162;165;167].

Therefore, SSMD effectively measures the size of siRNA effects. SSMD-based clas-

sifying rules (Table 5.2 of Chapter 5) can be used to assess the strength of siRNA

effects in RNAi screens [167].

In the testing strategy for screens with replicates, a t-test is popularly used. Tradi-

tionally, the t-test for testing no mean difference controlled the error rate in which

we conclude that there exists a (possibly tiny) mean difference, when actually there

is no mean difference. However, it is well known that cells are controlled by dynamic

actions of thousands of genes that are related through complex interaction. Because

of the existence of gene networks, an siRNA will rarely have exactly the same effect
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as the negative reference. Thus the null hypothesis of no mean difference is unre-

alistic for many genes. As a remedy, we may consider testing a null hypothesis of

mean difference using a constant other than zero. However, because mean difference

may have different meanings in different experiments and because mean difference

cannot effectively assess the size of siRNA effects, it is hardly feasible to set up this

constant for every experiment.

As with testing mean difference, we control the error rate, testing whether the

null hypothesis of SSMD is zero. The thresholds of SSMD are applicable to any

experiment; consequently, it is feasible to test whether SSMD is a value other than

zero (such as 0.25 or 3) [178]. Using SSMD, we can maintain balanced control

of FPRs, in which siRNAs with no or extremely weak effects (e.g., SSMD ≤ 0.25)

are selected as hits, and FNRs, in which the siRNAs with very strong effects (e.g.,

SSMD ≥ 3) are not selected as hits. To adjust for multiplicity issues, we can construct

corresponding q-value and q∗-value based on SSMD to address FDRs and FNDRs

in RNAi screens.

Off-target effects offer a challenge in genome-scale RNAi screens [78]. Although

the ideal approach of saving experiments from off-target effects remains technically

challenging in most contexts, a solution, adopted by most researchers and companies

today, is to test multiple siRNAs with different sequences against a target gene to

increase the level of confidence in positive hits [14;40]. Consequently, hit selection

accounting for off-target effects is commonly achieved through the deconvolution

screen in which multiple independently active siRNAs that target the same gene

are measured in an experiment. The SSMD-based method in Section 6.6 captures

the collective activity of siRNAs targeting a gene. It naturally incorporates all the

information of multiple siRNAs targeting the same gene in a strong statistical basis.

Consequently, the results are reliable. In addition, this method can assess not only the

activity of a gene targeted by multiple siRNAs, but also the strength of specific effect

(consisting of specific on-target effect and off-target effect) for each siRNA beyond

the shared on-target effect of siRNAs on their targeting gene. The consideration of

effects at both the gene level and the siRNA level can also give a reference about

which siRNAs are more likely to have large off-target effects and which siRNAs are

more likely to have specific on-target effects, as shown in Figures 6.10 and 6.11.

A typical genome-scale RNAi project contains at least two of the following three

types of screens: (i) a primary screen with or without replicates, (ii) a confirmatory

screen with replicates, and (iii) a deconvolution screen with multiple siRNAs per

gene. Many methods can be applied to only one type of screen. For example, the

commonly used z∗-score method is only applicable to a primary screen without

replicates. The classical t-test is only applicable to screens with replicates. The fre-

quency approach for addressing off-target effects is only applicable in deconvolution

screens. The RSA and RIGER methods is inapplicable in deconvolution screens where

most investigated siRNAs are preselected to have non-zero effects in one direction.
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SSMD is applicable to screens without replicates, screens with replicates, and any

deconvolution screens. Moreover, SSMD has strong theoretical bases and produces

more reasonable results than other methods, as shown in this chapter and Chapter 5.

Therefore, the SSMD method, along with the dual-flashlight plot, should be the first

choice for hit selection in genome-scale RNAi screens.



Part II

Methodological Development for Analyzing
RNAi HTS Screens
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Statistical Methods for Group Comparison

In genome-scale RNAi screens, the primary objective is to select siRNAs with desired

effect sizes, which relies on the comparison of gene effects in multiple different

groups. Thus statistical methods for group comparisons play a critical role in data

analysis in RNAi screens. A major statistical method for group comparison is contrast

analysis. Traditionally, a contrast is a linear combination of group means in which

the coefficients sum to zero. A typical contrast analysis is the significance testing

of whether a contrast is zero. However, there are many issues with such contrast

analysis. In fact, issues with the significance testing of a simple contrast (i.e., testing

no mean difference between two groups) have incurred continuous calls for a critical

reexamination of the common use of null hypothesis significance testing (NHST) in

behavioral and social science [4;26;34;59;60;105;106;119;127;131;132], which has

even led some researchers to advocate that the use of significance tests be banned in

research [26;34;127;131;132]. The major issues with traditional contrast analysis are

discussed in Section 7.1. We face similar issues when we apply traditional methods

for group comparison to analyze data from genome-scale RNAi screens.

Recently, a new method of contrast analysis was proposed to address issues in

traditional contrast [163;167;170]. This core of this new method is the concept of

using a contrast variable, defined as a linear combination of random variables (with

each variable representing random values in a group), instead of group means. This

concept of contrast variable and two associated terms, standardized mean of contrast

variable (SMCV) and c+-probability, are critical for deriving statistical methods for

assessing siRNA effects in genome-scale RNAi screens. Therefore, in this chapter,

I present general concepts and theorems in the new contrast analysis. Specifically,

I discuss the major issue of traditional contrast analysis in Section 7.1; present

the general concepts of contrast variable, SMCV, and c+-probability, along with

a theorem to set up the relationships between SMD and c+-probability, in Sec-

tion 7.2; and describe a classifying rule for interpreting strength of group comparison

in Section 7.3. The use of the new contrast relies on the estimation and inference

of SMCV and c+-probability. Thus I provide and prove a theorem to facilitate the

111
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Figure 7.1 Boxplots to show the comparison of blood pressure of two groups treated with a placebo

and a drug in three cases A, B, and C. The population distributions of the two groups are

N(125,25.52) and N(116,262) in case A, N(125,1.662) and N(118, 1.662) in case B, and

N(125,102) and N(118,52) in case C, respectively.

estimation and inference of SMCV in Section 7.4. Based on this theorem, I derive

the estimation and inference of SMCV and c+-probability in Section 7.5. Next I

elaborate contrast variable, SMCV, and c+-probability within the framework of

multifactor analysis-of-variance (ANOVA) in Section 7.6, demonstrate the utility of

contrast variable using case studies and simulation in Section 7.7, and finally present

conclusions in Section 7.8.

7.1 Illustration of Issues in Traditional Contrast Analysis

NHST was pioneered by Karl Pearson [117] and was formally proposed by Ronald

Fisher [49;50], with formulation from Jerzy Neyman and Egon Pearson [111;112] on

power and type I and type II errors. Since then, NHST has become a very common

statistical practice. However, the practice of NHST has not been without controversy.

A major issue in the practice of NHST is that NHST is often used in situations in

which scientific interest is neither in the question of average effect being exactly zero

nor in the direction of average effects, but rather in the magnitude of effects. This

is also the major issue in traditional contrast analysis, in which a significance test of

zero contrast is often conducted in a situation in which scientists are more interested

in knowing how large the contrast is than whether the contrast is zero [139].

One of the issues with traditional contrast analysis can briefly be illustrated in a

two-group example about blood pressure in patients, shown in Figure 7.1. In this
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example, the interest is the comparison of blood pressure in two independent groups

of patients treated with a placebo and a drug. A traditional contrast in this study

is L = μ1 − μ2, where μ1 and μ2 are the population means in the two groups,

respectively. Clearly, traditional contrast aims at the comparison of group means.

Using population value of tradition contrast, we would conclude that the order of

difference between the placebo and the drug in the three cases is A > B = C because

the population values of the traditional contrast in cases A, B, and C are 9, 7, and 7,

respectively (Figure 7.1). The confidence interval of the traditional contrast and

p-value of testing the traditional contrast being zero may lead to similar conclusions

as long as the sample size is large enough. However, the population distributions

clearly show that, by taking the drug, most patients do not get any benefit in case

A, most patients get some benefit in case B, and some patients get some benefit in

case C. This observation suggests that the order of difference between the placebo

and the drug is B > C > A. Therefore, traditional contrast analysis does provide

information about mean of difference, but it is not enough to address the difference

in a distribution level.

Figure 7.1 clearly shows that, to effectively compare two groups, we need additional

analysis to incorporate information in a distribution level. This may be achieved

through direct comparison of distributions. In the case of two-group comparisons,

hypothesis testing of two distributions in nonparametric analysis [68] and stochastic

dominance [36] have been used for comparing two groups in a distribution level.

Meanwhile, various probabilistic indices have also been proposed for distribution

comparison of two groups [1;29;33;36;37;102;115;122;125;134;142;184]. The prob-

abilistic indices are more or less related to one another. The hypothesis testing of two

distributions is equivalent to analysis of confidence intervals of probabilistic indices.

One probabilistic index is d+-probability, which is the probability of a difference

between two groups being greater than 0 [161;162;165]. An important feature of

d+-probability is that it can accommodate both independent and correlated groups,

whereas most of the other probabilistic indices, such as P(Y < X), are defined and

estimated upon independent groups. The d+-probability has been extended to c+-

probability for the comparison of not only two groups, but also more than two

groups [163;167;170].

In addition to the direct comparison of distributions, a category of analytic meth-

ods for comparing groups beyond traditional contrast analysis of comparing group

means is the use of certain parameters or statistics to capture both mean and vari-

ability of groups, which includes various effect sizes, similar to standardized mean

differences [32;53;66;73;102;125;126;134;139;142;151;161;162]. However, different

effect size measures are suitable for different types of data, and the interpretations of

effect sizes are generally arbitrary and remain problematic even for the same effect

size measure [114]. Currently, the commonly used standardized mean differences

(e.g., Cohen’s d, Glass’s 	̂, and Hedge’s g) work only in the condition of indepen-

dence and homoscedasticity. Recently, Zhang proposed strictly standardized mean

difference (SSMD), which is the ratio of the mean and standard deviation of the
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difference between two groups and has been proposed as an effect size to com-

pare two groups [161;162;165]. SSMD has been applied for data analysis in HTS

biotechnologies [13;82;86;161–163;165;167–171;174;175;177;178;182]. An advan-

tage of SSMD is that its values are comparable across different experiments. SSMD

was then expanded to SMCV for comparing not only two groups, but also more than

two groups [163;167;170]. Like SSMD, the values of SMCV are comparable across

experiments. SMCVs are applicable in a group comparison context, with or without

independence and with or without homoscedasticity.

In the past, effect size and traditional contrast seemed like two separate entities.

Recently, they have been integrated for any comparison in contrast analysis, which

is achieved through a definition of contrast variable: a contrast variable is defined

as a linear combination of random variables (with each variable representing a

group) instead of group means [163;167;170]. Consequently, an effect size (i.e.,

SMCV) and traditional contrast (i.e., contrast mean) are two characteristics of the

same random variable (i.e., contrast variable). This concept of contrast variable

and two associated terms, SMCV and c+-probability, allow the use of SMCV and

c+-probability to effectively address questions regarding the strength of a comparison

and the use of contrast mean to address questions regarding the comparison of group

means, thus avoiding the misuse of traditional contrast (especially p-value of testing

traditional contrast = 0) to address questions about the strength of a comparison.

The definitions of contrast variable, SMCV, and c+-probability are described in the

next section.

7.2 Contrast Variable, SMCV, and c+-Probability

Traditionally, a contrast has been defined as a linear combination of the means

in which the coefficients sum to zero. Here, a contrast variable is defined as a

linear combination of groups themselves, instead of group means, in which the

coefficients sum to zero [163;167;170]. The mean of a contrast variable equals a

traditional contrast. SMCV is the ratio of the mean and standard deviation of a

contrast variable. Consequently, effect size (i.e., SMCV) and traditional contrast

(i.e., contrast mean) are now two characteristics of the same random variable; thus

contrast variable integrates both effect size and traditional contrast. c+-probability is

the probability that a contrast variable is positive. We may also define c+-probability

using replication probability as follows: if we get a random draw from each condi-

tion and calculate the sampled value of the contrast variable based on the random

draws, then c+-probability is the chance that the sampled values of the contrast

variable are greater than 0 when the random draw process is repeated infinite times.

c+-probability is a probabilistic index accounting for distributions of compared

groups, whereas SMCV is a variant of standardized mean difference (e.g., Cohen’s

d, Glass’s 	̂, and Hedge’s g) incorporating both mean and variance of groups. There

is a link between SMCV and c+-probability; thus standardized mean difference and

probabilistic index are integrated to effectively assess the strength of a comparison.
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The concepts in contrast analysis can be formalized mathematically as fol-

lows. Suppose t groups P1, P2, . . . , Pt have means μ1, μ2, . . . , μt and variances

σ 2
1 , σ 2

2 , . . . , σ 2
t , respectively. Then a traditional contrast L is L =∑t

i=1 ciμi where∑t
i=1 ci = 0. Traditional contrast analysis focuses on testing H0 : L = 0, H0 : L ≤ 0 or

H0 : L ≥ 0. A contrast variable V is V =∑t
i=1 ci Pi where

∑t
i=1 ci = 0. The SMCV of

contrast variable V, denoted by λ, is λ = μV/σV =∑t
i=1 ciμi

/√
Var(
∑t

i=1 ci Pi ) =∑t
i=1 ciμi

/√∑t
i=1 c 2

i σ
2
i + 2

∑t
i=1

∑
j 
=i c i c j σi j , where σi j is the covariance of

populations Pi and P j . The c+-probability for contrast V is Pr(V > 0). There is

a strong relationship between c+-probability and SMCV of a contrast variable V,

which is derived from the following theorem [163;167;170].

Theorem 1. Let U be a linear combination of random variables representing g groups

with random values, namely U = a0 +∑g
i=1 ai G i , where a0 is a known constant (usu-

ally a0 = 0), ai is the coefficient for the ith group, and G i (i = 1, . . . , g ) is a random

variable with mean μi and variance σ 2
i that represents the values in the ith group. The

mean and variance of are μU and σ 2
U , respectively. Let W denote a standardized linear

combination of U
(
i.e., W = U−μU

σU

)
and let F (·) and �(·) be cumulative distribution

functions of W and the standard normal distribution N(0, 1), respectively. Define the

parameter λ = μU

σU
as the standardized mean of a linear combination (abbreviated

as SMLC) and define the probability that U is greater than 0 as c+-probability (i.e.,

c+-probability = Pr(U > 0)). Then, there exist the following relationships between

SMLC and c+-probability:

1) For any distribution of U, c+-probability = 1 − F (−λ).

2) If U has normal distribution, c+-probability = �(λ), where �(·) is a cumulative

distribution function of a standard normal distribution N(0, 1).

3) If U has a unimodal distribution with non-zero finite variance,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c+-probability ≥ 1 − 4

9λ2
, for λ ≥

√
8

3

c+-probability ≥ 4

3
− 4

3λ2
, for 1 ≤ λ ≤

√
8

3

c+-probability ≤ 4

9λ2
, for λ ≤ −

√
8

3

c+-probability ≤ 4

3λ2
− 1

3
, for −1 ≥ λ ≥ −

√
8

3
.

4) If U has a symmetric unimodal distribution with non-zero finite variance,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c+-probability ≥ 1 − 2

9λ2
, for λ ≥

√
8

3

c+-probability ≥ 7

6
− 2

3λ2
, for 1 ≤ λ ≤

√
8

3

c+-probability ≤ 2

9λ2
, for λ ≤ −

√
8

3

c+-probability ≤ 2

3λ2
− 1

6
, for −1 ≥ λ ≥ −

√
8

3
.
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Proof: It is trivial to show items 1) and 2) because Pr(U > 0) = Pr
(U−μU

σU
> −μU

σU

) =
Pr(W > −λ). The proof of items 3) and 4) relies on Vysochanskii-Petunin inequality

[155]: for all k > 0, the following inequality holds for an arbitrary random variable

X having a unimodal distribution and finite variance σ 2 > 0,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pr(|X − μX | ≥ kσ ) ≤ 4

9k2
, for k ≥

√
8

3

Pr(|X − μX | ≥ kσ ) ≤ 4

3k2
− 1

3
, for k ≤

√
8

3
.

When λ > 0, Pr(U ≤ 0) = Pr(U − μU ≤ −λσU ) ≤ Pr(|U − μU | ≥ λσU ). In the

situation where U has a unimodal distribution with finite variance σ 2
U > 0, applying

Vysochanskii-Petunin inequality with k = λ to variable U, we get⎧⎪⎪⎨
⎪⎪⎩

Pr(|U − μU | ≥ λσU ) ≤ 4

9λ2
, for λ ≥

√
8

3

Pr(|U − μU | ≥ λσU ) ≤ 4

3λ2
− 1

3
, for 1 ≤ λ ≤

√
8

3
.

Considering c+-probability = Pr(U > 0) = 1 − Pr(U ≤ 0), we then have⎧⎪⎪⎨
⎪⎪⎩

c+-probability ≥ 1 − 4

9λ2
, for λ ≥

√
8

3

c+-probability ≥ 4

3
− 4

3λ2
, for 1 ≤ λ ≤

√
8

3
.

Similarly, when λ < 0, Pr(U > 0) = Pr(U − μU > −λσU ) ≤ Pr(|U − μU |
≥ (−λ) · σU ). Applying Vysochanskii-Petunin inequality with k = −λ to variable

V, we get⎧⎪⎪⎨
⎪⎪⎩

c+-probability ≤ 4

9λ2
, for λ ≤ −

√
8

3

c+-probability ≤ 4

3λ2
− 1

3
, for −1 ≥ λ ≥ −

√
8

3
.

Thus we prove item 3); similarly, item 4) can be proved.

Set a0 = 0, ai = c i , and g = t. Then U becomes a contrast variable V, and SMLC

becomes SMCV. Thus the relationships between SMLC and c+-probability in the

preceding theorem become the relationships between SMCV and c+-probability,

which are shown in Figure 7.2.

7.3 A Classifying Rule for Interpreting Strength of Group Comparisons

Clear and consistent interpretations for the strength of group comparisons are an

important and urgent need, which is reflected in the comment by Rosenthal, Rosnow,
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Figure 7.2 The relationships between SMCV and c+-probability.

and Rubin [126], “Despite the growing awareness of the importance of estimating

sizes of effects along with obtaining levels of significance, problems of interpretation

remain,” as well as in the comment by Huberty [72], “The interpretation of the index

value magnitude is, perhaps, the biggest limitation of the use of effect size.” Based

on contrast variable, SMCV, and c+-probability, Zhang [167] provides a clear and

consistent interpretation to the strength of a comparison.

With a contrast variable, we can assess the strength of a contrast from two aspects:

one is based on the integration of both mean and variability of a contrast variable,

represented by SMCV, and the other is based on distributions in multiple condi-

tions, represented by c+-probability. More importantly, because of the relationship

between SMCV and c+-probability, we can classify the strength of contrast based on

SMCV, which simultaneously contains information from c+-probability. Based on

SMCV, some key values of interest are 0.25, 0.5, 0.75, 1, 2, 3, and 5, which means that

the average value of a contrast variable is one quarter, one half (or two quarters),

three quarters of and one time, two times, three times, and five times the standard

deviation of the contrast variable. Under normality, their corresponding values of

c+-probability are 0.60, 0.69, 0.77, 0.84, 0.97725, 0.99865, and 0.9999997, respec-

tively. Based on c+-probability, the values of interest for SMCV are 1.28, 1.645, 3,

and 5. This is because SMCV = 1.28 and 1.645 corresponds to c+-probability =
0.90 and 0.95, respectively, under normality, and SMCV = 3 and 5 indicates that the

values of corresponding c+-probability are at least 0.975 and 0.99, respectively, when



118 Statistical Methods for Group Comparison

Table 7.1. Key values of SMCV and the value/limit of their corresponding c+-probability

A. Positive SMCV and c+-Probability B. Negative SMCV and c+-Probability

c+-Probability c+-Probability

Lower Limit Upper Limit

SMCV

Value

Normal

Symmetric

Unimodal Unimodal SMCV

Value

Normal

Symmetric

Unimodal Unimodal

0 0.50 −0 0.50

0.25 0.60 −0.25 0.40

0.50 0.69 −0.50 0.31

0.75 0.77 −0.75 0.23

1 0.84 0.5 0 −1 0.16 0.5 1

1.28 0.90 0.76 0.52 −1.28 0.10 0.24 0.48

1.645 0.95 0.918 0.836 −1.645 0.05 0.082 0.164

2 0.97725 0.944 0.89 −2 0.02275 0.056 0.112

3 0.99865 0.975 0.95 −3 0.00135 0.025 0.05

5 0.99 0.98 −5 0.01 0.02

the contrast variable has a symmetric unimodal distribution (Table 7.1) and at least

0.95 and 0.98, respectively, when the contrast variable has a unimodal distribution.

Note that 1.645 equals approximately
√

8/3, an important value in the relation-

ship between SMCV and c+-probability for non-normal distributions (Figure 7.2).

Therefore, based on both SMCV and c+-probability, the key values of interest for

SMCV are 0, 0.25, 0.5, 0.75, 1, 1.28, 1.645, 2, 3, and 5.

Based on the key values of SMCV and their corresponding values of

c+-probability (Table 7.1), it is reasonable to construct the SMCV-based criteria

listed in Table 7.2 for assessing the strength of a comparison. For example, when the

mean of a contrast variable is zero (i.e., SMCV = 0), c+-probability is 0.5. When

SMCV is between 0 and 0.25, c+-probability is between 0.50 and 0.60, which is

slightly above 0.50, and thus the strength of the contrast is extremely weak. Simi-

larly, other categories in the second column of Table 7.2 are constructed based on

the values of SMCV and c+-probability. There are 10 categories of effect types in

the second column of Table 7.2. In social sciences, researchers may prefer fewer

categories, similarly to Cohen’s or McLean’s criterion [33;104]. In such a case, one

may adopt the effect types listed in the first column of Table 7.2. The criteria in

Table 7.2 can be applied to any linear combination of random variables in which

the interest is how far the linear combination is away from zero. However, they

work in the situation in which the population value of SMCV is known. In practice,

the population value of SMCV is unknown; thus we need to estimate SMCV and

c+-probability.
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Table 7.2. SMCV-based criteria for classifying the strength of a contrast

Thresholds for Thresholds for

Effect Types Effect Subtypes Positive SMCV Negative SMCV

Extra large Extremely strong λ ≥ 5 λ ≤ −5

Very strong 5 > λ ≥ 3 −5 < λ ≤ −3

Strong 3 > λ ≥ 2 −3 < λ ≤ −2

Fairly strong 2 > λ ≥ 1.645 −2 < λ ≤ −1.645

Large Moderate 1.645 > λ ≥ 1.28 −1.645 < λ ≤ −1.28

Fairly moderate 1.28 > λ ≥ 1 −1.28 < λ ≤ −1

Medium large Fairly weak 1 > λ ≥ 0.75 −1 < λ ≤ −0.75

Weak 0.75 > λ > 0.5 −0.75 < λ < −0.5

Medium Very weak 0.5 ≥ λ > 0.25 −0.5 ≤ λ < −0.25

Small Extremely weak 0.25 ≥ λ > 0 −0.25 ≤ λ < 0

No effect λ = 0

Note: λ denotes standardized mean of contrast variable (SMCV).

7.4 A Theorem to Facilitate the Estimation and Inference of SMCV

To facilitate the estimation and inference of SMCV, I first provide the following

theorem for a general linear combination of random variables.

Theorem 2. Consider the situation in which g groups are all independently and

normally distributed, namely G i ∼ N
(
μi , σ

2
i

)
, i = 1, . . . , g independently. Random

samples are independently obtained from the g groups, Yi = (Yi1, Yi2, . . . , Yini ),

i = 1, . . . , g . The sample size, mean, and variance of the sample from group G i are ni ,

Ȳi , and s 2
i , respectively. Let μ and λU respectively be the mean and SMLC of a linear

combination U = a0 +∑g
i=1 ai G i . Then, the following properties hold for a parameter

λ = 1√
m
λU = 1√

m

(
a0 +∑g

i=1 ai μi

)/√∑g
i=1 a2

i σ
2
i (where m is a constant).

1) When the variances of the g groups are not equal:

a) The maximum likelihood estimate (MLE) of λ is

λ̂MLE = 1√
m

a0 +
g∑

i=1
ai Ȳi√

g∑
i=1

ni − 1

ni
a2

i s 2
i

, (T2.1)

and the method-of-moment estimate (MM) of λ is

λ̂MM = 1√
m

a0 +
g∑

i=1
ai Ȳi√

g∑
i=1

a2
i s 2

i

, (T2.2)



120 Statistical Methods for Group Comparison

b) λ̂MLE is asymptotically distributed with a normal distribution, namely

λ̂MLE
D−→ N

⎛
⎜⎜⎜⎝λ,

1

m

⎛
⎜⎜⎜⎝

g∑
i=1

a2
i σ

2
i

ni
g∑

i=1
a2

i σ
2
i

+ 1

2

g∑
i=1

a4
i σ

4
i

ni(
g∑

i=1
a2

i σ
2
i

)3 ·
(

a0 +
g∑

i=1

ai μi

)2

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

(T2.3)

c) When the sample size equals r in each group, namely n1 = · · · = ng = r ,

a0 +
g∑

i=1
ai Ȳi√√√√1

r

g∑
i=1

a2
i s 2

i

∼ t
(
ν, λ

√
mr
)

approximately, ν = (r − 1)

(
g∑

i=1
a2

i s 2
i

)2

g∑
i=1

a4
i s 4

i

(T2.4)

One approximately unbiased estimate of λ is

λ̂AUE =
√

2

ν

�
(ν

2

)
�

(
ν − 1

2

) 1√
m

a0 +
g∑

i=1
ai Ȳi√

g∑
i=1

a2
i s 2

i

(T2.5)

2) When the variances of the g groups are equal:

a) The uniformly minimal variance unbiased estimate (UMVUE), MLE, and MM

estimates of λ are, respectively,

λ̂UMVUE =
√

K√
n − g

1√
m

a0 +
g∑

i=1
ai Ȳi√

MSE ·
g∑

i=1
a2

i

(T2.6)

λ̂MLE =
√

n

n − g

1√
m

a0 +
g∑

i=1
ai Ȳi√

MSE ·
g∑

i=1
a2

i

(T2.7)

λ̂MM = 1√
m

a0 +
g∑

i=1
ai Ȳi√

MSE ·
g∑

i=1
a2

i

(T2.8)
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where K = 2 ·
⎛
⎝ �

( n−g
2

)
�

(
n−g−1

2

)
⎞
⎠

2

, n =
g∑

i=1
ni and MSE = 1

n−g

∑g
i=1 (ni − 1)s 2

i .

b) We have the following noncentral t-distribution

a0 +
g∑

i=1
ai Ȳi√

MSE ·
g∑

i=1

a2
i

ni

∼ noncentral t

⎛
⎝n − g , λ

√√√√m
g∑

i=1

a2
i

/√√√√ g∑
i=1

a2
i

ni

⎞
⎠ (T2.9)

Proof: Let Yi = (Yi1, Yi2, . . . , Yini ), i = 1, . . . , g be the random sample from group

G i ; fi (di1; θi ) be the probability density function of Yi1; and θi = (μi , σ
2
i

)T
. As

shown in many classical textbooks, the MLE of μi and σ 2
i are Ŷi and ni −1

ni
s 2

i , respec-

tively; that is, the MLE of θi is θ̂i =
(

Ȳi ,
ni −1

ni
s 2

i

)T
. By the invariance property of MLE,

the MLE of λ is λ̂MLE = 1√
m

(
a0 +∑g

i=1 ai Ȳi

)/√∑g
i=1

ni −1
ni

a2
i s 2

i . Thus Formula T2.1

is proved. Formula T2.2 directly comes from the definition of MM estimate.

By the asymptotical normality and efficiency of MLE from the identically inde-

pendently distributed (IID) sample Yi , we have
√

ni (θ̂i − θi )
D−→ N

(
0, I −1(θi )

)
as ni −→ ∞, where I (θi ) = E

(− ∂2

∂θ2
i

log( fi (Yi1; θi ))
)
. It is trivial to show that

I (θi ) =
(

1
σ 2

i
0

0 1
2σ 4

i

)
. Therefore, as ni −→ ∞,

√
ni

⎛
⎝
⎛
⎝ Ȳi

ni − 1

ni
s 2

i

⎞
⎠−
(

μi

σ 2
i

)⎞⎠ D−→
((

0

0

)
,

(
σ 2

i 0

0 2σ 4
i

))
;

subsequently,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ȳ1

n1 − 1

n1
s 2

1

...

Ȳg

ng − 1

ng
s 2

g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1

σ 2
1

...

μg

σ 2
g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D−→ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

...

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
1 /n1

0

...

0

0

0

2σ 4
1 /n1

...

0

0

· · ·
· · ·
. . .

· · ·
· · ·

0

0

...

σ 2
g /ng

0

0

0

...

0

2σ 4
g /ng

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By Delta method,

(λ̂MLE − λ)
D−→ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0,
∂λ

∂θT

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
1 /n1

0
...

0

0

0

2σ 4
1 /n1

...

0

0

· · ·
· · ·
. . .

· · ·
· · ·

0

0
...

σ 2
g /ng

0

0

0
...

0

2σ 4
g /ng

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∂λ

∂θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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where θ = (μ1, σ
2
1 , . . . , μg , σ

2
g

)T
and

∂λ

∂θT
=
(

∂λ

∂μ1
,

∂λ

∂σ 2
1

, . . . ,
∂λ

∂μg
,

∂λ

∂σ 2
g

)

= 1√
m

⎛
⎜⎜⎜⎜⎝

a1√
g∑

i=1
a2

i σ
2
i

, −1

2

a2
1

(
a0 +

g∑
i=1

ai μi

)
(

g∑
i=1

a2
i σ

2
i

) 3
2

, . . . ,

ag√
g∑

i=1
a2

i σ
2
i

, −1

2

a2
g

(
a0 +

g∑
i=1

aiμi

)
(

g∑
i=1

a2
i σ

2
i

) 3
2

⎞
⎟⎟⎟⎟⎠

Therefore,

λ̂MLE
D−→ N

(
λ, σ 2

λ̂

)
where

σ 2
λ̂

= 1

m

⎛
⎜⎜⎜⎝

g∑
i=1

a2
i σ

2
i

ni
g∑

i=1
a2

i σ
2
i

+ 1

2

g∑
i=1

a4
i σ

4
i

ni(
g∑

i=1
a2

i σ
2
i

)3 ·
(

a0 +
g∑

i=1

aiμi

)2

⎞
⎟⎟⎟⎠

and (T2.3) is proved similarly as in [162].

The proof of the remaining parts in Theorem 2 requires the use of the well-known

results below.
� Result 1: if Xi ’s are independently distributed with normal distributions, that,

Xi ∼ N(μi , σ
2
i ), then

a0 +
n∑

i=1

ci Xi ∼ N

(
a0 +

n∑
i=1

ci μi ,

n∑
i=1

c 2
i σ

2
i

)
.

� Result 2 (Satterthwaite approximation [110;129]): for n sample variances s 2
i (i =

1, . . . , n), each having νi degrees of freedom, the linear combination of sample

variances approximately has a χ2-distribution. That is:

ν
n∑

i=1
ci s 2

i

n∑
i=1

ciσ
2
i

∼ χ 2(ν) approximately, where ν =

(
n∑

i=1
ci s 2

i

)2

n∑
i=1

(
ci s 2

i

)2
νi

.
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� Result 3: if two random variables X and U are independently distributed with

X ∼ N(μ, 1) and U ∼ χ2( p), then the ratio T = X/
√

U/p has a noncentral

t-distribution with p degrees of freedom and noncentrality parameter μ, namely

T ∼ noncentral t( p, μ).

� Result 4: the mean and variance of noncentral t(p, μ) are (p/2)
1
2

�(( p − 1) /2)

� (p/2)
μ

and
p

p − 2
+
(

p

p − 2
− p

2

(
�( p−1

2 )
�( p

2 )

)2
)

μ2, respectively.

Because of Ȳi ∼ N
(
μi ,

σ 2
i

ni

)
and Result 1, we have

a0 +
g∑

i=1

ai Ȳi ∼ N

(
μ,

g∑
i=1

a2
i σ

2
i

ni

)
;

subsequently(
a0 +

g∑
i=1

ai Ȳi

)/√√√√ g∑
i=1

a2
i σ

2
i

ni
∼ N

⎛
⎝μ

/√√√√ g∑
i=1

a2
i σ

2
i

ni
, 1

⎞
⎠ .

Applying Result 2 with ci = a2
i

ni
, we have

(
ν

g∑
i=1

a2
i

ni
s 2

i

/ g∑
i=1

a2
i

ni
σ 2

i

)
∼ χ 2(ν)

approximately, where

ν =

(
g∑

i=1

a2
i

ni
s 2

i

)2

g∑
i=1

(
a2

i

ni
s 2

i

)2

νi

=

(
g∑

i=1

a2
i s 2

i

ni

)2

g∑
i=1

a4
i s 4

i

n2
i (ni − 1)

.

Then using Result 3, we have(
a0 +

g∑
i=1

ai Ȳi

)/√
g∑

i=1

a2
i σ

2
i

ni√
g∑

i=1

a2
i s 2

i

ni

/
g∑

i=1

a2
i σ

2
i

ni

∼ t

⎛
⎝ν, μ

/√√√√ g∑
i=1

a2
i σ

2
i

ni

⎞
⎠

approximately where

ν =

(
g∑

i=1

a2
i s 2

i

ni

)2

g∑
i=1

a4
i s 4

i

n2
i (ni − 1)

,
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namely

a0 +
g∑

i=1
ai Ȳi√

g∑
i=1

a2
i s 2

i

ni

∼ t

⎛
⎝ν, μ

/√√√√ g∑
i=1

a2
i σ

2
i

ni

⎞
⎠

approximately. If n1 = · · · = ng = r , then

T =
a0 +

g∑
i=1

ai Ȳi√√√√1

r

g∑
i=1

a2
i s 2

i

∼ t

⎛
⎝ν, λ ·

√√√√m
g∑

i=1

a2
i σ

2
i

/√√√√1

r

g∑
i=1

a2
i σ

2
i

⎞
⎠ = t

(
ν,

√
mrλ
)

approximately where ν = (r − 1) × (∑g
i=1 a2

i s 2
i

)2
/
∑g

i=1 a4
i s 4

i . Thus Formula T2.4

is proved.

By Result 4,

E(T) = E

⎛
⎜⎜⎜⎜⎝

a0 +
g∑

i=1
ai Ȳi√

g∑
i=1

a2
i s 2

i

ni

⎞
⎟⎟⎟⎟⎠ ≈ E

(
t(ν,

√
mrλ)
) = ( ν

2 )
1
2

�

(
ν − 1

2

)

�
(ν

2

) √
mrλ.

If set

λ̂ =
√

2

rν

�
(ν

2

)
�

(
ν − 1

2

) 1√
m

a0 +
g∑

i=1
ai Ȳi√

g∑
i=1

a2
i s 2

i

ni

=
√

2

ν

�
(ν

2

)
�

(
ν − 1

2

) 1√
m

a0 +
g∑

i=1
ai Ȳi√

g∑
i=1

a2
i s 2

i

,

then E(λ̂) ≈ λ. This is why we have the estimate in Formula T2.5.

When the group Gi ’s have equal variance
(
i.e., σ 2

1 = σ 2
2 = · · · = σ 2

g = σ 2
e

)
, G i ’s

are independently and normally distributed with G i ∼ N(μi , σ
2
e ), which leads to

the common model G i j = μi + εi j and εi j ∼ N
(
0, σ 2

e

)
in one-way ANOVA. It is

well-known that the following properties hold in the situation with equal variance:

1) Ȳ1, . . . , Ȳg , s 2
1 , . . . , s 2

g are all independent with each other.

2) (n−g )·MSE
σ 2

e
∼ χ 2(n − g ), subsequently E

(
1
/√ (n−g )·MSE

σ 2
e

)
= 1√

K
, where

K = 2 ·
(

�
( n−g

2

)
�
( n−g−1

2

)
)2

, n =
g∑

i=1

ni ,

and MSE = 1
n−g

∑g
i=1 (ni − 1)s 2

i .

3)
(
Ȳ1, . . . , Ȳg , s 2

1 , . . . , s 2
g

)
is a complete sufficient statistic of (μ1, . . . , μg , σ

2
e ).



125 7.4 A Theorem to Facilitate the Estimation and Inference of SMCV

Based on properties 1 and 2,

E

⎛
⎜⎜⎜⎜⎝

1√
m

√
K√

n − g

a0 +
g∑

i=1
ai Ȳi√

MSE
g∑

i=1
a2

i

⎞
⎟⎟⎟⎟⎠ = 1√

m
g∑

i=1
a2

i

· E

(
a0 +

g∑
i=1

ai Ȳi

)
·

E

( √
K√

MSE · (n − g )

)
= 1√

m

a0 +
g∑

i=1
ai μi

σe

√
g∑

i=1
a2

i

= λ

where n1, . . . , ng ≥ 2. Set λ̂ = 1√
m

√
K√

n−g

(
a0 +∑g

i=1 ai Ȳi

)/√
MSE
∑g

i=1 a2
i . Then

λ̂ is an unbiased estimate of λ and is a function of complete sufficient statistic(
Ȳ1, . . . , Ȳg , s 2

1 , . . . , s 2
g

)
; thus λ̂ is the UMVUE of pooled SSMD λ. Therefore, T2.6

is proved. The proof of T2.7 and T2.8 is trivial with the consideration that the MLE

of σ 2
e is n−g

n MSE.
Using Ȳi ∼ N

(
μi ,

σ 2
e

ni

)
and Result 1, a0 +∑g

i=1 ai Ȳi ∼ N
(
μ, σ 2

e

∑g
i=1

a2
i

ni

)
; sub-

sequently,

(
a0 +

g∑
i=1

ai Ȳ

)/√√√√σ 2
e

g∑
i=1

a2
i

ni
∼ N

⎛
⎝μ

/√√√√σ 2
e

g∑
i=1

a2
i

ni
, 1

⎞
⎠ .

Using the above property 2 and result 3, we have

T = a0 +
g∑

i=1

ai Ȳi

/√√√√MSE ·
g∑

i=1

a2
i

ni
∼ noncentral t

⎛
⎝n − g , μ

/√√√√σ 2
e

g∑
i=1

a2
i

ni

⎞
⎠ ,

namely T ∼ noncentral t
(
n − g , λ

√
mσ 2

e

∑g
i=1 a2

i

/√
σ 2

e

∑g
i=1

a2
i

ni

)
. Therefore For-

mula T2.9 is proved.

The following results are for the estimation and inference of the mean μ of the

linear combination of random variables.

Whether the variances of the groups are equal or not, the MLE of μi is Ȳi . By the

invariance property of MLE, the MLE of μ is μ̂MLE = a0 +∑g
i=1 ai Ȳi . By the defi-

nition of MM estimate, μ̂MM = a0 +∑g
i=1 ai Ȳi . Considering (i) (Ȳ1, Ȳ2, . . . , Ȳg ) is

a complete sufficient statistic of (μ1, μ2, . . . , μg ), (ii) a0 +∑g
i=1 ai Ȳi is a func-

tion of (Ȳ1, Ȳ2, . . . , Ȳg ), and (iii) E
(
a0 +∑g

i=1 ai Ȳi

) = μ, we have μ̂UMVUE =
a0 +∑g

i=1 ai Ȳi .

When the variances of the g groups are not equal, Ȳi ∼ N
(
μi , σ

2
i /ni

)
. By

result 1,

a0 +
g∑

i=1

ai Ȳi ∼ N

(
μ,

g∑
i=1

a2
i σ

2
i

ni

)
.
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Subsequently,

(
a0 +

g∑
i=1

ai Ȳi − μ

)/√√√√ g∑
i=1

a2
i σ

2
i

ni
∼ N (0, 1) .

It is well-known that if two random variables X and U are independently distributed

with X ∼ N(0, 1) and U ∼ χ 2( p), then the ratio T = X/
√

U/p has a central

t-distribution with p degrees of freedom, namely T∼t(p). Therefore, using the

above distribution and result 2, we have

(
a0 +

g∑
i=1

ai Ȳi − μ

)/√
g∑

i=1

a2
i σ

2
i

ni√(
ν

g∑
i=1

a2
i s 2

i

ni

/
g∑

i=1

a2
i σ

2
i

ni

)
/ν

∼ t(ν)

approximately where

ν =

(
g∑

i=1

a2
i s 2

i

ni

)2

g∑
i=1

(
a2

i s 2
i /ni

)2
ni − 1

.

That is,
(
a0 +∑g

i=1 ai Ȳi − μ
)/√∑g

i=1

(
a2

i s 2
i /ni

) ∼ t(ν) approximately. Under

the null hypothesis H0 : μ = 0,
(
a0 +∑g

i=1 ai Ȳi

)/√∑g
i=1 (a2

i s 2
i )/(ni ) ∼ t(ν),

which leads to the well-known Welch t-test in the case of a0 = 0, a1 = 1, a2 = −1.

When the variances of the groups are equal,Ȳi ∼ N
(
μi , σ

2
e /ni

)
. By result 1,

a0 +∑g
i=1 ai Ȳi ∼ N

(
μ,
∑g

i=1

(
a2

i σ
2
e /ni

))
. Subsequently,

(
a0 +

g∑
i=1

ai Ȳi − μ

)/√√√√ g∑
i=1

a2
i σ

2
e

ni
∼ N (0, 1) .

We know that (n − g ) · MSE/σ 2
e ∼ χ 2(n − g ), where MSE =

1
n−g

∑g
i=1 (ni − 1)s 2

i .

Using result 3, we have

(
a0 +

g∑
i=1

ai Ȳi − μ

)/√
g∑

i=1

a2
i σ

2
e

ni√
(n − g ) · MSE

σ 2
e

/(n − g )

∼ t(n − g ).
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That is,

a0 +
g∑

i=1
ai Ȳi − μ√

MSE ·
g∑

i=1

a2
i

ni

=
a0 +

g∑
i=1

ai Ȳi − μ√√√√ 1

n − g

g∑
i=1

(ni − 1)s 2
i ·

g∑
i=1

a2
i

ni

∼ t(n − g )

In summary, we have the following results for the estimation and inference of the

mean μ of a linear combination of random variables in a situation in which the g

groups are independently normally distributed:

1) Whether the variances of the g groups are equal or not, the UMVUE, MLE, and

MM estimates of μ are all

μ̂UMVUE = μ̂MLE = μ̂MM = a0 +
g∑

i=1

ai Ȳi (T2.10)

2) When the variances of the groups are not equal,(
a0 +

g∑
i=1

ai Ȳi − μ

)/√√√√ g∑
i=1

a2
i s 2

i

ni
∼ t(ν) approximately. (T2.11)

Thus the 1 − α confidence interval of μ is approximately

a0 +
g∑

i=1

ai Ȳi ± tν,1−α/2

√√√√ g∑
i=1

a2
i s 2

i

ni
. (T2.12)

3) When the variances of the groups are equal,

a0 +
g∑

i=1
ai Ȳi − μ√√√√ 1

n − g

g∑
i=1

(ni − 1)s 2
i ·

g∑
i=1

a2
i

ni

∼ t(n − g ) (T2.13)

Thus the 1 − α confidence interval of μ is exactly

a0 +
g∑

i=1

ai Ȳi ± tn−g ,1−α/2

√√√√ 1

n − g

g∑
i=1

(ni − 1)s 2
i ·

g∑
i=1

a2
i

ni
. (T2.14)

7.5 Estimation of SMCV and c+-Probability

The estimation of SMCV relies on how samples are obtained in a study. When

the groups are correlated, it is usually difficult to estimate the covariance among

groups. In such a case, a good strategy is to obtain matched or paired samples (or
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subjects) and to conduct contrast analysis based on the matched samples. A simple

example of matched contrast analysis is the analysis of paired difference of drug

effects after and before taking a drug in the same patients. By contrast, another

strategy is to not match or pair the samples and to conduct contrast analysis based

on the unmatched or unpaired samples. A simple example of unmatched contrast

analysis is the comparison of efficacy between a new drug taken by some patients and

a standard drug taken by other patients. Methods of estimation for SMCV and c+-

probability in matched contrast analysis may differ from those used in unmatched

contrast analysis.

7.5.1 Estimation of SMCV in Unmatched Samples

For unmatched contrast analysis, let us assume that t groups Pi ’s are indepen-

dently and normally distributed. That is, Pi ’s are independent and Pi ∼ N(μi , σ
2
i ).

The SMCV of contrast variable V =∑t
i=1 ci Pi , where

∑t
i=1 ci = 0 is λ =∑t

i=1 ciμi

/√∑t
i=1 c 2

i σ
2
i . Consider an IID sample of size ni , Yi = (Yi1, Yi2, . . . , Yini )

from the ith (i = 1, 2, . . . , t) group Pi . Yi ’s are independent. Let Ȳi = 1
ni

∑ni
j=1 Yi j ,

s 2
i = 1

ni −1

∑ni
j=1 (Yi j − Ȳi )2, N =∑t

i=1 ni , and MSE = 1
N−t

∑t
i=1 (ni − 1)s 2

i .

Applying Theorem 2 with m=1, a0 = 0, ai = c i , and g= t, we obtain the following

results regarding the estimation of SMCV. When the t groups have unequal variance,

the MLE of SMCV (from Formula T2.1) is:

λ̂MLE =

t∑
i=1

ci Ȳi√
t∑

i=1

ni − 1

ni
c 2

i s 2
i

(7.1)

The MM of SMCV (from T2.2) is:

λ̂MM =

t∑
i=1

ci Ȳi√
t∑

i=1
c 2

i s 2
i

(7.2)

From T2.3, the asymptotical distribution of λ̂MLE is λ̂MLE ∼ N
(
λ, σ 2

λ̂

)
where

σ 2
λ̂

=

t∑
i=1

(
c 2

i σ
2
i /ni

)
t∑

i=1
c 2

i σ
2
i

+ 1

2

(
t∑

i=1
ciμi

)2 t∑
i=1

(
c4

i σ
4
i /ni

)
(

t∑
i=1

c 2
i σ

2
i

)3 .
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Thus when ni ’s are all large, an estimate of σ 2
λ̂

is

σ̂ 2
λ̂

=

t∑
i=1

(
c 2

i s 2
i /ni

)
t∑

i=1
c 2

i s 2
i

+ 1

2

(
t∑

i=1
ci Ȳi

)2 t∑
i=1

(
c4

i s 4
i /ni

)
(

t∑
i=1

c 2
i s 2

i

)3

and the 1 − α confidence interval of SMCV λ is approximately

t∑
i=1

ci Ȳi√
t∑

i=1

ni − 1

ni
c 2

i s 2
i

± z1−α/2

√√√√√√√√
t∑

i=1

c 2
i s 2

i

ni

t∑
i=1

c 2
i s 2

i

+ 1

2

t∑
i=1

c 4
i s 4

i

ni(
t∑

i=1
c 2

i s 2
i

)3 ·
(

t∑
i=1

ci Ȳi

)2

. (7.3)

In a situation with unequal variance but equal sample size r in each group, T2.4

becomes

t∑
i=1

ci Ȳi√√√√1

r

t∑
i=1

c 2
i s 2

i

∼ t
(
ν, λ

√
r
)

approximately, ν = (r − 1)

(
t∑

i=1
c 2

i s 2
i

)2

t∑
i=1

c 4
i s 4

i

. (7.4)

Thus, whether the sample size is large or small, one can use the noncentral t-

distribution in Formula 7.4 to get an approximate confidence interval as fol-

lows. Let Ft(ν,bλ)(·) be the cumulative distribution function of noncentral t(ν, bλ)

where b = √
r and ν is shown in Formula 7.4. Let Tobs be the observed value,

namely Tobs =∑t
i=1 ci Ȳi

/√ 1
r

∑t
i=1 c 2

i s 2
i . Then we can find λL and λU such that

Ft(ν,bλL )(Tobs) = 1 − α
2 and Ft(ν,bλu)(Tobs) = α

2 ; subsequently, (λL , λU ) is approx-

imately a 1 − α confidence interval of SMCV λ. The MLE and MM estimates of

SMCV are as shown in Formulas 7.1 and 7.2. An approximate unbiased estimate of

SMCV (from Formula T2.5) is:

λ̂AUE =
√

2

ν

�
(ν

2

)
�

(
ν − 1

2

)
t∑

i=1
ci Ȳi√

t∑
i=1

c 2
i s 2

i

(7.5)

When the t groups have equal variance, namely σ 2
1 = σ 2

2 = · · · = σ 2
t = σ 2

e , we com-

monly assume that the t groups Pi ’s are independently and normally distributed

with Pi ∼ N
(
μi , σ

2
e

)
, which leads to the common model Yi j = μi + εi j and εi j ∼

N(0, σ 2
e ) in ANOVA. For a contrast variable V =∑t

i=1 ci Pi where
∑t

i=1 ci = 0, its

mean is
∑t

i=1 ciμi and its SMCV is λ = (∑t
i=1 ci μi

)/(
σe

√∑t
i=1 c 2

i

)
.
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As in classical textbooks, it is trivial to show that T = (∑t
i=1 ci Ȳi −∑t

i=1 ciμi

)/√
MSE ·∑t

i=1 c 2
i /ni ∼ t(N − t). The inference of contrast mean L is

based on this central t-distribution. The 1 − α confidence interval of L is:

T =
t∑

i=1

ci Ȳi ± t1−α/2,N−t ×
√√√√MSE ·

t∑
i=1

c 2
i

/
ni . (7.6)

The UMVUE, MLE, and MM estimates of λ are, respectively (from T2.7–T2.9),

λ̂UMVUE =
√

K√
N − t

t∑
i=1

ci Ȳi√
MSE ·

t∑
i=1

c 2
i

(7.7)

λ̂MLE =
√

N

N − t

t∑
i=1

ci Ȳi√
MSE ·

t∑
i=1

c 2
i

(7.8)

λ̂MM =

t∑
i=1

ci Ȳi√
MSE ·

t∑
i=1

c 2
i

(7.9)

where

K = 2 ·

⎛
⎜⎜⎝

�

(
n − t

2

)

�

(
n − t − 1

2

)
⎞
⎟⎟⎠

2

,

N =∑t
i=1 ni , and MSE = 1

N−t

∑t
i=1 (ni − 1)s 2

i . From T2.9, we have

T =

t∑
i=1

ci Ȳi√
MSE ·

t∑
i=1

c 2
i /ni

∼ noncentral t (ν, bλ) ,

where ν = N − t and b =

√√√√√√√√
t∑

i=1
c 2

i

t∑
i=1

c 2
i /ni

. (7.10)
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Formula 7.10 can be used to construct the confidence interval. That is, let Ft(ν,bλ)(·)
be the cumulative distribution function of noncentral t(ν, bλ) and Tobs be the

observed value of T. Then we can find λL and λU such that Ft(ν,bλL )(Tobs) = 1 − α
2

and Ft(ν,bλu)(Tobs) = α
2 ; subsequently, (λL , λU ) is a 1 − α confidence interval of

SMCV λ.

Obviously, λ̂UMVUE, λ̂MM, and λ̂MLE are all proportional to T. To sim-

plify inferences of various SMCV estimates, the distribution of a ran-

dom variable that is proportional to a noncentral t-distribution is called

proportional noncentral t-distribution (or pnc t-distribution). That is, if

T∼ noncentral t( p, μ) and W = aT, then W ∼ pnc t(p, μ, a) [163;165;167].

Based on pnc t-distributions, λ̂UMVUE ∼ pnc t (N − t, bλ, aUMVUE), λ̂MM ∼
pnc t (N − t, bλ, aMM), and λ̂MLE ∼ pnc t (N − t, bλ, aMLE), where aUMVUE =√

K /(N − t).
√∑t

i=1(c 2
i /ni )
/∑t

i=1 c 2
i , aMM =

√∑t
i=1(c 2

i /ni )
/∑t

i=1 c 2
i , and

aMLE = √N/(N − t).
√∑t

i=1(c 2
i /ni )
/∑t

i=1 c 2
i . Hence the means of λ̂UMVUE, λ̂MM,

and λ̂MLE are λ, (aMM/aUMVUE)λ, and (aMLE/aUMVUE)λ (i.e. λ,
√

N−t
K λ, and

√
N
K λ),

respectively. The variances of λ̂UMVUE, λ̂MM, and λ̂MLE are a2
UMVUEσ

2
T , a2

MMσ 2
T , and

a2
MLEσ

2
T , respectively, where

σ 2
T = ν

ν − 2
+

⎛
⎜⎜⎜⎝ ν

ν − 2
− ν

2

⎛
⎜⎜⎝

�

(
ν − 1

2

)

�
(ν

2

)
⎞
⎟⎟⎠

2⎞⎟⎟⎟⎠ b2λ2 and b =

√√√√√√√√
t∑

i=1
c 2

i

t∑
i=1

c 2
i /ni

.

The previously described method of contrast variable and SMCV can be applied

to any contrast in one-way ANOVA, although different contrasts may have different

coefficients. After constructing a contrast variable, we can apply the same classifying

rule in Table 7.2 to assess the strength of any contrast. For example, the effect in the

ith group is commonly defined as τi = μi − μ• where μ• is the mean of μi ’s. The

size of effect in the ith group can be assessed using a contrast variable

Vi = Pi − P• = Pi − 1

t

t∑
k=1

Pk =
(

1 − 1

t

)
Pi +

t∑
k 
=i

(
−1

t
Pk

)
=

t∑
k=1

ck Pk

where ck =
{

1 − 1
t , when k = i

− 1
t , when k 
= i

.

Note that, corresponding to this contrast variable, μ• = 1
t

∑t
k=1 μk instead of

1
N

∑t
k=1 nkμk which implies Ȳ•• = 1

t

∑t
k=1 Ȳk• instead of 1

N

∑t
k=1 nkȲk•.

7.5.2 Estimation of SMCV in Matched Samples

In matched contrast analysis, assume that we observe n independent samples

(Y1 j , Y2 j , . . ., Yt j )s from t groups Yi ’s, where i = 1, 2, . . . ,t; j = 1, 2, . . . ,n. Then
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the jth observed value of a contrast V =∑t
i=1 ci Yi is Vj =∑t

i=1 ci Yi j . Let V̄ and

s 2
V be the sample mean and variance of contrast variable V . Suppose Vj ’s are IID

with Vj ∼ N(μV , σ 2
V ).

If Vj here is treated as Y1 j in Theorem 2, then the matched contrast is a special

case of the linear combination V in Theorem 2, with g = 1, m = 1, a0 = 0, a1 = 1,

n1 = n, Ȳ1 = V̄ , and s 2
1 = s 2

V . Thus the UMVUE, MLE, and MM estimates of λ are,

respectively (from T2.7–T2.9),

λ̂UMVUE =
√

K√
n − 1

V̄√
s 2

V

where K = 2 ·

⎛
⎜⎜⎝

�

(
n − 1

2

)

�

(
n − 2

2

)
⎞
⎟⎟⎠ (7.11)

λ̂MLE =
√

n

n − 1

V̄√
s 2

V

(7.12)

λ̂MM = V̄√
s 2

V

(7.13)

From T2.9, we have

T = V̄

sV

/√
n

∼ noncentral t
(
n − 1,

√
nλ
)

(7.14)

Based on this noncentral distribution of T, we can obtain the confidence inter-

val of SMCV λ. That is, let Ft(ν,bλ)(·) be the cumulative distribution function of

noncentral t(ν, bλ) (where b = √
n) and Tobs be the observed value of T. Then we

can find λL and λU such that Ft(ν,bλL )(Tobs) = 1 − α
2 and Ft(ν,bλu)(Tobs) = α

2 ; subse-

quently, (λL , λU ) is a 1 − α confidence interval of SMCV λ. Note that traditional con-

trast analysis relies on point estimate V̄ , 1 − α confidence interval V̄ ± Tn−1,
α
2

SV√
n

of

μV , and p-value based on T = √
n V̄

sV
∼ central t (n − 1) under H0 : μV = 0, which

can be applied to the inference of contrast mean. Let

aUMVUE =
√

2
n(n−1)

�
(

n−1
2

)
�
(

n−2
2

) ,
aMM = 1√

n
, and aMLE = 1√

n−1
. Then, λ̂UMVUE ∼ pnc t(n − 1,

√
nλ, aUMVUE),

λ̂MLE ∼ pnc t(n − 1,
√

nλ, aMLE), and λ̂MM ∼ pnc t(n − 1,
√

nλ, aMM). Therefore,

E(λ̂MLE) =
√

n
2

�
(

n−2
2

)
�
(

n−1
2

)λ, E(λ̂MM) =
√

n−1
2

�
(

n−2
2

)
�
(

n−1
2

)λ,

Var(λ̂UMVUE) = a2
UMVUEσ

2
T , Var(λ̂MLE) = a2

MLEσ
2
T , and Var(λ̂MM) = a2

MMσ 2
T ,

where σ 2
T = ν

ν − 2
+

⎛
⎜⎜⎜⎝ ν

ν − 2
− ν

2

⎛
⎜⎜⎝

�

(
ν − 1

2

)

�
(ν

2

)
⎞
⎟⎟⎠

2⎞⎟⎟⎟⎠ b2λ2 and b = √
n.
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7.5.3 Estimation of c+-Probability

There are many approaches to the estimation of c+-probability based on an observed

sample. Here we describe three of them. The first is to use the relationship between

SMCV and c+-probability to transform an estimated SMCV value into the estimated

value or limits of c+-probability. The second is to use the strategy of exploring all pos-

sible combinations, as in estimating U-statistics to directly estimate c+-probability.

The third is to use a resampling method such as the bootstrap to directly get esti-

mation of c+-probability. For convenience, let us name transformed c+-probability,

combination c+-probability, and bootstrap c+-probability for the c+-probability

estimated by the first, second, and third approaches, respectively.

For the first approach, when a contrast variable has a normal distribution, the

relationship between SMCV and c+-probability is clear, as shown in Figure 7.2;

thus we can transform any estimated SMCV value into a corresponding estimate

of c+-probability. We can even transform a confidence interval of SMCV into a

confidence interval of c+-probability. When the contrast variable does not have a

normal distribution, it is difficult to directly obtain the one-to-one relationship

between SMCV and c+-probability. However, we can only obtain the upper or lower

limits for c+-probability in a situation in which the contrast variable has a unimodal

distribution or a symmetric unimodal distribution with finite variance, as shown in

Figure 7.2.

The second approach is similar to the direct method for calculating the Mann-

Whitney-Wilcoxon U-statistic [157] when only two groups are involved in the con-

trast. When t (t ≥ 2) groups are involved in a contrast, for every combination of

t values from each of the t groups, respectively, we obtain a value for the contrast

variable V; the proportion of the V values that are greater than zero in all the com-

binations is a combination c+-probability. The third approach uses sampling with

replacement. That is, for each run, sample one value with replacement from each of

the t groups and obtain a corresponding value of contrast variable V based on the

sampled values. The bootstrap c+-probability is the proportion of the V values that

are greater than zero in all runs. If the number of runs is set to be large enough,

then the bootstrap c+-probability should approximately equal the combination c+-

probability.

7.6 Contrasts in Multifactor ANOVA

7.6.1 A Contrast in General

In multifactor experiments with multiple levels in each factor, we use a random

variable Pkl to represent the random values in the lth (l = 1, . . . , nl ) level of the

kth (k = 1, . . . , K ) factor. Suppose a set of coefficients cl ’s represent a comparison

for the levels in the kth factor. A contrast variable based on this set of coefficients

is defined as V =∑nl

l=1 cl Gl , where Gl is a random variable whose mean (and

variance) equals the weighted mixture of means (and variances) of m combinations

of factor levels containing the lth level of the kth factor.



134 Statistical Methods for Group Comparison

Table 7.3. Random variables to represent values in each combination of levels in a

two-factor experiment

Factor 2

Populations Level 1 Level 2 · · · Level J Pooled

Level 1 P11 P12 · · · P1J P1•
Level 2 P21 P22 · · · P2J P2•

Factor 1
...

...
...

. . .
...

...

Level I PI 1 PI 2 · · · PI J PI•
Pooled P•1 P•2 · · · P•J

Note: Pi j has mean μi j and variance σ 2
i j · Pi• =∑J

j=1
√

wi j (Pi j − μi j ) +∑J
j=1 wi j μi j

where
∑ J

j=1 wi j = 1 for each i. P• j =∑I
i=1

√
w′

i j (Pi j − μi j ) +∑I
i=1 w′

i j μi j where∑I
i=1 w′

i j = 1 for each j.

Let us first look at a two-factor experiment in which the two factors have I and

J levels, as shown in Table 7.3. Let us use a random variable Pi j to represent the

random values in the combination of the ith level of the first factor and the jth

level of the second factor. Assume Pi j has population mean μi j and variance σ 2
i j . A

contrast variable for a comparison in the levels of factor 1 is

V =
I∑

i=1

ci• Pi• where
I∑

i=1

ci• = 0 (7.15)

Pi• is a random variable defined as Pi• =∑J
j=1

√
wi j (Pi j − μi j ) +∑J

j=1 wi j μi j

where
∑ J

j=1 wi j = 1 for each i. Thus, its mean (and variance) equals the weighted

mixture of means (and variances) of m combinations of levels in factors con-

taining the ith level of factor 1, i.e., μi• =∑J
j=1 wi j μi j , σ 2

i• =∑J
j=1 wi j σ

2
i j and

cov(Pi•, Pi ’•) =∑ J
j=1 (wi j cov(Pi j , Pi’ j )).

The mean of V is

μV =
I∑

i=1

ci•E(Pi•) =
I∑

i=1

(
ci•

J∑
j=1

wi j μi j

)
=

I∑
i=1

J∑
j=1

(c i•wi j μi j ).

The variance of V is

σ 2
V = Var

(
I∑

i=1

ci• Pi•

)
=

I∑
i=1

c 2
i•Var(Pi•) + 2

I∑
i=1

I∑
i’>i

cov(ci• Pi•, ci’• Pi’•)

=
I∑

i=1

⎛
⎝c 2

i•
J∑

j=1

wi j σ
2
i j

⎞
⎠+ 2

I∑
i=1

I∑
i’>i

⎛
⎝c i•ci’•

J∑
j=1

(wi j cov(Pi j , Pi ’ j ))

⎞
⎠
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Therefore, the standardized mean of V is

λV = μV

σV
=

I∑
i=1

J∑
j=1

(c i•wi j μi j )√√√√ I∑
i=1

J∑
j=1

(
c 2

i•wi j σ
2
i j

)+ 2
I∑

i=1

I∑
i ’>i

(
ci•ci’•

J∑
j=1

(wi j cov(Pi j , Pi ’j ))

) .

(7.16)

In a situation in which we are interested in the mixture of m levels (m ≤ J ) of

factor 2 with equal weights (i.e., wi j = 1
m if the jth level is of interest and wi j = 0

otherwise), we have

λV =

I∑
i=1

J∑
j=1

(
ci•wi j μi j

)
√√√√ I∑

i=1

J∑
j=1

((
ci•wi j

)2
σ 2

i j

)+ 2
I∑

i=1

I∑
i ’>i

(
J∑

j=1
cov
(
ci•wi j Pi j , ci ’•wi ’j Pi’j

)) · 1√
m

(7.17)

As shown in Formula 7.15, the definition of a contrast variable for a comparison in

levels of a factor is based on multiple random variables Pi•’s which contain unknown

parameter μi j ’s. Thus, it is not easy to directly use Formula 7.15 to derive SMCV.

With the observation in Formula 7.17, we can use the standardized mean of a linear

combination of Pi j ’s to calculate SMCV. Corresponding to the SMCV in Formula

7.17, we can construct a linear combination of Pi j ’s as follows:

U =
I∑

i=1

J∑
j=1

ci•wi j Pi j =
I∑

i=1

J∑
j=1

ci j Pi j where ci j = ci•wi j (7.18)

The standardized mean of the linear combination U is

λU = μU

σU
=

I∑
i=1

J∑
j=1

(ci•wi j μi j )√√√√ I∑
i=1

J∑
j=1

((
ci•wi j

)2
σ 2

i j

)+2
I∑

i=1

I∑
i’>i

(
J∑

j=1
cov
(
ci•wi j Pi j , ci ’•wi ’ j Pi ’ j

))

(7.19)

Because U directly consists of factor levels and is easier to handle than contrast

variable V, we can work on U to get statistical inference on parameters from V based

on Formulas 7.18 and 7.19. For convenience, we use the term contrast core to refer

to the comparison (represented by ci•’s) embraced in a linear combination U and

use the term core number to refer to the number of combinations with equal weights

(i.e., m) [170].
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In two-way ANOVA, we usually assume that Pi j ’s are independent with equal

variance σ 2
e . In such a case,

λV =

I∑
i=1

J∑
j=1

(ci•wi j μi j )√
I∑

i=1

J∑
j=1

(c 2
i•wi j )σ 2

e

=

I∑
i=1

J∑
j=1

(ci•wi j μi j )

σe

√
I∑

i=1
c 2

i•

and λU =

I∑
i=1

J∑
j=1

(ci•wi j μi j )√
I∑

i=1

J∑
j=1

(c i•wi j )2σ 2
e

.

In a situation in which we are interested in the mixture of m levels (m ≤ J ) of factor

2 with equal weights, we have

λV =

I∑
i=1

J∑
j=1

(ci•wi j μi j )√
I∑

i=1

J∑
j=1

(c i•wi j )2σ 2
e

· 1√
m

(7.20)

Similarly, we can derive the contrast variable and its SMCV for the comparison

of levels of factor 2. The above method of contrast variable and SMCV can be

applied to any contrast in multifactor ANOVA, although different contrasts may have

different coefficients. After constructing a linear combination of random variables

that represent combinations of factor levels, we can apply the SMCV-based classifying

rule in Table 7.2 [167] to assess the strength of any contrast. Again, in practice, the

population values of SMCV are unknown, and we need to estimate them based on

samples.

Consider a sample of size ni j , and Yi j = (Yi j 1, Yi j 2, . . . , Yi j ni j ) from the ijth

(i = 1, 2, . . . , I ; j = 1, 2, . . . , J ) treatment combination Pi j . Yi j ’s are independent.

Let

N =
I∑

i=1

J∑
j=1

ni j , ni• =
J∑

j=1

ni j , νe

=
I∑

i=1

J∑
j=1

(ni j − 1), K = 2 ·
(

�
(

νe

2

)
�
(

νe−1
2

)
)2

≈ νe − 1.48,

Ȳi j• = 1

ni j

ni j∑
k=1

Yi j k, s 2
i j = 1

ni j −1

ni j∑
k=1

(Yi j k − Ȳi j•)2,

and

σ̂ 2
e = MSE = 1

νe

I∑
i=1

J∑
j=1

(ni j − 1)s 2
i j

= 1

νe

I∑
i=1

J∑
j=1

ni j∑
k=1

(
Yi j k − Ȳi j•

)2
.

In this case, the estimate of traditional contrast L is L̂ =∑t
i=1 ci j Ȳi j•.
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In two-way ANOVA, a common model is Yi j k = μi j + εi j k , where εi j k ∼ N(0, σ 2
e )

independently. Applying Theorem 2 in the situation of equal variance, we can readily

obtain the following results. The UMVUE, MLE, and MM estimates of λ (from T2.6–

2.8) are, respectively,

λ̂UMVUE =
√

K√
N − I × J

1√
m

I∑
i=1

J∑
j=1

ci j Ȳi j•√
MSE ·

I∑
i=1

J∑
j=1

c 2
i j

(7.21)

λ̂MLE =
√

N√
N − I × J

1√
m

I∑
i=1

J∑
j=1

ci j Ȳi j•√
MSE ·

I∑
i=1

J∑
j=1

c 2
i j

(7.22)

λ̂MM = 1√
m

I∑
i=1

J∑
j=1

ci j Ȳi j•√
MSE ·

I∑
i=1

J∑
j=1

c 2
i j

(7.23)

From T2.9, we have

T =

I∑
i=1

J∑
j=1

ci j Ȳi j•√
MSE

I∑
i=1

J∑
j=1

c 2
i j

ni j

∼ noncentral t (νe , bλ) ,b =

√√√√√√√√m ·

I∑
i=1

J∑
j=1

c 2
i j

I∑
i=1

J∑
j=1

c 2
i j

/
ni j

. (7.24)

Using this noncentral t-distribution, the confidence interval of SMCV

λ can be constructed similarly as in one-way ANOVA. Considering

λ̂UMVUE =
√

K√
νe

bT , λ̂MM = bT , λ̂MLE =
√

N√
νe

bT , and T ∼ noncentral t(νe , bλ), we

have λ̂UMVUE ∼ pnc t (νe , bλ, aUMVUE), λ̂MM ∼ pnc t (νe , bλ, aMM), and λ̂MLE ∼
pnc t (νe , bλ, aMLE), where aUMVUE =

√
K√
νe

b ≈
√

νe−1.48√
νe

b, aMM = b, and aMLE =
√

N√
νe

b.

7.6.2 Effects of a Combination of Factor Levels

In ANOVA, we are usually interested in estimating τi j = μi j − μ••. Here, the fol-

lowing contrast variable can be used to assess the strength of this effect:

Vi j = Pi j − P•• = Pi j − 1

I × J

I∑
k=1

J∑
l=1

Pkl

=
(

1 − 1

I × J

)
Pi j +

I∑
k 
=i

J∑
l 
= j

(
− 1

I × J

)
Pkl =

I∑
k=1

J∑
l=1

ckl Pkl
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where

ckl =
{

1 − 1
I×J , when k = i and l = j

− 1
I×J , when k 
= i or l 
= j

.

Clearly,
∑I

k=1

∑J
l=1 ckl = 0. Note that, corresponding to this contrast vari-

able, μ•• = 1
I×J

∑I
i=1

∑ J
j=1 μi j instead of 1

N

∑I
i=1

∑J
j=1 ni j μi j , which implies that

Ȳ••• = 1
I×J

∑I
i=1

∑J
j=1 Ȳi j• instead of 1

N

∑I
i=1

∑J
j=1

∑ni j

k=1 Yi j k . The mean of Vi j

is τi j , and the SMCV of Vi j is λi j =∑I
k=1

∑J
l=1 cklμkl

/√
σ 2

e

∑I
k=1

∑J
l=1 c 2

kl . The

estimate of τi j is τ̂i j =∑I
k=1

∑J
l=1 ckl Ȳkl• = Ȳi j• − Ȳ••• and the UMVUE estimate

of τi j is

λ̂i j =
√

K√
νe

I∑
k=1

J∑
l=1

ckl Ȳkl•√
MSE

I∑
k=1

J∑
l=1

c 2
kl

=
√

K√
νe

bi j Ti j , where bi j =

√√√√√√√√
I∑

k=1

J∑
l=1

c 2
kl

I∑
k=1

J∑
l=1

c 2
kl

/
nkl

and

Ti j =

I∑
k=1

J∑
l=1

ckl Ȳkl•√
MSE

I∑
k=1

J∑
l=1

c 2
kl

nkl

∼ noncentral t
(
νe , bi j λi j

)
.

We can use the distribution of Ti j to construct the confidence interval for λi j .

The relationship between τ̂i j and λ̂i j is λ̂i j = √
K /νe

/√∑I
k=1

∑J
l=1 c 2

kl .
τ̂i j

σ̂e
for

UMVUE estimate; it is λ̂i j = 1
/√∑I

k=1

∑J
l=1 c 2

kl · τ̂i j

σ̂e
for MM estimate. These

relationships indicate that the value of commonly used standardized effect size
τ̂i j

σ̂e
does not have a consistent meaning in representing the strength of a com-

parison because of the existence of an adjusted coefficient 1
/√∑I

k=1

∑ J
l=1 c 2

kl or
√

K /νe

/√∑I
k=1

∑J
l=1 c 2

kl , which varies in different contrasts.

7.6.3 Main Effects

In ANOVA, we are also interested in estimating τi• = μi• − μ•• = 1
J

∑J
j=1 μi j −

1
I × J

∑I
i=1

∑ J
j=1 μi j for the ith level of a factor. The main effect at the ith level of

factor 1 is represented by the difference of the effect in the ith level and the combined

effect in all the remaining levels of factor 1 across all the levels of factor 2. Thus this

main effect can be assessed using the contrast variable Vi• =∑I
k=1 ck• Pk•, where

ck• =
{

1 − 1
I , when k = i

− 1
I , when k 
= i
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and Pk• is a random variable whose mean (and variance) equals the weighted mixture

of means (and variances) of all the J combinations of factor levels containing the

kth level of factor 1, that is, μk• =∑J
j=1

1
J μk j and σ 2

k• =∑J
j=1

1
J σ 2

k j . This contrast

variable is embraced in the following linear combination of factor levels with contrast

core ck•’s and a core number of J.

Ui• = 1

J

J∑
l=1

Pil − 1

I × J

I∑
k=1

J∑
l=1

Pkl

=
J∑

l=1

(
1

J
− 1

I × J

)
Pil +

I∑
k 
=i

J∑
l=1

−1

I × J
Pkl =

I∑
k=1

J∑
l=1

ckl Pkl

where ckl =
{

1
J − 1

I × J , when k = i

− 1
I × J , when k 
= i

.

The SMCV of Vi• is

λi• =

I∑
k=1

ck•μk•√
σ 2

e

I∑
i=1

c 2
i•

=

I∑
i=1

J∑
j=1

ci j μi j√
σ 2

e

I∑
i=1

J∑
j=1

c 2
i j

· 1√
J

.

Note that, corresponding to this contrast variable, μi• = 1
J

∑J
j=1 μi j instead of

1
ni•

∑J
j=1 ni j μi j ; μ•• = 1

I × J

∑I
i=1

∑J
j=1 μi j instead of 1

N

∑I
i=1

∑J
j=1 ni j μi j , which

implies that Ȳi•• = 1
J

∑J
j=1 Ȳi j• instead of 1

ni•

∑J
j=1

∑ni j

k=1 Ȳi j•; Ȳ••• = 1
I × J

∑I
i=1∑J

j=1 Ȳi j• instead of 1
N

∑I
i=1

∑J
j=1

∑ni j

k=1 Yi j k .

Thus we may estimate the mean τi• and SMCV λi• of contrast variable Vi•
as follows. The estimate of τi• is τ̂i• =∑I

k=1

∑J
l=1 ckl Ȳkl• = Ȳi•• − Ȳ•••, and the

UMVUE estimate of λi• is

λ̂i• =
√

K√
νe

I∑
k=1

J∑
l=1

ckl Ȳkl•√
MSE

I∑
k=1

J∑
l=1

c 2
kl

1√
J

=
√

K√
νe

bi•Ti•,

where bi• =

√√√√√√√√
J

I∑
k=1

J∑
l=1

c 2
kl

I∑
k=1

J∑
l=1

c 2
kl

/
nkl

and Ti• =

I∑
k=1

J∑
l=1

ckl Ȳkl•√
MSE

I∑
k=1

J∑
l=1

c 2
kl

nkl

∼ noncentral t (νe , bi•λi•) .
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We can use the distribution of Ti• to construct the confidence interval for λi•. The

relationship between τ̂i• and λ̂i• is λ̂i• = 1
/√∑I

k=1

∑J
l=1 c 2

kl · τ̂i•/σ̂e
1√
J

for MM

estimate of λi•.

Similarly, the main effect at the jth level of factor 2 is represented by the difference

of the effect in the jth level and the combined effect in all the remaining levels of

factor 2 across all the levels of factor 1. This main effect can be investigated using

contrast variable V• j : V• j =∑I
k=1 c•l P•l , where

c•l =
{

1 − 1
J , when l = j

− 1
J , when l 
= j

and P•l is a random variable whose mean (and variance) equals the weighted mix-

ture of means (and variances) of all the I combinations of factor levels containing

the lth level of factor 2, that is, μ•l =∑I
k=1

1
I μkl and σ 2

•l =∑I
k=1

1
I σ

2
kl = σ 2

e . The

corresponding linear combination of factor levels is

U• j = 1

I

I∑
k=1

Pk j − 1

I × J

I∑
k=1

J∑
l=1

Pkl

=
I∑

k=1

(
1

I
− 1

I × J

)
Pk j +

I∑
k=1

J∑
l 
= j

−1

I × J
Pkl =

I∑
k=1

J∑
l=1

ckl Pkl ,

where

ckl =
{

1
I − 1

I × J , when l = j

− 1
I × J , when l 
= j

.

The mean of V• j is τ• j = 1
I

∑I
i=1 (μi j − μ••) = μ• j − μ••, and the SMCV of V• j

is

λ• j =

J∑
l=1

c•lμ•l√
σ 2

e

J∑
l=1

c 2
•l

=

I∑
i=1

J∑
j=1

ci j μi j√
σ 2

e

I∑
i=1

J∑
j=1

c 2
i j

· 1√
I
.

The mean τ• j for this main effect can be estimated by τ̂i• =∑I
k=1

∑J
l=1 ckl Ȳkl• =

Ȳ•• j − Ȳ•••; the MM estimate of SMCV λ• j for this main effect is λ̂• j =
1
/√∑I

k=1

∑J
l=1 c 2

kl · τ̂• j /σ̂e
1√

I
and the UMVUE estimate of SMCV λ• j is

λ̂• j =
√

K√
νe

I∑
k=1

J∑
l=1

ckl Ȳkl•√
MSE

I∑
k=1

J∑
l=1

c 2
kl

1√
I
.
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7.6.4 Interaction Effects

In ANOVA, the interaction effect between the ith level of the first factor and jth level

of the second factor is traditionally defined as τi⊗ j = μi j − (μ•• + τi• + τ• j ) =
μi j − μi• − μ• j + μ••. This interaction effect τi⊗ j can be investigated using contrast

variable Vi⊗ j :

Vi⊗ j = Pi j − Pi• − P• j + P•• = Pi j − 1

J

J∑
l=1

Pil − 1

I

I∑
k=1

Pk j + 1

I × J

I∑
k=1

J∑
l=1

Pkl

=
(

1 − 1

I
− 1

J
+ 1

I × J

)
Pi j +

J∑
l 
= j

(
− 1

J
+ 1

I × J

)
Pil

+
I∑

k 
=i

(
− 1

I
+ 1

I × J

)
Pk j +

I∑
k 
=i

J∑
l 
= j

1

I × J
Pkl =

I∑
k=1

J∑
l=1

ckl Pkl

where ckl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1

I
− 1

J
+ 1

I × J
, when k = i, l = j

− 1

J
+ 1

I × J
, when k = i, l 
= j

− 1

I
+ 1

I × J
, when k 
= i, l = j

1

I × J
, when k 
= i, l 
= j

.

The estimate of τi⊗ j is τ̂i⊗ j =∑I
k=1

∑ J
l=1 ckl Ȳkl• = Ȳi j• − Ȳi•• − Ȳ• j• + Ȳ•••

and the UMVUE estimate of SMCV λi⊗ j is

λ̂i⊗ j =
√

K√
νe

I∑
k=1

J∑
l=1

ckl Ȳkl•√
MSE

I∑
k=1

J∑
l=1

c 2
kl

=
√

K√
νe

bi j Ti⊗ j ,

where

bi⊗ j =

√√√√√√√√
I∑

k=1

J∑
l=1

c 2
kl

I∑
k=1

J∑
l=1

c 2
kl

/
nkl

.

We can use the distribution of Ti⊗ j to construct the confidence interval for λi⊗ j . The

relationship between τ̂i⊗ j and λ̂i⊗ j is λ̂i⊗ j = √
K /νe

/√∑I
k=1

∑J
l=1 c 2

kl .τ̂i⊗ j /σ̂e for

UMVUE estimate; it is λ̂i⊗ j = 1
/√∑I

k=1

∑J
l=1 c 2

kl .τ̂i⊗ j /σ̂e for MM estimate of λi⊗ j .
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All the above methods for two-way ANOVA can be readily extended to ANOVA

with more than two factors. For example, in ANOVA that has three factors with I, J,

and H levels, the main effect traditionally addressed by τi•• = μi•• − μ••• in the ith

level of the first factor can be addressed using contrast variable

Vi•• = 1

J × H

J∑
l=1

H∑
s=1

(Pils − P•••)

= 1

J × H

J∑
l=1

H∑
s=1

Pils − 1

I × J × H

I∑
k=1

J∑
l=1

H∑
s=1

Pkls

=
J∑

l=1

H∑
s=1

(
1

J × H
− 1

I × J × H

)
Pils

+
I∑

k 
=i

J∑
l=1

H∑
s=1

−1

I × J × H
Pkl =

I∑
k=1

J∑
l=1

ckl Pkl .

Thus its coefficients are

ckl s =

⎧⎪⎨
⎪⎩

1

J × H
− 1

I × J × H
, when k = i

− 1

I × J × H
, when k 
= i .

And its corresponding SMCV can be estimated using

λ̂i•• =
√

K√
νe

I∑
k=1

J∑
l=1

H∑
s=1

ckl s Ȳkl s•√
MSE

I∑
k=1

J∑
l=1

H∑
s=1

c 2
kl s

1√
J × H

,

where νe is the degree of freedom in the three-way ANOVA and K ≈ νe − 1.48.

7.7 Case Studies and Simulation

7.7.1 A Simulation Study

Let us consider a simple comparison in which we want to compare the impact of

siRNAs on cell viability of two cancer cell lines (i.e., a prostate cancer and a breast

cancer cell line) with that of a stem cell line [167]. Let P1, P2, and P3 denote the values

of cell viability in the prostate cancer, breast cancer, and stem cell lines, respectively,

and Pi (i = 1, 2, 3) has population mean μi and variance σ 2
i . In traditional contrast

analysis, we can use a contrast L cancer = 1
2μ1 + 1

2μ2 − μ3 to compare the effect of

an siRNA on the two cancer cell lines with that of the stem cell line. In reality,

the true values of μ1, μ2, μ3 are unknown. The means in the samples from the
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three cell lines (i.e., Ȳ1, Ȳ2, Ȳ3) are used to estimate the traditional contrast. That is,

L̂ cancer = 1
2 Ȳ1 + 1

2 Ȳ2 − Ȳ3.

Consider two simulated experiments, one (i.e., experiment 1) with 100 observa-

tions (N = 100) in each cell line and the other (i.e., experiment 2) with 4 obser-

vations (N = 4) in each cell line. Suppose the measured values (in log2 scale) in

the prostate cancer, breast cancer, and stem cell lines have normal distributions

N(13.06, 2.042), N(12.94, 2.042), and N(14, 2.042), respectively, for one siRNA

(i.e., siRNA A1) in experiment 1 and another siRNA (i.e., siRNA A2) in exper-

iment 2. The measured values in these three cell lines are from N(13.48, 0.162),

N(13.35, 0.162), and N(14, 0.162), respectively, for another two siRNAs in the two

experiments (i.e., siRNA B1 in experiment 1 and siRNA B2 in experiment 2). The

sample means in the three cell lines are 13.09, 12.82, and 14.04 for siRNA A1;

13.48, 13.37, and 14.01 for siRNA B1 (Figure 7.3A and B); 13.09, 12.71, and 13.95

for siRNA A2; and 13.53, 13.30, and 14.01 for siRNA B2 (Figure 7.3C and D),

respectively.

The traditional contrast L cancer is then estimated to be –1.09 (i.e., approximately

an average 2-fold decrease in original scale) for siRNA A1 and –0.586 (i.e., approxi-

mately an average 1.5-fold decrease) for siRNA B1 in experiment 1, and –1.05 (i.e.,

approximately an average 2-fold decrease in original scale) for siRNA A2 and –0.59

(i.e., approximately an average 1.5-fold decrease) for siRNA B2 in experiment 2. In

both experiments, the values of traditional contrast L cancer suggest a larger average

decrease of cell viability in the two cancer cell lines by siRNAs A1 and A2 than by

siRNAs B1 and B2, which may lead to the conclusion that the two cancer cell lines

are more different from the stem cell lines in siRNAs A1 and A2 than in siRNAs B1

and B2. However, Figure 7.3 (especially A and B) clearly reveals that, as a whole (or

in a view of distributions), the two cancer cell lines are less different from the stem

cell lines in siRNAs A1 and A2 than in siRNAs B1 and B2. Therefore, the conclusions

reached using the values of traditional contrast are erroneous. These erroneous con-

clusions are produced not just by random chance; long as the sample size is large,

the estimated value of the traditional contrast will approach to its population value,

which leads to erroneous conclusions.

The p-values of traditional contrast L cancer for siRNAs A1, A2, B1, and B2 are

0.00003, 0.55, 0, and 0.00006, respectively. Because both siRNA A1 and siRNA A2

have the same distributions for the three cell lines, the difference of effects between

the two cancer cell lines and the stem cell lines in siRNA A2 should theoretically be

the same as that in siRNA A1, as should be the relationship between siRNAs B2 and

B1. However, the p-value for siRNA A1 is much less than that for siRNA A2, which

may lead to the erroneous conclusion that the effects in the two cancer cell lines are

much more different from those in the stem cell line in siRNA A1 than in siRNA A2.

In addition, the p-value of the contrast for siRNA A1 is only half of the p-value

for siRNA B2, which may again lead to the erroneous conclusion that the effects in
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A: Full View in Experiment 1
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B: Zoom-in View in Experiment 1
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C: Full View in Experiment 2

M
e
a
s
u
re

d
 i
n
te

n
s
it
y
 i
n
 l
o
g
2
 s

c
a
le

8
1
0

1
2

1
4

1
6

1
8

P
.C

a
n
c
e
r

B
.C

a
n
c
e
r

S
te

m
.c

e
ll

P
.C

a
n
c
e
r

B
.C

a
n
c
e
r

S
te

m
.c

e
ll

A2 B2

D: Zoom-in View in Experiment 2

M
e
a
s
u
re

d
 i
n
te

n
s
it
y
 i
n
 l
o
g
2
 s

c
a
le

1
3
.0

1
3
.5

1
4
.0

P
.C

a
n
c
e
r

B
.C

a
n
c
e
r

S
te

m
.c

e
ll

P
.C

a
n
c
e
r

B
.C

a
n
c
e
r

S
te

m
.c

e
ll

A2 B2

Figure 7.3 (See color insert following page 110.) The measured intensity in log2 scale of three cell lines,

namely prostate cancer (P. Cancer), breast cancer (B. Cancer), and stem cell lines (Stem.cell),

for siRNAs A1 and B1 in simulated experiment 1 and for siRNAs A2 and B2 in experiment

2. The measured values in the three cell lines are from normal distributions N(13.06, 2.042),

N(12.94, 2.042), and N(14, 2.042), respectively, for siRNAs A1 and A2, and are from N(13.48,

0.162), N(13.35, 0.162), and N(14, 0.162), respectively, for siRNAs B1 and B2. The number

of replicates in each cell line is 100 in experiment 1 and 4 in experiment 2. A red segment

denotes a sample mean of measured value in a cell line for an siRNA. The two cancer cell

lines have an average two-fold decrease in original scale compared with the stem cell line

for siRNAs A1 and A2 and an average 1.5-fold decrease for siRNAs B1 and B2. Source: From

Zhang [167].
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the two cancer cell lines are much more different from those in the stem cell line

in siRNA A1 than in siRNA B2. Theoretically, these erroneous conclusions can be

produced as long as the difference of sample size in two experiments is large enough

and thus they are produced not simply by chance.

For the simulated cancer study shown in Figure 7.3, we can use a contrast variable

Vcancer = 1
2 P1 + 1

2 P2 − P3 to compare the effects of an siRNA on the two cancer

cell lines with those on the stem cell line. The SMCVs for siRNAs A1 and A2 were

estimated to be –0.42 and –0.36, respectively, with both being close to the SMCV

value of –0.40 for the distributions in which the two siRNAs are drawn. Based on

the relationship between SMCV and c+-probability, the SMCV values of –0.4, –0.42,

and –0.36 are equivalent to the c+-probability values of 0.345, 0.337, and 0.359,

respectively. That is, if we randomly get one draw from each of the three cell lines,

the chance that the average value of the two draws from the two cancer cell lines is

less than the draw from the stem cell line is approximately 0.65 in both siRNAs A1

and A2. Based on the SMCV-based criteria in Table 7.2, both siRNAs A1 and A2

have a very weak effect.

Similarly, the SMCVs for siRNAs B1 and B2 were estimated to be –3.23 and –3.38,

respectively; both are close to the SMCV value of –3 for the distributions in which

the two siRNAs are drawn. Corresponding to the SMCV values of –3, –3.23, and

–3.38, the c+-probability values are 0.00135, 0.00062, and 0.00036, respectively. That

is, if we randomly get one draw from each of the three cell lines, the chance that the

average value of the two draws from the two cancer cell lines is less than the draw

from the stem cell line is around 0.99865. Based on Table 7.2, this is a very strong

effect for both siRNAs B1 and B2.

Therefore, the values of SMCV and c+-probability of the four siRNAs correctly

indicate that siRNAs A1 and A2 cause a very weak decrease and siRNAs B1 and B2

cause a very strong decrease in cell variability in the two cancer cell lines as compared

with the stem cell line (Figure 7.3).

7.7.2 An Example of Matched Contrast Analysis

Fisher [50] used the data of Cushny and Peebles on the effect of optical isomers of

hyoscyamine hydrobromide in producing sleep to display the misusage of unpaired

t-test in paired samples. The same patients were used to test both isomers, laevo

and dextro, for gaining additional hours of sleep. Thus the data were correlated and

should be analyzed using the matched contrast approach. As demonstrated by Fisher

[50], if we treated them as unpaired samples and ignored the correlation, we would

have obtained a p-value of 0.0792 and subsequently would have declared that the

mean difference is not significant, when in fact it is (Table 7.4). In addition to mean

difference, a patient to be treated with one of the drugs tends to be more interested

in these two questions (especially the second question): (i) what is the magnitude

of difference in gained sleeping hours between the two isomers? and (ii) what is the

probability that the number of gained sleeping hours for the patient treated with
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Table 7.4. Examples of contrast analyses for the sleep study with matched samples

SMCV λ Traditional Contrast L

Contrast Coefficient Estimate 95% CI Estimate 95% CI p-Value for L = 0

As paired 1.174 (0.413, 2.127) 1.58 (0.70, 2.46) 0.0028

As unpaired 0.564 (−0.068, 1.233) 1.58 (−0.204, 3.363) 0.0792

As unpaired but

capturing

correlation

1.285 NA

Note: CI, confidence interval; NA, not applicable.

laevo is greater than that of the patient treated with dextro? These two questions

involve the use of information on distributions, not just means. Classical contrast

analysis cannot appropriately answer these two questions.

Based on contrast variable Vsleep = laevo − dextro, we can use SMCV to address

the question about the strength of contrast (i.e., magnitude of difference between

the two isomers). The SMCV of the paired difference is estimated to be 1.174 using

UMVUE and 1.285 using MM; thus the magnitude of the paired difference is large

based on the criteria listed in Table 7.2. For SMCV, if we treated paired samples as

unpaired and ignored correlations, we similarly would obtain misleading results.

Based on the general definition of SMCV (i.e., λ = (μ1 − μ2)
/√

σ 2
1 + σ 2

2 − 2σ12 in

this case), when we ignore correlation, we underestimate SMCV if the correlation

is positive and overestimate SMCV if the correlation is negative. In the sleeping

drug case, the correlation is positive; therefore, ignoring the correlation leads to

underestimation of the magnitude of difference between the two isomers (i.e., 0.564

instead of 1.174 or 1.285). On the other hand, if we treat the observations as unpaired

but capture the covariance using the MM estimate, we would obtain the estimated

SMCV to be 1.285, which is the same as the value of the MM estimate in a situation in

which the observations are treated as paired samples. However, it may be nontrivial

to obtain the confidence interval for this MM estimate of SMCV if we treat the

observations as correlated unpaired samples.

Based on a contrast variable, we can also use c+-probability to address the question

regarding the probability that a patient will gain more sleeping hours by taking laevo

instead of dextro isomers. After we transform SMCV estimates into c+-probability

based on the relationship between SMCV and c+-probability in Theorem 1, the

c+-probability for the paired difference is estimated to be 0.88 for a normal distri-

bution, to be no less than 0.84 for any symmetric unimodal distribution, and to be

no less than 0.68 for any unimodal distribution. The observed c+-probability (i.e.,

the proportion of observed values of the paired difference being greater than zero)

is 0.9, which is close to 0.88.
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Table 7.5. Empathy scores for boys and girls in grades 6, 9, and 12

Empathy Score Grade 6 Grade 9 Grade 12

Girls Observed

values

35, 30, 39, 42, 48,

37, 39, 46, 42, 41

54, 58, 46, 65, 48,

55, 59, 64, 56

65, 67, 62, 54, 58,

55, 58, 53, 50, 60

Means 39.9 56.1 58.2

Boys Observed

values

34, 28, 30, 35, 25,

39, 35, 38, 27, 26

55, 45, 57, 53, 51,

63, 47, 60, 50, 46

62, 67, 55, 59, 58,

68, 53, 56, 54

Means 31.7 52.7 59.1

MSE: 31.586; degrees of freedom νe : 52.

7.7.3 An Illustrative Example for Contrast Variables in ANOVA

Here I construct an illustrative example to demonstrate how contrast variables work

in ANOVA. In this example, empathy scores for girls and boys in grades 6, 9, and 12

are obtained, with the data listed in Table 7.5 and displayed in Figure 7.4.

This is an example of ANOVA with two factors, gender and grade. The factor

gender has two levels, girls and boys, and the factor grade has three levels, grades

6, 9, and 12. That is, I = 2 and J = 3. Let random variables P11, P12, P13, P21, P22,

and P23 represent the empathy scores of the girls in grades 6, 9, and 12 and the

boys in grades 6, 9, and 12, respectively. The main effect for the girls can be assessed

using a contrast variable V1• = 1
2 P1• − 1

2 P2•, where P1• is a random variable for the

girls whose mean (and variance) equals the equally weighted mixture of means (and

variances) of three combinations of levels (i.e., girls in grades 6, 9, and 12) and P2• is

a similar random variable for the boys. The mean and SMCV of V1• can be obtained
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30
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Figure 7.4 Displaying data in an illustrative example about empathy scores of girls and boys in grades

6, 9, and 12. The plus (+) symbols and circles represent the scores for girls and boys,

respectively. An × represent the mean of scores in a treatment level.
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using the linear combination U1• = 1
6 P11 + 1

6 P12 + 1
6 P13 − 1

6 P21 − 1
6 P22 − 1

6 P23. For

U1•, the coefficient set is
(

1
6 , 1

6 ,
1
6 , − 1

6 , − 1
6 , − 1

6

)
, the contrast core is

(
1
2 , − 1

2

)
, and

the core number is 3. Thus the SMCV of V is estimated as follows:

λ̂1• =
√

νe − 1.5√
νe

I∑
k=1

J∑
l=1

ci j Ȳi j•√
MSE

I∑
k=1

J∑
j=1

c 2
i j

1√
J

=
√

52 − 1.5√
52

1

6
×39.9+ 1

6
×56.1+ 1

6
×58.2 − 1

6
×31.7 − 1

6
×52.7 − 1

6
×59.1√√√√31.586×

[
1

6

2

+ 1

6

2

+ 1

6

2

+
(

−1

6

)2

+
(

−1

6

)2

+
(

−1

6

)2
]

× 1√
3

= 0.442,

and the confidence interval of λ1• can be obtained using

T =

I∑
i=1

J∑
j=1

ci j Ȳi j•√
MSE

I∑
i=1

J∑
j=1

c 2
i j

ni j

∼ noncentral t (νe , bλ1•) ,

b =

√√√√√√√√J ·

I∑
i=1

J∑
j=1

c 2
i j

I∑
i=1

J∑
j=1

c 2
i j

/
ni j

=
√√√√3 · 6 × ( 1

6

)2(
1
6

)2 ( 1
10 × 4 + 1

9 × 2
) = 5.3785.

Similarly, we applied the method of contrast variable to investigate other main

effects at levels of either factor and to explore linear and quadratic relationships. The

results are listed in Table 7.6.

The results in Table 7.6 show that the SMCV of the contrast variable for girl main

effect is 0.442 and thus the main effect of girls is very weak; so is the main effect of

boys. The average magnitude of gender effects is 0.442, which is a very weak effect.

In other words, the gender factor has a very weak effect, or the overall difference

between girls and boys is very weak. For each grade level, the difference between girls

and boys is fairly moderate (i.e., SMCV = 1.017) at grade 6, very weak (i.e, SMCV =
0.423) at grade 9, and extremely weak (i.e., SMCV = –0.113) at grade 12. The

SMCVs of contrast variables for main effects at grades 6, 9, and 12 are –2.968, 1.028,

and 1.940, respectively, which indicates that the strengths of main effects at grades

6, 9, and 12 are strong, fairly moderate, and fairly strong, respectively. The average

magnitude of grade effects is 1.979; thus the grade factor has a fairly strong effect.
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Table 7.6. Contrast analysis using SMCV and traditional contrast L for an illustrative example about

empathy scores of girls and boys in grades 6, 9, and 12

Contrasts (Coefficients) SMCV

Strength

Types 95% CI of SMCV

Estimated

Value of L

p-Value of

Testing L = 0

Girl τ1•:

(
1

6
,

1

6
,

1

6
,−1

6
,−1

6
,−1

6

)
0.442 Very weak (0.072, 0.821) 1.78 0.019

Boy τ2•:

(
−1

6
,−1

6
,−1

6
,

1

6
,

1

6
,

1

6

)
−0.442 Very weak (−0.821, −0.072) −1.78 0.019

Average magnitude of gender

effects

0.442 Very weak

Grade 6 τ•1:(
1

3
,−1

6
,−1

6
,

1

3
,−1

6
,−1

6

) −2.968 Strong (−3.733, −2.279) −13.8 0

Grade 9 τ•2:(
−1

6
,

1

3
,−1

6
,−1

6
,

1

3
,−1

6

) 1.028 Fairly

moderate

(0.548, 1.529) 4.8 3 × 10−5

Grade 12

τ•3:

(
−1

6
,−1

6
,

1

3
,−1

6
,−1

6
,

1

3

) 1.940 Fairly strong (1.377, 2.549) 9.0 1 × 10−11

Average magnitude of grade effects 1.979 Fairly strong

Linear: (−1, 0, 1, −1, 0, 1) 2.834 Strong (2.162, 3.578) 45.7 0

Quadratic: (−1, 2, −1, −1, 2, −1) 1.028 Fairly

moderate

(0.548, 1.529) 28.7 3 × 10−5

The SMCV is estimated to 2.834 for the contrast variable representing the linear

relationship between grade levels and empathy scores, which indicates that this linear

relationship is strong. Judged from the coefficients, the contrast variable representing

the linear relationship also denotes the difference of empathy scores between grades

12 and 6. The SMCV is estimated to 1.028 for the contrast variable representing

the quadratic relationship between grade levels and empathy scores, which indicates

that this quadratic relationship is fairly moderate. Judged from the coefficients, the

contrast variable representing the quadratic relationship also denotes the main effect

at grade 9, namely the difference between grade 9 and the average of grades 6 and 12.

Judged by observing the data displayed in Figure 7.4, all the preceding conclusions

about the strength of main effects and other contrasts obtained using SMCV are

reasonable.

If we use the values of contrast means (namely traditional contrasts) and

associated p-values, we conclude that all the contrast means listed in Table 7.6

are significant except the differences between girls and boys at grades 9 and 12,

respectively, and we can hardly obtain useful information about the strength of

comparison. One more case is that we know the contrast variables with coefficients

(−1, 2, −1, −1, 2, −1) and
(−1

6 ,
1
3 , −1

6 , −1
6 , 1

3 , −1
6

)
, respectively, can both represent

the quadratic relationship between empathy scores and grade levels. However, the
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estimated values of traditional contrast for these two contrasts are very different

(i.e., 28.7 and 4.8, respectively). By contrast, the values of SMCV are the same (i.e.,

1.028) for both contrasts (Table 7.6), which also indicates that the results reached

using SMCV are reasonable, better than those reached using a traditional contrast.

7.7.4 An Illustrative Example for Phenotypic Effects of an siRNA in Multifactor ANOVA

Figure 7.5 shows the measured phenotypic effects of an siRNA in experiments with

two factors: cell line (three levels, cell lines 1–3) and treatment (two levels, with a

drug and without a drug). In the illustrative experiments shown in Figure 7.5A–

E, cell lines have no impact on the measured phenotypic effects. In other words,

the phenotypic effects in any cell line treated with a drug come from a normal

distribution N(2, 0.245); those in any cell line treated without a drug come from

another normal distribution N(3.35, 0.245). For simplicity, the data in Figure 7.5A

through E are generated so that the sample mean equals 2 in any cell line treated with

the drug and 3.35 without the drug. The sample standard deviation equals 0.245

in each combination level of the two factors. Consequently, the drug effects are the

same in each cell line.

The core interest is the drug effect, that is, the comparison of the phenotypic effects

in cells treated with the drug and those without the drug. Thus the contrast core is

the difference between with the drug and without the drug (i.e., drug − noDrug).

For the experiments in Figure 7.5A and D, the contrast variable to address the core

interest across the first two cell lines can be investigated using the linear combination

of factor levels: U1 = (drug.cell1 − noDrug.cell1 + drug.cell2 − noDrug.cell2)/2,

where drug.Cell1 and noDrug.Cell1 denote the phenotypic effects in cell line 1

treated with the drug and without the drug, respectively. Similar notations are

applied to other cell lines. The coefficients are c1 j = 1
2 and c2 j = − 1

2 for j = 1, 2.

The core number is 2 in this contrast (i.e., m = 2). Similarly, for the experiments in

Figure 7.5B, E, and F, the contrast variable to address the core interest across the three

cell lines can be investigated using: U2 = (drug.cell1 − noDrug.cell1 + drug.cell2 −
noDrug.cell2 + drug.cell3− noDrug.cell3)/3. Correspondingly, c1 j = 1

3 and c2 j =
− 1

3 for j = 1, 2, 3, and the core number is 3 (i.e., m = 3).

Because the data about phenotypic effects in one cell line are just a repeat of

those in another cell line, the drug effects are the same in each cell line. Thus

the size of drug effects should be the same regardless of how many cell lines are

involved in the study. The size of drug effects is represented by the magnitude

of difference between phenotypic effects in cells treated with the drug and those

without the drug. The contrast analysis to address for this difference (i.e., drug

effect) should obtain the same or at least similar values when one, two, or three cell

lines are involved. However, based on traditional contrast analysis, the p-values for

the contrasts addressing drug effects are 0.112245, 0.018191, and 0.003245 in one,

two, and three cell lines, respectively (Figure 7.5C, A, and B, respectively). That is,

the first is nonsignificant at the level of 0.05, the second is significant at the level of
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A: 2 cell lines and 2 replicates per level
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Traditional contrast = -1.35 

p-value = 0.018191 
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B: 3 cell lines and 2 replicates per level
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C: 1 cell line and 2 replicates per level
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D: 2 cell lines and 4 replicates per level
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E: 3 cell lines and 4 replicates per level
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Figure 7.5 Phenotypic effects of an siRNA in illustrative experiments with three cell lines (cell lines 1–3)

and two treatments (with a drug and without a drug). The core interest is the difference

between phenotypic effects caused by the siRNA in cells treated with a drug and without

a drug. The measured values of phenotypic effects of the siRNA with (or without) the drug

in one cell line are the same as those in another cell line. Traditional contrast, p-value, and

SMCV denote the sample mean difference of phenotypic effects between with the drug and

without the drug, the p-value for testing the difference being zero, and standardized mean of

contrast variable estimated using the MM method, respectively. Source: From Zhang [170].

0.05 and nonsignificant at the level of 0.01, and the third is significant at both levels,

which leads to very different conclusions about the same size of drug effects. By

contrast, using contrast variables, the SMCV is the same (i.e., –1.929) regardless of

whether one, two, or three cell lines are involved (Figure 7.5C, A, and B, respectively),

which correctly indicates that the size of drug effects is the same regardless of the

number of cell lines used in the experiments.

The size of drug effects is the same when the sample size increases (i.e., when

the number of replicates per combination of factor levels increases from two to

four) in Figure 7.5A through E. However, the p-value in traditional contrast analysis

decreases dramatically from 0.018191 to 0.000147 if two cell lines are used (Fig-

ure 7.5A and D) and from 0.003245 to 0.000003 if three cell lines are used (Figure 7.5B

and E) when the sample size increases, which again generates different conclusions

about the drug effects. The SMCV is still the same when the sample size increases,
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which correctly indicates that the size of drug effects is the same regardless of the

sample size used in the studies.

One may note that the value of traditional contrast is the same (i.e., –1.35) in

Figure 7.5A through E. However, one issue with the traditional contrast is that it

is sensitive to the multiplication of a constant to its coefficients. For example, if

each coefficient of the contrast in Figure 7.5B is doubled, then the value of the

corresponding traditional contrast is also doubled to be –2.7. By contrast, the SMCV

will stay the same as –1.929 because the constant 2 in the numerator of SMCV will be

canceled out by the same constant in the denominator of SMCV. One more serious

issue is that it is well known that the value of traditional contrast cannot capture data

variability and may lead to misleading results. For example, the values of traditional

contrast indicate that the magnitude of difference in the situation shown in Fig-

ure 7.5E is weaker than that of the situation shown in Figure 7.5F. However, the data

clearly reveal that the magnitude of difference in the situation shown in Figure 7.5E

is stronger than that of the situation shown in Figure 7.5F because of the consistently

lower values in cells treated with the drug than without the drug in Figure 7.5E. By

contrast, the values of SMCV correctly indicate that the drug effect is fairly strong

in Figure 7.5E and weak in Figure 7.5F.

7.8 Discussion and Conclusions

Group comparison is a common practice in statistical analysis, especially for hit

selection and quality control in genome-scale RNAi screens. The concepts of con-

trast variable and associated terms of SMCV and c+-probability can link together

the most commonly used probabilistic index for effect sizes, such as Pr(X > Y), and

the most commonly used ratios of mean difference to variability, such as Cohen’s d.

A contrast variable can provide both a probabilistic meaning and an index of signal-

to-noise ratio to interpret the strength of a comparison, which offers us a strong

base to classify the strength of a comparison, as shown in Table 7.2. SMCV and

c+-probability also give interpretations to both Cohen’s and McLean’s criteria

[33;104]. The contrast variable, SMCV, and c+-probability work effectively and

consistently for either relationship or group comparison in either independent or

correlated situations and in either two or more than two groups. Treatment effect,

main effect, interaction effect, linear relationship, quadratic relationship, and any

other contrasts can all be addressed consistently using contrast variables. The exam-

ples in this chapter show that the results reached using contrast variables and the

classifying rule are sensible and matched with observations and intuitions from

the data. Therefore, the contrast variable, SMCV, c+-probability, and SMCV-based

classifying rule may have a broad utility for group comparison.

As a caveat, the SMCV-based classifying rule relies on the population values

of SMCV. Because the population value of SMCV is usually unknown, sampling

variability will play a role in the use of SMCV-based criteria, especially when the
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sample size is small. Both UMVUE and MLE estimates work best when the data

are normally distributed, although MLE estimate and related confidence interval

may work reasonably well with a large sample size, even when the assumption

of normality is violated. The MM estimate of SMCV does not assume normal

distributions; however, the distribution of the MM estimate can be complicated.

Given all the previously mentioned features of SMCV estimates, along with the fact

that the SMCV-based classifying rule works best in situations in which the data are

normally distributed, it is a good idea to check normality and/or to transform the

data to be nearly normal before applying the SMCV methods.

The concepts and theorems for group comparisons discussed in this chapter have

been developed from a statistical theoretical basis. They provide a foundation for

deriving statistical methods for data analysis in RNAi screens. In the next chapter, I

elaborate how to derive these statistical methods for hit selection and quality control

in genome-scale RNAi screens.



8

Statistical Methods for Assessing the Size of
siRNA Effects

The size of an siRNA effect is represented by the magnitude of difference between

the siRNA and a negative reference. Traditionally, mean difference (or, equivalently,

average fold change in log scale), along with p-value of testing mean difference,

has been used to indicate siRNA effects. However, as a statistical parameter, mean

difference does not contain any information about data variability, cannot effectively

measure the magnitude of difference between two groups, and thus cannot be used

to assess siRNA effects successfully. Recently, SSMD and d+-probability have been

proposed for the comparison of two groups [161;162;165] and have been extended to

multigroup comparisons [163;167;170]. SSMD is a special case of SMCV when only

two groups are involved in a comparison. Thus, given the concepts and theorems

regarding contrast variable, SMCV, and c+-probability presented in Chapter 7, I

explore the use of SSMD and d+-probability for assessing the size of siRNA effects

in this chapter. Specifically, I first present the concepts of SSMD and d+-probability

along with their relationship in Section 8.1 and the estimation of SSMD in Section

8.2. Standardized mean difference has been used for measuring the magnitude of

difference, and classical t-statistic has been used for selecting hits in screens with

replicates. Both look similar to SSMD. Therefore, I compare SSMD with standardized

mean difference and classical t-statistic in Section 8.3. Given the concepts of SSMD

and d+-probability, as well as their estimation, I explore how to use SSMD to

rank siRNAs in Section 8.4, how to control FPRs and FNRs in Section 8.5, and

how to control FDRs and FNDRs in SSMD-based decision rules for selecting hits

in genome-scale RNAi screens in Section 8.6. Finally, I derive analytic methods

addressing off-target effects for hit selection in experiments with multiple siRNAs

against a gene in Section 8.7 and present conclusions in Section 8.8.

8.1 SSMD and d+-Probability

Suppose we are interested in the comparison of two groups. The first group has a

distribution F1 with meanμ1 and varianceσ 2
1 and the second group has a distribution

154
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F2 with meanμ2 and variance σ 2
2 . The covariance between these two groups is σ12. Let

random variables P1 and P2 denote random values in these two groups, respectively.

SSMD (denoted as β) is defined as the ratio of mean to standard deviation of the

difference between two groups, namely

β = μD

σD
= μ1 − μ2√

σ 2
1 + σ 2

2 − 2σ12

. (8.1)

If the two groups are independent,

β = μ1 − μ2√
σ 2

1 + σ 2
2

. (8.2)

If the two independent groups have equal variance σ 2, then

β = μ1 − μ2√
2σ 2

. (8.3)

The probability that the random variable D representing the difference between

two groups obtains positive values is d+-probability. That is, d+-probability =
Pr(D > 0). If we get a random draw from each group and calculate the sampled

value of the difference between the two random draws, d+-probability is the chance

that the sampled values of the difference are greater than zero when the random

draw process is repeated infinite times.

Like SSMD, d+-probability is applicable in not only independent groups, but

also in correlated groups. When the two groups are independent, d+-probability

is the probability that a random value from the first group is larger than a

random value from the second group. In terms of comparing two therapeutic

treatments, d+-probability is the probability that a patient receiving treatment 1

will improve clinically more than another patient receiving treatment 2, which is

equivalent to the well-established probabilistic index P(X > Y) or similar terms

[1;29;33;37;115;122;125;134;142;184]. When the two groups are correlated, d+-

probability is the probability that a paired difference is greater than zero. The

d+-probability based on the paired difference in a crossover trial can represent

the probability that a specific person randomly chosen from the population improve

clinically more on treatment 1 than on treatment 2.

The difference of values between two groups is a contrast variable with coefficients

(1, –1). Thus we can apply Theorem 1 from Chapter 7 to derive the following the

relationships between SSMD β and d+-probability by replacing λ and c+-probability

with β and d+-probability, respectively.

1) If D has normal distribution, d+-probability = �(β) where �(·) is a cumulative

distribution function of a standard normal distribution N(0, 1).
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2) If D has a unimodal distribution with non-zero finite variance, then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d+-probability ≥ 1 − 4

9β2
, for β ≥

√
8

3

d+-probability ≥ 4

3
− 4

3β2
, for 1 ≤ β ≤

√
8

3

d+-probability ≤ 4

9β2
, for β ≤ −

√
8

3

d+-probability ≤ 4

3β2
− 1

3
, for − 1 ≥ β ≥ −

√
8

3
.

3) If D has a symmetric unimodal distribution with non-zero finite variance, then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d+-probability ≥ 1 − 2

9β2
, for β ≥

√
8

3

d+-probability ≥ 7

6
− 2

3β2
, for 1 ≤ β ≤

√
8

3

d+-probability ≤ 2

9β2
, for β ≤ −

√
8

3

d+-probability ≤ 2

3β2
− 1

6
, for − 1 ≥ β ≥ −

√
8

3
.

Because of the relationship between SSMD and d+-probability, we can classify the

magnitude of difference using SSMD and d+-probability as shown in Table 7.2

of Chapter 7 by replacing SMCV with SSMD. SSMD, as previously defined, is a

population parameter that needs to be estimated from observed samples, as explored

in the following section.

8.2 Estimation of SSMD

First, we must consider the estimation of SSMD based on unpaired difference. For

convenience, the SSMD based on unpaired difference is called unpaired SSMD.

Suppose we have one sample (with sample size n1, sample mean Ȳ1, and sample

standard deviation s1) from group 1 and another independent sample (with n2, Ȳ2,

and s2) from group 2. Let N = n1 + n2. Then, similarly as in Chapter 7, we can derive

the estimation of SSMD as follows.

When the two groups independently have normal distributions, applying The-

orem 2 in Chapter 7 with m = 1, a0 = 0, a1 = 1, a2 = −1, and g = 2, we obtain

the following results regarding the estimation of SMCV. When the two groups have

unequal variance, the MLE of SSMD (from Formula T2.1 in Theorem 2) is

β̂MLE = Ȳ1 − Ȳ2√
n1 − 1

n1
s 2

1 + n2 − 1

n2
s 2

2

(8.4)

the MM of SSMD (from Formula T2.2) is

β̂MM = Ȳ1 − Ȳ2√
s 2

1 + s 2
2

(8.5)
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From Formula T2.3, the asymptotical distribution of β̂MLE is β̂MLE ∼ N(β, σ 2
β̂

) where

σ̂ 2
β̂

=
n1−1

n2
1

s 2
1 + n2−1

n2
2

s 2
2

n1−1
n1

s 2
1 + n2−1

n2
s 2

2

+
(

(n1 − 1)2

n3
1

s 4
1 + (n2 − 1)2

n3
2

s 4
2

)
(X̄1 − X̄2)2

2
(

n1−1
n1

s 2
1 + n2−1

n2
s 2

2

)3 .

Thus the 1 − α confidence interval of β is β̂ ± Z α
2
σ̂β̂ [162]. Zα is defined such

that Pr(Z ≤ Zα) = 1 − α and Z is a standard normal distribution. This is an

approximation, especially when the sample size is small.

In a situation with unequal variance but equal sample size r in each group, from

Formula T2.4, we have

Ȳ1 − Ȳ2√
s 2

1 + s 2
2

r

∼ t
(
ν, β

√
r
)

approximately, ν = (r − 1)

(
s 2

1 + s 2
2

)2
s 4

1 + s 4
2

. (8.6)

Thus, regardless of whether the sample size is large or small, one can use the non-

central t-distribution in Formula 8.6 to get an approximate confidence interval, as

follows. Let Ft(ν,bλ)(·) be the cumulative distribution function of noncentral t(ν, bλ)

where b = √
r and ν is shown in Formula 8.6. Let Tobs be the observed value of T,

namely Tobs = √
r (Ȳ1 − Ȳ2)/

(√
s 2

1 + s 2
2

)
. Then we can find λL and λU such that

Ft(ν,bλL )(Tobs) = 1 − α
2 and Ft(ν,bλu)(Tobs) = α

2 ; subsequently (λL , λU ) is approx-

imately a 1 − α confidence interval of SMCV λ, and an approximate unbiased

estimate (from Formula T2.5 in Chapter 7) is

λ̂AUE =
√

2

ν

�
(ν

2

)
�

(
ν − 1

2

) Ȳ1 − Ȳ2√
s 2

1 + s 2
2

(8.7)

When the two independent groups have normal distributions with equal

variance, the UMVUE of unpaired SSMD [161] is and β̂UMVUE = (Ȳ1 − Ȳ2)
/√

2
K

(
(n1 − 1)s 2

1 + (n2 − 1)s 2
2

)
, K = 2 · (� ( N−2

2

)
/�
(

N−3
2

))2
when n1 ≥ 2, n2 ≥ 2.

From Figure 8.1, K ≈ N − 3.48. In primary HTS experiments, n1 = 1 for most

investigated siRNAs. s 2
1 does not exist when n1 = 1. In this case, the UMVUE

of unpaired SSMD is then β̂UMVUE = (Y11 − Ȳ2)
/√

2
K (n2 − 1)s 2

2 , where K = 2 ·(
�( n2−1

2 )/�( n2−2
2 )
)2 ≈ n2 − 2.48. If set (n1 − 1)s 2

1 = 0 when n1 = 1, then for both

n1 = 1 and n1 ≥ 2 (i.e., for n1 ≥ 1),

β̂UMVUE = Ȳ1 − Ȳ2√
2

K

(
(n1 − 1)s 2

1 + (n2 − 1)s 2
2

) (8.8)
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Figure 8.1 Find an approximation in the form of N-a for the constant K in the UMVUE of SSMD.

where K = 2 · (�( N−2
2 )/�( N−3

2 )
)2 ≈ N − 3.48, ν = N − 2. The MM estimate of

unpaired SSMD is

β̂MM = Ȳ1 − Ȳ2√
2

N − 2

(
(n1 − 1)s 2

1 + (n2 − 1)s 2
2

) (8.9)

T =

(
Ȳ1 − Ȳ2

)/√ 1

n1
+ 1

n2√
1

N−2

(
(n1 − 1)s 2

1 + (n2 − 1)s 2
2

) ∼ noncentral t

⎛
⎜⎜⎜⎜⎝N − 2,

√
2√

1

n1
+ 1

n2

β

⎞
⎟⎟⎟⎟⎠

(8.10)

The noncentral t-distribution in Formula 8.10 can be used to derive the confidence

interval of SSMD when the two groups have equal variances.

In confirmatory or primary screens with replicates, we are interested in the paired

difference between an siRNA and a negative reference in each plate. The SSMD

corresponding to paired difference is called paired SSMD, as compared with unpaired

SSMD. Suppose we observe n pairs of samples, (Y11, Y21), (Y12, Y22), . . . , (Y1n, Y2n)

from populations P1 and P2, respectively. Let Dj be the difference between the

jth pair of samples, namely D j = Y1 j − Y2 j . Let D̄ and s D be the sample mean

and sample standard deviation of D, respectively, namely D̄ = 1
n

∑n
j=1 D j and

s 2
D = 1

n−1

∑n
j=1 (D j − D̄)2. Assume that D is normally distributed, namely D ∼

N(μD, σ 2
D). Applying Theorem 2 with g = 1, m = 1, a0 = 0, a1 = 1, n1 = n, Ȳ1 = D̄,
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and s 2
1 = s 2

D , we have the MM, MLE, and UMVUE of the paired SSMD being (from

T2.6–T2.8):

β̂UMVUE =
�

(
n − 1

2

)

�

(
n − 2

2

)√ 2

n − 1

D̄

s D
(8.11)

β̂ML E =
√

n

n − 1

D̄

s D
, (8.12)

β̂MM = D̄

s D
, (8.13)

respectively, and (from T2.9)

T =
√

nD̄

s D
∼ noncentral t(n − 1,

√
nβ). (8.14)

Given this noncentral distribution T in Formula 8.14, we can obtain the confidence

interval of SSMD β. That is, let Ft(ν,bβ)(·) be the cumulative distribution function

of noncentral t(ν, bβ) (where ν = n − 1 and b = √
n) and Tobs be the observed

value of T. Then we can find βL and βU such that Ft(ν,bβL )(Tobs) = 1 − α
2 and

Ft(ν,bβu)(Tobs) = α
2 ; subsequently (βL , βU ) is a 1 − α confidence interval of SSMD β.

Note that traditional contrast analysis relies on point estimate D̄, 1 − α confidence

interval D̄ ± Tn−1,
α
2

SD√
n

of μD , and p-value based on T = √
n D̄

s D
∼ central t (n − 1)

under H0 : μD = 0, which can be applied to the inference of mean difference.

8.3 Comparing SSMD with Standardized Mean Difference and Classical t-Statistic

8.3.1 Classical t-Test and Standardized Mean Difference

The classical t-test for testing mean difference has been widely used for the com-

parison of two groups. This t-test is based on the t-statistic that has the following t

distributions from T2.11 and T2.13. Under the null hypothesis of H0 : μ1 = μ2 (or,

equivalently, H0 : μD = μ1 − μ2 = 0),

t-statistic =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȳ1 − Ȳ2√(
1

n1
+ 1

n2

)(
n1 − 1

N − 2
s 2

1 + n2 − 1

N − 2
s 2

2

) ∼ t(N − 2), if equal variance;

Ȳ1 − Ȳ2√
s 2

1

n1
+ s 2

2

n2

∼ t(ν) approximately, if not equal variance;

(8.15)
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where ν is the integer part of (s 2
1 /n1+s 2

2 /n2)
2

(s 2
1 /n1)2

/
(n1−1)+(s 2

2 /n2)2
/

(n2−1)
according to the Satterth-

waite option. The z-score method is based on normal approximation. When n1 and

n2 are both large,

z-score = Ȳ1 − Ȳ2√
s 2

1

n1
+ s 2

2

n2

∼ N(0, 1) (8.16)

under the null hypothesis. In the situation with equal sample sizes in the two samples,

namely n1 = n2 = N
2 , Formula 8.15 becomes

t-statistic = Ȳ1 − Ȳ2√
2

N
(s 2

1 + s 2
2 )

∼ t(ν) approximately (8.17)

where ν is N – 2 if equal variance and is the integer part of N−2
2

(s 2
1 +s 2

2 )2

s 4
1 +s 4

2
if not equal

variance, and Formula 8.16 becomes

z-score = Ȳ1 − Ȳ2√
2

N
(s 2

1 + s 2
2 )

∼ N(0, 1) (8.18)

Formulas 8.15 and 8.16, and especially Formulas 8.17 and 8.18, clearly indicate that

sample size strongly affects the t-statistic and z-score. That is, sample size and mag-

nitude of difference are indistinguishable in the statistical significance (i.e., p-value

from a t-test or z-score). As a result, we may obtain a significant result in an experi-

ment with a very small magnitude of difference but a large sample size, whereas we

may obtain a nonsignificant result in an experiment with a large magnitude of differ-

ence but a small sample size. Thus the p-values are hardly comparable from various

experiments with different sample sizes. Largely due to this feature in the statistical

significance, the use of t-statistic for the comparison of two groups has been inten-

sively criticized in medical and social sciences [4;26;34;55;75;76;84;107;114;141].

Thus effect size has been proposed for group comparisons [32;53;153].

There are various types of effect sizes. One popular type is standardized mean

difference, namely d = μ1−μ2

σ
(cf. [33;67]). The widely used estimate is

Cohen’s d = Ȳ1 − Ȳ2√
1

N − 2

(
(n1 − 1)s 2

1 + (n2 − 1)s 2
2

) (8.19)

When there are treatment and control groups, Glass [53] suggested using sample

standard deviation in the control group. That is, assuming the second group is the

control group,

Glass’s δ = Ȳ1 − Ȳ2

s2
(8.20)
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0 p β̂ β t ∞
( )

Figure 8.2 The moving trends of SSMD estimate β̂ , the bounds of its confidence interval (CI), t-statistic,

and p-value as sample size N increases. The parentheses denote the CI bounds. β denotes

the true value of SSMD. As N → ∞, t-statistic approaches ∞ or −∞ and p-value approaches

zero; however, the estimate β̂ and the CI lower and upper bounds all approach β .

The two estimates in Equations 8.19 and 8.20 are all based on the assumption of

equal variances in the two groups. Standardized mean difference has rarely been

investigated in a situation in which the two groups have unequal variances, although

Cohen [32] proposes the definition of d = (μ1 − μ2)/
√

(σ 2
1 + σ 2

2 )/2 for standard-

ized mean difference in this situation.

8.3.2 Comparing SSMD with Classical t-Test

From Formulas 8.17, 8.18, 8.8 and 8.9, in the situations with equal sample sizes, the

relationship between t-statistic (or z-score) and SSMD estimate can be as simple as

t-statistic =
√

N

2
β̂MM =

√
N

2

√
N − 2

K
β̂UMVUE, (8.21)

which indicates that t-statistic and associated p-value are affected not only by the

magnitude of difference, but also by sample size. In general, when there is even any

tiny mean difference, larger sample size (N) leads to large absolute value of t-statistic

and smaller p-value. In fact, as N → ∞, t-statistic value approaches ∞ or −∞ and

p-value approaches to 0 (Figure 8.2). By contrast, as sample size increases, the SSMD

estimate approaches the true SSMD value in probability (Figure 8.2). Sample size

can only impact the precision of β̂ in representing β. Thus we can still have the

benefit of increasing sample size in an experiment: increasing the precision of SSMD

estimation. When there are unequal sample sizes in the two groups, the relationship

between t-statistic and SSMD estimate can be complicated; however, the moving

trends of SSMD estimate, t-statistic, and p-value are still the same, as illustrated in

Figure 8.2.

In traditional methods for testing mean difference μD using t-statistic or z-

score, one may also use both the point estimate and confidence interval of μD .

However, they will lead to the same misleading results as the use of p-value for testing

mean difference. This is because as N → ∞, the point estimate and the upper and

lower bounds of the confidence interval all approach the population value of μD

(Figure 8.2), and it is well known that the mean difference μD alone cannot represent

the magnitude of difference between two groups.

Here I use a simple simulated example to illustrate the issues with the use of

p-value for testing mean difference and the point estimate and confidence interval

for mean difference. In this example, two studies are conducted to investigate two

treatments for reducing blood pressure. Suppose the blood pressures in people
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Figure 8.3 Population distributions of blood pressures in patients who received two treatments, treat-

ment 1 and treatment 2, and patients who received no treatment (i.e., control).

without treatment (i.e., controls), with treatment 1, and with treatment 2 have

normal distributions N(126, 42), N(118, 162), and N(120, 22), respectively. The

interest is in the difference between blood pressure with a treatment and without a

treatment. In study 1, there are 800 people without treatment and 800 with treatment

1; in study 2, there are 100 people without treatment and 100 with treatment 2.

Given the two simulated studies, the p-value for testing no mean difference

between treatment 1 and control is 6 × 10−42; the mean difference between treat-

ment 1 and control is estimated to be −8.10, and its 95% confidence interval is

(−9.22, −6.99). By contrast, the p-value for testing no mean difference between

treatment 2 and control is 2 × 10−21; the mean difference between treatment 2 and

control is estimated to be −5.88 and its 95% confidence interval is (−6.88, −4.88).

If one judges based on p-value, the estimate of mean difference, and its confidence

interval, one would easily conclude that treatment 1 is better than treatment 2 in

reducing blood pressure. This is because treatment 1 has a much smaller p-value and

a larger amount of reduction in blood pressure on average and because the upper

bound of the confidence interval for treatment 1 is smaller than the lower bound of

the confidence interval for treatment 2. However, the comparison of distributions

clearly reveals that treatment 2 is better than treatment 1, even though treatment 2

has a smaller amount of reduction on average (Figure 8.3).

Using Formula 8.4, the MLE estimate and 95% confidence interval of SSMD are

–0.506 and (–0.579, –0.433), respectively, for treatment 1 and –1.308 and (–1.582,

–1.0346), respectively, for treatment 2, which correctly indicate that treatment 2

has a large effect whereas treatment 1 has only a medium effect in reducing blood

pressure. The use of d+-probability also reaches a similar result. For treatment 1, the

d+-probability is 0.69, which means that the chance that patients receiving treatment
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1 have lower blood pressure than those who did not receive a treatment is 69%. In

contrast, for treatment 2, the d+-probability is 0.90, which means that the chance

that patients receiving treatment 2 have lower blood pressure than those who did

not receive a treatment is 90%. Thus the d+-probability indicates that there is a

much larger chance of reducing blood pressure for a person taking treatment 2 than

another person taking treatment 1. All these indicate that SSMD and d+-probability

provide a potentially better alternative to evaluate treatment effect than p-value and

confidence interval of mean difference in traditional approaches.

In many studies, the real interest is the magnitude of difference, not sample

size. In those studies, the p-value is actually not comparable across experiments with

different sample sizes. Therefore, applying the same cutoff criterion such as a p-value

of 0.05 cannot address the question of interest in many studies. In drug development,

a p-value of 0.05 or 0.01 has been used to indicate safety and efficacy. We must be

aware that even if there is only minor toxicity, a large sample size can lead to a very

small p-value; on the other hand, mid-grade or major toxicity may not result in

a small p-value if the sample size is small. The p-value or statistical significance is

therefore not a good indication for drug safety and efficacy.

8.3.3 Comparing SSMD with Standardized Mean Difference

In a situation in which two groups do not have correlation, the relationship between

Cohen’s d and SSMD is

d =
√

2β. (8.22)

Thus far, no research has been conducted to investigate standardized mean difference

in a situation in which two groups have correlations. The definition of SSMD is

applicable not only in independent groups, but also in correlated groups. For two

correlated groups, we can either estimate the covariance σ12 between two groups or

use paired sample to estimate SSMD directly on the basis of paired differences. In

addition, SSMD can be extended to comparison involving more than two groups

[163;167;170]. Therefore, SSMD has a broader utility than Cohen’s d in two-group

comparisons.

SSMD has two clear and meaningful interpretations when it is used to assess

the magnitude of difference between two groups. The first interpretation is that it

is the ratio of mean to standard deviation of a random variable representing the

difference between two groups, and the second interpretation is that it reflects the

probability that a random value from the first group is larger than a random value

from the second group, namely d+-probability [161;162;165]. When the data are

normally distributed in both groups, d+-probability = �(β), where �(·) is the

cumulative density function of the standard normal distribution. When the data are

not normally distributed, there is still a relationship between d+-probability and β

[166]. Because of clear and meaningful interpretations of SSMD, we can construct

meaningful and interpretable SSMD-based criteria for classifying the magnitude
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of the difference between two groups, namely |β| ≥ 1.645 for extra large, 1.645 >

|β| ≥ 1 for large, 1 > |β| ≥ 0.5 for medium large, 0.5 > |β| > 0.25 for medium, and

|β| ≤ 0.25 for small under normality assumption [167]. That is, an extra-large effect

for a comparison indicates that a ratio of mean to variability of a contrast variable

representing the comparison is at least 1.645, a large effect indicates a mean-to-

variability ratio between 1 and 1.645, a medium-large effect indicates a mean-to-

variability ratio between 0.5 and 1, a medium effect indicates a mean-to-variability

ratio between 0.25 and 0.5, and a small effect indicates a mean-to-variability ratio

between 0 and 0.25. Under normality assumption, these SSMD-based criteria can

be interpreted using probability as follows. An extra-large effect means that the

probability of a value from the first group being greater than a value from the second

group is greater than 0.95 in the positive direction of the difference and is less than

0.05 in the negative direction. A large effect means that this probability (i.e., d+-

probability) is between 0.84 and 0.95 in the positive direction and between 0.05 and

0.16 in the negative direction. A medium-large effect means that this probability is

between 0.7 and 0.84 in the positive direction and is between 0.16 and 0.3 in the

negative direction. A medium effect means that this probability is between 0.6 and

0.7 in the positive direction and is between 0.16 and 0.3 in the negative direction.

Finally, a small effect means that this probability is between 0.5 and 0.6 in the positive

direction and is between 0.40 and 0.50 in the negative direction.

Given the relationship between SSMD and standardized mean difference, the

original and probability meanings of SSMD also give clear interpretations to Cohen’s

and McLean’s criteria [33;104]. Cohen’s d = 0.20, 0.50, and 0.80 correspond to SSMD

= 0.1414, 0.3536, and 0.5656, respectively, and d+-probability = 0.556, 0.638, and

0.714, respectively. Hence Cohen’s small, medium, and large effects have a mean-to-

variability ratio of 14.14%, 35.36%, and 56.56%, respectively, and a d+-probability

of 0.556, 0.638, and 0.714, respectively, under normality. In other words, if one

randomly draws one value from each of two groups, Cohen’s small, medium, and

large effects indicate that the chance that the value from the first group is greater

than that from the second group is 0.556, 0.638, and 0.714, respectively, in the

positive direction. Cohen’s d = (0, 0.50), (0.50, 1.00), and (1.00, ∞) correspond

to SSMD = (0, 0.3536), (0.3536, 0.7071), and (0.7071, ∞), respectively, and d+-

probability = (0.50, 0.64), (0.64, 0.76), and (0.76, 1), respectively. That is, McLean’s

small, moderate, and large effects have a mean-to-variability ratio between 0% and

35.36%, between 35.36% and 70.71%, and greater than 70.71%, respectively. Given

the d+-probability, if one randomly draws one value from each of two groups,

McLean’s small, moderate, and large effects indicate that the chance that the value

from the first group is greater than that from the second group is between 0.5 and 0.64,

between 0.64 and 0.76, and greater than 0.714, respectively, in the positive direction.

Therefore, SSMD criterion gives interpretations to Cohen’s and McLean’s criteria

from both strength and probability perspectives. The small, medium, and large

effects based on Cohen’s criteria are, respectively, small, medium, and medium large
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effects based on SSMD. McLean’s small and medium effects are roughly equivalent

to SSMD’s small and medium effects, respectively. McLean’s large effects contain

SSMD’s medium large, large, and extra large effects.

In summary, when two groups are independent, there is a simple relationship

between Cohen’s d and SSMD. However, Cohen’s d cannot be applied to a situation

in which two groups are not independent, whereas SSMD can readily be applied to

measure the magnitude of difference when groups are correlated. Therefore, SSMD

has a broader utility than standardized mean difference. In addition, SSMD has

clear and meaningful interpretations. These interpretations also provide a base for

interpreting Cohen’s criterion. Therefore, SSMD not only has a broader utility than

Cohen’s d in measuring effect sizes, but also offers a good interpretation to Cohen’s

and McLean’s criteria for classifying effect size.

8.4 SSMD-Based Ranking Methods for Hit Selection in Genome-Scale RNAi
Screens

There are two main strategies for selecting hits with large effects. One is to use

certain metric(s) to rank the siRNAs by their effects and then to select the largest

number of potent siRNAs that is practical for confirmation and validation assays.

The other strategy is to test whether an siRNA has strong enough effects to reach a

pre-set specified effect in which we need to control the FNRs and/or FPRs. In the

first strategy, traditionally, two types of measures are used to rank siRNA effects.

One is mean difference, along with its variants such as signal-to-noise ratio and

percent inhibition, and the other is p-value from either z-score method or t-test

of testing mean difference. The first measure cannot represent the magnitude of

difference because it does not effectively capture data variability [159;162;165]. When

statistical significance is used, the p-value comes from testing the hypothesis of no

mean difference between two groups. It addresses the question of whether an siRNA

has exactly the same effect as the negative reference based on the sample observation.

It is not designed to measure how large the magnitude of difference is [34;84]. Thus

an siRNA effect that results in a low p-value may not cause a robust enough effect on

the assay to indicate any meaningful biological association. Therefore, neither mean

difference nor p-value can represent the magnitude of difference.

Zhang [162] proposed SSMD as a better metric to measure the magnitude of

difference. As described in the previous sections, unlike mean difference and per-

cent inhibition, SSMD is robust to both measurement unit and strength of positive

controls; it takes into account data variability in both compared groups and has a

probability interpretation [161;162]. Compared with p-value, SSMD directly mea-

sures how large the magnitude of difference is [165]. Therefore, SSMD can serve

as an effective metric to rank siRNA effects. Consequently, when using the ranking

strategy for selecting hits, we can select the manageable number of siRNAs with the

largest SSMD value in the up-regulated direction and/or siRNAs with the smallest
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SSMD value in the down-regulated direction. When sample size is large, we can

further use the classifying criteria listed in Table 7.2 of Chapter 7 to group siRNAs

on the basis of their effect sizes. When the sample size is small, we need to control

FPRs and FNRs, as described in the following section.

8.5 SSMD-Based FPR, FNR, and Power

8.5.1 FPR, FNR, and Power in RNAi Screens

In genome-scale RNAi screen experiments, the primary interests are (i) the assess-

ment of the magnitude of impact on a biological response related to the knockdown

of a gene, and (ii) the selection of siRNAs with large effects on the biological response

of interest. The key is to search an analytic metric to effectively quantify knockdown

effect and then to construct a selection criterion based on this metric to control FPRs

and FNRs.

It is well known that cells are controlled by dynamic actions of thousands of genes

that are related through a complex interaction. Because of the existence of gene

networks, the knockdown of any gene by its corresponding siRNA(s) may affect

other genes, even though the size of effect may differ. Thus, in a broad sense, an

siRNA rarely has exactly no impact on a measured biochemical response, although

most siRNAs have small effects in a genome-scale RNAi screen. Therefore, there are

two major concerns for hit selection in RNAi HTS experiments. First, we do not

want the siRNAs with large effects to be selected as non-hits. Second, we do not want

the siRNAs with small effects to be selected as hits. The rate in which the siRNAs with

small effects are selected as hits is the FPR, and the rate in which the siRNAs with

large effects are not selected as hits is the FNR (see also Chapter 5). To control FPR

and FNR, we first need a metric that effectively measures the size of siRNA effects.

Mean difference, fold change, percent viability, p-value, and other similar measures

cannot effectively measure the size of siRNA effects (represented by the magnitude of

difference between an investigated siRNA and a negative reference), whereas SSMD

can [161;162;165;166;175].

Because SSMD can effectively measure the size of siRNA effects and its value is

comparable across experiments[161;162;165;181], we can use a value β1 of SSMD

to indicate large effects and another value β2 of SSMD to indicate small effects.

Given the original and probability meanings of SSMD, the values of interest for

β2 may be 0, 0.25, or 0.5 and those for β1 may be 1.645, 2, 3, or 5 for SSMD

across various HTS experiments [161;167]. For selecting hits with positive effects,

we may use the decision rule of declaring an siRNA as a hit if it has β̂ ≥ β∗ (where

β̂ is estimated SSMD value and β∗ is a cutoff) and as a non-hit otherwise. In this

selection process, FPR is the probability of selecting an siRNA with β ≤ β2 as a

hit, namely Pr(Declare a hit given β ≤ β2). Clearly, in this selection process, the

smaller the β value, the smaller the FPR; consequently, given β ≤ β2, the maxi-

mum of FPR is achieved when β = β2. This maximal FPR is the FPL. In other
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Figure 8.4 SSMD intervals for classical hypothesis testing and error control. (A) Two intervals used in

a typical hypothesis test in which β0 is usually fixed. (B) Three intervals for the flexible and

balanced control of FPR and FNR in which β1 and β2 are not fixed to a single value and

multiple values of β1 and β2 are considered simultaneously, as in an SSMD-based method.

words, the upper limit of FPR given β ≤ β2 in a selection process is FPL[161].

Similarly, FNR is the probability of not selecting an siRNA with β ≥ β1 as a hit,

namely Pr(Not declare a hit given β ≥ β1). The upper limit of FNR given β ≥ β1 in

this selection process is the FNL[161], which is achieved when β = β1. Note, FPL

becomes classical false positive level when β1 = β2. Because the true value of β is

unknown for each siRNA, what we can control are FPL and FNL. FPL and FNL

are also what we really want to control because if we control FPL = α1 for β ≤ β2

and control FNL = α2 for β ≥ β1, then the FPRs for all siRNAs with β ≤ β2 are

controlled to be no more than α1 and the FNRs for all siRNAs with β ≥ β1 are

controlled to be no more than α2.

8.5.2 Classical Hypothesis Test and SSMD-Based Error Control Method

FNR and FPR may also be linked to type I and II error rates under certain conditions

[178]. To understand the differences and links between the concepts of FNR and

FPR and the concepts of type I and II error rates, we need to explore the difference

between classical hypothesis tests and the SSMD-based error control methods. Their

major differences are briefly described as follows. First, the SSMD-based method

focuses on the control of error rates related to intervals I1 and I3 in Figure 8.4B,

whereas classical hypothesis tests aim at the control of error rates in intervals I1

and I2 in Figure 8.4A. Second, for the error control in the SSMD-based method, β1

and β2 are not fixed to a single value; instead, multiple meaningful values β1 and

β2 for the parameter β are considered simultaneously. Third, the classical z-score
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method or t-test for hit selection usually aims at testing mean difference, fold change,

percent viability, and so forth, whereas SSMD-based error control methods aim at

SSMD. More details about the difference between the classical hypothesis test and

the SSMD-based error control method are described below.

In a classical hypothesis test, there are two hypotheses: (i) a null hypothesis H0

and (ii) an alternative hypothesis Ha . The alternative hypothesis is the complement

of the null hypothesis. For example, the hypothesis testing for a parameter β may

be constructed in the following three ways: (i) a two-sided test H0 : β = β0 vs.

Ha : β 
= β0, (ii) a one-sided test H0 : β ≤ β0 vs. Ha : β > β0, and (iii) a one-sided

test H0 : β ≥ β0 vs. Ha : β < β0. These hypothesis tests focus on testing a fixed

value c for β, as illustrated in Figure 8.4A. The type I error rate is the probability of

rejecting H0 when H0 is correct (or given the true value in H0), and the type II error

rate is the probability of not rejecting H0 when Ha is correct. The power of a test is

the probability of rejecting H0 when Ha is correct. Thus power = 1 – type II error

rate. The maximum of the type I error rate given any true value in H0 is called the

type I error level; similarly, the maximum of type II error rate given any true value

in Ha is called the type II error level.

Because Ha is the complement of H0 in a classical hypothesis test, the control of the

type I error level in a specified decision rule leads to the determination of the type II

error level. For example, suppose an estimate β̂ has a normal distribution. For a one-

sided test H0 : β ≤ β0 vs. Ha : β > β0, a decision is as follows: reject H0 in favor of Ha

if β̂ > β∗ and its corresponding type I error rate is Pr(β̂ > β∗|H0). If the type I error

level is α, then β∗ = c + Zασ̂β̂ , where Zα is the upper αth quantile of the standard

normal distribution (i.e., �(Zα) = 1 − α where �(·) is the cumulative distribution

function of the standard normal distribution) and σ̂β̂ is the estimated standard

deviation of β̂. The corresponding type II error rate is Pr(β̂ ≤ β0 + Zασ̂β̂ |Ha ) =
Pr(β̂ ≤ β0 + Zασ̂β̂ |β > c) ≤ �(Zα) = 1 − α. Thus, once the type I error level is

set to be α, then the type II error level is determined to be 1 − α. That is why it is

impossible to control both type I and II error levels simultaneously in a classical test

for a given data set.

By contrast, for the error control in the SSMD-based method, β1 and β2 are not

fixed to a single value (Figure 8.4B); instead, multiple meaningful values β1 and β2

for the parameter β are considered simultaneously. Let us focus on the situation

where β1 > β2 ≥ 0. The interest is to determine a decision rule in selecting hits with

large positive effects (namely, to declare a hit if β̂ ≥ β∗) so that both

Pr(Declare a hit | β ≤ β2) (8.23)

and

Pr(Not declare a hit | β ≥ β1) (8.24)

are under control. In other words, the core idea is to select a set of values for (β∗,

β1, β2) such that both Pr(β̂ ≥ β∗|β ≤ β2) and Pr(β̂ < β∗|β ≥ β1) are reasonably
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low. The rationale behind this approach is the consideration of two major concerns

in the process of selecting the siRNAs with a large effect in RNAi HTS experiments.

First, we do not want the siRNAs with large effects to be selected as non-hits.

Second, we do not want the siRNAs with small effects to be selected as hits. The

probabilities Pr(Declare a hit|β ≤ β2) and Pr(Not declare a hit|β ≥ β1) are FPR and

FNR, respectively; their upper limits are FPL and FNL, respectively [161]. When

β1 = β2, FPR becomes classical false positive rate and FPL becomes classical false

positive level.

8.5.3 Controlling FPR and FNR in Genome-Scale RNAi Screens

To use the SSMD-based method for selecting hits in the direction of positive values

in HTS assays, we need to search for a threshold β∗ for the estimated SSMD β̂ to

maintain a balanced control of both FPL and FNL when we use the decision rule of

declaring an siRNA as a hit if it has β̂ ≥ β∗ and as a non-hit otherwise. The search

for the decision rule relies on the distribution of SSMD estimates. When sample size

is large, the estimate of SSMD has approximately a normal distribution [162]. Given

β∗, β1, and β2, we have

FPL = 1 − �

(
β∗ − β2

σ̂β̂

)
(8.25)

FNL = �

(
β∗ − β1

σ̂β̂

)
(8.26)

where σ̂
β̂

can be calculated using the formulas provided in Zhang [162], and �(·)
is the cumulative distribution function of the standard normal distribution. In a

primary HTS experiment with no replicates for each siRNA, one approximated

value for σ̂
β̂

is
√

1
2 + 1

4n2

(X̄1−X̄2)2

s 2
2

, or simply
√

1
2 , when the number of sample wells

in a plate is large (e.g., n2 ≥ 100). When sample size is small, normal approximation

cannot work effectively. However, we can use noncentral t-distribution to calculate

FPL and FNL, as described in Zhang [165]. Given β∗, β1, and β2, we have

FPL = 1 − Ft(ν,bβ2)

(
β∗

k

)
(8.27)

FNL = Ft(ν,bβ1)

(
β∗

k

)
(8.28)

where t(ν, bβ) is a noncentral t-distribution with ν degrees of freedom and non-

central parameter bβ and Ft(ν,bβ) (·) is the cumulative distribution function of

t(ν, bβ). The values of k, ν and b are different for unpaired and paired differ-

ences as described next. For an unpaired difference mainly in a primary screen, we
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can use Formula 8.8 or 8.9 to calculate the estimated values of SSMD. Based on For-

mula 8.10, T = (Ȳ1 − Ȳ2)/
(√

((n1 − 1)s 2
1 + (n2 − 1)s 2

2 )/(N − 2) ·
√

1
n1

+ 1
n2

) ∼
noncentral t(ν, bβ), where ν = N − 2, b = √

2/
√

1
n1

+ 1
n2

; k =
√

K
2(N−2)

(
1

n1
+ 1

n2

)
when using UMVUE of SSMD and k =

√
1
2 ( 1

n1
+ 1

n2
) = 1

b when using MM estimate

of SSMD. For a paired difference in a confirmatory or primary screen with repli-

cates, we can use Formula 8.11 to calculate the estimated values of SSMD. Based

on Formula 8.14, T = √
nD̄/s D ∼ noncentral t(ν, bβ), where ν = n − 1, b = √

n;

k = �( n−1
2 )/�( n−2

2 )
√

2
n(n−1) when using UMVUE of SSMD and k =

√
1
n = 1

b when

using MM estimate of SSMD.

In the SSMD-based method for maintaining a balanced control of both FPR

and FNR, β1 and β2 are not fixed to a single value. To search a decision rule for

hit selection, one approach is, given a critical value, to calculate FPLs with respect

to certain meaningful β2’s using Formula 8.25 or 8.27 and FNLs with respect to

certain meaningful β1’s using Formula 8.26 or 8.28; then choose a critical value that

researches acceptable FPL and FNL. There are two additional approaches: (i) pre-set

β1 and FNL and then search β∗, β2, and FPL based on the relationships among β∗,

β1, β2, FNL, and FPL; (ii) pre-set β2 and FPL and then search β∗, β1, and FNL. For

example, under the assumption of normality, given β1 and FNL, we can search β∗,

β2, and FPL using

β∗ = β1 − ZFNLσ̂β̂ (8.29)

FPL = �

(
ZFNL − β1 − β2

σ̂β̂

)
. (8.30)

On the other hand, given β2 and FPL, we can search β∗, β1, and FNL using

β∗ = β2 + ZFPLσ̂β̂ (8.31)

FNL = �

(
ZFPL + β2 − β1

σ̂β̂

)
. (8.32)

The reason why we can let the search begin with either β1 or β2 is because the

intervals I1 and I3 (specified by β1 and β2, respectively) shown in Figure 8.4 are

treated equally in the SSMD-based method.

Similar to Formulas 8.29, 8.30, 8.31, and 8.32, the following formulas can be

obtained when sample size is small, such as in a confirmatory or primary screen with

replicates.

β∗ = k Qt(ν,bβ1)(FNL) (8.33)

FPL = 1 − Ft(ν,bβ2)

(
Qt(ν,bβ1)(FNL)

)
(8.34)
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Figure 8.5 False-positive level (FPL) and false-negative level (FNL) displayed in two cases: one controlling

FNL = 0.05 with respect to β1 = 3 (A) and the other controlling FPL = 0.05 with respect to

β2 = 0.25 (B).

and

β∗ = k Qt(ν,bβ2)(1 − FPL) (8.35)

FNL = Ft(ν,bβ1)

(
Qt(ν,bβ2)(1 − FPL)

)
(8.36)

where Ft(ν,bβ) (·) and Qt(ν,bβ)(α) are the cumulative distribution function and the

α quantile of t(ν, bβ). Figure 8.5A shows the use of Formulas 8.33 and 8.34 to

search β∗, β2, and FPL given β1 and its corresponding FNL being 0.05 in a screen

with triplicates for each investigated siRNAs or pools. Figure 8.5B shows the use of

Formulas 8.35 and 8.36 to search β∗, β1, and FNL given β2 and its corresponding

FPL being 0.05 in a screen with triplicates for each investigated siRNAs or pools.

One can interpret FNR as type I error rate and FPL as type II error or 1 –

power(β2) based on the hypotheses H0 : β ≥ β1 vs. Ha : β < β1. With regard to

these hypotheses, rejecting the null hypothesis means not declaring a hit. Thus type

I error is Pr(Not declare a hit | H0 : β ≥ β1) and the power with respect to β2 is

Pr(Not declare a hit | β = β2 < β1). Clearly, FNR = type I error and FPL = 1 –

power(β2). This interpretation comes from the approach of using Formulas 8.29 and

8.30 to search a set of values for (β∗, β1, β2, FNL, and FPL) for maintaining a flexible

and balanced control of both FPR and FNR. And it works only when β1 is fixed. On

the other hand, if we use Formulas 8.31 and 8.32, we can similarly derive another

interpretation for FPR and FNR, namely interpreting FPR as type I error rate and

FNR as type II error rate when β2 is fixed. The second interpretation matches with
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the terms of type I and type II errors in classical z-score method and t-test for hit

selection better than the first interpretation. The reason is as follows.

Considering the one-sided z-score method for selecting hits with large positive

effects, the hypotheses are H0 : β ≤ 0 vs. Ha : β > 0. Suppose we set β2 = 0; then

the hypotheses become H0 : β ≤ β2 vs. Ha : β > β2. Assuming β̂ approximately has

a normal distribution with mean β and variance σ̂ 2
β̂

, the corresponding type I error

rate is

Pr(declare a hit | H0) = Pr(β̂ ≥ β∗|β ≤ β2) ≤ 1 − �

(
β∗ − β2

σ̂β̂

)
(8.37)

If the type I error level is set to be α, we have

β∗ = β2 + Zασ̂β̂ (8.38)

and the type II error level is 1 − α. The type I error rate in Formula 8.37 has the

same form as the FPR in Formula 8.23 instead of the FNR in Formula 8.24, and the

critical value in Formula 8.38 has the same form as that in Formula 8.31 instead of

that in Formula 8.29.

8.5.4 p-Value and p∗-Value in RNAi Screens

When selecting up-regulated hits (i.e., siRNAs with large positive value) for an

siRNA with an observed value βobs of SSMD, given the true value of SSMD no

more than a small value β2, p-value is defined as the maximum probability of

selecting this siRNA as a hit if we use the following selection criterion: any siRNA

is selected as a hit if it has the estimated SSMD value no less than βobs and as

a non-hit otherwise. That is, p-value is the maximum of Pr(β̂ ≥ βobs | β ≤ β2),

namely p-value = Pr(β̂ ≥ βobs|β = β2). Based on the noncentral t-distribution of

T in Formula 8.10 or 8.14,

p-value = 1 − Ft(ν,bβ2)

(
βobs

k

)
(8.39)

where t(ν, bβ), ν, b, k and Ft(ν,bβ) (·) are as in Formula 8.28.

The preceding p-value corresponds to FPR with respect to β2. In parallel, for con-

venience, we can define p∗-value as the maximum of Pr(β̂ < βobs|β ≥ β1), namely

p∗-value = Pr(β̂ < βobs|β = β1), which corresponds to FNR with respect to β1

[169]. Based on the noncentral t-distribution of T in Formulas 8.10 or 8.14,

p∗-value = Ft(ν,bβ1)

(
βobs

k

)
. (8.40)

The values of β2 are 0 or 0.25, and the values of β1 are 3 or 5.

Similarly, when selecting down-regulated hits (i.e., siRNAs with small negative

value), for an siRNA with an observed value βobs of SSMD, the p-value with respect
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to β2 is the maximum of Pr(β̂ ≤ βobs|β ≥ β2), namely p-value = Pr(β̂ ≤ βobs|β =
β2); thus

p-value = Ft(ν,bβ2)

(
βobs

k

)
(8.41)

And the p∗-value w.r.t. β1 is, that is,

p∗-value = 1 − Ft(ν,bβ1)

(
βobs

k

)
. (8.42)

The values of β2 may be 0 or –0.25 and the values of β1 may be –3 or –5.

8.5.5 Controlling Power in RNAi Screens

For hit selection in RNAi HTS assays, we need to determine a decision rule corre-

sponding to a critical value β∗ so that we do not miss siRNAs with large effects while

not including siRNAs with no or small effects. As described previously, one way to

achieve this dual goal is to control both FNR and FPR. As an alternative, we may con-

trol both the power of selecting siRNAs with large effects and the power of avoiding

siRNAs with no or small effects. For convenience, let us call them power I and power

II, respectively. For selecting siRNAs with positive effects, power I is the probability

of selecting an siRNA with β ≥ β1 as a hit, namely Pr(Declare a hit given β ≥ β1),

and power II is the probability of not selecting an siRNA with β ≤ β2 as a hit, namely

Pr(Not declare a hit given β ≤ β2). Clearly, power I = 1 – FNR and power II = 1 –

FPR.

The power is the probability of rejecting a null hypothesis H0 when the true

value belongs to an alternative hypothesis Ha , namely Pr{Test rejects H0|β ∈ Ha},
which is equal to 1 − type II error rate. However, a power function is the plot of

Pr{Test rejects H0|β} versus β, whether β falls in H0 or Ha , not just power versus β

when β falls in Ha [149]. For convenience, let power denote Pr{Test rejects H0|β} for

any value of β, not just for β in Ha .

Considering the null hypothesis H0 : β ≤ β2, given a critical value β∗,

Pr{Test rejects H0|β} = Pr{β̂ > β∗|β} = 1 − Pr{β̂ ≤ β∗|β}. That is,

power = 1 − Ft(ν,bβ)

(
β∗

k

)
(8.43)

where t(ν, bβ), ν, b, k and Ft(ν,bβ) (·) are as in Formula 8.28. Traditionally, to get a

power function, we have to fix a critical value β∗. One way to specify the critical value

is to control the corresponding type I error level (which is FPL with respect to β2)

to be α, which leads to β∗ = k Qt(ν,bβ2)(1 − α) where Qt(ν,bβ)(α) is the α quantile of

t(ν, bβ); consequently,

power = 1 − Ft(ν,bβ)

(
Qt(ν,bβ2)(1 − α)

)
(8.44)
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Clearly, the power function depends not only on β, but also on β2. If β = β1,

then power = 1 − FNL. For β2 = 0, power = 1 − Ft(ν,bβ)

(
Qt(ν)(1 − α)

)
, which is

a function of α and β.

Similarly, considering the null hypothesis H0 : β ≥ β1, we have

Pr{Test rejects H0|β} = Pr{β̂ < β∗|β}. That is

power = Ft(ν,bβ1)

(
β∗

k

)
(8.45)

If the corresponding type I error rate (i.e., FNL with respect to β1) is controlled to

be α, then β∗ = k Qt(ν,bβ1)(α); consequently,

power = Ft(ν,bβ)

(
Qt(ν,bβ1)(α)

)
(8.46)

If β = β2, then power = 1 − FPL. For β1 = 3,

power = Ft(ν,bβ)

(
Qt(ν,3b)(α)

)
(8.47)

Traditional power function is the plot of power versus possible true value of β.

However, our interest in hit selection is to determine a critical value or cutoff for

selecting effective siRNAs. To search a critical value for selecting effective siRNAs,

the best strategy is first to plot power versus critical value β∗, not β, and then to find

the value of β∗ that achieves a desired power. Clearly, traditional power function

works neither effectively nor directly in searching β∗ for selecting effective siRNAs.

If we fix β, we can get the plot of power versus β∗. For example, to select siR-

NAs with positive effects, the minimal power for selecting siRNAs with β ≥ β1,

corresponding to a critical value β∗ (i.e., power I), is

power I = 1 − Ft(ν,bβ1)

(
β∗

k

)
(8.48)

for a fixed β1. Similarly, the minimal power for selecting siRNAs with β ≤ β2 corre-

sponding to a critical value β∗ (i.e., power II) is

power II = Ft(ν,bβ2)

(
β∗

k

)
(8.49)

for a fixed β2. The plots of powers versus β∗ for selecting up-regulated hits with

respective to β1 = 1.28, 1.645, 2, 3, 5 and β2 = 0, 0.25 are displayed for a screen

with triplicates per siRNA in Figure 8.6A and for a screen with six replicates per

siRNA in Figure 8.6B. Based on Figure 8.6, a critical value β∗ between 0.5 and 1.28

may lead to reasonably high powers (i.e., power I) for selecting siRNAs with large

effects (black curves) and reasonably high powers (i.e., power II) for avoiding siRNAs

with small effects.
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A: Powers in screens with triplicates per siRNA
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B: Powers in screens with six replicates per siRNA
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Figure 8.6 Powers for selecting siRNAs with large effects (A1, B1) and powers for avoiding siRNAs with

small effects (A2, B2) in siRNAs screens.
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Table 8.1. Traditional false positives and false negatives in m simultaneous tests for the

construction of FDR in the up-regulated direction

Declared Non-Significant Declared Significant Total

Non-interesting

(β < β0 or μ < μ0)

U

(No. of true negatives)

V

(No. of false positives)

m0

Interesting

(β ≥ β0 or μ ≥ μ0)

T

(No. of false negatives)

S

(No. of true positives)

m − m0

Total m − R R m

8.6 FDR and FNDR in RNAi Screens

8.6.1 Basic Concepts of FDR

All the methods described above control FPR and FNR on the basis of a single test.

Given that a large number of siRNAs are tested in a genome-scale RNAi screen, the

FPR will be inflated. Hence one issue in these methods is the adjustment of error

rates in multiple hypothesis testing. The simplest adjustment may be the Bonferroni

correction [15], which is the FPR for a single test divided by the total number of tests

conducted. Currently, the most effective method for adjusting for the multiplicity

issue is the use of FDR.

Traditionally, the FDR is defined as in Table 8.1. Consider the problem of simulta-

neous testing m null hypotheses, of which m0 are noninteresting (i.e., β < β0 if using

SSMD or μ < μ0 if using mean difference) when the interest is in up-regulation.

False positives are the siRNAs with β < β0 (or μ < μ0) among the significants and

false negatives are those with β ≥ β0 (or μ ≥ μ0) among the non-significants. Based

on Table 8.1, FPR is the expectation of the total number of false positives V divided

by the total number of tests m, namely E( V
m ). By contrast, FDR is the expectation of

V divided by the total number of significant tests (i.e., discoveries) R, namely E( V
R ).

FNDR is the expectation of T divided by the total number of declared non-hits

m − R, namely E( T
m−R ).

For hit selection in a genome-scale RNAi screen, we have two goals: (i) we do not

want the siRNAs with strong effects to be treated as non-hits; (ii) we do not want the

siRNAs with extremely weak effects or no effects to be selected as hits. Meanwhile,

we can tolerate a hit list that contains some siRNAs with weak or moderate effects. To

take into account this situation in genome-scale RNAi screens, the false positives and

false negatives should be defined as in Table 8.2 instead of as in Table 8.1 [169]. That

is, the false positives are the siRNAs with β ≤ β2 (or μ ≤ μ2) among the selected

hits, and the false negative are those with β ≥ β1 (or μ ≥ μ1) among the declared

non-hits, where β2 < β1 (or μ2 < μ1). For example, in some RNAi screens, the false

positives that we want to control are the siRNAs with SSMD ≤ 0.25 (not SSMD ≤
3) among the selected hits; the false negatives are the siRNAs with SSMD ≥ 3 (not
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Table 8.2. False positives and false negatives in m simultaneous tests for constructing FDR in the

up-regulated direction in a genome-scale RNAi screen

Declared as Non-Hits Declared as Hits Total

Non-interesting

(β ≤ β2 or μ < μ2)

U

(No. of true negatives)

V

(No. of false positives)

m0

Tolerable

(β2 < β < β1 or μ2 < μ < μ1)

W1 W2 m1

Interesting

(β ≥ β1 or μ ≥ μ1)

T

(No. of false negatives)

S

(No. of true positives)

m − m0 − m1

Total m − R R m

SSMD ≥ 0.25) among the declared non-hits. We can tolerate siRNAs with SSMD

between 0.25 and 3 in the selected hit list [169]. The U, V, T, and S in Table 8.2

have different meanings from those in Table 8.1. They are labeled in such a way

that the definitions of FDR and FNDR based on Table 8.2 have the same format

as those based on Table 8.1. That is, we still have E( V
R ) for FDR and E( T

m−R ) for

FNDR.

There are other concepts of FDR. One of them is positive FDR, pFDR = E( V
R |R >

0), defined as the expectation of V
R conditional on at least one rejection [144]. Another

is conditional FDR, cFDR = E( V
R |R = r )/r , defined as the expected proportion of

false positives conditional on the event that R = r rejected that have been observed,

which answers the question “What proportion of false positives may one expect in

the top list of r siRNAs?” Another method that is used less frequently is the marginal

FDR, mFDR = E(V)/E(R), defined as the ratio of the expected number of false

positives to the expected number of rejections. Tsai, Hsueh, and Chen [152] prove

that pFDR, cFDR, and mFDR are all equivalent with each other under independence

and identical distribution in a Bayesian setting.

8.6.2 q-Value

The well-known q-value is a term defined similarly to p-value. The q-value

is defined in terms of FDR, whereas p-value is defined in terms of FPR.

Considering hit selection in the up-regulated direction, the p-value (with

respect to β2) of an siRNA with an observed value βobs is p-value(βobs) =
max{FPR w.r.t. β2} = max{Pr(β̂ ≥ βobs|β ≤ β2)}. Similarly, the q-value is defined

as q-value(βobs) = max{FDR w.r.t. β2}. In terms of pi , the q-value is q-value( pi ) =
maxγ≤pi {FDR(γ ) w.r.t. β2}. When the FDR is non-increasing, as it should be, then

q-value( pi ) = FDR(pi ). For an individual siRNA, the q-value (with respect to β2)

of a particular siRNA with an observed value βobs is the maximum FDR if we use

the following selection criterion: any siRNA is selected as a hit if it has the estimated

SSMD value no less than βobs and as a non-hit otherwise.
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8.6.3 Estimation of q-Value and FDR

There are an impressive number of algorithms for estimating q-value and/or control-

ling FDR in the literature [3;22;35;42;57;90;93;103;120;124;144;146]. One popular

algorithm is the Benjamini–Hochberg (BH) procedure [11]. Suppose the m simul-

taneous tests have test statistics such as t-statistics t1, . . . , tm or z-scores z1, . . . , zm

and corresponding p-values p1, . . . , pm respectively. The BH procedure consists

of three steps: (i) order the p-values so that p(1) ≤ · · · ≤ p(m); (ii) set the desired

FDR level to be q and calculate k based on k = max(i : p(i) ≤ q i
m ); and (iii) reject

all hypotheses corresponding to p(1), . . . , p(k). As proved by B, the above procedure

controls FDR ≤ q when the test statistics are independent. The BH procedure results

in a simple correction of p-values as follows, p B H
i = pi

m
order(pi ) , i = 1, . . . , m, where

order( pi ) is the rank of pi among all the m p-values in increasing order. As compared

with the Bonferroni correction, pi ≤ p B H
i ≤ p B f

i .

Mixture models are commonly used for estimating FDR. For the observed p-

values, a two-component mixture model, in terms of distribution functions, is

F (p) = η0 F0( p) + (1 − η0)F A( p), where F0 and F A are the distribution functions

of p-value under the null and alternative hypotheses, respectively. Under the null

hypothesis, p-values are distributed with the uniform distribution U (0, 1); conse-

quently F0( p) = p. Therefore, the preceding two formulas become F (p) = η0 p +
(1 − η0)F A( p). If one declares a result significant if p-value ≤ p and non-significant

otherwise, then the FDR is Pr(null hypothesis and p.value ≤p)
Pr(p.value≤p) = η0 F0( p)

F (p) = η0 p
F (p) . Based on

Bayes rule, Pr(null hypothesis|p.value ≤ p) = Pr(null hypothesis and p.value ≤p)
Pr(p.value≤p) . There-

fore, FDR is actually the posterior distribution for the null hypothesis, which leads

to the Bayesian definition of FDR: FDR = Pr(null hypothesis|p.value ≤ p) = η0 p
F (p)

[145]. The Bayesian FDR can be used to interpret BH-corrected p-value as follows.

For observed p-value pi , FDR(pi ) = Pr(null hypothesis|p.value ≤ pi ) = η0 pi

F (pi ) .

Using the empirical distribution function F̂ (pi ) = order(pi )
m and considering η̂0 ≤ 1,

one gets FD̂R(pi ) = η0 pi
m

order( pi ) ≤ pi
m

order(pi ) = pBH
i . Thus the BH-corrected p-

value is a conservative estimator of FDR.

All the above FDRs are based on distribution function. This type of FDRs is

called tail area–based FDR. By contrast, FDR can also be defined on the basis of

density function as FDR = Pr(null hypothesis|p.value = p). This type of FDR

is called local FDR. In terms of density functions, a two-component mixture

model based on p-values is f ( p) = η0 f0(p) + (1 − η0) f A(p), where f0 and f A

are the density functions of p-value under the null and alternative hypotheses,

respectively. Under the null hypothesis, p-values are distributed with the uniform

distribution U (0, 1); consequently, f0 = 1 and f (p) = η0 + (1 − η0) f A(p). Thus

FDR = η0 f0( p)
f ( p) = η0

f (p) .

Therefore, there are two main types of FDR, the tail area–based FDR and local

FDR. Following Efron’s naming convention, fdr denotes the local FDR, Fdr denotes

tail area–based FDR, and FDR is a generic term encompassing both variants. Using
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this convention, we have Fdr = η0 F0( p)
F (p) = η0 p

F (p) and fdr = η0 f0( p)
f ( p) = η0

f ( p) . To estimate

either Fdr or fdr, the key is to estimate the density function f (p) (or the distribution

function F ( p)) and the proportion η0 of true null hypotheses. There are many

approaches to estimate F ( p) and η0 [3;21;22;35;42;57;90;93;103;124;144;146;147].

8.6.4 FNDR and q∗-Value

As parallel to FDR, FNDR) is defined as the ratio of the number of false negatives to

the number of all negatives, namely the expectation of T divided by the total number

of non-significant tests (i.e., non-discoveries) m − R, i.e., E( T
m−R ) based on Table 8.2

or Table 8.1 [52]. Similarly, as FDR corresponds to FPR, FNDR corresponds to FNR.

In traditional hypothesis testing, researchers are more concerned with FDR than with

FNDR. However, in SSMD-based tests, region I1 may be treated as equally important

as region I2 in Figure 8.4. In such a case, FNDR can be equally as important as

FDR.

In the context of FDR, corresponding to p-value, we have q-value. In parallel,

in the context of FNDR, corresponding to p∗-value, we have q∗-value. Considering

hit selection in the up-regulated direction, the p∗-value (with respect to β1) of

an siRNA with an observed value βobs is p∗-value(βobs) = max{FNR w.r.t. β1} =
max{Pr(β̂ < βobs|β ≥ β1)}. Similarly, the q∗-value is defined as q ∗-value(βobs) =
max{FNDR w.r.t. β1}. The q∗-value has the following meaning for an individual

siRNA: the q∗-value (with respect to β1) of a particular siRNA with an observed

value βobs is the maximum FNDR if we use the following selection criterion: any

siRNA is selected as a hit if it has the estimated SSMD value no less than βobs and as

a non-hit otherwise.

Using the methods described in Section 8.6.3, we can easily calculate the q-value

corresponding to the p-value for testing H0 : β ≤ β2 (or H0 : μ ≤ μ2). To calculate

q∗-value, we can treat p∗-value as the p-value for testing H0 : β ≥ β1 (or H0 : μ ≥ μ1)

and calculate the corresponding q-value; the resulting q-value equals the q∗-value

with respect to β ≥ β1 (or μ ≥ μ1).

8.7 Analytic Methods Adjusting for Off-Target Effects

8.7.1 Introduction to Off-Target Effects

Off-target effects occur when an siRNA is processed by the RNA-induced silenc-

ing complex (RISC) and down-regulates unintended targets. Although other non-

specific effects, such as lipid-mediated response and interferon response, can be

eliminated by adopting stringent siRNA design filters and optimizing lipid concen-

trations and compositions, off-target effects pose a bigger challenge by presenting

the research community with a surprisingly complex problem [78;80;130;133;137].

During siRNA design stage, siRNA pooling, siRNA modification [79], and 3′UTR

seed match [12;78;94] can be used to reduce off-target effects during siRNA

design.
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In the experimental stage, the main approach to adjusting for off-target effects

is the use of multiple siRNAs targeting the same gene. There are many approaches

and designs for reducing the impact of off-target effects. The most common and

accessible approach is the conduction of the so-called deconvolution screen, in which

multiple siRNAs are tested separately with different sequences against a target gene

to increase the level of confidence in positive hits [14;40]. The major reason for

examining the collective activity of multiple siRNAs is that the off-target effects of

these siRNAs are very likely to have different directions and thus may be canceled out

in their collective activity, whereas the on-target effects of these siRNAs should be

in the same direction and thus may be accumulated (or at least will not be canceled

out with each other) in their collective activity. Accordingly, analytic methods have

to incorporate the information of multiple siRNAs targeting the same gene. Here

we are modeling the collective activity of multiple siRNAs with different sequences

against a target gene.

8.7.2 Model for Collective Activity of Multiple siRNAs

Suppose we are interested in the collective activities of m siRNAs that are measured

separately. The activity of an individual siRNA on a measured response is usually

represented by the difference of measured values between this siRNA and a negative

reference group. Let di j denote the difference in the jth replicate of the ith siRNA

and its corresponding negative reference. Assuming the ith siRNA has a mean value

of μi , we can construct the following model for di j :

di j = μi + ei j (8.49)

where i = 1, . . . , m and j = 1, . . . , ni ; ei j ’s are independently distributed with

N(0, σ 2
i.e ); and μi is mean of the ith siRNA, which includes the on-target and off-

target effect that the siRNA has (i.e., μi = μi.on-target + μi.off-target).

The collective activity of m siRNAs is represented by the weighted average activity

of m values each drawn from one of the m siRNAs. Thus we can investigate it as

follows. For the ith siRNA among the m siRNAs, let random variable Di represent

the difference of measured values between the siRNA and a negative reference. Di

has a density function fi , mean μi , and variance σ 2
i . The collective effect of the

m siRNAs is represented by the difference Dcollective of measured values between

an siRNA and a negative reference in a group that is formed by pooling all the

m siRNAs with weight wi ’s, that is, fcollective =∑m
i=1 (wi fi ), where fcollective is the

density function of Dcollective. The weight wi ’s have a constraint of
∑m

i=1 wi = 1. In

many cases, the m siRNAs have equal weights, that is, wi = 1
m . Let μcollective and

σ 2
collective be the mean and variance of Dcollective, respectively, and μ• =∑m

i=1 wiμi .

Then μcollective = ∫ x · fcollectivedx = ∫ x ·∑m
i=1 (wi fi )dx =∑m

i=1 wi

∫
x fi dx =∑m

i=1 wi μi . Therefore,

μcollective = μ• =
m∑

i=1

wi μi (8.50)
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The mean of the ith siRNA, μi , includes its on-target effect μi.on-target and

off-target effect μi.off-target. It is well-known that one siRNA has a consistently

strong phenotypic effect on a gene and another siRNA has a consistently

weak phenotypic effect on the same gene, regardless of the RNAi libraries

used. Therefore, siRNAs targeting the same gene may have different specific

on-target effects beyond the on-target effect shared by all the m siRNAs.

Consequently, we can partition the on-target effect of the ith siRNA μi.on-target

into two parts: the shared on-target effect μi.shared on-target and specific on-target

effect μi.specific on-target (i.e., μi.on-target = μi.shared on-target + μi.specific on-target). On

the basis of this partition, we have μcollective =∑m
i=1 wi (μi.on-target + μi.off-target)

= ∑m
i=1 wi (μshared-on-target + μi.specific-on-target + μi.off-target) = μshared-on-target +

μ̄specific-on-target + μ̄off-target. Thus μcollective is the shared on-target effect plus the

sum of specific on-target and off-target effects weightily averaged over the m

siRNAs. When m is large, the off-target effect should be canceled out, as should be

the specific on-target effect. That is, μ̄specific-on-target + μ̄off-target ≈ 0; subsequently,

μcollective ≈ μshared-on-target, which indicates that the mean of collective activity of a

large number of siRNAs targeting the same gene represents the shared on-target

effects of these siRNAs on the gene.

For the variance of Dcollective, we have σ 2
collective = ∫ (x − μcollective)2 fcollectivedx =∫

(x − μcollective)2 ·∑m
i=1 wi fi dx = ∑m

i=1 wi

∫
(x − μi + μi − μcollective)2 fi dx

= ∑m
i=1 (wi

∫
(x − μi )2 fi dx) +∑m

i=1 wi (μi − μcollective)2 = ∑m
i=1 wi σ

2
i +∑m

i=1 wi (μi − μcollective)2. Clearly, the variance of Dcollective consists of two parts:

one is
∑m

i=1 wiσ
2
i , contributed by within-siRNA variation, and the other is∑m

i=1 wi (μi − μcollective)2, contributed by between-siRNA variation. The within-

siRNA variation comes from the variation of technical replicates of the same

siRNAs; thus it represents the technical or measurement variation. Meanwhile,

if we treat different siRNAs targeting the same gene as a biological replicate, the

between-siRNA variation represents the biological variation. For convenience,

let’s use σtechnical to denote the within-siRNA variation and use σbiological to denote

the between-siRNA variation. Then the SSMD for the collective activity based on

biological variation is

βbiological = μcollective

σbiological
=

m∑
i=1

wiμi√
m∑

i=1
wi (μi − μ•)2

. (8.51)

The SSMD for the collective activity based on technical variation is

βtechnical = μcollective

σtechnical
=

m∑
i=1

wiμi√
m∑

i=1
wi σ

2
i

. (8.52)
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The SSMD for the collective activity based on both biological and technical variation

is

βboth = μcollective

σboth
=

m∑
i=1

wiμi√
m∑

i=1
wi σ

2
i +

m∑
i=1

wi (μi − μ•)2

. (8.53)

When the independent Di ’s have equal variance σ 2, then the SSMD for the collective

activity based on technical variation and on both biological and technical variation

are, respectively,

βtechnical = μcollective

σtechnical
=

m∑
i=1

wi μi

σ
(8.54)

βboth = μcollective

σboth
=

m∑
i=1

wi μi√
σ 2 +

m∑
i=1

wi (μi − μ•)2

(8.55)

Biologists are usually more interested in biological replicates than in technical repli-

cates. Therefore, the SSMD based on biological variation in Formula 8.51 is usually

favorable.

8.7.3 Estimation of Mean and SSMD for the Collective Activity of Multiple siRNAs

Let Di = (di1, di2, . . . , dini ), i = 1, . . . , m be a random sample of the difference

in the ith siRNA. Let ni , d̄i , and s 2
i be the sample size, sample mean, and sam-

ple variance of Di , respectively. Let d̄• =∑m
i=1 wi d̄i , n =∑m

i=1 ni and MSE =
1

n−m

∑m
i=1 (ni − 1)s 2

i . Based on formulas 8.50, 8.51, 8.52, 8.53, 8.54, and 8.55, the

mean and SSMD of the collective activity Dcollective for the m siRNAs targeting the

same gene can be estimated using the following MM) estimates:

μcollective = d̄• (8.56)

β̂biological = d̄•√
m∑

i=1
wi (d̄i − d̄•)2

(8.57)

β̂technical = d̄•√
m∑

i=1
wi s 2

i

(8.58)
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β̂both = d̄•√
m∑

i=1
wi s 2

i +
m∑

i=1
wi (d̄i − d̄•)2

(8.59)

When the independent Di ’s have equal variance σ 2,

β̂technical = d̄•√
MSE

(8.60)

β̂both = d̄•√
MSE +

m∑
i=1

wi (d̄i − d̄•)2

(8.61)

8.7.4 Individual Activity of an Individual siRNA

The individual activity of an siRNA (siRNA i) can be assessed using the random

variable Di representing the difference between siRNA i and a negative reference.

It is trivial to make estimation and inference for the mean of Di . On the basis of

formulas 8.11, 8.12, 8.13, and 8.14, the estimation and inference of SSMD for Di

can be obtained using the following formulas:

β̂i.UMVUE =
�

(
ni − 1

2

)

�

(
ni − 2

2

)
√

2

ni − 1

d̄i

si
(8.62)

β̂i.MLE =
√

ni

ni − 1

d̄i

si
, (8.63)

β̂i.MM = d̄i

s i
, (8.64)

Ti = √
ni

d̄i

s i
∼ noncentral t(ni − 1,

√
ni βi ). (8.65)

The 1 − α confidence interval of μi is d̄i ± tni −1,
α
2

Si√
ni

.

8.7.5 Specific Activity of an Individual siRNA

The specific effect of an individual siRNA beyond the shared on-target effect may

be caused by either off-target or specific on-target effects. This specific effect is

represented by the magnitude of difference between the individual siRNA and all

siRNAs targeting the same gene. This magnitude of difference can be addressed using
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the SMCV and mean of the contrast for the main effect of the siRNA when we treat

each siRNA targeting the same gene as a factor level in one-way ANOVA. The specific

effect of the ith siRNA among the m siRNAs targeting the same gene can then be

assessed using SMCV of the contrast variable:

Vi = Di − D• = Di −
m∑

k=1

wk Dk = (1 − wi )Di +
m∑

k 
=i

(−wk Dk) =
m∑

k=1

ck Dk

where ck =
{

1 − wk, when k = i

−wk, when k 
= i
. Applying Theorem 2 in Section 7.4 of Chap-

ter 7, we can make estimation and inference of mean and SMCV of the contrast

variable Vi for addressing the specific effect of siRNA i as follows.

The mean of Vi is

τi = μi −
m∑

k=1

wkμk

= μshared-on-target + μi.specific-on-target + μi.off-target

−
m∑

k=1
wk

(
μshared-on-target + μk.specific-on-target + μk.off-target

)
= μi.specific-on-target + μi.off-target −

m∑
k=1

wk

(
μk.specific-on-target + μk.off-target

)
Therefore, τi is a combination of specific on-target and off-target effects of the

siRNA away from the sum of specific on-target and off-target effects weightily

averaged over the m investigated siRNAs. If the sum of specific on-target and off-

target effects weightily averaged over the m investigated siRNAs is zero, that is,∑m
k=1 wk

(
μk.specific-on-target + μk.off-target

) = 0, which approximately holds especially

when the m is large, then τi = μi.specific-on-target + μi.off-target. Thus τi roughly represents

the sum of specific on-target and off-target effect of the ith siRNA.

Whether the m siRNAs have equal or unequal variances, the estimate of τi is

estimated to be

τ̂i =
m∑

k=1

ckd̄k . (8.66)

In a situation in which the m siRNAs have unequal variance, the MLE of SMCV for

Vi (from Formula T2.1 in Chapter 7) is

λ̂i.MLE =

m∑
k=1

ck d̄k√
m∑

k=1

nk − 1

nk
c 2

ks 2
k

; (8.67)
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the MM of SMCV for Vi (from Formula T2.2 in Chapter 7) is

λ̂i.MM =

m∑
k=1

ckd̄k√
m∑

k=1
c 2

ks 2
k

. (8.68)

In a situation with unequal variance but equal sample size r for the m siRNAs, an

approximate unbiased estimate of SMCV for Vi (from Formula T2.5 in Chapter 7)

is

λ̂i .AUE =
√

2

ν

�
(ν

2

)
�

(
ν − 1

2

)
m∑

k=1
ck d̄k√

m∑
k=1

c 2
ks 2

k

, where ν = (r − 1)

(
m∑

k=1
c 2

ks 2
k

)2

m∑
k=1

c 4
ks 4

k

. (8.69)

In a situation in which the m siRNAs have equal variance, the 1 − α confidence

interval of the mean of Vi is

m∑
k=1

ckd̄k ± t1−α/2,N−m ×
√√√√MSE ·

m∑
k=1

c 2
k

/
n2

k, (8.70)

where N =∑m
k=1 nk and MSE = 1

N−m

∑m
k=1 (nk − 1)s 2

k .

The UMVUE, MLE, and MM estimates of λi are, respectively (from Formulas

T2.7–T2.9 in Chapter 7),

λ̂i.UMVUE =
√

K√
N − m

m∑
k=1

ckd̄k√
MSE ·

m∑
k=1

c 2
k

, whereK = 2 ·

⎛
⎜⎜⎝

�

(
N − m

2

)

�

(
N − m − 1

2

)
⎞
⎟⎟⎠

2

(8.71)

λ̂i .MLE =
√

N

N − m

m∑
k=1

ck d̄k√
MSE ·

m∑
k=1

c 2
k

(8.72)

λ̂i .MM =

m∑
k=1

ckd̄k√
MSE ·

m∑
k=1

c 2
k

(8.73)

From Formula T2.9 in Chapter 7, we have T = (
∑m

i=1 ck d̄k)/(√
MSE ·∑m

k=1 c 2
k/nk

) ∼ noncentral t (ν, bλi ), where ν = N − m and
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b =
√

(
∑m

k=1 c 2
k)/(
∑m

k=1 c 2
k/nk). Let Ft(ν,bλi )(·) be the cumulative distribu-

tion function of noncentral t(ν, bλi ) and Tobs be the observed value of T. Then

we can find λL and λU such that Ft(ν,bλL )(Tobs) = 1 − α
2 and Ft(ν,bλu)(Tobs) = α

2 ;

subsequently, (λL , λU ) is a 1 − α confidence interval of SMCV λi .

8.8 Discussion and Conclusions

In most genome-scale RNAi screens, the ultimate goal is to select siRNAs with a

desired size of inhibition or activation effect. Traditionally, hit selection is based on

the test of mean difference. However, mean difference can neither take into account

data variability nor accommodate different measurement units. Consequently, the

value of mean difference is not comparable across experiments, and hence no cutoff

of mean difference can be applicable to various experiments. An alternative that can

avoid these issues of mean difference is the so-called effect size [84]. One effect size

that has been developed for HTS experiments is SSMD [161;162;167]. SSMD is the

ratio of mean to standard deviation of the difference between an siRNA and a negative

reference group. SSMD has also been shown to be better than other commonly used

effect sizes [171]. In this chapter, I first elaborate how to derive SSMD, d+-probability,

and their estimation based on the concepts and theorems described in Chapter 7,

then compare SSMD with classical t-statistic and standardized mean difference,

including Cohen’s d.

A clear advantage of SSMD over mean difference is that the population value

of SSMD is comparable across experiments; thus we can use the same cutoff for

the population value of SSMD to measure the size of siRNA effects [161;167;175].

Derived from Table 7.2 of Chapter 7, a meaningful and interpretable SSMD-based

criterion for classifying the size of siRNA effects is as follows: |SSMD| ≥ 5 for

extremely strong, 5 > |SSMD| ≥ 3 for very strong, 3 > |SSMD| ≥ 2 for strong,

2 > |SSMD| ≥ 1.645 for fairly strong, 1.645 > |SSMD| ≥ 1.28 for moderate,

1.28 > |SSMD| ≥ 1 for fairly moderate, 1 > |SSMD| ≥ 0.75 for fairly weak, 0.75 >

|SSMD| > 0.5 for weak, 0.5 ≥ |SSMD| > 0.25 for very weak, and |SSMD| ≤ 0.25

for extremely weak effects [167]. This SSMD-based criterion not only provides us

with a theoretical basis for using SSMD as both an effect size metric to gauge the size

of siRNA effects and a quality assessment metric to assess the separation between

positive and negative controls in an assay, but also allows us to set up meaningful

constants for controlling false positives and false negatives.

The hit selection usually requires the control of two errors: false positives and false

negatives, which is commonly achieved through FPR or p-value [13;17;161;175],

FDR or q-value [11;146;176], FNR [178], and FNDR [52]. The FPR, FDR, FNR,

and FNDR based on traditional definitions of false positives and false negatives are

inappropriate to serve the need of controlling the proportion of siRNAs with a small

effect among selected hits and controlling the proportion of siRNAs with a large effect
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among declared non-hits. To address this need, in this chapter I elaborate recently

proposed definitions of false positives and false negatives and their corresponding

methods, including p-value, q-value, p∗-value, and q∗-value based on SSMD. The

SSMD-based methods apply two constants to define non-interesting, tolerable, and

interesting siRNAs (shown in Table 8.2), compared with a single constant in tradi-

tional methods (shown in Table 8.1). For example, in some RNAi screens, the false

positives that we want to control are the siRNAs with SSMD ≥ –0.25 among hits;

the false negatives are the siRNAs with SSMD ≤ –3 among non-hits. We can tolerate

siRNAs with SSMD between –0.25 and –3 in the hit list. Thus the SSMD-based

methods appropriately address the scientific need for hit selection in RNAi screens.

Off-target effects may impede the analysis of RNAi screens because false positives

generated by off-targets during phenotypic screens can lead to false leads and the

use of resources to explore nonproductive research paths. In this chapter, I introduce

an analytic method using the average fold change and collective SSMD to select hits

addressing for off-target effects in a deconvolution screen in which multiple single

siRNAs are measured separately against a gene. This method naturally incorporates

all the information of multiple siRNAs targeting the same gene in a strong statistical

basis. In addition, this method can assess not only the collective activities of multiple

siRNAs against a gene, but also the strength of specific effect of each siRNA beyond its

collective activity. The consideration of both collective activity and specific activity

can also give a reference about which siRNAs are more likely to have large off-target

effects and which siRNAs are more likely to have specific on-target effects.

All the methods in this chapter have been derived from a methodological perspec-

tive based on scientific needs in genome-scale RNAi screens. The practical usefulness

of the proposed methods in real genome-scale RNAi screens are shown in Chapters

2 through 6. Although the methods presented in this book were developed for hit

selection in RNAi-based high throughput screens, they should be applicable to other

assays in which the end point is a difference in signal compared with a reference

sample, including those for receptors, enzymes, and cellular function.
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